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Abstract

Capsule networks aim to parse images into a hi-
erarchy of objects, parts and relations. While
promising, they remain limited by an inability to
learn effective low level part descriptions. To ad-
dress this issue we propose a way to learn primary
capsule encoders that detect atomic parts from a
single image. During training we exploit motion
as a powerful perceptual cue for part definition,
with an expressive decoder for part generation
within a layered image model with occlusion. Ex-
periments demonstrate robust part discovery in
the presence of multiple objects, cluttered back-
grounds, and occlusion. The part decoder infers
the underlying shape masks, effectively filling
in occluded regions of the detected shapes. We
evaluate FlowCapsules on unsupervised part seg-
mentation and unsupervised image classification.

1. Introduction

Humans learn to perceive shapes in terms of parts and their
spatial relationships (Singh & Hoffman, 2001). Studies
show that infants form early object perception by divid-
ing visual inputs into units that move rigidly and sepa-
rately (Spelke, 1990), and they do so in a largely unsu-
pervised way. Inspired by this and recent work on part
discovery, we propose a self-supervised way to learn visual
part descriptors for Capsule networks (Hinton et al., 2011).

Capsule networks represent objects in terms of primary part
descriptors in a local canonical frame, and coordinate trans-
formations between parts and the whole. As a result of their
architecture, they are robust to various challenges, including
viewpoint changes and adversarial attacks. Stacked cap-
sule network architectures (SCAE) (Kosiorek et al., 2019)
have shown promising results on a number of simple image
datasets. Nevertheless, because they are trained with an im-
age reconstruction loss, foreground-background separation
and part discovery in cluttered images remain challenging.
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Figure 1: Self-supervised training for learning primary
capsules: A single image encoder is trained to decompose
the scene into a collection of primary capsules. Learning
is accomplished in an unsupervised manner, using flow
estimation from capsule shapes and poses as a proxy task.

This paper introduces a way to learn encoders for ob-
ject parts (aka., primary capsules) to address these chal-
lenges. The encoder takes as input a single image (see Fig.
1), but for training part discovery uses motion-based self-
supervision (Bear et al., 2020; Mahendran et al., 2018). Like
the classical literature on perceptual organization and com-
mon fate in Gestalt psychology (Spelke, 1990; Wagemans
et al., 2012), we exploit the fact that regions of the image
that move together often belong together. This is a strong
perceptual cue that facilitates foreground-background seg-
mentation and part discovery, and allows one to disentangle
texture and other aspects of appearance from shape.

The proposed part encoder (Fig. 2) captures the underlying
part shapes, their relative poses, and their relative depth
ordering. The introduction of depth ordering is particularly
useful in order to account for occlusion, as it is in classical
layered motion models (Wang & Adelson, 1994). In this
way, learning aggregates information about shape over many
images, even though a given part may rarely be visible in its
entirety in any single frame. In essence, the model prefers
simple part-based descriptions, where many variations in
appearance can be explained by a coordinate transform or
by occlusion, rather than by changes in shape.

We demonstrate the FlowCapsules approach on several
datasets showcasing challenges due to texture, occlusions,
scale, and instance variation. We compare FlowCapsules
to recent related work including PSD (Xu et al., 2019) and
R-NEM (Van Steenkiste et al., 2018), where part masks and
dynamics are learnt using motion. FlowCapsules provide
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unsupervised shape segmentation, even in the face of tex-
ture and backgrounds, outperforming PSD (Xu et al., 2019).
FlowCapsules also provide a depth ordering to account for
occlusion, with the added benefit that part inference yields
shape completion when parts are partially occluded.

We also report unsupervised classification of images using
FlowCapsules part embeddings. We compare our results on
several datasets with different challenges against SCAE (Ko-
siorek et al., 2019). Experiments show that FlowCapsules
consistently outperform SCAE in unsupervised object clas-
sification, especially on images with textured backgrounds.

2. Related Work

Given the vast literature of part-based visual representations,
we focus here only on the most closely related recent work.

Transforming autoencoders (Hinton et al., 2011) introduced
capsule networks. Sabour et al. (2017) revisited the cap-
sule concept and introduced capsule hierarchies for object
classification, and subsequent work has produced improved
routing algorithms (Hinton et al., 2018; Hahn et al., 2019;
Ahmed & Torresani, 2019). Nevertheless, learning primary
capsules from images has remained largely untouched. An
analogy to text understanding would be a language with a
well defined grammar and parser, but no good definition
or representation of words. We introduce a technique for
learning primary capsules to address this shortcoming.

Unsupervised capsule learning with an image reconstruction
loss for part discovery has been explored by (Kosiorek et al.,
2019) and (Rawlinson et al., 2018). Several works learn
capsule autoencoders for 3D objects from point clouds (Sri-
vastava et al., 2019; Zhao et al., 2019; Sun et al., 2020). But
with the exception of capsule models trained with class la-
bels (Hinton et al., 2018) or segmentation masks (Lal.onde
& Bagci, 2018; Duarte et al., 2018), previous methods strug-
gle with natural images. Object-background discrimination
with cluttered, textured scenes is challenging for an image
reconstruction loss. With self-supervised training and vi-
sual motion, FlowCapsules achieve part discovery without
ground truth labels or segmentation masks.

Recent approaches to object-centric learning, e.g., MONet
(Burgess et al., 2019), IODINE (Greff et al., 2019), and
Slot-attention (Locatello et al., 2020), focus on learning
object representations via image reconstruction. Beyond the
need to reconstruct image backgrounds, they require itera-
tive refinement for symmetry breaking and forcing scenes
into slots. In contrast, FlowCapsule learning relies on recon-
struction of the flow rather than the image, and with motion
as the primary cue, scenes are decomposed into parts with-
out needing iterative refinement. Most recently, (Bear et al.,
2020; Veerapaneni et al., 2020) extend such networks to
incorporate motion, but still rely on iterative refinement.

FlowCapsule encodings further disentangle shape and pose,
enabling shape completion during partial occlusion.

FlowCapsules currently represent 2D objects, reminiscent
of layered models but with a feedforward encoder. Classi-
cal layered models (Wang & Adelson, 1994; Jojic & Frey,
2001) used mixture models and assigned pixels to layers
independently, often failing to capture the coherence or com-
pactness of object occupancy. Some methods use MRFs to
encourage spatial coherence (Weiss, 1997). Others enforce
coherence via local parametric masks (Jepson et al., 2002).

Visual motion is well-known to be a strong cue for self-
supervised learning. For example, (Vijayanarasimhan et al.,
2017) learn to infer depth, segmentation, and relative 3D mo-
tion from consecutive frames using self-supervised learning
with photometric constraints. These and related methods
use optical flow or multiple frames as an input. FlowCap-
sules use video frame pairs during training, but the part en-
coder (see Fig. 2), takes as input a single frame. In essence,
it learns to decompose images into movable objects.

S3CNNs (Mahendran et al., 2018) takes a similar approach,
but does not learn per-part shape encodes or coordinate
frames. Rather, they learn to group pixels using patch-wise
affine flow, rather than expressing flow in terms of coherent
parts and their coordinate frames. A closely related method
is PSD (Xu et al., 2019), which uses optical flow to learn
hierarchical part-based models of shape and dynamics in
a layered image model. It trains a VAE flow encoder and
an image encoder to predict the next frame. Both PSD and
S3CNNs require ground truth flow during training and lack
an explicit canonical part descriptor like FlowCapsules.

Our work is also related to generative shape models. Huang
& Murphy (2016) learn parts in a layered model with depth
order and occlusion. Given an image, variational inference
is used to infer shape and foreground/background separation.
FlowCapsule encoders, by comparison, are trained as auto-
encoders and are therefore easier to learn. Several recent
papers learn generative models that disentangle shape and
deformation (Skafte & Hauberg, 2019; Deng et al., 2021).
FlowCapsules disentangle shape and transformations from
canonical to image coordinates. In doing so they decompose
shapes into multiple near-rigid parts with occlusions. Flow-
Capsules thereby disentangle shape at a finer granularity.
Also, Skafte & Hauberg (2019) and Deng et al. (2021) use
an image reconstruction loss, much like SCAE, while Flow-
Capsules only encode shape silhouettes, which simplifies
training and the disentangled representation.

3. Model

Our goal is to learn an encoder that parses images of familiar
shapes into parts. To facilitate training, and downstream
tasks, we also learn a decoder capable of generating segment
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Figure 2: Inference architecture. (left) The encoder &, parses an image into part capsules, each comprising a shape vector
Sk, a pose 0y, and a scalar depth value dj. (right) The shape decoder D,, is an implicit function. It takes as input a shape
vector, si, and a location in canonical coordinates and returns the probability that the location is inside the shape. Shapes
are mapped to image coordinates, using 0, and layered according to the relative depths dj, yielding visibility masks.

Figure 3: Encoder architecture. The encoder comprises
convolution layers with ReLU activation, followed by down-
sampling via 2 x 2 AveragePooling. Following the last con-
volution layer is a tanh fully connected layer, and a fully
connected layer grouped into K, C'-dimensional capsules.

masks for the parts in the image. In what follows we first
describe the form of the proposed capsule encoder and the
mask decoder. The subsequent section then describes the
objective and training procedure.

Image encoder. The capsule encoder &,,, with parameters
w, encodes a given image a collection of K primary capsules.
The architecture we propose is depicted in Figure 3. Each
capsule, ¢y, comprises a vector sy, that encodes the shape
of the part, a pose vector 6y, and a depth scalar dj:

E.(I) ={cq, ...

Ck}, Cp = (Sk, O, dy). (D)

Capsule shapes are encoded in a canonical coordinate frame.
The scalar dj, specifies relative inverse depth (larger for
foreground objects). The pose vector specifies a mapping
from part-centric coordinates v to image coordinates u (or
scene coordinates more generally), i.e., u = Pg, v.

As we focus on planar layered models with depth d, we
define Py, to be a conformal map. Accordingly, let 6, €R*,
where [6}]0.1 represents the translation, [0}]2 is the rotation
angle, and [0y]3 is the change in scale. More concretely
(subscript £ is dropped for readability):

03 COS(ag) —03 sin(02) 00
Pg = 03, sin(02) 03 COS(BQ) 01 (2)
0 0 1

Taken together, the capsule codes are of size ¢y, €RC, where
0,.€R*, di.€R, and therefore s;, cRC 5.

Mask decoder. A mask decoder facilitates self-supervised
learning of the encoder, as well as downstream segmentation
tasks. It allows one to visualize the part and connect it to
observations in the image. As depicted in Figure 2, the
mask decoder D,, generates an object silhouette (or mask)
in canonical coordinates, which is then mapped to image
coordinates, incorporating occlusion and visibility.

In more detail, the mask decoder represents the shape of
the part in its canonical coordinate frame, D,,(v; s ). Our
current decoder architecture is depicted in Figure 5. This is
then mapped into image coordinates according to the pose
vector O, yielding the shape mask Ay, in the image frame:

Ap(u) = Dy(uPgl;sy), 3)

where the map Py, has parameters 6. We also note that
Ay, is a function of spatial position and a latent code (Chen
& Zhang, 2019; Mescheder et al., 2019), but unlike previous
work, our encoder disentangles individual part shapes and
their poses with respect to canonical coordinates.

Occlusion: With opaque objects, parts will not always will
be visible in their entirety. To account for occlusion, part
masks are layered according to their depth order, thereby
determining the visible portion of each part in a given image.
To ensure differentiable image formation, enabling gradient-
based learning, we treat the scalar dj, as a logit, and apply a
softmax across the logits (depths) at every pixel to generate
a visibility mask for each part (Gadelha et al., 2019); see Fig.
2. The visible portion of the k-th part is therefore given by

edkAk (ll)

- Zk’ edk/Ak'/ (u)

Af (u) o)
As the gap between the largest dj, and other values grows,
the softmax approaches the argmax, which of course would
be ideal for opaque layers.

A typical auto-encoder might reconstruct the image in terms
of these masks, to formulate an image reconstruction loss.
The problem with such an approach is that the encoder
would also need to encode other properties of the images,
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Training uses a proxy motion task in which the capsule encoder is applied to a pair

of successive video frames, providing K primary capsule encodings from each frame. Visible part masks, Aﬁ, and their
corresponding poses, Pg, determine a flow field ® that is used to warp image I to predict I’ in the 108s L ender in (7).
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Figure 5: Decoder architecture. A neural implicit function
(Chen & Zhang, 2019) is used to represent part masks. An
MLP with SELU activations (Klambauer et al., 2017) takes
as input a shape vector s and a pixel position u. Applied to
a pixel grid, it produces a logit grid for the mask.

such as texture, lighting and the background, with pixel level
accuracy. To avoid this problem, here we aim only to learn
an encoder for the part shapes, positions and depth layering.
To this end we consider a form of self-supervised learning
that relies on primarily on motion (optical flow) between
consecutive frames in video. The use of flow provides a
strong image cue for the segmentation of parts, without
the need to model texture, lighting and other fine-grained
properties tied to appearance.

4. Self-Supervised Learning

Training the capsule encoder exploits motion as a visual cue
for separating objects and their parts from the immediate
background. To that end, we assume that the training data
comprises pairs of adjacent video frames. Given an image
pair, the encoder provides an ordered set of capsules for
each of the two images. The poses from corresponding
capsules and their visibility masks then determine an optical
flow field that is used to warp one frame to predict the
other. This allows use of brightness constancy and other
common objectives in optical flow estimation to specify a
self-supervised training loss.

In more detail, let the two images of a training pair be de-
noted I and I’. As shown in Figure 4, the capsule encoder ex-
tracts an ordered set of capsules from each image. The part
capsules are denoted c,=(sy, O, di;) and c},=(s},, 0}, d},),
for k € {1, ..., K}. From corresponding part capsules we

then compute the predicted optical flow ® from the capsule
poses, yielding a mapping T, from one image to the next,

®)

This transform maps image locations in I to the canonical
coordinate frame of part k, and then into the next frame I'.
When combined with the layered visibility masks, this pro-
vides the flow field:

Ty = Pg o(Pg,)!

-3

P(ul & (I), A (w) [Tp(u)—u]  (6)
k=1 L
visibility flow of k-th capsule
where u € [—1,1]? denotes 2D normalized image coordi-

nates. Note that the use of [T (u) — u] in (6) ensures that
the generation of an identity flow is the easiest prediction
for the network T (u) to make (like a residual connection).

Given the estimated flow between a given training pair, we
warp the pixels of I according to @, providing a prediction
for I'. Then we optimize an L2 brightness constancy loss on
the residual errors between our warped version of the first
frame and the second frame,

Leender = IEuw[(),l]z ” I(u + (P(u)) - Il(u) ||§ ) (N

where we have abbreviated ®(u| &, (I),&,(I')) by ®(u)
for notational simplicity.

We also exploit two simple but effective regularizers on flow
and the canonical shape representation. They are useful as
we do not make use of ground truth segmentation masks
or flow fields during training. The first regularizer, Lgnooths
is a smoothness term often used in optical flow estimation
(Jason et al., 2016) to enhance gradient propagation through
larger movements and regions with negligible brightness
variation; i.e.,

0® 09

['smooth = H%a Tuy ®)

2
The second regularizer encourages part shapes to be cen-
tered at the origin in the canonical coordinate frame; i.e.,
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Keeping parts centered at (0, 0) improves the inference of
rotations. For example, a part located far from the origin
can easily be projected outside the image during training.
Keeping it near the center tends to produce a smoother loss
function. The final loss is a weighted sum of the render loss
and the two regularizers.

5. Experiments

We evaluate FlowCapsules on images with different dynam-
ics, shapes, backgrounds and textures. We consider scenes
with multiple occluding geometrical shapes (Geo), Geo with
textured shapes and ImageNet backgrounds (Geo™), and on
images of people (Exercise).

Geo. For this synthetic dataset, we use the same code
and setup as (Xu et al., 2019), generating 100k images for
training, 1k for validation, and 10k for testing. Images have
different background colors, with geometrical shapes (circle,
triangle, square) of various colors, scales and positions.
Objects in Geo undergo translation from frame to frame.

Geo™. In this variant, we incorporates natural image
backgrounds (random images from ImageNet (Deng et al.,
2009)), and textured foreground shapes. Textures are ran-
dom samples from the Brodatz dataset (Picard et al., 1993).

Exercise. This dataset contains natural images of trainers
demonstrating exercises, including articulated and out of
plane motion (used by (Xu et al., 2019)). The Exercise
dataset has 49356 pairs of images for training, extracted
from 20 exercise demo videos. The test set has 30 images,
for which Xu et al. (2019) provided ground truth segmenta-
tion masks.

Experimental setup. Models are trained using the Adam
optimizer (Kingma & Ba, 2014) with a fixed learning rate
of 1le—4 for 150 epochs. We use C=32 and K=8 for Geo
models and C=16 and K=16 for Exercise model. Reg-
ularization constants for Leener and Lgmoom are le—2 and
le—4. To calculate the intersection-over-union (IoU) perfor-
mance measure on visibility masks, we normalize and then
threshold the masks at 0.5 to get a binary (0, 1) mask.

5.1. Estimated Part Motion (Figure 6 and Figure 7)

To verify that the model estimates flow effectively in an
unsupervised manner we first inspect the quality of the flow
inferred by FlowCapsules after training on each dataset.

Figure 6 shows estimated flow ® alongside the ground truth
P, for training image pairs from Geo and Geo™. The flow
is accurate for both datasets. Comparing the warped version
of the first frame I (last column) with the other frame I’

I I @, I+

Figure 6: Estimated flows and predicted next frames on
training data from Geo (first row) and Geo™ (rows 2— 4).

(second column), one can appreciate some of the challenges
in unsupervised flow estimation. Because our prediction
of I’ using ® does not account for unoccluded pixels, Lyenger
is not expected to reach 0. We note that while the model
uses conformal transformations from frame to frame, these
datasets only have translation; for these data our model
correctly estimates zero rotation and unit scale.

Figure 7 shows examples of model flow estimates for the
Exercise dataset. The true flow here reflects the articulated
motion of the people, and it is notable that the parts here
are much smaller than those in Geo/Geo™. Although the
estimated flows are somewhat blurred, they still capture
different movements of different parts reasonably well, even
though the model is limited to conformal deformations from
one frame to the next.

5.2. Unsupervised Part Segmentation

One effective way to evaluate FlowCapsules is to see how
well it learns to decompose a single image into its movable
parts. We view this as an unsupervised part segmentation
task and we note that, while trained on image pairs, in-
ference is performed on a single test image, yielding part
shapes and a coordinate transform for each part. Conversely,
methods relying on optical flow only generate masks for
parts in motion, as these models effectively build masks by
segmenting the flow (Xu et al., 2019).

Qualitative analysis on Geo (Figure 8). Masks shown in
Fig. 8 demonstrate that FlowCapsules learns to detect mean-
ingful part shapes (e.g., a triangle or circle). Indeed, model
tends to explain a given image in terms of a small number
of generic shapes and occlusion of overlapping parts, effec-
tively performing amodal completion (Singh & Hoffman,
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Figure 7: Estimated flows and predicted frames on randomly
selected images from the Exercise validation set. Ap-
proximating articulated motion with conformal maps yields
reasonable flow fields. The goal is not the best possible
flow estimation, but rather, as long as different parts have
different flow estimates, our encoder is be able to learn the
correct part decomposition.

2001). This is particularly interesting since the model does
not include an explicit regularizer that encourages the model
to learn a specific number of shapes, or sparsity in the space
of shapes. One might not expect the model to learn to repre-
sent the entire shapes where possible (e.g. an entire circle).
For example, one might have expected the model to have
learned a large number of different shapes from which the
observed shapes are constructed, especially with occlusion
where the entire shape is often not observed in a single im-
age. Nevertheless, the model opts to explain the images
with relatively few parts, and hence the capsule masks tend
to cover all the pixels of a shape in the Geo dataset. This can
be attributed to the architecture we use for mask decoders,
and the inductive bias of MLPs in generating low-frequency
functions (Tancik et al., 2020; Atzmon & Lipman, 2020;
Basri et al., 2020; Rahaman et al., 2019).

Geo is synthetic, so correct masks for the full shapes are

Ak AE

Square Triangle Circle

Image  Circle

Square Triangle

Figure 8: Inferred FlowCapsule shapes and corresponding
visibility masks on Geo (rows 1-3), and Geo™ (rows 4-6).
The third row for each dataset shows an instance with only
two objects present, so one mask is empty. The last row
shows an interesting case in which the triangle is detected
by the encoder even though it shares the color of the back-
ground, reminiscent of subjective contours (Kanizsa, 1976).

known. Since FlowCapsules provide both the part shapes,
via Ay, and the associated visibility masks A} taking oc-
clusion into account, we can compare Ay to the full ground
truth shapes. One can then quantify performance using the
usual intersection over union (IoU) measure. FlowCapsules
achieves segments with an IoU of 0.96 on all the shapes, cir-
cle, square, and triangle (see Table 1). This result indicates
clearly how well the model encodes the full shape, effec-
tively filling in occluded portions of shapes in test images.

Qualitative analysis on Exercise (Figure 11). On the
Exercise dataset, FlowCapsules learn to segment the body
into roughly rigid parts. Fig. 11 illustrates the segmentation
masks of some of the part capsules. The masks for indi-
vidual capsules consistently capture the pixels associated
with meaningful body parts, such as the head or right leg,
regardless of the input image. As such, capsule identities
are tied to a semantic parts rather than spatial position. We
also note that the capsules tend to delimit parts at joints, and
separate the hips (lower torso) from the legs and from the
upper torso, even though we do not use a kinematic prior.

SCAE (Figure 10). The most relevant prior work to Flow-
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Figure 9: The ground truth segment masks along with sample FlowCapsule masks A;r on Exercise test data.

R-NEM PSD Flow Capsules
Circle 0.54 0.93 0.94
Geo Square 0.56 0.82 0.98
Triangle 0.58 0.90 0.98
All 0.56 0.88 0.95
Torso 0.32 0.57 0.62
Exercise Left Leg 0.29 0.37 0.59
Right Leg 0.23 0.34 0.54
All 0.28 0.43 0.58

Table 1: Quantitative / Segmentation — IoU of inferred
segment masks w.r.t ground truth on Geo and Exercise data.

Capsules vis-a-vis part discovery is SCAE (Kosiorek et al.,
2019). Figure 10 shows part templates and image recon-
structions generated by SCAE. Even in simple cases without
backgrounds or texture, SCAE fails to segment images into
meaningful parts. Unlike FlowCapsules, Fig. 8, it does not
have a semantic atomic part definition. This failure becomes
markedly worse for Geo’ when object textures and back-
ground are added. FlowCapsules are able to detect and
focus on foreground objects with coherent part masks. But
SCAE has to reconstruct the background, so the part shapes
become general blobs.

PSD and R-NEM (Table 1). We compare the IoU of
our masks against PSD and R-NEM (Van Steenkiste et al.,
2018). Although PSD additionally receives the ground truth
Sflow during training, FlowCapsules consistently outperforms
with equal or better IoUs during testing, on both the Geo
and Exercise datasets (see Tab. 1). One difference between
PSD and FlowCapsules stems from the way they generate
shape masks. PSD generates segmentation masks directly
using convolutional layers with no encoding of the shape per
se. In contrast, FlowCapsules uses a low-dimensional shape

I SCAED) SCAE Part Templates

HEDK

B
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Figure 10: (left) SCAE reconstructions after training on
Geo and Geo™. (right) The learned part templates. SCAE
approximately reconstructs the image but the part templates
are not coherent parts. Comparing Geo™ and Geo, the

learned parts loose all shape information to enable recon-
structing the color, texture and background in the images.

code to explicitly model the shape, from which the decoder
generates the mask. As such the FlowCapsules encoder
disentangles meaningful shape and pose information.

On Geo™, FlowCapsule IoU performance degrades approx-
imately 10% to 0.85 (circle), 0.93 (square), 0.90 (triangle)
and overall to 0.89. But compared to results in Table 1, they
remains as good or better than PSD on the simpler Geo data;
we were not able to train PSD effectively on Geo™.

5.3. Unsupervised Classification (Table 2)

To evaluate FlowCapsules in the broader context of capsule
classification, we replace the primary capsule autoencoder
(bottom of the stack) in SCAE (Kosiorek et al., 2019) with
FlowCapsules. We call the new model FlowSCAE. We then
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Geo Geo+
N=4 N=100 N=4 N=100
SCAE 0.48 0.59 0.49 0.51
FlowCapsule 0.79 0.99 0.52 0.74

Table 2: Quantitative / Classification: K-means clus-
tering accuracy with 4 or 100 clusters for Geo and Geo™.
FlowCapsule part representations yields higher classifica-
tion accuracy than those learned from SCAE.

train the top SCAE object capsules to reconstruct the pose
of FlowCapsules, following the original SCAE paper. We
compare the results against SCAE trained on reconstructing
images from Geo and Geo™. SCAE training was modified
slightly to produce coloured templates for the GEO dataset,
and to produce textured templates in the primary capsules
for Geo™ (see supplementary material for details).

Table 2 reports unsupervised classification results using k-
means clustering with N clusters, for which the predicted
label is set to the most common label in a given cluster. We
report the accuracy with N=4 and N=100 clusters. Note
that even though we trained the K-means of FlowSCAE
with N=100 on the Geo data, the learnt representations
contained only 28 clusters.

5.4. Ablation Studies

To better understand and analyze the significance of our de-
sign elements we perform ablations on various parameters.

Number of capsules (K). Results in Tab. 3 show that
increasing the number of capsules tends to improve IoU per-
formance. Given that our model does not have an explicit
sparsity regularizer on the capsules, this result is intriguing.
Even with large numbers of capsules available, FlowCap-
sules does not break shapes into smaller pieces. Rather, it
learns one capsule per shape, relying more heavily on the
layer occlusion to explain observed shape variation.

Encoding length |s;|. The models are quite robust Geo
and Geo™ data. As the encoding dimension decreases from
27 to 11, TofU performance changes by only 2%. Degrada-
tion occurs mainly with the circle class, where the circle
boundary appears locally linear in places. The degradation
becomes worse with |si| = 3, although even then, Flow-
Capsules still outperforms PSD.

Number of hidden layers in D,,. One can hypothesize
that deeper decoders can offset issues due to shorter shape
encodings. Table 3 shows that increasing decoder depth
from 2 to 6 improves IoU scores. With Geo, the deeper
decoder produces smoother circles.

Occlusion inductive bias. Finally, we consider the effect
of depth ordering in Eq. (4) for occlusion handling. Without

K |sk)] Geo Geo™

4 11 094 0.77 Depth  Decoder Geo
8§ 11093 083 No 6-Layer 0.54
16 11 094 088 Yes 2-Layer 0.87
8 3 091 0.86 Yes 6-Layer 0.96
& 27 096 0.89

Table 3: IoU on Geo and Geo™ for different number of cap-
sules, encoding lengths, decoder depths, and depth ordering.

depth ordering, Tab. 3 shows a significant drop in perfor-
mance. In this case the masks become smoother and less
certain in local regions, and the flow fields appear to be the
result of mixing a larger number of capsules, which tend to
fit the observations less well in most cases.

6. Conclusion

We introduce FlowCapsules, an unsupervised method for
learning capsule part representations (i.e., primary capsules).
The capsule encoder takes as input a single frame and esti-
mates a set of primary capsules, each comprising a shape
mask in canonical coordinates, a pose transformation from
canonical to image coordinates, and a scalar representing
relative depth. Training is done in a self-supervised manner
from consecutive video frames. We use a Siamese archi-
tecture to estimate a parametric optical flow field between
two frames, for which the flow is determined by the poses
of corresponding part capsules in the two frames. Given
a single frame, our capsule encoder learns to detect and
encode the movable parts in an image. This approach differs
significantly from other approaches that essentially segment
the flow field itself into moving parts (vs. movable parts in
FlowCapsules).

Empirical results show that motion self-supervision in Flow-
Capsules is effective on real and synthetic data, learning
meaningful representations, completing shapes when par-
tially occluded. While formulated and tested within a spe-
cific capsule framework, our approach to self-supervised
parts discovery is applicable to myriad of encoder architec-
tures, and to other approaches that currently use an image-
reconstruction loss or rely on optical flow as input. Com-
bining motion-based self-supervision with attention-based
encoders (Locatello et al., 2020) would enhance composi-
toinality, allowing scenes with different numbers of objects.
Future work will also include scaling to larger video datasets
and 3D parts. To that end it will be important to extend the
approach to include camera motion, and to handle large mo-
tions of small objects for which more sophisticated losses
for self-supervised learning will be necessary. Alternatively,
the FlowCapsules framework should be directly applicable
to 3D observations, like point cloud data (Zhao et al., 2019).
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7. Supplemantary Material
7.1. SCAE Training Details

While comparing FlowCapsules against SCAE, we updated
SCAE training at various spots to make it more suitable for
Geo and Geo™ datasets. Here we detail these changes. First,
We resized input images to 48 x 48 for memory reasons. Sec-
ond, we added the option of inferring the background color
as well as background image using a two level MLP. Simi-
larly, we added the option of adding color or texture to each
template. To enable colorization and texturization based
on input image, the primary capsule features are passed to
the template decoder. The color/texture is generated by a
2 layer MLP (32 dimensional hidden representation). The
original fixed templates are used as masks and multiplied to
the output of the color/texture MLP.

For generating a background template, we use the second
to last hidden representation of the primary encoder as the
image embedding. We pass the image embedding through a
2 layer MLP (32 dimensional hidden representation). We
mix this background template with a presence probability
of 0.5.

All the other parameters, including training schedule is kept
the same as the original SCAE.
7.2. Exercise masks

Image GT Head Torso Hip Right Leg  Left Leg

I iy P . T

Figure 11: The ground truth segment masks along with
sample FlowCapsule masks A;C" on Exercise test data.



