
Unsupervised Discovery of Non-Linear Structure

using Contrastive Backpropagation

G. E. Hinton, S. Osindero, M. Welling and Y. W. Teh
Department of Computer Science

University of Toronto
Toronto, Canada M5S 3G4

May 13, 2006

Abstract

We describe a way of modelling high-dimensional data-vectors by using
an unsupervised, non-linear, multilayer neural network in which the activity
of each neuron-like unit makes an additive contribution to a global energy
score that indicates how surprised the network is by the data-vector. The
connection weights which determine how the activity of each unit depends on
the activities in earlier layers are learned by minimizing the energy assigned to
data-vectors that are actually observed and maximizing the energy assigned to
“confabulations” that are generated by perturbing an observed data-vector in
a direction that decreases its energy under the current model.

The backpropagation algorithm (Rumelhart et al., 1986) trains the units in the
intermediate layers of a feedforward neural net to represent features of the input vec-
tor that are useful for predicting the desired output. This is achieved by propagating
information about the discrepancy between the actual output and the desired output
backwards through the net to compute how to change the connection weights in a

1

direction that reduces the discrepancy. In this paper we show how to use backprop-
agation to learn features and constraints when each input vector is not accompanied
by a supervision signal that specifies the desired output.

When no desired output is specified, it is not immediately obvious what the goal
of learning should be. We assume here that the aim is to characterize the observed
data in terms of many different features and constraints that can be interpreted as
hidden factors. Satisfied features contribute negative energy and violated constraints
contribute positive energy. These hidden factors could be used for subsequent decision
making or they could be used to detect highly improbable data-vectors by using the
global energy. We define the probability that the network assigns to a data-vector, x,
by comparing its global energy, E(x), with the energies of all possible data-vectors,
v:

p(x) =
e−E(x)

∑

v
e−E(v)

(1)

The quality of the set of features and constraints discovered by the neural network
can be quantified by the summed log probability that gets assigned to the observed
data-vectors. The contribution of a single data-vector to this sum is:

log p(x) = −E(x) − log
∑

v

e−E(v) (2)

Intuitively, a good unsupervised learning procedure should find hidden factors that
assign high log probability to patterns that typically occur. This can be achieved by
lowering the energies of observed data-vectors and raising the energies of “negative”
data-vectors — patterns that ought to be observed if the hidden factors constituted a
good model of the data. These negative data-vectors are the dominant contributors
to the last term in Eq. /refloglikelihood. By using the current model to generate
a set of negative data-vectors we can convert an unsupervised learning task into
the supervised task of assigning low energies to the observed data-vectors and high
energies to the negative data-vectors. But notice that the set of negative data-vectors
depends on the current model and it will change as the model learns.

The features and constraints can be improved by repeatedly adjusting the weights

2

on the connections so as to maximize the log probability of the observed data. To per-
form gradient ascent in the log likelihood we would need to compute exact derivatives
of the log probabilities:

∆wij ∝
∂ log p(x)

∂wij

= −

∂E(x)

∂wij

+
∑

v

p(v)
∂E(v)

∂wij

(3)

where wij is the weight on the connection from unit i in one layer to unit j in the
next layer.

The first term is easy to compute. We assume that each unit, j, sums the weighted
activities coming from units, i, in the layer below to get its total input, zj =

∑

i yiwij,
where an activity yi in the layer below is equal to xi if it is the input layer. A smooth
non-linear function of zj is then used to compute the unit’s activity, yj. The energy
contributed by the unit can be any smooth function of its activity. In this paper
we use two layers of non-linear hidden units and the energy is determined by the
activities of units, j, in the second hidden layer:

E(x) =
∑

j

λjlog(1 + y2
j) (4)

where λj is a scale parameter that is also learned by contrastive backpropagation.
This “heavy-tailed” energy contribution is good for modeling constraints that are
usually satisfied fairly precisely and occasionally violated by a lot. In images of
natural scenes, for example, a local, oriented edge-filter will have an output of almost
exactly zero almost everywhere. On the few occasions when its output departs from
zero, however, it may be quite large, so the distribution of the violations is very
non-Gaussian. By using the energy contributions in Eq. 4 we encourage the network
to model the data distribution by finding constraints of this type (Hinton and Teh,
2001).

After performing a forward pass through the network to compute the activities of
all the units, we do a backward pass as described in Rumelhart et al. (1986). The
backward pass uses the chain rule to compute ∂E(x)/∂wij for every connection weight,
and by backpropagating all the way to the inputs we can also compute ∂E(x)/∂xi

for each component, xi, of the input vector.

Unfortunately, the second term in Eq. 3 is much harder to deal with. It involves

3

a weighted average of the derivatives from all conceivable data-vectors so it cannot
be computed efficiently except in special cases. We usually expect, however, that this
average will be dominated by a very small fraction of the conceivable data-vectors,
so it seems reasonable to approximate this term by averaging ∂E(x)/∂wij over a
relatively small number of negative data-vectors sampled from the distribution p(·).
One way to sample from this distribution is to run a Markov chain that simulates
a physical process with thermal noise. If we think of the dataspace as forming a
horizontal plane and we represent the energy of each possible data-vector as height,
the neural network defines a potential energy surface whose height and gradient are
easy to compute. We imagine a particle on this surface that tends to move downhill
but is also jittered by additional Gaussian noise. After enough steps, the particle
will have lost all information about where it started and if we use small enough
steps, its probability of being at any particular point in the dataspace will be given
by the Boltzmann distribution in Eq 1. This is a painfully slow way of generating
samples and even if the equilibrium distribution is reached, the high variance created
by sampling may mask the true learning signal.

Rather surprisingly, it is unnecessary to allow the simulated physical process to
reach the equilibrium distribution. If we start the process at an observed data-vector
and just run it for a few steps, we can generate a “confabulation” that works very
well for adjusting the weights (Hinton, 2002). Intuitively, if the Markov chain starts
to diverge from the data in a systematic way, we already have evidence that the
model is imperfect and that it can be improved (in this local region of the datas-
pace) by reducing the energy of the initial data-vector and raising the energy of the
confabulation. It is theoretically possible that this learning procedure will cause the
model to assign very low energies to unvisited regions of the dataspace that are far
from any data-vector. But the fact that the learning works well on a variety of tasks
suggests that this theoretical problem is insufficient grounds for rejecting the learning
procedure, just as the existence of local minima was insufficient grounds for rejecting
backpropagation.

The “contrastive backpropagation” learning procedure cycles through the ob-
served data-vectors adjusting each weight by:

∆wij = η

(

−

∂E(x)

∂wij

+
∂E(x̂)

∂wij

)

(5)

4

where η is a learning rate and x̂ is a confabulation produced by starting at x and
noisily following the gradient of the energy surface for a few steps (see note 1).

To illustrate the learning procedure, we applied it to the task of discovering the
non-linear kinematic constraints in a simulated three dimensional “arm” that has five
rigid links and five ball-joints. The first ball-joint attaches the arm to the origin, and
each data-vector consists of the 15 cartesian coordinates of the remaining link end-
points. This apparently 15-dimensional data really has only 10 degrees of freedom
because of the 5 one-dimensional constraints imposed by the 5 rigid links. These
constraints are of the form:

(xi − xi+1)
2 + (yi − yi+1)

2 + (zi − zi+1)
2
− l2i,i+1 = 0 (6)

where i and i + 1 index neighboring joints and li,i+1 is the length of the link between
them. Because the constraints are highly non-linear, linear dimensionality-reduction
methods like principal components analysis or factor analysis are of little help.

We used a neural net with 15 input units and two hidden layers. Each of the 15
units in the first hidden layer computes a weighted average of the inputs and then
squares it. Each of the 5 units in the top layer computes a weighted average of the
squares provided by the first hidden layer and adds a learned bias. For this example,
the units in the first hidden layer do not contribute to the global energy and the units
in the second hidden layer each contribute an energy of λj log(1 + y2

j) This “heavy-
tailed” energy function penalizes top-level units with non-zero outputs, but changing
the output has little effect on the penalty if the output is already large.

The architecture of the network and the energy function have been tailored to the
task and it is clear that with the right weights and biases, each top-layer unit could
implement one of the constraints represented by Eq. 6 by producing an output of
exactly zero if and only if the constraint is satisfied. The empirical question is whether
the network can discover the appropriate weights and biases just by observing the
data.

Figure 1 shows the weights and top-level biases that were learned by contrastive
backpropagation. For each pair of neighboring joints, there are three units in the
first hidden layer that have learned to compute differences between the coordinates of

5

Figure 1: The areas of the small black and white rectangles represent the magnitudes
of the negative and positive weights learned by the network. Each column in the lower
block represents the weights on the connections to a unit in the first hidden layer from the
joint coordinates x1, y1, z1, x2, y2, z2...x5, y5, z5. For example, the first, second and seventh
columns show the weights of three hidden units that compute the squared distances between
the last two joints in three orthogonal directions. Each row in the higher block represents
the weights on connections from units in the first hidden layer to a unit in the second hidden
layer. For example, the first, second and seventh units in the first hidden layer have equal
negative weights to the unit represented by the third row in the higher block. The weights
started with very small random values and were learned by 3300 passes through a training
set of 800 random arm configurations in which every link was of length 1. The weights were
updated after every 100 training cases. To eliminate unnecessary weights, a decay towards
zero of 0.0002 was added to the weight change, ∆wij specified by Eq. 5 before multipling
by the learning rate for that connection, ηij , which started at 0.0001. ηij increased by 1% if
∆wij agreed in sign with its previous value and decreased by 5% if it disagreed. To further
speed learning without causing divergent oscillations, each weight update included 0.9 times
the previous weight update.

6

the two joints. These differences are always computed in three orthogonal directions.
Each unit in the second hidden layer has learned a linear combination of the 5 con-
straints, but it uses weights of exactly the same size for the three squared differences
in each constraint so that it can exactly cancel the fixed sum of these three squared
differences by using its bias.

The same network can also learn the 5 constraints when a random 10% of the input
variables are missing from each data-vector. The missing input variables are treated
as additional parameters which are initialized at random values and are learned using
a version of Eq. 5 in which wij is replaced by xi. The random inputs mean that each
instance of a constraint is only satisfied with a probability of .96 = .53 at the start
of learning. However, the heavy-tailed energy function means that strongly violated
constraints only contribute a very small gradient, so the learning is driven by the
accurately satisfied constraints.

We have also applied a similar neural network to the more challenging task of
learning features that allow us to compactly describe the statistical structure within
small patches of digitised images of natural scenes. For this task, we used the same
layered architecture, activation functions, and energy functions as described previ-
ously, but this time in a net with 256 units in the input layer and 400 units in each
of the two hidden layers. We also arranged the units within each hidden layer on
a 20 × 20 square grid, and topographically restricted the connectivity so that each
unit in the first hidden layer could only send connections to the unit at the same grid
position in the second hidden layer and to this unit’s 24 nearest neighbours. (see note
2).

Figure 2 illustrates some of the features learned in such a model. The first layer
units have self-organised to form a representation of the image patches in terms of a
set of oriented, band-pass features. These features bear a striking resemblance to the
receptive fields of simple cells found in the primary visual cortex of most mammals and
are also similar to the features learned in other models that seek to capture statistical
structure in natural images (Olshausen and Field, 1996; Bell and Sejnowski, 1997).
The second layer units display similar response preferences for orientation and spatial
frequency, but appear to be somewhat insensitive to the spatial phase present in the
input. As a result of the restricted connectivity between the two hidden layers, the
features form a topographic map with local continuity in spatial location, orientation
and spatial frequency.

7

BA

Image

Linear Filters

Locally Pooled
 Filters

Globally Connected

Figure 2: Each small square depicts the basis function associated with the unit at
the corresponding grid position within the first layer of spatially ordered units. The
image within each small square indicates the contribution to the “represented” image
that each unit would have, were it’s activity level set to 1. The basis functions are
obtained by taking the pseudo-inverse of the bottom up weight matrix, and we show
these rather than the weights themselves since they provide greater clarity within a
small figure.

8

The contrastive backpropagation learning procedure is quite flexible. It puts no
constraints other than smoothness on the activation functions or the functions for
converting activations into energy contributions. For example, the procedure can
easily be modified to use recurrent neural networks that receive time-varying inputs
such as video sequences. The energy of a whole sequence is simply defined to be some
function of the time history of the activations of the hidden units. Backpropagation
through time (Werbos, 1990) can then be used to obtain the derivatives of the energy
with respect to the connection weights and also the energy gradients required for
generating a whole confabulated sequence.

Notes

1. We used a simplified version of the Hybrid Monte Carlo procedure in which the
particle is given a random initial momentum and its deterministic trajectory along
the energy surface is then simulated for a number of time steps (20 for the example
in figure 1 and 10 for figure 2. If this simulation has no numerical errors the increase,
∆E, in the combined potential and kinetic energy will be zero. If ∆E is positive, the
particle is returned to its initial position with a probability of 1 − exp(−∆E). The
step size is slowly adapted so that only about 10% of the trajectories get rejected.
Numerical errors up to second order are eliminated by using a “leapfrog” method
(Neal, 1996) which uses the potential energy gradient at time t to compute the velocity
increment between time t− 1

2
and t+ 1

2
and uses the velocity at time t+ 1

2
to compute

the position increment between time t and t + 1.

2. The original data for this model were vectors representing the pixel intensities
in 20 × 20 patches extracted from photographs of natural scenes (van Hateren and
van der Schaaf, 1998). These vectors then underwent standard, and biologically
motivated pre-processing (van Hateren and van der Schaaf, 1998; Olshausen and
Field, 1996) which involved subtracting the mean value from each pixel and then
taking the variance normalised projection onto the leading 256 eigenvectors of the
pixel covariance matrix. Topographic maps can also be learned by using a similar
architecture and energy function, but replacing contrastive backpropagation with
a stochastic sampling procedure (Osindero et al., 2006). It is harder, however, to
extend the stochastic sampling approach to work with more hidden layers, whereas
this extension is trivial with contrastive backpropagation. Other methods of learning
topographic maps from natural image patches (Hyvarinen and Hoyer, 2001) are also
hard to extend to more hidden layers.

9

Acknowledgments

We would like to thank David MacKay, Radford Neal, Sam Roweis, Zoubin Ghahramani,
Chris Williams, Carl Rasmussen, Brian Sallans, Javier Movellan and Tim Marks for helpful
discussions and two anonymous referees for improving the manuscript. This research was
supported by the Gatsby Charitable foundation, NSERC, CFI, and CIAR.

References

Bell, A. J. and Sejnowski, T. J. (1997). The ”independent components” of natural scenes
are edge filters. Vision Research, 37(23):3327–3338.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800.

Hinton, G. E. and Teh, Y. W. (2001). Discovering multiple constraints that are frequently
approximately satisfied. In Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence (UAI-2001). Morgan Kaufmann, San Francisco.

Hyvarinen, A. and Hoyer, P. O. (2001). A two-layer sparse coding model learns simple
and complex cell receptive fields and topography from natural images. Vision Research,
41(18):2413–2423.

Neal, R. M. (1996). Bayesian Learning for Neural Networks, Lecture Notes in Statistics
No. 118. Springer.

Olshausen, B. A. and Field, D. J. (1996). Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607–609.

Osindero, S., Welling, M., and Hinton, G. E. (2006). Modelling the statistics of natural
images with topographic product of student-t models. Neural Computation, 18(2).

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323:533–536.

van Hateren, J. H. and van der Schaaf, A. (1998). Independent component filters of natural
images compared with simple cells in primary visual cortex. Proc R Soc Lond B Biol Sci,
265(1394):359–66.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560.

10

