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Abstract

Motions such as flips and jumps are challenging to animate and to per-
form in real life. The difficulty arises from the dynamic nature of the move-
ments and the precise timing required for their successful execution. This
paper presents a decision-tree search algorithm for planning the control
for these types of motion. Several types of results are presented, including
cartwheels, flips and hops for a two-link gymnastic ‘acrobot’. It is also
shown that the same search algorithm is effective at a macroscopic scale
for planning dynamic motions across rugged terrain.

Animations: http://www.dgp.utoronto.ca/people/van/ani.html

1 Introduction

Creating realistic movement for animated objects is a difficult task, one which re-
mains difficult even if a physical simulation is used. Controlling a simulated gym-
nast involves solving the same problem that the real gymnast faces in executing
a sequence of manoevres. Of particular interest to us are unstable, dynamic mo-
tions which must typically rely on careful timing and accumulated momentum in
order to be successful. These dynamic motions also make for visually-compelling
animations, in part because of the recognition of the difficulty of performing these
motions.

In this paper we show that classical techniques borrowed from early work in
Artificial Intelligence (AI) can do well at solving difficult control problems. In
particular, the decision-tree search algorithm we exploit is well suited to taking
advantage of the many constraints that arise in control problems. The algorithm
also has some very undesirable characteristics, notably its exponential complexity
with respect to the dimensionality and discretization of the control space. The
goal here, however, is to further understand the control of motions which are
difficult because of their dynamic nature and natural instability.
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Figure 1: A Flipping Acrobot. The acrobot is displayed at 0.05 second intervals
and are further separated into groups of eight for clarity. These groups should
be read from left to right, and top to bottom.

Some of the movements created using the search technique are shown in Fig-
ures 1 and 2. The motion in Figure 1 is that of a gymnast or ‘acrobot’ which
can bend forcefully at the waist in order to perform back flips and front flips, all
the while maintaining balance. The foot drawn in Figure 1 has been added for
cosmetic purposes; the foot in the underlying simulation exists only as a single
point at the end of the leg. In order to be convinced of the difficulty of the
resulting control problem, we encourage the reader to try the following experi-
ment. While standing upright, place all the weight on the heels and attempt to
maintain balance by bending only at the waist. Performing a sequence of flips 1s
predictably even more difficult.

While the motion in Figure 1 was obtained by conducting a search using low-
level control primitives, it is also possible to take advantage of existing high-level
control primitives in order to conduct a control search at a macroscopic scale. In
Figure 2, a search is conducted using several types of jumps as primitives. The
goal is to determine a sequence of jumps which allow Luxo, the jumping lamp,
to successfully negotiate some treacherous terrain. The animator defines the
desired shape of the terrain, and the search algorithm then produces the necessary
sequence of jumps in order to traverse it. Note that the planning necessary for
this type of motion is more difficult than simply choosing the jump-size which
could leap over an upcoming abyss. For traversing rugged terrain, the dynamic
movements require advance planning in order to be successful. At present there
are few known solutions for the planning of such motions.

The remainder of this paper covers various aspects of the proposed algorithm
in greater detail. Section 2 provides a summary of related work from the fields
of computer animation, robotics, control, and Al. Section 3 gives the details of
the search algorithm itself. The search algorithm is used to plan control at both
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Figure 2: Luxo goes cross-country running. The position of the middle link
or ‘leg’ of Luxo is shown every 0.1 seconds. The complete position of Luxo is
given at the start and end of each motion, buffered by several skipped frames for
clarity.

a low-level and high-level, discussed in sections 4 and 5, respectively. Lastly,
conclusions and future work are presented in section 6.

2 Background

It is natural to draw upon work in control theory as a starting point for dealing
with control problems in animation. Indeed, one of the motivations for this
work was to attempt to tackle a problem which is receiving attention within
the control community, namely that of controlling underactuated mechanisms.
An underactuated mechanism is one which has fewer actuators than degrees of
freedom. As an extreme example, we consider the acrobot, shown in Figure 3.
The acrobot is a two-link robot with a single actuator placed at the connecing
joint Py and effecting a torque between the two links. Point P; will be referred
to as the foot and point Ps as the head.

We work with the acrobot for two reasons. First, articulated figures such as
humans are effectively underactuated because ankles only provide limited control
over the global orientation of the body. Second, the acrobot serves as an example
of an articulated figure that is difficult to control despite having very few degrees
of freedom (DOF). Our contention is that the dynamic and unstable nature of a
motion is a more important criterion than the the number of DOFs of an object
in measuring the difficulty of controlling a movement. An illustrative example is



Figure 3: The acrobot.

to compare platform diving to swimming. Platform diving is arguably a more
difficult motion to perform because of the timing and precision with which it
must be executed.

The work of Hauser and Murray[HM90] first proposed a controller which
could make an acrobot balance in place. In this case, the acrobot’s foot is fixed to
the ground using a frictionless, unactuated hinge. Bortoff and Spong[Bor92][BS92]
use approximate linearization to produce slow movements among stable config-
urations. Their method is also shown to work on a real acrobot system.

Berkemeier and Fearing[BF92] attempt further types of motion with the acro-
bot and arrive at a controller capable of balancing, sliding, and hopping, subject
to some constraints on the acrobot’s physical design. The control for both bal-
ancing and sliding is successfully tested[BF94] using an inclined mechanism to
reduce the effects of gravity. The hop is not implemented due to technical diffi-
culties.

The challenge of controlling running motions for creatures with ‘light-weight’
legs has been successfully tackled and applied to animation by Raibert and
Hodgins[RH91]. A variety of gaits are controlled for monoped, biped and quad-
ruped creatures. The strategy for locomotion decomposes control into three
separable components: (1) height control, (2) attitude control, and (3) speed
control. Hodgins[HR90] also presents a control system to perform biped gym-
nastics, which is constructed by dealing with the takeoff, aerial, and landing
phases as distinct control phases.

In some cases, controller design can be automated by using parameter optim-
ization techniques. From the biomechanical literature, Pandy[PAH92] paramet-
erizes the control history of a nonlinear dynamical system using a set of nodal
points. Controllers based on stimulus-response rules are proposed by Ngo and
Marks[NM93], who synthesize them using genetic algorithms. Sensor-actuator



networks are introduced by Van de Panne and Fiume[vF93] to synthesize closed-
loop locomotion control for a variety of simulated creatures equiped with binary
sensors. Sims[Sim94] further uses genetic algorithms and a different type of con-
trol architecture to automate the generation of controllers capable of interesting
behaviour. ‘Virtual wind-up toys’ are proposed by Van de Panne et al[vKF94] in
order to examine the limits of open-loop, cyclic control signals in producing loco-
motion. Grzeszczuk and Terzopoulos [GT95] synthesize realistic locomotion for
the animation of deformable physics-based animals in an aquatic environment,
making use of simulated annealing techniques to produce the required control.

The search algorithm we present here is related to that presented in [vFV93],
in which a search algorithm is used to plan turning motions for bicyclists and
skiers. Tt is also loosely related to work on randomized path planning in config-
uration spaces.

3 The Search Algorithm

The search space for our problem consists of a series of sequential control de-
cisions to be made at discrete instants in time. In the case of the acrobot, a control
decision determines the desired position for joint py. The joint is driven towards
the desired position over time using a proportional-derivative (PD) controller.
The desired position is held constant for a chosen duration of 0.2s, whereafter
another control decision must be made. The choice of control duration should
in general be correlated to the figure being animated and the type of movement
being performed.

Our proposed approach for arriving at a sequence of successful control de-
cisions is similar to those used in game-playing strategies, in that we evaluate
the consequences of actions several stages into the future. For our animated
figure, this corresponds to carrying out multiple simulations which explore the
effects of different control sequences. Our particular strategy is a best-first search
tree[Win84], exploring n stages into the future. With each stage having a dur-
ation of T seconds, this means motions have always been successfully planned
nT seconds into the future. Once a plan has been found which is successful for
the given planning window, a commitment is made to the first-stage control de-
cision which is part of the successful sequence and the whole planning process is
repeated again. An example search tree is shown in Figure 4.

Each node in the search tree represents the acrobot in a particular state at a
particular point in time. New child nodes are generated by beginning in the state
of the parent node, applying a chosen (constant) control input (denoted by u),
and performing a forward dynamics simulation for a fixed-time interval (0.2s) to
yield the state for the new node.

The simplest strategy to build a search tree is to simulate every possible con-
trol action at every branch point in the search tree. This requires the evaluation
of O(Nk*) control actions in order to plan a motion for a total of N stages using



k decisions per stage and planning s stages in advance. Even with a small number
of stages and control actions, this type of search rapidly becomes prohibitively
expensive. There are two means which we shall use to address this. The first
is to prune many branches of the search tree. Some of this happens naturally
when the figure falls or does something similarly inappropriate. We introduce ad-
ditional user-defined pruning functions in order to further eliminate exploration
of clearly unpromising branches of the search tree. A second strategy to deal
with the exponential nature of the proposed search method is to only require the
success of a movement, and not its optimality. The search process can then be
biased to pursue promising branches of the search-tree first.

Two choices must be made whenever carrying out a simulation to further
expand the search tree. First, a starting node must be chosen. This should
presumably be one which looks like it 1s part of a promising motion, so we shall
define an evaluation function » to quantify how promising any given node is.
Second, we need a method of choosing the control input « to apply. The method
we employ is one of stochastically selecting the control input from a fixed, uniform
distribution. Initial experiments to modify this distribution function according
to what was previously successful in similar states have met with some success,
although this is not discussed further here.

The algorithm which controls the development of the search tree is described
with the pseudocode in Figure 5. The specific search tree shown in Figure 4 is
created by the sequence of events documented in Figure 6. At each step, the
actual scores for the nodes are given (Figure 6). The highlighted score indicates
which node will be extended in the next step. For sorting efficiency, we store the
tree nodes in a heap.

In the example tree, the current candidate input-histories are:

Usana = {(1.5,-2.2, 1.0, (—2.3,1.5,1.0), (—2.3,1.5,0.5)}

These are obtained by tracing the possible directed paths from the root to each
leaf. Some details of the algorithm are now examined in further detail.

3.1 Node Selection

The choice of which node of the search tree to expand is made using a user-
defined evaluation function which evaluates the ‘promise’ of a node by examining
the current state, the current search depth, and the current ‘degree of previous
exploration’. These factors are captures as follows:

Veval = f(x) + g(ndepth) + Nechildren Uretry

where x is the state represented by the node; ngepen is the depth of the node
in the tree; ncpsiaren are the number of node children; v,¢¢ry is the penalty that
is added for each node child; and f and g are user-specified functions. In the



Time (s) Depth

0.0 o f(x)=10(0)

U=-23 u=15
01 1 f(x)=8 @ @ f(x)=7
u=1.5\ u=-2.2

02 2 f(x.)=10 @ @ f(x)=5

u=1.0j ko-f’ \u=-1.0

03 3 f=2(3) (4) (7)ftx)=10

f(x)=1

Figure 4: An example search tree.

example of Figure 4, we use the evaluation function

Verxample = f(l?) + Ndepth + Nchildren * Uretry

with v,etpy = —4. The term f(z) rewards being in a favorable state, such as one
that is balanced for the acrobot. The term g(ngeptp) rewards the growth of the
search tree in depth. Lastly, the term v,.sry ensures that the search distributes
its efforts over currently promising motions.

3.2 Node Pruning

Many branches in the search tree can be pruned when the controlled object falls
or enters an illegal or undesirable state. In the examples discussed in this pa-
per, additional node-pruning functions, p, have been provided by the animator
to further speed the progress of the search. While the development of these
node-pruning functions admittedly requires some trial-and-error, we believe the
development of node pruning functions can eventually be automated if we con-
sider the following supporting argument. Once a sufficiently long sequence of
successful motion has been synthesized, it becomes possible to answer questions
of the form “Has a successful motion ever passed through a similar state before?”.
This type of query can then be directly used as a pruning function.

4 Results for Low-Level Control Synthesis

We use the proposed algorithm to generate cartwheeling, flipping and hopping
motions for the acrobot. The evaluation and pruning functions are surprisingly
simple and we obtain complex acrobot motions which are both new and enter-
taining.
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best_node = choose_node(tree);

rand_input = generate_input();

new_node = simulate(state(best_node),rand_input);

new_node.score = evaluate(state(new_node),
depth(new_node)) ;

if (test_prune(new_node)) {

delete(new_node);
} else insert(new_node,tree);

. best_node.score = best_node.score + v_retry;

if (depth(tree) > depth_max) {
trajectory = add_input(trajectory,tree,new_node);
tree = child_along_path(tree,new_node);

}

. loop;

Figure 5: Pseudocode for the search controller.

Node Scores
Step 0 1 2 3 4 5 6 7
1 10
2 6 9
3 6 5 12
4 6 5 8 5
5 6 5 4 5 4
6 2 5 4 5 4 8
7 2 5 4 5 4 4 7
8 2 5 4 5 4 4 3 13

Figure 6: Detail of progress for the example search tree.

A usefule quantity to observe in the motion of the acrobot is the following,

which defines the position of the centre of mass with respect to the acrobot foot:

CMoffset = Lem — L1,

where .., 1s the horizontal position of the center-of-mass; z1 is as shown in

Figure 3. We also define { as being the angular momentum measured in a counter-
clockwise direction. General parameters for the simulations are given in Figure 7.



mi, mo 10 kg

lhlg 1m

I, I 0.8333 kg - s/m”
teim 0.001 s

Linterval 0.02 s

Uretry —4.0

Ndepth 20

Figure 7: Model parameters.
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Figure 8: The cartwheel.

4.1 Acrobot Cartwheel

For a cartwheeling motion, the evaluation and pruning functions are:

Ucartwheel = —{—10- .|Cmoffsec| =+ ndepch/lo
Pcartwheel = (y2 < 02)\/
((y1 < 0.0) A (y2 < 0.0)).

The evaluation function rewards negative angular momentum [; penalizes
center-of-mass offsets |cm,psset|, and rewards simulation progress ngepen. The
pruning function constrains the joint to be at least 0.2 m above the ground and
ensures that only the end of one link may contact the ground at any instant in
time. The result is a clockwise leg-over-arm motion as shown in Figure 8. We
use k, =50 N/m and kg =5 N - s/m for the joint proportional-derivative (PD)
constants.

The commanded joint angles and the actual joint angles for this motion are
shown in Figure 9. Note that the control inputs define a step function, and the
actual value of 5 is pulled toward the desired value by the PD-controller.
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Figure 9: Control inputs to the joint angle.

4.2 Acrobot Flips

For somersaulting motions, the evaluation and pruning functions are:

viip =  —10- |cmoffset] + Ndepth
Uforward flip -10- |Cmoffset| + Ndepth
Pflip (y2 < 0.2) V (ys < 0.4)
Pforward flip = (Y2 < 0.2) V (ys < 0.4)V
(1 > 0.5) A (1 > 0.0)).

The pruning function constrains the joint and the head to avoid contact with
the ground. The evaluation function penalizes center-of-mass offsets and rewards
simulation progress. Given these constraints, the flips naturally occur in the
motions produced by the search algorithm. The flipping motions can be sustained
indefinitely. Successful landing is attributed to the penalty on the center-of-mass
offset, which drives the foot to be underneath the center-of-mass.

The frames in Figure 10 demonstrate a back-flip followed immediately by
a forward-flip. To achieve the torque required for the flip, PD constants of
kp, =200 N/m and kq = 20 N - s/m are used. Higher-order flips (double, triple,
etc.) are achievable by simply increasing the k, of the actuator.

A motion with only forward flips uses the same pruning and evaluation func-
tions as the normal flip with an additional constraint that whenever the foot is
above 0.5 m, the angular momentum [ must be positive.
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Figure 10: A sequence of flips.

4.3 Acrobot Hop

The hop requires the largest number of pruning constraints in order for the search
to be efficiently executed. The evaluation and pruning functions are:

Uhop = Ndepth

Phop = (y2<0.2)V (ys < 0.4)V
((y1 > 0.0) A (21 < —0.1))V
(yh > 0.4)

The pruning function keeps the joint and head above the ground, permits only
small backward velocities when the foot is in the air, and keeps the foot below
0.4 m in the air. The evaluation function simply rewards temporal progress. To
the best of our knowledge, the hopping motion can be indefinitely sustained. The
PD-constants used here are the same as those for the flips.

Figure 11 shows a history of how simulation trials are allocated to different
levels of the search tree (times of the motion) as the search algorithm proceeds.
A negative slope in these graphs indicates a back-tracking behavior in the search.
A steep positive slope indicates an easy motion to plan. Surprisingly, flip motions
are the easiest to generate, followed by the cartwheel in difficulty, and then the
hop. An increase in the number of pruning constraints has the effect of slowing
down the search.

5 Results for High-Level Control Synthesis

The search technique can also be used to string together appropriate sequences
of more complex control primitives. In this particular example, we shall deal
with the motion of Luxo, a 3-link articulated figure with two actuators, as shown
in Figure 2.

The motion primitives in this case are not constant control inputs, but rather
the control histories necessary to execute complete jumps. A total of 5 different
types of jumps are used in creating the motions shown in Figure 2. The job of
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Figure 11: Progress depth per trial for different locomotion modes.

the search algorithm is then to produce an ordered sequence of these 5 types
of jumps which can successfully negotiate the terrain. Each jump consists of
a sequential series of three states, where each state is of a fixed duration (0.13
seconds) and holds the control inputs constant. As with the other articulated
figures presented thus far, the control inputs are desired joint angles, which are
fed to PD controllers that are used to generate actuator torques.

Executing a given jump primitive will not always produce the same motion.
This is because the resulting motion is a function of the initial state and the
environment as well as the applied control. For the examples shown, 1t is sufficient
to plan ahead a maximum of 4 jumps. As with previous examples, the search is
conducted using a best-first strategy.

The scoring function used to evaluate nodes is simply the distance travelled,
as measured along the horizontal axis. The mechanism used to constrain the
growth of the search tree consists of pruning search-tree branches leading to falls.
A fall is defined as an undesired contact of a body part with the ground. In the
given examples, the falls are sufficient to prune away 50 to 66% of the search
tree. More of the tree could be pruned away by establishing a conservative upper
bound on the distance that can be travelled in a jump. Branches which could
not possibly obtain the current maximum distance, even with future maximum-
size jJumps can then be pruned. This then becomes a type of branch-and-bound
algorithm.

The motions shown in Figure 2 took between 4.5 and 9.5 minutes to plan on
a 90 MHz Pentium PC, where the simulation itself requires 0.41 real seconds for
every simulated second. The final motions are dynamic in nature and exhibit
considerable anticipation of the upcoming terrain.

It is possible that no solutions will be found for certain instances of terrain.
There are several possibilites to remedy such situations, although all require



additional search time. The first possibility is introduce additional types of
jump primitives. The second is to allow some type of interpolation between
existing control primitives so that the control space becomes continuous, as with
the examples in section 4. The last possibility is to force the search algorithm
to use a larger planning window, thereby doing a better job of avoiding getting
trapped in dead-ends.

6 Conclusions

A new algorithm for the planning and execution of dynamic motions has been
described and tested in simulation. It has been shown that various modes of
locomotion can be produced using a decision-tree technique with simple prun-
ing and evaluation functions. Examples of cartwheel, flip and hop motions are
demonstrated for an unstable two-link figure, the acrobot. To our knowledge,
this 1s the first successful hop control strategy for the acrobot that does not re-
quire over-rotation of one of the links, and the first successful control strategy
for any kind of flipping.

Thus far, the application of the algorithm has been restricted to figures with
effectively only one controllable input and a limited number of DOFs. While the
motions may seem simplistic when characterized in this fashion, they are much
more complex when the timing and instability of the motions are taken into
consideration. This alternate definition of complexity needs to be considered in
animation and is one that the proposed algorithm begins to address.

The search algorithm presented here cannot be used directly for closed-loop
control. We are presently exploring the possibility of using the successful solu-
tions as training data for producing a true closed-loop controller.
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