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Lecture 14a 
Learning layers of features by stacking RBMs 



Training a deep network by stacking RBMs 

•  First train a layer of 
features that receive input 
directly from the pixels. 

•  Then treat the activations 
of the trained features as 
if they were pixels and 
learn features of features 
in a second hidden layer. 

•  Then do it again. 

•  It can be proved that each time we 
add another layer of features we 
improve a variational lower bound on 
the log probability of generating the 
training data. 
–  The proof is complicated and only 

applies to unreal cases. 
–  It is based on a neat equivalence 

between an RBM and an infinitely 
deep belief net (see lecture 14b). 



Combining two RBMs to make a DBN 
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Compose the 
two RBM 
models to 
make a single 
DBN model 

Train this 
RBM first 

Then train 
this RBM  

It’s not a Boltzmann machine! 



The generative model after learning 3 layers 

     To generate data:  
1.  Get an equilibrium sample from the top-

level RBM by performing alternating 
Gibbs sampling for a long time. 

2.  Perform a top-down pass to get states 
for all the other layers. 

 
       The lower level bottom-up connections  

are not part of the generative model. 
They are just used for inference. 
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An aside: Averaging factorial distributions         

•  If you average some factorial 
distributions, you do NOT get a 
factorial distribution. 
–  In an RBM, the posterior 

over 4 hidden units is 
factorial for each visible 
vector. 

•  Posterior for v1:   0.9, 0.9, 0.1, 0.1  
•  Posterior for v2:   0.1, 0.1, 0.9, 0.9 
•  Aggregated \=      0.5, 0.5, 0.5, 0.5 

•  Consider the binary vector 
1,1,0,0.  
–  in the posterior for v1,         

p(1,1,0,0) = 0.9^4 = 0.43  
–  in the posterior for v2, 

p(1,1,0,0) = 0.1^4 = .0001  
–  in the aggregated posterior, 

p(1,1,0,0) = 0.215. 
•  If the aggregated posterior was 

factorial it would have p = 0.5^4 



Why does greedy learning work? 
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The weights, W,  in the bottom level RBM define many different 
distributions:  p(v|h);  p(h|v);  p(v,h);  p(h);  p(v). 

 

We can express the RBM model as 

If we leave p(v|h) alone and improve p(h), we will improve p(v).  

To improve p(h), we need it to be a better model than p(h;W) of the 
aggregated posterior distribution over hidden vectors produced by 
applying W transpose to the data. 



Fine-tuning with a contrastive version 
 of the wake-sleep algorithm 

     After learning many layers of features, we can fine-tune the 
features to improve generation. 

    1.  Do a stochastic bottom-up pass 
–  Then adjust the top-down weights of lower layers to be good 

at reconstructing the feature activities in the layer below. 
    2.  Do a few iterations of sampling in the top level RBM 

 --   Then adjust the weights in the top-level RBM using CD. 
    3.  Do a stochastic top-down pass 

–  Then Adjust the bottom-up weights to be good at 
reconstructing the feature activities in the layer above. 



The DBN used for modeling the joint distribution of 
MNIST digits and their labels 

             2000 units  

    500 units  

    500 units  

28 x 28 
pixel     
image  

10 labels 

•  The first two hidden layers are 
learned without using labels. 

•  The top layer is learned as an 
RBM for modeling the labels 
concatenated with the features 
in the second hidden layer. 

•  The weights are then fine-tuned 
to be a better generative model 
using contrastive wake-sleep. 
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Lecture 14b 
Discriminative fine-tuning for DBNs 



Fine-tuning for discrimination 

•  First learn one layer at a time 
by stacking RBMs. 

•  Treat this as “pre-training” 
that finds a good initial set of 
weights which can then be 
fine-tuned by a local search 
procedure. 
–  Contrastive wake-sleep is 

a way of fine-tuning the 
model to be better at 
generation. 

•  Backpropagation can be used 
to fine-tune the model to be  
better  at discrimination. 
–  This overcomes many of 

the limitations of standard 
backpropagation. 

–  It makes it easier to learn 
deep nets. 

–  It makes the nets 
generalize better. 



Why backpropagation works better with  
greedy pre-training: The optimization view 

•  Greedily learning one layer at a time scales well to really big 
networks, especially if we have locality in each layer. 

•  We do not start backpropagation until we already have sensible 
feature detectors that should already be very helpful for the 
discrimination task. 
–  So the initial gradients are sensible and backpropagation only 

needs to perform a local search from a sensible starting point. 



Why backpropagation works better with greedy 
pre-training: The overfitting view 

•  Most of the information in the final 
weights comes from modeling the 
distribution of input vectors.  
–  The input vectors  generally 

contain a lot more information 
than the labels. 

–  The precious information in the 
labels is only used for the fine-
tuning.  

•  The fine-tuning only modifies the 
features slightly to get the category 
boundaries right. It does not need to 
discover new features. 

•  This type of back-propagation 
works well even if most of the 
training data is unlabeled.  
–  The unlabeled data is still 

very useful for discovering 
good features. 

•  An objection: Surely, many of 
the features will be useless for 
any particular discriminative 
task (consider shape &  pose). 
–  But the ones that are useful 

will be much more useful 
than the raw inputs. 



First, model the distribution of digit images 

         2000 units 

     500 units  

     500 units  

28 x 28 
pixel     
image  

The network learns a density model for unlabeled 
digit images. When we generate from the model we 
get things that look like real digits of all classes.  

But do the hidden features really help with digit 
discrimination?  Add a 10-way  softmax at the top 
and do backpropagation. 

The top two layers form a restricted 
Boltzmann machine whose energy 
landscape should model the low 
dimensional manifolds of the digits. 



Results on the permutation-invariant MNIST task 

•  Backprop net with one or two hidden layers (Platt; Hinton) 

•  Backprop with L2 constraints on incoming weights 
  
•  Support Vector Machines (Decoste & Schoelkopf, 2002) 

•  Generative model of joint density of  images and labels                 
(+ generative fine-tuning) 

•  Generative model of unlabelled digits followed by 
gentle backpropagation (Hinton & Salakhutdinov, 2006) 

1.6% 
 
1.5% 
 
1.4% 
 
1.25% 

1.15%à1.0% 

Error rate 



Unsupervised “pre-training” also helps for models that 
have more data and better priors 

•  Ranzato et. al. (NIPS 2006) used an additional 600,000 distorted 
digits. 

•  They also used convolutional multilayer neural networks.  

Back-propagation alone:                  0.49%  
 
Unsupervised layer-by-layer 
pre-training followed by backprop:   0.39% (record at the time) 



Phone recognition on the TIMIT benchmark  
(Mohamed, Dahl, & Hinton, 2009 & 2012)  

–  After standard post-processing using 
a bi-phone model, a deep net with 8 
layers gets 20.7% error rate. 

–  The best previous speaker- 
independent result on TIMIT was 
24.4% and this required averaging 
several models. 

–  Li Deng (at MSR) realised that this 
result could change the way speech 
recognition was done.  It has! 

15 frames of 40 filterbank outputs 
 + their temporal derivatives 

  2000 logistic hidden units  

  2000 logistic hidden units  

183 HMM-state  labels 
not pre-trained 

6 more layers of 
pre-trained weights 

http://www.bbc.co.uk/news/technology-20266427 
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Lecture 14c 
What happens during discriminative fine-tuning? 



Learning Dynamics of Deep Nets 
 the next 4 slides describe work by Yoshua Bengio’s group 

Before fine-tuning After fine-tuning 



Effect of Unsupervised Pre-training 
Erhan et. al.    AISTATS’2009  

 



Effect of Depth 

w/o pre-training 
with pre-training without pre-training 



Trajectories of the learning in function space  
(a 2-D visualization produced with t-SNE) 

•  Each point is a model in 
function space 

•  Color = epoch 
•  Top: trajectories without 

pre-training. Each 
trajectory converges to a 
different local min. 

•  Bottom: Trajectories with 
pre-training.  

•  No overlap! 

    Erhan et. al 
AISTATS’2009  



Why unsupervised pre-training makes sense 

stuff 

image label 

stuff 

image label 

If image-label pairs were 
generated this way, it would 
make sense to try to go 
straight from images to labels.   
For example,  do the pixels 
have even parity? 

If image-label pairs are generated 
this way, it makes sense to first 
learn to recover the stuff that 
caused the image by inverting the 
high bandwidth pathway. 

 

high 
bandwidth 

low 
bandwidth 
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Lecture 14d 
Modeling real-valued data with an RBM 



Modeling real-valued data 

•  For images of digits, 
intermediate intensities can 
be represented as if they 
were probabilities by using 
“mean-field” logistic units. 
–  We treat intermediate 

values as the probability 
that the pixel is inked. 

•  This will not work for real 
images. 
–  In a real image, the intensity 

of a pixel is almost always, 
almost exactly the average 
of the neighboring pixels. 

–  Mean-field logistic units 
cannot represent precise 
intermediate values. 



A standard type of real-valued visible unit 

•  Model pixels as Gaussian 
variables. Alternating Gibbs 
sampling is still easy, though 
learning needs to be much 
slower. 
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Gaussian-Binary RBM’s 

•  Lots of people have failed to get these to 
work properly. Its extremely hard to learn 
tight variances for the visible units. 
–  It took a long time for us to figure out 

why it is so hard to learn the visible 
variances. 

•  When sigma is small, we need many 
more hidden units than visible units. 
–  This allows small weights to produce 

big top-down effects. 
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When sigma is much less 
than 1, the bottom-up effects 
are too big and the top-down 
effects are too small. 

i
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Stepped sigmoid units: A neat way to implement 
integer values 

•  Make many copies of a stochastic binary unit.  
•  All copies have the same weights and the same 

adaptive bias, b, but they have different fixed offsets to 
the bias: 

 

 

....,5.3,5.2,5.1,5.0 −−−− bbbb

→x



Fast approximations 

 
•  Contrastive divergence learning works well for the sum of 

stochastic logistic units with offset biases. The noise variance is   
•  It also works for rectified linear units. These are much faster  to 

compute than the sum of many logistic units with different biases. 

y = σ (x + 0.5− n)
n=1

n=∞

∑ ≈ log(1+ ex ) ≈ max(0, x + noise)

σ (y)



A nice property of rectified linear units 
 

•  If a relu has a bias of zero, it exhibits scale equivariance:                                              
–  This is a very nice property to have for images. 

–  It is like the equivariance to translation exhibited by 
convolutional nets. 

))(())(( xx RshiftshiftR =

R(ax) = aR(x) but R(a+ b)≠ R(a)+ R(b)
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Lecture 14e 
RBMs are Infinite Sigmoid Belief Nets 

ADVANCED MATERIAL: NOT ON QUIZZES OR FINAL TEST 



Another view of why layer-by-layer learning works 
(Hinton, Osindero & Teh 2006) 

•  There is an unexpected 
equivalence between RBM’s 
and directed networks with 
many layers that all share the 
same weight matrix. 
–  This equivalence also gives 

insight into why contrastive 
divergence learning works. 

•  An RBM is actually just an 
infinitely deep sigmoid belief 
net with a lot of weight sharing. 
–  The Markov chain we run 

when we want to sample 
from the equilibrium 
distribution of an RBM can 
be viewed as a sigmoid 
belief net. 



An infinite sigmoid belief net that 
is equivalent to an RBM 

•  The distribution generated by this infinite 
directed net with replicated weights is the 
equilibrium distribution for a compatible pair 
of conditional distributions: p(v|h) and p(h|v) 
that are both defined by W 
–  A top-down pass of the directed net is 

exactly equivalent to letting a Restricted 
Boltzmann Machine settle to equilibrium. 

–  So this infinite directed net  defines the 
same distribution as an RBM. 
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•  The variables in h0 are conditionally 
independent given v0. 
–  Inference is trivial. Just multiply v0 by  
–  The model above h0 implements a 

complementary prior. 
–  Multiplying v0 by       gives the product      

of the likelihood term and the prior term. 
–  The complementary prior cancels the 

explaining away. 
•  Inference in the directed net is exactly 

equivalent to letting an RBM settle to 
equilibrium starting at the data. 

Inference in an infinite sigmoid belief net 
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•  The learning rule for a sigmoid belief net is: 

 
 
•  With replicated weights this rule becomes: 
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Learning a deep directed network 
•  First learn with all the weights tied. This is 

exactly equivalent to learning an RBM. 

–  Think of the symmetric connections as a 
shorthand notation for an infinite directed 
net with tied weights. 

•  We ought to use maximum likelihood learning, 
but we use CD1 as a shortcut. 
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•  Then freeze the first layer of weights in both 
directions and learn the remaining weights 
(still tied together). 
–  This is equivalent to learning another 

RBM, using the aggregated posterior 
distribution of h0 as the data. 
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What happens when the weights in higher layers become 
different from the weights in the first layer? 

•  The higher layers no longer 
implement a complementary 
prior. 
–  So performing inference using 

the frozen weights in the first 
layer is no longer correct.  

–  But its still pretty good. 
–  Using this incorrect inference 

procedure gives a variational  
lower bound on the log 
probability of the data.  

•  The higher layers learn a prior 
that is closer to the aggregated 
posterior distribution of the first 
hidden layer. 
–  This improves the network’s 

model of the data. 
–  Hinton, Osindero and Teh 

(2006) prove that this 
improvement is always bigger 
than the loss in the variational 
bound caused by using less 
accurate inference. 



•  Contrastive divergence learning in this RBM is 
equivalent to ignoring the small derivatives 
contributed by the tied weights in higher layers. 

What is really happening in 
contrastive divergence learning? 

W

W
      v1 

             h1 

       

              

      v2 

             h2 

TW

TW

TW

W

etc. 

      v0 

             h0 
W

s j
0(si

0 − si
1)+

si
1(s j

0 − s j
1) = s j

0si
0 − si

1s j
1

0
is

0
js



Why is it OK to ignore the derivatives in higher layers? 

•  When the weights are small, the 
Markov chain mixes fast. 
–  So the higher layers will be 

close to the equilibrium 
distribution (i.e they will have 
“forgotten” the datavector). 

–  At equilibrium the derivatives 
must average to zero, 
because the current weights 
are a perfect model of the 
equilibrium distribution! 

–    

•  As the weights grow we may 
need to run more iterations of 
CD. 
–  This allows CD to continue 

to be a good approximation 
to maximum likelihood. 

–  But for learning layers of 
features, it does not need 
to be a good approximation 
to maximum likelhood! 


