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Figure 1: Physics-based simulations of contact-rich tasks including: (a) crossing legs while seated; (b) sliding sideways on a sofa; (c)
climbing on-and-off a table; (d) seated rotation on a stool; (e) climbing into bed; (f) turning sideways in a chair.

Abstract
Physics-based character motions remain difficult to create and control. We make two contributions towards simpler specification
and faster generation of physics-based control. First, we introduce a novel partwise model predictive control (MPC) method that
exploits independent planning for body parts when this proves beneficial, while defaulting to whole-body motion planning when
that proves to be more effective. Second, we introduce a new approach to motion specification, based on specifying an ordered
set of contact keyframes. These each specify a small number of pairwise contacts between the body and the environment, and
serve as loose specifications of motion strategies. Unlike regular keyframes or traditional trajectory optimization constraints,
they are heavily under-constrained and have flexible timing. We demonstrate a range of challenging contact-rich motions that
can be generated online at interactive rates using this framework. We further show the generalization capabilities of the method.
CCS Concepts
• Computing methodologies ! Physical simulation; Robotic planning;

1. Introduction

Character motions coming from a physics-based simulation ex-
hibit a palpable presence and embodiment in their surroundings
that is often missing from kinematic motions. However, solving
for the control needed to create purposeful physics-based motions
is known to be a challenging problem. In this context, reinforce-
ment learning methods have seen significant success in producing
efficient and capable control policies for physics-based characters.
This comes with related limitations: hours or days of compute for
the offline learning; a common reliance on motion capture data to
guide the solutions; limited generalization outside the space of sit-
uations it has been trained on; and often a lack of diversity when
faced with the same situation twice.

Online control provides an alternative class of solutions, usually
designed around a receding horizon planner. Commonly known as
model predictive control (MPC), these optimize the control actions

for a fixed horizon duration, H, into the future, often using repeated
simulations forward from the current state. The first action(s) are
then executed and then the planning process is repeated. These
methods have the advantages of (a) requiring no offline compu-
tation and therefore supporting fast design iteration; (b) being able
to generalize to new situations on demand; (c) success at explor-
ing discontinuous solution spaces, therefore addressing issues of
exploration; and (d) producing solution diversity.

In this paper we explore interactive-speed MPC-based solutions
to rich-contact motions, such as those shown in Figure 1. We in-
troduce a novel partwise MPC solver that improves on a standard
sample-based MPC solver. At the cost of a few rollouts, this adds
control samples which recombine existing samples in a way that
can, at all times, exploit any body-part independence that may ex-
ist. This stands in contrast to the basic sampler which assumes that
all body motions must be fully coordinated across all joints. We fur-
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ther introduce contact keyframes as a minimal sparse task descrip-
tion. This consists of a set of one-or-more contact pairs that should
be achieved between a designated point on the body and a point
in the environment. The contact keyframes serve as a minimally-
constrained specification of a desired motion or motion strategy.
They act as sequential waypoint constraints for the motion but do
not contain timing information.

Our contributions are as follows:

• PartwiseMPC, a method that can readily exploit the varying de-
grees of full-body-coordination vs body-part-independence that
exist during complex motions;

• contact keyframes, a sparse and flexible means to specify a mo-
tion or motion strategy that allows for significant generalization
and motion diversity; and

• a suite of scenes and related skills that demonstrate interactive,
online synthesis of contact-rich interactions between a physics-
based humanoid and its environment.

2. Related Work

Our method has connections with previous work in animation,
robotics, and control. We focus our review on the closest related
work. For a longer-term history of physics-based character anima-
tion we refer the reader to suitable survey papers, e.g., [GP12].

2.1. Trajectory Optimization and Contact Planning

Methods based on trajectory optimization have long been proposed
in computer animation and robotics to generate complex motions
for physics-based characters or robots. In this class of approach,
motions are modeled as a function of time and then optimized to
minimize an objective function that encodes desired characteris-
tics of the motion. The motion physics can be included by adding
the equations of motion as trajectory constraints, as introduced
for physics-based animation in [WK88]. Alternatively, forward dy-
namics simulations can be used to determine the motion result-
ing from given control actions, as used by shooting or multiple-
shooting methods. In model predictive control (MPC), trajectory
optimization is applied over some limited time horizon H. The first
action(s) of the resulting plan are then taken, followed by replan-
ning again with another iteration of trajectory optimization. Tra-
jectory optimization methods have been developed to track mo-
tion sketches [LP02, LYvdP⇤10, LYG15, XK21], control rotational
behavior [BMYZ13], or optimize task-specific objectives [AB-
dLH13, BPF17]. Motion planning using optimal control methods
and trajectory optimization are common in robotics, generally us-
ing similar methodologies to those proposed for physics-based an-
imation. We refer the reader to a recent survey paper for a more
in-depth summary of robotics methods [WPH⇤23].

Two phase approaches are common, recognizing that it can be
useful to first find a coarse motion plan, including contact locations,
followed by a full-body motion plan, e.g., [TDPP⇤18, KLVDP20,
SFH23]. Relatedly, Mordatch et al. [MTP12] employ a trajectory
optimization framework for generating motions defined by a pre-
allocated set of contact phases, using a continuation scheme. Al-
though contact planning is discontinuous due to the binary nature

of contacts, continuous auxiliary variables are introduced that en-
code the activation of potential contacts within the allocated con-
tact phases. With this in place, they are able to synthesize long
duration complex motions. It is limited by a simplified physical
model, the inability to generate interactions with sliding contacts,
and not being interactive. Tassa et al. [TET12] use model pre-
dictive control (MPC) and the iterative LQG method to synthe-
size complex motions for physics-based humanoids. Hämäläinen et
al. [HET⇤14, HRL15] develop particle belief propagation methods
to demonstrate the suitability of sampling-based MPC methods for
interactive control of challenging physics-based motions, including
difficult balance-related tasks.

Our work shares key ideas with prior work, particularly the im-
portant role of contacts in defining a motion and the use of trajec-
tory optimization. However, it differs in several key respects. Our
contact keyframes are a sparse subset of the actual contacts that
can-and-will occur during a motion. Furthermore while they are
fixed in order, their timing is flexible. We are able to generate slid-
ing motions. Our partwise MPC algorithm improves on sampling-
based methods by exploiting body-part independence when it ex-
ists, yielding improved optimization. Our implementation builds
on the predictive sampling method and the underlying MuJoCo
physics engine as presented in MuJoCo MPC [HGT⇤22].

2.2. Deep Reinforcement Learning

Deep reinforcement learning (DRL) has seen significant success
in recent years for generating skilled control for physics-based
characters. The recent survey by Kwiatkowski et al. [KAK⇤22]
gives a comprehensive overview of reinforcement learning
based approaches for character animation. Control policies
trained through DRL demonstrate the capability to synthe-
size diverse motion skills, including locomotion [BCHF19,
HTS⇤17], agile motions [YYVDPY21], climbing [BWL⇤23], mar-
tial arts [WGH21], getting up [TWGvdP22], and imitation of an-
imation clips [PALvdP18]. Recent work has addressed the pro-
longed learning times associated for training control policies for
new tasks, e.g. through effective use of pre-trained control poli-
cies [XXA⇤23]. In contrast, our approach does not require the of-
fline learning inherent to RL-based methods. Consequently, new
motions for complex tasks can be synthesized at interactive frame
rates.

Several recent works have leveraged the idea that a part-level
view of the motion planning task can be beneficial. For instance,
Bae et al. [BWL⇤23] builds motion controllers that encode local
part-wise skills, which are then combined to produce whole body
motions for novel circumstances. Other work by has examined how
to compose upper- and lower-body motions by leveraging discrim-
inator ensembles from pre-trained policies and allowing the agent
to explore novel combinations of partial body motions [XSZK23].

2.3. Contact-aware Motion Synthesis

Several kinematic strategies for contact-aware pose synthesis or
motion synthesis have been explored, including the estimation
of good poses inferred from an object’s shape [KCGF14], art-
directable contact specification [LFL⇤23], and kinematic planning
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and interpolation for contact-rich motion sequences such as get-
ting on a bicycle [KL21]. In general, it is challenging to optimize
trajectories through contacts, with specific methods being intro-
duced to address this challenge, e.g., [PCT14, NFWB17]. Kapadia
et al. [KXN⇤16] proposed to pre-compute annotations for a virtual
environment that encode affordances for movement through con-
tact. Tonneau et al. [TPM14] generate skeletal configurations of
virtual characters that satisfy tasks and workspace constraints. Al-
Asqhar et al. [AAKC13] adapt the motions of 3D characters dur-
ing close interactions with other characters and their environment
by introducing novel spatial relationship descriptors based on the
proximity between body parts and sample points from the environ-
ment. Their method was later extended to address motion editing
under large environmental changes that preserves characteristics of
the original contact configurations [TAAP⇤16].

3. Method

Motion objectives can be described in many ways. In this work,
we aim for motion descriptions that are rich enough to broadly de-
scribe motion strategies and motion outcomes, while also being suf-
ficiently abstract to allow significant freedom in its execution. We
thus define motion objectives using a combination of general mo-
tion objectives and a sequence of contact keyframes, which serve
as a sparse and flexible specification of a contact-rich motion. The
total motion objective to be minimized is given by Jtotal, which we
describe in detail later. We use a partwise MPC technique to opti-
mize the motion objective, as we now describe in detail.

3.1. Model Predictive Control

The motion objectives are optimized using online receding-horizon
control optimization. As is typical of MPC, a planning loop op-
timizes for the future control actions beginning from the current
state, over a fixed time horizon, H. The early portions of the ac-
tions corresponding to the best plan will be executed, while the
later portions will be discarded as they are replaced by improved
plans coming from next iterations of the online planning loop.

Baseline MPC. We build on the core predictive sampling MPC
method used for Mujoco MPC [HGT⇤22]. The core idea of
sampling-based MPC methods is to explore and evaluate a fixed
number of possible futures ("samples"), and then select the best
one. Each sample consists of a simulation rollout: beginning at the
known current state, a forward simulation is computed over a fixed
future time horizon H, using a sample-specific time-sequence of
control actions. The objective function is evaluated for each rollout
sample and this is used to select the best rollout. The actions of the
best rollout define the nominal action trajectory: the default action
sequence that will be progressively executed over time, to be used
until a future planning iteration produces a revised plan.

In our work, the actions space consists of cubic spline curves
defining joint torques and are parameterized by the values at the
knot locations of the spline curves. The knot locations are equally
spaced in time across the finite horizon; we typically use 3 knots
across a horizon H = 0.35 s. The action space has dimension
njoints ⇥nknots. The predictive sampling planner works by sampling

Figure 2: 2D optimal action search space.

around the nominal action trajectory, which represents the best ac-
tion plan resulting from the previous planning iteration. For a given
sample, new cubic spline curves for the actions are produced by
generating new knot points. For each rollout or sample, the value
of each spline knot point is computed as the sum of (a) the cur-
rent nominal action value observed at the time associated with the
given spline knot, and (b) a randomized offset sampled from a zero
mean Gaussian. A simulation rollout then determines the motion
associated with the given action sample. The planner optimization
uses a set of N rollouts, run in parallel threads, with the rollout cor-
responding to the best observed result, evaluated using Jtotal, then
defining the new nominal trajectory.

The planner runs asynchronously, and in parallel with, the main
simulation thread for the agent. In order to allow for more planning
rollouts (and therefore possibly better plans), the agent simulation
can be run with a slowdown factor, G. For example, running the
agent simulation with G = 0.25 enables four times more compute
for the planner per unit simulation time for the agent.

Partwise MPC. A shortcoming of the method described above
is that it becomes inefficient when not all action components need
to be synergistic, such as when arms and legs are free to move inde-
pendently to accomplish individual objectives during some motion
phases. As an extreme example, consider the case of a collection of
K independent agents, each with their own objective function, be-
ing treated as a single fully-coordinated higher-dimensional action.
If the probability of a randomly-sampled individual agent action
performing well is p, then the probability of simultaneously sam-
pling a good action across all K actions becomes pK . As a result,
there is a significant price to be paid when unnecessarily assuming
fully coordinated actions.

To further understand the cost of ignoring partwise indepen-
dence, we consider the toy 2D "dart board" problem shown in Fig-
ure 2. For action dimension a0, the optimal solution falls in the gray
column. Similarly, for action dimension a1, the optimal solution
falls in the gray row. Given a total objective J = J0(a0)+ J1(a1),
the dark gray cell in position (2,2) then indicates the globally opti-
mal solution. Intuitively, we have a low chance of sampling the dark
gray cell using the 2D-action space, as illustrated by the 5 example
samples. Alternatively, by recognizing that each dimension of the
action has a mutually independent impact on the objective, we can
readily identify the optimal combined action as (a⇤0 ,a

⇤
1 ), where ⇤

indicates the optimal action for each given dimension.
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More formally, consider the D-dimensional variation of this
problem, where Ji 2 [0,1] represents the objective cost for each
dimension i. This defines a total objective J 2 [0,D] given by

J =
D

Â
i=1

Ji

Given a success probability of E[Ji] = a for any dimension i, then
the probability of finding the global optimum for any sample is
given by aD. For N samples, the probability of failure for all N
samples is then Pfail = (1 � aD)N . The global optimum success
probability is then given by (assuming small a):

Psuccess = 1� (1�aD)N ⇡ 1� (1�NaD) = NaD (1)

In the case of partwise planning, since each independent dimen-
sion is assessed separately, the probability of failure across all N
samples, per dimension, is given by (1�a)N . The probability of
finding the global optimal solution given D independent actions,
again assuming a is small, becomes:

P0
success = (1� (1�a)N)D ⇡ (1� (1�Na))D = NDaD (2)

Taking the ratio P0
success/Psuccess = ND�1 shows that for D > 1,

the partwise method is more likely to find the optimal solution by
a factor that is exponential in D, by avoiding the curse of dimen-
sionality where possible . The above analysis provides a simple
upper bound on the expected performance gain. The actual perfor-
mance will then be significantly mitigated by many factors, most
commonly a lack of the assumed independence.

Partwise character model. In our physics-based character con-
trol setting, we can partition the character into D joint groups,
where the actions for each joint group can then be optimized in-
dependently of each other. At one extreme, we can treat each of the
character joints as an independent group, resulting in njoints groups.
At the other extreme, we can assume full body coordination is re-
quired across all joints, resulting in a single joint group that encom-
passes the whole body, i.e., no partitioning, which is the assumption
of the baseline MPC method. In practice, PartwiseMPC considers
five unique partitionings of the body and limbs, shown in Figure 3.
For a given partitioning, there is the assumption that the controls
for the joint groups within that partitioning should be optimized
independently.

By way of example, consider the second partitioning shown in
Figure 3 which consists of three joint groups: left arm joints, right
arm joints, and all the remaining joints. The best motions for these
three groups are identified independently, typically each coming
from a different rollout. We then synthesize, through composition,
a final optimal action spline from these different rollouts; the best
joint actions for each group are taken from their respective best
rollouts. This then becomes the new partwise-optimized action.

Optimization by partwise partitioning. The use of partwise
optimization requires no change to the MPC planner rollouts; in-
stead, it only requires a reinterpretation of rollout results. The base-
line objective function consists of a sum of objective terms related
to contact keyframes as well as more generic terms, as we describe
in detail shortly. For partwise optimization, each joint group opti-
mizes a subset of the objective function terms, namely those that di-
rectly involve the joints in the given joint group. Contact keyframe

Figure 3: Five partitionings of the joints for partwise rollout opti-
mization. For a given partitioning, the best actions for each num-
bered group are identified independently, and then recombined.

C RL LL RA LA
upright torso X - - - -
upright pelvis X - - - -

upright left foot - - X - -
upright right foot - X - - -

head height X - - - -

Posture

torso height X - - - -
align knee-feet - X X - -Balance align COM-feet X X X X X

Facing torso direction X - - - -
COM velocity X X X X X
joint velocity X X X X XRegularize

control X X X X X

Table 1: Common objective terms and their correlated parts: Core
(C), Right Leg (RL), Left Leg (LL), Right Arm (RA), Left Arm (LA).
Note that the regularization terms and any term involving center of
mass apply to all the joints.

terms are included if the current contact specification involves a
link that belongs to the given joint group. Common objective terms
are included if they involve relevant joints, as documented in Ta-
ble 1. For example, the left arm joint group of the second parti-
tioning in Figure 3 sees the four left-arm (LA) common objective
terms as designated in the right column of the table. Similarly, for
the same partitioning, joint group 6, which spans the core body,
left leg, and right leg, sees the objective terms designated by the
checkmarks in the first three columns of the Table. During rollout
evaluations, all objective terms are computed as a cumulative sum
across timesteps as computed during the rollout.

Given the five partitioning choices, it still remains to be deter-
mined if the resulting partwise recombination of the actions for
these cases actually does realize a better objective result, Jtotal. This
is because in practice, the outcome may actually be worse given
that each partition choice makes strong assumptions about motion
independence that may be wrong. A solution is to immediately run
a separate round of five rollouts that empirically evaluates the out-
comes of the recombined actions that result from each partitioning
choice. However, this comes at the cost of slowing down the plan-
ner with this extra round of evaluations. Instead, we evaluate the
five partwise solutions in parallel with the rollouts belonging to the
next iteration of the sample-based planner. The partwise solutions
thus compete with the baseline sampling method. This comes at
only a small cost, i.e., using N � 5 baseline samples instead of the
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Figure 4: Three contact keyframes used for lying-down in bed and
then reused in reverse order for getting-up from bed, each consist-
ing of five contact pairs.

original N. Our experiments use 48-virtual-core machines, and thus
we typically use N = 45 or N = 90. We provide detailed evalua-
tions of the benefit of the partwise-optimization method. We further
note that the recombined control actions may also now be slightly
out-of-date given that the starting state has also advanced in the
meantime. However, if this is truly problematic this will also be
discovered in the resulting rollout evaluations.

3.2. Motion Specification

A sequence of contact keyframes is a collection of body-to-
environment or body-to-body contacts that should be achieved
within a given distance tolerance ✏. More formally, a contact
keyframe Ki is defined by a set of Ncp desired-contact pairs,
{p1,q1}, . . . , {pNcp ,qNcp}. A contact pair consists of a point on the
body p j 2R3 that should be in contact with a given point in the en-
vironment q j 2R3, although body-to-body contacts are also useful
to specify. A motion task is then defined using a sequence of con-
tact keyframes.

Contact points are defined in the local coordinates of the ge-
ometry they are defined with respect to. All contacts described by
Ki should be achieved within their tolerance before proceeding to
Ki+1. In practice, we work with contact keyframes having 1–5 con-
tact pairs, and use sequences of 5–9 contact keyframes.

Contact keyframes provide a convenient halfway point between
providing only sparse end goals, leading to overly difficult explo-
ration problems, and providing a fully detailed example trajectory,
which is unlikely to generalize well and requires significantly more
knowledge to specify. The motion timing is also left unconstrained,
given that it is difficult in any case to know how much time may
be required to achieve given motion phases. Importantly, contact
keyframes readily support various types of motion generalization
and emergent stylistic diversity, as we demonstrate later. They also
allow for sequential composition and reuse in creating long motion
sequences.

Figure 4 shows a sequence of three contact keyframes used to de-
fine a “getting up out of bed” motion. Contact keyframes are man-
ually specified in our work, offering a compact loosely-constrained
motion task specification, while still being sufficiently constrained
to allow for efficient motion optimization. For symmetric motions,

we can procedurally generate symmetric keyframes, e.g., for a ro-
tation while seated on a stool. Alternatively, for some motions it is
sufficient to use the same keyframes in a reverse order. These reuse
strategies minimize the effort needed to generate new keyframes.

3.3. Trajectory Optimization using Contact Keyframes

At any point in time, the motion objective to be minimized is de-
fined by

Jtotal = Jcommon + Jcontact , (3)

where Jcommon includes basic posture, balance, facing direction, as
well as velocity and control effort regularization terms. Depend-
ing on the motion, a subset of these cost terms are activated and
accordingly weighted. We elaborate more on these common terms
shortly.

Contact objective. The contact objective encourages motions
where the displacement vector d j = p j �q j between a pair of con-
tact points is zero. We concatenate all of the contact distance vec-
tors for all pairs into a global contact displacement vector, such that

D = [dT
1 ,dT

2 , ...,dT
N ] . (4)

We then compute the objective term according to the smoothed dis-
tance function

Jcontact =
3N

Â
k=1

q
(D2

k +a2)�a , (5)

where Dk denotes the kth element of the global contact displace-
ment vector, and a = 0.1 is a coefficient allowing control over the
linearity of the loss function.

The success criteria for each contact keyframe is to sustain the
contact pairs within a distance threshold ✏ for a duration TC, and
achieving this within a time limit Tmax. These parameters are gen-
erally held constant across all contact keyframes Ki, but can also
be adjusted per contact keyframe if needed.

Common objective. The term Jcommon provides additional con-
trol over the style of the motion. For example, the upright posture
term helps avoid a crouched posture, in favor of a more upright
style. The weights (and hence the associated styles) can be associ-
ated with designated keyframes, e.g., allowing the character to be
as upright as possible while standing, and to assume other more
curved or slumped postures when seated. Similarly, the regular-
ization terms also generally help with stylizing the motion. For
example, increasing the control regularization gives the character
a look of lazy and less inclined to move, whereas removing the
control regularization allows for more dynamic movement of the
joints, at the price of possible jittery motion. A detailed breakdown
of these common objective terms is given in the Appendix. Each
objective applies to certain body parts during partwise optimiza-
tion, the breakdown of which is shown in Table 1. We note that the
body parts that are influenced by any given objective term are fixed
apriori. Setting an objective term weight to zero effectively disables
that term. By default, we keep the regularization terms unchanged
when authoring new motions, only changing them if we observe
them to be a hindrance to the optimization. Because many motions
could base on these, we define default weights on the posture and
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Figure 5: Partwise sampling overview: in each planning iteration, we take the nominal trajectories from the previous iteration and add some
noise to them during the rollouts. We keep the partwise nominal trajectories constant. Then we assess the best overall rollout, as well as 9
different assessments for 9 groupings of the joints. These are used to compose best action trajectories for the 5 partitions, namely partwise
nominal trajectories. The global and partwise nominal trajectories are then resampled for the next planning iteration.

balance terms for sitting and standing keyframes. We provide fur-
ther details on the use of the common terms in Appendix A.

4. Results

We use the simulation environment provided by MuJoCo
MPC [HGT⇤22]. Unless otherwise noted, simulations are run with
a slowdown of G = 0.25 . . .0.5 (i.e., 25% � 50% of real-time).
While smaller G will increase the quality of the generated motions,
by allowing for more planning iterations per unit of agent simu-
lation time, our given choice allows for experiments at interactive
rates. Each contact keyframe contains between one to five contact
pairs. Each basic strategy contains between three to nine contact
keyframes, as listed in Table 2. Longer motions can be generated
by concatenating existing keyframe sequences.

4.1. Skills

The results for this paper are best understood via the accompanying
supplementary video. We demonstrate a diverse set of contact-rich
motions with everyday objects, all computed online at interactive
speeds. Many of these tasks are easy for humans to perform while
being challenging to reproduce in simulation. This is due in part
to the complexity of the multitude of possible interactions with the
environment and the shortcomings of offline methods in such cases,
e.g., needing to train in advance on all expected variations.

Skills diversity. We demonstrate that our method can generate
successful control for a diverse set of skills. Three of these are
shown in Figure 6. Table 2 provides an insight into the stability
of the generated motions, their success rates and the diversity of
resulting motions.

Emergent motion diversity. Due to the loosely constrained na-
ture of our contact keyframe specification, we observe emergent

diversity in the resulting motions. Given the same target contact
keyframe, PartwiseMPC generates various valid, natural-looking
solutions, as shown in Figure 7. The optimization has the flexibility
to explore a variety of ways to solve the task due to the underspec-
ification of the task. In the bench shuffle task each keyframe con-
sists of only one contact pair between the character’s pelvis and the
bench and therefore several solution modes arise. Some episodes
push with the hands on the bench or with the feet on the ground,
and others discover that bringing the legs up and pushing on the
bench is a viable solution. We note that with additional slowdown,
e.g., 0.01  G  0.1, and therefore more planning compute per unit
of simulation time, the success rate and the stability of the results
improve significantly. This comes at the cost of the motion being
generated much slower than real time. As well, we observed that
the planner often produced less diverse motions for small values of
G; we suspect this is a result of preferring actions near the optimal
solution.

Environment generalization. One of the main strengths of on-
line trajectory optimization is its adaptability to new and unseen
environments. We apply our authored contact keyframes to differ-
ent variations of the same environment, and our method generalizes
to these new settings with no further changes. In our experiments,
we introduce rotate and translate the objects, as well as altering the
friction coefficient. Further details on the environment variations
are given in the Appendix.

Character generalization. Similarly, the existing motion strate-
gies are transferable to characters with varying morphology. Fig-
ure 8 shows three different variations of a character that can suc-
cessfully perform the given task, using the same contact keyframes
authored for the default character proportions.

Skill concatenation. Contact keyframes can be resequenced to
compose longer motions, allowing for repeated motions, motion
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Figure 6: Example skill strategies, from top to bottom for (a) Leg crossing; (b) Lying down on a bed and sitting up; (c) Climbing a table.

Scene Task # KFs (Ncp) Success% Mean Motion Duration (s) Duration min-max (s)

Armchair
Stand to Sit to Stand 6 (4,4,4,4,1,1) 94 5.9±0.5 5 - 9
Cross Legs 7 (3,3,3,3,3,3,3) 96 20.0±1.7 18 - 27
Turn to relax 6 (4,4,4,4,4,4) 100 7.0±0.2 6 - 8

Stool Rotate 9 (3,3,3,3,3,3,3,3,3) 89 19±5 15 - 26

Bench Shuffle 5 (1,1,1,1,1) 89 22.9±4.4 20 - 27

Bed Lie Down and Get up 5 (5,5,5,5,3) 98 8.5±1.2 7 - 15

Table Climb 9 (3,4,4,5,5,5,5,5,5) 75 11.9±10.6 9 - 26

Table 2: Quantitative results for basic motion strategies. Performance assessed over 100 trials at G= 0.25, with success defined as completing
all keyframes within the time limit. Total number of keyframes as well as number of contact pairs per keyframe are indicated for each motion
strategy. Motion duration is reported for successful runs as mean ± one standard deviation and their minimum and maximum. Note that
some motions include explicitly specified keyframe sustaining time. The high variance in the successful motion duration shows the diversity
of the results produced.

Figure 7: Emergent diversity across different runs, given the
same environment and aligned according to a given target contact
keyframe. From top to bottom: (a) starting to climb the table; (b)
moving sideways on the couch; (c) sitting up on the bed.

Figure 8: Character morphology generalization, all tasks shown in
the figure are successfully completed.

reversal, or motion transitions. New keyframes can also be dynam-
ically added via the user interface, as the simulation is running.
Please refer to our supplemental video for examples of motion di-
versity, generalization experiments, and longer motion sequences.

4.2. Discussion

The motions produced by RL approaches may be of higher qual-
ity as they are typically smoother in nature, reflecting the smooth
reference motion capture data. However, this comes at the price of

© 2024 The Authors.
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requiring example motion data to track, lengthy offline computa-
tion, limited inference-time generalization to new situations, and
lack of solution diversity. Smoother motions might be achieved for
MPC methods in general via additional objective terms, but this
may result in a more difficult optimization problem to solve.

Hyperparameters play an important role in the sample-based
MPC methods discussed here, i.e., the baseline MuJoCo MPC and
PartwiseMPC. The planning horizon, H, needs to be long enough to
make measurable progress towards target contact keyframes while
avoiding local minima in the objective, but should be short enough
to allow for the randomized sampling in the action space to yield
promising solutions within a limited compute budget. The number
of sample rollouts, N, is another key parameter. Too few rollouts
results in an impoverished ability to find near-optimal action se-
quences. Increasing N requires more compute budget per planning
iteration, which by default results in less frequent (re)planning and
therefore may not actually improve the solution quality. Alterna-
tively, we can choose to compensate for the cost of more rollouts
by employing a smaller slowdown factor G 2 (0,1], i.e., advancing
the agent simulation, which runs in parallel to the planner itself,
more slowly. This then allows for more planning computations per
unit of agent simulation time. In general, if we wish to replan ev-
ery k simulation time steps and we hold the available computing
resources fixed, then the following holds true: N ·H ·G = k T ·C,
where T is the simulation timestep and C is a constant. This does
not take into account thread parallelism, which in practice is limited
by the number of virtual cores.

4.3. Ablations

We perform several ablation studies to compare PartwiseMPC to
the baseline predictive sampling method presented in [HGT⇤22].
Our planner is most effective when the motions of different body
parts (groups in our terminology) do not require extensive coor-
dination. Moreover, the benefits of our method become the most
obvious at the limits of the sampling planner, e.g., low number of
rollouts or for larger G (higher simulation speeds). Further results
are provided below when discussing performance.

Quality vs. baseline. Motion trajectories generated using Part-
wiseMPC generally look smoother and less jittery in compari-
son with the baseline method. The partwise solutions help reduce
redundant motions of joints that are not directly essential for a
given motion phase. If a joint sees only regularization terms, Part-
wiseMPC solutions do better at optimizing these terms, resulting in
smoother joint movements. Relatedly, for precise motions that do
not require full body coordination between different limbs, Part-
wiseMPC generates noticeably improved results. This is best illus-
trated in the Reach-hand-targets task shown in the video.

Performance. We compare PartwiseMPC against the baseline
MPC method in several ways. First, we compare the objective func-
tion values achieved at runtime during a given contact keyframe
interval for three tasks, shown in Figure 9. PartwiseMPC results
in better objective optimization at all points in time for all three
motions. We further note that the baseline MPC completely fails at
finishing the reach-target task with 15 rollouts, while PartwiseMPC
consistently succeeds.

The next evaluation tracks the fraction of times that one of the
5 partwise solutions was chosen over 85 baseline sample solutions
for N=90 rollouts. This is shown in Figure 10. The bench-shuffle
exploits partwise the least (22%), while the hand-targets task ex-
ploits partwise the most frequently (66%). Note that these numbers
may further vary across the different contact-keyframe intervals
that comprise each task. An interesting perspective is to consider
this evaluation as a practical method of quantifying the degree of
partwise independence that exists in these motion task.

We further compare PartwiseMPC with baseline MPC on three
metrics: (a) success-rate (failure occurs if it takes too long to reach a
given keyframe); (b) total cost across the full task (lower is better);
and (c) motion duration (shorter is better). Here we briefly summa-
rize the conclusions of these evaluations, while Figure 12 in the Ap-
pendix illustrates the success-rate and total-cost metrics. For table-
climb, lie-down-get-up, and stand-sit-stand, PartwiseMPC achieves
a better success rate. A lower cost is also achieved for 14 of the
18 conditions tested. We further include the rotate-on-stool task as
an exception, likely due to its highly underconstrained nature. The
motion durations for PartwiseMPC tasks are also shorter than the
baseline for 13 out of 18 conditions tested.

5. Conclusions

In this paper we have introduced PartwiseMPC, a method that can
exploit the varying degrees of inter-limb coordination that are seen
during human movements. In particular, it can do better at optimiz-
ing motions in situations when some partwise independence exists
during a motion. As demonstrated experimentally, this occurs sur-
prisingly often. We further introduce contact keyframes as a mini-
mal and flexible motion abstraction for producing contact-rich hu-
man motions. The resulting system allows for interactive genera-
tion of novel physics-based motions, and generalizes well with re-
spect to environment and morphology variations. It readily allows
for physics-based characters to get in-and-out of bed, have basic
body-aware manipulation skills with respect to chairs and benches,
climb on-and-off tables, and more.

The current method still has a number of limitations. The contact
keyframes that serve to loosely define the motion strategies are cur-
rently manually authored via a GUI that allows them to added and
edited during a live simulation. It currently requires on the order
of 10-15 minutes of interactive experimentation to design suitable
keyframes for a new motion of moderate complexity. The specifi-
cation of keyframes could be further automated in future work by
extracting contact configurations from videos or from the output of
contact-invariant optimization [MTP12].

The generated trajectories from our method could be used as
target motions for RL-based policies, which would be trained of-
fline but which, once trained, allow for truly fast-and-efficient
real-time control. The lack of timing specification for the contact
keyframes allows for more emergent behavior, but consequently
offers less control over the speed of the resulting motions. We note
that the method is currently less suitable for highly dynamic mo-
tions, which are better tackled using other methods such as di-
rect imitation of an example motion. We furthermore do not focus
on locomotion because higher-quality results are currently read-

© 2024 The Authors.
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Figure 9: Comparison of total objectives values achieved during the first keyframe, averaged over 50 trials, using N=45 rollouts, G = 0.5.
From left to right:(a) hand target reach; (b) lying down on bed; (c) rotating on stool.
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Figure 10: Percentage of time the partwise solutions were chosen
at any given planning time step, across 8 tasks. Results are aver-
aged over 50 trials, using N=90 rollouts and G = 0.5.

ily achieved with imitation-based RL approaches given the ready
availability of motion capture data for such common motions.
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Appendix A: Common Objective Terms

The common objective terms are defined as follows:

Upright torso. This term describes how upright the upper body
of the character is. The lower the weight, the more crouched the
character would appear. The value is the difference between the z
axis of the torso geometry and the global z axis.

costuprighttorso = 1� (k̂torso · k̂)

Upright pelvis. Similar to the above, the value of this cost term
is the difference between the z axis of the pelvis geometry and the
global z axis.

costupright pelvis = 1� (k̂pelvis · k̂)

Upright left foot. This term encourages keeping the left foot
parallel to the ground. It helps avoid motions of the ankle which
disrupt balance of the character in certain motions.

costuprightle f t f oot = 1� (k̂le f t f oot · k̂)

Upright right foot. Similarly, this term keeps the right foot hor-
izontal.

costuprightright f oot = 1� (k̂right f oot · k̂)

High head height. Encourages head to stay at a standing height.

costheadheight = zhead �1.4

High torso height. Keeps the torso close to a standing height.

costheadheight = ztorso �1.2

Knee-feet alignment. This cost term is most useful to determine
the feet are placed directly below the knees, as a style choice, for
example when sitting on a chair.

costknee� f eet = avg(xyposknees)�avg(xypos f eet)

COM-feet alignment. Similar to the term above, this term en-
sures that the center of mass is positioned above the feet, which
proves beneficial in positions requiring a standing balance.

costCOM� f eet = xyposCOM �avg(xypos f eet)

Figure 11: Humanoid geometry labels.

Torso facing direction. The user could choose any point on the
floor, and this point on the horizontal plane will guide the facing
direction of the humanoid’s torso. This term helps guide the char-
acter to face a certain direction. This term was not used for the
results presented in this paper.

COM velocity. Linear velocity of the center of mass is added
directly as a residual term, to regulate the movements speed.

Joint velocity. The joint velocity is regulated to prefer slow mo-
tions. Typically the weight of this term is set to be low, to not overly
affect the agility of the character.

Control. The joint torques are also regulated, to avoid erratic
motions. Increasing the weight of this term causes the motion
to look more relaxed. For motions that require a lot of micro-
movements to keep balance, such as standing or table climbing,
we keep the weight of this term very small (around 0.025). In con-
trast, for motions that look more relaxed and slow, we increase the
weight of this term (0.8-1.0).

Appendix B: Generalization Parameters

Armchair
default height = 0.2 m, no tilt
tilted entire chair tilted 15� backwards
short height = 0.12m
very short height = 0.04m.
Stool
default height = 0.4 m
short height = 0.3 m
very short height = 0.2 m
floor level height = 0.001 m
Bench
default height = 0.25 m, no tilt, friction=0.7
tilted left side raised, 15� angle with the floor
tall height = 0.35 m
short height = 0.05 m
smooth and tilted 10� angle, friction = 0.1
rough and tilted 10� angle, friction = 1
Table
default height = 0.55 m
short height = 0.75 m
tall height = 0.35 m
Character
default weight = 40.84 kg
big arms weight = 52.65 kg
big legs weight = 47.31 kg
big belly weight = 64.95 kg

Table 3: Generalization details.

Appendix C: Baseline Comparisons

See next page.
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(a) A comparison of success rates (%). A motion succeeds only if all contact keyframes meet their success criterion within their designated time limit, Tmax.
(§3.3)

(b) A comparison of average cost per simulation timestep.

Figure 12: Each chart compares the performance of partwise and baseline, across four skills (columns), 15, 45, or 90 rollouts (rows) and
for slowdown factors of 50% (G = 0.5) and 100% (G = 1.0), as noted along the x-axis.
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