A Scalable Hierarchical Distributed Language M odel

Andriy Mnih Geoffrey Hinton
Department of Computer Science Department of Computer Science
University of Toronto University of Toronto
ami h@s. toront o. edu hi nton@s. t oront 0. edu
Abstract

Neural probabilistic language models (NPLMs) have beemvsho be competi-
tive with and occasionally superior to the widely-usedgram language models.
The main drawback of NPLMs is their extremely long trainimgldesting times.
Morin and Bengio have proposed a hierarchical language himdk around a
binary tree of words, which was two orders of magnitude fagtan the non-
hierarchical model it was based on. However, it performensicerably worse
than its non-hierarchical counterpart in spite of using adaxoee created using
expert knowledge. We introduce a fast hierarchical languagdel along with
a simple feature-based algorithm for automatic conswuaotif word trees from
the data. We then show that the resulting models can outperfon-hierarchical
neural models as well as the besgram models.

1 Introduction

Statistical language modelling is concerned with buildimgbabilistic models of word sequences.
Such models can be used to discriminate probable sequenoesriprobable ones, a task important
for performing speech recognition, information retriewaid machine translation. The vast majority
of statistical language models are based on the Markov gagumwhich states that the distribu-
tion of a word depends only on some fixed number of words thatédiately precede it. While
this assumption is clearly false, it is very convenient bsesit reduces the problem of modelling
the probability distribution of word sequences of arbigreangth to the problem of modelling the
distribution on the next word given some fixed number of pdéug words, called the context. We
will denote this distribution byP (w;, |w1.,,—1), wherew,, is the next word and.,,_; is the context
(wl, ceey wn,l).

n-gram language models are the most popular statisticalagey models due to their simplicity
and surprisingly good performance. These models are siegatglitional probability tables for
P(wy,|wy.n—1), estimated by counting the-tuples in the training data and normalizing the counts
appropriately. Since the numberetuples is exponential in, smoothing the raw counts is essential
for achieving good performance. There is a large number obsning methods available fargram
models [4]. In spite of the sophisticated smoothing methimi®loped for thenn-gram models are
unable to take advantage of large contexts since the datsitygaroblem becomes extreme. The
main reason for this behavior is the fact that classicgram models are essentially conditional
probability tables where different entries are estimatetpendently of each other. These models
do not take advantage of the fact that similar words occuinmilar contexts, because they have no
concept of similarity. Class-basedgram models [3] aim to address this issue by clustering sord
and/or contexts into classes based on their usage pattednthen using this class information to
improve generalization. While it can improwegram performance, this approach introduces a very
rigid kind of similarity, since each word typically belongsexactly one class.

An alternative and much more flexible approach to countergdthe data sparsity problem is to
represent each word using a real-valued feature vectorcttires its properties, so that words

used in similar contexts will have similar feature vectof$ien the conditional probability of the
next word can be modelled as a smooth function of the feater®vs of the context words and the
next word. This approach provides automatic smoothingsesfor a given context similar words
are now guaranteed to be assigned similar probabilitiesil&ly, similar contexts are now likely to
have similar representations resulting in similar prediet for the next word. Most models based
on this approach use a feed-forward neural network to mafetitare vectors of the context words
to the distribution for the next word (e.g. [12], [5], [9])eFhaps the best known model of this type is
the Neural Probabilistic Language Model [1], which has b&sown to outperfornm-gram models
on a dataset of about one million words.

2 Thehierarchical neural network language model

The main drawback of the NPLM and other similar models is thay are very slow to train and
test [10]. Since computing the probability of the next woeduires explicitly normalizing over all
words in the vocabulary, the cost of computing the probighili the given next word and the cost of
computing the full distribution over the next word are vatly the same — they take time linear in the
vocabulary size. Since computing the exact gradient in sunttels requires repeatedly computing
the probability of the next word given its context and upaathe model parameters to increase that
probability, training time is also linear in the vocabulaige. Typical natural language datasets have
vocabularies containing tens of thousands of words, whiehma that training NPLM-like models
the straightforward way is usually too computationally exgive in practice. One way to speed
up the process is to use a specialized importance sampliuggure to approximate the gradients
required for learning [2]. However, while this method cameqg up training substantially, testing
remains computationally expensive.

The hierarchical NPLM introduced in [10], provides an expotial reduction in time complexity of
learning and testing as compared to the NPLM. It achievesrédduction by replacing the unstruc-
tured vocabulary of the NPLM by a binary tree that represartierarchical clustering of words in
the vocabulary. Each word corresponds to a leaf in the trdecan be uniquely specified by the
path from the root to that leaf. IV is the number of words in the vocabulary and the tree is bal-
anced, any word can be specified by a sequene®(kfg V) binary decisions indicating which of
the two children of the current node is to be visited nextsHatup replaces olé-way choice by a
sequence of)(log V) binary choices. In probabilistic terms, onN&way normalization is replaced
by a sequence @d(log N) local (binary) normalizations. As a result, a distributmrer words in
the vocabulary can be specified by providing the probabilftyisiting the left child at each of the
nodes. In the hierarchical NPLM, these local probabiliiess computed by giving a version of the
NPLM the feature vectors for the context words as well as tufeavector for the current node as
inputs. The probability of the next word is then given by thelability of making a sequence of
binary decisions that corresponds to the path to that word.

When applied to a dataset of about one million words, this rhaaperformed class-based trigrams,
but performed considerably worse than the NPLM [10]. Thedrizhical model however was more
than two orders of magnitude faster than the NPLM. The mamitdition of this work was the
procedure used to construct the tree of words for the modik tlee was obtained by starting
with the WordNet IS-A taxonomy and converting it into a bipnaree through a combination of
manual and data-driven processing. Our goal is to replasgthcedure by an automated method
for building trees from the training data without requiriagpert knowledge of any kind. We will
also explore the performance benefits of using trees wheteward can occur more than once.

3 Thelog-bilinear model

We will use the log-bilinear language model (LBL) [9] as tlo&ifidation of our hierarchical model
because of its excellent performance and simplicity. Likauslly all neural language models, the
LBL model represents each word with a real-valued featuceoveWe will denote the feature vector
for word w by r,, and refer to the matrix containing all these feature vecasrB. To predict the
next wordw,, given the contextv,.,,_1, the model computes the predicted feature vettar the
next word by linearly combining the context word featuretoes:

n—1
7= Z Cirwia (1)
i=1

where(C}; is the weight matrix associated with the context positiohhen the similarity between the
predicted feature vector and the feature vector for eacld wothe vocabulary is computed using
the inner product. The similarities are then exponentiatedinormalized to obtain the distribution
over the next word:

exp (717, + by) @
> exp(PTry +b;)

Hereb,, is the bias for wordv, which is used to capture the context-independent wordireqy.

P(wn = w‘wlznfl) =

Note that the LBL model can be interpreted as a special kind fe#fed-forward neural network
with one linear hidden layer and a softmax output layer. Tipeiis to the network are the feature
vectors for the context words, while the matrix of weightanfrthe hidden layer to the output layer
is simply the feature vector matri. The vector of activities of the hidden units correspondbiéo
the predicted feature vector for the next word. Unlike the_MPthe LBL model needs to compute
the hidden activities only once per prediction and has ndimearities in its hidden layer. In spite
of its simplicity the LBL model performs very well, outperfoing both the NPLM and the-gram
models on a fairly large dataset [9].

4 Thehierarchical log-bilinear model

Our hierarchical language model is based on the hierarafmiodel from [10]. The distinguishing
features of our model are the use of the log-bilinear langumagdel for computing the probabilities
at each node and the ability to handle multiple occurrenéesch word in the tree. Note that the
idea of using multiple word occurrences in a tree was pragposgl0], but it was not implemented.

The first component of the hierarchical log-bilinear modlLBL) is a binary tree with words at its
leaves. For now, we will assume that each word in the vocapigaat exactly one leaf. Then each
word can be uniquely specified by a path from the root of the toethe leaf node the word is at.
The path itself can be encoded as a binary stidmg decisions made at each node, so that 1
corresponds to the decision to visit the left child of thereat node. For example, the string “10”
corresponds to a path that starts at the root, visits itgheltl, and then visits the right child of that
child. This allows each word to be represented by a binamygtwhich we will call a code.

The second component of the HLBL model is the probabilistadet for making the decisions
at each node, which in our case is a modified version of the LBideh In the HLBL model,
just like in its non-hierarchical counterpart, context d®are represented using real-valued feature
vectors. Each of the non-leaf nodes in the tree also has aréeactor associated with it that is
used for discriminating the words in the left subtree forewords in the right subtree of the node.
Unlike the context words, the words being predicted areasgmted using their binary codes that are
determined by the word tree. However, this representatiatili quite flexible, since each binary
digit in the code encodes a decision made at a node, whicdsp that node’s feature vector.

In the HLBL model, the probability of the next word being is the probability of making the
sequences of binary decisions specified by the word’s caden ¢the context. Since the probability
of making a decision at a node depends only on the predicedrie vector, determined by the
context, and the feature vector for that node, we can exphesgrobability of the next word as a
product of probabilities of the binary decisions:

P(wn - w|w1:n—1) - Hp(di|qiaw1:n—1), (3)

whered; is it digit in the code for wordy, andg; is the feature vector for thé" node in the path
corresponding to that code. The probability of each decisi@iven by

P(d; = 1|g;, win—1) = o(*' g + bi), 4)

whereo () is the logistic function and is the predicted feature vector computed using Ed; in
the equation is the node’s bias that captures the contdependent tendency to visit the left child
when leaving this node.

The definition of P(w,, = w|wi.,—1) can be extended to multiple codes per word by including a
summation over all codes far as follows:

P(wn = w|w1:n—1) = Z Hp(dz'\Qi,w1:n—1),)]

deD(w) i

whereD(w) is a set of codes corresponding to wardAllowing multiple codes per word can allow
better prediction of words that have multiple senses oriplaltisage patterns. Using multiple codes
per word also makes it easy to combine several separate Wandschies to into a single one to to
reflect the fact that no single hierarchy can express allglaionships between words.

Using the LBL model instead of the NPLM for computing the llogeobabilities allows us to avoid
computing the nonlinearities in the hidden layer which nsader hierarchical model faster at mak-
ing predictions than the hierarchical NPLM. More importgnthe hierarchical NPLM needs to
compute the hidden activities once for each of égog N) decisions, while the HLBL model
computes the predicted feature vector just once per predicHowever, the time complexity of
computing the probability for a single binary decision inladBL model is still quadratic in the
feature vector dimensionalityp, which might make the use of high-dimensional feature wscto
too computationally expensive. We make the time compldiisar in D by restricting the weight
matricesC; to be diagonat. Note that for a context of size 1, this restriction does nduoe the
representational power of the model because the contegtivaiatrixC; can be absorbed into the
word feature vectors. And while this restriction does makesmodels with larger contexts slightly
less powerful, we believe that this loss is more than comgtedsfor by much faster training times
which allow using more complex trees.

HLBL models can be trained by maximizing the (penalized}li&glihood. Since the probability of

the next word depends only on the context weights, the featertors of the context words, and the
feature vectors of the nodes on the paths from the root taetek containing the word in question,
only a (logarithmically) small fraction of the parameteesed to be updated for each training case.

5 Hierarchical clustering of words

The first step in training a hierarchical language model istrwicting a binary tree of words for the
model to use. This can be done by using expert knowledgeditsten methods, or a combination of
the two. For example, in [10] the tree was constructed fraerd 1A taxonomy DAG from WordNet
[6]. After preprocessing the taxonomy by hand to ensureghah node had only one parent, data-
driven hierarchical binary clustering was performed oncdhidren of the nodes in the taxonomy
that had more than two children, resulting in a binary tree.

We are interested in using a pure learning approach appiaabituations where the expert knowl-
edge is unavailable. It is also not clear that using expeoiwkedge, even when it is available,
will lead to superior performance. Hierarchical binarystkring of words based on the their usage
statistics is a natural choice for generating binary tréegasds automatically. This task is similar
to the task of clustering words into classes for trainingslbasea-gram models, for which a large
number of algorithms has been proposed. We consideredas@fiehese algorithms before decid-
ing to use our own algorithm which turned out to be surprisirdfective in spite of its simplicity.
However, we will mention two existing algorithms that midget suitable for producing binary word
hierarchies. Since we wanted an algorithm that scaled wédirge vocabularies, we restricted our
attention to the top-down hierarchical clustering aldoris, as they tend to scale better than their
agglomerative counterparts [7]. The algorithm from [8] guwoes exactly the kind of binary trees
we need, except that its time complexity is cubic in the votaly size? We also considered the
distributional clustering algorithm [11] but decided notuse it because of the difficulties involved
in using contexts of more than one word for clustering. Thizbfem is shared by most-gram
clustering algorithms, so we will describe it in some det8ihce we would like to cluster words for
easy prediction of the next word based on its context, it iana&to describe each word in terms of
the contexts that can precede it. For example, for a singlelwontext one such description is the

Thus the feature vector for the next word can now be computédﬂgf;l ¢ orw,;, Wherec; is a vector
of context weights for positionando denotes the elementwise product of two vectors.
2More precisely, the time complexity of the algorithm is cubic in the number ofrédwrient words, but that

is still to slow for our purposes.

distribution of words that precede the word of interest ia ttaining data. The problem becomes
apparent when we consider using larger contexts: the nuoftmmtexts that can potentially pre-
cede a word grows exponentially in the context size. Thisds/ery same data sparsity problem that
affects then-gram models, which is not surprising, since we are tryinggscribe words in terms of
exponentially large (normalized) count vectors. Thusstating words based on such large-context
representations becomes non-trivial due to the compuiatmost involved as well as the statistical
difficulties caused by the sparsity of the data.

We avoid these difficulties by operating on low-dimensiaeal-valued word representations in our
tree-building procedure. Since we need to train a model taiobvord feature vectors, we perform
the following bootstrapping procedure: we generatarglom binary tree of words, train an HLBL
model based on it, and use the distributed representatiteaans to represent words when building
the word tree.

Since each word is represented by a distribution over ctaiexappears in, we need a way of
compressing such a collection of contexts down to a low-dsi@al vector. After training the
HLBL model, we summarize each context.,,_; with the predicted feature vector produced from
it using Eq. 1. Then, we condense the distribution of costéxat precede a given word into a
feature vector by computing the expectation of the predicépresentation w.r.t. that distribution.
Thus, for the purposes of clustering each word is repreddntés average predicted feature vector.
After computing the low-dimensional real-valued featueeters for words, we recursively apply a
very simple clustering algorithm to them. At each step, wa fihixture of two Gaussians to the
feature vectors and then partition them into two subsetedas the responsibilities of the two
mixture components for them. We then partition each of thesets using the same procedure, and
so on. The recursion stops when the current set containstenlyvords. We fit the mixtures by
running the EM algorithm for 10 stepisThe algorithm updates both the means and the spherical
covariances of the components. Since the means of the canfscere initialized based on a random
partitioning of the feature vectors, the algorithm is notedeninistic and will produce somewhat
different clusterings on different runs. One appealingoprty of this algorithm is that the running
time of each iteration is linear in the vocabulary size, Wtga consequence of representing words
using feature vectors of fixed dimensionality. In our expemts, the algorithm took only a few
minutes to build a hierarchy for a vocabulary of nearly 180@frds based on 100-dimensional
feature vectors.

The goal of an algorithm for generating trees for hierarghianguage models is to produce trees
that are well-supported by the data and are reasonablybatdhced so that the resulting models
generalize well and are fast to train and test. To explorerdme-off between these two require-
ments, we tried several splitting rules in our tree-buiddaigorithm. The rules are based on the
observation that the responsibility of a component for aplaint can be used as a measure of con-
fidence about the assignment of the datapoint to the compomfkas, when the responsibilities of
both components for a datapoint are close to 0.5, we cannaiifeethat the datapoint should be in
one component but not the other.

Our simplest rule aims to produce a balanced tree at any dosiorts the responsibilities and
splits the words into two disjoint subsets of equal size Basethe sorted order. The second rule
makes splits well-supported by the data even if that resulis) unbalanced tree. It achieves that
by assigning the word to the component with the higher resipdity for the word. The third
and the most sophisticated rule is an extension of the seadadmodified to assign a point to
both components whenever both responsibilities are witlih0.5, for some pre-specified This
rule is designed to produce multiple codes for words thadéfieult to cluster. We will refer to
the algorithms that use these rules as BALANCED, ADAPTIViag ADAPTIVE(e) respectively.
Finally, as a baseline for comparison with the above algor#t, we will use an algorithm that
generates random balanced trees. It starts with a randamupegtion of the words and recursively
builds the left subtree based one the first half of the wordstl@ right subtree based on the second
half of the words. We will call this algorithm RANDOM.

3Running EM for more than 10 steps did not make a significant differemtiee quality of the resulting
trees.

Table 1: Trees of words generated by the feature-basedthigorThe mean code length is the sum
of lengths of codes associated with a word, averaged ovelistrébution of the words in the training
data. The run-time complexity of the hierarchical modeiriedr in the mean code length of the tree
used. The mean number of codes per word refers to the numbede$ per word averaged over the
training data distribution. Since each non-leaf node irea tras its own feature vector, the number
of free parameters associated with the tree is linear irgthéstity.

Tree | Generating Mean code| Mean number of] Number of
label | algorithm length | codes per word non-leaf nodes
T1 | RANDOM 14.2 1.0 17963
T2 | BALANCED 14.3 1.0 17963
T3 ADAPTIVE 16.1 1.0 17963
T4 | ADAPTIVE(0.25) 24.2 1.3 22995
T5 | ADAPTIVE(0.4) 29.0 1.7 30296
T6 ADAPTIVE(0.4) x 2 69.1 34 61014
T7 | ADAPTIVE(0.4) x 4 143.2 6.8 121980

Table 2: The effect of the feature dimensionality and thedioge used on the test set perplexity of
the model.

Feature Perplexity using| Perplexity using | Reduction
dimensionality| arandom tree | a non-random tree in perplexity
25 191.6 162.4 29.2
50 166.4 141.7 24.7
75 156.4 134.8 21.6
100 151.2 131.3 19.9

6 Experimental results

We compared the performance of our models on the APNewseatatastaining the Associated
Press news stories from 1995 and 1996. The dataset consistéd4million word training set,

a 1 million word validation set, and 1 million word test setheTvocabulary size for this dataset
is 17964. We chose this dataset because it had already bedrniaisompare the performance of
neural models to that of-gram models in [1] and [9], which allowed us to compare osute to
the results in those papers. Except for where stated otbertvie models used for the experiments
used 100 dimensional feature vectors and a context size D& details of the training procedure
we used are given in the appendix. All models were comparsddan their perplexity score on
the test set.

We started by training a model that used a tree generatedebR AINDOM algorithm (tree T1 in
Table 1). The feature vectors learned by this model were tesledild a tree using the BALANCED
algorithm (tree T2). We then trained models of various femattector dimensionality on each of
these trees to see whether a highly expressive model canersae for using a poorly constructed
tree. The test scores for the resulting models are givenbifeTa As can be seen from the scores,
using a non-random tree results in much better model pedincen Though the gap in performance
can be reduced by increasing the dimensionality of featectovs, using a non-random tree drasti-
cally improves performance even for the model with 100-disienal feature vectors. It should be
noted however, that models that use the random tree are tictlgmopeless. For example, they
outperform the unigram model which achieved the perplexit§02.0 by a very large margin. This
suggests that the HLBL architecture is sufficiently flexitdienake effective use of a random tree
over words.

Since increasing the feature dimensionality beyond 10hdidresult in a substantial reduction in
perplexity, we used 100-dimensional feature vectors foofabur models in the following experi-
ments. Next we explored the effect of the tree building atgor on the performance of the resulting
HLBL model. To do that, we used the RANDOM, BALANCED, and ADAR/E algorithms to
generate one tree each. The ADAPTIVE4{Igorithm was used to generate two trees: one wibt

Table 3: Test set perplexity results for the hierarchicalLLiBodels. All the distributed models
in the comparison used 100-dimensional feature vectorsaarwhtext size of 5. LBL is the non-
hierarchical log-bilinear model. Kiis a Kneser-Ney:-gram model. The scores for LBL, KN3,
and KN5 are from [9]. The timing for LBL is based on our implemtegion of the model.

Model | Tree Tree generating Perplexity| Minutes
type | used algorithm per epoch
HLBL | T1 RANDOM 151.2 4
HLBL T2 BALANCED 131.3 4
HLBL | T3 ADAPTIVE 127.0 4
HLBL | T4 ADAPTIVE(0.25) 124.4 6
HLBL T5 ADAPTIVE(0.4) 123.3 7
HLBL | T6 | ADAPTIVE(0.4) x 2 115.7 16
HLBL | T7 | ADAPTIVE(0.4) x 4 112.1 32
LBL - - 117.0 6420
KN3 - - 129.8 -
KN5 - - 123.2 -

to 0.25 and the other with set to 0.4. We then generated a Bvercomplete tree by running the
ADAPTIVE(e = 0.4) algorithm twice and creating a tree with a root node thatthadwo generated
trees as its subtrees. Since the ADAPTI¥E4{Igorithm involves some randomization we tried to
improve the model performance by allowing the model to ceatygamically between two possible
clusterings. Finally, we generated & 4vercomplete using the same approach. Table 1 lists the
generated trees as well as some statistics for them. Ndté&r¢les generated using ADAPTIVE(
usinge > 0 result in models with more parameters due to the greater auofliree-nodes and thus
tree-node feature vectors, as compared to trees genersiteglaethods producing one code/leaf
per word.

Table 3 shows the test set perplexities and time per epoctinéoresulting models along with the
perplexities for models from [9]. The results show that teef@rmance of the HLBL models based
on non-random trees is comparable to that ofrtkgram models. As expected, building word trees
adaptively improves model performance. The general treatidmerges is that bigger trees tend to
lead to better performing models. For example, a model basexsingle tree produced using the
ADAPTIVE(0.4) algorithm, performs as well as the 5-gram bat as well as the non-hierarchical
LBL model. However, using a2 overcomplete tree generated using the same algorithnisesal
model that outperforms both thegram models and the LBL model, and using>a dvercomplete
tree leads to a further reduction in perplexity. The time-gq@och statistics reported for the neural
models in Table 3 shows the great speed advantage of the HL&lels over the LBL model.
Indeed, the slowest of our HLBL models is over 200 times fasten the LBL model.

7 Discussion and future work

We have demonstrated that a hierarchal neural languagel rmadectually outperform its non-

hierarchical counterparts and achieve state-of-theaafopmance. The key to making a hierarchical
model perform well is using a carefully constructed hiengrover words. We have presented a
simple and fast feature-based algorithm for automatic tcocson of such hierarchies. Creating
hierarchies in which every word occurred more than once gasrdial to getting the models to
perform better.

An inspection of trees generated by our adaptive algorithawed that the words with the largest
numbers of codes (i.e. the word that were replicated the)meste not the words with multiple
distinct senses. Instead, the algorithm appeared to edplibe words that occurred relatively in-
frequently in the data and were therefore difficult to clusiEhe failure to use multiple codes for
words with several very different senses is probably a apmsece of summarizing the distribution
over contexts with a single mean feature vector when clngtevords. The “sense multimodality”
of context distributions would be better captured by usirggrall set of feature vectors found by
clustering the contexts.

Finally, since our tree building algorithm is based on thatdiee vectors learned by the model, it
is possible to periodically interrupt training of such a rabtb rebuild the word tree based on the
feature vectors provided by the model being trained. Thidifieal training procedure might produce
better models by allowing the word hierarchy to adapt to tfedabilistic component of the model

and vice versa.

Appendix: Details of the training procedure

The models have been trained by maximizing the log-likelthasing stochastic gradient ascent.
All model parameters other than the biases were initiallagdampling from a Gaussian of small
variance. The biases for the tree nodes were initializebatdate distribution produced by the model
with all the non-bias parameters set to zero matched therbteseof the words in the training set.

Models were trained using the learning rate ©f 3 until the perplexity on the validation set started
to increase. Then the learning rate was reducegl t010~° and training was resumed until the

validation perplexity started increasing again. All modatameters were regulated using a small
L, penalty.

Acknowledgments

We thank Martin Szummer for his comments on a draft of thisspaphis research was supported
by NSERC and CFIl. GEH is a fellow of the Canadian InstituteAdvanced Research.

References

[1] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, andstzhr Jauvin. A neural probabilistic
language modelJournal of Machine Learning Research, 3:1137-1155, 2003.

[2] Yoshua Bengio and JearéBastien Seactal. Quick training of probabilistic neural nets by
importance sampling. 1AISTATS 03, 2003.

[3] P.F. Brown, R.L. Mercer, V.J. Della Pietra, and J.C. L@lass-based n-gram models of natural
language Computational Linguistics, 18(4):467—-479, 1992.

[4] Stanley F. Chen and Joshua Goodman. An empirical studynafothing techniques for lan-
guage modeling. IfProceedings of the Thirty-Fourth Annual Meeting of the Association for
Computational Linguistics, pages 310-318, San Francisco, 1996.

[5] Ahmad Emami, Peng Xu, and Frederick Jelinek. Using a eatianist model in a syntactical
based language model. Rroceedings of ICASSP, volume 1, pages 372-375, 2003.

[6] C. Fellbaum et al.WordNet: an electronic lexical database. Cambridge, Mass: MIT Press,
1998.

[7] J. Goodman. A bit of progress in language modeling. Texdimeport, Microsoft Research,
2000.

[8] John G. McMahon and Francis J. Smith. Improving stat#dtlanguage model performance
with automatically generated word hierarchieSomputational Linguistics, 22(2):217-247,
1996.

[9] A. Mnih and G. Hinton. Three new graphical models for istidal language modellingPro-
ceedings of the 24th international conference on Machine learning, pages 641-648, 2007.
[10] Frederic Morin and Yoshua Bengio. Hierarchical prabstic neural network language model.
In Robert G. Cowell and Zoubin Ghahramani, edit@é<STATS 05, pages 246—252, 2005.

[11] F. Pereira, N. Tishby, and L. Lee. Distributional clkerstg of English words Proceedings of
the 31st conference on Association for Computational Linguistics, pages 183-190, 1993.

[12] Holger Schwenk and Jean-Luc Gauvain. Connectionigjuage modeling for large vocabu-
lary continuous speech recognition. Proceedings of the Inter national Conference on Acous-
tics, Speech and Sgnal Processing, pages 765-768, 2002.

