USING NEURAL NETWORKS TO

MONITOR FOR RARE FAILURES

Geoffrey E. Hinton and Brendan J. Yrey
University of Toronto

SUMMARY

Neural networks are typically trained to perform a non-
. linear mapping from a set of measurements to a re-

sponse. For monitoring purposes, it would be useful to

learn a mapping from sensor values into the probability

that the plant was malfunctioning. For rare or unantic-.

ipated failures, however, this is infeasible because there

are few or no examples to use for training. This paper:
" describes a new type of neural nietwork that can be used-
“to extract the underlying regularities from a normally.
functioning system and then notice when these regular-;

‘ities are violated.

) INTRODUCTION

‘Artificial neural networks typically consist of many sim-
ple, neuren-like processing elements called “units” that
* interact using weighted connections. Each mnit has a
“state” or “activity level” that is determined by the in-
put received from other units in the network. There are
many possible variations within this general framework.
One common, simplifying assumption is that the com-
bined effects of the rest of the network on the 7™ unit
are mediated by a single scalar quantity, z;. This quan-
tity, which is called the “total input” of unit j, is usually
taken to be a linear function of the activity levels of the
units that provide input to j:

z;=b; + Zyiwij (1)

where y; is the state of the i** unit, wi; is the weight
on the connection from the i to the 7% unit and b; is
the bias of the 7** unit. The state of a unit is typically
defined to be a non-linear function of its total input.
For units with continuous states one typical non-linear
input-output function is the logistic function which has
a nice simple derivative

1.
St 9
Y; 1+e_;j ()
dy;
Et?j- = yi{l — ;) (3)'

Some artificial neural networks restrict the connectivity

to be feedforward whereas others allow cycles in the con-
nectivity so that the network state can follow complex
trajectories over time or settle down to a stable state
over many iterations. In this paper we focus on layered
feedforward networks. .

Neural network learning procedures can be divided into
three broad classes: Supervised procedures {i.e. classi-

fication or regression) which require a teacher to spec-

ify the desired output vector, reinforcement procedures
which enly require a single scalar evaluation of the good-
ness of the output, and unsupervised or self-supervised
procedures {probability density estimation) which con-
struct internal models that capture regularities in their
input vectors without receiving any additional informa-
tion. Most of this paper focuses on self-supervised learn-
ing. .

- The most widely used neural network learning procedure

is a called “backpropagation” [1}. It can be viewed as a
generalization of logistic regression to feedforward net-
works which have layers of hidden units between the in-
put and output units. Backpropagation is used to com-
pute the derivatives, with respect to the weights, of an
error ‘measure, F, which is usually the squared differ-
ence between the actual and the desired output of the
network. :

Tor each training case; ¢, we first use a forward pass,
starting at the input units, to compute the activity levels
of all the units in the network. Then we use a backward
pass, starting at the output units, to compute 3E/dy;
for all the hidden units. For a hidden unit, 7, in layer £
‘the only way it can affect the error is via its effects on-
the units, &, in the next layer, £ + 1. So we have

By % By dy; ;azy_k(l —ywp (4)

where the index ¢ has been suppressed for clarity. So if
OF [0y, is already known for all units in layer £4-1, it
is easy to compute the same quantify for units in layer
£. Notice that the computation performed during the
backward pass is very similar m form to the computa-

‘tion performed during the forward pass (though it prop-
‘agates error derivatives instead of activity levels, and it

is entirely linear in the error derivatives).

Once F/8y; is known for all of the units, it is straigh-
forward to compute &F[0w;;

08 _opdy s 0B
B~ By de; Dy~ 000 T)

In networks with hidden units, the error surface may
contain many local minima, so it is possible that steepest

"descent in weight space will get stuck at poor Iocal min- .

ima. In practice, this does not seem to be a serious prob-
lem. Backpropagation has been tried for a wide variety
of tasks and poor local minima are rarely encountered.
Starting with small random weights to break symme-
try, we typically find that the network produces differ-
ent solutions each time, but these solutions are typically

fairly similar in terms of their performance on traiming
and test sets. In practice, the most serious imitation
of backpropagation is the speed of convergence rather
than the presence of non-global minima. Cenvergence
time can be improved by using the gradient information
in more sophisticated ways, but for large netorks, much

‘bigger improvements are likely to result from using a

more modular approach.

SELF-SUPERVISED BACKPROPAGATION

Standard backpropagation is useful for classification or
regression but it is not so obvious how it can be used
for unsupervised learning in which there is no teacher to
specify the desired output for the training cases. The
trick is to use the input itself to do the supervision, us-
ing a multilayer “encoder” network in which the desired
output vector is identical with the input vector. The
network must learn to compute an approximation to the
identity mapping for all the input vectors in its train-
ing set, and if the middle layer of the network contains

fewer units than the input layer, the learning procedure

must construct a compact, invertible code for each inpui
vector.

The use of self-supervised backpropagation o construct
compact codes resembles the use of principal compo-

nents analysis to perform dimensionality reduction, but
it has the advantage that it allows the code to be a.

non-linear transformation of the input vector. Farly re-
search on self-supervised backpropagation focussed on
minirﬂizihg the squared error between the input to the
network and its reconstruction from the activities of the
Yidden units in the “code” layer. But if we take the cod-.
ing analogy seriously, we must also consider the cost of
- transmitting the hidden activities. In the coding frame-
work, the aim is to communicate the input vector to

["output;’ = input] :

i input wector]

Figure 1: A network which attempts to reconstruct
its input vector on its output units. If the units are
all linear, this network performs a version of principal
components analysis, with the weight vectors of the
hidden uniis corresponding to the principal compo-
nents. The squared reconstruction error of an input

" vector measures the squared distance of that vector
from the hyperplane spanned by the principal com-
ponents. This distance can be used to detect imput
vectors that are not typical of the training distribu-
tion, provided that distribution is weli-characterized
by the principal components.

a receiver using as few bits as possible. We do this by
sending the code plus the reconstruction error using that

. code. Minimizing the squared reconstruction error is

equivalent to minimizing the number of hits required io.
communicate this error when it is coded using & zero-
mean Gaussian. If we also minimize the number of bits
required to communicate the activities of the code units,
we get interesting algorithms for discovering non-linear
Jatent variables. In the special case in which the hid-
den units are linear and their activities are coded using
a Caussian this coding approach reduces to maximum
likelihood factor analysis.

The part of an encoder network which converts the code
back into a reconstruction of the input can he viewed
as a generative model because it converts the states of
hidden variables into an expected observation. The part
of an encoder network that converts the input into a
code is a “recognition” model. An interesting aspect
of self-supervised backpropagation is that each of these
two models is involved in training the other. It is not im-
mediately obvious how the recognition model relates to
standard statistical methods of fitting generative models
to data. It turns out that the recognition model can be
viewed as 2 way of using a neural network to approxi-
mate the E step of the EM algorithm which is a standard
statistical method of fitting models to data [2]. The use
of a separate recognition model allows EM to be applied
in situations where it is intractable to perform the E step
exactly [3, 4, 5.

In introducing the idea of self—‘superv-ised backpropaga-
tion, we assumed that the input would be reconstructed
on a different set of output units. For a biological sys-

tem it is more sensible to fold over the network shown
‘in figure 1 so that the input is reconstructed on the very

same units. The generative model then corresponds to
top-down weights from a hidden layer to the input and
the recognition model corresponds to bottom-up weights
from the input to the hidden layer. It is easy to gener-
alize this architecture to a hierarchical system in which
there are many levels of coding,.

STOCHASTIC GENERATIVE NETWORKS

" Instead of using deterministic neurons whose output is
" a real number as in equation 2, we can use stochastic bi-

nary neurons which use the same equation to determine
the probability of outputting a 1. Multilayer networks of

‘stochastic neurons can be used as top-down generative
‘models that transform random uncorrelated noise in the

top hidden layer into highly structured patterns in the
bottom, visible layer as shown in figure 2.

‘Given .a generative model of this kind parameterized by’

the top-down weights there is an obvious way to perform
unsupervised learning. The generative weights are ad-
justed to maximize the probability that the visible vec-
tors generated by the model would match the observed

data. If we could fit a yodel of this kind to typical vec-

tors of sensor values from a plant, we could then use

Lih

ooodooo
: 0;; generative

weights

elelolele

Figure 2: A stochastic network that generates data.
1f the weights can be set so that the generated data
resembles observed data, this network is a good
modeal of the observed data. 1t can then be used to
estimate the likelihood that data of unknown origin
came from the same source. In particular, a gener-
ative model of a normally functioning plant can be
used to estimate the likelikood that the current sen-
sor readings are normal.

i
'

the model to detect cases in which the sensor readings

‘departed significantly from the usual distribution.

Unfortunately, to compute the derivatives of the log;
probability of a visible vector, d, with respect to the gen--

erative weights, f, it is necessary to consider all possible
ways in which d could be generated. For each possible

binary representation e in the hidden units the deriva-.

tive needs to be weighted by the posterior probability of
a given d and 8

P(alf)P(d]a, 0)
Yo P(BI6)YP(d]5,9)

It is intractable to compute every P(ald,#), so instead
of minimizing — log P(d|#)}, we minimize an easily com-
puted upper bound on this quantity that depends on
-some additional parameters, ¢:

P(eld,8) =

(6)

P(d10,8) = — 3 Qald,) log P(e, dl6)

+ 2 Qeld, P log Qlald,é) (7)
If we view —log P(e,d|d) as an energy, F(dif,¢) is

a Helmholtz free energy and is equal to —log P{d|f)
when the distribution @{.|d, ¢) is the same as the poste-

rior distribution P(.|d,8). Otherwise, F(d|f#, $) exceeds

—log P(d|f) by the asymmetric divergence:

Q(ald, ¢)

P(ald, 6) @

Z Q{ald, $)tog Z———=
We restrict Q(.Jd, ¢) to be a product distribution within
each layer that is conditional on the binary states in the
layer below. We can then compute the distribution effi-
ciently using a bottom-up recognition network as shown
in figure 3. The recognition weights, ¢, take the binary
activities in one layer and stochastically produce binary
activities in the layer above using probabilities given by
a logistic function. So for a given visible vector, the

‘recognition weights may produce many different repre-

sentations in the hidden layers, but we can get an un-
biased sample from the distribution Q{.|d, ¢) in a single
bottom-up pass through the recognition net.

The highly restricted form of Q(.|d, #) means that even

if we use the optimal recognition weights, the gap be-
tween F(d|0,$) and —log P(d|f} is large for some gen-
erafive models. However, when F(d}#,¢) is minimized
with respect to the generative weights, these models can

be avoided.

F(d]#,¢) can be viewed as the expected number of bits
required to communicate a visible vector to a receiver.
First we use the recognition model to get a sample from
the distribution Q(.|d,#). Then, starting at the top
layer, we communicate the activities in each layer using
the top-down expectations generated from the already
comintnicated activities in the layer above. Using an
argument described in [5], it can be shown that the ef-
fective mimber of bits required for communicating the

staté of each binary unit is:

i 1— g
log 2 4 (1 — sp)1 9
selog - (1—sx) S (9)

“where s is the binary state of unit &, pr is the top-

down probability that s = 1 and gz is the bottom-up
probability that s = 1.

There is a very simple online algorithm that minimizes
F(d]8, $) with respect to the generative weights. We
simply use the recognition network to generate a sample
from the distribution Q(.|d, ¢} and then we adjust each
top-down weight using the delta rule: :

Aby; = esi(s; — pj)

where {; connects unit % to unit j and ¢ is a learning

(10)

rate,

It is much more difficult to exactly follow the gradient‘
of F(d|9,) with respect to the recognition weights, but’

lé)}er

recognition enerative .
welgéﬁts gwelghts

1 OOOO

Figure 3: A simple three layer Helmholtz machine
modeling the activity of 5 binary imputs (layer 1)
° using a two stage hierarchical model. Generative
_ weights () are shown as dashed lines, including the
generative biases, the only such input to the units
in the top layer. Recognition weights {¢) are shown
with solid lines.

there is a simple approximate method called the “wake-
sleep” algorithm [6]. In the “sleep” phase of the learn-
ing algorithm, we generate a stochastic sample from the
generative model and then we apply the delta rule to
increase the log probability that the recognition weights
would produce the correct activities in the layer above:

Agy; = esi(s; - ;) (11)

AN EASILY VISUALIZED EXAMPLE '

To demonstrate that the simple wake-sleep algorithm
can build good models of complicated high-dimensional
distributions, we applied it to images of handwritten dig-
its that were baken from the zip codes on real pieces of
US mail. For each digit class we trained a separate net-
work that had 64 input units for the 8 x 8 binary image
and three layers of hidden units containing 16, 16, and
4 hidden units [6}. After training, the network could be
run in top-down mode (the “sleep” phase) so.it was pos-
sible to get a good idea of the model it had extracted

simply by looking at the kinds of fantasy it generated.”

The fantasies generated by the model for a particular
digit class were almost always recognizable as instances
of that class (see figure 4), and each model captured the
variations in the style of its digit quite well.

Once we have a model for the images of a particular

digit class, we can use it to discriminate instances of
that class. When an image of a different digit class is

OO0 LBA0L8

20pICAIPL 20D
BOOODLDOVT D QFLB¥20H0JI4904
LIRS TIPS FESELr L ES TS s
PN S, ALY LEES T
AAZR3;A22222 ALOALLAT AL AR
22222224 LL22 REARZEEZBIDES
FIBIXNLZBZAS3Z B323ZFIIZFRIIA
BI3FIIHI™ISIITT ILFEISIFIARD
FHEY YA e LY Al 3 UG A
PR e e d FRAGY SV f AV
ISISESS5858 3550 G5y 2FLLITELS
FEELRS55ERFID - IFSSSSL8SeEEsl
LS CLLLEDESL Lol G Ll bl
LiblbEGo bbbl GUESCSLGhLELWE
F2NZ77A9N7 7 PEFRFNTTI?IT?
FZIICFTIIIIN NPTV IFT
FRLTBrIGRFABFY FIERPEBEBBERSL
FPBCRPTRYLILAE VEIFPrPRTEESFEF
PEIFFFALNS ST FPATAFPIXFFIPY
FIFIPRFIYIATT FPRIFIAFFIAPLY

Figu.r-e 4: Handwritten digits were normalized and -

binarized to produce 8 x 8 images. 24 images of each

digit are shown on the left. A separate network was
trained on 700 examples of each digit class-and af-
ter training the fantasies produced by these networlss
are shown on the right. The training of each net
required 500 “wake” passes through the 700 exam-
ples to train the generative weights, interleaved with
the same number of fantasies to train the recognition
weights. '

presented to the model it should find it much harder
to code. To test this idea we took some test images
that had not been used for training and presented each.
image to all ten networks. For each network we com-
puted the average description length of the image and
we picked the metwork that produced the shortest de-
scription length. This amounts to picking the network
that finds the image to be least abnormal. This gave an
error rate of 4.8% for these very difficult images which is
considerably better than we could achieve using nearest
neighbors or standard backpropagation networks.--De-
tails are given in [6]. :

CONCLUSION

The fact that we could discriminate digits so well using
this approach suggests that models of this kind should
also be good for detecting abnormal patterns of sensor
readings from complex plants. This in an application
area to which neural networks have not yet been widely
applied but for which they hold great promise.

Acknowledgements

This research was funded by the Institute for Robotics
and Intellipent Systems, the Information Technology Re-
search Center, and NSERC. Hinton is the Noranda fel-

:Iow of the Canadian Institute for Advanced Research.

References

L. Rumethart, D. E., Hinton, G. E., and Williams, R. J.
“Learning representations by back-propagaling er-
rors.” Nature, 323, 1986, pp. 533-536. .

2. Baum, L. E. and Eagon, J. A. “An inequality with
applications to statistical estimation for probabilis-
tic functions of Markov processes and to a model
for ecology.” Bulletin of the American Mathematical
Society, 73, 1967, pp. 360-363.

3. Dayan, P., Hinton, G. E., Neal, R., and Zemel, R.. 5.

“Helmholtz Machines.” Neural Computation, bf 7,
1995, pp. 1022-1037.

4. Zemel, R. 5. and Hinton, G. E. “Learning Population
Codes by Minimizing Description Length.” Neure!
Computation, 7, 1995, pp. 549-564.

5. Hinfon, G. E. and Zemel, R. 5. “Autoencoders, Min-
imum Description Length, and Helmholtz Free En-
ergy.” Advances in Neuwral Information Processing
Systerns 6. J. D. Cowan, G. Tesauro and J. Alspec-
tor (Eds.), Morgan Kaufmann: San Mateo, CA. 1994

6. Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R.
“The wake-sleep algorithm for self-erganizing neural
networks.” Science, 268, 1995, pp. 1158-1161.

