
The financial assistance of the Natural Sciences and Engineering
Research Council of Canada, and of the Information Technology
Research Centre of Ontario, is gratefully acknowledged.

Virtual W ind-up Toys for Animation
Michiel van de Panne

Ryan Kim*
 Eugene Fiume

Department of Computer Science and *Electrical Engineering

University of Toronto, Toronto, Canada, M5S 1A4
email: {van | rkim | elf}@dgp.utoronto.ca

Abstract
We propose a new method of automatically finding peri-
odic modes of locomotion for arbitrary articulated fig-
ures.Cyclic pose control graphs are used as our control
representation. These specifically constrain the controller
synthesis process to only those controllers producing
periodic driving functions. It is shown that stochastic
generate-and-test techniques work well with this repre-
sentation. Several choices that arise in this synthesis
technique are explored. The impact of the design of the
physical models upon the motions produced is examined.
Lastly, the motions produced are analysed by looking at
their bifurcation diagrams.
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Résumé
Nous présentons une nouvelle méthode permettant de
trouver automatiquement des mouvement periodiques
pour des figures articulées. Nous utilisons des réseaux
cycliques de poses pour représenter et contrôler les mou-
vements. Ces réseaux contraignent la synthèse des con-
trôleurs à ne produire que des contrôleurs générant des
mouvement périodiques. En utilisant cette réprésanta-
tion, des contrôleurs sont générés de façon aléatoire, puis
mis à l’épreuve. Nous examinons quelques variations qui
existent dans la technique de synthèse. Nous vérifions
aussi comment la construction du modèle physique lui-
même affecte les mouvements produits. Dernièrement,
nous analysons le phénomène de bifurcation dans ces
mouvements.

1 Intr oduction
One of the promises of using physical simulations in cre-
ating animations is that they can be used to simplify the
design of motions. A physical simulation of an object’s

motion ensures that all the constraints imposed by the
laws of physics are enforced. Foractive systems, how-
ever, we must also solve the additional problem of how
to control a creature’s muscles in order to obtain a
desired motion. It is thiscontrol problem which is the
specific focus of our research.

Many techniques have been proposed for controlling the
motion of a variety of creatures. Much research has
focussed on the specific problem of controlling modes of
locomotion, and our results are no exception in this
regard. Perhaps the most striking feature of almost any
mode of locomotion is that it is periodic. We shall show
that by constraining our search to those controllers that
produce periodic driving functions, we can efficiently
find and optimize many modes of locomotion.

Good results have been obtained by constructing con-
trollers that explicitly produce periodic outputs. Miller
used periodic sinusoidal contractions and expansions to
obtain modes of locomotion for physically-based models
of worms and snakes[10]. McKenna and Zeltzer used a
set of coordinated periodic motions to obtain robust
walking motions for a model of a cockroach[9]. Van de
Panne, Fiume, and Vranesic use variations of periodic
control to balance and steer turning figures[18]. The
technique in this paper presents a way ofautomating the
synthesis of periodic controllers.

The work presented in this paper builds on some of the
ideas presented by Hodgins et al. in [5]. In this work,
state-machines are used to implicitly specify periodic
motions, including riding a see-saw, pumping a swing,
and juggling three balls in various patterns.

Other types of hand-programmed controllers have also
had success in controlling periodic motions. Raibert and
Hodgins present an elegant method for controlling peri-
odic hopping gaits for a variety of creatures[13]. Stewart
and Cremer present a walking controller based upon the
addition and removal of constraints[14]. Bruderlin and



Calvert construct a walking controller by applying know-
ledge of the state-phase timing[2]. We also build on the
early ideas of Isaac and Cohen[6].

The controllers outlined above have a large hand-designed
component, which is an impediment to the application of
these control techniques to arbitrary systems. Optimiza-
tion techniques provide some promise of automating the
design of controllers. Witkin and Kass[19] (and later
expanded upon by Cohen[3]) propose a powerful tech-
nique for optimizing motions as trajectories over time.
One restriction of dealing with motions as trajectories is
that it is difficult to properly incorporate interactions with
the environment. Discontinuities in the motion, such as
those caused by impact with the ground, pose difficulties
for many optimization techniques. Other optimal control
techniques have also been applied by Girard[4], Pandy et
al.[12], and van de Panne et al.[16]. The size of the search
space of most optimization techniques tends to grow
quickly as a function of the complexity of the object.

An alternative approach is to use a generate-and-test opti-
mization process. This kind of approach is founded upon
the idea that it is relatively easy to determine if agiven
controller produces a desired motion. While this is the
inverse of the problem that we are trying solve, it can be
used as the basis of a synthesis process. This is done by
using repeated trials of a controller while changing the
parameter values defining the controller. An evaluation
metric, such as the distance travelled, can then be used to
determine whether a given parameter change contributes
towards a desired behaviour or not. Two variations on this
type of approach were investigated independently by Ngo
and Marks[11], and van de Panne and Fiume[17]. The
algorithm is perhaps best calledgenerate-and-test when
controller parameters are chosen completely at random,
andmodify-and-test when modifications are being made
to an initial set of parameter values.

This paper will make use of the generate-and-test and
modify-and-test ideas, but with a simpler control repre-
sentation than those discussed in [11] and [17]. The pose
control graphs we shall discuss do not make use of any
sensory information, unlike the representations in [11] and
[17]. We shall perform an investigation into the perfor-
mance of controllers that use only fixed, timed transitions
between states orposes. Pose control graphs thus provide
open-loop control. It is only after investigating simple
control schemes without sensors that we can assess what
and how sensors can contribute to constructing control-
lers. Future extensions could involve using sensory infor-
mation to perform state transitions when necessary.

2 Pose Control Graphs
A pose control graph is a state-machine that has a partic-
ular pose associated with each state. An example is
shown in Figure1. The pose represents the desired inter-
nal configuration of a creature when the controller is in a
particular state on the control graph. A pose thus speci-
fies the desiredshape of the creature, but not its position
or orientation in the world. The position and orientation
of the body in the world are determined by the interac-
tion of the creature with its environment. A pose creates
torques to drive the shape of the creature towards that
specified by the pose. These torques are calculated by
using proportional-derivative (PD) controllers placed at
each joint .  The torques produced are given by

, where  is the desired relative
angle between two links, and the constants and
determine the contributions of the proportional and
derivative terms. Torques are usually largest immedi-
ately after a transition to a new pose has taken place.

A change of state is performed in a pose control graph
after the controller has rested in a given state for the
amount of time specified by the exiting arc. In this paper
we shall deal only with the simplest of pose graphs,
those which have a cyclical sequence of timed transi-
tions.

Pose control graphs are not an entirely new concept in
themselves. Hodgins et al. make extensive use of this
kind of structure in [5]. Our investigation into the auto-
matic synthesis of cyclic, timed pose control graphs is
new, however. Ngo and Marks use poses to control the
actual shape of the creature rather than its desired shape,
and thus do not use a true physical basis for governing
the internal shape of the creature[11]. Van de Panne and
Fiume use the concept of a desired pose, but have a dis-
tributed representation of the state of the controller based
upon a network of connections[17].
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FIGURE 1. A pose control graph for Luxo, an
articulated, hopping lamp. The pose for each state
defines a desired internal configuration. Transitions
between states happen after the time intervals
indicated on the arcs.
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A pose control graph with timed transitions produces
open-loop control. In effect, we are dealing with wind-up
toys which have no awareness of their environment.
Despite this seemingly severe limitation, the mechanics of
a creature interacting with the ground can lead to dynami-
cally stable motions for many walking and hopping crea-
tures. It can thus be demonstrated that many interesting
modes of locomotion are achievable with the equivalent
of dumb “wind-up toys”.

We have experimented with two particular variations of
pose control graphs. The first holds the desired pose fixed
for the duration of a given state in the pose control graph.
The second investigates the alternative of allowing the
desired pose to vary linearly between that of the current
state and that of the next state. This variation takes place
during the time interval specified by the transition arc
between the current and next states.

Our synthesis experiments indicate that there is little dif-
ference between these two variations in their capability to
produce interesting and useful controllers. Figure2 shows
the operation of the first variant, where step changes in the
desired poses are allowed. Figure3 shows the operation of
the same joint using linear interpolation between desired
poses. In general, allowing for step-changes in the desired
pose leads to more energetic motions than the linear varia-
tion of desired poses, if both types of poses are restricted
to identical ranges. We did not perceive the motions pro-

FIGURE 2. (a) Desired and actual position of joint A2 of
Luxo during a hopping gait. In this case, the desired
pose remains fixed while in a particular state of the
control graph. The pose control graph used is shown
in Figure 1. The effect of the impact of the base with
the ground can also be seen. (b) The internal torque
being produced at this joint
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duced by one method as being more natural-looking than
the other, although this is perhaps because the torques
produced never became excessively large in our experi-
ments.

3 Synthesis of Pose Control Graphs
An ideal automated synthesis system would be able to
design an efficient locomotion controller given only the
mechanical structure of the creature (including actua-
tors) and no othera priori information. For cyclic pose
control graphs, it is necessary to specify a small but use-
ful amount of additional information that can greatly
reduce the synthesis or search time. The information
required is an estimate of the period duration and an esti-
mate of the number of poses required for the motion.
These two numbers are usually easy to estimate. If nec-
essary, they could be derived from a keyframed version
of the motion or video data. An estimate of the period
duration might be determined based upon the size of a
creature.

Perhaps the single most important property of the pose
control graphs is that they are cyclic and thus always
produce a periodic control function of the desired fre-
quency. This greatly reduces the search space for possi-
ble control strategies. In the work of Ngo and Marks[11]
and van de Panne and Fiume[17], periodic motions are
often produced as being the best solutions, but there are
no explicit constraints which restrict the search to peri-

FIGURE 3. (a) Desired and actual position of the same
pose-control graph as in Figure 2, but with linear
variation of the desired pose. (b) The internal torque
being produced at this joint. In general, the motion is
not as energetic, given the same pose-control.
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odic solutions. The search space in these methods consists
of pairings of sensory information to various possible
actions. The best such pairings are often the ones which
lead to periodic motions. In these cases, the periodic
motion arisesimplicitly out of a stimulus triggering a
response, eventually leading to the triggering of a new
response, and so on. A cyclic pose control graph represen-
tation avoids spending time searching through aperiodic
solutions and investigates to what extent one can synthe-
size useful motions without using sensory information.

Before any controller synthesis can be done, a mechanical
model of the creature is required. The examples we shall
be working with in this paper are Luxo, cheetah, and the
bounder, shown in Figures 4, 5, and 8, respectively. The
design includes the specification of the range of operation
for the joints and the PD constants associated with the
joints. The joint ranges are used for limiting the range of
the control graph poses. The PD constants in effect spec-
ify the strength of actuators. Given the desired period of
the motion, , and the number of poses,, the cyclic pose
graph will consist of  poses, with timed-transistions of
duration . The synthesis technique must then find the

 poses that will perform well with respect to a given
optimization metric. The question of how to choose an
optimization metric that leads to a desired motion is an
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FIGURE 4. Luxo, the hopping lamp.
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FIGURE 5. The cheetah creature. There are two joints
in the back which have passive spring and dampers.
Making the back flexible and allowing it to act as a
spring capable of storing energy is important in
obtaining natural running motions.
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interesting but difficult one. We shall not dwell on it
here. For our examples, we choose to use distance
travalled in 4 seconds as an optimization metric.

As with our previous work with sensor-actuator net-
works[17], we shall make use of generate-and-test and
modify-and-test algorithms for synthesis of pose control
graphs. This requires the use of an efficient simulator;
we use an optimized 2D mechanical simulator[17].
Extending our control ideas to 3D requires using an
appropriate 3D simulator. The difficulty of a control
problem is not necessarily related to its dimension, how-
ever.

The synthesis procedure we use is largely the same as
that described in [17], only we now apply it to a different
control representation. We use a two phase procedure.
The first phase consists of random generation and evalu-
ation of controllers. A pose control graph is generated by
choosing the  poses at random. The pose control graph
is then evaluated with respect to the optimization metric.
For our examples, this involves placing the figure at rest
in a fixed initial position and then simulating its motion
when driven by the pose control graph for 4 seconds.
The purpose of the first phase is to perform a global
search for possible modes of locomotion. If multiple
possible modes of locomotion appear as a result, the ani-
mator can choose which ones are passed on to the second
phase described below. Alternatively, the best-perform-
ing modes can be automatically chosen.

The purpose of the second phase is to perform a local
optimization of a gait. The basic strategy here is one of
making a small change to one of the controller parame-
ters (i.e., to one angle of a pose) and seeing if this
improves the motion of the creature or makes it worse. If
the change is for the better, the change is kept; otherwise
it is rejected. There are many different variations which
can be used in implementing this fine-tuning strategy,
and we have investigated several of them.

One choice to be made is the size of the parameter
change to be made for each trial. Figure6 shows the
results of three different strategies applied in fine-tuning
the performance of the bounder creature (see Figure8).
For each of the three strategies, it shows the total
improvement in the evaluation metric over 6 repeated
runs of 500 trials. One of the simplest strategies is to
modify only one parameter at a time, but to allow this
parameter to change by a random amount within the
allowable (but fixed) range of the joint involved. A sec-
ond strategy is to use a fixed value of delta which
decreases in size over subsequent trials as the optimiza-
tion proceeds. In this case, only the choice of parameter
and the sign of the parameter change are randomly cho-

n



sen. A third strategy is to allow a random change chosen
to lie within the decreasing range as described by the sec-
ond strategy.

Surprisingly, the choice of strategy does not seem to have
a great impact upon the final performance attained by the
creature. When using a large fixed range, larger parameter
changes are attempted and as a result they are more likely
to be rejected. When such a change is successful, how-
ever, the payoff is large because it is equivalent to making
multiple smaller changes. Choosing a random value of
delta within a linearly decreasing range seems to be the
best strategy by a narrow margin.

One can also consider the possibility of changing multiple
parameters per trial in the hope of speeding up the optimi-
zation process. We performed 12 simulations of 500 trials
with the bounder creature, using random-delta, linearly
decreasing parameter changes, in order to evaluate the
effect of performing multiple parameter changes for each
successive trial. The results are shown in Figure7. Per-
forming multiple parameter changes proved to be margin-
ally better in this case.

The results of the various synthesis experiments seem to
indicate that the modify-and-test algorithm is not very
sensitive to the method of choosing the parameter

FIGURE 6. Three different strategies for choosing the
size of attempted parameter modifications for the
bounder creature
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FIGURE 7. A comparison of multiple vs. single
parameter changes per trial for controller synthesis for
the bounder creature.
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changes. Results obtained using modify-and-test algo-
rithm seem in general to be robust and repeatable.
Another variation that we have experimented with is
simulated annealing (i.e., occasionally accepting
changes for the worse) in order to find more global
optima. The algorithm used is similar to that used in
[17], only it is applied to the pose control graph repre-
sentation. Our experience here to date suggests that the
results here do exhibit sensitivity to the choice of anneal-
ing schedule, but can yield superior solutions. Figure9 is
an example gait produced using simulated annealing

4 Modeling Considerations
In using physically-based animation, there are many
choices that influence the resulting motions. Some relate
to the control representation and the optimization tech-
niques used, but the physical model itself is also a strong
determinant of the motion. The ‘optimal’ way our crea-
tures can move is very much a function the way their
bodies were designed. Both the ‘skeleton’ and the ‘mus-
cles’ are important in this respect. The skeleton deter-
mines the topology of connection between the links and
the distribution of mass. The ‘muscles’ are effectively
determined by specifications of the angle ranges allowed
in the pose specification, and the spring and damper con-
stants associated with a joint.

The cheetah creature provides a useful example of how
the design of the physical model can greatly affect the
resulting motions. The goal here is to obtain natural-
looking, planar running motions. The bounder creature,
shown in Figure8, was used in our first attempts at
obtaining running motions. The motions produced for
this creature were not as natural as we would have
hoped. The cheetah creature shown in Figure5 is a rede-
signed version of the bounder creature, having a flexible
back. The back has no active muscles, but has two
joints, each with a passive spring and damper to provide
restoring forces when the back is deformed. The masses
assigned to the various links of the cheetah are not from
biomechanical data, but are chosen to reflect a reason-
able distribution of the total mass. Figure9 shows the
running motion obtained for the cheetah. The flexible
back plays an important role in producing this more
graceful running gait

In order to assess how the flexible back benefits the run-
ning motion, it is useful to examine how the gait changes
as the back becomes stiff. Figure10 shows the same gait
as in Figure9, only using a stiff back. The stiff back is
created by increasing the damping constant at the pas-
sive joints in the back. The gait is produced using the
same pose-control graph.



Figure11 shows an analysis of the resulting motions. As
the back is stiffened, it performs less mechanical work. At
the nominal value of , the back is responsible
for approximately 28% of the mechanical work performed
in the system. This decreases as the back stiffens, reaching
zero as the back approximates a rigid link. In evaluating
the mechanical work, we use a modified definition that
does not distinguish between positive and negative
mechanical work. From Figure11, it can be seen that the
speed suffers with a stiffer back.

It is also interesting to look at the effect that the back has
on an ‘energy’ or effort metric. Figure11 shows that the

kd 0.004=

FIGURE 8. The bounder creature. The back is modelled
as a single rigid link. The actuators have similar ranges
and strengths to those specified for the cheetah.
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FIGURE 9. An automatically synthesized running gait
using pose control graphs, for the cheetah creature
with a flexible back. The animation should be read from
top to bottom, then left to right.

FIGURE 10. The cheetah creature with a stiff back. This
gait is produced by the same pose control graph as
Figure 9, only the back of the cheetah has been
stiffened.

energy metric increases by up to 33% as the back
becomes stiffer. We chose  as our metric, where is
the joint torque, although similar results were obtained
using other ‘energy’ or effort metrics. A damping factor
even smaller than that used in the nominal design pro-
duces the best results, giving a faster and more energy-
efficient gait. In this case, almost all of the energy stored
in the spring elements of the passive back is reused in the
motion.

In a similar fashion, we can also analyse the effect of
changing the spring constant associated with the passive
joints in the back, as shown in Figure12. For ,
no results are shown because for this parameter range the
cheetah creature trips and falls over. It is interesting to
observe that the nominal spring parameter of 0.12 is
optimal for the pose-control graph, with respect to speed,
‘energy’ or effort, and the amount of mechanical work
performed by the back. The synthesis process has thus
produced a pose-control graph specific to the physical
parameters of the original model.

Including flexible backs and other energy-storage mech-
anisms in the physical models can be an important factor

τ2∫ τ

FIGURE 11. Effects of stiffening the back upon the
running performance of the cheetah creature. All the
values are normalized with respect to the performance
obtained for the nominal value of kd=0.004, for which
the pose-control graph was designed.
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FIGURE 12. Effects of increasing kp upon the running
performance of the cheetah creature. All the values are
normalized with respect to the performance obtained
for the nominal value of kp=0.12, for which the pose-
control graph was designed.
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in obtaining natural motions[1]. In general, the motions
produced using optimization methods are an equal prod-
uct of the physical model, the optimization metric used,
and the search strategy.

5 Motion Analysis
Do cyclic pose-control graphs always produce periodic
motions? The answer to this question is ‘no’, despite the
fact that cyclic pose-control graphs drive the creatures in a
periodic fashion. The control provided is open-loop and
thus relies on the interactions between the creature and the
environment in order to reach a steady-state periodic
motion or limit cycle. The tendency of some mechanical
systems to reach periodic limit cycles has been used in the
past as a useful design property[8]. Many non-linear
dynamical systems are liable to bifurcations and chaotic
motions, however, and the creatures we are dealing with
here prove to be no exception. Some interesting previous
work on bifurcations and chaotic motion analysis exists
for simplified models of hopping robots[7][15].

We shall use the transition time between two states of a
pose-control graph as abifurcation parameter to illustrate
the various types of motion that can result from a single
pose-control graphs. Any single parameter of the pose-
control graph can be chosen in general for such experi-
ments. We shall examine how the behaviour of the result-
ing motion for a creature changes as we change the
bifurcation parameter. The various phase-space diagrams
to be introduced shortly all result from an identical pose-
control graph for Luxo, with the exception of the bifurca-
tion parameter, , which we allow to vary.

Figure13 showsphase diagrams for 3 different values of
. The state-space for Luxo is 10-dimensional, but one

can use a projection of the state trajectory onto the plane
defined by any two of the 10 dimensions in order to visua-
lise the behaviour of the system. The figure plots the
height of the centre of the base versus the angle of the
base with respect to the ground. Note that because of our
spring-and-damper ground model, the base sinks slightly
into the ground on each hop.

For large values of the bifurcation parameter ( )
the motion obtained has the same period as that of the
pose-control graph. Figure13(a) shows such a periodic
motion.The cycle shown is an attractor towards which
nearby trajectories will converge.

As the bifurcation parameter is decreased below 0.14, a
motion having twice the period of the pose-control graph
emerges. The gait itself has the appearance of a limping
gait, with every second hop being identical. The phase
diagram is as shown in Figure13(b), where a second loop
has broken off from the first as the bifurcation occurs.

T

T

T 0.14>

Upon further decreasing the bifurcation parameter, a
chaotic, non-repeating motion is obtained. For our par-
ticular example this region is approximately defined by

. The phase diagram shows no detect-
able periodicity, even over long time intervals. A typical
phase diagram is shown in Figure13(c).

Surprisingly, a regular period-two behaviour reappears
for , and a period-one behaviour reap-
pears for . The complexity of motions that can
be obtained using a cyclic pose-control graph should
thus not be underestimated. The possibility of period-
doubling and chaotic behaviours impacts on any synthe-
sis strategy in several ways. First, the length of the trials
used in a generate-and-test strategy should be sufficient
to detect whether a convergence to a periodic motion is
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FIGURE 13. Phase diagrams for various values of
the bifurcation parameter. (a) T=0.155, (b) T=0.115,
(c) T=0.100.

|
-0.3

|
-0.2

|
-0.1

|
0.0

|
0.1

|
0.2

|
0.3

|-1

|0

|1

|2

|3

|4

|5

|6

 base angle (rad)

base
height
(cm)

|
-0.3

|
-0.2

|
-0.1

|
0.0

|
0.1

|
0.2

|
0.3

|-1

|0

|1

|2

|3

|4
|5

|6

 base angle (rad)

base
height
(cm)

|
-0.3

|
-0.2

|
-0.1

|
0.0

|
0.1

|
0.2

|
0.3

|-1

|0

|1

|2

|3

|4

|5

|6

 base angle (rad)

base
height
(cm)

(a)

(b)

(c)

0.046 T 0.070< <
T 0.045<



obtained. Chaotic motions do not produce the repeatable
behaviour which is desirable for producing animations.
Second, limping behaviours can appear naturally in many
cases as a result of making small parameter changes.
Lastly, it might be possible to remove (or perhaps add)
chaotic modes to a system by allowing for transitions
based upon sensory data.

6 Conclusions
Pose-control graphs are a simple control representation
for which we have introduced a synthesis technique capa-
ble of automatically producing optimized periodic gaits. It
unites the use of a discrete state-machine control represen-
tation with generate-and-test and modify-and-test optimi-
zation techniques. The ‘wind-up toy’ idea they embody is
simple, yet powerful enough to produce natural-looking
running gaits. They are different from previous work
which relies on a chain of sensing-action (stimulus-
response) events[11][17]. Pose-control graphs are in some
sense simpler in that periodic motions can be explicitly
specified, and their structure can later be extended to
include the use of sensory informationwhen it is needed.
From the point of view of animators, pose-control graphs
can be seen as a natural extention of keyframing to a phys-
ically-based setting.

Our experiments with obtaining running behaviours for
the cheetah indicate that constructing appropriate physical
models is important in obtaining desireable motions. Pas-
sive, elastic elements such as flexible, springy backs seem
to be important for natural and efficient motion. Eventu-
ally, one can perhaps hope to compare synthesized
motions with the real motions of animals, given that a
suitable model has been constructed.

Period-doubling bifurcations and chaotic behaviour are
phenomena which can easily occur during the synthesis
process. Analysis of the phase diagrams is useful in
revealing an underlying structure in many motions, and
can perhaps later be used to justify the addition of sensory
feedback into the pose-control graph.
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