CSC2535 2013
Advanced Machine Learning
Lecture 4

Restricted Boltzmann Machines

Geoffrey Hinton

Three ways to combine
probability density models

Mixture: Take a weighted average of the distributions.

— It can never be sharper than the individual distributions.
It’ s a very weak way to combine models.

Product: Multiply the distributions at each point and then

renormalize (this is how an RBM combines the distributions defined

by each hidden unit)

— Exponentially more powerful than a mixture. The
normalization makes maximum likelihood learning
difficult, but approximations allow us to learn anyway.

Composition: Use the values of the latent variables of one
model as the data for the next model.

— Works well for learning multiple layers of representation,
but only if the individual models are undirected.

Two types of generative neural network

 |f we connect binary stochastic neurons in a
directed acyclic graph we get a Sigmoid Belief
Net (Radford Neal 1992).

* |If we connect binary stochastic neurons using
symmetric connections we get a Boltzmann
Machine (Hinton & Sejnowski, 1983).

— If we restrict the connectivity in a special way,
it is easy to learn a Boltzmann machine.

Restricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”™)

* We restrict the connectivity to make
learning easier. hidden

— Only one layer of hidden units.
* We will deal with more layers later

— No connections between hidden units.

* In an RBM, the hidden units are
conditionally independent given the
visible states. visible

— So we can quickly get an unbiased
sample from the posterior distribution
when given a data-vector.

— This is a big advantage over directed
belief nets

The Energy of a joint configuration
(ignoring terms to do with biases)

binary state of binary state of
visible unit i hidden unit |

\ /
E(vh) = - ¥ vihw
/ i) \

Energy with configuration weight between
v on the visible units and units i and j

h on the hidden units
JE(v, h)

8wl.j

v.h

A picture of the maximum likelihood learning
algorithm for an RBM

O oJole

OROIOROOD :
AN
JO| [Wo] o ofe

t=0 t=1 t=2 t = infinity

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

dlog p(v)

8wl-j

= <vl-hj>O — <vl-hj>oo

A quick way to learn an RBM

Q /® Q Q Start with a training vector on the

visible units.

<v;h ;> <Vi;> Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

=0 t=1
data reconstruction Update the hidden units again.
0 1
Awy; = e (<v;hi> —<v;h;>)

This is not following the gradient of the log likelihood. But it
works well. It is approximately following the gradient of another
objective function (Carreira-Perpinan & Hinton, 2005).

Collaborative filtering: The Netflix

competition
* You are given most of M1 M2 M3 M4 M5 M6
the ratings that half a
million Users gave to U1 3
18,000 Movies on a U2
scale from 1 to 5. O 1
— Each user only rates a U3 3 5
small fraction of the
movies. U4 4 ~ 5
* You have to predict the
ratings users gave to the U3 4

held out movies.

— |f you win you get
$1000,000

U6 2

Lets use a “language model”

The data is strings
of triples of the
form: User, Movie,
rating.

U2 M1 5

U2 M3 1

Ud M1 4

U4 M3 ?

All we have to do is
to predict the next
“word” well and we
will get rich.

rating

T

scalar
product

N

1es) N

—> JEedj EIN

—>

1es) €N

U4 feat 3.1

U4 M3

matrix
factorization

An RBM alternative to matrix factorization

* Suppose we treat each user
as a training case.

— A user is a vector of movie about 100 binary hidden units

ratings. Q Q Q

— There is one visible unit per
movie and its a 5-way softmax.

— The CD learning rule for a
softmax is the same as for a
binary unit.

— There are ~100 hidden units.
* One of the visible values is M1 M2 M3 M4 M5 M6 M7 M8
unknown.

— It needs to be filled in by the
model.

How to avoid dealing with all those missing
ratings

For each user, use an RBM that only has visible units
for the movies the user rated.

So instead of one RBM for all users, we have a

different RBM for every user.

— All these RBMs use the same hidden units.

— The weights from each hidden unit to each movie are shared
by all the users who rated that movie.

Each user-specific RBM only gets one training case!

— But the weight-sharing makes this OK.

The models are trained with CD1 then CD3, CD5 &
CDO9.

How well does it work?
(Salakhutdinov et al. 2007)

« RBMs work aboutas « The winning group

well as matrix used multiple different
factorization methods, RBM models in their
but they give very average of over a
different errors. hundred models.
— So averaging the — Their main models
predictions of RBMs were matrix
with the predictions of factorization and
matrix-factorization is RBMs.

a big win.

An improved version of Contrastive
Divergence learning

* The main worry with CD is that there will be deep
minima of the energy function far away from the
data.

— To find these we need to run the Markov chain for
a long time (maybe thousands of steps).

— But we cannot afford to run the chain for too long
for each update of the weights.

 Maybe we can run the same Markov chain over
many weight updates? (Neal, 1992)

— If the learning rate is very small, this should be
equivalent to running the chain for many steps
and then doing a bigger weight update.

Persistent CD
(Tijmen Teileman, ICML 2008 & 2009)

 Use minibatches of 100 cases to estimate the
first term in the gradient. Use a single batch of
100 fantasies to estimate the second term in the

gradient.

 After each weight update, generate the new
fantasies from the previous fantasies by using
one alternating Gibbs update.

— So the fantasies can get far from the data.

Contrastive divergence as an
adversarial game

* Why does persisitent CD work so well with only
100 negative examples to characterize the
whole partition function?

— For all interesting problems the partition
function is highly multi-modal.

— How does it manage to find all the modes
without starting at the data?

The learning causes very fast mixing

* The learning interacts with the Markov chain.

* Persisitent Contrastive Divergence cannot be
analysed by viewing the learning as an outer loop.
— Wherever the fantasies outnumber the

positive data, the free-energy surface is
raised. This makes the fantasies rush around

hyperactively.

How persistent CD moves between the
modes of the model’s distribution

 If a mode has more fantasy A
particles than data, the free-
energy surface is raised until
the fantasy particles escape.

— This can overcome free-
energy barriers that would
be too high for the Markov]
Chain to jJump.

* The free-energy surface is

being changed to help mixing

in addition to defining the

model.

Modeling real-valued data

* Forimages of digits it is possible to represent
intermediate intensities as if they were probabilities by

using “mean-field” logistic units.

— We can treat intermediate values as the probability

that the pixel is inked.
 This will not work for real images.

— In a real image, the intensity of a pixel is almost
always almost exactly the average of the neighboring
pixels.

— Mean-field logistic units cannot represent precise
Intermediate values.

A standard type of real-valued visible unit

 We can model pixels as
Gaussian variables.

: . N
Alternating Gibbs W
sampling is still easy,
though learning needs to :
be much slower. b. V. —

i I
parabolic energy-gradient
containment produced by the total
function input to a visible unit

(V _b) V. l
= — L h.ow..
E(vh) = E E E > 1wy
[£ Vis]Ehld i,j

Welling et. al. (2005) show how to extend RBM's to the
exponential family. See also Bengio et. al. (2007)

Gaussian-Binary RBM's

» Lots of people have failed to get
these to work properly. Its
extremely hard to learn tight
variances for the visible units.

— |t took a long time for us to
figure out why it is so hard to
learn the visible variances.

 When sigma is small, we need
many more hidden units than
visible units.

— This allows small weights to

produce big top-down effects.

When sigma is much less
than 1, the bottom-up effects
are too big and the top-down
effects are too small.

Replacing binary variables by

integer-valued variables
(Teh and Hinton, 2001)

* One way to model an integer-valued variable is
to make N identical copies of a binary unit.

* All copies have the same probabillity,
of being “on” : p = logistic(x)
— The total number of “on” copies is like the
firing rate of a neuron.

— It has a binomial distribution with mean N p
and variance N p(1-p)

A better way to implement integer values

« Make many copies of a binary unit.

« All copies have the same weights and the same
adaptive bias, b, but they have different fixed offsets to

the bias:
b-0.5, b-1.5, b-2.5, b-3.5,....

X —

A fast approxmation/

E logistic(x + 0.5 — n)
n=I

U

log(1+e)

« Contrastive divergence learning works well for the sum of
binary units with offset biases.

e |t also works for rectified linear units. These are much faster
to compute than the sum of many logistic units.

output = max(0, x + randn*sqgrt(logistic(x)))

How to train a bipartite network of rectified
linear units
« Just use contrastive divergence to lower the energy of

data and raise the energy of nearby configurations that
the model prefers to the data.

Start with a training vector on the

Q /Q)k Q Q/@ Q visible units.
<Vil ;> gata Update all hidden units in parallel
=SV o with sampling noise

Q Update the visible units in parallel
to get a “reconstruction”.
data reconstruction Update the hidden units again
Aw; = ¢ (<Vihj>data ~ <Vihj>recon)

3D Object Recognition: The NORB dataset

Stereo-pairs of grayscale images of toy objects.

Animals g N S
Humans & \t\ .& e ’ff’" f;gf i Q
: | . - Normalized-

uniform

version of
NORB

Planes @'y \'&\/ Sy

- 6 lighting conditions, 162 viewpoints

-Five object instances per class in the training set

- A different set of five instances per class in the test set
- 24,300 training cases, 24,300 test cases

Simplifying the data

« Each training case is a stereo-pair of 96x96 images.

— The object is centered.

— The edges of the image are mainly blank.
— The background is uniform and bright.
« To make learning faster | used simplified the data:
— Throw away one image.
— Only use the middle 64x64 pixels of the other
image.

— Downsample to 32x32 by averaging 4 pixels.

Simplifying the data even more so that it can
be modeled by rectified linear units

* The intensity histogram for each 32x32 image has a
sharp peak for the bright background.

* Find this peak and call it zero.
« Call all intensities brighter than the background zero.

* Measure intensities downwards from the background
Intensity.

Test set error rates on NORB after greedy
learning of one or two hidden layers using
rectified linear units

Full NORB (2 images of 96x96)

» Logistic regression on the raw pixels 20.5%
« Gaussian SVM (trained by Leon Bottou) 11.6%
« Convolutional neural net (Le Cun’s group) 6.0%

(convolutional nets have knowledge of translations built in)

Reduced NORB (1 image 32x32)

» Logistic regression on the raw pixels 30.2%
* Logistic regression on first hidden layer 14.9%
* Logistic regression on second hidden layer 10.2%

)
i

—

receptive

fields of
some
rectified
linear
hidden
units.

Generating the parts of an object

One way to maintain the
constraints between the parts is

to generate each part very
accurately

— But this would require a lot of
communication bandwidth.

Sloppy top-down specification of
the parts is less demanding

— but it messes up relationships
between features

— S0 use redundant features
and use lateral interactions to
clean up the mess.

Each transformed feature helps
to locate the others

— This allows a noisy channel

“square | +

pose parameters

sloppy top-down
activation of parts

features with
top-down
support

clean-up using
known interactions

Its like soldiers on
a parade ground

Semi-restricted Boltzmann Machines

* We restrict the connectivity to make
learning easier. hidden

« Contrastive divergence learning requires
the hidden units to be in conditional
equilibrium with the visibles.

— But it does not require the visible units
to be in conditional equilibrium with the
hiddens.

— All we require is that the visible units
are closer to equilibrium in the
reconstructions than in the data.

« So we can allow connections between
the visibles.

visible

Learning a semi-restricted Boltzmann Machine

ODO

ODO

<v:h ﬂ

<vl-hj>1

(0

S D ® D © >
t=0

t=1

data reconstruction

Aw:.

i = € <vl-hj>0 — <vl-hj>1)

A, = &(<vv,>" —<vy,>
ik 1Yk Yk

t

update for a
lateral weight

1. Start with a
training vector on the
visible units.

2. Update all of the
hidden units in
parallel

3. Repeatedly update
all of the visible units
in parallel using
mean-field updates
(with the hiddens
fixed) to get a
“reconstruction”.

4. Update all of the
hidden units again.

Learning in Semi-restricted Boltzmann
Machines

 Method 1: To form a reconstruction, cycle
through the visible units updating each in turn
using the top-down input from the hiddens plus
the lateral input from the other visibles.

 Method 2: Use “mean field” visible units that
have real values. Update them all in parallel.

— Use damping to prevent oscillations

pit = Apl+(1-2) o(x;)
1]

damping total input to |

Results on modeling natural image patches
using a stack of RBM’ s (Osindero and Hinton)

Stack of RBM’ s learned one at a time.

400 Gaussian visible units that see
whitened image patches

— Derived from 100,000 Van Hateren
Image patches, each 20x20

The hidden units are all binary.

— The lateral connections are
learned when they are the visible
units of their RBM.

Reconstruction involves letting the
visible units of each RBM settle using
mean-field dynamics.

— The already decided states in the
level above determine the effective
biases during mean-field settling.

1000 top-

level units.

No MREF.

Hidden
MRF with
500 units

Hidden
MRF with
2000 units

400
Gaussian
units

P R P Y

/ \/

Undlrected Connectlons

| / /__/
v

| / \ / /
Directed Connections

| /. /_/
v

| / \ / /

Dlrected Connections

/_/

53380

Without lateral connections

samples from model

With lateral connections

samples from model

A funny way to use an MRF

The lateral connections form an MRF.

The MRF is used during learning and generation.

The MRF is not used for inference.

— This is a novel idea so vision researchers don’t like
it.

The MRF enforces constraints. During inference,

constraints do not need to be enforced because the data
obeys them.

— The constraints only need to be enforced during
generation.

Unobserved hidden units cannot enforce constraints.

— To enforce constraints requires lateral connections or
observed descendants.

Why do we whiten data?

Images typically have strong pair-wise correlations.

Learning higher order statistics is difficult when there are
strong pair-wise correlations.

— Small changes in parameter values that improve the
modeling of higher-order statistics may be rejected
because they form a slightly worse model of the much
stronger pair-wise statistics.

So we often remove the second-order statistics before
trying to learn the higher-order statistics.

Whitening the learning signal instead
of the data

« Contrastive divergence learning can remove the effects
of the second-order statistics on the learning without
actually changing the data.

— The lateral connections model the second order
statistics

— |f a pixel can be reconstructed correctly using second
order statistics, its will be the same in the
reconstruction as in the data.

— The hidden units can then focus on modeling high-
order structure that cannot be predicted by the lateral
connections.

* For example, a pixel close to an edge, where interpolation
from nearby pixels causes incorrect smoothing.

Time series models

* |Inference is difficult in directed models of time
series if we use non-linear distributed
representations in the hidden units.

— It is hard to fit Dynamic Bayes Nets to high-
dimensional sequences (e.g motion capture
data).

« So people tend to avoid distributed
representations and use much weaker methods
(e.g. HMM' s).

Time series models

 If we really need distributed representations (which we
nearly always do), we can make inference much simpler

by using three tricks:

— Use an RBM for the interactions between hidden and
visible variables. This ensures that the main source of
iInformation wants the posterior to be factorial.

— Model short-range temporal information by allowing
several previous frames to provide input to the hidden

units and to the visible units.
« This leads to a temporal module that can be stacked

— So we can use greedy learning to learn deep models
of temporal structure.

An application to modeling

motion capture data
(Taylor, Roweis & Hinton, 2007)

 Human motion can be captured by placing
reflective markers on the joints and then using
lots of infrared cameras to track the 3-D
positions of the markers.

* Given a skeletal model, the 3-D positions of the
markers can be converted into the joint angles
plus 6 parameters that describe the 3-D position
and the roll, pitch and yaw of the pelvis.

— We only represent changes in yaw because physics
doesn’ t care about its value and we want to avoid
circular variables.

The conditional RBM model

(a partially observed CRF)

Start with a generic RBM.

Add two types of conditioning
connections.

Given the data, the hidden units
at time t are conditionally
iIndependent.

The autoregressive weights can
model most short-term temporal
structure very well, leaving the
hidden units to model nonlinear
iIrregularities (such as when the
foot hits the ground).

t-2

t-1

Causal generation from a learned model

« Keep the previous visible states fixed. D

— They provide a time-dependent
bias for the hidden units.

» Perform alternating Gibbs sampling
for a few iterations between the
hidden units and the most recent
visible units. 0

— This picks new hidden and visible
states that are compatible with —>
each other and with the recent
history.

D E—

Higher level models

Once we have trained the model, we can
add layers like in a Deep Belief Network.

The previous layer CRBM is kept, and its
output, while driven by the data is treated
as a new kind of “fully observed” data.

The next level CRBM has the same
architecture as the first (though we can
alter the number of units it uses) and is
trained the same way.

Upper levels of the network model more
“abstract” concepts.

This greedy learning procedure can be
justified using a variational bound.

t-2

t-1

Learning with “style” labels

D

o ®
« As in the generative model of
handwritten digits (Hinton et al. 1
2000), style labels can be 7

provided as part of the input to
the top layer.

>

turning on one unit in a group of
units, but they can also be
blended.

« The labels are represented by %
—

t-2 t-1 t

Show demo’s of multiple styles of
walking

These can be found at
www.cs.toronto.edu/~gwtaylor/

