
WARNING: OPTIONAL EXTRA MATERIAL

•  The material in this video is considerably more difficult
than in most of the other videos. I have included it for
those who want to get some idea of how the HF
optimizer works.

•  You do not need to understand how HF works in order to
understand the remaining videos in lecture 8.

•  The questions in the weekly quiz and the final test will
not be about the material in this video, so you can safely
skip it if you want.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 8a
A brief overview of “Hessian-Free” optimization

How much can we reduce the error
by moving in a given direction?

•  If we choose a direction to move in and we keep
going in that direction, how much does the error
decrease before it starts rising again? We assume
the curvature is constant (i.e. it’s a quadratic error surface).
–  Assume the magnitude of the gradient decreases as we

move down the gradient (i.e. the error surface is convex
upward).

•  The maximum error reduction depends on the ratio of the
gradient to the curvature. So a good direction to move in is one
with a high ratio of gradient to curvature, even if the gradient
itself is small.
–  How can we find directions like these?

better
ratio

Newton’s method
•  The basic problem with steepest descent on a quadratic error surface

is that the gradient is not the direction we want to go in.
–  If the error surface has circular cross-sections, the gradient is fine.
–  So lets apply a linear transformation that turns ellipses into circles.

•  Newton’s method multiplies the gradient vector by the inverse of the
curvature matrix, H:

–  On a real quadratic surface it jumps to the minimum in one step.
–  Unfortunately, with only a million weights, the curvature matrix has

a trillion terms and it is totally infeasible to invert it.

Δw = − ε H (w)−1 dE
dw

Curvature Matrices
•  Each element in the curvature matrix

specifies how the gradient in one
direction changes as we move in
some other direction.
–  The off-diagonal terms correspond

to twists in the error surface.
•  The reason steepest descent goes

wrong is that the gradient for one
weight gets messed up by the
simultaneous changes to all the other
weights.
–  The curvature matrix determines

the sizes of these interactions.

i j k

i

j

k

2

2

kw
E

∂

∂

j

i
w
w

E

∂

∂
∂∂)(

i

j

w
w

E

∂

∂
∂∂)(

How to avoid inverting a huge matrix
•  The curvature matrix has too many terms to be of use in a big network.

–  Maybe we can get some benefit from just using the terms along the
leading diagonal (Le Cun). But the diagonal terms are only a tiny
fraction of the interactions (they are the self-interactions).

•  The curvature matrix can be approximated in many different ways
–  Hessian-free methods, LBFGS, …

•  In the HF method, we make an approximation to the curvature matrix
and then, assuming that approximation is correct, we minimize the error
using an efficient technique called conjugate gradient. Then we make
another approximation to the curvature matrix and minimize again.
–  For RNNs its important to add a penalty for changing any of the

hidden activities too much.

Conjugate gradient

•  There is an alternative to going to the minimum in one step by
multiplying by the inverse of the curvature matrix.

•  Use a sequence of steps each of which finds the minimum along
one direction.

•  Make sure that each new direction is “conjugate” to the previous
directions so you do not mess up the minimization you already did.
–  “conjugate” means that as you go in the new direction, you do

not change the gradients in the previous directions.

A picture of conjugate gradient

The gradient in the direction of
the first step is zero at all points
on the green line.

So if we move along the green
line we don’t mess up the
minimization we already did in
the first direction.

What does conjugate gradient achieve?

•  After N steps, conjugate gradient is guaranteed to find the minimum
of an N-dimensional quadratic surface. Why?
–  After many less than N steps it has typically got the error very

close to the minimum value.
•  Conjugate gradient can be applied directly to a non-quadratic error

surface and it usually works quite well (non-linear conjugate grad.)
•  The HF optimizer uses conjugate gradient for minimization on a

genuinely quadratic surface where it excels.
–  The genuinely quadratic surface is the quadratic approximation

to the true surface.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 8b
Modeling character strings

with multiplicative connections

Modeling text: Advantages of working with characters
•  The web is composed of character strings.
•  Any learning method powerful enough to understand the world by

reading the web ought to find it trivial to learn which strings make
words (this turns out to be true, as we shall see).

•  Pre-processing text to get words is a big hassle
–  What about morphemes (prefixes, suffixes etc)
–  What about subtle effects like “sn” words?
–  What about New York?
–  What about Finnish

•  ymmartamattomyydellansakaan

An obvious recurrent neural net
1500	

hidden	

units	

character:	

1-­‐of-­‐86	

1500	

hidden	

units	

c
predicted	
 distribu8on	
 	

for	
 next	
 character.	
 	
 	

It’s	
 a	
 lot	
 easier	
 to	
 predict	
 86	
 characters	
 than	
 100,000	
 words.	

softmax

A sub-tree in the tree of all character strings

•  If the nodes are implemented as hidden states in an RNN, different
nodes can share structure because they use distributed representations.

•  The next hidden representation needs to depend on the conjunction of
the current character and the current hidden representation.

...fix

…fixi

…fixin

i e

n

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.

…fixe

There are
exponentially many
nodes in the tree of
all character strings
of length N.

Multiplicative connections
•  Instead of using the inputs to the recurrent net to provide additive

extra input to the hidden units, we could use the current input
character to choose the whole hidden-to-hidden weight matrix.
–  But this requires 86x1500x1500 parameters
–  This could make the net overfit.

•  Can we achieve the same kind of multiplicative interaction using
fewer parameters?
–  We want a different transition matrix for each of the 86

characters, but we want these 86 character-specific weight
matrices to share parameters (the characters 9 and 8 should
have similar matrices).

Using factors to implement multiplicative interactions
•  We can get groups a and b to interact multiplicatively by using

“factors”.
–  Each factor first computes a weighted sum for each of its input

groups.
–  Then it sends the product of the weighted sums to its output group.

c f = bTw f() aTu f() v f
vector of
inputs to
group c

scalar
input to f
from group
b

scalar
input to f
from group
a

fu fv
f

w f

Group b

G
ro

up
 a

G
ro

up
 c

Using factors to implement a set of basis matrices
•  We can think about factors

another way:
–  Each factor defines a rank

1 transition matrix from a
to c.

c f = bTw f() aTu f() v f

c f = bTw f() u f v f
T() a

scalar
coefficient

outer product
transition
matrix with
rank 1

c = bTw f() u f v fT()
f
∑
"

#
$
$

%

&
'
' a

fu fv
f

w f

Group b

G
ro

up
 a

G
ro

up
 c

1500	

hidden	

units	

character:	
 1-­‐of-­‐86	

Using 3-way factors to allow a character to create a whole
transition matrix

predicted	
 distribu8on	
 	

for	
 next	
 character	

1500	

hidden	

units	

fu fv
f

Each factor, f, defines a
rank one matrix , T

ff vu

Each character, k, determines a gain for each of these matrices.

wkf

wkf

k

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 8c
Learning to predict the next character using HF

Training the character model
•  Ilya Sutskever used 5 million strings of 100 characters taken from

wikipedia. For each string he starts predicting at the 11th character.
•  Using the HF optimizer, it took a month on a GPU board to get a

really good model.
•  Ilya’s current best RNN is probably the best single model for

character prediction (combinations of many models do better).
•  It works in a very different way from the best other models.

–  It can balance quotes and brackets over long distances. Models
that rely on matching previous contexts cannot do this.

How to generate character strings from the model

•  Start the model with its default hidden state.
•  Give it a “burn-in” sequence of characters and let it update its

hidden state after each character.
•  Then look at the probability distribution it predicts for the next

character.
•  Pick a character randomly from that distribution and tell the net that

this was the character that actually occurred.
–  i.e. tell it that its guess was correct, whatever it guessed.

•  Continue to let it pick characters until bored.
•  Look at the character strings it produces to see what it “knows”.

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters‘ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

Some completions produced by the model

•  Sheila thrunges (most frequent)
•  People thrunge (most frequent next character is space)
•  Shiela, Thrungelini del Rey (first try)
•  The meaning of life is literary recognition. (6th try)

•  The meaning of life is the tradition of the ancient human reproduction: it is
less favorable to the good boy for when to remove her bigger.
(one of the first 10 tries for a model trained for longer).

What does it know?

•  It knows a huge number of words and a lot about proper names,
dates, and numbers.

•  It is good at balancing quotes and brackets.
–  It can count brackets: none, one, many

•  It knows a lot about syntax but its very hard to pin down exactly
what form this knowledge has.
–  Its syntactic knowledge is not modular.

•  It knows a lot of weak semantic associations
–  E.g. it knows Plato is associated with Wittgenstein and

cabbage is associated with vegetable.

RNNs for predicting the next word

•  Tomas Mikolov and his collaborators have recently trained quite large
RNNs on quite large training sets using BPTT.
–  They do better than feed-forward neural nets.
–  They do better than the best other models.
–  They do even better when averaged with other models.

•  RNNs require much less training data to reach the same level of
performance as other models.

•  RNNs improve faster than other methods as the dataset gets bigger.
–  This is going to make them very hard to beat.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 8d
Echo state networks

The key idea of echo state networks (perceptrons again?)

•  A very simple way to learn a
feedforward network is to make
the early layers random and fixed.

•  Then we just learn the last layer
which is a linear model that
uses the transformed
inputs to predict the
target outputs.
–  A big random

expansion of
the input vector
can help.

•  The equivalent idea for RNNs is
to fix the inputàhidden
connections and the
hiddenàhidden connections at
random values and only learn the
hiddenàoutput connections.
–  The learning is then very

simple (assuming linear
output units).

–  Its important to set the
random connections very
carefully so the RNN does not
explode or die.

Setting the random connections in an Echo State
Network

•  Set the hiddenàhidden weights
so that the length of the activity
vector stays about the same
after each iteration.
–  This allows the input to echo

around the network for a
long time.

•  Use sparse connectivity (i.e. set
most of the weights to zero).
–  This creates lots of loosely

coupled oscillators.

•  Choose the scale of the
inputàhidden connections very
carefully.
–  They need to drive the

loosely coupled oscillators
without wiping out the
information from the past
that they already contain.

•  The learning is so fast that we
can try many different scales for
the weights and sparsenesses.
–  This is often necessary.

A simple example of an echo state network
INPUT SEQUENCE
A real-valued time-varying value that specifies the frequency of
a sine wave.

TARGET OUTPUT SEQUENCE
A sine wave with the currently specified frequency.

LEARNING METHOD
Fit a linear model that takes the states of the hidden units as
input and produces a single scalar output.

Example from
Scholarpedia

The target and predicted outputs after learning

Beyond echo state networks
•  Good aspects of ESNs

Echo state networks can be
trained very fast because they just
fit a linear model.

•  They demonstrate that its very
important to initialize weights
sensibly.

•  They can do impressive modeling
of one-dimensional time-series.
–  but they cannot compete

seriously for high-dimensional
data like pre-processed
speech.

•  Bad aspects of ESNs
They need many more hidden
units for a given task than an
RNN that learns the
hiddenàhidden weights.

•  Ilya Sutskever (2012) has
shown that if the weights are
initialized using the ESN
methods, RNNs can be
trained very effectively.
–  He uses rmsprop with

momentum.

