

Neural Networks for Machine Learning

Lecture 3a

Learning the weights of a linear neuron

Geoffrey Hinton
with
Nitish Srivastava
Kevin Swersky

Why the perceptron learning procedure cannot be
generalised to hidden layers

•  The perceptron convergence procedure works by ensuring that
every time the weights change, they get closer to every “generously
feasible” set of weights.
–  This type of guarantee cannot be extended to more complex

networks in which the average of two good solutions may be a
bad solution.

•  So “multi-layer” neural networks do not use the perceptron learning
procedure.
–  They should never have been called multi-layer perceptrons.

A different way to show that
a learning procedure makes progress

•  Instead of showing the weights get closer to a good set of weights,
show that the actual output values get closer the target values.
–  This can be true even for non-convex problems in which there are

many quite different sets of weights that work well and averaging
two good sets of weights may give a bad set of weights.

–  It is not true for perceptron learning.

•  The simplest example is a linear neuron with a squared error
measure.

Linear neurons (also called linear filters)

•  The neuron has a real-
valued output which is a
weighted sum of its inputs

•  The aim of learning is to
minimize the error summed
over all training cases.
–  The error is the squared

difference between the
desired output and the
actual output.

y = wi
i
∑ xi =w

Tx

neuron’s
estimate of the
desired output

input
vector

weight
vector

Why don’t we solve it analytically?

•  It is straight-forward to write down a set of equations, one per training
case, and to solve for the best set of weights.
–  This is the standard engineering approach so why don’t we use it?

•  Scientific answer: We want a method that real neurons could use.
•  Engineering answer: We want a method that can be generalized to

multi-layer, non-linear neural networks.
–  The analytic solution relies on it being linear and having a squared

error measure.
–  Iterative methods are usually less efficient but they are much

easier to generalize.

A toy example to illustrate the iterative method
•  Each day you get lunch at the cafeteria.

–  Your diet consists of fish, chips, and ketchup.
–  You get several portions of each.

•  The cashier only tells you the total price of the meal
–  After several days, you should be able to figure out the price of

each portion.
•  The iterative approach: Start with random guesses for the prices and

then adjust them to get a better fit to the observed prices of whole
meals.

Solving the equations iteratively

•  Each meal price gives a linear constraint on the prices of the
portions:

•  The prices of the portions are like the weights in of a linear neuron.

•  We will start with guesses for the weights and then adjust the
guesses slightly to give a better fit to the prices given by the cashier.

w = (wfish ,wchips ,wketchup)

price = x fishw fish + xchipswchips + xketchupwketchup

The true weights used by the cashier
Price of meal = 850 = target

portions
of fish

portions
of chips

portions of
ketchup

 150 50 100

 2 5 3

linear
neuron

•  Residual error = 350
•  The “delta-rule” for learning is:

•  With a learning rate of 1/35,
the weight changes are
+20, +50, +30

•  This gives new weights of
70, 100, 80.
–  Notice that the weight for

chips got worse!

A model of the cashier with arbitrary initial weights

Δwi = ε xi (t − y)

price of meal = 500

portions
of fish

portions
of chips

portions of
ketchup

 50 50 50

 2 5 3

ε

Deriving the delta rule

•  Define the error as the squared
residuals summed over all
training cases:

•  Now differentiate to get error
derivatives for weights

•  The batch delta rule changes
the weights in proportion to
their error derivatives summed
over all training cases

E = 1
2

(tn
n∈training
∑ − yn)2

∂E
∂wi

= 1
2

∂yn

∂wi

dEn

dynn
∑

= − xi
n

n
∑ (tn − yn)

Δwi = −ε
∂E
∂wi

= ε xi
n

n
∑ (tn − yn)

Behaviour of the iterative learning procedure

•  Does the learning procedure eventually get the right answer?
–  There may be no perfect answer.
–  By making the learning rate small enough we can get as close as we

desire to the best answer.

•  How quickly do the weights converge to their correct values?
–  It can be very slow if two input dimensions are highly correlated. If you

almost always have the same number of portions of ketchup and chips,
it is hard to decide how to divide the price between ketchup and chips.

The relationship between the online delta-rule
and the learning rule for perceptrons

•  In perceptron learning, we increment or decrement the weight vector
by the input vector.
–  But we only change the weights when we make an error.

•  In the online version of the delta-rule we increment or decrement the
weight vector by the input vector scaled by the residual error and the
learning rate.
–  So we have to choose a learning rate. This is annoying.

Neural Networks for Machine Learning

Lecture 3b

The error surface for a linear neuron

Geoffrey Hinton
with
Nitish Srivastava
Kevin Swersky

The error surface in extended weight space
•  The error surface lies in a space with a

horizontal axis for each weight and one
vertical axis for the error.
–  For a linear neuron with a squared

error, it is a quadratic bowl.
–  Vertical cross-sections are

parabolas.
–  Horizontal cross-sections are

ellipses.
•  For multi-layer, non-linear nets the error

surface is much more complicated.

E

w1

w2

•  The simplest kind of batch
learning does steepest descent
on the error surface.
–  This travels perpendicular to

the contour lines.

•  The simplest kind of online
learning zig-zags around the
direction of steepest descent:

w1

w2

w1

w2

Online versus batch learning

constraint from
training case 1

constraint from
training case 2

Why learning can be slow

•  If the ellipse is very elongated, the
direction of steepest descent is almost
perpendicular to the direction towards
the minimum!
–  The red gradient vector has a large

component along the short axis of
the ellipse and a small component
along the long axis of the ellipse.

–  This is just the opposite of what we
want.

w1

w2

Neural Networks for Machine Learning

Lecture 3c

Learning the weights of a logistic
output neuron

Geoffrey Hinton
with
Nitish Srivastava
Kevin Swersky

Logistic neurons

•  These give a real-valued
output that is a smooth
and bounded function of
their total input.

–  They have nice
derivatives which
make learning easy.

y = 1

1+ e−z

0.5

0
0

1

z

y

z = b+ xi
i
∑ wi

The derivatives of a logistic neuron

•  The derivatives of the logit, z,
with respect to the inputs and
the weights are very simple:

•  The derivative of the output with
respect to the logit is simple if
you express it in terms of the
output:

z = b+ xi
i
∑ wi y = 1

1+ e−z
∂z
∂wi

= xi
∂z
∂xi

= wi dy
dz

= y (1− y)

The derivatives of a logistic neuron

y = 1

1+ e−z
= (1+ e−z)−1

dy
dz

=
−1(−e−z)

(1+ e−z)2
=

1

1+ e−z
"

#
$

%

&
'

e−z

1+ e−z

"

#

$
$

%

&

'
' = y(1− y)

e−z

1+ e−z
=
(1+ e−z)−1

1+ e−z
=
(1+ e−z)

1+ e−z
−1

1+ e−z
=1− ybecause

Using the chain rule to get the derivatives needed
for learning the weights of a logistic unit

•  To learn the weights we need the derivative of the output with
respect to each weight:

∂y
∂wi

=
∂z
∂wi

dy
dz

= xi y (1− y)

∂E
∂wi

=
∂yn

∂wi

∂E
∂ynn

∑ = − xi
n yn (1− yn) (tn − yn)

n
∑

delta-rule

extra term = slope of logistic

Neural Networks for Machine Learning

Lecture 3d

The backpropagation algorithm

Geoffrey Hinton
with
Nitish Srivastava
Kevin Swersky

Learning with hidden units (again)

•  Networks without hidden units are very limited in the input-output
mappings they can model.

•  Adding a layer of hand-coded features (as in a perceptron) makes
them much more powerful but the hard bit is designing the features.
–  We would like to find good features without requiring insights into the

task or repeated trial and error where we guess some features and see
how well they work.

•  We need to automate the loop of designing features for a particular
task and seeing how well they work.

Learning by perturbing weights
(this idea occurs to everyone who knows about evolution)

•  Randomly perturb one weight and see if
it improves performance. If so, save the
change.
–  This is a form of reinforcement learning.
–  Very inefficient. We need to do multiple

forward passes on a representative set
of training cases just to change one
weight. Backpropagation is much better.

–  Towards the end of learning, large
weight perturbations will nearly always
make things worse, because the weights
need to have the right relative values.

hidden units

output units

input units

Learning by using perturbations

•  We could randomly perturb all the weights in parallel
and correlate the performance gain with the weight
changes.
–  Not any better because we need lots of trials on each

training case to “see” the effect of changing one
weight through the noise created by all the changes to
other weights.

•  A better idea: Randomly perturb the activities of the
hidden units.
–  Once we know how we want a hidden activity to

change on a given training case, we can compute how
to change the weights.

–  There are fewer activities than weights, but
backpropagation still wins by a factor of the number of
neurons.

The idea behind backpropagation

•  We don’t know what the hidden units ought to do, but we can
compute how fast the error changes as we change a hidden activity.
–  Instead of using desired activities to train the hidden units, use

error derivatives w.r.t. hidden activities.
–  Each hidden activity can affect many output units and can

therefore have many separate effects on the error. These effects
must be combined.

•  We can compute error derivatives for all the hidden units efficiently at
the same time.
–  Once we have the error derivatives for the hidden activities, its

easy to get the error derivatives for the weights going into a
hidden unit.

Sketch of the backpropagation algorithm on a single case

•  First convert the discrepancy
between each output and its target
value into an error derivative.

•  Then compute error derivatives in
each hidden layer from error
derivatives in the layer above.

•  Then use error derivatives w.r.t.
activities to get error derivatives
w.r.t. the incoming weights.

E = 1
2

(t j
j∈output
∑ − yj)

2

∂E
∂yj

= −(t j − yj)

∂E
∂yj

∂E
∂yi

Backpropagating dE/dy

∂E
∂z j

=
dyj
dz j

∂E
∂yj

= yj (1− yj)
∂E
∂yj

yj
j

yi
i

z j

∂E
∂yi

=
dzj
dyi

∂E
∂z jj

∑ = wij
∂E
∂z jj

∑

∂E
∂wij

=
∂z j
∂wij

∂E
∂z j

= yi
∂E
∂z j

Neural Networks for Machine Learning

Lecture 3e

How to use the derivatives computed by the
backpropagation algorithm

Geoffrey Hinton
with
Nitish Srivastava
Kevin Swersky

Converting error derivatives into a learning procedure

•  The backpropagation algorithm is an efficient way of computing the
error derivative dE/dw for every weight on a single training case.

•  To get a fully specified learning procedure, we still need to make a lot
of other decisions about how to use these error derivatives:
–  Optimization issues: How do we use the error derivatives on

individual cases to discover a good set of weights? (lecture 6)
–  Generalization issues: How do we ensure that the learned weights

work well for cases we did not see during training? (lecture 7)
•  We now have a very brief overview of these two sets of issues.

Optimization issues in using the weight derivatives

•  How often to update the weights
–  Online: after each training case.
–  Full batch: after a full sweep through the training data.
–  Mini-batch: after a small sample of training cases.

•  How much to update (discussed further in lecture 6)
–  Use a fixed learning rate?
–  Adapt the global learning rate?
–  Adapt the learning rate on each connection

separately?
–  Don’t use steepest descent?

w1

w2

Overfitting: The downside of using powerful models
•  The training data contains information about the regularities in the

mapping from input to output. But it also contains two types of noise.
–  The target values may be unreliable (usually only a minor worry).
–  There is sampling error. There will be accidental regularities just

because of the particular training cases that were chosen.
•  When we fit the model, it cannot tell which regularities are real and

which are caused by sampling error.
–  So it fits both kinds of regularity.
–  If the model is very flexible it can model the sampling error really

well. This is a disaster.

A simple example of overfitting

•  Which model do you trust?
–  The complicated model fits the

data better.
–  But it is not economical.

•  A model is convincing when it fits a
lot of data surprisingly well.
–  It is not surprising that a

complicated model can fit a
small amount of data well. Which output value should

you predict for this test input?

input = x

ou
tp

ut
 =

 y

Ways to reduce overfitting

•  A large number of different methods have been developed.

–  Weight-decay
–  Weight-sharing
–  Early stopping
–  Model averaging
–  Bayesian fitting of neural nets
–  Dropout
–  Generative pre-training

•  Many of these methods will be described in lecture 7.

