
Does the Wake-sleep Algorithm
Produce Good Density Estimators?

In Advances in Neural Information Processing Systems 8, MIT Press, 1996.

Brendan J. Frey, Geoffrey E. Hinton Peter Dayan
Department of Computer Science Department of Brain and Cognitive Sciences

University of Toronto Massachusetts Institute of Technology
Toronto, ON M5S 1A4, Canada Cambridge, MA 02139, USA
{frey, hinton}@cs.toronto.edu dayan@ai.mit.edu

Abstract

The wake-sleep algorithm (Hinton, Dayan, Frey and Neal 1995) is a rel-
atively efficient method of fitting a multilayer stochastic generative
model to high-dimensional data. In addition to the top-down connec-
tions in the generative model, it makes use of bottom-up connections for
approximating the probability distribution over the hidden units given
the data, and it trains these bottom-up connections using a simple delta
rule. We use a variety of synthetic and real data sets to compare the per-
formance of the wake-sleep algorithm with Monte Carlo and mean field
methods for fitting the same generative model and also compare it with
other models that are less powerful but easier to fit.

1 INTRODUCTION
Neural networks are often used as bottom-up recognition devices that transform input vec-
tors into representations of those vectors in one or more hidden layers. But multilayer net-
works of stochastic neurons can also be used as top-down generative models that produce
patterns with complicated correlational structure in the bottom visible layer. In this paper
we consider generative models composed of layers of stochastic binary logistic units.
Given a generative model parameterized by top-down weights, there is an obvious way to
perform unsupervised learning. The generative weights are adjusted to maximize the prob-
ability that the visible vectors generated by the model would match the observed data.
Unfortunately, to compute the derivatives of the log probability of a visible vector, d, with
respect to the generative weights, θ, it is necessary to consider all possible ways in which
d could be generated. For each possible binary representation α in the hidden units the
derivative needs to be weighted by the posterior probability of α given d and θ:

. (1)P α d θ,() P α θ()P d α θ,() P β θ()P d β θ,()
β
∑⁄=

It is intractable to compute , so instead of minimizing , we minimize
an easily computed upper bound on this quantity that depends on some additional parame-
ters, φ:

. (2)

 is a Helmholtz free energy and is equal to when the distribution
 is the same as the posterior distribution . Otherwise,

exceeds by the asymmetric divergence:

. (3)

We restrict to be a product distribution within each layer that is conditional on
the binary states in the layer below and we can therefore compute it efficiently using a bot-
tom-up recognition network. We call a model that uses bottom-up connections to mini-
mize the bound in equation 2 in this way a Helmholtz machine (Dayan, Hinton, Neal and
Zemel 1995). The recognition weights φ take the binary activities in one layer and sto-
chastically produce binary activities in the layer above using a logistic function. So, for a
given visible vector, the recognition weights may produce many different representations
in the hidden layers, but we can get an unbiased sample from the distribution in
a single bottom-up pass through the recognition network.

The highly restricted form of means that even if we use the optimal recognition
weights, the gap between and is large for some generative models.
However, when is minimized with respect to the generative weights, these mod-
els will generally be avoided.

 can be viewed as the expected number of bits required to communicate a visible
vector to a receiver. First we use the recognition model to get a sample from the distribu-
tion . Then, starting at the top layer, we communicate the activities in each layer
using the top-down expectations generated from the already communicated activities in
the layer above. It can be shown that the number of bits required for communicating the
state of each binary unit is , where is the
top-down probability that is on and is the bottom-up probability that is on.

There is a very simple on-line algorithm that minimizes with respect to the gen-
erative weights. We simply use the recognition network to generate a sample from the dis-
tribution and then we increment each top-down weight by , where

 connects unit k to unit j. It is much more difficult to exactly follow the gradient of
 with respect to the recognition weights, but there is a simple approximate

method (Hinton, Dayan, Frey and Neal 1995). We generate a stochastic sample from the
generative model and then we increment each bottom-up weight by to
increase the log probability that the recognition weights would produce the correct activi-
ties in the layer above. This way of fitting a Helmholtz machine is called the “wake-sleep”
algorithm and the purpose of this paper is to assess how effective it is at performing high-
dimensional density estimation on a variety of synthetically constructed data sets and two
real-world ones. We compare it with other methods of fitting the same type of generative
model and also with simpler models for which there are efficient fitting algorithms.

2 COMPETITORS
We compare the wake-sleep algorithm with six other density estimation methods. All data
units are binary and can take on values dk = 1 (on) and dk = 0 (off).

Gzip. Gzip (Gailly, 1993) is a practical compression method based on Lempel-Ziv coding.
This sequential data compression technique encodes future segments of data by transmit-

P α d θ,() P d θ()log–

P d θ()log– F d θ φ,()≤ Q α d φ,() P α d, θ()log
α
∑– Q α d φ,() Q α d φ,()log

α
∑+=

F d θ φ,() P d θ()log–
Q • d φ,() P • d θ,() F d θ φ,()

P d θ()log–

D Q α d φ,() Q α d φ,() P α d θ,()⁄()log
α
∑=

Q • d φ,()

Q • d φ,()

Q • d φ,()
F d θ φ,() P d θ()log–

F d θ φ,()

F d θ φ,()

Q • d φ,()

sk qk pk⁄()log 1 sk–() 1 qk–() 1 pk–()⁄[]log+ pk
sk qk sk

F d θ φ,()

Q • d φ,() θkj εsk sj pj–()
θkj
F d θ φ,()

φij εsi sj qj–()

ting codewords that consist of a pointer into a buffer of recent past output together with
the length of the segment being coded. Gzip’s performance is measured by subtracting the
length of the compressed training set from the length of the compressed training set plus a
subset of the test set. Taking all disjoint test subsets into account gives an overall test set
code cost. Since we are interested in estimating the expected performance on one test case,
to get a tight lower bound on gzip’s performance, the subset size should be kept as small
as possible in order to prevent gzip from using early test data to compress later test data.

Base Rate Model. Each visible unit k is assumed to be independent of the others with a
probability pk of being on. The probability of vector d is . The
arithmetic mean of unit k’s activity is used to estimate pk, except in order to avoid serious
overfitting, one extra on and one extra off case are included in the estimate.

Binary Mixture Model. This method is a hierarchical extension of the base rate model
which uses more than one set of base rates. Each set is called a component. Component j
has probability πj and awards each visible unit k a probability pjk of being on. The net
probability of d is . For a given training datum, we con-
sider the component identity to be a missing value which must be filled in before the
parameters can be adjusted. To accomplish this, we use the expectation maximization
algorithm (Dempster, Laird and Rubin 1977) to maximize the log-likelihood of the train-
ing set, using the same method as above to avoid serious overfitting.

Gibbs Machine (GM). This machine uses the same generative model as the Helmholtz
machine, but employs a Monte Carlo method called Gibbs sampling to find the posterior
in equation 1 (Neal, 1992). Unlike the Helmholtz machine it does not require a separate
recognition model and with sufficiently prolonged sampling it inverts the generative
model perfectly. Each hidden unit is sampled in fixed order from a probability distribution
conditional on the states of the other hidden and visible units. To reduce the time required
to approach equilibrium, the network is annealed during sampling.

Mean Field Method (MF). Instead of using a separate recognition model to approximate
the posterior in equation 1, we can assume that the distribution over hidden units is facto-
rial for a given visible vector. Obtaining a good approximation to the posterior is then a
matter of minimizing free energy with respect to the mean activities. In our experiments,
we use the on-line mean field learning algorithm due to Saul, Jaakkola, and Jordan (1996).

Fully Visible Belief Network (FVBN). This method is a special case of the Helmholtz
machine where the top-down network is fully connected and there are no hidden units. No
recognition model is needed since there is no posterior to be approximated.

3 DATA SETS
The performances of these methods were compared on five synthetic data sets and two
real ones. The synthetic data sets had matched complexities: the generative models that
produced them had 100 visible units and between 1000 and 2500 parameters. A data set
with 100,000 examples was generated from each model and then partitioned into 10,000
for training, 10,000 for validation and 80,000 for testing. For tractable cases, each data set
entropy was approximated by the negative log-likelihood of the training set under its gen-
erative model. These entropies are approximate lower bounds on the performance.

The first synthetic data set was generated by a mixture model with 20 components. Each
component is a vector of 100 base rates for the 100 visible units. To make the data more
realistic, we arranged for there to be many different components whose base rates are all
extreme (near 0 or 1) — representing well-defined clusters — and a few components with
most base rates near 0.5 — representing much broader clusters. For component j, we
selected base rate from a beta distribution with mean and variance (we
chose this variance to keep the entropy of visible units low for near 0 or 1, representing
well-defined clusters). Then, as often as not we randomly replaced each with to

p d() pk
dk 1 pk–()1 dk–

k∏=

p d() πj pjk
dk 1 pjk–()1 dk–

k∏j∑=

pjk µj µj 1 µj–() 40⁄
µj

pjk 1 pjk–

make each component different (without doing this, all components would favor all units
off). In order to obtain many well-defined clusters, the component means were them-
selves sampled from a beta distribution with mean 0.1 and variance 0.02.

The next two synthetic data sets were produced using sigmoidal belief networks (Neal
1992) which are just the generative parts of binary stochastic Helmholtz machines. These
networks had full connectivity between layers, one with a 20⇒ 100 architecture and one
with a 5⇒ 10⇒ 15⇒ 20⇒ 100 architecture. The biases were set to 0 and the weights were sam-
pled uniformly from [-2,2), a range chosen to keep the networks from being deterministic.

The final two synthetic data sets were produced using Markov random fields. These net-
works had full bidirectional connections between layers. One had a 10⇔20⇔100 architec-
ture, and the other was a concatenation of ten independent 10⇔10 fields. The biases were
set to 0 and the weights were sampled from the set {-4, 0, 4} with probabilities {0.4, 0.4,
0.2}. To find data sets with high-order structure, versions of these networks were sampled
until data sets were found for which the base rate method performed badly.

We also compiled two versions of a data set to which the wake-sleep algorithm has previ-
ously been applied (Hinton et al. 1995). These data consist of normalized and quantized
8x8 binary images of handwritten digits made available by the US Postal Service Office of
Advanced Technology. The first version consists of a total of 13,000 images partitioned as
6000 for training, 2000 for validation and 5000 for testing. The second version consists of
pairs of 8x8 images (ie. 128 visible units) made by concatenating vectors from each of the
above data sets with those from a random reordering of the respective data set.

4 TRAINING DETAILS
The exact log-likelihoods for the base rate and mixture models can be computed, because
these methods have no or few hidden variables. For the other methods, computing the
exact log-likelihood is usually intractable. However, these methods provide an approxi-
mate upper bound on the negative log-likelihood in the form of a coding cost or Helmholtz
free energy, and results are therefore presented as coding costs in bits.

Because gzip performed poorly on the synthetic tasks, we did not break up the test and
validation sets into subsets. On the digit tasks, we broke the validation and test sets up to
make subsets of 100 visible vectors. Since the “-9” gzip option did not improve perfor-
mance significantly, we used the default configuration.

To obtain fair results, we tried to automate the model selection process subject to the con-
straint of obtaining results in a reasonable amount of time. For the mixture model, the
Gibbs machine, the mean field method, and the Helmholtz machine, a single learning run
was performed with each of four different architectures using performance on a validation
set to avoid wasted effort. Performance on the validation set was computed every five
epochs, and if two successive validation performances were not better than the previous
one by more than 0.2%, learning was terminated. The network corresponding to the best
validation performance was selected for test set analysis. Although it would be desirable
to explore a wide range of architectures, it would be computationally ruinous. The archi-
tectures used are given in tables 3 and 4 in the appendix.

The Gibbs machine was annealed from an initial temperature of 5.0. Between each sweep
of the network, during which each hidden unit was sampled once, the temperature was
multiplied by 0.9227 so that after 20 sweeps the temperature was 1.0. Then, the generative
weights were updated using the delta rule. To bound the datum probability, the network is
annealed as above and then 40 sweeps at unity temperature are performed while summing
the probability over one-nearest-neighbor configurations, checking for overlap.

A learning rate of 0.01 was used for the Gibbs machine, the mean field method, the Helm-
holtz machine, and the fully visible belief network. For each of these methods, this value
was found to be roughly the largest possible learning rate that safely avoided oscillations.

µj

5 RESULTS
The learning times and the validation performances are given in tables 3 and 4 of the
appendix. Test set appraisals and total learning times are given in table 1 for the synthetic
tasks and in table 2 for the digit tasks. Because there were relatively many training cases
in each simulation, the validation procedure serves to provide timing information more
than to prevent overfitting. Gzip and the base rate model were very fast, followed by the
fully visible belief network, the mixture model, the Helmholtz machine, the mean field
method, and finally the Gibbs machine. Test set appraisals are summarized by compres-
sion performance relative to the Helmholtz machine in figure 1 above. Greater compres-
sion sizes correspond to lower test set likelihoods and imply worse density estimation.
When available, the data set entropies indicate how close to optimum each method comes.

The Helmholtz machine yields a much lower cost compared to gzip and base rates on all
tasks. Compared to the mixture model, it gives a lower cost on both BN tasks and the
MRF 10 x (10⇔10) task. The latter case shows that the Helmholtz machine was able to take
advantage of the independence of the ten concatenated input segments, whereas the mix-
ture method was not. Simply to represent a problem where there are only two distinct clus-
ters present in each of the ten segments, the mixture model would require 210 components.
Results on the two BN tasks indicate the Helmholtz machine is better able to model multi-
ple simultaneous causes than the mixture method, which requires that only one component
(cause) is active at a time. On the other hand, compared to the mixture model, the Helm-
holtz machine performs poorly on the Mixture 20⇒ 100 task. It is not able to learn that only
one cause should be active at a time. This problem can be avoided by hard-wiring softmax
groups into the Helmholtz machine. On the five synthetic tasks, the Helmholtz machine
performs about the same as or better than the Gibbs machine, and runs two orders of mag-
nitude faster. (The Gibbs machine was too slow to run on the digit tasks.) While the qual-
ity of density estimation produced by the mean field method is indistinguishable from the
Helmholtz machine, the latter runs an order of magnitude faster than the mean field algo-
rithm we used. The fully visible belief network performs significantly better than the
Helmholtz machine on the two digit tasks and significantly worse on two of the synthetic
tasks. It is trained roughly two orders of magnitude faster than the Helmholtz machine.

-10

0

10

20

30

40

50

60

70

B
its

Gzip
Base rate model
Mixture model
Gibbs machine

Mean field method
Fully visible belief network

Entropy

Figure 1. Compression performance relative to the Helmholtz machine. Lines connecting
the data points are for visualization only, since there is no meaningful interpolant.

Mixture
20⇒ 100

BN
20⇒ 100

BN 5⇒ 10⇒
15⇒ 20⇒ 100

MRF
10⇔20⇔100

MRF
10 x (10⇔10)

Digit
pairs

Tasks

Single
digits

6 CONCLUSIONS
If we were given a new data set and asked to leave our research biases aside and do effi-
cient density estimation, how would we proceed? Evidently it would not be worth trying
gzip and the base rate model. We’d first try the fully visible belief network and the mixture
model, since these are fast and sometimes give good estimates. Hoping to extract extra
higher-order structure, we would then proceed to use the Helmholtz machine or the mean
field method (keeping in mind that our implementation of the Helmholtz machine is con-
siderably faster than Saul et al.’s implementation of the mean field method). Because it is
so slow, we would avoid using the Gibbs machine unless the data set was very small.

Acknowledgments

We greatly appreciate the mean field software provided by Tommi Jaakkola and Lawrence
Saul. We thank members of the Neural Network Research Group at the University of Tor-
onto for helpful advice. The financial support from ITRC, IRIS, and NSERC is appreciated.

References

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. 1995. The Helmholtz machine.
Neural Computation 7, 889-904.

Dempster, A. P., Laird, N. M. and Rubin, D. B. 1977. Maximum likelihood from incom-
plete data via the EM algorithm. J. Royal Statistical Society, Series B 34, 1-38.

Gailly, J. 1993. gzip program for unix.

Hinton, G. E., Dayan, P., Frey, B. J., Neal, R. M. 1995. The wake-sleep algorithm for
unsupervised neural networks. Science 268, 1158-1161.

Neal, R. M. 1992. Connectionist learning of belief networks. Artificial Intelligence 56, 71-113.

Saul, L. K., Jaakkola, T., and Jordan, M. I. 1996. Mean field theory for sigmoid belief net-
works. Submitted to Journal of Artificial Intelligence.

Table 1. Test set cost (bits) and total training time (hrs) for the synthetic tasks.

Model used to produce synthetic data
Mixture
20⇒ 100

BN
20⇒ 100

BN 5⇒ 10⇒
15⇒ 20⇒ 100

MRF
10⇔20⇔100

MRF
10 x (10⇔10)

Entropy 36.5 63.5 unknown 19.2 36.8
gzip 61.4 0 98.0 0 92.1 0 35.6 0 59.9 0
Base rates 96.6 0 80.7 0 69.2 0 42.2 0 68.1 0
Mixture 36.7 0 74.0 0 62.6 1 19.3 1 49.6 1
GM 44.1 131 63.9 240 58.1 251 26.1 195 40.3 145
MF 42.2 68 64.7 80 58.4 68 19.3 75 38.7 89
HM 42.7 8 65.2 3 58.5 4 19.4 2 38.6 4
FVBN 50.9 0 67.8 0 60.6 0 19.8 0 38.2 0

Table 2. Test set cost (bits) and training time (hrs) for the digit tasks.

Method Single digits Method Digit pairs
gzip 44.3 0 gzip 89.2 0
Base rates 59.2 0 Base rates 118.4 0
Mixture 37.5 0 Mixture 92.7 1
MF 39.5 38 MF 80.7 104
HM 39.1 2 HM 80.4 7
FVBN 35.9 0 FVBN 72.9 0

Appendix

The average validation set cost per example and the associated learning time for each sim-
ulation are listed in tables 3 and 4. Architectures judged to be optimal according to valida-
tion performance are indicated by “*” and were used to produce the test results given in
the body of this paper.

Table 3. Validation set cost (bits) and learning time (min) for the synthetic tasks.

Model used to produce synthetic data
Mixture
20⇒ 100

BN
20⇒ 100

BN 5⇒ 10⇒
15⇒ 20⇒ 100

MRF
10⇔20⇔100

MRF
10 x (10⇔10)

gzip 61.6 0 98.1 0 92.3 0 35.6 0 60.0 0
Base rates 96.7 0 80.7 0 69.4 0 42.1 0 68.1 0
Mixture 20⇒ 100 44.6 3 75.6 3 63.9 4 19.2* 3 54.8 5
Mixture 40⇒ 100 36.8* 5 74.8 5 63.2 7 19.2 7 52.4 15
Mixture 60⇒ 100 36.8 7 74.4 7 62.9 8 19.2 8 51.0 17
Mixture 100⇒ 100 37.0 14 74.0* 12 62.7* 13 19.3 12 49.6* 22
GM 20⇒ 100 50.6 1187 63.9* 1639 58.1* 2084 26.1* 934 40.3* 1425
GM 50⇒ 100 68.8 2328 80.4 3481 76.4 5234 49.2 6472 56.5 3472
GM 10⇒ 20⇒ 100 44.1* 872 66.4 1771 59.8 3084 28.0 767 42.3 1033
GM 20⇒ 50⇒ 100 52.7 3476 91.3 7504 88.0 4647 55.3 3529 63.5 2781
MF 20⇒ 100 49.5 518 64.6 427 58.4* 497 19.4 862 39.2 471
MF 50⇒ 100 49.9 1644 64.8 1945 58.6 1465 20.4 1264 38.7* 2427
MF 10⇒ 20⇒ 100 46.0 306 64.6* 658 58.5 543 19.3* 569 38.9 882
MF 20⇒ 50⇒ 100 42.1* 1623 65.0 1798 58.6 1553 19.3 1778 38.8 1575
HM 20⇒ 100 50.0 41 65.2 28 58.8 41 19.7 15 38.6* 30
HM 50⇒ 100 50.7 81 65.5 66 59.4 78 20.2 27 38.9 46
HM 10⇒ 20⇒ 100 43.4 32 65.1* 38 58.5* 45 19.4* 21 38.9 46
HM 20⇒ 50⇒ 100 42.6* 308 67.2 69 59.2 93 19.5 64 39.4 102
FVBN 51.0 7 67.8 7 60.7 6 19.8 8 38.3 6

Table 4. Validation set cost (bits) and learning time (min) for the digit tasks.

Method Single digits Method Digit pairs
gzip 44.2 0 gzip 88.8 1
Base rates 59.0 0 Base rates 117.9 0
Mixture 16⇒ 64 43.2 1 Mixture 32⇒ 128 96.9 6
Mixture 32⇒ 64 40.0 4 Mixture 64⇒ 128 93.8 8
Mixture 64⇒ 64 38.0 5 Mixture 128⇒ 128 92.4* 14
Mixture 128⇒ 64 37.1* 6 Mixture 256⇒ 128 92.8 27
MF 16⇒24⇒ 64 39.9 341 MF 16⇒24⇒32⇒ 128 82.7 1335
MF 24⇒32⇒ 64 39.1* 845 MF 16⇒32⇒64⇒ 128 81.2 1441
MF 12⇒16⇒24⇒ 64 39.8 475 MF 12⇒16⇒24⇒32⇒ 128 82.8 896
MF 16⇒24⇒32⇒ 64 39.1 603 MF 12⇒16⇒32⇒64⇒ 128 80.1* 2586
HM 16⇒24⇒ 64 39.7 24 HM 16⇒24⇒32⇒ 128 83.8 76
HM 24⇒32⇒ 64 39.4 34 HM 16⇒32⇒64⇒ 128 80.1* 138
HM 12⇒16⇒24⇒ 64 40.4 16 HM 12⇒16⇒24⇒32⇒ 128 84.6 74
HM 16⇒24⇒32⇒ 64 38.9* 52 HM 12⇒16⇒32⇒64⇒ 128 80.1 135
FVBN 35.8 1 FVBN 72.5 7

