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Lecture 15a 
From Principal Components Analysis to Autoencoders 



Principal Components Analysis 

•  This takes N-dimensional data and finds the M orthogonal directions      
in which the data have the most variance. 
–  These M principal directions form a lower-dimensional subspace. 
–  We can represent an N-dimensional datapoint by its projections   

onto the M principal directions. 
–  This loses all information about where the datapoint is located in    

the remaining orthogonal directions. 
•  We reconstruct by using the mean value (over all the data) on the        

N-M directions that are not represented. 
–  The reconstruction error is the sum over all these unrepresented 

directions of the squared differences of the datapoint from the mean. 



A picture of PCA with N=2 and M=1 

direction of first principal component 
i.e. direction of greatest variance 

The red point is represented by the 
green point. The “reconstruction”  
of the red point has an error     
equal to the squared            
distance between                          
red and green                         
points.  



Using backpropagation to implement PCA inefficiently 

•  Try to make the output be the 
same as the input in a network 
with a central bottleneck. 

•  The activities of the hidden 
units in the bottleneck form an 
efficient code.  

•  If the hidden and output layers are 
linear, it will learn hidden units 
that are a linear function of the 
data and minimize the squared 
reconstruction error. 
–  This is exactly what PCA does.  

•  The M hidden units will span the 
same space as the first M 
components found by PCA 
–  Their weight vectors may not be 

orthogonal. 
–  They will tend to have equal 

variances. 

input vector 

output vector 

code 



Using backpropagation to generalize PCA 

•  With non-linear layers before 
and after the code, it should be 
possible to efficiently represent 
data that lies on or near a non-
linear manifold. 
–  The encoder converts 

coordinates in the input 
space to coordinates on 
the manifold. 

–  The decoder does the 
inverse mapping.  input vector 

output vector 

code 

encoding 
weights 

decoding 
weights 
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Lecture 15b 
Deep Autoencoders 



Deep Autoencoders 

•  They always looked like a 
really nice way to do non-
linear dimensionality 
reduction: 
–  They provide flexible 

mappings both ways. 
–  The learning time is linear 

(or better) in the number of 
training cases. 

–  The final encoding model 
is fairly compact and fast. 

•  But it turned out to be very difficult 
to optimize deep autoencoders 
using backpropagation. 
–  With small initial weights the 

backpropagated gradient dies.  
•  We now have a much better ways 

to optimize them. 
–  Use unsupervised layer-by-

layer pre-training. 
–  Or just initialize the weights 

carefully as in Echo-State Nets. 
 



The first really successful deep autoencoders  
(Hinton & Salakhutdinov, Science, 2006) 

     784  à  1000  à   500   à  250   
                                                               30 linear units 
     784  ß  1000  ß   500   ß  250  
 
     We train a stack of 4 RBM’s and then “unroll” them.   
     Then we fine-tune with gentle backprop. 
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A comparison of methods for compressing digit 
images to 30 real numbers 

real              
data 

30-D       
deep auto 

 

30-D         
PCA 
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Lecture 15c 
Deep autoencoders for document retrieval and 

visualization 



How to find documents that are similar to a query document 

•  Convert each document into a “bag of words”. 
–  This is a vector of word counts ignoring  order.  
–  Ignore stop words (like “the” or “over”) 

•  We could compare the word counts of the query 
document and millions of other documents but this 
is too slow.  
–  So we reduce each query vector to a much 

smaller vector that still contains most of the 
information about the content of the document. 

fish 
cheese 
vector 
count 
school 
query 
reduce 
bag 
pulpit 
iraq  
word 

0 
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2 



How to compress the count vector  

•  We train the neural network to 
reproduce its input vector as its 
output 

•  This forces it to compress as 
much information as possible 
into the 10 numbers in the 
central bottleneck. 

•  These 10 numbers are then a 
good way to compare 
documents. 

 2000  reconstructed counts 

500 neurons 

     2000  word counts 

500 neurons  

250 neurons  

250 neurons  

10   

input 
vector 

output 
vector 



The non-linearity used for reconstructing bags of words 

•  Divide the counts in a bag of words 
vector by N, where N is the total number 
of non-stop words in the document. 
–  The resulting probability vector gives 

the probability of getting a particular 
word if we pick a non-stop word at 
random from the document. 

•  At the output of the autoencoder, we use 
a softmax. 
–  The probability vector defines the 

desired outputs of the softmax.  

•  When we train the first 
RBM in the stack we use 
the same trick.  
–  We treat the word 

counts as probabilities, 
but we make the visible 
to hidden weights N 
times bigger than the 
hidden to visible 
because we have N 
observations from the 
probability distribution. 



Performance of the autoencoder at document 
retrieval 

•  Train on bags of 2000 words for 400,000 training cases of business 
documents. 
–  First train a stack of RBM’s. Then fine-tune with backprop. 

•  Test on a separate 400,000 documents.  
–  Pick one test document as a query. Rank order all the other test 

documents by using the cosine of the angle between codes.  
–  Repeat this using each of the 400,000 test documents as the 

query (requires 0.16 trillion comparisons). 
•  Plot the number of retrieved documents against the proportion that 

are in the same hand-labeled class as the query document. 
Compare with LSA (a version of PCA). 



Retrieval performance on 400,000 Reuters business news stories 



First compress all documents to 2 numbers using PCA on 
log(1+count). Then use different colors for different categories. 



First compress all documents to 2 numbers using deep auto.       
Then use different colors for different document categories 
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Lecture 15d 
Semantic hashing 



Finding binary codes for documents 

 
•  Train an auto-encoder using 30 logistic 

units for the code layer. 
•  During the fine-tuning stage, add noise 

to the inputs to the code units. 
–  The noise forces their activities  to 

become bimodal in order to resist 
the effects of the noise. 

–  Then we simply threshold the 
activities of the 30 code units to get 
a binary code. 

•  Krizhevsky discovered later that its 
easier to just use binary stochastic 
units in the code layer during training. 

 2000  reconstructed counts 

500 neurons 

     2000  word counts 

500 neurons  

250 neurons  

250 neurons  

30   code 



Using a deep autoencoder as a hash-function for 
finding approximate matches 

hash 
function 

supermarket 
search 



Another view of semantic hashing 

•  Fast retrieval methods typically work by intersecting stored lists that 
are associated with cues extracted from the query. 

•  Computers have special hardware that can intersect  32 very long 
lists in one instruction. 
–  Each bit in a 32-bit binary code specifies a list of half the 

addresses in the memory. 
•  Semantic hashing uses machine learning to map the retrieval 

problem onto the type of list intersection the computer is good at. 
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Lecture 15e 
Learning binary codes for image retrieval 



Binary codes for image retrieval 

•  Image retrieval is typically done by using the captions. Why not use  
the images too? 
–  Pixels are not like words: individual pixels do not tell us much  

about the content. 
–  Extracting object classes from images is hard (this is out of date!)  

•  Maybe we should extract a real-valued vector that has information 
about the content? 
–  Matching real-valued vectors in a big database is slow and  

requires a lot of storage. 
•  Short binary codes are very easy to store and match. 



A two-stage method 

•  First, use semantic hashing with 28-bit binary codes to get a long 
“shortlist” of  promising images. 

•  Then use 256-bit binary codes to do a serial search for good 
matches. 
–  This only requires a few words of storage per image and the 

serial search can be done using fast bit-operations. 
•  But how good are the 256-bit binary codes? 

–  Do they find images that we think are similar? 



Krizhevsky’s deep autoencoder 

1024 1024 1024 

8192 

4096 

2048 

1024 

512 

256-bit binary code The encoder has 
about 67,000,000 
parameters.  There is no theory to 

justify this architecture It takes a few days on 
a GTX 285 GPU to 
train on two million 
images.  



Reconstructions of 32x32 color images from 256-bit codes 



retrieved using 256 bit codes 

retrieved using Euclidean distance in pixel intensity space 



retrieved using 256 bit codes 

retrieved using Euclidean distance in pixel intensity space 



How to make image retrieval more sensitive to 
objects and less sensitive to pixels 

•  First train a big net to recognize 
lots of different types of object in 
real images. 
–  We saw how to do that in lecture 5. 

•  Then use the activity vector in the 
last hidden layer as the 
representation of the image. 
–  This should be a much better 

representation to match than the 
pixel intensities. 

•  To see if this approach is likely 
to work, we can use the net 
described in lecture 5 that won 
the ImageNet competition. 

•  So far we have only tried using 
the Euclidian distance between 
the activity vectors in the last 
hidden layer. 
–  It works really well!  
–  Will it work with binary codes?  



Leftmost column 
is the search 
image. 
 
Other columns 
are the images 
that have the 
most similar 
feature activities 
in the last hidden 
layer. 
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Lecture 15f 
Shallow autoencoders for pre-training  



RBM’s as autoencoders 

•  When we train an RBM with one-
step contrastive divergence, it tries 
to make the reconstructions look like 
data.  
–  It’s like an autoencoder, but  it’s 

strongly regularized by using 
binary activities in the hidden 
layer.  

•  When trained with maximum 
likelihood, RBMs are not like 
autoencoders.  

•  Maybe we can replace the 
stack  of RBM’s used for 
pre-training by  a stack of 
shallow autoencoders? 
–  Pre-training is not as 

effective (for subsequent 
discrimination) if the 
shallow autoencoders 
are regularized by 
penalizing the squared 
weights. 



Denoising autoencoders (Vincent et. al. 2008)  

•  Denoising autoencoders add   
noise to the input vector          
by setting many of its 
components to zero (like 
dropout, but for inputs).  
–  They are still required to 

reconstruct these 
components so they must 
extract features that capture 
correlations between inputs.   

•  Pre-training is very effective if we use 
a stack of denoising autoencoders. 
–  It’s as good as or better than pre-

training with RBMs. 
–  It’s also simpler to evaluate the 

pre-training because we can 
easily compute the  value of the 
objective function.  

–  It lacks the nice variational bound 
we get with RBMs, but this is only 
of theoretical interest. 



Contractive autoencoders (Rifai et. al. 2011) 

•  Another way to regularize an 
autoencoder is to try to make 
the activities of the hidden 
units as insensitive as possible 
to the inputs. 
–  But they cannot just ignore 

the inputs because they 
must reconstruct them. 

•  We achieve this by penalizing 
the squared gradient of each 
hidden activity w.r.t. the inputs. 

•  Contractive autoencoders work very 
well for pre-training. 
–  The codes tend to have the 

property that only a small   
subset of the hidden units        
are sensitive to changes in      
the input.  

–  But for different parts of the  
input space, its a different 
subset. The active set is sparse. 

–  RBMs behave similarly.   
 



Conclusions about pre-training 

•  There are now many different 
ways to do layer-by-layer pre-
training of features.  
–  For datasets that do not 

have huge numbers of 
labeled cases, pre-training 
helps subsequent 
discriminative learning. 

•  Especially if there is extra 
data that is unlabeled but 
can be used for pretraining. 

•  For very large, labeled datasets, 
initializing the weights used in 
supervised learning by using 
unsupervised pre-training is not 
necessary, even for deep nets. 
–  Pre-training was the first good 

way to initialize the weights for 
deep nets, but now there are 
other ways. 

•  But if we make the nets much larger 
we will need pre-training again! 


