
Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 14a
Learning layers of features by stacking RBMs

Training a deep network by stacking RBMs

•  First train a layer of
features that receive input
directly from the pixels.

•  Then treat the activations
of the trained features as
if they were pixels and
learn features of features
in a second hidden layer.

•  Then do it again.

•  It can be proved that each time we
add another layer of features we
improve a variational lower bound on
the log probability of generating the
training data.
–  The proof is complicated and only

applies to unreal cases.
–  It is based on a neat equivalence

between an RBM and an infinitely
deep belief net (see lecture 14b).

Combining two RBMs to make a DBN

1W

2W
2h

1h

1h

v

1W

2W

2h

1h

v

copy binary state for each v

Compose the
two RBM
models to
make a single
DBN model

Train this
RBM first

Then train
this RBM

It’s not a Boltzmann machine!

The generative model after learning 3 layers

 To generate data:
1.  Get an equilibrium sample from the top-

level RBM by performing alternating
Gibbs sampling for a long time.

2.  Perform a top-down pass to get states
for all the other layers.

 The lower level bottom-up connections

are not part of the generative model.
They are just used for inference.

 h2

 data

 h1

 h3

W2

W3

W1

An aside: Averaging factorial distributions

•  If you average some factorial
distributions, you do NOT get a
factorial distribution.
–  In an RBM, the posterior

over 4 hidden units is
factorial for each visible
vector.

•  Posterior for v1: 0.9, 0.9, 0.1, 0.1
•  Posterior for v2: 0.1, 0.1, 0.9, 0.9
•  Aggregated \= 0.5, 0.5, 0.5, 0.5

•  Consider the binary vector
1,1,0,0.
–  in the posterior for v1,

p(1,1,0,0) = 0.9^4 = 0.43
–  in the posterior for v2,

p(1,1,0,0) = 0.1^4 = .0001
–  in the aggregated posterior,

p(1,1,0,0) = 0.215.
•  If the aggregated posterior was

factorial it would have p = 0.5^4

Why does greedy learning work?

∑=
h

hvphpvp)|()()(

The weights, W, in the bottom level RBM define many different
distributions: p(v|h); p(h|v); p(v,h); p(h); p(v).

We can express the RBM model as

If we leave p(v|h) alone and improve p(h), we will improve p(v).

To improve p(h), we need it to be a better model than p(h;W) of the
aggregated posterior distribution over hidden vectors produced by
applying W transpose to the data.

Fine-tuning with a contrastive version
 of the wake-sleep algorithm

 After learning many layers of features, we can fine-tune the
features to improve generation.

 1. Do a stochastic bottom-up pass
–  Then adjust the top-down weights of lower layers to be good

at reconstructing the feature activities in the layer below.
 2. Do a few iterations of sampling in the top level RBM

 -- Then adjust the weights in the top-level RBM using CD.
 3. Do a stochastic top-down pass

–  Then Adjust the bottom-up weights to be good at
reconstructing the feature activities in the layer above.

The DBN used for modeling the joint distribution of
MNIST digits and their labels

 2000 units

 500 units

 500 units

28 x 28
pixel
image

10 labels

•  The first two hidden layers are
learned without using labels.

•  The top layer is learned as an
RBM for modeling the labels
concatenated with the features
in the second hidden layer.

•  The weights are then fine-tuned
to be a better generative model
using contrastive wake-sleep.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 14b
Discriminative fine-tuning for DBNs

Fine-tuning for discrimination

•  First learn one layer at a time
by stacking RBMs.

•  Treat this as “pre-training”
that finds a good initial set of
weights which can then be
fine-tuned by a local search
procedure.
–  Contrastive wake-sleep is

a way of fine-tuning the
model to be better at
generation.

•  Backpropagation can be used
to fine-tune the model to be
better at discrimination.
–  This overcomes many of

the limitations of standard
backpropagation.

–  It makes it easier to learn
deep nets.

–  It makes the nets
generalize better.

Why backpropagation works better with
greedy pre-training: The optimization view

•  Greedily learning one layer at a time scales well to really big
networks, especially if we have locality in each layer.

•  We do not start backpropagation until we already have sensible
feature detectors that should already be very helpful for the
discrimination task.
–  So the initial gradients are sensible and backpropagation only

needs to perform a local search from a sensible starting point.

Why backpropagation works better with greedy
pre-training: The overfitting view

•  Most of the information in the final
weights comes from modeling the
distribution of input vectors.
–  The input vectors generally

contain a lot more information
than the labels.

–  The precious information in the
labels is only used for the fine-
tuning.

•  The fine-tuning only modifies the
features slightly to get the category
boundaries right. It does not need to
discover new features.

•  This type of back-propagation
works well even if most of the
training data is unlabeled.
–  The unlabeled data is still

very useful for discovering
good features.

•  An objection: Surely, many of
the features will be useless for
any particular discriminative
task (consider shape & pose).
–  But the ones that are useful

will be much more useful
than the raw inputs.

First, model the distribution of digit images

 2000 units

 500 units

 500 units

28 x 28
pixel
image

The network learns a density model for unlabeled
digit images. When we generate from the model we
get things that look like real digits of all classes.

But do the hidden features really help with digit
discrimination? Add a 10-way softmax at the top
and do backpropagation.

The top two layers form a restricted
Boltzmann machine whose energy
landscape should model the low
dimensional manifolds of the digits.

Results on the permutation-invariant MNIST task

•  Backprop net with one or two hidden layers (Platt; Hinton)

•  Backprop with L2 constraints on incoming weights

•  Support Vector Machines (Decoste & Schoelkopf, 2002)

•  Generative model of joint density of images and labels
(+ generative fine-tuning)

•  Generative model of unlabelled digits followed by
gentle backpropagation (Hinton & Salakhutdinov, 2006)

1.6%

1.5%

1.4%

1.25%

1.15%à1.0%

Error rate

Unsupervised “pre-training” also helps for models that
have more data and better priors

•  Ranzato et. al. (NIPS 2006) used an additional 600,000 distorted
digits.

•  They also used convolutional multilayer neural networks.

Back-propagation alone: 0.49%

Unsupervised layer-by-layer
pre-training followed by backprop: 0.39% (record at the time)

Phone recognition on the TIMIT benchmark
(Mohamed, Dahl, & Hinton, 2009 & 2012)

–  After standard post-processing using
a bi-phone model, a deep net with 8
layers gets 20.7% error rate.

–  The best previous speaker-
independent result on TIMIT was
24.4% and this required averaging
several models.

–  Li Deng (at MSR) realised that this
result could change the way speech
recognition was done. It has!

15 frames of 40 filterbank outputs
 + their temporal derivatives

 2000 logistic hidden units

 2000 logistic hidden units

183 HMM-state labels
not pre-trained

6 more layers of
pre-trained weights

http://www.bbc.co.uk/news/technology-20266427

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 14c
What happens during discriminative fine-tuning?

Learning Dynamics of Deep Nets
 the next 4 slides describe work by Yoshua Bengio’s group

Before fine-tuning After fine-tuning

Effect of Unsupervised Pre-training
Erhan et. al. AISTATS’2009

Effect of Depth

w/o pre-training
with pre-training without pre-training

Trajectories of the learning in function space
(a 2-D visualization produced with t-SNE)

•  Each point is a model in
function space

•  Color = epoch
•  Top: trajectories without

pre-training. Each
trajectory converges to a
different local min.

•  Bottom: Trajectories with
pre-training.

•  No overlap!

 Erhan et. al
AISTATS’2009

Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were
generated this way, it would
make sense to try to go
straight from images to labels.
For example, do the pixels
have even parity?

If image-label pairs are generated
this way, it makes sense to first
learn to recover the stuff that
caused the image by inverting the
high bandwidth pathway.

high
bandwidth

low
bandwidth

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 14d
Modeling real-valued data with an RBM

Modeling real-valued data

•  For images of digits,
intermediate intensities can
be represented as if they
were probabilities by using
“mean-field” logistic units.
–  We treat intermediate

values as the probability
that the pixel is inked.

•  This will not work for real
images.
–  In a real image, the intensity

of a pixel is almost always,
almost exactly the average
of the neighboring pixels.

–  Mean-field logistic units
cannot represent precise
intermediate values.

A standard type of real-valued visible unit

•  Model pixels as Gaussian
variables. Alternating Gibbs
sampling is still easy, though
learning needs to be much
slower.

ijj
ji i
iv

hidj
jj

visi i

ii whhbbv,E ∑∑∑ −−
−

=
,

2

2

2
)(

)(
σ

εε σ
hv

E
 à

energy-gradient
produced by the total
input to a visible unit

parabolic
containment
function

→ii vb

Gaussian-Binary RBM’s

•  Lots of people have failed to get these to
work properly. Its extremely hard to learn
tight variances for the visible units.
–  It took a long time for us to figure out

why it is so hard to learn the visible
variances.

•  When sigma is small, we need many
more hidden units than visible units.
–  This allows small weights to produce

big top-down effects.

iji
i

ij w
w

σ
σ

When sigma is much less
than 1, the bottom-up effects
are too big and the top-down
effects are too small.

i

j

Stepped sigmoid units: A neat way to implement
integer values

•  Make many copies of a stochastic binary unit.
•  All copies have the same weights and the same

adaptive bias, b, but they have different fixed offsets to
the bias:

....,5.3,5.2,5.1,5.0 −−−− bbbb

→x

Fast approximations

•  Contrastive divergence learning works well for the sum of

stochastic logistic units with offset biases. The noise variance is
•  It also works for rectified linear units. These are much faster to

compute than the sum of many logistic units with different biases.

y = σ (x + 0.5− n)
n=1

n=∞

∑ ≈ log(1+ ex) ≈ max(0, x + noise)

σ (y)

A nice property of rectified linear units

•  If a relu has a bias of zero, it exhibits scale equivariance:
–  This is a very nice property to have for images.

–  It is like the equivariance to translation exhibited by
convolutional nets.

))(())((xx RshiftshiftR =

R(ax) = aR(x) but R(a+ b)≠ R(a)+ R(b)

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 14e
RBMs are Infinite Sigmoid Belief Nets

ADVANCED MATERIAL: NOT ON QUIZZES OR FINAL TEST

Another view of why layer-by-layer learning works
(Hinton, Osindero & Teh 2006)

•  There is an unexpected
equivalence between RBM’s
and directed networks with
many layers that all share the
same weight matrix.
–  This equivalence also gives

insight into why contrastive
divergence learning works.

•  An RBM is actually just an
infinitely deep sigmoid belief
net with a lot of weight sharing.
–  The Markov chain we run

when we want to sample
from the equilibrium
distribution of an RBM can
be viewed as a sigmoid
belief net.

An infinite sigmoid belief net that
is equivalent to an RBM

•  The distribution generated by this infinite
directed net with replicated weights is the
equilibrium distribution for a compatible pair
of conditional distributions: p(v|h) and p(h|v)
that are both defined by W
–  A top-down pass of the directed net is

exactly equivalent to letting a Restricted
Boltzmann Machine settle to equilibrium.

–  So this infinite directed net defines the
same distribution as an RBM.

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

W

etc.

•  The variables in h0 are conditionally
independent given v0.
–  Inference is trivial. Just multiply v0 by
–  The model above h0 implements a

complementary prior.
–  Multiplying v0 by gives the product

of the likelihood term and the prior term.
–  The complementary prior cancels the

explaining away.
•  Inference in the directed net is exactly

equivalent to letting an RBM settle to
equilibrium starting at the data.

Inference in an infinite sigmoid belief net

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

W

etc.

+

+

+

+

TW

TW

j

i

i

k

•  The learning rule for a sigmoid belief net is:

•  With replicated weights this rule becomes:

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

W

etc.

0
is

0
js

1
js

2
js

1
is

2
is

s j
0(si

0 − si
1)+

si
1(s j

0 − s j
1)+

s j
1(si

1 − si
2)+...

− s j
∞si

∞ TW

TW

TW

W

W

Δwij ∝ s j (si − pi)
is an unbiased sample from pi

0si
1

Learning a deep directed network
•  First learn with all the weights tied. This is

exactly equivalent to learning an RBM.

–  Think of the symmetric connections as a
shorthand notation for an infinite directed
net with tied weights.

•  We ought to use maximum likelihood learning,
but we use CD1 as a shortcut.

W
W

 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

etc.

 v0

 h0

W

•  Then freeze the first layer of weights in both
directions and learn the remaining weights
(still tied together).
–  This is equivalent to learning another

RBM, using the aggregated posterior
distribution of h0 as the data.

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

etc.

frozenW

 v1

 h0
W

T
frozenW

What happens when the weights in higher layers become
different from the weights in the first layer?

•  The higher layers no longer
implement a complementary
prior.
–  So performing inference using

the frozen weights in the first
layer is no longer correct.

–  But its still pretty good.
–  Using this incorrect inference

procedure gives a variational
lower bound on the log
probability of the data.

•  The higher layers learn a prior
that is closer to the aggregated
posterior distribution of the first
hidden layer.
–  This improves the network’s

model of the data.
–  Hinton, Osindero and Teh

(2006) prove that this
improvement is always bigger
than the loss in the variational
bound caused by using less
accurate inference.

•  Contrastive divergence learning in this RBM is
equivalent to ignoring the small derivatives
contributed by the tied weights in higher layers.

What is really happening in
contrastive divergence learning?

W

W
 v1

 h1

 v2

 h2

TW

TW

TW

W

etc.

 v0

 h0
W

s j
0(si

0 − si
1)+

si
1(s j

0 − s j
1) = s j

0si
0 − si

1s j
1

0
is

0
js

Why is it OK to ignore the derivatives in higher layers?

•  When the weights are small, the
Markov chain mixes fast.
–  So the higher layers will be

close to the equilibrium
distribution (i.e they will have
“forgotten” the datavector).

–  At equilibrium the derivatives
must average to zero,
because the current weights
are a perfect model of the
equilibrium distribution!

– 

•  As the weights grow we may
need to run more iterations of
CD.
–  This allows CD to continue

to be a good approximation
to maximum likelihood.

–  But for learning layers of
features, it does not need
to be a good approximation
to maximum likelhood!

