
A Scalable Hierarchical Distributed Language Model

Andriy Mnih
Department of Computer Science

University of Toronto
amnih@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

Neural probabilistic language models (NPLMs) have been shown to be competi-
tive with and occasionally superior to the widely-usedn-gram language models.
The main drawback of NPLMs is their extremely long training and testing times.
Morin and Bengio have proposed a hierarchical language model built around a
binary tree of words, which was two orders of magnitude faster than the non-
hierarchical model it was based on. However, it performed considerably worse
than its non-hierarchical counterpart in spite of using a word tree created using
expert knowledge. We introduce a fast hierarchical language model along with
a simple feature-based algorithm for automatic construction of word trees from
the data. We then show that the resulting models can outperform non-hierarchical
neural models as well as the bestn-gram models.

1 Introduction

Statistical language modelling is concerned with buildingprobabilistic models of word sequences.
Such models can be used to discriminate probable sequences from improbable ones, a task important
for performing speech recognition, information retrieval, and machine translation. The vast majority
of statistical language models are based on the Markov assumption, which states that the distribu-
tion of a word depends only on some fixed number of words that immediately precede it. While
this assumption is clearly false, it is very convenient because it reduces the problem of modelling
the probability distribution of word sequences of arbitrary length to the problem of modelling the
distribution on the next word given some fixed number of preceding words, called the context. We
will denote this distribution byP (wn|w1:n−1), wherewn is the next word andw1:n−1 is the context
(w1, ..., wn−1).

n-gram language models are the most popular statistical language models due to their simplicity
and surprisingly good performance. These models are simplyconditional probability tables for
P (wn|w1:n−1), estimated by counting then-tuples in the training data and normalizing the counts
appropriately. Since the number ofn-tuples is exponential inn, smoothing the raw counts is essential
for achieving good performance. There is a large number of smoothing methods available forn-gram
models [4]. In spite of the sophisticated smoothing methodsdeveloped for them,n-gram models are
unable to take advantage of large contexts since the data sparsity problem becomes extreme. The
main reason for this behavior is the fact that classicaln-gram models are essentially conditional
probability tables where different entries are estimated independently of each other. These models
do not take advantage of the fact that similar words occur in similar contexts, because they have no
concept of similarity. Class-basedn-gram models [3] aim to address this issue by clustering words
and/or contexts into classes based on their usage patterns and then using this class information to
improve generalization. While it can improven-gram performance, this approach introduces a very
rigid kind of similarity, since each word typically belongsto exactly one class.

An alternative and much more flexible approach to counteracting the data sparsity problem is to
represent each word using a real-valued feature vector thatcaptures its properties, so that words

1



used in similar contexts will have similar feature vectors.Then the conditional probability of the
next word can be modelled as a smooth function of the feature vectors of the context words and the
next word. This approach provides automatic smoothing, since for a given context similar words
are now guaranteed to be assigned similar probabilities. Similarly, similar contexts are now likely to
have similar representations resulting in similar predictions for the next word. Most models based
on this approach use a feed-forward neural network to map thefeature vectors of the context words
to the distribution for the next word (e.g. [12], [5], [9]). Perhaps the best known model of this type is
the Neural Probabilistic Language Model [1], which has beenshown to outperformn-gram models
on a dataset of about one million words.

2 The hierarchical neural network language model

The main drawback of the NPLM and other similar models is thatthey are very slow to train and
test [10]. Since computing the probability of the next word requires explicitly normalizing over all
words in the vocabulary, the cost of computing the probability of the given next word and the cost of
computing the full distribution over the next word are virtually the same – they take time linear in the
vocabulary size. Since computing the exact gradient in suchmodels requires repeatedly computing
the probability of the next word given its context and updating the model parameters to increase that
probability, training time is also linear in the vocabularysize. Typical natural language datasets have
vocabularies containing tens of thousands of words, which means that training NPLM-like models
the straightforward way is usually too computationally expensive in practice. One way to speed
up the process is to use a specialized importance sampling procedure to approximate the gradients
required for learning [2]. However, while this method can speed up training substantially, testing
remains computationally expensive.

The hierarchical NPLM introduced in [10], provides an exponential reduction in time complexity of
learning and testing as compared to the NPLM. It achieves this reduction by replacing the unstruc-
tured vocabulary of the NPLM by a binary tree that representsa hierarchical clustering of words in
the vocabulary. Each word corresponds to a leaf in the tree and can be uniquely specified by the
path from the root to that leaf. IfN is the number of words in the vocabulary and the tree is bal-
anced, any word can be specified by a sequence ofO(log N) binary decisions indicating which of
the two children of the current node is to be visited next. This setup replaces oneN -way choice by a
sequence ofO(log N) binary choices. In probabilistic terms, oneN -way normalization is replaced
by a sequence ofO(log N) local (binary) normalizations. As a result, a distributionover words in
the vocabulary can be specified by providing the probabilityof visiting the left child at each of the
nodes. In the hierarchical NPLM, these local probabilitiesare computed by giving a version of the
NPLM the feature vectors for the context words as well as a feature vector for the current node as
inputs. The probability of the next word is then given by the probability of making a sequence of
binary decisions that corresponds to the path to that word.

When applied to a dataset of about one million words, this model outperformed class-based trigrams,
but performed considerably worse than the NPLM [10]. The hierarchical model however was more
than two orders of magnitude faster than the NPLM. The main limitation of this work was the
procedure used to construct the tree of words for the model. The tree was obtained by starting
with the WordNet IS-A taxonomy and converting it into a binary tree through a combination of
manual and data-driven processing. Our goal is to replace this procedure by an automated method
for building trees from the training data without requiringexpert knowledge of any kind. We will
also explore the performance benefits of using trees where each word can occur more than once.

3 The log-bilinear model

We will use the log-bilinear language model (LBL) [9] as the foundation of our hierarchical model
because of its excellent performance and simplicity. Like virtually all neural language models, the
LBL model represents each word with a real-valued feature vector. We will denote the feature vector
for word w by rw and refer to the matrix containing all these feature vectorsasR. To predict the
next wordwn given the contextw1:n−1, the model computes the predicted feature vectorr̂ for the
next word by linearly combining the context word feature vectors:

2



r̂ =

n−1∑

i=1

Cirwi
, (1)

whereCi is the weight matrix associated with the context positioni. Then the similarity between the
predicted feature vector and the feature vector for each word in the vocabulary is computed using
the inner product. The similarities are then exponentiatedand normalized to obtain the distribution
over the next word:

P (wn = w|w1:n−1) =
exp(r̂T rw + bw)∑
j exp(r̂T rj + bj)

. (2)

Herebw is the bias for wordw, which is used to capture the context-independent word frequency.

Note that the LBL model can be interpreted as a special kind ofa feed-forward neural network
with one linear hidden layer and a softmax output layer. The inputs to the network are the feature
vectors for the context words, while the matrix of weights from the hidden layer to the output layer
is simply the feature vector matrixR. The vector of activities of the hidden units corresponds tothe
the predicted feature vector for the next word. Unlike the NPLM, the LBL model needs to compute
the hidden activities only once per prediction and has no nonlinearities in its hidden layer. In spite
of its simplicity the LBL model performs very well, outperforming both the NPLM and then-gram
models on a fairly large dataset [9].

4 The hierarchical log-bilinear model

Our hierarchical language model is based on the hierarchical model from [10]. The distinguishing
features of our model are the use of the log-bilinear language model for computing the probabilities
at each node and the ability to handle multiple occurrences of each word in the tree. Note that the
idea of using multiple word occurrences in a tree was proposed in [10], but it was not implemented.

The first component of the hierarchical log-bilinear model (HLBL) is a binary tree with words at its
leaves. For now, we will assume that each word in the vocabulary is at exactly one leaf. Then each
word can be uniquely specified by a path from the root of the tree to the leaf node the word is at.
The path itself can be encoded as a binary stringd of decisions made at each node, so thatdi = 1
corresponds to the decision to visit the left child of the current node. For example, the string “10”
corresponds to a path that starts at the root, visits its leftchild, and then visits the right child of that
child. This allows each word to be represented by a binary string which we will call a code.

The second component of the HLBL model is the probabilistic model for making the decisions
at each node, which in our case is a modified version of the LBL model. In the HLBL model,
just like in its non-hierarchical counterpart, context words are represented using real-valued feature
vectors. Each of the non-leaf nodes in the tree also has a feature vector associated with it that is
used for discriminating the words in the left subtree form the words in the right subtree of the node.
Unlike the context words, the words being predicted are represented using their binary codes that are
determined by the word tree. However, this representation is still quite flexible, since each binary
digit in the code encodes a decision made at a node, which depends on that node’s feature vector.

In the HLBL model, the probability of the next word beingw is the probability of making the
sequences of binary decisions specified by the word’s code, given the context. Since the probability
of making a decision at a node depends only on the predicted feature vector, determined by the
context, and the feature vector for that node, we can expressthe probability of the next word as a
product of probabilities of the binary decisions:

P (wn = w|w1:n−1) =
∏

i

P (di|qi, w1:n−1), (3)

wheredi is ith digit in the code for wordw, andqi is the feature vector for theith node in the path
corresponding to that code. The probability of each decision is given by

P (di = 1|qi, w1:n−1) = σ(r̂T qi + bi), (4)

whereσ(x) is the logistic function and̂r is the predicted feature vector computed using Eq. 1.bi in
the equation is the node’s bias that captures the context-independent tendency to visit the left child
when leaving this node.

3



The definition ofP (wn = w|w1:n−1) can be extended to multiple codes per word by including a
summation over all codes forw as follows:

P (wn = w|w1:n−1) =
∑

d∈D(w)

∏

i

P (di|qi, w1:n−1), (5)

whereD(w) is a set of codes corresponding to wordw. Allowing multiple codes per word can allow
better prediction of words that have multiple senses or multiple usage patterns. Using multiple codes
per word also makes it easy to combine several separate wordshierarchies to into a single one to to
reflect the fact that no single hierarchy can express all the relationships between words.

Using the LBL model instead of the NPLM for computing the local probabilities allows us to avoid
computing the nonlinearities in the hidden layer which makes our hierarchical model faster at mak-
ing predictions than the hierarchical NPLM. More importantly, the hierarchical NPLM needs to
compute the hidden activities once for each of theO(log N) decisions, while the HLBL model
computes the predicted feature vector just once per prediction. However, the time complexity of
computing the probability for a single binary decision in anLBL model is still quadratic in the
feature vector dimensionalityD, which might make the use of high-dimensional feature vectors
too computationally expensive. We make the time complexitylinear inD by restricting the weight
matricesCi to be diagonal.1 Note that for a context of size 1, this restriction does not reduce the
representational power of the model because the context weight matrixC1 can be absorbed into the
word feature vectors. And while this restriction does makesthe models with larger contexts slightly
less powerful, we believe that this loss is more than compensated for by much faster training times
which allow using more complex trees.

HLBL models can be trained by maximizing the (penalized) log-likelihood. Since the probability of
the next word depends only on the context weights, the feature vectors of the context words, and the
feature vectors of the nodes on the paths from the root to the leaves containing the word in question,
only a (logarithmically) small fraction of the parameters need to be updated for each training case.

5 Hierarchical clustering of words

The first step in training a hierarchical language model is constructing a binary tree of words for the
model to use. This can be done by using expert knowledge, data-driven methods, or a combination of
the two. For example, in [10] the tree was constructed from the IS-A taxonomy DAG from WordNet
[6]. After preprocessing the taxonomy by hand to ensure thateach node had only one parent, data-
driven hierarchical binary clustering was performed on thechildren of the nodes in the taxonomy
that had more than two children, resulting in a binary tree.

We are interested in using a pure learning approach applicable in situations where the expert knowl-
edge is unavailable. It is also not clear that using expert knowledge, even when it is available,
will lead to superior performance. Hierarchical binary clustering of words based on the their usage
statistics is a natural choice for generating binary trees of words automatically. This task is similar
to the task of clustering words into classes for training class-basedn-gram models, for which a large
number of algorithms has been proposed. We considered several of these algorithms before decid-
ing to use our own algorithm which turned out to be surprisingly effective in spite of its simplicity.
However, we will mention two existing algorithms that mightbe suitable for producing binary word
hierarchies. Since we wanted an algorithm that scaled well to large vocabularies, we restricted our
attention to the top-down hierarchical clustering algorithms, as they tend to scale better than their
agglomerative counterparts [7]. The algorithm from [8] produces exactly the kind of binary trees
we need, except that its time complexity is cubic in the vocabulary size.2 We also considered the
distributional clustering algorithm [11] but decided not to use it because of the difficulties involved
in using contexts of more than one word for clustering. This problem is shared by mostn-gram
clustering algorithms, so we will describe it in some detail. Since we would like to cluster words for
easy prediction of the next word based on its context, it is natural to describe each word in terms of
the contexts that can precede it. For example, for a single-word context one such description is the

1Thus the feature vector for the next word can now be computed asr̂ =

∑
n−1

i=1
ci ◦rwi

, whereci is a vector
of context weights for positioni and◦ denotes the elementwise product of two vectors.

2More precisely, the time complexity of the algorithm is cubic in the number of thefrequent words, but that
is still to slow for our purposes.

4



distribution of words that precede the word of interest in the training data. The problem becomes
apparent when we consider using larger contexts: the numberof contexts that can potentially pre-
cede a word grows exponentially in the context size. This is the very same data sparsity problem that
affects then-gram models, which is not surprising, since we are trying todescribe words in terms of
exponentially large (normalized) count vectors. Thus, clustering words based on such large-context
representations becomes non-trivial due to the computational cost involved as well as the statistical
difficulties caused by the sparsity of the data.

We avoid these difficulties by operating on low-dimensionalreal-valued word representations in our
tree-building procedure. Since we need to train a model to obtain word feature vectors, we perform
the following bootstrapping procedure: we generate arandom binary tree of words, train an HLBL
model based on it, and use the distributed representations it learns to represent words when building
the word tree.

Since each word is represented by a distribution over contexts it appears in, we need a way of
compressing such a collection of contexts down to a low-dimensional vector. After training the
HLBL model, we summarize each contextw1:n−1 with the predicted feature vector produced from
it using Eq. 1. Then, we condense the distribution of contexts that precede a given word into a
feature vector by computing the expectation of the predicted representation w.r.t. that distribution.
Thus, for the purposes of clustering each word is represented by its average predicted feature vector.
After computing the low-dimensional real-valued feature vectors for words, we recursively apply a
very simple clustering algorithm to them. At each step, we fita mixture of two Gaussians to the
feature vectors and then partition them into two subsets based on the responsibilities of the two
mixture components for them. We then partition each of the subsets using the same procedure, and
so on. The recursion stops when the current set contains onlytwo words. We fit the mixtures by
running the EM algorithm for 10 steps3. The algorithm updates both the means and the spherical
covariances of the components. Since the means of the components are initialized based on a random
partitioning of the feature vectors, the algorithm is not deterministic and will produce somewhat
different clusterings on different runs. One appealing property of this algorithm is that the running
time of each iteration is linear in the vocabulary size, which is a consequence of representing words
using feature vectors of fixed dimensionality. In our experiments, the algorithm took only a few
minutes to build a hierarchy for a vocabulary of nearly 18000words based on 100-dimensional
feature vectors.

The goal of an algorithm for generating trees for hierarchical language models is to produce trees
that are well-supported by the data and are reasonably well-balanced so that the resulting models
generalize well and are fast to train and test. To explore thetrade-off between these two require-
ments, we tried several splitting rules in our tree-building algorithm. The rules are based on the
observation that the responsibility of a component for a datapoint can be used as a measure of con-
fidence about the assignment of the datapoint to the component. Thus, when the responsibilities of
both components for a datapoint are close to 0.5, we cannot besure that the datapoint should be in
one component but not the other.

Our simplest rule aims to produce a balanced tree at any cost.It sorts the responsibilities and
splits the words into two disjoint subsets of equal size based on the sorted order. The second rule
makes splits well-supported by the data even if that resultsin an unbalanced tree. It achieves that
by assigning the word to the component with the higher responsibility for the word. The third
and the most sophisticated rule is an extension of the secondrule, modified to assign a point to
both components whenever both responsibilities are withinǫ of 0.5, for some pre-specifiedǫ. This
rule is designed to produce multiple codes for words that aredifficult to cluster. We will refer to
the algorithms that use these rules as BALANCED, ADAPTIVE, and ADAPTIVE(ǫ) respectively.
Finally, as a baseline for comparison with the above algorithms, we will use an algorithm that
generates random balanced trees. It starts with a random permutation of the words and recursively
builds the left subtree based one the first half of the words and the right subtree based on the second
half of the words. We will call this algorithm RANDOM.

3Running EM for more than 10 steps did not make a significant differencein the quality of the resulting
trees.

5



Table 1: Trees of words generated by the feature-based algorithm. The mean code length is the sum
of lengths of codes associated with a word, averaged over thedistribution of the words in the training
data. The run-time complexity of the hierarchical model is linear in the mean code length of the tree
used. The mean number of codes per word refers to the number ofcodes per word averaged over the
training data distribution. Since each non-leaf node in a tree has its own feature vector, the number
of free parameters associated with the tree is linear in thisquantity.

Tree Generating Mean code Mean number of Number of
label algorithm length codes per word non-leaf nodes
T1 RANDOM 14.2 1.0 17963
T2 BALANCED 14.3 1.0 17963
T3 ADAPTIVE 16.1 1.0 17963
T4 ADAPTIVE(0.25) 24.2 1.3 22995
T5 ADAPTIVE(0.4) 29.0 1.7 30296
T6 ADAPTIVE(0.4)× 2 69.1 3.4 61014
T7 ADAPTIVE(0.4)× 4 143.2 6.8 121980

Table 2: The effect of the feature dimensionality and the word tree used on the test set perplexity of
the model.

Feature Perplexity using Perplexity using Reduction
dimensionality a random tree a non-random tree in perplexity

25 191.6 162.4 29.2
50 166.4 141.7 24.7
75 156.4 134.8 21.6
100 151.2 131.3 19.9

6 Experimental results

We compared the performance of our models on the APNews dataset containing the Associated
Press news stories from 1995 and 1996. The dataset consists of a 14 million word training set,
a 1 million word validation set, and 1 million word test set. The vocabulary size for this dataset
is 17964. We chose this dataset because it had already been used to compare the performance of
neural models to that ofn-gram models in [1] and [9], which allowed us to compare our results to
the results in those papers. Except for where stated otherwise, the models used for the experiments
used 100 dimensional feature vectors and a context size of 5.The details of the training procedure
we used are given in the appendix. All models were compared based on their perplexity score on
the test set.

We started by training a model that used a tree generated by the RANDOM algorithm (tree T1 in
Table 1). The feature vectors learned by this model were usedto build a tree using the BALANCED
algorithm (tree T2). We then trained models of various feature vector dimensionality on each of
these trees to see whether a highly expressive model can compensate for using a poorly constructed
tree. The test scores for the resulting models are given in Table 2. As can be seen from the scores,
using a non-random tree results in much better model performance. Though the gap in performance
can be reduced by increasing the dimensionality of feature vectors, using a non-random tree drasti-
cally improves performance even for the model with 100-dimensional feature vectors. It should be
noted however, that models that use the random tree are not entirely hopeless. For example, they
outperform the unigram model which achieved the perplexityof 602.0 by a very large margin. This
suggests that the HLBL architecture is sufficiently flexibleto make effective use of a random tree
over words.

Since increasing the feature dimensionality beyond 100 didnot result in a substantial reduction in
perplexity, we used 100-dimensional feature vectors for all of our models in the following experi-
ments. Next we explored the effect of the tree building algorithm on the performance of the resulting
HLBL model. To do that, we used the RANDOM, BALANCED, and ADAPTIVE algorithms to
generate one tree each. The ADAPTIVE(ǫ) algorithm was used to generate two trees: one withǫ set

6



Table 3: Test set perplexity results for the hierarchical LBL models. All the distributed models
in the comparison used 100-dimensional feature vectors anda context size of 5. LBL is the non-
hierarchical log-bilinear model. KNn is a Kneser-Neyn-gram model. The scores for LBL, KN3,
and KN5 are from [9]. The timing for LBL is based on our implementation of the model.

Model Tree Tree generating Perplexity Minutes
type used algorithm per epoch

HLBL T1 RANDOM 151.2 4
HLBL T2 BALANCED 131.3 4
HLBL T3 ADAPTIVE 127.0 4
HLBL T4 ADAPTIVE(0.25) 124.4 6
HLBL T5 ADAPTIVE(0.4) 123.3 7
HLBL T6 ADAPTIVE(0.4)× 2 115.7 16
HLBL T7 ADAPTIVE(0.4)× 4 112.1 32
LBL – – 117.0 6420
KN3 – – 129.8 –
KN5 – – 123.2 –

to 0.25 and the other withǫ set to 0.4. We then generated a 2× overcomplete tree by running the
ADAPTIVE(ǫ = 0.4) algorithm twice and creating a tree with a root node that hadthe two generated
trees as its subtrees. Since the ADAPTIVE(ǫ) algorithm involves some randomization we tried to
improve the model performance by allowing the model to choose dynamically between two possible
clusterings. Finally, we generated a 4× overcomplete using the same approach. Table 1 lists the
generated trees as well as some statistics for them. Note that trees generated using ADAPTIVE(ǫ)
usingǫ > 0 result in models with more parameters due to the greater number of tree-nodes and thus
tree-node feature vectors, as compared to trees generated using methods producing one code/leaf
per word.

Table 3 shows the test set perplexities and time per epoch forthe resulting models along with the
perplexities for models from [9]. The results show that the performance of the HLBL models based
on non-random trees is comparable to that of then-gram models. As expected, building word trees
adaptively improves model performance. The general trend that emerges is that bigger trees tend to
lead to better performing models. For example, a model basedon a single tree produced using the
ADAPTIVE(0.4) algorithm, performs as well as the 5-gram butnot as well as the non-hierarchical
LBL model. However, using a 2× overcomplete tree generated using the same algorithm results in a
model that outperforms both then-gram models and the LBL model, and using a 4× overcomplete
tree leads to a further reduction in perplexity. The time-per-epoch statistics reported for the neural
models in Table 3 shows the great speed advantage of the HLBL models over the LBL model.
Indeed, the slowest of our HLBL models is over 200 times faster than the LBL model.

7 Discussion and future work

We have demonstrated that a hierarchal neural language model can actually outperform its non-
hierarchical counterparts and achieve state-of-the-art performance. The key to making a hierarchical
model perform well is using a carefully constructed hierarchy over words. We have presented a
simple and fast feature-based algorithm for automatic construction of such hierarchies. Creating
hierarchies in which every word occurred more than once was essential to getting the models to
perform better.

An inspection of trees generated by our adaptive algorithm showed that the words with the largest
numbers of codes (i.e. the word that were replicated the most) were not the words with multiple
distinct senses. Instead, the algorithm appeared to replicate the words that occurred relatively in-
frequently in the data and were therefore difficult to cluster. The failure to use multiple codes for
words with several very different senses is probably a consequence of summarizing the distribution
over contexts with a single mean feature vector when clustering words. The “sense multimodality”
of context distributions would be better captured by using asmall set of feature vectors found by
clustering the contexts.

7



Finally, since our tree building algorithm is based on the feature vectors learned by the model, it
is possible to periodically interrupt training of such a model to rebuild the word tree based on the
feature vectors provided by the model being trained. This modified training procedure might produce
better models by allowing the word hierarchy to adapt to the probabilistic component of the model
and vice versa.

Appendix: Details of the training procedure

The models have been trained by maximizing the log-likelihood using stochastic gradient ascent.
All model parameters other than the biases were initializedby sampling from a Gaussian of small
variance. The biases for the tree nodes were initialized so that the distribution produced by the model
with all the non-bias parameters set to zero matched the baserates of the words in the training set.

Models were trained using the learning rate of10−3 until the perplexity on the validation set started
to increase. Then the learning rate was reduced to3 × 10−5 and training was resumed until the
validation perplexity started increasing again. All modelparameters were regulated using a small
L2 penalty.

Acknowledgments

We thank Martin Szummer for his comments on a draft of this paper. This research was supported
by NSERC and CFI. GEH is a fellow of the Canadian Institute forAdvanced Research.

References

[1] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model.Journal of Machine Learning Research, 3:1137–1155, 2003.

[2] Yoshua Bengio and Jean-Sébastien Seńecal. Quick training of probabilistic neural nets by
importance sampling. InAISTATS’03, 2003.

[3] P.F. Brown, R.L. Mercer, V.J. Della Pietra, and J.C. Lai.Class-based n-gram models of natural
language.Computational Linguistics, 18(4):467–479, 1992.

[4] Stanley F. Chen and Joshua Goodman. An empirical study ofsmoothing techniques for lan-
guage modeling. InProceedings of the Thirty-Fourth Annual Meeting of the Association for
Computational Linguistics, pages 310–318, San Francisco, 1996.

[5] Ahmad Emami, Peng Xu, and Frederick Jelinek. Using a connectionist model in a syntactical
based language model. InProceedings of ICASSP, volume 1, pages 372–375, 2003.

[6] C. Fellbaum et al.WordNet: an electronic lexical database. Cambridge, Mass: MIT Press,
1998.

[7] J. Goodman. A bit of progress in language modeling. Technical report, Microsoft Research,
2000.

[8] John G. McMahon and Francis J. Smith. Improving statistical language model performance
with automatically generated word hierarchies.Computational Linguistics, 22(2):217–247,
1996.

[9] A. Mnih and G. Hinton. Three new graphical models for statistical language modelling.Pro-
ceedings of the 24th international conference on Machine learning, pages 641–648, 2007.

[10] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model.
In Robert G. Cowell and Zoubin Ghahramani, editors,AISTATS’05, pages 246–252, 2005.

[11] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words.Proceedings of
the 31st conference on Association for Computational Linguistics, pages 183–190, 1993.

[12] Holger Schwenk and Jean-Luc Gauvain. Connectionist language modeling for large vocabu-
lary continuous speech recognition. InProceedings of the International Conference on Acous-
tics, Speech and Signal Processing, pages 765–768, 2002.

8


