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Abstract

A mixtures-ol-experts model is modified with a new gating net in place of the old one. The
modified model is trained by an EM algorithm and thus can automatically guarantee the conver-
gence without any external help. The model with the old gating net does not share this property
and needs to heuristically select a suitable learning stepsize to guarantee the convergence in its
learning by either gradient or TRLS algorithm. Experiments have also shown that the use of
EM algorithm can considerably speed up the whole learning process. Furthermore, the modified
model with its EM learning is also proposed to tackle the tasks of piecewise nonlinear approx-
imations by using polynemial, trigeometry, or other prespecified basis functions. Finally, the
differences of our model to a related model have been elaborated.




1 Mixtures-of-Experts and Its EM Learning

Miztures of Ezperts is a modular architecture (Jacobs, Jordan, Nowlan & Hinton, 1991) which
outperforms a single multilayer net in tackling a complex task that consists of several simpler

problems. It implements the following mixture conditional probabilistic model:
K
P(ylm, e) = Zgj(ma V)P(y|$a gj)a
. i=1 :
_1L 1 -
P(ylz,0;) = (2rdetl) eap{~5[y — fi(e, w)] T7 [y ~ fi(z, w)l}- g

with © consisting of », {#,}, and 8; consisting of {w;}{, {3, | fi(z,w;) is the output of the

j-th expert net. g;(z,v),j=1,---, K are given by the so call softmax function
K ,
gi(z,v) = P 37 M), @)
~ t=1

of B;(z,v),j =1, -+, K — the outputs of a single feedfarward net called gating net. The gating net
acts as a stochastic gate (switch) which selects the output of the j-th expert net with probability
P(ile) = g;(z, ).

The output of Miztures of Fzperts can be one of the following three modes:

K
o(z) = E(ylz,0)= Zgj(m,u)E(y|m,9j), regression function,
j=1
E(ylz, 0.}, with P(j% = j) = g;(z,v), stochastic switching,
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E(y|z, 0;.), with j* = arg Maz; g;j(z,v). (3) |
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The regression function mode is commonly used. Recently, Ghahramani & Jordan (1993) have
shown that the last two modes are better for implementing one-to-many mappings. _
The entire parameter set © is estimated by the rule of Maximum Likelihood(ML). That is,

given a training set {y(*}, e}, we find a ©* which maximizes the following likelihood function:

N
L= Zln P(y(t)|:c(t), o). ' (4)

i=1
Jacobs, Jordan, Nowlan & Hinton (1991) proposed a gradient ascent algorithm to maximize L. The
Expectation-Maximization (EM) algorithm (Dempster, Lair and Rubin, 1977} is a typical iterative
techniqﬁe for ML estimation. Recently Jordan & Jacobs (1993) have used EM to the prdblem eq.(4)
with a considerably improved convergence speed. The readers are referred to Jordan & Xu(1993)

and Xu & Jordan (1993) for a detailed introduction on EM and some new theoretical results.




Given the current estimate @}, the EM procedure for the problem eq.{4) consists of two steps.

(1) E-step. First, for each pair {z(®, y®}, we compute

g3 (21, ) PyO}e®, 6)

’ . ®)
S 00, 1) P02, )

(%) Y _ i —
1 (yW]e®) = P(jla, y ) =
Then, we form a set of new objective functions

- N
Qx;) = Y AP (P20 P, 05), j=1,--, K;

7
t=1

: N K .
Q(v) = ZZh‘(jk)(y(t)lm(t))]ngﬁk)($(t)!y(k))' ' (6)

t=1j=1

2). M-step. Find a new estimate ©W+1) = [{glF+D) K vH0Y with
¥ J=1
9§k+1) = arg Mazg; Q3(0;),7=1,---, K; 50D = arg Maz, Q9(v). (7)

Each maximization in eq.(7) will encounter two possibilities: able or unable to be solved ana-
lytically. When f;{z, w;) is linear with respect to 8; {e.g., f;{z,w;) = wf[:::, 1), Mazg, Q5(0;) is
salved by ana,lytically- solving Z—‘j}i = 0. When fj(2,w;} is nonlinear with respect to w;, however,
this maximization can not be solved analytically. Moreover, due to the nonlinearity of softmax

eq.(2), the maximization Meaz, Q9(v) is insolvable analytically in any cases. For an analytically

insolvable maximization, two extensions can be made. One is to use one of the conventional iter-

ative optimization techniques (e.g., gradient ascent) to run an inner- loop iteration to solve this

maximization. The other is , by some way, to find a new estimate such that
e etk - :hy g
Q™) 2 Q0,5 = 1, Ky Q) 2 Q2w ). (8)

without requiring the satisfaction of eq.(7). According to Dempster, Lair and Rubin (1977), the
algorithms that keep eq.(7) satisfied are called as EM, and the algorithms that keep only eq.(8)

but not eq.(7) satisfied as the Generalized EM (GEM). Considering the difference between EM.

algorithms with and without inner-loop iterations made in the M step, we call the algorithm with
all the maximization in eq.(7) being analytically solvable as single-loop EM, and the algorithms
with inner—looﬁ iteration as double-loop EM. |

Jordan & Jacobs (1993) considered the case of linear §;(z,v) = u;fr[:c, 1} with » = [vq, - ',-I/K]
and semi-linear f; (wf[a:, 1]) with nonlinear f;(.). They proposed a double-loop EM algorithm by
using the [terative Recursive Least S(juare (IRLS) method to implement the inner-loop iteration.

For the more general cases of §;{z,v) and f;(z,6;), Jordan & Xu (1993) have further showed that
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an extended TRLS can be used for this inner loop. Actually, it can also be shown that IRLS and

the extension are equivalent to solving eq.(6) by the so called Fisher Scoring method.

2 A New Gating Net and An Alternative EM Learning

For the original model discussed above, its gating net eq.(2} will cause one disadvantage. The
nonlinearity of softmaz makes the analytical solution of Maz, Qf(r) impossible even for the simple
and useful cases that f;(z,v) = 1/}1[93,1] and fj('a:(t),wj) = wf[a:, 1]. That is, we do not have a
single-loop EM algorithm for training this model even when all the maximizations related to expert
nets are analytical solvable. We need to use either double-loop EM or GEM. Although it was shown
by Dempster, Lair and Rubin (1977) that both EM (including single and double loop ones) and
GEM will let the likelihood L keep satisfying L(@F+1) > L(©*)) 1, their convergence properties
and computing costs are quite different. For a single-loop EM, the convergence is guaranteed
automatically without any external helps and regardless any initials. For a double-loop EM, eg.,
the IRLS loop of Jordan & Jacobs (1993), the replacement of a single M-step by a whole convergence
process of an inner-loop iteration will increase the computational costs considerably. Moreover, in
order to guarantee the convergence of the inner loép, some safeguard measures (e.g., appropriately
choosing the learning stepsize) are needed to ensure the inner-loop convergence, which will further
increase computing costs. Ior a GEM, in its M step, a new estimate that satisfies eq.(7) is actually
made by a nonlinear optimization technique. In general, the use of any existing optimization
techniques needs some external and heuristic control or extensive extra searchiné; to guarantee the
satisfaction of eq.(7); and also the convergence speed of the whole outer-loop iteration is usually
guite slow. - |

To overcome this disadvantage of the original gating net eq.(2}, we propose a new gating net

model
gi(e,v) = a; P(elvi)/ Ty ciPlaln), i =1,0520 :
P(zlrs) = a;(v) " b (@)ep{e;(v) Tt (2)}, bi(@) 2 0, aj(v5) = [ bte)eap{e;(v;)Tt; (2} dz (9)
where v = {aj,v5,j = 1,---,K}. P(z,v;)’s are density functions from the exponential family.
" a;(),6;(.),¢i(.), t;(.) are prespecified functions. f;{x) is a sufficient statistics. The exponential

family covers most useful density functions in practice. The commonly used one is Gausstan density

1 ,
P(z|vj) = (2r det Ej)‘% exp{—é(w - mj)TE;'I(m —m;)}, ¥j is positive definite (10)

!1.e., the convergence is guaranteed




with v; consisting of m;, X;. _
In eq.(9), g;(z, ») is actually the posteriori probability P(j|z) that z is assigned to the partition

corresponding to the j-th expert net, obtained from Bayesian law

gi(z,v) = P(j|z) = a; P(z|v;)/P(z,v), Plz,v)= Zaz a:|u,) (11)
=1

Inserting this g;(2,») into the model eq.(1), we get
K

Pl 0) = 3 25 Py is, 0), (12)

If we directly put this P(y|z,®) into eq.(4) and use the EM technique to this ML problem, we
will again find that the maximization Maz, Q9(v) is analytically insolvable too. To avoid this

difficulty, we rewrite eq.(12) into an equivalent form

K .
Py, z) = P(y|lz,@)P(z,v) = ZajP(:v]yj)P(yh:, 8;), (13)
J=1
Assume that we have already known the parameters {o;}, {515, {6;1F, then by taking integral
over y on the both sides of eq.(13), we have P(z,v) = Zf:—.l ajP(z|v;). This suggests that we can
easily obtain the model eq.(12) from eq.(13)—an asymmetrical representation of joint density.

Therefore, we cna accordingly modify eq.(4) into the following likelihood function:

Zln P(y (t) (t)) — iln{za P( (t)|V )P(J(t}[ﬂ"‘(t 9} (14)

t=1 F=1
With some derivations, we can obtain the two steps of the EM procedure for this ML problem.

(1) E-step.
(k)P( {t)|V3('k)) (y ()| (8), 9( ))

Ez_l fe's k)P(:L‘(t)lyi(]‘)) (y(t)ia(t) 9(1»))

W (1) = (15)

By letting both the numerator and denominator of eq.(15) be divided by P(z) and noticing eq.(11},
we can find that eq.(15) is identical to eq.(5). In addition, the objective functions Q%(8;),7 =
1,---,K are the same as given in eq.(6). While the objective function Q9(») can be further

decomposed into

N
Qi) = PPV PV, j=1, K

=1

N K
Q" = ZZhgk)(y(t)tw(t))lnaj, with o = {ay,---,agx}. (16}

t=1 j=1




(2). M-step. Find a new estimate with

9§k+1) = aryg Mamgj Q;"(BJ),] =1,--, K;

E .
VJ(' L arg Maz,, _Q?(_Uj),] =1, K;
K

o) = arg Maz, Q%, st. > a; = L. _ (17)
j=1 :
The maximization for the expert nets keep the same as in eq.(7). However, For the gating net

all the maximizations now become analytically solvable as long as P(z|v;) is from the exponential

family eq.(9). That is, we have

N

(k1) _ G (8|22 (20

v; Et—- h(k)(y(f)lx(t) ;h (' )z )t ; (=),

B+1) (*) |

o - N;hj (¥ ]z, _ (18)

Particularly, when P(z|v;) is Gaussian density eq.(10), the above first formula become

(k1) _ 1 (8) (., (D () (1)
m: = Y h} y z T,
! ¥ hﬁ-‘)(y%(t)); 7 T
1 N y y
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3 1]£\1=1 hgk)(y(t)lﬂ-(t)); i (y i.fC )[(E 5 ][2' 3 ] ( )

We show the results of a computer experiment by the above EM algorithm on the modified
model in comparison with the original model with its EM learning. As shown in Fig.1{a), we have
1000 training points for learning an univariate mapping function which consists of two pieces of
segments of lineé,r regression functions. We consider such a mixture-of-experts model with K=2.
For expert nets, each P(y|z,8;) is Gaussian given by eq.(1) with linear f;(z,w;) = w?[:v, 1]. For
the new gating net, each P(z,v;) in eq.(9) is Gaussian given by eq.(10). For the old gating net
eq.(2), Bi(z, ) = 0 and Ba(z,v) = v1[z, 1].

The two lines through the clouds in Fig.1(a) are the estimated models of two expert nets. The
ones obtained by the new and old learnings are almost the same. However, the learning speeds
are considerably different. As shown in Fig.1(b), the new learning takes k=15 iterations when
the log-likelthood converges to th.e value of —1271.8. It takes about 1351383 flops before getting
converged?. For the old learning, we use the IRLS algorithm given in Jordan & Jacobs (1993) for

the inner loop iteration. In experiments, we found that it usually took a large number of iterations

?Fach operation of real addition, subtraction, multiplication and division is one flop, counted by the software
PRO-MATLAB of MathWorks, Inc. '




' for. the inner lobp to converge. To save computations, we limit the maximum number of iterations -
by Tmez = 10. We found that this did not obviously influence the total performance, but can save
a lot of computations. From Fig.1(b), we see that its outer-loop converges around 16 iterations.
Each inner-loop takes 290498 flops and the entire process takes 5312695 flops. So, we see that
the new learning get about 4648608/1441475 = 3.9 times speeding up® |

Moreover, there is no need for any external adjustment to ensure the convergence of the new
learning. However, for the old learning we {ound the direct use of IRLS will make the inner- loop
diverge. A rescaling of the stepsize along the updating direction obtained by IRLS should be
selected appropriately. If the scaling factor is not small enough, the inner loop is still unstable and
will not converge. In our experiments, we choose the factor as 0.01. Usually, one needs a number
of tries to get it appropriate. It certainly will cost more computations.

One disadvantage of the new gating net is that its number of parameters is K (1+ d/2+ d*/2)

in comparison with (X — 1)d required by the old gating net, where d is the dimension of =.

3 Piecewise Nonlinear Function Approximation

In the EM learning for either the modified model or the original model, in order to make the learning

problem can be solved by a single-loop EM algorithm instead of a double-loop EM or GEM, the

maximization Mazg; Q5(6;),7 =1,---, K givenin eq.(6) should be analytically solvable. Therefore,

the output of each expert net is usnally assumed to be the simple form f;(z,w;) = 'w}"[w, 1]. Of

course, this is a very useful case, in which the mixture-of-experts as a whole implements a soft

version of piecewise linear approximation of nonlinear function. However, this is not the only case

that single-loop EM applies. Here, we show that the modiﬁed model with a single loop EM can
actually apply to a wide class of piecewise nonlinear function approximation problérﬁ .

Assume we have

filw wg) = 3 wi i (w) + wo; = wi[$i(2), 1y (20)

with ¢; ;(z) being prespecified functions of z as a set of basis. It is not difficult to see that the re-
sulted maximization problems Mazy, Q%(6;),7 = 1,---, K in eq.{6) will still become weighted least
square problems which can be solved analytically. In fact, this case is equivalent to first transform-

ing input z into ' by 2} = ¢; ;(z) and then inputing 2’ into expert nets with f;(2',w;) = w?[:c’, 1].

®In fig.1(b), one can observe that the converged value of the likelihood the original model is slightly better than
the new model, the reason is that eq.(14) is not exactly equivalent to eq.(13) for a finite training set.




However, this transformation can considerably generalize the model’s function approximation abil-
ity. -

One very useful special case is that ¢; ;{z) is canonical polynomial terms gtz r > 0. In
this case, we can expect that the mixture-of-experts model will implement piecewise polynomial
approximations. Another useful case is that ¢; j(z) is [T;sin}(jwz1)cos}(jmz1),r; > 0. In this
case, the mixture-of- experts will implement piecewise trigeometric approximations. Furthermore,

#: ;(z) may also be some more complicated basis functions. In addition, we can also mixedly use

polynomial, trigeometric, and other basis functions in different expert nets or even in a same expert -

net to set up a hybrid model. As a result, we can expect that the model’s approximation ability
will greatly increased. 7 | _

Figs.2(a)&(b) show the results of an computer experiment for piecewise polynomial approx-
imation. The modified model with its EM learning proposed in the previous section is used.
As shown in Fig.2(a), we have 1000 training points for learning an univaria:te mapping func-
tion which consists of two pieces of 3-rd polynomial functions. We consider such a mixture-of-
experts model with K = 2. For expert nets, each P(y|z,#;) is Gaussian given by eq.(1} with
file,w;) = ws ;2% + wo ;2% + w2+ woj. In the new gating net eq.(9), each P(z,v;) is again
Gaussian given by eq.(10).

The two curves through the clouds in Fig.2(a) are the estimated models of two expert nets. As
shown in Fig.2(b), the log-likelihood converges to the value of —608.3 after about & = 5 iterations.
The converged parameters for two experts nets are wy = [w3 1, Wa,1, W11, wp,1] = [0.7639, 0.0422,
0.4321,0.1932] and we = [wa2, wa2, w13, wo2] = [—0.014, —0.6751,0.4321,0.1932]. we see from
these parameters and Fig.?(b) that the higher order nonlinear regression has been made quite well.

Figs.3(a)& (b) show that results of an experiments on the same data in Fig.2(a) by using the

modified model with linear f;(z,w;) = 'w?[:r, 1), i.e., the same model as used in the previous section

on data in Fig.1(a). From either the two estimated lines in Fig.3(a) or the converged likelihood.

value, we can see that the approximation is obviously worse than the results obtained in Figs.2(a)

& 2(b).
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4 Diﬂ'ereﬁces from A Related Model

Recently, Ghahramani & Jordan {1993) propose to solve function approximation via estimating

joint density based on the mixture (3aussians
P(y,z,0) = Z a;P(y,x,8;), where P(y,z,8;) is Gaussian density N(m;,X;).

First, they use EM algorithm for ML estimation of the model’s parameters, which are further

partitioned into m; = ; -and 29 = E;‘T Z:.Ty . Then, they get the linear regressions
mY / /
] J 7

and weights

E(ylz,8;) = m!+EP(E)Ha-m?), j=1,--,K
Wiz = ( |m“"3 E”) =1,---, K, P(z|m%, Ex) is Gaussian density N(m E@).)
.z i:l P(a,]mi i 1.)’ J ’ y 44, i mg,

Third, they put E(y|z, ;) into eq.(3) with w;, replacing g;(z,») in order to get the output for
function approximation in one of the three modes.

In the special case that (a) P(z|v;) in eq.(9) is Gaussian, (b) @y = -+ = oy, {c) P(y|z,8;) is
Gaussian, and (d) fi{z,w;) = w;;-r[a:, 1], then our method given in sec.2 provides the same result
as Ghahramani & Jordan (1993) although the parameterizations of the two methods are different.
Furthermore, it is also possible to replace wjz in eq.(21) by a;P(z|m}, E‘”)/E v, a; P(z|mf, 3F)
to let the two methods keep equivalent for the cases of unequal priori «;.

However, the Gaussian Mixtures method of Ghahramani & Jordan (1993) does not apply the
following three types of more general cases that our method are able to solve: '

(1) The cases that f;(z, w;) = w}"[@ (z), 1], i.e., the cases that make piecewise nonlinear function
approximation discussed in the previous section. In these cases, even when both .P(z|v;) and
P(y|x,8;) are Gaussians, the joint density P(y,x|v;,6;) is no longer Gaussian. So, eq.(13) is not
(Gaussian Mixtures. -

(2) The cases that P(z|v;) is from exponential family but not Gaussian. As we discussed in
sec.2, our EM learning works still in the éases. However, the joint density P(y,z|v;, ;) is now no
longer GGaussian too. o

(3) The general cases that fi{z,w;) is nonlinear with respect to w; or that P(y,z|v;,0;) is
not Gaussian. In these cases, eq.(13) is certainly not Gaussian Mixtures. Although we have no
a single-loop EM to tackle the tasks, we can still use a double-loop EM with IRLS (or extended
TRLS) to solve the problems. |




Finally, we like to point out that the method proposed in sec.2 can also be extended to the
" hierarchical architecture for mixtures-of-experts of Jacobs&Jordan (1993} so that single-loop EM
can be used to facilitate its training. In addition, by using f;(z, w;) = w}"[qu(m), 1], we can expect
to implement tree structure nonlinear approximation by polynomial or trigeometric basis functions

piecewisely.
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Figure 1: (a) 1000 samples from y = a1z + a2 + €,61 = 0.8,a3 = 0.4,z € [—1,1.5] with prior
o =025 and y = &{z+ @) +¢,0] = 0.8,ay =" 2.4,z € [1,4] with prior oy = 0.75, where z is
uniform random variable and z is from Gaussian N(0,0.3). The two lines through the clouds are
the estimated models of two expert nets. The ones obtained by the two learning are almost the
same. (b) The changes of the log-likelihood as the iteration goes. The solid line is for the modified
learning. The dotted line is for the original learning (the outer-loop iteration
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Figure 2: Piecewise 3rd polynomial approximation. {a) 1000 samples from y = 12> + a3z + a4 +
g,z € [~1,1.5] with prior a; = 0.4 and y = aha® + ah2? + af + ¢,z € [1,4] with prior az = 0.6,
where 2 is uniform random variable and z is from Gaussian N(0,0.15). The two curves throigh
the clouds are the estimated models of two expert nets. (b) The changes of the log-likelihood as
the iteration goes.
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Figure 3: Piecewise linear approximation. {a) The two lines estimated for two expert nets. (b) The

changes of the log-likelihood as the iteration goes.
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