
Using Free Energies to Represent Q-values in a
Multiagent Reinforcement Learning Task

Brian Sallans
Department of Computer Science

University of Toronto
Toronto M5S 2Z9 Canada

sallans@cs.toronto.edu

Geoffrey E. Hinton
Gatsby Computational Neuroscience Unit

University College London
London WC1N 3AR U.K.

hinton@gatsby.ucl.ac.uk

Abstract

The problem of reinforcement learning in large factored Markov decision
processes is explored. The Q-value of a state-action pair is approximated
by the free energy of a product of experts network. Network parameters
are learned on-line using a modified SARSA algorithm which minimizes
the inconsistency of the Q-values of consecutive state-action pairs. Ac-
tions are chosen based on the current value estimates by fixing the current
state and sampling actions from the network using Gibbs sampling. The
algorithm is tested on a co-operative multi-agent task. The product of
experts model is found to perform comparably to table-based Q-learning
for small instances of the task, and continues to perform well when the
problem becomes too large for a table-based representation.

1 Introduction

Online Reinforcement Learning (RL) algorithms try to find a policy which maximizes the
expected time-discounted reward provided by the environment. They do this by performing
sample backups to learn a value function over states or state-action pairs [1]. If the decision
problem is Markov in the observed states, then the optimal value function over state-action
pairs (the Q-function) yields all of the information required to find the optimal policy for the
decision problem. For example, when the Q-function is represented as a table, the optimal
action for a given state can be found simply by searching the row of the table corresponding
to that state.

1.1 Factored Markov Decision Processes

In many cases the dimensionality of the problem makes a table representation impractical,
so a more compact representation that makes use of the structure inherent in the problem is
required. In a co-operative multi-agent system, for example, it is natural to represent both
the state and action as sets of variables (one for each agent). We expect that the mapping
from the combined states of all the agents to the combined actions of all the agents is not
arbitrary: Given an individual agent’s state, that agent’s action might be largely independent
of the other agents’ exact states and actions, at least for some regions of the combined state
space. We expect that a factored representation of the Q-value function will be appropriate



for two reasons: The original representation of the combined states and combined actions
is factored, and the ways in which the optimal actions of one agent are dependent on the
states and actions of other agents might be well captured by a small number of “hidden”
factors rather than the exponential number required to express arbitrary mappings.

1.2 Actor-Critic Architectures

If a non-linear function approximator is used to model the Q-function, then it is difficult
and time consuming to extract the policy directly from the Q-function because a non-linear
optimization must be solved for each action choice. One solution, called an actor-critic
architecture, is to use a separate function approximator to model the policy (i.e. to approxi-
mate the non-linear optimization) [2, 3]. This has the advantage of being fast, and allows us
to explicitly learn a stochastic policy, which can be advantageous if the underlying problem
is not strictly Markov [4]. However, a specific parameterized family of policies must be
chosen a priori.

Instead we present a method where the Q-value of a state-action pair is represented (up
to an additive constant) by the negative free-energy, �F , of the state-action pair under a
non-causal graphical model. The graphical model is a product of experts [5] which has two
very useful properties: Given a state-action pair, the exact free energy is easily computed,
and the derivative of this free energy w.r.t. each parameter of the network is also very
simple. The model is trained to minimize the inconsistency between the free-energy of a
state-action pair and the discounted free energy of the next state-action pair, taking into
account the immediate reinforcement. After training, a good action for a given state can
be found by clamping the state and drawing a sample of the action variables using Gibbs
sampling [6]. Although finding optimal actions would still be difficult for large problems,
selecting an action with a probability that is approximately proportional to exp(�F ) can
be done with a modest number of iterations of Gibbs sampling.

1.3 Markov Decision Processes

We will concentrate on finite, factored, Markov decision processes (factored MDPs), in
which each state and action is represented as a set of discrete variables. Formally, a factored
MDP consists of the set ffS�gM�=1; fA�g

N

�=1
; fs0�g

M
�=1; P; Prg, where: S� is the set of

possible values for state variable �; A� is the set of possible values for action variable �;
s0� is the initial value for state variable �; P is a transition distribution P (st+1jst; at); and
Pr is a reward distribution P (rtjst; at; st+1). A state is an M -tuple and an action is an
N -tuple.

The goal of solving an MDP is to find a policy, which is a sequence of (possibly stochastic)
mappings �t : S1 � S2 � ::: � SM ! A1 � A2 � ::: � AN which maximize the total
expected reward received over the course of the task:


Rt
�
�t

=


rt + 
rt+1 + :::+ 
T�trT

�
�t (1)

where 
 is a discount factor and h�i
�t denotes the expectation taken with respect to policy

�t. We will focus on the case when the policy is stationary: � t is identical for all t.

2 Approximating Q-values with a Product of Experts

As the number of state and action variables increases, a table representation quickly be-
comes intractable. We represent the value of a state and action as the negative free-energy
(up to a constant) under a product of experts model (see Figure 1(a)).

With a product of experts, the probability assigned to a state-action pair, (s; a) is just the
(normalized) product of the probabilities assigned to (s; a) under each of the individual



kh

state units action units

hidden units

b)a)

j

i

β
β

k

u

a
sβi

wβik
βjk

βj

Figure 1: a) The Boltzmann product of experts. The estimated Q-value (up to an additive
constant) of a setting of the state and action units is found by holding these units fixed
and computing the free energy of the network. Actions are selected by alternating between
updating all of the hidden units in parallel and updating all of the action units in parallel,
with the state units held constant. b) A multinomial state or action variable is represented
by a set of “one-of-n” binary units in which exactly one is on.

experts:

p(s; aj�1; :::; �K) =

QK

k=1
pk(s; aj�k)P

(s0;a0)

Q
k
pk(s0; a0j�k)

(2)

where f�1; :::; �Kg are parameters of the K experts and (s
0; a0) indexes all possible state-

action pairs.

In the following, we will assume that there are an equal number of state and action variables
(i.e. M = N ); and that each state or action variable has the same arity (8�; �; jS �

j = jS
�
j

and jA�
j = jA

�
j). These assumptions are appropriate, for example, when there is one state

and action variable for each agent in a multi-agent task. Extension to the general case is
straight forward. In the following, � will index agents.

Many kinds of “experts” could be used while still retaining the useful properties of the
PoE. We will focus on the case where each expert is a single binary sigmoid unit because
it is particularly suited to the discrete tasks we consider here. Each agent’s (multinomial)
state or action is represented using a “one-of-N” set of binary units which are constrained
so that exactly one of them is on. The product of experts is then a bipartite “Restricted
Boltzmann Machine” [5]. We use s�i to denote agent �’s ith state and a�j to denote its jth

action. We will denote the binary latent variables of the “experts” by h k (see Figure 1(b)).

For a state s = fs�ig and an action a = fa�jg, the free energy is given by the expected
energy given the posterior distribution of the hidden units minus the entropy of this poste-
rior distribution. This is simple to compute because the hidden units are independent in the
posterior distribution:

F (s; a) = �

KX
k=1

MX
�=1

0
@ jSjX

i=1

(w�iks�i
bhk + b�is�i) +

jAjX
j=1

(u�jka�j
bhk + b�ja�j )

1
A

�

KX
k=1

bkbhk +
KX
k=1

bhk logbhk + (1� bhk) log (1� bhk)� CF (3)



where w�ik is the weight from the kth expert to binary state variable s�i ; u�jk is the weight
from the kth expert to binary action variable a�j ; bk, b�i and b�j are biases; and

bhk = �

8<
:

MX
�=1

0
@ jSjX

i=1

w�iks�ik +

jAjX
j=1

u�jka�jk

1
A+ bk

9=
; (4)

is the expected value of each expert given the data where �(x) = 1=1 + e�x denotes the
logistic function. CF is an additive constant equal to the log of the partition function. The
first two terms of (3) corresponds to an unnormalized negative log-likelihood, and the third
to the negative entropy of the distribution over the hidden units given the data. The free
energy can be computed tractably because inference is tractable in a product of experts:
under the product model each expert is independent of the others given the data. We can
efficiently compute the exact free energy of a state and action under the product model, up
to an additive constant. The Q-function will be approximated by the negative free-energy
(or goodness), without the constant:

Q(s; a)
4

= �F (s; a) + CF (5)

2.1 Learning the Parameters

The parameters of the model must be adjusted so that the goodness of a state-action under
the product model corresponds to its actual Q-value. This is done with a modified SARSA
learning rule designed to minimize the Bellman error [7, 8]. If we consider a delta-rule
update where the target for input (st; at) is rt + 
Q(s

t+1; at+1), then (for example) the
update for w�ik is given by:

� w�ik /

�
rt + 
Q(s

t+1; at+1)�Q(s
t; at)

� @Q(s
t; at)

@ w�ik
(6)

@Q(s
t; at)

@ w�ik
= bhtkst�i (7)

The other weights and biases are updated similarly. Although there is no proof of conver-
gence for this learning rule, it works well in practice even though it ignores the effect of
changes in w�ik on Q(s

t+1; at+1).

2.2 Sampling Actions

Given a trained network and the current state s
t, we need to generate actions according

to their goodness. We would like to select actions according to a Boltzmann exploration
scheme in which the probability of selecting an action is proportional to eQ=T . This selec-
tion scheme has the desirable property that it optimizes the trade-off between the expected
payoff, Q, and the entropy of the selection distribution, where T is the relative importance
of exploration versus exploitation. Fortunately, the additive constant, C F , does not need
to be known in order to select actions in this way. It is sufficient to do alternating Gibbs
sampling. We start with an arbitrary initial action represented on the action units. Holding
the state units fixed we update all of the hidden units in parallel so that we get a sample
from the posterior distribution over the hidden units given the state and the action. Then we
update all of the action units in parallel so that we get a sample from the posterior distribu-
tion over actions given the states of the hidden units. When updating the states of the action
units, we use a “softmax” to enforce the one-of-N constraint within a set of binary units that
represent mutually exclusive actions of the same agent. When the alternating Gibbs sam-
pling reaches equilibrium it draws unbiased samples of actions according to their Q-value.
For the networks we used, 50 Gibbs iterations appeared to be sufficient to come close to
the equilibrium distribution.



3 Experimental Results

To test the algorithm we introduce a co-operative multi-agent task in which there are offen-
sive players trying to reach an end-zone, and defensive players trying to block them (see
Figure 2).

end-zone
blockers

agents

Figure 2: An example of the “blocker”
task. Agents must get past the blockers
to the end-zone. The blockers are pre-
programmed with a strategy to stop them,
but if they co-operate the blockers cannot
stop them all simultaneously.

The task is co-operative: As long as one agent reaches the end-zone, the “team” is re-
warded. The team receives a reward of +1 when an agent reaches the end-zone, and a
reward of �1 otherwise. The blockers are pre-programmed with a fixed blocking strategy.
Each agent occupies one square on the grid, and each blocker occupies three horizontally
adjacent squares. An agent cannot move into a square occupied by a blocker. The task has
wrap-around edge conditions on the east and west sides of the field, and the blockers and
agents can move north, south, east or west.

A product of experts (PoE) network with 4 hidden units was trained on a 5�4 blocker task
with two agents and one blocker. The combined state consisted of three position variables
(two agents and one blocker) which could take on integer values f1; :::; 20g. The combined
action consisted of two action variables taking on values from f1; :::; 4g.

The network was run for 1 million combined actions, with a learning rate of 0:1 and the
temperature going from 1:0 to 0:01 linearly over the course of training. Each trial was
terminated after either the end-zone was reached, or 20 combined actions were taken,
whichever occurred first. Each trial was initialized with the blocker placed randomly in
the top row and the agents placed randomly in the bottom row. The same learning rate
and temperature schedule were used to train a Q-learner with a table containing 128,000
elements (203 � 4

2). After training each policy was run for 10,000 steps, and all rewards
were totaled. The two algorithms were also compared to a hand-coded policy, where the
agents first move to opposite sides of the field and then move to the end-zone. In this case,
the two learning algorithms performed comparably.

A PoE network with 16 hidden units was trained on a 4� 7 blockers task with three agents
and two blockers. Again, the input consisted of position variables for each blocker and
agent, and and action variables for each agent. The network was trained for 4 million com-
bined actions, with a learning rate of 0:1 and the temperature going from 1:0 to 0:01 linearly
over the course of training. Each trial was terminated after either the end-zone was reached,
or 40 steps were taken, whichever occurred first. After training, the resultant policy was run
for 10,000 steps and the rewards received were totaled. As the table representation would
have over a billion elements (285 � 4

3), a table based Q-learner could not be trained for
comparison. The hand-coded policy moved agents 1, 2 and 3 to the left, middle and right
column respectively, and then moved all agents towards the end-zone. The PoE performed
comparably to this hand-coded policy. The results for all experiments are summarized in
Table 1.



Table 1: Experimental Results

Algorithm Reward

Random policy (5� 4, 2 agents, 1 blocker) -9980
hand-coded (5� 4, 2 agents, 1 blocker) -6844
Q-learning (5� 4, 2 agents, 1 blocker) -7154
PoE (5� 4, 2 agents, 1 blocker) -7100

Random policy (4� 7, 3 agents, 2 blockers) -9486
hand-coded (4� 7, 3 agents, 2 blockers) -6960
PoE (4� 7, 3 agents, 2 blockers) -6800

4 Discussion

Each hidden unit in the product model implements a probabilistic constraint that captures
one aspect of the relationship between combined states and combined actions in a good
policy. In practice the hidden units tend to represent particular strategies that are relevant
in particular parts of the combined state space. This suggests that the hidden units could
be used for hierarchical or temporal learning. A reinforcement learner could, for exam-
ple, learn the dynamics between hidden unit values (useful for POMDPs) and the rewards
associated with hidden unit activations.

Because the PoE network implicitly represents a joint probability distribution over state-
action pairs, it can be queried in ways that are not normally possible for an actor network.
Given any subset of state and action variables, the remainder can be sampled from the
network using Gibbs sampling. This makes it easy to answer questions of the form: “How
should agent 3 behave given fixed actions for agents 1 and 2?” or “I can see some of
the state variables but not others. What values would I most like to see for the others?”.
Further, because there is an efficient unsupervised learning algorithm for PoE networks, an
agent could improve its policy by watching another agent’s actions and making them more
probable under its own model.

There are a number of related works, both in the fields of reinforcement learning and un-
supervised learning. The SARSA algorithm is from [7, 8]. A delta-rule update similar to
ours was explored by [9] for POMDPs and Q-learning, and combined with a factored hid-
den state by [10]. Factored MDPs and function approximators have a long history in the
adaptive control and RL literature (see for example [11]).

Our method is also closely related to actor-critic methods [2, 3]. Normally with an actor-
critic method, the actor network can be viewed as a biased scheme for selecting actions
according to the value assigned by the critic. The selection is biased by the choice of pa-
rameterization. Our method of action selection is unbiased (if the Markov chain is allowed
to converge). Further, the resultant policy can potentially be much more complicated than
a typical parameterized actor network would allow. This is exactly the tradeoff explored in
the graphical models literature between the use of Monte Carlo inference [12] and varia-
tional approximations [13].

Our algorithm is also related to probability matching [14], in which good actions are made
more probable under the model, and the temperature at which the probability is computed is
slowly reduced over time in order to move from exploration to exploitation and avoid local
minima. Unlike our algorithm, the probability matching algorithm used a parameterized
distribution which was maximized using gradient descent, and it did not address temporal
credit assignment.



5 Conclusions

We have shown that a product of experts network can be used to learn the values of state-
action pairs (including temporal credit assignment) when both the states and actions have
a factored representation. An unbiased sample of actions can then be recovered with Gibbs
sampling and 50 iterations appear to be sufficient. The network performs as well as a table-
based Q-learner for small tasks, and continues to perform well when the task becomes too
large for a table-based representation.

Acknowledgments

We thank Peter Dayan, Zoubin Ghahramani and Andy Brown for helpful discussions. This
research was funded by NSERC Canada and the Gatsby Charitable Foundation.

References

[1] R.S Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve dif-
ficult learning control problems. IEEE Transactions on Systems, Man and Cybernetics, 13:835–
846, 1983.

[3] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Proc. International Conference on Machine Learning, 1990.

[4] Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforcement learning algorithm
for partially observable Markov decision problems. In Gerald Tesauro, David S. Touretzky, and
Todd K. Leen, editors, Advances in Neural Information Processing Systems, volume 7, pages
345–352. The MIT Press, Cambridge, 1995.

[5] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Technical
Report GCNU TR 2000-004, Gatsby Computational Neuroscience Unit, UCL, 2000.

[6] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741,
1984.

[7] G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical
Report CUED/F-INFENG/TR 166, Engineering Department, Cambridge University, 1994.

[8] R.S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. In Touretzky et al. [15], pages 1038–1044.

[9] M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning policies for partially observable
environments: Scaling up. In Proc. International Conference on Machine Learning, 1995.

[10] B. Sallans. Learning factored representations for partially observable Markov decision pro-
cesses. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information
Processing Systems, volume 12. The MIT Press, Cambridge, 2000.

[11] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

[12] R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71–113, 1992.

[13] T. S. Jaakkola. Variational Methods for Inference and Estimation in Graphical Models. De-
partment of Brain and Cognitive Sciences, MIT, Cambridge, MA, 1997. Ph.D. thesis.

[14] Philip N. Sabes and Michael I. Jordan. Reinforcement learning by probability matching. In
Touretzky et al. [15], pages 1080–1086.

[15] David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors. Advances in Neural
Information Processing Systems, volume 8. The MIT Press, Cambridge, 1996.


