
NOTE Communicated by Yoshua Bengio

Deep, Narrow Sigmoid Belief Networks Are Universal
Approximators

Ilya Sutskever
ilya@cs.utoronto.ca
Geoffrey E. Hinton
hinton@cs.utoronto.ca
Department of Computer Science, University of Toronto, Toronto, Ontario M55 3G4,
Canada

In this note, we show that exponentially deep belief networks can ap-
proximate any distribution over binary vectors to arbitrary accuracy, even
when the width of each layer is limited to the dimensionality of the data.
We further show that such networks can be greedily learned in an easy
yet impractical way.

1 Introduction

Hinton, Osindero, and Teh (2006) introduced a fast, greedy algorithm for
learning deep belief networks. The algorithm uses a restricted Boltzmann
machine (RBM) (see e.g., Hinton, 2002) to learn a model of the input data.
The learned RBM’s hidden variables are used to transform the original data
distribution to a new, transformed distribution, which is typically easier
to model. The transformed distribution is learned by a new RBM, which,
after completing its learning, further transforms the already transformed
distribution. A recursive repetition of this process is the essence of the
greedy learning algorithm for deep belief networks. Hinton et al. (2006)
show that this algorithm increases a lower bound on the log likelihood of
a deep belief network whose prior distribution over the top-most layer is
defined by an RBM, justifying the algorithm from a statistical point of view.
In practice, the greedy algorithm often learns deep belief networks that
appear to fit the training data well.

In discriminative applications, the greedy algorithm is used to initial-
ize the network’s parameters, which are later fine-tuned using backprop-
agation (Rumelhart, Hinton, & Williams, 1986) on a discriminative task.
The greedy algorithm has been applied successfully to several real-world
problems (Hinton & Salakhutdinov, 2006; Salakhutdinov & Hinton, 2007a),
including state-of-the-art digit recognition and document retrieval. The
greedy algorithm has also been used to learn kernels that significantly im-
prove the performance of gaussian processes on difficult tasks (compared
to standard kernels) (Salakhutdinov & Hinton, 2007b) and was shown to

Neural Computation 20, 2629–2636 (2008) C© 2008 Massachusetts Institute of Technology

2630 I. Sutskever and G. Hinton

be highly accurate on several hard problems (Bengio, Lamblin, Popovici,
& Larochelle, 2007; Larochelle, Erhan, Courville, Bergstra, & Bengio, 2007).
The potential of deep belief networks together with the limitations of ker-
nel methods (Bengio & Le Cun, 2007) have sparked an increased interest in
understanding the capabilities and properties of deep belief networks.

An obvious question posed by Le Roux and Bengio (2007) is whether
deep belief networks can approximate any distribution to arbitrary preci-
sion even when their width is limited.

Existing approximation results are unable to answer this question be-
cause they are applicable only to neural networks with a single layer of
exponential size (Hornik, Stinchcombe, & White, 1989; Le Roux & Bengio,
2007) or to exponentially deep narrow feedforward networks computing
input-output mappings (Rojas, 2003).

In this work we positively resolve this question. We show that for any
distribution over n-dimensional binary vectors, there is a deep belief net-
work with maximal layer width of size n + 1 and depth 3 · (2n − 1) + 1 that
approximates the distribution to any desired precision. We also show that
adding hidden layers always increases the representational power of the
deep belief network unless the network is already exponentially deep. In
addition, we introduce a simple greedy learning algorithm for learning a
network approximating any distribution.

2 Deep Belief Networks

Before we describe the constructions, we define deep belief networks
(henceforth, we use the terms sigmoid belief networks and deep belief networks
interchangeably). Sigmoid belief networks are described in full generality
by Neal (1990). In this note, we restrict ourselves to layered sigmoid belief
networks, in which the observed units (the outputs) are at the lowest layer.

Let g(x) = (1 + exp(−x))−1 be the logistic function, logit(y) be g’s inverse
function, so logit(g(x)) = x for all x, and V0, . . . , VN be a sequence of random
variables each of which is a binary vector,1 such that V0 is the visible layer
where the outputs of the generative model are observed and V1, . . . , VN are
the hidden layers. Each coordinate of Vk is also called a unit.

We consider probability distributions of the form

P(V0 = v0, . . . , VN = vN) =
N−1∏

i=0

Pi (Vi = vi | Vi+1 = vi+1)PN(VN = vN),

(2.1)

so that the distribution defined by P on V0 is just P(V0), which is the result
of marginalizing V1, . . . , VN.

1A binary vector is a member of the set {0, 1}d for some d > 0.

Deep Belief Networks Are Universal Approximators 2631

This distribution is that of a sigmoid belief network if for all i ,
Pi (Vi | Vi+1) is a factorial distribution with Pi ((Vi) j = 1 | Vi+1) = g((Wi ·
vi+1 + bi) j), where Wi and bi are the parameters of Pi : Wi is a matrix of
connection weights between layers Vi and Vi+1, and bi is a vector of biases
for Vi . Equivalently,

Pi (Vi = vi | Vi+1 = vi+1) =
di∏

j=1

g((2(vi) j − 1) · (Wi · vi+1 + bi) j) (2.2)

and

PN(VN = vN) =
dN∏

j=1

g((2(vN) j − 1) · (bN) j). (2.3)

In these equations, dk denotes the dimensionality of Vk . We call P(V0) the
visible distribution of the sigmoid belief network. This definition is a special
case of the usual definition of deep belief networks, which uses the marginal
distribution of an RBM for PN (Hinton et al., 2006; Hinton, 2002), because
RBMs can represent factorial distributions (such as equation 2.3) by setting
the weights on their connections to 0 and using only the biases.

We define the total input of a variable (Vi) j to be (Wi · vi+1 + bi) j . Note
that when the total input is very large and positive, (Vi) j is extremely likely
to take the value 1; if it is very large and negative, it is extremely likely to
take the value 0.

3 The Construction

3.1 The Basic Idea. Given an arbitrary distribution assigning nonzero
probability to a subset of binary vectors {x0, . . . , xM}, we might take a frac-
tion of the probability mass from x0 and give it to, say, xM+1, which is not in
the subset. If we are not restricted in the choice of xM+1 and the fraction of
the mass taken from x0 to xM+1, then any distribution can be constructed by
repeatedly applying this rule with different xM+1’s and different fractions as
long as x0 has enough initial probability mass. We call such a transformation
of a distribution sharing.

Suppose, for example, that we want to apply sharing steps to get
a distribution over the four binary vectors 00, 01, 10, 11 with probabili-
ties (.5, .2, .1, .2), that is, Pr (00) = .5, Pr (01) = .2, Pr (10) = .1, Pr (11) = .2,
where we let x0 = 00. We start with the initial distribution (1, 0, 0, 0), and
execute the following sharing steps:

� Distribution: (1, 0, 0, 0) (initial)
—Operation: Give 2/10 of the mass of x0 = 00 to x1 = 01.

2632 I. Sutskever and G. Hinton

Figure 1: A sigmoid belief network implementing sharing. If the input is not
x0, then A = 0, and the output is equal to the input. If the input is x0, then A = 1,
so B = 1 with probability p. If B = 1, then the output is equal to xM+1. B = 0
with probability 1 − p, in which case the output is equal to x0.

� Distribution: (.8, .2, 0, 0)
—Operation: Give 1/8 of the mass of x0 = 00 to x2 = 10.

� Distribution: (.7, .2, .1, 0)
—Operation: Give 2/7 of the mass of x0 = 00 to x3 = 11.

� Distribution: (.5, .2, .1, .2) (final)

Thus, to show that a sigmoid belief network can approximate any distri-
bution, it is enough to show that a sigmoid belief network can implement
sharing.

3.2 Implementing Sharing with a Sigmoid Belief Network. We now
show how a sigmoid belief network can approximate an arbitrary sharing
step to arbitrary accuracy using three layers. More specifically, we imple-
ment a distribution transformation that gives a fraction p of x0’s probabil-
ity mass to xM+1 and leaves all the other probabilities unchanged, where
x0, xM+1, and the fraction p are arbitrary. It is done it by implementing
the stochastic mapping Input → Output (where Input and Output are n-
dimensional binary vectors) such that if Input �= x0 then Output = Input,
and if Input = x0 then Output = xM+1 with probability p and Output = x0

with probability 1 − p.
Consider Figure 1. In the figure, there are four layers: Input, H1, H2, and

Output. Every pair of connected nodes acts as a flip-flop unit (except A and
B), so that a variable is equal to its parent with high probability, causing the
output layer to be equal to the input layer whenever B = 0. This is done

Deep Belief Networks Are Universal Approximators 2633

by setting the weights connecting the flip-flop units to 2w for some large w

and and setting the bias to −w. Increasing w allows us to make the failure
probability of each flip-flop arbitrarily small.

The variable A is equal to 1 if and only if the input layer is equal to x0.
It is implemented using a linear classifier that separates x0 from the rest of
the binary vectors with a positive margin. By multiplying the classifier’s
weights by a large factor w, this margin can be made as large as desired,
causing Ato be equal to 1 with overwhelming probability if the input vector
is equal to x0, and 0 with overwhelming probability otherwise.

We let B decide whether probability mass should be given to xM+1: if
B = 1, then the output equals xM+1, but if B = 0, then the output equals
the input. If A = 1, then the input layer is equal to x0, so we set B = 1 with
probability p, and when A = 0, then the input layer is not x0, so we set
B = 0. This is implemented by letting B have a large negative bias, −w, and
setting the connection from A to B to the weight w + logit(p) (logit is the
inverse of g). This way, if A = 0, B receives total input −w, which causes
it to be 0 with very high probability, but if A = 1, B receives total input of
size logit(p), so it is equal to 1 with probability g(logit(p)) = p.

B is connected to the output layer with weights of absolute value of size
2w, so that when B = 1, the output layer is set to xM+1 regardless the values
of the flip-flop units in the layer above, but if B = 0, then the output layer
is equal to the input layer.

This implements sharing: if the input is x0, A = 1, so B = 1 with proba-
bility p, which causes the output to be xM+1 with probability p; however,
with probability 1 − p, the output pattern stays equal to x0. This is how
x0’s probability is given to xM+1. Any other pattern (�=x0) does not activate
A and thus gets copied to the output layer, so the sharing implementation
does not change the probabilities of every vector that is not x0 or xM+1.

The construction is completed by specifying PN(VN), which assigns
overwhelming probability to the zero vector.2

Note that 2n − 1 sharing steps are sufficient to obtain any distribution
over n-dimensional binary vectors, and the output layer of one sharing step
implementation is the input layer of the next sharing step implementation,
so there are 3(2n − 1) + 1 layers (the +1 term exists because of the distribu-
tion PN). The approximation can be made arbitrarily accurate by making w

large.

3.3 Adding Hidden Layers Increases Representational Power. Con-
sider sigmoid belief networks with k layers of size n + 1 (the visible
layer V0 is also of size n + 1). Let Dk be the set of all distributions over
n + 1-dimensional binary vectors that can be approximated arbitrarily well

2Repeated applications of sharing can actually transform any distribution into any
other distribution, so this specification of PN is not essential.

2634 I. Sutskever and G. Hinton

by a sigmoid belief network of this size.3 For each distribution in Dk , we
compute its marginal distribution over its first n dimensions and get a set
of marginal distributions over n-dimensional binary vectors, which we call
D′

k .
It was known that adding hidden layers does not reduce the represen-

tational power of sigmoid belief networks (i.e., Dk ⊆ Dk+1) (Hinton et al.,
2006), but it was not known whether they increased it (i.e., Dk ⊂ Dk+1)
(Le Roux & Bengio, 2007). We will show that unless D′

k = ALLn, the set of
all distributions over n-dimensional binary vectors, then Dk �= Dk+1. Notice
that we do not show that D′

k �= D′
k+1, that is, that sigmoid belief networks

with an output layer of size n and hidden layers of size n + 1 get more
powerful with every new layer.

For the proof, suppose that Dk = Dk+1, namely, that for any sigmoid
belief network with k + 1 layers, there is a sigmoid belief network with k
layers with the same marginal distribution over the visible vectors V0. From
this, it follows that Dk+2 = Dk+1, since given a sigmoid belief network of
depth k + 2, we can replace the top k + 1 hidden layers (i.e., Vk+2, . . . , V1)
with k hidden layers (i.e., Vk+1, . . . , V1) such that the marginal distribution
on V1 is the same for both networks (because Dk = Dk+1 and all the layers
are of size n + 1). If we do not change the conditional probability of V0

given V1, we get the same marginal distribution on V0 but with k + 1 layers
instead of k + 2. Repeating this argument proves that Dk = D3(2n−1)+1, and
we have demonstrated that D′

3(2n−1)+1 = ALLn in the previous section. So
unless D′

k = ALLn, Dk �= Dk+1.
D′

k = ALLn is a strong condition that means that networks with k − 1
layers of size n + 1 and a visible layer of size n can approximate any distri-
bution over n-dimensional binary vectors. If this condition is not met, then
there is a deep belief network with k + 1 layers each of size n + 1 (none of
size n) whose marginal distribution over V0 cannot be approximated by a
deep belief network with k layers each of size n + 1.

This argument fails if, in the definition of Dk , V0 is an n-dimensional
binary vector and V1, V2, . . . are n + 1-dimensional, because it could no
longer be argued that if Dk = Dk+1 then Dk+1 = Dk+2, since the sigmoid
belief network that is replaced has n + 1 units in its visible vector and
not n.

4 A Greedy Version of the Construction

The construction above is top-down, while the greedy learning algorithm
that motivated it is bottom-up: an RBM learns the data distribution, trans-
forms it, and lets another RBM learn and transform the transformed

3Thus Dk is the topological closure of the set of all distributions that can be exactly
represented by a sigmoid belief network of this kind.

Deep Belief Networks Are Universal Approximators 2635

distribution, repeating this process as often as needed. In this section, we
show how a deep belief network approximating an arbitrary distribution
can be learned by a greedy, bottom-up algorithm that uses autoencoders
with hidden layers instead of RBMs.

We define the complexity of a distribution to be the number of configura-
tions to which the distribution assigns nonzero probability (i.e., the size of
the support of the distribution).

Let V and H be random n-dimensional binary vectors. Collapsing, to be
defined shortly, is a way to reduce the complexity of a distribution by 1.
Assume that the data distribution on V assigns probabilities p0, . . . , pM to
x0, . . . , xM. To collapse this distribution, apply the deterministic function
H = f (V) to V, where f (V) = V unless V = xM, in which case f (V) = x0.
As a result, the distribution over H assigns nonzero probability to only
x0, . . . , xM−1 (but not xM), x0 has probability p0 + pM under the collapsed
distribution, and the probabilities of x1, . . . , xM−1 are unchanged.

Collapsing is a special case of sharing where xM gives all of its proba-
bility mass to x0 and can be easily undone by a sharing step that takes the
appropriate amount of probability mass from x0 to xM.

Since the complexity of any distribution over n-dimensional binary vec-
tors is bounded by 2n, repeated (i.e., greedy) applications of collapsing will
eventually reduce the complexity of the distribution to 1, in which case the
distribution can be represented by biases that simply put all the probability
mass on a single vector. Because every collapsing step can be undone by an
appropriate sharing step, the sequential process of undoing all the collaps-
ing steps, starting with the simplest possible distribution (according to our
complexity measure), is in fact the generative process of a greedily trained
sigmoid belief network whose visible distribution is equal to the original
high-complexity distribution.

5 Conclusions and Open Questions

We have positively resolved the approximation properties of deep and
narrow sigmoid belief networks. The first natural question that arises is
whether every distribution in which every vector has nonzero probability
can be exactly represented as a deep belief network. The requirement of
each vector to have nonzero probability is necessary, since a sigmoid belief
network always assigns nonzero probabilities to all configurations. The
second question concerns the necessary depth of the network: given that a
network with 2n/n2 layers has about 2n parameters, can it be shown that
a deep and narrow (with width n + c) network of �2n/n2 layers cannot
approximate every distribution? What if the number of layers is of order
2n/n2? Finally, is it necessary to use hidden layers of width n + 1, or do
hidden layers of width n suffice?

2636 I. Sutskever and G. Hinton

References

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In M. I. Jordan, Y. Le Cun, & S. A. Solla (Eds.), Advances
in neural information processing systems, 19 (pp. 153–160). Cambridge, MA: MIT
Press.

Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou,
O. Chapelle, D. DeCoste, & J. Weston (Eds.), Large scale kernel machines (pp. 321–
359). Cambridge, MA: MIT Press.

Hinton, G. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8), 1771–1800.

Hinton, G., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief
nets. Neural Computation, 18(7), 1527–1554.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786), 504–507.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5), 359–366.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical
evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the Annual International Conference on Machine Learning (ICML-2007)
(pp. 473–480). N.p.: Omni Press.

Le Roux, N., & Bengio, Y. (2007). Representational power of restricted Boltzmann machines
and deep belief networks (Tech. Rep. 1294, DIRO). Montreal: University of Montreal.

Neal, R. (1990). Learning stochastic feedforward networks (Tech. Rep. CRG-TR-90-7).
Toronto: Department of Computer Science, University of Toronto.

Rojas, R. (2003). Networks of width one are universal classifiers. Proceedings of the
International Joint Conference on Neural Networks, 4, 3124–3127.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations
by back-propagating errors. Nature, 323(99), 533–536.

Salakhutdinov, R., & Hinton, G. (2007a). Semantic hashing. In Proceedings of the SIGIR
Workshop on Graphical Models. Amsterdam.

Salakhutdinov, R., & Hinton, G. (2007b). Using deep belief nets to learn covariance
kernels for gaussian processes. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis
(Eds.), Advances in neural information processing systems, 20. Cambridge, MA: MIT
Press.

Received November 21, 2007; accepted March 11, 2008.

