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An algorithm that is widely used for adaptive equalization in cur-
rent modems is the “bootstrap”™ or “decision-directed” version of the
Widrow—Hoff rule. We show that this algorithm can be viewed as an
unsupervised clustering algorithm in which the data points are trans-
formed so that they form two clusters that are as tight as possible. The
standard algorithm performs gradient ascent in a crude model of the log
likelihood of generating the transformed data points from two gaus-
sian distributions with fixed centers. Better convergence is achieved
by using the exact gradient of the log likelihood.

1 Introduction

Modems are used to transmit bits along analog lines. Since the band-
width is limited, it is impossible to transmit square pulses so the con-
tribution that each individual bit makes to the transmitted signal is nec-
essarily extended in time as shown in Figure 1. The received signal is
strobed at the points where the individual bits make their maximum con-
tributions, but the “intersymbol interference” from nearby bits can cause
the strobe values to have the wrong sign. So a simple threshold decision
rule based on the strobe value alone is imperfect. Better decisions can be
made by taking into account the local temporal context.

A simple way to use local context is to have delay taps that represent
the value of the received signal at nearby strobe times.! The delay taps
can be used as the input lines to a linear unit that forms a weighted
combination of a strobe value with nearby values before the thresholding
operation is applied. If the desired outputs of the thresholding operation
are known, the weights can be trained by using a supervised learning
procedure such as Widrow—Hoff (Widrow and Hoff 1960). When the
output should be above (below) threshold, we assume that the desired
output value is +1 (—1). Unfortunately, this requires that a known bit-
string be transmitted.

Fractional delay times that sample more frequently than the strobe period are also
used.
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Figure 1: Contribution of an individual bit to the transmitted signal.

1If we wish o avoid sending a known signal, or if we wish to contin-
ually adapt to the properties of the line, then we need some other way
of deciding what the correct output of the decision process should have
been. In the “bootstrapping” or “decision-directed” algorithm (Lucky
1966}, the actual output of the linear unit is thresholded at zero and it is
assumed that the decision is correct. So whenever the actual output is
above zero, we assume that the desired output is +1 and we adjust the
weights accordingly. Figure 2 uses a very simple example to show why
this procedure works. If the initial weights cause only a few cases to
be misclassified, the learning that takes place for the correctly classified
cases will eventually correct the errors, even though the learning on the
wrongly classified cases moves the weights in the wrong direction.

The bootstrapping algorithm works well in practice (Widrow and
Stearns 1985; Qureshi 1985) and it is one of the most important current
applications of neural networks. However, there seems to be little theo-
retical justification for using the thresholded actual output to determine
the desired output. The aim of this paper is to provide a justification
by showing that the bootstrapping algorithm can be viewed as an un-
supervised cluster-formation algorithm that has a close relationship to
competitive learning. Like competitive learning, the bootstrapping al-
gorithm makes a “winner-take-all” decision in deciding which cluster
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Figure 2: The z; and z; axes represent the values on two delay taps that are
used as input to a linear unit. The two ellipses represent the distributions of
two clusters of input vectors. The thick line labeled w/(tp) represents the initial
weight vector. When the two clusters are projected onto this weight vector, they
yield the two overlapping gaussians shown beneath. With learning, the weight
vector rotates so that the projection of the clusters forms two well-separated
gaussians.

should be given responsibility for a given data point. Its convergence
can be improved by using a statistically more reasonable “soft” decision
in which the responsibility of a cluster for a data point depends on the
relative probability of generating the data point from the cluster.

2 The Objective Function for the Bootstrapping Procedure

One simple form of competitive learning works by minimizing the squared
distance between each data point and the nearest cluster center by mov-
ing the cluster center toward the data point by an amount proportional
to their separation (Hinton 1989). If we view the output of the linear
unit as a data point, the bootstrap algorithm minimizes the same objec-
tive function by moving the data point toward the center of the nearest
cluster.

Figure 2 shows that the bootstrapping procedure adjusts the weight
vector so that the actual output of the linear unit forms two sharp clusters,
one centered around +1 and the other centered around —1. This suggests
the following interpretation of what the bootstrapping is really achieving.
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We start with the prior belief that the output of the linear unit can be
modeled by two gaussian distributions, one centered at —1 (for the 0
bits) and the other centered at +1 {for the I bits). We want to make the
outputs of the linear unit fit this mixture of gaussians model as well as
possible. This can be accomplished by modifying the weights of the linear
unit and the parameters of the gaussians to maximize the log likelihood
of generating the observed output values from the mixture of gaussians
model: -

logL =73 log ( L e—(z‘*ﬂﬂzﬂ"?) Q.1
3
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where z* is the output value of the linear unit for the {th training case,
/1 and ps are the proportions of the two gaussians in the mixture, oy and
oy are their variances, and u; and pp are their means.

Later we will consider how to adapt the parameters of the two gaus-
sians, but initially we will assume that these parameters are fixed and
only the weights of the linear unit can be adapted. To perform the online
version of gradient ascent in log L, we need to change each weight, w;,
by )

 Olog L

R 2.2)

Auwt=ca
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where ¢ is the learning rate, of is the activity level of the ith delay tap,
and z! is the output of the linear unit in case ¢.

A crude way to deal with the sum of two exponential terms in equa-
tion 2.1 is to ignore the smaller one. If we assume that the two gaussians
have equal variances and equal mixing proportions, this amounts to ig-
noring the possibility that an output value z* could have been generated
from the gaussian that is farther away. With this crude simplification
and the assumption that p; < p, we get a very simple expression for the
derivative of the log likelihood

1 £ i
dlog(L) - 7l — ') 2 <120 + ) 0.3
oa? L(u2 — 2') otherwise

The 1/¢? term simply modifies the learning rate, so if we set yu; =
—1 and gy = 41 and substitute equation 2.3 into equation 2.2 we get
exactly the bootstrap Widrow-Hoff procedure. The simplification used
is identical to the simplification used in “hard” competitive learning in
which the weights that represent the “center” of a competitive unit are
regressed toward the current input vector if and only if that competitive
unit wins the competition. This is equivalent to treating the competitive
units as gaussians of fixed variance and only adapting the center of the
gaussian most likely to have generated the data.
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3 A Correct Maximum Likelihood Learning Procedure

We continue to assume that the gaussians have equal variances and equal
mixing proportions, but we now take into account the fact that any given
output value could be generated by either gaussian. Equation 2.1 then
yields

dlogL A 1-2x

i
a:rt - ;(}‘l’l -z ) + 0_2

(12 — =) (3.1}

where
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Comparing equation 3.1 with equation 2.3, we see that the hard de-
cision between the two gaussians has been replaced by a soft, sigmoid
function which varies smoothly from 0 to 1 with a value of 0.5 at the mid-
point of the two gaussians. If g = —py = —1 and ¢ = 1, the exponent in
the expression for A is simply 2z*.

The weakness of the hard decision used by the bootstrapping proce-
dure is apparent when we realize that when the output values are very
near 0 they are most likely to have the wrong sign because these are the
cases when the hard decision is most likely to be incorrect (assuming that
the means of the two gaussians are symmetric about (). Yet it is in these
cases that the weights are changed the most. In the “soft” algorithm,
with its sigmoid decision function, the two terms approximately cancel
out for output values near 0, so it makes only small weight changes in
these highly ambiguous cases.

Following this line of reasoning, we might expect that if there is
enough noise and distortion to force the outputs to be frequently in the
region near 0, the “soft” algorithm will outperform the “hard” algorithm.
Simulation results support this conclusion. Figure 3 shows a set of typical
simulation results. The curves in this figure show the mean squared error
{(in dB} versus the number of updates for the “soft” model with several
different values for o, the variance of the two gaussians. Larger values
of ¢ correspond to a shallower slope for the sigmoidal decision function.
¢ = {0 corresponds to the “hard” decision rule. The mean squared error
is decreased most rapidly initially by using relatively large values of o,
showing the superiority of the soft algorithm when the cutput decisions
are prone to error. The hard algorithm eventually catches up to the soft
algorithm as the equalizer adapts and the output values become close to
+1 (u) or —1 (1) most of the time. The most rapidly converging algo-
rithm, labeled by var in the figure, continuously reestimated the variance
while using the soft decision rule. This amounts to adaptively adjusting
the learning rate (see below).

In modem equalization it is crucial to be able to adapt rapidly to
sudden fluciuations in the transmission line. The use of a “soft” decision
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Figure 3: Mean squared error versus the number of updates for a signal with
moderate distortion.

rule in the bootstrap learning procedure allows more rapid adaptation to
sudden fluctuations by discounting the error terms that are most likely
to be incorrect.

4 Adapting the Parameters of the Gaussians

If the means of the gaussians were allowed to adapt, both means and
all the output values would converge on the same value. However, the
mixing proportions and the variances can be adapted to maximize log
likelihood. The most tractable step in this direction is to assume the
mixing proportions are fixed and equal and to allow the variances to
adapt subject to the constraint that they remain equal. One method of
adapting the variances would be to change o by an amount proportional
to the derivative of the log likelihood. A faster method, that we used in
the simulation labeled var in Figure 3, is an incremental version of the EM
algorithm (Dempster et al. 1976). The batch version of EM simply sets o
to a value guaranteed to yield higher likelihood (given the current output
values) after a balch of training cases. The incremental version uses an
exponential decay factor to weight previous cases, and then applies EM
after every training case. The actual update rule then becomes

FHt+ 1) = wo?{t) + (1 — &) [A(m“ — P+ (1= ) — m)z] (4.1)

where k is a decay rate slightly less than 1 for discounting past data,
and A is defined in equation 3.2. This incremental method does not
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require a learning rate for the variance adaptation. The decay rate for the
exponential averaging of past data is based on the degree of stationarity
of the data, not on properties of the learning algorithm.

5 The Extension to Multilayer Networks

Our analysis of the bootstrapping procedure used for adaptive equal-
ization can be extended to more complex networks and gives rise to a
new class of unsupervised learning procedures in which the objective
of forming tight clusters is used to generate an error signal that can be
backpropagated through layers of nonlinear units. To prevent all the in-
put vectors from being mapped to the same output vector, we can fix the
cluster centers in advance, or we can use a scale-invariant objective func-
tion that takes the distance between cluster centers into account when
evaluating the tightness and thus eliminates the ability to improve the
objective function by simply moving the cluster centers closer together.
To prevent arbitrary mappings of input vectors into clusters, we can insist
on using relatively simple functions. For example, we can assume that

the log likelihood of a function is proportional to the sum of the squares _

of the weights that it uses and we can then trade-off cluster tightness
against the prior log likelihood of the function. A more sophisticated
version of this idea would be to estimate the complexity of the func-
tion by fitting a mixture of gaussians model to the set of weight values
and using the combined description length of the mixture model and
the weights given that model as an upper bound on the complexity. In
this case, we would be trading off the tightness of the clusters of output
values against the tightness of the clusters of weight values.

Bridle has independently developed a similar approach to unsuper-
vised cluster-formation in multilayer networks (John Bridle, unpublished
research note SP4-RN66, October 1988).

6 Discussion

Learning procedures for neural networks are often designed by an intu-
itive leap (Durbin and Willshaw 1987; Crick and Mitchison 1983). This
is particularly true of the unsupervised learning procedures. Those that
actually work in practice, are usually found to be an approximation to
steepest ascent in some sensible statistical measure such as log likelihood
or mutual information (Durbin et al. 1989; Hinton and Sejnowski 1986).
The bootstrapping algorithm is no exception. This adds further support
to the idea that future unsupervised algorithms should be designed by
explictly differentiating a sensible objective function, and then making
approximations to achieve easy implementation.
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