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Abstract

In striving to construct higher level control representations for simulated characters
or creatures, one must seédxible control representations to build upone W
present a method for the synthesis of parameterized, physics-based motions. The
method can be applied to both periodic and aperiodic motions. The basis of the
method is a low-level control representation in which linear combinations of con-
trollers generally produce predictable in-between motions.

1.0 Introduction

Many of the most interesting objects to animate, such as humans, animals, and robots, are capable
of controlling their own motion using muscles or actuators. While realistic motion can be obtained
for theseactive systemg[15] by applying the Newtonian laws of physics, this also requires solving

an associated control problem. Informally stated control problems for animation such as “jump
from A to B, then walk to the left” can be posed in a variety of ways. In this paper we examine
how to produce control solutions that are reusable and can be parameterized. Producing control
solutions to a class of motions as opposed to a gpewition eliminates the need to resolve the
control problem each time a new variation of a motion is required.

Since theifst use of physics-based animation for articulaigdrés by Whelms[23] and Arm-

strong and Green[1], a variety of control techniques have been proposed. Some of these draw
upon control theory or biological motor control, while others focus directly on creating a usable
tool for animation. The approaches taken by this latter group can be broadly divided into two
classes. The first poses the problem in terms of a trajectory through state-space and time which is
subject to the constraints of physics and the constraints of the desired motion. The second
approach involves creating a controller which produces motion by directly supplying actuating
forces and torques to a mechanical simulation. Feedpproach has closer ties to keyframing,
while the second better tetts the way movement is generated in real humans, animals, and
robots.

The trajectory-based approach iteratively modifies an initial trajectory towards satisfying the laws
of physics and usemposed constraints while optimizing a ugefined objective function. This
method was originally proposed byitwh and Kass[24] and subsequently extended by Cohen[4].

A problem (or feature) of this method is that the laws of physics are treated as a soft constraint,
thus the resulting motion is not guaranteed to be physically plausible.



We shall focus on the alternative approach to solving the control problem, namely creating con-
trollers. Controllers provide the beiteadf capturing a skill in a reusable wady controller can be

made even more versatile by parameterizing it in a desiredAsiynple example is that of pro-
ducing gaits of dierent speeds using a single controllexstly, controllers can make use of feed-
back, which often allows for a greatly simmd representation of the control and provides the
capability to take corrective actions while a motion is in progress.

Many control structures used in the context of animation take the forimtetdtate machines.

Zeltzer uses a hierarchy of finite-state machines to provide kinematic control over a human skele-
ton[25]. Hodgins, Sweenegnd Lawrence use such a representation to control juggling, pumping

a swing, and riding a see-saw[7]. Stewart and Cremer use a state-machine to add and remove con-
straints in order to control a walking biped[18]. The kinematic walking of Bruderlin and Cal-
vert[3] could also be considered as being driven by a type of state machine. Most of these systems
are governed by controllers that discretise a periodic cycle into several states. An alternative is to
make direct use of sinusoidal oscillations, as done by Miller[12], McKenna and Zdlizerjd

van de Panne, Fiume, andaviesic[21]. The work of Raibert and Hodgins[15] in controlling hop-

ping and running motions provides an important step forward, showing hoveativefdecom-

position can be used for this class of motions to yield a set of sjrepleable control problems.

The work of Ngo and Marks[13] and van de Panne and Fiume[20] introduced methods of auto-
mating the synthesis of controllers for arbitrary types of simple articulaped$. The control
structures used in these methods can also be considerednddssthte machines. Each state
specifies a desired pose and transitions between states are either timed or based upon sensory data.
In neither case was it shown how the synthesized controllers could be scripted or parameterized.
The search techniques used in these papdes dif form but are similar in function. Ngo and

Marks sample the parameter space in a global way by initially creating a random population of
controllers. Local searches are then performed using the mutation and crossover operations of
genetic algorithms. & de Panne and Fiume explicitly separate the global and local search of the
parameter space.

The work in progress reported upon here shows httefstate machines may be automatically
synthesized using the two-phase optimization technique reported in [2GjakVe our control
representatiomose-control graphs because each state spedfa desired interngbose for the
creature to take. In their simplest form, namely cyclic pose control graphs, they operate as virtual
wind-up toys. A study o€yclic pose-control graphs and an analysis of the motions produced is
given in [22]. V\& use the ideas in [22] as a point of departure for the work in progress presented
here.

The basic operation of pose-control graphs is described in section 2. Section 3 describes how peri-
odic and aperiodic motions are synthesized. Section 4 discusses how the synthesized controllers
can be interpolated to produce parameterized motions. Section 5 concludes and gives thoughts on
future work.

2.0 Pose-Control Graphs

A pose-control graph is a directed graph whose states specify a dgsasedor a creature to take.

The arcs specify conditions upon which transitions between states are taken. A pose consists of a
specifcation of all the internal degrees of freedom of a creature. This is equivalent to all the
degrees of freedom, less those necessary to position and orient the creature with respect to the
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FIGURE 1. A pose-control graph for the walker. The arc labels
indicate the duration of the timed state transitions.
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FIGURE 2. Two possible topologies of pose-control graphs.

external world. Poses are used as input to a simple low-level control system that is responsible for
driving each actuator towards its desired position, typically by exerting torques at rotary joints in
our case. Individual proportional-derivative (PD) controllers are used for this purpose. These exert
forces or torques equivalent to a spring and damper placed between the desired and actual posi-
tions of the given degree of freedom.

A typical pose-control graph is shown in FigdreThe controller shown produces a walking
motion for the seven linkalker figure, having a total of six actuators. Each ssgp@'se is also

shown. Note that the walkinggluire will never exactly match the speed poses during its

motion. Because the poses represent desired internal configurations, we can nevertheless obtain an
idea of the expected motion by inspecting the poses alone, just as with keyframes.

Pose control graphs can have several topologies, the simplest of which are shown i@.Figure
Cyclic pose-control graphs are particularly useful for controlling any kind of locomotion because
this is usually periodic in nature. Aperiodic motions can be specified using a linear chain of poses.
Lastly, more complex pose-control graphs can be constructed through composition, yielding an
arbitrary directed graph.

In general, transitions between states can be of several types, although here we shall only deal
with timed transitions. This type of transition causes a change of state aftet irhe interval.

As such, it is a type of open-loop controle\dhoose to study time-based transitions because it is
important to know what the limitations of open-loop control are before examiningdee space

of possibilities that exists when arbitrary sensory feedback is allowed.

A study limited tocyclic pose-control graphs with timed transitions was presented in [22], which
we now briefly summarize. Several choices in the design of the optimization procedure are analy-
sed. As well, the impact of the design of the physical models upon the motions produced is exam-



L1

Actuators

actuator min max reference

Al,Ad4 Al -70 -35 Llwrtl2

LS A2 45 80 L2wrtl3

AS A3 40 10 L3wrtL4

-2 A4 30 30 L5wrtl2
A2 L6 A5 45 80 L5wrtl6

A6 -40 10 L6 wrt L7

A6 D

FIGURE 3. The walker creature. The reference position representing
the zero state for all the degrees of freedom has the figure standing up
straight. “wrt” is used to denote “with respect to”.

ined. Lastly the motions produced by cyclic pose-control graphs are analysed by looking at their
bifurcation diagrams. Our present work proceeds onwards from [22] in tieoedif directions.

First, we extend the pose-control mechanisms to non-periodic motions. Second, we show that the
pose-control graph representation is useful for being able to interpolate and parameterize physi-
cally-based motions.

Our experiments are carried out on a class of 2D planar articuilgiedsi although our initial
experiments with 3D creatures have proved to be promising. A creature is specified by modelling
its musculo-skeletal structure. In our case, the skeleton is composed of an assembly of rigid links
connected with rotary pin joints. The ranges of each joint are lguetfrestrict the poses of a
model to a desired set of allowable dgnfations. The construction of the walker creature is
shown in Figure. The muscles are specified by placing actuators of desired strengths at the joints
of the model. The strength of an individual actuatoixisdf by its spring-and-damper constants,

I_<p andky resp_e_ctiverThe tor_que exerted is thus given by= k (qgI -q) —_kdq, Whereq and

g are the position and velocity of the degree of freedom associated with the actya&ahe
desired position of the joint, which is spemif by the current pose. Although we use articulated
figures here as models, our method could equally well apply to controlling deformable objects.

3.0 Synthesis of Periodic and Aperiodic Motions

To generate a motion, an animatostfcreates an actuated, articulatgdife, speciés the topol-

ogy of the pose-control graph and decides on an optimization metric that distinguishes among
“better” and “worse” control solutionsypically this function is some combination of measurable
guantities, such as velocitgistance or height of a motion, the stopping distance, thgyeoen-

sumed, or jerkiness. If the motion is to be periodic, a cyclic graph topology is required. Given a
desired period’ and a cyclic pose-control graph consistingcdtates, initial timed transitions of
durationT/n are used. If the motion is aperiodic, a linear pose-control graph using timed transi-
tions is specified priori.

Supplying an initial timing for a pose-control graph is equivalent to providing some of the infor-
mation available from a keyframe sketch of the motion. In our case, the number of poses and their
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FIGURE 4. A running gait for the 7-link cheetah creature. The motion
has been scaled for the purposes of illustration. In the original motion,
the creature covers more than twice its body length with each bound.

timing represent important a priori information. In practice, this information serves to greatly
reduce the search space (and hence search time) for the synthesis procedure. Similarly, making the
pose-control graph cyclic when a periodic motion is desired provides an important constraint on
the search space which greatly reduces the search time. As aresult, the time and computational
power necessary to synthesize solutions can be greatly reduced from those reported in [13] and
[20]. It is worthwhile noting that reasonable estimates of the required a priori information could
likely be derived automatically from information about the size of the object and the complexity
of the motion to be performed.

The synthesis technique must determine the pose for each state such that a desired motion is pro-
duced. Our synthesis technique follows the work of [20] in applying a two-phase search, consist-
ing of aglobal search followed by alocal search. Both phases of the search are carried out by
using forward simulation trials of the controller in operation. This approach can be described as
generate-and-test or modify-and-test. The technique repeatedly stochastically generates or modi-
fies existing controllers and then evaluates them with respect to the optimization metric by per-
forming a physical simulation. The first phase, making use of generate-and-test, is used to
generate a set of candidate controllers that perform best (but probably not well) with respect to the
optimization metric. A random candidate controller is generated by assigning randomly-generated
poses to the states in the pose-control graph. Typically we choose to generate and test around 100
controllers, retaining the best 10 controllers as being of interest.

The second phase involves using modify-and-test. In our implementation, a randomly-chosen
parameter of the controller is perturbed by a fixed delta. The parameter vector to be optimized
includes all the degrees of freedom of each pose as well as the transition times between poses. We
choose to fix the value of deltato 5 percent of the joint range for pose angles and to 5 percent of
the original transition times for the state-transition times. The decision to keep or reject a given
controller change is based on the change in resulting performance with respect to the optimization
metric. Asin [20], both gradient descent and simulated annealing can be used. Gradient descent
keeps any changes which result in an improved performance and rejects all others. A more robust
optimization scheme is obtained by using simulated annealing[9][20]. In this case, the decision to
accept or reject a change for the worse is governed by a stochastic variable and the annealing
schedule, which gradually lessens the probability of accepting changes for the worse over time.
200-500 trials are typically carried out during the local optimization phase. As with the work pre-
sented in [13], [14], and [20], an optimized physical simulator is necessary to minimize the time
necessary to carry out the trials.

Despite the apparent limitations of open-loop control, the motions that can be obtained using
cyclic pose-control graphs and the synthesis technique just described can be natural and graceful
in appearance, athough admittedly thisis subjective. Figure 4 shows severa frames from a speed-
optimized gait for the cheetah creature. A surprising result is that this kind of gait can be con-
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FIGURE 5. Unwinding a pose-control graph. A periodic motion can
serve as the basis of an aperiodic motion by unrolling a portion of
the cyclic pose-control graph.

trolled in an open-loop manndt is locally stable with respect to small perturbations, always
being drawn back to a terminal limit cycle. The analysis of such local stability has been more
extensively studied elsewhere[10]. Other results and analyses of cyclic pose-control graphs are
presented in [22]

Many interesting aperiodic motions can be derived from periodic motions. Suppose we wish Luxo
the hopping lamp to perform a ¢gr leap half-way through a sequence of hops. Let the hopping

gait have a cyclic pose-control graph consisting of poses A, B, C, as in the top-left of5-igare

now “unwind” two cycles of the motion so that a linear chain of poses exists at the time of the
desired leap. After the leap, we reinstate the cyclic hopping motieth¥g have a full pose-con-

trol graph as depicted in Figube Four states in the chain are marked as modifiable, as well as the
timing of the transitions between these states. These are thus the set of parameters which can be
changed by a local optimization (phase two) to allow anticipation, leaping, and recovery for the
leap. The leap itself is speeifl by using the distance travelled over all the hops as an evaluation
metric. Because only the parameters associated with one hop are modifiable, this hop is optimized
to become a leap. Proper anticipation and recovery is ensured because the entire sequence of hops
is simulated during each trial.

The results of the synthesis of a leap are shown in FgUsenulated annealing is used as the
optimization technique for this particular motion. The optimization function for this synthesis is
the distance travelled over all 7 hops. As well, all changes resulting in a fall are rejected. A fall for
Luxo is defined as any part of the body (other than the base) touching the ground. The synthesis of
such a leaping motion typically requires on the order of 300 simulation trials, requiring approxi-
mately one hour to compute on a modern workstation (~60 SPECfp92).

Surprisingly the result can also be parameterized. In determining the control fogas l@ap as
possible, we also have determined the control for any intermediate-size leap 68ighmvs the

result of such a medium-sized leap, obtained by interpolating between the original and final pose-
control graphs of the synthesis process. This kind of parameterization is further discussed in sec-
tion 4. A useful outcome is that a creature can directly use the results of an ‘obstacle’detector
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FIGURE 6. Synthesis of a leap. A regular hopping gait for Luxo is shown
in (A). For clarity, only the motion of the middle link is shown. (B) shows
the result of a leaping motion derived from (A) through optimization. (C)
details the anticipation and recovery involved in the leap. (D) shows a
smaller leap, obtained by interpolating between the control used for (A)
and (C).
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FIGURE 7. Synthesis of a stop. (A) shows a fast hopping gait for Luxo.
The middle link only is shown. (B) shows a stopping motion derived
from (A) through optimization. (C) shows a slowing-down motion
obtained by interpolating between the control used for (A) and (B).

returning the distance-to and size of upcoming obstacles in order to always generate appropriate
jumps.

Stopping is an important and d¢ely unexplored aspect of motion. It can be automatically synthe-
sized using our approach.evidegin with a fast hopping gait for Luxo. The controller consists of a
three-state cyclic pose-control graph. The last two of a total of five cycles are ‘unwound’ and these
poses are marked as modifiable. The optimization function to be minimized is in this case the dis-
tance travelled without falling ovewith a penalty assigned for travelling backwards. This is
ex_pre_ssed iriopt_ = Xpax T (_xmax—_xend) , vyherexmax is the furthest _distance travelled at any
point in the mation, and,, is the final position at the end of the motion.
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FIGURE 8. Fall recovery for Luxo. The same pose control graph
is used for both recoveries (A). The two recovery motions are
quite different (B and C), and are shown with different display
time steps.

The results of the synthesis process for a stopping motion are shown in FiJine stopping

motion is achieved over one hop. Simulated annealing was used tbé parameter modif-

tions necessary to proceed from the original, fast periodic gait to the same gait with a quick stop. It
is thus possible to specify a motion such as ‘stop as soon as possible’ through the use of optimiza-
tion functions withoutiking the fnal time at which the stop should happen. As with the leaping
motion, the original and final pose-control graphs can be interpolated to yield pose-control graphs
for intermediate stopping motions. Figute shows a slowing-down motion achieved in this man-

ner.

The two-phase synthesis technique can also be applied directly to the synthesis of non-periodic
motions. These are spédeid using linear pose-control graphse \&ssume that the number of
poses and an initial estimate of the timing between successive poses iespeaidlvance. This
information could in principle also be automatically synthesized, but we view it as a useful way
for an animator to provide a concrete specification of the desired motion. Something that requires
more thought for aperiodic motions is the optimization function. In the case of the recovery
motions that we shall considéine goal of a motion is to get the creature from a fallen-down state

to one where the creature is back on its ‘feet’ again. It is necessary in this case to provide an opti-
mization function that will reflect any partial progress made towards the goal.

Figure8 shows the two possible landing states for Luxo and the synthesized recovery motions.
For the Luxo creature, the optimization metric is the deviation of a line passing from the centre of
the base to the centre of mass from the horizontal. Both phases of the optimization technique are
used, with gradient descent being used to accomplish phase two. The recovery motion from the
front requires fewer trials to find than the fanciful backward roll required to recover from its back.

The recovery motion for the walker is shown in Figar& here are few possible recovery solu-
tions because of the lack of ‘arms’ on the walKére position of theirial pose is spedéd in
advance to avoid adding the expense of searching for a suitable stable upright position to the
search for the recovery motion itself. The optimization metric to be maximized is the angle of the
centre of mass measured in a fashion similar to that used for Luxo. This provides a suitable indica-
tor of partial progress towards the desired recovery motion. Despite being a more cajupdex f

than Luxo, the recovery motions required fewer trials for the walk@es suggests that the
required synthesis time is not only a function of model compleltity also dependent on the
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FIGURE 9. Fall recovery for the walker. A 4-state pose control
graph is used (A) for both recovery motions (B and C).

“ease” of the problem being solvedeWave also had success in using a secondary optimization
metric that minimizes the erggrused in order to achieve moré@ént recovery motions.

The direct synthesis of aperiodic motions using linear pose-control graphs becomesfioolte dif

as the motion involves more states. Whereas periodic motions typically require only three or four
poses, lengthy aperiodic motions may easily require more. Each additional paramdtatin ef

adds another dimension to the parameter space to be searched. While the stochastic synthesis tech-
niques are relatively adept at searching in high-dimensional parameter spaces, it is still clearly
advantageous to keep the dimension of the search space as low as possible. As a result, complex
aperiodic motions are probably best synthesized in several segments. This has been noted earlier
in the work of Cohenl[4].

4.0 Motion Parameterization

Parameterized motions are an essential way of dealing with the enormous space of all possible
motions. It is also a necessary step for being able to build more complex control mechanisms
based upon more abstract notions of motion. Thus far we have shown that the animator can influ-
ence a motion through the construction of the model and the specification of the optimization met-

ric. In this section we shall show how variations on a gait can be generated without the use of

optimization, and how gaits can be interpolated and parameterized using the pose-control graph
representation.

There is a complex relationship between the parameters of a pose-control graph and the resulting
motions it produces. This relationship is determined through simulation because of the general
difficulty in determining it analytically for arbitrarygures. A simulation of the creature with a
given pose-control graph yields the resulting motion. A small change in the parameters of the
pose-control graph usually leads to a small change in the resulting motion. As a result of this prop-
erty, it is possible to interpolate between similar motions by interpolating between their controller
parameters. &/ shall define similar motions as any in a set of motions originally derived from the
same pose-control graph.
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FIGURE 10. Obtaining variations of a motion.

Figurel1O0 illustrates how a variety of similar gaits can be arrived at. The axes ajube dre

defined by two arbitrarily-chosen parameters of a pose-control gra@mdp,. These may thus
represent a degree of freedom in the pose for a state or the timing information for a state transition.
The figure shows two ddrent ways in which these parameters can be changed from their nominal
values to yield variations of a nominal motion. One method already discussed for changing the
values of the parameters is to use optimization techniques. These typically lead to controllers such
as those marked A and B in Figdr@. Our current implementation of the optimization techniques
only makes changes to one parameter at a time, resulting in the types of parameter trajectories
shown.

Another method of automatically generating variations of a motion is to randomly choose a direc-
tion in the parameter space and to explore changes in this direction until a similarity criterion is no
longer met. This type of exploration results in the synthesized variations of the type shown in
Figurel10. In order to use this approach, one needs to specify only a single similarity metric, as
opposed to the alternative of specifying destént optimization metric for each variation desired.

To date, we have used speed as a similarity criterion. Any gait having a speed@firof the
nominal gait is classified as being similar

In order to be able to fefctively generate a random direction in the parameter space, it is neces-
sary to know the sensitivity of the motion with respect to each paranneterms of the similarity

metric. For this reason, the axes of the parameter space are first explored to determine these sensi-
tivities. The results can be used to normalize the parameter space for the automated synthesis of
motion variations.

Once many variations of pose-control graphs have been generated, either through an optimization
procedure or the synthesis procedure described above, these variations can then be used as a type
of palette by an animator to interactively design new gait variations. The interface we propose for
interaction with the motions is based upon similar ideas used for modelling plant-like struc-
tures[5], sculptures [6] [19], and abstract images and animations[16][17]. The current instance of
the motion being designed and a set of alternative variations are presented at the same time. This
type of design-through-selection has previously proved to befestied interface for exploring

other types of high-dimensional spaces[5][16][19]. Fidiirehows the user interface for this type

of gait design. The sliders associated with the nine smaller windows are used to change the control
parameters of the pose-control graph being designed towards those of the chosen example. The
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FIGURE 11. The display for interactive gait design. The window on the
left displays an ongoing physical simulation of the controller being
designed, while the 9 smaller windows play back animations of
possible gait variations.

parameters for the pose-control graph being designed are calculated as a linear combination of
those of the nominal motion and the variations selected using the sliders.

Using linear combinations of control parameters to create new controllers generally results in pre-
dictable motions, but this need not always be the case. If a nominal controllenesldsf a
parameter vectdP,, and a speed-optimal variation of that controller is defineljbyhen there is

no guarantee that a controller definedby kR, + (1-k) Py, kO [0, 1] will havev, <v<v,,
wherev,,, V5, andv are the respective speeds attained by the nominal, optimal, and interpolated
controllers. In practice thus far we have found that the motions resulting from interpolated con-
trollers are generally predictable and well-behaved. Convex combinations are generally the most
predictable.

A powerful result of the ability to interpolate between gaits in the pose-control graph representa-
tion is that it allows for arbitrary parameterizations of motions. For example, as a result of having
synthesized a fast gait from a slow one, we also know how to generate a gait of any in-between
speed. In a more complex setting, the high dimensional parameter space of the controller can be
reduced for control purposes to a low-dimensional parameter space designed by the. &smator

an example, a four dimensional parameter space can be designed by choosing four motion varia-
tions to serve as the axes of a new {dunensional space. The nominal motion lies at the origin

of this new space. ¥/also foresee parameterized motions being useful in building more complex
controllers. Having direct control over more abstract parameters such as speed should simplify the
creation of higher levels of control.

Figure1l2 shows an example of interpolating between gaits by linearly interpolating the parame-
ters of two pose-control graphs. As described eadiemterpolated controller is used in a simula-

tion to generate an interpolated motion. The motion which is generated in this fashion thus has the
desirable characteristics of an interpolated gait, while at the same time being faithful to the laws of
physics.

It is interesting to note that the result of interpolation in the controller parameter space
(Figure12C) yields a dikerent result than kinematic interpolation of individual degrees of free-
dom between appropriate frames of the two animations (Fibg In general, kinematic inter-

11
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FIGURE 12. Interpolating between gaits. (A) shows the nominal gait
for this example. (B) shows a variation of the gait in (A), which tilts the
front of the base much further down during a jump. (C) is a gait
determined by a controller calculated to lie midway between that of
(A) and (B), and then simulating the result. (D) shows the result of
using the equivalent kinematic interpolation between (A) and (B). The
gait in (C) is further mixed with a fast gait to obtain (E).

polation can cause violations of physical constraints. Pose-control graphs seem tofdetiaa ef
representation for interpolating betweerfeiént motions variations while allowing all physical
constraints to be properly maintained.

5.0 Conclusions

Pose-control graphs are a flexible control representation for use in creating parameterized periodic
and aperiodic motions for physically-based creatures. When used with timed state-transitions,
their open-loop control is simple in nature but is capable of producing graceful and complex
motions when used with the appropriate synthesis techniques.

While the use of state-machines for control is common, we have shown how to apply optimization
techniques in new ways towards the automatic synthesis of desired motions. It has been shown
that diferent kinds of aperiodic motions can be synthesized using periodic motions as a starting
point. More importantlyit has been shown that motions can be easily parameterized using the
pose-control graph representation. This makes it easier to design-leigiezontrollers as well

as allowing for the interactive design of physically-based motions.

There are several problems with the proposed techniques which have not been addregged. A lar
class of motions cannot be controlled in the open-loop fashion of pose-control graphs. Motions
that are neither statically nor dynamically stable without the use of feedback, such as balancing a
pole or riding a bicycle, cannot be controlled using open-loop methods. Such types of motion are
in general dectively controlled using continuous state feedback. The synthesis of pose-control
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graphs through optimization remains a computationally expensive process. Synthesis typically
takes on the order of 100-600 trials, each trial chosen to have a duration of 4 or 5 seconds of sim-
ulation time. Each such trial typically takes anywhere from 5 - 80 seconds to complete on a mod-
ern workstation for planar articulated creatures having 7 or fewerj1il1ll'{s.likely that this could

be improved considerably by furtherirehg the optimization process, introducing varying
degrees of simulationdelity at varying costs, and parallelizing the execution of the simulation
trials across multiple processors.

How well the synthesis technique presented here scales with the animation of more complex
objects remains to be seen. In performing global searchegefdarameter spacesfi@ent algo-

rithms must take advantage of some underlying structure or constraints of the problem to be
solved. & believe that the control representation and algorithms we work with here can be
readily extended to take advantage of any structure or constraints that may be used to deal with
complex systems. It is worthwhile noting that many articulations in animals are not independently
controllable, such as those in the spinal cord. This suggests that the control problem is not as com-
plex as the number of joints in an articulated figure might indicate. Furthermore, it is easy to con-
ceive of simple models as being the initial steps in a coarse-to-fine solution process that terminates
with a model of the desired complexity and its controller

A variety of future work is necessary to further build on the work presented hesreWurrently
studying how to compose the synthesized motions together in order to obtain more complex
autonomous behaviours. The techniques described here also need to be extended to more com-
plex, three-dimensional models and movements. The motions generated through the use of opti-
mization are an equal product of both the optimization technagquaehe physical model.
Constructing more complex models of both tigeife (skeleton) and its actuators (muscles) is
likely necessary to achieve the next degree of realism in physically-based animations. Given that
many interesting and useful motions can be synthesized usgejylaxpen-loop control, it is
interesting to examine in a systematic way exactly what additional controlitsecexf be
obtained by allowing the use of a variety of sensory information. It is not clear wisstveay

of integrating sensory information into a controller should be. Pose-control graphs are structured
to use sensory information to make discrete decisions, so this is a first route of investigation.
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