
LEARNING A BETTER REPRESENTATION OF SPEECH SOUND WAVES USING
RESTRICTED BOLTZMANN MACHINES

Navdeep Jaitly, Geoffrey Hinton

Department of Computer Science, University of Toronto, Toronto, M5S 3G4, Canada

ABSTRACT

State of the art speech recognition systems rely on pre-
processed speech features such as Mel cepstrum or linear
predictive coding coefficients that collapse high dimensional
speech sound waves into low dimensional encodings. While
these have been successfully applied in speech recognition
systems, such low dimensional encodings may lose some
relevant information and express other information in a way
that makes it difficult to use for discrimination. Higher di-
mensional encodings could both improve performance in
recognition tasks, and also be applied to speech synthesis by
better modeling the statistical structure of the sound waves. In
this paper we present a novel approach for modeling speech
sound waves using a Restricted Boltzmann machine (RBM)
with a novel type of hidden variable and we report initial re-
sults demonstrating phoneme recognition performance better
than the current state-of-the-art for methods based on Mel
cepstrum coefficients.

Index Terms— Restricted Boltzmann Machine, RBM,
phoneme recognition, TIMIT

1. INTRODUCTION

Speech sound waves have complex distributions that have
long evaded statistical modeling at the level of raw signals.
To avoid these complexities automated speech recognition
systems typically use low-dimensional speech encodings
such as Mel frequency scale cepstral coefficients (MFCC),
linear predictive coding (LPC) or perceptual linear prediction
(PLP). With the advent of new machine learning algorithms
such as Independent Components Analysis [1] some progress
has been made in learning to extract features directly from
the sound wave [2, 3]. There is, however, room for further
progress in developing more refined generative models of raw
speech that can be used both for generating speech and for
tasks such as automated speech recognition [4].

Restricted Boltzmann Machines (RBMs) are undirected
graphical models that use hidden/latent variables in energy
based models to achieve highly expressive marginal distri-
butions [5]. Although maximum likelihood learning is in-
tractable in these models, the Contrastive Divergence (CD)
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algorithm [6] has been shown to be very effective in train-
ing RBMs to model a variety of high dimensional data dis-
tributions such as images and image transformations [7, 8].
Several RBMs can be stacked on top of each other such that
higher level RBMs learn to model the posterior distributions
of the hidden variables of the lower level RBMs. This stack-
ing process has the property that, under certain conditions,
adding another RBM to the stack creates a new composite
model, called a Deep Belief Net (DBN) that has a better lower
bound on the log probability of the training data than the pre-
vious DBN. DBN’s trained on MFCCs [9] or Mel scale filter
banks [10] create high-level features that can be used to pre-
dict a posterior distribution over the states of an HMM, and
after fine-tuning with backpropagation, these multilayer neu-
ral networks outperform all other speaker-independent meth-
ods for recognizing phones on the TIMIT database. Similarly
DBN’s have been trained on spectrograms [11] and applied to
several audio classification tasks.

In this paper we use an RBM to model raw speech signals
and show that it can be trained effectively using the CD al-
gorithm. By better capturing the statistics of raw signals we
hope to learn features that are more relevant to recognition
tasks than the traditional features such as mel filter banks.
Indeed, we show that the detected features can be used to
achieve better performance in phoneme recognition on the
TIMIT corpus 1 than most of the state of the art speaker-
independent systems built on mel filter banks and MFCCs.

2. PROBABILISTIC MODEL

We start by briefly describing our model in this section and
then describe the algorithm for learning the parameters of the
model in the next section (see [7] for a detailed descriptionof
the model).

Let v represent a fragment of speech signal of length100
samples representing 6.25ms at 16KHz. We model the prob-
ability distribution of such fragments on the TIMIT corpus
using an RBM which is an energy based model that has hid-
den (latent) variablesh, and visible (observed) variables,v.
Each joint configuration of these variables is assigned an en-

1(http://www.ldc.upenn.edu/Catalog/CatalogEntry.
jsp?catalogId=LDC93S1)



Fig. 1. RBM is used to model fragments of speech signals.

ergy,E(v,h), and the probabilities of joint configurations are
defined by a Boltzmann distribution:

p(v,h) =
1

Z
e−E(v,h) (1)

whereZ is the partition functionZ =
∑

(v,h) exp(−E(v,h)).
For a Gaussian-Bernoulli RBM, where the visible vari-

ables,v, are linear, and the hidden variables,h, are binary,
the energy of a joint configuration is:

E(v,h;Θ) = −v
T
Wh+

1

σ2
‖ v − b ‖2 −h

T
a (2)

where, the matrixW represents interaction strengths be-
tween different visible variables (rows) and hidden variables
(columns).b anda represent the visible and hidden biases,
andΘ = {W,b,a}2. The conditional distribution of the
visible variables, given the hidden variables is the Gaussian
N(σ2

Wh+ b;σ2
I).

It is possible to replace an individual binary hidden unit by
an infinite number of binary variables coupled together with
the same incoming weights but with biases stepped down-
wards by 1 (starting at -0.5). It was shown in [7] that such a
coupled set of binary variables, called Stepped Sigmoid Units
(SSUs), has the property that the distribution of the sum of
activities of the coupled units can be closely approximated
by a rectified linear unit whose value ismax(0, N(x, σ(x)),
wherex represents the input into each of the binary variables
(without addition of any bias) andσ(x) is the logistic sigmoid
function. In this paper, we use this approximation to train a
Gaussian-SSU RBM to model the raw speech signal.

3. LEARNING

The gradient of the log of the probability of the training data
w.r.t. a weight parameter,wij ∈ W is as follows [6]:

∂

∂wij

log p(v;Θ) =< vihj >data − < vihj >model (3)

2Some authors use a parameterization in which the weight matrix isσW

Fig. 2. 40 randomly selected features (top), and DFT of cor-
responding features (bottom). Features with a bimodal DFT
may be features that are modeling vowels.

where<>data denotes the expectation under the distribution
of h, conditioned on the data vector,v, and<>model denotes
the expectation under the models’ distribution over all joint
configurations(v,h).
The first term in equation 3 is easy to compute because the
hidden units are conditionally independent given a visible
vector. The second term is exponentially expensive to com-
pute exactly, but a crude and very cheap approximation called
“Contrastive Divergence” (CD) works surprisingly well for
learning [6]. For each training vector,v, in a randomly se-
lected mini-batch, we sample the sum of activities of the
SSUs conditioned onv using the rectified linear approxima-
tion mentioned above. Then we resample the visible states
from their distribution conditioned on the hidden states toget
a “reconstruction”v′. Finally we resample the hidden states
conditioned onv′ to geth′, and use the resampled visible
and hidden states in the second term of equation 3 instead of
using the correct expectations. The biases are learned in the
same way by simply omitting either the visible or the hidden



# hiddens window include # hiddens PER(%)
in NN width & ∆,∆∆ in RBM

stride (ms) validation test
1000 10:5 No 120 25.8
2000 23.9
3000 23.7
2000 10:5 No 120 23.9

25:10 24.9
2000 25:10 No 120 24.9

Yes 23.2
2000 25:10 Yes 80 25.9

120 23.2 24.9
160 23.4

4000 10:5 Yes 120 21.5 22.8

Table 1. Table showing results of different settings on PER
using only two hidden layers

states from equation 3. In addition, for this paper, we learnt
the parameter,σ, by using the difference∂E(v′,h′)/∂σ -
∂E(v,h)/∂σ with a very small learning rate.

4. EXPERIMENTS
We trained the above model using training data from the
TIMIT database. A Graphical Processing Unit (GPU) in an
NVIDIA Tesla S1070 system was used to perform the bulk of
the computations (matrix multiplications and sampling) using
the Cudamat library [12].

4.1. RBM Training

The entire TIMIT training dataset was normalized to have a
standard deviation of 10. Normalization is essential to pre-
vent saturation of hidden units, which produces small learn-
ing signal. A standard deviation of 10 was found to give
lower percentage reconstruction error than other values, with
the parameter initializations we were using. An RBM with
100 Gaussian visibles and 120 SSU hiddens was initialized
with weights drawn fromN(0, .012) and hidden biases drawn
from p(a) = 2 exp(−2a). Stochastic gradient descent was
performed using mini-batches of 100 randomly selected win-
dows of speech (which were thus in any random phase with
respect to the start of the parent sentences). We used a mo-
mentum of 0.5 and a learning rate of10−4 (see [13] for de-
tails). The training time was chosen so that each point in the
training set was sampled 30 times, on average. Figure 2 shows
40 features selected at random and their fourier transforms.

4.2. Phoneme Recognition using the Features

A baseline model with 61 mono-phone HMMs with 3 states
for each phoneme was created for the TIMIT database as de-
scribed in [9]. ‘Correct” labels for each 10ms segment of
speech in the TIMIT database was found by a forced align-
ment to this model. We trained a neural network to predict
the posterior probabilities over the phoneme labels from the
forced aligment. For this we created input for the neural net-
work from the inputs to the features learnt above, as follows.
Each sentence was first converted into a series of frames, with

consecutive frames overlapping by99 samples. For each fea-
ture, the absolute value of input from contiguous frames were
averaged over a window that corresponded to 10ms of speech.
Such averaged frames were created starting at every consec-
utive 5ms. 24 frames (corresponding to a total signal length
of 125ms) were concatenated and used as input to predict the
phoneme label of the middle frame. Each dimension of the
input vector to the neural network was log transformed (val-
ues of 0 were replaced with small values) and standardized to
have a mean of 0 and a standard deviation of 1. Alternative
settings of the subsampling width and frame-advance stride
were also considered (see below).

Averages of absolute inputs to the SSU features rather
than activations of the features were used because they were
seen to outperform the latter. Since the presence of a pattern is
more important than the sign of the pattern in the speech sig-
nal, this is not surprising. Averaging is beneficial becausethe
encoding produced is not affected by phase, and because aver-
aging enhances the S/N of the signal. Instead of averaging of
features values (input or rectified), an alternative would have
been to concatenate the feature activations at different frames
into one large vector. However, this would create a very high
dimensional input to the neural network. Averaging features
keeps the number of visible units down to an amenable value.

A two hidden-layer, feed-forward neural network with a
“softmax” output layer was trained with back-propagation to
predict 183 phone labels. Stochastic gradient descent was
used with a mini-batch size of 200 randomly chosen train-
ing cases. The parameters at the end of each epoch were used
to compute phoneme label probabilities on the development
set and these probabilities were decoded using a bigram lan-
guage model to get a phoneme error rate (PER). The parame-
ters which resulted in the lowest PER on the development set
were used to compute the PER on the test set.
We conducted experiments to determine the architecture of
the neural network, and preprocessing of the features that op-
timized the PER on the development set. Table 1 shows the
effect of varying the number of hidden units in each layer
of the feed-forward neural network, the window width and
stride, the presence of∆ and∆∆ features3 the number of
hidden features in the RBM. Without∆ features, smaller sub-
sampling windows of 10 ms with a stride of 5ms appear to
perform better than the larger windows. With∆ features,
however, the input vector for the discriminative neural net-
work has 8280 components and more hidden nodes (4000)
are needed to learn a good function. Using a neural network
with three hidden layers that was pretrained as a Deep Belief
Net results in a PER of 20.6% on the validation set and 21.8%
on the test-set. Table 2 shows a comparison of the reported re-
sults from several methods.

3∆ and∆∆ are computed from the first and second derivative, repec-
tively of values of features, with respect to time



Method PER
Large-Margin GMM[14] 30.1%
CD-HMM[15] 27.3%
Augmented Conditional Random Fields[15] 26.6%
Recurrent Neural Nets[16] 26.1%
Bayesian Triphone HMM[17] 25.6%
Monophone HTMs[18] 24.8%
Heterogenous Classifiers[19] 24.4%
Deep Belief Networks (bounding silences ignored)[9]23.0%
DBN using RBM on Raw Speech (this work) 21.8%
DBN using mean covariance RBM on mel filter banks20.5%

Table 2. Reported accuraccy of different methods.

5. CONCLUSIONS AND FUTURE WORK

We have described how to learn an undirected generative
model of the distribution of short segments of the speech
sound wave. The model learns interesting features and when
these features are used for phoneme recognition on the TIMIT
benchmark, they already give results that are better than the
state of the art methods using MFCCs, even though we are
using the features in a rather naive way. There are many
promising variations of our approach that have yet to be tried
and we anticipate significant improvements in recognition
rates from some of these variations. We are also exploring the
use of our features for speech generation and single-source
speaker separation.

6. REFERENCES

[1] A.J. Bell and T.J. Sejnowski, “An information-
maximization approach to blind separation and blind de-
convolution,” NEURAL COMPUTATION, vol. 7, pp.
1129–1159, 1995.

[2] M. S. Lewicki, “Efficient coding of natural sounds,”
Nature Neuroscience, vol. 5, no. 4, pp. 356–363, April
2002.

[3] J. Lee, H. Jung, T. Lee, and S. Lee, “Speech feature ex-
traction using independent component analysis,” 2000,
vol. 3, pp. 1631 –1634 vol.3.

[4] M. S. Lewicki, “Information theory: A signal take on
speech,”Nature, vol. 466, no. 7308, pp. 821–822, Au-
gust 2010.

[5] P. Smolensky, “Information processing in dynamical
systems: Foundations of harmony theory,” inParallel
Distributed Processing: Volume 1: Foundations, D. E.
Rumelhart, J. L. McClelland, et al., Eds., pp. 194–281.
MIT Press, Cambridge, 1986.

[6] G. Hinton, “Training products of experts by minimizing
contrastive divergence,”Neural Computation, vol. 14,
pp. 2002, 2000.

[7] V. Nair and G.E. Hinton, “Rectified linear units improve
Restricted Boltzmann machines,” inICML, 2010, pp.
807–814.

[8] R. Memisevic and G.E. Hinton, “Learning to repre-
sent spatial transformations with factored higher-order
Boltzmann machines,”Neural Computation, vol. 22, no.
6, pp. 1473–1492, June 2010.

[9] A. Mohamed, G.E. Dahl, and G. E. Hinton, “Deep be-
lief networks for phone recognition,” inNIPS Workshop
on Deep Learning for Speech Recognition and Related
Applications, 2009.

[10] A. Mohamed G. Dahl, M. Ranzato and G. Hinton,
“Phone recognition with the mean-covariance restricted
boltzmann machine,” inAdvances in Neural Informa-
tion Processing Systems 23, NIPS’10, 2010, vol. 23.

[11] P. Pham H. Lee, Y. Largman and A. Ng, “Unsuper-
vised feature learning for audio classification using con-
volutional deep belief networks,” inAdvances in Neu-
ral Information Processing Systems 22, NIPS’09, 2009,
vol. 22.

[12] V. Mnih, “Cudamat: a cuda-based matrix class for
python,” Tech. Rep. 004, Department of Computer Sci-
ence, University of Toronto, 2009.

[13] G. Hinton, “A practical guide to training Restricted
Boltzmann Machines,” Tech. Rep. 003, Department of
Computer Science, University of Toronto, 2010.

[14] F. Sha and L.K. Saul, “Large margin gaussian mixture
modeling for phonetic classification and recognition,”
may. 2006, vol. 1, pp. I –I.

[15] Y. Hifny and S. Renals, “Speech recognition using
augmented conditional random fields,”Trans. Audio,
Speech and Lang. Proc., vol. 17, no. 2, pp. 354–365,
2009.

[16] T. Robinson, “An application of recurrent nets to phone
probability estimation,” IEEE Transactions on Neural
Networks, vol. 5, pp. 298–305, 1994.

[17] J. Ming and F.J. Smith, “Improved phone recognition
using bayesian triphone models,” may. 1998, vol. 1, pp.
409 –412 vol.1.

[18] L. Deng and D. Yu, “Use of differential cepstra as acous-
tic features in hidden trajectory modeling for phonetic
recognition,” apr. 2007, vol. 4, pp. IV–445 –IV–448.

[19] A.K. Halberstadt and J.R. Glass, “Heterogeneous mea-
surements and multiple classifiers for speech recogni-
tion,” 1998, vol. 1, p. 0396.


