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Abstract

We propose a model for natural images in which the probability of an im-
age is proportional to the product of the probabilities of some filter out-
puts. We encourage the system to find sparse features by using a Student-
t distribution to model each filter output. If the t-distribution is used to
model the combined outputs of sets of neurally adjacent filters, the sys-
tem learns a topographic map in which the orientation, spatial frequency
and location of the filters change smoothly across the map. Even though
maximum likelihood learning is intractable in our model, the product
form allows a relatively efficient learning procedure that works well even
for highly overcomplete sets of filters. Once the model has been learned
it can be used as a prior to derive the “iterated Wiener filter” for the pur-
pose of denoising images.

1 Introduction

Historically, two different classes of statistical model have been used for natural images.
“Energy-based” models assign to each image a global energy, E, that is the sum of a num-
ber of local contributions and they define the probability of an image to be proportional to
exp(—E). This class of models includes Markov Random Fields where combinations of
nearby pixel values contribute local energies, Boltzmann Machines in which binary pixels
are augmented with binary hidden variables that learn to model higher-order statistical in-
teractions and Maximum Entropy methods which learn the appropriate magnitudes for the
energy contributions of heuristically derived features [5] [9]. It is difficult to perform max-
imum likelihood fitting on most energy-based models because of the normalization term
(the partition function) that is required to convert exp(—FE) to a probability. The normal-
ization term is a sum over all possible images and its derivative w.r.t. the parameters is
required for maximum likelihood fitting. The usual approach is to approximate this deriva-
tive by using Markov Chain Monte Carlo (MCMC) to sample from the model, but the large
number of iterations required to reach equilibrium makes learning very slow.

The other class of model uses a “causal” directed acyclic graph in which the lowest level
nodes correspond to pixels and the probability distribution at a node (in the absence of
any observations) depends only on its parents. When the graph is singly or very sparsely



connected there are efficient algorithms for maximum likelihood fitting but if nodes have
many parents, it is hard to perform maximum likelihood fitting because this requires the
intractable posterior distribution over non-leaf nodes given the pixel values.

There is much debate about which class of model is the most appropriate for natural images.
Is a particular image best characterized by the states of some hidden variables in a causal
generative model? Or is it best characterized by its peculiarities i.e. by saying which of a
very large set of normally satisfied constraints are violated? In this paper we treat violations
of constraints as contributions to a global energy and we show how to learn a large set of
constraints each of which is normally satisfied fairly accurately but occasionally violated
by a lot. The ability to learn efficiently without ever having to generate equilibrium samples
from the model and without having to confront the intractable partition function removes a
major obstacle to the use of energy-based models.

2 TheProduct of Student-t Modd

Products of Experts (POE) are a restricted class of energy-based model [1]. The distribution
represented by a PoE is simply the normalized product of all the distributions represented
by the individual “experts”:
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where f;(x|6;) are un-normalized experts and Z denotes the overall normalization constant.
In the product of Student-t (PoT) model, un-normalized experts have the following form,
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where J; is called a filter and is the i-th column in the filter-matrix J. When properly
normalized, this represents a Student-t distribution over the filtered random variable z; =

JTx. Animportant feature of the Student-t distribution is its heavy tails, which makes it a
suitable candidate for modelling constraints of the kind that are found in images.

Defining P(z) = exp(—E(x))/Z, the energy of the PoT model becomes

M
Bla) =Y ailog(1 + 5(37%)) @
i=1

Viewed this way, the model takes the form of a maximum entropy distribution with weights
«; on real-valued “features” of the image. Unlike previous maximum entropy models,
however, we can fit both the weights and the features at the same time.

When the number of input dimensions is equal to the number of experts, the normally in-
tractable partition function becomes a determinant and the PoT model becomes equivalent
to a noiseless ICA model with Student-t prior distributions [2]. In that case the rows of
the inverse filters A = J~! will represent independent directions in input space. So noise-
less ICA can be viewed as an energy-based model even though it is usually interpeted as
a causal generative model in which the posterior over the hidden variables collapses to a
point. However, when we consider more experts than input dimensions (i.e. an overcom-
plete representation), the energy-based view and the causal generative view lead to different
generalizations of ICA. The natural causal generalization retains the independence of the
hidden variables in the prior by assuming independent sources. In contrast, the PoT model
simply multiplies together more experts than input dimensions and re-normalizes to get the
total probability.



3 Training the PoT Model with Contrastive Divergence

When training energy-based models we need to shape the energy function so that observed
images have low energy and empty regions in the space of all possible images have high
energy. The maximum likelihood learning rule is given by,
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It is the second term which causes learning to be slow and noisy because it is usually
necessary to use MCMC to compute the average over the equilibrium distribution. A much
more efficient way to fit the model is to use the data distribution itself to initialize a Markov
Chain which then starts moving towards the model’s equilibrium distribution. After just a
few steps, we observe how the chain is diverging from the data and adjust the parameters
to counteract this divergence. This is done by lowering the energy of the data and raising
the energy of the “confabulations” produced by a few steps of MCMC.
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It can be shown that the above update rule approximately minimizes a new objective func-
tion called the contrastive divergence [1].

As it stands the learning rule will be inefficient if the Markov Chain mixes slowly because
the two terms in equation 5 will almost cancel each other out. To speed up learning we need
a Markov chain that mixes rapidly so that the confabulations will be some distance away
from the data. Rapid mixing can be achieved by alternately Gibbs sampling a set of hidden
variables given the random variables under consideration and vice versa. Fortunately, the
PoT model can be equipped with a number of hidden random variables equal to the number
of experts as follows,
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Integrating over the u variables results in the density of the PoT model, i.e. eqns. (1) and
(2). Moreover, the conditional distributions are easy to identify and sample from, namely
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where G denotes a Gamma distribution and A" a normal distribution. From (8) we see that
the variables u can be interpreted as precision variables in the transformed space z = J7'x.
In this respect our model resembles a “Gaussian scale mixture” (GSM) [8] which also
multiplies a positive scaling variable with a normal variate. But GSM is a causal model
while PoT is energy-based.

The (in)dependency relations between the variables in a PoT model are depicted graphically
in figure (1a,b). The hidden variables are independent given x, which allows them to be
Gibbs-sampled in parallel. This resembles the way in which brief Gibbs sampling is used
to fit binary “Restricted Boltzmann Machines” [1].

To learn the parameters of the PoT model we thus propose to iterate the following steps:

1) Sample 1, given the data d,, for every data-vector according to the Gamma-
distribution (7).
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Figure 1: (a)- Undirected graph for the PoT model. (b)-Expanded graph where the deterministic
relation (dashed lines) between the random variable x and the activities of the filters (J7x)? is made
explicit. (c)-Graph for the PoT model including weights W. (d)-Filters with large (decreasing from
left to right) weights into a particular top level unit u;. Top level units have learned to connect to
filters similar in frequency, location and orientation.

2) Sample reconstructions of the data %,, given the sampled values of 1i,, for every
data-vector according to the Normal distribution (8).

3) Update the parameters according to (5) where the “k-step samples” are now given
by the reconstructions %x,,, the energy is given by (3), and the parameters are given
by 6 = {J,a}.

4 Overcomplete Representations

The above learning rules are still valid for overcomplete representations. However, step-2
of the learning algorithm is much more efficient when the inverse of the filter matrix J
exists. In that case we simply draw NN standard normal random numbers (with NV the num-

ber of data-vectors) and multiply each of them with J-7U,, %. This is efficient because

1
the data dependent matrix Uy, 2 is diagonal while the costly inverse J—7 is data indepen-
dent. In contrast, for the overcomplete case we ought to perform a Cholesky factorization
on JU,JT for each data-vector separately. We have, however, obtained good results by
proceeding as in the complete case and replacing the inverse of the filter matrix with its
pseudo-inverse.

From experiments we have also found that in the overcomplete case we should fix the Ls-
norm of the filters, J7J; = 1 Vi, in order to prevent some of them from decaying to zero.
This operation is done after every step of learning. Since controlling the norm removes the
ability of the experts to adapt to scale it is necessary to whiten the data first.

4.1 Experiment: Overcomplete Representationsfor Natural |mages

We randomly generated 50, 000 patches of 10 x 10 pixels from images of natural scenes?.
The patches were centered and sphered using PCA and the DC component (eigen-vector
with largest variance) was removed. The algorithm for overcomplete representations using
the pseudo-inverse was used to train 50, 176 experts, i.e. a representation that is more than
500 times overcomplete. We fixed the weights to have «; = 1 and the the filters to have
a Ly-norm of 1. A small weight decay term and a momentum term were included in the
gradient updates of the filters. The learning rate was set so that initially the change in the
filters was approximately 0.001. In figure (2a) we show a small subset of the inverse-filters
given by the pseudo-inverse of J'Mpca, where Mpca is the 100 x 99 matrix used for
sphering the data.

Collected from http://iwww.cis.hut.fi/projects/ica/data/images



5 Topographically Ordered Features

In [6] it was shown that linear filtering of natural images is not enough to remove all higher
order dependencies. In particular, it was argued that there are residual dependencies among
the activities 22 = (J7x)? of the filtered inputs. It is therefore desirable to model those
dependencies within the PoT model. By inspection of figure (1b) we note that these depen-
dencies can be modelled through a non-negative weight matrix W;; > 0, which connects
the hidden variables u; with the activities (JJTx)"’. The resultant model is depicted in figure
(1c). Depending on how many nonzero weights ;; emanate from a hidden unit u; (say
d;), each expert now occupies d; input dimensions instead of just one. The expressions for
these richer experts can be obtained from (2) by replacing, (J¥x)? — > Wij (JJ.Tx)2. We
have found that learning is assisted by fixing the L;-norm of the weights (Ej Wi; =1 Vi).
Moreover, we have found that the sparsity of the weights W can be controlled by the fol-
lowing generalization of the experts,
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The larger the value for 3 the sparser the distribution of W values.

Joint and conditional distributions over hidden variables are obtained through similar re-
placements in egn. (6) and (7) respectively. Sampling the reconstructions given the states of
the hidden variables proceeds by first sampling from M independent generalized Laplace
distributions y; ~ Cjexp(—m;|y;|?) with precision parameters 7 = 1 W7u which are
subsequently transformed into * = J~T'y. Learning in this model therefore proceeds with
only minor modifications to the algorithm described in the previous section.

When we learn the weight matrix ;; from image data we find that a particular hidden
variable u; develops weights to the activities of filters similar in frequency, location and
orientation. The u variables therefore integrate information from these filters and as a
result develop certain invariances that resemble the behavior of complex cells. A similar
approach was studied in [4] using a related causal model? in which a number of scale
variables generate correlated variances for conditionally Gaussian experts. This results in
topography when the scale-generating variables are non-adaptive and connect to a local
neighborhood of filters only.

We will now argue that fixed local weights W also give rise to topography in the PoT
model. The reason is that averaging the squares of randomly chosen filter outputs (eqn.9)
produces an approximately Gaussian distribution which is a poor fit to the heavy-tailed
experts. However, this “smoothing effect” may be largely avoided by averaging squared
filter outputs that are highly correlated (i.e. ones that are similar in location, frequency and
orientation). Since the averaging is local, this results in a topographic layout of the filters.

5.1 Experiment: Topographic Representationsfor Natural Images

For this experiment we collected 50, 000 image patches of size 16 x 16 pixels in the same
way as described in section (4.1). The image data were sphered and reduced to 169 di-
mensions by removing 86 low variance and 1 high variance (DC) direction. We learned an
overcomplete representation with 400 experts which were organized on a square 20 x 20
grid. Each expert connects with a fixed weight of W;; = 1/9 to itself and all its 8 neigh-
bors, where periodic boundary conditions were imposed for the experts on the boundary.

%Interestingly, the update equations for the filters J presented in [4], which minimize a bound on
the log-likelihood of a directed model, reduce to the same equations as our learning rules when the
representation is complete and the filters orthogonal.
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Figure 2: (a)-Small subset of the 50,176 learned filters from a 500 times overcomplete represen-
tation for natural image patches. (b)-Topographically ordered filters. The weights were fixed and
connect to neighbors only, using periodic boundary conditions. Neighboring filters have learned to
be similar in frequency, location and orientation. One can observe a pinwheel structure to the left of
the low frequency cluster.

We adapted the filters J (L»-norm 1) and used fixed values for « = 1 and 8 = 2. The re-
sulting inverse-filters are shown in figure (2b). We note that the weights W have enforced a
topographic ordering on the experts, where location, scale and frequency of the Gabor-like
filters all change smoothly across the map.

In another experiment we used the same data to train a complete representation of 169
experts where we learned the weights W (L;-norm 1), « and the filters J (unconstrained),
but with a fixed value of 8 = 1. The weights W and « were kept positive by adapting their
logarithm. Since the weights W can now connect to any other expert we do not expect
topography. To study whether the weights W were modelling the dependencies between
the energies of the filter outputs (J7x)? we ordered the filters for each complex cell u;
according to the strength of the weights connecting to it. For a representative subset of the
complex cells u, we show the 10 filters with the strongest connections to that cell in figure
(2d). Since the cells connect to similar filters we may conclude that the weights W are
indeed learning the dependencies between the activities of the filter outputs.

6 Denoising Images: The lterated Wiener Filter

If the POoT model provides an accurate description of the statistics of natural image data it
ought to be a good prior for cleaning up noisy images. In the following we will apply this
idea to denoise images contaminated with Gaussian pixel noise. We follow the standard
Bayesian approach which states that the optimal estimate of the original image is given by
the maximum a posteriori (MAP) estimate of P(x|y), where y denotes the noisy image.
For the PoT model this reduces to,
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Figure 3: (a)- Original “rock’-image. (b)-Rock-image with noise added. (c)-Denoised image using
Wiener filtering. (d) Denoised image using IWF.

To minimize this we follow a variational procedure where we upper bound the logarithm
using logz < vz — logy — 1. The bound is saturated when v = 1/z. Applying this to
every logarithm in the summation in egn. (10) and iteratively minimizing this bound over
x and « we find the following update equations,
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where x denotes componentwise multiplication. Since the second equation is just a Wiener
filter with noise covariance ¥ and a Gaussian prior with covariance (JDJ?)~! we have
named the above denoising equations the iterated Wiener filter (IWF).

When the filters are orthonormal, the noise covariance isotropic and the weight matrix the
identity, the minimization in (10) decouples into M minimizations over the transformed
variables z; = JiTx. Defining v; = J;r”y we can easily derive that z; is the solution of the
following cubic equation (for which analytic solutions exist),

zz3 — vizi2 +2(1 +0%a;)z —20; =0 (13)

We note however that constraining the filters to be orthogonal is a rather severe restriction if
the data are not pre-whitened. On the other hand, if we decide to work with whitened data,
the isotropic noise assumption seems unrealistic. Having said that, Hyvarinen’s shrinkage
method for ICA models [3] is based on precisely these assumptions and seems to give good
results. The proposed method is also related to approaches based on the GSM [7].

6.1 Experiment: Denoising

To test the iterated Wiener filter, we trained a complete set of 99 experts on the data de-
scribed in section (4.1). The norm of the filters was unconstrained, the a: were free to adapt,
but we did not include any weights W. The image shown in figure (3a) was corrupted with
Gaussian noise with standard deviation o = 20, which resulted in a PSNR of 22.0dB (fig-
ure (3b)). We applied the adaptive Wiener filter from matlab (Wiener2.m) with an optimal



5 x 5 neighborhood size and known noise-variance. The denoised image using adaptive
Wiener filtering has a PSNR of 26.9dB and is shown in figure (3c). IWF was run on every
possible 10 x 10 patch in the image, after which the results were averaged. Because the
filters JT were trained on sphered data without a DC component, the same transformations
have to be applied to the test patches before IWF is applied. The denoised image using
IWF is shown in (3d) and has a PSNR of 28.1dB, which is a significant improvement of
1.2dB over Wiener filtering. It is our hope that the use of overcomplete representations and
weights W will further improve those results.

7 Discussion

It is well known that a wavelet transform de-correlates natural image data in good approx-
imation. In [6] it was found that in the marginal distribution the wavelet coefficients are
sparsely distributed but that there are significant residual dependencies among their ener-
gies zZ. In this paper we have shown that the PoT model can learn highly overcomplete fil-
ters with sparsely distributed outputs. With a second hidden layer that is locally connected,
it captures the dependencies between filter outputs by learning topographic representations.

Our approach improves upon earlier attempts (e.g. [4],[8]) in a number of ways. In the
PoT model the hidden variables are conditionally independent so perceptual inference is
very easy and does not require iterative settling even when the model is overcomplete.
There is a fairly simple and efficient procedure for learning all the parameters, including
the weights connecting top-level units to filter outputs. Finally, the model leads to an
elegant denoising algorithm which involves iterating a Wiener-filter.
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