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work of [16, 5, 30, 35] is a good survey of  recent techniques aimed
at making the most flexible use of existing motion-capture and key-
frame data.  The advantages of motion capture are obvious: the im-
mediate generation of realistic human motions.  However, motion
capture does not provide us with sufficient understanding to create
more general walking motions, especially when conditions are un-
predictable, when new motions need to be generated, or when deal-
ing with non-human characters.  Developing methods to control
physical simulations can potentially provide us with a more general
tool, and it is therefore the modeling paradigm we adopt.

This paper proposes a solution for the control of periodic, un-
stable motions.  The technique automates the addition of feedback
to otherwise unstable motions, such as walking and running (see
Figure 1).  We also present an application of our technique by dem-
onstrating a human model capable of a variety of walking styles, as
well as a second, imaginary creature.  

 

2. BACKGROUND

 

Many solutions to animation control problems have been proposed
in the animation literature and elsewhere.   In particular, there is a
large body of work focussed on the important problem of locomo-
tion control.  What follows is a brief summary of some of these
techniques, with an emphasis on algorithms for locomotion, includ-
ing human walks and runs.

Procedural methods have been popular for generating motion
[10], especially for human walking [2, 3, 4].  These methods direct-
ly generate walking motions by using a series of constraints, which
are based on empirical data or on kinematic relationships.  The
work of [3] uses a mixed kinematic/dynamic model.  A  positive
feature of such systems is that they give the animator direct control
over useful gait characteristics, such as stride length, pelvic list, etc.
The motions produced are typically  parameterized in a way that is
directly meaningful to an animator.

In physical approaches to animation, one must solve for the
control actions that will, upon simulation, produce a desired mo-
tion.  One approach has been to use a type of underconstrained in-
verse dynamics with automatic addition and removal of constraints
which can be hand-tailored to yield stable 3D walks [29].  Several
other approaches have treated control directly as a search problem,
employing a particular choice of control representation and a choice
of search algorithm, including genetic algorithms [24, 28], and sim-
ulated annealing [23, 12, 31].  The results indicate that such tech-
niques are surprisingly adept at finding novel modes of locomotion.
Unfortunately, it is less clear that such global search techniques are
an efficient means of finding control strategies for motions requir-

 

Figure 1. A 3-D dynamic walk using limit cycle control.

 

ABSTRACT

 

Seemingly simple behaviors such as human walking are difficult to
model because of their inherent instability.  Kinematic animation
techniques can freely ignore such intrinsically dynamic problems,
but they therefore also miss modeling important motion character-
istics.  On the other hand, the effect of balancing can emerge in a
physically-based animation, but it requires computing delicate con-
trol strategies.  We propose an alternative method that adds closed-
loop feedback to open-loop periodic motions.  We then apply our
technique to create robust walking gaits for a fully-dynamic 19 de-
gree-of-freedom human model.  Important global characteristics
such as direction, speed and stride rate can be controlled by chang-
ing the open-loop behavior alone or through simple control param-
eters, while continuing to employ the same local stabilization
technique.  Among other features, our dynamic “human” walking
character is thus able to follow desired paths specified by the ani-
mator.
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1. INTRODUCTION

 

As with any modeling endeavor, Nature has much to tell us about
modeling motion.  When observing the running motion of a charg-
ing bull, before we take cover we can clearly see that motion is a
product of both physics and muscular action.  Physically based an-
imation mimics Nature by modeling both.

While techniques for simulating the basic physics of motion
are well known, less is known about how to provide the necessary
control over the muscles or actuators in order to produce a desired
motion [1].  By analogy, for most adults, walking is a seemingly ef-
fortless task.  We know from watching toddlers that the apparent
ease of walking, running, and maintaining balance is deceiving.  It
comes as little surprise, then, that walking has proven to be a diffi-
cult motion to model.  Indeed the most successful approach has
been literally to “watch Nature” by capturing motion data from real
walks and mapping this data to computer generated characters.  The
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ing fine control and feedback, such as human walking and running.
One would think that to create this type of controller, we should be
able to do better than to explore a large solution space at random.
Toward this end, some methods, including ours, draw upon previ-
ous work in robotics and control.

The hopping and running control strategies presented in [14,
26] represent a more methodical approach to arriving at a control
strategy.  The basic idea stems from earlier robotics work [25] and
is a powerful control technique for hopping and running motions,
given that certain assumptions are fulfilled.  The key is an elegant
decomposition of the control problem which arises from assuming
the legs are lightweight with respect to the body mass.  This as-
sumption can be overcome to some extent as shown in the work of
[14].  A more analytical examination of the remarkable robustness
of this and a class of related strategies can be found in [17].

Other specific controller designs have also met with success.
The simulated cockroach in [22] is a good example.  Strategies pro-
posed for walking robots also have possible applications for anima-
tion [34, 9, 11, 23].  Demonstrations of passively-powered walking
down a slight incline show that active walking may only require
small amounts of energy [20, 21].

The point of departure for our work is the concept of 

 

periodic
limit cycles

 

.   Consider for a moment the motion of a typical me-
chanical toy, which drives its joints in a repetitive, periodic fashion
and is oblivious to its environment.  This type of open-loop control
is sufficient  for many types of animated motion, as has been point-
ed out in [32].  However, it is insufficient as a control mechanism
for unstable dynamic motions such as walking and running.  The
control technique we propose provides a general method of turning
unstable open-loop motions into stable closed-loop motions.  The
basis of the technique is a process that perturbs the open-loop con-
trol actions slightly in order to yield a desired stable, cyclic motion.
A broad range of related work on limit cycles and periodic control
can be found in the control systems literature [15, 13, 19, 6, 33].
While this paper provides all the essential information for imple-
menting our technique, more details can be found in [18].

 

3. LIMIT CYCLE CONTROL

 

A mechanical toy owes its successful motion to a stable limit cycle
that arises naturally from the interaction of the toy with its environ-
ment.  Typically, the environment acts on the toy in such a way that
any disturbance to the motion, such as a small external push, is rap-
idly damped.  Figure 2 illustrates this concept using a phase dia-
gram.  The phase diagram is a projection of the path a motion traces
through state-space over time.
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  Unfortunately, recalling our wob-
bly toddler, unstable motions such as walking cannot rely solely on

 

1. 

 

An object's state is the minimal set of parameters necessary to
describe the position and velocity of all points on the object.

 

Figure 2. A passively-stable limit cycle.
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passive damping of disturbances
The goal of limit-cycle (LC) control is to actively drive mo-

tions that would otherwise be unstable back to a fixed limit cycle.
The key point to implementing LC control is to avoid dealing with
the complexities of non-linear dynamics by representing the motion
using a well-behaved 

 

discrete

 

 dynamical  system.
In general, the continuous equations of motion can be ex-

pressed by the non-linear differential equation
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 its time derivative, and 
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 is the control
input. The discrete dynamical system that we shall deal with has the
following iterative form:
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. Fig-
ure 3 depicts an abstraction of the discrete dynamical system.

The advantage of dealing with the discrete dynamical system
is that it is relatively smooth and therefore subject to linear approx-
imation. There is no 

 

guarantee

 

 that the discrete system will be
smooth, although we have in general found this to be the case for
our experiments.  For small control perturbations, 

 

∆

 

u

 

n

 

, that will be
applied on each cycle, the resulting change in state, 

 

∆

 

x

 

n+1

 

,  has a
first order approximation of

where 

 

J

 

 is a Jacobian relating the change in state after one cycle to
the control perturbation.  A first order approximation of the change
of state makes it possible to calculate the control perturbation re-
quired  to bring a system back onto a desired limit cycle, namely
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the desired state and 
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 being the state achieved when the nomi-
nal control, 
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, is applied.

 

3.1 Linearity of Control Perturbations

 

Our evidence for the above linear approximation is empirical, al-
though this type of linearization has been justified more rigorously
in the application of control theory to certain types of dynamical
systems [8, 13].  Figure 4 provides some experimental evidence that
a linear model is a sufficient for modeling the effect of control per-
turbations over a complete cycle of motion, despite the occurrence
of discontinuous events such as foot-falls during the cycle itself.
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Figure 3. A limit cycle as a discrete dynamical system.
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The vertical axis on this graph is a variable we would like to
be able to control, namely some aspect of the system state.  In this
particular example, it is a measure of the forward pitch of the body
of a simulated human model performing a walking movement, as
measured at the end of a single step.   The horizontal axis gives the
magnitude of an applied control perturbation, in this case an  alter-
ation of the hip pitch angle during a particular part of the step.  The
graph thus tells us what type of forward pitch our simulated human
body will have after having taken one step, using different varia-
tions of applied control.  Each line shows an example of this rela-
tionship for a different step.  It is evident in this figure that we can
alter the forward pitch of the body as we desire and that a linear ap-
proximation is a reasonable model for the effect of a control pertur-
bation.

It is important to note that the effects of control perturbations
depend on the initial state, 

 

x

 

n

 

.  This is clear from Figure 4, which
shows that the relationship between control perturbation and
change in state varies for different steps.  What this means in prac-
tice is that for each cycle of the motion, we need to recompute the
Jacobian 

 

J

 

, which defines the relationship between applied control
perturbations and the resulting changes in state after one cycle.

 

3.2 Regulation Variables

 

For many models, it is possible to make further simplifications and
still effect proper LC control.  It is typically neither necessary nor
practical to work with a complete state vector in producing a con-
trolled, stable limit cycle, as has thus far been implied.  Instead, it
can be sufficient to work with a small number of 

 

regulation vari-
ables

 

 (RVs).  Ensuring that these regulation variables are controlled
to follow a limit cycle is sufficient to stabilize the limit cycle for the
motion as a whole.  The use of RVs instead of the complete state
vector could also be considered advantageous for animation, as it
potentially leads to a less-constrained, freer motion.  This is loosely
related to the use of 

 

reduced-order models

 

 in control theory [8, 13].
Along with choosing the regulation variables, one must provide a
choice of desired target values for these variables to take.

So as to make the notion of regulation variables more concrete,
we introduce some of the possible choices that we know (through
experiments) work well for a human walking model.  A well chosen
set of regulation variables should give a meaningful projection of
the system state over a large range of possible states.

Figure 5 shows two possible choices for sets of regulation
variables, each based upon the definition of a particular type of vec-
tor. The simplest of the two is the 

 

up-vector

 

, so we begin by ex-
plaining this choice.  The up-vector is a fixed vector of unit length,
defined in the coordinate frame of the pelvis, which can be used to
measure the forward lean and sideways tilt of the pelvis. The regu-
lation variables are the forward and lateral components of the up-
vector, i.e., the projection of the up-vector onto a horizontal ground
plane.  Controlling the values of these two scalar variables using LC

 

Figure 4. Linearity of perturbation control.
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control is sufficient to yield a balanced, fully three-dimensional
walking motion for our human model.

Other choices of regulation variable are also possible.  The
swing-center-of-mass (swing-COM) defines a vector from the
swing foot to the center-of-mass, and thus measures where the cen-
ter-of-mass will lie with respect to the future point of support.  Once
again, the two scalar components of the projection of the vector
onto the ground plane form the set of regulation variables.  In the
presentation of the results, we primarily demonstrate the use of the
up vector.

 

3.3 Control Perturbations

 

Given that it is often sufficient to work with a limited number of
regulation variables, we need to determine the type and number of
control perturbations to effect the necessary control.  For two regu-
lation variables, as is the case for our walking example, we shall re-
quire two appropriately-chosen control perturbations in order to
yield a well-formed Jacobian 

 

J

 

.
The control perturbations we work with for our human model

are twofold.  First, one can use changes to the stance-hip pitch and
roll, effected over a particular portion of the walk cycle.  Figure 6
illustrates the effects of these perturbations in an exaggerated fash-
ion.  The two figures on the left demonstrate stance-hip roll, while
those on the right demonstrate stance-hip pitch.  Second, the use of
alterations to swing-hip pitch and roll can be similarly used as a
suitable pair of control perturbations.  In this case, the resulting con-
trol can be thought of as a type of foot-placement strategy.  As with
the choice of regulation variables, the choice of control perturba-
tions is not unique, although they must be chosen to span the space
of desired changes to the regulation variables

 

4. MODEL DESCRIPTIONS

 

We choose human walking as our primary example to illustrate the
limit cycle control technique for two reasons. The first is that it is
typical of motions for which the open-loop control actions are rela-
tively easy to construct and can thus benefit immediately from LC
control in order to “close the loop.”  The second reason is that the
control of a dynamic human walking model demonstrates the effec-

 

Figure 5. Regulation variables for use in walking. From left to right:
  (a) Up vector, (b) Swing-COM vector.
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Figure 6. Control perturbations used for walking.



 

tiveness and scalability of this technique.  The dynamic control of
models with many degrees-of-freedom (DOF) of the type used in
animation is problematic for many control techniques.

 

4.1 The Human Model

 

The physical model we use has a mass and inertia distribution com-
parable to those of a real human.  The parameters are identical to
those used in [36] and were originally obtained from [7].  The mod-
el has 13 joints and 19 DOF, as shown in Figure 7.  The hip joints
have three rotational DOF, while the ankle joints have two rotation-
al DOF.  All other joints have one DOF.  The equations of motion
are calculated and integrated using a commercially-available simu-
lation package [27].  The ground is modelled using a penalty meth-
od.  Stiff springs and dampers exert forces on a set of four points on
the feet whenever they penetrate the ground.  Each point is allowed
to slip independently when the ratio of its applied horizontal and
vertical component forces exceeds a user supplied threshold.  The
ground model thus uses no artificial constraints to hold the foot in
place,  which have in the past been used to simplify the simulation
(and to some extent the control) of human motion.

 

4.2 The Robot Model

 

As a second test case, we consider the robot shown in Figure 8.
This figure has 11 joints and 15 rotational DOF.  The lateral base of
support is much wider than that of the human model, yielding a very
different type of motion.  Mass and inertia parameters for this mod-
el are shown in Table 1.

 

5. APPLYING LC CONTROL

 

In the following sections we present the details of the limit cycle
control algorithm as applied to our human walking model.  The dis-

 

Figure 7. Construction of the human model.  Joints
are 1 DOF except where indicated.

 

1 m

33

22

 

Figure 8. Construction of the robot model.  Joints
are 1 DOF except where indicated.
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cussion first looks at the open-loop control before proceeding on to
examine how the LC-control algorithm can be superimposed on it.

 

5.1 Open-Loop Control

 

Finite state machines (FSMs) combined with proportional-deriva-
tive (PD) controllers are a common control mechanism in both
physically-based animation [14, 22, 32] and robotics. The finite-
state machine used as a basic controller for the walking motions is
shown in Figure 9.

Each state in the FSM provides a fixed set of desired angles to
the individual PD joint controllers.  In our FSM, the desired angles
change as a step function when proceeding from one state to the
next. The PD controllers calculate a torque according to
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 is the desired joint angle, 
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the angular velocity of the joint and 
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 are gain constants
which serve to define the strength of the joint.

The state transitions in the finite state machine are time-based,
with the exception of the transitions exiting states S1 and S4.  These
latter transitions are sensor-based and perform the simple job of en-
suring that the proper stance foot is on the ground before complet-
ing the current step.

A basic open-loop motion can be constructed by defining the
poses in states S2 and S3, where a pose consists of the set of desired
joint angles to be used in a state.  The pose for state S1 is identical
to the pose for state S2.  The poses for states S4, S5, and S6 are the
same as the poses for states S1, S2, and S3, respectively, with the
left and right sides exchanging roles.  In typical operation, state S2
(S5) raises and advances the swing leg and state S3 (S6) straightens
it in anticipation of ground contact.  Normally, the foot contacts the
ground some time after entering state S3 (S6) and the remaining
time in the state is spent in double-stance phase

 

2

 

.  Since the next
stance foot is already on the ground, the transition out of state S4
(S1) occurs immediately after entering it, essentially skipping the

 

Link Mass  (kg) Moment of Inertia  (
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)
body 14.72 0.47 0.26 0.40
head 20.9 1.11 0.92 0.72
upper leg 1.2 0.001 0.01 0.01
mid-leg 1.6 0.023 0.0013 0.023
lower leg 2.2 0.057 0.0018 0.057
ankle 1.4 0.0012 0.015 0.015
foot 2.52 0.0098 0.024 0.016

 

Table 1. Robot model mass and inertia parameters.  The 

 

x
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y

 

 and 

 

z

 

axes are the forward, vertical and lateral axes respectively.

 

Figure 9. Finite state machine employed for walking.
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state.  The cycle then repeats for the other leg.  The sensor-based
transitions serve only to make for a more robust motion.  They ef-
fectively provide a way for the controlling FSM to remain synchro-
nized with the actual motion and are typically only necessary
during startup or when an FSM is dynamically altered to obtain a
different motion.

Note that strictly speaking, the FSM does not provide true
open-loop control since the desired joint angles are realized using
local PD controllers.  Nevertheless, the motion is open-loop in the
sense that no system-wide feedback is used to drive it towards the
desired trajectory.  The result of using the “open-loop”  FSM of Fig-
ure 9 for walking control is shown in Figure 10.  It produces a mo-
tion which takes several steps and then falls over.

A certain amount of trial-and-error parameter tuning is re-
quired to produce open-loop motions which can be balanced suc-
cessfully.  Although tedious, this process is relatively
straightforward.  Tasks might include ensuring that toes do not stub
the ground and that the basic motion can produce movement in the
desired directions.  Once a good open loop controller has been gen-
erated, it can be used to produce a wide variety of motions.

 

5.2 LC Control for Walking

 

The first step in implementing LC control is to choose a set of reg-
ulation variables and a set of control perturbations.  We have exper-
imented with two choices for the former, as shown in Figure 5, and
two choices for the latter.

As indicated in Figure 3, the final nature of the limit cycle is
defined by the target state to be achieved at the end of the current
cycle.  It should be noted that LC control is not successful for all
choices of target values.  Target values should be similar to the val-
ues that can be observed during the first few steps of the open-loop
motion.  This ensures that the generated limit cycle is close to the
unstable open-loop limit cycle, thereby limiting the LC control to
having to perform relatively small control corrections.

The power of LC control lies in being able to predict the
change in values of the regulation variables with respect to the ap-
plied control perturbations.  Using a linear model for this allows us
to easily predict the required perturbation.

The chosen pair of control perturbations for human walking,
namely alterations to the desired hip pitch and roll angles, were de-
signed to allow for more-or-less independent control of each of the
regulation variables.  The hip roll is effectively used to provide bal-
ance in the coronal (side-to-side) plane, while the hip pitch provides

 

2. 

 

The double-stance phase is the part of the walking cycle during
which both feet are in ground contact.

 

Figure 10. Walking with open-loop control (front/side views).
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balance in the sagittal (front-back) plane.  In effect, this corre-
sponds to only requiring the use of the diagonal elements of the Ja-
cobian.  We have not yet attempted to make use of the full Jacobian.

Figure 11 illustrates the linear interpolation scheme, which is
applied twice, once for sagittal balance, and once for coronal bal-
ance.

Carrying out one actual step in a walking motion requires per-
forming five simulations of the step, each slightly different from
one another.  The first four simulations are used to capture the nec-
essary data to construct a simple model of how control perturba-
tions will affect the state of the body at the end of the step.  This
model is then used to estimate the necessary control perturbations
to achieve the desired target state, and hence the desired limit cycle.
The fifth simulation is required to produce the final balanced mo-
tion for the current step before proceeding on to the next.  The blind
reconstruction of the RV-perturbation model each step in this fash-
ion results in a five-fold increase in the required computation time
compared to normal forward dynamic simulation.  If the local per-
turbation model can itself be predicted, true closed-loop control can
be achieved.  We are optimistic that this is possible.

The robot model uses very similar choices to the human mod-
el’s to achieve a running motion.  Stance hip variations provide the
control perturbations and the chosen RVs are projections of an up
vector attached to the creature’s head.  The primary difference be-
tween the control for the two models is in the open loop FSM.
Aside from differences in the particular poses, the robot’s transition
times are smaller than the human FSM (by about half) since the
creature’s wide stance makes it difficult to remain on one foot for
long.

 

5.3 Torso Servo

 

While the limit cycle control mechanism described thus far gener-
ates stable walks, the resulting motions exhibit a characteristic bob-
bing of the torso. This is an artifact of the simple open-loop motion
chosen as a point of departure for our walking gait.  We implement
a simple vertical torso servo which not only smoothes the torso mo-
tion (if desired), but also demonstrates the robustness of the limit
cycle control in continuing to provide effective balance.  For LC
control, stabilizing a system which already contains some feedback
components such as torso servoing is no different than stabilizing
an open-loop motion.

The torso servo consists of a PD controller applied to the one
degree-of-freedom waist joint. The applied torque at this joint
serves to force the torso to always remain upright with respect to the
world coordinate frame.  Note that the torso servoing does not pre-
vent the biped from falling because the legs must still ultimately

 

Figure 11. Interpolating for a desired control perturbation.
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Figure 12. A falling motion illustrating the torso servo.



 

provide for balanced support, as illustrated in Figure 12.

 

6. RESULTS

 

Limit cycle control has been applied to obtain stable walking gaits
for a 19-DOF human model of realistic proportions.  As a second
example, we control the running motions of a two-legged robot
with a bird-like skeleton.

Figure 1 shows a sequence of frames from a typical dynamic
walk, resulting from the application of limit cycle control to an
open-loop walking motion, with torso servoing enabled.

An illustration of the typical limit cycle which is achieved is
shown in Figure 13.  The path indicates the continuous-time projec-
tion of the unit up vector onto the horizontal plane.  This figure is
the real analog of the earlier abstraction shown in Figure 3.  For
walking, the limit cycle consists of two roughly symmetric halves.
This occurs because a single cycle consists of a left step and a right
step, each forming half of the complete limit cycle for a stride.  The
desired values for the regulation variables lie at the center of this di-
agram, at 

 

RV

 

forward

 

 = 0.25, 

 

RV

 

lateral

 

 = 0.  Perturbation control is ap-
plied on each step, thus forcing the limit cycle towards the desired
point twice on each cycle.  The startup phase of the motion  is also
evident from the figure, with the regulation variables eventually be-
ing driven onto a stable limit cycle.

While LC control is a general method of adding balance to a
walk, it does not by itself ensure a straight walk.  Figure 14 illus-
trates different paths taken for different target values (RV

 

d

 

) of the
regulation variable controlling the desired forward lean.  The figure
is a top view of the walking motion, showing only the position of
the pelvis, enlarged in order to make the orientation of the body
clearly visible during the walk.  The correct scale for the walk is
given by the axes, indicated in metres.

An example of an  alternative choice for the set of regulation
variables is the use of the swing-center-of-mass (swing-COM) vec-
tor.  This also leads to stable walks, but not necessarily straight
walks.  Figure 15 shows how the path can vary as the target value

 

Figure 13. Regulation variable limit cycle (up-vector based).
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Figure 14. Dynamic walks using the up-vector
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for the forward component of the vector takes on different values.
The quality of the final motion depends heavily on the open-

loop motion on which it is based.  The simple four pose FSM used
to generate most of the human model walks is quite robust, but pro-
duces a motion more akin to a robot marching than to normal hu-
man walking.  A more human-like walk has been generated by
increasing the number of states and changing the timing of the
swing leg motions.  The use of motion captured data for tuning the
open-loop gait for realism presents the possibility of further refin-
ing the motion while retaining both the guarantee of realistic mo-
tion and the flexible autonomy LC control can provide.

 

6.1 Additional Animator Control

 

Control over the speed and direction of a walking gait is of obvious
necessity to an animator.  Because the stabilization (i.e., balance) of
the walk is automated, it is a relatively simple matter to provide the
necessary hooks to control these parameters, as well as other possi-
ble stylistic variations.

 

6.2 Speed Control

 

The speed of the walking gait can be controlled in several ways.
One technique we have applied is to alter the underlying open-loop
motion to produce particular faster and slower velocity walks and
to use interpolations of these 

 

base controllers

 

 to achieve intermedi-
ate speeds.  Another successful approach makes use the fact that the
forward speed is a function of the target values chosen for the reg-
ulation variables.  As we choose limit cycles for which the pelvis
and torso lean forward more, the speed of the gait increases.  In this
case, a simple form of velocity feedback is used to give consistent,
stable steady-state velocities.  The RV target value for each step, i,
is:
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a proportionality constant, and 
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 is a bias term used to relate RV
values to speed.  Either the bias term or the desired velocity can be
used to vary walking speed.  Figure 16 illustrates the walking speed
for a set of walks obtained using this approach.  The startup phase
can be recognized during the first several steps and the longest walk
demonstrates both positive and negative acceleration phases.  All of
the motions begin from rest.  Only relatively small changes in the
final RV target values are required to achieve a reasonable range of
speeds.  The fastest walk in Figure 16 has 
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≈

 

 0.30 while the
slowest walk (nearly stationary) has 

 

RV
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d

 

 

 

≈

 

 0.25.  These correspond
to forward pelvis angles of approximately 17 and 14 degrees from
vertical respectively.  This technique allows the underlying open
loop motion to remain fixed, but tends to reduce motion quality
somewhat at higher speeds.

 

Figure 15. Dynamic walks using the COM-vector.
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6.3 Direction Control

 

By changing the open-loop motion to include suitable hip twists,
controllable turning motions can be achieved.  Figure 17 shows a
sequence of footprints which illustrate the effect of the hip joint ro-
tations on the orientation of the pelvis for the case of a stationary
walk.  The figure indicates the hip rotations relative to the pelvis at
key points in the walking cycle and the states of the basic FSM (Fig-
ure 9)  in which they occur.  The turning motion works best when
torso servoing is applied, in that turns of tighter radius can be per-
formed.  Figure 18 shows turns obtained using scaled versions of
the twisting motion and stabilized using LC control.

Once the turning radius can be controlled, it can be used to
produce a path-following algorithm.  Figure 19 shows a dynamic
walk following a desired trajectory.  The algorithm makes use of a

 

target point

 

 on the trajectory and chooses a turning rate proportion-
al to the current error in direction.  When the target point has almost
been reached, its position is updated to be further along the desired
path.

 

6.4 Other Variations

 

Many other walking styles can be implemented by tailoring the
open-loop control as desired.  In many cases, transitions between
different motions can be performed by simple linear interpolation
of the underlying open-loop control over a period of a few steps.  In
some cases, a more gradual transition or more complex control of
the desired RV values is necessary to avoid a fall.  In either case,

 

Figure 16. Speed control for a dynamic walk.  RV
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Figure 17. Hip rotations for turning during a walk.
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Figure 18. Turning motions for a dynamic walk
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the basic LC control mechanism remains the same.  Note that be-
cause a dynamic simulation is always being used, ground con-
straints and other physics constraints are always fulfilled,
something that is not necessarily the case with direct kinematic in-
terpolation of motion data, especially for large variations.

Figure 19 illustrates a stylistic variation on a walk with the
knees being bent and lifted high on each step.  Figure 21 shows a
ducking motion obtained by transitioning into and out of a bent-
over walk.  Stride rate variations can be achieved by changing the
duration of time-based state transitions in the open-loop FSM.  We
have also simulated walking motions into a strong wind, for which
the automatic feedback provided by the LC control visibly alters the
motion to lean into the wind.  In addition to these variations, LC
control has proven capable of balancing lateral and backward walk-
ing motions obtained using exactly the same open-loop FSM as the
forward moving walks.  When the human model’s initial state has
a sufficient backward or lateral velocity component, a balanced
walk ensues in the direction of this initial nudge.  The application
of velocity control to effect transitions into and out of such motions
has not yet been attempted but is expected to be relatively straight-
forward.

As a final example, Figure 22 shows our robot model which
can run in a controlled fashion using LC control.  This example
serves to further illustrate the generality of LC control with respect
to significant model and gait variations.    

 

7. CONCLUSIONS

 

Physically-based animation is difficult because of the lack of gen-
eral control techniques.  Motions such as walking are known to be
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Figure 19. Path following using six target points.
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Figure 20. Stylistic variation on a walk.

 

Figure 21. A ducking motion.



 

particularly difficult to control because of their unstable nature.
The limit cycle control technique offers an automated way of add-
ing closed-loop control to a basic desired open-loop motion.  The
open-loop component of the control can be tailored in a variety of
ways to produce stylistic variations and useful parameterizations of
the motion without any loss of physical realism.

While the human walks obtained are not yet equivalent to mo-
tion-capture quality, they are among the first demonstrations that
general control techniques can indeed be developed for figures of
relatively high complexity performing unstable motions such as
walking.  For imaginary creatures, physically-based simulation at
present provides the best way of ensuring that motions abide by all
the laws of physics.  Thus, a general method of providing closed-
loop control for such simulations is of considerable importance.

In the near future, we foresee integrating the closed-loop mo-
tion control developed here with an ever-growing library of other
types of skilled motor control in order to produce simulated syn-
thetic actors capable of a truly diverse set of physically-correct be-
haviors.
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