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during the maggot’s explosive jump. The ants subsequently
failed to relocate their prey which landed several centimetres
away. Thus, the unpredictable nature and force of jumping may
prove to be an effective escape mechanism for fruit-fly larvae.

Given their total lack of appendages and their soft hydraulic-
based skeletal system, it is surprising that maggots jump”.
Indeed, jumping maggots appear to be the only known examples
of jumping by soft-bodied legless organisms. Other examples
of legless jumping are found in hard-bodied legged inverte-
brates, but these employ alternative mechanisms to jump (click
beetles®, springtails’, bristletails® and millipedes”). The jumping
performances of maggots and click beetles, together with two
other well known jumpers, are compared in Table 1.

In light of the ability of these maggots to jump, a caterpillar-
like body plan which uses hydraulic-based skeletal and locomo-
tory systems obviously does not preclude high-speed locomo-
tion'. In addition, the reported restrictions on stride length® are
overcome to a degree by caterpillars (Geometridae) and leeches
looping instead of crawling. Clearly, the hydraulic body of
caterpillar-like organisms is more versatile than was previously
believed. O
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Self-organizing neural network
that discovers surfaces in
random-dot stereograms
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THE standard form of back-propagation learning’ is implausible
as a model of perceptual learning because it requires an external
teacher to specify the desired output of the network. We show how
the external teacher can be replaced by internally derived teaching
signals. These signals are generated by using the assumption that
different parts of the perceptual input have common causes in the
external world. Small modules that look at separate but related
parts of the perceptual input discover these common causes by
striving to produce outputs that agree with each other (Fig. 1a).
The modules may look at different modalities (such as vision and
touch), or the same modality at different times (for example, the
consecutive two-dimensional views of a rotating three-dimensional
object), or even spatially adjacent parts of the same image. Our
simulations show that when our learning procedure is applied to
adjacent patches of two-dimensional images, it allows a neural
network that has no prior knowledge of the third dimension to
discover depth in random dot stereograms of curved surfaces.
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The simplest way to get the outputs of two modules to agree
is to use the squared difference between the outputs as a cost
function, and to adjust the weights (connection strengths) in
each module so as to minimize this cost. Unfortunately, this
usually causes each module to produce the same constant output
that is unaffected by the input to the module and therefore
conveys no information about it. What we want is for the outputs
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FIG. 1 a Two modules that look at separate but related parts of the
perceptual input and attempt to produce the same output. By differentiating
some measure of the agreement between the outputs, we can generate a
teaching signal that can be back-propagated through each module to compute
how to change the connection strengths. In our initial simulations the output
units are linear and the hidden units use the logistic nonlinearity y=
(1 +exp(—w+s— b))~ where w is the weight vector of a unit, s is the input
vector and b is the bias. b, Two modules that receive input from correspond-
ing parts of stereo images. The input pattern is an exampie of a random-dot
steogram of a surface which is curved in depth. A strip of curved surface
is generated by fitting a smooth curve (a cubic spline) to four or more controi
points whose depths are chosen at random. Random dots are scattered
sparsely on the surface strip, and a pair of stereo images is made by taking
two slightly different projections. The projections are filtered through a
gaussian and sampled at evenly spaced sample points. In our images,
disparity ranges continuously from —1 to +1 image pixels. The sample
values in corresponding patches of the two images are used as the inputs
to a module. For simplicity, we use image strips one pixel high. Each module
has one layer of hidden units, organized into clusters of three feature
detectors (units in the same cluster are shown in the same plane). Within
a cluster, the feature detectors have the same weights but the receptive
fields of neighbouring units (indicated by triangles) are translated by two
pixels. Because the three hidden units within a plane are constrained to
learn translated versions of the same feature, we have four planes to ailow
four different features to be learned. The learning algorithm adjusts the
weights in each module to maximize the agreement measure, /. The derivative
of / provides error signals that are propagated backwards® through the
layers of each module. After each weight update, we average corresponding
weights in all the modules to enforce the constraint that every module
computes exactly the same function of its input vector. We also average
corresponding weights of units in a cluster of three feature detectors. These
equality constraints reduce the number of free parameters that must be
learned which speeds the learning and limits the ability of the system to
discover spurious correlations in the data that are caused by the limited
size of the training set. To speed the learning further, we used a conjugate
gradient optimization method for updating the weights in the modules.
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FIG. 2 The output of a module as a function of the depth for 1,000 test
cases of random-dot stereograms of curves surfaces. Pairs of corresponding
hidden units were trained to maximize agreement using 20 iterations of
steepest descent learning. Then 10 conjugate gradient iterations (typically
about 250 function evaluations) were used to maximize agreement between
the outputs of neighbouring modules.

of two modules to agree closely (that is, to have a small expected
squared difference) relative to how much they both vary as the
input is varied. When this happens, the two modules must be
responding to something that is common to their two inputs. In
the special case when the outputs, a and b, of the two modules
are scalars, a good measure of agreement is

I=05l0g 24EP)
=0.5log Via—b) (1)

where V is the variance over the training cases. If @ and b are
both versions of the same underlying gaussian signal that have
been corrupted by independent gaussian noise, it can be shown
that I is the mutual information between the underlying signal
and the average of a and b (S.B. and G.E.H., unpublished
results). By maximizing I we force the two modules to extract
as pure a version as possible of the underlying common signal.

Just as back-propagation can be viewed as a multilayer non-
linear extension of linear regression because it minimizes a
squared error measure, the procedure we present here can be
seen as a multilayer nonlinear extension of statistical methods
such as canonical correlation or alternating conditional expecta-
tion® because it maximizes the normalized covariation between
the outputs.

In the following simulations, we used 1,000 training cases of
random-dot stereo images such as those shown in Fig. 1b. The
real-valued depth (relative to the plane of fixation) of each patch
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of the surface gives rise to a disparity between intensity peaks
in the left and right images. The disparity is the only property
that is coherent across each stereo image. We trained a network
that contained 10 modules using the architecture shown in Fig.
1b. Each module had one real-valued output and learned to
extract depth by trying to maximize agreement with the outputs
of immediately adjacent modules.

With random initial weights, the derivatives of I are tiny so
learning is very slow. We therefore introduced an initial learning
phase in which we trained corresponding pairs of units in the
hidden layers of neighbouring modules to agree. It is impossible
for these units to achieve very high agreement because an
intermediate layer is required to extract depth properly. Also
there is no pressure for different hidden units in the same module
to discover different features. But even modest depth tuning of
the hidden units makes the subsequent learning much easier for
the output units. During the second phase of the learning we
trained the output units of neighbouring modules to agree.
Derivatives of this agreement were propagated backwards
through the hidden layers to fine-tune the hidden units to be as
useful as possible to the output units. Output units became
accurately tuned to depth (Fig. 2).

So far, we have used a very simple model of coherence in
which an underlying parameter at one location is assumed to
be roughly equal to the parameter at a neighbouring location.
This model is fine for the depth of fronto-parallel surfaces but
it is far from the best model of slanted or curved surfaces.

FIG. 3 The architecture of the network used for discovering locally detectable
parameters that are linear combinations of nearby parameters. The network
consists of multiple copies of modules like those in Fig. 2 plus a layer of
interpolating units that are used for predicting the locally extracted para-
meter from several nearby parameters. We actually used 10 modules and
the central six modules tried to maximize agreement between their outputs
and contextually predicted values. We used weight averaging to constrain
the interpolating function to be identical for all modules. We tested this
mode! on several image ensembles with varying amounts of curvature, by
varying the number of control points used to generate the cubic spline
surfaces. After having been trained for 50 conjugate gradient iterations,
the four weights learned for the interpolating function were: Two control
points (CP): 0.256, 0.266, 0.258, 0.265; three CP: 0.018,0.516, 0.531, 0.011;
four CP: —0.147, 0.675, 0.656, —0.131; five CP: —0.244, 0.734, 0.746,
—0.256. As the curvature increases, a characteristic pattern emerges in
which positive weights are given to inputs coming from the immediately
adjacent modules, and smaller negative weights are given to inputs coming
from the more distant neighbours. The output of the interpolating units is
similar to the response profile shown in Fig. 3, but even more finely
depth-tuned. When we increase the difficulty of the learning problem by
making the random-dot densities greater, the network learns a qualitatively
similar interpolating function to the ones shown above but with smaller
weights. This is a sensible solution because when predicting a depth from
noisy estimates of nearby depths, the noise amplification is proportional to
the sum of the squares of the weights.
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FIG. 4 The depth-tuning curves of the four competing output units of a
module. The curves are averages over 1,000 test cases of random-dot
stereograms of curved surfaces. The training and test patterns were created
in the same manner as described in Fig. 2, but this time the disparity ranged
continuousily from —2 to +2 pixels. The agreement measure used for the
learning is a modified version of the function defined in equation (1). (S.B.
and G.E.H., manuscript in preparation).

Fortunately, we can use a far more general model of coherence
in which the parameter at one location is assumed to be an
unknown linear function of the parameters at nearby locations.
The particular linear function that is appropriate can be learned
by the network.

We used a network of the type shown in Fig. 3. The depth
computed locally by a module, b, was compared with the depth
predicted by a linear combination of the outputs of nearby
modules, a, and the network tried to maximize the agreement
between a and b. The contextual prediction, a, was produced
by computing a weighted sum of the outputs of two adjacent
modules on either side. The interpolating weights used in this
sum, and all the other weights in the network, were adjusted so
as to maximize agreement between locally computed and contex-
tually predicted depths. To speed the learning, we first trained
the lower layers of the network as before, so that agreement
was maximized between neighbouring locally computed out-
puts. This made it easier to learn good interpolating weights.
When the network was trained on stereograms of cubic surfaces,
it learned interpolating weights of —0.147, 0.675, 0.656, —0.131.
Given noise-free estimates of local depth, the optimal linear
interpolator for a cubic surface is —0.167, 0.667, 0.667, —0.167.

There are many possible variations of this learning procedure.
We assumed that the depth of a patch is represented by the
activity level of a single linear unit. An alternative representation,
which seems to be used by binocular cortical cells®, is to have
a population of units each of which is tuned to a range of depths.
This representation has a number of advantages, including the
ability to represent uncertainty by uniformity of activity across
the population. Our measure of agreement can be modified to
produce such population codes (Fig. 4).

We have described the learning procedure for modules which
each have a single real-valued output. For modules with several
real-valued outputs, the natural way to generalize the objective
function is to replace the variance by the determinant of the
covariance matrix. When this version of the procedure is applied
to an ensemble of images of the same two-dimensional shape
with different poses (that is, different positions, sizes and orienta-
tions), it extracts the four parameters of the pose, because
different local fragments of the object all agree on the pose of
the whole object®.

The procedure we have described was designed to eliminate
the need for an external teacher, but it may also overcome
another weakness of supervised learning procedures. A giobal
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external teaching signal causes interdependencies between all
the weights in the network which leads to slow learning in large
networks. If pairs of small modules can generate their own
teaching signals by trying to maximize agreement, many pairs
can learn in parallel without interference. Also, the outputs of
modules that have already learned can become the inputs to
other modules that look for more complex or longer-range
coherence. This should make learning much faster in very large
networks. OJ
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NEUROTRANSMISSION from mossy fibre terminals onto cerebel-
lar granule cells is almost certainly mediated by L-glutamate™?.
By taking advantage of the small soma size, limited number of
processes and short dendrite length of granule cells, we have
obtained high-resolution recordings of spontaneous miniature exci-
tatory postsynaptic currents (m.e.p.s.cs) and evoked currents in
thin cerebellar slices’. Miniature currents have a similar time-
course and pharmacology to evoked currents and consist of an
exceptionally fast non-NMDA (/N-methyl-D-aspartate) com-
ponent (measured rise-time, 200 ps; estimated pre-filtered rise-
time <100 ps; decay time constant, 7 = 1.0 ms), followed by 50 pS
NMDA channel openings that are directly resolvable. We could
find no evidence for the recent proposal that miniature currents
in granule cells are mediated solely by NMDA channels with a
novel time course®. The non-NMDA receptor component of
m.e.p.s.cs has a skewed amplitude distribution, which suggests
potential complications for quantal analysis. The difference in
time course between the m.e.p.s.cs reported here and other synaptic
currents in the brain®>~® could reflect differences in synaptic function
or electrotonic filtering; the relative contribution of these
possibilities has yet to be established.

Mossy fibre-granule cell synaptic transmission invariably pro-
duces dual component excitatory postsynaptic currents (e.p.s.cs)
(Fig. 1a, ¢). The fast component (mean +s.e.m., 1,700+ 300 pS;
n =22) is reversibly blocked by the non-NMDA receptor antag-
onists CNQX (6-cyano-7-nitro-quinoxaline-2,3-dione) and
NBQX (6-nitro-7-sulphamoyl-benzo(f)quinoxaline-2,3-dione)®
(3-10 uM; n=9; Fig. 15, d), whereas the slow component can
be reversibly and selectively inhibited by the NMDA receptor
antagonists APV® (10-20 uM; n = 14, Fig. 1a, b) and 7-chloro-
kynurenate (5-10 wM; n = 6), and by Mg>™ (1 mM, at negative
potentials). The pharmacologically isolated fast non-NMDA
component (Fig. 1a, ¢, inset) had a 10-90% rise-time of 410+
30 pus and decay time constant of 1.3+0.1 ms (monotonically
rising events, n = 15 cells); this contrasted with the characteristi-
cally slow rise (10-90% rise-time 9+1ms; n=7) and decay
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