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Abstract .

Modelers have come up with many different learning rules
for neural networks. When a teacher specifies the correct
output, error-driven rules work betier than pure Hebb
rules in which the changes in synapse strength depend on
the correlation between pre and postsynaptic activities. But
for unsupervised learning, Hebb rules can be very effective
if they are combined with suitable normalization or
“unlearning” terms to prevent the synapses growing with-
out bound. Hebb rules that use rates of change of activity

. instead of activity itself are useful for discovering perceptu-
al invariants and may also provide a way of implementing
error-driven learning.

It would be truly wonderful if randomly connected
neural networks could turn themselves into useful
computing devices by using some simple rule to modi-
..1y.the strengihs of synapses. - This was the hope that lay
behind the original Hebb learning rule and it is the
-vision that has driven neural network modelers for
half a century. Initially, researchers tried simulaiing
various rules to see what would happen. After a
decade or two of messing around, researchers realized
that there was a much better way to explore the space
of possible learning rules: First write down an objec-
tive function (a2 quantitative definition of how well the
network is performing) and then use elementary cal-
culus to derive a learning rule that will improve the
objective function. For the last few decades, the big
theoretical advances in learning rules for neural net-
works have been associated with new optimization
methods and new ideas about what objective function
should be optimized.

If we think of a neural network as a device for con-
verting input vectors into output vectors, it is obvious

that one sensible objective is to minimize some mea-

sure of the difference between the output the network
actually produces and the output it ought to produce.
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This approach led to effective “error-driven” learning
rules such as the Widrow-Hoff rule (Widrow & Hoff,
1960} and the perceptron convergence procedure
(Rosenblatt, 1961) and it was later generalized to mul-
tilayer networks by using backpropagation of the
errors (o get training signals for intermediate “hid-
den” layers (Rumelhart, Hinton, & Williams, 1986).
Within the neural network community, the “Hebbian”
approach of using the product of pre and postsynaptic
activities to drive learning was seen as inferior to error-
driven methods that use the product of the presynap-
tic activity and the postsynaptic activity derfvative — the
rate at which the objective function changes as the
postsynaptic activity is changed. Even when the task
was merely to associate random input vectors with ran-
dom output vectors, it was shown that an error-driven
rule worked much better than a Hebbian rule.
Unfortunately, error-driven learning has some seri-
ous drawbacks. It requires a teacher to specify the
right answer and it is hard to see how neurons could
implement the backpropagation required by multlay-
er versions. It is possible to get the teaching signal
from the data itself by trying to predict the next term
in a temporal seqlie_nce (Elman, 1991) or by trying to
reconstruct the input data at the output (Hinton,
1989) but it is also possible to use quite different

- objective functions for learning. Some of these alier-

native objective functions lead to learning rules that
are far more Hebbian in flavour.

A common objective in processing high-dimension-
al data is to reduce the dimensionality without losing
the ability to reconstruct the raw data from the
reduced representation. If we measure the accuracy of
the reconstruction by the squared error, the optimal
strategy is to extract the principal components — the
dominant directions of variation in the data. Oja
(1982) showed how to extract the first principal com-
ponent using Hebbian learning to maximize the
squared output of a neuron combined with normaliza-
tion of the synapse strengths to prevent them growing
without bound. Sanger (1989) showed that lateral
inhibition between neurons can be used to make them
extract several different principal components.

Another objective that might have appealed to
Hebb is to create a set of attractor states in a nonlinear
network. Leading researchers (Marr, Palm, & Poggio,

- 1978) speculated that it would be very hard to analyze
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and manipulate the dynamical behaviour of networks '

of binary threshold neurons with recurrent intercon-

nections, but in 1982, Hopfield pointed out that if the

connections were symmetrical the network would set-
tle down into states that were local minima of a simple
“energy function.” Moreover, niew minima could be

‘created by simple Hebbian learning. So the activity

dynamics of a network with fixed weights could imple-
ment the retrieval of 2 memory from a corrupted or
incomplete version of the memory, and Hebbian
learning could be used to store new memories.

Hopfield networks introduced an extra level of
complexity by using one objective function — the ener-
gy — to determine the fast dynamics of the neural
activities and a quite different objective function — the
proximity of the energy minima to the vectors that
need to be stored — to determine the slow dynamics of
the synapse strengths. Hinton and Sejnowski (1986)
realized that Hopfield nets could be generalized by
adding noise to the activity dynamics, so that instead
of simply settling to a point atiractor, the “Bolizmann
machine” would wander around among its various
possible activity states spending most of its time in low
energy states but occastonally visiting higher energy
ones. If the network is divided into a set of “visible”
units that represent the sensory input and a set of hid-
den units whose states represent an interpretation of
the sensory input, the stochastic dynamics can be
mterpreted as a way of sampling various possible inter-
pretations of the sensory data. An interpretation that
has energy E will get sampled with a probability pro-
portional to exp(-E) that corresponds exactly to correct
Bayesian inference if the probability of an interpreta-
tion is proportional to exp(-E). 7

The fact that the stochastic dynamics of the activi-

ties perform Bayesian inference is appealing but it

also justifies a simple Hebbian learning rule. With a
sensory input vector clamped on the visible neurons,
we run the stochastic activity dynamics for a while and
then we increment the weight between any two neu-
rons that are active at the same time. This is the
purest form of Hebbian learning and it does not work
because the weights just keep growing until all the
newrons are turned on all the time. So we add anoth-
er, anti-Hebbian term to the learning rule. We run
the stochastic dynamics without clamping the visible
neurons and we decrement the weights beiween neu-
rons that are simultaneously active. This may look like
an optimistic hack designed to fix up an obviously
deficient learning rule (Hopfield, Feinstein, & Palmer,
1983) but it is actually exactly the right thing to do if
want the learning to minimize a very sensible objective
function. We can think of the neural network as hav-
ing a model that specifies the probability of each pos-
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sible sensory activity vector and the objective of learn-

-ing is to make the probabilities in the model match

the probabilities with which sensory activity vectors
actually occur.

According to the model, the probability of a senso-
ry vector is just the sum of the probabilities of all pos-
sible interpretations of that vector. The Flebbian part
of the learning rule samples the interpretations in
proportion to their probabilities and lowers the ener-
gies of the sampled interpretations by increasing the
weights between active neurons. The anti-Hebbian
part of the rule is required because the probability of
a state of the network depends not only on the energy
of that state but also on the energy of all the alterna-
tive states. So in addition to lowering the energy of a
state, it is necessary to raise the energy of all the alter-
natives, and this is what the anti-Hebbian learning is
doing. To suminarize: Boltzmann machines can per-
form unsupervised learning of distributed representa-
tions using a simple, local learning rule that combines
Hebbian and anti-Hebbian terms and they have a neat
mathematical justification in which the learning rule
amounts (o following the gradient of a sensible objec-
tive function.

Boltzmann machines are slow because the stochas-
tic dynamics need to run for a while hefore interpreta-
tions are sampled with the right probability, but it has
recently been shown that a modification to the objec-
tive function allows the same learning rule to work
even when the stochastic dynamics are only run for a
couple of time steps (Hinton, 20602).

There is another objective function that has been
influential in theoretical neuroscience. Sensory data

“is highly redundant, so it can be compressed by map-

ping it into a code in which the individual compo-
nents of the code vectors are statistically independent
(Barlow, 1961). This is obviously sensible for squeez-
ing information through a limited channel such as the
optic nerve, and it explains many properties of retinal
ganglion cells. But it is also useful for discovering
what caused the sensory data if we assume that causes
tend to be independent of one another. At first
glance, the objective of achieving independence
seems very different from the objective of matching
the probability distribution defined by a model to the
probability distribution of the observed data, but the
two are actually equivalent if we treat the observed
data as the output of a stochastic generative model
that converts configurations of statistically indepen-
dent causes into sensory data. There is therefore a
surprisingly close link between the old psychological
idea of analysis-by-synthesis and Barlow’s ideas about
redundancy reduction. Over the last decade,
researchers have discovered efficient ways of perform-
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ing Independent Components Analysis (ICA) - learn-

ing a set of filters that produce statistically indepen-
dent outputs when they are applied to structured
datasets (Bell & Sejnowski, 1995). When ICA is
applied to natural images, the filters resemble those
found in visual cortex (Olshausen & Field, 1996) and
they even arrange themselves into topographic maps
if an extra term is added to encourage filters to be
physically close to one another if they take on extreme
values at the same time (Hyvarinen, Hoyer, & Inki,
2001). Unfortunately, the synaptic learning rule for
ICA is not particularly simple because it requires the
postsynaptic neuron to know about more than just the
activity of the presynaptic neuron.

Minimizing the redundancy between the compo-
nents of code vectors whilst ensuring that each com-
ponent varies as the data vary has the effect of maxi-
mizing the information that the code vector conveys
about the sensory input. An interesting alternative is
to maximize the information that one code vector
conveys about the next one. This objective function is
subtly different from simply trying to predict the next
sensory input vector. It encourages the network to
extract from the sensory input a representation of
those aspects that are predictable and to ignore those
aspects that are random. An especially simple version
of this approach assumes that some features of the
sensory input do not change over short time periods.
When observing a moving rigid object, for example,
the retinal image changes but the shape of the object

does not, so features that act as invariant shape -

descriptors can be learned by a simple synaptic learn-
ing rule that treats the rate of change in the output of
a neuron as the error signal (Becker & Hinton, 1992;
Foldiak, 1991; Stone, 1996; Wiskott & Sejnowski,
2002). To prevent the weights all becoming zero, it is
necessary to add a term that encourages the output to
change significantly over longer time periods.

- Treating the rate of change of the output as an

. error derivative solves the problem of how the output

of a neuron can communicate both a value and an
error derivative with respect to that value. Moreover,
it makes it feasible to perform backpropagation of
error derivatives in a more realistic way. Suppose
there is a backward connection from neuron j to neu-
ron ¢ that has learned to have a weight proportional to
the weight of the forward connection. Using this
backward connection, the output of neuron j can be
provided as additional input to neuron i via a “differ-
ential” synapse that injects an amount of charge that is

_ proportional to the rate of change of its presynaptic

input. So long as neuron i has a smooth activation
function and so long as the top-down effect is small,
the additional top-down input to neuron i will cause a

change in its output that corresponds to the back-

propagated error derivative with respect to the total

input, Starting with a representation of the derivative
of the error with respect to the total input to unit 7, we
have computed the derivative of the error with respect
to the total input to unit ¢ in the previous layer, The
learning rule for the forward connection uses the
product of the presynaptic activity with the rate of
change of the postsynaptic activity. The learning rule
for the backward connection is the same except that
the neuron that was postsynaptic is now presynaptic
and vice versa. Curiously, recent research on real

_ synapses suggests that modification rules involving

temporal derivatives may not be nearly as farfetched
as they seemed in the early days of backpropagation. .

- The theory of learning rules for neural networks
has come a long way but it still has a long way to go.
Some of the theoretical discoveries fit very nicely with
Hebb’s original suggestion and some do not. After
half a century we can say a lot about the extra terms
that are needed to make Hebb rules work and a lot
about the objective functions that Hebb rules can
optimize, but what really happens at a synapse and
why are still a mystery.

Address correspondence to Geoffrey Hinton, Department
of Computer Science, University of Toronto, 16 King's
College Road, Toronto, Ontario, Canada M5S 3G5.

Résumé

Les modélisateurs ont trouvé de nombreuses régles
d’apprentissage différentes pour les réseaux neuraux.
Lorsqu'un professeur spécifie le résultat correct, les régles
axées sur Perreur fonctionnent mieux que les régles de
Hebb pures ot les changements dans la force de la
synapse dépendent de la corrélation entre les activités pré
et post synaptiques. Cependant, pour 'apprentissage sans
supervision, les régles de Hebb peuvent étre trés efficaces
si elles sont combinées 3 une normalisation convenable ou
a des termes de « désapprentissage » pour empécher que
les synapses grandissent sans limite. Les régles de Hebb
qui empruntent les taux de changement d’activité plutét
que l'activité en soi sont utiles pour découvrir les invari-
ants perceptifs et peuverit aussi fournir une facon de met-
tre en ceuvre 'apprentissage axé sur Uerreur.
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