Mean field networks that learn to discriminate temporally
distorted strings

Christopher K. I. Williams
Department of Computer Science
University of Toronto
10 King’s College Road

Toronto M5S 1A4, Canada -+~ -+ - - -

Abstract

Neural networks can be used to discriminate
between very similar phonemes and they can
handle the variability in time of occurrence
by using a time-delay architecture followed
by a temporal integration (Lang, Hinton and
Waibel, 1990). So far, however, neural net-
works have been less successful at handling
longer duration events that require some-
thing equivalent to “time warping” in order
to match stored knowledge to the data. We
present a type of mean field network (MFN)
with tied weights that is capable of approx-
imating the recognizer for a hidden markov
model (HMM). In the process of settling to a
stable state, the MFN finds a blend of likely
ways of generating the input string given its
internal model of the probabilities of transi-
tions between hidden states and the probabil-
ities of input symbols given a hidden state.
This blend is a heuristic approximation to
the full set of path probabilities that is im-
plicitly represented by an HMM recognizer.
The learning algorithm for the MFN is less
efficient than for an HMM of the same size.
However, the MFN is capable of using dis-
tributed representations of the hidden state,
and this can make it exponentially more effi-
cient than an HMM when modelling strings
produced by a generator that itself has com-
ponential states. We view this type of MFN
as a way of allowing more powerful repre-
sentations without abandoning the automatic
parameter estimation procedures that have
allowed relatively simple models like HMM’s
to outperform complex Al representations on
real tasks.
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INTRODUCTION

Neural networks have been successful at phoneme dis-
crimination tasks, but many researchers currently feel
that the best way to deal with longer duration events
is to use a néural network as a front-end to a hidden
markov model. The difficult task of matching models
to data across temporal distortions is then handled by
the hidden markov recognizer which efficiently consid-
ers all possible matches.

Despite their powerful matching and learning proce-
dures, HMM’s have a serious drawback: They implic-
itly assume that the ensemble of input strings is gen-
erated by a stochastic finite-state automaton and this
strongly limits the types of structure that they can
efficiently represent. Suppose, for example, that 20
independent binary constraints operate between the
first and second half of a string-and that-as-a result of
all these separate constraints the mutual information
between the two halves is 20 bits.! To model these
20 constraints, a hidden markov generator would need
at least 2%° hidden states because the only way that
the first half of a string can constrain the second half
is via the hidden state of the generator as it finishes
generating the first half.

In a hidden markov generator, 22° hidden states im-
plies 2?9 hidden nodes. In a neural net that uses dis-
tributed representations, 22° hidden state vectors only
requires 20 binary hidden units. So if the mutual infor-
mation between the first and second half of each string
is genuinely componential, a neural network can be
exponentially more efficient in representing the con-
straints. In effect, the only way that a HMM can
deal with a set of independent constraints is to use
the cross-product of the HMM’s that would be needed
to capture each constraint separately, so it is unable to
take advantage of the fact that the constraint structure

! As a concrete example, we might suppose that the first
half of a sentence is singular or plural, active or passive,
past or present tense, abstract or concrete, etc. etc. and
that the second half “agrees” with the first half along all
these dimensions.
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can be factorized.

Our aim is to develop a neural network alternative to
HMM’s that can take advantage of constraints which
can be factorized by using separate hidden units to
enforce separate constraints. To achieve this we have
been forced to use a matching procedure that is only a
heuristic approximation to the recognition procedure
used in an HMM, and a learning procedure that is con-
siderable slower than the HMM learning procedure for
a comparably sized network. Eventually, we hope to
show that these disadvantages are more than offset by
the ability of the neural network to use a small repre-
sentation that captures the componential structure of
the constraints efficiently. In this paper, however, we
only show that the neural network can use distributed
representations to capture the componential structure
and can generalize at least as well as a comparably
sized HMM.

PREVIOUS APPROACHES USING
NEURAL NETS

Bridle’s alpha-net (Bridle, 1989) is a translation of a
HMM into a recurrent neural net framework. He shows
how to implement the forward pass calculations of a
HMM-based recogniser (using “sigma-pi” units with a
linear output) and he presents a gradient-based back-
propagation training method.

As Bridle points out, this implementation of a HMM
in a neural network points the way forward to other
methods of constructing and training networks which
offer more general non-linear structures going beyond
HMM methods. Watrous (Watrous et al., 1990) and
Kuhn (Kuhn et al., 1989) have investigated training
recurrent networks for some problems in speech recog-
nition such as phoneme discrimination, using the back-
propagation learning rule. Others such as Williams
and Zipser (1988) and Cleeremans et al. (1989) have
looked at tasks which involve learning finite state au-
tomata with recurrent nets, but from the viewpoint of
predicting the next symbol given left context. How-
ever, to date the issues of “time-warping” have not
been directly addressed by this work.

These recurrent nets allow a “frame-by-frame” pro-
cessing of the incoming data. An alternative to this is
to “spatialize” time by laying out the data in an in-
put buffer - the method used in this paper. This has
a number of disadvantages, but does mean that all of
the 1input data is readily available, whereas in recur-
rent nets the information on the important properties
of the input must be extracted and stored in the states
of the hidden units.

THE LEARNING PROCEDURE FOR
THE MEAN FIELD MODULES

We assume familiarity with mean field networks and
Just give a brief overview here. Hopfield (1984) or Hin-
ton (1989) give more detailed descriptions. Mean field
networks use real-valued analog units with a logistic
activation function that can be viewed as a determin-
istic approximation to the stochastic binary units used
in Boltzmann machines. Mean field networks use a
parallel updating algorithm to settle to a local min-
imum of the mean-field free energy (Hopfield, 1984).
The mean field equivalent of simulated annealing is to
increase the gain of each unit as the network settles.
With low gains, the network will typically settle to a
state in which the units have intermediate activity lev-
els and, using an independence assumption, this state
can be viewed as representing a high entropy blend of
many possible binary states. In the model we describe,
each such binary state in the blend represents a possi-
ble way of aligning the model of a word, stored in the
tied weights, with the input data.

The input/output learning rule for MFN’s (Peterson
and Anderson, 1987) is based on an approximation
of the Boltzmann machine learning procedure (Ack-
ley, Hinton and Sejnowski, 1985). The replacement
of stochastic binary units by deterministic real values
units permits much faster learning. Below we present a
different learning rule for use when the task is the clas-
sification of temporally distorted strings (which might
correspond to vector-quantised time-slices of speech
data) into one of N possible “word” models (word is
in quotes as the entity may actually be a phoneme or
some other unit ~ word is used for convenience only).

FEach word has its own mean-field module which com-
putes a score indicating how likely it was that that
model could have generated the particular string pre-
sented. Each module has weight constraints as shown
in Fig. 1 that permit dynamic time warping in a sim-
ilar manner to HMMs. Then the word is classified
as belonging to the model that produces the highest
score. The score ¢;(y) for module ¢ when presented
with string y is

ai(y) = e~ Fi ) (1)
where F™* represents the free energy of the module at
a minimum of free energy. This minimum is attained
by performing the mean field equivalent of simulated
annealing from a high temperature to 7' = 1.

With activities of the units in the range [0, 1}, a mean
field module has free energy

1
F=-g > pipjwi;+T Y [pilnpi+(1—p:i) In(1—pi)]
§,J#1 d .
)

where p; is the activation of the unit 7. At a minimum
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Figure 1: Part of a MFN showing some of the weight constraints (not all weights to the symbol units are shown)

of F the activities obey
1
Pi=0('fzpjwij) (3)
J

where o(z) is the logistic function o(z) = TT}?:’T

At the minimum, the derivative of Fy;, with respect to

a particular weight at T' = 11is given by (Hinton, 1989)
aF;,
3w;’}‘c

= — < pjpk > (4)

where < >™ indicates that we are considering module
m. The learning rule for each module is based on in-
creasing the normalized score for those occasions when
the module is the correct generator of the string, and
decreasing it otherwise. Define the normalized score
to be

2 (y)

rily) = ———
) Zj.\’:l q;5 ()
Then the objective function to be maximized by the
training is
B= ),

y€examples

()

Inr;(y) (6)

where i indexes the correct word class. Differentiating
with respect to weight w;jx in module m, we get

0B
By = 2

examples

< P; Pk >m [6i7n - 7'171] (7)

where é;,, is the Kronecker delta.

This gradient can then be used by steepest ascent tech-
niques or more sophisticated line-search /conjugate-
gradient methods to maximize B. This learning pro-
cedure has the flavour of a rule that maximizes the
mutual information between the input vectors and the
classification, as it maximizes the r;(y)’s which take
into account the scores of the other modules, rather
than just maximizing the score of the correct class. In
fact, if the gi(y)’s represent the probability of mod-
ule ¢ producing string y, then the algorithm exactly
maximizes the mutual information.

THE TASK USED IN THE
SIMULATIONS

To test the learning algorithm shown above, two word
models were set up using HMMs with componential
structure. HMMs were used because it is easy to gener-
ate and test data with HMMs, and because the Baum-
Welch training algorithm (Baum et al., 1970) is opti-
mal as a discriminant training procedure for data gen-
erated by HMMs (Brown, 1987). This means that we
can fairly compare learning by HMMs and the neural
networks.

Good datasets for discriminant tasks must have sim-
ilar zero order statistics (symbol {requencies), other-
wise good discrimination can be achieved by HMDMs
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with just one unit which simply detects the symbol
frequencies, even though the generating HMMs had
many more states. The data we used was generated
by the “cross-product” of two three state HMMs. The
state transition diagram for the three state HMMs is
shown in Fig. 2

N

state transition

diagram

Figure 2: State transition diagram for the three state
HMMs

One three state HMM called the ABC model produced
symbols “a”, “b” and “c” with high probability in
states 1, 2 and 3 respectively. The ACB model pro-
duced “a”, “c” and “b” in states 1, 2 and 3 respectively.
The probability of producing the correct symbol was
0.94, and the probability of producing the other sym-
bols was 0.03 . The transition from the start state to
each of the generating states was equiprobable, so that
strings generated were equally likely to begin with “a”,
“b” OI‘ “C”.

To make componential data, one dataset was produced
from the cross-product of two ABC models, and the
other dataset was produced from two ACB generators.
The symbols output by the cross-product HMMs are
related to the two component HMMs by the following
code

taaabbbccc
:abcabcabec

genl output
gen2 output

combined output : 123456789

The symbol frequencies for each of the nine symbols
were similar between the data generated by the two
cross-product generators. Datasets of 1000 examples
of strings six symbols long generated by each cross-
product HMM were used as a training set, with test
and cross-validation sets also of 1000 examples each.

First order Markov models gave 28 errors on the test
data. Nine state HMMs trained by the Baum-Welch
algorithm gave an average of 18.25 errors and six-state
HMMs gave an average of 64.68 errors with a standard
deviation of 8.70 on 16 runs, with a best performance
of 52 errors.

RESULTS AND DISCUSSION

Networks with six units in each hidden slice were
trained on the task. Two slightly different architec-
tures were tried. In one, the hidden units were parti-
tioned into two fully connected groups of three units
each, and the symbol units were fully connected to all
units. In the other, there was no such split, all six
hidden units being fully connected. The training was
carried out with a conjugate-gradient with restarts al-
gorithm, stopping when the number of errors on the
cross-validation set began to increase.

The results of the simulations were 29 and 41 errors on
the test data for two runs with the split weights, and
31 errors for a run with fully connected weights. These
are significantly better than the results of the six state
HMMs, indicating that componential structure is be-
ing discovered by the networks. Further proof of this
was found by analysing the unit activities. In some of
the split networks each group of three units was found
to develop a distributed coding of one of the compo-
nent generators’ state. For the network without a split,
the activities of the hidden units show that the state
of one of the components is represented by the activ-
ities of all six units, the other generator’s state being
indicated by small modulations in these activities.

It is hard for the MFN learning rule to compete
with the Baum-Welch algorithm when learning to dis-
criminate data generated by non-componential HMMs.
This is partly because the MFN learning rule is a step-
size dependent method of gradient ascent, rather than
a re-estimation algorithm.

With sequences generated by two three-state HMMs,
the potential benefits of MFNs are small because 3 +3
is not much smaller than 3 x 3. We are working on
further simulations with data generated by pairs of
four-state HMMSs, which should show the advantages
of the MFNs more clearly. It is also possible to de-
sign stochastic networks with architectures similar to
that of Fig. 1 that will produce data which cannot be
generated by HMMs of polynomially related size.
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