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Abstract— We present a framework for composing motor
controllers into autonomous composite reactive behaviors for
bipedal robots and autonomous, physically-simulated humanoids.
A key contribution of our composition framework is an explicit
model of the “pre-conditions” under which motor controllers are
expected to function properly. Pre-conditions may be determined
manually or learned automatically by algorithms based on
Support Vector Machine (SVM) learning theory. We demonstrate
controller composition and evaluate our composition framework
using a family of controllers capable of synthesizing basic actions
such as balance, protective stepping when balance is disturbed,
protective arm reactions when falling, and multiple ways of
regaining an upright stance after a fall.

I. INTRODUCTION

Despite the recent progress in bipedal robots [16], [17],
systems with broad repertoires of lifelike motor skills remain
elusive. While a divide-and-conquer strategy is clearly prudent
in emulating the enormous variety of controlled motions that
humans may perform, little effort has been directed at how the
resulting control solutions may be integrated to yield compos-
ite controllers with significantly broader functionalities. The
technical challenge of our work is not only to develop motor
control strategies for specific actions, but also to integrate these
controllers into a coherent whole that is greater than the sum
of its parts. For example, Figure 1 illustrates a humanoid in
the form of a dynamically simulated (Terminator) robot. The
robot sits, stands, walks to the stairs, somersaults down the
stairs landing in a supine position, and finally rises back onto
its feet. The robot controls its balance and performs all of
these actions in an autonomous fashion.

Our control composition framework for simulated anthro-
pomorphic characters, first presented in [7], [8], [5], is imple-
mented within DANCE, a portable, extensible object-oriented
modeling and simulation system [18].1 DANCE provides a
platform that researchers can use to implement animation and
control techniques with minimal design and implementation
overhead.

A key contribution of our composition framework is an
explicit model of the “pre-conditions” under which motor
controllers are expected to function properly. Pre-conditions
may be determined manually or learned automatically by
algorithms based on Support Vector Machine (SVM) learning
theory. We demonstrate controller composition and evaluate
our composition framework using a family of controllers ca-
pable of synthesizing basic actions such as balance, protective

1DANCE is freely available for non-commercial use via the URL:
www.cs.ucla.edu/magix/projects/dance. Fig. 1. An autonomous, physically-simulated humanoid robot.



stepping when balance is disturbed, protective arm reactions
when falling, and multiple ways of regaining an upright stance
after a fall.

A. Related Work

The simulation of anthropomorphic figures is a challenging
problem in many respects. Comprehensive solutions must
aspire to distill and integrate knowledge from biomechanics,
robotics and control. Not surprisingly, a divide-and-conquer
strategy is evident in most approaches, focusing efforts on
reproducing particular motions in order to yield tractable
problems conducive to comparative analysis.

The biomechanics literature is a useful source of predictive
models for specific motions, typically based on experimental
data supplemented by careful analysis. These models target
applications such as the understanding and treatment of motor
control problems, the analysis of accidents and disabilities, and
high-performance athletics. Computer simulation is becoming
an increasingly useful tool in this domain as the motion models
evolve to become more complex and comprehensive [20], [21],
[23]. Given the challenge of achieving high-fidelity motion
models for individual motions, there have been fewer efforts
towards integrated solutions applicable to multiple motions.
Reference [20] is one such example.

Robotics research has made remarkable progress in the
successful design of a variety of legged robots [22] and, more
recently, bipedal robots with anthropomorphic aspirations [16].
Despite their limited motion repertoires and rather deliberate
movements, these robotic systems are truly engineering mar-
vels. The work in [1] provides a good summary of behavioral
architectures explored in the context of robotics. A 3 DOF
ball-juggling robot is described in [3] which uses a theory of
behavior composition, although the practicality of extending
the method to high-DOF dynamic models of human motions
is unclear.

Computer animation has presented interesting results to-
wards the simulation of humanoid characters. Controllers
have been successfully designed for specific human motions
such as walking, running, vaulting, cycling, etc. [12], [15],
[30]. Although dynamically simulated articulated characters
equipped with an integrated, wide-ranging repertoire of motor
skills currently remain an unachieved goal, some positive steps
in this direction are evident. Examples include an integrated
repertoire of motor controllers for biomechanically animated
fish [24], a methodology for controller design and integration
applicable to simple figures [26], and a technique for transi-
tioning between planar gaits [11]. The work of Wooten [30] is
the most relevant, as an example of a sequence of successive
transitions between several controllers for human motions such
as leaping, tumbling, landing, and balancing. Transitions are
realized by including the end state of some controllers in the
starting states of other controllers.

Our work is aimed at creating dynamic humanoids with
broadly integrated action repertoires. Unlike previous work
focusing on specific athletic movements or gaits, our method-
ology is to begin with a core set of simple actions, including

balancing, small steps, falling reactions, recovery from falls,
standing up from a chair, etc. Then, we contribute a framework
for composing individual controllers, however they may be
designed, into more capable control systems for dynamic
characters. An interesting technical contribution within our
controller composition framework is the introduction of a
learning approach for automatically determining controller
pre-conditions.

B. Overview

The remainder of the paper is organized as follows. Sec-
tion II presents the anthropomorphic models that we use in
our experiments. Section III describes a representative set
of controllers. Section IV reviews the pre-condition learning
methodology. Section V presents the supervisor algorithm
for composing controllers. Section VI discusses our results
and their applications. Section VII concludes the paper and
discusses avenues for future research opened up by our work.

II. HUMANOID MODELS

Figure 2 illustrates our experimental dynamic models. The
arrows indicate the positions of the joints and their rotational
degrees of freedom (DOFs), which are also enumerated in
the table. The skeleton model, which is capable of full 3D
motion, has 37 DOFs, six of which correspond to the global
translation and rotation parameters. The 16 DOF “Terminator”
robot model is limited to producing 2D (planar) motion. The
leftmost table in the figure lists the DOFs of the models. The
physical properties, such as mass and moments of inertia,
of both models are consistent with anthropometric data for
a fully-fleshed adult male, as found in the biomechanics
literature (see [29]). In particular, the overall mass of each
model is 89.57 kilograms.

The movement of the rotational degrees of freedom of the
models is restricted by the physical limits of the human body.
After researching the literature, we have decided to use the
joint limits indicated (for the skeleton model) in the rightmost
table in the figure. To ensure that rotations of the figure’s
body parts do not exceed the user specified limits, we use a
method based on exponential springs, which is widely used
in a variety of control problems. If any rotational degree of
freedom ��� , exceeds its allowable range of ( � ���� �	� � ��
� ),
where the superscripts designate “lower” and “upper” limits,
respectively, the exponential springs produce the forces:��
 � � ���� �	��������������� � ��"!$#�% �'&�(*)+	,.-0/132 - 1'4 ��5 � � #7698�	�0:��
 � �	� � � 
� �����;������� � 
�<!=#�% �'&�(*)+ ,.- 1 2 -3>1 4 �?5 � � #�698�	�0:
depending on the limit that has been violated. We have
determined that the spring constants #@6 = 10.0 and #BA% = 1.0
produce satisfactory joint behavior.

Motor controllers need information about the state of the
figure, where it is facing, whether it is balanced, etc. Con-
trollers also need to have information about the environment,
such as body/ground contact points, the slope of the terrain
at contact points, the position of obstacles, etc. Most of the
information about the figure can be computed from the state



(a) (b)

Joint Skeleton model DOFs Robot model DOFs

Head 1 1
Neck 3 1
Shoulder 2 1
Elbow 2 1
Wrist 2 -
Waist 3 1
Hip 3 1
Knee 1 1
Ankle 2 1

(c)

Joint Axis Lower Limit Upper Limit

Head x -45 45
Neck x -50 90

z -60 60
y -80 80

Shoulder z -90 90
y -80 160

Elbow y 0 120
x -90 40

Wrist z -90 90
y -45 45

Waist x -45 90
z -55 55
y -50 50

Hip x -165 45
y -120 20
z -20 20

Knee x 0 165
Ankle x -45 50

z -2 35

(d)
Fig. 2. Anthropomorphic models. (a) 3D-motion skeleton model and (b)
2D-motion “Terminator” robot model, (c) their rotational degrees of freedom
(DOFs), and (d) lower/upper joint limits for the skeleton model.

parameters; however, it is often more convenient to use higher-
level sensors that are more intuitive, can be computed once per
time step, and can be shared among controllers. In our current
implementation, each controller has full access to the internal
data structures of the system, including all the information
associated with any figure or object in the system. This allows
the controllers to define arbitrary sensors that keep track of
necessary information such as state parameters for feedback
loops and the state of the environment. Common sensor values
include:C

Support polygon. The support polygon D is defined by
the convex hull of the feet that are in contact with the
ground, and it is crucial for the balance of the figure.C
Center of mass information. The position E , velocity 8E ,
acceleration FE , and relative position of the center of mass
with respect to the support polygon.

Up Vector

Facing Vector

Support Polygon

Contact Sensors

Fig. 3. Common sensors.

C
Pelvis center of mass information. The position EHG , veloc-
ity 8E G , acceleration FE G , and relative position of the pelvis’
center of mass with respect to the support polygon.C
Contact information. An indication of whether the feet,
head, pelvis and thighs are in contact with the ground.C
Orientation. The facing vector IKJ and up vector I 
 of
the pelvis, indicating the direction that the pelvis faces
and how far it leans, respectively.

Figure 3 shows the support polygon, the facing vector and the
up vector relative to the skeleton model.

Most of the computational burden in our approach lies in
the numerical simulation of the equations of motion. The
computations associated with the controllers and our compo-
sition framework are negligible in comparison. In general, the
reduced-DOF, 2D-motion robot model simulates in real time
on a 733 MHz Pentium III computer system, whereas the 3D-
motion skeleton model runs between 5 and 9 times slower
than real time.

III. COMPOSABLE CONTROLLERS

We have proposed a simple but effective framework for
composing specialist controllers into more capable systems
for simulated figures [7]. In our controller composition frame-
work, individual controllers are black boxes that are managed
by a simple supervisor controller. Regardless of their encapsu-
lation, our method requires individual controllers to define pre-
conditions, post-conditions, and expected performance. Pre-
conditions, denoted L , are a set of conditions over the state of
the figure and the environment. Pre-conditions are determined
either manually, as in the examples below, or they are learned
automatically, Section IV. If the pre-conditions are met, then
the controller can operate and possibly enable the figure to
satisfy the post-conditions, denoted M , the range of states
that the figure may be in after the execution of the controller.
Thus, the controller realizes a transition between a domain of
input states to a range of output states for the figure. Because
of unexpected changes in the environment, however, this
transition may not always succeed, which motivates the notion
of expected performance, denoted N ; the controller should be
able to evaluate its performance in order to detect failure at
any point during its operation. To do this, the controller must
continually be aware of the current and expected state of the



figure or the environment. Any controller that defines pre-
conditions, post-conditions and expected performance can be
part of our composition scheme, as explained in Section V.

Most of the controllers for our models are based on pose
control, which has often been used both for articulated ob-
jects [25] and soft objects [6]. Pose control is based on cyclic
or acyclic finite state machines with time transitions between
the states. Each state of the controller can be static or can
depend on feedback parameters. For some of our controllers,
we use continuous control, in the sense that the control
parameters are tightly coupled with some of the feedback
sensors. The balance controller presented below is an example
of this.

We now present a few of the individual, specialist con-
trollers that we have implemented for our humanoid characters
and we describe in detail their analytical, composable APIs.
Let us first define the following quantities and symbols: The
state O !QP R 8RTS of an articulated figure is the vector of
generalized joint angles R and their angular velocities 8R . The
position and velocity of the center of mass are denoted as E
and 8E , respectively. The support polygon of a figure is denoted
as D .

A. Default Controller

The default controller is activated when no other controller
requests control of the biped. Its goal is to perform a sensible
action in any given situation. In the absence of a better
understanding of the situation, the most sensible thing to do is
to keep the figure in a comfortable position. We currently dis-
tinguish between two different situations, standing in place and
lying on the ground. In the first case, the controller attempts
to maintain the figure’s upright stance using moderate joint
torques, while keeping the arms loose. If the figure is leaning
by more than a given threshold slant, then it is considered to
be in a lying position, in which case the controller makes
the character assume a relaxed pose. Thus far, these two
strategies have worked well, in the sense that they bring the
figure smoothly into a perceived comfortable position. The
default controller faces the difficult task of encompassing all
situations for which we have not yet designed appropriate
controllers. It therefore represents only a starting point for
future improvements.

B. Balancing

Balancing in a quiescent, upright stance is a complex
biomechanical control phenomenon that depends on different
factors, such as the distance between the feet, and the presence
of (or lack of) visual feedback [4]. A considerable body of
research aims to understand the sensory information [27] and
reflex responses that humans use to maintain quiet stance [9].
The strategies that people employ as a response to disturbances
during quiet stance are generally divided into hip strategies
and ankle strategies depending on whether the hips or the
ankles are the dominant regulators of the postural stability.
A comprehensive analysis of balance strategies during quiet
stance focusing on ankle control can be found in [10]. Most

researchers in biomechanics seem to agree that ankle strategies
are more likely to occur in response to small disturbances,
while hip strategies occur in response to larger disturbances.

Our balance controller is responsible for maintaining a natu-
ral standing posture. It is based on an inverted pendulum model
that uses the ankles to regulate the body sway [9]. Despite the
fact that the body of the figure is not as rigid as the inverted
pendulum hypothesis suggests, the approximation works well
in practice. Our balance controller uses an ankle angle of 0.06
radians as the equilibrium position. For this controller, the
articulated body must be in a balanced upright position, the
velocity and acceleration of the center of mass should not
exceed certain threshold values as explained by [19], and both
feet must maintain contact with the ground at all times. The
controller can tolerate small perturbations of the posture and
the velocity/acceleration of the center of mass by stiffening the
ankle joints. For larger accelerations of the center of mass,
the controller actively actuates the ankle joint to reduce the
acceleration of the center of mass. The post-conditions are
similar to the pre-conditions. In mathematical form:U

:
Velocity: VXWY V�Z\[�] ^ m _ sec.
Balance: projection ` Y�acbed .
Posture: (upright) `�f*_*g a9h$iHj `lk inm kporq i ats Zu[v]wf rad,

where xzy{` thigh | knee | waist a , }no~y�� ,
and g is a normalization parameter.

Contact: feet on ground.�
:
Velocity: V WY V�Z\[�] [�� m _ sec.
Balance: projection ` Y�acbed .
Posture: (upright) `�f*_*g a9h$i j `lk inm kporq i a s Zu[v]wf rad,

where xzy{` thigh | knee | waist a , }no~y�� ,
and g is a normalization parameter.

Contact: feet on ground.

The expected performance N is identical to the pre-conditions.
Because of the relatively simple task that this controller

has to accomplish and the inherent stability of the simple
ankle strategy that we employ, the balance controller can be
used successfully on slightly different terrains and figures.
Nevertheless, the controller could be enhanced to employ more
complex strategies, especially as responses to larger external
disturbances. For example, a simulated biped should attempt
to maintain balance by shifting its weight, or bending at the
waist. If the biped cannot maintain balance, it must then resort
to taking a step or even initiating a fall behavior.

C. Falling

The manner in which people fall depends upon a number
of factors, such as their physique, their age, and their training.
Involuntary falling reactions are very common in everyday
life, especially among young children and the elderly. They
are probably the most common reason behind fracture injuries
among the elderly. The work in [13] shows that, during a
fall, the elderly are more likely to impact their hip first as
compared to younger adults falling under the same conditions.
Our fall controller is designed with the average adult in



Fig. 4. Falling in different directions

Fig. 5. A “suicidal” headfirst dive down stairs.

mind. Its main action is to absorb the shock of the impact
using mostly the hands. The work in [31] provides a way to
distinguish falls from normal activities based solely on velocity
characteristics. The pre-conditions of our fall controller define
a larger acceptable region in velocity space than the one
specified by [31] because they are defined in accordance with
those of the balance controller. All situations that are beyond
the capabilities of the latter should be handled by the fall
controller:U

:
Vertical Velocity: W��� Z\[�] ^ m _ sec.
Balance: projection ` Y�a��b�d .
Contact: hip not on ground, hands not on ground.�

:
If falling forward, face down �7�� Zu[v]wf .
If falling backward, face up � ���� m [v]wf .
Contact with the ground within 3 seconds.�

:
Either

Velocity: V WY VvZu[v] ^ m _ sec.
or

head on ground.

The pre-conditions ensure that if the figure is not balanced,
then the fall controller bids to take over. The fall controller
succeeds when the velocity and acceleration of the biped are
brought close to zero or when the head touches the ground.
The expected performance ensures that the biped keeps on
falling in the same direction. In addition, it requires (a) that
the figure’s facing direction does not reverse, something which
might happen when falling from a great height, and (b) that the
figure touches the ground within 3 seconds in order to ensure
that the fall was from a short height. Our implementation of the
fall controller computes the direction of the fall and responds
accordingly. It can therefore handle a variety of pushes. The
controller is robust and it can be used on different bipeds and
ground models.

Figure 4 shows snapshots of falls in different directions.
Notice how the upper body twists in the appropriate direction

and how the arms automatically extend in anticipation of
the collision with the ground. Figure 5 demonstrates a more
dramatic fall, where the physically simulated humanoid is
instructed to dive headfirst down a flight of stairs, which
suggests the notion of a “virtual stunt actor” [8].

IV. SVM LEARNING OF PRE-CONDITIONS

In this section, we describe an automatic, machine learning
approach to determining pre-conditions, which is based on
systematically sampling the performance of controllers. Our
method uses a machine learning algorithm attributed to Vap-
nik [28] known as Support Vector Machines (SVMs), which
has recently attracted much attention. SVMs are a method
for fitting functions to sets of labeled training data. The
functions can be general regression functions or they can
be classification functions. In our application, we use simple
classification functions with binary outputs which encode the
success or failure of a controller. Burges [2] provides an
excellent tutorial on SVMs.

To apply the SVM technique to the problem of determining
controller pre-conditions, we train a nonlinear SVM classifier
to predict the success or failure of a controller for an arbitrary
starting state. Thus, the trained SVM demarcates the boundary
of regions in the figure’s state space wherein the controller
can successfully do its job. Training sets comprising examples� R � :�� ��� are generated by repeatedly starting the dynamic
figure at a stochastically-generated initial state R � , numerically
simulating the dynamics of the figure under the influence of
the controller in question, and setting � � !=� 5 if the controller
succeeds or �7� ! ��5 if it fails.

The distribution of the stochastically-generated initial states
is of some importance. The sample points should ideally be
located close to the boundaries which demarcate the acceptable
pre-condition region of state-space. However, these boundaries
are in fact the unknowns we wish to determine and thus we
must resort to a more uniform sampling strategy. Unfortu-
nately, the high dimensionality of the state-space precludes
regular sampling. We thus adopt the following stochastic
process to generate a suitable distribution of initial states: First,
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Fig. 10. Control system overview.

a nominal initial state is chosen, based upon the designer’s
knowledge of the controller. A short-duration simulation (typ-
ically 0.3s) is then carried out from this initial state while
a randomized perturbation process is executed. This currently
consists of applying an external force of random (but bounded)
magnitude and random direction to the center-of-mass of the
pelvis. Simultaneously, the biped’s joints are perturbed in a
stochastic fashion by setting randomized offset target angles
for the joints and using the biped’s PD joint controllers to
drive the joints towards these perturbed positions. While the
perturbation strategy is admittedly ad-hoc, we have found
it to be effective in sampling the pre-condition space, as
was validated by the online use of the learned pre-condition
models.

We employ Joachims’ SVM
� ��� G�� software which is avail-

able on the web [14]. The software can accommodate large
training sets comprising tens of thousands of observations and
it efficiently handles many thousands of support vectors. It
includes standard kernel functions and permits the definition
of new ones. It incorporates a fast training algorithm which
proceeds by solving a sequence of optimization problems
lower-bounding the solution using a form of local search. It
includes two efficient estimation methods for error rate and
precision/recall.

The SVM training phase can take hours in our application,
but this is done off-line. For example, on a 733 MHz PIII
computer, the SVM training time for a training set of 8,013
observations is 2,789 seconds using the polynomial kernel,
2,109 seconds using the linear kernel, and 211 seconds using
the radial kernel. For a training set of 11,020 observations, the
training time is 8,676 seconds using the polynomial kernel,
3,593 seconds using the linear kernel, and 486 seconds using
the radial kernel. Once trained, the SVM classifier can provide
answers on-line in milliseconds.

V. SUPERVISOR CONTROLLER ALGORITHM

Figure 10 presents an overview of our control system. At
each time step of the physics-based simulation, the supervisor
controller first checks whether it needs to initiate a bid process,
and proceeds to do so if the user-specified target state has
changed or if there is no active controller (other than the
default controller). During the bidding process, all available

individual controllers determine whether their pre-conditions
are satisfied and, if so, they bid for control over the dynamic
figure by returning a priority number (details in [5]). The
supervisor controller selects from among the collection of
bidding controllers the one that returns the highest priority
(or, if no controller has bid for control, it selects the default
controller), registers it as the active controller, and invokes
a method associated with the controller which implements
its control strategy. The method returns to the supervisor
controller a status parameter. If the status parameter indicates
that the controller has failed, then a new bidding process
is initiated.2 Along with the status parameter, the method
returns target values for some or all of the dynamic fig-
ure’s degrees of freedom along with associated stiffness and
damping parameters, which are used by a set of proportional-
derivative controllers to calculate the actual control torques.
Alternatively, the active controller can choose to apply torques
directly to the figure and return no values for the supervisor’s
proportional-derivative controllers.

Some controllers automatically bid for control over the fig-
ure when their pre-conditions are met; hence, many controller
transitions occur automatically, such as taking a protective
step in response to a loss of balance. However, other actions
are initiated voluntarily, and the associated controllers become
active only at the request of the user. For example, a figure
balancing upright can be instructed to remain standing, to sit-
down, to walk, or to take a dive. Currently, the user directs vol-
untary actions by interactively entering command strings to the
supervisor controller. These commands increase the suitability
score of the designated controller and forces invocation of the
arbitration process which selects and activates the designated
controller. The control of voluntary motions could be delegated
to a high-level planner, but motion planning is beyond the
scope of our current work.

VI. ADDITIONAL SIMULATION RESULTS

We now present several examples of controlled sequences
of autonomous and user-instructed actions that our simulated
humanoids, whose physical parameters are consistent with a
fully-fleshed adult male, are able to perform.

The reduced dimensionality, planar motion robot model
facilitates the development of a relatively large number of
controllers, because planar control is more robust than three
dimensional control and less dependent on the specific biped
and ground model. The control sequence shown in Fig 1 in-
volves 13 controllers: balance, prone-to-kneel, supine-to-kneel,
kneel-to-crouch, crouch-to-stand, stand-to-sit, sit-to-crouch,
protective-step, fall, walk, plunge-and-roll, doublestance-to-
crouch, and the default controller. The plunge-and-roll, stand-
to-sit, sit-to-crouch and walk controllers bid for control of
the biped only under command from the user. The remaining
controllers act automatically.

The control sequences we were able to achieve for the
skeleton model shows that our method also works well in

2An additional check avoids an infinite loop when a badly designed
controller bids for control and immediately fails.



Fig. 6. Sitting and rising from a chair

Fig. 7. Rising from a supine position by rolling over, getting on hands and knees, and rising to an erect, balanced stance.

Fig. 8. Rising from a supine position to an erect, balanced stance, without first rolling over.

Fig. 9. A more vigorous way (kip stunt) of rising from a supine position that that in the first frame of Fig. 8.

three dimensions. Figures 6–9 show various sequences of
actions that our models can perform, including sitting and
rising from a chair and rising from a supine position in
three different ways. Autonomously controlled sequences of
such intricacy are unprecedented in the humanoid simulation
literature. Rising off the ground is a surprisingly difficult
motor skill. It involves rapid changes of the contact points
and significant shifting of weight. In addition, the frictional
properties of the ground greatly influence the motion (here,
the coefficient of friction is 0.6).

Figure 7 illustrates the humanoid at rest in a supine position,
automatically rolling over to a prone position, pushing itself
up on all fours, rising to its feet, and finally balancing in an
upright stance. The humanoid is equipped with the follow-
ing controllers: balance, fall, roll-over, prone-crouch, crouch-
to-stand, and the default controller. All controllers are au-
tonomous in this case; as the humanoid goes though different
configurations, it automatically reacts to the current situation
activating the most appropriate controller among those that
are available. With the figure in a supine configuration, the
roll-over controller brings the skeleton to a prone position
which makes it possible for the prone-to-crouch controller to
take over. When the figure reaches a crouching posture, the
prone-to-crouch controller succeeds and the crouch-to-stand

controller brings the figure to an upright position, which allows
the balance controller to take over. As Figure 8 illustrates, the
humanoid can also rise to an upright balanced stance without
first rolling over into a prone position. Finally, Figure 9
illustrates a third and much more energetic way in which
the humanoid can rise from a supine position. This is called
the “kip”’, an athletic motion often seen in martial arts films,
variations of which are used used extensively in gymnastics.
It works by getting the body airborne with enough rotational
momentum to plant the feet under the center of mass.

More details about these and other results can be found
in [8], [5], and associated animations are available from
www.cs.ucla.edu/ � pfal/research.

VII. CONCLUSION

We have presented a framework for composing dynamic
controllers. Our framework has been implemented within a
freely available system for modeling and animating articulated
figures. To our knowledge, our system is the first to demon-
strate, among other controlled motions, a dynamic anthropo-
morphic figure with controlled reactions to disturbances or
falls in any direction, as well as the ability to rise automatically
off the ground in several ways.



Given the enormous challenge of building controllers capa-
ble of large repertoires of dynamic human-like motion, it is
inevitable that the work presented in this paper is incomplete in
many ways. We hope that our system will foster collective ef-
forts among numerous practitioners that will eventually result
in complex composite controllers capable of synthesizing a full
spectrum of human-like motor behaviors. Published control
methods for 3D walking, running, and stair climbing make ob-
vious candidates for integration into our system. Coping with
variable terrain and dynamic environments are dimensions of
added complexity that should provide work for years to come.
Finally, the intelligent integration of controllers which affect
only subsets of the available degrees of freedom must to
be addressed in order to allow for the parallel execution of
controllers.
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