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Abstract

We present products of hidden Markov mod-

els (PoHMM's), a way of combining HMM's

to form a distributed state time series model.

Inference in a PoHMM is tractable and eÆ-

cient. Learning of the parameters, although

intractable, can be e�ectively done using the

Product of Experts learning rule. The dis-

tributed state helps the model to explain data

which has multiple causes, and the fact that

each model need only explain part of the

data means a PoHMM can capture longer

range structure than an HMM is capable of.

We show some results on modelling character

strings, a simple language task and the sym-

bolic family trees problem, which highlight

these advantages.

1 Introduction

Hidden Markov models (HMM's) have been very suc-

cessful in automatic speech recognition where they are

the standard method for modelling and discriminating

sequences of phonemes. Using the Markov dependence

of the hidden state variable, they capture the depen-

dence of each observation on the recent history of the

sequence. They also have the advantage that there is

a very eÆcient algorithm for �tting an HMM to data:

the forward-backward algorithm and the Baum-Welch

re-estimation formulas. However, HMM's have been

less widely applied in other areas where statistical time

series are used. In statistical language modelling, for

example, the most common model is a fully-observed,

second-order Markov model, known as a trigram.

One limitation of HMM's that makes them inappro-

priate for language modelling is that they represent
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the recent history of the time series using a single,

discrete K-state multinomial. The eÆciency of the

Baum-Welch re-estimation algorithm depends on this

fact, but it severely limits the representational power

of the model. The hidden state of a single HMM can

only convey log2K bits of information about the re-

cent history. If the generative model had a distributed

hidden state representation [6] consisting of M vari-

ables each with K alternative states it could convey

M log2K bits of information, so the information bot-

tleneck scales linearly with the number of variables

and only logarithmically with the number of alterna-

tive states of each variable.

A second limitation of HMM's is that they have great

diÆculty in learning to capture long range dependen-

cies in a sequence [1]. In the case of natural language

there are many examples of word agreements which

span a large portion of a sentence. As we shall demon-

strate, this is much easier to model in a system that

has distributed hidden state since each variable in the

distributed state can be concerned with a speci�c type

of long-range regularity and does not get distracted by

having to deal with all the other regularities in the time

series.

2 Products of HMM's

Extending the hidden state of an HMM can be done

in various ways. One is to add several hidden state

variables which have a causal e�ect on the observed

variables in the model. This is known as a Factorial

HMM [2] and is shown in Fig. 1.

In a causal belief network each local probability distri-

bution can be independently estimated given the pos-

terior distribution of the hidden variables conditioned

on the evidence. However, it is exponentially expen-

sive to compute this posterior distribution exactly be-

cause observing the visible variables induces depen-

dencies among the hidden variables. Ghahramani and

Jordan handle this problem by approximating the pos-
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Figure 1: Factorial HMM

terior with a factored, variational distribution.

A very di�erent way of combining multiple HMM's

is to multiply their individual distributions together

and renormalize (Fig. 2). This \Product of Experts"

generative model can be represented as an undirected

Markov network in which the hidden state variables

are non-causally related to the visible variables. This

PoHMM network has the opposite property of the

FHMM, in that conditioned on a set of observations,

the hidden state chains are independent. So exact in-

ference can easily be performed by using the forward-

backward algorithm in each chain separately. How-

ever, learning of the local probability functions is now

more complex, because the local distributions are all

linked by a global partition function. This may be seen

in the equation for the density of a product model:
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where �m is the set of parameters for each HMM in the

product. The existence of this summation over all the

possible strings of a given length in the denominator

of the equation makes it intractable to compute the

exact gradient of the log likelihood of the observed

data w.r.t the parameters, so it appears to be very

hard to �t a PoHMM to data. Gibbs sampling can

be used to estimate the derivatives of the partition

function but this is very slow and noisy. Fortunately,

there is an alternative objective function for learning

whose gradient can be approximated accurately and

eÆciently [4]. It has been shown that optimizing this

alternative objective function leads to good generative
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Figure 2: Product of HMM's

models for non-sequential data and we show here that

the same approach works for PoHMM's.

Maximizing the log likelihood of the data is equiv-

alent to minimizing the Kullback-Leibler divergence

KL(Q0
jjQ1) between the observed data distribution,

Q0, and the equilibrium distribution, Q1, produced

by the generative model1. Instead of simply minimiz-

ing KL(Q0
jjQ1) we minimize the \contrastive diver-

gence"KL(Q0
jjQ1) � KL(Q1

jjQ1), where Q1 is the

distribution over one-step reconstructions of the data

that are produced by running a Gibbs sampler for one

full step, starting at the data. The advantage of using

the contrastive divergence as the objective function for

learning is that the intractable derivatives of the par-

tition function cancel out and if we are prepared to ig-

nore a term that turns out to be negligible in practice

[4] it is easy to follow the gradient of the contrastive

divergence:

1. Calculate each model's gradient @
@�m

P (V T
1 j�m) on

a data point using the forward-backward algo-

rithm.

2. For each model take a sample from the posterior

distribution of paths through state space.

3. At each time step, multiply together the distribu-

tions over symbols speci�ed by the chosen paths

in each HMM. Renormalize to get the reconstruc-

tion distribution at that time step.

4. Draw a sample from the reconstruction distribu-

tion at each time step to get a reconstructed se-

quence. Compute each model's gradient on the

new sequence @
@�m

P (V̂ T
1 j�m)

5. Update the parameters:

��m /
@ logP (V T

1 j�)

@�m
�
@ logP (V̂ T

1 j�)

@�m

1We call this distribution Q1 because one way to get
exact samples from it is to run a Gibbs sampler for an
in�nite number of iterations



To compute the gradient of the HMM we use an EM

like trick. Directly computing the gradient of an HMM

is diÆcult due to the fact that all the parameters are

coupled through their in
uence on the hidden states.

If the HMM were visible and the hidden states were

known then the gradient of the log-likelihood for each

parameter would decouple into an expression involving

only local variables. As in EM, we use the posterior

distribution over the hidden states in place of actual

values by using the identity:

@

@�
logP (V T

1 j�) =

@

@�
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This says that if we compute the posterior of the HMM

using the forward backward algorithm we can take the

gradient of the complete data log-likelihood using the

suÆcient statistics of the hidden variables in place of

actual values.

A second optimization trick which we have used is

to re-parameterize the probabilities of the HMM, us-

ing the softmax function. Working in this domain al-

lows us to do unconstrained gradient descent over the

real numbers. Doing gradient optimization directly in

the probability domain would involve the more diÆ-

cult proposition of constraining the parameters to the

probability simplex. An added advantage of this re-

paramaterization is that the probabilities cannot go

to zero anywhere. It is clearly desirable in the PoE

framework that none of the individual experts assigns

zero probability to an event.

As an example we look at the gradient rule for the

transition probabilities of an HMM, P (St = jjSt�1 =

i) = Aij . If we re-parameterize using the softmax

function:

Aij =
exp(aij)P
j exp(aij)

: (4)

Taking the derivative with respect to aij yields

@

@aij
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As before the angle brackets indicate an expectation

with respect to the posterior of the hidden states. This

has the intuitive interpretation that the derivative for

the softmax parameter aij regresses toward the point

where Aij is equal to the expected transition probabil-

ity under the posterior. If we set the derivative to zero

and solved this equation directly, we would recover the

Baum-Welch update equation.
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Figure 3: An 'eye-chart' diagram of the output dis-

tributions of the 2-state HMM in the PoHMM. Each

chart corresponds to a single state's output distribu-

tion and the size of each symbol is proportional to the

probability mass on that symbol.
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Figure 4: Eye-chart diagram of the output distribu-

tions of two of the states of the 30 state HMM

3 Results

To demonstrate the relative merits of a product of

HMM's versus a single HMM, we have applied them

to two problems in text and language modelling. The

�rst of these is modelling strings of English letters, and

the second is a task of discriminating sets of simple

English sentences which exhibit long and short range

dependencies.

3.1 Modelling Character Strings

The �rst experiment involved modelling character

strings from a corpus of English text. The problem

was slightly modi�ed to better demonstrate the ad-

vantages of a product model. Rather than training the

model on a single case, or mixed case text, we trained

it on data in which the characters in a sentence were

either all upper case or all lower case. Thus there re-

ally are independent factors underlying this sequence:

the binary decision of upper case or lower case and the

statistics of the letters.

We used 8600 sentences2 and converted them to all

upper and all lower case to yield over 17,000 training

sentences. 56 symbols were allowed: 4 symbols for

space and punctuation, 26 upper and 26 lower case

letters. We compared a single HMM with 32 hidden

2from Thomas Hardy's \Tess of the d'Urbervilles" avail-
able from Project Gutenberg (http://www.gutenberg.net)



states against a product of a 2 state and a 30 state hid-

den Markov model. In the product model the 2 state

HMM learns to di�erentiate upper and lower case. It

`votes' to put probability mass on the upper or lower

case letters respectively (Fig. 3), and it enforces the

continuity through its transition matrix. Then the

30-state HMM need only learn the case-independent

statistics of the characters and the fact that the up-

per and lower case characters are analogous, placing

proportional amounts of probability mass on the two

halves of the symbol set. In Fig. 4 we see an example

of two of the big HMM's 30 hidden states. Its output

distributions are symmetric over the upper and lower

case letters, indicating that it has left the modelling of

case to the smaller 2-state HMM model.

By contrast, the single HMM has to partition its data

space into two parts, one each for upper and lower case.

In e�ect it has to model the caseless letter statistics

with a much smaller number of hidden states. This can

be seen in Fig. 5a) where the observation distributions

of the 32 states fall into 3 categories: punctuation,

upper case, and lower case. Similarly we can see in

the transition matrix (Fig. 5b) that the upper case

states only transition to upper case states and likewise

for the lower case states.

While we cannot compute the log likelihood of a string

under the PoHMM we can compute the probability of

a single symbol conditioned on the other symbols in a

sentence. This leads to a simple, interesting test of the

models which we refer to as the \symmetric Shannon

game". In the original Shannon game [5], a prediction

of the next symbol in a sequence is made given the

previous N symbols. In the symmetric Shannon game

the model is given both past and future symbols and

is asked to predict the current one. We can compute

this distribution exactly since we need only normalize

over the missing symbol and not all strings of symbols.

For models based on directed acyclic graphs, such as

an HMM, it is easy to compute the probability of the

next symbol in a sequence given the symbols so far.

Somewhat surprisingly, this is not true for undirected

models like a PoHMM. If the data after time t is miss-

ing, the posterior distribution over paths through each

HMM up to time t depends on how easily these paths

can be extended in time so as to reach agreement on

future data.

Table 6 shows a comparison of several PoHMM mod-

els with a single large HMM. They were scored on a

set of 60 hold-out sentences with an equal number of

upper and lower case. The product of a 2-state and

30-state HMM with 2728 parameters, while capturing

the componential structure we were hoping for, does

not outperform a single 32 state HMM which has been

roughly matched for the number of parameters (2848

parameters). This is mainly an optimization problem,

because if we train a 2-state model alone and a 30-state

model on uni-case text, and then use their parameters

to initialize the PoHMM then it does much better than

the single HMM. If we use a product of many, simple

HMM's then the optimization problem is eased. A

product of 10, 4-state HMM's, which has still fewer

parameters (2440), performs as well as a hand initial-

ized product of 2 HMM's. Increasing, the number of

HMM's in the product provides further improvements

while the parameters and computation time scale lin-

early with the number of HMM's in the model.

Model Sym. Shannon (bits)

PoHMM 40 x 4-states 1.96
PoHMM 20 x 4-states 2.06
PoHMM 10 x 4-states 2.13
PoHMM (2-state +

30-state, pre-initialized) 2.14
32 State HMM 2.46

PoHMM (2-state + 30-state
random initialization) 2.73

Figure 6: Symmetric Shannon scores for several

PoHMM models and a single large HMM

3.2 Modelling Simple Sentences
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Figure 7: Discrimination diagrams of the correct and

two incorrect sentence sets under each model. Circles

below the line indicate that the model assigns higher

probability to the correct sentence than the corrupted

sentence. Circles on the line indicate that the model

cannot discriminate the two. (Note there is some over-

lap of the circles in the HMM plots.)

In the second task, matching the models for the num-

ber of parameters, we use a single HMM with 32 states

and a product of 10, 6 and 7 state HMM's to model

a set of English sentences of the form, \Yes I am "

or \No she is not". There are 14 legal sentences in
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Figure 5: The 32 state HMM a) the observation probabilities of the HMM b) a diagram of the transition matrix

where the area of the square indicates the probability of going to a state.

the grammar, including all combinations of yes and no

with the pronouns (I,you,he,she,it,we,they) and their

corresponding conjugation of the verb \to be". The

sentences feature two kinds of agreement. There is

short range agreement between the subject and the

verb which are always adjacent, and there is longer

range agreement between the \no" and \not" or \yes"

and the null symbol which appear at the beginning

and end of the sentence, respectively. To test whether

the two types of models could capture these correla-

tions, we created two sets of ungrammatical sentences

in which either the verbs were wrong or the ending of

the sentence did not match the beginning. We com-

pared relative log-likelihoods of these sentences under

each model, and the results are shown in Fig. 7. Both

models can discriminate the ungrammatical sentences

where short range structure is corrupted, but the single

HMM cannot discriminate the cases where the longer

range structure is corrupted.

3.3 Family Trees

The �nal example application of PoHMM's is one of

symbolic inference in two family trees [3]. In the fam-

ily trees problem we consider two families { one En-

glish and the other Italian. There are twelve people

in each family. In addition there are twelve familial

relationships such as father, daughter, uncle etc. The

data set is composed of a set of triplets of the form

person relation person. While the number of allowed

triplets in the dataset covers only a small number of all

the possible triplets, it is possible to generalize from

training examples to unseen testing examples because

there are a small number of interacting constraints on

Christopher = Penelope = Christine

=

= Maria = Emma

= Pietro

JamesVictoria

Andrew

Aurelio Bortolo

Giannina Doralice = Marcello

Charles=JenniferArthur=Margaret

Pierino=Grazia

Colin Charlotte

Alberto Mariemma

Figure 8: English and Italian family trees

the data. Fig. 8 shows the two family trees. The two

families have identical structure so that relationships

learned in one can be transferred by analogy to the

other, in much the same way that the PoHMM learns

the analogical relationship between characters in the

upper and lower case text example. One can think of

other rules of thumb which might be applied to this

data such as only men can be husbands, or spouses

must be of the same generation.

Treating each triplet as a sequence of symbols from

an alphabet of 36 symbols (24 people and 12 rela-

tionships) we can train a PoHMM to learn transition

probabilities and output probabilities which capture

the structure in this data. Using a large number of

HMM's, each with a small number of hidden states,
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Figure 9: A 4-state HMM which encodes one rule of the family trees data { English and Italian are mutually

exclusive. The display shows the path through the states and the probability of that path.

some of the models will learn to produce these rules of

thumb in their transition structure. One obvious piece

of structure in the triplets is that the �rst and third

symbol always comes from the set of people and the

second is always a relationship. We could construct a

model which builds in this restriction, but a PoHMM

easily learns this. A single model can alternate putting

probability mass on the people and the relationships.

The other models are then free to model other regu-

larities in the data.

Fig. 9 shows an example of a 4-state model taken from

a PoHMM trained on the family trees data. Since

there are only a small number of paths through this

HMM, they can all be enumerated and sorted accord-

ing to their probability of occurrence. The �gure shows

the top two paths and their probability of occurrence.

For each state in the path the output probabilities of

each state have been displayed to elucidate their struc-

ture. In the �rst and third positions only the output

probabilities over people are displayed and in the mid-

dle position only the output probabilities over rela-

tionships. The HMM uses only states 3 and 4, but it

reuses them in a clever way. The most likely path is

states 4-3-4, which puts high probability on an Italian,

uniform probability on a relationship, and high prob-

ability on an Italian. The second most likely path,

3-4-3, shows a preference for English, followed by any

relationship followed by English. Thus, this HMM has

captured the mutual exclusion of nationality in the

dataset. The Italian path is almost twice as probable

as the English path, but this discrepancy is presum-

ably o�set by slight preferences for English over Italian

in other HMM's.

While other rules are not so clear cut and easily inter-

pretable, they express in a softer fashion similar con-

straints across age, and sex. When many such soft,

probabilistic rules are applied they create a sharp dis-

tribution over the data.

4 Extensions

One concern that we have about the PoHMM is that

each HMM has it's own output distribution over the

data, which could include many parameters if there are

a large number of symbols. One way to deal with this

is to add an extra layer of shared hidden features be-

tween the hidden variables of the HMM and the output

symbols. Sharing the output model features among

the HMM's, it greatly reduces the number of free pa-

rameters in the PoHMM and it has the bene�t that

data regularities learned by one model do not have

to be re-learned again and again in the other models.

Each HMM retains it's own transition distribution and

it's own weights from it's hidden states to the hidden

features.

We parameterize the output model as a two layer net-

work, with a linear hidden layer and a softmax non-

linearity in the output layer (Fig. 10). Note that we

do not constrain the hidden layer values to be posi-

tive or sum to one. They may be positive or negative.

If we constrained the hidden features to be a proper

probability distribution then this would be equivalent

to inserting a single discrete valued stochastic variable

between the hidden variable and the visible variable of

the HMM. This is not as powerful a representation as

allowing the hidden features to take on independent
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Figure 10: Output model of the HMM's

real values. The formula for such an output model is

given by:

P (V jS; �m) = �(s0UmW ) (6)

Where we treat the hidden state, s, as a column vector

of indicator variables { a one in the position of the

discrete state which the hidden variable takes. � is

the softmax function. U is the matrix of weights which

the states of model m place on the hidden features and

W is the matrix shared hidden features. Interestingly,

this output distribution is also a product model. The

columns ofW are linearly combined in the log domain

and then pushed through the softmax function to get a

probability distribution. The rows of U are the weights

that each state puts on these basis distributions.

There are two ways that we can regularize or con-

strain the output model. One way is to create a bot-

tle neck by using a small number of hidden features.

This is equivalent to decomposing the stochastic out-

put matrix as the product of two lower rank matri-

ces. The other way is to use a large number of hidden

features, but use another regularizer on the output

weights forcing them to be small. Thus, the hidden

features are restricted to be soft distributions over the

output symbols. We have applied this technique to

the family trees problem, and it does help the general-

ization performance. We test the pattern completion

performance of the PoHMM by clamping the �rst two

entries of a tuple and computing the predictive distri-

bution of the third. On �fteen learning trials, with 20

HMM's of 4 hidden states each, the PoHMM obtained

perfect completion performance on the training data

and 73% on the test data. This is competitive with

the backpropagation solution, despite the fact that it

is not directly optimized for this task. Also, as a gen-

erative model the PoHMM can be used to compute

a completion distribution for any of the elements of

tuple, whereas feedforward networks can only perform

the completion task in the direction in which they have

been trained.

5 Conclusions

Using the three datasets presented here, we have

shown how to �t a PoHMM that is a better model

of sequences with componential structure than a single

HMM with the same number of parameters. Although

the number of alternative distributed hidden states in

a PoHMM grows exponentially with the number of

models, the computational complexity of each approx-

imate gradient step in the �tting only grows linearly.

On a simple language modelling problem we also show

that a PoHMM can capture longer range structure in a

time series because the individual models do not need

to explain every observation and thus they can store

information about earlier parts of the sequence in their

hidden states without being distracted by other regu-

larities that are captured by other models.

Finally, we show that the PoHMM is useful for learning

the symbolic family trees problem which involves �nd-

ing a set of constraints which conjunctively combine

to restrict the space of allowable data points. Further,

we outline some future directions for research using

shared output models among the HMM's to help cope

with the explosion of parameters to be estimated in

problems such as large vocabulary language modelling.
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