Apache Impala Guide

| Contents | ii

Contents

Introducing Apache Impala.........cccceeeieir e 16
IMPEIA BENEFITS.......eieeieieeeeieete et b et b e e b e s b e e bbbt bbbt bbb et st e et 16
How Impala Works with Apache HatdOoop. ... 16
Primary IMPaAlA FEALUIES.........cccoirieiereetereetereet ettt et e b e e b bt a e bbbt b st e b se et se et e seebeseenens 17
Impala Concepts and ArChItECLUI€........oevee i 17
Components Of the IMPAIA SEIVEN.......cciiecee e ettt e et e e see e eneenennennens 17
I LR D= = B D= 1170 o 17
ISR D0 = TS 1 (o = 18
The IMpala CatalOg SEIVICE.......ciieieieieriereeieee ettt st s e e e e e e s e e e e eseesesseenestesaesnesrenrs 18
[DISY/= oo T alo I N gl o= E= AN o] o] [o= (1001 19
Overview of the Impala SQL DIAlECL.........ccvviiieie et 19
Overview of Impala Programming INtErfaCeS.........cccivieviieieiceceser e 20
How Impala Fits Into the Hadoop ECOSYSIEM.........cciiiieeeeeieer et 20
How Impala WOrks With HIVE.........cccociieii et st 21
Overview of Impala Metadata and the MEASIOre.........cccvveieieieeeceeceseces e enens 21
HOW IMPala USES HDFS........cci ettt st et se s s nestestesnententennens 21
HOW IMPala USES HB@SE........cceiiiieiicee ettt st st a e enesnesnestenteseennenen 21
Planning for Impala Deployment.........cocvoiriiinn e 22
IMPAIA REUITEIMENES. ...ttt ittt i st sb e b bbb e e e se et et e e e e es e e Rt eaeebesbesbeebesbeseeseane et et eneenenneane 22
SUPPOIted OPErating SYSLEIMIS.ccueiueieeieierieieee ettt ettt st b e bt seese e b e e e e et e se s e s st ebesbesaesbesbesaeseens 22
Hive Metastore and Related CONfigUIaion............coeieerieiieiieieeirere e 22
JAVA DEPENAEINCIES. ...ttt ettt ettt s et sbe b e bt sb e b e s b se e s en e e e et eseese e st ebesbesaesbesbeseeseenean 22
Networking Configuration REQUITEMENTS............ciuerieeerieerireeeetese sttt s e e e sae b e e 23
Hardware REQUITEIMENLS.........coiiiieiietere sttt et aesbe bbb et e e se et e st e e e e e e et e st sbesaeeresbesaees 23
USEr ACCOUNE REQUITEIMIENLS.vititerieteeeitereeieeterieetestestesaesbesbesaessebeseeseeneenee e e e eseesesaesbesbesaeseesbeseeseens 23
Guidelines for Designing 1Mpala SChEMES..........cooiiiiriii e e ene 24
INStalling IMPaAl@.........ooiiiiieee e 25
What is Included in an Impala INSEATATION.coiiiiiee s 26
A= TaT=Te [To T N g] o =1 > VS 26
Post-Installation Configuration for IMPala............cccceieieiieieicerere e e e sre s 27
Upgrading IMpPala........coeee e 28
(@]l =0 [T alo I T 010! OSSR 28
Impala Upgrade CONSIAEIALIONS.........ccieiuiririe ettt sae st sb et sae bbb e e e et se e e e e e e et eneebesaesaesbeseenee 29

Grant REFRESH Privilege to Impala Roles with SELECT or INSERT Privilege when Upgrading
LEo T Faq] 7= F= TR O RPN 29
List of Reserved Words Updated in IMpala 3.0........cooiiiiiini et 29
Decimal V2 Used by Default in Impala 3.0......co.oiuiiiieieiee e 29
Behavior of Column Aliases Changed in IMpPala 3.0......cccoiiiiiieieniinere e 30

Default PARQUET_ARRAY_RESOLUTION Changed in Impala 3.0........ccoeeveeieienenneneseneenenens 30

| Contents | iii

Enable Clustering Hint fOr INSEIS.... ..ot s 30
Deprecated Query Options Removed in Impala 3.0.........ooviiiiiiieres s 30
Fine-grained Privileges Added in ImMpala 3.0.........ooiiiieiiieeee e 30
refresh_after_connect Impala Shell Option Removed in Impala 3.0.........ccooveiiieieneneeeeeeeeeens 30

Return Type Changed for EXTRACT and DATE_PART Functionsin Impala 3.0........c.cccccoeeveniennene. 30

Port Change for SHUTDOWN COMMENG.......c.ciiiiiirieiiieieieeieeesese st see st e e e ssesees 31
Change in Client CoONNECLION TIMEOUL.........cc.eiueieeieieeeeecrere sttt e e e b e sre e 31
Default SEtting ChaNGES........ccccieerire ettt ettt sb e bbbt st b e s e e e e e e e et e e e e e aeebesbesaeseennas 31

I T o T 0 0] = - R 31
Starting Impala from the CoOMMENG LIiNE........cciiiriirieireereeseere s 32
Modifying Impala Startup OPLiONS.........cocerieirieeriee ettt ettt b et b et bbbt e b 32
Configuring Impala Startup Options through the Command Line.........cccceveirriineieneieneeseeseeee 32
Checking the Values of Impala Configuration OptiONS...........ccoeereerinrereneneseseere s seeeseenens 35
Startup Options for Catalogd DAEMON........coei ittt e 35
IMPAlA TULOMTAIS....ceeiciicee et e e e sneeere e 35
I 1o g = E N o g = g To TS =T (= R 35
Explore a New Impala INSLANCE.........ccccviiiiieiiiesesieseeae ettt s se e e e e e e e eneens 36

Load CSV Data from LOCE FlES........ccoiueiiirerieeiereseeiesisee s 40

Point an Impala Table at EXisting Data Fil€S........cccoveirieice e 43
Describe the IMpala TablE........oiiieeccee et st s e e e e e e eneas 44

Query the IMPala TADIE........cooiiicece ettt e e e e ese e e e neeresresnenrens 45

Data Loading and QUErYiNg EXAMPIES........cccieieieirececise et ae e e e sre e 45
AGVANCEA TULOTTAIS. ..vveieesiieiee sttt R et e et n bt eer e e en s 48
Attaching an External Partitioned Table to an HDFS Directory Structure...........cocceeveeeeeveeereserseneenns 48
Switching Back and Forth Between Impala and HiVe..........ccocveieeecine e 50

Cross Joins and Cartesian Products with the CROSS JOIN Operator.........ccccceevuerereereereeresiesesresseseenns 51
Dealing with Parquet Files with UnNKNOWN SChEMAL........c.cciviiiiereseeecesecee st 53
Download the Data FileS INt0 HDFS..........cccoieiiieerine e 53

Create Datahase and TaADIES........c.coiiiiiiiireeeerres e 54
Examine Physical and LogiCal SChEMaL........cc.ccuciiicirrecese ettt 54

YN ATz Y= T - T 56
Impala AdMINISIEAtION........coiiiiie e sne s 65
Setting Timeout Periods for Daemons, QUENES, anNd SESSIONS........cccurereririiriere e se e see e 65
Increasing the StALESIOre TIMEOUL..........coeiiiiiere ettt e e ne e sbe e 66

Setting the Idle Query and Idle Session Timeouts for impalad...........ccocoeeereinininienree e 66
Setting Timeout and Retries for Thrift Connections to the Backend Client............ccooeveieiciencinenne. 67
CANCEIING B QUENY ...ttt ettt s et e aeeb e e b e s bt et e s beseese et e eeneeneenee e eneeneas 67

Using Impala through a Proxy for High Availability ... 67
Overview of Proxy Usage and Load Balancing for Impala..........cccceornninininenencsese e 68
Choosing the Load-Balancing AlGOrithme............coo e 68
Special Proxy Considerations for Clusters Using Kerberos...........oooeeiiinnniee e 69
Special Proxy Considerations for TLS/SSL Enabled CIUSLENS.........ccooviiirieneieeeeeeeerene e 70
Example of Configuring HAProxy Load Balancer for Impala...........ccovevineneieneneneseeeeeeeee 71
Managing Disk Space fOr IMPala DataL..........cceieriiinieiiiee ettt s e sae e 73
IMPAIA SECUI LY ..ottt snee e re e sneeenns 78
Security GUIEINES FOr TMPBIAL......coeeiireetir ettt bbb 79
Securing Impala Data and LOg FilES........cooiiriiieirere et 80

Installation Considerations for IMPala SECUNLY........cccoeirieiiieiere e 80

| Contents | iv

Securing the Hive Metastore Dalahase..........cccooeereriruerere st sbe bbb b e b b e 81
Securing the Impala WeD UsSer INEEITACE. ..ot e 81
Configuring TLS/SSL fOr IMPAIAL.....c.eeeeeeeeee ettt s besae s sb e b e 81
USING the COMMEANG LINE.....c..oiiiiiiiiie ettt sttt et ae bbb b b e 81

Using TLS/SSL with Business INtelligence TOOIS. ..o 82
Specifying TLS/SSL Minimum Allowed Version and Ciphers..........coeeeeneenenenesesese e 82
Fpaor= k- WA U g To g 2= 1o o USSR 83
THe PrivIIEge MOEL. ... bbbt ettt e ettt ne s 83
Object OWNErSNIP IN RANGEN......c ittt e se b e et ae et sbesbe e b seas 86
Starting Impala with Ranger Authorization Enabled............cooiiiiiiiinineeeee e 86
MaANBGING PrIVIIEOES. ...ttt s b e bt bt a e bt e e e e b et e e e ae e e et enesbenne e 86
Setting Up Schema Objects for a Secure Impala Deployment............ooeveeeerereienenieneeesere e 89

The DEFAULT Database in a Secure DePlOYMENL..........ccociiireririinierie e s 89
RANGEr COlUMN MESKING.eeteruerieiteeierie ettt sttt e e bbb sbe st e beseesbesbesee s et e ne e e e e eneeneeneenennas 89
Limitations 0N Mask FUNCHIONS..........ctieirieirieiieeest st 90
FpgTor= kAN 11 T= g o= 1o o USSR 90
Enabling Kerberos Authentication for IMPalaL..........coccieiieii e 90
Enabling LDAP Authentication for IMpPalaL..........ccooeeiiiie e e 93

Using Multiple Authentication Methods with Impala...........ccccooeriniin e 97
Configuring Impala Delegation fOr ClIENTS..... ..o 97

XU To (T alo Nl o= Fo M@ o= = 1 o] USSR 99
Durability and Performance Considerations for Impala Auditing............ccooevereneneneneinieesercneeee 99
Format of the AUdit LOG FlES.......ce e e et 99

Which Operations Are AUITEA..........oo et b e bbb s 100
Viewing Lineage Information for IMpala Dala...........ccoereierieieiieeereeeetese e 100
Impala SQL Language REfEr @NCe........cccoccveiiecciecee e 101
(001101001 01T TP PP 102
Dz = B 1) 0= PO P PP 102
ARRAY Complex Type (Impaa 2.3 or higher ONlY).......ccoeoieiniineceeeeeeeee s 102
BIGINT DBEA TYPE.. ittt ettt sttt r e r e e bt r e s e e s e e e seeaeeseenear e nresneerenne s 106
BOOLEAN DA TYPR.. ittt rteietesee ettt se et r e b r e r e resneen e ne s 107
CHAR Data Type (Impaa 2.0 or higher OnlY).......ccooiiriireieer e 108

DATE Data TYPE....cueiiiieieieiiie sttt e e e b e b e s b e n e s ae e sns e sre s 110
DECIMAL Data Type (Impala 3.0 or higher ONIY)......cccceveiiiineeieereeereee e 111
DOUBLE DaLA TYP...ctetereeteiieeeeeiesiesit st sr sttt r bt sn e er e r e se e e n s e e e e st eneerenne s 116
FLOAT DaLA TYPE.. ettt sttt sttt r e b s sh e r e b e n e s ne e s e s eae et seebenbeereerenrenneas 117

LI D = B I < TP 118

MAP Complex Type (Impala 2.3 or higher ONnlY)......cccocireiiineeeree e 119

REAL DA TYPB..c.ei ittt s s a e sr e sr e sn e n e s nne s 123
SIMALLINT DEEA TYPE....eveuertieetireetereeteseetereeiessesessesesseessese s se s ssesessesessesesaesessesessenessensssensesessesessenes 124
STRING Da8 TYPE....eueeueeierieeiesresie sttt sttt r st r s se e sr s s e e e e e et seer e nbesnearenreseennenenes 125
STRUCT Complex Type (Impaa 2.3 or higher ONlY)........ccoiinnineeeeseeseese e 127
TIMESTAMP DEEA TYP...c.eiieiteieeeieieeee ettt st s et r e eresr e sr e r e re e e s e e e eneas 133
TINYINT DB TYPE...ieeeeiiieieiiee sttt e r e r e r e n e sr e 139
VARCHAR Data Type (Impala 2.0 or higher Only)........cccoeriinrinneneeeeseee e 140
Complex Types (Impala 2.3 or higher ONIY)......ccciriiiiieeeee e 142
LS OSSOSO PRRRPRTO 173
NUMENTC LITEIAIS. ...ttt et bbbttt b et sttt 174

SUING LITEIEIS. ..ttt b bbbt e bbbt bbbt b b e nenes 175
BOOIEAN LITEIEIS. ... cuieetieetiieeiree ettt bbbt b etk b e b 176
TIMESIAMP LITEIAIS. .. vttt b b et e bbbt a bbb b s 176

DAL LITEIAIS. .. ettt b e e b e e b e e b e e bt et E et bt bt btk ek e bt e ene e 177

UL L ettt bbb b e bt b h et b et E e e b se b e e b e e b e b e bt e b e bt s bt b et nb et e 177

SQL OPEIBEOIS. ...ttt er ettt et r b e s s et s et e aeeb e s b e e b e R R e AR e aE e R e R e n e e s e s s e e et e R e e R e e Rt e Rt b e nReer e nenre e 178

| Contents | v

E N 1100 (T @ o< = o] £ SSRRR 178
BETWEEN OPEIAIO......c.citiiiteiiteieteseste sttt sttt sttt sttt b et b et sb e s b e bt et s st n et n et n et nnne 181
COMPAITSON OPEIBLOIS.c.eeueeeeeeueeerieeteetestestestesteseestesbeseesesee e e e esessesaesbesbesaesbeabesbeseensanseneeneeneesesneanens 182
EXTSTS OPEIBLON......ccteiueeteeieeti ettt ettt sttt sttt e s et e s b e sae e b e ea s et e eseeebeeaseeaeennesreeneesaeesbesanenaesanens 183
I = @ o = £ (o] SO PP PT PSP 187
IIN OPEIBEONcuteeueete ettt ettt h b ae e bt ae e e bt e et eae e et she e b e e aeesbeeae e b e emeeebeeabeebe e s e eneenneeneeseeennas 188
IREGEXP OPEIBLON.......cuteeiieeeieeiieesie sttt ettt ettt e e sseesse st e saesaeesbesaeesbeeasesbeenbeebeenbesaeenneeneeseeeneas 190
|S DISTINCT FROM OPEIBION......c.ciuieruieerireesiseesessesessesesseessessssessssesss e sse e ssesessesessessssessssessessssens 191
IS INULL OPEIEION.....cceiieeeeeiieeriesieesie sttt ettt e e saeeseesaeeseesseesaesaeesbesaeesbesaseabeenseebeensesaeeneesnneseesnnas 193
IS TRUE OPEIBLON.......ccutieeiteeieesieetesteetesteete sttt sae et st e sse e e saesaeesaesaeesaeeaeeabeeasesbeenbeebeenseeneenseeneenseens 194
LIKE OPBIBLON ... ccueeteeteeteete ettt ettt et sttt s ae et bt besbe e b e ebe et e e ae e b e s aeeeaeeaeesaeeeesheebesaeebesae e benneabenas 195
(oo Tors I @ 0T = o] £ PP 195
REGEXP OPEIGLO........eiteeteeteeteeee ettt ettt ree et see s he e eesae e beshe et e ese e b e eseesbeeasesaeeneesaeeneesaeensesneensesnnans 198
RLIKE OEIBLOL ... eeueeiteetestieie ettt etee sttt ste et e saeeeesseesbesae e besae et e eae e b e easeabe e s e eaeeasesaeeseesanesaesanenbeenranes 200
Impala Schema Objects and ObJECE NBIMIES........ccui it et sbesbe e e eas 201
Overview Of TMPalA ATTBSES.......coeieie ettt sttt ettt ae b e saeene 201
Overview of IMpPala DaLADASES..coereieieeeeereee ettt b e s b b e b b e 203
Overview of IMPala FUNCLIONS.........coi it et be e sae b e sen 204
Overview of IMpala IAENLITIErS........cooi i e e e 205
Overview of IMPala TADIES... ..o et b e 206
OVErVIEW Of TMPEIA VIBWS.......oiuiiiiiiieeiee ettt b e s bbb e b e e e 209
IMPAIA TIBNSACHIONS......ccueiterieite ettt et b e be bt s he b e s bt seeeb e bese e e e s e e e e e eneene e st eaeebesbesaesbesbeseeseetan 213
IMPAlA SQL SEALEIMENES. ...ttt re et e e st e ae s et e besb e besaeebesbesee s enbenee e enseneeneeneeneenis 213
DDLU SEBIEMENES. ...ttt ettt ettt b st b e b e b e eb e se bt e st s b et e b et e b e e er e e e b e sn b e nrene e 213
DML SEBLEIMENES. . .c.veveeeeeiteest sttt ettt b e bt e bt b e es e bbb e st e b s b e 214
ALTER DATABASE SEBEMENE.....c.octiiiitiieeiiieereenesees et en e ene e 215
ALTER TABLE SEBEMENT......coiieiieeereeree ettt n e er e 215
ALTER VIEW SEBLEIMENL.......coviiiiiiieiisiieet ettt ettt 230
COMMENT SEBEEIMENT. ...ttt ettt b e e b et s et r et bt b nn e 232
COMPUTE STATS SEBIEMENL......c.eitiiitieetireet ettt 232
CREATE DATABASE SEAEMENT.......ctiieiiteeireistesestesee st se s sn et r e er e e eneseenennenen 240
CREATE FUNCTION SEBLEIMENL......c.coveuiieeierieerieesieesiessssesse e sse s sne e snee s 242
CREATE ROLE Statement (Impala 2.0 or higher Only)........ccocoeiiiininniieeeeeeeeeeesese e 248
CREATE TABLE SEBIEMENL.......coviiiiiiiiiiitieeise ettt et 248
CREATE VIEW SEBEEMENT.cotiiiriietieeteseeteseet et ss s es s s s s s snees 265
DELETE Statement (Impala 2.8 or higher OnlY).......cc.couiiirienere e 266
DESCRIBE SEBLEMENT. .. .cvieiteiiteieieseete sttt sttt n et et nne 268
DROP DATABASE SEAEMENT......ccuiiireiireieeteseste sttt sttt 280
DROP FUNCTION SEAEEMENT.......c.eitierriereiieiisieiessesestesesseessee s r e se s 282
DROP ROLE Statement (Impala 2.0 or higher only)........ooociine e 284
DROP STATS SEBIEIMENL.c.citeeitiieeteseetese ettt sttt b e e se b et s bt r et r et ar e ne 284
DROP TABLE SEAEMENT.......ccitieitiieriietese ettt se et sn e s enees 289
DROP VIEW SEBLEMENL......ccitiietireetirieiereei ettt s s s sn e s ss e s s s s s nnenes 290
EXPLATN SEBIEMEN......ceitiietereetereeiereeert sttt st s e n e nn s 291
GRANT Statement (Impala 2.0 or higher ONlY).......cocooeiiiie e 294
INSERT SEBIEMENL......c.eitiiitiietieetesi ettt ettt e et et b et bt nr e 298
INVALIDATE METADATA SEBEMENE.....ccvctiieeiirieiiieeisiei et 307
LOAD DATA SEBIEMENL......coiieiiiiiiiteesi ittt 309
REFRESH SEBEMENT.ccvieetieeiirtetiriei sttt p et e 312
REFRESH AUTHORIZATION SEBIEMENL........coviiieiiriiiriieeieees e 314
REFRESH FUNCTIONS SEBIEMENT......c.civiiiiiiiiiesieieeieiese et 314
REVOKE Statement (Impala 2.0 or higher Only).........ooeoieienn e 315
SELECT SEAEMENT.cotieetieetieetese ettt s et s e b s s b s bt n s nn et nnens 316
SET SEBIEITIENL. ...ttt ettt h et bt b et b e se b se bt se bt e bt b st bt bt r et b nn s 345
SHOW SEBLEIMIENL. ...c.eceeeeeeteiese sttt bbbt b et b e b e e p e nr s 395

SHUTDOWN SEBEEIMENL......ccviiiiiiiiriieriesteie ettt s st 415

| Contents | vi

TRUNCATE TABLE Statement (Impala 2.3 or higher only)..........ccoceniiiinineneeeeeeeeeneee 416
UPDATE Statement (Impala 2.8 or higher Only)........ccoiiiiiiiiieee s 418
UPSERT Statement (Impala 2.8 or higher ONnlY)........ccooiiie e 420

USE SEBLEMENL.ceeieeteeeeist ettt b ekt b bbbt e b bt e et b et et 421
VALUES SEBEEMENL......cviuiiiiiiteiieririeteie ettt ekttt sttt bbb s 421

L0 o110 l=: g 11 LTSS 422
IMPAl@ BUIHE-TN FUNCHIONS. ...ttt e st ae et ae b e b e sae st e beseeseenean 428
Impala MathematiCal FUNCLIONS...........couiiieieeeeee ettt s see s 434
IMPAA Bit FUNCLIONS.......couiiiiiiieie ettt bbb e sttt se et ae b e sbe e b e 455
Impala Type CONVErSiON FUNCLIONS..........cociiiiiiiiesesie et st st e e eneas 467
Impala Date and Time FUNCHIONS.........cociiiiiriienienie ettt b e e e e e 478
Impala Conditional FUNCLIONS..........coiiiiii ettt e be b sea 502
IMpPala StrNG FUNCLIONS.......c.iiiiiiee ettt b e e s se et e e e e e 509
Impala MiSCellan@0oUS FUNCLIONS........cc.ooiieeieeieeee et e 535
Impala AQQregate FUNCLIONS..........coeii ettt sttt et se et e e ae b e saesn 539
IMPala ANAIYEIC FUNCHIONS. ...ttt b e ettt se e se et e e 569
User-Defined FUNCHIONS (UDFS)......oiuiiiiie ettt sttt sbe b b e st e e 588
UDF COMNCEPLS.... ettt e sttt ettt sttt b et s be et e he e bt sae e bt eae e sae e e e she e eeshe e beshe et e eas e beeasanbeenneeneennesais 589
Runtime EnVironment fOr UDFS.........o.voiiiieeereeseee e 592
Installing the UDF Development PaCKagE..........ccccveiiririiiiine et e 592
Writing User-Defined FUNCLIONS (UDFS)......couiiiiiie et 593
Writing User-Defined Aggregate FUNCLIONS (UDAFS).......ciiiiiineienieeie e 596
Building and Deploying UDFS.........cccooiiiiiiiierie et sre st st se s e e s s saesne 597
Performance Considerations fOr UDFS..........coiiiinieiienesesieesee et 598
Examples of Creating and USING UDFS..........ooiiiiiiii e e 598
Security Considerations for User-Defined FUNCLIONS..........ccoiiiiiiineie e e 605
Limitations and Restrictions for IMpala UDFS.........ccooiiieenereseree e 605

SQL Differences Between Impala and HiVe...........ooi i 606
HiveQL Features not Available in IMPala.........coooeiiiii s 606
Semantic Differences Between Impala and HiveQL FEaLUrES..........ccooeierieirinienisene s 607
Porting SQL from Other Database Systems t0 IMPalaL.........ooveeeeiiieiriieneere e 608
Porting DDL and DML SEELEMENES.......coceiiiiiirie et sr st st st e e eneas 608
Porting Data Types from Other Database SyStEMS.........coceieiereierere e 608

SQL Statements t0 REMOVE OF AQBPL.........couiiiiririieeieeer et e e e 610

SQL Constructs t0 DOUDIE-CNECK.........ccuiiuieiicicieceeit ettt et e re e 612

Next Porting Steps after Verifying Syntax and SEMantiCs.........coovrererereresenese e 613
UTF=8 SUPDPIONT. .. ettt ettt ettt et h et ae e s he e s e e s he e b e sa e e b e ehe e b e eaeeeb e e aseebeeaeeeaeeneesaeeneesaeesaesneenbesanans 613
Turning ON the UTF-8 DENAVION.......c..oiiieieeeee ettt s e sb e 613

List Of STRING FUNCHIONS.....c.ciueutrieirieirieestiest sttt ss e st s s n s senn s nnenes 613

L IMITAETEONS. ...ttt b et b e e b e se bt e bt e bR h R st Rt R e R e R e r e e n e 614
Tuning Impala for Performance..........ccccovvvieeiie e 614
Impala Performance Guidelines and Best PraCliCesS.........ccuveiriiiriiririrnesees et 615
Performance Considerations for JOin QUENTES.........cuieririerieeeieeecse e sttt se e snesrenees 618
How Joins Are Processed when Statistics Are Unavailable...........ooovireinenencnccnenc 619
Overriding Join Reordering With STRATGHT _JOIN.......ccoiiiiiiriirierieeseeeseee e 619
Examples of Join Order OPtiMiZation............cuveerieeriiiriirieesi et 619

Table and COIUMN SELISHICS. ...cuveeereriieetesese e se e st se et te e sresbeseeseesaeaeseeeeseeseeneesessessessessesenssens 625
OVErVIEW Of Tahle StaliSHICS....iveriereereeierierieee et s se e seesesresbesaeseesbeseeseenean 625
Overview Of COIUMN SEaLiSHICS. . .cveiveieirieereereeieee ettt st e s ressesneseeneenes 626

How Table and Column Statistics Work for Partitioned Tables...........ccoveviniinennenseneceneeiens 627
Generating Table and ColUuMN SEALISHICS.......coveeiveerieireie e 630
Detecting MiSSING SEALISHICS.c.vevieriireeiirieierieeseee ettt 633
Manually Setting Table and Column Statistics with ALTER TABLE........ccccooiiineineineereen 635

Examples of Using Table and Column Statistics with Impala..........cccovovvinienieveneneneneeeeeeeeee 637

| Contents | vii

Benchmarking 1mpala QUETTES.........cuiieeeeeeeeeeet sttt a e bbbttt et et et e e e e ene e ene 641
Controlling IMpala RESOUICE USBGE.......cc.ciiriiiiierierieriesie ettt sae bbb b e be b e e e e s e e e e e e eneeaas 641
Runtime Filtering for Impala Queries (Impala 2.5 or higher Only)........ccoiriniie e 641
Background Information for RUNIME FIlLENNG........cccoviiiiiriiiie e s 642
RUNtIME FlLErNG INEEINAIS..... .ottt bbb e se e e se e ene 642

File Format Considerations for RUNtiMe FIltering..........ccooeiririniiiie e 643

Wait Intervals for RUNEIME FilTEIS.........oiiiiieieeere et 643

Query Options for RUNLIME FITENG. ..o e 643
Runtime Filtering and QUENY PlanS..........ccoo ittt st e 644
Examples of Queries that Benefit from Runtime Filtering.........ccooviienini s 645
Tuning and Troubleshooting Queries that Use Runtime Filtering...........oooeveienenenenecnsceeeecne 646
Limitations and Restrictions for Runtime Filtering.........c.coooeriiineie e 646

Using HDFS Caching with Impala (Impala 2.1 or higher only)...........cocviiinniinieeereeeeeeeeeen 646
Overview of HDFS Caching for IMpPalaL.........coooeiiiiie e e 647
Setting Up HDFS Caching for IMpalaL.........ccoeiiiiiiie e 647
Enabling HDFS Caching for Impala Tables and Partitions.............coceeierenineneneeeeeeeeeesese e 647
Loading and Removing Data with HDFS Caching Enabled............ccooooiiiiiiiniieceeeeecncee 649
Administration for HDFS Caching With IMpalaL........ccoooiiiiiniiniienee e 650
Performance Considerations for HDFS Caching with Impala...........ccocooviiniiinineneceeeeeeee 650
Detecting and Correcting HDFS Block SKew Conditions...........cccourerireririiinese et 651
Data Cache for REMOLE REAUS...........coviiiiiiieee bbbt 653
Testing IMPala PerfOrMENCE..........oouiieieeeeee ettt b e bbb e et e e e e s e e et neenesne e 653
Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles..........cccooiiininnnenne 654
Using the EXPLAIN Plan for Performance TUNING..........cccorireninene e 655

Using the SUMMARY Report for Performance TUNING........c.ccoeviiininieneneeee e 655

Using the Query Profile for Performance TUNING.........coooiiririiineie e 656
Scalability Considerations for Impala........cccccveeeeveiieenie e 657
Impact of Many Tables or Partitions on Impala Catalog Performance and Memory Usage..........ccccceveeneee 657
Scalability Considerations for the Impala SLALESLOrE.coiieireiee e 658
Effect of Buffer Pool on Memory Usage (Impaa 2.10 and higher)........ccoeeieneneinenereeseeee e 659
SQL Operations that SPill 10 DiSK.......ccueiieirieirieireirer et 660
Limits on Query Size and COMPIEXITY.....coereeririeirieiereee ettt st sttt s b e nbene 663
Scalability Considerations for IMPala 1/O.........ccoiiiiii e e 663
Scalability Considerations for Tahle LAYOUL............cociiririreireeree ettt eb e s eb e s be e 663
Kerberos-Related Network Overhead for Large CIUSIENS.......coviireinicinieereereeseesie ettt 663
Avoiding CPU Hotspots for HDFS CaChed Data..........ccoeeriiierierinineee ettt sresesreseene e 664
Scalability Considerations for File Handle Caching...........coeoierininnieeeese e 664
Scaling LimitS @and GUILEIINES..........coueiiiiiiirieeiee ettt b e 665
DEPIOYMENE LIMITS... ittt bbbt b ettt 665

Data SLOTBOE LIMITS.....eivieiteieteieete ettt b e e b e s b e bbbt b et bbb 666
SChEMA DESIGN LIMITS... oottt bbbttt 666
SEOUMEY LIMITS. vttt b bbbt bt e bbbt bbbt b e e b b e b s 666

Query LimitS - COMPIE TIME.....c.iiiuiiiiretiret ettt 666

Query LimitS - RUNIIME TIME.....cuiiiiiiiiirieteseetereesi ettt 666

How to Configure Impala with Dedicated COOrdiNALOrS.........c..cvrueiriererieerieire e e 666
Determining the Optimal Number of Dedicated COOrdinators............eovrveerererirnereeneeseeeseeeseenes 667
Deploying Dedicated Coordinators and EXECULOIS..........c.crueuerieierieirieesieestesest st sesre e seeseseenens 669
Metadatas MaNBOEMENL.........o.iiiiieee ettt bbb bbbt e bbb b et b et b e e b e s e b e e b et neneens 670
ON-0EMENG MELAJALALc.eeevereeeirieiiriee bbbttt b ettt 670
Automatic Invalidation of Metadata CaChe............ceciiririrriric s 671
Automatic Invalidation/Refresh of MetadataL..........ccoeereriniininnere e 671

RESOUICe M anN@gEMENT........cocieie it nnee e 675

| Contents | viii

Admission Control and QUENY QUEUING..........ceueruiruiruerieriereertesteseeeeeeresessessessessesaesaessessesseseessesssseeneenessessessens 675
Concurrent Queries and AdmISSION CONEIOL..........cceeieiiiiieiiceese et 675
Memory Limits and AdmiSSION CONLIOL........ccoiiiiieieeerereecre e e 677
Setting Per-query Memory LIMitS.... ..o st e 679
How Impala Admission Control Relates to Other Resource Management ToOlS..........c.ccooveevenienenne 679
How Impala Schedules and Enforces Limits on Concurrent QUENTES...........coeververeriereenenieneeieeenene 680
How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)...........cccceeeeennene. 680
SQL and Schema Considerations for Admission Control...........ccccceevvieeve e v 680
Guidelines for Using AdmiSSION CONIOL..........ooeiiriirieiereeieee et s 681

Configuring AdMISSION COMNLIOL.........ceiiiiiiriie ettt b e bbb b e e e b e besee e e e e e e e e e eneenes 681
Configuring Admission Control in Command Line INterface..........coovevinineneneiciereeeerese e 681
Configuring Cluster-wide AdmiSSION CONLIOL..........oiiiieiiiieieirere e 684

Partitioning for Impala TabIes........cccooeriecee e 685

When t0 Use Partitioned TalES.......cucvieeieieeeeene st sttt sttt e e ne e s ene 686

SQL Statements for Partitioned TablES.........cccoviiiriieiiiererereee et ere e 686

Static and Dynamic Partitioning ClAUSES..........c..couiiiriiiriiireri ettt 687

Refreshing @ SINGIE Partition............ccciiriiiiieereereere et 687

Permissions for Partition SUBCITECIOMNES.........cveerieeeecere e e st 687

Partition Pruning fOr QUETTES.........ciuiiiiiiieirieerteeet ettt ettt b et b b et se et se et seebeseenesnenea 688
Checking if Partition Pruning Happens for @ QUENY........cccociiiiriiinierieseee et 688
What SQL Constructs Work with Partition Pruning...........c.ccoeerrinnnnineineseesee e 688
DynamicC Partition PrUNING...........coeireireirieinieiriee st se e ss e se e snenes 689

Partition KEY COIUMNS.......c.ciuiiiiiiiieesteeet ettt ettt se et e ettt b et b et b e se ke se b e sa ekt seebeseebesbene st enesbeneebeneas 691

Setting Different File FOrmats for PartitionS........ ..o e 691

MaANAGING PaITITIONS......c.citiiitiieieree bbbt b e e b et b e st e st b et bbb et bttt b s 692

Using Partitioning With KUAU TalES.......co.eiiiieeeree e 692

Keeping Statistics Up to Date for Partitioned TabIES.........cccoeiiiiiirieeee e 693

How Impala Works with Hadoop File Formats..........coccovevievieeiee s, 695

Choosing the File Format for @ TaDIE........cccvcieicecece e e s e e ne s 697

Using Text Data Files With IMpala TaDIES.........cccv it 697
Query Performance for Impala Text TabIES..........cvvviieiiviiececec s 698
(1= Tl = A = o] = 699
Data Files fOr TEXE TADIES.....ciiiirieirieiriere ettt s naens 699
Loading Data into Impala TeXt TabIES.......cccvie et e 701
Using LZO-Compressed TEXE FIlES.......ooiiiiiieii sttt sttt e e enean 702
Using bzip2, deflate, gzip, Snappy, or ZStd TEXt FIlES.......ccceviiirieieseee e 704

Using the Parquet File Format with Impala TablesS.........cccovvieieiciececee e 705
Creating Parquet Tables iN IMPalaL.......cccoovviiiiiiiie et s ens 705
Loading Data into ParqUEL TaDIES........ccceieieeieieeeeeise st sre st e sneen 706
Query Performance for Impala Parquet TabIEsS........ccccveiieiicire e 707
Compressions for Parquet Data FilES........oocieieeceececece st 709
Parquet Tables for Impala COMPIEX TYPES.....ccviiiiriereiererieseeseeeeeseeresesesre e sresre s e seesaeseesaesseeesens 712
Exchanging Parquet Data Files with Other Hadoop COmMponents...........ccccevvevveveeieeienieniesiesesese e 712
How Parquet Data Files Are OrganiZed...........ccoeieeeieieeceeieeeceeese s e se e s e e e e sse e snens 715
Compacting Data Files for ParqUet TabIES..........coeivcieiricesec s 716
Schema Evolution for Parquet TableS.........ccevcieeieceseser ettt 716
Data Type Considerations for Parquet TabIES........ccccovcvreiiiineve e 718

Using the ORC File Format with Impala TablES........ccccveieeeceeececece e 719
Creating ORC Tables and Loading Data.........c.cccvveiireierieieeeeieeieeesese e ste e seesse e saessensesae s esssennes 719
Enabling Compression for ORC TabIES........cucieieieirese sttt sre s 720
Query Performance for Impala ORC TablES.......ccccvcirireiecise e e 721

Data Type Considerations for ORC TablES.........cceiuevieeeerirecese et es 721

| Contents | ix

Using the Avro File Format with Impala TabIES........cc.oiie e 722
Creating AVIO TaDIES. ...ttt s b e b bbb e et s 722

Using a Hive-Created Avro Table in ImMpalaL.........coooiiiiiee e 724
Specifying the Avro Schema through JSON..........ooeiiiri e e 725
Loading Data into @an AVI0 TaDIE........c.oiiiiiiie et e e 725
Enabling Compression fOr AVIO TaDIES........cuiiiieiee e e 725

How Impala Handles Avro Schema EVOIULION............coiiiiriiinneeesese e 725

Data Type Considerations for AVIO TaIES.........coueiiiiireiere e e 726

Query Performance for Impala AVro Tables..........ocooiiiiiiiii e e 727

USING the HUi FITE FOIMEL.........oiiiiieeee ettt b e bbb e et ne e 727
Using the RCFile File Format with Impala TablES..........oiiiiiieeeee e 728
Creating RCFile Tables and Loading Data...........cooieierierieniereeeeeeereeiesiese e 728
Enabling Compression for RCFIE TabIES..........oiiieee e 729

Query Performance for Impala RCFile TabIes.........ccooiiiiie e 730

Using the SequenceFile File Format with Impala Tables..........ooeieiie e 730
Creating SequenceFile Tables and Loading Data.........c.coeeeerieeienirenenere s 730
Enabling Compression for Sequencelile TabIes.........o i 731

Query Performance for Impala SequenceFile Tables.........ccooiirrininei e 732
Using Impala to Query Kudu Tables.........cccveiviiiiinceceececeee e 733
Benefits of Using Kudu Tables With IMPala..........coeiiiiiieee s 733
Configuring Impala for USe With KUAU..........coeciiiiiiieee e 733
Cluster Topology for KUdu TalES.........ccueiriiiriererere e 733

KUAU REPIHICALION FACLOT.......ceciitiiiierietesiete sttt sttt s bbbt et bbbt sttt 734
Impala DDL Enhancements for Kudu Tables (CREATE TABLE and ALTER TABLE).......cccccvoevninnienne. 734
Non-unique Primary Keys for Kudu Tables..........ccoeiiiirinieee s 734

Create a Kudu Table with a non-unique PRIMARY KEY ..o 734

Verify the PRIMARY KEY S NON-UNIQUE........coueiiiiiiiiriiieieie ettt 734

Query Auto INCremMeNting COIUMN.........c.ciiiiiiere et sbene 735
Create a Kudu table without a PRIMARY KEY attribULe..........cccooiiiiniriieece e 735

0T = 0] 1S 735
Primary Key Columns for Kudu Tables..........ccoeiiiiiiieeeee e 735
Kudu-Specific Column Attributes for CREATE TABLE........cccoooiiiieereee e 736
Partitioning for KUAU TaIES.........coiiiiiiee ettt 740
Handling Date, Time, or Timestamp Data With KUAU..........ccooveirinieniinnrisene e 743

How Impala Handles Kudu MEAOELAL............eoiuiiriiiieeee e 745
Working with Kudu Integrated with Hive MEIAStOre............coiiriiiineeeseeeeeseeeee s 746
Loading Data into KUAU TaDIES........cccciiiiireeiecereerie ettt b e e ebe e 746
Impala DML Support for Kudu Tables (INSERT, UPDATE, DELETE, UPSERT)......cccovvurvereeeeeieeienene. 747
Multi-row Transactions for KUdU TaDIES...........cciiiiiiiieeree e 747
Using Multi-row Transaction Capability..........cocuerirririeireirieeneriere bbb 748
Advantages of Using ThiS Capalility..........ccoreiriiriiiiirieee et 748
0T = o] o TN 748
Consistency Considerations for Kudu TablES........coieireiriireierierieeee e 749
Security Considerations fOor KUdU TablES..........oiiiiiiiieere e 749
Impala Query Performance for Kudu TableS.........couiiiiiiee e 749
Using Impala to Query HBase TabIes.........cccoveieeiieccie e 750
Overview of Using HBase With IMPalaL..........cocieieiricecesces e 750
Configuring HBase for Use With IMpalaL.........ccccceeiiiiiiisie it 751
Supported Data Types for HBase COIUMNS..........ccevueieiieieeecisese e eseste e saesresae e seesaesae e e ssessessessesseseeseens 751
Performance Considerations for the Impala-HBase INtegration............cccvvvveverenesereereseeseeesese e 751
Use Cases for Querying HBase through Impala...........cccveiiiiiiiiscse et 757

Loading Data into an HBaSe Tabl€........ccciiiiiiecies et et nns 757

| Contents | x

Limitations and Restrictions of the Impala and HBase INtegration...........c.ccoererereneneneenieieeeeeses e 757
Examples of Querying HBase Tables from IMpalas.........ccooieieiinisee e 758
Using Impala with [ceberg Tables........cooveeeiiccce e 760
OVErVIEW Of 1CEDEIT FEBIUIES.......c.iieieiec ettt et et s b et ae s srenea 760
Creating Iceberg tables With IMPalaL. ..o e e 760
[CEDEIG V2 TADIES.... ettt b et b et b et b e e eb e e b e bt e bt et r e 762
Dropping [CEDEIG tADIES........oou i 762
Supported Data Types fOr 1CEDEIG COUMNS.........cociiiirieereereeree ettt se e sb e ebe e 763
Schema evolution Of 1CEEIg tADIES.........o.iii e 763
Partitioning [CEErg taDIES.........ciieeee bbb 764
Inserting data iNto 1CEDEIG LADIES.......ccuiieiic bbb 764
Delete data from 1CEDErg Al ES........c.oi i bbb 765
Updating data int [Ceherg tabIES.........cui i e 765
Loading data into [CENErg taDIES.........ci i bbb et 765
Optimizing (Compacting) 1CEDErg tahlES...........ciicirie e 766
Time travel fOr 1CEDEIG TADIES... ..o bbb 766
Rolling Iceberg tables back t0 & PreviouS SEALE...........ciciiieirieie e 767
EXPITING SNBPSNOLS. ...ttt sttt e e b e s b e e b e s e bt s e bbbt b et b et b et b et et e e b e 767
Cloning Iceberg tables (LIKE ClAUSE).......coiiiiieiriereeeteeeesee ettt s eb e e eb e e 768
[CEDEIG tADIE PrOPEITIES... ...ttt ettt b e s bbb bt e bbbt bbb 768
[ceberg Manifest CAChING.coi it 769
Using Impala with Amazon S3 Object SLOre.........coccvevieccieeviecceesee e 769
Best Practices for Using IMpala With S3.......c..ov et st ens 769
How Impala SQL Statements WOrk With S3........c.ooeiiiiie i 770
Specifying Impala Credentials to ACCESS Dala in S3........ccoooieeiieire e sre s 771
Loading Data into S3 for Impala QUENTES..........ccceeeiiiiiesie sttt s e e e ne e e e e ens 771
Using Impala DML Statements fOr S3 DataL........coceeveeeerieeesiresieseseseeseesieseeseesesessessessessessessesseseens 771
Manually Loading Data into Impala TableS in S3........cccceceieieieieeeeeese e s 771
Creating Impala Databases, Tables, and Partitions for Data Stored in S3.........cccccveveviveneveseseeseeeeee, 772
Internal and External Tables LOCAEA 1N S3.......ccoieiiiirieeenreseeese s 773
Running and Tuning Impala Queries for Data Stored iN S3..........ccccveiineie i 773
Understanding and Tuning Impala Query Performance for S3 Data.........ccccvvveveveveeneseseeseeseeeenenns 774
Restrictions on Impala SUPPOIt FOr S3.......ooiiiiiricese ettt s e et e e e e e e eneens 774
Using Impala with the Azure Data Lake Store (ADLS).....cccoeceevevicieenencnenne 774
= 1= 0 1] =SSP URPP 775
How Impala SQL Statements WOrk With ADLS.........oo e 775
Specifying Impala Credentials to ACCESS Datain ADLS........ccoo e 775
Loading Data into ADLS for ImMpala QUENTES.........ccueiueriiieieieieeeeee ettt st st s ene s 77
Using Impala DML Statements for ADLS DalaL......c.coceeerereriiniine e s 77
Manually Loading Data into Impala Tables 0n ADLS..........ccoiiiiiiiiiee e 77
Creating Impala Databases, Tables, and Partitions for Data Stored on ADLS..........ccoooiininenenenenecee 77
Internal and External Tables Located 0N ADLS...........coririirererie s 779
Running and Tuning Impala Queries for Data Stored 0n ADLS..........ooi e 781
Understanding and Tuning Impala Query Performance for ADLS Data.........cccooereereeneeienencnenicnienn 782
Restrictions on Impala SUPPOI FOr ADLS........ooiiiiie ettt st s e b e e enens 782
Best Practices for Using Impala With ADLS...........oo et e 782

Using Impala with 1SI1on Storage.........ccceeeeiriiee e 783

| Contents | xi

Using Impala with Apache Ozone StOrage........coccvvvvererieeneeseesee e esee s 783
WIS aTo N Raq] =1 F= T IoTe o1 oo AR 784
Locations and Names of Impala Log FilES..........ccviiiiieieeeeeeeee ettt 785

0] [a0 o= T 0o S 785
Changing Log LevelS DYNaMUCAIIY........ccciiiieiiiisie s sieesie ettt st na e ne e eresnesnesresrenns 786
REVIEWING IMPAIA LOGS.....cceiiiiieisise it estesee et e et s e et ste st st e st e s te st e e e e e e eseeseeneeseesesaessesteseeseessensesenns 786
Understanding Impala LOg CONENES.........eiiiieieieeieeeeseee s se e steseste e e s sae e ae s eseese s e ssesressesnessesseseeseenees 787

=t o oo o T 0o == 787
Redacting Sensitive Information from Impala Log FilES.......ccccveeieiieieceeceeese s 787
IMPala ClHENt ACCESS.....cccieiiieiee ettt sneeenes 788
Using the Impala Shell (impala-shell Command)..........ccooerirriiii e 790
impala-shell Configuration OPLIONS..........coeiiiirire et e 791

Connecting to Impala Daemon from impala-Shell.............cooiiiii e 796

Running Commands and SQL Statements in impalashell...........cccoiniii e 798

impala-shell CommaNd REFEIENCE. ..o e 799

Configuring Impala to WOrk With ODBC.........ccuciiiiiere sttt sae e b e e 801
Configuring Impala to WOork With JDBC..........cooiiiiiiieeeeere ettt sb e ee e 801
Configuring the JDBC POIT........cc.ciiiieeeieiere ettt b bbb st e e e b 802

ChO0SING the JDBEC DIIVEN.......ciiiuiieiiterie sttt ettt sttt st st see st be e e e e e et sesbesbesaesbesbesaeseebees 802

Enabling Impala JDBC Support 0N Client SYSLEMS.........coeiirirere e 802

Establishing JIDBC CONNECLIONS.......c..ciuiririerieieieiee ettt ettt e s e se e se e enesbesaesaesbeseeseen 803

Notes about JDBC and ODBC Interaction with Impala SQL Features............cccecerverenenenenenenenene 804

Kudu Considerations for DML SEaEEMENES..........coeiuerieieeirire sttt se e sre e s sre e 804

Spooling IMpala QUENY RESUITS........coui ittt b et b e s b b bbb e e e e e 804
Impala Fault TOIEraNCe........cccoiee e 806
Impala Transparent QUENY REITES........c..ci ittt sttt e 806
IMpala NOAE BIACKITSIING.......cueeeeirieiirie bbbttt 807
Troubleshooting IMpPala..........cccooieiiiiiee e e 807
Troubleshooting Impala SQL SYNtaX ISSUES........cceiereeieeriereeeeieeeestesese e s e sresres e stessesaesessesesesssssessessessenns 807
Troubleshooting Crashes Caused by Memory ReSOUrCe Limit.........cccovvvieiinenieseseeseeseeee e se s 807
Troubleshooting [/O CapaCity ProblemS..........ccccceieiieieeieeecere s resnesrenes 808
Impala Troubleshooting QUICK REFEIENCE.........ccucieececere s sttt srens 808
Impala Web User Interface for DEDUGGING.ccueiireieiireieseereeeees e seses ettt s se e sae s e e e e s e eneenesnes 810
Configuring DEBUG WED ULS.....c.ocieieeceeieese sttt st s s e e aenn e ens 811

Debug Web Ul fOr iIMPalad.........ccoovieiiieieicieceeceeces ettt s e e sre st sresne e snens 811

Debug WeD Ul fOr StALESIOrE........ceeeiieieeiesieseseste e e ee ettt s re st te e e e e e e e e e e e eneens 814

[DI= o8 0 IAVAVZS I W1 IR (o] gor- - o ' (o NS 816

Breakpad Minidumps for Impala (Impala 2.6 or higher only).........cccceeiiiinie s 817
Enabling or Disabling Minidump GENEratioN.........cccccueveieiererese e se e e e e seae e e eaeee e eseesesneens 817

Specifying the Location for Minidump FIIES.........ccccieerireeecese e 818

Controlling the Number of Minidump FilES........cooviiiiiiii e e 818

DEteCting Crash EVENLS........coiiieierieieeieieeeee s st s et esae st e e e e e e e e e e e eseesessesaestesteseeseenseseeseenean 818
Demonstration of Breakpad FEALUIE...........ccvveiiieie et ne e ens 818

Ports Used by Impala.........cooeoiiiiie e s 820

| Contents | xii

IMpala RESErVEd WOITS.......ccoviieiie ettt 821
LiSt Of RESEIVEA WOIGS......cueieeieieeeieieiiee ettt sttt sttt e e s e sesaeebesbeseeseesbeseeseenseneenaeneenenneeneesens 821
Impala Frequently Asked QUESLIONS..........ccccceeieriiiesie e e 838
IMpala REIEASE NOLES........coiiieiecie e 838
New Features in APache IMPEIAL.........coi i et sttt b e sae b sbe e e eas 838
New FeatureS in IMPaIA 4.0.......oooeeeeeeee ettt b et b b b e e eene e se e eaesbenae e 838

New FeatureS in IMPalA 3.4..... .ottt bbb e e e e eae b ae e 838

New FeatureS in IMPala 3.3.......o ettt bbb et eae b nae e 840

New FeatureS iN IMPaIA 3.2. ...ttt bbbt st e e e e ae b nae e 843

New FeatureS in IMPala 3.1.......oo et sae b e e 844

New FeatureS in IMPalA 3.0.......oo ittt s e e e se e e ae e nae e 844

New FeatureS in IMPala 2.12..........ooi ettt e et sbe b e b b e 844

New FeatureS in IMPala 2.10.... ..ottt et b b e b b e 844

New FeatureS in IMPala 2.10.... ...ttt bbb b e b e e 844

New FeatureS in IMPala 2.9.......oo bbb et ae b ae e 844

New FeatureS in IMPala 2.8.......c.co et bbb et a e e e 845

NeW FEatUIreS iN TMPBIA 2.7.......oieeee ettt bbb et e e et ae b b 847

New FeatureS in IMPaIA 2.6.......cccooieieeiteee ettt bbb nae e 847

New FeatureS in IMPal@ 2.5. ... bbb et b e ae e 849

New FeatureS in IMPaIA 2.4.........co et s st e e e sae b nae e 852

New FeatureS in IMPala 2.3.......o et e e et ae b ae e 852

New FeatureS in IMPal@ 2.8.......cco ettt b bbb ae e 854

New FeatureS in IMPala 2.1.......coooe et s st sbenae e 856

New FeatureS in IMPala 2.0.......oo ottt b st e e e ne e se e eae b nae e 856

New FeatureS in IMPaIA 1.t b e bbb et ae b ae e 858

New FeatureS in IMPala 1.3.2......coi ettt et sb b e e b s 859

New FeatureS in IMPala 1.3. L. . ..ottt et s b e b e e be s 860

New FeatureS in IMPala 1.3.......o ettt st e e e et ae b ne e 860

New FeatureS in IMPala 1.2.4.........ooi ettt ettt sb e b e e be s 861

New FeatureS in IMPala 1.2.3. ..ot ettt sb b e et s 861

New FeatureS inN IMPala 1.2.2... ..ottt et b b e bt s 861

New FeatureS in IMPala L. 2.0t et sb e b e e b s 862

New Features in Impala 1.2.0 (BEL)........cocerireriiiierie ettt e e eneas 863

New FeatureS in IMPala 1.1 L . ..ottt ettt s b b e e be s 865

New FeatureS in IMPala 1.1.......co ettt bbb e e b e e 865

New Features in IMPala L.0.1... ..ot ettt s b e b e e b s 866

New FeatureS in IMPalA 1.0.......coiieie ettt bbb e e sae e ae e 866

New Featuresin Version 0.7 of the Impala Beta REIEASE. ..o 866

New Features in Version 0.6 of the Impala Beta REIEASE. ..o 867

New Features in Version 0.5 of the Impala Beta REIEASE. ..o 867

New Features in Version 0.4 of the Impala Beta REIEASE. ..o 867

New Features in Version 0.3 of the Impala Beta REIEASE. ..o 867

New Featuresin Version 0.2 of the Impala Beta REIEASE. ..o 867
Incompatible Changes and Limitations in Apache IMpala...........cccoeeirininn e 867
Incompatible Changes Introduced in IMPala 4.0.X......cccoeriiineieniiiese e 867
Incompatible Changes Introduced in IMPala 3.4.X......cccveiiiiniieiiere e e 868
Incompatible Changes Introduced in IMPala 3.3.X......ccureiiririierie e e 868
Incompatible Changes Introduced in IMPala 3.2.X......cccuveriiiniieiiere e e 868
Incompatible Changes Introduced in IMPala 3.1.X......ccoureiirineriiniinese e e 868

Incompatible Changes Introduced in IMPala 3.0.X......ccureiiriniiiniere e e 868

| Contents | xiii

Incompatible Changes Introduced in IMPala 2.12.X.......cceiiriirienieneeeeeeeeeeeese e e 868
Incompatible Changes Introduced in IMPala 2.1 X.....c.ooeiuiriinieieeeeeeeeeeeeees e e 868
Incompatible Changes Introduced in IMPala 2.10.X.......coeiuiriirierienieeeeeeeeeeees e e 868
Incompatible Changes Introduced in IMPala 2.9.X......ccouveiiiiniiiniere e e 869
Incompatible Changes Introduced in IMPala 2.8.X......ccccveiiiiriiiniese e e 869
Incompatible Changes Introduced in IMPala 2.7.X......ccocoeiiiiniieniese e e 869
Incompatible Changes Introduced in IMPala 2.6.X......cccoeiiiiriiiniiiese e e e 869
Incompatible Changes Introduced in IMPala 2.5.X......cccveiiiiniiiniere e e 870
Incompatible Changes Introduced in IMPala 2.4.X......ccccooeiiiiiiieniese e e 871
Incompatible Changes Introduced in IMPala 2.3.X......ccereiiiiniiiriese e e e 871
Incompatible Changes Introduced in IMPala 2.2.X......ccccoeiiiiniiiniiee e e e 872
Incompatible Changes Introduced in IMPala 2.1.X......ccoieiiiiniieniese e e 872
Incompatible Changes Introduced in Impala 2.0.5.........cocoiiiiiiiiii e 872
Incompatible Changes Introduced in ImMpala 2.0.4..........ccooiiiiiiinie e e 872
Incompatible Changes Introduced in Impala 2.0.3.........cocoiiiiiiiniee e e 872
Incompatible Changes Introduced in IMpala 2.0.2.........cocoiiiiiiiiine e e 872
Incompatible Changes Introduced in ImMpala 2.0.1.........cocoiiiiiiiininee e e 872
Incompatible Changes Introduced in ImMpala 2.0.0.........cocoiiiiiiininee e e 873
Incompatible Changes Introduced in IMpala 1.4.4..........ocoiiiiiiiiinene e e 874
Incompatible Changes Introduced in ImMpala 1.4.3.........cocoiiiiiiiiiiee e e 874
Incompatible Changes Introduced in IMpala 1.4.2.........cocoiiiiiiininee e e 874
Incompatible Changes Introduced in ImMpala 1.4.L.........cocooiiiiiiininee e e 874
Incompatible Changes Introduced in IMpala 1.4.0.........cociiiiriiininee e e e 874
Incompatible Changes Introduced in ImMpala 1.3.3.......c.oooiiiiiiiieee e e 875
Incompatible Changes Introduced in IMpala 1.3.2.......c.cooiiiiiiiiiniee e e 875
Incompatible Changes Introduced in IMpala 1.3.1.......coooiiiiiiiiiriee e e e 875
Incompatible Changes Introduced in IMpala 1.3.0......ccccooeiiiiriiiniee e e e 875
Incompatible Changes Introduced in IMpala 1.2.4.........cocoiiiiiiiiinere e e 876
Incompatible Changes Introduced in ImMpala 1.2.3.........coooiiiiiiiiiie e e 876
Incompatible Changes Introduced in IMpala 1.2.2.........cocoiiiiiiiiiinee e e 876
Incompatible Changes Introduced in ImMpala 1.2.1.......cccocoiiiiiiiiniee e e 877
Incompatible Changes Introduced in Impala 1.2.0 (BEta)..........cccoeereiiiinenie e 877
Incompatible Changes Introduced in ImMpala 1.1 1. ..ot e 877
Incompatible Change Introduced in IMpala L.1.........cooiiiiiiieeeeere e e 878
Incompatible Changes Introduced in IMpala 1.0........c.coeriiiirieere e 878
Known Issues and Workarounds in TMPalaL..........coeiiieieiiniene et s 878
IMpala KNOWN 1SSUES. SEBITUP.c.ceuerterierieeterie sttt sttt be b e bt e et se e e e e e e e e e eneenas 878
Impala KNOWN [SSUES. PEIfOIMEBNCE........ccoiruiiiitirie ettt st s sb e 879
Impala Known Issues: JDBC and ODBC DIIVENS.......ccociiiririiine e sre e seeseeeas 879
IMpala KNOWN [SSUES. SECUNTY....c.ueiuirteriiitirtirie ettt st st st se e see e e se e sesbesbesaesbenbees 879
IMpala KNOWN [SSUES. RESOUICES........cveeeieeeeeeeieeeeiestesiestestesteseessebeseeseees e seesessessesaesbeseeseessesseseens 879
IMpala KNOWN [SSUES. COMTECLNESS......cc.ciuerieriiriisteriertestesieseeseeeeseeeesessessesaessesaesaesbesbeseessensessesesnsensens 880
Impala Known [SSUES: INteroperability.........coo oo 881
Impala KNOWN [SSUES. LIMITATIONS......ccooieerieeeieeieiie sttt s st e 882
Impala KNown [SSUES: MiSCEIIANEOUS..........ocoiiriiiiriesiise ettt s 883
Impala Known [ssues: CrasheS and HangS........cooveeieeiere et 883
Fixed 1SSUES IN APAChE IMIPEIAL.......c.oiiiiiiee bbb et b b bbb e 884
1SSUES FIXEA 1N TMPAIA 4.0......eiiiiieeeiee ettt et ettt et aeene b nnas 884
ISSUES FIXEd 1N TMPEIA 3.t e ettt et nesbennas 884
Issues Fixed iN IMPElA 3.3 ...t et ettt ne b naas 884
ISSUES FIXEd 1N TMPAIA 3.2t et sttt et ne b nnas 884
ISSUES FIXEd 1N TMPAIA 3.1 ..o et sttt ne b nnas 885
ISSUES FIXEd 1N TMPAIA 3.0, ...ttt b ettt e et ne b nnas 885
ISSUES FiXed IN ITMPEIA 2.12.....c..oiieiee ettt e ettt eb e sbe e b e 885
IssuES FiXed iN IMPAIA 2.11....cc.oii ettt et sttt b e et sbesbesae b e 885

Issues FiXed iN IMPElA 2.00........coi ettt e sttt b et sbesbe e b e 885

| Contents | xiv

Issues Fixed in IMPalA 2.9.0.. ..ot ettt b e s b b e e nas 885
Issues FiXed iN IMPElA 2.8.0.......cui it ettt b e sbe b e e eas 885
ISSUES FiIXed N IMPEIA 2.7.0....ccueee it et ettt b e bbb e e eas 885
Issues FiXed iN IMPElA 2.6.3.......cui e e et b e bbb e e e 885
ISSUES FIXEd 1N ITMPEIA 2.6.2.......oei et ettt b e e b b e e e 885
Issues FiXed iN IMPEIA 2.6.0.......cuiiuiieieeeee ettt ettt b e sbesbe e e e 885
Issues FiXed iN IMPElA 2.5.4. ... e ettt s b e b e e e 887
IssueS FiXed iN IMPEIA 2.5.2. ..o e ettt s b e b e e 887
Issues Fixed iN IMPala 2.5.0.. ..o e ettt sb e see e 887
Issues Fixed iN IMPalA 2.5.0.. ..o ettt sb e s b e e e 887
ISSUES FIXed IN IMPEIA 2.4. 0.t et ettt b e bbb e e e 890
IssuES FiXed iN IMPEIA 2.4.0. ..ottt ettt b e ae b sbe e e eas 890
ISSUES FiXed iN IMPBIA 2.3 4. et ettt b e bbb b e e nas 890
ISSUES FIXed 1N ITMPEIA 2.3.2.....eeee et et ettt b et sb et see e nas 890
IssueS FiXed iN IMPEIA 2.3 0. .o e ettt b e s s be st e e nas 892
IssuES FiXed iN IMPEIA 2.3.0....ccueie it ettt b e sbesbe e sneeas 892
Issues Fixed iN IMPala 2.2.00........oo ettt s b e b b sa et se e e e e e eneas 893
Issues FiXed iN IMPEIA 2.2.9. ..o ettt b e s b b e e 893
Issues FiXed iN IMPalA 2.2.8.......cuo et ettt b e s b b e e 894
1SSUES FIXEA 1N TMPBIA 2.2.7 ...ttt ettt b e bbbt see e nas 895
Issues Fixed in Impala IMPala 2.2.5.........oe e bbb et 896
IssuES FiXed iN IMPEIA 2.2.3. ...ttt et ettt b e bbb e snennas 897
ISSUES FIXed 1N IMPEIA 2.2. 0.t ettt b et eb e s b e e eas 898
ISSUES FiXed IN ITMPEIA 2.2.0....cuiee et et ettt b e s bbb e seenas 898
Issues Fixed iN IMPala 2.1.00........oo ettt bbb bbb e e e e e e eneas 900
1SSUES FIXEd 1N TMPBIA 2.0, 7.t ettt b et b e b e e eas 900
ISSUES FiXed iN IMPEIA 2.1.6. ..ot ettt b e eb et see e e 900
Issues Fixed iN IMPala 2.0.5. ..o e ettt sb e see e e 901
ISSUES FIXed 1N IMPEIA 2.1 4.t ettt b e bbb e e eas 901
Issues FiXed iN IMPElA 2.1.3.. ..ot et et b e bbbt e e eas 902
ISSUES FIXEd 1N TMPBIA 2.1, 2.ttt et ettt b e bbb e e eas 903
ISSUES FiXed N IMPEIA 2.1, 0.t ettt b et eb e st see e eas 903
ISSUES FiXed N IMPEIA 2.1.0....ccuiee ettt b e b b s be e e nas 904
Issues Fixed in IMPala 2.0.5. ..o e et s see s 904
Issues FiXed iN IMPElA 2.0.4.......oue et ettt b e b bbb e e eas 904
Issues Fixed in IMPala 2.0.3.. ..ot et et b et eb e b e e e 905
IssUES FiXed iN IMPEIA 2.0.2. ..ot ettt b e b b sbe e seeneas 905
Issues Fixed in IMPala 2.0.1.. ..ot et b e bbb e e eas 906
Issues Fixed in IMPalA 2.0.0.. ..ot et st b e b b sbe e e eas 906
ISSUES FIXed 1N IMPBIA 1.4t ettt b e bbbt sae e eas 908
Issues FiXed iN IMPalA 1.4.3.......o ettt ettt b e bbbt see e eas 908
ISSUES FIXEd 1N ITMPBIA 1.4.2......eee ettt ettt b e b ae b b e e eas 908
IssUES FiXed iN IMPEIA 1.4 1. ...t ettt b e sbesbe e e eas 908
Issues FiXed iN IMPEIA 1.4.0.. ..ot et et b e sbesbe e e neas 909
Issues Fixed iN IMPala 1.3.3.. ..ot ettt b e bbb e e eas 910
ISSUES FIXed 1N IMPEIA 1.3.2. ..ttt ettt b e sbe st e e nas 910
Issues FiXed iN IMPEIA 1.3 1. .ot ettt b et b e st e e e eas 911
Issues FiXed iN IMPEIA 1.3.0....ccuie ittt b e b b sbe e e eas 912
Issues Fixed iN the 1.2.4 REIEBSE........ccccoi ittt 914
Issues Fixed in the 1.2.3 REIGESE........ccci it e 915
Issues Fixed in the 1.2.2 REIGBSE........ccci v 915
Issues Fixed in the 1.2.1 REIEESE........ccciiiiiciecet et 916
Issues Fixed in the 1.2.0 Beta REIEBSE.........ccoocireiirece s 917
Issues Fixed inthe 1.1.1 REIEESE........cccireircieet e e 917
Issues Fixed in the 1.1.0 REIEESE........ccci it 918

ISSUES FIXEd IN the 1.0.1 REIEASE......ccoceeeeeeee ettt st a e st e s s san e s sbaeeeas 918

| Contents | xv

Issues Fixed in the 1.0 GA REIEBSE........cooei ittt sttt et r e et sareeeaeesane s 920
Issues Fixed in Version 0.7 of the BEta REIEASE.........c.cocviiciieceicee ettt 922
Issues Fixed in Version 0.6 of the BEta REIEASE.........c.cocviiciieceicee ettt 923
Issues Fixed in Version 0.5 of the BEta REIEASE.........c.eocvieciieceicee ettt 924
Issues Fixed in Version 0.4 of the BEta REIEASE.........c.cocvieciieceicee ettt 924
Issues Fixed in Version 0.3 of the BEta REIEASE.........coocviiciieceecee ettt 925

Issues Fixed in Version 0.2 of the BEta REIEASE...........cooiv et 925

| Introducing Apache Impala | 16

Introducing Apache Impala

Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS, HBase, or the
Amazon Simple Storage Service (S3). In addition to using the same unified storage platform, Impala also uses the
same metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Impaaquery Ul in Hue) as Apache Hive.
This provides afamiliar and unified platform for real-time or batch-oriented queries.

Impalais an addition to tools available for querying big data. Impala does not replace the batch processing
frameworks built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for
long running batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

Note: Impalagraduated from the Apache Incubator on November 15, 2017. In places where the documentation
formerly referred to “ Cloudera Impala’, now the official nameis“Apache Impala’.

Impala Benefits

Impalaprovides:

« Familiar SQL interface that data scientists and analysts already know.

« Ability to query high volumes of data (“big data’) in Apache Hadoop.

» Distributed queriesin a cluster environment, for convenient scaling and to make use of cost-effective commodity
hardware.

« Ability to share data files between different components with no copy or export/import step; for example, to write
with Pig, transform with Hive and query with Impala. Impala can read from and write to Hive tables, enabling
simple data interchange using Impalafor analytics on Hive-produced data.

« Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for
analytics.

How Impala Works with Apache Hadoop

The Impala solution is composed of the following components:

¢ Clients- Entitiesincluding Hue, ODBC clients, JDBC clients, and the Impala Shell can al interact with Impala.
These interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.

* Hive Metastore - Stores information about the data available to Impala. For example, the metastore lets Impala
know what databases are available and what the structure of those databasesis. Asyou create, drop, and alter
schema objects, load datainto tables, and so on through Impala SQL statements, the relevant metadata changes are
automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

* Impala- This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can
receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these
nodes then act as workers, executing parallel query fragments.

« HBase and HDFS - Storage for data to be queried.

Queries executed using Impala are handled as follows:

1. User applications send SQL queriesto Impalathrough ODBC or JDBC, which provide standardized querying
interfaces. The user application may connect to any i npal ad in the cluster. Thisi npal ad becomes the
coordinator for the query.

2. Impala parses the query and analyzes it to determine what tasks need to be performed by i npal ad instances
across the cluster. Execution is planned for optimal efficiency.

3. Services such asHDFS and HBase are accessed by local i npal ad instances to provide data.

4. Eachi npal ad returns datato the coordinating i npal ad, which sends these results to the client.

| Impala Concepts and Architecture | 17

Primary Impala Features

Impala provides support for:

* Most common SQL-92 features of Hive Query Language (HiveQL) including SELECT, joins, and aggregate
functions.

* HDFS, HBase, and Amazon Simple Storage System (S3) storage, including:

« HDFSfile formats. delimited text files, Parquet, Avro, SequenceFile, and RCFile.
e Compression codecs: Snappy, GZIP, Deflate, BZIP.
« Common data access interfaces including:

e JDBCdriver.

« ODBCdriver.

* Hue Beeswax and the Impala Query Ul.
e impala-shell command-line interface.
» Kerberos authentication.

Impala Concepts and Architecture

The following sections provide background information to help you become productive using Impalaand its
features. Where appropriate, the explanations include context to help understand how aspects of Impalarelateto
other technologies you might already be familiar with, such asrelational database management systems and data
warehouses, or other Hadoop components such as Hive, HDFS, and HBase.

Components of the Impala Server

The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different
daemon processes that run on specific hosts within your cluster.

The Impala Daemon

The core Impala component is the Impala daemon, physically represented by thei npal ad process. A few of the key
functions that an Impala daemon performs are:

* Readsand writesto datafiles.

« Accepts queries transmitted from the i npal a- shel | command, Hue, JIDBC, or ODBC.
» Parallelizes the queries and distributes work across the cluster.

e Transmitsintermediate query results back to the central coordinator.

Impala daemons can be deployed in one of the following ways:

* HDFSand Impala are co-located, and each Impala daemon runs on the same host as a DataNode.
« Impaaisdeployed separately in a compute cluster and reads remotely from HDFS, S3, ADLS, etc.

The Impala daemons are in constant communication with StateStore, to confirm which daemons are healthy and can
accept new work.

They also receive broadcast messages from the cat al ogd daemon (introduced in Impala 1.2) whenever any Impala
daemon in the cluster creates, alters, or drops any type of object, or when an | NSERT or LOAD DATA statement is
processed through Impala. This background communication minimizes the need for REFRESH or | NVALI DATE
METADATA statements that were needed to coordinate metadata across |mpala daemons prior to Impala 1.2.

The

The

| Impala Concepts and Architecture | 18

In Impala 2.9 and higher, you can control which hosts act as query coordinators and which act as query executors, to
improve scalability for highly concurrent workloads on large clusters. See How to Configure Impala with Dedicated
Coordinators on page 666 for details.

Note: Impala daemons should be deployed on nodes using the same Glibc version since different Glibc version
supports different Unicode standard version and also ensure that theen US.UTF-8 localeisinstalled in the nodes.
Not using the same Glibc version might result in inconsistent UTF-8 behavior when UTF8_MODE is set to true.

Related information: Modifying Impala Startup Options on page 32, Sarting Impala on page 31, Setting
the Idle Query and Idle Session Timeouts for impalad on page 66, Ports Used by Impala on page 820, Using
Impala through a Proxy for High Availability on page 67

Impala Statestore

The Impala component known as the StateStore checks on the health of al Impala daemonsin a cluster, and
continuoudly relays its findings to each of those daemons. It is physically represented by a daemon process named
st at est or ed. You only need such a process on one host in acluster. If an Impala daemon goes offline due to
hardware failure, network error, software issue, or other reason, the StateStore informs all the other Impala daemons
so that future queries can avoid making requests to the unreachable Impala daemon.

Because the StateStore's purpose is to help when things go wrong and to broadcast metadata to coordinators, it is not
always critical to the normal operation of an Impala cluster. If the StateStore is not running or becomes unreachable,
the Impala daemons continue running and distributing work among themselves as usual when working with the
data known to Impala. The cluster just becomes less robust if other Impala daemons fail, and metadata becomes

less consistent as it changes while the StateStore is offline. When the StateStore comes back online, it re-establishes
communication with the Impala daemons and resumes its monitoring and broadcasting functions.

If you issue aDDL statement while the StateStore is down, the queries that access the new aobject the DDL created
will fail.

Most considerations for load balancing and high availability apply to thei npal ad daemon. The st at est or ed
and cat al ogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in dataloss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and | mpala Catalog Server roles, add theroleson a
different host, and restart the Impala service.

Related information:

Scalability Considerations for the Impala Statestore on page 658, Modifying Impala Sartup Options on page
32, Sarting Impala on page 31, Increasing the Statestore Timeout on page 66, Ports Used by Impala on
page 820

Impala Catalog Service

The Impala component known as the Catalog Service relays the metadata changes from Impala SQL statements to

all the Impala daemonsin acluster. It is physically represented by a daemon process named cat al ogd. You only
need such a process on one host in a cluster. Because the requests are passed through the StateStore daemon, it makes
sensetorunthe st at est or ed and cat al ogd services on the same host.

The catalog service avoids the need to issue REFRESHand | NVALI DATE METADATA statements when the
metadata changes are performed by statements issued through Impala. When you create atable, |load data, and so on
through Hive, you do need to issue REFRESH or | NVALI DATE NMETADATA on an Impala daemon before executing
aquery there.

This feature touches a number of aspects of Impala:

» Seelnstalling Impala on page 25, Upgrading Impala on page 28 and Sarting Impala on page 31, for
usage information for the cat al ogd daemon.

 TheREFRESHand | NVALI DATE METADATA statements are not needed when the CREATE TABLE, | NSERT,
or other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala daemon rather than on al daemons. See REFRESH Satement on

| Impala Concepts and Architecture | 19

page 312 and INVALIDATE METADATA Statement on page 307 for the latest usage information for those
statements.

Use##l| oad_cat al og_i n_backgr ound option to control when the metadata of atableisloaded.

« Ifsettof al se, the metadata of atableisloaded when it isreferenced for the first time. This means that
thefirst run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
##| oad_cat al og_i n_background isf al se.

e |Ifsettotrue, the catalog service attempts to load metadata for atable even if no query needed that metadata.
So metadata will possibly be already |oaded when the first query that would need it is run. However, for the
following reasons, we recommend not to set the optiontot r ue.

« Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

« Impaamay load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Most considerations for load balancing and high availability apply to thei npal ad daemon. The st at est or ed
and cat al ogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in dataloss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and | mpala Catalog Server roles, add theroleson a
different host, and restart the Impala service.

Note:

In Impala 1.2.4 and higher, you can specify atable name with | NVALI DATE METADATA &fter the tableis created
in Hive, allowing you to make individual tables visible to Impala without doing afull reload of the catalog metadata.
Impala 1.2.4 also includes other changes to make the metadata broadcast mechanism faster and more responsive,
especially during Impala startup. See New Featuresin Impala 1.2.4 on page 861 for details.

Related information: Modifying Impala Startup Options on page 32, Sarting Impala on page 31, Ports
Used by Impala on page 820

Developing Impala Applications

The core development language with Impalais SQL. Y ou can also use Java or other languages to interact with Impala
through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of
analysis, you can supplement the SQL built-in functions by writing user-defined functions (UDFs) in C++ or Java.

Overview of the Impala SQL Dialect

The Impala SQL dialect is highly compatible with the SQL syntax used in the Apache Hive component (HiveQL).
Assuch, it isfamiliar to users who are already familiar with running SQL queries on the Hadoop infrastructure.
Currently, Impala SQL supports a subset of HiveQL statements, data types, and built-in functions. Impala also
includes additional built-in functions for common industry features, to simplify porting SQL from non-Hadoop
systems.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might seem familiar:

e The SELECT statement includes familiar clauses such as WHERE, GROUP BY, ORDER BY, and W TH. You
will find familiar notions such asjoins, built-in functions for processing strings, numbers, and dates, aggregate
functions, subqueries, and comparison operators such as| N() and BETWEEN. The SELECT statement isthe
place where SQL standards compliance is most important.

» From the data warehousing world, you will recognize the notion of partitioned tables. One or more columns
serve as partition keys, and the datais physically arranged so that queries that refer to the partition key columns
in the WHERE clause can skip partitions that do not match the filter conditions. For example, if you have 10 years
worth of dataand use aclause suchasWHERE year = 2015, WHERE year > 2010, or WHERE year I N

| Impala Concepts and Architecture | 20

(2014, 2015), Impalaskipsall the datafor non-matching years, greatly reducing the amount of 1/O for the
query.

In Impala 1.2 and higher, UDFset you perform custom comparisons and transformation logic during SELECT
and | NSERT. . . SELECT statements.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might require some learning and practice for you to become proficient in the Hadoop environment:

Impala SQL isfocused on queries and includes relatively little DML. Thereis no UPDATE or DELETE statement.
Stale dataistypically discarded (by DROP TABLE or ALTER TABLE ... DROP PARTI Tl ON statements) or
replaced (by | NSERT OVERWRI TE statements).

All data creation isdone by | NSERT statements, which typically insert datain bulk by querying from other tables.
There are two variations, | NSERT | NTOwhich appends to the existing data, and | NSERT OVERWRI TE which
replaces the entire contents of atable or partition (similar to TRUNCATE TABLE followed by anew | NSERT).
Although thereisan | NSERT ... VALUES syntax to create a small number of valuesin asingle statement, it is
far more efficient tousethe | NSERT ... SELECT to copy and transform large amounts of datafrom one table
to another in a single operation.

Y ou often construct Impala table definitions and data files in some other environment, and then attach Impala so
that it can run real-time queries. The same data files and table metadata are shared with other components of the
Hadoop ecosystem. In particular, Impala can access tables created by Hive or datainserted by Hive, and Hive can
access tables and data produced by Impala. Many other Hadoop components can write filesin formats such as
Parquet and Avro, that can then be queried by Impala.

Because Hadoop and Impala are focused on data warehouse-style operations on large data sets, Impala SQL
includes some idioms that you might find in the import utilities for traditional database systems. For example, you
can create atable that reads comma-separated or tab-separated text files, specifying the separator in the CREATE
TABLE statement. Y ou can create exter nal tablesthat read existing data files but do not move or transform them.
Because Impala reads large quantities of data that might not be perfectly tidy and predictable, it does not require
length constraints on string data types. For example, you can define a database column as STRI NG with unlimited
length, rather than CHAR(1) or VARCHAR(64) . (Although in Impala 2.0 and later, you can also use length-
constrained CHAR and VARCHAR types.)

Related information: Impala SQL Language Reference on page 101, especialy Impala SQL Satements on page
213 and Impala Built-1n Functions on page 428

Overview of Impala Programming Interfaces

Y ou can connect and submit regquests to the Impal a daemons through:

Thei npal a- shel | interactive command interpreter.
The Hue web-based user interface.

JDBC.

ODBC.

With these options, you can use Impalain heterogeneous environments, with JDBC or ODBC applications running on
non-Linux platforms. Y ou can also use Impala on combination with various Business Intelligence tools that use the
JDBC and ODBC interfaces.

Eachi npal ad daemon process, running on separate nodesin a cluster, listens to several ports for incoming
reguests. Requestsfromi npal a- shel | and Hue arerouted to thei npal ad daemons through the same port. The
i mpal ad daemons listen on separate ports for JDBC and ODBC requests.

How Impala Fits Into the Hadoop Ecosystem

Impala makes use of many familiar components within the Hadoop ecosystem. Impala can interchange data with
other Hadoop components, as both a consumer and a producer, so it can fit in flexible waysinto your ETL and ELT
pipelines.

http://gethue.com/

| Impala Concepts and Architecture | 21

How Impala Works with Hive

A major Impala goal isto make SQL-on-Hadoop operations fast and efficient enough to appeal to new categories
of users and open up Hadoop to new types of use cases. Where practical, it makes use of existing Apache Hive
infrastructure that many Hadoop users aready have in place to perform long-running, batch-oriented SQL queries.

In particular, Impala keeps its table definitionsin atraditional MySQL or PostgreSQL database known as the
metastor e, the same database where Hive keeps this type of data. Thus, Impala can access tables defined or loaded by
Hive, aslong as al columns use Impal a-supported data types, file formats, and compression codecs.

Theinitial focus on query features and performance means that Impala can read more types of data with the SELECT
statement than it can write with the | NSERT statement. To query data using the Avro, RCFile, or SequenceFilefile
formats, you load the data using Hive.

The Impala query optimizer can also make use of table statistics and column statistics. Originaly, you gathered this
information with the ANALYZE TABLE statement in Hive; in Impala 1.2.2 and higher, use the Impala COVPUTE
STATS statement instead. COMPUTE STATS requires less setup, is more reliable, and does not require switching
back and forth between i npal a- shel | and the Hive shell.

Overview of Impala Metadata and the Metastore

Asdiscussed in How Impala Works with Hive on page 21, Impala maintains information about table definitionsin
acentral database known as the metastor e. Impala a so tracks other metadata for the low-level characteristics of data
files:

» Thephysical locations of blocks within HDFS.

For tables with alarge volume of data and/or many partitions, retrieving all the metadata for a table can be time-
consuming, taking minutes in some cases. Thus, each Impala node caches all of this metadata to reuse for future
queries against the same table.

If the table definition or the data in the table is updated, al other Impala daemons in the cluster must receive the latest
metadata, replacing the obsolete cached metadata, before issuing a query against that table. In Impala 1.2 and higher,
the metadata update is automatic, coordinated through the cat al ogd daemon, for all DDL and DML statements
issued through Impala. See The Impala Catalog Service on page 18 for details.

For DDL and DML issued through Hive, or changes made manually to filesin HDFS, you still use the REFRESH
statement (when new data files are added to existing tables) or the | NVALI DATE METADATA statement (for entirely
new tables, or after dropping atable, performing an HDFS rebalance operation, or deleting datafiles). Issuing

| NVALI DATE METADATA by itself retrieves metadata for all the tables tracked by the metastore. If you know that
only specific tables have been changed outside of Impala, you can issue REFRESH t abl e_nane for each affected
table to only retrieve the latest metadata for those tables.

How Impala Uses HDFS

Impala uses the distributed filesystem HDFS as its primary data storage medium. Impalarelies on the redundancy
provided by HDFS to guard against hardware or network outages on individual nodes. Impalatable datais physically
represented as data filesin HDFS, using familiar HDFS file formats and compression codecs. When data files are
present in the directory for a new table, Impalareads them all, regardless of file name. New datais added in fileswith
names controlled by Impala.

How Impala Uses HBase

HBase is an alternative to HDFS as a storage medium for Impala data. It is a database storage system built on top of
HDFS, without built-in SQL support. Many Hadoop users aready have it configured and store large (often sparse)
data setsin it. By defining tables in Impala and mapping them to equivalent tables in HBase, you can query the
contents of the HBase tables through Impala, and even perform join queries including both Impala and HBase tables.
See Using Impala to Query HBase Tables on page 750 for details.

| Planning for Impala Deployment | 22

Planning for Impala Deployment

Before you set up Impalain production, do some planning to make sure that your hardware setup has sufficient
capacity, that your cluster topology is optimal for Impala queries, and that your schema design and ETL processes
follow the best practices for Impala.

Impala Requirements

To perform as expected, Impala depends on the availability of the software, hardware, and configurations described in
the following sections.

Supported Operating Systems
Apache Impalaruns on Linux systems only. See the READVME. nd file for more information.

Hive Metastore and Related Configuration

Impala can interoperate with data stored in Hive, and uses the same infrastructure as Hive for tracking metadata about
schema obj ects such as tables and columns. The following components are prerequisites for Impala:

« MySQL or PostgreSQL, to act as a metastore database for both Impala and Hive.

Always configure a Hive metastor e service rather than connecting directly to the metastore database. The Hive
metastore service is required to interoperate between different levels of metastore APIsif thisis necessary for
your environment, and using it avoids known issues with connecting directly to the metastore database.

See below for asummary of the metastore installation process.

* Hive (optional). Although only the Hive metastore database is required for Impalato function, you might install
Hive on some client machines to create and load data into tables that use certain file formats. See How Impala
Works with Hadoop File Formats on page 695 for details. Hive does not need to be installed on the same
DataNodes as Impal g; it just needs access to the same metastore database.

To instal the metastore:

1. Install aMySQL or PostgreSQL database. Start the database if it is not started after installation.

2. Download the MySQL connector or the PostgreSQL connector and placeitinthe/ usr/ shar e/ j aval/
directory.

3. Usethe appropriate command line tool for your database to create the metastore database.

4. Usethe appropriate command line tool for your database to grant privileges for the metastore database to the
hi ve user.

5. Modify hi ve-si te. xm toinclude information matching your particular database: its URL, username, and
password. You will copy the hi ve-si te. xml fileto the Impala Configuration Directory later in the Impala
installation process.

Java Dependencies
Although Impalais primarily written in C++, it does use Java to communicate with various Hadoop components:

« Theofficially supported VM for Impalais the Oracle JVM. Other JVMs might cause issues, typically resulting in
afailureat i npal ad startup. In particular, the JamVM used by default on certain levels of Ubuntu systems can
causei npal ad to fail to start.

* Internaly, thei npal ad daemon relies on the JAVA_HOVE environment variable to locate the system Java
libraries. Make sure thei npal ad serviceis not run from an environment with an incorrect setting for this
variable.

http://www.mysql.com/products/connector/
http://jdbc.postgresql.org/download.html

| Planning for Impala Deployment | 23

« All Javadependencies are packaged in thei npal a- dependenci es. j ar file, whichislocated at / usr/
I'ib/inpal al/lib/.Thesemap toeverything that isbuilt under f e/ t ar get / dependency.

Networking Configuration Requirements

As part of ensuring best performance, Impala attempts to compl ete tasks on local data, as opposed to using network
connections to work with remote data. To support this goal, Impala matches the hostname provided to each Impala
daemon with the | P addr ess of each DataNode by resolving the hostname flag to an I P address. For Impala to work
with local data, use asingle IP interface for the DataNode and the Impala daemon on each machine. Ensure that

the Impala daemon's hostname flag resolves to the | P address of the DataNode. For single-homed machines, thisis
usually automatic, but for multi-homed machines, ensure that the Impala daemon's hostname resolves to the correct
interface. Impalatries to detect the correct hostname at start-up, and prints the derived hostname at the start of the log
in a message of the form:

Usi ng host nane: i npal a- daenon- 1. exanpl e. com

In the majority of cases, this automatic detection works correctly. If you need to explicitly set the hosthame, do so by
setting the - - host name flag.

Hardware Requirements

The memory allocation should be consistent across Impala executor nodes. A single Impala executor with alower
memory limit than the rest can easily become a bottleneck and lead to suboptimal performance.

This guideline does not apply to coordinator-only nodes.

Hardware Requirements for Optimal Join Performance

During join operations, portions of data from each joined table are loaded into memory. Data sets can be very large,
S0 ensure your hardware has sufficient memory to accommodate the joins you anticipate completing.

While requirements vary according to data set size, the following is generally recommended:
e CPU

Impalaversion 2.2 and higher uses the SSSES instruction set, which isincluded in newer processors.

Note: Thisrequired level of processor isthe same asin Impalaversion 1.x. The Impala2.0 and 2.1 releases had a
stricter requirement for the SSE4.1 instruction set, which has now been relaxed.
e Memory

128 GB or more recommended, ideally 256 GB or more. If the intermediate results during query processing on a
particular node exceed the amount of memory available to Impala on that node, the query writes temporary work
datato disk, which can lead to long query times. Note that because the work is parallelized, and intermediate
results for aggregate queries are typically smaller than the original data, Impala can query and join tables that are
much larger than the memory available on an individual node.

* JVM Heap Sizefor Catalog Server

4 GB or more recommended, ideally 8 GB or more, to accommodate the maximum numbers of tables, partitions,
and data files you are planning to use with Impala.

e Storage

DataNodes with 12 or more disks each. 1/0 speeds are often the limiting factor for disk performance with Impala.
Ensure that you have sufficient disk space to store the data Impalawill be querying.

User Account Requirements

Impala creates and uses a user and group named i npal a. Do not delete this account or group and do not modify the
account's or group's permissions and rights. Ensure no existing systems obstruct the functioning of these accounts and
groups. For example, if you have scripts that delete user accounts not in awhite-list, add these accounts to the list of
permitted accounts.

| Planning for Impala Deployment | 24

For correct file deletion during DROP TABLE operations, Impala must be able to move files to the HDFS trashcan.
Y ou might need to create an HDFS directory / user / i npal a, writeable by thei npal a user, so that the trashcan
can be created. Otherwise, data files might remain behind after a DROP TABLE statement.

Impala should not run as root. Best Impala performance is achieved using direct reads, but root is not permitted to use
direct reads. Therefore, running Impala as root negatively affects performance.

By default, any user can connect to Impala and access all the associated databases and tables. Y ou can enable
authorization and authentication based on the Linux OS user who connects to the Impala server, and the associated
groups for that user. Impala Security on page 78 for details. These security features do not change the underlying
file permission requirements; thei npal a user still needs to be able to access the datafiles.

Guidelines for Designing Impala Schemas

The guidelines in this topic help you to construct an optimized and scalable schema, one that integrates well with
your existing data management processes. Use these guidelines as a checklist when doing any proof-of-concept work,
porting exercise, or before deploying to production.

If you are adapting an existing database or Hive schema for use with Impala, read the guidelines in this section and
then see Porting SQL from Other Database Systems to Impala on page 608 for specific porting and compatibility
tips.

Prefer binary file formats over text-based formats.

To save space and improve memory usage and query performance, use binary file formats for any large or intensively
queried tables. Parquet file format is the most efficient for data warehouse-style analytic queries. Avro is the other
binary file format that Impala supports, that you might already have as part of a Hadoop ETL pipeline.

Although Impala can create and query tables with the RCFile and SequenceFile file formats, such tables are relatively
bulky due to the text-based nature of those formats, and are not optimized for data warehouse-style queries due to
their row-oriented layout. Impala does not support | NSERT operations for tables with these file formats.

Guidelines:

« For an efficient and scalable format for large, performance-critical tables, use the Parquet file format.

* Todédliver intermediate data during the ETL process, in aformat that can also be used by other Hadoop
components, Avro is areasonabl e choice.

» For convenient import of raw data, use atext table instead of RCFile or SequenceFile, and convert to Parquet in a
later stage of the ETL process.

Use Snappy compression where practical.

Snappy compression involves low CPU overhead to decompress, while still providing substantial space savings. In
cases where you have a choice of compression codecs, such as with the Parquet and Avro file formats, use Snappy
compression unless you find a compelling reason to use a different codec.

Prefer numeric types over strings.

If you have numeric values that you could treat as either strings or numbers (such as YEAR, MONTH, and DAY for
partition key columns), define them as the smallest applicable integer types. For example, YEAR can be SMALLI NT,
MONTH and DAY can be Tl NYI NT. Although you might not see any difference in the way partitioned tables or text
filesarelaid out on disk, using numeric types will save space in binary formats such as Parquet, and in memory when
doing queries, particularly resource-intensive queries such asjoins.

Partition, but do not over-partition.

Partitioning is an important aspect of performance tuning for Impala. Follow the procedures in Partitioning for
Impala Tables on page 685 to set up partitioning for your biggest, most intensively queried tables.

| Installing Impala | 25

If you are moving to Impala from atraditional database system, or just getting started in the Big Data field, you might
not have enough data volume to take advantage of Impala parallel querieswith your existing partitioning scheme.

For example, if you have only afew tens of megabytes of data per day, partitioning by YEAR, MONTH, and DAY
columns might be too granular. Most of your cluster might be sitting idle during queries that target a single day, or
each node might have very little work to do. Consider reducing the number of partition key columns so that each
partition directory contains several gigabytes worth of data.

For example, consider a Parquet table where each datafile is 1 HDFS block, with a maximum block size of 1 GB.

(In Impala 2.0 and later, the default Parquet block size is reduced to 256 MB. For this exercise, let's assume you have
bumped the size back up to 1 GB by setting the query option PARQUET_FI LE_SI ZE=1g.) if you have a 10-node
cluster, you need 10 data files (up to 10 GB) to give each node some work to do for a query. But each core on each
machine can process a separate data block in parallel. With 16-core machines on a 10-node cluster, a query could
process up to 160 GB fully in parallel. If there are only afew datafiles per partition, not only are most cluster nodes
sitting idle during queries, so are most cores on those machines.

Y ou can reduce the Parquet block sizeto aslow as 128 MB or 64 MB to increase the number of files per partition and
improve parallelism. But also consider reducing the level of partitioning so that analytic queries have enough data to
work with.

Always compute stats after loading data.

Impala makes extensive use of statistics about data in the overall table and in each column, to help plan resource-
intensive operations such as join queries and inserting into partitioned Parquet tables. Because thisinformation is only
available after datais loaded, run the COVMPUTE STATS statement on atable after loading or replacing datain atable
or partition.

Having accurate statistics can make the difference between a successful operation, or one that fails due to an out-
of-memory error or atimeout. When you encounter performance or capacity issues, always use the SHOW STATS
statement to check if the statistics are present and up-to-date for all tablesin the query.

When doing ajoin query, Impala consults the statistics for each joined table to determine their relative sizes and
to estimate the number of rows produced in each join stage. When doing an | NSERT into a Parquet table, Impala
consults the statistics for the source table to determine how to distribute the work of constructing the data files for
each partition.

See COMPUTE STATS Satement on page 232 for the syntax of the COVPUTE STATS statement, and Table and
Column Satistics on page 625 for all the performance considerations for table and column statistics.

Verify sensible execution plans with EXPLAIN and SUMMARY.

Before executing a resource-intensive query, use the EXPLAI N statement to get an overview of how Impalaintends
to parallelize the query and distribute the work. If you see that the query plan isinefficient, you can take tuning steps
such as changing file formats, using partitioned tables, running the COMPUTE STATS statement, or adding query
hints. For information about all of these techniques, see Tuning Impala for Performance on page 614.

After you run a query, you can see performance-related information about how it actually ran by issuing the
SUMVARY command ini npal a- shel | . Prior to Impala 1.4, you would use the PROFI LE command, but its highly
technical output was only useful for the most experienced users. SUMVARY, new in Impala 1.4, summarizes the most
useful information for all stages of execution, for all nodes rather than splitting out figures for each node.

Installing Impala

Impalais an open-source analytic database for Apache Hadoop that returns rapid responses to queries.
Follow these steps to set up Impalaon a cluster by building from source:

« Download the latest release. See the Impala downloads page for the link to the latest release.
« Check the READMVE. nd file for a pointer to the build instructions.

http://impala.apache.org/downloads.html

| Managing Impala | 26

» Please check the MD5 and SHA1 and GPG signature, the latter by using the code signing keys of the release
managers.
» Developersinterested in working on Impala can clone the Impala source repository:

git clone https://gitbox.apache. org/repos/asf/inpal a.git

What is Included in an Impala Installation

Impalais made up of aset of components that can be installed on multiple nodes throughout your cluster. The key
installation step for performance isto install thei npal ad daemon (which does most of the query processing work)
on all DataNodesin the cluster.

Impala primarily consists of these executables, which should be available after you build from source:

e i npal ad - The Impaladaemon. Plans and executes queries against HDFS, HBase, and Amazon S3 data. Run one
impalad process on each node in the cluster that has a DataNode.

e statestored - Name service that tracks location and status of all i npal ad instancesin the cluster. Run
one instance of this daemon on anodein your cluster. Most production deployments run this daemon on the
namenode.

« cat al ogd - Metadata coordination service that broadcasts changes from ImpalaDDL and DML statements to
all affected Impala nodes, so that new tables, newly loaded data, and so on are immediately visible to queries
submitted through any Impala node. (Prior to Impala 1.2, you had to run the REFRESH or | NVALI DATE
METADATA statement on each node to synchronize changed metadata. Now those statements are only required if
you perform the DDL or DML through an external mechanism such as Hive or by uploading data to the Amazon
S3 filesystem.) Run one instance of this daemon on anodein your cluster, preferably on the same host as the
st at est or ed daemon.

e inpal a- shel | - Command-lineinterface for issuing queries to the Impala daemon. Y ou install this on one or
more hosts anywhere on your network, not necessarily DataNodes or even within the same cluster as Impala. It
can connect remotely to any instance of the Impala daemon.

Before starting working with Impala, ensure that you have all necessary prereguisites. See Impala Requirements on
page 22 for details.

Managing Impala

This section explains how to configure Impala to accept connections from applications that use popular programming
APls:

» Post-Installation Configuration for Impala on page 27
» Configuring Impala to Work with ODBC on page 801
e Configuring Impala to Work with JDBC on page 801

Thistype of configuration is especially useful when using Impalain combination with Business I ntelligence tools,
which use these standard interfaces to query different kinds of database and Big Data systems.

Y ou can also configure these other aspects of Impala:

e Impala Security on page 78
¢ Modifying Impala Startup Options on page 32

| Managing Impala | 27

Post-Installation Configuration for Impala

This section describes the mandatory and recommended configuration settings for Impala. If Impalaisinstalled
using cluster management software, some of these configurations might be completed automatically; you must still
configure short-circuit reads manually. If you want to customize your environment, consider making the changes
described in this topic.

* You must enable short-circuit reads, whether or not Impalawas installed with cluster management software. This
setting goes in the Impala configuration settings, not the Hadoop-wide settings.

* You must enable block location tracking, and you can optionally enable native checksumming for optimal
performance.

Mandatory: Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to
communicate through the DataNodes, improving performance. This setting also minimizes the number of additional
copies of data. Short-circuit reads requires| i bhadoop. so (the Hadoop Native Library) to be accessible to both the
server and the client. | i bhadoop. so isnot available if you have installed from atarball. Y ou must install from an

. rpm. deb, or parcel to use short-circuit local reads.

To configure DataNodes for short-circuit reads:

1. Copytheclientcore-site.xm andhdfs-site.xm configuration files from the Hadoop configuration
directory to the Impala configuration directory. The default Impala configuration locationis/ et ¢/ i npal a/
conf.

2. Onall Impalanodes, configure the following propertiesin Impala's copy of hdf s- si t e. xim as shown:

<property>
<nane>dfs. client.read. shortcircuit</nane>
<val ue>t rue</ val ue>

</ property>

<property>
<nane>df s. domai n. socket . pat h</ name>
<val ue>/ var/ run/ hdf s- socket s/ dn</ val ue>
</ property>

<property>
<name>dfs.client.fil e-bl ock-storage-|ocations.tinmeout.mllis</name>
<val ue>10000</ val ue>

</ property>

3. If/ var/run/ hadoop- hdf s/ isgroup-writable, make sureitsgroup isr oot .

Note: If you are also going to enable block location tracking, you can skip copying configuration files and
restarting DataNodes and go straight to Optional: Block Location Tracking. Configuring short-circuit reads and
block location tracking require the same process of copying files and restarting services, so you can complete that
process once when you have completed all configuration changes. Whether you copy files and restart services
now or during configuring block location tracking, short-circuit reads are not enabled until you compl ete those
final steps.

4. After applying these changes, restart all DataNodes.

Mandatory: Block Location Tracking

Enabling block location metadata allows Impala to know which disk data blocks are located on, alowing better
utilization of the underlying disks. Impalawill not start unless this setting is enabled.

To enableblock location tracking:

| Upgrading Impala | 28

1. For each DataNode, adding the following to the hdf s- si t e. xmi file:

<property>
<nane>df s. dat anode. hdf s- bl ocks- net adat a. enabl ed</ nane>
<val ue>t rue</ val ue>

</ property>

2. Copy theclientcore-site.xm andhdfs-site.xm configuration files from the Hadoop configuration
directory to the Impala configuration directory. The default Impala configuration locationis/ et ¢/ i npal a/
conf.

3. After applying these changes, restart all DataNodes.

Optional: Native Checksumming

Enabling native checksumming causes Impalato use an optimized native library for computing checksums, if that
library isavailable.

To enable native checksumming:

If youinstalled from packages, the native checksumming library isinstalled and setup correctly. In such a case, no
additional steps are required. Conversely, if you installed by other means, such as with tarballs, native checksumming
may not be available due to missing shared objects. Finding the message"Unabl e to | oad nati ve- hadoop
library for your platform.. using builtin-java classes where applicabl e"inthe
Impalalogs indicates native checksumming may be unavailable. To enable native checksumming, you must build and
install | i bhadoop. so (the Hadoop Native Library).

Upgrading Impala

Upgrading Impalainvolves building or acquiring new Impala-related binaries, and then restarting Impala services.

Upgrading Impala

e Shut down al Impala-related daemons on all relevant hosts in the cluster:

1. Stopi npal ad on each Impalanodein your cluster:

$ sudo service inpal a-server stop

2. Stop any instances of the state store in your cluster:

$ sudo service inpal a-state-store stop

3. Stop any instances of the catalog servicein your cluster:

$ sudo service inpal a-catal og stop

« Follow the build procedure in the README. nd file to produce new Impala binaries.

¢ Replace the binariesfor all Impala-related daemons on al relevant hosts in the cluster.

» Check if there are new recommended or required configuration settings to put into place in the configuration
files, typically under / et c/ i npal a/ conf . See Post-Installation Configuration for Impala on page 27 for
settings related to performance and scalability.

* Restart all Impala-related daemons on all relevant hostsin the cluster:

1. Restart the Impala state store service on the desired nodes in your cluster. Expect to see a process named
st at est or ed if the service started successfully.

$ sudo service inpala-state-store start

| Upgrading Impala | 29

$ ps ax | grep [s]tatestored
6819 ? Sl 0: 07 /usr/lib/inpalalsbin/statestored -1og_dir=/
var/|l og/inpala -state_store_port=24000

Restart the state store service before the Impala server service to avoid “Not connected” errors when you run
i mpal a-shel | .

2. Restart the Impala catalog service on whichever host it runs onin your cluster. Expect to see a process named
cat al ogd if the service started successfully.

$ sudo service inpal a-catal og restart
$ ps ax | grep [c]atal ogd
6068 ? Sl 4:06 /usr/lib/inpalalsbin/catal ogd

3. Restart the Impala daemon service on each node in your cluster. Expect to see aprocess named i npal ad if
the service started successfully.

$ sudo service inpal a-server start
$ ps ax | grep [i]npal ad
7936 ? Sl 0: 12 /Jusr/lib/inmnpal a/sbin/inpalad -log_dir=/var/
| og/inpal a -state_store_port=24000
-state_store_host=127.0.0.1 -be_port=22000

Note:

If the services did not start successfully (even though the sudo ser vi ce command might display [OK]), check for
errorsinthe Impalalog file, typically in/ var /| og/ i npal a.

Impala Upgrade Considerations

Grant REFRESH Privilege to Impala Roles with SELECT or INSERT Privilege when
Upgrading to Impala 3.0

To use the fine grained privileges feature in Impala 3.0, if arole has the SELECT or | NSERT privilege on an object
in Impaa before upgrading to Impala 3.0, grant that role the REFRESH privilege after the upgrade.
List of Reserved Words Updated in Impala 3.0

The list of reserved wordsin Impalawas updated in Impala 3.0. If you need to use areserved word as an identifier,
e.g. atable name, enclose the word in back-ticks.

If you need to use the reserved words from previous versions of Impala, set thei npal ad and cat al ogd startup
flag.

##reserved_words_version=2.11.0

Note that this startup option will be deprecated in afuture release.

Decimal V2 Used by Default in Impala 3.0

In Impala, two different implementations of DECI MAL types are supported. Starting in Impala 3.0, DECI MAL V2is
used by default. See DECIMAL Type for detail information.

If you need to continue using the first version of the DECI MAL type for the backward compatibility of your queries,
set the DECI MAL_ V2 query option to FALSE:

SET DECI MAL_V2=FALSE;

| Upgrading Impala | 30

Behavior of Column Aliases Changed in Impala 3.0

To conform to the SQL standard, Impala no longer performs alias substitution in the subexpressions of GROUP BY,
HAVI NG, and ORDER BY. See Overview of Impala Aliases for examples of supported and unsupported aliases
syntax.

Default PARQUET_ARRAY_RESOLUTION Changed in Impala 3.0

The default value for the PARQUET _ARRAY _RESOLUTI ON was changed to THREE _LEVEL in Impala 3.0, to match
the Parquet standard 3-level encoding.

See PARQUET_ARRAY_RESOLUTI ON Query Option (lnpala 2.9 or higher only) forthe
information about the query option.

Enable Clustering Hint for Inserts

In Impala 3.0, the clustered hint is enabled by default. The hint adds alocal sort by the partitioning columnsto a
query plan.

Thecl ust er ed hintisonly effective for HDFS and Kudu tables.

Asin previous versions, the nocl ust er ed hint prevents clustering. If atable has ordering columns defined, the
nocl ust er ed hint isignored with awarning.

Deprecated Query Options Removed in Impala 3.0
The following query options have been deprecated for several releases and removed:

« DEFAULT ORDER BY LIMT
« ABORT_ON_DEFAULT_LI M T_EXCEEDED
.+ V_CPU CORES

 RESERVATI ON_REQUEST _TI MEOUT

« RMI NI TI AL_MEM

« SCAN_NODE_CODEGEN THRESHOLD

« MAX_| O BUFFERS

« RMI NI TI AL_MEM

+ DI SABLE_CACHED_READS

Fine-grained Privileges Added in Impala 3.0

Starting in Impala 3.0, finer grained privileges are enforced, such as the REFRESH, CREATE, DROP, and ALTER
privileges. In particular, running REFRESH or | NVALI DATE METADATA now requires the new REFRESH
privilege. Users who did not previously have the ALL privilege will no longer be able to run REFRESH or

| NVALI DATE METADATA after an upgrade. Those users need to have the REFRESH or ALL privilege granted to
run REFRESH or | NVALI DATE METADATA.

See GRANT Satement (Impala 2.0 or higher only) for the new privileges, the scope, and other information about the
new privileges.

refresh_after_connect Impala Shell Option Removed in Impala 3.0
The deprecated ##r ef resh_af t er _connect option was removed from Impala Shell in Impala 3.0

Return Type Changed for EXTRACT and DATE_PART Functions in Impala 3.0
The following changes were made to the EXTRACT and DATE_PART functions:
* The output type of the EXTRACT and DATE_PART functions was changed to Bl GI NT.

| Starting Impala | 31

» Extracting the millisecond part from a TI MESTAMP returns the seconds component and the milliseconds
component. For example, EXTRACT (CAST(' 2006- 05- 12 18: 27: 28. 123456789' AS
TI MESTAMP), ' M LLI SECOND) will return 28123.

Port Change for SHUTDOWN Command

If you used the SHUTDOWN command in Impala 3.1, and specified a port explicitly, change the port number
parameter, in Impala 3.2, to use the KRPC port.

Change in Client Connection Timeout
The default behavior of client connection timeout changed.

In Impala 3.2 and lower, client waited indefinitely to open the new session if the maximum number of threads
specified by - - f e_ser vi ce_t hr eads has been allocated.

In Impala 3.3 and higher, anew startup flag, - - accept ed_cl i ent _cnxn_t i neout , was added to control how
the server should treat new connection requestsif we have run out of the configured number of server threads.

If --accepted_client_cnxn_timeout > 0, new connection requests are rejected after the specified
timeout.

If --accepted_client_cnxn_timeout =0, clientswaitsindefinitely to connect to Impala. Y ou can use this
setting to restore the pre-Impala 3.3 behavior.

The default timeout is 5 minutes.

Default Setting Changes

Release Changed Setting Default Value
Impala2.12 ##conpact _cat al og_t opi ci nalrac
flag
Impala2.12 ##max_cached_fil e_handl esi|iA8&0&d
flag
Impala 3.0 PARQUET ARRAY_RESOLUTI ON [THREE LEVEL
query option
Impala 3.0 DECI MAL_V2 TRUE

Starting Impala

To activate Impaaif it isinstalled but not yet started:

1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options on page
32 for details.

2. Start one instance of the Impala statestore. The statestore helps Impalato distribute work efficiently, and
to continue running in the event of availability problems for other Impala nodes. If the statestore becomes
unavailable, Impala continues to function.

3. Start one instance of the Impala catalog service.

4. Start the main Impala daemon services.

Once Impalais running, you can conduct interactive experiments using the instructions in Impala Tutorials on page
35 and try Using the Impala Shell (impala-shell Command) on page 790.

| Starting Impala | 32

Starting Impala from the Command Line

To start the Impala state store and |mpala from the command line or a script, you can either usetheser vi ce
command or you can start the daemons directly through thei npal ad, st at est or ed, and cat al ogd
executables.

Start the Impala statestore and then start i npal ad instances. Y ou can modify the values the service initialization
scripts use when starting the statestore and Impala by editing/ et ¢/ def aul t/ i npal a.

Start the statestore service using a command similar to the following:
$ sudo service inpal a-state-store start

Start the catal og service using a command similar to the following:
$ sudo service inpala-catal og start

Start the Impala daemon services using acommand similar to the following:
$ sudo service inpal a-server start

Note:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTI ON syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTI ON syntax
do not persist across restarts because they are held in the memory of the cat al ogd daemon. Until you re-create

such Java UDFs using the new CREATE FUNCTI ON syntax, you must rel oad those Java-based UDFs by running the
original CREATE FUNCTI ON statements again each time you restart the cat al ogd daemon. Prior to Impala 2.5 the
requirement to reload functions after arestart applied to both C++ and Java functions.

If any of the servicesfail to start, review:

« Reviewing Impala Logs on page 786
« Troubleshooting Impala on page 807

Modifying Impala Startup Options

The configuration options for the Impala daemons | et you choose which hosts and ports to use for the services that
run on a single host, specify directories for logging, control resource usage and security, and specify other aspects of
the Impala software.

Configuring Impala Startup Options through the Command Line

The Impala server, st at est or e, and catalog services start up using values provided in a defaultsfile, / et ¢/
defaul t/inpal a.

This file includes information about many resources used by Impala. Most of the defaultsincluded in this file should
be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable,
but you would always set the address used by the st at est or e server. Some of the content you might modify
includes:

| MPALA STATE STORE HOST=127.0.0.1
| MPALA STATE_STORE_PORT=24000

| MPALA_BACKEND_PORT=22000

| MPALA LOG DI R=/var /| og/i npal a

| MPALA_CATALOG _SERVI CE_HOST=. . .

| MPALA STATE_STORE_HOST=. ..

| Starting Impala | 33

export | MPALA STATE STORE ARGS=${| MPALA STATE STORE ARGS: - \
-log dir=${I MPALA LOG DIR} -state store_port=%${1 MPALA STATE STORE PORT}}
| MPALA_SERVER ARGS=" \
-1 og_dir=${1 MPALA LOG DIR} \
- cat al og_servi ce_host =${| MPALA_ CATALOG_SERVI CE_HOST} \
-state_store_port=%${1 MPALA STATE STORE PORT} \
-state_store_host =${| MPALA STATE STORE HOST} \
-be_port =${| MPALA BACKEND_PORT}"
export ENABLE_CORE_DUMPS=${ ENABLE_ COREDUMPS: - f al se}

To use aternate values, edit the defaultsfile, then restart all the Impala-related services so that the changes take
effect. Restart the Impala server using the following commands:

$ sudo service inpal a-server restart
St oppi ng | nmpal a Server: [X
Starting | npala Server: [&K]

Restart the Impal a StateStore using the following commands:

$ sudo service inpal a-state-store restart
Stopping Inpala State Store Server: [XK]
Starting Inpala State Store Server: [XK

Restart the Impala Catalog Service using the following commands:

$ sudo service inpal a-catal og restart
St oppi ng I nmpal a Cat al og Server: [X
Starting | npala Catal og Server: [&K]

Some common settings to change include:

» StateStore address. Where practical, put the st at est or ed on a separate host not running the i npal ad
daemon. In that recommended configuration, thei npal ad daemon cannot refer to the st at est or ed server
using the loopback address. If the st at est or ed is hosted on a machine with an |P address of 192.168.0.27,
change:

| MPALA_STATE_STORE_HOST=127.0.0.1
to:

| MPALA_STATE_STORE_HOST=192. 168. 0. 27

e Catalog server address (including both the hostname and the port number). Update the value of the
| MPALA CATALOG_SERVI CE_HGOST variable. Where practical, run the catalog server on the same host as
the st at est or e. In that recommended configuration, thei npal ad daemon cannot refer to the catalog server
using the loopback address. If the catalog service is hosted on a machine with an | P address of 192.168.0.27, add
the following line:

| MPALA_CATALOG_SERVI CE_HOST=192. 168. 0. 27: 26000

The/ et c/ def aul t /i nmpal a defaultsfile currently does not definean | MPALA_CATALOG_ARGS
environment variable, but if you add one it will be recognized by the service startup/shutdown

script. Add a definition for thisvariableto/ et ¢/ def aul t /i npal a and add the option

##cat al og_servi ce_host =host nane. If the port is different than the default 26000, also add the option
##cat al og_servi ce_port=port.

| Starting Impala | 34

Memory limits. Y ou can limit the amount of memory available to Impala. For example, to allow Impalato use no
more than 70% of system memory, change:

export | MPALA SERVER ARGS=${| MPALA SERVER ARGS: - \
-l og_dir=${I MPALA LOG DI R} \
-state_store_port=${1 MPALA_STATE_STORE_PORT} \
-state_store_host =${| MPALA_STATE_STORE_HOST} \
-be_port =${| MPALA_BACKEND PORT}}

to:

export | MPALA SERVER ARGS=${| MPALA SERVER ARGS: - \
-log dir=${I MPALA LOG DIR} -state store port=
${1 MPALA_STATE_STORE_PORT} \
-state_store_host =${| MPALA_STATE_STORE_HOCST} \
-be_port =${1 MPALA_BACKEND_PORT} -nem.|im t=70%

Y ou can specify the memory limit using absolute notation such as 500mor 2G, or as a percentage of physical
memory such as 60%

Note: Queriesthat exceed the specified memory limit are aborted. Percentage limits are based on the physical
memory of the machine and do not consider cgroups.

Core dump enablement. To enable core dumps, change:

export ENABLE_CORE DUMPS=${ ENABLE COREDUMPS: - f al se}
to:

export ENABLE CORE DUMPS=${ ENABLE COREDUMPS: -t r ue}

Note:

« Thelocation of core dump files may vary according to your operating system configuration.

« Other security settings may prevent Impala from writing core dumps even when this option is enabl ed.
Authorization. Specify the##ser ver _name option as part of thel MPALA SERVER ARGS and

| MPALA CATALOG_ARGS settings to enable the core Impala support for authorization. See #unique 92 for
details.

Auditing for successful or blocked Impala queries, another aspect of security. Specify

the##audi t _event _| og_di r =di rect or y_pat h option and optionally

the##max_audit _event | og fil e_si ze=nunber _of _queri es and

##abort _on_fail ed_audit_event optionsaspart of thel MPALA_SERVER ARGS settings, for each
Impala node, to enable and customize auditing. See Auditing Impala Operations on page 99 for details.
Password protection for the Impalaweb Ul, which listens on port 25000 by default. This feature involves adding
some or al of the##webser ver _password_fi | e, ##webserver _aut henti cati on_domai n,
and ##webserver _certificate_fil e optionstothel MPALA SERVER ARGS and

| MPALA_STATE_STORE_ARGS settings. See Security Guidelines for Impala on page 79 for details.
Another setting you might add to | MPALA SERVER ARGS is a comma-separated list of query options and
values:

##def aul t _query_options=' opti on=val ue, opti on=val ue, ..."

These options control the behavior of queries performed by thisi nmpal ad instance. The option values you
specify here override the default values for Impala query options, as shown by the SET statement ini npal a-
shel |.

During troubleshooting, the appropriate support channel might direct you to change other values, particularly for
| MPALA_SERVER_ARGS, to work around issues or gather debugging information.

Note:

| Impala Tutorids| 35

These startup options for thei npal ad daemon are different from the command-line options for thei npal a-
shel | command. For thei npal a- shel | options, see impala-shell Configuration Options on page 791.

Checking the Values of Impala Configuration Options

Y ou can check the current runtime value of all these settings through the Impala web interface,
available by default at ht t p: / /i mpal a_host nane: 25000/ var z for thei npal ad
daemon, htt p: / /i npal a_host nanme: 25010/ var z for the st at est or ed daemon, or
htt p://inpal a_host nane: 25020/ var z for thecat al ogd daemon.

Startup Options for catalogd Daemon

Thecat al ogd daemon implements the Impala Catal og service, which broadcasts metadata changes to all the
Impala nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

Use##l| oad_cat al og_i n_backgr ound option to control when the metadata of atableisloaded.

« Ifsettof al se, the metadata of atableisloaded when it isreferenced for the first time. This means that
thefirst run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
##| oad_cat al og_i n_backgr ound isf al se.

e |Ifsettotrue, the catalog service attempts to load metadata for atable even if no query needed that metadata.
So metadata will possibly be already |oaded when the first query that would need it is run. However, for the
following reasons, we recommend not to set the optiontot r ue.

« Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

« Impaamay load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Impala Tutorials

This section includes tutorial scenarios that demonstrate how to begin using Impala once the software isinstalled. It
focuses on techniques for loading data, because once you have some data in tables and can query that data, you can
quickly progress to more advanced Impala features.

Note:

Where practical, the tutorials take you from “ground zero” to having the desired Impalatables and data. In some
cases, you might need to download additional files from outside sources, set up additional software components,
modify commands or scripts to fit your own configuration, or substitute your own sample data.

Before trying these tutorial lessons, install Impala using one of these procedures:

» |If you already have some Apache Hadoop environment set up and just need to add Impalato it, follow the
installation process described in Installing Impala on page 25. Make sure to also install the Hive metastore
service if you do not already have Hive configured.

Tutorials for Getting Started

These tutorials demonstrate the basics of using Impala. They are intended for first-time users, and for trying out
Impalaon any new cluster to make sure the major components are working correctly.

| Impala Tutorids | 36

Explore a New Impala Instance

This tutorial demonstrates techniques for finding your way around the tables and databases of an unfamiliar (possibly
empty) Impalainstance.

When you connect to an Impalainstance for the first time, you use the SHOWV DATABASES and SHOW TABLES
statements to view the most common types of objects. Also, call thever si on() function to confirm which version
of Impalayou are running; the version number isimportant when consulting documentation and dealing with support
issues.

A completely empty Impala instance contains no tables, but still has two databases:

« def aul t, where new tables are created when you do not specify any other database.
e _inpal a_builtins,asystem database used to hold al the built-in functions.

The following example shows how to see the available databases, and the tablesin each. If thelist of databases or
tablesislong, you can use wildcard notation to locate specific databases or tables based on their names.

$ inpal a-shell -i local host --quiet
Starting Inpala Shell without Kerberos authentication
Wel cone to the Inpala shell. Press TAB twice to see a list of available
commrands.
(Shel |
build version: Inpala Shell v3.4.x (hash) built on
dat e)
[l ocal host:21000] > select version();
o o e = =
| version()
S e S S L L L L e S S e e S S
| inmpalad version ..
| Built on ..
o e = =
[l ocal host:21000] > show dat abases;
Focococococococococococococ +
| nane |
feccoccococoococcooococooooc +
| _inpala builtins |
| ctas [
| di |
| d2 |
| d3 I
| default |
| explain_plans |
| external _table [
| file formats |
| tpc |
froccoccococoococcoooococooooc +
[l ocal host:21000] > sel ect current dat abase();
fooccoocococcooococooooc +
| current_database() |
Fococococococococoooa +
| default |
frccoocococcoococooooc +
[l ocal host:21000] > show tabl es
Focooooc +
| nane |
Focoocooe +
| ex_t |
| t1 I
focooooc +

[l ocal host:21000] > show tables in d3;

[l ocal host:21000] > show tables in tpc;

| Impala Tutorials | 37

feccoccococoooccocoooocooooc +
| name [
foccoccococoococccooococooc +
city
cust oner

| |
| |
| customer_address |
| custoner_denographics
| househol d_denogr aphi cs
| item |
| pronotion [
| store |
| store2 |
| store_sales |
| ticket_view [
| tinme_dim |
| tpc_tables [
+

[l ocal host:21000] > show tables in tpc |ike 'customer*';

| customner [
| custoner_address |
| customer_denographics |

Once you know what tables and databases are available, you descend into a database with the USE statement. To
understand the structure of each table, you use the DESCRI BE command. Once inside a database, you can issue
statements such as | NSERT and SELECT that operate on particular tables.

The following example explores a database named TPC whose name we |earned in the previous example. It shows
how to filter the table names within a database based on a search string, examine the columns of atable, and run
gueriesto examine the characteristics of the table data. For example, for an unfamiliar table you might want to know
the number of rows, the number of different values for a column, and other properties such as whether the column
contains any NULL values. When sampling the actual data values from atable, useaLl M T clause to avoid excessive
output if the table contains more rows or distinct values than you expect.

[l ocal host:21000] > use tpc;
[l ocal host:21000] > show tables like '*view';

feccocoococoooooc +
| nane |

Fococcoccoccooooe +

| ticket_view |

feccoococooooc +

[l ocal host:21000] > describe city;
feccocoococoooooc fooocooooc feocococooooc +

| nane | type | comment
Fococcoccoccooooe Fococococ Fococooooe +

| id | int [[

| nane | string | [

| countrycode | string | |

| district | string | [

| population | int | |
Fococcoccoccooooe Fococococ Fococooooe +

[l ocal host:21000] > sel ect count(*) fromcity;
feccococooc +

| count(*) |

fesccocoooooc +

Y |

Focococococ +

[l ocal host:21000] > desc customer
feccoccococoococccooocosooc feccoococac feccoocooc +

| Impala Tutorids | 38

feccoccococoooccocoooocooooc fecocooooc fecocooocooc +
c_cust oner _sk i nt
c_custoner _id string
c_current_cdeno_sk i nt
c_current _hdeno_sk i nt
c_current addr_sk i nt
c_first_shipto_date sk i nt
c_first_sales_date sk i nt
c_salutation string

I I I
I I I
I I I
I I I
I I I
I I I
| | |
| c_first_nane | string |
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

c_last_nane string
c_preferred_cust _flag string
c_birth_day i nt
c_birth_nonth i nt
c_birth_year i nt
c_birth _country string
c_login string
c_enmi |l _address string
c_last review date string
feccoccococoococccooocosooc feccoococac feccoocooc
[l ocal host:21000] > select count(*) from custoner;
fesccocoooooc +
| count(*) |
Focococococ +
| 100000 [
feccococooc +

nul | ;

feoococooccoac +
| count(*) |
demmemeea +
| 0 I
S S +

| c_salutation |

doemeemeaeaaas +
| M. I
| M. I
> |
| Mss |
| Sir [
| Ms. [
S S +

When you graduate from read-only exploration, you use statements such as CREATE DATABASE and CREATE
TABLE to set up your own database objects.

The following example demonstrates creating a new database holding a new table. Although the last example ended
inside the TPC database, the new EXPERI MENTS database is not nested inside TPC; all databases are arranged in a
single top-level list.

[l ocal host:21000] > create database experinents;
[l ocal host:21000] > show dat abases;

| Impala Tutorids | 39

_inmpala_builtins
ctas

expl ai n_pl ans
external table
file formats

I

I

I

I

I

| default
I

I

I

I

| tpc

I
I
I
I
I
I
experinments |
I
I
I
I
+

[l ocal host:21000] > show dat abases |i ke 'exp*';

| experinents |
| explain_plans |

The following example creates anew table, T1. To illustrate a common mistake, it creates this table inside the wrong
database, the TPC database where the previous example ended. The ALTER TABLE statement lets you move the
table to the intended database, EXPERI MENTS, as part of arename operation. The USE statement is always needed
to switch to anew database, and thecur r ent _dat abase() function confirms which database the sessionisin, to
avoid these kinds of mistakes.

[l ocal host:21000] > create table t1 (x int);

[l ocal host:21000] > show tabl es;

Fococococococococococoooa +
| name [
feccoccococoococccooocosooc +
city
cust oner

I I
| |
| custoner_address |
| customer_denographics
| househol d_denogr aphi cs
| item [
| pronotion [
| store [
| store2 [
| store_sales |
| t1 I
| ticket_view [
| time_dim [
| tpc_tables [
+

[l ocal host:21000] > sel ect current_dat abase();

[l ocal host:21000] > alter table t1 rename to experinents.t1;
[l ocal host:21000] > use experinments;
[l ocal host:21000] > show tabl es;

foccooc +
| nane |
occooc +
| t1 |
feoocooc +

\

[l ocal host:21000] sel ect current_database();

| Impala Tutorias | 40

feccoocococooococooooc +
| current database() |
foccoocococcoococooooc +
| experinents [
fococcocococcoccoocoacs +

For your initial experiments with tables, you can use ones with just afew columns and afew rows, and text-format
datafiles.

Note: Asyou graduate to more realistic scenarios, you will use more elaborate tables with many columns, features
such as partitioning, and file formats such as Parquet. When dealing with realistic data volumes, you will bring in data
using LOAD DATA or | NSERT ... SELECT statementsto operate on millions or billions of rows at once.

The following example sets up a couple of simple tables with afew rows, and performs queries involving sorting,
aggregate functions and joins.

[l ocal host:21000] > insert into tl values (1), (3), (2), (4);
[l ocal host:21000] > select x fromtl order by x desc;

+---+
| x|

+---+

| 4|

| 3|

| 2|

| 1]

+---+

[l ocal host:21000] > select min(x), max(x), sumx), avg(x) fromtl1l;
fooococoooc fooococoooc fooococoooc fooococoooc +

| mn(x) | max(x) | sum(x) | avg(x) |

feccoocooc feccoocooc feccoocooc feccoocooc +

| 1 | 4 | 10 | 2.5 [

Foccoooac Foccoooac Foccoooac Foccoooac +

\%

[l ocal host:21000]

[l ocal host:21000]
"five');

[l ocal host: 21000]

ool +

create table t2 (id int, word string);
insert into t2 values (1, "one"), (3, "three"), (5,

\%

\

select word fromtl join t2 on (tl1.x = t2.id);

After completing this tutorial, you should now know:

* How to tell which version of Impalais running on your system.
« How to find the names of databasesin an Impalainstance, either displaying the full list or searching for specific
names.

* How to find the names of tables in an Impala database, either displaying the full list or searching for specific
names.

» How to switch between databases and check which database you are currently in.
* How to learn the column names and types of atable.
« How to create databases and tables, insert small amounts of test data, and run simple queries.

Load CSV Data from Local Files

This scenario illustrates how to create some very small tables, suitable for first-time users to experiment with Impala
SQL features. TAB1 and TAB2 are loaded with data from filesin HDFS. A subset of datais copied from TABL into
TAB3.

| Impala Tutorials | 41

Populate HDFS with the data you want to query. To begin this process, create one or more new subdirectories
underneath your user directory in HDFS. The data for each table resides in a separate subdirectory. Substitute your
own username for user name where appropriate. This example uses the - p option with the mkdi r operation to
create any necessary parent directories if they do not already exist.

$ whoani

user nane

$ hdfs dfs -Is /user
Found 3 itens

dr wxr - xr - x - usernanme usernane 0 2013-04-22 18:54 /user/

user nane

dr wxr wx- - - - mapred mapr ed 0 2013-03-15 20:11 /user/history
dr wxr - Xr - x - hue super gr oup 0 2013-03-15 20:10 /user/hive

$ hdfs dfs -nkdir -p /user/usernane/ sanpl e_dat a/tabl /user/usernane/
sanmpl e_dat a/t ab2

Here is some sample data, for two tables named TAB1 and TAB2.
Copy thefollowing content to . csv filesin your local filesystem:

tabl. csv:

1,true, 123. 123, 2012- 10- 24 08: 55: 00

2,fal se, 1243.5,2012- 10- 25 13: 40: 00

3, fal se, 24453. 325, 2008-08- 22 09: 33: 21. 123
4, f

51

al se, 243423. 325, 2007- 05- 12 22: 32: 21. 33454
rue, 243. 325, 1953- 04- 22 09: 11: 33

tab2. csv:

1,true, 12789. 123

2, fal se, 1243.5

3, fal se, 24453. 325

4, fal se, 2423. 3254
5,true, 243. 325

60, f al se, 243565423. 325
70, true, 243. 325

80, f al se, 243423. 325
90, true, 243. 325

Put each . csv fileinto a separate HDFS directory using commands like the following, which use paths available in
the Impala Demo VM:

$ hdfs dfs -put tabl.csv /user/usernane/sanpl e _data/tabl

$ hdfs dfs -ls /user/usernane/sanpl e_data/tabl

Found 1 itens

SPWr--T-- 1 usernane user namne 192 2013-04-02 20: 08 /user/usernane/
sanpl e_data/tabl/tabl. csv

$ hdfs dfs -put tab2.csv /user/usernane/sanpl e_data/tab2

$ hdfs dfs -1s /user/usernane/sanpl e_data/tab2

Found 1 itens

STWr--r-- 1 username usernane 158 2013-04-02 20: 09 /user/usernane/
sanpl e_dat a/t ab2/t ab2. csv

The name of each datafileis not significant. In fact, when Impala examines the contents of the data directory for the
first time, it considers all filesin the directory to make up the data of the table, regardless of how many files there are
or what the files are named.

| Impala Tutorials | 42

To understand what paths are available within your own HDFS filesystem and what the permissions are for the
various directories and files, issuehdf s df s -1s / and work your way down the tree doing - | s operations for
the various directories.

Usethei npal a- shel | command to create tables, either interactively or through a SQL script.

The following example shows creating three tables. For each table, the example shows creating columns with various
attributes such as Boolean or integer types. The example a so includes commands that provide information about how
the data is formatted, such as rows terminating with commas, which makes sense in the case of importing datafrom a
. csv file. Where we already have . csv files containing datain the HDFS directory tree, we specify the location of
the directory containing the appropriate . csv file. Impala considers all the data from all the filesin that directory to
represent the data for the table.

DROP TABLE | F EXI STS tabl;
-- The EXTERNAL cl ause neans the data is | ocated outside the central
| ocation
-- for Inpala data files and is preserved when the associated I npala table
i s dropped.
-- W expect the data to already exist in the directory specified by the
LOCATI ON cl ause.
CREATE EXTERNAL TABLE tabl
(
id I NT,
col _1 BOOLEAN,
col _2 DOUBLE,
col 3 TI MESTAMP

)
ROW FORVAT DELI M TED FI ELDS TERM NATED BY ',
LOCATI ON '/ user/ user nane/ sanpl e_data/tabl';

DROP TABLE | F EXI STS t ab2;
-- TAB2 is an external table, simlar to TABI.
CREATE EXTERNAL TABLE t ab2

id INT,
col _1 BOOLEAN,
col _2 DOUBLE

)
ROW FORVAT DELI M TED FI ELDS TERM NATED BY ' ,'
LOCATI ON '/ user/ user nane/ sanpl e_dat a/t ab2' ;

DROP TABLE | F EXI STS t ab3;
-- Leaving out the EXTERNAL cl ause neans the data will be managed
-- in the central Inpala data directory tree. Rather than reading
-- existing data files when the table is created, we |oad the
-- data after creating the table.
CREATE TABLE t ab3
(
id |NT,
col 1 BOOLEAN,
col _2 DOUBLE,
nont h | NT,
day | NT

)
ROW FORVAT DELI M TED FI ELDS TERM NATED BY ', °';

Note: Getting through these CREATE TABLE statements successfully is an important validation step to confirm
everything is configured correctly with the Hive metastore and HDFS permissions. If you receive any errors during
the CREATE TABLE statements:

* Make sure you followed the installation instructions closely, in Installing Impala on page 25.

| Impala Tutorids | 43

 Makesurethehi ve. met ast or e. war ehouse. di r property pointsto adirectory that Impala can write to.
The ownership should be hi ve: hi ve, and thei npal a user should also be amember of the hi ve group.

Point an Impala Table at Existing Data Files

A convenient way to set up datafor Impalato accessis to use an external table, where the data already existsin a set
of HDFSfiles and you just point the Impalatable at the directory containing those files. For example, you might run
ini npal a- shel | a*. sql filewith contents similar to the following, to create an Impalatable that accesses an
existing data file used by Hive.

The following examples set up 2 tables, referencing the paths and sample data from the sample TPC-DS kit for
Impala. For historical reasons, the data physically residesin an HDFS directory tree under / user / hi ve, although
this particular datais entirely managed by Impala rather than Hive. When we create an externa table, we specify
the directory containing one or more datafiles, and Impala queries the combined content of all the files inside that
directory. Here is how we examine the directories and files within the HDFS filesystem:

$ cd ~/usernane/dat asets

$./tpcds-setup. sh

... Downl oads and unzips the kit, builds the data and loads it into HDFS ...
$ hdfs dfs -1s /user/hive/tpcds/custoner

Found 1 itens

SFWr--T-- 1 usernane supergroup 13209372 2013-03-22 18: 09 /user/hive/

t pcds/ cust oner/ cust omer . dat

$ hdfs dfs -cat /user/hivel/tpcds/custoner/custoner.dat | nore

1| AAAAAAAABAAAAAAA| 980124| 7135| 32946| 2452238| 2452208| M. | Javi er | Lewi s]| Y| 9|
12| 1936| CHI LE| | Javi e

r.Lewi s@/FAx|I nZEvOx. or g| 2452508

2| AAAAAAAACAAAAAAA| 819667| 1461| 31655| 2452318| 2452288| Dr . | Any| Moses| Y| 9] 4|
1966| TOX] | Arry. Mbses@

Ovk9Kj HH. con] 2452318|

3| AAAAAAAADAAAAAAA| 1473522| 6247| 48572| 2449130| 2449100| M ss| Lat i sha| Hami | t on|
N| 18] 9] 1979| NI UE]| |

Lati sha. Ham | t on@/. con{ 2452313|

4| AAAAAAAAEAAAAAAA| 1703214| 3986| 39558| 2450030| 2450000| Dr. | M chael | Whi t e| N| 7|
6] 1983| MEXI CO | M ¢

hael . Wiite@ . org| 2452361

5| AAAAAAAAFAAAAAAA| 953372| 4470| 36368| 2449438| 2449408 Si r | Robert | Moran| N| 8| 5]
1956| FI JI | | Robert .

Mor an@+h. edu| 2452469

Hereisa SQL script to set up Impalatables pointing to some of these datafilesin HDFS. (The script in the VM
sets up tables like this through Hive; ignore those tables for purposes of this demonstration.) Save the following as
cust omer _set up. sql :

-- store_sales fact table and surroundi ng di mension tables only

creat e dat abase tpcds;
use tpcds;

drop table if exists custoner;
create external table custoner

(
c_cust oner _sk i nt,
c_customer_id string,
c_current _cdeno_sk int,
c_current _hdeno_sk int,
c_current _addr_sk i nt,
c_first_shipto_date sk i nt,
c_first _sales date sk i nt,

c_sal utation string,

| Impala Tutorids | 44

c _first_nane string,
c_l ast_nane string,
c_preferred cust flag string,
c_birth_day i nt,

c_birth_nonth int,

c_birth_year int,

c_birth_country string,
c_login string,
c_emumi | _address string,
c_last _review date string

)

row format delimted fields term nated by '|
| ocation '/user/hive/tpcds/customer';

drop table if exists custoner_address;
create external table custoner_address

(

ca_address_sk int,
ca_address_id string,
ca_street nunber string,
ca_street _nane string,
ca_street _type string,
ca_suite_nunber string,
ca_city string,
ca_county string,
ca_state string,
ca_zip string,
ca_country string,
ca_gm _of fset float,
ca_l ocation_type string

row format delinmted fields terninated by '|'
| ocation '/user/hivel/tpcds/custonmer_address';

We would run this script with acommand such as:

i mpal a-shell -i |ocal host -f customer_setup. sql

Describe the Impala Table

Now that you have updated the database metadata that Impala caches, you can confirm that the expected tables are
accessible by Impala and examine the attributes of one of the tables. We created these tables in the database named
def aul t . If the tables were in a database other than the default, we would issue acommand use db_nane

to switch to that database before examining or querying its tables. We could also qualify the name of atable by
prepending the database name, for example def aul t . cust omer and def aul t . cust oner _nane.

[1 npal a- host: 21000] > show dat abases

Query finished, fetching results ..

def aul t

Returned 1 row(s) in 0.00s

[i npal a- host: 21000] > show t abl es

Query finished, fetching results ..

cust omer

cust oner _addr ess

Returned 2 row(s) in 0.00s

[i mpal a- host: 21000] > descri be custoner_address

TSRS S S S S S oo oo +
| nane | type | comment |
focococoococococooccoocos fooococoooc feoococooooc +
| ca_address_sk | int | |
| ca_address_id | string | [
I I I I

ca_street nunber string

| Impala Tutorids | 45

| ca_street_nane | string | [
| ca_street _type | string | [
| ca_suite nunber | string | |
| ca_city | string | [
| ca_county | string | |
| ca_state | string | |
| ca_zip | string | [
| ca_country | string | [
| ca_gnt offset | float | |
| ca_location_type | string | [
focococoococococooccoocos fooococoooc feoococooooc +

Returned 13 rowms) in 0.01

Query the Impala Table

Y ou can query data contained in the tables. Impala coordinates the query execution across a single node or multiple
nodes depending on your configuration, without the overhead of running MapReduce jobs to perform the intermediate
processing.
There are avariety of ways to execute queries on Impala
e Usingthei npal a- shel | command in interactive mode:

$ inpal a-shell -i inpal a-host

Connected to | ocal host: 21000

[npal a- host: 21000] > sel ect count(*) from custoner_address;

50000
Returned 1 row(s) in 0.37s

» Passing a set of commands contained in afile:

$ inpala-shell -i inpala-host -f myquery. sql
Connected to | ocal host: 21000
50000

Returned 1 row(s) in 0.19s

» Passing asingle command tothei npal a- shel | command. The query is executed, the results are returned, and
the shell exits. Make sure to quote the command, preferably with single quotation marks to avoid shell expansion
of characterssuch as* .

$ inpala-shell -i inpala-host -q 'select count(*) from custoner_address'
Connected to | ocal host: 21000
50000

Returned 1 row(s) in 0.29s

Data Loading and Querying Examples

This section describes how to create some sample tables and load data into them. These tables can then be queried
using the Impala shell.

Loading Data
Loading datainvolves:

« Establishing adata set. The example below uses. csv files.
e Creating tables to which to load data.
« Loading the datainto the tables you created.

| Impala Tutorias | 46

Sample Queries

To run these sample queries, create a SQL query filequery. sql , copy and paste each query into the query file,
and then run the query file using the shell. For example, to run query. sql oni npal a- host , you might use the
command:

i mpal a-shell.sh -i

i mpal a- host -f query. sql

The examples and results below assume you have loaded the sample data into the tables as described above.

Example: Examining Contents of Tables
Let's start by verifying that the tables do contain the data we expect. Because Impala often deals
with tables containing millions or billions of rows, when examining tables of unknown size, include
theLI M T clause to avoid huge amounts of unnecessary output, asin the final query. (If your
interactive query starts displaying an unexpected volume of data, pressCt r | - Cini npal a-
shel | to cancel the query.)

SELECT * FROM t abi;

SELECT * FROM t ab2;

SELECT * FROMtab2 LIMT 5;
Results:

feocococdfoooococ foccococcooooc foococococcoccoccooccoococooocoocoooos +

| id]| col_1| col_2 | col_3 |

E S e e e e eeeeeieieeeciieaaaaa- +

| 1 | true | 123.123 | 2012-10-24 08:55:00 [

| 2 | false | 1243.5 | 2012-10-25 13:40: 00 |

| 3 | false | 24453.325 | 2008-08-22 09: 33: 21. 123000000 |

| 4 | false | 243423.325 | 2007-05-12 22:32:21. 334540000 |

| 5 | true | 243.325 | 1953-04-22 09: 11: 33 [

demm e S e e e e eeeeeieaeeaciieaaaaa- +

oo SIS S S +

| id]| col_1]| col_2 [

feocococdfoooococ fococococcooccoooos +

| 1 | true | 12789.123 [

| 2 | false | 1243.5 [

| 3 | false | 24453.325 [

| 4 | false | 2423.3254 |

| 5 | true | 243.325 [

| 60 | false | 243565423.325 |

| 70 | true | 243.325 [

| 80 | false | 243423. 325 [

| 90 | true | 243.325 |

oo TSRS S S +

feocococdfoooococ feocococooccooac +

| id]| col_1| col_2 |

E R +

| 2 | true | 12789.123 |

| 2 | false | 1243.5 |

| 3 | false | 24453.325 |

| 4 | false | 2423.3254 |

| 5 | true | 243.325 |

demm e dommeemea +

| Impala Tutorials | 47

Example: Aggregate and Join

FROM t ab2 JO'N tabl USI NG (i d)
GROUP BY col 1 ORDER BY 1 LIMT 5;

SELECT tabl.col _1, MAX(tab2.col _2), M N(tab2.col _2)

FROM t ab2, tabl
WHERE tabl.id = tab2.id
GROUP BY col _1) subqueryl
WHERE subqueryl. max_col 2 = tab2. col _2;

Results:

fococdmocococ occoccocaoos +
| id]| col_1| col_2 |
fecocodmcooooe feccoococooc +

| 1 | true | 12789.123 |
| 3 | false | 24453. 325 |

Results:
Feoccooas Foccoccocococosaoos Foccoccocococosaoos +
| col _1 | max(tab2.col _2) | mn(tab2.col _2) |
Foococooc dooccocococooocooooooc dooccocococooocooooooc +
| false | 24453.325 | 1243.5 [
| true | 12789.123 | 243. 325 [
Focooooc foccoccococoococooc foccoccococoococooc +
Example: Subquery, Aggregate and Joins
SELECT tab2. *
FROM t ab2,
(SELECT tabl.col 1, MAX(tab2.col _2) AS max_col 2

Example: INSERT Query
| NSERT OVERWRI TE TABLE t ab3
SELECT id, col_1, col_2, MONTH(col _3),
FROM t abl WHERE YEAR(col 3) = 2012;
Query TAB3 to check the result:

SELECT * FROM t ab3;

Results:

foccodmocosooc Foccooocooc Focooooc fooooc +

| id]| col_1]| col_2 | nmonth | day |

feocococdfoooococ feoococooooc foocoooc occoe +
1 | true | 123.123 | 10 | 24 |

| 2 | false | 1243.5 | 10 | 25 |

DAYOFMONTH(col _3)

| Impala Tutorids | 48

Advanced Tutorials

These tutorials walk you through advanced scenarios or specialized features.

Attaching an External Partitioned Table to an HDFS Directory Structure

Thistutorial shows how you might set up adirectory treein HDFS, put data files into the lowest-level subdirectories,
and then use an Impala external table to query the data files from their original locations.

The tutorial uses atable with web log data, with separate subdirectories for the year, month, day, and host. For
simplicity, we use atiny amount of CSV data, loading the same data into each partition.

First, we make an Impala partitioned table for CSV data, and look at the underlying HDFS directory structure to
understand the directory structure to re-create el sewhere in HDFS. The columnsfi el d1,fi el d2,andfi el d3
correspond to the contents of the CSV datafiles. Theyear , nont h, day, and host columns are all represented as
subdirectories within the table structure, and are not part of the CSV files. We use STRI NGfor each of these columns
so that we can produce consistent subdirectory names, with leading zeros for a consistent length.

creat e database external partitions;
use external partitions;
create table logs (fieldl string, field2 string, field3 string)

partitioned by (year string, nmonth string , day string, host string)

row format delinmted fields term nated by ', ";
insert into logs partition (year="2013", nonth="07", day="28", host="host1")
val ues ("foo","foo","foo0");
insert into |logs partition (year="2013", nonth="07", day="28", host="host2")
val ues ("foo","foo","fo0");
insert into | ogs partition (year="2013", nonth="07", day="29", host="host1")
val ues ("foo","foo","fo0");
insert into logs partition (year="2013", nonth="07", day="29", host="host2")
val ues ("foo","foo","foo0");
insert into |logs partition (year="2013", nonth="08", day="01", host="host1")
val ues ("foo","foo","fo0");

Back in the Linux shell, we examine the HDFS directory structure. (Y our Impala data directory might bein a
different location; for historical reasons, it is sometimes under the HDFS path / user / hi ve/ war ehouse.) We use
thehdfs df s -1 s command to examine the nested subdirectories corresponding to each partitioning column, with
separate subdirectories at each level (with = in their names) representing the different values for each partitioning
column. When we get to the lowest level of subdirectory, weusethehdf s df s - cat command to examine the
data file and see CSV-formatted data produced by the | NSERT statement in Impala.

$ hdfs dfs -Is /user/inpal a/ war ehouse/ external _partitions. db

Found 1 itens

dr wxr wxr wt - inpala hive 0 2013-08-07 12: 24 /user/inpal a/

war ehouse/ ext ernal _partitions. db/l ogs

$ hdfs dfs -1s /user/inpal a/ war ehouse/ external _partitions.db/| ogs

Found 1 itens

dr wxr - xr - x - inpala hive 0 2013-08-07 12:24 /user/inpal a/

war ehouse/ ext ernal _partitions.db/| ogs/year=2013

$ hdfs dfs -Is /user/inpal a/ war ehouse/ external partitions.db/l ogs/year=2013
Found 2 itemns

dr wxr - xr - x - inmpala hive 0 2013-08-07 12:23 /user/inpal a/
war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07
dr wxr - xr - x - inpala hive 0 2013-08-07 12:24 /user/inpal a/

war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=08

$ hdfs dfs -ls /user/inpal a/ war ehouse/ external partitions.db/l ogs/year=2013/
nont h=07

Found 2 itens

dr wxr - xr - x - inpal a hive 0 2013-08-07 12:22 /user/inpal a/

war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28

| Impala Tutorias | 49

dr wxr - Xr - x - inpala hive 0 2013-08-07 12:23 /user/inpal a/

war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=29

$ hdfs dfs -1s /user/inpal a/ warehouse/ external _partitions.db/logs/year=2013/
nmont h=07/ day=28

Found 2 itens

dr wxr - xr - x - inpal a hive 0 2013-08-07 12:21 /user/inpal a/
war ehouse/ ext ernal _partitions. db/l ogs/year=2013/ nont h=07/ day=28/ host =host 1
dr wxr - Xr - x - inpala hive 0 2013-08-07 12:22 /user/inpal a/

war ehouse/ ext ernal _partitions. db/l ogs/year=2013/ nont h=07/ day=28/ host =host 2
$ hdfs dfs -1s /user/inpal a/ war ehouse/ external _partitions.db/l ogs/year=2013/
nmont h=07/ day=28/ host =host 1

Found 1 itens

STW-r--T1-- 3 inpal a hive 12 2013-08-07 12: 21 /user/inpal a/

war ehouse/ external _partiti

ons. db/ | ogs/ year =2013/ nont h=07/ day=28/

host =host 1/ 3981726974111751120- - 8907184999369517436_822630111_data. 0

$ hdfs dfs -cat /user/inmpal a/ warehouse/ external _partitions. db/Il ogs/

year =2013/ nont h=07/ day=28/\

host =host 1/ 3981726974111751120--8 907184999369517436_822630111_dat a. 0

f oo, f 00, f 00

Still in the Linux shell, weusehdf s df s - nkdi r to create severa data directories outside the HDFS directory
tree that Impala controls (/ user / i npal a/ war ehouse in this example, maybe different in your case). Depending
on your configuration, you might need to log in as a user with permission to write into this HDFS directory tree; for
example, the commands shown here were run while logged in as the hdf s user.

$ hdfs dfs -nkdir -p /user/inpal a/datal/l ogs/year=2013/ nont h=07/ day=28/
host =host 1
$ hdfs dfs -nkdir -p /user/inpal a/data/l ogs/year=2013/ nont h=07/ day=28/
host =host 2
$ hdfs dfs -nkdir -p /user/inpal a/data/l ogs/year=2013/ nont h=07/ day=28/
host =host 1
$ hdfs dfs -nkdir -p /user/inpal a/datal/l ogs/year=2013/ nont h=07/ day=29/
host =host 1
$ hdfs dfs -nkdir -p /user/inpal a/data/l ogs/year=2013/ nont h=08/ day=01/
host =host 1

We make atiny CSV file, with values different than in the | NSERT statements used earlier, and put a copy within
each subdirectory that we will use as an Impala partition.

$ cat >dummy_| og_data

bar, baz, bl et ch

$ hdfs dfs -nkdir -p /user/inpal a/datal/external partitions/year=2013/
nmont h=08/ day=01/ host =host 1

$ hdfs dfs -nkdir -p /user/inpal a/ data/external _partitions/year=2013/
nmont h=07/ day=28/ host =host 1

$ hdfs dfs -nkdir -p /user/inpal a/datal/external partitions/year=2013/
nmont h=07/ day=28/ host =host 2

$ hdfs dfs -nkdir -p /user/inpal a/datal/external partitions/year=2013/
nmont h=07/ day=29/ host =host 1

$ hdfs dfs -put dunmy_l og_data /user/inpal a/ dat a/l ogs/ year=2013/ nont h=07/
day=28/ host =host 1

$ hdfs dfs -put dunmy_| og_data /user/inpal a/ dat a/l ogs/ year=2013/ nont h=07/
day=28/ host =host 2

$ hdfs dfs -put dunmy_l og_data /user/inpal a/ dat a/l ogs/ year=2013/ nont h=07/
day=29/ host =host 1

$ hdfs dfs -put dunmy_Il og_data /user/inpal a/ dat a/l ogs/ year=2013/ nont h=08/
day=01/ host =host 1

| Impala Tutorias | 50

Back inthei npal a- shel | interpreter, we move the original Impala-managed table aside, and create a new
external table with a LOCATI ON clause pointing to the directory under which we have set up all the partition
subdirectories and data files.

use external partitions;

alter table logs renane to | ogs_original;

create external table logs (fieldl string, field2 string, field3 string)
partitioned by (year string, nonth string, day string, host string)
row format delinmted fields term nated by ',
| ocation '/user/inpal a/ data/l ogs';

Because partition subdirectories and data files come and go during the data lifecycle, you must identify each of the
partitions through an ALTER TABLE statement before |mpala recognizes the data files they contain.

alter table logs add partition
(year="2013", nont h="07", day="28", host ="host 1")
alter table log type add partition
(year="2013", nont h="07", day="28", host ="host 2") ;
alter table log type add partition
(year="2013", nont h="07", day="29", host =" host 1") ;
alter table log_type add partition
(year="2013", nont h="08", day="01", host ="host 1") ;

We issue a REFRESH statement for the table, always a safe practice when data files have been manually added,
removed, or changed. Then the datais ready to be queried. The SELECT * statement illustrates that the data from
our trivial CSV file was recognized in each of the partitions where we copied it. Although in this case there are only a
few rows, weincludea Ll M T clause on thistest query just in case there is more data than we expect.

refresh | og type;
select * fromlog type limt 100;

fooococoooc fooococoooc fooococoooc occooc foocoooc occoe foocoooc +
| fieldl | field2 | field3 | year | nonth | day | host |
R R R eemaan emmaaa- 4e-mos emmaaa- +
bar	baz	bletch	2013	07	28	hostl
bar	baz	bletch	2013	08	01	hostl
bar	baz	bletch	2013	07	29	hostl
bar	baz	bletch	2013	07	28	host2
Fococococ Fococococ Fococococ Focococ Focoocooe Focooe Focoocooe +

Switching Back and Forth Between Impala and Hive

Sometimes, you might find it convenient to switch to the Hive shell to perform some data loading or transformation
operation, particularly on file formats such as RCFile, SequenceFile, and Avro that Impala currently can query but not
writeto.

Whenever you create, drop, or alter atable or other kind of object through Hive, the next time you switch back to the
i mpal a- shel | interpreter, issue aone-timel NVALI DATE METADATA statement so that Impala recognizes the
new or changed object.

Whenever you load, insert, or change data in an existing table through Hive (or even through manual HDFS
operations such asthe hdf s command), the next time you switch back to thei npal a- shel | interpreter, issue a
one-time REFRESH t abl e_nane statement so that Impala recognizes the new or changed data.

For examples showing how this process works for the REFRESH statement, look at the examples of creating RCFile
and SequenceFile tablesin Impala, loading data through Hive, and then querying the data through Impala. See Using
the RCFile File Format with Impala Tables on page 728 and Using the SequenceFile File Format with Impala
Tables on page 730 for those examples.

For examples showing how this process works for the | NVALI DATE METADATA statement, look at the example
of creating and loading an Avro table in Hive, and then querying the data through Impala. See Using the Avro File
Format with Impala Tables on page 722 for that example.

| Impala Tutorials | 51

Note:

Originally, Impala did not support UDFs, but this feature is available in Impala starting in Impala 1.2. Some
I NSERT ... SELECT transformations that you originally did through Hive can now be done through Impala. See
User-Defined Functions (UDFs) on page 588 for detalls.

Prior to Impala 1.2, the REFRESH and | NVALI DATE METADATA statements needed to be issued on each Impala
node to which you connected and issued queries. In Impala 1.2 and higher, when you issue either of those statements
on any Impala node, the results are broadcast to al the Impala nodes in the cluster, making it truly a one-step
operation after each round of DDL or ETL operationsin Hive.

Cross Joins and Cartesian Products with the CROSS JOIN Operator

Originally, Impalarestricted join queries so that they had to include at least one equality comparison between the
columns of the tables on each side of the join operator. With the huge tables typically processed by Impala, any
miscoded query that produced a full Cartesian product as a result set could consume a huge amount of cluster
resources.

InImpala 1.2.2 and higher, thisrestriction is lifted when you use the CROSS JO N operator in the query. Y ou still
cannot remove all WHERE clauses from aquery like SELECT * FROM t1 JO N t 2 to produce all combinations
of rows from both tables. But you can use the CROSS JO N operator to explicitly request such a Cartesian product.
Typically, this operation is applicable for smaller tables, where the result set still fits within the memory of asingle
Impala node.

The following example sets up data for usein a series of comic books where characters battle each other. At first, we
use an equijoin query, which only alows characters from the same time period and the same planet to meet.

[l ocal host:21000] > create table heroes (nane string, era string, planet
string);
[l ocal host:21000] > create table villains (nane string, era string, planet
string);
[l ocal host:21000] insert into heroes val ues
(' Tesla','20th century',' Earth'),
(' Pythagoras',' Antiquity',' Earth'),
(' Zopzar',' Far Future',' Mars');
Inserted 3 rows in 2.28s
[l ocal host:21000] > insert into villains val ues
> ("Caligula ,"Antiquity'," Earth'),
> ("John Dillinger','20th century','Earth'),
> ("Xibulor','Far Future','Venus');
Inserted 3 rows in 1.93s
[l ocal host:21000] > sel ect concat (heroes. nane,' vs. ',villains.nanme) as
battl e

VVVYV

> from heroes join villains
> where heroes.era = villains.era and heroes. pl anet =
vi | | ai ns. pl anet ;

| Tesla vs. John Dillinger |
| Pythagoras vs. Caligula |

Returned 2 row(s) in 0.47s

Readers demanded more action, so we added elements of time travel and space travel so that any hero could face any
villain. Prior to Impala 1.2.2, this type of query wasimpossible because al joins had to reference matching values
between the two tables:

[l ocal host:21000] > -- Cartesian product not possible in Inpala 1.1.
> sel ect concat (heroes.nane,’' vs. ',villains.nane) as
battle from heroes join villains;

| Impala Tutorials | 52

ERRCR: Not | npl ement edExcepti on: Join between 'heroes' and 'villains'
requires at |east one conjunctive equality predicate between the two tables

With Impala 1.2.2, we rewrite the query dlightly to use CROSS JO Nrather than JO N, and now the result set
includes all combinations:

[l ocal host:21000] > -- Cartesian product available in Inpala 1.2.2 with the
CROSS JA N synt ax.
> sel ect concat (heroes. nane,' vs.
battle from heroes cross join villains;

,Villains.nanme) as

| Tesla vs. Caligula [
| Tesla vs. John Dillinger |
| Tesla vs. Xibulor |
| Pythagoras vs. Caligula [
| Pythagoras vs. John Dillinger |
| Pythagoras vs. Xibul or |
| Zopzar vs. Caligula [
| Zopzar vs. John Dillinger |
| Zopzar vs. Xibul or |
+

Returned 9 row(s) in 0.33s

The full combination of rows from both tables is known as the Cartesian product. This type of result set is often
used for creating grid data structures. Y ou can also filter the result set by including WHERE clauses that do not
explicitly compare columns between the two tables. The following example shows how you might produce alist of
combinations of year and quarter for use in a chart, and then a shorter list with only selected quarters.

[l ocal host:21000] > create table x_axis (x int);

[l ocal host:21000] > create table y axis (y int);

[l ocal host:21000] > insert into x_axis values (1),(2),(3),(4);

Inserted 4 rows in 2.14s

[l ocal host:21000] > insert into y_axis values (2010), (2011), (2012), (2013),
(2014);

Inserted 5 rows in 1.32s

[l ocal host:21000] > select y as year, x as quarter fromx_axis cross join
y_axis;

N

o

o

SN
ARARBRARBRDRWWWWWNNNNNRPRERPRERPERERE

| Impala Tutorids | 53

Ret urned 20 rowm(s) in 0.38s
[l ocal host:21000] > select y as year, x as quarter fromx_axis cross join
y _axis where x in (1,3);

| year | quarter |

+
1
1
1
1
:
+
1
1
1
1
1
1
1
:
+

I I I
I I I
| | |
I I I
I I I
I I I
| 2011 | |
I I I
| | |
I I I
+ + +

Returned 10 rowm(s) in 0.39s

Dealing with Parquet Files with Unknown Schema

As data pipelines start to include more aspects such as NoSQL or loosely specified schemas, you might encounter
situations where you have data files (particularly in Parquet format) where you do not know the precise table
definition. Thistutorial shows how you can build an Impala table around data that comes from non-Impala or even
non-SQL sources, where you do not have control of the table layout and might not be familiar with the characteristics
of the data.

The data used in this tutorial represents airline on-time arrival statistics, from October 1987 through April 2008. See
the detail s on the 2009 ASA Data Expo web site. Y ou can aso see the explanations of the columns; for purposes of
this exercise, wait until after following the tutorial before examining the schema, to better simulate areal-life situation
where you cannot rely on assumptions and assertions about the ranges and representations of data values.

Download the Data Files into HDFS
First, we download and unpack the datafiles. There are 8 files totalling 1.4 GB.

$ wget -O airlines_parquet.tar.gz https://honme. apache. or g/ ~ar odoni /
airlines_parquet.tar.gz

$ wget https://home. apache. org/ ~arodoni/airlines_parquet.tar.gz.sha512
$ shasum -a 512 -c airlines_parquet.tar.gz.sha512
airlines_parquet.tar.gz: K

$ tar xvzf airlines_parquet.tar.gz
$ cd airlines_parquet/

$ du -kch *.parq

253M 4345eb5eef 217aalb- c8f 16177f 35f d983_1150363067_dat a. 0. parq
14M 4345e5eef 217aalb- c8f 16177f 35f d983 1150363067 _dat a. 1. parq
253M 4345eb5eef 217aalb- c8f 16177f 35f d984 501176748 _dat a. 0. par q
64M 4345e5eef 217aalb- c8f 16177f 35f d984_501176748_dat a. 1. parq
184M 4345e5eef 217aalb- c8f 16177f 35f d985_1199995767_dat a. 0. par q
241M 4345e5eef 217aalb- c8f 16177f 35f d986_2086627597_dat a. 0. parq
212M 4345e5eef 217aalb- c8f 16177f 35f d987_1048668565_dat a. 0. par q
152M 4345ebeef 217aalb- c8f 16177f 35f d988 1432111844 dat a. 0. parq
1.4G total

Next, we put the Parquet datafilesin HDFS, al together in asingle directory, with permissions on the directory and
thefiles so that thei npal a user will be able to read them.

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/the-data.html

| Impala Tutorids | 54

After unpacking, we saw the largest Parquet file was 253 MB. When copying Parquet filesinto HDFS for
Impalato use, for maximum query performance, make sure that each file resides in a single HDFS data block.
Therefore, we pick asize larger than any single file and specify that as the block size, using the argument -
Ddf s. bl ock. si ze=253monthehdf s df s - put command.

$ sudo -u hdfs hdfs dfs -nkdir -p /user/inpal a/staging/airlines

$ sudo -u hdfs hdfs dfs -Ddfs. bl ock.size=253m -put *.parq /user/inpal a/
staging/airlines

$ sudo -u hdfs hdfs dfs -lIs /user/inpal a/ stagi ng

Found 1 itens

$ sudo -u hdfs hdfs dfs -1s /user/inpal a/staging/airlines
Found 8 itemns

Create Database and Tables
With the filesin an accessible location in HDFS, you create a database table that uses the data in those files:

e The CREATE EXTERNAL syntax and the LOCATI ON attribute point Impala at the appropriate HDFS directory.

e ThelLl KE PARQUET 'path_to_any parquet file' clause meanswe skip thelist of column names
and types; Impala automatically gets the column names and data types straight from the data files. (Currently, this
technique only works for Parquet files.)

« Ignore the warning about lack of READ_WRI TE accessto the filesin HDFS; thei npal a user can read thefiles,

which will be sufficient for us to experiment with queries and perform some copy and transform operations into
other tables.

$ i npal a- shel |
> CREATE DATABASE airlines_dat a;
USE airlines_dat a;
CREATE EXTERNAL TABLE airlines_external
LI KE PARQUET ' hdf s: stagi ng/ airli nes/ 4345e5eef 217aalb-
c8f 16177f 35f d983_1150363067_dat a. 0. par q'
STORED AS PARQUET LOCATI ON ' hdf s: staging/airlines';
WARNI NGS: | npal a does not have READ WRI TE access to path 'hdfs://
nyhost . com 8020/ user /i npal a/ st agi ng'

Examine Physical and Logical Schema

With the table created, we examine its physical and logical characteristics to confirm that the datais really there and
in aformat and shape that we can work with.

e TheSHOW TABLE STATS statement gives avery high-level summary of the table, showing how many files and
how much total datait contains. Also, it confirms that the table is expecting al the associated datafilesto bein
Parquet format. (The ability to work with all kinds of HDFS datafiles in different formats meansthat it is possible
to have a mismatch between the format of the data files, and the format that the table expects the data files to be
in.)

e The SHOW FI LES statement confirms that the data in the table has the expected number, names, and sizes of the
original Parquet files.

« The DESCRI BE statement (or its abbreviation DESC) confirms the names and types of the columns that Impala
automatically created after reading that metadata from the Parquet file.

 TheDESCRI BE FORMATTED statement prints out some extra detail along with the column definitions. The
pieces we care about for this exercise are:

» The containing database for the table.

¢ Thelocation of the associated data filesin HDFS.

e Thetableisan external table so Impalawill not delete the HDFS files when we finish the experiments and
drop the table.

| Impala Tutorids | 55

» Thetableisset up to work exclusively with filesin the Parquet format.

> SHOW TABLE STATS ai rli nes_ext ernal

fecooooc feccoococac feccoococac feccoocooccooooc feccoccccooococooooc feccoocooc
feccoccoccooococooooc foccoccoccocococcococoococccoooococooc foccoococooc +
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |
Increnental stats | Location | EC Policy |
Focoocooe Fococococ Fococococ Focococococoococ Focococcccoccococooooe Fococooooe
feccoccocoooococooooc feccoccococoocococooococccooooocooc feccoococooc +
| -1 | 8 | 1.34GB | NOT CACHED | NOT CACHED | PARQUET |
fal se | /user/inpalalstaging/airlines | NONE |
fooocoooc fooocooooc fooocooooc feccoccccooccooas fecccoococoococooccoocooe feocococooooc
fococcocococcooccoocooc foococococcoccoccooccoococooocoocoooos feocococooccooac +

e m e mmm == -
foccococooc foccoococooc foccoococooc +
| Path
| Size | Partition | EC Policy |
e
feccococooc feccoococooc feccoococooc +
| /user/inpalalstaging/airlines/4345e5eef 217aalb-
c8f 16177f 35f d983_1150363067_dat a. 0. parq | 252.99MB | | NONE [
| /user/inpal a/staging/airlines/4345e5eef 217aalb-
c8f 16177f 35f d983_1150363067_data. 1. parq | 13.43MB | | NONE |
| /user/inpal alstaging/airlines/4345e5eef 217aalb-
c8f 16177f 35f d984_501176748_data. 0. parq | 252.84MB | | NONE [
| /user/inpalalstaging/airlines/4345e5eef 217aalb-
c8f 16177f 35f d984 501176748 data.l.parq | 63.92MB | | NONE |
| /user/inpal a/staging/airlines/4345e5eef 217aalb-
c8f 16177f 35f d985_1199995767_dat a. 0. parq | 183. 64MB | | NONE |
| /user/inpal alstaging/airlines/4345e5eef 217aalb-
c8f 16177f 35f d986_2086627597_dat a. 0. parq | 240. 04MB | | NONE [
| /user/inpalalstaging/airlines/4345e5eef 217aalb-
c8f 16177f 35f d987_1048668565 data. 0. parq | 211. 35MB | | NONE |
| /user/inpal a/staging/airlines/4345e5eef 217aalb-
c8f 16177f 35f d988_1432111844 data. 0. parq | 151.46M | | NONE |
e
feccococooc feccoococooc feccoococooc +

Inferred from Parquet file.

	i	
month	int	Inferred from Parquet file.
day	int	Inferred from Parquet file.
dayof week	int	Inferred from Parquet file.
dep_tine	int	Inferred from Parquet file.
crs_dep_tinme	int	Inferred from Parquet file.
arr_tine	int	Inferred from Parquet file.
crs_arr_tinme	int	Inferred from Parquet file.
carrier	string	Inferred fromParquet file.
flight_num	int	Inferred from Parquet file.
tail_num	int	Inferred from Parquet file.
actual el apsed_time	int	Inferred from Parquet file.
crs_elapsed_tine	int	Inferred from Parquet file.
airtine	int	Inferred from Parquet file.
arrdel ay	int	Inferred from Parquet file.
depdel ay	int	Inferred from Parquet file.
origin	string	Inferred from Parquet file.
dest	string	Inferred fromParquet file.
distance	int	Inferred from Parquet file.

| Impala Tutorias | 56

taxi_in	int	I'nferred from Parquet file.	
taxi_out	int	Inferred from Parquet file.	
cancell ed	int	Inferred from Parquet file.	
cancel	l ati on_code	string	Inferred from Parquet file.
diverted	int	Inferred from Parquet file.	
carrier_delay	int	Inferred from Parquet file.	
weat her _del ay	int	Inferred from Parquet file.	
nas_del ay	int	Inferred from Parquet file.	
security del ay	int	Inferred from Parquet file.	
late_aircraft_delay	int	Inferred from Parquet file.	
fooccocoocococcooccoocoocos fooococoooc feocococcoccoccoccooococoocoooooc +

|# Detail ed Table Information | NULL

| Dat abase: | airlines_data

| Oaner: | inpala

i . i_ocati on: | /user/inpal a/staging/airlines
| Tabl e Type: | EXTERNAL_TABLE

|# Storage I nformation | NULL

| SerDe Library: |
or g. apache. hadoop. hi ve. gl . i 0. par quet . ser de. Par quet Hi veSer De
| | nput For nat : [
or g. apache. hadoop. hi ve. gl . i 0. par quet . Mapr edPar quet | nput For ma
| CQut put For mat :
or g. apache. hadoop. hi ve. gl . i 0. par quet . Mapr edPar quet Cut put For mat

Analyze Data

Now that we are confident that the connections are solid between the Impala table and the underlying Parquet files,
we run some initial queriesto understand the characteristics of the data: the overall number of rows, and the ranges
and how many different values are in certain columns.

> SELECT COUNT(*) FROM airlines_external;

Foccocosaoos +
| count(*) |
Foocooocooooe +
| 123534969 |
o - mm - +

The NDV() function returns a number of distinct values, which, for performance reasons, is an estimate when there
arelots of different values in the column, but is precise when the cardinality islessthan 16 K. Use NDV() function
for thiskind of exploration rather than COUNT(DI STI NCT col nane) , because Impala can evauate multiple
NDV() functionsin asingle query, but only asingle instance of COUNT DI STI NCT.

> SEl ECT NDV(carrier), NDV(flight num), NDV(tail nunj,
NDV(ori gin), NDV(dest) FROM airlines_external;

feococococcooccooas focococococooccooocoacs fococococcooccoooos feococococcooccooc feocococooccooac +
| ndv(carrier) | ndv(flight _num | ndv(tail _num | ndv(origin) | ndv(dest) |
S S +
| 29 | 8463 | 3 | 342 | 349 [
S S Fo oo TSRS S S SRS S S oo +

> SELECT tail _num COUNT(*) AS howrany FROM airlines_ext er nal
GROUP BY tail _num

| Impala Tutorials | 57

| tail_num | howrany [

T coocoooooc T cocooooooc +
NULL	123122001
715	1
0	406405
112	6562
foococoooooc doocoocooooooe +

> SELECT DI STI NCT dest FROM airlines_external
WHERE dest NOT IN (SELECT origin FROM airlines_external);

occooc +
| dest |
eemaan +
| CBM |
| SKA |
| LAR |
| RCA |
| LBF |
eemaan +

> SELECT DI STI NCT dest FROM airlines_external
WHERE dest NOT I N (SELECT DI STINCT origin FROM airlines_external);

> SELECT DI STI NCT origin FROM airlines_external
WHERE origin NOT I N (SELECT DI STI NCT dest FROM airlines_external);
Fetched O rowm(s) in 2.63

With the above queries, we see that there are modest numbers of different airlines, flight numbers, and origin and
destination airports. Two things jump out from this query: the number of t ai | _numvalues is much smaller than we
might have expected, and there are more destination airports than origin airports. Let's dig further. What we find is
that most t ai | _numvalues are NULL. It looks like this was an experimental column that wasn't filled in accurately.
We make a mental note that if we use this data as a starting point, we'll ignore this column. We also find that certain
airports are represented in the ORI G N column but not the DEST column; now we know that we cannot rely on the
assumption that those sets of airport codes are identical.

Note: Thefirst SELECT DI STI NCT DEST query takes ailmost 40 seconds. We expect all queries on such asmall
data set, less than 2 GB, to take afew seconds at most. The reason is because the expression NOT | N (SELECT
origin FROM ai rlines_external) producesanintermediate result set of 123 million rows, then runs 123
million comparisons on each data node against the tiny set of destination airports. The way the NOT | N operator
works internally means that this intermediate result set with 123 million rows might be transmitted across the
network to each data node in the cluster. Applying another DI STI NCT inside the NOT | N subquery means that the
intermediate result set is only 340 items, resulting in much less network traffic and fewer comparison operations. The
more efficient query with the added DI STI NCT is approximately 7 times as fast.

Next, we try doing a simple calculation, with results broken down by year. This reveals that some years have no data
intheai rti me column. That means we might be able to use that column in queries involving certain date ranges,
but we cannot count on it to always be reliable. The question of whether a column contains any NULL values, and if
so what is their number, proportion, and distribution, comes up again and again when doing initial exploration of a
data set.

> SELECT year, SUMairtinme) FROM airlines_external
GROUP BY year ORDER BY year DESC,

| Impala Tutorids | 58

R — feccoocococooooc +
| year | sunm(airtinme) |
foccooc feccoocococcooooc +
| 2008 | 713050445 [
| 2007 | 748015545 |
| 2006 | 720372850 [
| 2005 | 708204026 [
| 2004 | 714276973 [
| 2003 | 665706940 [
| 2002 | 549761849 |
| 2001 | 590867745 |
| 2000 | 583537683 [
| 1999 | 561219227 [
| 1998 | 538050663 [
| 1997 | 536991229 [
| 1996 | 519440044 |
| 1995 | 513364265 |
| 1994 | NULL [
| 1993 | NULL [
| 1992 | NULL |
| 1991 | NULL [
| 1990 | NULL |
| 1989 | NULL |
| 1988 | NULL [
| 1987 | NULL [
e ccooc feccoocooccooooc +

With the notion of NULL valuesin mind, let's come back to thet ai | _numcolumn that we discovered had alot

of NULLs. Let's quantify the NULL and non-NULL valuesin that column for better understanding. First, we just
count the overall number of rows versus the non-NULL valuesin that column. That initial result gives the appearance
of relatively few non-NULL values, but we can break it down more clearly in a single query. Once we have the
COUNT(*) and the COUNT(col nane) numbers, we can encode that initial query inaW TH clause, then run a
follow-on query that performs multiple arithmetic operations on those values. Seeing that only one-third of one
percent of al rows have non-NULL valuesfor thet ai | _numcolumn clearly illustrates that column is not of much
use.

> SELECT COUNT(*) AS 'rows', COUNT(tail_num AS 'non-null tail nunbers'
FROM ai rl i nes_external ;

feocococooccooac foccocoocococcoccoocoocooos +
| rows | non-null tail nunbers |
dommeemea e +
| 123534969 | 412968 [
oo S S S S S S +

>WTH t1 AS
(SELECT COUNT(*) AS 'rows', COUNT(tail_nun) AS 'nonnull’
FROM ai rli nes_external)

SELECT "rows , "nonnull”, “rows - "nonnull™ AS 'nulls',
("nonnull™ / “rows) * 100 AS 'percentage non-nul |’

FROM t 1;

feocococooccooac feoococooooc feocococooccooac fooccocoocococcooccoocoocos +
| rows | nonnull | nulls | percentage non-null |
foscccococos fooccosces foscccococos focccosccosccosccoscas +
| 123534969 | 412968 | 123122001 | 0.3342923897119365 |
fFoscccocooos docccoocec fFoscccocooos docccocccocccooccooces +

By examining other columns using these techniques, we can form amental picture of the way datais distributed
throughout the table, and which columns are most significant for query purposes. For this tutorial, we focus
mostly on the fields likely to hold discrete values, rather than columns such asact ual _el apsed_t i ne whose
names suggest they hold measurements. We would dig deeper into those columns once we had a clear picture of
which questions were worthwhile to ask, and what kinds of trends we might look for. For the final piece of initial

| Impala Tutorids | 59

exploration, let'slook at theyear column. A simple GROUP BY query showsthat it has a well-defined range, a
manageable number of distinct values, and relatively even distribution of rows across the different years.

> SELECT M N(year), MAX(year), NDV(year) FROM airlines_external;

feccoococooc feccoococooc feccoococooc +
| mn(year) | max(year) | ndv(year) |
fecococoococooas fecococoococooas fecococoococooas +
| 1987 | 2008 | 22 |
Fococcoccooooe Fococcoccooooe Fococcoccooooe +

> SELECT year, COUNT(*) howrany FROM airl i nes_external
CGROUP BY year ORDER BY year DESC,

Focoooc Foccocasos +
| year | howrany |
Fooocooc Fooocooocococ +
2008	7009728
2007	7453215
2006	7141922
2005	7140596
2004	7129270
2003	6488540
2002	5271359
2001	5967780
2000	5683047
1999	5527884
1998	5384721
1997	5411843
1996	5351983
1995	5327435
1994	5180048
1993	5070501
1992	5092157
1991	5076925
1990	5270893
1989	5041200
1988	5202096
1987	1311826
Focococ Foccocaoos +

We could go quite far with the datain thisinitial raw format, just as we downloaded it from the web. If the data set
proved to be useful and worth persisting in Impalafor extensive queries, we might want to copy it to an internal table,
letting Impala manage the data files and perhaps reorganizing alittle for higher efficiency. In this next stage of the
tutorial, we copy the original datainto a partitioned table, still in Parquet format. Partitioning based on theyear
column lets us run queries with clauses such asWHERE year = 2001 or WHERE year BETWEEN 1989 AND
1999, which can dramatically cut down on 1/O by ignoring all the data from years outside the desired range. Rather
than reading all the data and then deciding which rows are in the matching years, Impala can zero in on only the data
files from specific year partitions. To do this, Impala physically reorganizes the datafiles, putting the rows from
each year into datafiles in a separate HDFS directory for each year value. Along the way, we'll also get rid of the

t ai | _numcolumn that proved to be amost entirely NULL.

Thefirst step isto create a new table with alayout very similar to the original ai r | i nes_ext er nal table. Well
do that by reverse-engineering a CREATE TABLE statement for the first table, then tweaking it dightly to include a
PARTI TI ON BY clausefor year , and excluding thet ai | _numcolumn. The SHONV CREATE TABLE statement
gives us the starting point.

Although we could edit that output into a new SQL statement, all the ASCII box characters make such editing
inconvenient. To get amore stripped-down CREATE TABLE to start with, we restart thei npal a- shel | command
with the - B option, which turns off the box-drawing behavior.

$ inpal a-shell -i localhost -B -d airlines_data;

| Impala Tutoriads | 60

> SHOW CREATE TABLE airlines_external;

" CREATE EXTERNAL TABLE airlines_data.airlines_external (
year | NT COWENT 'inferred from optional int32 year',
month | NT COWENT 'inferred from optional int32 nonth',
day I NT COMMENT 'inferred from optional int32 day',
dayof week | NT COMVENT 'inferred from optional int32 dayofweek',
dep_tine INT COWENT 'inferred from optional int32 dep_tinge',
crs_dep_time | NT COMWENT 'inferred from optional int32 crs_dep_ tinge',
arr_tinme INT COMENT 'inferred from optional int32 arr_tine',
crs_arr_time INT COWENT 'inferred from optional int32 crs_arr_tine',
carrier STRING COWENT 'inferred from optional binary carrier’,
flight_num I NT COMENT 'inferred from optional int32 flight_num,
tail _num I NT COWENT 'inferred from optional int32 tail_num,
actual el apsed_tine |INT COWENT 'inferred from optional int32

actual el apsed_tine',
crs_elapsed tine I NT COMENT 'inferred from optional int32

crs_el apsed_tine',
airtime | NT COWMENT "inferred from optional int32 airtine',
arrdelay I NT COMENT "inferred from optional int32 arrdelay',
depdel ay | NT COMMENT 'inferred from optional int32 depdel ay'
origin STRING COWENT 'inferred from optional binary origin'
dest STRING COMMENT 'inferred from optional binary dest',
di stance I NT COMWMENT "inferred from optional int32 distance',
taxi _in INT COWENT '"inferred from optional int32 taxi_in",
taxi _out I NT COMMVENT 'inferred from optional int32 taxi_out',
cancel l ed I NT COWENT 'inferred from optional int32 cancelled',
cancel | ati on_code STRI NG COMWENT 'inferred from optional binary

cancel | ati on_code',
diverted I NT COMMENT "inferred from optional int32 diverted',
carrier_delay INT COWENT '"inferred from optional int32 carrier_delay',
weat her _del ay | NT COWENT 'inferred from optional int32 weather_del ay',
nas_delay |INT COWENT 'inferred from optional int32 nas_delay',
security delay INT COWENT 'inferred from optional int32 security_ del ay'
late aircraft _delay |INT COMENT 'inferred from optional int32
late_aircraft_del ay'

)
STORED AS PARQUET
LOCATI ON ' hdf s: //al1730. exanpl e. com 8020/ user /i npal a/ st agi ng/ airlines'
TBLPROPERTI ES (' nunFiles'="0", ' COLUMN_STATS_ACCURATE' ='fal se',
"transi ent | astDdl Ti me' =' 1439425228', 'nunRows' ='-1', 'total Size' = 0",
‘rawbDat aSi ze' ="' -1")"

After copying and pasting the CREATE TABLE statement into atext editor for fine-tuning, we quit and restart
i npal a- shel | without the - B option, to switch back to regular output.

Next we run the CREATE TABLE statement that we adapted from the SHONV CREATE TABLE output. We kept
the STORED AS PARQUET clause because we want to rearrange the data somewhat but still keep it in the high-
performance Parquet format. The LOCATI ON and TBLPROPERTI ES clauses are not relevant for this new table, so
we edit those out. Because we are going to partition the new table based on theyear column, we move that column
name (and itstype) into anew PARTI TI ONED BY clause.

> CREATE TABLE airlines data.airlines
(rmont h | NT,

day | NT,
dayof week | NT,
dep_tine INT,
crs_dep_time | NT,
arr_tinme |NT,
crs_arr _tinme |NIT,
carrier STRI NG
flight _num I NT,
actual el apsed_tine |NT,
crs_el apsed_tine |INT,

| Impala Tutorials | 61

airtinme |NT,

arrdel ay | NT,

depdel ay | NT,

origin STRI NG

dest STRI NG

di stance | NT,

taxi _in | NT,

taxi _out | NT,

cancel | ed | NT,

cancel | ati on_code STRI NG

di verted | NT,

carrier_delay INT,

weat her _del ay | NT,

nas_del ay | NT,

security delay | NT,

|ate _aircraft_del ay |INT)
PARTI TI ONED BY (year | NT)
STORED AS PARQUET

Next, we copy al the rows from the original table into this new one with an | NSERT statement. (We edited

the CREATE TABLE statement to make an | NSERT statement with the column names in the same order.)

The only changeisto add aPARTI TI ON(year) clause, and movetheyear column to the very end of the
SELECT list of the | NSERT statement. Specifying PARTI TI ON(year) , rather than afixed value such as

PARTI Tl ON(year =2000) , means that Impala figures out the partition value for each row based on the value of
the very last column in the SELECT list. Thisisthe first SQL statement that legitimately takes any substantial time,
because the rows from different years are shuffled around the cluster; the rows that go into each partition are collected
on one node, before being written to one or more new datafiles.

> | NSERT INTO airlines_data.airlines
PARTI TI ON (year)
SELECT
nmont h,
day,
dayof week,
dep_ti ne,
crs_dep_ti ne,
arr_tine,
crs_arr_tine,
carrier,
flight_num
actual _el apsed_ti ne,
crs_el apsed_ti ne,
airtine,
ar r del ay,
depdel ay,
origin,
dest,
di st ance,
taxi _in,
taxi _out,
cancel | ed,
cancel | ati on_code,
di vert ed,
carrier_del ay,
weat her _del ay,
nas_del ay,
security_del ay,
| ate_aircraft_del ay,
year
FROM airlines_data.airlines_external

| Impala Tutorials | 62

Once partitioning or join queries comeinto play, it'simportant to have statistics that Impala can use to optimize
queries on the corresponding tables. The COMPUTE | NCREMENTAL STATS statement is the way to collect
statistics for partitioned tables. Then the SHON TABLE STATS statement confirms that the statistics are in place for
each partition, and also illustrates how many files and how much raw dataisin each partition.

> COWPUTE | NCREMENTAL STATS airlines;

o m mm e e e e e e o e e e e e e e e e e e e e ooe-o--o---a +
| summary |
Foococoocooccoccoccocococococococococococooooooos +
| Updated 22 partition(s) and 27 columm(s). |
o ocococoocooocoooooCCCoCCooCooCOSDCCoCCooCooooDoC +

foocooos foccccocooos feocococac fosccosccos fosccosccoscoos
fecccoococoococooccoocooe feocococooooc fecccoococoococooccoocooe
o o e mmemmm e mmeemmmemmemmmemmee e emmme ==~
Fococcoccooooe +

| year | #Rows | #Files | Size | Bytes Cached | Cache Replication

Format | Increnental stats | Location

| EC Policy |

fooocoooc fecococoococooas fooocooooc fesccocoooooc feccoccccooccooas
fococcocococcooccoocooc feoococooooc fococcocococcooccoocooc
o e e e e e e e e e e e e e e me M e memmemeemeecmmeemmemeemcmmmeemmememeecemeemeeeeeeemeem e, —————=
foocccococos +

| 1987 | 1311826 | 1 | 11.75MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1987 | NONE

| 1988 | 5202096 | 1 | 44.04MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1988 | NONE

| 1989 | 5041200 | 1 | 46.07MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1989 | NONE [

| 1990 | 5270893 | 1 | 46.25MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1990 | NONE |

| 1991 | 5076925 | 1 | 46.77MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1991 | NONE [

| 1992 | 5092157 | 1 | 48.21MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1992 | NONE |

| 1993 | 5070501 | 1 | 47.46MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nmyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1993 | NONE

| 1994 | 5180048 | 1 | 47.47MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1994 | NONE

| 1995 | 5327435 | 1 | 62.40MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nmyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1995 | NONE [
| 1996 | 5351983 | 1 | 62.93MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1996 | NONE |
| 1997 | 5411843 | 1 | 65.05MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1997 | NONE [
| 1998 | 5384721 | 1 | 62.21MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=1998 | NONE |
| 1999 | 5527884 | 1 | 65.10MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nmyhost.com 8020/ user/ hi ve/ war ehouse/

airline_data.db/airlines/year=1999 | NONE [

| Impala Tutorids | 63

| 2000 | 5683047 | 1 | 67.68MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://myhost.com 8020/ user/ hi ve/ war ehouse/
airline _data.db/airlines/year=2000 | NONE |

| 2001 | 5967780 | 1 | 74.03MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=2001 | NONE |

| 2002 | 5271359 | 1 | 74.00MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://myhost.com 8020/ user/ hi ve/ war ehouse/
airline _data.db/airlines/year=2002 | NONE

| 2003 | 6488540 | 1 | 99.35MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=2003 | NONE |

| 2004 | 7129270 | 1 | 123.29MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://myhost.com 8020/ user/ hi ve/ war ehouse/
airline _data.db/airlines/year=2004 | NONE |

| 2005 | 7140596 | 1 | 120.72MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=2005 | NONE |

| 2006 | 7141922 | 1 | 121.88MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://myhost.com 8020/ user/ hi ve/ war ehouse/
airline _data.db/airlines/year=2006 | NONE |

| 2007 | 7453215 | 1 | 130.87MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://nyhost.com 8020/ user/ hi ve/ war ehouse/
airline_data.db/airlines/year=2007 | NONE |

| 2008 | 7009728 | 1 | 123.14MB | NOT CACHED | NOT CACHED

| PARQUET | true | hdfs://myhost.com 8020/ user/ hi ve/ war ehouse/
airline _data.db/airlines/year=2008 | NONE |

| Total | 123534969 | 22 | 1.55GB | OB [[

|
| |

fecooooc feccoococooc feccoocooc feccococooc feccoocooccooooc
feccoccccooococooooc feccoocooc feccoccccooococooooc
o m e m e m = =
fecococoococooas +

At this point, we sanity check the partitioning we did. All the partitions have exactly onefile, which is on the low
side. A query that includes a clause WHERE year =2004 will only read a single data block; that data block will
be read and processed by a single data node; therefore, for a query targeting a single year, al the other nodesin the
cluster will sit idle while all the work happens on a single machine. It's even possible that by chance (depending

on HDFS replication factor and the way data blocks are distributed across the cluster), that multiple year partitions
selected by afilter such asWHERE year BETWEEN 1999 AND 2001 could all be read and processed by the
same data node. The more datafiles each partition has, the more parallelism you can get and the less probability of
“hotspots’ occurring on particular nodes, therefore a bigger performance boost by having a big cluster.

However, the more data files, the less data goes in each one. The overhead of dividing the work in aparallel query
might not be worth it if each node is only reading a few megabytes. 50 or 100 megabytesis a decent size for a Parquet
data block; 9 or 37 megabytesis on the small side. Which isto say, the data distribution we ended up with based on
this partitioning scheme is on the borderline between sensible (reasonably large files) and suboptimal (few filesin
each partition). The way to see how well it works in practiceis to run the same queries against the original flat table
and the new partitioned table, and compare times.

Spailer: in this case, with my particular 4-node cluster with its specific distribution of data blocks and my particular
exploratory queries, queries against the partitioned table do consistently run faster than the same queries against
the unpartitioned table. But | could not be sure that would be the case without some real measurements. Here are
some queries | ran to draw that conclusion, first against ai r | i nes_ext er nal (no partitioning), then against

Al RLI NES (partitioned by year). The Al RLI NES queries are consistently faster. Changing the volume of data,
changing the size of the cluster, running queries that did or didn't refer to the partition key columns, or other factors
could change the results to favor one table layout or the other.

Note: If you find the volume of each partition is only in the low tens of megabytes, consider lowering the granularity
of partitioning. For example, instead of partitioning by year, month, and day, partition by year and month or even just

| Impala Tutorias | 64

by year. The ideal layout to distribute work efficiently in a parallel query is many tens or even hundreds of megabytes
per Parquet file, and the number of Parquet filesin each partition somewhat higher than the number of data nodes.

> SELECT SUMairtinme) FROM airlines_external;

> SELECT SUM airtine) FROM airlines_external WHERE year = 2005;

Now we can finally analyze this data set that from the raw data files and we didn't know what columns they
contained. Let's see whether the ai rt i me of aflight tendsto be different depending on the day of the week. We can
see that the average is alittle higher on day number 6; perhaps Saturday is a busy flying day and planes haveto circle
for longer at the destination airport before landing.

> SELECT dayof week, AV airtinme) FROM airlines
GROUP BY dayof week ORDER BY dayof week;

| dayofweek | avg(airtine) |

+

| 102. 1560425016671

| 102. 1582931538807

| 102.2170009256653

| 102.37477661846 |
| 102.2697358763511 |
| 105. 3627448363705

| 103. 4144351202054 |

~NoobhwNE

To seeif the apparent trend holds up over time, let's do the same breakdown by day of week, but also split up by year.
Now we can see that day number 6 consistently has a higher average air time in each year. We can also see that the
average air time increased over time across the board. And the presence of NULL for this column in years 1987 to
1994 shows that queriesinvolving this column need to be restricted to a date range of 1995 and higher.

> SELECT year, dayofweek, AVGairtine) FROM airlines
GROUP BY year, dayofweek ORDER BY year DESC, dayofweek;

occooc feocococooccooac fococcocococcooccoocooc +
| year | dayofweek | avg(airtine) |
eemaan doemeemea S +
| 2008 | 1 | 103.1821651651355
| 2008 | 2 | 103.2149301386094
| 2008 | 3 | 103. 0585076622796
| 2008 | 4 | 103.4671383539038
| 2008 | 5 | 103.5575385182659
| 2008 | 6 | 107.4006306562128
| 2008 | 7 | 104.8648851041755
| 2007 | 1 | 102.2196114337825
| 2007 | 2 | 101.9317791906348
| 2007 | 3 | 102. 0964767689043

| Impala Administration | 65

| 2007 | 4 | 102. 6215927201686
| 2007 | 5 | 102. 4289399000661 |
| 2007 | 6 | 105. 1477448215756
| 2007 | 7 | 103. 6305945644095
| 1996 | 1 | 99.33860750862108 |
| 1996 | 2 | 99.54225446396656
| 1996 | 3 | 99.41129336113134
| 1996 | 4 | 99.5110373340348 |
| 1996 | 5 | 99.22120745027595
| 1996 | 6 | 101.1717447111921 |
| 1996 | 7 | 99.95410136133704
| 1995 | 1 | 96.93779698300494
1995	2	96.93458674589712
1995	3	97.00972311337051
1995	4	96.90843832024412
1995	5	96.78382115425562
1995	6	98.70872826057003
1995	7	97.85570478374616
1994	1	NULL
1994	2	NULL
1994	3	NULL
1987	5	NULL
1987	6	NULL
1987	7	NULL
Fomem - dcoocooooooc drcoocooocoooooooooooe +

Impala Administration

Asan administrator, you monitor Impala’s use of resources and take action when necessary to keep Impalarunning
smoothly and avoid conflicts with other Hadoop components running on the same cluster. When you detect that an
issue has happened or could happen in the future, you reconfigure Impala or other components such as HDFS or even
the hardware of the cluster itself to resolve or avoid problems.

Related tasks:

Asan administrator, you can expect to perform installation, upgrade, and configuration tasks for Impala on all
machines in acluster. See Installing Impala on page 25, Upgrading Impala on page 28, and Managing
Impala on page 26 for details.

For security tasks typically performed by administrators, see Impala Security on page 78.

Administrators also decide how to allocate cluster resources so that all Hadoop components can run smaoothly
together. For Impala, thistask primarily involves:

» Deciding how many Impala queries can run concurrently and with how much memory, through the admission
control feature. See Admission Control and Query Queuing on page 675 for details.

» Dividing cluster resources such as memory between Impala and other components, using YARN for overall
resource management, and LIama to mediate resource requests from Impalato Y ARN. See Resource Management
on page 675 for details.

Setting Timeout Periods for Daemons, Queries, and Sessions

Depending on how busy your cluster is, you might increase or decrease various timeout values. Increase timeouts if
Impalais cancelling operations prematurely, when the system is responding slower than usual but the operations are
still successful if given extratime. Decrease timeouts if operations are idle or hanging for long periods, and theidle or
hung operations are consuming resources and reducing concurrency.

| Impala Administration | 66

Increasing the Statestore Timeout

If you have an extensive Impala schema, for example with hundreds of databases, tens of thousands of

tables, and so on, you might encounter timeout errors during startup as the Impala catal og service broadcasts
metadata to all the Impala nodes using the statestore service. To avoid such timeout errors on startup,

increase the statestore timeout value from its default of 10 seconds. Specify the timeout value using the -
statestore_subscri ber _ti meout _seconds option for the statestore service, using the configuration
instructions in Modifying Impala Startup Options on page 32. The symptom of this problem is messagesin the

i mpal ad log such as:

Connection with state-store | ost
Trying to re-register with state-store

See Scalability Considerations for the Impala Satestore on page 658 for more details about statestore operation
and settings on clusters with alarge number of Impala-related objects such as tables and partitions.

Setting the Idle Query and Idle Session Timeouts for impalad

To keep long-running queries or idle sessions from tying up cluster resources, you can set timeout intervals for both
individual queries, and entire sessions.

Note:
The timeout clock for queries and sessions only starts ticking when the query or sessionisidle.

For queries, this means the query has results ready but is waiting for a client to fetch the data. A query can run for an
arbitrary time without triggering atimeout, because the query is computing results rather than sitting idle waiting for
the results to be fetched. The timeout period is intended to prevent unclosed queries from consuming resources and
taking up slotsin the admission count of running queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.
Use the following startup options for the i nmpal ad daemon to specify timeout values:
e --idle_query_tineout

Specifies the time in seconds after which an idle query is cancelled. This could be a query whose results were

all fetched but was never closed, or one whose results were partially fetched and then the client program stopped
reguesting further results. This condition is most likely to occur in a client program using the JDBC or ODBC
interfaces, rather than in the interactivei npal a- shel | interpreter. Once aquery is cancelled, the client
program cannot retrieve any further results from the query.

Y ou can reduce the idle query timeout by using the QUERY_TI MEOUT_S query option. Any non-zero

value specified for the- - i dl e_query_ti neout startup option serves as an upper limit for the
QUERY_TI MEQUT_S query option. See QUERY_TIMEOUT_S Query Option (Impala 2.0 or higher only) on
page 385 about the query option.

A zerovaluefor - - i dl e_query_ti meout disables query timeouts.

Cancelled queries are closed, but the client can still fetch their exception details. If the query wasin agood state
when cancelled, it will present an error like "Query 6f49e509bfa5h347:207d8ef 900000000 expired due to client
inactivity", otherwise it will show the relevant error.

e --idle_session_tineout

Specifies the time in seconds after which an idle session expires. A session isidle when no activity is occurring
for any of the queries in that session, and the session has not started any new queries. Once a session is expired,
you cannot issue any new query requeststo it. The session remains open, but the only operation you can perform
isto closeit.

The default value of 0 specifies sessions never expire.

| Impala Administration | 67

You can overridethe- - i dl e_sessi on_t i meout valuewiththe I DLE_SESSON_TIMEOUT Query Option
(Impala 2.12 or higher only) on page 363 at the session level.

For instructions on changing i npal ad startup options, see Modifying Impala Startup Options on page 32.
Note:

Impala checks periodically for idle sessions and queries to cancel. The actual idle time before cancellation might be
up to 50% greater than the specified configuration setting. For example, if the timeout setting was 60, the session or
query might be cancelled after being idle between 60 and 90 seconds.

Setting Timeout and Retries for Thrift Connections to the Backend Client

Impala connections to the backend client are subject to failure in cases when the network is momentarily overloaded.
To avoid failed queries due to transient network problems, you can configure the number of Thrift connection retries
using the following option:

 The--backend_client_connecti on_numretries option specifiesthe number of times Impala will
try connecting to the backend client after the first connection attempt fails. By default, i npal ad will attempt
three re-connections before it returns afailure.

Y ou can configure timeouts for sending and receiving data from the backend client. Therefore, if for some reason a
query hangs, instead of waiting indefinitely for aresponse, Impalawill terminate the connection after a configurable
timeout.

 The--backend_client_rpc_timeout _ns option can be used to specify the number of milliseconds
Impala should wait for aresponse from the backend client before it terminates the connection and signals afailure.
The default value for this property is 300000 milliseconds, or 5 minutes.

Cancelling a Query
Occasionaly, an Impala query might run for an unexpectedly long time, tying up resources in the cluster. This section
describes the options to terminate such runaway queries.
Setting a Time Limit on Query Execution

An Impala administrator can set a default value of the EXEC Tl ME_LI M T_S query option for aresource pool. If a
user accidentally runs alarge query that executes for longer than the limit, it will be automatically terminated after the
time limit expires to free up resources.

Y ou can override the default value per query or per session if you do not want to apply the default

EXEC TI ME_LI M T_Svalueto aspecific query or asession. See EXEC_TIME_LIMIT_SQuery Option (Impala
2.12 or higher only) on page 357 for the details of the query option.

Interactively Cancelling a Query

Y ou can cancel the query explicitly, independent of the timeout period, by going into the web Ul for thei npal ad
host (on port 25000 by default), and using the link onthe/ quer i es tab to cancel the running query.

Various client applications let you interactively cancel queries submitted or monitored through those applications. For
example:

 Press”"Cini npal a-shel I .
e Click Cancel from the Watchpage in Hue.

Using Impala through a Proxy for High Availability

For most clusters that have multiple users and production availability requirements, you might want to set up aload-
balancing proxy server to relay requests to and from Impala.

Set up a software package of your choice to perform these functions.

| Impala Administration | 68

Note:

Most considerations for load balancing and high availability apply to thei npal ad daemon. The st at est or ed
and cat al ogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in dataloss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and | mpala Catalog Server roles, add theroleson a
different host, and restart the Impala service.

Overview of Proxy Usage and Load Balancing for Impala

Using aload-balancing proxy server for Impala has the following advantages:

Applications connect to a single well-known host and port, rather than keeping track of the hosts where the

i mpal ad daemon is running.

If any host running thei nmpal ad daemon becomes unavailable, application connection requests still succeed
because you always connect to the proxy server rather than a specific host running the i npal ad daemon.

The coordinator node for each Impala query potentially requires more memory and CPU cycles than the other
nodes that process the query. The proxy server can issue queries so that each connection uses a different
coordinator node. This load-balancing technique letsthei npal ad nodes share this additiona work, rather than
concentrating it on a single machine.

The following setup steps are ageneral outline that apply to any load-balancing proxy software:

1

2.

Select and download the load-balancing proxy software or other |oad-balancing hardware appliance. It should
only need to be installed and configured on a single host, typically on an edge node.
Configure the load balancer (typically by editing a configuration file). In particular:

« Torelay Impalarequests back and forth, set up a port that the load balancer will listen on.

» Select aload balancing algorithm. See Choosing the Load-Balancing Algorithm on page 68 for load
balancing algorithm options.

« For Kerberized clusters, follow the instructions in Special Proxy Considerations for Clusters Using Kerberos
on page 69.

If you are using Hue or JDBC-based applications, you typically set up load balancing for both ports 21000 and

21050 because these client applications connect through port 21050 whilethei npal a- shel | command

connects through port 21000. See Ports Used by Impala on page 820 for when to use port 21000, 21050, or

another value depending on what type of connections you are load balancing.

Run the load-balancing proxy server, pointing it at the configuration file that you set up.

For any scripts, jobs, or configuration settings for applications that formerly connected to a specifici npal ad to

run Impala SQL statements, change the connection information (such asthe- i optionini npal a- shel I) to

point to the load balancer instead.

Note: The following sections use the HAProxy software as a representative example of aload balancer that you can
use with Impala.

Choosing the Load-Balancing Algorithm

L oad-balancing software offers a number of algorithms to distribute requests. Each algorithm hasits own
characteristics that make it suitable in some situations but not others.

L eastconn Connects sessions to the coordinator with the fewest

connections, to balance the load evenly. Typically used
for workloads consisting of many independent, short-
running queries. In configurations with only afew client
machines, this setting can avoid having all requests go to
only asmall set of coordinators.

Recommended for Impala with F5.

| Impala Administration | 69

Source | P Persistence Sessions from the same I P address always go to the
same coordinator. A good choice for Impala workloads
containing amix of queries and DDL statements, such
as CREATE TABLE and ALTER TABLE. Because the
metadata changes from a DDL statement take time to
propagate across the cluster, prefer to use the Source
IP Persistence in this case. If you are unable to choose
Source | P Persistence, run the DDL and subsequent
queries that depend on the results of the DDL through the
same session, for example by running i npal a- shel |
-f script_fil e tosubmit several statements
through a single session.

Required for setting up high availability with Hue.

Round-robin Distributes connections to al coordinator nodes.
Typicaly not recommended for Impala.

Y ou might need to perform benchmarks and load testing to determine which setting is optimal for your use case.
Always set up using two load-balancing algorithms: Source IP Persistence for Hue and L eastconn for others.

Special Proxy Considerations for Clusters Using Kerberos

In acluster using Kerberos, applications check host credentials to verify that the host they are connecting to isthe
same onethat is actually processing the request.

InImpala2.11 and lower versions, once you enable a proxy server in a Kerberized cluster, users will not be able to
connect to individual impala daemons directly from impala-shell.

In Impala 2.12 and higher versions, when you enable a proxy server in a Kerberized cluster, users have an option

to connect to Impala daemons directly from i npal a- shel | usingthe-b /- - ker beros_host _f qdn

i mpal a- shel | flag. Thisoption can be used for testing or troubleshooting purposes, but not recommended for live
production environments as it defeats the purpose of aload balancer/proxy.

Example:

i mpal a-shell -i inpal ad-1. mydomai n.com -k -b | oadbal ancer-1. mydonmai n. com
Alternatively, with the fully qualified configurations:

i mpal a-shel |l --inpal ad=i npal ad- 1. nydonai n. com 21000 - - kerberos --
ker ber os_host _f qdn=I oadbal ancer-1. mydonai n. com

See impala-shell Configuration Options on page 791 for information about the option.
To validate the load-balancing proxy server, perform these extra K erberos setup steps:

1. This section assumes you are starting with a Kerberos-enabled cluster. See Enabling Kerberos Authentication
for Impala on page 90 for instructions for setting up Impalawith Kerberos. See the documentation for your
Apache Hadoop distribution for general stepsto set up Kerberos.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should aready have
anentry i npal a/ proxy_host @ eal minitskeyt ab. If not, go back over the initial Kerberos configuration
steps for the keyt ab on each host running the i mpal ad daemon.

3. Copy thekeyt ab file from the proxy host to al other hostsin the cluster that run thei npal ad daemon. Put the
keyt ab filein a secure location on each of these other hosts.

4. Addanentryi npal a/ act ual _host nane@ eal mtothekeyt ab on each host running thei npal ad
daemon.

| Impala Administration | 70

5. For eachi npal ad node, merge the existing keyt ab with the proxy’skeyt ab usingkt ut i | , producing a new
keyt ab file. For example:

$ ktutil
ktutil: read_kt proxy.keytab
ktutil: read_kt inpal a.keytab
ktutil: wite kt proxy_inpal a. keytab
ktutil: quit

6. Toverify that thekeyt abs are merged, run the command:

klist -k keytabfile

The command lists the credentials for both pri nci pal andbe_pri nci pal onall nodes.
7. Makesurethat thei npal a user has the permission to read this merged keyt ab file.

8. For each coordinator i nmpal ad host in the cluster that participates in the load balancing, add the following
configuration options to receive client connections coming through the load balancer proxy server:

--princi pal =i npal a/ pr oxy_host @ eal m
--be_princi pal =i npal a/ act ual _host @ eal m
--keytab file=path _to nerged keytab

The- - princi pal setting prevents aclient from connecting to acoordinator i npal ad using aprincipal other
than one specified.

Note: Every host hasdifferent - - be_pri nci pal because the actual host name is different on each host.
Specify the fully qualified domain name (FQDN) for the proxy host, not the | P address. Use the exact FQDN as
returned by areverse DNS lookup for the associated | P address.

9. Restart Impalato make the changes take effect. Restart the i nmpal ad daemons on all hosts in the cluster, as well
asthest at est or ed and cat al ogd daemons.

Client Connection to Proxy Server in Kerberized Clusters

When aclient connect to Impala, the service principa specified by the client must match the - pri nci pal setting of
the Impala proxy server. And the client should connect to the proxy server port.

Inhue. i ni , set the following to configure Hue to automatically connect to the proxy server:
[1npal a]

server _host =pr oxy_host
i mpal a_pri nci pal =i npal a/ pr oxy_host

The following are the JDBC connection string formats when connecting through the load balancer with the load
balancer's host name in the principal:

j dbc: hive2://proxy_host: | oad_bal ancer _port/; principal =i npal a/ _HOST@ eal m
jdbc: hive2://proxy_host: | oad_bal ancer_port/; princi pal =i npal a/ proxy_host @ eal m

When starting i npal a- shel | , specify the service principal viathe- b or - - ker ber os_host _f gdn flag.

Special Proxy Considerations for TLS/SSL Enabled Clusters

When TLS/SSL is enabled for Impala, the client application, whether impala-shell, Hue, or something else, expects
the certificate common name (CN) to match the hostname that it is connected to. With no load balancing proxy
server, the hostname and certificate CN are both that of thei npal ad instance. However, with a proxy server, the
certificate presented by thei nmpal ad instance does not match the load balancing proxy server hostname. If you try to

| Impala Administration | 71

load-balance a TLS/SSL -enabled Impalainstallation without additional configuration, you see a certificate mismatch
error when a client attempts to connect to the load balancing proxy host.

Y ou can configure a proxy server in several waysto load balance TLS/SSL enabled Impala:

TLS/SSL Bridging In this configuration, the proxy server presentsa TLS/
SSL certificate to the client, decrypts the client request,
then re-encrypts the request before sending it to the
backend i npal ad. The client and server certificates can
be managed separately. The request or resulting payload
isencrypted in transit at all times.

TLS/SSL Passthrough In this configuration, traffic passes through to the
backend i npal ad instance with no interaction from
the load balancing proxy server. Trafficis still encrypted
end-to-end.

The same server certificate, utilizing either wildcard or
Subject Alternate Name (SAN), must be installed on
eachi npal ad instance.

TLS/SSL Offload In this configuration, all traffic is decrypted on the load
balancing proxy server, and traffic between the backend
i mpal ad instancesis unencrypted. This configuration
presumes that cluster hosts reside on atrusted network
and only external client-facing communication need to be
encrypted in-transit.

Refer to your load balancer documentation for the steps to set up Impala and the load balancer using one of the
options above.

Example of Configuring HAProxy Load Balancer for Impala

If you are not already using aload-balancing proxy, you can experiment with HAProxy afree, open source load
balancer. This example shows how you might install and configure that load balancer on a Red Hat Enterprise Linux
system.

« Install the load balancer:

yuminstall haproxy

» Set upthe configurationfile: / et c/ hapr oxy/ hapr oxy. cf g. Seethe following section for a sample
configuration file.
* Runtheload balancer (on asingle host, preferably one not running i npal ad):

/usr/sbin/ haproxy —f /etc/haproxy/haproxy.cfg

e Ini npal a- shel | , IDBC applications, or ODBC applications, connect to the listener port of the proxy host,
rather than port 21000 or 21050 on a host actually running i npal ad. The sample configuration file sets haproxy
to listen on port 25003, therefore you would send all requeststo hapr oxy _host : 25003.

Thisisthe sample hapr oxy. cf g used in this example:

gl obal
To have these nessages end up in /var/log/ haproxy.log you will
need to:

#

1) configure syslog to accept network |og events. This is done
by adding the '-r' option to the SYSLOGD OPTIONS in

/et c/ sysconfi g/ sysl og
#
#

2) configure local2 events to go to the /var/l og/ haproxy.| og

http://haproxy.1wt.eu/

file. Aline like the follow ng can be added to
/etc/sysconfig/syslog

#

| ocal 2. * /var /| og/ haproxy. | og
#

| og 127.0.0.1 local O

| og 127.0.0.1 local 1 notice

chr oot [var /i b/ haproxy

pidfile [var/run/ haproxy. pid

maxconn 4000

user hapr oxy

group hapr oxy

daenon

turn on stats uni x socket
#stats socket /var/lib/haproxy/stats

sections wll

| Impala Administration | 72

R =
common defaults that all the 'listen' and 'backend'
use if not designated in their block
#
You might need to adjust timng values to prevent tinmeouts.
#
The tineout values shoul d be dependant on how you use the cluster
and how | ong your queries run
o
defaul ts

node http

| og gl obal

option htt pl og

option dont | ognul

option http-server-cl ose

option forwardfor except 127.0.0.0/8

option r edi spatch

retries 3

maxconn 3000

ti meout connect 5000

ti meout client 3600s

ti meout server 3600s
#

This sets up the adm n page for HA Proxy at port 25002.

#

listen stats :25002

bal ance

node http

stats enabl e

stats auth usernane: password

Setup for Inpala.
I npala client connect to | oad _bal ancer host: 25003.

HAProxy will

The |ist of
or original ODBC driver.

For JDBC or ODBC version 2.x driver,

listen inpala :25003

node tcp
option tcpl og
bal ance | east conn

server synbolic_nane_1 inpal a- host-1. exanpl e.
server synbolic_name_2 inpal a- host - 2. exanpl e.
server synbolic_nanme_3 i npal a- host - 3. exanpl e.
server synbolic_nanme_4 i npal a- host - 4. exanpl e.

com 21000
com 21000
com 21000
com 21000

check
check
check
check

bal ance connections anong the list of servers |isted bel ow
Inmpalad is listening at port 21000 for beeswax (i npal a-shell)

use port 21050 instead of 21000.

| Impala Administration | 73

Setup for Hue or other JDBC-enabl ed applications.
In particular, Hue requires sticky sessions.
The application connects to | oad_bal ancer host: 21051, and HAProxy bal ances
connections to the associ ated hosts, where Inpala |istens for
JDBC requests at port 21050.
l'isten inpal aj dbc : 21051
node tcp
option tcpl og
bal ance source

server synbolic_name_5 inpal a- host-1. exanpl e. com 21050 check
server synbolic_name_6 inpal a- host - 2. exanpl e. com 21050 check
server synbolic_nane_7 inpal a- host - 3. exanpl e. com 21050 check
server synbolic_nanme_8 i npal a- host - 4. exanpl e. com 21050 check

Important: Huerequiresthe check option at end of each line in the above file to ensure HAProxy can detect any
unreachable | mpal ad server, and failover can be successful. Without the TCP check, you may hit an error when the
i mpal ad daemon to which Hue triesto connect is down.

Note: If your IDBC or ODBC application connects to Impala through aload balancer such ashapr oxy, be cautious
about reusing the connections. If the load balancer has set up connection timeout values, either check the connection
frequently so that it never sitsidle longer than the load balancer timeout value, or check the connection validity before
using it and create a new one if the connection has been closed.

Managing Disk Space for Impala Data

Although Impalatypically works with many large files in an HDFS storage system with plenty of capacity, there are
times when you might perform some file cleanup to reclaim space, or advise devel opers on techniques to minimize
space consumption and file duplication.

« Use compact binary file formats where practical. Numeric and time-based datain particular can be stored in more
compact form in binary datafiles. Depending on the file format, various compression and encoding features can
reduce file size even further. Y ou can specify the STORED AS clause as part of the CREATE TABLE statement,
or ALTER TABLE withthe SET FI LEFORMAT clause for an existing table or partition within a partitioned
table. See How Impala Works with Hadoop File Formats on page 695 for details about file formats, especially
Using the Parquet File Format with Impala Tables on page 705. See CREATE TABLE Statement on page
248 and ALTER TABLE Satement on page 215 for syntax details.

¢ You manage underlying datafiles differently depending on whether the corresponding Impalatableis defined as
an internal or external table:

* Usethe DESCRI BE FORMATTED statement to check if a particular table isinternal (managed by Impala) or
external, and to see the physical location of the datafilesin HDFS. See DESCRIBE Statement on page 268
for details.

* For Impalamanaged (“internal”) tables, use DROP TABLE statements to remove data files. See DROP
TABLE Statement on page 289 for details.

« For tables not managed by Impala (“externa” tables), use appropriate HDFS-related commands such as
hadoop fs,hdfs dfs,ordi stcp,tocreate, move, copy, or delete fileswithin HDFS directories that are
accessible by thei nmpal a user. IssueaREFRESH t abl e _nane statement after adding or removing any
files from the data directory of an externa table. See REFRESH Statement on page 312 for details.

« Useexternal tablesto reference HDFS datafilesin their original location. With this technique, you avoid
copying the files, and you can map more than one Impala table to the same set of datafiles. When you drop the
Impalatable, the datafiles are |eft undisturbed. See External Tables on page 207 for details.

¢ Usethe LOAD DATA statement to move HDFS filesinto the data directory for an Impalatable from inside
Impala, without the need to specify the HDFS path of the destination directory. This technique works for both
internal and external tables. See LOAD DATA Satement on page 309 for details.

* Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might
not be reclaimed for use by other files until sometime later, when the trashcan is emptied. See DROP TABLE

| Impala Administration | 74

Satement on page 289 for details. See User Account Requirements on page 23 for permissions needed for
the HDFS trashcan to operate correctly.

« Drop al tablesin a database before dropping the database itself. See DROP DATABASE Statement on page 280
for details.

* Clean up temporary files after failed | NSERT statements. If an | NSERT statement encounters an error, and you
seeadirectory named . i npal a_i nsert_stagi ngor_i nmpal a_i nsert _st agi ng left behind in the
data directory for the table, it might contain temporary datafiles taking up space in HDFS. Y ou might be able to
salvage these datafiles, for example if they are complete but could not be moved into place due to a permission
error. Or, you might delete those files through commands such ashadoop fs or hdf s df s, to reclaim space
before re-trying the | NSERT. Issue DESCRI BE FORMATTED t abl e_nan® to see the HDFS path where you
can check for temporary files.

« |f you use the Amazon Simple Storage Service (S3) as a place to offload data to reduce the volume of local
storage, Impala 2.2.0 and higher can query the data directly from S3. See Using Impala with Amazon S3 Object
Sore on page 769 for details.

Configuring Scratch Space for Spilling to Disk

Impala uses intermediate files during large sort, join, aggregation, or analytic function operations The files are
removed when the operation finishes. Y ou can specify locations of the intermediate files by starting thei mpal ad
daemonwiththe- - scrat ch_di rs="pat h_t o_di rect ory" configuration option. By default, intermediate
filesare stored inthe directory / t np/ i npal a- scrat ch.

* You can specify asingle directory or acomma-separated list of directories.
« You can specify an optional a capacity quota per scratch directory using the colon (:) as the delimiter.
The capacity quotaof - 1 or 0 isthe same as no quota for the directory.

e The scratch directories must be on the local filesystem, not in HDFS.

* You might specify different directory paths for different hosts, depending on the capacity and speed of the
available storage devices.

If thereislessthan 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning
message to itslog.

Impala successfully starts (with awarning written to the log) if it cannot create or read and write filesin one of the
scratch directories.

The following are examples for specifying scratch directories.

Config option Description

--scratch_dirs=/dirl,/dir2 Use/dirl and /dir2 as scratch directories with no
capacity quota.

--scratch_dirs=/dirl,/dir2:25G Use/dirl and /dir2 as scratch directories with no
capacity quotaon /dirl and the 25GB quota on /dir2.

--scratch_dirs=/dirl1:5M,/dir2 Use/dirl and /dir2 as scratch directories with the
capacity quota of SMB on /dirl and no quota on /dir2.

--scratch _dirs=/dirl:-1,/dir2:0 Use/dirl and /dir2 as scratch directories with no
capacity quota.

Allocation from a scratch directory will fail if the specified limit for the directory is exceeded.

If Impala encounters an error reading or writing filesin a scratch directory during a query, Impalalogs the error, and
the query fails.

Priority Based Scratch Directory Selection

The location of the intermediate files are configured by starting the impalad daemon with the flag - -
scratch_dirs="path_to_directory". Currently this startup flag uses the configured scratch directories

| Impala Administration | 75

in around robin fashion. Automatic selection of scratch directoriesin around robin fashion may not aways be
ideal in every situation since these directories could come from different classes of storage system volumes having
different performance characteristics (SSD vs HDD, local storage vs network attached storage, etc.). To optimize
your workload, you have an option to configure the priority of the scratch directories based on your storage system
configuration.

The scratch directories will be selected for spilling based on how you configure the priorities of the directories and if
you provide the same priority for multiple directories then the directories will be selected in around robin fashion.

The valid formats for specifying the priority directories are as shown here:

dir-path:linmt:priority
dir-path::priority

Example:

/dirl: 200GB: 0
/dirl::0

The following formats use the default priority:

/dirl
/dirl: 200@B
/dirl: 200GB:

In the example below, dirl will be used as a spill victim until it isfull and then dir2, dir3, and dir4 will beused in a
round robin fashion.

--scratch_dirs="/dir1l:200GB: 0, /dir2:1024GB: 1, /dir3:1024GB: 1, /
dir4:1024G8: 1"

Increasing Scratch Capacity

Y ou can compress the data spilled to disk to increase the effective scratch capacity. Y ou typically more than
double capacity using compression and reduce spilling to disk. Use the --disk_spill_compression_codec and —
disk_spill_punch_holes startup options. The --disk_spill_compression_codec takes any value supported by the
COMPRESSION_CODEC query option. The value is not case-sensitive. A value of ZSTD or LZ4 is recommended
(default is NONE).

For example:
--di sk_spill _conpressi on_codec=LZ4
--di sk_spill _punch_hol es=true

If youset--disk _spill_conpressi on_codec toavaue other than NONE, you must set - -
di sk_spi |l _punch_hol es totrue.

The hole punching feature supported by many filesystemsis used to reclaim space in scratch files during execution of
aquery that spillsto disk. Thisresultsin lower scratch space requirementsin many cases, especially when combined
with disk spill compression. When this option is not enabled, scratch space is still recycled by a query, but less
effectively in many cases.

Y ou can specify acompression level for ZSTD only. For example:

--disk_spill _conpressi on_codec=ZSTD: 10
--di sk_spill _punch_hol es=true

Compression levels from 1 up to 22 (default 3) are supported for ZSTD. The lower the compression level, the faster
the speed at the cost of compression ratio.

| Impala Administration | 76

Configure Impala Daemon to spill to S3

Impala occasionally needs to use persistent storage for writing intermediate files during large sorts, joins,
aggregations, or analytic function operations. If your workload resultsin large volumes of intermediate data being
written, it is recommended to configure the heavy spilling queries to use aremote storage location rather than the
local one. The advantage of using remote storage for scratch spaceisthat it is elastic and can handle any amount of

spilling.
Before you begin

Identify the URL for an S3 bucket to which you want your new Impalato write the temporary data. If you use the
S3 bucket that is associated with the environment, navigate to the S3 bucket and copy the URL. If you want to use
an external S3 bucket, you must first configure your environment to use the external S3 bucket with the correct read/
write permissions.

Configuring the Start-up Option in Impala daemon
Y ou can use the Impalad start option scratch_dirs to specify the locations of the intermediate files. The format of the
option is:

--scratch_dirs="renote_dir, local _buffer_dir (,local _dir.)"

where local_buffer_dir and local_dir conform to the earlier descriptions for scratch directories.
With the option specified above:

* You can specify only one remote directory. When you configure a remote directory, you must specify alocal
buffer directory as the buffer. However you can use multiple local directories with the remote directory. If you
specify multiple local directories, the first local directory would be used as the local buffer directory.

» If you configure both remote and local directories, the remote directory is only used when the local directories are
fully utilized.

« Thesize of aremote intermediate file could affect the query performance, and the value can be set by - -
renote_tnp_fil e_size=size inthestart-up option. The default size of aremote intermediate fileis 16MB
while the maximum is 512MB.

Examples

* A remote scratch dir with alocal buffer dir, file size 64MB.

--scratch_dirs=s3a://renmote_dir,/local buffer _dir --
renote_tnp_fil e_size=64M

* A remote scratch dir with alocal buffer dir limited to 256M B, and one local dir limited to 10GB.

--scratch_dirs=s3a://renpote _dir,/local buffer_dir:256M /Il ocal _dir:10G

« A remote scratch dir with alocal buffer dir, and multiple prioritized local dirs.

--scratch_dirs=s3a://renmote _dir,/local _buffer _dir,/local _dir_1:5G 1,/
|l ocal _dir 2:5G 2

Configure Impala Daemon to spill to HDFS

Impala occasionally needs to use persistent storage for writing intermediate files during large sorts, joins,
aggregations, or analytic function operations. If your workload results in large volumes of intermediate data being
written, it is recommended to configure the heavy spilling queries to use a remote storage location rather than the
local one. The advantage of using remote storage for scratch spaceisthat it is elastic and can handle any amount of
spilling.

Before you begin

e ldentify the HDFS scratch directory where you want your new Impala to write the temporary data.

| Impala Administration | 77

* ldentify the |P address, host name, or service identifier of HDFS.
* ldentify the port number of the HDFS NameNode (if not-default).
» Configure Impalato write temporary datato disk during query processing.

Configuring the Start-up Option in Impala daemon
Y ou can use the Impalad start option scr at ch_di r s to specify the locations of the intermediate files.

Use the following format for this start up option:

--scratch_dirs="hdfs://authority/path(:max_bytes), |ocal buffer dir
(,local _dir.)"

« Wherehdf s://aut hority/ pat h istheremote directory.

e authority may includei p_addr ess or host nane andport,orservice_id.

e max_bytesisoptional.

Using the above format:

* You can specify only one remote directory. When you configure aremote directory, you must specify alocal

buffer directory as the buffer. However you can use multiple local directories with the remote directory. If you
specify multiple local directories, the first local directory would be used as the local buffer directory.

« |If you configure both remote and local directories, the remote directory is only used when the local directories are
fully utilized.

* Thesize of aremote intermediate file could affect the query performance, and the value can be set by - -
renmote_tnp _fil e_size=si ze inthe start-up option. The default size of aremote intermediate fileis 16MB
while the maximum is 512MB.

Examples
* A HDFS scratch dir with one local buffer dir, file size 64MB. The space of HDFS scratch dir is limited to 300G.

--scratch_dirs=hdfs://10.0.0.49: 20500/ t np: 300G /| ocal _buffer _dir --
renote_tnp _file_size=64M

» A HDFS scratch dir with one local buffer dir limited to 512MB, and one local dir limited to 10GB. The space of
HDFS scratch dir is limited to 300G. The HDFS NameNode uses its default port (8020).

--scratch_dirs=hdfs://hdf snn/tnp: 300G /| ocal _buffer _dir:512M/
| ocal dir: 10G

» A HDFS scratch dir with one local buffer dir, and multiple prioritized local dirs. The space of HDFS scratch dir is
unlimited. The HDFS service identifier ishdf s1.

--scratch_dirs=hdfs://hdfs1/tnp,/local buffer_dir,/local _dir_1:5G 1,/
| ocal _dir_2:5G 2

Even though max_bytesis optional, it is highly recommended to configure for spilling to HDFS because the HDFS
cluster spaceislimited.

Configure Impala Daemon to spill to Ozone
Before you begin

* Identify the Ozone scratch directory where you want your new Impalato write the temporary data.
« ldentify the |P address, host name, or service identifier of Ozone.
* ldentify the port number of the Ozone Manager (if not-default).

Configuring the Start-up Option in Impala daemon

| Impala Security | 78

Y ou can use the Impalad start option scr at ch_di r s to specify the locations of the intermediate files.

--scratch_dirs="of s://authority/path(: max_bytes), local buffer _dir
(,local _dir.)"

 Whereof s://aut hority/ pat h isthe remote directory.
e authority mayincludei p_address orhost nane and port,orservice_id.
* nmax_byt es isoptional.

Using the above format:

* You can specify only one remote directory. When you configure a remote directory, you must specify alocal
buffer directory as the buffer. However you can use multiple local directories with the remote directory. If you
specify multiple local directories, the first local directory would be used asthe local buffer directory.

« If you configure both remote and local directories, the remote directory is only used when the local directories are
fully utilized.

« Thesize of aremote intermediate file could affect the query performance, and the value can be set by - -
renote_tnp_fil e_size=size inthestart-up option. The default size of aremote intermediate fileis 16MB
while the maximum is 512MB.

Examples

e An Ozone scratch dir with one local buffer dir, file size 64MB. The space of Ozone scratch dir is limited to 300G.

--scratch_dirs=ofs://10.0.0.49: 29000/ t np: 300G /| ocal buffer dir --
renote tnp fil e _size=64M

* An Ozone scratch dir with one local buffer dir limited to 512MB, and one local dir limited to 10GB. The space of
Ozone scratch dir is limited to 300G. The Ozone Manager uses its default port (9862).

--scratch_dirs=of s://ozonengr/tnp: 300G /| ocal _buffer_dir:512M/
| ocal _dir:10G

« An Ozone scratch dir with one local buffer dir, and multiple prioritized local dirs. The space of Ozone scratch dir
isunlimited. The Ozone service identifierisozonel.

--scratch_dirs=ofs://ozonel/tnp,/local buffer dir,/local dir 1:5G 1,/
|l ocal _dir_2:5G 2

Even though max_bytesis optiond, it is highly recommended to configure for spilling to Ozone because the Ozone
cluster spaceis limited.

Impala Security

Impalaincludes afine-grained authorization framework for Hadoop, based on Apache Ranger. Ranger authorization
was added in Impala 3.3.0. Together with the Kerberos authentication framework, Ranger takes Hadoop security

to anew level needed for the requirements of highly regulated industries such as healthcare, financial services, and
government. Impala also includes an auditing capability which was added in Impala 1.1.1; Impala generates the audit
data which can be consumed, filtered, and visualized by cluster-management components focused on governance.

The Impala security features have severa objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal datato unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access

or perform other disallowed operations. The auditing feature provides away to confirm that no unauthorized

access occurred, and detect whether any such attempts were made. Thisisacritical set of features for production
deployments in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where
multiple applications run concurrently and are prevented from interfering with each other.

| Impala Security | 79

The material in this section presumes that you are aready familiar with administering secure Linux systems. That

is, you should know the general security practices for Linux and Hadoop, and their associated commands and
configuration files. For example, you should know how to create Linux users and groups, manage Linux group
membership, set Linux and HDFS file permissions and ownership, and designate the default permissions and
ownership for new files. Y ou should be familiar with the configuration of the nodes in your Hadoop cluster, and know
how to apply configuration changes or run a set of commands across al the nodes.

The security features are divided into these broad categories:

authorization Which users are allowed to access which resources,
and what operations are they allowed to perform?
Impalarelies on the open source Ranger project for
authorization. By default (when authorization is not
enabled), Impala does all read and write operations
with the privileges of thei nmpal a user, whichis
suitable for a devel opment/test environment but not for
a secure production environment. When authorization
is enabled, Impala uses the OS user ID of the user who
runsi npal a- shel | or other client program, and
associates various privileges with each user. See Impala
Authorization on page 83 for details about setting up
and managing authorization.

authentication How does Impala verify the identity of the user to
confirm that they really are allowed to exercise the
privileges assigned to that user? Impalarelies on the
Kerberos subsystem for authentication. See Enabling
Kerberos Authentication for Impala on page 90 for
details about setting up and managing authentication.

auditing What operations were attempted, and did they succeed
or not? This feature provides away to look back and
diagnose whether attempts were made to perform
unauthorized operations. Y ou use thisinformation to
track down suspicious activity, and to see where changes
are needed in authorization policies. The audit data
produced by this feature can be collected and presented
in a user-friendly form by cluster-management software.
See Auditing Impala Operations on page 99 for
details about setting up and managing auditing.

Security Guidelines for Impala

The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

* Securether oot account. Ther oot user can tamper with thei npal ad daemon, read and write the data filesin
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

* Restrict membership inthesudoer s list (inthe/ et ¢/ sudoer s file). The users who can run the sudo
command can do many of the same things asther oot user.

« Ensure the Hadoop ownership and permissions for Impala data files are restricted.
» Ensure the Hadoop ownership and permissions for Impalalog files are restricted.

« Ensurethat the Impalaweb Ul (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging on page 810 for details.

| Impala Security | 80

» Createapolicy file that specifies which Impala privileges are available to usersin particular Hadoop groups
(which by default map to Linux OS groups). Create the associated Linux groups using the gr oupadd command
if necessary.

» The Impala authorization feature makes use of the HDFS file ownership and permissions mechanism; for
background information, see the HDFS Permissions Guide. Set up users and assign them to groups at the OS
level, corresponding to the different categories of users with different access levels for various databases, tables,
and HDFS locations (URIs). Create the associated Linux users using the user add command if necessary, and
add them to the appropriate groups with the user nmod command.

» Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if al tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use the
* wildcard for the database containing the base tables, while specifying the precise names of the individual views.
(For specifying table or database names, you either specify the exact name or * to mean all the databases on a
server, or all the tables and views in a database.)

« Enable authorization by running thei npal ad daemonswith the- ser ver _nane and -
aut hori zati on_policy_fil e optionsonal nodes. (The authorization feature does not apply to the
st at est or ed daemon, which has no access to schema objects or datafiles.)

e Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files

One aspect of security isto protect files from unauthorized access at the filesystem level. For example, if you store
sensitive datain HDFS, you specify permissions on the associated files and directoriesin HDFS to restrict read and
write permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impalalog filesin the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging on page 784.

All Impalaread and write operations are performed under the filesystem privileges of thei npal a user. Thei npal a
user must be ableto read al directories and data files that you query, and write into all the directories and data files
for | NSERT and LOAD DATA statements. At a minimum, make sure thei npal a userisinthe hi ve group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements on page 23 for
more details.

Setting file permissions is necessary for Impalato function correctly, but is not an effective security practice by itself:

* Theway to ensure that only authorized users can submit requests for databases and tables they are allowed to
access isto set up Ranger authorization, as explained in Impala Authorization on page 83. With authorization
enabled, the checking of the user ID and group is done by Impala, and unauthorized accessis blocked by
Impalaitself. The actual low-level read and write requests are still done by the i npal a user, so you must have
appropriate file and directory permissions for that user 1D.

e You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 90, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new
host to the network and creates user |Ds that match your privileged IDs, they will be blocked from connecting to
Impalaat al from that host.

Installation Considerations for Impala Security

Impala 1.1 comes set up with all the software and settings needed to enable security when you run thei npal ad
daemon with the new security-related options (- ser ver _nane and - aut hori zati on_policy file).You
do not need to change any environment variables or install any additional JAR files.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

| Impala Security | 81

Securing the Hive Metastore Database

It isimportant to secure the Hive metastore, so that users cannot access the names or other information about
databases and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive
metastore security, using the instructions in the documentation for your Apache Hadoop distribution for securing
different Hive components:

¢ Securethe Hive Metastore.

« Inaddition, allow access to the metastore only from the HiveServer2 server, and then disable local accessto the
HiveServer2 server.

Securing the Impala Web User Interface

Theinstructions in this section presume you are familiar with the . ht passwd mechanism commonly used to
password-protect pages on web servers.

Password-protect the Impalaweb Ul that listens on port 25000 by default. Set up a. ht passwd filein
the $1 MPALA_HOVE directory, or start both thei npal ad and st at est or ed daemons with the - -
webserver _password_fil e option to specify a different location (including the filename).

Thisfile should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or
any other system. Thedonai n field in the password file must match the domain supplied to Impala by the new
command-line option - - webser ver _aut henti cati on_donai n. Thedefaultismydonai n. com

Impalaalso supports using HTTPS for secure web traffic. To do o, set - - webserver _certificate file
torefer toavalid. pemTLS/SSL certificate file. Impalawill automatically start using HTTPS oncethe TLY
SSL certificate has been read and validated. A . pemfileisbasically a private key, followed by asigned TLS/SSL
certificate; make sure to concatenate both parts when constructing the . pemfile.

If Impala cannot find or parse the . pemfile, it prints an error message and quits.
Note:

If the private key is encrypted using a passphrase, Impalawill ask for that passphrase on startup, which is not
useful for alarge cluster. In that case, remove the passphrase and make the . pemfile readable only by Impalaand
administrators.

When you turn on TLS/SSL for the Impalaweb Ul, the associated URLs change from ht t p: // prefixesto
htt ps://.Adjust any bookmarks or application code that refersto those URLSs.

Configuring TLS/SSL for Impala

Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impal a-rel ated
daemons running on different nodes in the cluster. This feature isimportant when you also use other features such as
K erberos authentication or Ranger authorization, where credentials are being transmitted back and forth.

Using the Command Line

To enable TLS/SSL for client applications to connect to Impala, add both of the following flags to thei npal ad
startup options:

e --ssl _server _certificate: Thefull pathto the server certificate, on the local filesystem.
e --ssl_private_key: Thefull path to the server private key, on the local filesystem.

In Impala 2.3 and higher, Impala can also use SSL for its own internal communication between the
i mpal ad, st at est or ed, and cat al ogd daemons. To enable this additional SSL encryption, set the - -
ssl _server _certificateand--ssl_private_key flagsinthe startup optionsfor i npal ad,

http://en.wikipedia.org/wiki/.htpasswd

| Impala Security | 82

cat al ogd, andst at est or ed, andalso add the- - ssl _cl i ent _ca_certifi cat e flag for al three of those
daemons.

Warning: In Impala2.3.1 and lower versions, you could enable K erberos authentication between Impala

{ '_1 internal components, or SSL encryption between Impalainternal components, but not both at the same time.
This restriction has now been lifted. See IMPALA-2598 to see the maintenance releases for different levels of
Impalawhere the fix has been published.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2
reguests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala on page 820 for
details.)

Since Impala uses passphrase-less certificates in PEM format, you can reuse a host's existing Java keystore by using
theopenssl toolkit to convert it to the PEM format.

Configuring TLS/SSL Communication for the Impala Shell
With TLS/SSL enabled for Impala, start i npal a- shel | with the following options:

e --ssl:EnablesTLS/SSL fori npal a- shel I .

e --ca_cert: Theloca pathname pointing to the third-party CA certificate, or to a copy of the server certificate
for self-signed server certificates.

If --ca_cert isnotset, i npal a- shel | enables TLS/SSL, but does not validate the server certificate. Thisis
useful for connecting to a known-good Impalathat is only running over TLS/SSL, when a copy of the certificateis
not available (such as when debugging customer installations).

Fori npal a- shel | to successfully connect to an Impala cluster that has the minimum allowed TLS/SSL version
setto 1.2 (- - ssl _m ni mum ver si on=t | sv1. 2), the Python version on the cluster that i npal a- shel | runs
on must be 2.7.9 or higher (or a vendor-provided Python version with the required support. Some vendors patched
Python 2.7.5 versions on Red Hat Enterprise Linux 7 and derivatives).

Using TLS/SSL with Business Intelligence Tools

Y ou can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC
applications to Impala. See Configuring Impala to Work with JDBC on page 801 and Configuring Impala to Work
with ODBC on page 801 for details.

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster isrunning an older release that has this restriction, use an aternative JDBC driver that
supports both of these security features.

Specifying TLS/SSL Minimum Allowed Version and Ciphers

Depending on your cluster configuration and the security practices in your organization, you might need to restrict
the allowed versions of TLS/SSL used by Impala. Older TLS/SSL versions might have vulnerabilities or lack certain
features. In Impala 2.10, you can use startup options for thei npal ad, cat al ogd, and st at est or ed daemonsto
specify aminimum allowed version of TLS/SSL.

Specify one of the following values for the- - ss| _m ni mum ver si on configuration setting:

e tlsvl: Allow any TLSversion of 1.0 or higher.
 tlsvl. 1: Allowany TLSversion of 1.1 or higher.
e tlsvl. 2: Allow any TLSversion of 1.2 or higher.

The default version was changed from 'tlsv1' to 'tlsv1.2' starting in Impala4.0

Along with specifying the version, you can also specify the allowed set of TL'S ciphers by using the - -
ssl _ci pher _I i st configuration setting. The argument to this optionisalist of keywords, separated by colons,
commas, or spaces, and optionally including other notation. For example:

https://issues.apache.org/jira/browse/IMPALA-2598

| Impala Security | 83

--ssl _ci pher _li st="RC4- SHA, RC4- MD5"

See the output of man ci pher s for the full set of keywords and notation allowed in the argument string. Since
Impala4.2 the default value of - - ssl _ci pher _| i st isaset of ciphers based on Mozilla's intermediate
compatibility recommendations from https://wiki.mozilla.org/Security/Server_Side TLS. Prior to Impala 4.2 the
default was unset, and Impala used the default cipher list for the underlying platform.

Impala Authorization

The

Authorization determines which users are allowed to access which resources, and what operations they are allowed
to perform. Y ou use Apache Ranger for authorization. By default, when authorization is not enabled, Impala does

all read and write operations with the privileges of thei npal a user, which is suitable for a development/test
environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user 1D
of the user who runsi npal a- shel | or other client programs, and associates various privileges with each user.

Privilege Model

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a
level in the abject hierarchy. If aprivilegeis granted on a parent object in the hierarchy, the child object automatically
inheritsit. Thisisthe same privilege model as Hive and other database systems.

The objectsin the Impala schema hierarchy are:

Server
URI
Dat abase
Tabl e
Col umm

The table-level privileges apply to views as well. Anywhere you specify atable name, you can specify aview name
instead.

In Impala 2.3 and higher, you can specify privileges for individua columns.

The table below lists the minimum level of privileges and the scope required to execute SQL statementsin Impala 3.0
and higher. The following notations are used:

* TheSERVER resource type in Ranger implies all databases, al tables, al columns, all UDFs, and all URIs.

* ANY denotesthe SELECT, | NSERT, CREATE, ALTER, DROP, or REFRESH privilege.

e ALL privilege denotesthe SELECT, | NSERT, CREATE, ALTER, DROP, and REFRESH privileges.

» The owner of an object effectively hasthe ALL privilege on the object.

« The parent levels of the specified scope are implicitly supported where a scope refers to the specific level in the
object hierarchy that the privilege is granted. For example, if a privilegeis listed with the TABLE scope, the same
privilege granted on DATABASE and SERVER will allow the user to execute the specified SQL statement.

SQL Statement Privileges Object Type/
Resource Type
SELECT SELECT TABLE
WITH SELECT SELECT TABLE
EXPLAIN SELECT SELECT TABLE
INSERT INSERT TABLE
EXPLAIN INSERT INSERT TABLE
TRUNCATE INSERT TABLE

| Impala Security | 84

LOAD INSERT TABLE
ALL URI
CREATE DATABASE CREATE SERVER
CREATE DATABASE CREATE SERVER
LOCATION
ALL URI
CREATE TABLE CREATE DATABASE
CREATE TABLE LIKE CREATE DATABASE
SELECT, INSERT, or REFRESH | TABLE
CREATE TABLE AS SELECT CREATE DATABASE
INSERT DATABASE
SELECT TABLE
EXPLAIN CREATETABLEAS |CREATE DATABASE
SELECT
INSERT DATABASE
SELECT TABLE
CREATE TABLE LOCATION CREATE TABLE
ALL URI
CREATE VIEW CREATE DATABASE
SELECT TABLE
ALTER DATABASE SET ALL WITH GRANT DATABASE
OWNER
ALTERTABLE ALTER TABLE
ALTER TABLE SET LOCATION |ALTER TABLE
ALL URI
ALTER TABLE RENAME CREATE DATABASE
ALL TABLE
ALTER TABLE SET OWNER ALL WITH GRANT TABLE
ALTERVIEW ALTER TABLE
SELECT TABLE
ALTER VIEW RENAME CREATE DATABASE
ALL TABLE
ALTER VIEW SET OWNER ALL WITH GRANT VIEW
DROP DATABASE DROP DATABASE
DROP TABLE DROP TABLE
DROP VIEW DROP TABLE

| Impala Security | 85

CREATE FUNCTION CREATE DATABASE
ALL URI
DROP FUNCTION DROP DATABASE
COMPUTE STATS ALTER and SELECT TABLE
DROP STATS ALTER TABLE
INVALIDATE METADATA REFRESH SERVER
INVALIDATE METADATA REFRESH TABLE
<table>
REFRESH <table> REFRESH TABLE
REFRESH AUTHORIZATION REFRESH SERVER
REFRESH FUNCTIONS REFRESH DATABASE
COMMENT ON DATABASE ALTER DATABASE
COMMENT ON TABLE ALTER TABLE
COMMENT ON VIEW ALTER TABLE
COMMENT ON COLUMN ALTER TABLE
DESCRIBE DATABASE SELECT, INSERT, or REFRESH |DATABASE
DESCRIBE <table/view> SELECT, INSERT, or REFRESH | TABLE
If the user has the SELECT SELECT COLUMN
privilege at the COLUMN level,
only the columns the user has
access will show.
USE ANY TABLE
SHOW DATABASES ANY TABLE
SHOW TABLES ANY TABLE
SHOW FUNCTIONS SELECT, INSERT, or REFRESH | DATABASE
SHOW PARTITIONS SELECT, INSERT, or REFRESH | TABLE
SHOW TABLE STATS SELECT, INSERT, or REFRESH | TABLE
SHOW COLUMN STATS SELECT, INSERT, or REFRESH | TABLE
SHOW FILES SELECT, INSERT, or REFRESH | TABLE
SHOW CREATE TABLE SELECT, INSERT, or REFRESH | TABLE
SHOW CREATE VIEW SELECT, INSERT, or REFRESH | TABLE
SHOW CREATE FUNCTION SELECT, INSERT, or REFRESH |DATABASE
SHOW RANGE PARTITIONS SELECT, INSERT, or REFRESH | TABLE
(Kudu only)
UPDATE (Kudu only) ALL TABLE
EXPLAIN UPDATE (Kudu only) [ALL TABLE
UPSERT (Kudu only) ALL TABLE

| Impala Security | 86

WITH UPSERT (Kudu only) ALL TABLE
EXPLAIN UPSERT (Kuduonly) |ALL TABLE
DELETE (Kudu only) ALL TABLE
EXPLAIN DELETE (Kuduonly) |ALL TABLE

Privileges are managed via the GRANT and REVOKE SQL statements that require the Ranger service enabled.

If you change privileges outside of Impala, e.g. adding a user, removing a user, modifying privileges, you must
clear the Impala Catalog server cache by running the REFRESH AUTHORI ZATI ON statement. REFRESH
AUTHORI ZATI ONis not required if you make the changes to privileges within Impala

Object Ownership in Ranger
Object ownership for tables, views and databases is enabled by default in Impala.
To define owner specific privileges, go to ranger Ul and define appropriate policies on the { OANER} user.

The CREATE statements implicitly make the user running the statement the owner of the object. For example, if
User A creates a database, foo, viathe CREATE DATABASE statement, User A now owns the foo database and is
authorized to perform any operation on the foo database.

An ownership can be transferred to another user or role viathe ALTER DATABASE, ALTER TABLE, or ALTER
VI EWwith the SET OWNER clause.

Note: Currently, dueto aknown issue (IMPALA-8937), until the ownership information is fully loaded in the
coordinator catalog cache, the owner of atable might not be able to see the table when executing the SHOW TABLES
statement The owner can still query the table.

Starting Impala with Ranger Authorization Enabled
To enable authorization in an Impala cluster using Ranger:

1. Addthefollowing optionsto thel MPALA_SERVER ARGS and the | MPALA_CATALOG_ARGS settingsin the/
et c/ def aul t/i nmpal a configuration file:

e -server _nane: Specify the same namefor al i mpal ad nodes and the cat al ogd in the cluster.
e -ranger_service_type=hive
e -ranger_app_i d: Setit to the Ranger application id.
e -authorization_provider=ranger
2. Restartthecat al ogd and al i npal ad daemons.

Managing Privileges
Y ou set up privileges through the GRANT and REVOKE statements in either Impala or Hive.

For information about using the Impala GRANT and REVOKE statements, see GRANT Satement (Impala 2.0 or higher
only) on page 294 and REVOKE Statement (Impala 2.0 or higher only) on page 315.

Changing Privileges from Outside of Impala

If you make a change to privilegesin Ranger from outside of Impala, e.g. adding a user, removing a user, modifying
privileges, there are two options to propagate the change:

« Usetheranger. pl ugi n. hi ve. policy. pol | I nt erval Ms property to specify how often to do a Ranger
refresh. The property is specifiedinr anger - hi ve-security. xnm intheconf directory under your Impala
home directory.

* Runthel NVALI DATE METADATA or REFRESH AUTHORI ZATI ON statement to force arefresh.
If you make a change to privileges within Impala, | NVALI DATE METADATA is not required.

https://issues.apache.org/jira/browse/IMPALA-8937

| Impala Security | 87

Warning: Asl| NVALI DATE METADATA isan expensive operation, you should use it judiciously.
85
Granting Privileges on URI

URIs represent the file paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD
DATA. Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdf s: // to
make clear that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege
appliesto all thefilesin that directory and any directories undernesth it.

URIsmust start withhdf s: //,s3a://,adl : //,orfil e://.If aURI starts with an absolute path, the path will
be appended to the default filesystem prefix. For example, if you specify:
GRANT ALL ON URI '/tnp';

The above statement effectively becomes the following where the default filesystem is HDFS.

GRANT ALL ON URI ' hdfs://I|ocal host: 20500/t np";
When defining URIs for HDFS, you must also specify the NameNode. For example:

GRANT ALL ON URI file:///path/to/dir TO <rol e>
GRANT ALL ON URI hdfs://nanmenode: port/path/to/dir TO <rol e>

. Warning: Because the NameNode host and port must be specified, it is strongly recommended that you use
; '_1 High Availability (HA). This ensures that the URI will remain constant even if the NameNode changes. For
example:

GRANT ALL ON URI hdfs://ha-nn-uri/path/to/dir TO <rol e>

Examples of Setting up Authorization for Security Scenarios

The following examples show how to set up authorization to grant privileges on objects to groups of users viaroles.

A User with No Privileges

If auser hasno privileges at all, that user cannot access any schema objects in the system. The error
messages do not disclose the names or existence of objects that the user is not authorized to read.

Thisisthe experience you want a user to have if they somehow log into a system where they are not
an authorized Impala user. Or in areal deployment, a user might have no privileges because they
are not amember of any of the authorized groups.

Examples of Privileges for Administrative Users

In this example, the SQL statements grant theent i re_ser ver roleal privileges on both the
databases and URIs within the server.

CREATE ROLE entire_server;
GRANT ROLE entire_server TO GROUP adni n_group;
GRANT ALL ON SERVER serverl TO ROLE entire_server;

A User with Privileges for Specific Databases and Tables

If auser has privileges for specific tables in specific databases, the user can access those things but
nothing else. They can see the tables and their parent databases in the output of SHOW TABLES

| Impala Security | 88

and SHOW DATABASES, USE the appropriate databases, and perform the relevant actions
(SELECT and/or | NSERT) based on the table privileges. To actually create atable requires the ALL
privilege at the database level, so you might define separate roles for the user that sets up a schema
and other users or applications that perform day-to-day operations on the tables.

CREATE ROLE one_dat abase;
CGRANT ROLE one_dat abase TO GROUP admi n_group;
GRANT ALL ON DATABASE dbl TO ROLE one_dat abase;

CREATE ROLE instructor;
GRANT ROLE instructor TO GROUP trai ners;
GRANT ALL ON TABLE dbil.l|esson TO ROLE i nstructor;

This particular course is all about queries, so the students
can SELECT but not | NSERT or CREATE/ DROP.

CREATE ROLE student;

GRANT ROLE student TO GROUP visitors;

GRANT SELECT ON TABLE dbl.training TO ROLE student;

Privileges for Working with External Data Files

When datais being inserted through the LOAD DATA statement or is referenced from an HDFS
location outside the normal |mpala database directories, the user aso needs appropriate permissions
on the URIs corresponding to those HDFS locations.

In this example:

« Theext ernal _t abl e rolecaninsert into and query the Impalatable,
external _tabl e. sanpl e.

e Thest agi ng_di r rolecan specify the HDFS path / user /i npal a- user/
ext er nal _dat a withthe LOAD DATA statement. When Impala queries or |oads datafiles,
it operates on all the filesin that directory, not just asingle file, so any Impala LOCATI ON
parameters refer to a directory rather than an individual file.

CREATE RCLE external _tabl e;
GRANT ROLE external _table TO GROUP i npal a_users;
GRANT ALL ON TABLE external _table.sanple TO ROLE external _tabl e;

CREATE ROLE staging dir;

GRANT ROLE staging TO GROUP i npal a_users;

GRANT ALL ON URI ' hdfs://127.0.0.1: 8020/ user/i npal a-user/
external _data' TO ROLE staging_dir;

Separating Administrator Responsibility from Read and Write Privileges

To create a database, you need the full privilege on that database while day-to-day operations on
tables within that database can be performed with lower levels of privilege on a specific table. Thus,
you might set up separate roles for each database or application: an administrative one that could
create or drop the database, and a user-level one that can access only the relevant tables.

In this example, the responsibilities are divided between usersin 3 different groups:

* Membersof the super gr oup group havethet r ai ni ng_sysadm n role and so can set up
adatabase namedt r ai ni ng.

» Membersof thei npal a_user s group havethei nstruct or role and so can create, insert
into, and query any tablesinthet r ai ni ng database, but cannot create or drop the database
itself.

| Impala Security | 89

e Membersof thevi si t or group havethest udent role and so can query those tablesin the
t r ai ni ng database.

CREATE ROLE traini ng_sysadmi n;
GRANT ROLE training_sysadnin TO GROUP super group;
GRANT ALL ON DATABASE training TO ROLE trai ni ng_sysadm n;

CREATE ROLE instructor;
GRANT ROLE instructor TO GROUP i npal a_users;
GRANT ALL ON TABLE traini ng. coursel TO ROLE i nstructor;

CREATE ROLE st udent;
GRANT ROLE student TO GROUP visitor;
GRANT SELECT ON TABLE trai ni ng. coursel TO ROLE student;

Setting Up Schema Objects for a Secure Impala Deployment

In your role definitions, you must specify privileges at the level of individual databases and tables, or all databases
or al tables within a database. To simplify the structure of these rules, plan ahead of time how to name your schema
objects so that data with different authorization requirements are divided into separate databases.

If you are adding security on top of an existing Impala deployment, you can rename tables or even move them
between databases using the ALTER TABLE statement.

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important

or sensitive information out of the DEFAULT database into a named database. Sometimes you might need to give
privileges on the DEFAULT database for administrative reasons, for example, as a place you can reliably specify with
a USE statement when preparing to drop a database.

Ranger Column Masking

Ranger column masking hides sensitive columnar datain Impala query output. For example, you can define a policy
that reveals only the first or last four characters of column data. Column masking is enabled by default. The Impala
behavior mimics Hive behavior with respect to column masking. For more information, see the Apache Ranger
documentation.

Thefollowing table lists al supported, built-in mask types for defining column masking in a policy using the Ranger

REST API.
Type Name Description Transformer
MASK Redact Replace lowercase with [mask({ col})

'X', uppercase with 'X',
digitswith '0'

MASK_SHOW_LAST 4

Partial mask: show last 4

Show last 4 characters;
replace rest with 'x'

mask_show last_n({col},
4,'x','x', X', -1,'1)

MASK_SHOW_FIRST 4

Partial mask: show first 4

Show first 4 characters;
replace rest with 'x'

mask_show _first n({col},
4,'x','x', 'x', -1,'1)

MASK_HASH Hash Hash the value mask_hash({ col})
MASK_NULL Nullify Replace with NULL N/A
MASK_NONE Unmasked (retain original | No masking N/A

value)

https://cwiki.apache.org/confluence/display/RANGER/Row-level+filtering+and+column-masking+using+Apache+Ranger+policies+in+Apache+Hive
https://cwiki.apache.org/confluence/display/RANGER/Row-level+filtering+and+column-masking+using+Apache+Ranger+policies+in+Apache+Hive

| Impala Security | 90

Type Name Description Transformer

MASK_DATE _SHOW_Y Hb&e: show only year Date: show only year mask({ col}, 'x', X', 'X', -1,
'1,1,0,-1)

CUSTOM Custom Custom N/A

Limitations on Mask Functions

The mask functions in Hive are implemented through GenericUDFs. Even though Impala users can call Hive UDFs,
Impala does not yet support Hive GenericUDFs, so you cannot use Hive's mask functionsin Impala. However, Impala
has builtin mask functions that are implemented through overloads. In Impala, when using mask functions, not all
parameter combinations are supported. These mask functions are introduced in Impala 3.4

The following list includes all the implemented overloads.

» Overloads used by Ranger default masking policies,
» Overloads with simple arguments,

» Overload with all argumentsini nt type for full functionality. Char argument needs to be converted to their
ASCII value.

To list the avail able overloads, use the following query:
show functions in _inpala_ builtins |ike "mask*";

Note:

* An error message that states "No matching function with signature: mask..." implies that Impala does not contain
the corresponding overload.

Impala Authentication

Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such

as impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middl e attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.
Y ou can aso make proxy connections to |mpala through Apache Knox.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically i npal a). To implement user-level accessto different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Impala Authorization on page 83.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular users when they connect through Impala. See
Impala Authorization on page 83 for details.

Enabling Kerberos Authentication for Impala

Impala supports an enterprise-grade authentication system called Kerberos. Kerberos provides strong security benefits
including capabilities that render intercepted authentication packets unusable by an attacker. It virtually eliminates the
threat of impersonation by never sending auser's credentials in cleartext over the network. For more information on
Kerberos, visit the MIT Kerberos website.

Therest of this topic assumes you have aworking Kerberos Key Distribution Center (KDC) set up. To enable
Kerberos, you first create a Kerberos principal for each host running i npal ad or st at est or ed.

https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/krb5-latest/doc/admin/install_kdc.html

| Impala Security | 91

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically i npal a). To implement user-level accessto different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Impala Authorization on page 83.

An alternative form of authentication you can useis LDAP, described in Enabling LDAP Authentication for Impala
on page 93.

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the
i mpal a- shel | interpreter to connect to a Kerberos-enabled Impala cluster:

sudo yuminstall python-devel openssl-devel python-pip
sudo pi p-python install ssli

Important:

If you plan to use Impalain your cluster, you must configure your KDC to allow tickets to be renewed, and

you must configurekr b5. conf to request renewable tickets. Typically, you can do this by adding the
max_renewabl e_l i f e setting to your reAlminkdc. conf , and by adding ther enew _| i f et i me parameter
tothel i bdef aul t s section of kr b5. conf . For more information about renewabl e tickets, see the Kerberos
documentation.

Start all i npal ad and st at est or ed daemonswith the##pr i nci pal and ##keyt ab-fi | e flags set to the
principal and full path name of the keyt ab file containing the credentials for the principal .

To enable Kerberos in the Impala shell, start thei npal a- shel | command using the - k flag.

To enable Impalato work with Kerberos security on your Hadoop cluster, make sure you perform the installation
and configuration steps in Authentication in Hadoop. Note that when Kerberos security is enabled in Impala, aweb
browser that supports Kerberos HTTP SPNEGO is required to access the Impala web console (for example, Firefox,
Internet Explorer, or Chrome).

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceM anager, NodeM anagers,
HttpFS, Oozie, Impala, or Impala statestore services are configured to use Kerberos HTTP SPNEGO authentication,
and two or more of these services are running on the same host, then all of the running services must use the same
HTTP principal and keytab file used for their HTTP endpoints.

Configuring Impala to Support Kerberos Security
Enabling K erberos authentication for Impalainvolves steps that can be summarized as follows:

e Creating service principals for Impalaand the HTTP service. Principal names take the form:
serviceNane/ ful ly. qualified. donmai n. nanme @XERBERCS. REALM

InImpala 2.0 and later, user () returnsthe full Kerberos principa string, such asuser @xanpl e. comina
Kerberized environment.

« Creating, merging, and distributing key tab files for these principals.
« Editing/ et c/ def aul t /i npal a to accommodate Kerberos authentication.

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the
fully qualified domain name of each node running i npal ad, and the realm name. For example:

$ kadmin
kadnmi n: addprinc -requires_preauth -randkey inpal a/
i mpal a_host . exanpl e. com@lEST. EXAMPLE. COM

2. Createan HTTP service principal. For example:

kadmi n: addprinc -randkey HITP/i npal a_host . exanpl e. com@l'EST. EXAMPLE. COM

http://web.mit.edu/Kerberos/krb5-1.8/
http://web.mit.edu/Kerberos/krb5-1.8/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SecureMode.html#Authentication

| Impala Security | 92

Note: The HTTP component of the service principal must be uppercase as shown in the preceding example.
3. Createkeyt ab fileswith both principals. For example:

kadnmi n: xst -k inpal a. keytab inpal a/inpal a_host. exanpl e. com
kadnmi n: xst -k http. keytab HTTP/i npal a_host. exanpl e. com
kadm n: quit

4. Usektutil toread the contents of the two keytab files and then write those contents to a new file. For example:

$ ktutil

ktutil: rkt inpala.keytab
ktutil: rkt http. keytab
ktutil: wkt inpala-http.keytab
ktutil: quit

5. (Optional) Test that credentialsin the merged keytab file are valid, and that the “renew until” date isin the future.
For example:

$ klist -e -k -t inpala-http. keytab

6. Copy thei npal a- htt p. keyt ab file to the Impala configuration directory. Change the permissionsto be only
read for the file owner and change the file owner to the i npal a user. By default, the Impala user and group are
both named i npal a. For example:

$ cp inpal a-http. keytab /etc/inpal a/ conf
$ cd /etc/inpal a/ conf

$ chnod 400 i npal a- htt p. keyt ab

$ chown inpal a:inpal a i npal a-http. keyt ab

7. Add Kerberos options to the Impala defaultsfile, / et ¢/ def aul t /i nmpal a. Add the options
for both thei npal ad and st at est or ed daemons, using the | MPALA SERVER ARGS and
| MPALA_STATE_STORE_ARGS variables. For example, you might add:

-kerberos _reinit_interval =60
-princi pal =i npal a_1/i npal a_host . exanpl e. com@rEST. EXAMPLE. COM
-keytab_fil e=/path/tol/inpal a. keytab

For more information on changing the Impala defaults specified in/ et ¢/ def aul t / i npal a, see Modifying
Impala Sartup Options.

Note: Restarti mpal ad and st at est or ed for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impalawith High Availability isto use a proxy server to submit requests to the actual
i mpal ad daemons on different hosts in the cluster. This configuration avoids connection problemsin case of
machine failure, because the proxy server can route new requests through one of the remaining hosts in the cluster.
This configuration also helps with load balancing, because the additional overhead of being the “ coordinator node”
for each query is spread across multiple hosts.

Although you can set up a proxy server with or without Kerberos authentication, typically users set up a secure
Kerberized configuration. For information about setting up a proxy server for Impala, including Kerberos-specific
steps, see Using Impala through a Proxy for High Availability on page 67.

Using a Web Browser to Access a URL Protected by Kerberos HTTP SPNEGO
Y our web browser must support Kerberos HTTP SPNEGO. For example, Chrome, Firefox, or Internet Explorer.
To configure Firefox to accessa URL protected by KerberosHTTP SPNEGO:

1. Open the advanced settings Firefox configuration page by loading the about : conf i g page.
2. UsetheFilter text box to find net wor k. negot i at e-aut h. trusted-uris.

| Impala Security | 93

3. Double-click thenet wor k. negot i at e- aut h. t rust ed- uri s preference and enter the hostname or
the domain of the web server that is protected by Kerberos HTTP SPNEGO. Separate multiple domains and
hostnames with a comma.

4. Click OK.

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Clients on page 97 for details about the del egation feature that lets certain
users submit queries using the credentials of other users.

Using TLS/SSL with Business Intelligence Tools

Y ou can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC
applications to Impala. See Configuring Impala to Work with JDBC on page 801 and Configuring Impala to Work
with ODBC on page 801 for details.

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both K erberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an aternative JDBC driver that
supports both of these security features.

Enabling Access to Internal Impala APIs for Kerberos Users

For applications that need direct access to Impaa APIs, without going through the HiveServer2 or Beeswax
interfaces, you can specify alist of Kerberos users who are allowed to call those APIs. By default, thei npal a and
hdf s users are the only ones authorized for thiskind of access. Any users not explicitly authorized through the

i nternal _principal s_whitelist configuration setting are blocked from accessing the APIs. This setting
appliesto all the Impala-related daemons, athough currently it is primarily used for HDFS to control the behavior of
the catalog server.

Mapping Kerberos Principals to Short Names for Impala

In Impala 2.6 and higher, Impalarecognizestheaut h_t o_I| ocal setting, specified through the HDFS
configuration setting hadoop. security. auth_to_| ocal . Thisfeatureis disabled by default, to avoid an
unexpected change in security-related behavior. To enableit:

e Specify ##| oad_aut h_t o_| ocal _rul es=t rue inthei npal ad and cat al ogd configuration settings.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). Thisfeatureis crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impalauses LDAP for authentication, verifying the credentials of each user who connectsthroughi npal a-
shel | , Hue, aBusiness Intelligence tool, JDBC or ODBC application, and so on.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically i npal a). To implement user-level accessto different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Impala Authorization on page 83.

An alternative form of authentication you can use is Kerberos, described in Enabling Kerberos Authentication for
Impala on page 90.

Requirements for Using Impala with LDAP

Authentication against LDAP serversisavailable in Impala 1.2.2 and higher. Impala 1.4.0 adds support for secure
LDAP authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the
scenes.

Consideration for Connections Between Impala Components

Only client-lmpala connections can be authenticated by LDAP.

| Impala Security | 94

Y ou must use the Kerberos authentication mechanism for connections between internal Impala components, such
as betweenthei npal ad, st at est or ed, and cat al ogd daemons. See Enabling Kerberos Authentication for
Impala on page 90 on how to set up Kerberos for Impala.

Enabling LDAP in Command Line Interface

To enable LDAP authentication, start thei npal ad with the following startup options for:

--enabl e_| dap_auth Enables L DAP-based authentication between the client
and Impala.
--l dap_uri Sets the URI of the LDAP server to use. Typically,

the URI isprefixed with | dap: / /. You can

specify secure SSL-based LDAP transport by

using the prefix | daps: / /. The URI can

optionally specify the port, for example: | dap: //

| dap_server. exanpl e. com 389 or | daps://
| dap_server. exanpl e. com 636. (389 and
636 are the default ports for non-SSL and SSL LDAP
connections, respectively.)

-- 1 dap_search_bi nd_aut henti cati on Allows to switch between search and simple bind user
lookup methods when authenticating, the default valueis
fal se whichissimplebind.

Bind User Credentials

The bind user is used to run the user/group searches, the credentials can be configured with the following flags:

- -1 dap_al | ow_anonyrous_bi nds When true, LDAP authentication with a blank password
(an'anonymous bind") is alowed by Impala. The default
valueisf al se.

- -1 dap_bi nd_dn Distinguished name of the user to bind as when doing
user or group searches. Only required if user or group
filters are being used and the LDAP server is not
configured to allow anonymous searches.

- -l dap_bi nd_password_cnd A Unix command whose output returns the password
tousewith - - | dap_bi nd_dn. The output of the
command will be truncated to 1024 bytes and trimmed of
trailing whitespace.

Simple Bind User Authentication

When Impala connectsto LDAP it issues abind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. Thisis necessary so that Impala can
use Ranger for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, ' henry') to amore complicated string. If necessary, specify one
of the following configuration options when starting the i npal ad daemon.

Note: The- -1 dap_domai n,--1dap_baseDNand- - | dap_bi nd_pat t er n options are mutually exclusive,
and Impala does not start if more than one of these options are specified.

-- | dap_domai n Replaces the username with a string
user nanme@ dap_domai n.

| Impala Security | 95

-- | dap_baseDN Replaces the username with a “ distinguished name”
(DN) of theform: ui d=useri d, | dap_baseDN.
(Thisisequivalent to a Hive option).

-- | dap_bind_pattern Thisisthe most general option, and replaces the
username with the string ldap_bind_pattern where
all instances of the string #Ul D are replaced with
userid. For example, anl dap_bi nd_pattern
of "user =#Ul D, OU=f oo, CN=bar " witha
username of henr y will construct a bind name of
"user =henry, OU=f oo, CN=bar ".

--ldap_user_filter A comma separated list of usernames. If specified, users
must be on thislist for authentication to succeed

--ldap_group_filter If specified, users must belong to one of these groups for
authentication to succeed.

-- | dap_group_dn_pattern Colon separated list of patterns for the 'distinguished
name' use to search for groups in the directory. Each
pattern may contain a'%s which will be substituted
with each group namefrom- - | dap_group_filter
when doing group searches.

- -1 dap_gr oup_nenber shi p_key The LDAP attribute on group entries that indicates its
members.
- -1 dap_group_cl ass_key The LDAP objectClass each of the groupsin - -

| dap_group_filter implementsin LDAP.

Search Bind User Authentication

When Search Bind authentication is enabled Impalafirst tries to bind with the configured bind user, then executes an
LDAP Search operation to find if the user exists. Once the search succeeds the DN isretrieved from the LDAP search
results and another LDAP bind request is executed, this time with the connecting user to verify the password.

This authentication method allows to authenticate users existing in different LDAP subtrees when these users' parent
treeis configured as base DN.

--l dap_user_search_basedn The 'distinguished name' DN that will be used to search
for the authenticating user, thisfield is required for
search bind authentication.

--1 dap_group_search_basedn The 'distinguished name' DN that will be used to search
for the authenticating group. If left empty, group checks
will not be performed.

--ldap_user_filter LDAP filter that will be used during LDAP
search, it can contain { 0} pattern which will
be replaced with the username. The default
valueis (&(obj ect C ass=user)
(sAMAccount Name={0})).

--ldap_group filter LDAPfilter that will be used during LDAP group
search, it can contain { 1} pattern which will be
replaced with the username and/or { 0} which will

| Impala Security | 96

be replaced with the user DN. The default valueis
(&(obj ect d ass=gr oup) (menber ={0}).

Note: The behaviour of this flag has been changed
between Impala 4.1 and Impala 4.2 to comply with
Spring LDAP. Previously { 0} was for username and
{1} for user dn, these paramters were swapped, now
{0} isforuser dnand { 1} isfor username.

Secure LDAP Connections

To avoid sending credentials over the wirein cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connectionsthrough SSL:

For SSL-enabled LDAP connections, specify aprefix of | daps: // instead of | dap: / /. Also, the default port for
SSL-enabled LDAP connectionsis 636 instead of 389.

-- 1 dap_passwords_i n_cl ear _ok Allows LDAP passwords to be sent in the clear (without
TLS/SSL) over the network, when set tot r ue. This
option should not be used in production environments.

Secure LDAP connectionsthrough TLS:

TLS the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TL S connections. To secure all connections using TLS,
specify the following flags as startup optionsto thei npal ad daemon.

--ldap_tls TellsImpalato start a TL'S connection to the LDAP
server, and to fail authentication if it cannot be done.

--ldap_ca_certificate Specifies the location of the certificate in standard . PEM
format. Store this certificate on the local filesystem, in
alocation that only thei npal a user and other trusted
users can read.

LDAP Authentication for impala-shell

To connect to Impala using LDAP authentication, you specify command-line optionsto thei npal a- shel |
command interpreter and enter the password when prompted:

-1 Enables L DAP authentication.

-u Setsthe user. Per Active Directory, the user is the short
username, not the full LDAP distinguished name. If
your LDAP settings include a search base, usethe - -
| dap_bi nd_patt ernonthei npal ad daemon to
trandlate the short username fromi npal a- shel |
automatically to the fully qualified name.

--auth_creds_ok_i n_cl ear If set, LDAP authentication may be used with an
insecure connection to Impala. Thisflag is required when
SSL betweeni npal a- shel | and Impala Server is not
configured. Authentication credentials will therefore be
sent unencrypted, and may be vulnerable to attack.

Note: i npal a- shel | automatically prompts for the password.

http://en.wikipedia.org/wiki/Transport_Layer_Security

| Impala Security | 97

See Configuring Impala to Work with JDBC on page 801 for the format to use with the JDBC connection string for
servers using LDAP authentication.

Enabling LDAP for Impala in Hue

Enabling LDAP for Impala in Hue in the Command Line Interface

LDAP authentication for the Impala app in Hue can be enabled by setting the following properties under the
[i mpal a] sectioninhue. ini .

aut h_user name LDAP username of Hue user to be authenticated.
aut h_password L DAP password of Hue user to be authenticated.

These login details are only used by Impalato authenticate to LDAP. The Impala service trusts Hue to have aready
validated the user being impersonated, rather than simply passing on the credentials.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Clients on page 97 for details about the delegation feature that lets certain
users submit queries using the credentials of other users.

LDAP Restrictions for Impala
The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each i npal ad daemon can
accept both Kerberos and L DAP requests through the same port. No special actions need to be taken if some users
authenticate through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each i npal ad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that

was set up with the appropriate authentication type. Once the initial request was made using either Kerberos or
LDAP authentication, Impala automatically handled the process of coordinating the work across multiple nodes and
transmitting intermediate results back to the coordinator node.

Configuring Impala Delegation for Clients

When users submit Impala queries through a separate client application, such as Hue or a businessintelligence

tool, typically all requests are treated as coming from the same user. In Impala 1.2 and higher, Impala supports
“delegation” where users whose hames you specify can delegate the execution of a query to another user. The query
runs with the privileges of the delegated user, not the original authenticated user.

Starting in Impala 3.1 and higher, you can delegate using groups. Instead of listing alarge number of delegated users,
you can create a group of those users and specify the delegated group name in thei npal ad startup option. The
client sends the del egated user name, and Impala performs an authorization to seeif the delegated user belongsto a
delegated group.

The name of the delegated user is passed using the HiveServer2 protocol configuration property
i mpal a. doas. user when the client connectsto Impala

Currently, the delegation feature is available only for Impala queries submitted through application interfaces such as
Hue and Bl tools. For example, Impala cannot issue queries using the privileges of the HDFS user.

~ Attention:
L2« Whenthedd egation is enabled in Impala, the Impala clients should take an extra caution to prevent
unauthorized access for the delegate-able users.

* Impaarequires Apache Ranger on the cluster to enable delegation.

| Impala Security | 98

The delegation feature is enabled by the startup options for i npal ad: ##aut hori zed_pr oxy_user _confi g
and ##aut hori zed_proxy_group_config.

The syntax for the options are:

##aut hori zed_proxy_user _confi g=aut henti cat ed_user 1=del egat ed_user 1, del egated_user2, ... ;:

##aut hori zed_proxy_group_confi g=aut henti cat ed_user 1=del egat ed_gr oupl, del egat ed_group2, ..

e Thelist of authorized users/groups are delimited with ;
e Thelist of delegated users/groups are delimited with , by defaullt.

e Usethe##aut hori zed_proxy_user _config_del i m ter startup option to override the default user
delimiter (the comma character) to another character.

e Usethe##aut hori zed_proxy_group_config_deliniter startup option to override the default group
delimiter ((the comma character) to another character.

« Wildcard (*) is supported to delegated to any users or any groups, e.g.
##aut hori zed_pr oxy_group_confi g=hue=*. Make sure to use single quotes or escape charactersto
ensure that any * characters do not undergo wildcard expansion when specified in command-line arguments.

When you start Impalawith the
##aut hori zed_proxy_user _confi g=aut henti cat ed_user =del egat ed_user or
##aut hori zed_proxy_group_confi g=aut henti cat ed_user =del egat ed_gr oup option:

« Authentication is based on the user on the left hand side (authenticated_user).
« Authorization is based on the right hand side user(s) or group(s) (delegated user, delegated_group).

« When opening a client connection, the client must provide a delegated username via the HiveServer2 protocol
property,i mpal a. doas. user or Del egati onUl D.

When the client connects over HTTP, the doAs parameter can be specified inthe HTTP path, e.g./ ?
doAs=delegated user.

* Itisnot necessary for authenticated user to have the permission to access/edit files.

» Itisnot necessary for the delegated users to have access to the service via Kerberos.

» delegated_user and delegated group must exist in the OS.

« For group delegation, use the JNI-based mapping providers for group delegation, such as
JniBasedUnixGroupsM appingWithFallback and JniBasedUnixGroupsNetgroupM appi ngWithFallback.

» ShellBasedUnixGroupsNetgroupM apping and Shell BasedUnixGroupsM apping Hadoop group
mapping providers are not supported in Impala group delegation by default. To enable them, flag
enabl e_shel | _based_gr oups_rmappi ng needsto be enabled.

e InImpala user () returnsauthenticated_user and ef f ect i ve_user () returns the delegated user that the
client specified.

The user or group delegation process works as follows:

1. Thei npal ad daemon starts with one of the following options:

e ##aut hori zed_proxy_user _confi g=aut henti cat ed_user =del egat ed_user
e ##aut hori zed_proxy_group_config=aut henti cated_user =del egat ed_gr oup

2. A client connectsto Impalaviathe HiveServer2 protocol with thei npal a. doas. user configuration property,
e.g. connected user is authenticated user withi npal a. doas. user =del egat ed_user.

3. Theclient user authenticated user sends arequest to Impala as the delegated user delegated user.
4. Impalachecks authorization:

« Inuser delegation, Impala checksif delegated user isin thelist of authorized delegate users for the user
authenticated user.
< Ingroup delegation, Impala checksif delegated user belongs to one of the delegated groups for the user
authenticated user, delegated group in this example.
5. If the user is an authorized delegated user for authenticated_user, the request is executed as the delegate user
delegated_user.

| Impala Security | 99

See Modifying Impala Sartup Options on page 32 for details about adding or changing i npal ad startup
options.

See this blog post for background information about the delegation capability in HiveServer2.
To set up authentication for the delegated users:

» Onthe server side, configure either user/password authentication through LDAP, or Kerberos authentication,
for all the delegated users. See Enabling LDAP Authentication for Impala on page 93 or Enabling Kerberos
Authentication for Impala on page 90 for details.

« Ontheclient side, to learn how to enable delegation, consult the documentation for the ODBC driver you are
using.

Auditing Impala Operations

To monitor how Impala data is being used within your organization, ensure that your Impala authorization and
authentication policies are effective. To detect attempts at intrusion or unauthorized access to Impala data, you can
use the auditing feature in Impala 1.2.1 and higher:

« Enable auditing by including the option ##audi t _event | og di r=di rectory_pathinyouri npal ad
startup options. The log directory must be alocal directory on the server, not an HDFS directory.

» Decide how many queries will be represented in each audit event log file. By default, Impala starts
anew audit event log file every 5000 queries. To specify adifferent number, include the option
##max_audit _event log _file_size=nunber_of queries inthei npal ad startup options.

* InImpala2.9 and higher, you can control how many audit event log files are kept on each host. Specify the option
##max_audi t _event | og_fil es=nunber_of | og fil esinthei npal ad startup options. Once the
limit is reached, older files are rotated out using the same mechanism as for other Impalalog files. The default
value for this setting is 0, representing an unlimited number of audit event log files.

» Useacluster manager with governance capabilities to filter, visualize, and produce reports based on the audit logs
collected from al the hosts in the cluster.

Durability and Performance Considerations for Impala Auditing
The auditing feature only imposes performance overhead while auditing is enabled.

Because any Impala host can process a query, enable auditing on all hosts where thei npal ad daemon runs. Each
host storesits own log files, in adirectory in the local filesystem. Thelog datais periodically flushed to disk (through
anfsync() system call) to avoid loss of audit datain case of acrash.

The runtime overhead of auditing applies to whichever host serves as the coordinator for the query, that is, the host
you connect to when you issue the query. This might be the same host for all queries, or different applications or users
might connect to and issue queries through different hosts.

To avoid excessive 1/0 overhead on busy coordinator hosts, Impala syncs the audit log data (using thef sync()
system call) periodically rather than after every query. Currently, thef sync() callsareissued at afixed interval,
every 5 seconds.

By default, Impala avoids losing any audit log datain the case of an error during alogging operation (such as adisk
full error), by immediately shutting down i npal ad on the host where the auditing problem occurred. Y ou can
override this setting by specifying the option ##abort _on_f ai | ed_audi t _event =f al se inthei npal ad
startup options.

Format of the Audit Log Files

The audit log files represent the query information in JISON format, one query per line. Typically, rather than looking
at the log files themselves, you should use cluster-management software to consolidate the log data from all Impala
hosts and filter and visualize the results in useful ways. (If you do examine the raw log data, you might run the files
through a JSON pretty-printer first.)

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/

| Impala Security | 100

All the information about schema objects accessed by the query is encoded in a single nested record on the same line.
For example, the audit log for an | NSERT ... SELECT statement records that a select operation occurs on the
source table and an insert operation occurs on the destination table. The audit log for a query against a view records
the base table accessed by the view, or multiple base tables in the case of aview that includes ajoin query. Every
Impala operation that corresponds to a SQL statement is recorded in the audit logs, whether the operation succeeds or
fails. Impala records more information for a successful operation than for afailed one, because an unauthorized query
is stopped immediately, before al the query planning is completed.

The information logged for each query includes:
* Client session state:

e SessionID

¢ User name

* Network address of the client connection
e SQL statement details:

e QueryID

e Statement Type- DML, DDL, and so on

e SQL statement text

e Execution start time, in local time

« Execution Status - Details on any errors that were encountered
» Target Catalog Objects:

* Object Type- Table, View, or Database
« Fully qualified object name
e Privilege - How the object is being used (SELECT, | NSERT, CREATE, and so on)

Which Operations Are Audited
The following types of SQL operations are recorded in the audit log:

e Queriesthat are prevented due to lack of authorization.

e Queriesthat Impalacan analyze and parse to determine that they are authorized. The audit datais recorded
immediately after Impalafinishesits anaysis, before the query is actually executed.

* Querieswhose results are available to be fetched by clients.
e Finished DDL operations.

The audit log does not contain entries for queries that could not be parsed and analyzed. For example, a query that
fails due to a syntax error is not recorded in the audit log.

The audit log does not contain queries that fail due to areference to atable that does not exist.

Certain statementsinthei npal a- shel | interpreter, such as CONNECT, SUMMARY, PROFI LE, SET, and QUI T,
do not correspond to actual SQL queries, and these statements are not recorded in the audit log.

Viewing Lineage Information for Impala Data

Lineageis afeature that helps you track where data originated, and how data propagates through the system through
SQL statements such as SELECT, | NSERT, and CREATE TABLE AS SELECT.

Thistype of tracking isimportant in high-security configurations, especialy in highly regulated industries such as
healthcare, pharmaceuticals, financial services and intelligence. For such kinds of sensitive data, it isimportant to
know all the placesin the system that contain that data or other data derived from it; to verify who has accessed that
data; and to be able to doublecheck that the data used to make a decision was processed correctly and not tampered
with.

| Impala SQL Language Reference | 101

Column Lineage
Column lineage tracks information in fine detail, at the level of particular columns rather than entire tables.

For example, if you have atable with information derived from web logs, you might copy that data into other tables
as part of the ETL process. The ETL operations might involve transformations through expressions and function calls,
and rearranging the columns into more or fewer tables (normalizing or denormalizing the data). Then for reporting,
you might issue queries against multiple tables and views. In this example, column lineage hel ps you determine that
data that entered the system as RAW LOGS. FI ELD1 was then turned into WEBSI TE_REPORTS. | P_ADDRESS
throughan | NSERT ... SELECT statement. Or, conversely, you could start with areporting query against a view,
and trace the origin of the datain afield suchas TOP_10_VI SI TORS. USER | D back to the underlying table and
even further back to the point where the data was first loaded into Impala.

When you have tables where you need to track or control access to sensitive information at the column level, see
Impala Authorization on page 83 for how to implement column-level security. Y ou set up authorization using

the Ranger framework, create views that refer to specific sets of columns, and then assign authorization privileges to
those views rather than the underlying tables.

Lineage Data for Impala

The lineage feature is enabled by default. When lineage logging is enabled, the serialized column lineage graph is
computed for each query and stored in a specialized log filein JSON format.

Impalarecords queries in the lineage log if they complete successfully, or fail due to authorization errors. For write
operations such as| NSERT and CREATE TABLE AS SELECT, the statement is recorded in the lineage log only if
it successfully completes. Therefore, the lineage feature tracks data that was accessed by successful queries, or that
was attempted to be accessed by unsuccessful queries that were blocked due to authorization failure. These kinds of
queries represent data that really was accessed, or where the attempted access could represent malicious activity.

Impala does not record in the lineage log queries that fail due to syntax errors or that fail or are cancelled before they
reach the stage of requesting rows from the result set.

To enable or disable this feature, set or removethe- | i neage_event _| og_di r configuration option for the
i mpal ad daemon.

Impala SQL Language Reference

Impala uses SQL asits query language. To protect user investment in skills development and query design, Impala
provides a high degree of compatibility with the Hive Query Language (HiveQL):

» Because Impala uses the same metadata store as Hive to record information about table structure and properties,
Impala can access tables defined through the native Impala CREATE TABLE command, or tables created using
the Hive data definition language (DDL).

* Impalasupports data manipulation (DML) statements similar to the DML component of HiveQL.
e Impala provides many built-in functions with the same names and parameter types as their HiveQL equivalents.

Impala supports most of the same statements and clauses as HiveQL, including, but not limitedto JO N,
AGGREGATE, DI STI NCT, UNI ON ALL, ORDER BY, LI M T and (uncorrelated) subquery in the FROMclause.
Impalaalso supports | NSERT | NTOand | NSERT OVERWRI TE.

Impal a supports data types with the same names and semantics as the equivalent Hive data types: STRI NG,
TI NYI NT, SMALLI NT, I NT, Bl G NT, FLOAT, DOUBLE, BOOLEAN, STRI NG, TI MESTAMP.

For full details about Impala SQL syntax and semantics, see Impala SQL Statements on page 213.

Most HiveQL SELECT and | NSERT statements run unmodified with Impala. For information about Hive syntax not
availablein Impala, see QL Differences Between Impala and Hive on page 606.

For alist of the built-in functions available in Impala queries, see Impala Built-In Functions on page 428.

| Impala SQL Language Reference | 102

Comments

Impala supports the familiar styles of SQL comments:

« Alltextfroma- - sequenceto the end of the line is considered a comment and ignored. This type of comment can
occur on asingle line by itself, or after al or part of a statement.

e Alltextfroma/ * sequenceto the next */ sequenceis considered a comment and ignored. This type of comment
can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a
statement, or before or after a statement.

For example:

-- This line is a conment about a table.
create table ...;

/*

This is a multi-line corment about a query.

*/

select ...;

select * fromt /* This is an enbedded comment about a query. */ where ...;

select * fromt -- This is a trailing coment within a nulti-Iline comrand.
where ...;

Data Types

Impala supports a set of data types that you can use for table columns, expression values, and function arguments and
return values.

Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing a table containing any
columns with unsupported types causes an error.

For the notation to write literals of each of these data types, see Literals on page 173.
Impala supports alimited set of implicit caststo avoid undesired results from unexpected casting behavior.

e Impaladoes not implicitly cast between string and numeric or Boolean types. Always use CAST() for these
conversions.

* Impaladoes perform implicit casts among the numeric types, when going from a smaller or less precise typeto a
larger or more precise one. For example, Impalawill implicitly convert a SMALLI NT to aBl G NT or FLOAT, but
to convert from DOUBLE to FLOAT or | NT to Tl NYI NT requiresacall to CAST() inthe query.

» Impaladoes perform implicit casts from STRI NGto TI MESTAMP. Impala has arestricted set of literal formats
for the TI MESTAMP data type and the FROM_UNI XTI ME() format string; see TIMESTAMP Data Type on page
133 for details.

See the topics under this section for full details on implicit and explicit casting for each data type, and see Impala
Type Conversion Functions on page 467 for details about the CAST() function.

ARRAY Complex Type (Impala 2.3 or higher only)

A complex datatype that can represent an arbitrary number of ordered elements. The elements can be scalars or
another complex type (ARRAY, STRUCT, or MAP).

Syntax:

col unm_nane ARRAY < type >

| Impala SQL Language Reference | 103

type ::= primtive_type | conplex_type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 142 for
background information and usage examples.

The elements of the array have no names. Y ou refer to the value of the array item using the | TEMpseudocolumn,
or its position in the array with the POS pseudocolumn. See ITEM and POS Pseudocolumns on page 157 for
information about these pseudocolumns.

Each row can have a different number of elements (including none) in the array for that row.

When an array contains items of scalar types, you can use aggregation functions on the array elements without using
join notation. For example, you can find the COUNT() , AVE) , SUM) , and so on of numeric array elements, or

the MAX() and M N() of any scalar array elements by referringtot abl e_name. array_col um in the FROM
clause of the query. When you need to cross-reference values from the array with scalar values from the same row,
such as by including a GROUP BY clause to produce a separate aggregated result for each row, then thejoin clauseis
required.

A common usage pattern with complex typesis to have an array as the top-level type for the column: an array of
structs, an array of maps, or an array of arrays. For example, you can model a denormalized table by creating a
column that is an ARRAY of STRUCT elements; each item in the array represents a row from atable that would
normally be used in ajoin query. Thiskind of data structure lets you essentially denormalize tables by associating
multiple rows from one table with the matching row in another table.

Y ou typically do not create more than one top-level ARRAY column, because if there is some relationship between
the elements of multiple arrays, it is convenient to model the data as an array of another complex type element (either
STRUCT or MAP).

Y ou can pass a multi-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and
visualizeits structure asiif it were atable. For example, if table T1 contains an ARRAY column Al, you could issue
the statement DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and afield F1 within the STRUCT
was a MAP, you could issue the statement DESCRI BE t 1. s1. f 1. An ARRAY is shown as atwo-column table, with
| TEMand PGS columns. A STRUCT is shown as atable with each field representing acolumn in the table. A MAP is
shown as a two-column table, with KEY and VAL UE columns.

Added in: Impala2.3.0
Restrictions:

» Columnswith this data type can only be used in tables or partitions with the Parquet or ORC file format.
e Columns with this data type cannot be used as partition key columns in a partitioned table.
« The COVWPUTE STATS statement does not produce any statistics for columns of this data type.

¢ The maximum length of the column definition for any complex type, including declarations for any nested types,
iS 4000 characters.

» SeelLimitations and Restrictions for Complex Types on page 146 for afull list of limitations and associated
guidelines about complex type columns.

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
165 for the table definitions.

The following example shows how to construct a table with various kinds of ARRAY columns, both at the top level
and nested within other complex types. Whenever the ARRAY consists of ascalar value, such asin the PETS column
or the CHI LDREN field, you can see that future expansion is limited. For example, you could not easily evolve the

| Impala SQL Language Reference | 104

schemacto record the kind of pet or the child's birthday alongside the name. Therefore, it is more common to use an
ARRAY whose elements are of STRUCT type, to associate multiple fields with each array element.

Note: Practicethe CREATE TABLE and query notation for complex type columns using empty tables, until you can
visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE array_deno

id Bl G NT,
name STRI NG

-- An ARRAY of scalar type as a top-Ilevel colum.
pets ARRAY <STRI NG,

-- An ARRAY with el enents of conplex type (STRUCT).
pl aces |ived ARRAY < STRUCT <
pl ace: STRI NG
start_year: |NT
>>

-- An ARRAY as a field (CH LDREN) within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-Ilevel columm.)
marri ages ARRAY < STRUCT <
spouse: STRI NG
chil dren: ARRAY <STRI NG
>>

-- An ARRAY as the value part of a MAP.
-- The first MAP field (the key) would be a val ue such as
-- '"Parent' or 'Gandparent', and the corresponding array woul d
-- represent 2 parents, 4 grandparents, and so on.
ancestors MAP < STRI NG ARRAY <STRI N& >

)
STORED AS PARQUET;
The following example shows how to examine the structure of a table containing one or more ARRAY columns by

using the DESCRI BE statement. Y ou can visualize each ARRAY as its own two-column table, with columns | TEM
and PCS.

DESCRI BE array_deno;

focccosccoscoos foocccocccocccocccosccosooos +
| nane | type I
docccosccoscoos foccccocccocccocccosccosooos +

id bi gi nt

name string

pets array<string>

I I
I I
I I
marri ages | array<struct< |
| spouse: stri ng, |
| children: array<string> |
| >> I
| array<struct< |
| pl ace: string, |
| start _year:int [
| >> I
I I

map<st ring, array<stri ng>>

pl aces_|ived

ancestors

| item| string |

| Impala SQL Language Reference | 105

item| struct< |
| spouse: stri ng, |
children:array<string> |
|

|

item| struct< [
| pl ace:string, |
start_year:int |
|

|

ool S S +
| name | type |
foocoooc fococococcooccoooos +
| key | string |
| value | array<string> |
demmaoo- S +

The following example shows queriesinvolving ARRAY columns containing elements of scalar or complex types.
You “unpack” each ARRAY column by referring to it in ajoin query, asif it were a separate table with | TEMand
PGS columns. If the array element is a scalar type, you refer to its value using the | TEMpseudocolumn. If the array
element isa STRUCT, you refer to the STRUCT fields using dot notation and the field names. If the array element is
another ARRAY or a MAP, you use another level of join to unpack the nested collection elements.

-- Array of scal ar val ues.

-- Each array el enent represents a single string, plus we know its position
in the array.

SELECT id, nane, pets.pos, pets.item FROM array_deno, array_deno. pets;

-- Array of structs.
-- Now each array el enent has naned fields, possibly of different types.
-- You can consider an ARRAY of STRUCT to represent a table inside another
tabl e.
SELECT id, nane, places_lived.pos, places_lived.item pl ace,
pl aces_lived.itemstart_year
FROM array_denop, array_deno. pl aces_|i ved;

-- The .ITEMnanme is optional for array elenents that are structs.
-- The following query is equivalent to the previous one, with .ITEM
-- renoved fromthe col um references.
SELECT id, name, places_lived. pos, places_lived.place,
pl aces_|ived. start_year
FROM array_denp, array_deno. pl aces_|i ved,;

-- To filter specific items fromthe array, do conpari sons agai nst the .POCS
or .ITEM
-- pseudocol uims, or names of struct fields, in the WHERE cl ause.

| Impala SQL Language Reference | 106

SELECT id, nane, pets.item FROM array_denp, array_deno. pets
WHERE pets.pos in (0, 1, 3);

SELECT id, nane, pets.item FROM array_denp, array_denp. pets
WHERE pets.itemLIKE ' M. %;

SELECT id, nane, places_lived.pos, places_lived.place,
pl aces_lived. start_year
FROM array_deno, array_deno. pl aces_|ived
VWHERE pl aces_lived. place like '%California%;

Related information:

Complex Types (Impala 2.3 or higher only) on page 142, STRUCT Complex Type (Impala 2.3 or higher only) on
page 127, MAP Complex Type (Impala 2.3 or higher only) on page 119

BIGINT Data Type
An 8-byte integer datatype used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme Bl G NT

Range: -9223372036854775808 .. 9223372036854 775807. There is no UNSI GNED subtype.

Conversions: Impalaautomatically converts to a floating-point type (FLOAT or DOUBLE) automatically.

Use CAST() toconvertto TI NYI NT, SMALLI NT, I NT, STRI NG, or TI MESTAMP. Casting an integer

or floating-point value Nto TI MESTAMP produces avalue that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
##use_ |l ocal _tz_for_uni x_timestanp_conversi ons=t rue isin effect, the resulting TI NESTAMP
represents a date and time in the local time zone.

Examples:
CREATE TABLE t1 (x BI G NT);
SELECT CAST(1000 AS BI G NT);

Usage notes:

Bl A NT isaconvenient type to use for column declarations because you can use any kind of integer valuesin

| NSERT statements and they are promoted to Bl G NT where necessary. However, Bl G NT a so requires the most
bytes of any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possible if
you overuse thistype. Therefore, prefer to use the smallest integer type with sufficient range to hold all input values,
and CAST() when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the Bl G NT type, call the functionsM N_BI Gl NT()
and MAX_BI G NT() .

If aninteger valueistoo large to be represented asa Bl G NT, use a DECI MAL instead with sufficient digits of
precision.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use thistype for a partition key column. Impala can process the numeric type more efficiently
than a STRI NG representation of the value.

HBase consider ations: This datatypeis fully compatible with HBase tables.

Text table consider ations: Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

| Impala SQL Language Reference | 107

Internal details: Represented in memory as an 8-byte value.
Added in: Availablein all versions of Impala.

Column statistics consider ations: Because this type has afixed size, the maximum and average size fields are
awaysfilled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:
Numeric Literals on page 174, TINYINT Data Type on page 139, SMALLINT Data Type on page 124, INT
Data Type on page 118, BIGINT Data Type on page 106, DECIMAL Data Type (Impala 3.0 or higher only) on
page 111, Impala Mathematical Functions on page 434

BOOLEAN Data Type
A datatype used in CREATE TABLE and ALTER TABLE statements, representing a single true/fal se choice.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme BOOLEAN

Range: TRUE or FALSE. Do not use quotation marks around the TRUE and FALSE literal values. Y ou can write
the literal valuesin uppercase, lowercase, or mixed case. The values queried from atable are aways returned in
lowercase, t rue or f al se.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an
explicit call to the CAST() function.

You can use CAST() to convert any integer or floating-point type to BOOLEAN: avalue of O representsf al se, and
any non-zero valueis convertedtot r ue.

SELECT CAST(42 AS BOOLEAN) AS nonzero_int, CAST(99.44 AS BOOLEAN) AS
nonzer o_deci mal ,

CAST(000 AS BOOLEAN) AS zero_int, CAST(0.0 AS BOOLEAN) AS zero_deci nal ;
occccococaoos foccoccoccccocosaoos Focococococ ocococococococ +
| nonzero_int | nonzero_decimal | zero_int | zero_deciml |
feccoococooooc feccoccocooocosooc feccococooc feccoocooccooooc +
| true | true | false | false |
foccoococooooc foccoccococoococooc foccococooc feccoocococcooooc +

When you cast the opposite way, from BOOLEAN to a numeric type, the result becomes either 1 or O:

SELECT CAST(true AS INT) AS true_int, CAST(true AS DOUBLE) AS true_doubl e,
CAST(fal se AS INT) AS false_ int, CAST(false AS DOUBLE) AS fal se_doubl e;

Focococococ Fococcoccoccooooe Fococcoccooooe Focococococoococ +
| true_int | true_double | false_int | false_double |
feccococooc feccoococooooc feccoococooc feccoocooccooooc +
| 1 | 1 | O | O I
fesccocoooooc feccocoococoooooc fecococoococooas feccoccccooccooas +

Y ou can cast DECI MAL values to BOOLEAN, with the same treatment of zero and non-zero values as the other
numeric types. Y ou cannot cast a BOOLEANto a DECI MAL.

Y ou cannot cast a STRI NG value to BOOLEAN, although you can cast a BOOLEAN valueto STRI NG, returning ' 1
fortrue valuesand' 0' forf al se values.

Although you can cast a TI MESTAMP to a BOOLEAN or a BOOLEANto a TI MESTAMP, the results are unlikely to
be useful. Any non-zero TI MESTAMP (that is, any value other than 1970- 01- 01 00: 00: 00) becomes TRUE
when converted to BOOLEAN, while 1970- 01- 01 00: 00: 00 becomes FALSE. A vaue of FALSE becomes
1970- 01- 01 00: 00: 00 when converted to BOOLEAN, and TRUE becomes one second past this epoch date, that
is,1970- 01- 01 00: 00: 01.

| Impala SQL Language Reference | 108

NULL considerations: An expression of thistype produces a NULL value if any argument of the expression is
NULL.
Partitioning:

Do not use a BOOLEAN column as a partition key. Although you can create such a table, subsegquent operations
produce errors:

[l ocal host:21000] > create table truth_table (assertion string) partitioned
by (truth bool ean);

[l ocal host:21000] > insert into truth table values ('Pigs can fly', false);

ERROR: Anal ysi sException: INSERT into table with BOOLEAN partition columm
(truth) is not supported: partitioning.truth_table

Examples:

SELECT 1 < 2;
SELECT 2 = 5;
SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING really BOOLEAN);
| NSERT | NTO assertions VALUES
("1l is less than 2", 1 < 2),
("2 is the same as 5", 2 = 5),
("Grass is green", true),

("The noon is nmade of green cheese", false);
SELECT cl ai m FROM assertions WHERE real ly = TRUE;
HBase consider ations: This datatypeis fully compatible with HBase tables.

Par quet considerations: Thistypeisfully compatible with Parquet tables.

Text table consider ations: Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

Column statistics consider ations. Because this type has afixed size, the maximum and average size fields are
alwaysfilled in for column statistics, even before you run the COMPUTE STATS statement.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columnsin Kudu tables.

Related information: Boolean Literals on page 176, SQL Operators on page 178, Impala Conditional
Functions on page 502

CHAR Data Type (Impala 2.0 or higher only)

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are
longer than the specified length, Impala truncates any trailing characters.

Syntax:
In the column definition of a CREATE TABLE statement:

col umm_nane CHAR(| engt h)

The maximum length you can specify is 255.
Semantics of trailing spaces:

« When you store a CHAR value shorter than the specified length in atable, queries return the value padded with
trailing spaces if necessary; the resulting value has the same length as specified in the column definition.

* Leading spacesin CHAR are preserved within the datafile.

| Impala SQL Language Reference | 109

» If you store a CHAR value containing trailing spacesin atable, those trailing spaces are not stored in the datafile.
When the value isretrieved by a query, the result could have a different number of trailing spaces. That is, the
value includes however many spaces are needed to pad it to the specified length of the column.

« |f you compare two CHAR values that differ only in the number of trailing spaces, those values are considered
identical.

* When comparing or processing CHAR values:

e CAST() truncates any longer string to fit within the defined length. For example:

SELECT CAST(' x' AS CHAR(4)) = CAST('x ' AS CHAR(4)); -- Returns
TRUE.

« |f aCHARVvalueis shorter than the specified length, it is padded on the right with spaces until it matches the
specified length.

e CHAR LENGTH() returnsthelength including any trailing spaces.

e LENGTH() returnsthe length excluding trailing spaces.

e CONCAT() returnsthelength including trailing spaces.

Partitioning: Thistype can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (I NT, Bl G NT, and so on) where practical.

HBase considerations. This data type cannot be used with HBase tables.
Parquet considerations:

e Thistype can be read from and written to Parquet files.

» Thereisno requirement for a particular level of Parquet.

« Parquet files generated by Impala and containing this type can be freely interchanged with other components such
as Hive and MapReduce.

« Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.

e Parquet datafiles might contain values that are longer than allowed by the CHAR(n) length limit. Impalaignores
any extratrailing characters when it processes those values during a query.

Text table consider ations:

Text data files might contain values that are longer than allowed for a particular CHAR(n) column. Any extratrailing
characters are ignored when Impala processes those values during a query. Text data files can also contain values that
are shorter than the defined length limit, and Impala pads them with trailing spaces up to the specified length. Any
text datafiles produced by Impalal NSERT statements do not include any trailing blanks for CHAR columns.

Avro consider ations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR valuesin Avro tables
to (2¥*31)-1 bytes. If aquery encounters a STRI NGvalue longer than (2**31)-1 bytesin an Avro table, the query
fails. In earlier releases, encountering such long valuesin an Avro table could cause a crash.

Compatibility:
Thistypeisavailable using Impala 2.0 or higher.
Some other database systems make the length specification optional. For Impala, the length is required.

Internal details. Represented in memory as a byte array with the same size as the length specification. Values that
are shorter than the specified length are padded on the right with trailing spaces.

Added in: Impala2.0.0

Column statistics consider ations. Because this type has afixed size, the maximum and average size fields are
awaysfilled in for column statistics, even before you run the COMPUTE STATS statement.

UDF considerations. This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

| Impala SQL Language Reference | 110

Kudu consider ations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Per for mance consider ation:

The CHAR type currently does not have the Impala Codegen support, and we recommend using VARCHAR or
STRI NGover CHAR as the performance gain of Codegen outweighs the benefits of fixed width CHAR.

Restrictions:

Because the blank-padding behavior requires allocating the maximum length for each value in memory, for scalability
reasons, you should avoid declaring CHAR columns that are much longer than typical valuesin that column.

All datain CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRI NG column to hold it.

When an expression compares a CHAR with a STRI NG or VARCHAR, the CHAR value isimplicitly converted to
STRI NGfirst, with trailing spaces preserved.

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions
on both sides to CHAR values of the appropriate length. For example:
SELECT CAST("foo " AS CHAR(5)) = CAST('foo’ AS CHAR(3)); -- Returns TRUE

This behavior is subject to change in future rel eases.
Related information:

STRING Data Type on page 125, VARCHAR Data Type (Impala 2.0 or higher only) on page 140, String Literals
on page 175, Impala String Functions on page 509

DATE Data Type
Use the DATE data type to store date values. The DATE typeis supported for Avro, HBase, Kudu, Parquet, and Text.
Range:
0001-01-01 to 9999-12-31
Literalsand expressions:
The DATE literals are in the form of DATE' YYYY- MM DD . For examplep, DATE ' 2013- 01- 01"
Parquet and Avro considerations:

Parquet and Avro use DATE logical type for dates. The DATE logical type annotates an | NT32 that stores the number
of daysfrom the Unix epoch, January 1, 1970. This representation introduces an interoperability issue between
Impalaand older versions of Hive:

If Hive versions lower than 3.1 wrote dates earlier than 1582-10-15 to a Parquet or Avro table, those dates would be
read back incorrectly by Impalaand vice versa. In Hive 3.1 and higher, thisis no longer an issue.

Explicit casting between DATE and other data types:
DATE type can only be converted to/from DATE, TI MESTAMP, or STRI NG types as described below.

Cast from Cast to Result

TI MESTAMP DATE The date component of the TI MESTAMP isreturned, and the time
of the day component of the TI MESTAMP isignored.

| Impala SQL Language Reference | 111

Cast from Cast to Result
STRI NG DATE The DATE value of yyyy- Mt dd isreturned.

The STRI NGvalue must beintheyyyy- MM dd or yyyy- VMM dd
HH: mm ss. SSSSSSSSS pattern.

If the time component is present in STRI NG it is silently ignored.

If the STRI NG value does not match the above formats, an error is

returned.

DATE TI MESTAMP The year, month, and day of the DATE is returned along with the
time of day component set to 00: 00: 00.

DATE STRI NG The STRI NGvalue, ' yyyy- Mt dd' , isreturned.

Implicit casting between DATE and other types:
Implicit casting is supported:

e From STRI NGto DATE if the source STRI NGvaueisintheyyyy- M dd or yyyy- MVt dd
HH: mm ss. SSSSSSSSS pattern.
e From DATE to TI MESTAMP.

Added in:

The DATE typeisavailablein Impala 3.3 and higher.

Kudu considerations:

In Impala 3.4, you can read and write DATE values to Kudu tables.

DECIMAL Data Type (Impala 3.0 or higher only)
The DECI MAL data type is a numeric data type with fixed scale and precision.
The data type is useful for storing and doing operations on precise decimal values.

Syntax:
DECI MAL[(precision[, scale])]

Precision:

precision represents the total number of digits that can be represented regardless of the location of the decimal point.
This value must be between 1 and 38, specified as an integer literal.

The default precisionis 9.

Scale:

scale represents the number of fractional digits.

Thisvalue must be less than or equal to the precision, specified as an integer literal.

The default scaleisO.

When the precision and the scale are omitted, a DECI MAL istreated as DECI MAL(9, 0).
Range:

The range of DECI MAL typeis-10"38 +1 through 10"38 —1.

Thelargest value is represented by DECI MAL(38, 0).

| Impala SQL Language Reference | 112

The most precise fractional value (between 0 and 1, or 0 and -1) is represented by DECI MAL(38, 38), with 38
digitsto the right of the decimal point. The value closest to 0 would be .0000...1 (37 zeros and the final 1). The value
closest to 1 would be .999... (9 repeated 38 times).

Memory and disk storage:

Only the precision determines the storage size for DECI MAL values, and the scal e setting has no effect on the storage
size. The following table describes the in-memory storage once the values are |oaded into memory.

Precision In-memory Storage
1-9 4 bytes

10- 18 8 bytes

19- 38 16 bytes

The on-disk representation varies depending on the file format of the table.
Text, RCFile, and SequenceFile tables use ASCII-based formats as below:

« Leading zeros are not stored.
» Trailing zeros are stored.
« Each DECI MAL value takes up as many bytes as the precision of the value, plus:

* Oneextrabyteif the decimal point is present.
e Oneextrabyte for negative values.

Parquet and Avro tables use binary formats and offer more compact storage for DECI MAL values. In these tables,
Impala stores each value in fewer bytes where possible depending on the precision specified for the DECI MAL
column. To conserve spacein large tables, use the smallest-precision DECI MAL type.

Precision and scalein arithmetic operations:
For all arithmetic operations, the resulting precision is at most 38.

If the resulting precision would be greater than 38, Impala truncates the result from the back, but keeps at least 6
fractional digitsin scale and rounds.

For example, DECI MAL(38, 20) * DECI MAL(38, 20) returns DECI MAL(38, 6).According to thetable
below, the resulting precision and scalewould be (77, 40) , but they are higher than the maximum precision and
scale for DECI MAL. So, Impala sets the precision to the maximum allowed 38, and truncates the scale to 6.

When you use DECI MAL values in arithmetic operations, the precision and scale of the result value are determined as
follows. For better readability, the following terms are used in the table below:

e P1, P2: Input precisions
e S1, S2: Input scales
e L1,L2: Leading digitsininput DECI MALSs,i.e,L1=P1-SlandL2=P2-S2

Operation Resulting Precision Resulting Scale

Addition and Subtraction max (L1, L2) + max (S1,S2) +1 | Max (SL, S2)

lisfor carry-over.

Multiplication PL+P2+1 S1+82
Division L1+S2+max (S1+P2+1,6) max (S1+ P2 + 1, 6)
Modulo min (L1, L2) + max (S1, S2) max (S1, S2)

Precision and scalein functions;

| Impala SQL Language Reference | 113

When you use DECI MAL values in built-in functions, the precision and scale of the result value are determined as
follows:

» Theresult of the SUMaggregate function on a DECI MAL valueis:
* Precision: 38
» Scale: The same scale as the input column

» Theresult of AVGaggregate function on a DECI MAL valueis:

e Precision: 38
« Scale max(Scale of input column, 6)

Implicit conversionsin DECIMAL assignments:

Impalaenforces strict conversion rules in decimal assignments likein | NSERT and UNI ON statements, or in
functions like COALESCE.

If there is not enough precision and scale in the destination, Impalafails with an error.
Impala performs implicit conversions between DECI MAL and other numeric types as below:

e DECI MAL isimplicitly converted to DOUBLE or FLOAT when necessary even with aloss of precision. It can be
necessary, for example when inserting a DECI MAL value into a DOUBLE column. For example:

CREATE TABLE flt(c FLOAT);
I NSERT I NTO flt SELECT CAST(1e37 AS DECI MAL(38, 0));
SELECT CAST(c AS DECI MAL(38, 0)) FROM flt;

Resul t: 9999999933815812510711506376257961984

Theresult has aloss of information due to implicit casting. Thisiswhy we discourage using the DOUBLE and
FLOAT typesin general.

e DOUBLE and FLOAT cannot be implicitly converted to DECI MAL. An error is returned.
« DECI MAL isimplicitly converted to DECI MAL if all digitsfit in the resulting DECI MAL.

For example, the following query returns an error because the resulting type that guarantees that all digits fit
cannot be determined .

SELECT GREATEST (CAST(1 AS DECI MAL(38, 0)), CAST(2 AS DECI MAL(38, 37)));

* Integer values can beimplicitly converted to DECI MAL when there is enough room in the DECI MAL to guarantee
that all digitsfit. The integer types require the following numbers of digits to the left of the decimal point when
converted to DECI VAL:

e BI G NT: 19 digits
e | NT: 10 digits

e SMALLI NT: 5digits
e TI NYI NT: 3 digits

For example:

CREATE TABLE decinmals 10 8 (x DECI MAL(10, 8));
I NSERT | NTO decinmal s_10_8 VALUES (CAST(1 AS TINYINT));

The above | NSERT statement fails because TI NYI NT requires room for 3 digits to the left of the decimal point in
the DECI MAL.

CREATE TABLE deci mal s_11_8(x DECI MAL(11, 8));
I NSERT | NTO deci mal's_11_8 VALUES (CAST(1 AS TINYINT));

The above | NSERT statement succeeds because there is enough room for 3 digits to the |eft of the decimal point
that TI NYI NT requires.

| Impala SQL Language Reference | 114

In UNI ON, the resulting precision and scales are determined as follows.
e Precision: max (L1, L2) + max (S1, S2)

If the resulting type does not fit in the DECI MAL type, an error isreturned. See the first example below.
e Scale max (S1, S2)

Examples for UNI ON:

o DECI MAL(20, 0) UNI ON DECI MAL(20, 20) wouldrequireaDECI MAL(40, 20) tofitall thedigits.
Sincethisislarger than the max precision for DECI MAL, Impalareturns an error. One way to fix the error isto
cast both operands to the desired type, for example DECI MAL(38, 18).

e DECI MAL(20, 2) UNI ON DECI MAL(8, 6) returnsDECI MAL(24, 6).

* | NT UNI ON DECI MAL(9, 4) returnsDECI MAL(14, 4).

I NT hasthe precision 10 and the scale 0, so it istreated asDECI MAL(10, 0) UNI ON DECI MAL(9. 4).
Casting between DECIMAL and other data types:

To avoid potential conversion errors, use CAST to explicitly convert between DECI MAL and other typesin decimal
assignments likein | NSERT and UNI ON statements, or in functions like COALESCE:

* You can cast the following types to DECI MAL: FLOAT, TI NYI NT, SMALLI NT, | NT, Bl G NT, STRI NG

* You can cast DECl MAL to the following types: FLOAT, Tl NYI NT, SMALLI NT, | NT, Bl G NT, STRI NG,
BOOLEAN, TI MESTAMP

Impala performs CAST between DECI MAL and other numeric types as below:

* Precision: If you cast avalue with bigger precision than the precision of the destination type, Impalareturns an
error. For example, CAST(123456 AS DECI MAL(3, 0)) returnsan error because all digits do not fit into
DECI MAL(3, 0)

« Scale If you cast avalue with more fractional digits than the scale of the destination type, the fractiona digits are
rounded. For example, CAST(1. 239 AS DECI MAL(3, 2)) returnsl. 24.

Casting STRING to DECIMAL:

You can cast STRI NG of numeric charactersin columns, literals, or expressions to DECI MAL as long as number fits
within the specified target DECI MAL type without overflow.

» |If scalein STRI NG> scalein DECI MAL, the fractional digits are rounded to the DECI MAL scale.

For example, CAST(' 98. 678912' AS DECI MAL(15, 1)) returns98. 7.
o If #leading digitsin STRI NG > # leading digitsin DECI MAL, an error isreturned.

For example, CAST(' 123. 45" AS DECI MAL(2, 2)) returnsan error.
Exponentia notation is supported when casting from STRI NG,
For example, CAST(' 1. 0Oe6' AS DECI MAL(32, 0)) returns1000000.
Casting any non-numeric value, such as' ABC' to the DECI MAL type returns an error.
Casting DECIMAL to TIMESTAMP:

Casting a DECI MAL value N to TI MESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970).

DECIMAL vsFLOAT consideration:

The FLOAT and DOUBLE types can cause problems or unexpected behavior due to inability to precisely represent
certain fractional values, for example dollar and cents values for currency. Y ou might find output values slightly
different than you inserted, equality tests that do not match precisely, or unexpected values for GROUP BY
columns. The DECI MAL type can help reduce unexpected behavior and rounding errors, but at the expense of some
performance overhead for assignments and comparisons.

Literalsand expressions:

| Impala SQL Language Reference | 115

e Numeric literals without a decimal point

* Theliteras aretreated as the smallest integer that would fit the literal. For example, 111 isa Tl NYI NT, and
1111 isaSMALLI NT.

« Largeliteralsthat do not fit into any integer type are treated as DECl MAL.
e Theliterastoo largetofit intoaDECI MAL(38, 0) aretreated as DOUBLE.
e Numeric literals with adecimal point

e Thelitera with lessthan 38 digits are treated as DECI MAL.
» Theliterals with 38 or more digits are treated as a DOUBLE.

» Exponentia notation is supported in DECI VAL literals.

« Torepresent avery large or precise DECI MAL value as aliteral, for example one that contains more digits than
can be represented by aBl G NT literal, use a quoted string or a floating-point value for the number and CAST the
string to the desired DECI MAL type.

For example: CAST(' 999999999999999999999999999999"' AS DECI MAL(38, 5)))
Fileformat considerations:
The DECI MAL data type can be stored in any of the file formats supported by Impala.

* Impalacan query Avro, RCFile, or SequenceFile tables that contain DECI MAL columns, created by other Hadoop
components.

« Impalacan query and insert into Kudu tables that contain DECI MAL columns.

« TheDECI MAL datatypeisfully compatible with HBase tables.

e The DECI MAL datatypeisfully compatible with Parquet tables.

« Values of the DECI MAL datatype are potentially larger in text tables than in tables using Parquet or other binary
formats.

UDF consideration:
When writing a C++ UDF, usethe Deci nmal Val datatypedefinedin/ usr/i ncl ude/ i npal a_udf/ udf. h.
Changing precision and scale:

Youcanissuean ALTER TABLE ... REPLACE COLUMWNS statement to change the precision and scale of an
existing DECI MAL column.

« For text-based formats (text, RCFile, and SequenceFile tables)

« |f the valuesin the column fit within the new precision and scale, they are returned correctly by a query.
« |If any valuesthat do not fit within the new precision and scale:

« Impaareturns an error if the query option ABORT_ON ERRORIissettotr ue.
* ImpalareturnsaNULL and warning that conversion failed if the query option ABORT_ON_ERRORIis set to
fal se.
» Leading zeros do not count against the precision value, but trailing zeros after the decimal point do.
« For binary formats (Parquet and Avro tables)

e Althoughan ALTER TABLE ... REPLACE COLUMNS statement that changes the precision or scale of a
DECI MAL column succeeds, any subsequent attempt to query the changed column resultsin afatal error. This
is because the metadata about the columnsis stored in the data files themselves, and ALTER TABLE does not
actually make any updates to the data files. The other unaltered columns can still be queried successfully.

« |f the metadatain the data files disagrees with the metadata in the metastore database, Impala cancels the
query.

Partitioning:

Using a DECI MAL column as a partition key provides you a better match between the partition key values and the
HDFS directory names than using a DOUBLE or FLOAT partitioning column.

Column statistics consider ations:

| Impala SQL Language Reference | 116

Because the DECI MAL type has a fixed size, the maximum and average size fields are aways filled in for column
statistics, even before you run the COVPUTE STATS statement.

Compatibility with older version of DECIMAL:

This version of DECI MAL typeisthe default in Impala 3.0 and higher. The key differences between this version of

DECI MAL and the previous DECI MAL V1 in Impala 2.x include the following.

DECIMAL inImpala 3.0 or higher

DECIMAL inImpala 2.12 or lower

Overall behavior

Returns either the result or an error.

Returns either the result or NULL
with awarning.

Overflow behavior

Aborts with an error.

Issues awarning and returns NULL.

Truncation / rounding behavior in
arithmetic

Truncates and rounds digits from the
back.

Truncates digits from the front.

Truncates from the back and rounds.

Truncates from the back.

String cast

If you need to continue using the first version of the DECI MAL type for the backward compatibility of your queries,
set the DECI MAL_ V2 query option to FALSE:

SET DECI MAL_V2=FALSE;

Compatibility with other databases:

Use the DECI MAL datatype in Impalafor applications where you used the NUMBER data type in Oracle.
The Impala DECI MAL type does not support the Oracle idioms of * for scale.

The Impala DECI MAL type does not support negative values for precision.

DOUBLE Data Type
A double precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane DOUBLE

Range: 4.94065645841246544e-324d .. 1.79769313486231570e+308, positive or negative

Precision: 15 to 17 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 8 bytes, using |EEE 754 Double Precision Binary Floating Point format.

Conversions: Impala does not automatically convert DOUBLE to any other type. Y ou can use CAST() to convert
DOUBLE valuesto FLOAT, TI NYI NT, SMALLI NT, | NT, Bl G NT, STRI NG, TI MESTAMP, or BOOLEAN. Y ou can
use exponential notation in DOUBLE literals or when casting from STRI NG, for example 1. 0e6 to represent one
million. Casting an integer or floating-point value Nto TI MESTAMP produces a value that is N seconds past the start
of the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone.

If the setting ##use_| ocal _tz_for_uni x_ti mestanp_conver si ons=t r ue isin effect, the resulting

TI MESTAMP represents a date and time in the local time zone.

Usage notes:
The data type REAL isan alias for DOUBLE.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

| Impala SQL Language Reference | 117

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returnsf al se:

SELECT CAST(' nan' AS DOUBLE) =CAST(' nan' AS DOUBLE) ;
Examples:

CREATE TABLE t1 (x DOUBLE);
SELECT CAST(1000.5 AS DOUBLE);

Partitioning: Because fractional values of thistype are not always represented precisely, when thistypeisused for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECI MAL column instead.

HBase consider ations: This datatypeis fully compatible with HBase tables.
Par quet considerations: Thistypeisfully compatible with Parquet tables.

Text table consider ations; Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics consider ations. Because this type has afixed size, the maximum and average sizefields are
awaysfilled in for column statistics, even before you run the COVPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBL E columns uses high-performance hardware instructions, and
distributed queries can perform these operationsin different order for each query, results can vary slightly for
aggregate function calls such as SUM) and AVE) for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECI MAL data type for such operations instead of FLOAT or DOUBLE.

Theinability to exactly represent certain floating-point values means that DEClI MAL is sometimes a better choice than
DOUBLE or FLOAT when precision iscritical, particularly when transferring data from other database systems that
use different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLQOAT, and DOUBL E cannot be used for primary key columnsin Kudu tables.
Related information:

Numeric Literals on page 174, Impala Mathematical Functions on page 434, FLOAT Data Type on page 117

FLOAT Data Type
A single precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme FLOAT

Range: 1.40129846432481707e-45 .. 3.40282346638528860e+38, positive or negative

Precision: 6 to 9 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 4 bytes, using |EEE 754 Single Precision Binary Floating Point format.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

| Impala SQL Language Reference | 118

Conversions: Impalaautomatically converts FLOAT to more precise DOUBLE values, but not the other way around.
You can use CAST() to convert FLOAT valuesto TI NYI NT, SMALLI NT, | NT, Bl G NT, STRI NG, TI MESTAMP,
or BOOLEAN. Y ou can use exponential notation in FLOAT literals or when casting from STRI NG, for example

1. Oe6 to represent one million. Casting an integer or floating-point value Nto TI MESTAMP produces a value that

is N seconds past the start of the epoch date (January 1, 1970). By default, the result value represents a date and time
inthe UTC time zone. If the setting ##use_| ocal _tz_for _uni x_ti mest anp_conver si ons=trueisin
effect, the resulting TI MESTAMP represents a date and time in the local time zone.

Usage notes:

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returnsf al se:

SELECT CAST(' nan' AS FLOAT) =CAST(' nan' AS FLQAT);
Examples:

CREATE TABLE t1 (x FLOAT);
SELECT CAST(1000.5 AS FLOAT);

Partitioning: Because fractional values of thistype are not always represented precisely, when thistypeisused for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on aDECI MAL column instead.

HBase consider ations: This datatypeis fully compatible with HBase tables.
Par quet considerations: Thistypeisfully compatible with Parquet tables.

Text table consider ations; Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics consider ations. Because this type has afixed size, the maximum and average sizefields are
awaysfilled in for column statistics, even before you run the COVPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBL E columns uses high-performance hardware instructions, and
distributed queries can perform these operationsin different order for each query, results can vary slightly for
aggregate function calls such as SUM) and AVE) for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECI MAL data type for such operations instead of FLOAT or DOUBLE.

Theinability to exactly represent certain floating-point values means that DEClI MAL is sometimes a better choice than
DOUBLE or FLOAT when precision iscritical, particularly when transferring data from other database systems that
use different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLQOAT, and DOUBL E cannot be used for primary key columnsin Kudu tables.
Related infor mation:
Numeric Literals on page 174, Impala Mathematical Functions on page 434, DOUBLE Data Type on page
116
INT Data Type
A 4-byteinteger datatype used in CREATE TABLE and ALTER TABLE statements.
Syntax:

| Impala SQL Language Reference | 119

In the column definition of a CREATE TABLE statement:
col um_nane | NT

Range: -2147483648 .. 2147483647. There is no UNSI GNED subtype.

Conversions: Impala automatically convertsto alarger integer type (Bl G NT) or afloating-point type (FLOAT or
DOUBLE) automatically. Use CAST() to convert to TI NYI NT, SMALLI NT, STRI NG or TI MESTAMP. Casting
an integer or floating-point value N to TI MESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
##use |l ocal _tz for_uni x_timestanp_conversi ons=true isin effect, the resulting TI NESTAMP
represents adate and timein the local time zone.

Usage notes:
Thedatatype| NTEGERisan aliasfor | NT.

For a convenient and automated way to check the bounds of the | NT type, call the functionsM N_| NT() and
MAX | NT().

If aninteger valueistoo large to be represented asal NT, useaBl G NT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x INT);
SELECT CAST(1000 AS INT);

Partitioning: Prefer to use thistype for a partition key column. Impala can process the numeric type more efficiently
than a STRI NG representation of the value.

HBase consider ations: This datatypeis fully compatible with HBase tables.

Par quet considerations:

Text table consider ations: Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 4-byte value.
Added in: Availablein all versions of Impala.

Column statistics consider ations. Because this type has afixed size, the maximum and average size fields are
alwaysfilled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 174, TINYINT Data Type on page 139, SMALLINT Data Type on page 124, INT
Data Type on page 118, BIGINT Data Type on page 106, DECIMAL Data Type (Impala 3.0 or higher only) on
page 111, Impala Mathematical Functions on page 434

MAP Complex Type (Impala 2.3 or higher only)

A complex data type representing an arbitrary set of key-value pairs. The key part is a scalar type, while the value part
can be ascalar or another complex type (ARRAY, STRUCT, or MAP).

Syntax:
colunmm_nane MAP < primtive type, type >
type ::= primtive_type | conplex_type

Usage notes:

| Impala SQL Language Reference | 120

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 142 for
background information and usage examples.

The MAP complex data type represents a set of key-value pairs. Each element of the map isindexed by a primitive
type such as Bl G NT or STRI NG letting you define sequences that are not continuous or categories with arbitrary
names. Y ou might find it convenient for modelling data produced in other languages, such as a Python dictionary or
Java HashMap, where a single scalar value serves as the lookup key.

In abig data context, the keysin amap column might represent a numeric sequence of events during a manufacturing
process, or TI MESTAMP values corresponding to sensor observations. The map itself isinherently unordered, so you
choose whether to make the key values significant (such as arecorded TI MESTAMP) or synthetic (such as arandom
global universal 1D).

Note: Behind the scenes, the MAP typeisimplemented in asimilar way asthe ARRAY type. Impala does not enforce
any uniqueness constraint on the KEY values, and the KEY values are processed by |ooping through the elements

of the MAP rather than by a constant-time lookup. Therefore, thistype is primarily for ease of understanding when
importing data and algorithms from non-SQL contexts, rather than optimizing the performance of key lookups.

Y ou can pass a multi-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were atable. For example, if table T1 contains an ARRAY column Al, you could issue
the statement DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and afield F1 within the STRUCT
was a MAP, you could issue the statement DESCRI BE t 1. s1. f 1. An ARRAY is shown as atwo-column table, with
| TEMand PCS columns. A STRUCT is shown as atable with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Added in: Impala2.3.0
Restrictions:

» Columnswith this data type can only be used in tables or partitions with the Parquet or ORC file format.

« Columnswith this data type cannot be used as partition key columns in a partitioned table.

« The COVWPUTE STATS statement does not produce any statistics for columns of this data type.

« The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

e Seelimitations and Restrictions for Complex Types on page 146 for afull list of limitations and associated
guidelines about complex type columns.

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
165 for the table definitions.

The following example shows a table with various kinds of MAP columns, both at the top level and nested within
other complex types. Each row represents information about a specific country, with complex type fields of various
levels of nesting to represent different information associated with the country: factual measurements such as area
and population, notable people in different categories, geographic features such as cities, points of interest within
each city, and mountains with associated facts. Practice the CREATE TABLE and query notation for complex type
columns using empty tables, until you can visualize a complex data structure and construct corresponding SQL
statements reliably.

create TABLE map_deno

(
country id BI G NT,

-- Nunmeric facts about each country, |ooked up by nane.
-- For exanple, 'Area':1000, 'Popul ation':999999.

| Impala SQL Language Reference | 121

-- Using a MAP instead of a STRUCT because there could be
-- adifferent set of facts for each country.
metrics MAP <STRI NG BI G NT>,

-- MAP whose val ue part is an ARRAY

-- For example, the key 'Fanous Politicians' could represent an array of 10

el ement s,

-- while the key ' Fanpbus Actors' could represent an array of 20 el enents.
not abl es MAP <STRI NG ARRAY <STRI NG>>,

-- MAP that is a field within a STRUCT
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-Ievel columm.)
-- For exanple, city #1 mi ght have points of interest with key 'Zoo'
-- representing an array of 3 different zoos.
-- City #2 might have conpletely different kinds of points of interest.
-- Because the set of field nanes is potentially |arge, and nost entries
coul d be bl ank,
-- a MAP makes nore sense than a STRUCT to represent such a sparse data
structure.
cities ARRAY < STRUCT <
nane: STRI NG
poi nts_of _interest: MAP <STRI NG ARRAY <STRI NG>
>>

-- MAP that is an elenent within an ARRAY. The MAP is inside a STRUCT field
to associ ate
-- the mountain nane with all the facts about the nountain.
-- The "key" of the map (the first STRING field) represents the nane of sone
fact whose val ue
-- can be expressed as an integer, such as 'Height', 'Year First dinbed
and so on.

nmount ai ns ARRAY < STRUCT < nane: STRING facts: MAP <STRING INT > > >

)
STORED AS PARQUET;

DESCRI BE nmap_deno;

dommemmeaaas Fe e e e e oo eeeeeeeeeoc---oao-- +
| nane | type I
fecococoococooooc fecococoococooccoccoocoocoooocoocoocoocoocoooocoocoooooc +
country id bi gi nt
metrics map<st ri ng, bi gi nt >

not abl es
cities

| |
| |
| map<string, array<string>> [
| array<struct< |
| nane: string, |
[poi nts_of interest: map<string, array<string>>

| >> |
| array<struct< |
| nane: string, [
[facts: map<string,int> |
| >> I

nount ai ns

fecooooc feccoocooc +
| name | type |
Focooooc Foccoooac +
| key | string

| value | bigint |
Foococooc Fooocooooe +

DESCRI BE nmap_deno. not abl es;

| key
| val ue

| key
| val ue

| key
| val ue

feccoccocooooooc +
| type I
foccoccocoooooac +
| string [
| array<string> |
dooccooocoooooooe +

bi gint |

struct <
nane: string,
poi nts_of interest: map<string, array<string>>

| string [
| array<string> |

bi gint |

struct< |
nane: string, |
facts: map<string,int> |
I

I

| string |
| int |

| Impala SQL Language Reference | 122

| Impala SQL Language Reference | 123

The following example shows a table that uses a variety of datatypes for the MAP “key” field. Typically, you use
Bl G NT or STRI NGto use numeric or character-based keys without worrying about exceeding any size or length
constraints.

CREATE TABLE map_deno_obscure
(
id Bl G NT,
MAP <I NT, | NT>,
MAP <SMALLI NT, | NT>,
MAP <TI NYI NT, | NT>,
MAP <TI MESTAMP, | NT>,
<BOOLEAN, | NT>,
MAP <CHAR(5), | NT>,
MAP <VARCHAR(25), | NT>,
MAP <FLOAT, | NT>,
MAP <DOUBLE, | NT>,
nml0 MAP <DECI MAL(12,2), |NT>

EEEEEEEEE
>
i)

)
STORED AS PARQUET;

CREATE TABLE cel ebrities (name STRING birth _year MAP < STRING SMALLINT >)
STORED AS PARQUET;

-- Atypical row might represent values with 2 different birth years, such
as:

-- ("Joe Mowvie Star", { "real": 1972, "clained": 1977 })

CREATE TABLE countries (nane STRING fanous | eaders MAP < I NT, STRI NG >)
STORED AS PARQUET;

-- Atypical row might represent values with different |eaders, with key
val ues corresponding to their nuneric sequence, such as:

-- ("United States", { 1: "George Washington", 3: "Thonas Jefferson", 16:
" Abr aham Li ncol n" })

CREATE TABLE airlines (nane STRING special_meals MAP < STRING MAP <
STRING, STRING > >) STORED AS PARQUET;

-- Atypical row might represent values with multiple kinds of neals, each
with several conponents:

-- ("Elegant Airlines",

-- "vegetarian": { "breakfast": "pancakes", "snack": "cookies",
"dinner": "rice pilaf" },

-- "gluten free": { "breakfast": "oatneal", "snack": "fruit", "dinner":
"chi cken" }

-- 1)

Related infor mation:

Complex Types (Impala 2.3 or higher only) on page 142, ARRAY Complex Type (Impala 2.3 or higher only) on
page 102, STRUCT Complex Type (Impala 2.3 or higher only) on page 127

REAL Data Type
An alias for the DOUBLE data type. See DOUBLE Data Type on page 116 for details.

Examples:

These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes
Impalatreats them always as DOUBLE.

[l ocal host:21000] > create table r1 (x real);
[l ocal host:21000] > describe r1,;

| Impala SQL Language Reference | 124

R — fecocooooc fecocooocooc +
| nanme | type | coment |
foccooc Foccoooac Foccooocooc +
| x | double | |
occooc fooococoooc feoococooooc +

[l ocal host:21000] > insert into rl values (1.5), (cast (2.2 as double));
[l ocal host:21000] > sel ect cast (1e6 as real);

feccoocococcoocococoococooooc +
| cast(1000000.0 as double) |
feccococccoccoccoococooocoooooas +
| 1000000 |
Focococcococcoccococoocoocooooooe +

SMALLINT Data Type
A 2-byteinteger datatype used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme SMALLI NT

Range: -32768 .. 32767. Thereis no UNSI GNED subtype.

Conversions: Impalaautomatically convertsto alarger integer type (I NT or Bl G NT) or afloating-point type
(FLOAT or DOUBLE) automatically. Use CAST() to convert to TI NYI NT, STRI NG, or TI MESTAMP. Casting
an integer or floating-point value Nto TI MESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
##use |l ocal _tz for_uni x_timestanp_conversi ons=true isin effect, the resulting TI NESTAMP
represents adate and timein the local time zone.

Usage notes:

For a convenient and automated way to check the bounds of the SMALLI NT type, call the functions
M N_SMALLI NT() and MAX_SMALLI NT() .

If an integer value istoo large to be represented asa SMALLI NT, usean | NT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x SMALLINT);
SELECT CAST(1000 AS SMALLI NT);

Par quet considerations:

Physicaly, Parquet files represent TI NYI NT and SMALLI NT values as 32-bit integers. Although Impala rejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE . ..
LI KE PARQUET syntax, any TI NYI NT or SMALLI NT columnsin the original tableturninto | NT columnsin the
new table.

Partitioning: Prefer to use thistype for a partition key column. Impala can process the numeric type more efficiently
than a STRI NG representation of the value.

HBase consider ations: This datatypeis fully compatible with HBase tables.

Text table consider ations: Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 2-byte value.

Added in: Availablein all versions of Impala.

| Impala SQL Language Reference | 125

Column statistics consider ations: Because this type has afixed size, the maximum and average size fields are
awaysfilled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 174, TINYINT Data Type on page 139, SMALLINT Data Type on page 124, INT
Data Type on page 118, BIGINT Data Type on page 106, DECIMAL Data Type (Impala 3.0 or higher only) on
page 111, Impala Mathematical Functions on page 434

STRING Data Type
A datatype used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE and ALTER TABLE statements:

col um_nanme STRI NG

Length:

If you need to manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare
columns as VARCHAR(max_| engt h) or CHAR(| engt h) , but for best performance use STRI NGwhere practical.

Take the following considerations for STRI NGlengths:
* Thehard limit on the size of a STRI NGand the total size of arow is2 GB.

If aquery triesto process or create a string larger than this limit, it will return an error to the user.
e Thelimitis1 GB on STRI NGwhen writing to Parquet files.

* Queries operating on strings with 32 KB or less will work reliably and will not hit significant performance or
memory problems (unless you have very complex queries, very many columns, etc.)

» Performance and memory consumption may degrade with strings larger than 32 KB.
» Therow size, i.e. thetotal size of all string and other columns, is subject to lower limits at various pointsin query
execution that support spill-to-disk. A few examples for lower row size limits are:

* Rows coming from the right side of any hash join

« Rows coming from either side of a hash join that spillsto disk
* Rows being sorted by the SORT operator without a limit

* Rowsin agrouping aggregation

In Impala 2.9 and lower, the default limit of the row size in the above casesis 8 MB.

In Impala 2.10 and higher, the max row size is configurable on a per-query basis with the MAX_ROW SI ZE query
option. Rows up to MAX_ROW SI ZE (which defaultsto 512 KB) can aways be processed in the above cases.
Rows larger than MAX_ROW SI ZE are processed on a best-effort basis. See MAX_ROW_SIZE for more details.

Char acter sets:

For full support in all Impala subsystems, restrict string values to the ASCII character set. Although some UTF-8
character data can be stored in Impala and retrieved through queries, UTF-8 strings containing non-ASCII characters
are not guaranteed to work properly in combination with many SQL aspects, including but not limited to:

+ CHAR/VARCHAR truncating/padding.
» Comparison operators.

e The ORDER BY clause.

e Valuesin partition key columns.

For any national language aspects such as collation order or interpreting extended ASCI| variants such as | SO-8859-1
or 1SO-8859-2 encodings, | mpala does not include such metadata with the table definition. If you need to sort,
manipulate, or display data depending on those national language characteristics of string data, use logic on the
application side.

| Impala SQL Language Reference | 126

If you just need Hive-compatible string function behaviors on UTF-8 encoded strings, turn on the query option
UTF8_MODE. See morein UTF-8 Support on page 613.

Conversions:

* Impaladoes not automatically convert STRI NGto any numeric type. Impala does automatically convert STRI NG
to TI MESTAMP if the value matches one of the accepted TI MESTAMP formats; see TIMESTAMP Data Type on
page 133 for details.

e Youcan use CAST() toconvert STRI NGvauesto Tl NYI NT, SMALLI NT, | NT, Bl G NT, FLOAT, DOUBLE, or
TI MESTAMP.

e You cannot directly cast a STRI NG vaue to BOOLEAN. Y ou can use a CASE expression to evaluate string values
suchas' T',' true', and soonand return Booleant r ue and f al se values as appropriate.

e You can cast aBOOLEANvalueto STRI NG, returning' 1' fortrue vauesand' 0' forf al se values.

Partitioning:

Although it might be convenient to use STRI NG columns for partition keys, even when those columns contain
numbers, for performance and scalability it is much better to use numeric columns as partition keys whenever
practical. Although the underlying HDFS directory name might be the same in either case, the in-memory storage
for the partition key columnsis more compact, and computations are faster, if partition key columns such as YEAR,
MONTH, DAY and so on are declared as | NT, SMALLI NT, and so on.

Zero-length strings: For purposes of clauses such as DI STI NCT and GROUP BY, Impala considers zero-length
strings (" "), NULL, and space to al be different values.

Text table consider ations; Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

Avro consider ations:

The Avro specification allows string values up to 2**64 bytesin length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR valuesin Avro tables
to (2*31)-1 bytes. If a query encounters a STRI NGvalue longer than (2**31)-1 bytesin an Avro table, the query
fails. In earlier releases, encountering such long valuesin an Avro table could cause a crash.

Column statistics consider ations. Because the values of this type have variable size, none of the column statistics
fields arefilled in until you run the COVPUTE STATS statement.

Examples:

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for
guotation marks within string literals:

SELECT '|I am a single-quoted string';

SELECT "I am a doubl e-quoted string";

SELECT '"I\'m a single-quoted string with an apostrophe';

SELECT "I\'m a doubl e-quoted string with an apostrophe";

SELECT 'I ama "short" single-quoted string containing quotes';
SELECT "I ama \"short\" doubl e-quoted string containing quotes";

The following examples demonstrate calls to string manipul ation functions to concatenate strings, convert numbers to
strings, or pull out substrings:

SELECT CONCAT("Once upon a tinme, there were ", CAST(3 AS STRING, ' little
pigs.");
SELECT SUBSTR("hello world", 7,5);

The following examples show how to perform operations on STRI NG columns within atable:
CREATE TABLE t1 (sl STRING s2 STRING;

I NSERT INTO t1 VALUES ("hello", 'world'), (CAST(7 AS STRING, "wonders");
SELECT s1, s2, length(sl) FROMt1l WHERE s2 LIKE ' w6 ;

| Impala SQL Language Reference | 127

Related information:
String Literals on page 175, CHAR Data Type (Impala 2.0 or higher only) on page 108, VARCHAR Data
Type (Impala 2.0 or higher only) on page 140, Impala Sring Functions on page 509, Impala Date and Time
Functions on page 478
STRUCT Complex Type (Impala 2.3 or higher only)
A complex datatype, representing multiple fields of asingle item. Frequently used as the element type of an ARRAY

or the VAL UE part of a MAP.

Syntax:
col utm_nanme STRUCT < nanme : type [COMMENT 'comment_string'], ... >
type ::=printive type | conplex_type

The names and number of fields within the STRUCT are fixed. Each field can be adifferent type. A field withina
STRUCT can aso be another STRUCT, or an ARRAY or a MAP, allowing you to create nested data structures with a
maximum nesting depth of 100.

A STRUCT can be the top-level type for acolumn, or can itself be an item within an ARRAY or the value part of the
key-value pair in a MAP.

When a STRUCT is used as an ARRAY element or a MAP value, you use ajoin clause to bring the ARRAY or MAP
elementsinto the result set, and thenrefer toar ray_nane. | TEM fi el d or map_nane. VALUE. fi el d. Inthe
case of a STRUCT directly inside an ARRAY or MAP, you can omit the. | TEMand . VALUE pseudocolumns and refer
directlytoarray_nane. fi el d ormap_nane. fi el d.

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 142 for
background information and usage examples.

A STRUCT issimilar conceptually to atable row: it contains a fixed number of named fields, each with a predefined
type. To combine two related tables, while using complex types to minimize repetition, the typical way to represent
that datais as an ARRAY of STRUCT elements.

Because a STRUCT has a fixed number of named fields, it typically does not make sense to have a STRUCT as the
type of atable column. In such acase, you could just make each field of the STRUCT into a separate column of the
table. The STRUCT typeis most useful as an item of an ARRAY or the value part of the key-value pair in a MAP. A
nested type column with a STRUCT at the lowest level lets you associate a variable number of row-like objects with
each row of thetable.

The STRUCT typeis straightforward to reference within a query. Y ou do not need to include the STRUCT column
inajoin clause or give it atable alias, asisrequired for the ARRAY and MAP types. Y ou refer to the individual fields
using dot notation, suchasst ruct _col umm_nane. fi el d_nane, without any pseudocolumn such as| TEMor
VAL UE.

Y ou can pass amulti-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were atable. For example, if table T1 contains an ARRAY column Al, you could issue
the statement DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and afield F1 within the STRUCT
was a MAP, you could issue the statement DESCRI BE t 1. s1. f 1. An ARRAY is shown as a two-column table, with
| TEMand POS columns. A STRUCT is shown as atable with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VAL UE columns.

Internal details;

Within the Parquet data file, the values for each STRUCT field are stored adjacent to each other, so that they can be
encoded and compressed using all the Parquet techniques for storing sets of similar or repeated values. The adjacency
applies even when the STRUCT values are part of an ARRAY or MAP. During a query, Impala avoids unnecessary 1/0
by reading only the portions of the Parquet data file containing the requested STRUCT fields.

| Impala SQL Language Reference | 128

Added in: Impala2.3.0
Restrictions:

» Columnswith this data type can only be used in tables or partitions with the Parquet or ORC file format.

« Columns with this data type cannot be used as partition key columns in a partitioned table.

e« The COVPUTE STATS statement does not produce any statistics for columns of this data type.

e The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» Seelimitations and Restrictions for Complex Types on page 146 for afull list of limitations and associated
guidelines about complex type columns.

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
165 for the table definitions.

The following example shows a table with various kinds of STRUCT columns, both at the top level and nested within
other complex types. Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE struct denp

id Bl G NT,
nane STRI NG

-- A STRUCT as a top-level colum. Denonstrates how the table I D col um
-- and the IDfield within the STRUCT can coexi st without a nane conflict.
enpl oyee_i nfo STRUCT < enployer: STRING id: Bl G NT, address: STRING >,

-- A STRUCT as the el enent type of an ARRAY.
pl aces_| i ved ARRAY < STRUCT <street: STRING city: STRING country: STRI NG
>>,

-- A STRUCT as the value portion of the key-value pairs in a MAP.
menor abl e_nonents MAP < STRING STRUCT < year: |INT, place: STRI NG
details: STRING >>,

-- A STRUCT where one of the fields is another STRUCT.

current address STRUCT < street address: STRUCT <street nunber: | NT,
street_nane: STRING street_type: STRING>, country: STRING postal _code:
STRI NG >

)
STORED AS PARQUET;

The following example shows how to examine the structure of atable containing one or more STRUCT columns by
using the DESCRI BE statement. Y ou can visualize each STRUCT asits own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRI BE until the output shows just the STRUCT fields.

DESCRI BE struct deno;

S R domm e e eeeeoeaooooo-. +
| nane | type I
fecccoococoococooccoocooe fecccoococooocoococooccoocoocooas +
| id | bigint [
I nane I string I

| Impala SQL Language Reference | 129

enpl oyer: string,
i d: bi gi nt,
address: string

>

array<struct<
street:string,
city:string,
country:string

>>

map<string, struct<
year:int,

I

I

I
_ |
pl aces_lived [
|
|
I
I
|
| _
| pl ace: string,
|
I
I
|
|
|
|
I
I
|
|

menor abl e_nonent s

detail s:string
>>
struct <
street _address: struct<
street _nunber:int,
street_nane: string,
street _type:string

current _address

>1
country:string,
postal code: string

The top-level column EMPLOYEE_| NFOisa STRUCT. Describing t abl e_nane. st ruct _nane displaysthe
fields of the STRUCT asif they were columns of atable:

DESCRI BE struct_deno. enpl oyee_i nfo;

CES S S TS +
| nane | type |
feoococooccoac fooococoooc +
enployer	string
id	bigint
address	string
S S oo +

Because PLACES LI VEDisa STRUCT inside an ARRAY, theinitial DESCRI BE shows the structure of the ARRAY:

DESCRI BE struct_deno. pl aces_l i ved;

Focococ Focococococococoococ +
| nane | type [
deemoos e +
| item| struct< |
[[street:string, |
	city:string,
	country:string
	>
pos	bigint [
oo S S S S +

Ask for the details of the | TEMfield of the ARRAY to see just the layout of the STRUCT:

DESCRI BE struct_deno. pl aces_lived.item

| street | string |
| city | string |

| Impala SQL Language Reference | 130

| country | string |

Likewise, MEMORABLE MOVMENTS has a STRUCT inside a MAP, which requires an extralevel of qualified nameto
see just the STRUCT part:

DESCRI BE struct_deno. nenor abl e_nonent s;

foocoooc focococoococococooccoocos +
| nane | type |
fecooooc feccoococcoccoococooc +
key string
val ue struct<

pl ace: string,

I I
I _ I
[year:int, [
| |
| details:string |
I I

For a MAP, ask to see the VAL UE field to see the corresponding STRUCT fields in atable-like structure:

DESCRI BE struct_deno. nenor abl e_nonent s. val ue;

feoococooooc fooococoooc +
| nane | type |
feccooocooc feccoocooc +
| year | int [
| place | string |
| details | string |
feoococooooc fooococoooc +

For aSTRUCT inside a STRUCT, we can see the fields of the outer STRUCT:

DESCRI BE struct_deno. current _address;

street _address | struct< |
street _nunber:int, |
street _nane:string, |
street _type:string |
I
I
|

country string
post al _code string
dooccoococooooooooc Foococococcooocooocoooooocoooc +

Then we can use afurther qualified name to see just the fields of the inner STRUCT:

DESCRI BE struct_deno. current _address. street _address;

S S S oo +
| nane | type |
fococococcooccoooos fooococoooc +
street_nunber	int
street_nane	string
street_type	string

| Impala SQL Language Reference | 131

The following example shows how to examine the structure of atable containing one or more STRUCT columns by
using the DESCRI BE statement. Y ou can visualize each STRUCT asits own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRI BE until the output shows just the STRUCT fields.

DESCRI BE struct deno;

feccoccccooococooooc feccoccococoococcooococooooc feccoocooc +
| name | type | coment |
fecccoococoococooccoocooe fecccoococooocoococooccoocoocooas feocococooooc +
id bi gi nt
nane string
enpl oyee_info struct<
enpl oyer: string,
i d: bi gint,
address: string
>

| | |
| | |
I I I
I I I
I I I
| | |
_ | | |
pl aces_lived | array<struct< [[
street:string,	
city:string,	
country:string	
>> _	
menor abl e_nonents	map<string, struct<
year:int,	
pl ace: string,	
details:string	
>> I I	
struct< [[
street_address:struct<	
street _nunber:int,	
street _nane:string,	
I I I	
I I I	

street _type:string

current _address

>!
country:string,
postal code: string

SELECT id, enployee info.id FROM struct _deno;
SELECT id, enployee_info.id AS enpl oyee_id FROM struct _deno;

SELECT id, enployee_info.id AS enpl oyee_id, enployee_info.enployer
FROM st ruct _deno;

SELECT id, nane, street, city, country
FROM st ruct _denp, struct_deno. pl aces_Iived;

SELECT id, nane, places_lived.pos, places lived.street, places lived.city,
pl aces_|ived. country
FROM struct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, pl.pos, pl.street, pl.city, pl.country
FROM st ruct _denp, struct_deno. pl aces_|ived AS pl;

SELECT id, name, places_lived. pos, places lived.street, places_lived.city,
pl aces_|ived. country
FROM struct denp, struct_deno. pl aces_|ived;

SELECT id, nanme, pos, street, city, country
FROM st ruct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, nenorabl e nonents. key,
menor abl e_nonent s. val ue. year,

| Impala SQL Language Reference | 132

menor abl e_nonent s. val ue. pl ace,
menor abl e_nonent s. val ue. detai l s
FROM struct _denp, struct_denp. nenor abl e_nonent s
WHERE nenorabl e_nonents. key IN ('Birthday',' Anniversary',' Graduation');

SELECT id, nanme, nm key, nm val ue.year, mm val ue. pl ace, nm val ue.details
FROM struct deno, struct denp. nenorabl e nonents AS mm
VHERE mm key IN (' Birthday','Anniversary',' Graduation');

SELECT id, nane, nenorabl e nonents. key, nenorabl e nonents. val ue. year,
menor abl e_nonent s. val ue. pl ace, nenorabl e_nonents. val ue. detail s

FROM struct deno, struct_deno. nenorabl e nonents

VWHERE key IN ('Birthday',"' Anniversary',' Gaduation');

SELECT id, nane, key, val ue.year, value.place, value.details
FROM struct _denp, struct_denp. nenor abl e_nonent s
WHERE key IN ('Birthday',' Anniversary',' G aduation');

SELECT id, nane, key, year, place, details
FROM st ruct _denp, struct_deno. menor abl e_nonent s
WHERE key IN ('Birthday',"'Anniversary',' Graduation');

SELECT id, nane,
current address. street address. street nunber,
current address. street address. street nane,
current _address. street_address. street _type,
current address. country,
current address. postal _code

FROM st ruct _deno;

For example, this table uses a struct that encodes several data values for each phone number associated with a person.
Each person can have avariable-length array of associated phone numbers, and queries can refer to the category field
to locate specific home, work, mobile, and so on kinds of phone numbers.

CREATE TABLE contact _i nfo_many_structs

id BIG NT, name STRI NG
phone_nunbers ARRAY < STRUCT <category: STRING country code: STRI NG
area_code: SMALLI NT, full _nunber: STRI NG nobil e: BOOLEAN, carrier: STRING > >

) STORED AS PARQUET;

Because structs are naturally suited to composite values where the fields have different data types, you might use
them to decompose things such as addresses:

CREATE TABLE contact _info_detail ed_address

id BIG NT, nanme STRI NG
address STRUCT < house_nunber: | NT, street:STRING street_type: STRI NG
apartment: STRING city: STRING region: STRING country: STRI NG >

);

In abig data context, splitting out data fields such as the number part of the address and the street name could let
you do analysis on each field independently. For example, which streets have the largest number range of addresses,
what are the statistical properties of the street names, which areas have a higher proportion of “Roads’, “Courts’ or
“Boulevards’, and so on.

Related infor mation:

| Impala SQL Language Reference | 133

Complex Types (Impala 2.3 or higher only) on page 142, ARRAY Complex Type (Impala 2.3 or higher only) on
page 102, MAP Complex Type (Impala 2.3 or higher only) on page 119

TIMESTAMP Data Type

In Impala, the TI MESTAMP data type holds a value of date and time. It can be decomposed into year, month, day,
hour, minute and seconds fields, but with no time zone information available, it does not correspond to any specific
point in time.

Internally, the resolution of the time portion of a TI MESTAMP value is in nanoseconds.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme TI MESTAMP

timestanp [+ | -] INTERVAL i nterval
DATE_ADD (tinestanp, |INTERVAL interval tinme_unit)

Range: 1400-01-01 to 9999-12-31
Out of range TI MESTAMP values are converted to NULL.

Therange of ImpalaTI MESTAMP is different from the Hive TI MESTAMP type. Refer to Hive documentation for
detail.

INTERVAL expressions:

Y ou can perform date arithmetic by adding or subtracting a specified number of time units, using the | NTERVAL
keyword and the + operator, the - operator, dat e_add() ordate_sub().

The following units are supported for t i me_uni t inthel NTERVAL clause:

* YEAR S]

* MONTH[S]

* WEEK] S]

o DAY[9]

* HOUR S]

* M NUTE[S]

+ SECOND| S]

e M LLI SECOND S]
* M CROSECOND S
* NANGSECOND] S]
Y ou can only specify one time unit in each interval expression, for example | NTERVAL 3 DAYS or | NTERVAL

25 HOURS, but you can produce any granularity by adding together successive | NTERVAL values, such as
timestanp_value + I NTERVAL 3 WEEKS - | NTERVAL 1 DAY + | NTERVAL 10 M CROSECONDS.

Internal details: Represented in memory as a 16-byte value.
Time zones:

By default, Impala stores and interprets TI MESTAMP values in UTC time zone when writing to datafiles, reading
from datafiles, or converting to and from system time values through functions.

When you set the##use_| ocal _tz_for_uni x_ti mestanp_conver si ons startup flag to TRUE, Impala
treats the TI MESTAMP values specified in the local time zone. The local time zone is determined in the following
order with the TI MEZONE query option takes the highest precedence:

1. TheTIl MEZONE query option
2. $TZ environment variable
3. System time zone where the impal ad coordinator runs

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-timestamp

| Impala SQL Language Reference | 134

The##use_| ocal _tz_for_uni x_tinmestanp_conver si ons setting can be used to fix discrepancy in

| NTERVAL operations. For example, aTI MESTAMP + | NTERVAL n- hour s can be affected by Daylight Saving
Time, which Impala does not consider by default as these operations are applied asif the timestamp wasin UTC. You
canusethe--use_l ocal _tz_for_uni x_ti mestanp_conver si ons setting to fix the issue.

See Customizing Time Zones on page 137 for configuring to use custom time zone database and aliases.

See Impala Date and Time Functions for the list of functions affected by the - -
use_l ocal _tz_for_uni x_tinmestanp_conversi ons setting.

Time zone handling between Impala and Hive:
Interoperability between Hive and Impalais different depending on the file format.
o Text

For text tables, TI MESTAMP values can be written and read interchangeably by Impala and Hive as Hive reads
and writes TI MESTAMP values without converting with respect to time zones.

e Parquet

Note: Thissection only appliesto | NT96 Tl MESTAMP. See Data Type Considerations for Parquet Tables on
page 718 for information about Parquet data types.

When Hive writesto Parquet data files, the TI MESTAMP values are normalized to UTC from the local time zone
of the host where the data was written. On the other hand, Impala does not make any time zone adjustment when
it writesor reads| NT96 TI MESTAMP values to Parquet files. This difference in time zone handling can cause
potentially inconsistent results when Impala processes TI MESTAMP values in the Parquet files written by Hive.

To avoid incompatibility problems or having to code workarounds, you can specify one or both of these impalad
startup flags:

e #use_local _tz_for_unix_tinmestanp_conversions=true
e #convert | egacy_hive_parquet _utc_tinestanps=true

Whenthe##convert | egacy _hive_parquet _utc_tinmestanps setting isenabled, Impalarecognizes
the Parquet data files written by Hive, and applies the same UTC-to-local-timezone conversion logic during the
query as Hive does.

InImpala 3.0 and lower, the ##convert | egacy_hi ve_parquet _utc_ti nmest anps setting
had a severe impact on multi-threaded performance. The new time zone implementation in Impala 3.1
eliminated most of the performance overhead and made Impala scale well to multiple threads. The
##convert _| egacy_hi ve_parquet _utc_ti nmest anps setting isturned off by default for a
performance reason. To avoid unexpected incompatibility problems, you should turn on the option when
processing TI MESTAMP columns in Parquet files written by Hive.

Hive currently cannot write | NT64 TI MESTAMP values.

InImpala3.2 and higher, | NT64 TI MESTAMP values annotated with the TI MESTAMP_M LLI Sor

TI MESTAMP_M CROS Ori gi nal Type are assumed to be always UTC normalized, so the UTC to local
conversion will be alwaysdone. | NT64 Tl MESTAMP annotated with the TI MESTAMP Logi cal Type
specifies whether UTC to local conversion is necessary depending on the Parquet metadata.

Conversions:

Impala automatically converts STRI NGliterals of the correct format into TI MESTAMP values. Timestamp values
are accepted inthe format ' yyyy#MMitdd HH: nm ss. SSSSSS' , and can consist of just the date, or just the
time, with or without the fractional second portion. For example, you can specify TI MESTAMP values such as

' 1966#07#30' ,' 08: 30: 00", or' 1985#09#25 17: 45: 30. 005" .

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the time
component, such as hour, minute, and second. For example, Impalaacceptsboth' 2018#1#1 01: 02: 03' and
' 2018#01#01 1:2: 3" asvadlid.

| Impala SQL Language Reference | 135

In STRI NGto TI MESTAMP conversions, leading and trailing white spaces, such as a space, atab, anewline, or
acarriage return, are ignored. For example, Impala treats the following as equivalent: '1999#12#01 01:02:03 ',
' 1999#12#01 01:02:03', '1999#12#01 01:02:03\r\n\t".

When you convert or cast a STRI NGliteral to TI MESTAMP, you can use the following separators between the date
part and the time part:

+ One or more space characters

Example: CAST(' 2001- 01- 09 01: 05: 01' AS TI MESTAWP)
¢ Thecharacter “T”"

Example: CAST(' 2001- 01- 09T01: 05: 01' AS TI MESTAWP)

Casting an integer or floating-point value Nto TI MESTAMP produces a value that is N seconds past the start of
the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If
the setting ##use_| ocal _tz_for _uni x_ti mestanp_conver si ons=t r ue isin effect, the resulting
TI MESTAMP represents a date and time in the local time zone.

In Impala 1.3 and higher, the FROM_UNI XTI ME() and UNI X_TI MESTAMP() functions allow awider range of
format strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. In
Impala 2.3 and higher, the UNI X_TI MESTAMP() function also allows a numeric timezone offset to be specified as
part of the input string. See Impala Date and Time Functions on page 478 for details.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TI MESTAMP values use the
Bl G NT type for parameters and return values, rather than | NT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known asthe “ Year 2038 problem” or “ Y2K38
problem”). This change affects the FROM_UNI XTI ME() and UNI X_TI MESTAMP() functions. Y ou might need to
change application code that interacts with these functions, change the types of columnsthat store the return values,
or add CAST() callsto SQL statements that call these functions.

Partitioning:

Although you cannot use a TI MESTAMP column as a partition key, you can extract the individual years, months,
days, hours, and so on and partition based on those columns. Because the partition key column values are

represented in HDFS directory names, rather than as fields in the data files themselves, you can also keep the original
TI MESTAMP valuesif desired, without duplicating data or wasting storage space. See Partition Key Columns on page
691 for more details on partitioning with date and time values.

[l ocal host:21000] > create table tineline (event string) partitioned by
(happened ti nestanp);

ERROR: Anal ysi sException: Type 'TI MESTAMP' is not supported as partition-

columm type in colum: happened

NULL considerations: Casting any unrecognized STRI NG value to this type produces a NULL value.

HBase consider ations: This datatypeis fully compatible with HBase tables.

Parquet consideration: | NT96 encoded Parquet timestamps are supported in Impala. | NT64 timestamps are
supported in Impala 3.2 and higher.

Parquet considerations: Thistype isfully compatible with Parquet tables.

Text table consider ations: Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

Column statistics consider ations: Because this type has afixed size, the maximum and average size fields are
alwaysfilled in for column statistics, even before you run the COVPUTE STATS statement.

Kudu consider ations:

In Impala 2.9 and higher, you can include TI MESTAMP columnsin Kudu tables, instead of representing the date and
timeasaBl G NT value. The behavior of TI MESTAMP for Kudu tables has some special considerations:

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

| Impala SQL Language Reference | 136

« Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/
time columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
Tl MESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a
query.

» The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TI MESTAMP columns. Y ou can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continueto use a Bl G NT column to represent date/time values in performance-critical applications.

e ThelmpaaTl MESTAMP type has a narrower range for years than the underlying Kudu data type. Impala
can represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impala
client, Impalareturns NULL by default when reading those TI MESTAMP values during a query. Or, if the
ABORT_ON_ERROCR query option is enabled, the query fails when it encounters a value with an out-of-range year.

Restrictions:

If you cast a STRI NGwith an unrecognized format to a TI MESTAMP, the result is NULL rather than an error. Make
sure to test your data pipeline to be sure any textual date and time values arein aformat that Impala TI MESTAMP can
recognize.

Currently, Avro tables cannot contain TI MESTAMP columns. If you need to store date and time valuesin Avro
tables, as aworkaround you can use a STRI NG representation of the values, convert the valuesto Bl G NT with the
UNI X_TI MESTAMP() function, or create separate numeric columns for individual date and time fields using the
EXTRACT() function.

Examples:
The following examples demonstrate using TI MESTAMP values with built-in functions:
sel ect cast('1966-07-30" as tinestanp);

sel ect cast('1985-09-25 17:45:30. 005" as tinestanp);
sel ect cast('08:30: 00" as tinestanp);

sel ect hour('1970-01-01 15: 30: 00'); -- Succeeds, returns 15
sel ect hour('1970-01-01 15:30'); -- Returns NULL because seconds
field required
sel ect hour('1970-01-01 27: 30: 00'); -- Returns NULL because hour
val ue out of range.
sel ect dayof week(' 2004-06-13"); -- Returns 1, representing
Sunday.
sel ect daynane(' 2004-06-13'); -- Returns 'Sunday'.
sel ect date_add(' 2004-06-13', 365); -- Returns 2005-06-13 with zeros
for hh:mmss fields.
sel ect day(' 2004-06-13"); -- Returns 13.
sel ect datediff('1989-12-31','1984-09-01'); -- How many days between these 2
dat es?
sel ect now); -- Returns current date and tine

in local tinezone.
The following examples demonstrate using TI MESTAMP values with HDFS-backed tables:

create table dates _and tines (t tinestanp);
insert into dates_and_tines val ues
('1966-07-30"), ('1985-09-25 17:45:30.005'), ('08:30:00'), (now));

The following examples demonstrate using TI MESTAMP values with Kudu tables:

create table timestanp_t (x int primary key, s string, t timestanp, b
bi gi nt)

partition by hash (x) partitions 16

stored as kudu;

-- The default value of now() has m crosecond precision, so the final 3
digits

| Impala SQL Language Reference | 137

-- representing nanoseconds are all zero.
insert into tinmestanp_t values (1, cast(now) as string), now),
uni x_tinmestanp(now()));

-- Values with 1-499 nanoseconds are rounded down in the Kudu TI MESTAMP

col um.

insert into tinmestanp_t values (2, cast(now) + interval 100 nanoseconds as
string), now() + interval 100 nanoseconds, unix_tinestanp(now() + interval
100 nanoseconds));

insert into tinmestanp_t values (3, cast(now) + interval 499 nanoseconds as
string), now() + interval 499 nanoseconds, unix_tinmestanp(now) + interval
499 nanoseconds));

-- Values with 500-999 nanoseconds are rounded up in the Kudu Tl MESTAMP

col um.

insert into tinmestanp_t values (4, cast(now) + interval 500 nanoseconds as
string), now() + interval 500 nanoseconds, unix_tinmestanp(now() + interval
500 nanoseconds));

insert into tinmestanp_t values (5, cast(now) + interval 501 nanoseconds as
string), now() + interval 501 nanoseconds, unix_tinestanmp(now() + interval
501 nanoseconds));

-- The string representation shows how underlying | npala TI MESTAMP can have
nanosecond preci si on.

-- The TI MESTAMP col utmm shows how tinmestanps in a Kudu table are rounded to
m cr osecond preci si on.

-- The BIG NT columm represents seconds past the epoch and so if not

af fected nuch by nanoseconds.

select s, t, b fromtinestanp_t order by t;

fccoocoocoooocoooooooocooooooooooG fccoocoocoooooooooooocooooooooooT
fooccoccoosooc +

| s | t | b
I

frocococococoooooooooooo0o0o0o0o0o00 frcocococoooooooooooooo0o0o0o0o00
foococooooooc +

| 2017-05-31 15:30: 05.107157000 | 2017-05-31 15:30: 05.107157000 | 1496244605
[| 2017-05-31 15: 30: 28. 868151100 | 2017-05-31 15: 30: 28. 868151000 | 1496244628
[| 2017-05-31 15: 34:33. 674692499 | 2017-05-31 15: 34: 33. 674692000 | 1496244873
[| 2017- 05-31 15: 35: 04. 769166500 | 2017-05-31 15:35:04.769167000 | 1496244904
[| 2017-05-31 15: 35:33. 033082501 | 2017-05-31 15: 35: 33. 033083000 | 1496244933

Added in: Availablein all versions of Impala.
Related information:

e Timestamp Literals on page 176.

« To convert to or from different date formats, or perform date arithmetic, use the date and time functions described
in Impala Date and Time Functions on page 478. In particular, thef r om_uni xt i ne() function requires
acase-sensitive format string such as" yyyy- M dd HH: nm ss. SSSS", matching one of the allowed
variations of a TI MESTAMP value (date plus time, only date, only time, optional fractional seconds).

e See QL Differences Between Impala and Hive on page 606 for details about differencesin TI MESTAMP
handling between Impala and Hive.

Customizing Time Zones

Starting in Impala 3.1, you can customize the time zone definitions used in Impala.

| Impala SQL Language Reference | 138

By default, Impala uses the OS' s time zone database located in / usr / shar e/ zonei nf o. Thisdirectory
contains the IANA timezone database in a compiled binary format. The contents of the zonei nf o directory is
controlled by the OS' s package manager.

Use the following start-up flags to customize the time zone definitions.

o ##hdf s_zone_i nf o_zi p: Thisflag allows Impala administrators to specify a custom timezone database.
The flag should be set to a shared (not necessarily HDFS) path that points to a zip archive of acustom IANA
timezone database. The timezone database is expected to be in a compiled binary format. If the startup flag
is set, Impalawill use the specified timezone database instead of the default / usr / shar e/ zonei nf o
database. The timezone db upgrade process is described in detail below.

o #i#thdfs_zone_al i as_conf: Thisflag alows Impaaadministrators to specify definitions for custom
timezone aliases. The flag should be set to a shared (not necessarily HDFS) path that specifies a config file
containing custom timezone alias definitions. This config file can be used as a workaround for users who want
to keep using their legacy timezone names. Configuring custom aliases is described in detail below.

Upgrading custom |ANA time zone database:

1

6.

7.

Download latest IANA time zone database distribution:
git clone https://github.conm eggert/tz
Alternatively, download a specific tzdb version from:

https://ww. iana.org/tine-zones/repository
Build timezone tools:
cd tz
make TOPDI R=t zdata i nstall
Generate the compiled binary time zone database:
.lzic -d ./tzdatal/etc/zoneinfo africa antarctica asia austral asia backward

backzone etcetera europe factory northanerica pacificnew sout hamerica
syst env

Create zip archive:

pushd ./tzdatal/etc
Zip -r zoneinfo.zip zoneinfo

popd
Copy the time zone database to HDFS:
hdfs dfs -nkdir -p /tzdb/I| at est
hdf s dfs -copyFroniocal ./tzdatal/etc/zoneinfo.zip /tzdb/I| atest

Set the##hdf s_zone_info_zi p startupflagto/t zdb/ | at est/ zonei nf 0. zi p asani npal ad safety
valve.

Perform afull restart of Impala service.

Configuring custom time zone aliases:

1

Createat zal i as. conf config file that contains time zone alias definitions formatted as ALI AS =
DEFI NI TI ON. For example:

#

Define aliases for existing tinezone nanes:
#

Uni versal Coordinated Tine = UTC

M deast/ R yadh89 = Asi a/ Ri yadh

PDT = Americal/ Los_Angel es

| Impala SQL Language Reference | 139

#

Define aliases as UTC offsets in seconds:
#

GMr-01: 00 = 3600

GMr+01: 00 = -3600

2. Copy the config file to HDFS:

hdfs dfs -nkdir -p /tzdb
hdf s df s -copyFronlLocal tzalias.conf /tzdb

3. Setthe##hdfs_zone alias_conf startupflagto/t zdb/tzal i as. conf asani npal ad safety valve.
4. Perform afull restart of Impala service.

Added in: Impala3.1

TINYINT Data Type
A 1-byteinteger datatype used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane TI NYI NT

Range: -128 .. 127. Thereis no UNSI GNED subtype.

Conversions: Impalaautomatically convertsto alarger integer type (SMALLI NT, | NT, or Bl G NT) or afloating-
point type (FLOAT or DOUBLE) automatically. Use CAST() to convert to STRI NGor TI MESTAMP. Casting

an integer or floating-point value Nto TI MESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
##use |l ocal _tz_for_uni x_timestanp_conversi ons=t rue isin effect, the resulting TI NESTAMP
represents a date and time in the local time zone.

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and
overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest
value in the range for the type. For example, valid valuesfor at i nyi nt range from -128 to 127. In Impala, a

ti nyi nt with avalue of -200 returns -128 rather than NULL. A t i nyi nt with avalue of 200 returns 127.

Usage notes:

For a convenient and automated way to check the bounds of the TI NYI NT type, call the functions
M N_TI NYI NT() and MAX_TI NYI NT() .

If an integer value istoo large to be represented asa TI NYI NT, usea SMALLI NT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.
Examples:

CREATE TABLE t1 (x TINYINT);

SELECT CAST(100 AS TI NYI NT);
Par quet consider ations:

Physically, Parquet files represent TI NYI NT and SMALLI NT values as 32-bit integers. Although Impala rejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE . ..
LI KE PARQUET syntax, any TI NYI NT or SMALLI NT columnsin the original tableturninto | NT columnsin the
new table.

HBase consider ations: This datatypeisfully compatible with HBase tables.

Text table consider ations: Values of thistype are potentially larger in text tables than in tables using Parquet or
other binary formats.

| Impala SQL Language Reference | 140

Internal details: Represented in memory as a 1-byte value.
Added in: Availablein all versions of Impala.

Column statistics consider ations: Because this type has afixed size, the maximum and average size fields are
awaysfilled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 174, TINYINT Data Type on page 139, SMALLINT Data Type on page 124, INT
Data Type on page 118, BIGINT Data Type on page 106, DECIMAL Data Type (Impala 3.0 or higher only) on
page 111, Impala Mathematical Functions on page 434

VARCHAR Data Type (Impala 2.0 or higher only)
A variable-length character type, truncated during processing if necessary to fit within the specified length.
Syntax:
In the column definition of a CREATE TABLE statement:

col utm_nanme VARCHAR(max_| engt h)

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (I NT, Bl G NT, and so on) where practical.

HBase consider ations: This data type cannot be used with HBase tables.
Parquet considerations:

» Thistype can be read from and written to Parquet files.

e Thereisno requirement for a particular level of Parquet.

« Parquet files generated by Impala and containing this type can be freely interchanged with other components such
as Hive and MapReduce.

» Parquet datafiles can contain values that are longer than allowed by the VARCHAR(n) length limit. Impala
ignores any extratrailing characters when it processes those values during a query.

Text table consider ations:

Text datafiles can contain values that are longer than allowed by the VARCHAR(n) length limit. Any extratrailing
characters are ignored when Impala processes those values during a query.

Avro consider ations:

The Avro specification allows string values up to 2**64 bytesin length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR valuesin Avro tables
to (2**31)-1 bytes. If aquery encounters a STRI NGvalue longer than (2**31)-1 bytesin an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Schema evolution consider ations:

Youcanuse ALTER TABLE ... CHANGCE to switch column datatypesto and from VARCHAR. Y ou can convert
from STRI NGto VARCHAR(n) , or from VARCHAR(n) to STRI NG, or from CHAR(n) to VARCHAR(n) , or from
VARCHAR(n) to CHAR(n) . When switching back and forth between VARCHAR and CHAR, you can also change
the length value. This schema evolution works the same for tables using any file format. If atable contains values
longer than the maximum length defined for a VARCHAR column, Impala does not return an error. Any extratrailing
characters are ignored when Impala processes those values during a query.

Compatibility:
Thistypeisavailablein Impala 2.0 or higher.

Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.

| Impala SQL Language Reference | 141

Added in: Impala2.0.0

Column statistics consider ations: Because the values of this type have variable size, none of the column statistics
fieldsarefilled in until you run the COMPUTE STATS statement.

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions:

All datain CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRI NG column to hold it.

Examples:

The following examples show how long and short VARCHAR values are treated. Values longer than the maximum
specified length are truncated by CAST() , or when queried from existing datafiles. Values shorter than the
maximum specified length are represented as the actual length of the value, with no extra padding as seen with CHAR
values.

create table varchar_1 (s varchar(1));
create table varchar_4 (s varchar(4));
create table varchar 20 (s varchar(20));

nsert into varchar_1 values (cast('a'" as varchar(1l))), (cast('b" as
varchar (1))), (cast('hello' as varchar(1))), (cast('world as varchar(1)));
nsert into varchar_4 values (cast('a'" as varchar(4))), (cast('b' as
varchar (4))), (cast('hello' as varchar(4))), (cast('world" as varchar(4)));
nsert into varchar_ 20 values (cast('a' as varchar(20))), (cast('b'

as varchar(20))), (cast('hello" as varchar(20))), (cast('world' as

varchar (20)));

select * fromvarchar 1;
+---+
| s |
+---+
| a|

| w|
+---+
sel ect * from varchar 4,

| Impala SQL Language Reference | 142

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined with
different maximum lengths. Both tables contain' a' and' b' values. Thelonger' hel | o' and' wor | d' values
from the VARCHAR 20 table were truncated when inserted into the VARCHAR 1 table.

select s fromvarchar_1 join varchar_20 using (S);

deoccoooc +
| s I
foccococ +
| a I
| b |
focooooc +

The following examples show how VARCHAR values are freely interchangeable with STRI NGvalues in contexts such
as comparison operators and built-in functions:

sel ect I ength(cast('foo'" as varchar(100))) as | ength;

eemeaaa- +
| length |
TS SR +
| 3 |
fooococoooc +
sel ect cast('xyz' as varchar(5)) > cast('abc' as varchar(10)) as greater;
R +
| greater |
TSRS +
| true [
feoococooooc +

UDF considerations. This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Related information:

STRING Data Type on page 125, CHAR Data Type (Impala 2.0 or higher only) on page 108, String Literals on
page 175, Impala String Functions on page 509

Complex Types (Impala 2.3 or higher only)

Complex types (also referred to as nested types) let you represent multiple data values within a single row/column
position. They differ from the familiar column types such as Bl G NT and STRI NG, known as scalar types or
primitive types, which represent a single data value within a given row/column position. Impala supports the complex
types ARRAY, MAP, and STRUCT in Impala 2.3 and higher. The Hive UNI ON type is not currently supported.

Once you understand the basics of complex types, refer to the individual type topics when you need to refresh your
memory about syntax and examples:

¢ ARRAY Complex Type (Impala 2.3 or higher only) on page 102

e STRUCT Complex Type (Impala 2.3 or higher only) on page 127
* MAP Complex Type (Impala 2.3 or higher only) on page 119
Benefits of Impala Complex Types

The reasons for using Impala complex types include the following:

* You aready have data produced by Hive or other non-Impala component that uses the complex type column
names. Y ou might need to convert the underlying data to Parquet to use it with Impala.

| Impala SQL Language Reference | 143

* Your data model originates with anon-SQL programming language or a NoSQL data management system.
For example, if you are representing Python data expressed as nested lists, dictionaries, and tuples, those data
structures correspond closely to Impala ARRAY, MAP, and STRUCT types.

* Your anaytic queries involving multiple tables could benefit from greater locality during join processing. By
packing more related data items within each HDFS data block, complex types let join queries avoid the network
overhead of the traditional Hadoop shuffle or broadcast join techniques.

The Impala complex type support produces result sets with all scalar values, and the scalar components of complex
types can be used with al SQL clauses, such as GROUP BY, ORDER BY, dl kinds of joins, subqueries, and inline
views. The ahility to process complex type data entirely in SQL reduces the need to write application-specific codein
Javaor other programming languages to deconstruct the underlying data structures.

Overview of Impala Complex Types

The ARRAY and MAP types are closely related: they represent collections with arbitrary numbers of elements, where
each element is the same type. In contrast, STRUCT groups together a fixed number of itemsinto a single element.
The parts of a STRUCT element (the fields) can be of different types, and each field has a name.

The elements of an ARRAY or MAP, or the fields of a STRUCT, can also be other complex types. Y ou can construct
elaborate data structures with up to 100 levels of nesting. For example, you can make an ARRAY whose elements are
STRUCTSs. Within each STRUCT, you can have some fields that are ARRAY, MAP, or another kind of STRUCT. The
Impala documentation uses the terms complex and nested types interchangeably; for simplicity, it primarily uses the
term complex types, to encompass all the properties of these types.

When visualizing your data model in familiar SQL terms, you can think of each ARRAY or MAP as a miniature table,
and each STRUCT as arow within such atable. By default, the table represented by an ARRAY has two columns, POS
to represent ordering of elements, and | TEMrepresenting the value of each element. Likewise, by default, the table
represented by a MAP encodes key-value pairs, and therefore has two columns, KEY and VALUE.

The | TEMand VALUE names are only required for the very simplest kinds of ARRAY and MAP columns, ones that
hold only scalar values. When the elements within the ARRAY or MAP are of type STRUCT rather than a scalar type,
then the result set contains columns with names corresponding to the STRUCT fields rather than | TEMor VALUE.

Y ou write most queries that process complex type columns using familiar join syntax, even though the data for both
sides of the join resides in asingle table. The join notation brings together the scalar values from arow with the
values from the complex type columns for that same row. The final result set contains all scalar values, alowing you
to do al the familiar filtering, aggregation, ordering, and so on for the complex data entirely in SQL or using business
intelligence tools that issue SQL queries.

Behind the scenes, Impala ensures that the processing for each row is done efficiently on a single host, without the
network traffic involved in broadcast or shuffle joins. The most common type of join query for tables with complex
type columnsis| NNER JO N, which returns results only in those cases where the complex type contains some
elements. Therefore, most query examplesin this section use either thel NNER JO N clause or the equivalent
comma notation.

Note:

Although Impala can query complex types that are present in Parquet files, Impala currently cannot create new
Parquet files containing complex types. Therefore, the discussion and examples presume that you are working with
existing Parquet data produced through Hive, Spark, or some other source. See Constructing Parquet/ORC Files with
Complex Columns Using Hive on page 167 for examples of constructing Parquet data files with complex type
columns.

For learning purposes, you can create empty tables with complex type columns and practice query syntax, even if you
do not have sample data with the required structure.

Design Considerations for Complex Types

When planning to use Impala complex types, and designing the Impala schema, first learn how this kind of schema
differs from traditional table layouts from the relational database and data warehousing fields. Because you might
have aready encountered complex typesin a Hadoop context while using Hive for ETL, aso learn how to write high-
performance analytic queries for complex type data using Impala SQL syntax.

| Impala SQL Language Reference | 144

How Complex Types Differ from Traditional Data Warehouse Schemas

Complex types let you associate arbitrary data structures with a particular row. If you are familiar with schema design
for relational database management systems or data warehouses, a schema with complex types has the following
differences:

» Logically, related values can now be grouped tightly together in the same table.
In traditional data warehousing, related values were typically arranged in one of two ways:

» Split across multiple normalized tables. Foreign key columns specified which rows from each table were
associated with each other. This arrangement avoided duplicate data and therefore the data was compact, but
join queries could be expensive because the related data had to be retrieved from separate locations. (In the
case of distributed Hadoop queries, the joined tables might even be transmitted between different hostsin a
cluster.)

« Flattened into asingle denormalized table. Although this layout eliminated some potential performance issues
by removing the need for join queries, the table typically became larger because values were repeated. The
extra data volume could cause performance issues in other parts of the workflow, such aslonger ETL cyclesor
more expensive full-table scans during queries.

Complex types represent a middle ground that addresses these performance and volume concerns. By physically
locating related data within the same data files, complex typesincrease locality and reduce the expense of join
queries. By associating an arbitrary amount of data with a single row, complex types avoid the need to repeat
lengthy values such as strings. Because Impala knows which complex type values are associated with each row,
you can save storage by avoiding artificial foreign key values that are only used for joins. The flexibility of the
STRUCT, ARRAY, and MAP types |ets you model familiar constructs such as fact and dimension tables from a data
warehouse, and wide tables representing sparse matrixes.

Physical Storage for Complex Types in Parquet

Physically, the scalar and complex columnsin each row are located adjacent to each other in the same Parquet data
file, ensuring that they are processed on the same host rather than being broadcast across the network when cross-
referenced within a query. This co-location simplifies the process of copying, converting, and backing all the columns
up at once. Because of the column-oriented layout of Parquet files, you can still query only the scalar columns of a
table without imposing the 1/0 penalty of reading the (possibly large) values of the composite columns.

Within each Parquet datafile, the constituent parts of complex type columns are stored in column-oriented format:

» Eachfield of a STRUCT typeisstored like a column, with al the scalar values adjacent to each other and encoded,
compressed, and so on using the Parquet space-saving techniques.

« For an ARRAY containing scalar values, all those values (represented by the | TEMpseudocolumn) are stored
adjacent to each other.

« For aMAP, the values of the KEY pseudocolumn are stored adjacent to each other. If the VALUE pseudocolumn is
ascalar type, its values are also stored adjacent to each other.

* If an ARRAY element, STRUCT field, or MAP VAL UE part is another complex type, the column-oriented storage
applies to the next level down (or the next level after that, and so on for deeply nested types) where the final
elements, fields, or values are of scalar types.

The numbers represented by the POS pseudocolumn of an ARRAY are not physically stored in the datafiles. They are
synthesized at query time based on the order of the ARRAY elements associated with each row.

File Format Support for Impala Complex Types

Currently, Impala queries support complex type data in the Parquet and ORC file formats. See Using the Parquet File
Format with Impala Tables on page 705 for details about the performance benefits and physical layout of Parquet
file format.

Because Impala does not parse the data structures containing nested types for unsupported formats such as text, Avro,
SequenceFile, or RCFile, you cannot use data files in these formats with Impala, even if the query does not refer to
the nested type columns. Also, if atable using an unsupported format originally contained nested type columns, and
then those columns were dropped from the tableusing ALTER TABLE ... DROP COLUM\, any existing data
filesin the table till contain the nested type data and Impala queries on that table will generate errors.

| Impala SQL Language Reference | 145

The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include complex types. Such
queries are allowed in Impala 2.6 and higher.

Y ou can perform DDL operations for tables involving complex typesin most file formats other than Parquet or ORC.
Y ou cannot create tablesin Impalawith complex types using text files.

Y ou can have a partitioned table with complex type columns that uses a format other than Parquet or ORC, and use
ALTER TABLE to change the file format to Parquet/ORC for individual partitions. When you put Parquet/ORC files
into those partitions, Impala can execute queries against that data as long as the query does not involve any of the
non-Parquet and non-ORC partitions.

If you use the par quet - t ool s command to examine the structure of a Parquet data file that includes complex
types, you see that both ARRAY and MAP are represented as a Bag in Parquet terminology, with all fields marked
Opt i onal because Impala allows any column to be nullable.

Impala supports either 2-level and 3-level encoding within each Parquet data file. When constructing Parquet data
files outside Impala, use either encoding style but do not mix 2-level and 3-level encoding within the same datafile.

Choosing Between Complex Types and Normalized Tables

Choosing between multiple normalized fact and dimension tables, or asingle table containing complex types, isan
important design decision.

» |If you are coming from atraditional database or data warehousing background, you might be familiar with how to
split up data between tables. Y our business intelligence tools might already be optimized for dealing with this kind
of multi-table scenario through join queries.

» If you are pulling data from Impalainto an application written in a programming language that has data structures
anal ogous to the complex types, such as Python or Java, complex typesin Impaa could simplify data interchange
and improve understandability and reliability of your program logic.

* You might aready be faced with existing infrastructure or receive high volumes of data that assume one layout
or the other. For example, complex types are popular with web-oriented applications, for example to keep
information about an online user al in one place for convenient lookup and analysis, or to deal with sparse or
constantly evolving data fields.

« |f some parts of the data change over time while related data remains constant, using multiple normalized tables
lets you replace certain parts of the data without reloading the entire data set. Conversely, if you receive related
data all bundled together, such asin JSON files, using complex types can save the overhead of splitting the related
items across multiple tables.

* From a performance perspective:

e InParquet or ORC tables, Impala can skip columns that are not referenced in a query, avoiding the I/O penalty
of reading the embedded data. When complex types are nested within a column, the data is physically divided
at avery granular level; for example, a query referring to data nested multiple levels deep in a complex type
column does not have to read all the data from that column, only the data for the relevant parts of the column
type hierarchy.

« Complex types avoid the possibility of expensive join queries when data from fact and dimension tablesis
processed in parallel across multiple hosts. All the information for arow containing complex typesistypically
to bein the same data block, and therefore does not need to be transmitted across the network when joining
fieldsthat are all part of the same row.

» Thetradeoff with complex typesis that fewer rowsfit in each data block. Whether it is better to have more
data blocks with fewer rows, or fewer data blocks with many rows, depends on the distribution of your data
and the characteristics of your query workload. If the complex columns are rarely referenced, using them
might lower efficiency. If you are seeing low parallelism due to a small volume of data (relatively few data
blocks) in each table partition, increasing the row size by including complex columns might produce more data
blocks and thus spread the work more evenly across the cluster. See Scalability Considerations for Impala on
page 657 for more on this advanced topic.

| Impala SQL Language Reference | 146

Differences Between Impala and Hive Complex Types

Impala can query Parquet and ORC tables containing ARRAY, STRUCT, and MAP columns produced by Hive. There
are some differences to be aware of between the Impala SQL and HiveQL syntax for complex types, primarily for
queries.

Impala supports a subset of the syntax that Hive supports for specifying ARRAY, STRUCT, and MAP typesin the
CREATE TABLE statements.

Because Impala STRUCT columns include user-specified field names, you use the NAMED_STRUCT() constructor
in Hive rather than the STRUCT() constructor when you populate an Impala STRUCT column using a Hive | NSERT
statement.

The Hive UNI ON'typeis not currently supported in Impala.

While Impala usually aims for a high degree of compatibility with HiveQL query syntax, Impala syntax differs
from Hive for queriesinvolving complex types. The differences are intended to provide extraflexibility for queries
involving these kinds of tables.

* Impalauses dot notation for referring to element names or el ements within complex types, and join notation
for cross-referencing scalar columns with the elements of complex types within the same row, rather than the
LATERAL VI EWclause and EXPLODE() function of HiveQL.

« Usingjoin notation lets you use all the kinds of join queries with complex type columns. For example, you can
useaLEFT OQUTER JO N,LEFT ANTI JA N, or LEFT SEM JO Nquery to evaluate different scenarios
where the complex columns do or do not contain any elements.

« You can include references to collection types inside subqueries and inline views. For example, you can construct
a FROMclause where one of the “tables’ is a subquery against a complex type column, or use a subquery against a
complex type column as the argument to an | Nor EXI STS clause.

e The Impala pseudocolumn PCS lets you retrieve the position of elementsin an array along with the el ements
themselves, equivalent to the POSEXPLCODE() function of HiveQL. Y ou do not use index notation to retrieve a
single array element in a query; the join query loops through the array elements and you use WHERE clauses to
specify which elements to return.

« Join clauses involving complex type columns do not require an ON or USI NG clause. Impala implicitly applies the
join key so that the correct array entries or map elements are associated with the correct row from the table.

« Impaladoes not currently support the UNI ON complex type.

Limitations and Restrictions for Complex Types
Complex type columns can only be used in tables or partitions with the Parquet or ORC file format.
Complex type columns cannot be used as partition key columnsin a partitioned table.

When you use complex types with the ORDER BY, GROUP BY, HAVI NG, or WHERE clauses, you cannot refer to
the column name by itself. Instead, you refer to the names of the scalar values within the complex type, such asthe
| TEM PGS, KEY, or VALUE pseudocolumns, or the field names from a STRUCT.

The maximum depth of nesting for complex typesis 100 levels.

The maximum length of the column definition for any complex type, including declarations for any nested types, is
4000 characters.

For ideal performance and scalability, use small or medium-sized collections, where all the complex columns contain
at most afew hundred megabytes per row. Remember, al the columns of arow are stored in the same HDFS data
block, whose size in Parquet files typically ranges from 256 MB to 1 GB.

Including complex type columns in atable introduces some overhead that might make queries that do not reference
those columns somewhat slower than Impala queries against tables without any complex type columns. Expect at
most a 2x slowdown compared to tables that do not have any complex type columns.

Currently, the COMPUTE STATS statement does not collect any statistics for columns containing complex types.
Impala uses heuristics to construct execution plans involving complex type columns.

| Impala SQL Language Reference | 147

Currently, Impala built-in functions and user-defined functions cannot accept complex types as parameters or produce
them as function return values. (When the complex type values are materialized in an Impalaresult set, the result set
contains the scalar components of the values, such asthe PCS or | TEMfor an ARRAY, the KEY or VALUE for a MAP,
or thefields of a STRUCT; these scalar data items can be used with built-in functions and UDFs as usual.)

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or | NSERT ... SELECT. To create datafiles
containing complex type data, use the Hive | NSERT statement, or another ETL mechanism such as MapReduce jobs,
Spark jobs, Pig, and so on.

Currently, Impala can query complex type columns only from Parquet/ORC tables or Parquet/ORC partitions within
partitioned tables. Although you can use complex typesin tables with Avro, text, and other file formats as part of your
ETL pipeline, for example as intermediate tables populated through Hive, doing analytics through Impala requires
that the data eventually ends up in a Parquet/ORC table. The requirement for Parquet/ORC data files means that you
can use complex types with Impala tables hosted on other kinds of file storage systems such as Isilon and Amazon S3,
but you cannot use Impalato query complex types from HBase tables. See File Format Support for Impala Complex
Types on page 144 for more details.

Using Complex Types from SQL

When using complex types through SQL in Impala, you learn the notation for < > delimiters for the complex type
columnsin CREATE TABLE statements, and how to construct join queriesto “unpack” the scalar values nested
inside the complex data structures. Y ou might need to condense atraditional RDBMS or data warehouse schema
into a smaller number of Parquet tables, and use Hive, Spark, Pig, or other mechanism outside Impalato populate the
tables with data.

Complex Type Syntax for DDL Statements

The definition of data_type, as seeninthe CREATE TABLE and ALTER TABLE statements, now includes complex
typesin addition to primitive types:

primtive_type
| array_type

| map_type
| struct _type

Unions are not currently supported.

Array,struct, and map column type declarations are specified in the CREATE TABLE statement. Y ou can also
add or change the type of complex columns through the ALTER TABLE statement.

Currently, Impala queries allow complex types only in tables that use the Parquet or ORC format. If an Impala query
encounters complex typesin atable or partition using other file formats, the query returns a runtime error.

Youcanuse ALTER TABLE ... SET FI LEFORMAT PARQUET to change thefile format of an existing table
containing complex types to Parquet, after which Impala can query it. Make sure to load Parquet files into the table
after changing the file format, becausethe ALTER TABLE ... SET FI LEFORVAT statement does not convert
existing data to the new file format.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Because use cases for Impala complex types require that you already have Parquet/ORC data files produced outside
of Impala, you can use the Impala CREATE TABLE LI KE PARQUET syntax to produce atable with columns that
match the structure of an existing Parquet file, including complex type columns for nested data structures. Remember
toincludethe STORED AS PARQUET clausein this case, because even with CREATE TABLE LI KE PARQUET,
the default file format of the resulting tableis still text.

Because Impala currently does not support writing Parquet files with complex type columns, you cannot use the
CREATE TABLE AS SELECT syntax to create atable with nested type columns.

Note:

| Impala SQL Language Reference | 148

Once you have atable set up with complex type columns, use the DESCRI BE and SHON CREATE TABLE
statements to see the correct notation with < and > delimiters and comma and colon separators within the complex
type definitions. If you do not have existing data with the same layout as the table, you can query the empty table to
practice with the notation for the SELECT statement. In the SELECT list, you use dot notation and pseudocolumns
such as| TEM KEY, and VALUE for referring to items within the complex type columns. In the FROMclause, you use
join notation to construct table aliases for any referenced ARRAY and MAP columns.

For example, when defining atable that holds contact information, you might represent phone numbers differently
depending on the expected layout and relationships of the data, and how well you can predict those propertiesin
advance.

Here are different ways that you might represent phone numbers in atraditional relational schema, with equivalent
representations using complex types.

The traditional, simplest way to represent phone numbersin arelational table isto store all contact info in asingle
table, with all columns having scalar types, and each potential phone number represented as a separate column. In this
example, each person can only have these 3 types of phone numbers. If the person does not have a particular kind of
phone number, the corresponding column is NULL for that row.

CREATE TABLE contacts_fi xed_phones

(
id Bl G NT

, hame STRI NG

, address STRI NG

, home_phone STRI NG

, work_phone STRI NG

, hobil e_phone STRI NG
) STORED AS PARQUET;

Figure 1: Traditional Relational Representation of Phone Numbers: Single Table

Using a complex type column to represent the phone numbers adds some extra flexibility. Now there could be an
unlimited number of phone numbers. Because the array elements have an order but not symbolic names, you could
decide in advance that phone_number[Q] is the home number, [1] isthe work number, [2] is the mobile number, and
so on. (In subsequent examples, you will see how to create a more flexible naming scheme using other complex type
variations, such as a MAP or an ARRAY where each element isa STRUCT.)

CREATE TABLE contacts_array_of phones

id BIG NT
, hame STRI NG
, address STRI NG
, phone_nunber ARRAY < STRI NG >
) STORED AS PARQUET;

Figure 2: An Array of Phone Numbers

Another way to represent an arbitrary set of phone numbersis with a MAP column. With a MAP, each element is
associated with akey value that you specify, which could be a numeric, string, or other scalar type. This example uses
a STRI NGkey to give each phone number aname, such as' hone' or' nobi | e' . A query could filter the data
based on the key values, or display the key valuesin reports.

CREATE TABLE contacts_unlimted_phones

id BIG NT, name STRING address STRING phone_nunmber MAP < STRI NG STRI NG >
) STORED AS PARQUET;

| Impala SQL Language Reference | 149

Figure 3: A Map of Phone Numbers

If you are an experienced database designer, you already know how to work around the limitations of the single-
table schema from Figure 1: Traditional Relational Representation of Phone Numbers: Single Table on page 148.
By normalizing the schema, with the phone numbersin their own table, you can associate an arbitrary set of phone
numbers with each person, and associate additional details with each phone number, such as whether it is a home,
work, or mobile phone.

The flexibility of this approach comes with some drawbacks. Reconstructing all the data for a particular person
requires ajoin query, which might require performance tuning on Hadoop because the data from each table might
be transmitted from a different host. Data management tasks such as backups and refreshing the data require dealing
with multiple tables instead of asingle table.

This example illustrates a traditional database schemato store contact info normalized across 2 tables. The fact table
establishes the identity and basic information about person. A dimension table stores information only about phone
numbers, using an 1D value to associate each phone number with a person 1D from the fact table. Each person can
have O, 1, or many phones; the categories are not restricted to afew predefined ones; and the phone table can contain
as many columns as desired, to represent all sorts of details about each phone number.

CREATE TABLE fact_contacts (id BIG NT, name STRING address STRING STORED
AS PARQUET:;
CREATE TABLE di m phones

(
contact _id BIG NT

, category STRI NG
, international code STRI NG

, area_code STRI NG

, exchange STRI NG

, extension STRI NG

, hobil e BOOLEAN

, carrier STRING

, current BOOLEAN

, service_start_date TI MESTAWP
, service_end_date TI MESTAMP

)
STORED AS PARQUET;

Figure 4: Traditional Relational Representation of Phone Numbers: Normalized Tables

To represent a schema equivalent to the one from Figure 4: Traditional Relational Representation of Phone
Numbers: Normalized Tables on page 149 using complex types, this example uses an ARRAY where each array
element isa STRUCT. Aswith the earlier complex type examples, each person can have an arbitrary set of associated
phone humbers. Making each array element into a STRUCT lets us associate multiple data items with each phone
number, and give a separate name and type to each dataitem. The STRUCT fields of the ARRAY elements reproduce
the columns of the dimension table from the previous example.

Y ou can do all the same kinds of queries with the complex type schema as with the normalized schema from the
previous example. The advantages of the complex type design are in the areas of convenience and performance.

Now your backup and ETL processes only deal with asingle table. When a query uses ajoin to cross-reference the
information about a person with their associated phone numbers, al the relevant data for each row residesin the same
HDFS data block, meaning each row can be processed on a single host without requiring network transmission.

CREATE TABLE cont acts_det ai | ed_phones

id BIG NI, nane STRING address STRI NG
, phone ARRAY < STRUCT <
category: STRI NG

| Impala SQL Language Reference | 150

, international code: STRI NG
, area_code: STRI NG
, exchange: STRI NG
, extension: STRI NG
, hobil e: BOOLEAN
, carrier: STRI NG
, current: BOOLEAN
, service_start_date: TIVESTAWMP
, service_end_date: TI MESTAMP
>>
) STORED AS PARQUET;

Figure 5: Phone Numbers Represented as an Array of Structs

SQL Statements that Support Complex Types

The Impala SQL statements that support complex types are currently CREATE TABLE, ALTER TABLE,

DESCRI BE, LOAD DATA, and SELECT. That is, currently Impala can create or ater tables containing complex type
columns, examine the structure of atable containing complex type columns, import existing data files containing
complex type columns into atable, and query Parquet/ORC tables containing complex types.

Impala currently cannot write new datafiles containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or | NSERT ... SELECT. To create datafiles
containing complex type data, use the Hive | NSERT statement, or another ETL mechanism such as MapReduce jobs,
Spark jobs, Pig, and so on.

DDL Statements and Complex Types

Column specifications for complex or nested types use < and > delimiters:

-- What goes inside the < > for an ARRAY is a single type, either a scalar
or anot her

-- conpl ex type (ARRAY, STRUCT, or MAP).

CREATE TABLE array_t

id Bl G NT,

al ARRAY <STRI NG,

a2 ARRAY <BI G NT>,

a3 ARRAY <TI MESTAMP>,

a4 ARRAY <STRUCT <f1l: STRING f2: INT, f3: BOCLEAN>>

)
STORED AS PARQUET;

-- What goes inside the < > for a MAP is two comma-separated types
speci fying the types of the key-val ue pair:
-- a scalar type representing the key, and a scalar or conplex type
representing the val ue.
CREATE TABLE map_t
(
id Bl G NT,
MAP <STRI NG STRI NG>,
MAP <STRI NG, BI G NT>,
MAP <BI G NT, STRI NG>,
MAP <BI G NT, BI G NT>,
MAP <STRI NG ARRAY <STRI NG>>

EECEY

)
STORED AS PARQUET;

-- What goes inside the < > for a STRUCT is a conma-separated |ist of
fields, each field defined as

| Impala SQL Language Reference | 151

-- nane:type. The type can be a scalar or a conplex type. The field nanes
for each STRUCT do not clash

-- with the nanes of table columms or fields in other STRUCTs. A STRUCT is
nost of ten used i nside

-- an ARRAY or a MAP rather than as a top-Ilevel colum.

CREATE TABLE struct _t

id Bl G NT,

sl STRUCT <f1l: STRING f2: BlId NT>,

s2 ARRAY <STRUCT <f1: INT, f2: TIMESTAMP>>,

s3 MAP <BI @ NT, STRUCT <nane: STRI NG, birthday: TI MESTAVP>>

)
STORED AS PARQUET;

Queries and Complex Types

The result set of an Impala query can contain both scalar and complex types. A query can either retrieve the complex
values directly or “unpack” the elements and fields within a complex type using join queries, with the limitation that

direct retrieval is currently not supported for complex types where collections (maps or arrays) are embedded within

structs or structs are embedded within collections.

Here are some complex types that are supported in the select list:

e STRUCT<i: | NT>

e STRUCT<s: STRUCT<i: | NT>>
¢ ARRAY<I| NT>

¢ ARRAY<ARRAY<I| NT>>

* ARRAY<MAP<| NT>>

And here are some that are not supported in the select list:

¢ STRUCT<a: ARRAY<| NT>>
* ARRAY<STRUCT<i : | NT>>
« MAP<I NT, STRUCT<s: STRI NG>

Because of backward compatibility with earlier versions of Impalathat did not support complex typesin the result set,
queriesusing SELECT * skip complex types by default. To include complex typesin SELECT * queries, set the
EXPAND_COMPLEX_TYPES query option to true (see the EXPAND _COMPLEX_TYPES Query Option on page
395).

The following example shows how referring directly to a column with a complex type where a struct is embedded
in a collection (an array) returns an error, while SELECT * on the same table succeeds, but only retrieves the scalar
columns. Note that if EXPAND_COMPLEX_TYPES istrue, the SELECT * query aso fails with the same error.

Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
165 for the table definitions.

SELECT c_orders FROM custoner LIMT 1;
ERRCR: Anal ysi sException: STRUCT type inside collection types is not
support ed.

-- Original colum has several scalar and one conpl ex col um.
DESCRI BE cust oner ;

Focococococoococ Fococococococococococococococococoooc +
| nane | type [
R S +
| c_custkey | bigint |
| c_nane | string [
| c_orders | array<struct< |

[[o_order key: bi gi nt, [

| Impala SQL Language Reference | 152

| | o_orderstatus:string,
[[o_total price:decimal (12, 2), |

-- When we SELECT * fromthat table, only the scal ar columms conme back in
the result set.

CREATE TABLE sel ect _star_custoner STORED AS PARQUET AS SELECT * FROM

cust oner;

foccocococococcoccooccoocoocos +
| summary |
feccoccococooococccooocosooc +
| I'nserted 150000 row(s) |
foccoccococoococccooococooc +

-- The c_orders colum, being of conplex type, was not included in the
SELECT * result set.
DESC sel ect _star _custoner;

feccoocooccooooc feccoccocoooooac +
| nane | type I
Fococococoocnooc Fooccoccococosasos +
| c_custkey | bigint |
| c_name | string |
| c_address | string [
| c_nationkey | smallint [
c¢_phone	string
c_acct bal	decinmal (12,2)
c_nktsegnent	string
c_coment	string
feccoocooccooooc feccoccocooooooc +

References to fields within STRUCT columns use dot notation. If the field name is unambiguous, you can omit
qualifiers such as table name, column name, or even the | TEMor VAL UE pseudocolumn names for STRUCT elements
inside an ARRAY or a MAP.

SELECT id, address.city FROM custoners WHERE address. zi p = 94305;

References to elements within ARRAY columns use the | TEMpseudocolumn:

select r_nane, r_nations.itemn_nane fromregion, region.r_nations limt 7;

| r_name | item n_name |
H--m - o e - e e -aaao-- +
| EURCPE | UNI TED KI NGDOM |
| EUROPE | RUSSI A [
| EUROPE | ROVANI A [
| EURCPE | GERVANY [
| EUROPE | FRANCE [
| ASTA | VIETNAM [
| ASTA | CHINA [
CT O +

References to fields within MAP columns use the KEY and VAL UE pseudocolumns. In this example, once the query
establishes the alias MAP_FI ELD for a MAP column with a STRI NGkey and an | NT value, the query can refer

to MAP_FI ELD. KEY and MAP_FI ELD. VALUE, which have zero, one, or many instances for each row from the
containing table.

DESCRI BE t abl e_0;

| Impala SQL Language Reference | 153

d 0| string |
d 1| map<string,int> |

SELECT field_ 0, map_field.key, map_fi el d.val ue
FROM table 0, table O.field 1 AS map _field
VHERE | ength(field_0) =1

LIMT 10;

feocococooooc fecococoococooas fooocoooc +
| field O | key | val ue
Fococooooe Fococcoccooooe Focoocooe +
b	gshsgkvd	NULL
b	twtcxj6	18
b	2vp5	39
b	fhOs	13 [
v	2	41 [
v	8b58ne	20 [
v	hw	16 [
v	651 388pyt	29 [
v	03k68g91z	30
v	r2hl gbb [NULL	
feoococooooc feocococooccooac foocoooc +

When complex types are nested inside each other, you use a combination of joins, pseudocolumn names, and dot
notation to refer to specific fields at the appropriate level. Thisis the most frequent form of query syntax for complex
columns, because the typical use case involvestwo levels of complex types, such as an ARRAY of STRUCT elements.

SELECT id, phone_nunbers. area _code FROM contact _info_many_structs | NNER JO N
contact _info_many_structs. phone_nunbers phone_nunbers LIMT 3;

Y ou can express rel ationships between ARRAY and MAP columns at different levels asjoins. Y ou include comparison
operators between fields at the top level and within the nested type columns so that Impala can do the appropriate join
operation.

Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
165 for the table definitions.

For example, the following queries work equivalently. They each return customer and order datafor customers that
have at least one order.

SELECT c.c_nane, o.o0_orderkey FROM custoner c, c.c_orders o LIMT 5;

| Custoner#000072578 | 558821 [
| Custoner#000072578 | 2079810 [
| Custoner#000072578 | 5768068 [
| Customer#000072578 | 1805604 [
| Custoner #000072578 | 3436389 |

SELECT c.c_nanme, o.o0_orderkey FROM custoner ¢ INNER JON c.c_orders o LIMT
S5;

Customer #000072578	558821
Custoner#000072578	2079810
Customer#000072578	5768068

| Impala SQL Language Reference | 154

| Custoner #000072578 | 1805604 |
| Custoner#000072578 | 3436389 |

The following query using an outer join returns customers that have orders, plus customers with no orders (no entries
in the C_ORDERS array):

SELECT c.c_custkey, o.o_orderkey
FROM cust omer ¢ LEFT QUTER JO N c.c_orders o

LIMT 5;

feccoococooc feccococooooc +
| c_custkey | o_orderkey |
foccoococooc foccocococoooc +
60210	NULL
147873	NULL
72578	558821
72578	2079810 [
72578	5768068 [
foccoococooc foccocococoooc +

The following query returns only customers that have no orders. (With LEFT ANTI JO Nor LEFT SEM JQ N,
the query can only refer to columns from the left-hand table, because by definition there is no matching information
in the right-hand table.)

SELECT c.c_custkey, c.c_nane
FROM cust omer ¢ LEFT ANTI JO N c.c_orders o

LIMT 5;

feccoococooc feccoocococcoococooooc +

| c_custkey | c_nane |

fecococoococooas fecoccoococoococoococoocooos +
60210 Cust omer #000060210
147873 Cust omer #000147873

Cust oner #000085365

I I I
I I I
| 141576 | Cust onmer#000141576 |
I I I
| | Customer#000070998 |

Y ou can also perform correlated subqueries to examine the properties of complex type columns for each row in the
result set.

Count the number of orders per customer. Note the correlated reference to the table alias C. The COUNT(*)
operation appliesto al the elements of the C_ORDERS array for the corresponding row, avoiding the need for a
GROUP BY clause.

sel ect c_name, howrany FROM custoner c, (SELECT COUNT(*) howrany FROM
c.c_orders) v limt 5;

feccoocococcoococooooc feccoocooc +
| c¢_name | howmany |
fecoccoococoococoococoocooos feocococooooc +
| Custonmer #000030065 | 15 |
| Custonmer #000065455 | 18 |
| Custoner#000113644 | 21 [
| Customrer#000111078 | O |
| Custoner#000024621 | O |
fecoccoococoococoococoocooos feocococooooc +

Count the number of orders per customer, ignoring any customers that have not placed any orders:

SELECT c_name, hownmany_orders

| Impala SQL Language Reference | 155

FROM

cust oner c,

(SELECT COUNT(*) howmany_orders FROM c.c_orders) subql
WHERE howmany _orders > 0
LIMT 5;

| Custoner#000072578 | 7
| Custoner#000046378 | 2
| Custoner#000069815 | 1
| Custoner #000079058 | 1
| Customer#000092239 | 2

Count the number of lineitemsin each order. The referenceto C. C_ORDERS in the FROMclause is needed because
the O_ORDERKEY field is amember of the elements in the C_ORDERS array. The subquery labelled SUBQL is
correlated: it isre-evaluated for the C_ORDERS. O LI NEI TEMS array from each row of the CUSTOVERS table.

SELECT c_nane, o_orderkey, howrany l|ine_itens
FROM

cust omer c,

c.c_orders t2,

(SELECT COUNT(*) howmany line_itens FROM c.c_orders.o_|ineitenms) subql
VHERE howmany _line_itenms > 0O

LIMT 5;
Fococococococococoooe Fococococoooc Fococococococococoooe +
| c_name | o_orderkey | howmany_line_itens |
Fooccococcooocoooooocoooc dococcooocooooe Fooccococcooocoooooocoooc +
Cust omer #000020890 1884930 95
Cust omer #000020890 | 4570754 95

Cust omer #000020890 2555489

Customer#000020890	3771072	95
Cust omer #000020890	919171	

Get the number of orders, the average order price, and the maximum itemsin any order per customer. For this
example, the subqueries labelled SUBQL and SUBQR are correlated: they are re-evaluated for each row from the
origina CUSTOVER table, and only apply to the complex columns associated with that row.

SELECT c_nanme, howmrany, average price, nost_itens
FROM
cust omer c,
(SELECT COUNT(*) howrany, AVG o _total price) average price FROM c.c_orders)
subq1l,
(SELECT MAX(| _quantity) nost_itens FROM c.c_orders.o_lineitenms) subqg2
LIMT 5;

feccoocococcoococooooc feccoocooc feccoccocoooooac feccococooooc +
| c¢_name | howmany | average price | nost_itens |
fecoccoococoococoococoocooos feocococooooc fecococoococooocoooos fecococoococooooc +
| Custonmer #000030065 | 15 | 128908. 34 | 50.00 |
| Custoner#000088191 | 0 | NULL | NULL |
| Customer#000101555 | 10 | 164250. 31 | 50.00 [
| Custoner#000022092 | O | NULL | NULL |
| Custoner#000036277 | 27 | 166040. 06 | 50.00 [
fecoccoococoococoococoocooos feocococooooc fecococoococooocoooos fecococoococooooc +

For exampl e, these queries show how to access information about the ARRAY el ements within the CUSTOVER table
from the “nested TPC-H” schema, starting with the initial ARRAY elements and progressing to examine the STRUCT
fields of the ARRAY, and then the elements nested within another ARRAY of STRUCT:

-- How many orders does each custoner have?

| Impala SQL Language Reference | 156

-- The type of the ARRAY colum doesn't matter, this is just counting the
el ement s.
SELECT c_cust key, count (*)
FROM cust oner, custoner.c_orders
GROUP BY c_cust key

LIMT 5;

feccoococooc feccococooc +
| c_custkey | count(*) |
foccoococooc foccococooc +
61081	21
115987	15
69685	19
109124	15 [
50491	12
foccoococooc foccococooc +

-- How many line itens are part of each custoner order?
-- Now we exanmine a field froma STRUCT nested inside the ARRAY.
SELECT c_cust key, c_orders. o_orderkey, count(*)

FROM cust oner, custoner.c_orders c_orders, c_orders.o_lineitens
GROUP BY c_custkey, c_orders.o_orderkey

LIMT 5;

feocococooccooac foccococcooooc feoococooccoac +
| c_custkey | o_orderkey | count(*) |
g E demmemeea +
| 63367 | 4985959 | 7 [
| 53989 | 1972230 | 2 [
| 143513 | 5750498 | 5 [
| 17849 | 4857989 | 1 [
| 89881 | 1046437 | 1 [
dommeemea S demmemeea +

-- What are the line itens in each custoner order?
-- One of the STRUCT fields inside the ARRAY is another
-- ARRAY cont ai ni ng STRUCT el enments. The join finds
-- all the related itens fromboth | evel s of ARRAY.
SELECT c_cust key, o_orderkey, | _partkey

FROM cust oner, customer.c_orders, c_orders.o_lineitens

LIMT 5;

Foccocosaoos Fococococoooc Foccocosaoos +
| c_custkey | o_orderkey | |_partkey |
Foocooocooooe dococcooocooooe Foocooocooooe +
| 113644 | 2738497 | 175846 [
| 113644 | 2738497 | 27309 [
| 113644 | 2738497 | 175873 [
| 113644 | 2738497 | 88559 [
| 113644 | 2738497 | 8032 |
Foocooocooooe dococcooocooooe Foocooocooooe +

Pseudocolumns for ARRAY and MAP Types

Each element in an ARRAY type has a position, indexed starting from zero, and a value. Each element in a MAP type
represents a key-value pair. Impala provides pseudocolumns that |et you retrieve this metadata as part of a query, or
filter query results by including such things in a WHERE clause. Y ou refer to the pseudocolumns as part of qualified
column names in queries:

* | TEM Thevalue of an array element. If the ARRAY contains STRUCT elements, you can refer to either
array_nane. | TEM fi el d_nane or usethe shorthand ar r ay_nane. fi el d_nane.

» PGCS: The position of an element within an array.

e KEY: The value forming the first part of akey-value pair in amap. It is not necessarily unique.

| Impala SQL Language Reference | 157

e VALUE: The dataitem forming the second part of a key-value pair in amap. If the VALUE part of the MAP
element isa STRUCT, you can refer to either map_name. VALUE. f i el d_nane or use the shorthand
map_nane. fi el d_nane.

ITEM and POS Pseudocolumns

When an ARRAY column contains STRUCT elements, you can refer to afield within the STRUCT using a qualified
name of theformar ray_col um. fi el d_nanme. If the ARRAY contains scalar values, Impala recognizes the
special namear r ay_col umm. | TEMto represent the value of each scalar array element. For example, if a column
contained an ARRAY where each element wasa STRI NG, you would use ar r ay_nane. | TEMto refer to each scalar
valuein the SELECT list, or the WHERE or other clauses.

This example shows a table with two ARRAY columns whose elements are of the scalar type STRI NG. When
referring to the values of the array elementsin the SELECT list, WHERE clause, or ORDER BY clause, you use the
| TEMpseudocolumn because within the array, the individual elements have no defined names.

create TABLE persons_of interest

(

person_id Bl G NT,

al i ases ARRAY <STRI NG,
associ ates ARRAY <STRI NG,
real _nane STRI NG

)
STORED AS PARQUET;

-- Get all the aliases of each person.
SELECT real _nane, aliases.|TEM

FROM persons_of _interest, persons_of interest.aliases
ORDER BY real nane, aliases.item

-- Search for particular associates of each person.
SELECT real nane, associates.|TEM

FROM persons_of _i nterest, persons_of _interest.associ ates
WHERE associates.item LI KE ' % MacQuf fin';

Because an array isinherently an ordered data structure, Impala recognizes the special namear r ay_col umm. POS
to represent the numeric position of each element within the array. The POS pseudocolumn lets you filter or reorder
the result set based on the sequence of array elements.

The following example uses a table from aflattened version of the TPC-H schema. The REG ONtable only has afew
rows, such as one row for Europe and one for Asia. The row for each region represents all the countriesin that region
as an ARRAY of STRUCT elements:

[l ocal host:21000] > desc region;

o e e e e oo oo
S S S Sy pRpapp +
nane t e
yp
|
A,
o OCCOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOSoOoc +

| r_name | string
|

| r_comment | string
|

| r_nations |

array<struct<n_nationkey: smallint,n_nane:string, n_conment:string>> |

| Impala SQL Language Reference | 158

To find the countries within a specific region, you use ajoin query. To find out the order of elementsin the array, you
also refer to the POS pseudocolumn in the select list:

[l ocal host:21000] > SELECT r1.r_nanme, r2.n_nane, r2.P0S
> FROMregion r1 INNER JONrl.r_nations r2
> WHERE r1.r_nanme = 'ASI A" ;

fooococoooc feocococooccooac occoe +
| r_name | n_nane | pos |
S S 4e-nos +
| ASSA | VIETNAM | O [
| ASTA | CH NA | 1 [
| ASTA | JAPAN | 2 [
| ASIA | INDONESIA | 3 [
| ASTA | INDA | 4 [
R dommeemea 4e-n-s +

Once you know the positions of the elements, you can use that information in subseguent queries, for example to
change the ordering of results from the complex type column or to filter certain elements from the array:

[l ocal host:21000] > SELECT r1.r_nanme, r2.n_nane, r2.POS
> FROMregion r1 INNER JONrl.r_nations r2
> WHERE r1.r_nanme = 'ASIA
> ORDER BY r 2. POS DESC;

Fococococ Fococcoccooooe Focooe +
| r_name | n_nane | pos |
feccoococac feccoococooc ocooc +
| ASTA | INDA | 4 [
ASIA	INDONESIA	3
ASIA	JAPAN	2
ASTA	CH NA	1
ASSA	VIETNAM	O [
feccoococac feccoococooc ocooc +

[l ocal host:21000] > SELECT rl1.r_name, r2.n_nane, r2.POS
> FROMregion rl1 INNER JONrl.r _nations r2
> WHERE r1.r_nanme = 'ASIA° AND r2. POS BETWEEN 1 and 3;

Fococococ Fococcoccooooe Focooe +
| r_name | n_nane | pos |
feccoococac feccoococooc ocooc +
| ASTA | CH NA | 1 [
| ASIA | JAPAN | 2

| ASIA | INDONESIA | 3 |
Fococococ Fococcoccooooe Focooe +

KEY and VALUE Pseudocolumns

The MAP datatype is suitable for representing sparse or wide data structures, where each row might only have

entries for asmall subset of named fields. Because the element names (the map keys) vary depending on the row,
aquery must be able to refer to both the key and the value parts of each key-value pair. The KEY and VALUE
pseudocolumns let you refer to the parts of the key-value pair independently within the query, asmap_col umm. KEY
and map_col um. VALUE.

The KEY must always be a scalar type, such as STRI NG, Bl G NT, or TI MESTAMP. It can be NULL. Values of the
KEY field are not necessarily unique within the same MAP. Y ou apply any required DI STI NCT, GROUP BY, and
other clauses in the query, and loop through the result set to process all the values matching any specified keys.

The VALUE can be either a scalar type or another complex type. If the VALUE isa STRUCT, you can construct
aqualified namemap_col um. VALUE. st ruct _fi el d torefer to theindividual fields inside the value
part. If the VALUE is an ARRAY or another MAP, you must include another join condition that establishes a
table aliasfor map_col umm. VALUE, and then construct another qualified name using that alias, for example
table_alias.| TEMortabl e_alias. KEYandtabl e_al i as. VALUE

| Impala SQL Language Reference | 159

The following example shows different ways to access a MAP column using the KEY and VAL UE pseudocolumns. The
DETAI LS column has a STRI NGfirst part with short, standardized valuessuch as' Recurring',' Luci d',or

" Anxi ety' . Thisisthe“key” that is used to look up particular kinds of elements from the MAP. The second part,
also a STRI NG isalonger free-form explanation. Impala gives you the standard pseudocolumn names KEY and

VAL UE for the two parts, and you apply your own conventions and interpretations to the underlying values.

Note: If you find that the single-item nature of the VALUE makesiit difficult to model your data accurately, the
solution istypically to add some nesting to the complex type. For example, to have several sets of key-value pairs,
make the column an ARRAY whose elements are MAP. To make a set of key-value pairs that holds more elaborate
information, make a MAP column whose VAL UE part contains an ARRAY or a STRUCT.

CREATE TABLE dr eam j our nal

dream.id BI G NT,
details MAP <STRI NG STRI NG

)
STORED AS PARQUET;

-- What are all the types of dreans that are recorded?
SELECT DI STI NCT details. KEY FROM dream j ournal , dream journal . details;

-- How many lucid dreans were recorded?
-- Because there is no GROUP BY, we count the 'Lucid keys across all rows.
SELECT COUNT(det ai | s. KEY)
FROM dr eam j ournal, dream journal.details
VWHERE detail s. KEY = ' Lucid';

-- Print a report of a subset of dreans, filtering based on both the | ookup
key
-- and the detailed val ue.
SELECT dream.id, details.KEY AS "Dream Type", details.VALUE AS "Dream
Summar y"
FROM dr eam j ournal , dream journal.details
VHERE
details. KEY IN (' Happy', 'Pleasant', 'Joyous')
AND det ail s. VALUE LI KE ' %hi | dhood% ;

The following example shows a more elaborate version of the previous table, where the VAL UE part of the MAP entry
isa STRUCT rather than a scalar type. Now instead of referring to the VAL UE pseudocolumn directly, you use dot
notation to refer to the STRUCT fieldsinside it.

CREATE TABLE better_dream j our nal

dream.id BI G NT,
details MAP <STRI NG STRUCT <sunmary: STRI NG when_happened: TI MESTAMP,
duration: DECI MAL(5,2), woke_up: BOOLEAN> >

)
STORED AS PARQUET;

-- Do nore elaborate reporting and filtering by exam ning multiple
attributes within the same dream
SELECT dream.id, details.KEY AS "Dream Type", details.VALUE. sunmary AS
"Dream Summary", details.VALUE. duration AS "Duration"
FROM better _dream journal, better dream journal.details
VHERE
details.KEY IN (" Anxiety', 'Nightmare')
AND det ai | s. VALUE. duration > 60
AND det ai | s. VALUE. woke_up = TRUE;

-- Renenber that if the | TEM or VALUE contains a STRUCT, you can reference

| Impala SQL Language Reference | 160

-- the STRUCT fields directly without the .1 TEMor .VALUE qualifier.
SELECT dream.id, details.KEY AS "Dream Type", details.summary AS "Dream
Summary", details.duration AS "Duration"

FROM better_dream journal, better dream journal.details
VHERE

details.KEY IN (" Anxiety', 'Nightmare')

AND detail s. duration > 60

AND det ai | s. woke_up = TRUE;

Loading Data Containing Complex Types

Because the Impalal NSERT statement does not currently support creating new data with complex type columns,
or copying existing complex type values from one table to another, you primarily use Impalato query Parquet/ORC
tables with complex types where the data was inserted through Hive, or create tables with complex types where you
aready have existing Parquet/ORC datafiles.

If you have created a Hive table with the Parquet/ORC file format and containing complex types, use the sametable
for Impala queries with no changes. If you have such a Hive table in some other format, use aHive CREATE TABLE
AS SELECT ... STORED AS PARQUET or | NSERT ... SELECT statement to produce an equivalent
Parquet table that Impala can query.

If you have existing Parquet data files containing complex types, located outside of any Impala or Hive table, such as
datafiles created by Spark jobs, you can use an Impala CREATE TABLE ... STORED AS PARQUET statement,
followed by an ImpalaLOAD DATA statement to move the data filesinto the table. As an alternative, you can use

an Impala CREATE EXTERNAL TABLE statement to create a table pointing to the HDFS directory that already
contains the Parquet or ORC datafiles.

The simplest way to get started with complex type dataisto take a denormalized table containing duplicated values,
andusean| NSERT ... SELECT statement to copy the datainto a Parquet table and condense the repeated values
into complex types. With the Hive | NSERT statement, you usethe COLLECT LI ST(), NAMED _STRUCT() , and
MAP() constructor functions within a GROUP BY query to produce the complex type values. COLLECT_LI ST()
turns a sequence of valuesinto an ARRAY. NAVED STRUCT() usesthefirst, third, and so on arguments as the field
names for a STRUCT, to match the field names from the CREATE TABLE statement.

Note: Because Hive currently cannot construct individual rows using complex types through the | NSERT . . .
VAL UES syntax, you prepare the datain flat form in a separate table, then copy it to the table with complex columns
using | NSERT ... SELECT and the complex type constructors. See Constructing Parquet/ORC Files with
Complex Columns Using Hive on page 167 for examples.

Using Complex Types as Nested Types

The ARRAY, STRUCT, and MAP types can be the top-level types for “nested type” columns. That is, each of these
types can contain other complex or scalar types, with multiple levels of nesting to a maximum depth of 100. For
example, you can have an array of structures, a map containing other maps, a structure containing an array of other
structures, and so on. At the lowest level, there are always scalar types making up the fields of a STRUCT, elements
of an ARRAY, and keys and values of a MAP.

Schemas involving complex types typically use some level of nesting for the complex type columns.

For example, to model arelationship like adimension table and a fact table, you typically use an ARRAY where each
array element isa STRUCT. The STRUCT fields represent what would traditionally be columns in a separate joined
table. It makes little sense to use a STRUCT as the top-level type for a column, because you could just make the fields
of the STRUCT into regular table columns.

Perhaps the only use case for atop-level STRUCT would beto to alow STRUCT fields with the same name as
columns to coexist in the same table. The following example shows how atable could have a column named | D,
and two separate STRUCT fields also named | D. Because the STRUCT fields are always referenced using qualified
names, the identical | D names do not cause a conflict.

CREATE TABLE struct _nanespaces

id BIGNT

| Impala SQL Language Reference | 161

, s1 STRUCT < id: BIGNT, fieldl: STRING >
, 82 STRUCT < id: BIGQ NT, when_happened: TI MESTAWP >

)
STORED AS PARQUET;

select id, sl.id, s2.id from struct_nanmespaces;

It is common to make the value portion of each key-value pair in a MAP a STRUCT, ARRAY of STRUCT, or other
complex type variation. That way, each key in the MAP can be associated with a flexible and extensible data structure.
The key values are not predefined ahead of time (other than by specifying their data type). Therefore, the MAP can
accomodate arapidly evolving schema, or sparse data structures where each row contains only afew data values
drawn from alarge set of possible choices.

Although you can use an ARRAY of scalar values as the top-level columnin atable, such asimple array istypically of
limited use for analytic queries. The only property of the array elements, aside from the element value, is the ordering
sequence available through the POS pseudocolumn. To record any additional item about each array element, such as a
TI MESTAMP or a symbolic name, you use an ARRAY of STRUCT rather than of scalar values.

If you are considering having multiple ARRAY or MAP columns, with related items under the same position in each
ARRAY or the same key in each MAP, prefer to use a STRUCT to group al the related items into a single ARRAY or
MAP. Doing so avoids the additional storage overhead and potential duplication of key values from having an extra
complex type column. Also, because each ARRAY or MAP that you reference in the query SELECT list requires an
additional join clause, minimizing the number of complex type columns aso makes the query easier to read and
maintain, relying more on dot notation to refer to the relevant fields rather than a sequence of join clauses.

For example, hereis atable with several complex type columns all at the top level and containing only scalar types.
Toretrieve every dataitem for the row requires a separate join for each ARRAY or MAP column. The fields of the
STRUCT can be referenced using dot notation, but there is no real advantage to using the STRUCT at the top level
rather than just making separate columns FI ELD1 and FI ELD2.

CREATE TABLE conpl ex_t ypes_t op_I evel

id Bl G NT,
al ARRAY<| NT>,
a2 ARRAY<STRI NG,
s STRUCT<fieldl: INT, field2: STRI NG,
-- Nurmeric | ookup key for a string val ue.
nl MAP<I NT, STRI NG>,
-- String | ookup key for a nuneric val ue.
n2 MAP<STRI NG | NT>

)
STORED AS PARQUET;

descri be conpl ex_types_top_ | evel;

dhoccooc feccocococooccoocooos +
| name | type |
Focococ Fococcoccoccoccoocooooe +
| id | bigint [
| a1 | array<int> [
| a2 | array<string> |
| s | struct< [
| | fieldl:int, |
| | field2:string |
I | > I
| m | map<int,string> |
| n2 | map<string,int> |
dhoccooc feccocococooccoocooos +
sel ect
id,

al.item

| Impala SQL Language Reference | 162

a2.item
s.fieldl,
s.field2,
mlL. key,
mlL. val ue,
n2. key,
n?. val ue

from

conpl ex_types _top_I evel,

conpl ex_types_top_level.al,
compl ex_types_top_| evel . a2,
conmpl ex_types_top_| evel . nl,
conpl ex_types_top_| evel . n2;

For example, hereis atable with columns containing an ARRAY of STRUCT, a MAP where each key valueisa
STRUCT, and a MAP where each key value is an ARRAY of STRUCT.

CREATE TABLE nesting_deno

(

user _id BI G NT,

fam |y _menbers ARRAY < STRUCT < nane: STRING email: STRING date_ joi ned:
TI MESTAMP >>,

foo map < STRING STRUCT < f1: INT, f2: INT, f3: TIMESTAWP, f4: BOOLEAN
>>

ganepl ay MAP < STRING , ARRAY < STRUCT <

nane: STRING highest: BIA NI, lives_used: INT, total _spent:
DECI MAL(16, 2)
>>>

)
STORED AS PARQUET;

The DESCRI BE statement rearranges the < and > separators and the field names within each STRUCT for easy

readability:
DESCRI BE nesti ng_deno;
dooccoococooooooooc dooccoococooocooococococooocooooooooC +
| name | type |
feccoococcooooooc feccoccococcoccococooccocooooooc +
bi gi nt

user _id | |
f | array<struct< [
| nane: string, |
| emai |l : string, |
| dat e_j oi ned: ti nest anp |
| >> I
| map<string, struct< |
[f1:int, [
| f2:int, |
| f3:ti mestanp, |
| f4: bool ean |
| >> I
| map<string, array<struct< |
[nane: stri ng, [
| hi ghest : bi gi nt, |
| lives used:int, |
| total _spent:deci mal (16, 2) |
| >>> |

| Impala SQL Language Reference | 163

To query the complex type columns, you use join notation to refer to the lowest-level scalar values. If the valueisan
ARRAY element, the fully qualified name includes the | TEMpseudocolumn. If the value isinside a MAP, the fully
qualified name includes the KEY or VAL UE pseudocolumn. Each reference to a different ARRAY or MAP (even if
nested inside another complex type) requires an additional join clause.

SELECT
-- The lone scalar field doesn't require any dot notation or join clauses.
user _id

-- Retrieve the fields of a STRUCT inside an ARRAY.
-- The FAM LY_MEMBERS nane refers to the FAM LY _MEMBERS tabl e alias defined
later in the FROM cl ause.
, famly_nmenbers.item name
, famly menbers.item emai l
, famly nmenbers.item date_j oi ned
-- Retrieve the KEY and VALUE fields of a MAP, with the val ue being a STRUCT
consi sting of nore fields.
-- The FOO nane refers to the FOO table alias defined later in the FROM
cl ause.
, foo. key
, foo.value.f1l
, foo.value.f2
, foo.value.f3
, foo.value.f4
-- Retrieve the KEY fields of a MAP, and expand the VALUE part into ARRAY
itenms consisting of STRUCT fi el ds.
-- The GAMEPLAY nane refers to the GAMEPLAY table alias defined later in the
FROM cl ause (referring to the MAP iten).
-- The GAME_N nane refers to the GAME N table alias defined later in the
FROM cl ause (referring to the ARRAY
-- inside the MAP item s VALUE part.)
, gamnepl ay. key
, gane_n. nane
, gane_n. hi ghest
, gane_n.lives_used
, game_n.total spent
FROM
nesti ng_deno
nesting_deno.fanmi |y nenbers AS fam |y nenbers
nesti ng_deno. foo AS foo
nesti ng_deno. ganepl ay AS ganepl ay
nesti ng_deno. ganepl ay. val ue AS gane_n;

Once you understand the notation to refer to a particular dataitem in the SELECT list, you can use the same qualified
name to refer to that dataitem in other parts of the query, such as the WHERE clause, ORDER BY or GROUP BY
clauses, or calls to built-in functions. For example, you might frequently retrieve the VALUE part of each MAP itemin
the SELECT list, while choosing the specific MAP items by running comparisons against the KEY part in the WHERE
clause.

Accessing Complex Type Data in Flattened Form Using Views

The layout of complex and nested typesis largely aphysical consideration. The complex type columnsresidein

the same data files rather than in separate normalized tables, for your convenience in managing related data sets

and performance in querying related data sets. Y ou can use views to treat tables with complex types asif they were
flattened. By putting the join logic and references to the complex type columnsin the view definition, you can query
the same tables using existing queries intended for tables containing only scalar columns. This technique also lets
you use tables with complex types with Bl tools that are not aware of the data types and query notation for accessing
complex type columns.

| Impala SQL Language Reference | 164

For example, the variation of the TPC-H schema containing complex types has atable REG ON. Thistable has5
rows, corresponding to 5 regions such as NORTH AMERI CA and AFRI CA. Each row has an ARRAY column, where
each array item isa STRUCT containing details about a country in that region.

DESCRI BE r egi on;
focccosccoscas focccosccosccosccosccosces +
| nane | type I
feccocoococoooooc feccoccococooocoococoocoocoocooe +
r_regi onkey smal |i nt
r_name string
r_conmment string

n_nati onkey: smal |int,
n_nane: string,
n_coment: string

I I I
I I I
I I I
| r_nations | array<struct< |
I I I
I I I
I I I
I | >> I

The same data could be represented in traditional denormalized form, as a single table where the information about
each region is repeated over and over, alongside the information about each country. The nested complex types let us
avoid the repetition, while still keeping the datain a single table rather than normalizing across multiple tables.

To use thistable with aJDBC or ODBC application that expected scalar columns, we could create aview that
represented the result set as a set of scalar columns (three columns from the original table, plus three more from the
STRUCT fields of the array elements). In the following examples, any column with an R_* prefix is taken unchanged
from the original table, while any column withan N_* prefix is extracted from the STRUCT inside the ARRAY.

CREATE VI EWregi on_vi ew AS
SELECT
r_regi onkey,
r _nane,
r_conment,
array_field.itemn_nationkey AS n_nati onkey,
array field.itemn_name AS n_nane,
array _field.n_coment AS n_comment
FROM
region, region.r_nations AS array_field;

Then we point the application queries at the view rather than the original table. From the perspective of the view,
there are 25 rows in the result set, one for each nation in each region, and queries can refer freely to fields related to
the region or the nation.

-- Retrieve info such as the nation nanme fromthe original R NATIONS array
el ement s.
sel ect n_nanme fromregion_view where r_nane in (' EUROPE , 'ASIA);

| UNI TED KI NGDOM |
| RUSSI A |
| ROVANI A |
| GERVANY |
| FRANCE |
| VI ETNAM |
| CHI NA |
| JAPAN |
| 1 NDONESI A |
| 1NDIA |

-- UNI TED STATES in AMERI CA and UNI TED KI NGDOM i n EUROPE.

| Impala SQL Language Reference | 165

SELECT DI STI NCT r_nanme FROM regi on_vi ew WHERE n_nanme LI KE ' UNI TED% ;

| r_name |
feocococooooc +
| AVERI CA |
| EURCPE |
feccooocooc +

-- For conci seness, we only list sone view colums in the SELECT i st.

-- SELECT * would bring back all the data, unlike SELECT *

-- queries on the original table with conplex type col ums.

SELECT r_regi onkey, r_name, n_nationkey, n_name FROM region_view LIMT 7;

focccccccooooc focccoooc focccccccooooc focccccccccoooooc +
| r_regionkey | r_nane | n_nationkey | n_nane [
focccccccccoac foccccoac foccccccccooac foccccccccccocoac +
| 3 | EURCPE | 23 | UNI TED KI NGDOM |
| 3 | EURCPE | 22 | RUSSIA |
| 3 | EURCPE | 19 | ROVANI A [
| 3 | EURCPE | 7 | GERVANY [
| 3 | EURCPE | 6 | FRANCE [
| 2 | ASTA | 21 | VI ETNAM [
| 2 | ASTIA | 18 | CHI NA [
Foocooooooocooc Foocooooc Foocooooooocooc Fooccoooooooooooos +

Tutorials and Examples for Complex Types

The following examples illustrate the query syntax for some common use cases involving complex type columns.

Sample Schema and Data for Experimenting with Impala Complex Types

The tables used for earlier examples of complex type syntax aretrivial ones with no actual data. The more substantial
examples of the complex type feature use these tables, adapted from the schema used for TPC-H testing:

SHOW TABLES;

| custoner |
| part I
| region [
| supplier |

fosccosccoscoos foccccocccocccoccccccocooocaoocanocas +
| nane | type I
feococococcooccooas fococococcoccoccoccoocoococoocoocoocooos +

c_cust key bi gi nt

c_nane string

c_address string

c_nati onkey smal | i nt

c_phone string

c_acct bal deci mal (12, 2)

c_nkt segnent string

c_orders array<struct<

o_orderkey: bi gi nt,
o_orderstatus:string,
o_total price:deci mal (12, 2),
o_orderdate: string,
o_orderpriority:string,
o_clerk:string,

I I
I I
I I
I I
I I
I I
I I
| c_comment | string
I I
I I
I I
I I
I I
I I
I I
| | o_shippriority:int,

| Impala SQL Language Reference | 166

| [o_conmment : string, |
[[o_lineitems: array<struct< [
| | | _partkey: bi gi nt, |
[[| _suppkey: bi gi nt, [
| | | _I'i nenunber:int, |
| | | _quantity:deci mal (12, 2), |
[[| _ext endedpri ce: deci mal (12, 2),

[[| _di scount: decinal (12, 2), |
| | | _tax:decinmal (12, 2), |
[[| _returnflag:string, [
| | | _l'inestatus:string, |
| | | _shi pdate: string, |
[| | _conm tdate:string, |
| | | _receiptdate:string, |
| | | _shipinstruct:string, |
[[| _shi pnode: stri ng, [
| | | _coment:string |
| | > |
I | >> I
feccoocooccooooc feccoccococcoccococooccococoocococooooooc +
DESCRI BE part;

fococococcooccoooos fococococcooccoooos +

| nane | type |

feccoccocooooooc feccoccocooooooc +

| p_partkey | bigint [

| p_name | string |

| p_nfgr | string [

| p_brand | string |

| p_type | string |

| p_size | int [

| p_container | string [

| p_retailprice | decinmal (12,2) |

| p_coment | string [

fococococcooccoooos fococococcooccoooos +

DESCRI BE r egi on

o e e e e e e m - -
feccooccococococcocooooococooooCoCoooCOCCCooSCOCCooSCOCCSoSCocCooooooCooooc +
| nane | type

RS
ccoccococooocoocooooooCoooCCCCoooCCCCooSoCOCCooSCOCCSoSCocSoooooSooooc +

| r_regionkey | smallint

| r_name | string
|

| r_coment | string
|

| r_nations [

array<struct<n_nati onkey: snmallint,n_nane:string, n_comment: string>>

feccoococooooc feccoococococoococococoocococooocococooococooooococooc +
| nane | type I
feccocoococoooooc feccocoococooocoococooccoccoocoocoocoooocoocoocoooooooc +
| s_suppkey | bigint |
| s_name | string |
| s_address | string [
| s_nationkey | smallint [
| s_phone | string |
| s_acct bal | decinmal (12, 2) [

| Impala SQL Language Reference | 167

| s_comment | string [
| s_partsupps | array<struct<ps_partkey: bi gi nt, |
| | ps_availqty:int,ps_supplycost:decinml (12,2), |
[| ps_coment:string>> [
feococococcooccooc foccocoocococcoccooccoccoocooccoocoooocoocoocooooooos +

The volume of data used in the following examplesis:

SELECT count (*) FROM cust oner;

feccococooc +
| count(*) |
fesccocoooooc +
| 150000 |
Focococococ +

foccococooc +
| count(*) |
feoococooccoac +
| 200000 |
feccococooc +

Focococoooc +
| count(*) |
Foocoocoooc +
| 5 I
C T +

feoococooccoac +
| count(*) |
demmemeea +
| 10000 [
S S +

Constructing Parquet/ORC Files with Complex Columns Using Hive

The following examples demonstrate the Hive syntax to transform flat data (tables with all scalar columns) into
Parquet/ORC tables where Impala can query the complex type columns. Each example shows the full sequence

of steps, including switching back and forth between Impala and Hive. Although the source table can use any file
format, the destination table must use the Parquet/ORC file format. We take Parquet in the following examples. You
can replace Parquet with ORC to do the same things in ORC file format.

Createtablewith ARRAY in Impala, load datain Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex datain Impala, and using Hive (either
the hi ve shell or beel i ne) for the data loading step. The data starts in flattened, denormalized form in atext table.
Hive writes the corresponding Parquet data, including an ARRAY column. Then Impala can run analytic queries on the
Parquet table, using join notation to unpack the ARRAY column.

/* Initial DDL and | oading of flat, denornalized data happens in inpal a-
shel | */ CREATE TABLE flat_array (country STRING city STRI NG ;| NSERT | NTO
flat_array VALUES

(' Canada', 'Toronto') , ('Canada', 'Vancouver') , ('Canada', "St. John

\'s")
, ("Canada', 'Saint John') , ('Canada', 'Mntreal') , ('Canada',

li

'Canada', 'Wnnipeg') , ('Canada', 'Calgary') , ('Canada', 'Saskatoon')

Canada', 'OGtawa') , ('Canada', 'Yellowknife') , ('France', 'Paris')
France', "Nice') , ('France', 'Marseilles') , ('France', 'Cannes')

| Impala SQL Language Reference | 168

, ("Geece', "Athens') , ('Geece', 'Piraeus') , ('Geece', 'Hania')
, ("Greece', 'Heraklion') , ('Geece', 'Rethymmon') , ('Geece', 'Fira');

CREATE TABLE conpl ex_array (country STRING city ARRAY <STRI NG>) STORED AS
PARQUET;

/* Conversion to Parquet and conplex and/or nested colums happens in Hive
*/

I NSERT | NTO conpl ex_array SELECT country, collect list(city) FROMflat_array
GROUP BY country;

Query I D = dev_20151108160808_84477f f 2- 82bd- 4ba4- 9a77- 554f a7b8c0Ochb

Total jobs =1

Launchi ng Job 1 out of 1

/* Back to inpala-shell again for analytic queries */

REFRESH conpl ex_array;

SELECT country, city.item FROM conpl ex_array, conplex_array.city
Foccooocooc foccoococooooc +
| country | item [
feoococooooc feococococcooccooc +
Canada	Toronto
Canada	Vancouver
Canada	St. John's
Canada	Saint John
Canada	Montreal [
Canada	Halifax
Canada	W nnipeg
Canada	Calgary
Canada	Saskatoon
Canada	Otawa
Canada	Yellowknife
France	Paris
France	N ce
France	Marseilles
France	Cannes
Greece	Athens
Greece	Piraeus [
Geece	Hania
Geece	Heraklion
Greece	Rethymmon [
Geece	Fira
Foccooocooc foccoococooooc +

Createtablewith STRUCT and ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex datain Impala, and using Hive (either
the hi ve shell or beel i ne) for the data loading step. The data starts in flattened, denormalized form in atext table.
Hive writes the corresponding Parquet data, including a STRUCT column with an ARRAY field. Then Impala can run
analytic queries on the Parquet table, using join notation to unpack the ARRAY field from the STRUCT column.

/* Initial DDL and | oading of flat, denornalized data happens in inpal a-
shel | */

CREATE TABLE flat_struct_array (continent STRING country STRING city
STRI NG ;
I NSERT | NTO fl at _struct_array VALUES

| Impala SQL Language Reference | 169

("North America', 'Canada', 'Toronto') , ('North America', 'Canada',
' Vancouver')
, ("North Anerica', 'Canada', "St. John\'s") , ('North Anerica', 'Canada',

' Sai nt John')

, ("North Anerica', 'Canada', 'Montreal') , ('North Anerica', 'Canada',
"Halifax")

, ("North Arerica', 'Canada', 'Wnnipeg') , ('North Anmerica', 'Canada',
' Cal gary')

, ("North Anmerica', 'Canada', 'Saskatoon') , ('North Anerica', 'Canada',
"Gtawa')
, ("North America', 'Canada', 'Yellowknife') , ('Europe', 'France',

"Paris')
, ("EBurope', 'France', 'Nice') , ('Europe', 'France', 'Marseilles")
, ("Europe', 'France', 'Cannes') , ('Europe', 'Geece', 'Athens')
, ("Europe', 'Greece', 'Piraeus') , ('Europe', 'Greece', 'Hania')
, ("Europe', 'Greece', 'Heraklion') , ('Europe', 'Geece', 'Rethymmon')
, ("Europe', 'Geece', 'Fira');

CREATE TABLE conpl ex_struct _array (continent STRING country STRUCT <nane:
STRING city: ARRAY <STRING >) STORED AS PARQUET;

/* Conversion to Parquet and conpl ex and/ or nested col unms happens in Hive
=

I NSERT | NTO conpl ex_struct _array SELECT continent, named_struct(' nane',
country, 'city', collect list(city)) FROMflat_array_array GROUP BY
continent, country;

Query I D = dev_20151108163535_11a4f a53- 0003- 4638- 97e6- ef 13cdb8e09e

Total jobs =1

Launchi ng Job 1 out of 1

/* Back to inpala-shell again for analytic queries */

REFRESH conpl ex_struct _array;
SELECT t1.continent, tl.country.nanme, t2.item
FROM conpl ex_struct _array t1, tl.country.city t2

feccoccocoooooac feccoocooccooooc feccoococooooc +
| continent | country.name | item |
fecococoococooocoooos feccoccccooccooas feccocoococoooooc +
Europe	France	Paris
Europe	France	Nice
Europe	France	Marseilles
Europe	France	Cannes
Europe	G eece	Athens
Europe	Greece	Piraeus [
Europe	G eece	Hani a
Europe	G eece	Heraklion
Europe	G eece	Ret hymmon
Europe	G eece	Fira
North Anerica	Canada	Toronto
North Anerica	Canada	Vancouver [
North Anmerica	Canada	St. John's
North America	Canada	Saint John
North Anmerica	Canada	Montreal [
North Anerica	Canada	Halifax [
North Anerica	Canada	W nni peg
North Anerica	Canada	Cal gary [
North Anmerica	Canada	Saskat oon
North America	Canada	Otawa

| Impala SQL Language Reference | 170
| North Anerica | Canada | Yellowknife |

Flattening Normalized Tables into a Single Table with Complex Types

One common use for complex typesisto embed the contents of one table into another. The traditional technique of
denormalizing resultsin a huge number of rows with some column values repeated over and over. With complex
types, you can keep the same number of rows asin the original normalized table, and put all the associated data from
the other table in a single new column.

In this flattening scenario, you might frequently use a column that is an ARRAY consisting of STRUCT elements,
where each field within the STRUCT corresponds to a column name from the table that you are combining.

The following example shows a traditional normalized layout using two tables, and then an equivalent layout using
complex typesin asingle table.

/* Traditional relational design */

-- This table just stores nunbers, allowing us to | ook up details about the
enpl oyee
-- and details about their vacation tine using a three-table join query.
CREATE t abl e enpl oyee_vacati ons
(

enpl oyee_id Bl G NT,

vacation_id Bl G NT

)
STORED AS PARQUET;

-- Each kind of information to track gets its own "fact table".
CREATE t abl e vacation_details
(

vacation_id Bl G NT,

vacation_start TI MESTAWP,

duration I NT

)
STORED AS PARQUET;

-- Any time we print a human-readable report, we join with this table to
-- display info about enpl oyee #1234.
CREATE TABLE enpl oyee_cont act
(
enpl oyee_id Bl G NT,
name STRI NG
address STRI NG
phone STRI NG
emai | STRI NG
address_type STRING /* 'hone', 'work', 'renote', etc. */

)
STORED AS PARQUET;
/* Equival ent flattened schema using conpl ex types */

-- For analytic queries using conplex types, we can bundl e the di nensi on
tabl e

-- and nmultiple fact tables into a single table.

CREATE TABLE enpl oyee_vacati ons_nested_types

-- W nmight still use the enployee id for other join queries.
-- The tabl e needs at | east one scalar colunm to serve as an identifier
-- for the conplex type col ums.

enpl oyee_id Bl G NT,

| Impala SQL Language Reference | 171

-- Columms of the VACATI ON DETAILS table are folded into a STRUCT.
-- W drop the VACATION I D col utm because | npal a doesn't need
-- synthetic IDs to join a conplex type colum.
-- Each row fromthe VACATI ON DETAILS tabl e becones an array el enent.
vacati on ARRAY < STRUCT <
vacation_start: TI MESTAWP,
duration: | NT
>>,
-- The ADDRESS TYPE colum, with a small nunber of predefined val ues that
are distinct
-- for each enpl oyee, nakes the EMPLOYEE CONTACT table a good candi date to
turn into a NAP,
-- with each row represented as a STRUCT. The string val ue from ADDRESS TYPE
becones the
-- "key" (the anonynous first field) of the MAP.
contact MAP < STRING STRUCT <
address: STRI NG
phone: STRI NG
emai | : STRI NG
>>

)
STORED AS PARQUET;

Interchanging Complex Type Tables and Data Files with Hive and Other Components
Y ou can produce Parquet data files through several Hadoop components and APIs.

If you have a Hive-created Parquet table that includes ARRAY, STRUCT, or MAP columns, Impala can query that
sametable in Impala 2.3 and higher, subject to the usua restriction that all other columns are of data types supported
by Impala, and also that the file type of the table must be Parquet.

If you have a Parquet data file produced outside of Impala, Impala can automatically deduce the appropriate table
structure using the syntax CREATE TABLE ... LI KE PARQUET ' hdfs_path_of _parquet_file'.In
Impala 2.3 and higher, this feature works for Parquet files that include ARRAY, STRUCT, or MAP types.

/* In inpala-shell, find the HDFS data directory of the original table.
DESCRI BE FORMATTED t pch_nest ed_par quet . cust oner ;

i . i_ocati on: | hdfs://|ocal host: 20500/t est - war ehouse/t pch_nest ed_par quet . db/
cust omer | NULL |

In the Unix shell, find the path of any Parquet data file in that HDFS
directory.

$ hdfs dfs -1Is hdfs://Iocal host: 20500/t est - war ehouse/ t pch_nest ed_par quet . db/

cust omer

Found 4 itens

- IWXT - XTI - X 3 dev supergroup 171298918 2015-09-22 23: 30 hdfs://

| ocal host: 20500/ bl ah/t pch_nest ed_par quet . db/ cust oner/ 000000_0

/* Back in inpala-shell, use the HDFS path in a CREATE TABLE LI KE PARQUET
statenment. */
CREATE TABLE custoner_ctlp
LI KE PARQUET ' hdfs:/ /I ocal host: 20500/ bl ah/t pch_nest ed_par quet . db/
cust oner/ 000000_0'
STORED AS PARQUET;

/[* Confirmthat old and new tabl es have the same col umm | ayout, including
conmpl ex types. */
DESCRI BE t pch_nest ed_par quet . cust oner

| Impala SQL Language Reference | 172

| name | type | coment |
feccoocooccooooc feccoccococcoccococooccococoocococooooooc feccoocooc +

c_cust key bi gi nt

Cc_nane string

c_address string

c_nati onkey smal | i nt

c_phone string

c_acct bal deci mal (12, 2)

c_nkt segnent string

c_conment string

c_orders array<struct<

I

I

I

I

I

I

I

|

| o_orderkey: bi gi nt,

| o_orderstatus:string

[o_total price:decinal (12, 2),
| o_orderdate: string

[o_orderpriority:string,
| o_clerk:string,

| o_shippriority:int,

| o_conment : stri ng,

| o_lineitens: array<struct<
| | _partkey: bi gi nt,

[| _suppkey: bi gi nt,
| | _I'i nenunber:int,
| | _quantity:deci mal (12, 2),

[| _ext endedpri ce: deci mal (12, 2),
| | _di scount: decinal (12, 2),

| | _tax:decinmal (12, 2),

[| _returnflag:string,

| | _linestatus:string,

| | _shi pdate: string,

[| _conmi tdate:string

| | _receiptdate:string,

| | _shipinstruct:string,

[| _shi pnode: string,

| | _coment:string

| >>

I

feococococcooccooas fococococcoccoccoccoocoococoocoocoocooos
Focococcoccococcocococoocoocooooooe +
| nane | type | conment

I
focccosccoscoos foccccocccocccoccccccocooocaoocanocas
feccococococcoccoocooococooocoooooc +
| c_custkey | bigint | I'nferred from Parquet
file. |
| c_name | string | I'nferred from Parquet
file. |
| c_address | string | I'nferred from Parquet
file. |
| c_nationkey | int | I'nferred from Parquet
file. |
| c_phone | string | I'nferred from Parquet
file. |
| c_acct bal | decimal (12, 2) | I'nferred from Parquet
file. |
| c_nktsegnent | string | I'nferred from Parquet
file. |
| c_comment | string | I'nferred from Parquet
file. |
| c_orders | array<struct< | I'nferred from Parquet

file. |

| Impala SQL Language Reference | 173

[[o_order key: bi gi nt, [
| [o_orderstatus:string, |
| | o_total price:deci mal (12, 2), |
| | o_orderdate: string, |
| [o_orderpriority:string, |
| | o_clerk:string, |
[[o_shippriority:int, [
	o_comment : string,	
	o_lineitens: array<struct<	
		_partkey: bi gi nt,
		_suppkey: bi gi nt,
		_I'i nenunber:int,
		_quantity:deci mal (12, 2),
		_extendedprice: deci mal (12, 2),

| | | _di scount: deci mal (12, 2), |
| | | tax:decimal (12, 2), [
		_returnflag:string,
		_l'i nestatus:string,
		_shi pdate: string,
		_conmi tdate:string,
		_receiptdate:string,
		_shi pinstruct:string,
		_shi pnode: stri ng,
		_coment:string

I | == I

Literals

Each of the Impala data types has corresponding notation for literal values of that type. Y ou specify literal valuesin
SQL statements, such asin the SELECT list or WHERE clause of aquery, or as an argument to afunction call. See
Data Types on page 102 for a complete list of types, ranges, and conversion rules.

| Impala SQL Language Reference | 174

Numeric Literals

To write literals for the integer types (T1 NYI NT, SMALLI NT, | NT, and Bl G NT), use a sequence of digits with
optional leading zeros.

To write literals for the floating-point types (DECI MAL, FLQOAT, and DOUBLE), use a sequence of digitswith an
optional decimal point (. character). To preserve accuracy during arithmetic expressions, Impala interprets floating-
point literals as the DECI MAL type with the smallest appropriate precision and scale, until required by the context to
convert the result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

Y ou can also use exponential notation by including an e character. For example, 1e6 is 1 times 10 to the power of 6
(2 million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the “smallest” that can accurately represent the
value. The typeis promoted to larger or more accurate typesif necessary, based on subsequent parts of an expression.

For example, you can see by the types Impala defines for the following table columns how it interprets the
corresponding numeric literals:

[l ocal host:21000] > create table ten as select 10 as x;

feccoccccooococooooc +

| summary |
fecccoococoococooccoocooe +

| I'nserted 1 row(s) |
Focococcccoccococooooe +

[l ocal host:21000] > desc ten;
e ccooc feccoocooc feccoocooc +
| nane | type | coment |
dhoccooc feocococooooc feocococooooc +
| x | tinyint | [
Focococ Fococooooe Fococooooe +

Fol oo +
| summary [
fococcocococcooccoocooc +

| Inserted 1 row(s) |
S +

[l ocal host:21000] > desc four Kk;
oo CEE S S oo +

| nane | type | comment |
occooc feoococooccoac feoococooooc +

| x | smallint | |
eemaan demmemeea R +

fecccoococoococooccoocooe +

| summary |
Focococcccoccococooooe +

| Inserted 1 row(s) |
feccoccccooococooooc +

[l ocal host:21000] > desc one_point five;
dhoccooc feccoccccooccooas feocococooooc +
| nanme | type | comment |
Focococ Focococococoococ Fococooooe +
| x | decimal (2,1) | [
e ccooc feccoocooccooooc feccoocooc +

[l ocal host:21000] > create table one_point three three three as select 1.333
as Xx;

| Impala SQL Language Reference | 175

| summary |

feccoccccooococooooc +

| I'nserted 1 row(s) |

Foococcococococosooos +

[l ocal host:21000] > desc one_point_three_three_three;
Fooocooc dooccooocooooooc Fooocooocococ +

| nanme | type | coment |

e ccooc feccoocooccooooc feccoocooc +

| x | decimal (4,3) | |

Focoooc Fococococoocnooc Foccocasos +

String Literals

String literals are quoted using either single or double quotation marks. Y ou can use either kind of quotes for string
literals, even both kinds for different literals within the same statement.

Quoted literals are considered to be of type STRI NG To use quoted literalsin contexts requiring a CHAR or
VARCHAR value, CAST() theliteral to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:
To encode special characters within astring literal, precede them with the backslash (\) escape character:

e \'t representsatab.

* \ n represents anewline or linefeed. This might cause extraline breaksini npal a- shel | output.

* \r representsacarriage return. This might cause unusual formatting (making it appear that some content is
overwritten) ini npal a- shel | output.

« \ b represents a backspace. This might cause unusual formatting (making it appear that some content is
overwritten) ini npal a- shel | output.

e \ 0 representsan ASCII nul character (not the same as a SQL NULL). This might not bevisibleini npal a-
shel | output.

* \ Z represents a DOS end-of-file character. This might not bevisibleini npal a- shel | output.

* \ %and\ _ can be used to escape wildcard characters within the string passed to the LI KE operator.

< \ followed by 3 octal digits represents the ASCII code of a single character; for example, \ 101 is ASCII 65, the
character A.

« Usetwo consecutive backslashes (\ \) to prevent the backslash from being interpreted as an escape character.

» Usethe backslash to escape single or double quotation mark characters within a string literal, if theliteral is
enclosed by the same type of quotation mark.

« |f the character following the\ does not represent the start of a recognized escape sequence, the character is
passed through unchanged.

Quoteswithin quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation
marks, and optionally escape the single quoteasa\ ' sequence. Earlier releases required escaping a single quote
inside double quotes. Continue using escape sequences in this case if you aso need to run your SQL code on older
versions of Impala.

To include adouble quotation character within a string value, enclose the literal with single quotation marks, no
escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as
a\ " sequence.

[l ocal host:21000] > select "Wat\'s happeni ng?" as single_wthin_doubl e,

> "I\"mnot sure.' as single wthin_single,
> "Homer wrote \"The Iliad\"." as
doubl e_wi t hi n_doubl e,
> 'Homer al so wote "The QOdyssey".' as
doubl e_wi t hi n_si ngl e;
focccocccooccooccoocoos focccosccooccooccoocons focccosccooccooccooccnooons

| Impala SQL Language Reference | 176

| single within_double | single within_single | double wthin_double
doubl e_wi t hi n_si ngl e

S S S S R S S S P P

Frocococooccococcocococococococooooooos +

| What's happeni ng? | I'"mnot sure. | Homer wrote "The Iliad". |
Honmer al so wote "The Qdyssey". |

do e memmeeaeeacaaaas dommemmeeeeeaeaaas e m e eeeeeeieieeaoaaa

dom e e e oo +

Field terminator character in CREATE TABLE:

Note: The CREATE TABLE clausesFI ELDS TERM NATED BY, ESCAPED BY, and LI NES TERM NATED
BY have specia rulesfor the string literal used for their argument, because they al require asingle character. Y ou
can use aregular character surrounded by single or double quotation marks, an octal sequence such as' \ 054"
(representing acomma), or an integer in the range '-127'..'128' (with quotation marks but no backslash), which
isinterpreted as a single-byte ASCII character. Negative values are subtracted from 256; for example, FI ELDS
TERM NATED BY ' -2' setsthefield delimiter to ASCII code 254, the “Icelandic Thorn” character used as a
delimiter by some data formats.

impala-shell considerations:

When dealing with output that includes non-ASCI1 or non-printable characters such as linefeeds and backspaces, use
thei npal a- shel | optionsto saveto afile, turn off pretty printing, or both rather than relying on how the output
appears visually. See impala-shell Configuration Options on page 791 for alist of i npal a- shel | options.

Boolean Literals

For BOOLEAN values, the literals are TRUE and FAL SE, with no quotation marks and case-insensitive.

Examples:

sel ect true;

select * fromtl where assertion = fal se;

sel ect case bool _col when true then 'yes' when fal se
fromti;

no' else '"null' end

Timestamp Literals

Impala automatically converts STRI NG literals of the correct format into TI MESTAMP values. Timestamp values
are accepted in theformat ' yyyy#Mvtdd HH: mm ss. SSSSSS' , and can consist of just the date, or just the
time, with or without the fractional second portion. For example, you can specify TI MESTAMP values such as

' 1966#07#30' ,' 08: 30: 00' , or' 1985#09#25 17: 45: 30. 005" .

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the time
component, such as hour, minute, and second. For example, Impala acceptsboth ' 2018#1#1 01: 02: 03' and
' 2018#01#01 1:2: 3' asvalid.

In STRI NGto TI MESTAMP conversions, leading and trailing white spaces, such as a space, atab, anewline, or
acarriage return, are ignored. For example, Impala treats the following as equivalent: '1999#12#01 01:02:03 ',
' 1999#12#01 01:02:03', '1999#12#01 01:02:03\r\n\t".

When you convert or cast a STRI NGliteral to TI MESTAMP, you can use the following separators between the date
part and the time part:

+ One or more space characters

Example: CAST(' 2001- 01- 09 01: 05: 01' AS TI MESTAWP)
e Thecharacter “T”"

Example: CAST(' 2001- 01- 09T01: 05: 01' AS TI MESTAWP)

| Impala SQL Language Reference | 177

You can aso use | NTERVAL expressions to add or subtract from timestamp literal values, such as
CAST(' 1966#07#30' AS Tl MESTAMP) + | NTERVAL 5 YEARS + | NTERVAL 3 DAYS. See
TIMESTAMP Data Type on page 133 for details.

Depending on your data pipeline, you might receive date and time data as text, in notation that does not exactly match
the format for Impala TI MESTAMP literals. See Impala Date and Time Functions on page 478 for functions that

can convert between a variety of string literals (including different field order, separators, and timezone notation) and
equivalent TI MESTAMP or numeric values.

Date Literals
The DATE literals are in the form of DATE' YYYY- MM DD . For example, DATE ' 2013-01- 01’

NULL

The notion of NULL valuesis familiar from all kinds of database systems, but each SQL dialect can have its own
behavior and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are
significant: any misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming
to correct for large data sets.

* NULL isadifferent value than an empty string. The empty string is represented by a string literal with nothing
inside," " or

* Inadelimited text file, the NULL valueis represented by the special token\ N.

* When Impalainserts datainto a partitioned table, and the value of one of the partitioning columnsis NULL or
the empty string, the datais placed in a specia partition that holds only these two kinds of values. When these
values are returned in a query, the result is NULL whether the value was originally NULL or an empty string. This
behavior is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty
strings as partition keys, and it returnsa string value such as__HI VE_DEFAULT_PARTI TI ON__ instead of
NULL when such values are returned from a query. For example:

create table t1 (i int) partitioned by (x int, y string);

-- Select an INT colum from another table, with all rows going into a
speci al HDFS subdirectory

-- named __ H VE DEFAULT _PARTI TION__. Dependi ng on whet her one or both of
the partitioning keys

-- are null, this special directory nane occurs at different |evels of the
physical data directory

-- for the table.

insert into t1 partition(x=NULL, y=NULL) select cl from sone_ot her_tabl e;
insert into tl partition(x, y=NULL) select cl, c2 from sonme_other_table;
insert into tl partition(x=NULL, y) select cl1l, ¢c3 from sone_other_table;

e Thereisno NOT NULL clause when defining a column to prevent NULL valuesin that column.

e Thereisno DEFAULT clause to specify anon-NULL default value.

e If an| NSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all
inserted rows.

* Inlmpalal.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASCqueries,
and at the beginning of the result set for ORDER BY ... DESCqueries. In effect, NULL is considered greater
than al other values for sorting purposes. The original Impala behavior always put NULL values at the end, even
for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other
popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL
by adding the clause NULLS FI RST or NULLS LAST at the end of the ORDER BY clause.

Note: Becausethe NULLS FI RST and NULLS LAST keywords are not currently available in Hive queries, any
views you create using those keywords will not be available through Hive.

e Inall other contexts besides sorting with ORDER BY, comparing a NULL to anything else returns NULL, making
the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also produces NULL, 5
BETWEEN 1 AND NULL produces NULL, and so on.

| Impala SQL Language Reference | 178

Several built-in functions serve as shorthand for evaluating expressions and returning NULL, O, or some
other substitution value depending on the expression result: i f nul | (),i snull (),nvl (),nullif(),
nul lifzero(),andzeroifnull().SeelmpalaConditional Functions on page 502 for details.

Kudu consider ations:

Columns in Kudu tables have an attribute that specifies whether or not they can contain NULL values. A column with
aNULL attribute can contain nulls. A column withaNOT NULL attribute cannot contain any nulls, and an | NSERT,
UPDATE, or UPSERT statement will skip any row that attempts to store anull in a column designated as NOT NULL.
Kudu tables default to the NULL setting for each column, except columns that are part of the primary key.

In addition to columns with the NOT NULL attribute, Kudu tables also have restrictions on NULL valuesin columns
that are part of the primary key for atable. No column that is part of the primary key in a Kudu table can contain any
NULL values.

SQL Operators

SQL operators are a class of comparison functions that are widely used within the WHERE clauses of SELECT
statements.

Arithmetic Operators

The arithmetic operators use expressions with aleft-hand argument, the operator, and then (in most cases) aright-
hand argument.

Syntax:

| eft _hand_arg binary_operator right_hand_arg
unary_operator single arg

e +and-: Canbeused either as unary or binary operators.

e With unary notation, suchas+5, - 2. 5, or - col _nane, they multiply their single numeric argument by
+1 or - 1. Therefore, unary + returns its argument unchanged, while unary - flipsthe sign of its argument.
Although you can double up these operators in expressions such as ++5 (always positive) or - +2 or +- 2
(both always negative), you cannot double the unary minus operator because - - isinterpreted as the start of
acomment. (You can use adouble unary minus operator if you separate the - characters, for example with a
space or parentheses.)

e With binary notation, suchas2+2,5- 2. 5,orcol 1 + col 2, they add or subtract respectively the right-
hand argument to (or from) the left-hand argument. Both arguments must be of numeric types.

e * and/ : Multiplication and division respectively. Both arguments must be of numeric types.

When multiplying, the shorter argument is promoted if necessary (such as SMALLI NT to | NT or Bl G NT,
or FLOAT to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a

TI NYI NT and an | NT produces aBl G NT result. Multiplying a FLOAT and a FLOAT produces a DOUBLE
result. Multiplying a FLOAT and a DOUBLE or a DOUBL E and a DOUBLE produces a DECI MAL(38, 17),
because DECI MAL values can represent much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE valuesto avoid losing precision. If you
need to insert the results of a division operation into a FLOAT column, use the CAST() function to convert the
result to the correct type.

< DI V: Integer division. Arguments are not promoted to a floating-point type, and any fractional result is discarded.
For example, 13 DIV 7 returns1,14 DIV 7 returns2, and 15 DI V 7 returns 2. This operator isthe same as
the QUOTI ENT() function.

e % Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both
arguments must be of one of the integer types.

| Impala SQL Language Reference | 179

« & |,~,and”: Bitwise operatorsthat return the logical AND, logical OR, NOT, or logical XOR (exclusive OR) of
their argument values. Both arguments must be of one of the integer types. If the arguments are of different type,
the argument with the smaller type isimplicitly extended to match the argument with the longer type.

Y ou can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example,
prior to Impala 2.2, thereisno MOD() function equivalent to the %emodul o operator. Conversely, there are some
arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use the PON()
function, but thereisno * * exponentiation operator. See Impala Mathematical Functions on page 434 for the
arithmetic functions you can use.

Complex type consider ations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 142 for details about using complex typesin Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the | TEMpseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM) and AV) are computed using the numeric
R_NATI ONKEY field, and the general-purpose MAX() and M N() values are computed from the string N_NAME
field.

descri be region;
focccosccoscas focccosccosccosccosccosces focccosces +
| name | type | coment |
feccocoococoooooc feccoccococooocoococoocoocoocooe feocococooooc +
r_regi onkey smal |i nt
r _name string
r _conmment string
r_nations array<struct<

n_nane: string,
n_coment: string
>>

|
|
I
I
| n_nati onkey: smal |int,
|
|
|

select r_nane, r_nations.item n_nationkey
fromregion, region.r_nations as r_nations
order by r_name, r_nations.item n_nationkey;

Fococcoccoccooooe Focococococococoococ +
| r_name | item n_nationkey |
focccosccosces docccooccosccoocoos +
| AFRI CA | O [
| AFRI CA | 5 [
| AFRI CA | 14 |
| AFRI CA | 15 |
| AFRI CA | 16 [
| AMERI CA | 1 |
| AMERI CA | 2 [
| AMERI CA | 3 [
| AMERI CA | 17 |
| AMERI CA | 24 |
| ASIA | 8 [
| ASIA | 9 [
| ASIA | 12 [
| ASIA | 18 [
ASIA	21
EURCPE	6
EURCPE	7

| Impala SQL Language Reference | 180

| EURCPE | 19 |
| EURCPE | 22 [
| EURCPE | 23 |
| MDDLE EAST | 4 [
MDDLE EAST	10
MDDLE EAST	11
MDDLE EAST	13
MDDLE EAST	20
T S N N +
sel ect
r _nane,

count (r_nations.item n_nationkey) as count,
sun(r_nations.itemn_nationkey) as sum
avg(r_nations.item n_nationkey) as avg,
m n(r_nations.itemn_nane) as m ni num
mex(r_nations.itemn_nanme) as naxi num
ndv(r_nations.item n_nati onkey) as distinct_vals
from
region, region.r_nations as r_nations
group by r_nane
order by r_nane;

feococococcooccooc foocoooc occoe occooc feocococooccooac fococococcoccoocooce

Fococcoccoccococooooe +

| r_nane | count | sum| avg | mnimum | maxi mum

di stinct_vals |

foccoococooooc Focooooc fooooc foccooc foccoococooc feccoococcoonoooc

fecococoococooocoooos +

| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBI QUE | 5
I

| AMERI CA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
I

| ASIA | 5 | 68 | 13.6 | CH NA | VI ETNAM | 5
|

| EURCPE | 5 | 77 | 15.4 | FRANCE | UNITED KINGDOM | 5
I

| MDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5
I

foccoococooooc Focooooc fooooc foccooc foccoococooc feccoococcoonoooc

fecococoococooocoooos +

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT typethat is
an item within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.

descri be region;
focccosccoscas focccosccosccosccosccosces focccosces +
| name | type | coment |
feccocoococoooooc feccoccococooocoococoocoocoocooe feocococooooc +
r_regionkey | smallint
r_name | string
r _conmment string

n_nane: string,

|

|

| !

| r_nations
I

l !
| n_coment: string

I
I
I I
| array<struct< |
| n_nationkey:smallint, |
I I
I I

| Impala SQL Language Reference | 181

-- When we refer to the scal ar val ue using dot notation,

-- Wwe can use arithnetic and conpari son operators on it

-- like any other nunber.

select r_nanme, nation.itemn_nanme, nation.itemn_nationkey * 10
fromregion, region.r_nations as nation

where nation.itemn_nationkey < 5;

Foccococosaoos Foccococosaoos Fococococococococococococoooo o +
| r_name | itemn_name | nation.item n_nationkey * 10 |
doococcooocoooooc doococcooocoooooc oocococococooocooocooococoococoooooooDoc +
| AMERI CA | CANADA | 30 [
| AMERI CA | BRAZI L | 20 [
| AMERI CA | ARGENTINA | 10 [
| MDDLE EAST | EGYPT | 40 [
| AFRI CA | ALGERI A | O [
doococcooocoooooc doococcooocoooooc oocococococooocooocooococoococoooooooDoc +

BETWEEN Operator

In aVWHERE clause, compares an expression to both alower and upper bound. The comparison is successful isthe
expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values
are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:
expressi on BETWEEN | ower _bound AND upper _bound

Data types: Typically used with numeric data types. Works with any data type, although not very practical for
BOOLEANvalues. (BETWEEN f al se AND t r ue will match all BOOLEAN values.) Use CAST() if necessary
to ensure the lower and upper bound values are compatible types. Call string or date/time functions if necessary to
extract or transform the relevant portion to compare, especialy if the value can be transformed into a number.

Usage notes:

Be careful when using short string operands. A longer string that starts with the upper bound value will not be
included, because it is considered greater than the upper bound. For example, BETWEEN " A and ' M would not
match the string value' M dway' . Use functions such asupper (), 1 ower (), substr(),trin(),andsoonif
necessary to ensure the comparison works as expected.

Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

Examples:

-- Retrieve data for January through June, inclusive.
select cl1 fromtl where nonth between 1 and 6;

-- Retrieve data for names beginning with "A through 'M inclusive.

-- Only test the first letter to ensure all the values starting with "M are
mat ched.

-- Do a case-insensitive conparison to match nanes with various
capitalization conventions.

sel ect | ast_nane from custoners where upper(substr(last_nane, 1,1)) between
"A' and 'M;

-- Retrieve data for only the first week of each nonth.

| Impala SQL Language Reference | 182

sel ect count(distinct visitor_id)) fromweb_traffic where
dayof nont h(when_vi ewed) between 1 and 7;

The following example shows how to do a BETWEEN comparison using a numeric field of a STRUCT typethat is
an item within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can beused in a
comparison operator:

-- The SMALLINT is a field within an array of structs.
descri be region;

Fococcoccoccooooe Focococcocococcocoocoocooooooe Fococooooe +
| name | type | coment |
feccoococooooc feccoocococcoocococooococooc feccoocooc +

r _regi onkey smal | i nt

r _name string

r _coment string

r_nations array<struct<

n_name: stri ng,
n_coment: string
>>

I
I
I
I
| n_nati onkey: smal lint,
I
I
I

-- When we refer to the scalar val ue using dot notation

-- we can use arithmetic and conpari son operators on it

-- like any other nunber.

sel ect r_nane, nation.itemn_nanme, nation.item n_nationkey
fromregion, region.r_nations as nation

where nation.item n_nati onkey between 3 and 5

feccoococooooc feccoococooooc feccoococcoccoococooc +
| r_name | itemn_name | item n_nationkey |
foccoococooooc foccoococooooc foccoocococcoococooc +
AVERI CA	CANADA	3
M DDLE EAST	EGYPT	4
AFRI CA	ETH OPI A	5
feccoococooooc feccoococooooc feccoococcoccoococooc +

Comparison Operators
Impala supports the familiar comparison operators for checking equality and sort order for the column data types:
Syntax:

| eft _hand_expressi on conpari son_operator right _hand_expressi on
+ =, 1= <> gpply toal types.
o <, <=, >, >=: gpply to al types, for BOOLEAN, TRUE is considered greater than FALSE.
Alternatives:

The | N and BETVEEN operators provide shorthand notation for expressing combinations of equality, less than, and
greater than comparisons with a single operator.

Because comparing any value to NULL produces NULL rather than TRUE or FALSE, usethel S NULL and| S NOT
NULL operatorsto check if avalueis NULL or not.

Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VAL UE pseudocolumn names.

| Impala SQL Language Reference | 183

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT typethat isan
item within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used with a
comparison operator such as <:

-- The SMALLINT is a field within an array of structs.
descri be region;

feccocoococoooooc feccoccococooocoococoocoocoocooe feocococooooc +
| nane | type | comment |
Fococcoccoccooooe Focococcocococcocoocoocooooooe Fococooooe +
r_regi onkey smal |int
r_name string
r _coment string
array<struct<

n_nati onkey: snal |i nt,
n_nane: string,
n_conment : string

I
I
I
| r_nations
|
|
I
| >>

-- When we refer to the scal ar val ue using dot notation,
-- Wwe can use arithnetic and conpari son operators on it

-- like any other nunber.

sel ect r_nanme, nation.itemn_nanme, nation.item n_nationkey
fromregion, region.r_nations as nation

where nation.itemn_nationkey < 5

feococococcooccooc feococococcooccooc focococoococococooccoocos +
| r_name | itemn_name | item n_nationkey |
dommemeeeeaaas dommemeeaaaaas e me e eeeaa +
| AMERI CA | CANADA | 3 [
| AMERI CA | BRAZI L | 2 [
| AMERI CA | ARGENTINA | 1 [
| MDDLE EAST | EGYPT | 4 [
| AFRI CA | ALGERI A | O [
e e e e e eeea +

EXISTS Operator

The EXI STS operator tests whether a subquery returns any results. Y ou typically useit to find values from one table
that have corresponding values in another table.

The converse, NOT EXI STS, helpsto find al the values from one table that do not have any corresponding valuesin
another table.

Syntax:

EXI STS (subquery)

NOT EXI STS (subquery)
Usage notes:

The subquery can refer to a different table than the outer query block, or the same table. For example, you might use
EXI STS or NOT EXI STS to check the existence of parent/child relationships between two columns of the same
table.

Y ou can also use operators and function calls within the subquery to test for other kinds of relationships other than
strict equality. For example, you might use acall to COUNT() in the subquery to check whether the number of
matching valuesis higher or lower than some limit. Y ou might call a UDF in the subquery to check whether valuesin
one table matches a hashed representation of those same valuesin a different table.

NULL considerations:
If the subquery returns any value at all (even NULL), EXI STS returns TRUE and NOT EXI STS returns false.

| Impala SQL Language Reference | 184

The following example shows how even when the subquery returns only NULL values, EXI STS still returns TRUE
and thus matches all the rows from the table in the outer query block.

[l ocal host:21000] > create table all _nulls (x int);
[l ocal host:21000] > insert into all_nulls values (null), (null), (null);

[l ocal host:21000] > select y fromt2 where exists (select x fromall _nulls);
+---+

|y |

E—
| 2|
| 4 |
| 6|

+---+

However, if the table in the subquery is empty and so the subquery returns an empty result set, EXI STS returns
FALSE:

[l ocal host:21000] > create table enpty (x int);
[l ocal host:21000] > select y fromt2 where exists (select x fromenpty);
[l ocal host:21000] >

Added in: Impala2.0.0
Restrictions:
Correlated subqueries used in EXI STS and | N operators cannot includealLl M T clause.

Prior to Impala 2.6, the NOT EXI STS operator required a correlated subquery. In Impala 2.6 and higher, NOT
EXI STS works with uncorrelated queries also.

Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

Examples:

The following examples refer to these simpl e tables containing small sets of integers or strings:

[l ocal host:21000] > create table t1 (x int);
[l ocal host:21000] > insert into tl values (1), (2), (3), (4), (5, (6);

[l ocal host:21000] > create table t2 (y int);
[l ocal host:21000] > insert into t2 values (2), (4), (6);

\

[l ocal host: 21000]
[l ocal host:21000]

create table t3 (z int);
insert into t3 values (1), (3), (5);

\%

[l ocal host:21000]
[l ocal host:21000]

create table nonth_names (m string);
insert into nonth_nanes val ues
('January'), ('February'), ('March'),
("April*), ("My'), ("June’), ("July'),
(" August'), ('Septenber'), ('Cctober'),
(' Novenber'), (' Decenber');

VVVYVYVYV

The following example shows a correlated subquery that finds all the values in one table that exist in another table.
For each value X from T1, the query checksif the Y column of T2 contains an identical value, and the EXI STS
operator returns TRUE or FAL SE as appropriate in each case.

| ocal host: 21000] > select x fromtl where exists (select y fromt2 where
tl.x =vy);

| Impala SQL Language Reference | 185

SR
| x|
+-- -+
| 2 |
| 4|
| 6|
NN

An uncorrelated query islessinteresting in this case. Because the subquery always returns TRUE, all rowsfrom T1
are returned. If the table contents where changed so that the subquery did not match any rows, none of the rows from
T1 would be returned.

[l ocal host:21000] > select x fromtl where exists (select y fromt2 where y
> 5);
+---+
| x|
+---+

OO WNE
e ——

f—

The following example shows how an uncorrelated subquery can test for the existence of some condition within a
table. By using LI M T 1 or an aggregate function, the query returns a single result or no result based on whether the
subquery matches any rows. Here, we know that T1 and T2 contain some even numbers, but T3 does not.

[l ocal host:21000] > sel ect "contains an even nunber" fromtl where exists
(select x fromtl where x %2 =0) limt 1;

foococcoccococococococosooooos +
| 'contains an even nunber' |
dooccoococooocooococoococooocooooDoc +
| contains an even nunber [
feccoocococcoocococoococooooc +

[l ocal host:21000] > select "contains an even nunber" as assertion fromtl
where exists (select x fromtl where x %2 =0) limt 1;

foccococococooccoccooccooccoocooc +
| assertion |
o m e e eeeeceaaaaoa. +
| contains an even nunber |
e S S S S S S +

[l ocal host:21000] > select "contains an even nunber" as assertion fromt?2
where exists (select x fromt2 wherey %2 =0) limt 1;

ERROR: Anal ysi sexception: couldn't resolve colum reference: 'x
[l ocal host:21000] > select "contains an even nunber" as assertion fromt?2
where exists (select y fromt2 wherey %2 =0) limt 1;

S S S S S +
| assertion [
foccococococooccoccooccooccoocooc +
| contains an even nunber |
o m e e eeeeceaaaaoa. +

[l ocal host:21000] > select "contains an even nunber" as assertion fromt3
where exists (select z fromt3 where z %2 =0) limt 1;
[l ocal host:21000] >

| Impala SQL Language Reference | 186

The following example finds numbersin one table that are 1 greater than numbers from another table. The EXI STS
notation is simpler than an equivalent CROSS JO N between the tables. (The example then also illustrates how the
same test could be performed using an | N operator.)

[l ocal host:21000] > select x fromtl where exists (select y fromt2 where x
=y +1);

R

| x|

+---+

| 3|

| 5|

R

[l ocal host:21000] > select x fromtl where x in (select y + 1 fromt2);
+---+

| x|

+---+

| 3|

| 51

R—

The following example finds values from one table that do not exist in another table.

[l ocal host:21000] > select x fromtl where not exists (select y fromt2
where x = vy);

+---+

| x|

+---+

| 1]

| 3|

| 5|

+---+

The following example usesthe NOT EXI STS operator to find all the leaf nodes in tree-structured data. This
simplified “tree of life” has multiple levels (class, order, family, and so on), with each item pointing upward through
a PARENT pointer. The example runs an outer query and a subguery on the same table, returning only those items
whose | Dvalueis not referenced by the PARENT of any other item.

[l ocal host: 21000]
[l ocal host: 21000]

create table tree (id int, parent int, name string);
insert overwite tree val ues
(0, null, "animls"),

"red kangaroo"),
"wal | abi es");
sel ect nane as "l eaf node" fromtree one
> where not exists (select parent fromtree two where
one.id = two. parent);

(1, 0, "placental s"),
(2, 0, "marsupials"),
(3, 1, "bats"),

1, "cats"),
(5, 2, "kangaroos"),
(6, 4, "lions"),
(7, 4, "tigers"),

5

2

VVVVVVVVVYVYVVYV
)
&

[l ocal host: 21000]

feccoccccooccooas +
| leaf node |
Focococococoococ +
| bats |
| lions [
| tigers |
| red kangaroo |
| wall abi es |

| Impala SQL Language Reference | 187

Related information:

Subqueriesin Impala SELECT Statements on page 335

ILIKE Operator

A case-insensitive comparison operator for STRI NG data, with basic wildcard capability using _ to match asingle
character and %to match multiple characters. The argument expression must match the entire string value. Typically,
it is more efficient to put any %wildcard match at the end of the string.

This operator, available in Impala 2.5 and higher, is the equivalent of the LI KE operator, but with case-insensitive
comparisons.

Syntax:

string_expression | LI KE w | dcard_expression
string_expression NOT | LIKE w | dcard_expressi on

Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

Examples:

In the following examples, strings that are the same except for differencesin uppercase and lowercase match
successfully with | LI KE, but do not match with L1 KE:

select 'fooBar' ilike ' FOOBAR ;
Fococcococococococosooooos +
| 'foobar' ilike 'foobar' |
dooccoococooocooccooocoooooooe +
| true |
feccoocococcoocococooococooc +

sel ect 'fooBar' |ike ' FOOBAR ;

foccocococococcoccooccoocoocos +
| 'foobar' Iike 'foobar' |
o e e mmeeeeeeecieeaaaoa. +
| false [
L A S S S S +
sel ect ' FOOBAR ilike 'f%;
Focococcoccococoocoocooooe +
| 'foobar' ilike "f% |
S +
| true |
eccocoococoococooccoocoocoe +

sel ect ' FOOBAR |like 'f%;

feccoocococooococooooc +
| 'foobar' like 'f% |
foccoocococcoococooooc +
| fal se [
fococcocococcoccoocoacs +

sel ect ' ABCXYZ' not ilike '"ab xyz';

| Impala SQL Language Reference | 188

sel ect ' ABCXYZ' not like 'ab_xyz';

foccccocccoccccococooocaoocas +
| not 'abcxyz' like 'ab_xyz'

focococcoccoccoocccocooocooooooos +
| true |
foocccocccocccccocccooocooocas +

Related infor mation:

For case-sensitive comparisons, see LIKE Operator on page 195. For amore general kind of search operator using
regular expressions, see REGEXP Operator on page 198 or its case-insensitive counterpart IREGEXP Operator on
page 190.

IN Operator

The |l N operator compares an argument value to a set of values, and returns TRUE if the argument matches any value
inthe set. The NOT | N operator reverses the comparison, and checks if the argument value is not part of a set of
values.

Syntax:

expression I N (expression [, expression])
expression | N (subquery)

expression NOT IN (expression [, expression])
expression NOT I N (subquery)

The left-hand expression and the set of comparison values must be of compatible types.

The left-hand expression must consist only of asingle value, not atuple. Although the left-hand expression is
typically a column name, it could also be some other value. For example, the WHERE clausesWHERE i d I N (5)
andVWHERE 5 I N (i d) produce the same results.

The set of values to check against can be specified as constants, function calls, column names, or other expressionsin
the query text. The maximum number of expressionsin the | Nlist is9999. (The maximum number of elements of a
single expression is 10,000 items, and the | N operator itself counts as one.)

In Impala 2.0 and higher, the set of values can also be generated by a subquery. | N can evaluate an unlimited number
of results using a subquery.

Usage notes:

Any expression using the | N operator could be rewritten as a series of equality tests connected with OR, but thel N
syntax is often clearer, more concise, and easier for Impalato optimize. For example, with partitioned tables, queries
frequently use | N clausesto filter data by comparing the partition key columnsto specific values.

NULL considerations:

If therereally isamatching non-null value, I N returns TRUE:

[l ocal host:21000] > select 1 in (1,null,2,3);

feccoccococcoccocooooooc +

| 2in (1, null, 2, 3) |

eccocoococococooccoocoocooe +

| true |

Focococococococococoooc +

[l ocal host:21000] > select 1 not in (1,null,2,3);
feccoccococoococcooococooooc +

| 2 not in (1, null, 2, 3) |
fecccoococooocoococooccoocoocooas +

| false |

| Impala SQL Language Reference | 189

If the searched value is not found in the comparison values, and the comparison values include NULL, the result is
NULL:

[l ocal host:21000] > select 5 in (1,null,2,3);

feccoccococcoccocooooooc +
| 5in (1, null, 2, 3) |
eccocoococococooccoocoocooe +

| NULL |
Focococococococococoooc +

[l ocal host:21000] > select 5 not in (1,null,2,3);
feccoccococoococcooococooooc +

| 5not in (1, null, 2, 3) |
fecccoococooocoococooccoocoocooas +

| NULL |
Fococococococococococoocoooa +

[l ocal host:21000] > select 1 in (null);
feccoococooooc +

| 2in (null) |

feccocoococoooooc +

| NULL |

Fococcoccoccooooe +

[l ocal host:21000] > select 1 not in (null);
feccoccocooocosooc +

| 2 not in (null) |

feccocococooccoocooos +

| NULL |

Fococcoccoccoccoocooooe +

If the left-hand argument isNULL, | N always returns NULL. Thisrule applies even if the comparison values include
NULL.

[l ocal host:21000] > select null in (1,2,3);

feccoccccooococooooc +
| null in (1, 2, 3) |

fecccoococoococooccoocooe +

| NULL [

Focococcccoccococooooe +

[l ocal host:21000] > select null not in (1,2,3);
feccoococccoococcooooooe +

| null not in (1, 2, 3) |
eccococococoocococcooccoocooos +

| NULL [
Focococcoccoccoccococooooooe +

[l ocal host:21000] > select null in (null);
feccoococcooooooc +

| null in (null) |

feccoococoocoocooe +

| NULL [

Fococococococoococ +

[l ocal host:21000] > select null not in (null);
feccoocococcoococooooc +

| null not in (null) |

fecoccoococoococoococoocooos +

| NULL [

Fococococococococoooa +

Added in: Availablein earlier Impalareleases, but new capabilities were added in Impala2.0.0
Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,

| Impala SQL Language Reference | 190

or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT typethat is
an item within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
descri be region;

feccocoococoooooc feccoccococooocoococoocoocoocooe feocococooooc +
| nane | type | comment |
Fococcoccoccooooe Focococcocococcocoocoocooooooe Fococooooe +
r_regi onkey smal |int
r_name string
r _coment string
array<struct<

n_nati onkey: snal |i nt,
n_nane: string,
n_conment : string

I
I
I
| r_nations
|
|
I
| >>

-- When we refer to the scal ar val ue using dot notation,
-- Wwe can use arithnetic and conpari son operators on it

-- like any other nunber.

sel ect r_nanme, nation.itemn_nanme, nation.item n_nationkey
fromregion, region.r_nations as nation

where nation.itemn_nationkey in (1,3,5)

feoococooooc feococococcooccooc focococoococococooccoocos +
| r_name | itemn_nane | item n_nationkey |
R dommemeeaaaaas e me e eeeaa +
| AMERI CA | CANADA | 3 [
| AVERICA | ARGENTINA | 1 [
| AFRICA | ETH OPI A | 5 [
feoococooooc feococococcooccooc focococoococococooccoocos +

Restrictions:

Correlated subqueries used in EXI STS and | N operators cannot includealLl M T clause.

Examples:

-- Using INis concise and sel f-docunenti ng.

SELECT * FROMt1l WHERE c1 IN (1, 2,10);

-- Equivalent to series of = conparisons ORed together.
SELECT * FROMt1l WHERE c1 =1 ORcl = 2 OR cl = 10;

SELECT c1 AS "starts with vowel" FROMt2 WHERE upper (substr(cl,1,1)) IN
("A'E L', TO0 LU);

SELECT COUNT(DI STI NCT(visitor_id)) FROM web_traffic WHERE nonth I N
(' January',"'June',"July');

Related information:

Subqueriesin Impala SELECT Statements on page 335

IREGEXP Operator

Tests whether a value matches aregular expression, using case-insensitive string comparisons. Uses the POSI X
regular expression syntax where* and $ match the beginning and end of the string, . represents any single character,

| Impala SQL Language Reference | 191

* represents a sequence of zero or more items, + represents a sequence of one or more items, ? produces a non-
greedy match, and so on.

This operator, available in Impala 2.5 and higher, is the equivalent of the REGEXP operator, but with case-insensitive
comparisons.

Syntax:
string_expression | REGEXP regul ar _expressi on

Usage notes:

The| symbol isthe alternation operator, typically used within () to match different sequences. The () groupsdo
not alow backreferences. To retrieve the part of avalue matched withina () section, usether egexp_extract ()
built-in function. (Currently, there is not any case-insensitive equivalent for ther egexp_ext ract () function.)

In Impala 1.3.1 and higher, the REGEXP and RL1 KE operators now match aregular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each sideby . *. See
REGEXP Operator on page 198 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression
support for popular database systems. There is no change to the behavior of ther egexp_ext ract () and
regexp_repl ace() built-in functions.

In Impala 2.0 and later, the Impalaregular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including . * ? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patternsif necessary. See Incompatible Changes Introduced in Impala 2.0.0 on page 873 for details.

Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the syntax for the | REGEXP operator.

sel ect 'abcABCaabbcc' iregexp '~[a-c]+$';
+

o e - -

| 'abcabcaabbcc' iregexp '[a-c]+ |
fococococcoccooccoccooccocoococoocoocooos +
| true |
ccoccococooccocoooocococoooococooooc +

Related information:
REGEXP Operator on page 198

IS DISTINCT FROM Operator

Thel S DI STI NCT FROMoperator, and itsconversethel S NOT DI STI NCT FROMoperator, test whether or not
valuesareidentical. | S NOT DI STI NCT FROMissimilar to the = operator, and | S DI STI NCT FROMissimilar
to the ! = operator, except that NULL values are treated asidentical. Therefore, | S NOT DI STI NCT FROMreturns
t r ue rather than NULL, and | S DI STI NCT FROMreturnsf al se rather than NULL, when comparing two NULL
values. If one of the values being compared is NULL and the other isnot, | S DI STI NCT FROMreturnst r ue and
I'S NOT DI STI NCT FROMreturnsf al se, againinstead of returning NULL in both cases.

https://code.google.com/p/re2/

| Impala SQL Language Reference | 192

Syntax:

expressionl IS D STI NCT FROM expressi on2

expressionl IS NOT DI STI NCT FROM expr essi on2
expressi onl <=> expressi on2

The operator <=> isan aliasfor | S NOT DI STI NCT FROM Itistypically used asaNULL-safe equality operator in
join queries. That is, A <=> Bistrueif AequalsB or if both Aand B are NULL.

Usage notes:

This operator provides concise notation for comparing two values and always producing at r ue or f al se result,
without treating NULL as a special case. Otherwise, to unambiguously distinguish between two values requires a
compound expression involving | S [NOT] NULL tests of both operands in addition to the = or | = operator.

The <=> operator, used like an equality operator in ajoin query, is more efficient than the equivalent clause: | F (A
IS NULL OR B IS NULL, A IS NULL AND B IS NULL, A = B).The<=> operator can use a hash
join, whilethe | F expression cannot.

Examples:

The following examples show how | S DI STI NCT FROMgives output similar tothe! = operator, and | S NOT
DI STI NCT FROMgives output similar to the = operator. The exception is when the expression involves a NULL
value on one side or both sides, where! = and = return NULL butthel S [NOT] DI STI NCT FROMoperators still
returnt rue orf al se.

select 1 is distinct fromO, 1 != 0;
feccoccococooccocooooooc feccoocooc +

| 1 is distinct fromO | 1 !=0 |
foccoccoccoccoccocooooooc Foccoooac +

| true | true [

R oo - +

select 1 is distinct from1, 1 !=1;
feccoccococcoccocooooooc feccoococac +

| 1 is distinct from1l | 1 !=1|
eccocoococococooccoocoocooe fooocooooc +

| false | false |
Focococococococococoooc Fococococ +

select 1 is distinct fromnull, 1 !'= null;
foccoocococcoocococooococooc foccoococooc +

| 1 is distinct fromnull | 1 != null
foccococococooccoccooccooccoocooc feocococooccooac +

| true | NULL |
feccoococcoccoococcocooococooc feccoococooc +
select null is distinct fromnull, null !'= null;
feccocoococooccoccoocoooocooooooos feccoccccooccooas +
| null is distinct fromnull | null I'= null |
Focococococococococococoocoooa Focococococoococ +
| false | NULL |
feccoococccooococcocoocococooooc feccoocooccooooc +

| Impala SQL Language Reference | 193

feccoccococoococcooococooooc fecooooc +

| 1 is not distinct from1 | 1 =1
fecccoococooocoococooccoocoocooas fooocoooc +

| true | true |
Fococococococococococoocoooa Focoocooe +

select 1 is not distinct fromnull, 1 = null;
foccooccococcoccococooccocooooooc foccococooc +

| 1 is not distinct fromnull | 1 = null
feocococcoccoccoccooococoocoooooc feoococooccoac +

| false | NULL |
feccoccococooccococooccocooooooc feccococooc +
select null is not distinct fromnull, null = null
feccocccococcoccoccoocoooocoocoooooc feccocoococoooooc +
| null is not distinct fromnull | null = null |
Fococococococococococococococoooa Fococcoccoccooooe +
| true | NULL |
feccoocococcoocococcoocococooococooc feccoococooooc +

The following example showshow | S DI STI NCT FROMconsiders CHAR values to be the same (not distinct from
each other) if they only differ in the number of trailing spaces. Therefore, sometimestheresult of an1 S [NOT]
DI STI NCT FROMoperator differs depending on whether the values are STRI NGVARCHAR or CHAR.

sel ect
"X' is distinct from'x as string_wth_trailing_spaces,
cast('x'" as char(5)) is distinct fromcast('x ' as char(5)) as
char_with_trailing_spaces;

feccoccococcoccococooccocooooooc feccoocococcoocococoococooooc +
| string with trailing spaces | char_with trailing spaces |
feccococococcoccoocooococooocoooooc feccococccoccoccoococooocoooooas +
| true | false |
Focococcoccococcocococoocoocooooooe Focococcococcoccococoocoocooooooe +

IS NULL Operator

Thel S NULL operator, and its conversethel S NOT NULL operator, test whether a specified valueis NULL.
Because using NULL with any of the other comparison operators such as= or ! = also returns NULL rather than TRUE
or FALSE, you use a special-purpose comparison operator to check for this special condition.

InImpala 2.11 and higher, you can use the operators| S UNKNOWN and | S NOT UNKNOWN as synonymsfor | S
NULL and | S NOT NULL, respectively.

Syntax:

expression |'S NULL
expression |'S NOT NULL
expression | S UNKNOMN
expression IS NOT UNKNOMW

Usage notes:

In many cases, NULL values indicate some incorrect or incomplete processing during data ingestion or conversion.
Y ou might check whether any valuesin a column are NULL, and if so take some followup action to fill them in.

With sparse data, often represented in “wide” tables, it is common for most values to be NULL with only an
occasiona non-NULL value. In those cases, you can usethel S NOT NULL operator to identify the rows containing
any data at all for aparticular column, regardless of the actual value.

| Impala SQL Language Reference | 194

With awell-designed database schema, effective use of NULL valuesand 1 S NULL andl S NOT NULL operators
can save having to design custom logic around special valuessuch asO, -1," N/ A' , empty string, and so on. NULL
lets you distinguish between a value that is known to be O, false, or empty, and atruly unknown value.

Complex type consider ations:

Thel S [NOT] UNKNOWN operator, aswiththel S [NOT] NULL operator, is not applicable to complex type
columns (STRUCT, ARRAY, or MAP). Using a complex type column with this operator causes a query error.

Examples:

-- If this value is non-zero, sonething is w ong.
sel ect count(*) from enpl oyees where enployee id is null;

-- Wth data fromdi sparate sources, sone fields mght be bl ank.
-- Not necessarily an error condition.
sel ect count(*) from census where househol d_i ncone is null;

-- Sonetimes we expect fields to be null, and foll owp action
-- is needed when they are not.
sel ect count(*) fromweb traffic where weird http code is not null;

IS TRUE Operator

Thisvariation of the | S operator tests for truth or falsity, with right-hand arguments [NOT] TRUE, [NOT] FALSE,
and [NOT] UNKNOWN.

Syntax:

expression | S TRUE
expression IS NOT TRUE
expression | S FALSE
expression |'S NOT FALSE

Usage notes:

This| S TRUEand | S FALSE forms are similar to doing equality comparisons with the Boolean values TRUE
and FALSE, exceptthat | S TRUEand | S FALSE awaysreturn either TRUE or FALSE, even if the left-hand side
expression returns NULL

These operators et you simplify Boolean comparisons that must also check for NULL, for example X ! = 10 AND
X I'S NOT NULL isequivalentto(X !'= 10) | S TRUE

InImpala2.11 and higher, you can usethe operators| S [NOT] TRUEand| S [NOT] FALSE asequivalentsfor
the built-in functions | STRUE() , | SNOTTRUE() , | SFALSE() , and | SNOTFALSE() .

Complex type consider ations:

Thel S [NOT] TRUEand| S [NOT] FALSE operators are not applicable to complex type columns (STRUCT,
ARRAY, or MAP). Using a complex type column with these operators causes a query error.

Added in: Impala2.11.0

Examples:

sel ect assertion, b, bis true, bis false, b is unknown
from bool ean_t est;

| 2 +2 =4 | true | true | false | false |

| Impala SQL Language Reference | 195

| 2+2 =5 | false | false | true | false |
| 1 = null | NULL | false | fal se | true [
| null =null | NULL | false | false | true |
feccocoococoooooc fooocoooc fecococoococooas fecococoococooooc fecococoococooas +

LIKE Operator

A comparison operator for STRI NG data, with basic wildcard capability using the underscore (_) to match asingle
character and the percent sign (%9 to match multiple characters. The argument expression must match the entire string
value. Typicaly, it is more efficient to put any %wildcard match at the end of the string.

Syntax:

string_expression LIKE w | dcard_expression
string_expression NOT LI KE wi |l dcard_expression

Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

Examples:

sel ect distinct c_last_nane from custoner where c_last_name like 'M% or
c_last_nane |like ' Mac% ;

sel ect count(c_l ast_nane) from custonmer where c_|ast _nanme |ike ' M4 ;

sel ect c¢c_emnil _address from custoner where c_ennil _address |ike '9% edu';

-- W can find 4-letter nanmes beginning with "M by calling functions...

sel ect distinct c_last_name from custoner where | ength(c_|ast_nane) = 4 and
substr(c_last_nane,1,1) = "'M;

-- ...o0r in a nore readable way by matching M followed by exactly 3
characters.

select distinct c_|ast_nanme from custonmer where c_last _name like "M __';
For case-insensitive comparisons, see |ILIKE Operator on page 187. For amore general kind of search operator
using regular expressions, see REGEXP Operator on page 198 or its case-insensitive counterpart IREGEXP
Operator on page 190.

Logical Operators

Logical operators return a BOOLEAN value, based on abinary or unary logical operation between arguments that are
aso Booleans. Typically, the argument expressions use comparison operators.

Syntax:

bool ean_expressi on binary_| ogi cal _operat or bool ean_expressi on
unary_| ogi cal _operator bool ean_expressi on

The Impalalogical operators are:

* AND: A hinary operator that returnst r ue if itsleft-hand and right-hand arguments both evaluateto t r ue, NULL
if either argument iSNULL, and f al se otherwise.

e OR A binary operator that returnst r ue if either of itsleft-hand and right-hand arguments evaluatetot r ue,
NULL if one argument is NULL and the other is either NULL or f al se, and f al se otherwise.

e NOT: A unary operator that flips the state of a Boolean expression fromt rue tof al se,orf al setotrue.
If the argument expression is NULL, the result remains NULL. (When NOT is used thisway as a unary logical
operator, it works differently thanthe | S NOT NULL comparison operator, which returnst r ue when applied to
aNULL.)

| Impala SQL Language Reference | 196

Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT typethat is
an item within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
descri be region;

feccocoococoooooc feccoccococooocoococoocoocoocooe feocococooooc +
| nane | type | comment |
Fococcoccoccooooe Focococcocococcocoocoocooooooe Fococooooe +
r_regi onkey smal |int
r_name string
r _coment string
array<struct<

n_nati onkey: snal |i nt,
n_nane: string,
n_conment : string

I
I
I
| r_nations
|
|
I
| >>

-- When we refer to the scal ar val ue using dot notation,
-- Wwe can use arithnetic and conpari son operators on it
-- like any other nunber.
sel ect r_nanme, nation.itemn_nanme, nation.item n_nationkey
fromregion, region.r_nations as nation
wher e
nation.item n_nati onkey between 3 and 5
or nation.itemn_nationkey < 15;

focccosccoscas feocccoccccooocas focccosccooccoooons +
| r_name | item n_name | item n_nationkey |
docccosccoocec feccccoccocooocac dosccosccosccoocoos +
| EURCPE | UNI TED KI NGDOM | 23 [
| EURCPE | RUSSI A | 22 |
| EURCPE | ROVANI A | 19 |
| ASIA | VI ETNAM | 21 [
| ASIA | CHI NA | 18 |
| AMERI CA | UNI TED STATES | 24 [
| AMERI CA | PERU | 17 [
AMERI CA	CANADA	3
MDDLE EAST	SAUDI ARABIA	20
M DDLE EAST	EGYPT	4
AFRI CA	MOZAMBI QUE	16
AFRI CA	ETH OPI A	5 [
feccocoococoooooc feccoococoocoocooe feccooococoococoococoocos +

Examples:

These examples demonstrate the AND operator:

[l ocal host:21000] > select true and true;

Fococcoccoccococooooe +
| true and true |
feccoccocoooooac +
| true |
fecococoococooocoooos +

[l ocal host:21000] > select true and fal se;

o e e +
| true and fal se |

S S S +

| fal se [

fococococcoccoocooce +

[l ocal host:21000] > select fal se and fal se;
doemeemeaaaaao +

| false and false

Fo oo +

| fal se [

focococococooccooocoacs +

[l ocal host:21000] > select true and null

TSRS S S +
| NULL [

fococococcooccoooos +

[l ocal host:21000] > select (10 > 2) and (6 != 9);
o e eeeeeeaaaaa. +

| (10 > 2) and (6 !=9) |

TSRS S S S S S S +

| true [
foccocoocococcoccoocoocooos +

These examples demonstrate the OR operator:

[l ocal host:21000] > select true or true;

[l ocal host:21000] > select true or false;

[l ocal host:21000] > select false or false;

[l ocal host:21000] > select true or null

| true or null |

[l ocal host:21000] > select null or true;

[l ocal host:21000] > select false or null

| false or null |

[l ocal host:21000] > select (1 = 1) or ('hello

"world');

| Impala SQL Language Reference | 197

| Impala SQL Language Reference | 198

o e e eeaeeecieaaao-s +
| (2 =1) or ("hello" = "world) |

oS S S S S S S S S +

| true [
foococococcocccoccoccoococoocoocoooooc +

[l ocal host:21000] > select (2 + 2 !'=4) or (-1 > 0);
e e e eeeeeieaaeaoaaa +

| (2 +21=4) or (-1 >0) |

R S P +

| fal se [
focccoococoocococcoccooccoocooos +

These examples demonstrate the NOT operator:

[l ocal host:21000] > sel ect not true;

demmemea +
| not true |

S S +

| fal se [

feoococooccoac +

[l ocal host:21000] > sel ect not false;
doemeeeea +

| not fal se

oo +

| true [

feocococooccooac +

[l ocal host:21000] > select not null;
demmemea +

| not null |

S S +

| NULL [

feoococooccoac +

[l ocal host:21000] > select not (1=1);
dommemeeeaaas +

| not (1 = 1)

SRS S +

| fal se [

feococococcooccooc +

REGEXP Operator

Tests whether a value matches aregular expression. Uses the POSIX regular expression syntax where and $ match
the beginning and end of the string, . represents any single character, * represents a sequence of zero or more items,
+ represents a sequence of one or more items, ? produces a non-greedy match, and so on.

Syntax:
string_expressi on REGEXP regul ar _expr essi on

Usage notes:
The RLI KE operator is a synonym for REGEXP.

The| symbol isthe alternation operator, typically used within () to match different sequences. The () groupsdo
not allow backreferences. To retrieve the part of avalue matched withina () section, usether egexp_extract ()
built-in function.

In Impala 1.3.1 and higher, the REGEXP and RLI KE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each sideby . *. See
REGEXP Operator on page 198 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression

| Impala SQL Language Reference | 199

support for popular database systems. There is no change to the behavior of ther egexp_ext ract () and
regexp_repl ace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressionsin Perl, Python, and so on, including . * ? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changesin the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 on page 873 for details.

Complex type consider ations:

Y ou cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. Y ou can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of ajoin query that refers to the scalar value using the appropriate dot
notation or | TEM KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLI KE operators.

-- Find all custoners whose first name starts with 'J', followed by 0 or
nmore of any character.

select c first _nane, c_|last_nane from custoner where c_first_name regexp
T AJ), @8 c

select c_first_name, c_last_nane from custoner where c_first_name rlike
FAg %

-- Find 'Macdonal d', where the first '"a' is optional and the 'D can be
upper- or | owercase.

-- The ~...$ are required, to match the start and end of the val ue.

select c_first_nane, c_last_nane from custoner where c_| ast_name regexp

' AMa?c[Dd] onal d$' ;

select c _first _name, c_last _nane from custoner where c _|ast _nane rlike '*"Ma?
c[Dd] onal d$' ;

-- Match nultiple character sequences, either 'Mac' or 'M'.

select c_first_nane, c_last_nane from custoner where c_| ast_name regexp
' A(Mac| M) donal d$' ;

select c first _nanme, c_last _nanme from custoner where c _|ast _nane rlike
' A(Mac| M) donal d$' ;

-- Find nanes starting with 'S, then one or nore vowels, then 'r', then any
ot her characters.

-- Matches 'Searcy', 'Sorenson', 'Sauer'.

select c_first_nane, c_last_nane from custoner where c_| ast_name regexp
'AG[aeiou] +r. *$';

select c _first _nane, c_last _nane from custoner where c_|last_nanme rlike
' AG[aeiou] +r.*$';

-- Find names that end with 2 or nore vowels: letters fromthe set
a, e i,o,u.

select c_first_name, c_last_nane from customer where c_| ast_nane regexp
" *[aeiou]l{2,}9%;

select c first _nane, c_|last _nane from custoner where c_|last_nanme rlike
‘.*[aeiou]{2,}%;

-- You can use letter ranges in the [] blocks, for exanple to find nanes
starting with A, B, or C

select c first _nane, c_|last_nane from custoner where c_| ast_name regexp
"AA-CL R

select c_first_nane, c_last_nane from custoner where c_last_name rlike '*[A-
q.*";

https://code.google.com/p/re2/

| Impala SQL Language Reference | 200

-- |If you are not sure about case, leading/trailing spaces, and so on, you
can process the
-- columm using string functions first.
select c_first_name, c_last_name from custoner where
lower(trim(c_|l ast_nane)) regexp '~de.*';
select c _first _name, c_last _nanme from custoner where
lower(trim(c_last_nane)) rlike '~de.*";

Related information:

For regular expression matching with case-insensitive comparisons, see IREGEXP Operator on page 190.

RLIKE Operator
Synonym for the REGEXP operator. See REGEXP Operator on page 198 for details.
Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLI KE operators.

-- Find all custoners whose first name starts with 'J', followed by 0 or
nore of any character.

select c_first_nane, c_last_nane from custoner where c_first_nanme regexp
SR

select c first _nane, c_last _nane from custoner where c first _name rlike

A

-- Find 'Macdonal d', where the first 'a' is optional and the 'D can be
upper- or | owercase.

-- The ~...$ are required, to match the start and end of the val ue.

select c_first_nane, c_last_nane from custoner where c_| ast_name regexp

' AMa?c[Dd] onal d$' ;

select c first_nane, c_last_nane from custoner where c_|last_nane rlike '~*Ma?
c[Dd] onal d$' ;

-- Match nultiple character sequences, either 'Mac' or 'M'.

select c_first_nane, c_last_nane from custoner where c_| ast_name regexp
' A(Mac| M) donal d$' ;

select c _first _nane, c_last _nane from custoner where c_|last_nanme rlike
' ~(Mac| M) donal d$' ;

-- Find names starting with 'S, then one or nore vowls, then 'r', then any
ot her characters.

-- Matches 'Searcy', 'Sorenson', 'Sauer'.

select c first _nane, c_|last_nane from custoner where c_| ast_name regexp
' AG[aeiou] +r.*$';

select c_first_name, c_last_nanme from custoner where c_|last_nane rlike
'AG[aeiou] +r.*$';

-- Find names that end with 2 or nore vowels: letters fromthe set

a, e i,o,u.
select c first _nane, c_|last_nane from custoner where c_| ast_name regexp
‘.*[aeiou]{2,}%;
select c _first _name, c_last _nanme from custoner where c_|last _nane rlike
".*[aeiou]l{2,}9%;

-- You can use letter ranges in the [] blocks, for exanple to find nanes
starting with A, B, or C

select c_first_nane, c_last_nane from custoner where c_| ast_name regexp
"AACL R

select c_first_nane, c_last_nane from custoner where c_last_name rlike '[A-
q.*';

| Impala SQL Language Reference | 201

-- If you are not sure about case, leading/trailing spaces, and so on, you
can process the
-- colum using string functions first.
select c first_nane, c_|ast_nane from custoner where
| ower (trinm(c_|l ast_nane)) regexp '“de.*';
select c_first _name, c_last_name from custoner where
lower (trimc_last_nanme)) rlike '~de.*";

Impala Schema Objects and Object Names

With Impala, you work with schema objects that are familiar to database users: primarily databases, tables, views, and
functions. The SQL syntax to work with these objectsis explained in Impala SQL Statements on page 213. This
section explains the conceptual knowledge you need to work with these objects and the various ways to specify their
names.

Within atable, partitions can also be considered akind of object. Partitioning is an important subject for Impala,
with its own documentation section covering use cases and performance considerations. See Partitioning for Impala
Tables on page 685 for details.

Impala does not have a counterpart of the “tablespace” notion from some database systems. By default, al the data
filesfor adatabase, table, or partition are located within nested folders within the HDFS file system. Y ou can also
specify aparticular HDFS location for a given Impalatable or partition. The raw data for these objectsis represented
asacollection of datafiles, providing the flexibility to load data by simply moving files into the expected HDFS
location.

Information about the schema objectsis held in the metastore database. This database is shared between Impala
and Hive, allowing each to create, drop, and query each other's databases, tables, and so on. When Impala makes a
change to schema objects through a CREATE, ALTER, DROP, | NSERT, or LOAD DATA statement, it broadcasts
those changes to all nodes in the cluster through the catal og service. When you make such changes through Hive or
directly through manipulating HDFSfiles, you use the REFRESH or INVALIDATE METADATA statements on the
Impala side to recognize the newly loaded data, new tables, and so on.

Overview of Impala Aliases

When you write the names of tables, columns, or column expressionsin aquery, you can assign an alias at the same
time. Then you can specify the alias rather than the original name when making other referencesto the table or
column in the same statement. Y ou typically specify aiases that are shorter, easier to remember, or both than the
original names. The aliases are printed in the query header, making them useful for self-documenting output.

Tosetupandias, addthe AS al i as clauseimmediately after any table, column, or expression namein the
SELECT list or FROMIist of aquery. The AS keyword is optional; you can a so specify the alias immediately after the
original name.

-- Make the colum headers of the result set easier to understand.

SELECT c1 AS name, c2 AS address, ¢3 AS phone FROMtable with_terse_col unms;
SELECT SUM ss_xyz dollars _net) AS total sal es FROM

table_ with_cryptic_col ums;

-- The alias can be a quoted string for extra readability.

SELECT c1 AS "Enpl oyee ID', c2 AS "Date of hire" FROMt1;

-- The AS keyword is optional.

SELECT c1 "Enpl oyee ID', c2 "Date of hire" FROMt1;

-- The table aliases assigned in the FROM cl ause can be used both earlier
-- in the query (the SELECT list) and |later (the WHERE cl ause).
SELECT one. name, two.address, three.phone
FROM census one, building directory two, phonebook three
VWHERE one.id = two.id and two.id = three.id;

| Impala SQL Language Reference | 202

-- The aliases cl1 and c2 let the query handl e colums with the sane nanes
from 2 joined tabl es.
-- The aliases t1 and t2 let the query abbreviate references to | ong or
cryptically naned tables.
SELECT t1.columm_n AS cl1, t2.colum_n AS c2 FROM |l ong _nane_table AS t1,
very long_name_table2 AS t2

VWHERE c1 = c2;
SELECT t1.colum_n cl1, t2.colum_n c2 FROMtablel t1, table2 t2

WHERE c1 = c2;

From Impala 3.0, the alias substitution logic has changed.

Y ou can specify column aliases with or without the AS keyword, and with no quotation marks, single quotation
marks, or double quotation marks. Some kind of quotation marks are required if the column alias contains any spaces
or other problematic characters. The aliastext isdisplayed inthei npal a- shel | output as all-lowercase. For
example:

[l ocal host:21000] > select cl1 First_Colum fromt;
[l ocal host:21000] select cl1 as First_Colum fromt;

\%

[l ocal host:21000] > select cl1 'First Columm' fromt;

[l ocal host:21000] > select cl1 as 'First Columm' fromt;
e +

| first colum |

S S +

[l ocal host:21000]
[l ocal host: 21000]

\%

select ¢l "First Colum" fromt;
select cl1 as "First Colum" fromt;

\%

From Impala 3.0, the alias substitution logic in the GROUP BY, HAVI NG, and ORDER BY clauses has become
more consistent with standard SQL behavior, as follows. Aliases are now only legal at thetop level, and not in
subexpressions. The following statements are allowed:

SELECT int_col / 2 AS x
FROM t
GROUP BY x;

SELECT int _col / 2 AS x
FROM t
ORDER BY x;

SELECT NOT bool col AS nb
FROM t

GROUP BY nb

HAVI NG nb;

And the following statements are NOT allowed:
SELECT int_col / 2 AS x

FROM t
GROUP BY x [/ 2;

| Impala SQL Language Reference | 203

SELECT int_col / 2 AS x
FROM t
ORDER BY -x;

SELECT int _col / 2 AS x
FROM t

GROUP BY x

HAVI NG x > 3;

To use an alias name that matches one of the Impala reserved keywords (listed in Impala Reserved Words on page
821), surround the identifier with either single or double quotation marks, or * * characters (backticks).

Aliases follow the same rules as identifiers when it comes to case insensitivity. Aliases can be longer than identifiers
(up to the maximum length of a Java string) and can include additional characters such as spaces and dashes when
they are quoted using backtick characters.

Complex type consider ations:

Queriesinvolving the complex types (ARRAY, STRUCT, and MAP), typically make extensive use of table aliases.
These queriesinvolve join clauses where the complex type column is treated as ajoined table. To construct two-part
or three-part qualified names for the complex column elementsin the FROMIist, sometimesit is syntactically required
to construct atable alias for the complex column where it is referenced in the join clause. See Complex Types (Impala
2.3 or higher only) on page 142 for details and examples.

Alternatives:

Another way to define different names for the same tables or columnsisto create views. See Overview of Impala
Views on page 209 for details.

Overview of Impala Databases

In Impala, a database isalogical container for a group of tables. Each database defines a separate namespace. Within
adatabase, you can refer to the tablesinside it using their unqualified names. Different databases can contain tables
with identical names.

Creating a database is a lightweight operation. There are minimal database-specific properties to configure, such as
LOCATI ON and COMVENT.

Y ou can change the owner of a database with the ALTER DATABASE statement.

Typically, you create a separate database for each project or application, to avoid naming conflicts between tables
and to make clear which tables are related to each other. The USE statement lets you switch between databases.
Unqualified references to tables, views, and functions refer to objects within the current database. Y ou can also refer
to objects in other databases by using qualified names of the form dbnane. obj ect _nane.

Each database is physically represented by a directory in HDFS. When you do not specify a LOCATI ON attribute, the
directory islocated in the Impala data directory with the associated tables managed by Impala. When you do specify
aLOCATI ON attribute, any read and write operations for tables in that database are relative to the specified HDFS
directory.

Thereisaspecial database, named def aul t , where you begin when you connect to Impala. Tables created in
def aul t are physically located one level higher in HDFS than all the user-created databases.

Impalaincludes another predefined database, i mpal a_bui | ti ns, that serves asthe location for the built-in
functions. To see the built-in functions, use a statement like the following:

show functions in _inpala_builtins;
show functions in _inpala_builtins |ike '*substring*';

Related statements:

CREATE DATABASE Satement on page 240, DROP DATABASE Statement on page 280, USE Statement on
page 421, SHOW DATABASES on page 401

| Impala SQL Language Reference | 204

Overview of Impala Functions

Functions let you apply arithmetic, string, or other computations and transformations to Impala data. Y ou typically
use them in SELECT lists and WHERE clauses to filter and format query results so that the result set is exactly what
you want, with no further processing needed on the application side.

Scalar functions return a single result for each input row. See Impala Built-In Functions on page 428.

[l ocal host:21000] > sel ect name, popul ation fromcountry where continent =
"North Anerica' order by population desc linmt 4;

[l ocal host:21000] > sel ect upper(nane), population from country where
continent = 'North America' order by popul ation desc limt 4;

| upper(nane) | popul ation |

+
USA	320000000
MEXI CO	122000000
CANADA	25000000
GUATEMALA	16000000
Fom e - o - +

Aggregate functions combine the results from multiple rows: either asingle result for the entire table, or a separate
result for each group of rows. Aggregate functions are frequently used in combination with GROUP BY and HAVI NG
clausesin the SELECT statement. See Impala Aggregate Functions on page 539.

[l ocal host:21000] > sel ect continent, sun(popul ation) as howrany from
country group by continent order by howrany desc;

S S S S S S +

| continent | howmany [

fococococcooccoooos foccococcooooc +
Asi a 4298723000 |
Africa 1110635000
Eur ope 742452000

Sout h Aneri ca 406740000
Cceani a 38304000

| |

| | |

| North Anerica | 565265000 |

| | |

| | |

User-defined functions (UDFs) let you code your own logic. They can be either scalar or aggregate functions. UDFs
let you implement important business or scientific logic using high-performance code for Impalato automatically

parallelize. Y ou can also use UDFs to implement convenience functions to simplify reporting or porting SQL from
other database systems. See User-Defined Functions (UDFs) on page 588.

[l ocal host:21000] > select rot13('Hello world!') as 'Wak obfuscation';

feccoocococcoococooc +
| weak obfuscation |
feccooococoococoococoocos +
| Uryyb jbeyq! I
Focococococococoococ +

[l ocal host:21000] > sel ect likelihood of new subatom c_particl e(sensor1,
sensor2, sensor3) as probability
> from experinental results group by experinent;

Each function is associated with a specific database. For example, if you issuea USE sonedb statement followed

by CREATE FUNCTI ON somef unc, the new function is created in the sormedb database, and you could refer to
it through the fully qualified name somedb. somef unc. You could then issue another USE statement and create a
function with the same name in a different database.

| Impala SQL Language Reference | 205

Impala built-in functions are associated with a special database named _i nmpal a_bui | ti ns, which letsyou refer
to them from any database without qualifying the name.

[l ocal host:21000] > show dat abases;

_inpal a_builtins |
anal ytic_functions |
avro_testing [
data _file_size |

[I 6cal host: 21000] > show functions in _inpala builtins |ike '*subs*';

------------- fococcocococcoccooccoccoocooccooococoooooodn
return type | signature |
------------- e e e e eieeeeiieeeaocaaaaod
STRI NG | substr(STRING BI G NT) |
STRI NG | substr(STRING BIG NT, BIG NT) [
STRI NG | substring(STRING BI G NT) [
STRI NG | substring(STRING BIG NT, Bl G NT) |
------------- FococococococococococoCcoCoCoCoCoooooap

Related statements: CREATE FUNCTION Statement on page 242, DROP FUNCTION Satement on page 282

Overview of Impala Identifiers

Identifiers are the names of databases, tables, or columns that you specify in a SQL statement. The rulesfor
identifiers govern what names you can give to things you create, the notation for referring to names containing
unusual characters, and other aspects such as case sensitivity.

The minimum length of an identifier is 1 character.

The maximum length of an identifier is currently 128 characters except for column names which can contain 767
characters, enforced by the metastore database.

Anidentifier must start with an alphanumeric or underscore character except for column names which can start
with any unicode characters. Quoting the identifier with backticks has no effect on the allowed charactersin the
name.

An identifier can contain only ASCII characters except for column names which can contain unicode characters.

To use an identifier name that matches one of the Impala reserved keywords (listed in Impala Reserved Words
on page 821), surround the identifier with ™ * characters (backticks). Quote the reserved word evenif it is part
of afully qualified name. The following example shows how a reserved word can be used as a column nameif it
is quoted with backticksin the CREATE TABLE statement, and how the column name must also be quoted with
backticksin a query:

[l ocal host: 21000] > create table reserved (data string);

[l ocal host:21000] > select data from reserved;
ERROR: Anal ysi sException: Syntax error in |line 1:
sel ect data fromreserved
N
Encount ered: DATA
Expected: ALL, CASE, CAST, DI STINCT, EXISTS, FALSE, |F, |NTERVAL, NOT,
NULL, STRAIGHT_JO N, TRUE, | DENTI FI ER
CAUSED BY: Exception: Syntax error

[l ocal host:21000] > sel ect reserved.data fromreserved;
ERRCR: Anal ysi sException: Syntax error in line 1:
sel ect reserved.data fromreserved
N
Encount ered: DATA
Expect ed: | DENTI FI ER
CAUSED BY: Exception: Syntax error

| Impala SQL Language Reference | 206

[l ocal host:21000] > sel ect reserved. data fromreserved,;

[l ocal host:21000] >

Important: Because the list of reserved words grows over time as new SQL syntax is added, consider adopting
coding conventions (especially for any automated scripts or in packaged applications) to always quote all
identifiers with backticks. Quoting all identifiers protects your SQL from compatibility issuesif new reserved
words are added in later releases.

« Impalaidentifiers are always case-insensitive. That is, tablesnamedt 1 and T1 always refer to the same table,
regardless of quote characters. Internally, Impalaawaysfolds all specified table and column names to lowercase.
Thisiswhy the column headers in query output are always displayed in lowercase.

See Overview of Impala Aliases on page 201 for how to define shorter or easier-to-remember aliases if the
original names arelong or cryptic identifiers. Aliasesfollow the same rules as identifiers when it comes to case
insensitivity. Aliases can be longer than identifiers (up to the maximum length of a Java string) and can include
additional characters such as spaces and dashes when they are quoted using backtick characters.

Another way to define different names for the same tables or columnsisto create views. See Overview of Impala
Views on page 209 for details.

Overview of Impala Tables

Tables are the primary containers for datain Impala. They have the familiar row and column layout similar to other
database systems, plus some features such as partitioning often associated with higher-end data warehouse systems.

Logically, each table has a structure based on the definition of its columns, partitions, and other properties.

Physically, each table that uses HDFS storage is associated with a directory in HDFS. The table data consists of all
the data files underneath that directory:

* Internal tables are managed by Impala, and use directories inside the designated Impalawork area.

» External tables use arbitrary HDFS directories, where the data files are typically shared between different Hadoop
components.

« Large-scaledataisusualy handled by partitioned tables, where the data files are divided among different HDFS
subdirectories.

Impalatables can a so represent data that is stored in HBase, in the Amazon S3 filesystem (Impala 2.2 or higher),
on Isilon storage devices (Impala2.2.3 or higher), or in Apache Ozone (Impala 4.2 or higher). See Using Impala to
Query HBase Tables on page 750, Using Impala with Amazon S3 Object Store on page 769, Using Impala with
Isilon Storage on page 783, and Using Impala with Apache Ozone Storage on page 783 for details about those
special kinds of tables.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions. t np or . copyi ng are not considered part of the Impalatable. The suffix matching is case-insensitive,
so for example Impalaignoresboth . copyi ng and . COPYI NG suffixes.

Related statements: CREATE TABLE Statement on page 248, DROP TABLE Satement on page 289, ALTER
TABLE Satement on page 215 INSERT Statement on page 298, LOAD DATA Statement on page 309,
SELECT Statement on page 316

Internal Tables

The default kind of table produced by the CREATE TABLE statement is known as an internal table. (Its counterpart is
the external table, produced by the CREATE EXTERNAL TABLE syntax.)

* Impalacreates adirectory in HDFSto hold the datafiles.

* You can create datain internal tables by issuing | NSERT or LOAD DATA statements.

« |f you add or replace data using HDFS operations, issue the REFRESH command ini npal a- shel | so that
Impalarecognizes the changesin data files, block locations, and so on.

| Impala SQL Language Reference | 207

* WhenyouissueaDROP TABLE statement, Impala physically removes all the data files from the directory.

* Toseewhether atableisinternal or external, and its associated HDFS location, issue the statement DESCRI BE
FORMATTED t abl e_nane. TheTabl e Type field displays MANAGED TABLE for internal tables and
EXTERNAL _TABLE for external tables. The Locat i on field displays the path of the table directory as an HDFS
URI.

* Whenyouissuean ALTER TABLE statement to rename an internal table, al data files are moved into the new
HDFS directory for the table. The files are moved even if they were formerly in adirectory outside the Impala
data directory, for examplein an internal table with a LOCATI ON attribute pointing to an outside HDFS directory.

Examples:

Y ou can switch atable from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch atable frominternal to external.
ALTER TABLE tabl e_name SET TBLPROPERTI ES(' EXTERNAL' =' TRUE') ;

-- Switch a table fromexternal to internal.
ALTER TABLE t abl e_name SET TBLPROPERTI ES(' EXTERNAL' =' FALSE') ;

If the Kudu service isintegrated with the Hive Metastore, the above operations are not supported.
Related information:

External Tables on page 207, CREATE TABLE Statement on page 248, DROP TABLE Statement on page
289, ALTER TABLE Statement on page 215, DESCRIBE Statement on page 268

External Tables

The syntax CREATE EXTERNAL TABLE sets up an Impalatable that points at existing data files, potentialy in
HDFS locations outside the normal Impala data directories.. This operation saves the expense of importing the data
into a new table when you already have the data filesin aknown location in HDFS, in the desired file format.

e You can use Impaato query the datain thistable.

* You can create datain externa tables by issuing | NSERT or LOAD DATA statements.

e |f you add or replace data using HDFS operations, issue the REFRESH command ini npal a- shel | so that
Impalarecognizes the changesin data files, block locations, and so on.

e WhenyouissueaDROP TABLE statement in Impala, that removes the connection that Impala has with the
associated data files, but does not physically remove the underlying data. Y ou can continue to use the datafiles
with other Hadoop components and HDFS operations.

* Toseewhether atableisinternal or external, and its associated HDFS location, issue the statement DESCRI BE
FORMATTED t abl e_nane. TheTabl e Type field displays MANAGED TABLE for internal tables and
EXTERNAL _TABLE for external tables. The Locat i on field displays the path of the table directory as an HDFS
URI.

* Whenyouissuean ALTER TABLE statement to rename an externa table, all datafiles are left in their origina
locations.

* You can point multiple external tables at the same HDFS directory by using the same LOCATI ON attribute for
each one. The tables could have different column definitions, as long as the number and types of columns are
compatible with the schema evolution considerations for the underlying file type. For example, for text datafiles,
one table might define a certain column as a STRI NG while another defines the same columnasaBl G NT.

Examples:

Y ou can switch atable from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch atable frominternal to external.
ALTER TABLE t abl e_name SET TBLPROPERTI ES(' EXTERNAL' =' TRUE') ;

-- Switch a table fromexternal to internal.

| Impala SQL Language Reference | 208

ALTER TABLE t abl e_nane SET TBLPROPERTI ES(' EXTERNAL' =" FALSE') ;

If the Kudu service isintegrated with the Hive Metastore, the above operations are not supported.
Related information:

Internal Tables on page 206, CREATE TABLE Statement on page 248, DROP TABLE Statement on page
289, ALTER TABLE Statement on page 215, DESCRIBE Statement on page 268

File Formats

Each table has an associated file format, which determines how Impalainterprets the associated datafiles. See How
Impala Works with Hadoop File Formats on page 695 for details.

Y ou set thefile format during the CREATE TABLE statement, or change it later using the ALTER TABLE statement.
Partitioned tables can have a different file format for individual partitions, allowing you to change the file format used
inyour ETL process for new data without going back and reconverting all the existing data in the same table.

Any | NSERT statements produce new data files with the current file format of the table. For existing data files,
changing the file format of the table does not automatically do any data conversion. Y ou must use TRUNCATE
TABLE or | NSERT OVERWRI TE to remove any previous data files that use the old file format. Then you use the
LOAD DATA statement, | NSERT ... SELECT, or other mechanism to put datafiles of the correct format into the
table.

The default file format, text, is the most flexible and easy to produce when you are just getting started with Impala.
The Parquet file format offers the highest query performance and uses compression to reduce storage requirements;
therefore, where practical, use Parquet for Impala tables with substantial amounts of data. Also, the complex types
(ARRAY, STRUCT, and MAP) availablein Impala 2.3 and higher are currently only supported with the Parquet file
type. Based on your existing ETL workflow, you might use other file formats such as Avro, possibly doing afinal
conversion step to Parquet to take advantage of its performance for analytic queries.

Kudu Tables

By default, tables stored in Apache Kudu are treated specially, because Kudu manages its data independently of
HDFSfiles.

All metadata that Impala needsis stored in the HM S,

When Kudu is not integrated with the HM S, when you create a Kudu table through Impala, the table is assigned an
internal Kudu table name of theformi npal a: : db_nane. t abl e_nane. You can see the Kudu-assigned namein
the output of DESCRI BE FORVMATTED, inthe kudu. t abl e_narre field of the table properties.

For Impala-Kudu managed tables, ALTER TABLE ... RENAME renames both the Impala and the Kudu table.

For Impala-Kudu external tables, ALTER TABLE ... RENAME renamesjust the Impaatable. To

change the Kudu table that an Impala external table pointsto, use ALTER TABLE i npal a_nane SET
TBLPROPERTI ES(' kudu. tabl e_nane' = 'different_kudu_tabl e nane'). Theunderlying Kudu
table must already exist.

In practice, external tables are typically used to access underlying Kudu tables that were created outside of Impala,
that is, through the Kudu API.

The SHOW TABLE STATS output for a Kudu table shows Kudu-specific details about the layout of the table. Instead
of information about the number and sizes of files, the information is divided by the Kudu tablets. For each tablet,

the output includes the fields# Rows (although this number is not currently computed), St art Key, St op Key,
Leader Replica,and# Replicas. Theoutput of SHONV COLUWMN STATS, illustrating the distribution of
values within each column, is the same for Kudu tables as for HDFS-backed tables.

If the Kudu serviceis not integrated with the Hive Metastore, the distinction between internal and external tables
has some specia details for Kudu tables. Tables created entirely through Impala are internal tables. The table name
as represented within Kudu includes notation such asani npal a: : prefix and the Impala database name. External
Kudu tables are those created by a non-Impala mechanism, such as a user application calling the Kudu APIs. For

| Impala SQL Language Reference | 209

these tables, the CREATE EXTERNAL TABLE syntax lets you establish a mapping from Impalato the existing Kudu
table:

CREATE EXTERNAL TABLE i npal a_nanme STORED AS KUDU
TBLPROPERTI ES(' kudu. t abl e_nane' = 'original kudu_nane');

External Kudu tables differ in one important way from other external tables: adding or dropping a column or range
partition changes the data in the underlying Kudu table, in contrast to an HDFS-backed external table where existing
datafiles are left untouched.

Overview of Impala Views

Views are lightweight logical constructs that act as aliases for queries. Y ou can specify aview namein aquery (a
SELECT statement or the SELECT portion of an | NSERT statement) where you would usually specify atable name.

A view letsyou:

* Issue complicated queries with compact and simple syntax:

-- Take a conplicated reporting query, plug it into a CREATE VI EW
statenent. ..

create view vl as select cl1, c2, avg(c3) fromtl group by c3 order by cl
desc |limt 10;

-- ... and now you can produce the report with 1 line of code.

select * fromvi;

» Reduce maintenance, by avoiding the duplication of complicated queries across multiple applicationsin multiple
languages:

create view v2 as select tl1.c1, tl.c2, t2.¢c3 fromtl joint2 on (tl.id =
t2.id);

-- This sinple query is safer to enbed in reporting applications than the
| onger query above.

-- The view definition can remain stable even if the structure of the
under | yi ng tabl es changes.

select c1, c2, c3 fromyv2;

» Build anew, more refined query on top of the original query by adding new clauses, select-list expressions,
function calls, and so on:

create view average price_by category as sel ect category, avg(price) as
avg_price fromproducts group by category;

create vi ew expensive categories as select category, avg _price from
average_price_by category order by avg price desc limt 10000;

create view top_10_expensive_categories as sel ect category, avg _price from
expensi ve_categories linmt 10;

This technique lets you build up several more or less granular variations of the same query, and switch between
them when appropriate.

» Set up aliases with intuitive names for tables, columns, result sets from joins, and so on:

-- The original tables m ght have cryptic nanes inherited froma | egacy
system

create view action_itens as select rrptsk as assignee, treq as due_date,
dm sc as notes fromvxy_ t1 br;

-- You can | eave original names for conpatibility, build new applications
using nore intuitive ones.

sel ect assignee, due date, notes from action_itens;

| Impala SQL Language Reference | 210

» Swap tables with others that use different file formats, partitioning schemes, and so on without any downtime for
data copying or conversion:

create table slow (x int, s string) stored as textfile;

create view report as select s fromslow where x between 20 and 30;
-- Query is kind of slow due to inefficient table definition, but it
wor ks.

select * fromreport;

create table fast (s string) partitioned by (x int) stored as parquet;
-- ...Copy data from SLONto FAST. Queries agai nst REPORT view continue to
wor K. . .

-- After changing the view definition, queries will be faster due to
partitioning,

-- binary format, and conpression in the new table.

alter viewreport as select s fromfast where x between 20 and 30;
select * fromreport;

« Avoid coding lengthy subqueries and repeating the same subquery text in many other queries.

» Set up fine-grained security where a user can query some columns from atable but not other columns. Because
Impala 2.3 and higher support column-level authorization, this techniqueis no longer required. If you formerly
implemented column-level security through views, see the documentation for Apache Sentry for details about the
column-level authorization feature.

The SQL statements that configure views are CREATE VIEW Statement on page 265, ALTER VIEW Statement on
page 230, and DROP VIEW Statement on page 290. Y ou can specify view names when querying data (SELECT
Satement on page 316) and copying data from one table to another (INSERT Statement on page 298). The

WITH clause creates an inline view, that only exists for the duration of asingle query.

[l ocal host:21000] > create view trivial as select * from custoner;

[l ocal host:21000] > create view sonme_colums as select c_first_nane,
c_last _nane, c_login from custoner;

[l ocal host:21000] > select * fromsone _colums linit 5;

Query finished, fetching results ...

Focococococoococ Fococcoccoccooooe Fococooooe +
| c first name | c_last_nane | c_login |
feccoocooccooooc feccoococooooc feccoocooc +
Javier	Lew s	
Ay	Moses	
Latisha	Ham I ton	
M chael	Wiite	
Robert	Moran [[
feccoocooccooooc feccoococooooc feccoocooc +

[l ocal host:21000] > create view ordered results as select * from
sonme_col ums order by c_|ast_nane desc, c first_name desc linmt 1000;

[l ocal host:21000] > select * fromordered_results limt 5;

Query: select * fromordered results linmt 5

Query finished, fetching results ...

E T R S +
| c first name | c_last nane | c_login |
feccoccccooccooas feccocoococoooooc feocococooooc +
| Thomas | Zuniga | |
| Sarah | Zuniga | |
| Norma | Zuni ga [[
| LIoyd | Zuni ga [[
| Lisa | Zuniga | |
feccoccccooccooas feccocoococoooooc feocococooooc +

Returned 5 row(s) in 0.48s

| Impala SQL Language Reference | 211

The previous example uses descending order for ORDERED RESUL TS because in the sample TPCD-H data, there
are some rows with empty strings for both C_FI RST_NAME and C_LAST_NAME, making the lowest-ordered names
unuseful in a sample query.

create view visitors_by day as select day, count(distinct visitors) as
howrany from web _traffic group by day;

create view top_10 days as sel ect day, howrany fromvisitors by day order by
howrany limt 10;

select * fromtop_10_days;

Usage notes:
To see the definition of aview, issue a DESCRI BE FORMATTED statement, which shows the query from the original
CREATE VI EWstatement:

[l ocal host:21000] > create view vl as select * fromt1;
[l ocal host:21000] > describe formatted vi;
Query finished, fetching results ...

S SIS S S S S S S o S S S S S S S S SRS S S +
| nane | type | comrent [
feoccococccoccoccooccoocococoocoocooos feoccococccoccoccooccoocococoocoocooos foccococcooooc +
| # col _nane | data_type | comment |
[| NULL | NULL [
| x | int | None [
| vy | int | None |
| s | string | None [
[| NULL | NULL [
| # Detailed Table Information | NULL | NULL |
| Dat abase: | views | NULL [
| Owner: | doc_deno | NULL |
| CreateTine: | Mon Jul 08 15:56:27 EDT 2013 | NULL |
| Last AccessTi ne: | UNKNOWN | NULL [
| Protect Mbde: | None | NULL |
| Retention: | O | NULL |
| Tabl e Type: | VI RTUAL_VI EW | NULL [
| Tabl e Paraneters: | NULL | NULL [
| | transient |astDdl Ti ne | 1373313387 |
[| NULL | NULL [
| # Storage Information | NULL | NULL |
| SerDe Library: | null | NULL |
| I nput For mat : | null | NULL [
| CQut put For mat : | null | NULL |
| Conpressed: | No | NULL |
| Num Bucket s: | O | NULL [
| Bucket Col umms: | 1] | NULL |
| Sort Col umms: | 1] | NULL |
[| NULL | NULL [
| # View Information | NULL | NULL [
| View Original Text: | SELECT * FROM t1 | NULL |
| View Expanded Text: | SELECT * FROM t1 | NULL [
feoccococccoccoccooccoocococoocoocooos feoccococccoccoccooccoocococoocoocooos foccococcooooc +

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LI KE vi ew_narme syntax. In Impalal1.4.0
and higher, you can create atable with the same column definitions as aview using the CREATE TABLE LI KE
technique. Although CREATE TABLE LI KE normally inherits the file format of the original table, aview has no
underlying file format, so CREATE TABLE LI KE vi ew_nane produces atext table by default. To specify a
different file format, includeaSTORED AS fi | e_f or mat clauseat the end of the CREATE TABLE LI KE
Statement.

Complex type consider ations:

| Impala SQL Language Reference | 212

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically usejoin queriesto refer to the
complex values. Y ou can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 163 for details.

The STRAI GHT_JO N hint affects the join order of table referencesin the query block containing the hint. It does
not affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint
for performance tuning of complex queries, apply the hint to all query blocks that need afixed join order.

Restrictions:

Y ou cannot insert into an Impala view. (In some database systems, this operation is allowed and inserts rows into
the base table.) Y ou can use a view name on the right-hand side of an | NSERT statement, in the SELECT part.

If aview appliesto a partitioned table, any partition pruning considers the clauses on both the original query and
any additional WHERE predicates in the query that refersto the view. Prior to Impala 1.4, only the WHERE clauses
on the original query from the CREATE VI EWstatement were used for partition pruning.

An ORDER BY clause without an additional LI M T clause isignored in any view definition. If you need to

sort the entire result set from aview, use an ORDER BY clause in the SELECT statement that queries the view.
You can still make asimple “top 10” report by combining the ORDER BY and LI M T clauses in the same view
definition:

[l ocal host:21000] > create table unsorted (x bigint);

[l ocal host:21000] > insert into unsorted values (1), (9), (3), (7), (5),
(8). (4), (6), (2); | |

[l ocal host: 21000] > create view sorted_view as select x fromunsorted
order by x;

[l ocal host:21000] > select x fromsorted view, -- ORDER BY clause in view
has no effect.

+---+

| x|

+-- -+

NOPROUINWOPR

+---+

[l ocal host:21000] > select x fromsorted view order by x; -- View query
requi res ORDER BY at outernost |evel.

+- - -+

| x|

+---+

OCO~NOOITAWN P

+---+
[l ocal host:21000] > create view top 3 view as select x fromunsorted order
by x Iimt 3;

[l ocal host:21000] > select x fromtop_3 view, -- ORDER BY and LIMT
together in view definition are preserved.
+-- -+

| x|

| Impala SQL Language Reference | 213

oo+
| 1|
| 2 |
| 31
R

PN

e The TABLESAMPLE clause of the SELECT statement does not apply to atable reference derived from aview, a

subquery, or anything other than areal base table. This clause only works for tables backed by HDFS or HDFS-
like data files, therefore it does not apply to Kudu or HBase tables.

Related statements: CREATE VIEW Statement on page 265, ALTER VIEW Statement on page 230, DROP
VIEW Satement on page 290

Impala Transactions

A transaction isasingle logical operation on the data. Impala supports transactions that satisfy alevel of consistency
that improves the integrity and reliability of the data before and after a transaction.

Specifically, Impala provides atomicity and isolation of insert operations on transactional tables. A single table insert
is either committed in full or not committed, and the results of the insert operation are not visible to other query
operations until the operation is committed.

For single table, the inserts are ordered, so if Impala doesn't see a committed insert, it won't see any insert committed
after it.

For insert-only transactional tables, you can perform the following statements: CREATE TABLE, DROP TABLE,
TRUNCATE, | NSERT, SELECT

All transactions in Impala automatically commit at the end of the statement. Currently, Impala does not support multi-
statement transactions.

Insert-only tables must be the managed and file-format based tables, such as Parquet, Avro, and text.

Note: Impaladoes not support changing transactional properties of tables. For example, you cannot alter a
transactional table to a non-transactiona table.

Impala SQL Statements

The Impala SQL dialect supports arange of standard elements, plus some extensions for Big Data use cases related to
data loading and data warehousing.

Note:

Inthei npal a- shel | interpreter, a semicolon at the end of each statement is required. Since the semicolon is not

actually part of the SQL syntax, we do not include it in the syntax definition of each statement, but we do show itin
examplesintended to berunini npal a- shel I .

DDL Statements

DDL refersto “Data Definition Language”, a subset of SQL statements that change the structure of the database
schemain some way, typically by creating, deleting, or modifying schema objects such as databases, tables, and
views. Most ImpalaDDL statements start with the keywords CREATE, DROP, or ALTER.

The ImpalaDDL statements are:

¢ ALTER TABLE Statement on page 215

¢ ALTER VIEW Satement on page 230

« COMPUTE STATS Statement on page 232

* CREATE DATABASE Statement on page 240
¢ CREATE FUNCTION Statement on page 242

| Impala SQL Language Reference | 214

* CREATE ROLE Satement (Impala 2.0 or higher only) on page 248
* CREATE TABLE Statement on page 248

¢ CREATE VIEW Satement on page 265

 DROP DATABASE Satement on page 280

« DROP FUNCTION Satement on page 282

* DROP ROLE Satement (Impala 2.0 or higher only) on page 284

* DROP TABLE Statement on page 289

¢ DROP VIEW Satement on page 290

* GRANT Statement (Impala 2.0 or higher only) on page 294

* REVOKE Statement (Impala 2.0 or higher only) on page 315

After Impala executes a DDL command, information about available tables, columns, views, partitions, and so
on is automatically synchronized between al the Impala nodesin a cluster. (Prior to Impala 1.2, you had to issue
aREFRESHor | NVALI DATE METADATA statement manually on the other nodes to make them aware of the
changes.)

If the timing of metadata updates is significant, for example if you use round-robin scheduling where each query
could be issued through a different Impala node, you can enable the SYNC_DDL query option to make the DDL
statement wait until all nodes have been notified about the metadata changes.

See Using Impala with Amazon S3 Object Sore on page 769 for details about how Impala DDL statements interact
with tables and partitions stored in the Amazon S3 filesystem.

Although the | NSERT statement is officially classified asa DML (data manipulation language) statement, it also
involves metadata changes that must be broadcast to all Impalanodes, and so is also affected by the SYNC_DDL
query option.

Because the SYNC_DDL query option makes each DDL operation take longer than normal, you might only enable

it before the last DDL operation in a sequence. For example, if you are running a script that issues multiple of

DDL operations to set up an entire new schema, add several new partitions, and so on, you might minimize the
performance overhead by enabling the query option only before the last CREATE, DROP, ALTER, or | NSERT
statement. The script only finishes when all the relevant metadata changes are recognized by all the Impala nodes, so
you could connect to any node and issue queries through it.

The classification of DDL, DML, and other statements is not necessarily the same between Impala and Hive. Impala
organi zes these statements in away intended to be familiar to people familiar with relational databases or data
warehouse products. Statements that modify the metastore database, such as COMPUTE STATS, are classified
asDDL. Statements that only query the metastore database, such as SHOWor DESCRI BE, are put into a separate
category of utility statements.

Note: The query types shown in the Impala debug web user interface might not match exactly the categories listed
here. For example, currently the USE statement is shown as DDL in the debug web Ul. The query types shown in the
debug web Ul are subject to change, for improved consistency.

Related infor mation:

The other mgjor classifications of SQL statements are data manipulation language (see DML Satements on page
214) and queries (see SELECT Satement on page 316).

DML Statements

DML refersto “Data Manipulation Language”, a subset of SQL statements that modify the data stored in tables.
Because Impala focuses on query performance and leverages the append-only nature of HDFS storage, currently
Impalaonly supports asmall set of DML statements:

» DELETE Statement (Impala 2.8 or higher only) on page 266. Works for Kudu tables only.
¢ INSERT Statement on page 298.

« LOAD DATA Satement on page 309. Does not apply for HBase or Kudu tables.

» UPDATE Statement (Impala 2.8 or higher only) on page 418. Works for Kudu tables only.
* UPSERT Statement (Impala 2.8 or higher only) on page 420. Works for Kudu tables only.

| Impala SQL Language Reference | 215

I NSERT in Impalais primarily optimized for inserting large volumes of datain a single statement, to make effective
use of the multi-megabyte HDFS blocks. Thisisthe way in Impalato create new datafiles. If you intend to insert one
or afew rows at atime, such asusingthel NSERT ... VALUES syntax, that technique is much more efficient for
Impalatables stored in HBase. See Using Impala to Query HBase Tables on page 750 for details.

LOAD DATA moves existing data files into the directory for an Impalatable, making them immediately available for
Impala queries. Thisis one way in Impalato work with datafiles produced by other Hadoop components. (CREATE
EXTERNAL TABLE isthe other aternative; with external tables, you can query existing data files, while the files
remain in their original location.)

In Impala 2.8 and higher, Impala does support the UPDATE, DELETE, and UPSERT statements for Kudu tables. For
HDFS or S3 tables, to simulate the effects of an UPDATE or DELETE statement in other database systems, typically
you use | NSERT or CREATE TABLE AS SELECT to copy datafrom one table to another, filtering out or changing
the appropriate rows during the copy operation.

Y ou can also achieve aresult similar to UPDATE by using Impala tables stored in HBase. When you insert arow into
an HBase table, and the table already contains a row with the same value for the key column, the older row is hidden,
effectively the same as a single-row UPDATE.

Impala can perform DML operations for tables or partitions stored in the Amazon S3 filesystem with Impala 2.6 and
higher. See Using Impala with Amazon S3 Object Store on page 769 for details.

Related information:

The other major classifications of SQL statements are data definition language (see DDL Satements on page 213)
and queries (see SELECT Satement on page 316).

ALTER DATABASE Statement
The ALTER DATABASE statement changes the characteristics of a database.

Usethe SET OANER clause to transfer the ownership of the database from the current owner to another user or a
role.

The database owner is originally set to the user who creates the database. The term OANER is used to differentiate
between the ALL privilege that is explicitly granted viathe GRANT statement and a privilege that is implicitly granted
by the CREATE DATABASE statement.

Syntax:

ALTER DATABASE dat abase_nanme SET OANER USER user _nane;

Statement type: DDL
Cancdllation: Cannot be cancelled.
Added in: Impala3.1

ALTER TABLE Statement
The ALTER TABLE statement changes the structure or properties of an existing Impalatable.

In Impala, thisis primarily alogical operation that updates the table metadata in the metastore database that Impala
shareswith Hive. Most ALTER TABLE operations do not actually rewrite, move, and so on the actual datafiles.
(The RENAME TOclause is the one exception; it can cause HDFS files to be moved to different paths.) When you do
an ALTER TABLE operation, you typically need to perform corresponding physical filesystem operations, such as
rewriting the datafiles to include extrafields, or converting them to a different file format.

Syntax:

ALTER TABLE [ol d_db_nane.] ol d_t abl e name RENAME TO
[new_db_nane.] new_t abl e_nane

| Impala SQL Language Reference | 216

ALTER TABLE name ADD [IF NOT EXI STS] COLUWMNS (col _spec[, col_spec ...])
ALTER TABLE name REPLACE COLUMNS (col _spec[, col_spec ...])

ALTER TABLE nane ADD COLUWN [I F NOT EXI STS] col spec
ALTER TABLE nane DROP [COLUMN] col unm_nane
ALTER TABLE nane CHANGE col utm_name col _spec

ALTER TABLE nanme SET OMNER USER user _nane

-- Kudu tables only.
ALTER TABLE nane ALTER [COLUMN] col umm_name
{ SET kudu_storage_attr attr_val ue
| DROP DEFAULT }

kudu_storage attr ::= { DEFAULT | BLOCK SIZE | ENCODI NG | COWPRESSI ON }

-- Non- Kudu tabl es only.
ALTER TABLE nane ALTER [COLUMN] col umm_name
SET COWMMENT ' comment _t ext'

ALTER TABLE nane ADD [IF NOT EXI STS] PARTI TION (partition_spec)
[l ocation_spec]
[cache_spec]
ALTER TABLE nane ADD [IF NOT EXI STS] RANGE PARTI Tl ON kudu_partiti on_spec

ALTER TABLE name DROP [|F EXI STS] PARTITION (partition_spec)
[PURGE]
ALTER TABLE nanme DROP [|F EXI STS] RANGE PARTI TI ON kudu_partition_spec

ALTER TABLE nane RECOVER PARTI TI ONS

ALTER TABLE nane [PARTITION (partition_spec)]
SET { FILEFORMAT fil e fornmat
| ROW FORMAT row_f or mat
| LOCATION ' hdfs_path_of directory’
| TBLPROPERTI ES (tabl e_properties)
| SERDEPROPERTI ES (serde_properties) }

ALTER TABLE nane col nanme
('statsKey'='val', ...)

statsKey ::= nunDVs | numNulls | avgSize | naxSize

ALTER TABLE name [PARTI TION (partition_spec)] SET { CACHED I N
"pool _nane' [WTH REPLI CATION = integer] | UNCACHED }

new_nane ::= [new_dat abase.] new_t abl e_nane

col _spec ::= col _nane type_name COWMENT 'colum-conmment' [kudu_attri butes]

kudu_attributes ::= { [NOT] NULL | ENCODI NG codec | COWPRESSI ON al gorithm |
DEFAULT constant | BLOCK_SI ZE nunber }

partition_spec ::= sinple_partition_spec | conplex_partition_spec

sinple_partition_spec ::= partition_col =constant_val ue

conpl ex_partition_spec ::= conparison_expression_on_partition_col

kudu_partition_spec ::= constant range_operator

VALUES range_operator constant | VALUE = constant

cache_spec ::= CACHED IN ' pool nanme' [WTH REPLI CATION = integer] | UNCACHED

| Impala SQL Language Reference | 217

| ocation_spec ::= LOCATION ' hdfs_path_of directory'

tabl e properties ::= '"nane' ='value'[, 'nane'="value' ...]
serde_properties ::= "nane' ='value' [, 'nanme' = value' ...]

file format ::= { PARQUET | TEXTFILE | RCFILE | SEQUENCEFILE | AVRO }
row format ::= DELIM TED

FI ELDS TERM NATED BY ' char' [ESCAPED BY 'char']]
L

[
[LI NES TERM NATED BY ' char']

Statement type: DDL

Complex type consider ations:

In Impala 2.3 and higher, the ALTER TABLE statement can change the metadata for tables containing complex types
(ARRAY, STRUCT, and MAP). For example, you can use an ADD COLUMWNS, DROP COLUWN, or CHANGE clause to
modify the table layout for complex type columns. Although Impala queries only work for complex type columnsin
Parquet tables, the complex type support in the ALTER TABLE statement appliesto all file formats. For example,
you can use Impalato update metadata for a staging table in a non-Parquet file format where the data is popul ated by
Hive. Or you can use ALTER TABLE SET FI LEFORMAT to change the format of an existing table to Parquet so
that Impala can query it. Remember that changing the file format for a table does not convert the data files within the
table; you must prepare any Parquet data files containing complex types outside Impal a, and bring them into the table
using LOAD DATA or updating the table's LOCATI ON property. See Complex Types (Impala 2.3 or higher only) on
page 142 for details about using complex types.

Usage notes:

Whenever you specify partitionsin an ALTER TABLE statement, through the PARTI TI ON (partiti on_spec)
clause, you must include all the partitioning columns in the specification.

Most of the ALTER TABLE operations work the same for internal tables (managed by Impala) as for external tables
(with datafiles located in arbitrary locations). The exception is renaming atable; for an external table, the underlying
data directory is not renamed or moved.

Todrop or alter multiple partitions:

In Impala 2.8 and higher, the expression for the partition clause with a DROP or SET operation can include
comparison operators such as <, | N, or BETVEEEN, and Boolean operators such as AND and OR.

For example, you might drop a group of partitions corresponding to a particular date range after the data “ ages out”:

alter table historical _data drop partition (year < 1995);
alter table historical _data drop partition (year = 1996 and nonth between 1
and 6);

For tables with multiple partition keys columns, you can specify multiple conditions separated by commas, and the
operation only applies to the partitions that match all the conditions (similar to using an AND clause):

alter table historical _data drop partition (year < 1995, last_nane like "A
%);

This technique can also be used to change the file format of groups of partitions, as part of an ETL pipeline that
periodically consolidates and rewrites the underlying datafilesin a different file format:

alter table fast_growing data partition (year = 2016, nonth in (10,11, 12))
set fileformat parquet;

| Impala SQL Language Reference | 218

Note:

The extended syntax involving comparison operators and multiple partitions applies to the SET FI LEFORVAT, SET
TBLPROPERTI ES, SET SERDEPROPERTI ES, and SET [UN] CACHED clauses. Y ou can also use this syntax with
the PARTI Tl ON clause in the COVPUTE | NCREMENTAL STATS statement, and with the PARTI T1 ON clause

of the SHOW FI LES statement. Some forms of ALTER TABLE still only apply to one partition at atime: the SET
LOCATI ONand ADD PARTI Tl ON clauses. The PARTI TI ON clausesin the LOAD DATA and | NSERT statements
also only apply to one partition at atime.

A DDL statement that applies to multiple partitionsis considered successful (resulting in no changes) even if no
partitions match the conditions. The results arethe same asif thel F EXI STS clause was specified.

The performance and scalability of thistechniqueis similar to issuing a sequence of single-partition ALTER TABLE
statements in quick succession. To minimize bottlenecks due to communication with the metastore database, or
causing other DDL operations on the same table to wait, test the effects of performing ALTER TABLE statements
that affect large numbers of partitions.

Amazon S3 consider ations:

Y ou can specify ans3a: / / prefix on the LOCATI ON attribute of atable or partition to make Impala query data
from the Amazon S3 filesystem. In Impala 2.6 and higher, Impala automatically handles creating or removing the
associated folders when you issue ALTER TABLE statements with the ADD PARTI TI ON or DROP PARTI TI ON
clauses.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD| DROP] PARTI TI ON can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
Amazon S3 Object Store on page 769 for details about reading and writing S3 data with Impala.

HDFS caching (CACHED IN clause):

If you specify the CACHED | N clause, any existing or future datafiles in the table directory or the partition
subdirectories are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS
Caching with Impala (Impala 2.1 or higher only) on page 646 for details about using the HDFS caching feature.

In Impala 2.2 and higher, the optional W TH REPLI CATI ON clause for CREATE TABLE and ALTER TABLE lets
you specify areplication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impalarandomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Where practical, specify a value greater than or equal to the HDFS block
replication factor.

If you connect to different Impala nodeswithinani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 393 for details.

Torenameatable (RENAME TO clause):
The RENAME TOclause lets you change the name of an existing table, and optionally which database it islocated in.

For internal tables, this operation physically renames the directory within HDFS that contains the data files; the
original directory name no longer exists. By qualifying the table names with database names, you can use this
technique to move an internal table (and its associated data directory) from one database to another. For example:

creat e database di;

create database d2;

creat e database d3;

use di;

create table nobile (x int);
use dz;

| Impala SQL Language Reference | 219

-- Mwve table from anot her database to the current one.
alter table dl1.nobile renane to nobile;

use di;

-- Move table from one dat abase to anot her.

alter table d2.npbile renane to d3. nobil e;

To change the owner of atable:
ALTER TABLE nanme SET OAMNER USER user nane;

The table owner isoriginally set to the user who creates the table. The term OANER is used to differentiate between
the ALL privilege that is explicitly granted viathe GRANT statement and a privilege that isimplicitly granted by the
CREATE TABLE statement.

Usethe ALTER TABLE SET OWNERto transfer the ownership from the current owner to another user.

To change the physical location where Impala looksfor data files associated with a table or partition:

ALTER TABLE t abl e_name [PARTITION (partition_spec)] SET LOCATI ON
"hdfs_path_of directory';

The path you specify is the full HDFS path where the data files reside, or will be created. Impala does not create any
additional subdirectory named after the table. Impala does not move any data files to this new location or change any
datafilesthat might already exist in that directory.

To set the location for a single partition, include the PARTI TI ON clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (nonth int, day int);

-- Each ADD PARTI TI ON cl ause creates a subdirectory in HDFS.

alter table pl add partition (nonth=1, day=1);

alter table pl add partition (nonth=1, day=2);

alter table pl add partition (nonth=2, day=1);

alter table pl add partition (nonth=2, day=2);

-- Redirect queries, |INSERT, and LOAD DATA for one partition

-- to a specific different directory.

alter table pl partition (nonth=1, day=1) set |ocation '/usr/external _data/
new years_day';

Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use a
single ALTER TABLE statement including both the ADD PARTI TI ON and LOCATI ON clauses, rather than separate
statements with ADD PARTI TI ON‘and SET LOCATI ON clauses.

To automatically detect new partition directories added through Hive or HDFS operations:

In Impala 2.3 and higher, the RECOVER PARTI Tl ONS clause scans a partitioned table to detect if any new partition
directories were added outside of Impala, such asby Hive ALTER TABLE statementsor by hdf s df s or hadoop
f s commands. The RECOVER PARTI Tl ONS clause automatically recognizes any data files present in these new
directories, the same as the REFRESH statement does.

For example, hereis a sequence of examples showing how you might create a partitioned table in Impala, create new
partitions through Hive, copy datafiles into the new partitions with the hdf s command, and have Impala recognize
the new partitions and new data:

In Impala, create the table, and a single partition for demonstration purposes:

creat e dat abase recover _partitions;

use recover_partitions;

create table t1 (s string) partitioned by (yy int, nmint);

insert into tl partition (yy = 2016, mm = 1) values ('Partition exists');

| Impala SQL Language Reference | 220

show files in t1;

o e mmm i — ==

foccooc feccoocococooooc +

| Path | Size
| Partition |

o o m o e mm e mmm = =

feoocooc feccoocooccooooc +

| /user/hivel/ warehouse/recover _partitions.db/t1/yy=2016/ rm¥=1/data.txt | 17B
| yy=2016/ mm=1 |

o o e mmmm i —mm— = =

occooc feococococcooccooas +

qui t;

In Hive, create some new partitions. In areal use case, you might create the partitions and popul ate them with data as
the final stages of an ETL pipeline.

hi ve> use recover_partitions;

(014

hive> alter table t1 add partition (yy = 2016, mm = 2);
K

hive> alter table t1 add partition (yy = 2016, mm = 3);
XK

hi ve> quit;

For demonstration purposes, manually copy data (a single row) into these new partitions, using manual HDFS
operations:

$ hdfs dfs -1s /user/hivel/warehouse/recover partitions.db/t1/yy=2016/
Found 3 itens

drwxr-xr-x - inpala hi ve 0 2016-05-09 16: 06 /user/ hi ve/ war ehouse/
recover_partitions.db/t1/yy=2016/ mm=1

drwxr-xr-x - jrussell hive 0 2016-05-09 16: 14 /user/ hi ve/ war ehouse/
recover_partitions.db/t1/yy=2016/ mm2

drwxr-xr-x - jrussell hive 0 2016-05-09 16: 13 /user/ hi ve/ war ehouse/
recover _partitions.db/t1l/yy=2016/ mm=3

$ hdfs dfs -cp /user/hivel/warehouse/recover_partitions.db/t1/yy=2016/ nm=1/
data.txt \

/user/ hi ve/ war ehouse/ recover_partitions. db/t1/yy=2016/ nm=2/ dat a. t xt
$ hdfs dfs -cp /user/hivel/warehouse/ recover partitions.db/t1/yy=2016/ nm=1/
data.txt \

[user/ hi ve/ war ehouse/ recover_partitions.db/t1/yy=2016/ mm=3/ dat a. t xt

hi ve> select * fromtl;
(014

Partition exists 2016 1
Partition exists 2016 2
Partition exists 2016 3
hive> quit;

| Impala SQL Language Reference | 221

In Impala, initially the partitions and data are not visible. Running ALTER TABLE with the RECOVER
PARTI TI ONS clause scans the table data directory to find any new partition directories, and the data filesinside
them:

select * fromt1;

feccooococoococoococoocos dhoccooc +----+
| s lyy | mm|
Focococococococoococ Focococ +--- -+
| Partition exists | 2016 | 1 |
e deemoos e - -t

alter table t1 recover partitions;
select * fromtl1;

Partition exists	2016	1
Partition exists	2016	3
Partition exists	2016	2
Focococococococoococ Focococ +--- -+

To change the key-value pair s of the TBLPROPERTIES and SERDEPROPERTIESfields:

ALTER TABLE t abl e_nane SET TBLPROPERTI ES (' keyl' =' val uel',
"key2' ='value2'[, ..

ALTER TABLE tabl e_ name SET SERDEPROPERTI ES (' keyl' ="' val uel',
"key2' ='value2' [, ...]);

The TBLPROPERTI ES clauseis primarily away to associate arbitrary user-specified data items with a particular
table.

The SERDEPROPERTI ES clause sets up metadata defining how tables are read or written, needed in some cases by
Hive but not used extensively by Impala. Y ou would use this clause primarily to change the delimiter in an existing
text table or partition, by settingthe' seri ali zati on.format' and' fi el d. del i m property valuesto the
new delimiter character: The SERDEPROPERTI ES clause does not change the existing data in the table. The change
only affects the future insert into the table.

Use the DESCRI BE FORMATTED statement to see the current values of these properties for an existing table. See
CREATE TABLE Satement on page 248 for more details about these clauses.

To specify asort order for new recordsthat are added to the table:

ALTER TABLE t abl e_name SORT BY [LEXI CAL| ZORDER] (col utmm_nanel[, col um_nane?2
1)

Specifying the sort order is optional. The default sort order is LEXI CAL. Setting the SORT BY property will not
rewrite existing data files, but subsequent inserts will be ordered. Sorting is always ascending.

Use the DESCRI BE FORMATTED statement to see the current sort properties ('sor t . col unms' and
'sort. order’) for an existing table. They can also be set using SET TBLPROPERTI ES.

For details about sort order see CREATE TABLE Statement on page 248.
To manually set or updatetable or column statistics:

Although for most tables the COMPUTE STATS or COMPUTE | NCREMENTAL STATS statement is all you need
to keep table and column statistics up to date for atable, sometimes for avery large table or one that is updated
frequently, the length of time to recompute all the statistics might make it impractical to run those statements as often

| Impala SQL Language Reference | 222

as needed. Asaworkaround, you can usethe ALTER TABLE statement to set table statistics at the level of the entire
table or asingle partition, or column statistics at the level of the entire table.

Y ou can set the nunt ows value for table statistics by changing the TBLPROPERTI ES setting for atable or partition.
For example:

create tabl e anal ysis_data stored as parquet as select * fromraw dat a;

I nserted 1000000000 rows in 181.98s

conput e stats anal ysi s_dat a;

insert into anal ysis_data select * fromsnaller _table we forgot before;

I nserted 1000000 rows in 15.32s

-- Now there are 1001000000 rows. We can update this single data point in
the stats.

alter table analysis data set tblproperties(' numRows' =" 1001000000’

' STATS_GENERATED VI A _STATS TASK' ='true');

-- If the table originally contained 1 nmillion rows, and we add anot her
partition with 30 thousand rows,

-- change the nunRows property for the partition and the overall table.

alter table partitioned data partition(year=2009, nonth=4) set tblproperties
(' nunRows' =' 30000' , ' STATS GENERATED VI A STATS TASK ='true');

alter table partitioned data set tblproperties ('nunRows'='1030000',
' STATS_GENERATED VI A_STATS TASK' ='true');

In Impala 2.6 and higher, you can usethe SET COLUMN STATS clause to set a specific stats value for a particular
column.

Y ou specify a case-insensitive symbolic name for the kind of statistics: nunDVs, nunNul | s, avgSi ze, maxSi ze.
The key names and values are both quoted. This operation applies to an entire table, not a specific partition. For
example:

create table t1 (x int, s string);
insert intotl values (1, 'one'), (2, 'tw'), (2, 'deux');
show col umrm stats t1;

foccoooac foccoooac feoccoocococcoococooc foccoooac foccococooc foccococooc +
| Columm | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
fooococoooc fooococoooc focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +
| x | I'NT | -1 | -1 | 4 | 4

| s | STRRNG | -1 | -1 | -1 | -1 [
feccoococac feccoococac feccoocococcoococooc feccoococac feccococooc feccococooc +

alter table t1 set colum stats x ('nunDVs'="2',"'nunNulls'="0");

alter table t1 set columm stats s (' nundvs' ='3',' maxsize' ='4");
show col um stats t1;

Fococococ Fococococ Focococococococoococ Fococococ Focococococ Focococococ +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
deemaaoo deemaaoo- e deemaaoo R A +
| x | INT | 2 | 0 | 4 | 4 I
| s | STRING| 3 | -1 | 4 | -1 [
fooococoooc fooococoooc focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +

Toreorganize columnsfor atable:

Y ou can add multiple columns at atime using the ALTER TABLE statement. If you specify thel F NOT EXI STS
clause, Impala silently ignores the ADD request and does not return an error if a column with the same name existsin
the table.

When you replace columns, al the original column definitions are discarded.

Y ou might use these statements if you receive a new set of data files with different data types or columnsin a
different order. The datafiles are retained, so if the new columns are incompatible with the old ones, use | NSERT
OVERVRI TE or LOAD DATA OVERWRI TE to replace al the data before issuing any further queries.

| Impala SQL Language Reference | 223

For example, hereis how you might add columns to an existing table. Thefirst ALTER TABLE adds two new
columns, and the second ALTER TABLE adds one new column. A single Impala query reads both the old and new
datafiles, containing different numbers of columns. For any columns not present in a particular datafile, al the
column values are considered to be NULL.

create table t1 (x int);
insert into tl values (1), (2);

alter table
insert into

t1l add columms (s string, t timestanp);
t1l values (3, '"three', now));

alter table
insert into

1 add colums (b bool ean);
1 values (4, 'four', now), true);

select * fromtl order by Xx;

R e e e e Fommm +
| x| s | t | b I
oo e T coocooocoooooocoooooooooooooooooE e o - +
1] NULL	NULL	NULL	
2] NULL	NULL	NULL	
3	three	2016-05-11 11:19: 45. 054457000	NULL
4	four	2016-05-11 11:20:20.260733000	true
. frocoococoocooocooocoooooooooooooooooe Fome o - - +

Y ou might use the CHANGE clause to rename a single column, or to treat an existing column as a different type than
before, such as to switch between treating a column as STRI NGand TI MESTAMP, or between | NT and Bl Gl NT.

Y ou can only drop a single column at atime; to drop multiple columns, issue multiple ALTER TABLE statements, or
define the new set of columnswith asingle ALTER TABLE ... REPLACE COLUMNS statement.

The following examples show some safe operations to drop or change columns. Dropping the final columnin atable
lets Impalaignore the data causing any disruption to existing data files. Changing the type of a column works if
existing data values can be safely converted to the new type. The type conversion rules depend on the file format of
the underlying table. For example, in atext table, the same value can be interpreted as a STRI NG or a numeric value,
while in abinary format such as Parquet, the rules are stricter and type conversions only work between certain sizes
of integers.

create table optional _colums (x int, y int, z int, al int, a2 int);
insert into optional _colums values (1,2,3,0,0), (2,3,4,100,100);

-- When the last colum in the table is dropped, Inpala ignores the
-- values that are no |onger needed. (Dropping Al but |eaving A2

-- woul d cause problenms, as we will see in a subsequent exanple.)
alter table optional _colunms drop col um a2;

alter table optional _colunms drop columm ail;

sel ect * from optional _col ums;
e

| x|yl z]
fecodeoodeoodd
| 1] 2] 3]
| 2 3] 4]

i e &

create table int_to _string (s string, x int);
insert intoint to string values (‘one', 1), ('two', 2);

-- What was an INT colum will now be interpreted as STRI NG
-- This technique works for text tables but not other file formats.

| Impala SQL Language Reference | 224

-- The second X represents the new nanme of the columm, which we keep the
sane.
alter table int _to_string change x x string;

-- Once the type is changed, we can insert non-integer values into the X
col um

-- and treat that columm as a string, for exanple by uppercasing or
concat enati ng.

insert into int to string values ('three', '"trois');
sel ect s, upper(x) fromint _to_string;

foocoooc feoococooccoac +

| s | upper(x) |

fecooooc feccococooc +

| one | 1 [

| two | 2 I

| three | TRO S [

foocoooc feoococooccoac +

Remember that Impala does not actually do any conversion for the underlying data files as aresult of ALTER TABLE
statements. If you use ALTER TABLE to create atable layout that does not agree with the contents of the underlying
files, you must replace the files yourself, such asusing LOAD DATA to load anew set of datafiles, or | NSERT
OVERVWRI TE to copy from ancther table and replace the origina data.

The following example shows what happensif you del ete the middle column from a Parquet table containing three
columns. The underlying data files till contain three columns of data. Because the columns are interpreted based

on their positionsin the data file instead of the specific column names, aSELECT * query now reads the first and
second columns from the datafile, potentially leading to unexpected results or conversion errors. For this reason,

if you expect to someday drop a column, declare it as the last column in the table, where its data can be ignored by
queries after the column is dropped. Or, re-run your ETL process and create new datafiles if you drop or change the
type of acolumn in away that causes problems with existing datafiles.

-- Parquet table showi ng how dropping a colum can produce unexpected
results.
create table pl (sl string, s2 string, s3 string) stored as parquet;

insert into pl values (‘one', 'un', 'uno'), ('two', 'deux', 'dos'),
("three', '"trois', '"tres');

select * from pl;

feococos feococos fosccos +

| s1 | s2 | s3 |

Feoccooas Feoccooas Focoooc +

| one | un | uno |

| two | deux | dos |

| three | trois | tres |

feococos feococos fosccos +

alter table pl drop colum s2;

-- The S3 col unmm cont ai ns unexpected results.

-- Because S2 and S3 have conpati ble types, the query reads

-- values fromthe dropped S2, because the existing data files

-- still contain those values as the second col um.
select * from pl;
fooocoooc fooocoooc +
| s1 | s3 |
Focoocooe Focoocooe +
| one | un |
| two | deux |

| Impala SQL Language Reference | 225

-- Parquet table showi ng how dropping a colum can produce conversion
errors.
create table p2 (sl string, x int, s3 string) stored as parquet;

insert into p2 values (‘one', 1, 'uno'), ('tw', 2, 'dos'), ('three', 3,

"tres');

select * from p2;
feococos foccdooccos +
| s1 | x| s3 |
fooocoooc fecodmocoac +
one	1	uno
two	2	dos
three	3	tres
feococos fFoccdooccos +

alter table p2 drop colum x;

select * from p2;

WARNI NGS:

File 'hdfs_filenanme' has an inconpati bl e Parquet schema for colum
'add_col ums. p2.s3'.

Col unm type: STRING Parquet schena:

optional int32 x [i:1 d:1 r:Q0]

File 'hdfs_fil ename' has an inconpati bl e Parquet schema for colum
'add_col ums. p2.s3'.

Col unm type: STRING Parquet schena:

optional int32 x [i:1 d:1 r:Q0]

In Impala 2.6 and higher, if an Avro table is created without column definitionsin the CREATE TABLE statement,
and columns are later added through ALTER TABLE, the resulting table is now queryable. Missing values from the
newly added columns now default to NULL.

To changethefileformat that Impala expects datato bein, for atableor partition:

Usean ALTER TABLE ... SET FI LEFORMAT clause. You can include an optional PARTI Tl ON
(col 1=val 1, col 2=val 2, ...) clauseso that thefileformat is changed for a specific partition rather than the
entire table.

Because this operation only changes the table metadata, you must do any conversion of existing data using regular
Hadoop techniques outside of Impala. Any new data created by the Impalal NSERT statement will bein the new
format. Y ou cannot specify the delimiter for Text files; the data files must be comma-delimited.

To set the file format for asingle partition, include the PARTI T1 ON clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (nonth int, day int);
-- Each ADD PARTI TION cl ause creates a subdirectory in HDFS.
alter table pl add partition (nonth=1, day=1);

alter table pl add partition (nonth=1, day=2);

alter table pl add partition (nonth=2, day=1);

alter table pl add partition (nonth=2, day=2);

-- Queries and I NSERT statenents will read and wite files

-- in this format for this specific partition.

alter table pl partition (nonth=2, day=2) set fileformt parquet;

To changetherow format with different delimiter characters:

Usethe SET ROW FORVAT DELI M TED clause to ingest data files that use a different delimiter character or a
different line end character. When specifying delimiter and line end characters with the FI ELDS TERM NATED
BY, ESCAPED BY, and LI NES TERM NATED BY clauses, you can use the following:

* A regular ASCII character surrounded by single or double quotation marks.
» Anoctal sequence, suchas' \ 054" representingacommaor '\ 0' for ASCII null (hex 00).

| Impala SQL Language Reference | 226

* Special characters, such as:

e "\t' fortab
e '"\'n' for newlineor linefeed
e "\r' for carriagereturn
e Aninteger in the range '-127'..'128' (with quotation marks but no backslash)

Negative values are subtracted from 256. For example, Fl ELDS TERM NATED BY ' -2' setsthefield
delimiter to ASCII code 254.

For more examples of text tables, see Using Text Data Files with Impala Tables on page 697.

For the ESCAPED BY clause, choose an escape character that is not used anywhere else in the file. The character
following the escape character istaken literally as part of afield value.

Surrounding field values with quotation marks does not help Impalato parse fields with embedded delimiter
characters as the quotation marks are considered to be part of the column value.

If you want to use\ asthe escape character, specify theclauseini npal a- shel | asESCAPED BY '\\'.

Toadd or drop partitionsfor atable, the table must already be partitioned (that is, created with a PARTI TI ONED
BY clause). The partition is a physical directory in HDFS, with a name that encodes a particular column value (the
partition key). The Impalal NSERT statement already creates the partition if necessary, sothe ALTER TABLE . . .
ADD PARTI Tl ONisprimarily useful for importing data by moving or copying existing data filesinto the HDFS
directory corresponding to a partition. (You can use the LOAD DATA statement to move filesinto the partition
directory, or ALTER TABLE ... PARTITION (...) SET LOCATI ONto point apartition at adirectory that
already contains datafiles.

The DROP PARTI Tl ONclause is used to remove the HDFS directory and associated data files for a particular

set of partition key values; for example, if you always analyze the last 3 months worth of data, at the beginning of
each month you might drop the oldest partition that is no longer needed. Removing partitions reduces the amount of
metadata associated with the table and the complexity of calculating the optimal query plan, which can simplify and
speed up queries on partitioned tables, particularly join queries. Here is an example showing the ADD PARTI TI ON
and DROP PARTI TI ON clauses.

To avoid errors while adding or dropping partitions whose existence is not certain, add the optional | F [NOT]
EXI STS clause between the ADD or DROP keyword and the PARTI Tl ON keyword. That is, the entire clause
becomes ADD | F NOT EXI STS PARTI TI ONor DROP | F EXI STS PARTI Tl ON. The following example
shows how partitions can be created automatically through | NSERT statements, or manually through ALTER
TABLE statements. Thel F [NOT] EXI STS clauses let the ALTER TABLE statements succeed even if anew
reguested partition already exists, or a partition to be dropped does not exist.

Inserting 2 year values creates 2 partitions:

Create table partition_t (s string) partitioned by (y int);

insert into partition_t (s,y) values ('two thousand', 2000), ('nineteen
ni nety', 1990);

show partitions partition_t;

ooocoooc ooocoooc fooococoooc occooc fecocococcooccooas fcccoococococooccoocooe fooococoooc
Focococcccocococooooe +

| vy | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
| I'ncremental stats |

focooooc focooooc feccooooc feccooc feccoocoocooooc feccoccoccooococooooc feccooooc
Focooooc +

| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT

| false |

| 2000 | -1 | 1 | 13B | NOT CACHED | NOT CACHED | TEXT

| false |

| Total | -1 | 2 | 298 | 0B | |

| Impala SQL Language Reference | 227

Without thel F NOT EXI STS clause, an attempt to add a new partition might fail:

alter table partition_t add partition (y=2000);

ERROR: Anal ysi sExcepti on:

Partition spec al ready exists:

(y=2000) .

Thel F NOT EXI STS clause makes the statement succeed whether or not there was aready a partition with the

specified key value:

alter table partition_t add if not exists partition (y=2000);
alter table partition_t add if not exists partition (y=2010);
show partitions partition_t;

fooocoooc fooocoooc fooocooooc
fococcocococcooccoocooc +
| vy | #Rows | #Files
| I'ncremental stats
fecooooc fecooooc feccoococac
Focooooc +
| 1990 | -1 | 1
| false |
| 2000 | -1 | 1
| false |
| 2010 | -1 | O
| false |
| Total | -1 | 2
+! ______ +! ______ .,
fecooooc +

| Size |

| 16B |
| 13B |
| 0B |
| 29B |

Byt es Cached |

___________________ oo -
Cache Replication | Format
___________________ ommee o
NOT CACHED | TEXT
NOT CACHED | TEXT
NOT CACHED | TEXT
|
___________________ e

Likewise, thel F EXI STS clause lets DROP PARTI TI ON succeed whether or not the partition is aready in the

table:

alter table partition_t drop if exists partition (y=2000);
alter table partition_t drop if exists partition (y=1950);
show partitions partition_t;

Focoocooe Focoocooe Fococococ
feccoccocoooococooooc +
| vy | #Rows | #Files
| I'ncremental stats
fooocoooc fooocoooc fooocooooc
foocoooc +
| 1990 | -1 | 1
| false |
| 2010 | -1 | O
| false |
| Total | -1 | 1
+! ______ +! ______ .,
fecooooc +

| Size |

| 16B |

Byt es Cached |

___________________ oo e
Cache Replication | Fornmat
___________________ oo
NOT CACHED | TEXT
NOT CACHED | TEXT

|
___________________ oo e

The optional PURGE keyword, availablein Impala 2.3 and higher, is used with the DROP PARTI TI ON clause to
remove associated HDFS data filesimmediately rather than going through the HDFS trashcan mechanism. Use this
keyword when dropping a partition if it is crucial to remove the data as quickly as possible to free up space, or if there

| Impala SQL Language Reference | 228

is aproblem with the trashcan, such as the trash cannot being configured or being in a different HDFS encryption
zone than the datafiles.

-- Create an enpty table and define the partitioning schene.

create table part_t (x int) partitioned by (nmonth int);

-- Create an enpty partition into which you could copy data files from sone
ot her source.

alter table part_t add partition (nonth=1);

-- After changing the underlying data, issue a REFRESH statenent to make the
data visible in | npala.

refresh part _t;

-- Later, do the same for the next nonth.

alter table part _t add partition (nonth=2);

-- Now you no | onger need the ol der data.

alter table part_t drop partition (nonth=1);

-- |If the table was partitioned by nonth and year, you would issue a
statement |ike:

-- alter table part_t drop partition (year=2003, nont h=1);

-- which would require 12 ALTER TABLE statenents to renove a year's worth of
dat a.

-- If the data files for subsequent nonths were in a different file format,

-- you could set a different file format for the new partition as you create
t.
t

i
Iter table part_t add partition (nonth=3) set fileformat=parquet;

a

The value specified for a partition key can be an arbitrary constant expression, without any references to columns. For
example:

alter table tine_data add partition (nonth=concat (' Deceni,'ber'));
alter table sales_data add partition (zi pcode = cast (9021 * 10 as string));

Note:

An aternative way to reorganize atable and its associated datafilesis to use CREATE TABLE to create a variation

of the original table, then use | NSERT to copy the transformed or reordered data to the new table. The advantage of

ALTER TABLE isthat it avoids making a duplicate copy of the datafiles, allowing you to reorganize huge volumes
of datain a space-efficient way using familiar Hadoop techniques.

To switch atable between internal and external:

Y ou can switch atable from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table frominternal to external.
ALTER TABLE tabl e_name SET TBLPROPERTI ES(' EXTERNAL' =' TRUE') ;

-- Switch atable fromexternal to internal.

ALTER TABLE t abl e_nanme SET TBLPROPERTI ES(' EXTERNAL' =' FALSE') ;
If the Kudu service isintegrated with the Hive Metastore, the above operations are not supported.
Cancdllation: Cannot be cancelled.
HDFS per missions:

Most ALTER TABLE clauses do not actually read or write any HDFS files, and so do not depend on specific HDFS
permissions. For example, the SET FI LEFORMAT clause does not actually check the file format existing data files
or convert them to the new format, and the SET LOCATI ON clause does not require any special permissions on the
new location. (Any permission-related failures would come later, when you actually query or insert into the table.)

| Impala SQL Language Reference | 229

In general, ALTER TABLE clauses that do touch HDFS files and directories require the same HDFS permissions

as corresponding CREATE, | NSERT, or SELECT statements. The permissions allow the user ID that thei npal ad
daemon runs under, typically thei npal a user, to read or write files or directories, or (in the case of the execute

bit) descend into adirectory. The RENAME TOclause requires read, write, and execute permission in the source and
destination database directories and in the table data directory, and read and write permission for the data files within
thetable. The ADD PARTI TI ONand DROP PARTI Tl ON clauses require write and execute permissions for the
associated partition directory.

Kudu consider ations:

Because of the extra constraints and features of Kudu tables, such asthe NOT NULL and DEFAULT attributes for
columns, ALTER TABLE has specific requirements related to Kudu tables:

e Inan ADD COLUMNS operation, you can specify the NULL, NOT NULL, and DEFAULT def aul t _val ue
column attributes.

* InlImpala2.9 and higher, you can also specify the ENCODI NG, COMPRESSI ON, and BLOCK_SI ZE attributes
when adding a column.

* If you add acolumnwith aNOT NULL attribute, it must also have a DEFAULT attribute, so the default value can
be assigned to that column for all existing rows.

e The DROP COLUMWN clause works the same for a Kudu table as for other kinds of tables.

» Although you can change the name of a column with the CHANGE clause, you cannot change the type of a column
in aKudu table.

* You cannot change the nullability of existing columnsin a Kudu table.

* InlImpala2.10, you can change the default value, encoding, compression, or block size of existing columnsin a
Kudu table by using the SET clause.

* You cannot use the REPLACE COLUMNS clause with a Kudu table.

 The RENAME TOclause for a Kudu table only affects the name stored in the metastore database
that Impala uses to refer to the table. To change which underlying Kudu table is associated
with an Impalatable name, you must change the TBLPROPERTI ES property of the table: SET
TBLPROPERTI ES(' kudu. t abl e_nane' =" kudu_t bl _nane') . You can only change underlying Kudu
tables for the external tables.

The following are some examples of using the ADD COLUMNS clause for a Kudu table:

CREATE TABLE t1 (x INT, PRI MARY KEY (x))
PARTI TI ON BY HASH (x) PARTI TI ONS 16
STORED AS KUDU

ALTER TABLE t1 ADD COLUMNS (y STRI NG ENCODI NG prefi x_encodi ng) ;

ALTER TABLE t1 ADD COLUWNS (z | NT DEFAULT 10);

ALTER TABLE t1 ADD COLUMNS (a STRING NOT NULL DEFAULT '', t TI MESTAMP
COVPRESSI ON def aul t _conpressi on);

The following are some examples of modifying column defaults and storage attributes for a Kudu table:

create table kt (x bigint primary key, s string default 'yes', t timnestanp)

stored as kudu;

-- You can change the default value for a colum, which affects any rows
-- inserted after this change is nade.
alter table kt alter colum s set default

no ;

-- You can renove the default value for a columm, which affects any rows
-- inserted after this change is made. If the colum is nullable, any

-- future inserts default to NULL for this colum. If the colum is marked
-- NOT NULL, any future inserts nust specify a value for the col um.

alter table kt alter colunm s drop default;

| Impala SQL Language Reference | 230

insert into kt values (1, 'foo', now));

-- Because of the DROP DEFAULT above, onmitting S fromthe insert
-- gives it a value of NULL.

insert into kt (x, t) values (2, now));

select * fromkt;

| 2| NULL | 2017-10-02 00: 03: 40. 652156000 |
| 1| foo | 2017-10-02 00:03: 04. 346185000 |

-- Other storage-related attributes can al so be changed for col unms.
-- These changes take effect for any newy inserted rows, or rows
-- rearranged due to conpaction after del etes or updates.

alter table kt alter columm s set encodi ng prefix_encodi ng;

-- The COLUWN keyword is optional in the syntax.

alter table kt alter x set bl ock size 2048;

alter table kt alter colunm t set conpression zlib;

desc kt;

occooc feocococooccooac feoococooooc feococococcooccooc feoococooccoac fococococcooccoooos

Fococcoccoccoccoocooooe Focococcoccococoocoocooooe Fococococoococ +

| nanme | type | coorment | primary _key | nullable | default_val ue |
encodi ng | conpression | bl ock_size |

foccooc foccoococooc Foccooocooc foccoococooooc foccoococooc feccoccocoooooac

feccocococooccoocooos eccocoococoococooccoocoocoe fecococoococooooc +

| x | bigint | | true | false | |
AUTO ENCODI NG | DEFAULT_COWPRESSI ON | 2048 [

S | string [| fal se | true [[

PREFI X_ENCODI NG | DEFAULT_COVPRESSION | 0 |

| t | tinmestanp | | false | true | |
AUTO ENCODING | ZLIB | O [

occooc feocococooccooac feoococooooc feococococcooccooc feoococooccoac fococococcooccoooos

Fococcoccoccoccoocooooe Focococcoccococoocoocooooe Fococococoococ +

Kudu tables all use an underlying partitioning mechanism. The partition syntax is different than for non-Kudu tables.
You can usethe ALTER TABLE statement to add and drop range partitions from a Kudu table. Any new range
must not overlap with any existing ranges. Dropping a range removes all the associated rows from the table. See
Partitioning for Kudu Tables on page 740 for details.

Related infor mation:

Overview of Impala Tables on page 206, CREATE TABLE Satement on page 248, DROP TABLE Satement on
page 289, Partitioning for Impala Tables on page 685, Internal Tables on page 206, External Tables on page
207

ALTER VIEW Statement

The ALTER VI EWstatement changes the characteristics of aview.

Because aview isalogical construct, an alias for a query, with no physical data behind it, ALTER VI EWonly
involves changes to metadata in the metastore database, not any data filesin HDFS.

To see the definition of the updated view, issue a DESCRI BE FORMATTED statement.
Syntax:

ALTER VI EW [dat abase_nane.] vi ew_nhamne
[(col um_nane [COMMENT ' col um_coment'][, ...])]
AS sel ect _statenent;

ALTER VI EW [dat abase_nane.] vi ew_nane

| Impala SQL Language Reference | 231

RENAME TO [dat abase_nane.] vi ew_nane;
ALTER VI EW [dat abase_nane.] vi ew nane SET OANER USER user nane;

ALTER VI EW [dat abase_nane.] vi ew_nane
SET TBLPROPERTI ES (' nane' = 'value'[, 'name' = 'value' ...]);

ALTER VI EW [dat abase_nane.] vi ew_nane
UNSET TBLPROPERTIES ('nane'[, ...]);

» The AS clause associates the view with a different query.
An optiona list of column names can be specified with or without the column-level comments.

For example:

ALTER VI EWv1 AS SELECT x, UPPER(s) s FROMt2;

ALTER VIEW V1 (cl1, c2) AS SELECT x, UPPER(s) s FROMt2;

ALTER VIEWv7 (cl1 COWENT ' Comment for cl', c2) AS SELECT tl1.cl1, tl.c2
FROM t 1;

« The RENAME TOclause changes the name of the view, moves the view to a different database, or both.

For example:

ALTER VI EW dbl. vl RENAME TO db2.v2; -- Myve the viewto a different
dat abase with a new nane.

ALTER VI EW dbl. vl RENAME TO dbl.v2; -- Renane the view in the sane
dat abase.

ALTER VI EW dbl. vl RENAME TO db2.vl1l; -- Mwve the viewto a difference

dat abase with the sanme vi ew nane.
e The SET OWNER clause transfers the ownership of the view from the current owner to another user.

The view owner isoriginally set to the user who creates the view. The term OANER is used to differentiate
between the ALL privilege that is explicitly granted viathe GRANT statement and a privilege that isimplicitly
granted by the CREATE VI EWstatement.

e« TheSET TBLPROPERTI ES clauseis primarily away to associate arbitrary user-specified dataitems with a
particular view.

Y ou can associate arbitrary items of metadata with a table by specifying the TBLPROPERTI ES clause. This
clause takes a comma-separated list of key-value pairs and stores those itemsin the metastore database. Y ou can
also unset the view properties later with an UNSET TBLPROPERTI ES clause.

For example:

ALTER VI EWv1 SET TBLPROPERTI ES

("thipl ='1", 'thlp2 ='2");
ALTER VI EWv1 UNSET TBLPROPERTI ES '

t
("tblpl', '"tblp2');
Statement type: DDL

If you connect to different Impala nodes withinan i npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 393 for details.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statementsin log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancdllation: Cannot be cancelled.

| Impala SQL Language Reference | 232

HDFS per missions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Overview of Impala Views on page 209, CREATE VIEW Satement on page 265, DROP VIEW Satement on
page 290

COMMENT Statement
The COMVENT statement adds, changes, or removes a comment about a database, atable, or a column.
Y ou can aternatively use the CREATE and AL TER statements to add comments to the objects.

Y ou can view the comment on a database, atable, or a column using the SHOWor DESCRI BE statement.

Syntax:

COMMVENT ON DATABASE db_nanme IS {' comment' | NULL}
COMMENT ON TABLE [db_name.]table nane IS {' coment' | NULL}

COMMVENT ON COLUWN [db_nane.]tabl e _name. col um_nane IS {' comment' | NULL}

Parameters:

« db_name: Specify the database name if not for the current database.
e NULL: If given for the comment, removes the existing comment.
e The comment string can be up to 256 characters long.

Privilegesrequired:

To add a comment, the ALTER privilege on the object is required.

To view acomment, the SELECT, | NSERT, or REFRESH on the object is required.
Usage notes:

Added in: Impala3.1

COMPUTE STATS Statement

The COMPUTE STATS statement gathers information about volume and distribution of datain atable and all
associated columns and partitions. The information is stored in the metastore database, and used by Impalato help
optimize queries. For example, if Impala can determine that atable islarge or small, or has many or few distinct
values it can organize and parallelize the work appropriately for ajoin query or insert operation. For details about the
kinds of information gathered by this statement, see Table and Column Statistics on page 625.

Syntax:

COWPUTE STATS [db_nane.]table_name [(colum_list)] [TABLESAMPLE
SYSTEM per cent age) [REPEATABLE(seed)]]

colum_list ::= colum_nane [, colum_name, ...]

COVPUTE | NCREMENTAL STATS [db_nane. |t abl e_nanme [PARTI TION (partition_spec)]
[(colum_list)]

partition_spec ::= sinple partition_spec | conplex _partition_spec
sinmple_partition_spec ::= partition_col =constant_val ue

conpl ex_partition_spec ::= conparison_expression_on_partition_col

| Impala SQL Language Reference | 233

The PARTI TI ONclause isonly allowed in combination with the | NCREMENTAL clause. It is optional for COMPUTE
| NCREMENTAL STATS, and required for DROP | NCREMENTAL STATS. Whenever you specify partitions
through the PARTI TI ON (partiti on_spec) clauseinaCOVPUTE | NCREMENTAL STATS or DROP

| NCREMENTAL STATS statement, you must include all the partitioning columns in the specification, and specify
constant values for all the partition key columns.

Usage notes:

Originally, Impalarelied on users to run the Hive ANALYZE TABLE statement, but that method of gathering
statistics proved unreliable and difficult to use. The Impala COMPUTE STATS statement was built to improve the
reliability and user-friendliness of this operation. COMPUTE STATS does not require any setup steps or special
configuration. You only run asingle Impala COVPUTE STATS statement to gather both table and column statistics,
rather than separate Hive ANALYZE TABLE statements for each kind of statistics.

For non-incremental COVPUTE STATS statement, the columns for which statistics are computed can be specified
with an optional comma-separate list of columns.

If no column list isgiven, the COMPUTE STATS statement computes column-level statistics for all columns of the
table. This adds potentially unneeded work for columns whose stats are not needed by queries. It can be especially
costly for very wide tables and unneeded large string fields.

COVMPUTE STATS returns an error when a specified column cannot be analyzed, such as when the column does not
exist, the column is of an unsupported type for COMPUTE STATS, e.g. colums of complex types, or the column isa
partitioning column.

If an empty column list is given, no column is analyzed by COVPUTE STATS.

In Impala 2.12 and higher, an optional TABLESAMPLE clause immediately after a table reference specifies that the
COMPUTE STATS operation only processes a specified percentage of the table data. For tables that are so large that
afull COVWPUTE STATS operation isimpractical, you can use COMPUTE STATS with a TABLESAMPLE clauseto
extrapolate statistics from a sample of the table data. See Table and Column Satisticsabout the experimental stats
extrapolation and sampling features.

The COMPUTE | NCREMENTAL STATS variation is a shortcut for partitioned tables that works on a subset of
partitions rather than the entire table. The incremental nature makes it suitable for large tables with many partitions,
where afull COMPUTE STATS operation takes too long to be practical each time a partition is added or dropped. See
#unique_312 for full usage details.

Important:

For a particular table, use either COMPUTE STATS or COVPUTE | NCREMENTAL STATS, but never combine the
two or alternate between them. If you switch from COVPUTE STATS to COMPUTE | NCREMENTAL STATS during
the lifetime of atable, or vice versa, drop all statistics by running DROP STATS before making the switch.

When you run COVPUTE | NCREMENTAL STATS on atable for the first time, the statistics are computed again
from scratch regardless of whether the table already has statistics. Therefore, expect a one-time resource-intensive
operation for scanning the entire table when running COMPUTE | NCREMENTAL STATS for the first timeon a
given table.

In Impala 3.0 and lower, approximately 400 bytes of metadata per column per partition are needed for caching. Tables
with abig number of partitions and many columns can add up to a significant memory overhead as the metadata must
be cached on the cat al ogd host and on every i npal ad host that is eligible to be a coordinator. If this metadata for
all tables exceeds 2 GB, you might experience service downtime. In Impala 3.1 and higher, the issue was alleviated
with an improved handling of incremental stats.

COVPUTE | NCREMENTAL STATS only appliesto partitioned tables. If you use the | NCREMENTAL clause for an
unpartitioned table, Impala automatically uses the original COMPUTE STATS statement. Such tables display f al se
under thel ncr erent al st at s column of the SHOW TABLE STATS output.

Note:

Because many of the most performance-critical and resource-intensive operations rely on table and column statistics
to construct accurate and efficient plans, COVMPUTE STATS is an important step at the end of your ETL process. Run

| Impala SQL Language Reference | 234

COVPUTE STATS on all tables as your first step during performance tuning for slow queries, or troubleshooting for
out-of-memory conditions:

« Accurate statistics help Impala construct an efficient query plan for join queries, improving performance and
reducing memory usage.

» Accurate statistics help Impala distribute the work effectively for insert operations into Parquet tables, improving
performance and reducing memory usage.

« Accurate statistics help Impala estimate the memory required for each query, which isimportant when you use
resource management features, such as admission control and the Y ARN resource management framework. The
statistics help Impalato achieve high concurrency, full utilization of available memory, and avoid contention with
workloads from other Hadoop components.

* InImpala2.8 and higher, when you run the COMPUTE STATS or COVPUTE | NCREMENTAL STATS statement
against a Parquet table, Impala automatically applies the query option setting MT_ DOP=4 to increase the amount
of intra-node parallelism during this CPU-intensive operation. See MT_DOP Query Option on page 374 for
details about what this query option does and how to use it with CPU-intensive SELECT statements.

Computing stats for groups of partitions:

In Impala 2.8 and higher, you can run COMPUTE | NCREMENTAL STATS on multiple partitions, instead of the
entire table or one partition at atime. Y ou include comparison operators other than = in the PARTI TI ON clause, and
the COMPUTE | NCREMENTAL STATS statement appliesto all partitions that match the comparison expression.

For example, the | NT_PARTI Tl ONS table contains 4 partitions. The following COVPUTE | NCREMENTAL
STATS statements affect some but not all partitions, as indicated by the Updat ed n partiti on(s) messages.
The partitions that are affected depend on values in the partition key column X that match the comparison expression
in the PARTI TI ON clause.

show partitions int_partitions;

fecooooc fecooooc feccoococac fococooc feccoocoocooooc feccoccoccooococooooc

S cooooooc +. ..

| x | #Rows | #Files | Size | Bytes Cached | Cache Replication | Fornat
| .

Focoocooe Focoocooe Fococococ Focococ Focococococoococ Focococcccocococooooe
Fococooooe +

| 99 | -1 | O | OB | NOT CACHED | NOT CACHED | PARQUET
| ...

| 120 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT

[...

| 150 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT

[...

| 200 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT

| ...

| Total | -1 | O | OB | OB | |

[...
Focoocooe Focoocooe Fococococ Focococ Focococococoococ Focococcccocococooooe
Fococooooe +

conpute incremental stats int_partitions partition (x < 100);

doococcccconooccoconooococoooooccooono0ooe +
| sunmmary |
FococococococococoocoocoocoCcoCcoCooooooooooooo +
| Updated 1 partition(s) and 1 colum(s). |
e +

conpute increnental stats int_partitions partition (x in (100, 150, 200));

| Impala SQL Language Reference | 235

conpute incremental stats int_partitions partition (x between 100 and 175);

o m m e e e o e e o e e e e e e e e e m-oo-o--oo- +
| summary |
Foococoocooccococcococcococococococococooooooos +
| Updated 2 partition(s) and 1 colum(s). |
o ococcooocoooooCoOSCCoCCoOCoOCCoCCoCCooOooO0oe +

conmpute increnmental stats int_partitions partition (x in (100, 150, 200) or

X < 100);
feccocoococoococooccooccoocoocoocoooocoocoocoooooc +
| summary |
FococococococococoocoocoocoCcoCoCcooooooooooooo +
| Updated 3 partition(s) and 1 columm(s). |
feccoocococcoococococoocococooocococoooococooooc +
conpute increnental stats int_partitions partition (x != 150);
foccocoocococcoccooccooccooccoocoooocoocooocoooooc +
| summary |
ccoocococooococoooococoooococoooooocooooc +
| Updated 3 partition(s) and 1 columm(s). |
feccoocococcoococococoocococooococooooococooooc +

Complex type consider ations:

Currently, the statistics created by the COVPUTE STATS statement do not include information about complex type
columns. The column stats metrics for complex columns are always shown as-1. For queries involving complex type
columns, Impala uses heuristics to estimate the data distribution within such columns.

HBase consider ations:

COMPUTE STATS works for HBase tables also. The statistics gathered for HBase tables are somewhat different
than for HDFS-backed tables, but that metadatais still used for optimization when HBase tables are involved in join
queries.

Amazon S3 consider ations;

COMPUTE STATS aso works for tables where data resides in the Amazon Simple Storage Service (S3). See Using
Impala with Amazon S3 Object Store on page 769 for details.

Performance consider ations:

The statistics collected by COMPUTE STATS are used to optimize join queries | NSERT operations into Parquet
tables, and other resource-intensive kinds of SQL statements. See Table and Column Statistics on page 625 for
details.

For large tables, the COVPUTE STATS statement itself might take along time and you might need to tuneits
performance. The COMPUTE STATS statement does not work with the EXPLAI N statement, or the SUMVARY
command ini npal a- shel | . You can use the PROFI LE statement ini npal a- shel | to examinetiming
information for the statement as awhole. If abasic COVPUTE STATS statement takes along time for a partitioned
table, consider switching to the COMPUTE | NCREMENTAL STATS syntax so that only newly added partitions are
analyzed each time.

Examples:

This example shows two tables, T1 and T2, with asmall number distinct values linked by a parent-child relationship
between T1. | Dand T2. PARENT. T1 istiny, while T2 has approximately 100K rows. Initially, the statistics
includes physical measurements such as the number of files, the total size, and size measurements for fixed-length
columns such aswith the | NT type. Unknown values are represented by -1. After running COVPUTE STATS for
each table, much more information is available through the SHOW STATS statements. If you were running ajoin
query involving both of these tables, you would need statistics for both tables to get the most effective optimization
for the query.

[l ocal host:21000] > show table stats t1;

Query: show table stats t1

fecooooc feccoococac e ccooc feccoococac +
| #Rows | #Files | Size | Format |
fooocoooc fooocooooc dhoccooc fooocooooc +
| -1 | 1 | 33B | TEXT |
Focoocooe Fococococ Focococ Fococococ +

Returned 1 row(s) in 0.02s
[l ocal host:21000] > show table stats t2;
Query: show table stats t2

Feoccooas Fococoooc Focococoooc Fococoooc +
| #Rows | #Files | Size | Format |
Foococooc Fooocooooe Foocoocoooc Fooocooooe +
| -1 | 28 | 960.00KB | TEXT |
H--m - H- - - - C T H- - - - +

Returned 1 row(s) in 0.01s
[l ocal host:21000] > show columm stats t1;
Query: show colunn stats t1l

Fococococ Fococococ Focococococococoococ Fococococ
| Colum | Type | #Distinct Values | #Nulls |
deemaaoo deemaaoo- e deemaaoo
| id | I'NT | -1 | -1
| s | STRRNG | -1 | -1
fooococoooc fooococoooc focococoococococooccoocos fooococoooc

Returned 2 row(s) in 1.71s
[l ocal host:21000] > show colum stats t2;
Query: show colum stats t2

Fo oo oo oS S S oo
| Columm | Type | #Distinct Values | #Nulls |
fooococoooc fooococoooc focococoococococooccoocos fooococoooc
| parent | INT | -1 | -1
| s | STRRNG | -1 | -1
deemaaoo deemaaoo e deemaaoo

Returned 2 row(s) in 0.01s
[l ocal host:21000] > conpute stats t1;
Query: conpute stats t1l

o o e o

Returned 1 row(s) in 5.30s
[l ocal host:21000] > show table stats t1;
Query: show table stats t1

fecooooc feccoococac e ccooc feccoococac +
| #Rows | #Files | Size | Fornmat |
fooocoooc fooocooooc dhoccooc fooocooooc +
| 3 | 1 | 33B | TEXT |
Focoocooe Fococococ Focococ Fococococ +

Returned 1 row(s) in 0.01s
[l ocal host:21000] > show colum stats t1;
Query: show colum stats t1

Fococoooc Fococoooc Focococococococoooc Fococoooc
| Columm | Type | #Distinct Values | #Nulls |
Fooocooooe Fooocooooe Fooccocococooocoooooooe Fooocooooe
| id | I'NT | 3 | -1
| s | STRING| 3 | -1
CT CT N N CT

Returned 2 row(s) in 0.02s
[l ocal host:21000] > conpute stats t2;
Query: compute stats t2

B

| Updated 1 partition(s) and 2 col um(s).

| Impala SQL Language Reference | 236

---------- +
Avg Size |
---------- +
A I
-1 |
---------- +
---------- +
Avg Size |
---------- +
4 |
-1 |
---------- +
---------- +
Avg Size |
---------- +
4 |
-1 |
---------- +

| Impala SQL Language Reference | 237

Returned 1 row(s) in 5.70s
[l ocal host:21000] > show table stats t2;
Query: show table stats t2

foocoooc fooococoooc feoococooccoac fooococoooc +
| #Rows | #Files | Size | Format |
emmaaa- R demmemeea R +
| 98304 | 1 | 960.00KB | TEXT |
ool oo S S oo +

Returned 1 row(s) in 0.03s
[l ocal host:21000] > show colum stats t2;
Query: show colum stats t2

focccoooc focccoooc focccccccccccooooac focccoooc foccccooooc foccccooooc +
| Columm | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
foccccoac foccccoac focccccccccccccooac foccccoac foccccccoac foccccccoac +
| parent | INT | 3 | -1 4 | 4

| s | STRRNG| 6 | -1 | 14 | 9.3 |
Fomm e e Fomm e e dococcococcooccooccoooos Fomm e e Poococcoococooc Poococcoococooc +

Returned 2 row(s) in 0.01s

The following example shows how to use the | NCREMENTAL clause, availablein Impala2.1.0 and higher. The
COVPUTE | NCREMENTAL STATS syntax lets you collect statistics for newly added or changed partitions, without
rescanning the entire table.

-- Initially the table has no increnental stats, as indicated
-- 'false' under Increnental stats.
show table stats itempartitioned;

feococococcooccooc foocoooc fooococoooc feoococooccoac feococococcooccooas feoococooooc
e

| i _category | #Rows | #Files | Size | Bytes Cached | Format |

I ncrenental stats

focccosccoscec foocooos feocococac fosccosccos fosccosccoscoos focccoocec

o e e e e e e e e e e ==

| Books | -1 | 1 | 223.74KB | NOT CACHED | PARQUET | fal se
| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | fal se
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | fal se
| Home | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | false
| Jewelry | -1 | 1 | 223.72KB | NOT CACHED | PARQUET | fal se
| Men | -1 | 1 | 231.25KB | NOT CACHED | PARQUET | fal se
| Misic | -1 | 1 | 237.90KB | NOT CACHED | PARQUET | fal se
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | fal se
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Wonen | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | fal se
| Total | -1 | 10 | 2.25MB | OB [[
feccocoococoooooc fooocoooc fooocooooc fesccocoooooc feccoccccooccooas feocococooooc
o e e e e e e e e e e e e ==

-- After the first COVPUTE | NCREMENTAL STATS,
-- all partitions have stats. The first

-- COWPUTE | NCREMENTAL STATS scans the whol e
-- table, discarding any previous stats from
-- a traditional COWPUTE STATS statenent.
conmpute increnmental stats itempartitioned;

fooccoscccocccocccocccoccoocccooocosocooooos +
| summary |
fooccoocccocccocccocccocccocccocooosooooooos +

| Updated 10 partition(s) and 21 columm(s). |
fcoccocococcooccooccoccoocooccocooocoocoocoocoooos +

show table stats itempartiti oned;

focccosccoscas foococos feocoocac fooccoscoos focccosccoscoos focccoscas
B,

| i _category | #Rows | #Files | Size | Bytes Cached | Format |

I ncrenental stats

focococoooooooc Fome oo e foococoooooc fococooocooooooc
o e e e e e e e e e aoo -

| Books | 1733 | 1 | 223.74KB | NOT CACHED

| Children | 1786 | 1 | 230.05KB | NOT CACHED

| Electronics | 1812 | 1 | 232.67KB | NOT CACHED

| Hone | 1807 | 1 | 232.56KB | NOT CACHED

| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED

| Men | 1811 | 1 | 231.25KB | NOT CACHED

| Music | 1860 | 1 | 237.90KB | NOT CACHED

| Shoes | 1835 | 1 | 234.90KB | NOT CACHED

| Sports | 1783 | 1 | 227.97KB | NOT CACHED

| Wnen | 1790 | 1 | 226.27KB | NOT CACHED

| Total | 17957 | 10 | 2.25MB | OB

T cocococoooooooc Fome oo Fomee e T coocoooooc T cococoocooooooe
o o e e e e e e e oo

-- Add a new partition...

| Impala SQL Language Reference | 238

PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
I

alter table itempartitioned add partition (i_category="'Canping');

-- Add or replace files in HDFS outside of Inpala,
-- rendering the stats for a partition obsol ete.
linport data into_sports _partition.sh

refresh itempartitioned;

drop incremnent al

-- Now sone partitions have increnental stats

-- and sone do not.

show table stats item partitioned

S SIS S oo oo CES S S S S

o e e e e e e e e e e ==

| i _category | #Rows | #Files | Size | Bytes Cached
Increnental stats

dommemeeaeaaas emmaaa eemeaaa- dommemeea demmeemeaeaaas

B,

| Books | 1733 | 1 | 223.74KB | NOT CACHED

| Canping | -1 | 1 | 408.02KB | NOT CACHED

| Children | 1786 | 1 | 230. 05KB | NOT CACHED

| Electronics | 1812 | 1 | 232.67KB | NOT CACHED

| Hone | 1807 | 1 | 232.56KB | NOT CACHED

| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED

| Men | 1811 | 1 | 231.25KB | NOT CACHED

| Music | 1860 | 1 | 237.90KB | NOT CACHED

| Shoes | 1835 | 1 | 234.90KB | NOT CACHED

| Sports | -1 | 1 | 227.97KB | NOT CACHED

| Wonen | 1790 | 1 | 226.27KB | NOT CACHED

| Total | 17957 | 11 | 2.65MB | OB

SRS S S ool oo S S S S

o e e e e e e e e e e ==

-- After another COVPUTE | NCREMENTAL STATS,

-- all partitions have incremental stats, and only the 2

-- partitions without incremental stats were scanned.

conpute increnental stats itempartitioned;

ecccoococoococooccooccoccoocoocoooocooocoocoooooos +

| sunmary |

FocococococococoCcoCoCoCoOCOCoOCoOCoOCoOCoOCoCoooC +

| Updated 2 partition(s) and 21 colum(s). |

e +

show table stats itempartitioned;

feccocoococoooooc fooocoooc fooocooooc fesccocoooooc feccoccccooccooas

o e e e e e e e e e e e e ==

| i _category | #Rows | #Files | Size | Bytes Cached |
I ncrenental stats

demmmmmaaaaos demmaoo- R E E

o e e e e e e e e e e e e - -

| Books | 1733 | 1 | 223.74KB | NOT CACHED

stats itempartitioned partition (i_category=" Sports');

Format |
PARQUET | true
PARQUET | fal se
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | true
PARQUET | fal se
PARQUET | true
I
Format |
PARQUET | true

| Impala SQL Language Reference | 239

| Canping | 5328 | 1 | 408.02KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Wonen | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | OB | |

Fococcoccoccooooe Focoocooe Fococococ Focococococ Focococococoococ Fococooooe

File format consider ations:

The COVPUTE STATS statement works with tables created with any of the file formats supported by Impala. See
How Impala Works with Hadoop File Formats on page 695 for details about working with the different file
formats. The following considerations apply to COMPUTE STATS depending on the file format of the table.

The COVPUTE STATS statement works with text tables with no restrictions. These tables can be created through
either Impala or Hive.

The COVPUTE STATS statement works with Parquet tables. These tables can be created through either Impala or
Hive.

The COVPUTE STATS statement works with Avro tables without restriction in Impala 2.2 and higher. In earlier
releases, COMPUTE STATS worked only for Avro tables created through Hive, and required the CREATE TABLE
statement to use SQL -style column names and types rather than an Avro-style schema specification.

The COVPUTE STATS statement works with RCFile tables with no restrictions. These tables can be created through
either Impala or Hive.

The COVPUTE STATS statement works with SegquenceFile tables with no restrictions. These tables can be created
through either Impala or Hive.

The COVPUTE STATS statement works with partitioned tables, whether all the partitions use the same file format, or
some partitions are defined through ALTER TABLE to use different file formats.

Statement type: DDL

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COVWPUTE STATS) can be
cancelled during some stages, when running | NSERT or SELECT operations internally. To cancel this statement, use
Ctrl-C from thei npal a- shel | interpreter, the Cancel button from the Watch page in Hue, or Cancel from the list
of in-flight queries (for a particular node) on the Queriestab in the Impalaweb Ul (port 25000).

Restrictions:

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column and recorded
that figure in the metastore database. Because Impala does not currently use the NULL count during query planning,
Impala 1.4.0 and higher speeds up the COMPUTE STATS statement by skipping this NULL counting.

Internal details:

Behind the scenes, the COMPUTE STATS statement executes two statements: one to count the rows of each
partition in the table (or the entire table if unpartitioned) through the COUNT(*) function, and another to count the
approximate number of distinct values in each column through the NDV() function. Y ou might see these queriesin
your monitoring and diagnostic displays. The same factors that affect the performance, scalability, and execution of
other queries (such as parallel execution, memory usage, admission control, and timeouts) also apply to the queries
run by the COMPUTE STATS statement.

HDFS per missions:

The user ID that thei npal ad daemon runs under, typicaly thei npal a user, must have read permission for all
affected filesin the source directory: al filesin the case of an unpartitioned table or a partitioned table in the case of

| Impala SQL Language Reference | 240

COMPUTE STATS; or al thefilesin partitions without incremental statsin the case of COVPUTE | NCREMENTAL
STATS. It must also have read and execute permissions for all relevant directories holding the datafiles. (Essentially,
COVMPUTE STATS requires the same permissions as the underlying SELECT queriesit runs against the table.)

Kudu consider ations:

The COVPUTE STATS statement applies to Kudu tables. Impala only computes the number of rows for the whole
Kudu table, partition level row counts are not available.

Related information:

DROP STATS Statement on page 284, SHOW TABLE STATS Satement on page 406, SHOW COLUMN STATS
Satement on page 408, Table and Column Satistics on page 625

CREATE DATABASE Statement
Creates a new database.
In Impala, a database is both:

* Alogical construct for grouping together related tables, views, and functions within their own namespace. Y ou
might use a separate database for each application, set of related tables, or round of experimentation.

» A physical construct represented by a directory treein HDFS. Tables (internal tables), partitions, and data files
are dl located under this directory. Y ou can perform HDFS-level operations such as backing it up and measuring
space usage, or remove it with a DROP DATABASE statement.

Syntax:

CREATE (DATABASE| SCHEMA) [I F NOT EXI STS] dat abase_nane[COMVENT
' dat abase_conment ' |
[LOCATI ON hdf s_pat h] ;

Statement type: DDL
Usage notes:

A database is physically represented as a directory in HDFS, with a filename extension . db, under the main Impala
data directory. If the associated HDFS directory does not exist, it is created for you. All databases and their associated
directories are top-level objects, with no physical or logical nesting.

After creating a database, to make it the current database withinani npal a- shel | session, use the USE statement.
You can refer to tables in the current database without prepending any qualifier to their names.

When you first connect to Impalathrough i npal a- shel | , the database you start in (before issuing any CREATE
DATABASE or USE statements) isnamed def aul t .

Impalaincludes another predefined database, i nmpal a_bui | ti ns, that serves as the location for the built-in
functions. To see the built-in functions, use a statement like the following:

show functions in _inpala_builtins;
show functions in _inpala_builtins |ike '*substring*';

After creating adatabase, your i nmpal a- shel | session or another i nmpal a- shel | connected to the same node
can immediately access that database. To access the database through the Impala daemon on a different node, issue
thel NVALI DATE METADATA statement first while connected to that other node.

Setting the LOCATI ON attribute for a new database is a way to work with sets of filesin an HDFS directory structure
outside the default Impala data directory, as opposed to setting the LOCATI ON attribute for each individual table.

If you connect to different Impala nodes within ani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 393 for details.

Hive consider ations:

| Impala SQL Language Reference | 241

When you create a database in Impala, the database can also be used by Hive. When you create a database in Hive,
issuean | NVALI DATE METADATA statement in Impalato make Impala permanently aware of the new database.

The SHOW DATABASES statement lists all databases, or the databases whose name matches awildcard pattern.
In Impala 2.5 and higher, the SHOW DATABASES output includes a second column that displays the associated
comment, if any, for each database.

Amazon S3 consider ations:

To specify that any tables created within a database reside on the Amazon S3 system, you can includeans3a: / /
prefix on the LOCATI ON attribute. In Impala 2.6 and higher, Impala automatically creates any required folders as the
databases, tables, and partitions are created, and removes them when they are dropped.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD| DROP] PARTI TI ON can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
Amazon S3 Object Store on page 769 for details about reading and writing S3 data with Impala.

Cancellation: Cannot be cancelled.
HDFS permissions:

The user ID that thei npal ad daemon runs under, typicaly thei npal a user, must have write permission for the
parent HDFS directory under which the database is located.

Examples:

create database first_db;
use first_db;
create table t1 (x int);

create dat abase second_db;

use second_db;

-- Each dat abase has its own nanmespace for tables.

-- You can reuse the sanme table nanmes in each database.
create table t1 (s string);

creat e database tenp;

-- You can either USE a database after creating it,

-- or qualify all references to the table name with the name of the
dat abase.

-- Here, tables T2 and T3 are both created in the TEMP dat abase.

create table temp.t2 (x int, y int);
use dat abase tenp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statenent.
drop dat abase tenp;
ERROR: Anal ysi sException: Cannot drop current default database: tenp

-- The always-avail abl e database 'default' is a convenient one to USE
-- before droppi ng a database you creat ed.
use default;

-- Before dropping a database, first drop all the tables inside it,

-- or in Inmpala 2.3 and hi gher use the CASCADE cl ause.

drop dat abase tenp;

ERROR: | npal aRunt i neException: Error naking 'dropDatabase’ RPC to Hive
Met ast or e:

CAUSED BY: | nvalidOperationException: Database tenp is not enpty

show tables in tenp;

| Impala SQL Language Reference | 242

R — +
| nane |
foccooc +
| t3 |
occooc +

-- Inpala 2.3 and hi gher:
drop dat abase tenp cascade;

-- Earlier rel eases:
drop table tenp.t3;
drop dat abase tenp;

Related information:

Overview of Impala Databases on page 203, DROP DATABASE Satement on page 280, USE Satement on
page 421, SHOW DATABASES on page 401, Overview of Impala Tables on page 206

CREATE FUNCTION Statement

Creates a user-defined function (UDF), which you can use to implement custom logic during SELECT or | NSERT
operations.

Syntax:

The syntax is different depending on whether you create a scalar UDF, which is called once for each row and
implemented by a single function, or a user-defined aggregate function (UDA), which isimplemented by multiple
functions that compute intermediate results across sets of rows.

In Impala 2.5 and higher, the syntax is also different for creating or dropping scalar Java-based UDFs. The statements
for Java UDFs use a new syntax, without any argument types or return type specified. Java-based UDFs created using
the new syntax persist across restarts of the Impala catalog server, and can be shared transparently between Impala
and Hive.

To create a persistent scalar C++ UDF with CREATE FUNCTI ON:

CREATE FUNCTI ON [I F NOT EXI STS]
[db_nane.] function_name([arg_type[, arg_type...])
RETURNS return_type
LOCATI ON ' hdfs_path_to_dot _so'
SYMBOL=' synbol _nane'

To create a persistent Java UDF with CREATE FUNCTI ON:

CREATE FUNCTION [I F NOT EXI STS] [db_nane.]function_nane
LOCATI ON ' hdfs_path_to jar'
SYMBOL=' cl ass_nane'

To create a persistent UDA, which must be written in C++, issue a CREATE AGGREGATE FUNCTI ON statement:

CREATE [AGGREGATE] FUNCTI ON [I F NOT EXI STS]
[db_nane.]function_name([arg_type[, arg_type...])
RETURNS return_type
[I NTERMVEDI ATE t ype_spec]
LOCATI ON ' hdf s_pat h'
[I'NI T_FEN=' function]
UPDATE_FN=' functi on
MERGE_FN=' functi on
[PREPARE_FN=' f uncti on]
[CLOSEFNE' functi on]
[SERI ALI ZE_FN=' f uncti on]
[FI NALI ZE_FN=' f uncti on]

| Impala SQL Language Reference | 243

Statement type: DDL

Varargs notation:

Note:

Variable-length argument lists are supported for C++ UDFs, but currently not for Java UDFs.
If the underlying implementation of your function accepts a variable number of arguments:

* Thevariable arguments must go last in the argument list.

e Thevariable arguments must al be of the same type.

e You must include at least one instance of the variable argumentsin every function call invoked from SQL.

* You designate the variable portion of the argument list in the CREATE FUNCTI ON statement by including . . .
immediately after the type name of the first variable argument. For example, to create a function that accepts
an | NT argument, followed by a BOOLEAN, followed by one or more STRI NG arguments, your CREATE
FUNCTI ON statement would look like:

CREATE FUNCTI ON func_name (I NT, BOOLEAN, STRING ...)
RETURNS type LOCATION ' path' SYMBOL='entry_point';

See Variable-Length Argument Lists on page 595 for how to code a C++ UDF to accept variable-length argument
lists.

Scalar and aggr egate functions:

The simplest kind of user-defined function returns a single scalar value each timeit is called, typically once for

each row in the result set. This general kind of function is what is usually meant by UDF. User-defined aggregate
functions (UDAS) are a specialized kind of UDF that produce a single value based on the contents of multiple rows.
Y ou usually use UDAs in combination with a GROUP BY clause to condense alarge result set into a smaller one, or
even a single row summarizing column values across an entire table.

Y ou create UDASs by using the CREATE AGGREGATE FUNCTI ONsyntax. The clauses| NI T_FN, UPDATE_FN,
MERGE_FN, SERI ALI ZE_FN, FI NALI ZE_FN, and | NTERMEDI ATE only apply when you create a UDA rather
than a scalar UDF.

The* _FN clauses specify functionsto call at different phases of function processing.

e Initialize: The function you specify withthel NI T_FN clause does any initial setup, such asinitializing member
variablesin interna data structures. This function is often a stub for simple UDAS. Y ou can omit this clause and a
default (no-op) function will be used.

« Update: The function you specify with the UPDATE_FN clauseis called once for each row in the original result
set, that is, before any GROUP BY clauseis applied. A separate instance of the function is called for each different
value returned by the GROUP BY clause. The final argument passed to this function is a pointer, to which you
write an updated value based on its original value and the value of the first argument.

e Merge: Thefunction you specify with the MERGE_FN clauseis called an arbitrary number of times, to combine
intermediate values produced by different nodes or different threads as Impala reads and processes datafilesin
parallel. Thefinal argument passed to this function is a pointer, to which you write an updated value based on its
original value and the value of the first argument.

« Serialize: The function you specify with the SERI ALI ZE_FN clause frees memory allocated to intermediate
results. It isrequired if any memory was allocated by the Allocate function in the Init, Update, or Merge functions,
or if the intermediate type contains any pointers. See the UDA code samples for details.

« Finalize: The function you specify with the FI NALI ZE_FN clause does any required teardown for resources
acquired by your UDF, such as freeing memory, closing file handles if you explicitly opened any files, and so on.
This function is often a stub for simple UDAS. Y ou can omit this clause and a default (no-op) function will be
used. It isrequired in UDAs where the final return type is different than the intermediate type. or if any memory
was allocated by the Allocate function in the Init, Update, or Merge functions. See the UDA code samples for
details.

If you use a consistent naming convention for each of the underlying functions, Impala can automatically determine
the names based on the first such clause, so the others are optional.

https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc
https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc

| Impala SQL Language Reference | 244

For end-to-end examples of UDAS, see User-Defined Functions (UDFs) on page 588.
Complex type consider ations:

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types (STRUCT, ARRAY, or
MAP).

Usage notes:
* When authorization is enabled, the CREATE FUNCTI ON statement requires:

* The CREATE privilege on the database.
e TheALL privilege on URI where URI isthe value you specified for the LOCATI ONin the CREATE
FUNCTI ON statement.

* You canwrite Impala UDFsin either C++ or Java. C++ UDFs are new to Impala, and are the recommended
format for high performance utilizing native code. Java-based UDFs are compatible between Impalaand Hive,
and are most suited to reusing existing Hive UDFs. (Impala can run Java-based Hive UDFs but not Hive UDAS.)

e Impaa 2.5 introduces UDF improvements to persistence for both C++ and Java UDFs, and better compatibility
between Impala and Hive for Java UDFs. See User-Defined Functions (UDFs) on page 588 for details.

» Thebody of the UDF isrepresented by a. so or . j ar file, which you store in HDFS and the CREATE
FUNCTI ON statement distributes to each Impala node.

» Impalacallsthe underlying code during SQL statement evaluation, as many times as needed to process al the
rows from the result set. All UDFs are assumed to be deterministic, that is, to always return the same result when
passed the same argument values. Impala might or might not skip some invocations of a UDF if the result value
isaready known from a previous call. Therefore, do not rely on the UDF being called a specific number of times,
and do not return different result values based on some external factor such asthe current time, a random number
function, or an external data source that could be updated while an Impala query isin progress.

« The names of the function argumentsin the UDF are not significant, only their number, positions, and data types.

* You can overload the same function name by creating multiple versions of the function, each with a different
argument signature. For security reasons, you cannot make a UDF with the same name as any built-in function.

* Inthe UDF code, you represent the function return result asast r uct . Thisst r uct contains 2 fields. Thefirst
fieldisabool ean representing whether the valueis NULL or not. (When thisfield ist r ue, the return valueis
interpreted as NULL.) The second field is the same type as the specified function return type, and holds the return
value when the function returns something other than NULL.

* Inthe UDF code, you represent the function arguments as an initial pointer to a UDF context structure, followed
by referencesto zero or more st r uct s, corresponding to each of the arguments. Each st r uct hasthe same 2
fields as with the return value, abool ean field representing whether the argument isNULL, and afield of the
appropriate type holding any non-NULL argument value.

» For sample code and build instructions for UDFs, see the sample UDFs in the Impala github repo.

» Because the file representing the body of the UDF is stored in HDFS, it is automatically available to all the Impala
nodes. Y ou do not need to manually copy any UDF-related files between servers.

» Because Impala currently does not have any ALTER FUNCTI ON statement, if you need to rename a function,
move it to adifferent database, or change its signature or other properties, issue aDROP FUNCTI ON statement
for the original function followed by a CREATE FUNCTI ONwith the desired properties.

» Because each UDF is associated with a particular database, either issue a USE statement before doing any
CREATE FUNCTI ON statements, or specify the name of the function asdb_nane. f uncti on_nane.

If you connect to different Impala nodeswithinani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 393 for details.
Compatibility:

Impala can run UDFs that were created through Hive, aslong as they refer to Impala-compatible data types (not
composite or nested column types). Hive can run Java-based UDFs that were created through Impala, but not Impala
UDFswritten in C++.

TheHivecurrent _user () function cannot be called from a Java UDF through Impala.

| Impala SQL Language Reference | 245

Persistence:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTI ON syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTI ON syntax
do not persist across restarts because they are held in the memory of the cat al ogd daemon. Until you re-create

such Java UDFs using the new CREATE FUNCTI ON syntax, you must rel oad those Java-based UDFs by running the
original CREATE FUNCTI ON statements again each time you restart the cat al ogd daemon. Prior to Impala 2.5 the
reguirement to reload functions after arestart applied to both C++ and Java functions.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:
For additional examples of al kinds of user-defined functions, see User-Defined Functions (UDFs) on page 588.

The following example shows how to take a Java jar file and make all the functionsinside one of its classes into
UDFs under a single (overloaded) function name in Impala. Each CREATE FUNCTI ONor DROP FUNCTI ON
statement appliesto all the overloaded Java functions with the same name. This example uses the signaturel ess syntax
for CREATE FUNCTI ONand DROP FUNCTI ON, which isavailablein Impala 2.5 and higher.

At the start, the jar fileisin the local filesystem. Then it is copied into HDFS, so that it is available for Impalato
reference through the CREATE FUNCTI ON statement and queriesthat refer to the Impala function name.

$ jar -tvf udf-exanples.jar
0 Mon Feb 22 04:06: 50 PST 2016 META-| NF/
122 Mon Feb 22 04:06: 48 PST 2016 META-| NF/ MANI FEST. MF
0 Mon Feb 22 04:06: 46 PST 2016 org/
0 Mon Feb 22 04:06:46 PST 2016 org/ apache/
0 Mon Feb 22 04:06:46 PST 2016 org/ apache/i npal a/
2460 Mon Feb 22 04:06:46 PST 2016 org/ apache/i npal a/
I nconpati bl eUdf Test . cl ass
541 Mon Feb 22 04:06:46 PST 2016 org/ apache/ i npal a/ Test Udf Excepti on. cl ass
3438 Mon Feb 22 04: 06: 46 PST 2016 org/ apache/i npal a/ JavaUdf Test . cl ass
5872 Mon Feb 22 04: 06: 46 PST 2016 org/ apache/i npal a/ Test Udf . cl ass

$. hdfs df s -put udf-exanples.jar /user/inpal a/udfs
$ hdfs dfs -Is /user/inpal a/udfs
Found 2 itens

SPWF--T-- 3 jrussell supergroup 853 2015-10-09 14: 05 /user/inpal a/
udf s/ hell o_worl d.jar
STW-r--T1-- 3 jrussell supergroup 7366 2016-06- 08 14: 25 /user/inpal a/

udf s/ udf - exanpl es. j ar

Ini npal a- shel | , the CREATE FUNCTI ON refersto the HDFS path of the jar file and the fully qualified class
name inside the jar. Each of the functions inside the class becomes an Impala function, each one overloaded under the
specified Impala function name.

[l ocal host:21000] > create function testudf |ocation '/user/inpal a/udfs/udf-
exanpl es.jar' synbol =" org. apache. i npal a. Test Udf ' ;
[l ocal host:21000] > show functi ons;

feccoococooooc ccoocococcoocococooococococoocococooooocooc feccoococooooc
feccoccocoooooac +

| return type | signature | binary type | is
persi stent |

feococococcooccooc fococococcoccoccoccooccoocccocoocooocoocoooooos feococococcooccooc

| Impala SQL Language Reference | 246

| BIA NT | testudf (Bl d NT) | JAVA | true
| Bw_EAl\l | testudf (BOOLEAN) | JAVA | true
| B(I]_EAI\I | testudf(BOOLEAN, BOOLEAN) | JAVA | true
| BOO_EALI | testudf(BOOLEAN, BOOLEAN, BOOLEAN) | JAVA | true
| DOJBLEI | testudf(DOUBLE) | JAVA | true
| D(]JBLEI | testudf(DOUBLE, DOUBLE) | JAVA | true
| DOJBLEI | testudf(DOUBLE, DOUBLE, DOUBLE) | JAVA | true
| FLOO\TI | testudf (FLOAT) | JAVA | true
| FLOAT| | testudf(FLOAT, FLOAT) | JAVA | true
| FLOO\T| | testudf(FLOAT, FLOAT, FLOAT) | JAVA | true
| INT l | testudf (I NT) | JAVA | true
| D(]JBLEI | testudf(lNT, DOUBLE) | JAVA | true
| I'NT | | testudf (I NT, INT) | JAVA | true
| INT l | testudf (I NT, INT, INT) | JAVA | true
| SI\/ALLI!\IT | testudf(SMALLI NT) | JAVA | true
| SMALLIINT | testudf(SMALLI NT, SMALLI NT) | JAVA | true
| SMALLII\IT | testudf(SMALLI NT, SMALLINT, SMALLINT) | JAVA | true
| STRI NGI | testudf(STRI NG | JAVA | true
| STRI NGI | testudf(STRING STRING | JAVA | true
| STRI NG| | testudf(STRING STRING STRI NG | JAVA | true
| TINYINlI' | testudf(TINYINT) | JAVA | true
+| ----- focccccccccccccccccccocooocoocooooooooooooe focccccccoooac
foccccccccccooac +

These are all simple functionsthat return their single arguments, or sum, concatenate, and so on their multiple
arguments. Impala determines which overloaded function to use based on the number and types of the arguments.

insert into bigint_x values (1), (2), (4), (3);
sel ect testudf(x) from bigint_x;

Fococcoccoccoccoocooooe +
| udfs.testudf(x) |
feccoccocooocosooc +
| 1 I
| 2 |
| 4 |
| 3 |
feccoccocooocosooc +

insert into int_x values (1), (2), (4), (3);
sel ect testudf(x, x+1, x*x) fromint x;

| Impala SQL Language Reference | 247

feccocococooccoocooos +
| udfs.testudf(x) |
Fococcoccoccoccoocooooe +

| one |

| two I

| four |

| three [
focococococooccooocoacs +

sel ect testudf(x,x) fromstring x;
o memeeeeeeiaaaos +

| udfs.testudf(x, x) |

TS SEAE S S S A S S +

| oneone [

| twotwo |

| fourfour |

| threethree [
e +

The previous exampl e used the same Impala function name as the name of the class. This example shows how the
Impalafunction nameis independent of the underlying Java class or function names. A second CREATE FUNCTI ON
statement resultsin a set of overloaded functions all named my _f unc, to go along with the overloaded functions all
named t est udf .

create function nmy_func location '/user/inpal a/udfs/udf-exanples.jar'
synbol =" or g. apache. i npal a. Test Udf ' ;

show functi ons;

feccoococooooc feccoocococcoocococcoocococcoocococoooococooc feccoococooooc

feccoccocoooooac +

| return type | signature | binary type | is

persi stent |

Fococcoccoccooooe FocococococococoocococoocoCcoCooooooooooooo Fococcoccoccooooe

feccoccocooooooc +

| BIGA NT | my_func(BlI A NT) | JAVA | true
I

| BOOLEAN | my_func(BOOLEAN) | JAVA | true
I

| BOOLEAN | ny_func(BOOLEAN, BOOLEAN) | JAVA | true
I

| BIG NT | testudf (Bl G NT) | JAVA | true
I

| BOOLEAN | testudf(BOOLEAN) | JAVA | true
I

| BOOLEAN | testudf (BOOLEAN, BOOLEAN) | JAVA | true

The corresponding DROP FUNCTI ON statement with no signature drops all the overloaded functions with that name.

drop function ny_func;

| Impala SQL Language Reference | 248

show functi ons;

feccoococooooc feccoocococcoocococcoocococcoocococoooococooc feccoococooooc

feccoccocoooooac +

| return type | signature | binary type | is

persi stent |

Fococcoccoccooooe FocococococococoocococoocoCcoCooooooooooooo Fococcoccoccooooe

feccoccocooooooc +

| BIGA NT | testudf (Bl d NT) | JAVA | true
I

| BOOLEAN | testudf(BOOLEAN) | JAVA | true
|

| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true

The signatureless CREATE FUNCTI ON syntax for Java UDFs ensures that the functions shown in this example
remain available after the Impala service (specifically, the Catalog Server) are restarted.

Related information:

User-Defined Functions (UDFs) on page 588 for more background information, usage instructions, and examples
for Impala UDFs; DROP FUNCTION Satement on page 282

CREATE ROLE Statement (Impala 2.0 or higher only)

The CREATE ROLE statement creates arole to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to users. A user that has been assigned arole will only be able to exercise the privileges of
that role. Only users that have administrative privileges can create/drop roles.

Syntax:
CREATE ROLE rol e_nane

Required privileges:
Only administrative users for Ranger can use this statement.
Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive
makes use of any roles and privileges specified by the GRANT and REVOKE statementsin Impala.

Cancdllation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Impala Authorization on page 83, GRANT Statement (Impala 2.0 or higher only) on page 294, REVOKE

Satement (Impala 2.0 or higher only) on page 315, DROP ROLE Satement (Impala 2.0 or higher only) on page
284, SHOW Statement on page 395

CREATE TABLE Statement
Creates a new table and specifiesits characteristics. While creating a table, you optionally specify aspects such as:

* Whether thetableisinterna or external.

e The columns and associated data types.

* The columns used for physically partitioning the data.
e Thefileformat for datafiles.

» TheHDFSdirectory where the data files are located.

Syntax:

| Impala SQL Language Reference | 249

The general syntax for creating a table and specifying its columnsis as follows:

Explicit column definitions:

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
(col _nane data_type
[constrai nt _specification]
[COMMENT ' col comment']
[, ...]

)
[PARTI TI ONED BY (col _nane data_type [COMVENT 'col _conment'], ...)]
[SORT BY ([colum [, colum ...]]1)]

[COMMENT 't abl e _conment ']

[ROW FORMAT row_f or nat |

[WTH SERDEPROPERTI ES (' keyl' =" val uel', 'key2' ='value2', ...)]

[STORED AS file_format]

[LOCATI ON ' hdf s_pat h']

[CACHED I N ' pool _nane' [WTH REPLI CATI ON = integer] | UNCACHED]

[TBLPROPERTI ES (' keyl' ='val uel', 'key2'='val ue2',)]

CREATE TABLE ASSELECT:

CREATE [EXTERNAL] TABLE [I F NOT EXI STS] db_nane.]t abl e _name
[PARTI TI ONED BY (col _name[, ...])]
[SORT BY ([colum [, colum ...]])]
[COMMENT 't abl e_conment ']
[ROW FORVAT row_f or mat]
[WTH SERDEPROPERTI ES (' keyl' ="' val uel', 'key2' ='value2', ...)]
[STORED AS ctas file fornmat]
[LOCATI ON ' hdf s_pat h']
[CACHED I N ' pool nanme' [WTH REPLI CATION = integer] | UNCACHED]
[TBLPROPERTI ES (' keyl' ="' val uel', 'key2' ='value2', ...)]
AS
sel ect _st at enent

primtive_ type:
TI NYI NT

| SMALLI NT

| I'NT

| BIGA NT

| BOOLEAN

| FLOAT

| DOUBLE

| DECI MAL

| STRI NG

| CHAR

| VARCHAR

| TI MESTAWP

conpl ex_type:
struct _type
| array_type

| map_type

struct _type: STRUCT < nane : primtive_or_conplex_type [COUWENT
‘comment _string'], ... >

array_type: ARRAY < primtive_or_conpl ex_type >

map_type: MAP < prinmitive type, primtive or_conplex type >

| Impala SQL Language Reference | 250

constrai nt _specification:
PRI MARY KEY (col _nane, ...) [DI SABLE] [NOVALIDATE] [RELY],
[foreign_key specification,

forei gn_key_specification:
FORElI GN KEY (col name, ...) REFERENCES table _nane(col nane, ...) [Dl SABLE]
[NOVALI DATE] [RELY]

row format:
DELI M TED [FI ELDS TERM NATED BY ' char' [ESCAPED BY 'char']]
[LI NES TERM NATED BY ' char']

file format:
PARQUET
| TEXTFI LE
| AVRO
| SEQUENCEFI LE
| RCFILE

ctas_file_format:
PARQUET
| TEXTFILE

Column definitionsinferred from datafile:

CREATE [EXTERNAL] TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
LI KE PARQUET ' hdf s_pat h_of parquet _file'
[PARTI TI ONED BY (col _nane data_type [COMVENT 'col _conment'], ...)]
[SORT BY ([colum [, colum ...]])]
[COMMENT 't abl e _conment']
[ROW FORMAT row_f or nat |
[WTH SERDEPROPERTI ES (' keyl' =" val uel', 'key2' ='value2', ...)]
[STORED AS file_format]
[LOCATI ON ' hdf s_pat h']
[CACHED I N ' pool _nane' [W TH REPLI CATI ON = integer] | UNCACHED]
[TBLPROPERTI ES (' keyl' ='val uel', 'key2'="value2', ...)]
dat a_type:
primtive_type
| array_type
| nmap_type
| struct _type

Internal Kudu tables:

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
(col _nane data_type
[kudu_columm_attri bute ...]
[COMMENT ' col _comment']

{i:’Ri iviA]RY KEY (col _nane[, ...])]

)

[PARTI TI ON BY kudu_partition_cl ause]

[COMMENT 't abl e_conment ']

STORED AS KUDU

[TBLPROPERTI ES (' keyl' ="' val uel', 'key2' ='value2', ...)]

Kudu column attributes:

PRI MARY KEY
| [NOT] NULL
| ENCODI NG codec

| Impala SQL Language Reference | 251

| COWPRESSI ON al gorithm
| DEFAULT const ant
| BLOCK SI ZE nunber

kudu_partition_clause:

kudu_partition_clause ::=[hash_clause [, ...]] [, range_cl ause]
hash_cl ause ::=
HASH [(pk_col [, ...])]
PARTI TI ONS n

range_cl ause ::=
RANGE [(pk_col [, ...]1) 1]

PARTI TI ON const ant _expr essi on range_conpari son_oper at or
VALUES r ange_conpari son_oper at or constant _expressi on
| PARTITI ON VALUE = const ant _expressi on_or_tuple

}
[, ...]
)

range_conpari son_operator ::={ < | <=1}

External Kudu tables:

In Impala 3.4 and earlier, you can create an external Kudu table based on a pre-existing Kudu schema using the table
property ' kudu. t abl e_nane' =' i nt ernal _kudu_nane' .

CREATE EXTERNAL TABLE [I F NOT EXI STS] [db_nane.]tabl e_name
[COMMENT ' col _comment']
STORED AS KUDU
[TBLPROPERTI ES (' kudu. t abl e. nanme' =" i nt er nal _kudu_nane',
"keyl' ='valuel',...)]

Alternatively, in Impala 3.4 and higher, you can also create an external Kudu table as follows:

CREATE EXTERNAL TABLE [IF NOT EXI STS] [db_nane.]tabl e _nane
(col _nane data_type
[kudu_columm_attri bute ...]
[COMMENT ' col _comment']

{bRiNALY KEY (col _name[, ...])]

)

[PARTI TI ON BY kudu_partition_cl ause]

[COMMENT 't abl e_conment ']

STORED AS KUDU

[TBLPROPERTI ES (' external .tabl e. purge' =" true', 'keyl' ='valuel ,...)]

* UseaHive metastore (HMS) 3 or later.

« Provide column specifications to define the schema when you create the table, similar to creating an internal table.
* Omitthekudu. t abl e_nane table property asthereis no pre-existing schema.

* Includetherequired ext er nal . t abl e. pur ge property.

Only the schema metadatais stored in HM S when you create an external table; however, using this create table
syntax, drop table on the Kudu external table deletes the data stored outside HM S in Kudu as well as the metadata
(schema) inside HMS. Likewise, renaming the table changes the name of the table in HM S and in Kudu. Kudu
synchronizes changes to the actual data and metadata; consequently, operations such as dropping atable or atering a
table name simulate internal table operations.

| Impala SQL Language Reference | 252

CREATE TABLE ASSELECT for Kudu tables:

CREATE TABLE [I F NOT EXI STS] db_nane.]tabl e_nane

[PRI MARY KEY (col _name[, ...])]

[PARTI TI ON BY kudu_partition_cl ause]

[COMMENT 't abl e _conment"']

STORED AS KUDU

[TBLPROPERTI ES (' keyl' ='val uel', 'key2'='"value2', ...)]
AS

sel ect _st at enent

Statement type: DDL
Column definitions:

Depending on the form of the CREATE TABLE statement, the column definitions are required or not allowed.

Withthe CREATE TABLE AS SELECT and CREATE TABLE LI KE syntax, you do not specify the columns at
all; the column names and types are derived from the source table, query, or datafile.

With the basic CREATE TABLE syntax, you must list one or more columns, its name, type, optionally constraints,
and optionally a comment, in addition to any columns used as partitioning keys. There is one exception where the
column list is not required: when creating an Avro table with the STORED AS AVROclause, you can omit the list of
columns and specify the same metadata as part of the TBLPROPERTI ES clause.

Constraints:

Constraints are advisory and intended for estimating cardinality during query planning in afuture release; thereis no
attempt to enforce constraints. Add primary and foreign key information after column definitions. Do not include a
constraint name; the constraint name is generated internally as a UUID. The following constraint states are supported:

 DISABLE
« NOVALIDATE
* RELY

The ENABLE, VALIDATE, and NORELY options are not supported. The foreign key must be defined as the
primary key in the referenced table.

Constraint examples:

CREATE TABLE pk(col 1 INT, col 2 STRING, PRI MARY KEY(col 1, col 2));

CREATE TABLE fk(id INT, coll INT, col2 STRING PRI MARY KEY(id),
FORElI GN KEY(col 1, col 2) REFERENCES pk(col 1, col 2));

CREATE TABLE pk(id INT, PRI MARY KEY(id) DI SABLE, NOVALI DATE, RELY);

CREATE TABLE fk(id INT, coll INT, col2 STRING PRI MARY KEY(id),
FORElI GN KEY(col 1, col 2) REFERENCES pk(col 1, col 2));

Complex type consider ations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in Impala 2.3 and higher. Because you can nest
these types (for example, to make an array of maps or a struct with an array field), these types are al so sometimes
referred to as nested types. See Complex Types (Impala 2.3 or higher only) on page 142 for usage details.

Impala can create tables containing complex type columns, with any supported file format. Because currently Impala
can only query complex type columns in Parquet tables, creating tables with complex type columns and other file
formats such astext is of limited use. For example, you might create a text table including some columns with
complex types with Impala, and use Hive as part of your to ingest the nested type data and copy it to an identical
Parquet table. Or you might create a partitioned table containing complex type columns using one file format, and use

| Impala SQL Language Reference | 253

ALTER TABLE to change the file format of individual partitions to Parquet; Impala can then query only the Parquet-
format partitionsin that table.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.
Internal and external tables (EXTERNAL and LOCATION clauses):

By default, Impala creates an internal table, where Impala manages the underlying datafiles for the table, and
physically deletes the data files when you drop the table. If you specify the EXTERNAL clause, Impalatreats the
table as an “externa” table, where the datafiles are typically produced outside Impala and queried from their original
locations in HDFS, and Impala leaves the data files in place when you drop the table. For details about internal and
external tables, see Overview of Impala Tables on page 206.

Typically, for an external table you include a LOCATI ON clause to specify the path to the HDFS directory where
Impalareads and writes files for the table. For example, if your data pipeline produces Parquet filesin the HDFS
directory / user/ et |/ desti nati on, you might create an external table as follows:

CREATE EXTERNAL TABLE external _parquet (cl INT, c2 STRING c¢3 Tl MESTAMP)
STORED AS PARQUET LOCATION '/user/etl/destination';

Although the EXTERNAL and LOCATI ON clauses are often specified together, LOCATI ONis optional for external
tables, and you can aso specify LOCATI ONfor internal tables. The differenceis al about whether Impala “takes
control” of the underlying data files and moves them when you rename the table, or deletes them when you drop the
table. For more about internal and external tables and how they interact with the LOCATI ON attribute, see Overview
of Impala Tables on page 206.

Partitioned tables (PARTITIONED BY clause):

The PARTI TI ONED BY clause divides the data files based on the values from one or more specified columns.
Impala queries can use the partition metadata to minimize the amount of data that is read from disk or transmitted
across the network, particularly during join queries. For details about partitioning, see Partitioning for Impala Tables
on page 685.

Note:

All Kudu tables require partitioning, which involves different syntax than non-Kudu tables. See the PARTI TI ON BY
clause, rather than PARTI TI ONED BY, for Kudu tables.

In Impala 2.10 and higher, the PARTI TI ON BY clauseis optional for Kudu tables. If the clause is omitted, Impala
automatically constructs a single partition that is not connected to any column. Because such atable cannot take
advantage of Kudu features for parallelized queries and query optimizations, omitting the PARTI TI ON BY clauseis
only appropriate for small lookup tables.

Prior to Impala 2.5, you could use a partitioned table as the source and copy data from it, but could not specify any
partitioning clauses for the new table. In Impala 2.5 and higher, you can now use the PARTI TI ONED BY clause
with a CREATE TABLE AS SELECT statement. See the examples under the following discussion of the CREATE
TABLE AS SELECT syntax variation.

Sorted tables (SORT BY clause):

The optional SORT BY clause lets you specify zero or more columns that are sorted in ascending order in the data
files created by each Impalal NSERT or CREATE TABLE AS SELECT operation. There are two orderings to chose
from: LEXI CAL and ZORDER. The default ordering is LEXI CAL, which can be used for any number of sort columns.
ZORDER can only be used to sort more than one column.

Creating data files that are sorted is most useful for Parquet tables, where the metadata stored inside each file includes
the minimum and maximum values for each column in the file. (The statistics apply to each row group within

thefile; for smplicity, Impalawrites a single row group in each file.) Grouping data values together in relatively
narrow ranges within each data file makes it possible for Impalato quickly skip over datafiles that do not contain
value rangesindicated in the WHERE clause of a query, and can improve the effectiveness of Parquet encoding and
compression.

| Impala SQL Language Reference | 254

This clause is not applicable for Kudu tables or HBase tables. Although it works for other HDFS file formats besides
Parquet, the more efficient layout is most evident with Parquet tables, because each Parquet data file includes
statistics about the data valuesin that file.

The SORT BY columns cannot include any partition key columns for a partitioned table, because those column
values are not represented in the underlying datafiles.

Because datafiles can arrive in Impala tables by mechanisms that do not respect the SORT BY clause, such as LOAD
DATA or ETL toolsthat create HDFS files, Impala does not guarantee or rely on the data being sorted. The sorting
aspect is only used to create a more efficient layout for Parquet files generated by Impala, which helpsto optimize
the processing of those Parquet files during Impala queries. During an | NSERT or CREATE TABLE AS SELECT
operation, the sorting occurs when the SORT BY clause appliesto the destination table for the data, regardless of
whether the source table has a SORT BY clause.

For example, when creating a table intended to contain census data, you might define sort columns such as last name
and state. If adatafilein this table contains a narrow range of last names, for example from Smi t h to Snyt he,
Impala can quickly detect that this data file contains no matches for a WHERE clause such asWHERE | ast _nane =
" Jones' and avoid reading the entirefile.

CREATE TABLE census_data (last_nanme STRING first_name STRING state STRI NG
address STRI NG

SORT BY LEXI CAL (| ast_nane, state)

STORED AS PARQUET;

Likewise, if an existing table contains data without any sort order, you can reorganize the data in a more efficient way
by using | NSERT or CREATE TABLE AS SELECT to copy that datainto a new table with a SORT BY clause:

CREATE TABLE sorted census_data
SORT BY (|l ast_nane, state)
STORED AS PARQUET
AS SELECT | ast_nane, first_nane, state, address
FROM unsort ed_census_dat a;

The metadata for the SORT BY clauseis stored in the TBLPROPERTI ES fields for the table. Other SQL engines that
can interoperate with Impalatables, such as Hive and Spark SQL, do not recognize this property when inserting into a
table that hasa SORT BY clause.

Transactional tables:

In the version 3.3 and higher, when integrated with Hive 3, Impala can create, read, and insert into transactional
tables.

To create atable that supports transactions, use the TBLPROPERTI ES clause and set the' t r ansacti onal ' and
"transactional properties' ashelow. Currently, Impalaonly supportsinsert-only transactional tables.

TBLPROPERTI ES(' transactional ' ="' true',
"transactional _properties'="insert_only')

When integrated with Hive3 and the DEFAULT_TRANSACTI ONAL_TYPE query optionisset to | NSERT_ONLY,
tables are created as insert-only transactional table by default.

Transactional tables are not supported for Kudu and HBase.
Kudu considerations:

Because Kudu tables do not support clauses related to HDFS and S3 data files and partitioning mechanisms, the
syntax associated with the STORED AS KUDU clauseis shown separately in the above syntax descriptions. Kudu
tables have their own syntax for CREATE TABLE, CREATE EXTERNAL TABLE, and CREATE TABLE AS
SELECT. Prior to Impala 2.10, al internal Kudu tables require aPARTI TI ON BY clause, different than the
PARTI TI ONED BY clause for HDFS-backed tables.

| Impala SQL Language Reference | 255

Here are some examples of creating empty Kudu tables:

-- Single partition. Only for Inpala 2.10 and hi gher.
-- Only suitable for snmall | ookup tables.
CREATE TABLE kudu_no_partition_by cl ause

id bigint PRIMARY KEY, s STRING b BOOLEAN
)
STORED AS KUDU,

-- Single-colum primry key.
CREATE TABLE kudu_t1 (id BI G NT PRI MARY key, s STRING b BOOLEAN)
PARTI TI ON BY HASH (i d) PARTITI ONS 20 STORED AS KUDU,

-- Miulti-colum primary key.
CREATE TABLE kudu_t2 (id BIG NT, s STRING b BOOLEAN, PRI MARY KEY (id,s))
PARTI TI ON BY HASH (s) PARTI TI ONS 30 STORED AS KUDY,

-- Meani ngful primary key columm is good for range partitioning.
CREATE TABLE kudu_t3 (id BIG NT, year INT, s STRI NG
b BOOLEAN, PRI MARY KEY (i d, year))
PARTI TI ON BY HASH (i d) PARTITI ONS 20,
RANGE (year) (PARTITION 1980 <= VALUES < 1990,
PARTI TI ON 1990 <= VALUES < 2000,
PARTI TI ON VALUE = 2001,
PARTI TI ON 2001 < VALUES)
STORED AS KUDUY;

Hereis an example of creating an external Kudu table based on an pre-existing table identified by the table property:

-- Inherits colum definitions fromoriginal table.
-- For tables created through Inpala, the kudu.table nanme property
-- conmes from DESCRI BE FORMATTED out put fromthe original table.
CREATE EXTERNAL TABLE external t1 STORED AS KUDU

TBLPROPERTI ES (' kudu. tabl e _nane' =" kudu_tbl created via_api');

In Impala 3.4 and higher, by default HM S implicitly trandates internal Kudu tables to external Kudu tables with
the 'external .table.purge’ property set to true. Y ou can explicitly create such external Kudu tables similar to the way
you create internal Kudu tables. Y ou must set the table property ' ext er nal . t abl e. pur ge' totrue. Hereisan
example of creating an external Kudu table:

CREATE EXTERNAL TABLE nyext kudut bl (
idint PRI MARY KEY,
name string)
PARTI TI ON BY HASH PARTI TI ONS 8
STORED AS KUDU
TBLPROPERTI ES (' external .table.purge' ="true');

Operations on the resulting external table in Impala, HM S, and Kudu table metadata is synchronized. HM S-Kudu
integration does not need to be enabled for external table synchronization. Such synchronized tables behave similar to
internal tables. For example, dropping a table removes the underlying Kudu table data as well as the table metadatain
HMS.

If you want to drop only the HM S metadata and not drop the Kudu table, you can set ext er nal . t abl e. pur ge to
false, as shown