To appear in: proceedings of International Conference on Robotics & Automation 2006, Orlando, Florida

RRT-blossom: RRT with a local flood-fill behavior

Maciej Kalisiak Michiel van de Panne
Dept. of Computer Science, University of Toronto Dept. of Computer Science, University of British Columbia
mac@dgp.toronto.edu van@cs.ubc.ca
Abstract—This paper proposes a new variation of the RRT Il. PREVIOUS WORK

planner which demonstrates good performance on both loosely-

constrained and highly-constrained environments. The key tothe The seminal form [5] of RRT grows a single tree from the
planner is an implicit flood-fill-like mechanism, a technique that

is well suited to escaping local minima in highly constrained initial configuration,z;,;;, until one of its branches encounters
problems. We show sample results for a variety of problems and Zgoat, the goal state. Due to the method of its construction,

environments, and discuss future improvements. this tree possesses a very useful property which accounts for
its “rapidly-exploring” trait: as the tree grows, newly added
|. INTRODUCTION edges never regress into already explored space. Algorithm 1

Path and motion planning has been a much studied prétsesents pseudocode for this most basic variant. Because
lem over the past two decades, whose appeal stems fréfmbling” onto z4,. is not a very efficient way to solve
its applicability to many diverse areas, spanning industrile query, a common extension is to bias RRT's growth. That
robot locomotion, object manipulation, autonomous actors i @ certain portion of iterations (5%-10% is common), use
computer animation, and even protein folding and drug desigivea: as the target towards which the tree is grown, rather than
In the past decade two approaches have become eminefitly.d, the usual randomly-chosen point. This produces better
popular: Probabilistic Roadmaps (PRMs) [1] and Rapidlyesults because a tree branch can quickly close the distance
expanding Random Trees (RRTs) [2], both of which are bast goal anytime the immediate, direct path to it is locally
on stochastic search strategies. unobstructed.

Despite their robustness, these methods can perform poorly further extension is given by RRT-Connect [6]. Here, once
in environments which have narrow passages or are otherwige most target-bearing direction is selected for the iteration,
highly constrained, such as the problem shown in Figure 7(8)is applied for as many time steps as possible, stopping only
This is an incidental characteristic since highly constraingh a collision, or when the target is reached. This greedy
environments should in practice present a simpler probleapproach frequently performs better since any relatively open
given how adding constraints generally reduces the searéiftd unobstructed regions are traversed in a single iteration.
space. The most difficult motion planning problems should be Another important idea, as explored in [2], [6], [7], is to
the ones that are neither highly-constrained, nor highly undese two trees, rooted at;,;; and zg,,;. The most common
constrained, but rather somewhere in the middle of these tawbvariant, outlined in Algorithm 2, grows one tree toward
extremes. A loose parallel can be drawn with observatioasrandom state, as before, while the other tree is grown
about the satisfiability (SAT) problem and other NP-hartbwards any such new growth of its counterpart, with the
problems, where many such problems can be summarizedttses switching roles between iterations. Thg,; tree needs
at least one order parameter and that the hard problems odoube grown using reverse-time simulation in systems where
at a critical value of such a parameter [3], [4], resulting in adirection of time matters (e.g., kinodynamic systems). As
“easy-hard-easy” difficulty curve. with the single-tree RRT algorithm, edges are created using

This paper presents a planner that performs well in high@jther the Extend (single time step) or the Connect (maximal
constrained environments, while retaining RRT’s robust peiime steps) operation. With two trees there are 4 possible
formance in highly under-constrained problems. The proposgtbwth combinations: ExtExt, ExtCon, ConExt, and ConCon.
modifications to the RRT algorithm give rise to a local, “oin practice ExtCon is often favored, especially in mildly
demand” flood-fill behavior. Only the key, bottleneck areagonstrained terrains, due to its greedy nature in searching for
of free-space are explored exhaustively, rather than all of theree connection (and hence a solution), but frugal approach
free-space, from the starting point outwards, as would be tiile exploring, resulting in a conservative escape mechanism
case in a naive flood-fill method. for local minima, as we will see later.

The remainder of the paper is organized as follows. Sec-A useful extension proposed in [8], which we will refer to
tion 1l discusses prior work in RRTs. The bulk of the paasRRT-CT(RRT with Collision Tendency), advocates keeping
per, section Il frames RRTs as potential field planners, amcck of unsuccessful edge expansions and then exploiting this
presents our algorithm. The remaining sections lay out oummformation. First, this is used to prevent further (redundant)
results §1V), discuss them§V), and identify future directions expansion attempts of failed edges, a significant weakness
(gVI). of the original RRT algorithms. Second, this information is

Algorithm 1 single-tree RRT (without biasing) Algorithm 2 dual-tree RRT (RRTEXtEXxt, etc.)

1: function QUERY(Zinit,Zgoal) 1: function QUERY(Zinit,Zgoal)
2: T tree(Tinit) 2: Ta, To < tree(Tinit) , tree(zgoar)
3 while time _elapsed() < MAXTIME do 3 while time _elapsed() < MAXTIME do
4 Zrand < random _state() 4 Zrand < random _state()
5: Tnew < Qrow _tree(7, Trand) 5 Zq < Qrow _tree(7a, Trand)
6 if Znew A P(Tnew, Tgoar) < € then 6 if =, then
7 return extract _soln(Zpew) 7 xp < grow _tree(Ty, Zq)
8 return failure 8 if z;, then

9: if p(za,xp) < € then
9: function GROW_TREE(T,Ztarget) 10: return extract _soln(z.,xs)
100 Tpear < Nearest _neighbor(7, ztarget) 11: oy Ta Ta,Th
E #”Zsbte;tﬁgnk (" Tnear; Trarget) 12: retumn failure
13: T «— 7 4+ new_edge(Znear, Ubest) (inheritsgrow _tree() & pick _ctrl() from single-tree RRT)
14: return xnew
15: function PICK_CTRL(T,Ztarget) multiple processors. Urmson & Simmons [11] look at heuris-
16: dmin, Ubest < P(T, Trarget), D tically biasing RRT growth to obtain better quality solutions,
170 forueld do or less costly ones in variable cost domains. Lindemann &
12; ﬁ"fé‘i’“;s(s"m(;;fl) then LaValle [12] look at biasing tree growth by favoring expan-
20: nextu sions that reduce its dispersion. Finally, Yershova, Jaidet,
21 d — p(Tnew, Trarget) al. [13], [14] address the equally important RRT problem of
22: if d < dmin then handling environments with hard-to-find gaps and openings.
23: dminy Ubest < d7 u
24: return upes: I1l. RRT-BLOSSOM
where The ideas behind RRT-blossom are best exposed by first
o p(21,2): distance metric framing RRT as a potential field planner. The central mech-
o extract _soln(...) : constructs solution by travelling up the tree, anism of such planners is the use of gradient descent over a

from given node(s) to corresponding root. « ol fialA” ; ; : ;
« new.edge(z,u) : create new edge from stateusing control inputs potential field”, typically an approximation of the distance to

for a single (Extend) or maximal (Connect) number of time steps goal that has been in some way modulated by the presence of
. failuref' xtl,ui,n :(c:a)r S fsctomf;?gzeértfc/?ofz;?g:it(i)tt)r?efrm%bg ﬁ(z)n gtsrzi@rl]ts obstacles. Unfortunately such methods are frequently suscepti-
. gionTEn;,lg)pHc%mpute state of agent after applicatio?f\ of control input ble to getting trapped in local mlmma_’ thus rqulrlng inclusion

from starting stater (paper assumes a constant time step) of some form of an escape mechanism. A typical example of
this approach is RPP [15]. Its potential field is computed by
performing a discrete, obstacle-aware flood-fill frag,.;, in
further leveraged to bias the selection of the next node \ghich the potential value of a discrete location is the iteration
expand, favoring nodes with lower “collision tendency”, thumber on which it was reached, while a simple random-walk
approximate probability of failufein the progeny of the node. serves as the escape mechanism.
For details of RRT-CT please refer to Algorithm 3. RRT shares some basic ideas with potential field planners

More recently, Strandberg [9] addressed the constraing@len its operation is viewed on a macro scale. The.-
environment problem by proposing the addition of “locapiased iterations effect a descent down a potential field, viz.
trees” to the primal ones of the base RRT algorithm. With(z, z,,,;), while the tree growth towards random points in
this approach, anytime the planner encounters a target sitee-space acts as a local minima escape mechanism.
towards which extant trees cannot be grown, it uses the statehe dual-tree variant of RRT can be likewise analyzed by
to seed a newlocal tree, one which then takes equal pawiewing it in terms of a simple finite state machine, as shown
in the usual process of growth toward random targets apfFigure 1. In Algorithm 2, lines 4-5 make up the EXPLORE
neighboring trees. Whenever two branches meet, their trees gjgde, which behaves like an escape mechanism, while line 7
merged, while a connection between the primal trees signglsnstitutes the SEEK mode, which corresponds to gradient
discovery of a solution. The ideas presented in our work ag@scent. The overall potential field planner parallel here is
orthogonal to the idea of using local trees; it is likely that thegimilar to the single-tree case, with the difference that the
could be combined for maximum benefit.

Other variations of RRT have also been explored. Carpin |
& Pagello [10] show how the typically high variance of RRT
query times can be exploited through parallel execution on

EXPLORE SEEK

local min. gradient
escape descent

1We will often use the termfailure andcollision interchangeably to mean 7 \/’ T
the violation of global constraints; the avoidance of collision with the terrain no Progresst vES A

is the canonical global constraint, but often there may be others, such as the) o)
subject remaining upright and controllable. Fig. 1. dual-tree RRT as a simple finite state machine (FSM)

RRT Ext Con

Algorithm 3 RRT w/“Collision Tendency” (RRT-CT) collision tendency, do not address this problem, although they
(inheritsquery() & grow tree() from single- or dual-tree RRT) 00 improve the planner’s node generation efficiency, which too
is a required trait of a successful flood-fill mechanism.

1: function NEAREST.NEIGHBOR(T,)

2 Aimin, Npest — 00, D A. RRT-blossom & regression avoidance

3 for n € 7 do

4 if 3 unexpanded input out of node then The main contribution of RRT-blossom is to introduce a
5: r < random() |[r € [0,1] robust, local, non-regressing flood-fill mechanism into RRT.
? if 7 j:&)”&;g?n This is done without systematically visiting the entire search
8 if d<d,. then space around the originating state, as might be the case with
o: Amin, Mbest — d, N a typical level-set method. Algorithm 4 gives the pseudocode
10: return npes: for RRT-blossom. It too allows for tree expansions that recede

11: function PICK_CTRL(Z,Ztarget)

from the target, but these expansions are subject to a constraint
that prevents regression. A secondary improvement we add

12: dmin — 00 . . L .. .

13- for w e U do is the instantiation ofall eligible edges when expanding a
14: if » has not been expanded forthen nodé (subject to collision and regression constraints), not just
15: Tnew < SIM(2, u) the single best one. Although RRT-CT handles unsuccessful
16: if failure(2, znew) then expansions efficiently, by ensuring they are never re-attempted,
17: mark v as expanded it i teful with ds to the oth S ificall ft
18 update _treeinfo(, 7) it is wasteful with regards to the others. Specifically, after
19: else it surveys the expansions out of a node and instantiates
20: d — p(z, Tnew) one of them, it then discards useful information for the
21: if d < dmin then remaining collision-free expansions, such as their end-states

22: dmin7 Ubest < d7 U
23: mark upes: as expanded
24: return upest

and collision-free status. Instantiating all eligible expansions
mitigates this, and has little negative cost: in constrained
regions these expansions would eventually be instantiated

25: function UPDATE_TREEINFQ(z,T) anyhow, while expansive spaces are traversed quickly with few

26 p1 node expansions, thus generating only negligible overhead.
ggf Wh'fi z(/)‘u‘ Also, such blossoming is consistent with RRT’s “rapidly-
20 o(z) — o(z) + p exploring” spirit.

30: x + parent(x) Implementing a robust regression constraint is challenging
“Where and is an another contribution of this paper. Computing an

explicit model of the portion of state-space that is considered
already explored is unwieldy because of issues of dimension-
ality, and it is furthermore difficult to define the volume of

potential fields encourages the trees to grow towards each otbi@te-space that is “occupied” by a branch of a search tree. We
rather than growing towards a fixed goa] state. Sidestep these difficulties by USing an ImpIICIt apprOXimation
Finally, we can think of RRT-CT in the potential-fieldthat captures the desired spirit of the term, an approximation
planner context, where it introduces changes that result ifvRich we have found to be highly effective: a “leaf” edge
behavior akin to a flood-fill of a local minimum. A significant(parent; icas) iS cOnsidered to be regressing if a naztaer
part of RRT-CT’s power comes from a modification to th&1@Nnparent IS CloSeSt tonjeqy:
control input picking mechanism, viz. initializiRgd,,;, to
oo, rather thanp(nparent, Tgoar). The main consequence of
this change is that it allows the creation of edges whidfigure 3 further illustrates the concept.
recedefrom their appointed target. At first this may seem
undesirable, as many such edges will regress into space alreadence the “blossom” moniker.
explored by the tree, but this is not always the case (e.g.,
Figure 2). Receding edges which do not regress are highly
beneficial since they provide tree growth in iterations which
would otherwise be wasted, thus generating a more sustained
rate of node creation, an important characteristic for a flood-
fill. Unfortunately RRT-CT has no mechanism to separate
out the non-regressing edges, and accepts them all equally,
leading to poor performance in regression-prone cases (e.g., I
kinematic systems). RRT-CT’s other, more explicit changes,

namely the tracking of failed edge expansions and use mf. 2. An example of a receding-yet-useful expansion. The blue arrow
indicates the useful expansion, while the pink half-disc shows the receding-
from-target directions for the corresponding node.

¢ o(n): collision tendency of node

regression 3In € 7| p(n, Nyeas) < P(Mparent Nicas)

target e

./././.
~_,
~ \©\

2¢f. line 12 in Algorithm 3 vs. line 16 in Algorithm 1

Algorithm 4 RRT-blossom
(inheritsquery() from dual-tree RRT)

1: function GROW_TREE(T,Ztarget)

2: ZTnear < Nearest _neighbor(7, xtarget)
3: ZTnew < Node _blossom(Znear, Tiarget, T)
4 return Zpew

regression

5: function NODE_BLOSSOMZ,Z+target,T)

6 for v € U do

7 Tnew sim(z, u) Fig. 4. Interplay of viability and the regression constraint: the green (dashed)
8: if failure(z,u,Tnew) then expansion is blocked by an extant nonviable edge, since instantiating it would
9: next u constitute a regression. As the green edge is essential to any solution, it is
10: if regression(z, Tpew,) then now impossible for the planner to succeed.

11: next u

12: T« 7 + new_edge(,u) in the regression test. The definition is thus extended as
13: return the new node closest t0qrget follows:

16 or nodon € dg et Tree) regression In €1 | p(1, tnew) < P(Mparents M)
16: |f p(naxnew) < p(mpa'fﬁnhxnﬁw) then /\ n ¢ NOnViable

17: return True

18: return False

where NonViable is the set of nodes found to be nonviable.
Unfortunately the viability of edges is not known ahead

The above definition works well for simple kinematicOf time, and thus must be incorporated retroactively as it is

systems, but it becomes problematic for nonholonomic %Efgi\ﬁﬁg.erzglr?t IISe aar(rzmmzveodr tg;gg?nr;cap:ggtrg?gmriir;mg;s:t
kinodynamic systems. Figure 4 illustrates one such case. He 2 '

the leftward path of the car is expanded first, but all its folloﬁfge’t'nséant'?_ted or detem'?I’ caréles da I\é'(;ib'“tyths'[?tﬁ S, one
on paths lead to collisions. The ‘straight forward’, middle patl?, 'tunt”g ' |ve.d, odrrpan , Or dead . edges iad ave
on the other hand, would be feasible, but unfortunately it ot yet been considered for expansion aré ma €

disallowed because instantiating it would form a “regressio d'polrl] ms;agﬂat[[on they pecor?qe) l'(;;he e>:pa|r:1§|0ﬂ IS
into space already explore by the leftward path. ISallowed due to regression, 1t 1S markearmant . Finalty,
The problem, and the solution, are best framed in ter dead edges are ones that have been found to have left viable

f viability 1161 [171. alth h in the bl . text .;Eﬁace. Figure 5 gives a fuller description of the transitions.
of viability [16], [17], although in the planning context i Since changing the status of an edgayprecipitate a status

Isstartlgcizstzakgnt?oﬂrfetavxl?)ig tf?gr:mfiiﬁt'thsepscggﬂl)gﬁlZVOR/%ange in the parent, status changes must be propagated. This
) S € systen ISdone by traveling up the parent hierarchy towards the root
indefinitely, or one that can reach,,; prior to failure. In

node, re-evaluating the status of each edge passed. The process

this f_ramework then, the problem S that it is possible for g’(ops when root node is reached, or when a re-evaluation
nonviable edge, one that by definition cannot be part of an

solution trajectory, to block a neighboring, viable expansioﬁéf(su'ts In no change of status.

This is particularly detrimental when the blocked expansiog d ¢ deadlock

lies on the critical path, as this then eliminates all chance of ormant - deadloc

finding a solution, as shown in Figure 4. Despite these measures it is still possible for the planner
The solution then is to disregard nonviable nodes and eddgesPecome unduly stuck. This occurs when all paths towards

the goal, usually narrow chokepoints, have been cut off by

older, lengthier branches, ones which cannot explore into the

passages even though they pass the closest to them. Figure 6

shows an example.

B. Interplay of viability & regression constraint

all children dormant

blocking node died
TS ——
dor mant or child woke up
regression T M i children all dead
&
Fig. 3. “Regression”; The left subfigure shows the possible expansions for a O—— ————»{ dead
particular node; all the red expansions (dashedyegeessingsince a foreign start collsion
node is closer than the parent (indicated with loops). Only the single edge in

green is suitable for instantiation. The right subfigure shows all the expansions
in the tree that daot regress for the depicted tree state. Fig. 5. Progression of the viability status of an edge

(a) holonomic point

RRT —
RRT-CT
RRT-blossom -

rooms

K | tunnel

RRT

Fig. 6. Dormant deadlocka viable branch may cutoff access to a critical RRT-CT
passage without being able to explore it itself. This limits the planner RRT-blossom
exploration to the “fenced off” area, and once this is exhausted, the remain
nondead branches are locked in a cycle, mutually blocking each other’s wa

AT

complex

rooms

:
| tunnel

Fortunately these occasions are easily identified and

igated. When the remaining accessible free-space has b O 5 10 15 20 25 30 35 40 45 50 55 60
exhausted, thelormant condition starts “backing up” the _ -

)) (c) kinodynamic bike
tree towards the root node, eventually reaching it once R :
other lines of exploration have been exhausted. This sign 1 ‘ T J—
the deadlock to the planner, which then allows the vel 1 :E_‘_ T -~
next expansion attempt to disregard the regression constra 1 | \ I -
thereby breaking the deadlock. In practice this works well, ai - p p
more importantly, it has no impact on queries unaffected l
this _issue. Nonetheless there is room for improvement, since —, C e se ‘ - e .
particularly unfavourable cases, where the cycle or blocka mn ouier 10% Q1 median average Qs eo% max

occurs early on while much unexplored free-space remains,
the planner will spend much time unnecessarily exhausting

the free-space before invoking the special countermeasurebig- 8 Algorithm runtimes, in secondga) holonomic point {i| = 8);
(b) nonholonomic car|{/| =3); (c) kinodynamic bike [(/| =5). Samples per
boxplot: point & car = 100, bike = 40.
IV. RESULTS

Figures 7 & 9 illustrate some of the problem environments 1€ Poxplots in Figure 8 illustrate the timing results for
in which queries were executed using a holonomic poitfR1ious agents and terrains. T(_) further ground the comparisons
agent. These environments were also used in queries fof@de; Tables I, Il and Ill give average runtimes, number

nonholonomic car and a kinodynamic bike, although witRf collision checks, nearest neighbor checks, and number

slight alterations. In particular the “door jambs” were removef Nodes created; last column gives the number of (time-

from the gaps in “rooms”, while “tunnel” was widened andimitted) runs which failed to find a solution. Each datum

scaled up to accommodate the turning radii of the subjects.tne average over the |nd|cated.nu“mb(?’r of runs performed.
In the diagrams, the points labelled “1” and “2” mark,; _It should be n(_)ted that the data_ln NN cc_)lumljs doest
andy.q, respectively; for car and bike queries the vehicleg‘CIUde evaluatlc_)ns of the regression constraint, since t_he latter
orientation at both endpoints is “facing right”. The bike, whict computed using a cheaper method. Rows showitalits

is the most complex agent we have used, has a 5D st%{tg'cate Fest cases _for whlc_h a S|gn|f|c§1_nt pc_)rtlon. of the runs
vector: (z,y, 0,1, '), whered is the bike’s bearing, ang is did not find a solution within the specified time limit (these
the bike's lateral lean. Its control input is the steering angR@MPles were wholy excluded from the averages); thus those
(forward velocity is fixed); steering is simultaneously used f@verages represent significant underestimates of the true costs.
maintain balance as well as effect progress. Figure 9, on the other hand, shows sample evolved tree
structures for the three algorithms. Of particular note is how
RRT-blossom’s structure is strikingly regular in the kinematic
case, and how RRT-CT tends to spend a lot of time filling the
minimums with many redundant edges. As discussed later,
RRT is unable to make any progress with a bike.

All algorithms were written in Python 2.3, running on
Linux (Debian “sid”, kernel 2.6), using Psyco (a JIT-like
optimization for Python), on a Pentium IV 2.4 GHz machine.
(@ T (b) “rooms” (c) “tunnel” In the following “RRT" refers to RRTExtCon, while “RRT-

CT” refers to RRTExtExt w/CT. All implementations share
Fig. 7. Some of the problem environments used the same component functions where feasible.

HOLONOMIC POINT :

|U| = 8, averages over 100 runsax-time = 20s

terrain algorithm time failure() NN nodes time-outs
RRT 3.45 21,100 2628 410 —
T RRT-CT 19.06 13,250 2870 2870 97
RRT-blossom 0.90 2246 280 316 —
RRT 2.75 10,048 1247 281 —
complex | RRT-CT 10.90 8858 1889 1889 6
RRT-blossom 0.85 1767 221 266 —
RRT 13.10 39,398 4911 621 48
rooms | RRT-CT N/A N/A NIA N/A 100
RRT-blossom 2.25 3276 409 499 —
RRT 3.68 22,080 2754 122 1
tunnel | RRT-CT N/A N/A NIA N/A 100
RRT-blossom 0.21 944 118 118 —
TABLE |
NONHOLONOMIC CAR : |U| = 3, averages over 100 runsax_time = 60s
terrain algorithm time failure() NN nodes time-outs
RRT 9.39 13,317 4407 486 —
T RRT-CT 35.13 8890 3848 3585 8
RRT-blossom 1.36 1343 451 448 —
RRT 23.62 13,656 4542 294 9
complex | RRT-CT 11.42 4049 1677 1465 —
RRT-blossom 1.39 811 295 267 —
RRT 32.62 27,119 9018 724 42
rooms | RRT-CT 9.59 4071 1717 1507 —
RRT-blossom 3.53 1967 644 649 —
RRT RRT-CT RRT-blossom RRT 51.27 24,917 8281 408 77
) . o B . tunnel | RRT-CT N/A NA NA N/A 100
Fig. 9. Comparison of evolved tree structure in “complex” environment; RRT-blossom 1.43 806 277 266 _
top: holonomic pointmiddle: nonholonomic carhottom: kinodynamic bike.
TABLE Il
V. DISCUSSION KINODYNAMIC BIKE : |U| = 5, averages over 40 runsax-time = 3600s
h bl i h d terrain algorithm time failure() NN nodes time-outs
The pI‘O erP ”enV|ronm§nts were c 'osen“to pre"sent ecpT RRT-CT 235045 163632 43440 29,963 7
local minima (“T”), to be highly constrained (“tunnel”), or to RRT-blossom 103.02 34,054 8538 5808 —
offer mixes of these qualities (“complex” and “rooms”). RRT- complex gg—gﬁ 131607-%149 12;,53%% 34%;% 2242% 1
. -blossom . , —_
blossom outperforms both RRT and RRT-CT in all of them_= RRTCT 605.06 83545 22084 14949 —
scenarios, often by an order of magnitude. In the holonomic RRT-blossom 154.90 43,822 11,049 7461 —
case RRT-CT's poor performance stems from the ease withunnel ;g—bCIT 19%72-%3% 15;‘;77% 517,3% 314,335 —
. . . . -blossom . , —
which self-negating expansions are madé ¢ften contains
TABLE Il

complementary pairs of control inputs, where one undoes

the displacement of the other). Without regression-prevention
RRT-CT succumbs to a back-and-forth chase around lo
minima, and only a lucky but rare,.,,; can pull it out. In the

nonholonomic case the deep local minima of “T” prove aga
to be a problem for RRT-CT for similar reasons, but otherwise
it outperforms RRT as expected. “Tunnel” proves particularle{I
difficult for both RRT and RRT-CT, as their EXPLORE mode

are hampered by random-target distributions that are oftg
directionally-biasetl The bike queries are nigh impossible
for RRT, since it tends to quickly evolve the trees such th
the most prominent nodes, the ones most often chosen

expansion, are already nonviable, and the udualdistance

metric tends to only pull tree growth towards other suc
nodes. Since not a single RRT query ever made any significw
progress, let alone complete, we have not included it
the kinodynamic table and plot. RRT-CT fares better, but &

still carries an exorbitant cost in time and number of nod arest

required. RRT-blossom, on the other hand, performs well Wiect th
all cases, and appears to follow the hypothesized ascendipgdressio

42ana is chosen uniformly from the state-space, but for off-center nodes;

ression()

_neighbor()

?ﬁbn—descending difficulty curve. It is interesting to note that it
also generally tends to have a much smaller runtime variance,
UWhich is desirable [18].
Although not shown for lack of space, we have found RRT-
ossom to perform well in easier, less constrained environ-
ents, on par with whichever of RRT or RRT-CT is faster in
ngiven case.
In the current implementation of RRT-blossom performance
arts to suffer as the number of nodes in the tree gets
Igrrge, as may happen with more expansive yet still difficult
nvironments. This is due to the naive implementation of
, which is O(n) in the number of nodes.
expect significant improvement from re-implementing it
Wsing [19]. An even cheaper approximation we are consid-
ng is to exploit the already collected information in the
call in grow _tree()
ek nearest neighbors af;q,4.:, and then assess
n by checking only against this set; aside from
Mparent, the set will also contain most of its closest neighbor

: one could

especially ones close to the edges of the terrain, this translates to a ske\WlQ&iesv meaning that in case of a regression there is a gOOd

distribution of growth directions, from the node’s point of view.

chance the offending node will be detected.

VI. CONCLUSION [18] P. Isto, M. Manty, and J. Tuominen, “On addressing the run-cost
variance in randomized motion planner&toc. IEEE Int. Conf. on
In this paper we presented a novel variation of the RRT algo- Robotics & Automation2003.

rithm, one that performs well in constrained environments. [t?] A- Atramentov and S. M. Lavalle, “Efficient nearest neighbor searching
! for motion planning,”Proc. IEEE Int. Conf. on Robotics & Automation

core ideas are to allow creation of receding edges, the addition g2,
of a regression-prevention mechanism, and the instantiation of
all allowable control actions out of the active node.

In the future we plan to replace the naive implementation
of the regression check in order to enhance the algorithm’s
performance for large trees. Performance in higher dimen-
sional problems also deserves further investigation, although
it is expected that this will merely result in larger trees, in
proportion to the attendant increase of free-space volume.
The filling of deep local minima could likely be improved by
further borrowing the “collision tendency” concept from RRT-
CT. Finally, it would be interesting to gauge the combined
performance of RRT-blossom with local trees.

REFERENCES

[1] L. Kavraki, P.Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration space,” in
IEEE Trans. on Robotics & Automatipwol. 12(4), 1996, pp. 566-580.

[2] S. M. LaValle and J. J. Kuffner, Jr., “Rapidly-exploring random trees:
Progress and prospects,” Workshop on Algorithmic Foundations of
Robotics 2000.

[3] P. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the really
hard problems are,” ifProc. of the 12th Int. Joint Conf. on Artificial
Intelligence 1991, pp. 331-337.

[4] B. Selman, D. G. Mitchell, and H. J. Levesque, “Generating hard
satisfiability problems,Artificial Intelligence vol. 81, no. 1-2, pp. 17—
29, 1996.

[5] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., lowa State University, technical
report TR 98-11, 1998.

[6] J.J.Kuffner, Jr. and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” iInEEE Int. Conf. on Robotics &
Automation 2000.

[7] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic plan-
ning,” in IEEE Int. Conf. on Robotics & Automatipd999.

[8] P.Cheng and S. M. LaValle, “Reducing metric sensitivity in randomized
trajectory design,” inlEEE/RSJ Int. Conf. on Intelligent Robots and
Systems2001.

[9] M. Strandberg, “Augmenting RRT-planners with local trees,"IREE
Int. Conf. on Robotics & Automatior2004, pp. 3258-3262.

[10] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
Proc. 8th Conf. Italian Association for Artificial Intelligencpp. 834—
841, 2002.

[11] C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT
growth,” Proc. IEEE Intl. Conf. on Intelligent Robots and Systeps
1178-1183, 2003.

[12] S.R. Lindemann and S. M. LaValle, “Incrementally reducing dispersion
by increasing Voronoi bias in RRTsProc. of IEEE Intl. Conf. on
Robotics & Automationpp. 3251-3257, 2004.

[13] A. Yershova, L. Jaillet, T. Sigon, and S. M. LaValle, “Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domairrbc.
IEEE Intl. Conf. on Robotics & Automatip2005.

[14] L. Jaillet, A. Yershova, S. M. LaValle, and T. Séon, “Adaptive tuning
of the sampling domain for dynamic-domain RRTBfbc. of the IEEE
Int. Conf. on Robots and Systen2605.

[15] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed
representation approachThe International Journal of Robotics Re-
search vol. 10(6), pp. 628-649, 1991.

[16] J.-P. Aubin,Viability Theory ser. Systems & Control: Foundations &
Applications, C. |. Byrnes, Ed. Birkduser, 1991.

[17] M. Kalisiak and M. van de Panne, “Approximate safety enforcement
using computed viability envelopes,” IEEE Int. Conf. on Robotics &
Automation vol. 5, 2004, pp. 4289-4294.

