Apache Impala (incubating) Guide

| Contents | ii

Contents

Introducing Apache Impala (incubating).........ccoceeeveeivseecsseecsseecssneccsnecssnencsnee 13

IMPALA BENETILS. . ectiieiiiiiieeieeie ettt ettt et e e te e st e e teestae e beessbeesbeesssaesseessbeensaensseanseanssesnseessseeseenes 13
How Impala Works with Apache Hadoop.......ccueeiiiiiieiieiieeiece sttt eebe e b e eaeesnae e 13
Primary ImMpala FEATUIES.coiiiiiiiiieieee ettt ettt bt et et e et et e saeeneenaeas 14

Impala Concepts and ArchiteCture........eeeecvseeecssneniissneecsssnneecsssneeccssnneecssneees 14

Components of the IMPala SETVET.........ccceviiiririririie ettt ettt ettt sae e 14
The TMPala DACIINON.eeiiiieieieetieieeiete ettt ettt st et e st e e st e e e e st e teeseenseeseenteeneenseeneenneeneesseennes 14
The IMPala STALESOTE.ccuetiuiriiirtietirie ettt ettt ettt ettt sttt s sa ettt eae et eaeebe b e 15
The Impala Catalog SEIVICE........coirirriririeieieietetete ettt sttt ettt ettt sa et be s seene e 15
Developing Impala APPIICALIONS.cc.eeiueiiieieieeieiieiestteteste ettt e et e et e e et e e e eneesseeneesseenseeseensesseensesnsenseennens 16
Overview of the Impala SQL DIalECt.......cc.coiveririiriiiiniiieieieeeenere sttt 16
Overview of Impala Programming INterfaces..........c.ceccevirirerininiininincnenccteeceeeeeeeceeee e 17
How Impala Fits Into the Hadoop ECOSYSLEML........ceoiuiiiiiiieieciieeciieeeee ettt 17
How Impala Works With HIVe.........cooiiiiiieieiieese ettt s enees 17
Overview of Impala Metadata and the Metastore...........cccecveeeiriririninenenieneneneeet ettt 18
How Impala Uses HDFS.......ccocciiiiiieeeetetete ettt ettt e 18
How Impala Uses HBASE.......cccouiririiriiiiiiicieicictcteeee sttt ettt st e 18

Planning for Impala Deployment...........ccccveiiiiiveicnssnricsssnnccscnencsssnseccssansecssess 18

IMPala REQUITEIMENLS.ceivieieiiieieitieteetieteettete et esteeetestesstessessaesseessessaessessaessessaessessaenseassensesssessesssessesssessessens 18
Supported OPErating SYSEEIMS.eevverierierieieriesieetesteetesseetesseestesseessesseessesseessesssessesssessesssessesssessesnes 18
Hive Metastore and Related Configuration...........c.oceecverieriieieniieiienie et eee 19
JAVA DEPENACIICIES.ueivieiiieiieiieierie ettt e et e et e e et e te e b e sseessesseessessaessesssesseessansaesseasaensenseensenses 19
Networking Configuration REQUITCIMENLS.ccveiieriieieriieiieieieeieteeee e eesreeae e esesteessesssensesseensennns 19
Hardware REQUITEIMENLS.c.eeieriiiieriieierieeie st ete st ete et ete et esteesaesseeseesseessesseessesssessesssessesssensenssensennes 20
User ACCOUNt REQUITEIMENLS...........eivieieriieieetietietesteetesteete e eaesieeseseeessesseesseesaesseeseesseessesseessesseensesses 20
Cluster Sizing Guidelines for IMpPala.............ccoviiiiiiiiiiieiieeeeee ettt ereennas 20
Guidelines for Designing Impala SChemas..........c.occveviiiieriiiiiiiceeeseee et beeneens 22

Installing Impala...........0.........0.0.........0.0.........0.0.........0.0.........0.0.........0.0......'..0.0..... 24
What is Included in an Impala InStallation............ceeeieiiiierieriiieiecie et sae e e ssaeesbe e 24

Managing IMPala........eiiiiiniinnnniiccnnsnnnnniiccsssssssnnsscssssssssssscssssssssssssssssssssssssssssssssssss 29

Post-Installation Configuration for ImMpala...........ccccoereriiiiiiiiiiiiiiiinceeeeeeeeeet et 25
Configuring Impala to Work with ODBC........cc.coiiiiriiiiiiieieietneeee ettt st 26
Configuring Impala to Work with JDBC....c..cccoiiiiiiiiiiiiiicntneenese ettt 27
Configuring the JDBEC POrt.....c..ccuoiiiiiiiiiiiiieenreeec ettt ettt sttt 27
ChooSINg the JDBEC DITVEL....cc.coiiiiiiiiiiiieieieteitet ettt sttt sttt ettt ettt et st besae st b sae e 27
Enabling Impala JDBC Support on Client SYStEIMS.c..ceveverueriirienienieieieieteieeieeeeieeiesie e seenes 27
Establishing JDBC CONNECHIONS.c..couerteiiieieiieiiieeieeieniente sttt sttt ettt eseeseesesbe st st saesaestesseneens 28
Notes about JDBC and ODBC Interaction with Impala SQL Features...........cc.ccccecererenenenenenennenne. 29

Upgrading Impala.........ioiiininniicnisnnicsssnnicsssnnecsssssncsssssscssssssesssssssssssssssssssssscs 30

| Contents | iii

UPGrading IMPala.........c.oocveriiiieriiiieiiciesieet ettt ettt et st e st esbeseeesbesse e seessesbeesaesseessenseesseseessenseensesseensennns 30

Starting IMpPala......ccoeeiionnniiicninnicnnnniiinnnnicssssssicsssssess 3 1

Starting Impala from the Command LiNe..........cccoocoeiiiiiiiiiiiiiiiieeeee e 31
Modifying Impala Startup OPHIONS.ccoueiuieriiriieieetieieet ettt ettt ettt ettt sb et be et e be et ebeentesaeeneeeae 32
Configuring Impala Startup Options through the Command Line............ccoceeveeniiieninienieniencececenee. 32
Checking the Values of Impala Configuration OpPtions.c.cceeuieieririeniniieneeie e 34
Startup Options for impalad DaGmON.c.c.eeviieiiiiiiieieeie ittt e e e eaeenaeenes 34
Startup Options for statestored DaCmON.........ceecuieiiieiiierie ittt e e seeeeae e aeesaeeneee s 34
Startup Options for catalogd DaemOn.coueiiiiiiiiiniieie e 34

Impala TutorialS......iieiieiiiiiniiiiiniiicsinnincnsneeccssnnecssssnnscsssssesssssssnssssssescssssee 34

Tutorials for Getting STATTEd........ccueieiririiiriieerer ettt ettt ettt sae st st ene 35
Explore a New Impala INStANCE........ceeiieiereieieriieiecie ettt ettt st s eaesneenneas 35
Load CSV Data from Local Files.........cccviiiririniniiiiiieieieteeetnesest ettt 40
Point an Impala Table at Existing Data Files..........ccoocveiiriiiiiienieeeeeeeeee e 42
Describe the ITmpala Table.........cccveiiiiiiieeee ettt nee s 43
Query the ImMpPala TabIe.......c.coiiiiiieieiee et ettt ettt et e s etesseeneeneeneeneens 44
Data Loading and Querying EXamPIEs.........cccceeciiririiriieieiieiesiieeetete ettt 45
AdVANCEA TULOTIALS. ...c.veiiieiietetctct ettt ettt ettt st sttt et ettt et et ebeebeebesuesaenes 47
Attaching an External Partitioned Table to an HDFS Directory Structure..........c.cccceceevereeeenenercnnenne. 47
Switching Back and Forth Between Impala and Hive........ccccocovininininiiiiniiniiiiicencecececsceeen 49
Cross Joins and Cartesian Products with the CROSS JOIN Operator...........ccccceeveeererenenenenenennennen 50
Dealing with Parquet Files with Unknown SChema...........cccccueviiiiiniinininiiinneneecceeeeeeeeceieee e 52

Impala AdmINiStration......ccceeeiiiicciiciisniinsssnnicsissnecsssssncssssssesssssesssssssssssssssssssnses 00

Admission Control and QUErY QUEUING.........c.cccveruirierierierieriesiertesreeetesteessesseesesseessesseessesseessesseessessesssesssensens 67
Overview of Impala Admission CONEIOL........c.ccvecvirieiiiiiieriieierie ettt s e e sseeseesseenees 67
Concurrent Queries and Admission CONIIOL..........c.civviiiiiiiiieiiieeie ettt ettt eereeeee v eeneevee e 68
Memory Limits and Admission CONtIOL...........ccueviiieriirieiieienieeieeieteeeesiesee e see e sae e essesseessesseens 68
How Impala Admission Control Relates to Other Resource Management Tools.........c.ccoceveveneneenene. 68
How Impala Schedules and Enforces Limits on Concurrent QUETIES...........ccvevvieverierienereenesivesiennens 69
How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2).........cccccvevvvrvennnnne 69
SQL and Schema Considerations for Admission CONtrol..........c..cccueevveevieeiiieiieeieeeiee e 70
Configuring AdmisSion CONMIOL..........cceiievieiieriiiieiicieie ettt et eeaesaeeaesreesbesreessesseenseesnenes 70

Resource Management fOr IMPala............cccooiiiiriiiiiiiiieceeeee sttt see e e sa e s sa e beessessenssenseens 75
How Resource Limits Are ENfOrced........cooiiriiriiniiiiiiiiiiii et 75
impala-shell Query Options for Resource Management...........c.cccvevvevverienienienienieeieneeeneeseeeeseessesenes 76
Limitations of Resource Management for Impala............cccoocveriiviiriiniiniieieicee e 76

Setting Timeout Periods for Daemons, Queries, and SESSIONS...........cc.evierierierierierieneeiesresieseesseseresseeeesseens 76
Increasing the Statestore TIMEOUL.........c.cciicieriiiierieeiesteeieseet et e e steereeteesaeseeessesseessesssessesssesseessessanns 76
Setting the Idle Query and Idle Session Timeouts for impalad............ccceeevevieciinierieniiere e 76
Setting Timeout and Retries for Thrift Connections to the Backend Client...........ccccecevverivenenenennene. 77
CanCelling @ QUETY......ccuiiieiiieteeiieteettesteeteste et e ettetesteesaesaeessesssessesssesseasseseassasseessesssessesssessesssessesssensens 77

Using Impala through a Proxy for High Availability..........ccccecueriieiiiriieiinieieceeee et 77
Overview of Proxy Usage and Load Balancing for Impala.............cccoeeieviieieniniienieienecieseeieseens 78
Special Proxy Considerations for Clusters Using Kerberos...........ccoccvrcverercieniiecienieieneeieseeieseeeiens 78
Example of Configuring HAProxy Load Balancer for Impala.............ccooovevierincienieiicieeeieceeee 79

Managing Disk Space for Impala Data............ccecuieieriiiieiieiere ettt ettt te e sseesae e essesreesesseessessnens 81

Impala Security........0.......0...0.......0...0.......0...0.......0...0.......0...0......'0...0......'0...0......'0.. 82
Security Guidelines fOr IMPala..........ccccooiiiiiiiiiiiee ettt ettt e see s 83

| Contents | iv

Securing Impala Data and Log Files.......cccccveviiiieiiiiieiieieeeee ettt essesaeensenes 84
Installation Considerations for Impala SECUTIILY........ccvecuerieciieieiieiee ettt eeae s 84
Securing the Hive Metastore Database..........c.ccieieriierierierieieesieseeiesteeieesesteesaesseessesseessesseessesseessesssessesssensens 84
Securing the Impala Web USer INtEIface.........ccvevvieieiieiiiieieeeeie ettt er e s ve e saeennens 84
Configuring TLS/SSL fOr IMPAIa.........cccciecieriiiieriieieciiee sttt ettt saeeeesaeeaesreesseseaesessaensenssensesssenseenns 85
Using the Command LiNe..........ccocveiirieiiiiieie ettt ettt et eeaesseessessaesseesaesaeessesseensenseens 85
Using TLS/SSL with Business Intelligence TOOIS.......c.occerieiiirieiierieiecieeiesecieeieeie et 86
Enabling Sentry Authorization for Impala.............ccocieiiiiiiiiieiice ettt 86
The Sentry Privile@e MOGCL......ccocieriieiiiiieiieieie ettt ettt sseeseesseesaesseesaesseensessees 86
Starting the impalad Daemon with Sentry Authorization Enabled............cccoccovieviinieniicieniiieieeieene 87
Using Impala with the Sentry Service (Impala 1.4 or higher only)..........cccccveevevircieninienieieeieeee, 88
Using Impala with the Sentry POlICY File.......ccocieiiiiiiiieieiieieieieeteeee et 88
Setting Up Schema Objects for a Secure Impala Deployment............cccocveveeieriecieniecieneeieeeeieeeenne. 93
Privilege Model and Object HIierarchy.........cccocvecieriieiieiieieiieieeeeie ettt sse e sse e snees 93
Debugging Failed Sentry Authorization REqUESES.........ccvevviiieriiiieniiiieieeiesieeieeie e 97
The DEFAULT Database in a Secure Deployment............c.cccvevueiienienieriiiieiieieieeeeieeeesie e sae e sens 97
IMPala AULNENTICATION. ... evieiieiieiieieste ettt ettt et e et e e sta et eest e seessesseessesseessesseessesssessesssessanssensenssansenssenseenes 97
Enabling Kerberos Authentication for Impala.............cccoeieciiriiiiinieniiiice e 98
Enabling LDAP Authentication for Impala.............cccoivieriiiiinieieieeeee e 101
Using Multiple Authentication Methods with Impala.............cccoeiiieniriienineeeeeee e 103
Configuring Impala Delegation for Hue and BI TOOIS..........cccceeieiinieiiiieiecieieceeie e 103
Auditing Impala OPEIations.........c.eecvervierierieriereerieieestestesteetessessesseesesseessesseessesssessesssessesssessesssessesssessesssenns 104
Durability and Performance Considerations for Impala AUuditing...........ccoecveeieviereenierieenesiesienrenns 104
Format of the AUdit LOg Files......ccciioieiiiiieiieiisieieeeeeet ettt sttt a e ese s 104
Which Operations Are AUILEd........c.ocieriirieriieierieiese ettt e st e eseesseesaesseesaessaesseseees 105
Viewing Lineage Information for Impala Data............cccoeieeiiiieriiiienieiieiecieecee et 105

Impala SQL Language Reference...........eeiiveecvseecseecssneecssneccsnecssneecsneecess 100

L003311001S) 1L JO OO ORI 106
DAtA TP -ttt ettt ettt ettt et h et s h et s h et e h e bt e h e bt e h e e bt e et e bt e a e e bt ent e ehe et e ehe e beeaeenaeereebeeneens 107
ARRAY Complex Type (Impala 2.3 or higher only).......ccccooeriiiiniininiiiieeeeeeeeeeeee 107
BIGINT DAt TYPE..ueeeueeueeutintieieetiente ettt ettt ettt et et ettt e et eatesaeeatesaeeaeesbeesbesbeentesbeenbesbeenteeseenseenee 110
BOOLEAN DAt TYPE..cuueeuterueeieitieieniieieeteeteette it et st etesteete bt etesbeetesbeenteeseeteeneesseentesaeeneesaeeneesnean 112
CHAR Data Type (Impala 2.0 or higher only).......ccccoocoriiiiniiiiiiiieeeeeeee e 113
DECIMAL Data Type (Impala 1.4 or higher only)........cccooieiiniiniiiieeeeeee e 116
DOUBLE Data TYPe...c.ueeuieieeuieiieiienttete sttt sttt ettt ettt et e et sate bt eaeesbeestenbeeneesbeenseeneenes 125
FLOAT Data TyPe...c.eeeeeteetieieitieie ettt ettt sttt ettt st e b st e bt bt e bt se e bt estenbeentenbeeneenbeenes 126
IINT DAt TYPC.eientieuieiieiteiteete ettt ettt ettt ettt et a et sat e bt s et e s bt s st e s bt ee e e e bt es b e ebeenteebeeneeebeentesaeeneesaie 127
MAP Complex Type (Impala 2.3 or higher only).......cccoceriiiinieniiiieeeeece e 128
REAL DaAta TYPC...ceeeeieitieieiiteteet ettt ettt ettt et sttt sttt st e bt et e b e et e bt ea e bt eseesbe et e sbeenbesaeenaeenees 132
SMALLINT Daata TyPe...ccueeeteeteetieiietientesitente ettt ettt sttt te st ettt e et sbee bt satenbesseesbeemeesbeensesbeentesaeens 132
STRING Daata TYPE....eeueeuteteeieiteeteiteete sttt ettt ettt ettt este et e s bt et e sbe e teabeesteebeentesbeentesbeentesseeneeeae 133
STRUCT Complex Type (Impala 2.3 or higher only)........ccooceiiiriiieiiniiiieeeeeeec e 135
TIMESTAMP Data TYPe....c.eieueetieieniieientt ettt sttt ettt ettt et see et et et e sbe et e sbeebesbeenbeebeenaeeas 141
TINYINT DAt TYPEC..ueioueettiuieriieiterteeteit ettt ettt et ettt e sttt e bt estesbees e sbe et e sb e et e eseeteeatenaeeneenaeenees 148
VARCHAR Data Type (Impala 2.0 or higher only).........ccoceviiiininiininieineeeeeeeee e 149
Complex Types (Impala 2.3 or higher Only).......ccccooviiiiiiii e 151
LLIETALS. ..ottt et ettt e b et e at e bt e a e s bt e e e e bt e et e bt e e ekt ea b e eh e et e eh e et e eae e bt eaeenheeatenbeeneenbean 182
INUMETIC LIEEIALS. ...ttt ettt ettt et st b et b et eb et et e naeeneesaes 183
SHANG LIETALS. ...cueitieiie ittt ettt et b et b et s bt et e s bt et e s bt et e ebe e beebeeteeseeneeeaee 184
B001@aN LIEIALS.etiiuiiiiiiietiete ettt ettt et ettt s be et b ebeens 185
TIMESLAMP LILETAIS...ccuuiiieiieiieiieeieecte ettt ettt e et e e st e e beesseesabeessbeenseessaeenseesaeanseensnesnsens 185
12181 5 OSSOSO 185
SQL OPETALOTS.veevrieieeeereesieeeteeeteesteesteessteesseessseaseesssesaseessseesseessseasseeassessssesssesnseessseesseessseesseesssessseeassesssessns 187

ATTERMETIC OPETALOTS. .veetieeiiieiiieeteeitteeteestee st esteesteesteeeaeesteeasseesseessseesseessseesaessseenseesssesseessseenseenssen 187

| Contents | v

BETWEEN OPETALOT...c.utiitietieiiieniteettesite et ettesteeteesateesteesateesbtessseebeesssesnseesssessseessseenseesssesnsessssennse 190
COMPATISON OPCIALOTS.eveeererriereereetiertesteetesseessesseesesseessesssessesssessesssessesssesseessesseessesssessesssessesssensens 191
EXISTS OPETALOT.....ceeuiiiiieriieeiierite ettt eteestt e st estte st e ttesabeebeesabeeteesaseenseessseensaesssesnseesssesnseesssesnseens 192
TLTKE OPETALOT. ... eiiutieiieeiieiiieeieesite et eite et e st e et e stt e esbeestteesbeesatessbeessbeenseessbeenseenssesnbaenseesnseesasesnseesnns 195
IIN OPETALOT......eoutieiieeiiieeiie ettt ettt ettt et e bt e bt e et e e bt e sabeesbeesabe e saesabeenbaessbeenseesaseenseessseensaensseans 196
TREGEXP OPETALOT.....ccutiiiieitieeieeitieeteenite st esitesiteettesiteebeesateesstesateeseessseeseesssesnseessseenseessseenseesseeens 199
IS DISTINCT FROM OPETALOT......eeeiieriieeieeiiieeiteeiiesteesieeseteesieesteesteesseeseessseesseesssesnsessssessessssesssees 200
IS INULL OPCIALOT...ccuutietieriiieiienittettesteeteesteeteesiteesteesateesaesaseeseessseesseesnseesssessseenseesnsessseesnsessseessees 202
LIKE OPEIALOT....cc.uieiiiieiieeiieetiesite et sttt et esitesteestteseteesttesaseesbaessbeenseesaseeseessseenseessseensaesssesnseesssesnseens 203
LOZICAL OPETALOLS. ...c.viieieiieiietieieieeieett et e et et e et eteseeessessaesseessesseessesseesseeseessessaessesssensesssesesssessesssensens 203
REGEXP OPCIaOT...ccutiiiieiiiiitieniteite st ettt et eiee st esttesteesbteebeesteessseesseesabeesssesnseessaesnseenssesnseesssesnses 206
RLIKE OPETALOT.....ceiutieiieeiieitieeteesitesteesite st esite st esteeebeeteesabeesseesateessaessseensaessseensaesnseenseesnseensnessseenss 208
Impala Schema Objects and ODJECt NAMES........ccueevieriieieriieierii et ete e eee et e e ete e esseeseeseeseessesseessesnseses 209
OVerview Of TMPala ALLASES.......eecverrieiiriieieeieie sttt eie st et e st et e etaesteeseesseessesseessesseessesssessesssensanssens 209
Overview of Impala Databases........ccoccuirieiiirieriiiieie ettt saeesae e essesaeesaesseessessnes 210
Overview of Impala FUNCHONS...........ccieviiiiiiiiierieceeseeeste ettt ae e ssae e essesseessesseens 211
Overview of Impala IANtIfIers.......c.vecierieieriieie ettt ste e seaesse e enbessnens 212
Overview Of ITMpPala TabLeS........cceviiieriiiieiieieceetee ettt sttt b e st e esae s eesbessaensenseenes 213
OVerview Of ITMPala VIBWS.......coiiieiiiiieiieiecieeet ettt sttt esse e s e eseessesseenseneas 217
Impala SQL SAtCIMENLS.......ccueiieiiiierieitete et eieetete et et et e steestesseessesseessesseessesseessesssessenssensenssenseessenseensesseenss 221
DL STAtEIMENLS.eeuiinieiiieieriieieetet ettt ettt sttt e e st s bt et sat et s bt et e e bt et eae et eatenaeeneenaee 221
DML SEAEIMENLS. ...c..eoutiiieiiiiietertetert ettt ettt et e e sbe et sbe e et sb e sue et e sasebeeaee b e eanenaeenee 222
ALTER TABLE Statement........cccueiiuiiiiiiiieiieeiteeit ettt et steeieeste et e siteebeesesesnbeessseenseesnseenseesasenn 223
ALTER VIEW StateIMENL.....c..eoruiriiiiirieniiriteniieteettete ettt sttt ees et et st essesbeennesbeensesaeenaeennen 236
COMPUTE STATS Statement........cccueerieeiieiiieriienit ettt etee st eteesteesieeseteebeesstesbeesaseeseesnseenseessnes 237
CREATE DATABASE Statement.........ccocueiiiierieiiieniieeieeneeeieesieesieesiteeteesiteeseesseesnseesssesnseesssesnseens 244
CREATE FUNCTION Statement.........ccceeriieiierieiiienieeieenteesieeseesseestesateesisesseesssessessseesnsessseesnses 246
CREATE ROLE Statement (Impala 2.0 or higher only).........cccccevivienienieniieieieeeseeeeee e 253
CREATE TABLE Statement........ccceeeiiiiiiiiiieiieeieeriieeteeiee st eite st esieeseteesteesseesaeessseenaeesnseensnesaseennn 253
CREATE VIEW StatemeNt.....c..cocveiiiriiniieiiniietinieenie ittt st ettt et st et steestesbeenaesmeenaeesneniesnnens 267
DELETE Statement (Impala 2.8 or higher Only).........ccccocvvvieiiiiieniiieiceeeeseee e 269
DESCRIBE Satement.......c..cocueruiiiiriiiieniieienieeieeiteteetete ettt st ettt et easesaeenaesaeenees 271
DROP DATABASE Statement.........ccceeriiiiiieiieeiienieeitesite et esiteeieesteeieesiteeteessteesseesaseebeessseenseenas 283
DROP FUNCTION StateImMent.......c..ceceeruirieriirtinieetenieetenieetesieetesteeteeteestesieesueeseesaeesnesieessesieennenaeens 285
DROP ROLE Statement (Impala 2.0 or higher only)..........cccoccieviirieiiinieieieeeceee e 286
DROP STATS StatemeENL.....ccueoteiiriieniieienieetentceteeeente sttt sttt et et ettt st et sbee et saee et sseesaeesnenbeas 287
DROP TABLE Statement..........cooiiiiriiiiinierienieetenieeteeteeetesieetesieentesieestesieesaeessesbeeesesbeeanesbeennesseennenne 291
DROP VIEW Stat@mMENL.....c.coruiiiieiiiiienieniienieetenieetesieeitesteete st et sieete it esaesseenbesasenbesenenbeeanenseesnenueenne 293
EXPLAIN STAtEIMENL......coctiiiiiiiiiiiiiitenteeteeet ettt ettt sttt ettt st et st sttt b e e e bt eanesbe et e sbeenee 294
GRANT Statement (Impala 2.0 or higher Only).......ccccveeiriiiiiieiiceeeeeeee e 297
INSERT StatemeENt.......cocuieiiriiriiiiiiienieetesieetesteetesit ettt ettt ettt saee st eatesaeestesbeesnesbeeanesbeennesbeenneane 298
INVALIDATE METADATA Statement.......cccveecuieriieiiieniieiieeniesieesteeteenieesseesieesseesssessseesseesnsesnses 307
LOAD DATA Stat@IMENL.....cc.eeouieieiirititieienteeteste ettt sttt stt et sttt eiee st estesueestesbeesaesaeensesueennesanens 310
REFRESH Statement.......cccccoieiiiiiiiiniiieieeentee ettt ettt ettt et eae st esae st sene b senenie e 314
REVOKE Statement (Impala 2.0 or higher Only)..........ccociecienieiiinieieceee et 318
SELECT SHAtBIMENL......ccueiiiiiieitiiieieiteteeit ettt ettt ettt sttt st sae et saa et eaeenteeseenaeenee 319
SET SEAtEIMENL....ccuveitieiiriieiintietieitett ettt ettt ettt ettt ettt et eat e st est e st e e bt ebeeaesbee et saeenaeeneenaeennenbens 345
SHOW STAtEIMENL.......cueiiiiiiitiiiietirteeteeteet ettt ettt ettt et ettt ettt et sbe et sbe et sbeesaesaeenaeeanenueennens 378
TRUNCATE TABLE Statement (Impala 2.3 or higher only).........cccccovvrvienierienieieeieieeeee e 396
UPDATE Statement (Impala 2.8 or higher only).......c.cccocieieriieieniiiiee e 399
UPSERT Statement (Impala 2.8 or higher Only).........ccoccevievieiiiniiiieieceeeeee e 400
USE STAEIMENL.coueiiiiiiiiieiieteteet ettt sttt ettt et sbe et sbee et saee bt eanenbeeanesbeesnesbeenee 401
Impala BUilt-In FUNCLIONS........c.cciiiieiieiieieiieiet ettt sttt ettt e b e staesbessaessesseenseesaesseensesseensensens 402
Impala Mathematical FUNCLIONS...........ccueriirierieieriieieet ettt sne e sse s ees 403
Impala Bit FUNCHONS.......cc.iiiiiiiiieiecteie ettt ettt ettt ste et e s e eae e esbesseessesssessessseseessensesssenseenes 418

Impala Type Conversion FUNCHOMNS...........coiiiririirenieieieieeete ettt 430

| Contents | vi

Impala Date and Time FUNCHONS.ccuerviiieriirieiieeeiietesteeee st seeeee e esae e esesseessessaensesssensesssenns 434
Impala Conditional FUNCHONS.c.ccveriiiieiieieie ettt sie et sbeesaesseessesseesaesseessessaessesseessensnes 478
Impala String FUNCHIONS........ccoiviiieriieierie ettt ettt et ebeeteesbesseesaeeseessesseessessaessesssessesssessesssensenns 484
Impala Miscellaneous FUNCLIONS..........c.ccivieriiiieieiieieeieie ettt et saeeae e e sbessaesbesssesseessenseens 501
Impala AgEregate FUNCHONS.ccvivieieiieie ettt ettt et ste et e e esbesaaebessaessesssensesssenseessenseenes 503
Impala ANalytic FUNCHONS........cceoiiieiiieiecieeiectteteetete ettt ae e tessaesaeesaesseessesseessesseessesssensenns 534
Impala User-Defined Functions (UDFS)........coccuerieiiirieniiiieie ettt sve e seeesaeenees 553
SQL Differences Between Impala and HiVe.........ccoocvivieiiiieniiiiccceeeeseeesee sttt 570
HiveQL Features not Available in IMpala............ccecveiieriiiieniinieiieiec et se e se e eenens 570
Semantic Differences Between Impala and HiveQL Features..........ccocvevveviircieniecieneeieceeieseeieeeeens 571
Porting SQL from Other Database Systems to IMpPala............cccecverircieriiiiieiieierieieeeere e 572
Porting DDL and DML Statements..........cceccuerverieriirieriieienieeiesseetesseessesseesesseessesssessesssessesssessenssenns 572
Porting Data Types from Other Database SYStEMS.........cccercverieicieriiiieniieieniieeeneeee et eeeseesaeseeessesenes 573
SQL Statements t0 RemMOVE 0F AdAPL........ccvevviiieriiiieiieiereeeeseeeee et sre e sseenseseees 575
SQL Constructs t0 DOUDIECRECK.ccuiiiviiiriieiieeiii ettt ettt et eveeeaeeveestreeveesareens 576
Next Porting Steps after Verifying Syntax and Semantics..........cccccvevvereeriereerienienieeiesieeeeneeeeeseeenns 577

Using the Impala Shell (impala-shell Command)..........c.cceeveeieseecsineccsseeccennee 578

impala-shell Configuration OPLIONS........cc.eeiiriieiirieie ettt ettt ettt sb et bt e et sbeenbesaeesbeeanenneas 578
Summary of impala-shell Configuration OPHIONS.........cccueiterierieiienieiereee et 578
impala-shell Configuration File..........ccoooiiiiiiiiiie e e 581

Connecting to impalad through impala-shell..............oooiiiiiiiiii e 582

Running Commands and SQL Statements in impala-shell..............cocoooiiiiiiniiineeeeeeee 584

impala-shell Command REfETeNCE...........ccciiriiiiiiieiiciieceee ettt ae et e saeebeesebeeaeeennes 588

Tuning Impala for Performance........cccooceereicissvvnnernccsssssnnnnnccsssssnssssccssssnsssnccsss 591

Impala Performance Guidelines and Best PractiCes..........cccoeverieieiieiiininininencniceseectcrceeeeie e 592
Performance Considerations for JOIn QUETIES.ccerieiirieriieiere ettt sttt nee e e eeenes 594
How Joins Are Processed when Statistics Are Unavailable............cococevvenininininininincneiicncnee, 595
Overriding Join Reordering with STRAIGHT JOIN......ccccciiiiiiiiiriininininereeceeeeeeteeeeeee e 595
Examples of Join Order OptimizZation..........c.ccoeeverierieieieieieieenenene ettt eeeneeeeseesesesre e 595
Table and ColuMN STATISTICS.couertirtirterteietetetete ettt ettt ettt ettt eae et ebe et sbe bt st benae st enenee 601
OVErview Of Table StatISTICS......coirrertertirieteieeeitet ettt sttt ettt ettt st see st st sae e b nene 601
Overview Of ColuMN StAtISTICS.eovirrirririiieieietetet ettt ettt ettt sae b s seenes 602
How Table and Column Statistics Work for Partitioned Tables........c..cccceerererienienienieiiniincnincncnnens 603
Overview of Incremental StatiStiCS.........ceoerirteriererieiiietetete et 605
Generating Table and Column Statistics (COMPUTE STATS Statement).........c.cccceeeeervererenienennne 606
Detecting MiSSING StAtISTICS. c..e.veveteieiiririerteriest ettt ettt ettt st sre et et eseeae b ae e 607
Keeping Statistics UP t0 Date.......cceeiririririniinicieictetetecetnese sttt ettt 609
Setting the NUMROWS Value Manually through ALTER TABLE..........ccccoeiiiiiiiiiiininncncnne 609
Setting Column Stats Manually through ALTER TABLE.......c.cccocininininiiiiceineceencneceeene 610
Examples of Using Table and Column Statistics with Impala.........c..ccccoeveiiiiiniininininnnneenn 611
Benchmarking Impala QUETIES.eecueeueeriieiieiieierit ettt et st ete st et e st en e eae e eeeseenseeneenseeneesseeneesseeneesneensens 615
Controlling Impala RESOUICE USAZE.c.cruiriiriiriiniiieieieieiieteieeieeie sttt sttt ettt et eae b b st re e 615
Runtime Filtering for Impala Queries (Impala 2.5 or higher only)........ccocceroiiiriininii e 615
Background Information for Runtime Filtering...........cccoeoveieiiiiiniiiee e 616
Runtime Filtering INternals..........ccooieoieiieiieiieieeiiee ettt ettt et st eesre e e e re e e s 617
File Format Considerations for Runtime Filtering..........ccccoverierierienienieiiiiiiiininerceene e 617
Wait Intervals for RUntime FIlters..........coeoieiiiiiiiiniiniiininenesceeeeetcteeeeee et 617
Query Options for Runtime FIltering........ccccoerveviiriiniiiiiiiiiininereereneesectee ettt 618
Runtime Filtering and QUETrY PIans..........cccoooiiiiieiiiieiieeee et 618
Examples of Queries that Benefit from Runtime Filtering...........cccooveviriiiiniininiieeeeee e 619
Tuning and Troubleshooting Queries that Use Runtime Filtering...........coccceevevevirvininininicncncncnnens 620

Limitations and Restrictions for Runtime Filtering...........ccccoeoeviriinirienieeseeeee e 620

| Contents | vii

Using HDFS Caching with Impala (Impala 2.1 or higher only).........ccccocveieiiniiiniiiieeeeee s 620
Overview of HDFS Caching for Impala..........cccccoecieviiiiiniiiieicieceee et 621
Setting Up HDFS Caching for Impala..........c.cccoecviiieiiiieiiicieiices e 621
Enabling HDFS Caching for Impala Tables and Partitions.............cccecevveviereeneneenesieseeieseeeeeens 621
Loading and Removing Data with HDFS Caching Enabled..............ccccooevivieiiinieiieieceec e, 623
Administration for HDFS Caching with Impala............cccoeieiiirieiiieiiiiiccceee e 624
Performance Considerations for HDFS Caching with Impala............ccecevieviinieniiieeieeciees 624

Testing Impala PerfOrmance...........c.ooveruiiieriiieiieierieeteseete ettt sttt ste b e s teesbesteesseesaenseesaeseensenseeneas 626

Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles..........ccccoeveviiiinnnnene. 627
Using the EXPLAIN Plan for Performance TUNINg...........ccccevieciinieninienieeienieeeesiesvesiesveseeseneeens 627
Using the SUMMARY Report for Performance Tuning............ccceevvveverierieninienieieeieieeeeve e enns 628
Using the Query Profile for Performance TUNINg...........cccocveviirieniiiieniieieniieieseeee e 629

Detecting and Correcting HDFS Block SKew CoNnditions............ccveevevverieriinieniesienieeieseessesieesesseessessaesenns 635

Scalability Considerations for Impala............ccovviicirvniccsssnnicsscnnccsssnsncsssnnseccees 636

Impact of Many Tables or Partitions on Impala Catalog Performance and Memory Usage...........cccceveeneenee 637
Scalability Considerations for the Impala StateStore........cc.eeruerieriiiiiiiiieeee e 637
Controlling which Hosts are Coordinators and EXECULOTS.c..ceueriiiiriiiieniiiinieiesieeeee e 638
SQL Operations that SPIll t0 DISK........ceeriiriiiiiieiieiieee ettt ettt e sae e beessae e e e snaeenns 639
Limits on Query Size and COmPLEXitY.......cooceeriiieriiierieiteieeet ettt ettt ettt sb et sae e 642
Scalability Considerations for Impala I/O.........ccccoooiiiiiiinii e e 643
Scalability Considerations for Table Layout.........c.ccoieieriieiiniiiiiiee et 643
Kerberos-Related Network Overhead for Large CIUSTETS........ccceiieiiiieiinieniiienceecee e 643
Kerberos-Related Memory Overhead for Large CIUSLErS.......c.eeririeriiiieniieieneeesieeese e 644
Avoiding CPU Hotspots for HDFS Cached Data............cceeouiiiiiiiiiiiiieneeeeeeeee e 644

Partitioning for Impala Tables.........ccciiiiivvrnericiisssnnnnniccssssnnnniccsssssnsssssssssnsssneees 045

When to Use Partitioned TabIes........cc.coueieiriiiiirineniiieeneteteteeeitee ettt sttt sre e 645
SQL Statements for Partitioned Tables..........ccoecirieiiiieieeereee et s aeeneens 645
Static and Dynamic Partitioning CIAUSES..........cccccceiriririnirinineneetetet ettt 646
Refreshing @ SiNgle Partition.........coceoviiiriiiiiniiiceecteeeeteee ettt ettt s sbe e e 646
Permissions for Partition SUDAITECLOTIES.c..evueveieieiieieieieiere ettt 647
Partition Pruning fOr QUETIES.........eeiuieieiieieie ettt ettt ettt et et e s st e tesneentesneessesnaesseennanseens 647

Checking if Partition Pruning Happens for @ QUETY........cccoceviriereninieiienieieieieeeceeseneerese e 647

What SQL Constructs Work with Partition Pruning...........cc.cecevevinenenenieiienieneinencnenenesceenveneens 648

Dynamic Partition Pruning............ccoiieiiiiieiieieieiee ettt ettt et 649
Partition Key COIUMIS.ccueoiiiiiiiiieieeneretes ettt ettt sttt sttt et ebeebesae e 650
Setting Different File Formats for Partitions..........ccccoevuerieienieieiiniinininericstcneseeseeteteeeeeeeeeeee e e 650
MaANAGING PATTIEIONS. ... eeitieiiietieieeeiee ettt ettt ettt e e et e e e e et e eae e aeeseesaeeneesseensesseenseeseenseeseenseeneenseensenseenes 651
Using Partitioning with Kudu TabIes.........c.coccriiiiiiniiiiiiiiieinn ettt sre e 651

How Impala Works with Hadoop File Formats...........cccceeceeeicvcerccnicnnrccscnnnes 652

Choosing the File Format for @ Table.........c.ccocieriiiieniiiieriisiesieeiese ettt ettt seeeae e e sessaessessnens 653
Using Text Data Files with Impala TabIes........ccoccveririiirieiiiiieie ettt sse e saesae e esnens 653
Query Performance for Impala Text Tables........cccviieeiirieiieieieceee e 654
Creating TEXt TaADICS......cccviriieieitieie ittt ettt et sbe et e s e e aesaeesbesseesseeseesseesaenseessenseaseensennns 655
Data Files fOr TeXt TabLes........couiririerieieieieieieie ettt ettt 655
Loading Data into Impala TeXt Tables........cccccirireiirieriieieieciene ettt e 657
Using LZO-Compressed TeXt FIles.......ccovivuiiiiiiiiieiieieiieiesie ettt eeae e enesseessesseenees 658
Using gzip, bzip2, or Snappy-Compressed Text Files.........ccooiiieririierinieiieieneeeeseee e 660
Using the Parquet File Format with Impala Tables........cccccveiiirieiiiiieiiiiee e 661
Creating Parquet Tables in Impala..........cccooieieiiieiiniieiee ettt 661

Loading Data into Parquet Tables..........cccocveviiiieiiiiieiicieiceeeie ettt s seese e s e sbeessenseens 662

| Contents | viii

Query Performance for Impala Parquet Tables........c.ccveieiieieniieieieesie e 664
Snappy and GZip Compression for Parquet Data Files.........ccccevieeiirieciiiieriiiieieceeiccee e 665
Parquet Tables for Impala CompPleX TYPES.....c.cceecverieriirieiieierteeeesie e ste e sre e sreesesreenseeseenseesaenes 668
Exchanging Parquet Data Files with Other Hadoop Components..............ccocveevereerreseerieneesieenennens 668
How Parquet Data Files Are Organized..........ccocvecverieienieiinieieseenieseesieseesiessesiesaesseessesseessesseenns 671
Compacting Data Files for Parquet TabIes.........ceoveieriieierieienieie ettt ees 672
Schema Evolution for Parquet TabIes.........c.ccveieriiiieniiiieieeie sttt sre e sae e seees 673
Data Type Considerations for Parquet Tables..........ccoovecverieiierieciecieieceeeeeeie e s 674
Using the Avro File Format with Impala Tables............cccovieiiiieriiiieiieiereeese e ees 675
Creating AVIO TaDIES........ccuieieeiieieeieieeteie ettt ettt e e et e e b e seessesseessesseessesseessesssensesssessenseens 675
Using a Hive-Created Avro Table in Impala..........ccccceevvirieiiinieniiiieieceesecee e 677
Specifying the Avro Schema through JSON.........ccciiiiiiiiieiiiee e 678
Loading Data into an AVIo Table.........ccecceiieiiiieiieieiicieiceeee ettt see e 678
Enabling Compression for AVIO TabIes........ccovveriirieriieieiieiesie ettt se b seeebe e seesseseens 678
How Impala Handles Avro Schema EVOIULION........c.cccceviriiriieieiieieiceeeetc et 678
Data Type Considerations for AVIo Tables........cccieieriirierieierieie ettt 680
Query Performance for Impala Avro TabIes.........ccoovvieriiiieniieienieieeee et 680
Using the RCFile File Format with Impala Tables...........cccoeieiiiriiiiiiieie et 680
Creating RCFile Tables and Loading Data.............ccceeieierieiienieiieieiceeesie et sie et se e e ese e senens 681
Enabling Compression for RCFile TabIes........ccocveciiiieiiiieiieieiicieieeeee et eenens 682
Query Performance for Impala RCFile TabIes........cccoivieriiiieniiniiiieiesiieeeieeie e see e 683
Using the SequenceFile File Format with Impala Tables..........cccooieiiiieciiniieiiciecceee e 683
Creating SequenceFile Tables and Loading Data............cccoecveviieieniieiinieriecieie e 683
Enabling Compression for SequenceFile Tables.........ccoviiieriiiiieniiiieniiciereeeeeeee et 684
Query Performance for Impala SequenceFile Tables.........cccooiieieriicieniiiericieeeeeee e 685

Using Impala to Query Kudu Tables.........couiiivivniiisssniccssniccnssnniccscnnicsscnnnees 685

Benefits of Using Kudu Tables with Impala...........cccoooiiiiiiiiiiiiiiee et 686
Configuring Impala for Use With KUdU........cccoooiiiiiiii e 686
Cluster Topology for Kudu Tables.........coiiiiiiiiiiiiieiieee et 686
Impala DDL Enhancements for Kudu Tables (CREATE TABLE and ALTER TABLE)........cccccecvveviveennnee. 686
Primary Key Columns for Kudu Tables...........cocoeiiiiiiiiiiiiiiieeeeeeeee e e 687
Kudu-Specific Column Attributes for CREATE TABLE.........ccccoooiiiiiieieeieceeeeceeeeee e 687
Partitioning for Kudu Tables........cccoiiiiiiiiiieee et 691
Handling Date, Time, or Timestamp Data with Kudu...........ccoceiiiiiiiiiiiiieeeeee 694
How Impala Handles Kudu Metadata............cooveeiiiiiiiiiieiieiiecieece ettt 696
Loading Data into Kudu TabIes.........coouiiiiiiiiiiiieieeeees ettt st s st 697
Impala DML Support for Kudu Tables (INSERT, UPDATE, DELETE, UPSERT)......ccccccovvvviiinieiiieenee. 697
Consistency Considerations for Kudu Tables..........ccccoiiiiiiiiiiiiiiieeeeeeeeee e 698
Security Considerations for Kudu Tables..........ccocoeoiiiiiiiiiiieeeee e 698
Impala Query Performance for Kudu Tables.........c.cocoiiiiiiiiiiiiie et 699

Using Impala to Query HBase Tables.......cccceieervccnnericcssccnnnnnccssscnnnnnsccsssnsaneees 099

Overview of Using HBase With Impala..........cccoeiiiiiiiiiiiiiiiiinnseneeeeteteteeeie e 699
Configuring HBase for Use with IMpala.........ccccocoieiiiniiiiiiiiiiisceesece ettt 700
Supported Data Types for HBase COIUMS........cccoertirierieiiiieiieeinenenieeteste ettt ettt s 700
Performance Considerations for the Impala-HBase Integration...........cccccceveeererinenenenenienienieeeieceeeenenne 700
Use Cases for Querying HBase through Impala..........c.ccoeiininiiiiniiniiiiiiinnceencccseeeecveeeeeeee 706
Loading Data into an HBase TabIe..........cccerieiiiiieiiiiieie ettt sttt e e 706
Limitations and Restrictions of the Impala and HBase Integration...........cccceceeeeeierienienesiene e 706
Examples of Querying HBase Tables from Impala............ccocooeiiriieiiinieiinieeeee e 707

Using Impala with the Amazon S3 Filesystem...........cccceeveerccvcneccccnncccccneeceees 709

| Contents | ix

How Impala SQL Statements Work With S3.........ccoiiiiiiiiiiiiiiiiieese ettt 709
Specifying Impala Credentials to Access Data in S3........cocoierieiiiiiieiiee et e 710
Loading Data into S3 for Impala QUETIES...........cecuerierieiieieieieieeieteetesteeeesseetesseesaesseessessaessesssessesssessenssenns 710

Using Impala DML Statements for S3 Data...........cccevirieniiiiienieieieeieeeeee e sresne e esaesnees 710

Manually Loading Data into Impala Tables 0n S3.........ccccovieviiiieniiiierieeieneeeere e 711
Creating Impala Databases, Tables, and Partitions for Data Stored on S3..........cccecvvvieviincieniecieneee e 711
Internal and External Tables Located on S3.........ccoiiiiiiiiininiiieeeeeceee e 713
Running and Tuning Impala Queries for Data Stored on S3..........ccooveieiiriinieiecieeee e 714

Understanding and Tuning Impala Query Performance for S3 Data...........ccceevevievieieniecieeieieeeeenn, 715
Restrictions on Impala SUPPOIt fOr S3......ccioiiiiiiiiieieceeeeeee ettt e b e seenseesaense e 716
Best Practices for Using Impala With S3..........ccieiiiiiiiiiiieieeiee ettt sre e saeeae e sneesnens 716

Using Impala with the Azure Data Lake Store (ADLS)......cccccceeeveecccnercsceeness. 716

PrOTEQUISIEES. ..uvveeutieieieeitieeiteetee ettt et e et e et estteesteestbeesbeeeabeenteessseenseessseesseeasseensaeenseensaesssaenseesnsaesseessaenssennseenseean 717
How Impala SQL Statements Work with ADLS.........ccooviiiiiiieciee ettt s 717
Specifying Impala Credentials to Access Data in ADLS........cccoiiiiiiiiiiie e 718
Loading Data into ADLS for Impala QUETIES..........ccteiiirieriiiieieiierie e 718

Using Impala DML Statements for ADLS Data........cccooieiiiieniiienieieneeeseee e 718

Manually Loading Data into Impala Tables on ADLS.........ccooiiiiiiiiiiieeeeeeeeecee e 718
Creating Impala Databases, Tables, and Partitions for Data Stored on ADLS..........cccoiiiiiniiininiincieeee, 719
Internal and External Tables Located on ADLS........coiiiiiiiiiiieee e 720
Running and Tuning Impala Queries for Data Stored on ADLS.........coociiiiiiiiiieeeee e 722

Understanding and Tuning Impala Query Performance for ADLS Data..........cccoceeoienieiienienincennnne. 723
Restrictions on Impala Support for ADLS........cooiiiiiiieieceeee ettt ete e s beesaeeebeessseenseenees 723
Best Practices for Using Impala with ADLS........cocoiiiiiiiii e 724

Using Impala with ISilon Storage.........eicccvvvveericccssssnnrrccsssssnnnnnccssssnsessccssssnnnes 124

Using Impala LOZZING.....cccuvveiiiivnricnisniicsinnnicssssnecsssnsecsssssecssssssesssssssssssssassssssss 125

Locations and Names of Impala Log Files.........ccoieiiiiiiiiieiicieie ettt sneas 725
Managing IMPala LOES.......cceeierieiieieiieiecieie ettt ettt et seeesae st e besstesbeesbesseesseasaessesssessesssessesssesseensenses 726
ROtating IMPala LLOZS.....ceeriiiieiiiiieieeiesieieetet ettt ettt et e ste e be s bt e s e eseesseesaenseessesseessesseessesssessesssensanssens 726
ReVIEWING IMPAlA LOES......iiiiiiiiieiieiieieeieie ettt ettt e st e e s e et e te e e staenseesaessesssesseessesseessesseensesseensensens 726
Understanding Impala Log CONENLS........c.ccveriirieriieieriieieetesee st esie st esteste e eesesteesaesseessesseessesseessesssessesssessens 727
Setting LOZ@ING LEVEIS....c.ecoiieieiiiieriieiesteete sttt ettt e st et e saeesaesaeessessaessesssesseessesseessesseessesseensesssensesseas 727
Redacting Sensitive Information from Impala Log Files.........ccccevvieriiiieniinieiicieeeiee e 728

Troubleshooting Impala...........ccooiiiiiiviicnisnnicssnnnncssssnsicsssssscssssssscsssssssssssssscsssss 128

Troubleshooting Impala SQL SyNtax ISSUES........ccceeruiiiiririirieieiiee sttt sttt s 728
Troubleshooting /O Capacity ProbIems.cccueiuiiiiiiiiiiiiieieeee e 728
Impala Troubleshooting Quick RETEIENCE.c.oruiiiiiiiiiiiieiiee e 729
Impala Web User Interface for Debug@Ing.........ccoeouieiiiiiiiiniiiiiieeee et 731
Debug Web UL for impalad..........ocooiiiiiiiiiieeee et 732
Breakpad Minidumps for Impala (Impala 2.6 or higher only).........cccccoiiiiiiiiniiiiieeee 733
Enabling or Disabling Minidump Generation.............coccevirieririeninienieeienieeie et seee e eeee e eaees 734
Specifying the Location for Minidump Files.........ccccooiiiiiiiiiiiiiiiiieee e 734
Controlling the Number of Minidump Files.........cccooieiiiiiiiiiiie e 734
Detecting Crash EVENTS.......cc.ooiiiiiiiiiieeee ettt ettt st sbe e e 734
Demonstration of Breakpad FEeature...........cceeviiiiiiiiiiiieeie ettt 734

Ports Used DY IMPAalQ.....acciiiciiiirnniiiiiissnnnnniicsssssnnnnccssssssssssscsssssssssssssssssssssssssssses 130

| Contents | x

Impala Reserved WOrds'....0......'0.0.0.......0.0.0.......0.0.0.......0.0.0.......0.0.0.......0.0.0.......0.737
List of Current ReServed WOTMS.coouiiiiriiiiiieiieeceee ettt st sttt ettt saee e eae 738
Planning for Future ReServed WOTS.........cociiieiiiiiiiiieie ettt st 741

Impala Frequently Asked QUEeStIONS.......ccccueeeevceeeiissnrecssnneccssneecsssnseccssnneeccsens 143

Impala Release NOLeS......cuueeenieeissnenssneecssnennseecssnnncsssecsssnesssseesssnesssssecsssesssssecsses 143

IMPALA REICASE INOLES.....ueeiieiieiieiieiieiesie et ete st e et ebeste et e eet e beesseseessesseessesseensesssessesssensesssensenssensenssenseenes 743
New Features in Apache Impala (INCUDALING).......cc.eeieriieieriieierieeie ettt ettt reesseeseessesseennas 743
New Features in IMpala 2.9......cc.ociioiiiiiiieiecece ettt st ssa s e ese s 743
New Features in IMpala 2.8......cc.ociioiiiiiiieiecece ettt essa e s e ene s 743
New Features in IMpPala 2.7......cc.oeiiiiieiiiieieceee ettt sttt a e ssaessesseenes 746
New Features in IMpPala 2.6......cc.oceevvieiiiiieieiieie ettt st s ssaesbaessessaesseeseenes 746
New Features in IMpala 2.5......cc.ooiiiiiiiieeceee ettt sttt sbe s e ene s 748
New Features in IMpala 2.4.........oooooiieieiieieceee ettt st s esaesbaessessaesseeseenes 751
New Features in IMpala 2.3......cc.iiiioiiieciee ettt st b e e ssaesseeseenes 751
New Features in IMpala 2.8......cc.ociioiiiiiiieieceeecee ettt sttt ssa e e eseenes 753
New Features in IMpala 2. 1.cciiiiiiiiiiieieceee ettt ssae s saesbessaesseeseenes 755
New Features in IMpala 2.0.......c.occveoiiiiiiieieiieiectee ettt baesbessaenseeseenes 755
New Features in IMpala L.4.........oociooiiiieiieie ettt s be e esae b e essessaesseeseenes 757
New Features in Impala 1.3.2......ccvoiiiieieiieieceieeee ettt ettt este s e sseeseees 758
New Features in Impala 1.3, 1 . ccooiiiiiieiecieieceeeeee ettt ese e s e ssae s ens 759
New Features in IMpala 1.3,ccioiiiieieieie ettt baessessaesseeseenns 759
New Features in Impala 1.2.4.........oooiiiiiiiieieceeeeeete ettt sb s sb e te s e ssee s e seenseees 760
New Features in Impala 1.2.3......cciioiiiieieiieieceeeee ettt sb et eete e s e seeseens 760
New Features in Impala 1.2.2......ccocoiiieiiiieiecieieeee et sttt e e esa s e eseeseees 760
New Features in Impala 1.2. 1 . .c.coieoiiiieiecieieceeeee ettt sse e s e sseeaeees 761
New Features in Impala 1.2.0 (Beta).......cccevvueriiiieriieieiieiesie ettt ettt esaese e 762
New Features in Impala 1.1 1. ..cooiooiiiieiecieieceeeeee ettt ese s e seeseens 764
New Features in IMpala L. 1.ccocciiiiiiiiiieieceee ettt baesbessaenseeseenes 764
New Features in Impala 1.0.1....c.coveoiiiieieiieiecieeeee ettt sse s e seenseens 765
New Features in IMpala 1.0.......coccieiieiiiiieieiieiecee ettt ettt saesbesseenseeseenns 765
New Features in Version 0.7 of the Impala Beta Release.........cccovvvvveriieieniieiinieiecieeeeec e 765
New Features in Version 0.6 of the Impala Beta Release.........cccovvvvveriiecieniieiinieiecieieeeeec e 766
New Features in Version 0.5 of the Impala Beta Release..........cccovvvieriieieniieienieieeiceeeec e 766
New Features in Version 0.4 of the Impala Beta Release.........cccovvvvveriieienieiinieieciceeeec e 766
New Features in Version 0.3 of the Impala Beta Release..........occovvvvverieienieienicieeiceeeec e 766
New Features in Version 0.2 of the Impala Beta Release.........cccovvvvveriieieniieiinieieeieeeeeec e 766
Incompatible Changes and Limitations in Apache Impala (incubating)............ccceevvevverievienienerierie e 766
Incompatible Changes Introduced in Impala 2.9.X........ccecivieriieienieieni et 766
Incompatible Changes Introduced in Impala 2.8.X........cccecuirieriieieniieienieie et ees 767
Incompatible Changes Introduced in IMpala 2.7.X.......cccevieieriieiieniieiene et ens 767
Incompatible Changes Introduced in IMpala 2.6.X........cccecuieieriieieniieienie et eene e 767
Incompatible Changes Introduced in Impala 2.5.X.....c.cccueriirieriieiieniieiene et 768
Incompatible Changes Introduced in Impala 2.4.X........ccceoieieriieieniieienieie et ees 769
Incompatible Changes Introduced in Impala 2.3.X.....c.cccueriirieriieiieniieiene et 769
Incompatible Changes Introduced in Impala 2.2.X.......cccoecieieriieieniieieneeie et ees 770
Incompatible Changes Introduced in Impala 2.1.X.....c.cccveviieieriieiieniieiere e 770
Incompatible Changes Introduced in Impala 2.0.5........cc.ccieiiriieiienieiesiee e 770
Incompatible Changes Introduced in Impala 2.0.4...........cccoeieiiieieniieierieie e 770
Incompatible Changes Introduced in Impala 2.0.3.........ccciriiiiieieniieiei et 770

Incompatible Changes Introduced in Impala 2.0.2..........c.ccveieriieieniieieniee et 770

| Contents | xi

Incompatible Changes Introduced in Impala 2.0.1........cccoieiiriiiieniieieni e 770
Incompatible Changes Introduced in Impala 2.0.0..........c.ccvvieriieiienieieieie et 771
Incompatible Changes Introduced in Impala 1.4.4............coooveriieienieiei et 772
Incompatible Changes Introduced in Impala 1.4.3.........cccoeiiiiieieniieiee e 772
Incompatible Changes Introduced in Impala 1.4.2..........c.cccoeiiiieieniieieniee et 772
Incompatible Changes Introduced in Impala 1.4.1........cccoiviiiieieniieieriee et 772
Incompatible Changes Introduced in Impala 1.4.0.........c.ccoveiiriieieniieieriee et 772
Incompatible Changes Introduced in Impala 1.3.3........ccooiiiiiiiieiiiiieee e 773
Incompatible Changes Introduced in Impala 1.3.2........cccciviiiiieienieieiee e 773
Incompatible Changes Introduced in Impala 1.3.1........ccooiiiiiiiiiiienieiee e 773
Incompatible Changes Introduced in Impala 1.3.0........cceoieiiriieienieiei e 773
Incompatible Changes Introduced in Impala 1.2.4...........ccoeiiriieiieniieieniee e 774
Incompatible Changes Introduced in Impala 1.2.3........cccoiriiiiieieieeeee e 774
Incompatible Changes Introduced in Impala 1.2.2........cccciviiiiiieniieieciee et 774
Incompatible Changes Introduced in Impala 1.2.1........ccooiiriiriieienieieniee et 775
Incompatible Changes Introduced in Impala 1.2.0 (Beta)........cceecvevieviinieriiiieie e 775
Incompatible Changes Introduced in Impala 1.1.1.......cccooiriiniiiiiniieieececeee e 775
Incompatible Change Introduced in Impala 1.1.......cccoocioiiiiiiniiieieieeeeeee e 776
Incompatible Changes Introduced in Impala 1.0..........ccccovieriiiieniieienieieceee e 776
Known Issues and Workarounds in IMpPala............cccieeieriiiieniiiienieeieseeieeeere et sae e sae e seeaenneas 776
Impala Known Issues: Crashes and Hangs...........ccceoveeieriinieniieiienieieccce et 776
Fixed Issues in Apache Impala (INCUDALING)..........ccoirieiiirieiieierie ettt sb e s e s e esseseens 790
Issues Fixed in IMpPala 2.9.0........ccoviiieriiiieiicieieeeesit et ettt e e e e b e s aeebestae b e esaeseesseseesnenseenns 790
Issues Fixed in IMpala 2.8.0.......ccoviiieriiiieiieieieeiesie ettt sre et et seeesbesaeesbeseaenbeesaeseesseseesnenseenns 790
Issues Fixed in IMpPala 2.7.0......cocoiiiieiiiiieiecieieetete ettt ettt e e saeesbesteesbessaesbeesaeseesseseesseseenns 790
Issues Fixed in IMpPala 2.6.3........cccviiieiiiieiieieieeerte ettt ettt ae et saeebesaeebe st e b e esaeseesseseesnenseenns 790
Issues Fixed in IMPala 2.6.2.........ccuiiieiiiiiieieeiieieeieie ettt ettt et st s eebesaeebessaesseesaeseesseseesseseenns 790
Issues Fixed in IMpPala 2.6.0.........cceieerieiieiieeieiieieste ettt ettt et et ae e esse e esbessaesseesseseessensessseseenes 791
Issues Fixed in IMPala 2.5.4........ocoviiieiieieiecieieeteste ettt ettt st b e s sbe st e b e esaeseesseseesneseenes 792
Issues Fixed in IMPala 2.5.2.....ccooiiiieieiieieeieieeett ettt ettt s eebe s sbessaesbeesaeseesseseessenseenns 792
Issues Fixed in IMPala 2.5. 1. ..coiiiiiieieiieieeieieeete ettt ettt es e st bessae s e esaeseesseseesneseenns 792
Issues Fixed in IMpPala 2.5.0.....ccoeoiiiieiiiiieieeieie ettt ettt et e e ae e ese st e e ssaesseesseseessenseesseseenns 792
Issues Fixed in IMPala 2.4, L. ...ccoeiiiieieiieiecieieetet ettt e e s e b e s teesbessaesseesaeseesseseesseseenns 795
Issues Fixed in IMpPala 2.4.0........ccouiiierieiieiieieieeieie ettt ettt esae e eae e ebesteessessaesseesaeseessenseesseseenns 795
Issues Fixed in IMPala 2.3.4........oooiiiieiieieiecieieeett ettt ettt sttt e st sb e st e b e esaeseesseseesneseenes 795
Issues Fixed in IMPala 2.3.2.....cc.ooiiiieieiieieeieie ettt ettt st b e s ae bt e e esaeseesseseesneseenes 795
Issues Fixed in IMPala 2.3, 1. c..coiiiiiieiecieieeieieeete ettt ettt e st e st esbeesaeseeseeseesneseenns 798
Issues Fixed in IMpPala 2.3.0......ccooiiiieiiiiieieeieieeieste ettt ettt saeebesaeebessae s e esaeseessenseesseseenns 798
Issues Fixed in IMpala 2.2.10.......ccuoiiiieiieieciieieeit ettt ettt sae e ae st esa e seessessaessesseensesseensenes 798
Issues Fixed in IMpPala 2.2.9......c.oooiiiieiiiieieeieieeet ettt sttt be st e e esaeseesseseessenseenes 798
Issues Fixed in IMpPala 2.2.8......c.ooiiiieiiiiieieeieieeet ettt ettt ettt et e s teebessaesbeesseseesseseessenseenes 800
Issues Fixed in IMPala 2.2.7......ccoooiiiieieiieiecieieetett ettt ettt e s saeebesaeesbessaesbeesaeseesseseessenseenns 801
Issues Fixed in Impala Impala 2.2.5.......ccooiriiiieiicieee ettt 802
Issues Fixed in IMpPala 2.2.3. . ..c.oooiiiieieeieieeieieetesi ettt ettt e ettt esteesbessaesseesaeseesseseesseseenns 803
Issues Fixed in IMPala 2.2. 1. ...ccoeoiiiieieciieieeieie ettt ettt se e s aeesbessaesbeesaeseessenseessenseenns 803
Issues Fixed in IMpPala 2.2.0........ccoviiieiieiieieeieieeeeste ettt et ste e seeae e esbesteessesssessessaeseessenseesseseenns 804
Issues Fixed in IMpala 2. 1. 10 ..cciiiiiieiieieeiieieeit ettt sae sttt ea et e esaesseessesseessesseensenes 805
Issues Fixed in IMPala 2. 1.7cciiiiiieiecieieeieie ettt ettt e e s ae b e saeesbessa e b e esaeseesseseessenseenns 805
Issues Fixed in IMPala 2.1.6......c.ccoviiieieciieieeieieetet ettt ettt se e saeebe e esbesta e b e esaeseesseseessenseenes 806
Issues Fixed in IMpPala 2. 1.5, . ..cciiiiiieieeieiecieeeett ettt ettt et st b e st be st e b e et eseesseseessenseenns 806
Issues Fixed in IMPala 2. 1.4c.oooiiiieiiiieiecieie ettt ettt e et st sbe st esbeesaeseessenseessenseenns 806
Issues Fixed in IMpPala 2.1.3.....cciiiiiieiecieieceie ettt ettt et et s b e st e st e b e esaebeesseseesseseenns 807
Issues Fixed in IMPala 2. 1.2, ...ccoooiiiieiecieiecieie ettt sae b teebessaesbeesaeseesseseeseeseenns 808
Issues Fixed in IMPala 2. 1. 1. coiiiiiiiieieiieieeieie ettt ettt sae b e st sse st e b e esaeseesseseessenseenns 809
Issues Fixed in IMpPala 2.1.0......coooiiiiirieiieieeieie ettt ettt et e e ae e esbesteesbessae s e esaeseessenseessenseenns 809

Issues Fixed in IMpala 2.0.5........cooviiiiiiiieiecieieeeet ettt b e st be st e b e esae b e essesseessenseenns 810

Issues Fixed in IMpala 2.0.4.........coviiierieiieieeieieetet ettt ettt e e se e teebe st e b e esaeseessenseessenseenes 810

Issues Fixed in IMpala 2.0.3........cooiiiiiiiiieieeieieeeei ettt se et e s te e e st e b e esaeseessenseesseseens 810
Issues Fixed in IMpPala 2.0.2........ccoviiiiiiiieiieieieeeerte ettt ettt e e sae et e saeebestaesseesaeseessenseesseseenns 811
Issues Fixed in IMpala 2.0. 1.coooiiiieiiiieiieieieeeestt ettt ettt e e sae et e s te e e ssae b e esaeseessenseessenseenns 811
Issues Fixed in IMpala 2.0.0........cccviiieiiiiieieeieieeeesie ettt et ete et seeebe e esessaesseesaeseesseseessenseenes 812
Issues Fixed in IMPala 1.4, 4.cooviiieieeieieeieieeeet ettt ettt ettt esbeesaeseesseseessesseenes 813
Issues Fixed in IMPala 1.4.3. . .cc.ooiiiieiecieieceie ettt ettt st e st e st e b e et e seesseseessesseenns 813
Issues Fixed in IMPala 1.4. 2.c.oooiiiieieiieieeieieeett ettt ettt et et s e et s sbe st e b e esaeseesseseessenseenes 813
Issues Fixed in IMPala 1.4, L. ...coieiiiieieiieiecieieeeet ettt ettt et se b be st e b e esaeseessenseessenseenns 813
Issues Fixed in IMpPala 1.4.0......coooviiieieiieiieieieeeeste ettt ettt et e e seesbe e esbessae b e esaeseessenseessenseenns 814
Issues Fixed in IMpPala 1.3.3. ..ottt ettt ettt st ettt esae b e esseseessenseens 816
Issues Fixed in IMPala 1.3.2. . ..cciiiiiieieciciecieieeet ettt et e st et e s e esseseessenseens 816
Issues Fixed in IMPala 1.3, 1. ciiiiiiiiieieiieiecieieee ettt ettt ettt st eesae s e eseenseesnenseens 816
Issues Fixed in IMpPala 1.3.0.....ccoooiiiieiiiiieieeieieeest ettt et b e s estse b e esae s e eseesseesnenseenns 817
Issues Fixed in the 1.2.4 REICASE......c.eicvuiiiiiiiiicciiecie ettt ettt ettt ae et seveevee e 819
Issues Fixed in the 1.2.3 REICASE.....cc.uioviiiiiiiiiieiiecit ettt ettt ettt et s e e aee e 820
Issues Fixed in the 1.2.2 REICASE......cuievuiiiuiiiiicciiecit ettt et e eve e et saveeree e 820
Issues Fixed in the 1.2.1 REIEASE......c.uicvuiiiiiiiiiciiecit ettt ettt et s e aee e 821
Issues Fixed in the 1.2.0 Beta ReEIEASE.......cccuiivuiiiiiiiieeiicieece ettt et e 822
Issues Fixed in the 1.1.1 REIEASE.....cceivviiiiiiiiiiciiecit ettt ettt e e vee e 822
Issues Fixed in the 1.1.0 REIEASE......c.eccvuiiiuiiiiieiiecie ettt ettt s evee e 823
Issues Fixed in the 1.0.1 REIEASE.....cc.uiovuiiiiiiiiiciiecit ettt et et s eaee e 824
Issues Fixed in the 1.0 GA REICASE......cc.ecoviiiiiieiiiiiiceeeetee ettt et e eve et eeve e e 825
Issues Fixed in Version 0.7 of the Beta Release........ccouviviiiiiieiiiiiiiieiiceececeee e 827
Issues Fixed in Version 0.6 of the Beta Release........cooviviiiiiieiiiiiiieiicecceceees e 828
Issues Fixed in Version 0.5 of the Beta Release........coovivuiiiiiiieiiiiiiiiicecceceeee e 829
Issues Fixed in Version 0.4 of the Beta Release........ccoviviiiiiiiiiiiiiieiicecceceeee et 830
Issues Fixed in Version 0.3 of the Beta Release........oooviviiiiiiniiiiiiiciicecceceees e 830

Issues Fixed in Version 0.2 of the Beta REIEASE........c..eeevuveiiiieeiiiiiieeeeeeeeeee e 831

| Introducing Apache Impala (incubating) | 13

Introducing Apache Impala (incubating)

Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS, HBase, or the
Amazon Simple Storage Service (S3). In addition to using the same unified storage platform, Impala also uses the
same metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Impala query Ul in Hue) as Apache Hive.
This provides a familiar and unified platform for real-time or batch-oriented queries.

Impala is an addition to tools available for querying big data. Impala does not replace the batch processing
frameworks built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for
long running batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

Note: Impala was accepted into the Apache incubator on December 2, 2015. In places where the documentation
formerly referred to “Cloudera Impala”, now the official name is “Apache Impala (incubating)”.

Impala Benefits

Impala provides:

» Familiar SQL interface that data scientists and analysts already know.

» Ability to query high volumes of data (“big data”) in Apache Hadoop.

» Distributed queries in a cluster environment, for convenient scaling and to make use of cost-effective commodity
hardware.

* Ability to share data files between different components with no copy or export/import step; for example, to write
with Pig, transform with Hive and query with Impala. Impala can read from and write to Hive tables, enabling
simple data interchange using Impala for analytics on Hive-produced data.

» Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for
analytics.

How Impala Works with Apache Hadoop

The Impala solution is composed of the following components:

* Clients - Entities including Hue, ODBC clients, JDBC clients, and the Impala Shell can all interact with Impala.
These interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.

* Hive Metastore - Stores information about the data available to Impala. For example, the metastore lets Impala
know what databases are available and what the structure of those databases is. As you create, drop, and alter
schema objects, load data into tables, and so on through Impala SQL statements, the relevant metadata changes are
automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

* Impala - This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can
receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these
nodes then act as workers, executing parallel query fragments.

» HBase and HDFS - Storage for data to be queried.

Queries executed using Impala are handled as follows:

1. User applications send SQL queries to Impala through ODBC or JDBC, which provide standardized querying
interfaces. The user application may connect to any impalad in the cluster. This impalad becomes the
coordinator for the query.

2. Impala parses the query and analyzes it to determine what tasks need to be performed by impalad instances
across the cluster. Execution is planned for optimal efficiency.

3. Services such as HDFS and HBase are accessed by local impalad instances to provide data.
4. Each impalad returns data to the coordinating impalad, which sends these results to the client.

| Impala Concepts and Architecture | 14

Primary Impala Features

Impala provides support for:

* Most common SQL-92 features of Hive Query Language (HiveQL) including SELECT, joins, and aggregate
functions.

+ HDFS, HBase, and Amazon Simple Storage System (S3) storage, including:

» HDFS file formats: delimited text files, Parquet, Avro, SequenceFile, and RCFile.
» Compression codecs: Snappy, GZIP, Deflate, BZIP.
+ Common data access interfaces including:

* JDBC driver.

* ODBC driver.

* Hue Beeswax and the Impala Query UL
* impala-shell command-line interface.
* Kerberos authentication.

Impala Concepts and Architecture

The following sections provide background information to help you become productive using Impala and its
features. Where appropriate, the explanations include context to help understand how aspects of Impala relate to
other technologies you might already be familiar with, such as relational database management systems and data
warehouses, or other Hadoop components such as Hive, HDFS, and HBase.

Components of the Impala Server

The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different
daemon processes that run on specific hosts within your cluster.

The Impala Daemon

The core Impala component is a daemon process that runs on each DataNode of the cluster, physically represented
by the impalad process. It reads and writes to data files; accepts queries transmitted from the impala-shell
command, Hue, JDBC, or ODBC; parallelizes the queries and distributes work across the cluster; and transmits
intermediate query results back to the central coordinator node.

You can submit a query to the Impala daemon running on any DataNode, and that instance of the daemon serves as
the coordinator node for that query. The other nodes transmit partial results back to the coordinator, which constructs
the final result set for a query. When running experiments with functionality through the impala-shell command,
you might always connect to the same Impala daemon for convenience. For clusters running production workloads,
you might load-balance by submitting each query to a different Impala daemon in round-robin style, using the JDBC
or ODBC interfaces.

The Impala daemons are in constant communication with the statestore, to confirm which nodes are healthy and can
accept new work.

They also receive broadcast messages from the catalogd daemon (introduced in Impala 1.2) whenever any Impala
node in the cluster creates, alters, or drops any type of object, or when an INSERT or LOAD DATA statement is
processed through Impala. This background communication minimizes the need for REFRESH or INVALIDATE
METADATA statements that were needed to coordinate metadata across nodes prior to Impala 1.2.

| Impala Concepts and Architecture | 15

In Impala 2.9 and higher, you can control which hosts act as query coordinators and which act as query executors, to
improve scalability for highly concurrent workloads on large clusters. See Scalability Considerations for Impala on
page 636 for details.

Related information: Modifying Impala Startup Options on page 32, Starting Impala on page 31, Setting
the Idle Query and Idle Session Timeouts for impalad on page 76, Ports Used by Impala on page 736, Using
Impala through a Proxy for High Availability on page 77

The Impala Statestore

The Impala component known as the statestore checks on the health of Impala daemons on all the DataNodes in

a cluster, and continuously relays its findings to each of those daemons. It is physically represented by a daemon
process named statestored; you only need such a process on one host in the cluster. If an Impala daemon goes
offline due to hardware failure, network error, software issue, or other reason, the statestore informs all the other
Impala daemons so that future queries can avoid making requests to the unreachable node.

Because the statestore's purpose is to help when things go wrong, it is not critical to the normal operation of an Impala
cluster. If the statestore is not running or becomes unreachable, the Impala daemons continue running and distributing
work among themselves as usual; the cluster just becomes less robust if other Impala daemons fail while the statestore
is offline. When the statestore comes back online, it re-establishes communication with the Impala daemons and
resumes its monitoring function.

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

Related information:

Scalability Considerations for the Impala Statestore on page 637, Modifying Impala Startup Options on page
32, Starting Impala on page 31, Increasing the Statestore Timeout on page 76, Ports Used by Impala on
page 736

The Impala Catalog Service

The Impala component known as the catalog service relays the metadata changes from Impala SQL statements to all
the DataNodes in a cluster. It is physically represented by a daemon process named catalogd; you only need such
a process on one host in the cluster. Because the requests are passed through the statestore daemon, it makes sense to
run the statestored and catalogd services on the same host.

The catalog service avoids the need to issue REFRESH and INVALIDATE METADATA statements when the
metadata changes are performed by statements issued through Impala. When you create a table, load data, and so on
through Hive, you do need to issue REFRESH or INVALIDATE METADATA on an Impala node before executing a
query there.

This feature touches a number of aspects of Impala:

» See Installing Impala on page 24, Upgrading Impala on page 30 and Starting Impala on page 31, for
usage information for the catalogd daemon.

* The REFRESH and INVALIDATE METADATA statements are not needed when the CREATE TABLE, INSERT,
or other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on
page 314 and INVALIDATE METADATA Statement on page 307 for the latest usage information for those
statements.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting
requests promptly. To enable the original behavior, where Impala waited until all metadata was loaded before
accepting any requests, set the catalogd configuration option --load catalog in background=false.

| Impala Concepts and Architecture | 16

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

Note:

In Impala 1.2.4 and higher, you can specify a table name with INVALIDATE METADATA after the table is created
in Hive, allowing you to make individual tables visible to Impala without doing a full reload of the catalog metadata.
Impala 1.2.4 also includes other changes to make the metadata broadcast mechanism faster and more responsive,
especially during Impala startup. See New Features in Impala 1.2.4 on page 760 for details.

Related information: Modifying Impala Startup Options on page 32, Starting Impala on page 31, Ports
Used by Impala on page 736

Developing Impala Applications

The core development language with Impala is SQL. You can also use Java or other languages to interact with Impala
through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of
analysis, you can supplement the SQL built-in functions by writing user-defined functions (UDFs) in C++ or Java.

Overview of the Impala SQL Dialect

The Impala SQL dialect is highly compatible with the SQL syntax used in the Apache Hive component (HiveQL).
As such, it is familiar to users who are already familiar with running SQL queries on the Hadoop infrastructure.
Currently, Impala SQL supports a subset of HiveQL statements, data types, and built-in functions. Impala also
includes additional built-in functions for common industry features, to simplify porting SQL from non-Hadoop
systems.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might seem familiar:

» The SELECT statement includes familiar clauses such as WHERE, GROUP BY, ORDER BY, and WITH. You
will find familiar notions such as joins, built-in functions for processing strings, numbers, and dates, aggregate
functions, subqueries, and comparison operators such as IN () and BETWEEN. The SELECT statement is the
place where SQL standards compliance is most important.

* From the data warehousing world, you will recognize the notion of partitioned tables. One or more columns
serve as partition keys, and the data is physically arranged so that queries that refer to the partition key columns
in the WHERE clause can skip partitions that do not match the filter conditions. For example, if you have 10 years
worth of data and use a clause such as WHERE year = 2015, WHERE year > 2010, or WHERE year IN

(2014, 2015), Impala skips all the data for non-matching years, greatly reducing the amount of I/O for the
query.

* InImpala 1.2 and higher, UDFs let you perform custom comparisons and transformation logic during SELECT
and INSERT. . . SELECT statements.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might require some learning and practice for you to become proficient in the Hadoop environment:

» Impala SQL is focused on queries and includes relatively little DML. There is no UPDATE or DELETE statement.
Stale data is typically discarded (by DROP TABLE or ALTER TABLE ... DROP PARTITION statements) or
replaced (by INSERT OVERWRITE statements).

» All data creation is done by INSERT statements, which typically insert data in bulk by querying from other tables.
There are two variations, INSERT INTO which appends to the existing data, and INSERT OVERWRITE which
replaces the entire contents of a table or partition (similar to TRUNCATE TABLE followed by a new INSERT).
Although there is an INSERT ... VALUES syntax to create a small number of values in a single statement, it is
far more efficient to use the INSERT ... SELECT to copy and transform large amounts of data from one table
to another in a single operation.

| Impala Concepts and Architecture | 17

* You often construct Impala table definitions and data files in some other environment, and then attach Impala so
that it can run real-time queries. The same data files and table metadata are shared with other components of the
Hadoop ecosystem. In particular, Impala can access tables created by Hive or data inserted by Hive, and Hive can
access tables and data produced by Impala. Many other Hadoop components can write files in formats such as
Parquet and Avro, that can then be queried by Impala.

* Because Hadoop and Impala are focused on data warehouse-style operations on large data sets, Impala SQL
includes some idioms that you might find in the import utilities for traditional database systems. For example, you
can create a table that reads comma-separated or tab-separated text files, specifying the separator in the CREATE
TABLE statement. You can create external tables that read existing data files but do not move or transform them.

» Because Impala reads large quantities of data that might not be perfectly tidy and predictable, it does not require
length constraints on string data types. For example, you can define a database column as STRING with unlimited
length, rather than CHAR (1) or VARCHAR (64) . (Although in Impala 2.0 and later, you can also use length-
constrained CHAR and VARCHAR types.)

Related information: /mpala SOL Language Reference on page 106, especially Impala SOL Statements on page
221 and Impala Built-In Functions on page 402

Overview of Impala Programming Interfaces
You can connect and submit requests to the Impala daemons through:

* The impala-shell interactive command interpreter.
» The Hue web-based user interface.

 JDBC.

* ODBC.

With these options, you can use Impala in heterogeneous environments, with JDBC or ODBC applications running on
non-Linux platforms. You can also use Impala on combination with various Business Intelligence tools that use the
JDBC and ODBC interfaces.

Each impalad daemon process, running on separate nodes in a cluster, listens to several ports for incoming
requests. Requests from impala-shell and Hue are routed to the impalad daemons through the same port. The
impalad daemons listen on separate ports for JDBC and ODBC requests.

How Impala Fits Into the Hadoop Ecosystem

Impala makes use of many familiar components within the Hadoop ecosystem. Impala can interchange data with
other Hadoop components, as both a consumer and a producer, so it can fit in flexible ways into your ETL and ELT
pipelines.

How Impala Works with Hive

A major Impala goal is to make SQL-on-Hadoop operations fast and efficient enough to appeal to new categories
of users and open up Hadoop to new types of use cases. Where practical, it makes use of existing Apache Hive
infrastructure that many Hadoop users already have in place to perform long-running, batch-oriented SQL queries.

In particular, Impala keeps its table definitions in a traditional MySQL or PostgreSQL database known as the
metastore, the same database where Hive keeps this type of data. Thus, Impala can access tables defined or loaded by
Hive, as long as all columns use Impala-supported data types, file formats, and compression codecs.

The initial focus on query features and performance means that Impala can read more types of data with the SELECT
statement than it can write with the INSERT statement. To query data using the Avro, RCFile, or SequenceFile file
Jformats, you load the data using Hive.

The Impala query optimizer can also make use of fable statistics and column statistics. Originally, you gathered this
information with the ANALYZE TABLE statement in Hive; in Impala 1.2.2 and higher, use the Impala COMPUTE
STATS statement instead. COMPUTE STATS requires less setup, is more reliable, and does not require switching
back and forth between impala-shell and the Hive shell.

http://gethue.com/

| Planning for Impala Deployment | 18

Overview of Impala Metadata and the Metastore

As discussed in How Impala Works with Hive on page 17, Impala maintains information about table definitions in
a central database known as the metastore. Impala also tracks other metadata for the low-level characteristics of data
files:

» The physical locations of blocks within HDFS.

For tables with a large volume of data and/or many partitions, retrieving all the metadata for a table can be time-
consuming, taking minutes in some cases. Thus, each Impala node caches all of this metadata to reuse for future
queries against the same table.

If the table definition or the data in the table is updated, all other Impala daemons in the cluster must receive the latest
metadata, replacing the obsolete cached metadata, before issuing a query against that table. In Impala 1.2 and higher,
the metadata update is automatic, coordinated through the catalogd daemon, for all DDL and DML statements
issued through Impala. See The Impala Catalog Service on page 15 for details.

For DDL and DML issued through Hive, or changes made manually to files in HDFS, you still use the REFRESH
statement (when new data files are added to existing tables) or the INVALIDATE METADATA statement (for entirely
new tables, or after dropping a table, performing an HDFS rebalance operation, or deleting data files). Issuing
INVALIDATE METADATA by itself retrieves metadata for all the tables tracked by the metastore. If you know that
only specific tables have been changed outside of Impala, you can issue REFRESH table name for each affected
table to only retrieve the latest metadata for those tables.

How Impala Uses HDFS

Impala uses the distributed filesystem HDFS as its primary data storage medium. Impala relies on the redundancy
provided by HDFS to guard against hardware or network outages on individual nodes. Impala table data is physically
represented as data files in HDFS, using familiar HDFS file formats and compression codecs. When data files are
present in the directory for a new table, Impala reads them all, regardless of file name. New data is added in files with
names controlled by Impala.

How Impala Uses HBase

HBase is an alternative to HDFS as a storage medium for Impala data. It is a database storage system built on top of
HDFS, without built-in SQL support. Many Hadoop users already have it configured and store large (often sparse)
data sets in it. By defining tables in Impala and mapping them to equivalent tables in HBase, you can query the
contents of the HBase tables through Impala, and even perform join queries including both Impala and HBase tables.
See Using Impala to Query HBase Tables on page 699 for details.

Planning for Impala Deployment

Before you set up Impala in production, do some planning to make sure that your hardware setup has sufficient
capacity, that your cluster topology is optimal for Impala queries, and that your schema design and ETL processes
follow the best practices for Impala.

Impala Requirements

To perform as expected, Impala depends on the availability of the software, hardware, and configurations described in
the following sections.

Supported Operating Systems

Apache Impala runs on Linux systems only. See the README . md file for more information.

| Planning for Impala Deployment | 19

Hive Metastore and Related Configuration

Impala can interoperate with data stored in Hive, and uses the same infrastructure as Hive for tracking metadata about
schema objects such as tables and columns. The following components are prerequisites for Impala:

* MySQL or PostgreSQL, to act as a metastore database for both Impala and Hive.
Note:

Installing and configuring a Hive metastore is an Impala requirement. Impala does not work without the metastore
database. For the process of installing and configuring the metastore, see Installing Impala on page 24.

Always configure a Hive metastore service rather than connecting directly to the metastore database. The Hive
metastore service is required to interoperate between different levels of metastore APIs if this is necessary for your
environment, and using it avoids known issues with connecting directly to the metastore database.

A summary of the metastore installation process is as follows:

» Install a MySQL or PostgreSQL database. Start the database if it is not started after installation.

* Download the MySQL connector or the PostgreSQL connector and place it in the /usr/share/java/
directory.

* Use the appropriate command line tool for your database to create the metastore database.

» Use the appropriate command line tool for your database to grant privileges for the metastore database to the
hive user.

* Modify hive-site.xml to include information matching your particular database: its URL, username, and
password. You will copy the hive-site.xml file to the Impala Configuration Directory later in the Impala
installation process.

* Optional: Hive. Although only the Hive metastore database is required for Impala to function, you might install
Hive on some client machines to create and load data into tables that use certain file formats. See How Impala
Works with Hadoop File Formats on page 652 for details. Hive does not need to be installed on the same
DataNodes as Impala; it just needs access to the same metastore database.

Java Dependencies
Although Impala is primarily written in C++, it does use Java to communicate with various Hadoop components:

» The officially supported JVM for Impala is the Oracle JVM. Other JVMs might cause issues, typically resulting in
a failure at impalad startup. In particular, the JamVM used by default on certain levels of Ubuntu systems can
cause impalad to fail to start.

» Internally, the impalad daemon relies on the JAVA HOME environment variable to locate the system Java
libraries. Make sure the impalad service is not run from an environment with an incorrect setting for this
variable.

» All Java dependencies are packaged in the impala-dependencies.jar file, which is located at /uszr/
lib/impala/lib/. These map to everything that is built under fe/target/dependency.

Networking Configuration Requirements

As part of ensuring best performance, Impala attempts to complete tasks on local data, as opposed to using network
connections to work with remote data. To support this goal, Impala matches the hostname provided to each Impala
daemon with the IP address of each DataNode by resolving the hostname flag to an IP address. For Impala to work
with local data, use a single IP interface for the DataNode and the Impala daemon on each machine. Ensure that

the Impala daemon's hostname flag resolves to the IP address of the DataNode. For single-homed machines, this is
usually automatic, but for multi-homed machines, ensure that the Impala daemon's hostname resolves to the correct
interface. Impala tries to detect the correct hostname at start-up, and prints the derived hostname at the start of the log
in a message of the form:

Using hostname: impala-daemon-1.example.com

In the majority of cases, this automatic detection works correctly. If you need to explicitly set the hostname, do so by
setting the ——hostname flag.

http://www.mysql.com/products/connector/
http://jdbc.postgresql.org/download.html

| Planning for Impala Deployment | 20

Hardware Requirements

During join operations, portions of data from each joined table are loaded into memory. Data sets can be very large,
so ensure your hardware has sufficient memory to accommodate the joins you anticipate completing.

While requirements vary according to data set size, the following is generally recommended:
* CPU - Impala version 2.2 and higher uses the SSSE3 instruction set, which is included in newer processors.

Note: This required level of processor is the same as in Impala version 1.x. The Impala 2.0 and 2.1 releases had a
stricter requirement for the SSE4.1 instruction set, which has now been relaxed.

* Memory - 128 GB or more recommended, ideally 256 GB or more. If the intermediate results during query
processing on a particular node exceed the amount of memory available to Impala on that node, the query writes
temporary work data to disk, which can lead to long query times. Note that because the work is parallelized, and
intermediate results for aggregate queries are typically smaller than the original data, Impala can query and join
tables that are much larger than the memory available on an individual node.

» Storage - DataNodes with 12 or more disks each. I/O speeds are often the limiting factor for disk performance
with Impala. Ensure that you have sufficient disk space to store the data Impala will be querying.

User Account Requirements

Impala creates and uses a user and group named impala. Do not delete this account or group and do not modify the
account's or group's permissions and rights. Ensure no existing systems obstruct the functioning of these accounts and
groups. For example, if you have scripts that delete user accounts not in a white-list, add these accounts to the list of
permitted accounts.

For correct file deletion during DROP TABLE operations, Impala must be able to move files to the HDFS trashcan.
You might need to create an HDFS directory /user/impala, writeable by the impala user, so that the trashcan
can be created. Otherwise, data files might remain behind after a DROP TABLE statement.

Impala should not run as root. Best Impala performance is achieved using direct reads, but root is not permitted to use
direct reads. Therefore, running Impala as root negatively affects performance.

By default, any user can connect to Impala and access all the associated databases and tables. You can enable
authorization and authentication based on the Linux OS user who connects to the Impala server, and the associated
groups for that user. Impala Security on page 82 for details. These security features do not change the underlying
file permission requirements; the impala user still needs to be able to access the data files.

Cluster Sizing Guidelines for Impala

This document provides a very rough guideline to estimate the size of a cluster needed for a specific customer
application. You can use this information when planning how much and what type of hardware to acquire for a new
cluster, or when adding Impala workloads to an existing cluster.

Note: Before making purchase or deployment decisions, consult organizations with relevant experience to verify the
conclusions about hardware requirements based on your data volume and workload.

Always use hosts with identical specifications and capacities for all the nodes in the cluster. Currently, Impala divides
the work evenly between cluster nodes, regardless of their exact hardware configuration. Because work can be
distributed in different ways for different queries, if some hosts are overloaded compared to others in terms of CPU,
memory, I/O, or network, you might experience inconsistent performance and overall slowness

For analytic workloads with star/snowflake schemas, and using consistent hardware for all nodes (64 GB RAM, 12 2
TB hard drives, 2x E5-2630L 12 cores total, 10 GB network), the following table estimates the number of DataNodes
needed in the cluster based on data size and the number of concurrent queries, for workloads similar to TPC-DS
benchmark queries:

| Planning for Impala Deployment | 21

Table 1: Cluster size estimation based on the number of concurrent queries and data size with
a 20 second average query response time

Data Size 1 query 10 queries 100 queries 1000 queries 2000 queries
250 GB 2 2 5 35 70

500 GB 2 2 10 70 135

1TB 2 2 15 135 270

15TB 2 20 200 N/A N/A

30 TB 4 40 400 N/A N/A

60 TB 8 80 800 N/A N/A

Factors Affecting Scalability

A typical analytic workload (TPC-DS style queries) using recommended hardware is usually CPU-bound. Each node
can process roughly 1.6 GB/sec. Both CPU-bound and disk-bound workloads can scale almost linearly with cluster
size. However, for some workloads, the scalability might be bounded by the network, or even by memory.

If the workload is already network bound (on a 10 GB network), increasing the cluster size won’t reduce the network
load; in fact, a larger cluster could increase network traffic because some queries involve “broadcast” operations

to all DataNodes. Therefore, boosting the cluster size does not improve query throughput in a network-constrained
environment.

Let’s look at a memory-bound workload. A workload is memory-bound if Impala cannot run any additional
concurrent queries because all memory allocated has already been consumed, but neither CPU, disk, nor network

is saturated yet. This can happen because currently Impala uses only a single core per node to process join and
aggregation queries. For a node with 128 GB of RAM, if a join node takes 50 GB, the system cannot run more than 2
such queries at the same time.

Therefore, at most 2 cores are used. Throughput can still scale almost linearly even for a memory-bound workload.
It’s just that the CPU will not be saturated. Per-node throughput will be lower than 1.6 GB/sec. Consider increasing
the memory per node.

As long as the workload is not network- or memory-bound, we can use the 1.6 GB/second per node as the throughput
estimate.

A More Precise Approach

A more precise sizing estimate would require not only queries per minute (QPM), but also an average data size
scanned per query (D). With the proper partitioning strategy, D is usually a fraction of the total data size. The
following equation can be used as a rough guide to estimate the number of nodes (N) needed:

Eq 1: N > QPM * D / 100 GB

Here is an example. Suppose, on average, a query scans 50 GB of data and the average response time is required to be
15 seconds or less when there are 100 concurrent queries. The QPM is 100/15*%60 = 400. We can estimate the number
of node using our equation above.

N > QPM * D / 100GB
N > 400 * 50GB / 100GB
N > 200

Because this figure is a rough estimate, the corresponding number of nodes could be between 100 and 500.

Depending on the complexity of the query, the processing rate of query might change. If the query has more joins,
aggregation functions, or CPU-intensive functions such as string processing or complex UDFs, the process rate will

| Planning for Impala Deployment | 22

be lower than 1.6 GB/second per node. On the other hand, if the query only does scan and filtering on numbers, the
processing rate can be higher.

Estimating Memory Requirements

Impala can handle joins between multiple large tables. Make sure that statistics are collected for all the joined tables,
using the COMPUTE STATS statement. However, joining big tables does consume more memory. Follow the steps
below to calculate the minimum memory requirement.

Suppose you are running the following join:

select a.*, b.col 1, b.col 2, .. b.col n
from a, b

where a.key = b.key

and b.col 1 in (1,2,4...)

and b.col 4 in (....);

And suppose table B is smaller than table A (but still a large table).

The memory requirement for the query is the right-hand table (B), after decompression, filtering (b.col n
in ...)and after projection (only using certain columns) must be less than the total memory of the entire cluster.

Cluster Total Memory Requirement = Size of the smaller table *
selectivity factor from the predicate *
projection factor * compression ratio

In this case, assume that table B is 100 TB in Parquet format with 200 columns. The predicate on B (b.col 1

in .and b.col 4 in ...)willselectonly 10% of the rows from B and for projection, we are only
prOJectlng 5 columns out of 200 columns. Usually, Snappy compression gives us 3 times compression, SO we estimate
a 3x compression factor.

Cluster Total Memory Requirement = Size of the smaller table *
selectivity factor from the predicate *
projection factor * compression ratio
= 100TB * 10% * 5/200 * 3
= 0.75TB
= 750GB

So, if you have a 10-node cluster, each node has 128 GB of RAM and you give 80% to Impala, then you have 1 TB

of usable memory for Impala, which is more than 750GB. Therefore, your cluster can handle join queries of this
magnitude.

Guidelines for Designing Impala Schemas

The guidelines in this topic help you to construct an optimized and scalable schema, one that integrates well with
your existing data management processes. Use these guidelines as a checklist when doing any proof-of-concept work,
porting exercise, or before deploying to production.

If you are adapting an existing database or Hive schema for use with Impala, read the guidelines in this section and
then see Porting SOL from Other Database Systems to Impala on page 572 for specific porting and compatibility
tips.

Prefer binary file formats over text-based formats.

To save space and improve memory usage and query performance, use binary file formats for any large or intensively
queried tables. Parquet file format is the most efficient for data warehouse-style analytic queries. Avro is the other
binary file format that Impala supports, that you might already have as part of a Hadoop ETL pipeline.

| Planning for Impala Deployment | 23

Although Impala can create and query tables with the RCFile and SequenceFile file formats, such tables are relatively
bulky due to the text-based nature of those formats, and are not optimized for data warechouse-style queries due to
their row-oriented layout. Impala does not support INSERT operations for tables with these file formats.

Guidelines:

» For an efficient and scalable format for large, performance-critical tables, use the Parquet file format.

* To deliver intermediate data during the ETL process, in a format that can also be used by other Hadoop
components, Avro is a reasonable choice.

» For convenient import of raw data, use a text table instead of RCFile or SequenceFile, and convert to Parquet in a
later stage of the ETL process.

Use Snappy compression where practical.

Snappy compression involves low CPU overhead to decompress, while still providing substantial space savings. In
cases where you have a choice of compression codecs, such as with the Parquet and Avro file formats, use Snappy
compression unless you find a compelling reason to use a different codec.

Prefer numeric types over strings.

If you have numeric values that you could treat as either strings or numbers (such as YEAR, MONTH, and DAY for
partition key columns), define them as the smallest applicable integer types. For example, YEAR can be SMALLINT,
MONTH and DAY can be TINYINT. Although you might not see any difference in the way partitioned tables or text
files are laid out on disk, using numeric types will save space in binary formats such as Parquet, and in memory when
doing queries, particularly resource-intensive queries such as joins.

Partition, but do not over-partition.

Partitioning is an important aspect of performance tuning for Impala. Follow the procedures in Partitioning for
Impala Tables on page 645 to set up partitioning for your biggest, most intensively queried tables.

If you are moving to Impala from a traditional database system, or just getting started in the Big Data field, you might
not have enough data volume to take advantage of Impala parallel queries with your existing partitioning scheme.

For example, if you have only a few tens of megabytes of data per day, partitioning by YEAR, MONTH, and DAY
columns might be too granular. Most of your cluster might be sitting idle during queries that target a single day, or
each node might have very little work to do. Consider reducing the number of partition key columns so that each
partition directory contains several gigabytes worth of data.

For example, consider a Parquet table where each data file is 1 HDFS block, with a maximum block size of 1 GB.
(In Impala 2.0 and later, the default Parquet block size is reduced to 256 MB. For this exercise, let's assume you have
bumped the size back up to 1 GB by setting the query option PARQUET FILE SIZE=1g.)if you have a 10-node
cluster, you need 10 data files (up to 10 GB) to give each node some work to do for a query. But each core on each
machine can process a separate data block in parallel. With 16-core machines on a 10-node cluster, a query could
process up to 160 GB fully in parallel. If there are only a few data files per partition, not only are most cluster nodes
sitting idle during queries, so are most cores on those machines.

You can reduce the Parquet block size to as low as 128 MB or 64 MB to increase the number of files per partition and
improve parallelism. But also consider reducing the level of partitioning so that analytic queries have enough data to
work with.

Always compute stats after loading data.

Impala makes extensive use of statistics about data in the overall table and in each column, to help plan resource-
intensive operations such as join queries and inserting into partitioned Parquet tables. Because this information is only
available after data is loaded, run the COMPUTE STATS statement on a table after loading or replacing data in a table
or partition.

Having accurate statistics can make the difference between a successful operation, or one that fails due to an out-
of-memory error or a timeout. When you encounter performance or capacity issues, always use the SHOW STATS
statement to check if the statistics are present and up-to-date for all tables in the query.

| Installing Impala | 24

When doing a join query, Impala consults the statistics for each joined table to determine their relative sizes and
to estimate the number of rows produced in each join stage. When doing an INSERT into a Parquet table, Impala
consults the statistics for the source table to determine how to distribute the work of constructing the data files for
each partition.

See COMPUTE STATS Statement on page 237 for the syntax of the COMPUTE STATS statement, and Table and
Column Statistics on page 601 for all the performance considerations for table and column statistics.

Verify sensible execution plans with EXPLAIN and SUMMARY.

Before executing a resource-intensive query, use the EXPLAIN statement to get an overview of how Impala intends
to parallelize the query and distribute the work. If you see that the query plan is inefficient, you can take tuning steps
such as changing file formats, using partitioned tables, running the COMPUTE STATS statement, or adding query
hints. For information about all of these techniques, see Tuning Impala for Performance on page 591.

After you run a query, you can see performance-related information about how it actually ran by issuing the
SUMMARY command in impala-shell. Prior to Impala 1.4, you would use the PROFILE command, but its highly
technical output was only useful for the most experienced users. SUMMARY, new in Impala 1.4, summarizes the most
useful information for all stages of execution, for all nodes rather than splitting out figures for each node.

Installing Impala

Impala is an open-source analytic database for Apache Hadoop that returns rapid responses to queries.
Follow these steps to set up Impala on a cluster by building from source:

» Download the latest release. See the Impala downloads page for the link to the latest release.

* Check the README . md file for a pointer to the build instructions.

» Please check the MD5 and SHA1 and GPG signature, the latter by using the code signing keys of the release
managers.

» Developers interested in working on Impala can clone the Impala source repository:

git clone https://git-wip-us.apache.org/repos/asf/incubator-impala.git

What is Included in an Impala Installation

Impala is made up of a set of components that can be installed on multiple nodes throughout your cluster. The key
installation step for performance is to install the impalad daemon (which does most of the query processing work)
on all DataNodes in the cluster.

The Impala package installs these binaries:

* impalad - The Impala daemon. Plans and executes queries against HDFS, HBase, and Amazon S3 data. Run one
impalad process on each node in the cluster that has a DataNode.

* statestored - Name service that tracks location and status of all impalad instances in the cluster. Run
one instance of this daemon on a node in your cluster. Most production deployments run this daemon on the
namenode.

* catalogd - Metadata coordination service that broadcasts changes from Impala DDL and DML statements to
all affected Impala nodes, so that new tables, newly loaded data, and so on are immediately visible to queries
submitted through any Impala node. (Prior to Impala 1.2, you had to run the REFRESH or INVALIDATE
METADATA statement on each node to synchronize changed metadata. Now those statements are only required if
you perform the DDL or DML through an external mechanism such as Hive or by uploading data to the Amazon
S3 filesystem.) Run one instance of this daemon on a node in your cluster, preferably on the same host as the
statestored daemon.

http://impala.apache.org/downloads.html

| Managing Impala | 25

* impala-shell - Command-line interface for issuing queries to the Impala daemon. You install this on one or
more hosts anywhere on your network, not necessarily DataNodes or even within the same cluster as Impala. It
can connect remotely to any instance of the Impala daemon.

Before doing the installation, ensure that you have all necessary prerequisites. See Impala Requirements on page
18 for details.

Managing Impala

This section explains how to configure Impala to accept connections from applications that use popular programming
APIs:

» Post-Installation Configuration for Impala on page 25
» Configuring Impala to Work with ODBC on page 26
» Configuring Impala to Work with JDBC on page 27

This type of configuration is especially useful when using Impala in combination with Business Intelligence tools,
which use these standard interfaces to query different kinds of database and Big Data systems.

You can also configure these other aspects of Impala:

» Impala Security on page 82
* Modifying Impala Startup Options on page 32

Post-Installation Configuration for Impala

This section describes the mandatory and recommended configuration settings for Impala. If Impala is installed
using cluster management software, some of these configurations might be completed automatically; you must still
configure short-circuit reads manually. If you want to customize your environment, consider making the changes
described in this topic.

* You must enable short-circuit reads, whether or not Impala was installed with cluster management software. This
setting goes in the Impala configuration settings, not the Hadoop-wide settings.

* You must enable block location tracking, and you can optionally enable native checksumming for optimal
performance.

Mandatory: Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to
communicate through the DataNodes, improving performance. This setting also minimizes the number of additional
copies of data. Short-circuit reads requires 1 ibhadoop . so (the Hadoop Native Library) to be accessible to both the
server and the client. 1ibhadoop. so is not available if you have installed from a tarball. You must install from an
.rpm, . deb, or parcel to use short-circuit local reads.

To configure DataNodes for short-circuit reads:

1. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration
directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/
conft.

2. On all Impala nodes, configure the following properties in Impala's copy of hdfs-site.xml as shown:

<property>
<name>dfs.client.read.shortcircuit</name>
<value>true</value>

</property>

<property>

| Managing Impala | 26

<name>dfs.domain.socket.path</name>
<value>/var/run/hdfs-sockets/dn</value>
</property>

<property>
<name>dfs.client.file-block-storage-locations.timeout.millis</name>
<value>10000</value>

</property>

3. If /var/run/hadoop-hdfs/ is group-writable, make sure its group is root.

Note: If you are also going to enable block location tracking, you can skip copying configuration files and
restarting DataNodes and go straight to Optional: Block Location Tracking. Configuring short-circuit reads and
block location tracking require the same process of copying files and restarting services, so you can complete that
process once when you have completed all configuration changes. Whether you copy files and restart services now
or during configuring block location tracking, short-circuit reads are not enabled until you complete those final
steps.

4. After applying these changes, restart all DataNodes.

Mandatory: Block Location Tracking

Enabling block location metadata allows Impala to know which disk data blocks are located on, allowing better
utilization of the underlying disks. Impala will not start unless this setting is enabled.

To enable block location tracking:

1. For each DataNode, adding the following to the hdfs-site.xml file:

<property>
<name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
<value>true</value>

</property>

2. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration
directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/
conf.

3. After applying these changes, restart all DataNodes.

Optional: Native Checksumming

Enabling native checksumming causes Impala to use an optimized native library for computing checksums, if that
library is available.

To enable native checksumming:

If you installed from packages, the native checksumming library is installed and setup correctly. In such a case, no
additional steps are required. Conversely, if you installed by other means, such as with tarballs, native checksumming
may not be available due to missing shared objects. Finding the message "Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable"inthe
Impala logs indicates native checksumming may be unavailable. To enable native checksumming, you must build and
install 1ibhadoop. so (the Hadoop Native Library).

Configuring Impala to Work with ODBC

Third-party products, especially business intelligence and reporting tools, can access Impala using the ODBC
protocol. For the best experience, ensure any third-party product you intend to use is supported. Verifying support
includes checking that the versions of Impala, ODBC, the operating system, the Apache Hadoop distribution, and
the third-party product have all been approved by the appropriate suppliers for use together. To configure your
systems to use ODBC, download and install a connector, typically from the supplier of the third-party product or the

| Managing Impala | 27

Hadoop distribution. You may need to sign in and accept license agreements before accessing the pages required for
downloading ODBC connectors.

Configuring Impala to Work with JIDBC

Impala supports the standard JDBC interface, allowing access from commercial Business Intelligence tools and
custom software written in Java or other programming languages. The JDBC driver allows you to access Impala from
a Java program that you write, or a Business Intelligence or similar tool that uses JDBC to communicate with various
database products.

Setting up a JDBC connection to Impala involves the following steps:

* Verifying the communication port where the Impala daemons in your cluster are listening for incoming JDBC
requests.

* Installing the JDBC driver on every system that runs the JDBC-enabled application.

» Specifying a connection string for the JDBC application to access one of the servers running the impalad
daemon, with the appropriate security settings.

Configuring the JDBC Port

The default port used by JDBC 2.0 and later (as well as ODBC 2.x) is 21050. Impala server accepts JDBC
connections through this same port 21050 by default. Make sure this port is available for communication with other
hosts on your network, for example, that it is not blocked by firewall software. If your JDBC client software connects
to a different port, specify that alternative port number with the ~-hs2 port option when starting impalad. See
Starting Impala on page 31 for details about Impala startup options. See Ports Used by Impala on page 736 for
information about all ports used for communication between Impala and clients or between Impala components.

Choosing the JDBC Driver

In Impala 2.0 and later, you can use the Hive 0.13 JDBC driver. If you are already using JDBC applications with an
earlier Impala release, you should update your JDBC driver, because the Hive 0.12 driver that was formerly the only
choice is not compatible with Impala 2.0 and later.

The Hive JDBC driver provides a substantial speed increase for JDBC applications with Impala 2.0 and higher, for
queries that return large result sets.

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in Impala 2.3 and higher. To use these types with
JDBC requires version 2.5.28 or higher of the JDBC Connector for Impala. To use these types with ODBC requires
version 2.5.30 or higher of the ODBC Connector for Impala. Consider upgrading all JDBC and ODBC drivers at the
same time you upgrade from Impala 2.3 or higher.

Although the result sets from queries involving complex types consist of all scalar values, the queries involve join
notation and column references that might not be understood by a particular JDBC or ODBC connector. Consider
defining a view that represents the flattened version of a table containing complex type columns, and pointing the
JDBC or ODBC application at the view. See Complex Types (Impala 2.3 or higher only) on page 151 for details.

Enabling Impala JDBC Support on Client Systems

Using the Hive JDBC Driver

You install the Hive JDBC driver (hive--jdbc package) through the Linux package manager, on hosts within the
cluster. The driver consists of several Java JAR files. The same driver can be used by Impala and Hive.

To get the JAR files, install the Hive JDBC driver on each host in the cluster that will run JDBC applications.

Note: The latest JDBC driver, corresponding to Hive 0.13, provides substantial performance improvements for
Impala queries that return large result sets. Impala 2.0 and later are compatible with the Hive 0.13 driver. If you

| Managing Impala | 28

already have an older JDBC driver installed, and are running Impala 2.0 or higher, consider upgrading to the latest
Hive JDBC driver for best performance with JDBC applications.

If you are using JDBC-enabled applications on hosts outside the cluster, you cannot use the the same install procedure
on the hosts. Install the JDBC driver on at least one cluster host using the preceding procedure. Then download the
JAR files to each client machine that will use JDBC with Impala:

commons-logging-X.X.X.jar
hadoop-common. jar
hive-common-X.XX.X.jar
hive-jdbc-X.XX.X.jar
hive-metastore-X.XX.X.jar
hive-service-X.XX.X.jar
httpclient-X.X.X.jar
httpcore-X.X.X.jar
1ibfb303-X.X.X.jar
libthrift-X.X.X.jar
log4j-X.X.XX.jar
slfd4j-api-X.X.X.jar
slf4j-logXjXX-X.X.X.jar

To enable JDBC support for Impala on the system where you run the JDBC application:
1. Download the JAR files listed above to each client machine.

Note: For Maven users, see this sample github page for an example of the dependencies you could add to a pom
file instead of downloading the individual JARs.

2. Store the JAR files in a location of your choosing, ideally a directory already referenced in your CLASSPATH
setting. For example:

* On Linux, you might use a location such as /opt/Jjars/.
* On Windows, you might use a subdirectory underneath C: \Program Files.

3. To successfully load the Impala JDBC driver, client programs must be able to locate the associated JAR files.
This often means setting the CLASSPATH for the client process to include the JARs. Consult the documentation

for your JDBC client for more details on how to install new JDBC drivers, but some examples of how to set
CLASSPATH variables include:

* On Linux, if you extracted the JARs to /opt/jars/, you might issue the following command to prepend the
JAR files path to an existing classpath:

export CLASSPATH=/opt/jars/*.Jjar:S$SCLASSPATH

* On Windows, use the System Properties control panel item to modify the Environment Variables for your
system. Modify the environment variables to include the path to which you extracted the files.

Note: If the existing CLASSPATH on your client machine refers to some older version of the Hive JARs,
ensure that the new JARs are the first ones listed. Either put the new JAR files earlier in the listings, or delete
the other references to Hive JAR files.

Establishing JDBC Connections

The JDBC driver class depends on which driver you select.

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious
about reusing the connections. If the load balancer has set up connection timeout values, either check the connection
frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before
using it and create a new one if the connection has been closed.

https://github.com/onefoursix/Cloudera-Impala-JDBC-Example

| Managing Impala | 29

Using the Hive JDBC Driver

For example, with the Hive JDBC driver, the class name is org.apache.hive.jdbc.HiveDriver.
Once you have configured Impala to work with JDBC, you can establish connections between the two.

To do so for a cluster that does not use Kerberos authentication, use a connection string of the form
jdbc:hive2://host:port/;auth=noSasl. For example, you might use:

jdbc:hive2://myhost.example.com:21050/;auth=noSasl

To connect to an instance of Impala that requires Kerberos authentication, use a connection string of the form
jdbc:hive2://host:port/;principal=principal name. The principal must be the same user
principal you used when starting Impala. For example, you might use:

jdbc:hive2://myhost.example.com:21050/;principal=impala/
myhost.example.com@H2 .EXAMPLE .COM

To connect to an instance of Impala that requires LDAP authentication, use a connection string of the form
jdbc:hive2://host:port/db name;user=ldap userid;password=ldap password. For
example, you might use:

jdbc:hive2://myhost.example.com:21050/test db;user=fred;password=xyz123

Note:

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the impala-shell interpreter of the JDBC or ODBC APIs.
The following are some exceptions to keep in mind when switching between the interactive shell and applications
using the APIs:

* Complex type considerations:

* Queries involving the complex types (ARRAY, STRUCT, and MAP) require notation that might not be available
in all levels of JDBC and ODBC drivers. If you have trouble querying such a table due to the driver level or
inability to edit the queries used by the application, you can create a view that exposes a “flattened” version of
the complex columns and point the application at the view. See Complex Types (Impala 2.3 or higher only) on
page 151 for details.

* The complex types available in Impala 2.3 and higher are supported by the JDBC getColumns () API Both
MAP and ARRAY are reported as the JDBC SQL Type ARRAY, because this is the closest matching Java SQL
type. This behavior is consistent with Hive. STRUCT types are reported as the JDBC SQL Type STRUCT.

To be consistent with Hive's behavior, the TYPE NAME field is populated with the primitive type name

for scalar types, and with the full toSqgl () for complex types. The resulting type names are somewhat
inconsistent, because nested types are printed differently than top-level types. For example, the following list
shows how toSQL () for Impala types are translated to TYPE NAME values:

DECIMAL (10,10) becomes DECIMAL

CHAR (10) becomes CHAR

VARCHAR (10) becomes VARCHAR

ARRAY<DECIMAL (10,10)> Dbecomes ARRAY<DECIMAL(10,10)>
ARRAY<CHAR (10) > becomes ARRAY<CHAR(10)>

ARRAY<VARCHAR (10) > becomes ARRAY<VARCHAR(10) >

| Upgrading Impala | 30

Upgrading Impala

Upgrading Impala involves building or acquiring new Impala-related binaries, and then restarting Impala services.

Upgrading Impala

» Shut down all Impala-related daemons on all relevant hosts in the cluster:

1. Stop impalad on each Impala node in your cluster:

$ sudo service impala-server stop

2. Stop any instances of the state store in your cluster:

$ sudo service impala-state-store stop

3. Stop any instances of the catalog service in your cluster:

$ sudo service impala-catalog stop

» Follow the build procedure in the README . md file to produce new Impala binaries.

» Replace the binaries for all Impala-related daemons on all relevant hosts in the cluster.

* Check if there are new recommended or required configuration settings to put into place in the configuration
files, typically under /etc/impala/conf. See Post-Installation Configuration for Impala on page 25 for
settings related to performance and scalability.

» Restart all Impala-related daemons on all relevant hosts in the cluster:

1. Restart the Impala state store service on the desired nodes in your cluster. Expect to see a process named
statestored if the service started successfully.

$ sudo service impala-state-store start
$ ps ax | grep [s]tatestored

6819 2 sl 0:07 /usr/lib/impala/sbin/statestored -log dir=/
var/log/impala -state store port=24000

Restart the state store service before the Impala server service to avoid “Not connected” errors when you run
impala-shell.

2. Restart the Impala catalog service on whichever host it runs on in your cluster. Expect to see a process named
catalogd if the service started successfully.

$ sudo service impala-catalog restart
$ ps ax | grep [clatalogd
6068 2 Sl 4:06 /usr/lib/impala/sbin/catalogd

3. Restart the Impala daemon service on each node in your cluster. Expect to see a process named impalad if
the service started successfully.

$ sudo service impala-server start
$ ps ax | grep [ilmpalad
7936 2 Sl 0:12 /usr/lib/impala/sbin/impalad -log dir=/var/
log/impala -state store port=24000 -use statestore
-state store host=127.0.0.1 -be port=22000

Note:

If the services did not start successfully (even though the sudo service command might display [OK]), check for
errors in the Impala log file, typically in /var/log/impala.

| Starting Impala | 31

Starting Impala

To activate Impala if it is installed but not yet started:

1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options on page
32 for details.

2. Start one instance of the Impala statestore. The statestore helps Impala to distribute work efficiently, and
to continue running in the event of availability problems for other Impala nodes. If the statestore becomes
unavailable, Impala continues to function.

3. Start one instance of the Impala catalog service.

4. Start the main Impala service on one or more DataNodes, ideally on all DataNodes to maximize local processing
and avoid network traffic due to remote reads.

Once Impala is running, you can conduct interactive experiments using the instructions in Impala Tutorials on page
34 and try Using the Impala Shell (impala-shell Command) on page 578.

Starting Impala from the Command Line

To start the Impala state store and Impala from the command line or a script, you can either use the service
command or you can start the daemons directly through the impalad, statestored, and catalogd
executables.

Start the Impala statestore and then start impalad instances. You can modify the values the service initialization
scripts use when starting the statestore and Impala by editing /etc/default/impala.

Start the statestore service using a command similar to the following:
$ sudo service impala-state-store start

Start the catalog service using a command similar to the following:
$ sudo service impala-catalog start

Start the Impala service on each DataNode using a command similar to the following:
$ sudo service impala-server start

Note:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the catalogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must reload those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the catalogd daemon. Prior to Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

If any of the services fail to start, review:

* Reviewing Impala Logs on page 726
» Troubleshooting Impala on page 728

| Starting Impala | 32

Modifying Impala Startup Options

The configuration options for the Impala-related daemons let you choose which hosts and ports to use for the services
that run on a single host, specify directories for logging, control resource usage and security, and specify other aspects
of the Impala software.

Configuring Impala Startup Options through the Command Line

The Impala server, statestore, and catalog services start up using values provided in a defaults file, /etc/default/
impala.

This file includes information about many resources used by Impala. Most of the defaults included in this file should
be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable,
but you would always set the address used by the statestore server. Some of the content you might modify includes:

IMPALA STATE STORE HOST=127.0.0.1
IMPALA STATE STORE PORT=24000
IMPALA BACKEND PORT=22000
IMPALA LOG DIR=/var/log/impala
IMPALA CATALOG SERVICE HOST=...
IMPALA STATE STORE HOST=...

export IMPALA STATE STORE ARGS= ${IMPALA STATE STORE ARGS:- \
—log dir= ${IMPALA_LOG DIR} -state store port ${IMPALA STATE STORE PORT}}
IMPALA SERVER ARGS=" \
—log dlr ${IMPALA LOG DIR} \
-catalog service host=${IMPALA CATALOG SERVICE HOST} \
-state store port ${IMPALA STATE STORE __PORT} \
-use statestore \
-state store host= ${IMPALA STATE STORE HOST} \
-be port ${IMPALA BACKEND PORT}"
export ENABLE CORE DUMPS= S{ENABLE COREDUMPS:-false}

To use alternate values, edit the defaults file, then restart all the Impala-related services so that the changes take
effect. Restart the Impala server using the following commands:

S sudo service impala-server restart
Stopping Impala Server: [OK]
Starting Impala Server: [OK]

Restart the Impala statestore using the following commands:

$ sudo service impala-state-store restart
Stopping Impala State Store Server: [OK]
Starting Impala State Store Server: [OK]

Restart the Impala catalog service using the following commands:

$ sudo service impala-catalog restart
Stopping Impala Catalog Server: [OK]
Starting Impala Catalog Server: [OK]

Some common settings to change include:

+ Statestore address. Where practical, put the statestore on a separate host not running the impalad daemon. In
that recommended configuration, the impalad daemon cannot refer to the statestore server using the loopback
address. If the statestore is hosted on a machine with an IP address of 192.168.0.27, change:

IMPALA STATE STORE HOST=127.0.0.1

| Starting Impala | 33

to:

IMPALA STATE STORE HOST=192.168.0.27

Catalog server address (including both the hostname and the port number). Update the value of the

IMPALA CATALOG SERVICE HOST variable. Where practical, run the catalog server on the same host as the
statestore. In that recommended configuration, the impalad daemon cannot refer to the catalog server using
the loopback address. If the catalog service is hosted on a machine with an IP address of 192.168.0.27, add the
following line:

IMPALA CATALOG_SERVICE HOST=192.168.0.27:26000

The /etc/default/impala defaults file currently does not define an IMPALA CATALOG_ARGS
environment variable, but if you add one it will be recognized by the service startup/shutdown

script. Add a definition for this variable to /etc/default/impala and add the option -

catalog service host=hostname. If the port is different than the default 26000, also add the option -
catalog service port=port.

Memory limits. You can limit the amount of memory available to Impala. For example, to allow Impala to use no
more than 70% of system memory, change:

export IMPALA SERVER ARGS= ${IMPALA SERVER ARGS: - \
—log dir= ${IMPALA LOG DIR} \
-state store port= ${IMPALA STATE STORE PORT} \
—use statestore -state store host= ${IMPALA STATE STORE_ HOST} \
-be port ${IMPALA BACKEND PORT}}

to:

export IMPALA SERVER ARGS= ${IMPALA_SERVER_ARGS:— \
-log dir= ${IMPALA LOG DIR} -state store port=
${IMPALA STATE STORE PORT} \ N N
—use statestore -state store host= S{IMPALA STATE STORE HOST} \

-be port ${IMPALA BACKEND PORT} -mem 1limit=70%}

You can specify the memory limit using absolute notation such as 500m or 2G, or as a percentage of physical
memory such as 60%.

Note: Queries that exceed the specified memory limit are aborted. Percentage limits are based on the physical
memory of the machine and do not consider cgroups.

Core dump enablement. To enable core dumps, change:

export ENABLE CORE DUMPS=${ENABLE COREDUMPS:-false}
to:

export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:—true}

Note:

* The location of core dump files may vary according to your operating system configuration.

» Other security settings may prevent Impala from writing core dumps even when this option is enabled.
Authorization using the open source Sentry plugin. Specify the ~server name and -

authorization policy file options as part of the IMPALA SERVER ARGS and

IMPALA STATE STORE ARGS settings to enable the core Impala support for authentication. See Starting the
impalad Daemon with Sentry Authorization Enabled on page 87 for details.

Auditing for successful or blocked Impala queries, another aspect of security. Specify

the ~audit event log dir=directory path option and optionally the
-max_audit event log file size=number of queriesand -

| Impala Tutorials | 34

abort _on failed audit event options as part of the IMPALA SERVER_ARGS settings, for each
Impala node, to enable and customize auditing. See Auditing Impala Operations on page 104 for details.

» Password protection for the Impala web U, which listens on port 25000 by default. This feature involves adding
some or all of the ~—~webserver password file, --webserver authentication domain,
and --webserver certificate file optionstothe IMPALA SERVER ARGS and
IMPALA STATE STORE ARGS settings. See Security Guidelines for Impala on page 83 for details.

* Another setting you might add to IMPALA SERVER_ARGS is a comma-separated list of query options and
values:

—-default query options='option=value,option=value, ...

These options control the behavior of queries performed by this impalad instance. The option values you
specify here override the default values for Impala query options, as shown by the SET statement in impala-
shell.

* During troubleshooting, the appropriate support channel might direct you to change other values, particularly for
IMPALA SERVER ARGS, to work around issues or gather debugging information.

Note:

These startup options for the impalad daemon are different from the command-line options for the impala-

shell command. For the impala-shell options, see impala-shell Configuration Options on page 578.
Checking the Values of Impala Configuration Options

You can check the current runtime value of all these settings through the Impala web interface,
available by default at http://impala hostname:25000/varz for the impalad
daemon, http://impala hostname:25010/varz for the statestored daemon, or
http://impala hostname:25020/varz for the catalogd daemon.
Startup Options for impalad Daemon
The impalad daemon implements the main Impala service, which performs query processing and reads and writes
the data files.
Startup Options for statestored Daemon

The statestored daemon implements the Impala statestore service, which monitors the availability of Impala
services across the cluster, and handles situations such as nodes becoming unavailable or becoming available again.

Startup Options for catalogd Daemon

The catalogd daemon implements the Impala catalog service, which broadcasts metadata changes to all the Impala
nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting
requests promptly. To enable the original behavior, where Impala waited until all metadata was loaded before
accepting any requests, set the catalogd configuration option -~load catalog in background=false.

Impala Tutorials

This section includes tutorial scenarios that demonstrate how to begin using Impala once the software is installed. It
focuses on techniques for loading data, because once you have some data in tables and can query that data, you can
quickly progress to more advanced Impala features.

Note:

| Impala Tutorials | 35

Where practical, the tutorials take you from “ground zero” to having the desired Impala tables and data. In some
cases, you might need to download additional files from outside sources, set up additional software components,
modify commands or scripts to fit your own configuration, or substitute your own sample data.

Before trying these tutorial lessons, install Impala using one of these procedures:

+ Ifyou already have some Apache Hadoop environment set up and just need to add Impala to it, follow the
installation process described in I/nstalling Impala on page 24. Make sure to also install the Hive metastore
service if you do not already have Hive configured.

Tutorials for Getting Started

These tutorials demonstrate the basics of using Impala. They are intended for first-time users, and for trying out
Impala on any new cluster to make sure the major components are working correctly.

Explore a New Impala Instance

This tutorial demonstrates techniques for finding your way around the tables and databases of an unfamiliar (possibly
empty) Impala instance.

When you connect to an Impala instance for the first time, you use the SHOW DATABASES and SHOW TABLES
statements to view the most common types of objects. Also, call the version () function to confirm which version
of Impala you are running; the version number is important when consulting documentation and dealing with support
issues.

A completely empty Impala instance contains no tables, but still has two databases:

* default, where new tables are created when you do not specify any other database.
* _impala builtins, asystem database used to hold all the built-in functions.

The following example shows how to see the available databases, and the tables in each. If the list of databases or
tables is long, you can use wildcard notation to locate specific databases or tables based on their names.

$ impala-shell -i localhost --quiet
Starting Impala Shell without Kerberos authentication
Welcome to the Impala shell. Press TAB twice to see a list of available
commands .
(Shell
build version: Impala Shell v2.8.x (hash) built on

date)
[localhost:21000] > select version|():;

| impalad version
| Built on

[localhost:21000] > show databases;

| impala builtins |
| ctas |
| dil |
| dz |
| d3 |
| default |
| explain plans |
| external table |
| file formats |

| Impala Tutorials | 36

| tpc |

e +
[localhost:21000] > select current database();
o +

| current database() |
o +

| default

o +
[localhost:21000] > show tables;
- +

| name |

- +

| ex t |

| tl |

- +

[localhost:21000] > show tables in d3;

[localhost:21000] > show tables in tpc;

+—_— +
| name |
o +
city
customer

| |
| |
| customer address |
| customer demographics |
| household demographics |
| item |
| promotion |
| store |
| store2 |
| store sales |
| ticket view |
| |
| |

time dim
tpc tables
e +
[localhost:21000] > show tables in tpc like 'customer*';
e e e e L e e +
| name |
e e e e +
| customer |

| customer address |
| customer demographics |

Once you know what tables and databases are available, you descend into a database with the USE statement. To
understand the structure of each table, you use the DESCRIBE command. Once inside a database, you can issue
statements such as INSERT and SELECT that operate on particular tables.

The following example explores a database named TPC whose name we learned in the previous example. It shows
how to filter the table names within a database based on a search string, examine the columns of a table, and run
queries to examine the characteristics of the table data. For example, for an unfamiliar table you might want to know
the number of rows, the number of different values for a column, and other properties such as whether the column
contains any NULL values. When sampling the actual data values from a table, use a LIMIT clause to avoid excessive
output if the table contains more rows or distinct values than you expect.

[localhost:21000] > use tpc;
[localhost:21000] > show tables like '*view*';

tm———_—_————— +
| name |
o —— +
| ticket view |
Fo————— ————— +

[localhost:21000] > describe city;

name

id

name

countrycode

district

population
[localhost:21000]
—————————— +

count (*) |
—————————— +*

0 |
—————————— +

[localhost:21000] > desc customer;

———————————————————————— S
name | type |

———————————————————————— e e
c_customer sk | int |
c_customer id | string |
c_current cdemo_sk | int |
c_current hdemo sk | int |
c_current addr_ sk | int |
c first shipto date sk | int |
c first sales date sk | int |
c_salutation | string |
c first name | string |
c_last name | string |
c preferred cust flag | string |
c birth day | int |
c_birth month | int |
c _birth year | int |
c birth country | string |
c_login | string |
c _email address | string |
c last review date | string |
T T ______ T ___ o __Z_ ¥

[localhost:21000] > select count (*)
—————————— +
count (*) |

—————————— T+
100000 |

—————————— 4

[localhost:21000]
_______________________________ +
count (distinct c _birth month) |
_______________________________ +
12 |
_______________________________ +

[localhost:21000] > select count (*)
null;

—————————— +
count (*) |

—————————— +
0 |

—————————— +

int

from city;

from customer;

from customer;

| Impala Tutorials | 37

from customer where ¢ _email address is

> select distinct c_salutation from customer limit 10;

| Impala Tutorials | 38

When you graduate from read-only exploration, you use statements such as CREATE DATABASE and CREATE

TABLE to set up your own database objects.

The following example demonstrates creating a new database holding a new table. Although the last example ended
inside the TPC database, the new EXPERIMENTS database is not nested inside TPC; all databases are arranged in a
single top-level list.

[localhost:21000]
[localhost:21000]

_impala builtins
ctas

dl

d2

d3

default
experiments
explain plans
external table
file formats
tpc

[localhost:21000]

experiments |
explain plans |

> create database experiments;
> show databases;

> show databases like 'exp*';

The following example creates a new table, T1. To illustrate a common mistake, it creates this table inside the wrong
database, the TPC database where the previous example ended. The ALTER TABLE statement lets you move the
table to the intended database, EXPERIMENTS, as part of a rename operation. The USE statement is always needed
to switch to a new database, and the current database () function confirms which database the session is in, to
avoid these kinds of mistakes.

[localhost:21000]

[localhost:21000] > show

city

customer

customer address
customer demographics
household demographics
item

promotion

store

store2

store sales

tl

ticket view

tables;

+
|

+

> create table tl

(x int) ;

| Impala Tutorials | 39

| time dim |

| tpc_tables |
e +

[localhost:21000] > select current database();
B e +

| current database() |

- +*

| tpc |

- +

[localhost:21000] > alter table tl rename to experiments.tl;
[localhost:21000] > use experiments;
[localhost:21000] > show tables;

- +*

| name |

+————— +

| €1 |

+————— +
[localhost:21000] > select current database();
- +*
| current database() |
- +
| experiments |
B e +

For your initial experiments with tables, you can use ones with just a few columns and a few rows, and text-format
data files.

Note: As you graduate to more realistic scenarios, you will use more elaborate tables with many columns, features
such as partitioning, and file formats such as Parquet. When dealing with realistic data volumes, you will bring in data
using LOAD DATA or INSERT ... SELECT statements to operate on millions or billions of rows at once

The following example sets up a couple of simple tables with a few rows, and performs queries involving sorting,
aggregate functions and joins.

[localhost:21000] > insert into tl wvalues (1), (3), (2), (4);
[localhost:21000] > select x from tl order by x desc;

+-——+

| x|

+-——+

| 4 |

| 3 |

| 2 |

| 1 |

+-——+

[localhost:21000] select min(x), max(x), sum(x), avg(x) from tl;

+— 4+ —+ Vv

[localhost:21000] create table t2 (id int, word string);
[localhost:21000] > insert into t2 wvalues (1, "one"), (3, "three"), (5,
'five');

[localhost:21000] > select word from tl join t2 on (tl.x = t2.id);

4

| word |
t—————— +
| one |
| three |
- +

After completing this tutorial, you should now know:

| Impala Tutorials | 40

* How to tell which version of Impala is running on your system.

* How to find the names of databases in an Impala instance, either displaying the full list or searching for specific
names.

* How to find the names of tables in an Impala database, either displaying the full list or searching for specific
names.

» How to switch between databases and check which database you are currently in.

* How to learn the column names and types of a table.

» How to create databases and tables, insert small amounts of test data, and run simple queries.

Load CSV Data from Local Files

This scenario illustrates how to create some very small tables, suitable for first-time users to experiment with Impala
SQL features. TAB1 and TAB2 are loaded with data from files in HDFS. A subset of data is copied from TABI into
TAB3.

Populate HDFS with the data you want to query. To begin this process, create one or more new subdirectories
underneath your user directory in HDFS. The data for each table resides in a separate subdirectory. Substitute your
own username for username where appropriate. This example uses the —p option with the mkdi r operation to
create any necessary parent directories if they do not already exist.

S whoami

username

$ hdfs dfs -1ls /user
Found 3 items

drwxr-xr-x - username username 0 2013-04-22 18:54 /user/
username

drwxrwx——- - mapred mapred 0 2013-03-15 20:11 /user/history
drwxr—-xr-x - hue supergroup 0 2013-03-15 20:10 /user/hive

$ hdfs dfs -mkdir -p /user/username/sample data/tabl /user/username/
sample data/tab2

Here is some sample data, for two tables named TAB1 and TAB2.
Copy the following content to . csv files in your local filesystem:

tabl.csv:

1,true,123.123,2012-10-24 08:55:00
2,false,1243.5,2012-10-25 13:40:00
3,false,24453.325,2008-08-22 09:33:21.123
4,false,243423.325,2007-05-12 22:32:21.33454
5,true,243.325,1953-04-22 09:11:33

tab2.csv:

1l,true,12789.123
2,false,1243.5
3,false,24453.325
4,false,2423.3254
5,true, 243.325

60, false,243565423.325
70,true, 243.325

80, false, 243423.325
90, true,243.325

Put each . csv file into a separate HDFS directory using commands like the following, which use paths available in
the Impala Demo VM:

$ hdfs dfs -put tabl.csv /user/username/sample data/tabl

| Impala Tutorials | 41

$ hdfs dfs -1ls /user/username/sample data/tabl

Found 1 items

—rw-r--r--— 1 username username 192 2013-04-02 20:08 /user/username/
sample data/tabl/tabl.csv

$ hdfs dfs -put tab2.csv /user/username/sample data/tab2

$ hdfs dfs -1ls /user/username/sample data/tab2

Found 1 items

=EF=E==E== 1 username username 158 2013-04-02 20:09 /user/username/
sample data/tab2/tab2.csv

The name of each data file is not significant. In fact, when Impala examines the contents of the data directory for the
first time, it considers all files in the directory to make up the data of the table, regardless of how many files there are
or what the files are named.

To understand what paths are available within your own HDFS filesystem and what the permissions are for the
various directories and files, issue hdfs dfs -1s / and work your way down the tree doing —1s operations for
the various directories.

Use the impala-shell command to create tables, either interactively or through a SQL script.

The following example shows creating three tables. For each table, the example shows creating columns with various
attributes such as Boolean or integer types. The example also includes commands that provide information about how
the data is formatted, such as rows terminating with commas, which makes sense in the case of importing data from a
. csv file. Where we already have . csv files containing data in the HDFS directory tree, we specify the location of
the directory containing the appropriate . csv file. Impala considers all the data from all the files in that directory to
represent the data for the table.

DROP TABLE IF EXISTS tabl;
—-- The EXTERNAL clause means the data is located outside the central
location
-- for Impala data files and is preserved when the associated Impala table
is dropped.
-- We expect the data to already exist in the directory specified by the
LOCATION clause.
CREATE EXTERNAL TABLE tabl
(
id INT,
col 1 BOOLEAN,
col 2 DOUBLE,
col 3 TIMESTAMP
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/username/sample data/tabl’;

DROP TABLE IF EXISTS tab2;
-— TAB2 is an external table, similar to TABIl.
CREATE EXTERNAL TABLE tab2
(
id INT,
col 1 BOOLEAN,
col 2 DOUBLE
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/username/sample data/tab2';

DROP TABLE IF EXISTS tab3;

-- Leaving out the EXTERNAL clause means the data will be managed
—-- in the central Impala data directory tree. Rather than reading
-- existing data files when the table is created, we load the

-- data after creating the table.

CREATE TABLE tab3

| Impala Tutorials | 42

id INT,
col 1 BOOLEAN,
col 2 DOUBLE,
month INT,
day INT
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ', ';

Note: Getting through these CREATE TABLE statements successfully is an important validation step to confirm
everything is configured correctly with the Hive metastore and HDFS permissions. If you receive any errors during
the CREATE TABLE statements:

» Make sure you followed the installation instructions closely, in Installing Impala on page 24.

* Make sure the hive.metastore.warehouse.dir property points to a directory that Impala can write to.
The ownership should be hive:hive, and the impala user should also be a member of the hive group

Point an Impala Table at Existing Data Files

A convenient way to set up data for Impala to access is to use an external table, where the data already exists in a set
of HDFS files and you just point the Impala table at the directory containing those files. For example, you might run
in impala-shell a *.sql file with contents similar to the following, to create an Impala table that accesses an
existing data file used by Hive.

The following examples set up 2 tables, referencing the paths and sample data from the sample TPC-DS kit for
Impala. For historical reasons, the data physically resides in an HDFS directory tree under /user/hive, although
this particular data is entirely managed by Impala rather than Hive. When we create an external table, we specify
the directory containing one or more data files, and Impala queries the combined content of all the files inside that
directory. Here is how we examine the directories and files within the HDFS filesystem:

$ cd ~/username/datasets
$./tpcds-setup.sh

Downloads and unzips the kit, builds the data and loads it into HDFS
$ hdfs dfs -1s /user/hive/tpcds/customer
Found 1 items
-rw-r—-r—-— 1 username supergroup 13209372 2013-03-22 18:09 /user/hive/
tpcds/customer/customer.dat
$ hdfs dfs -cat /user/hive/tpcds/customer/customer.dat | more
1|AAAAAAAABAAAAAAA|9801241713513294612452238|12452208 |Mr. |Javier|Lewis|Y|9|
121936 |CHILE]| |Javie
r.Lewis@VFAX1InZEvOx.org|2452508 |
2 | AAAAAAAACAAAAAAA 8196671461 131655(12452318(2452288|Dr. |Amy|Moses|Y|9]4]
1966 | TOGO| | Amy.Moses@
Ovk9KjHH.com| 2452318 |
3 |AAAAAAAADAAAAAAA|1473522162471485721244913012449100 |Miss|Latishal|Hamilton|
N|18|9|1979 |NIUE] |
Latisha.Hamilton@V.com|2452313|
4 |AAAAAAAAEAAAAAAA|170321413986139558(12450030(12450000|Dr. |[Michael |White|N|7|
61983 |MEXICO| |Mic
hael.White@i.org|2452361|
5| AAAAAAAAFAAAAAAA 95337214470 |136368|1244943812449408|Sir|Robert|Moran|N|8|5]
1956 |FIJI| |Robert.
Moran@Hh.edu|2452469|

Here is a SQL script to set up Impala tables pointing to some of these data files in HDFS. (The script in the VM
sets up tables like this through Hive; ignore those tables for purposes of this demonstration.) Save the following as
customer setup.sql:

-— store sales fact table and surrounding dimension tables only

| Impala Tutorials | 43

create database tpcds;
use tpcds;

drop table if exists customer;
create external table customer

(

c_customer sk int,
c_customer id string,
c_current cdemo_sk int,
c_current hdemo sk int,
c_current addr_ sk int,
c first shipto date sk int,
c first sales date sk int,
c_salutation string,
c first name string,
c_last name string,
c _preferred cust flag string,
c birth day int,
c_birth month int,
c _birth year int,
c _birth country string,
c_login string,
c _email address string,
c _last review date string

)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer';

drop table if exists customer address;
create external table customer address

(

ca_address_sk int,

ca_address_id string,
ca street number string,
ca_street name string,
ca street type string,
ca_suite number string,
ca_city string,
ca_county string,
ca state string,
ca zip string,
ca country string,
ca gmt offset float,
ca_ location_ type string

)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer address';

We would run this script with a command such as:

impala-shell -i localhost -f customer setup.sql

Describe the Impala Table

Now that you have updated the database metadata that Impala caches, you can confirm that the expected tables are
accessible by Impala and examine the attributes of one of the tables. We created these tables in the database named
default. If the tables were in a database other than the default, we would issue a command use db name

to switch to that database before examining or querying its tables. We could also qualify the name of a table by
prepending the database name, for example default.customer and default.customer name

[impala-host:21000] > show databases

| Impala Tutorials | 44

Query finished, fetching results

default

Returned 1 row(s) in 0.00s

[impala-host:21000] > show tables

Query finished, fetching results

customer

customer address

Returned 2 row(s) in 0.00s

[impala-host:21000] > describe customer address

o — o o +
| name | type | comment |
o o o +
ca address sk	int	
ca_address_ id	string	
ca street number	string	
ca street name	string	
ca street type	string	
ca suite number	string	
ca city	string	
ca county	string	
ca state	string	
ca zip	string	
ca country	string	
ca gmt offset	float	
ca location type	string	
Fmm ————— fmm————— Fmm +

Returned 13 row(s) in 0.01

Query the Impala Table

You can query data contained in the tables. Impala coordinates the query execution across a single node or multiple
nodes depending on your configuration, without the overhead of running MapReduce jobs to perform the intermediate
processing.

There are a variety of ways to execute queries on Impala:

* Using the impala-shell command in interactive mode:

$ impala-shell -i impala-host

Connected to localhost:21000

[impala-host:21000] > select count(*) from customer address;
50000

Returned 1 row(s) in 0.37s

» Passing a set of commands contained in a file:

$ impala-shell -i impala-host -f myquery.sqgl
Connected to localhost:21000

50000

Returned 1 row(s) in 0.19s

» Passing a single command to the impala-shell command. The query is executed, the results are returned, and
the shell exits. Make sure to quote the command, preferably with single quotation marks to avoid shell expansion
of characters such as *.

$ impala-shell -i impala-host -g 'select count(*) from customer address'
Connected to localhost:21000

50000

Returned 1 row(s) in 0.29s

| Impala Tutorials | 45

Data Loading and Querying Examples
This section describes how to create some sample tables and load data into them. These tables can then be queried
using the Impala shell.
Loading Data
Loading data involves:
» Establishing a data set. The example below uses . csv files.
» Creating tables to which to load data.
* Loading the data into the tables you created.
Sample Queries

To run these sample queries, create a SQL query file query. sql, copy and paste each query into the query file,
and then run the query file using the shell. For example, to run query.sqgl on impala-host, you might use the
command:

impala-shell.sh -i impala-host -f query.sqgl

The examples and results below assume you have loaded the sample data into the tables as described above.

Example: Examining Contents of Tables
Let's start by verifying that the tables do contain the data we expect. Because Impala often deals
with tables containing millions or billions of rows, when examining tables of unknown size, include
the LIMIT clause to avoid huge amounts of unnecessary output, as in the final query. (If your
interactive query starts displaying an unexpected volume of data, press Ctr1-C in impala-
shell to cancel the query.)

SELECT * FROM tabl;

SELECT * FROM tab2;

SELECT * FROM tab2 LIMIT 5;
Results:

fom = fom e e +

| id | col 1 | col 2 | col 3

ot o o +

| 1 | true | 123.123 | 2012-10-24 08:55:00

| 2 | false | 1243.5 | 2012-10-25 13:40:00

| 3 | false | 24453.325 | 2008-08-22 09:33:21.123000000 |

| 4 | false | 243423.325 | 2007-05-12 22:32:21.334540000 |

| 5 | true | 243.325 | 1953-04-22 09:11:33

fom Fom o +

R et fmm e +

| id | col 1 | col 2 |

e e +

| 1 | true | 12789.123 |

| 2 | false | 1243.5 |

| 3 | false | 24453.325 |

| 4 | false | 2423.3254 |

| 5 | true | 243.325 |

| 60 | false | 243565423.325 |

| 70 | true | 243.325 |

| 80 | false | 243423.325 |

| 90 | true | 243.325 |

R et fmm e +

fom = fom e +

| id | col 1 | col 2

R fom e +
1	true	12789.123
2	false	1243.5
3	false	24453.325
4	false	2423.3254
5	true	243.325
R et fom +

| Impala Tutorials | 46

Example: Aggregate and Join

SELECT tabl.col 1, MAX(tab2.col 2), MIN(tab2.col 2)
FROM tab2 JOIN tabl USING (id)
GROUP BY col_l ORDER BY 1 LIMIT 5;

Results:
e oo smem== oo smem== +
| col 1 | max(tab2.col 2) | min(tab2.col 2) |
Fommmo=e S e e e S e e e +
| false | 24453.325 | 1243.5
| true | 12789.123 | 243.325
e e e e e +

Example: Subquery, Aggregate and Joins

SELECT tab2.*
FROM tab2,
(SELECT tabl.col 1, MAX(tab2.col 2) AS max col2
FROM tab2, tabl
WHERE tabl.id = tab2.id
GROUP BY col 1) subqueryl
WHERE subqueryl.max col2 = tab2.col 2;

Results:
et ———— fmm +
| id | col 1 | col 2
e — e — +
|1 | true | 12789.123 |
| 3 | false | 24453.325 |
fmm et fmm e +

Example: INSERT Query

INSERT OVERWRITE TABLE tab3
SELECT id, col 1, col 2, MONTH(col 3), DAYOFMONTH (col 3)
FROM tabl WHERE YEAR(col 3) = 2012;

Query TAB3 to check the result:
SELECT * FROM tab3;

Results:

Fom b Fomm—————— Fom———— Fo———- +

| Impala Tutorials | 47

| id | col 1 | col 2 | month | day |
fmm e Fo————— +-——— +
| 1 | true | 123.123 | 10 | 24 |
| 2 | false | 1243.5 | 10 | 25 |
ot —— o o +-———= +

Advanced Tutorials

These tutorials walk you through advanced scenarios or specialized features.

Attaching an External Partitioned Table to an HDFS Directory Structure

This tutorial shows how you might set up a directory tree in HDFS, put data files into the lowest-level subdirectories,
and then use an Impala external table to query the data files from their original locations.

The tutorial uses a table with web log data, with separate subdirectories for the year, month, day, and host. For
simplicity, we use a tiny amount of CSV data, loading the same data into each partition.

First, we make an Impala partitioned table for CSV data, and look at the underlying HDFS directory structure to
understand the directory structure to re-create elsewhere in HDFS. The columns fieldl, field2,and field3
correspond to the contents of the CSV data files. The year, month, day, and host columns are all represented as
subdirectories within the table structure, and are not part of the CSV files. We use STRING for each of these columns
so that we can produce consistent subdirectory names, with leading zeros for a consistent length.

create database external partitions;
use external partitions;
create table logs (fieldl string, field2 string, field3 string)

partitioned by (year string, month string , day string, host string)

row format delimited fields terminated by ',';
insert into logs partition (year="2013", month="07", day="28", host="hostl")
values ("foo","foo","foo");
insert into logs partition (
values ("foo","foo","foo");
insert into logs partition (
values ("foo","foo","foo");
insert into logs partition (
values ("foo","foo","foo");
insert into logs partition (year="2013", month="08", day="01", host="hostl")
values ("foo","foo","foo");

year="2013", month="07", day="28", host="host2")
year="2013", month="07", day="29", host="hostl")

year="2013", month="07", day="29", host="host2")

Back in the Linux shell, we examine the HDFS directory structure. (Your Impala data directory might be in a different
location; for historical reasons, it is sometimes under the HDFS path /user/hive/warehouse.) We use the
hdfs dfs -1s command to examine the nested subdirectories corresponding to each partitioning column, with
separate subdirectories at each level (with = in their names) representing the different values for each partitioning
column. When we get to the lowest level of subdirectory, we use the hdfs dfs -cat command to examine the
data file and see CSV-formatted data produced by the INSERT statement in Impala.

$ hdfs dfs -1s /user/impala/warehouse/external partitions.db

Found 1 items

drwxrwxrwt - impala hive 0 2013-08-07 12:24 /user/impala/
warehouse/external partitions.db/logs

$ hdfs dfs -1s /user/impala/warehouse/external partitions.db/logs

Found 1 items

drwxr—-xr-x - impala hive 0 2013-08-07 12:24 /user/impala/
warehouse/external partitions.db/logs/year=2013

$ hdfs dfs -1ls /user/impala/warehouse/external partitions.db/logs/year=2013
Found 2 items

| Impala Tutorials | 48

drwxr-xr-x - impala hive 0 2013-08-07 12:23 /user/impala/
warehouse/external partitions.db/logs/year=2013/month=07
drwxr—-xr-x - impala hive 0 2013-08-07 12:24 /user/impala/

warehouse/external partitions.db/logs/year=2013/month=08

$ hdfs dfs -1ls /user/impala/warehouse/external partitions.db/logs/year=2013/
month=07

Found 2 items

drwxr-xr-x - impala hive 0 2013-08-07 12:22 /user/impala/
warehouse/external partitions.db/logs/year=2013/month=07/day=28
drwxr—-xr-x - impala hive 0 2013-08-07 12:23 /user/impala/

warehouse/external partitions.db/logs/year=2013/month=07/day=29

$ hdfs dfs -1ls /user/impala/warehouse/external partitions.db/logs/year=2013/
month=07/day=28

Found 2 items

drwxr—-xr-x - impala hive 0 2013-08-07 12:21 /user/impala/
warehouse/external partitions.db/logs/year=2013/month=07/day=28/host=hostl
drwxr-xr-x - impala hive 0 2013-08-07 12:22 /user/impala/

warehouse/external partitions.db/logs/year=2013/month=07/day=28/host=host2
$ hdfs dfs -1ls /user/impala/warehouse/external partitions.db/logs/year=2013/
month=07/day=28/host=host1l

Found 1 items

=EF=E==E== 3 impala hive 12 2013-08-07 12:21 /user/impala/
warehouse/external partiti

ons.db/logs/year=2013/month=07/day=28/
host=host1/3981726974111751120--8907184999369517436 822630111 data.O

$ hdfs dfs -cat /user/impala/warehouse/external partitions.db/logs/
year=2013/month=07/day=28/\

host=host1/3981726974111751120--8 907184999369517436 822630111 data.O

foo, foo, foo

Still in the Linux shell, we use hdfs dfs -mkdir to create several data directories outside the HDFS directory
tree that Impala controls (/user/impala/warehouse in this example, maybe different in your case). Depending
on your configuration, you might need to log in as a user with permission to write into this HDFS directory tree; for
example, the commands shown here were run while logged in as the hdfs user.

$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=hostl
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=host2
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=hostl
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=29/
host=hostl
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=08/day=01/
host=hostl

We make a tiny CSV file, with values different than in the INSERT statements used earlier, and put a copy within
each subdirectory that we will use as an Impala partition.

$ cat >dummy log data

bar,baz,bletch

$ hdfs dfs -mkdir -p /user/impala/data/external partitions/year=2013/
month=08/day=01/host=hostl

$ hdfs dfs -mkdir -p /user/impala/data/external partitions/year=2013/
month=07/day=28/host=host1l

$ hdfs dfs -mkdir -p /user/impala/data/external partitions/year=2013/
month=07/day=28/host=host?2

$ hdfs dfs -mkdir -p /user/impala/data/external partitions/year=2013/
month=07/day=29/host=host1l

$ hdfs dfs -put dummy log data /user/impala/data/logs/year=2013/month=07/
day=28/host=hostl

| Impala Tutorials | 49

$ hdfs dfs -put dummy log data /user/impala/data/logs/year=2013/month=07/
day=28/host=host2
$ hdfs dfs -put dummy log data /user/impala/data/logs/year=2013/month=07/
day=29/host=hostl
$ hdfs dfs -put dummy log data /user/impala/data/logs/year=2013/month=08/
day=01/host=hostl

Back in the impala-shell interpreter, we move the original Impala-managed table aside, and create a new
external table with a LOCATION clause pointing to the directory under which we have set up all the partition
subdirectories and data files.

use external partitions;

alter table logs rename to logs_original;

create external table logs (fieldl string, field2 string, field3 string)
partitioned by (year string, month string, day string, host string)
row format delimited fields terminated by ','

location '/user/impala/data/logs';

Because partition subdirectories and data files come and go during the data lifecycle, you must identify each of the
partitions through an ALTER TABLE statement before Impala recognizes the data files they contain.

alter table logs add partition
(year="2013",month="07",day="28",host="hostl")
alter table log type add partition
(year="2013",month="07",day="28",host="host2") ;
alter table log type add partition
(year="2013",month="07",day="29",host="hostl") ;
alter table log type add partition
(year="2013",month="08",day="01",host="hostl") ;

We issue a REFRESH statement for the table, always a safe practice when data files have been manually added,
removed, or changed. Then the data is ready to be queried. The SELECT * statement illustrates that the data from
our trivial CSV file was recognized in each of the partitions where we copied it. Although in this case there are only a
few rows, we include a LIMIT clause on this test query just in case there is more data than we expect.

refresh log type;
select * from log type limit 100;

e e e - e == e +
| fieldl | field2 | field3 | year | month | day | host |
+——— +——— +——— +————— +—————— +————= +—————— +
bar	baz	bletch	2013	07	28	hostl
bar	baz	bletch	2013	08	01	hostl
bar	baz	bletch	2013	07	29	hostl
bar	baz	bletch	2013	07	28	host2
- - - +————— +————— +————= +————— +

Switching Back and Forth Between Impala and Hive

Sometimes, you might find it convenient to switch to the Hive shell to perform some data loading or transformation
operation, particularly on file formats such as RCFile, SequenceFile, and Avro that Impala currently can query but not
write to.

Whenever you create, drop, or alter a table or other kind of object through Hive, the next time you switch back to the
impala-shell interpreter, issue a one-time INVALIDATE METADATA statement so that Impala recognizes the
new or changed object.

Whenever you load, insert, or change data in an existing table through Hive (or even through manual HDFS
operations such as the hdfs command), the next time you switch back to the impala-shell interpreter, issue a
one-time REFRESH table name statement so that Impala recognizes the new or changed data.

| Impala Tutorials | 50

For examples showing how this process works for the REFRESH statement, look at the examples of creating RCFile
and SequenceFile tables in Impala, loading data through Hive, and then querying the data through Impala. See Using
the RCFile File Format with Impala Tables on page 680 and Using the SequenceFile File Format with Impala
Tables on page 683 for those examples.

For examples showing how this process works for the INVALIDATE METADATA statement, look at the example
of creating and loading an Avro table in Hive, and then querying the data through Impala. See Using the Avro File
Format with Impala Tables on page 675 for that example.

Note:

Originally, Impala did not support UDFs, but this feature is available in Impala starting in Impala 1.2. Some
INSERT ... SELECT transformations that you originally did through Hive can now be done through Impala. See
Impala User-Defined Functions (UDFs) on page 553 for details.

Prior to Impala 1.2, the REFRESH and INVALIDATE METADATA statements needed to be issued on each Impala
node to which you connected and issued queries. In Impala 1.2 and higher, when you issue either of those statements
on any Impala node, the results are broadcast to all the Impala nodes in the cluster, making it truly a one-step
operation after each round of DDL or ETL operations in Hive.

Cross Joins and Cartesian Products with the CROSS JOIN Operator

Originally, Impala restricted join queries so that they had to include at least one equality comparison between the
columns of the tables on each side of the join operator. With the huge tables typically processed by Impala, any
miscoded query that produced a full Cartesian product as a result set could consume a huge amount of cluster
resources.

In Impala 1.2.2 and higher, this restriction is lifted when you use the CROSS JOIN operator in the query. You still
cannot remove all WHERE clauses from a query like SELECT * FROM tl1 JOIN t2 to produce all combinations
of rows from both tables. But you can use the CROSS JOIN operator to explicitly request such a Cartesian product.
Typically, this operation is applicable for smaller tables, where the result set still fits within the memory of a single
Impala node.

The following example sets up data for use in a series of comic books where characters battle each other. At first, we
use an equijoin query, which only allows characters from the same time period and the same planet to meet.

[localhost:21000] > create table heroes (name string, era string, planet
string) ;
[localhost:21000] > create table villains (name string, era string, planet
string) ;
[localhost:21000] insert into heroes values
('Tesla', '20th century', 'Earth'),
('Pythagoras', 'Antiquity', "Earth'),
('"Zopzar', 'Far Future', "'Mars');
Inserted 3 rows in 2.28s
[localhost:21000] > insert into villains values
> ('Caligula', "'Antiquity', 'Earth'),
> ('John Dillinger', '20th century', 'Earth'),
> ('Xibulor', 'Far Future', 'Venus');
Inserted 3 rows in 1.93s
[localhost:21000] > select concat (heroes.name,' vs. ',villains.name) as

battle

>
>
>
>

> from heroes join villains
> where heroes.era = villains.era and heroes.planet =
villains.planet;

| Tesla vs. John Dillinger |
| Pythagoras vs. Caligula |

Returned 2 row(s) in 0.47s

| Impala Tutorials | 51

Readers demanded more action, so we added elements of time travel and space travel so that any hero could face any
villain. Prior to Impala 1.2.2, this type of query was impossible because all joins had to reference matching values
between the two tables:

[localhost:21000] > -- Cartesian product not possible in Impala 1.1.
> select concat (heroes.name,' vs. ',villains.name) as
battle from heroes join villains;
ERROR: NotImplementedException: Join between 'heroes' and 'villains'
requires at least one conjunctive equality predicate between the two tables

With Impala 1.2.2, we rewrite the query slightly to use CROSS JOIN rather than JOIN, and now the result set
includes all combinations:

[localhost:21000] > —-- Cartesian product available in Impala 1.2.2 with the
CROSS JOIN syntax.
> select concat (heroes.name,' vs. ',villains.name) as
battle from heroes cross join villains;
o +
| battle |
4+ +

| Tesla vs. Caligula

| Tesla vs. John Dillinger |
| Tesla vs. Xibulor |
| Pythagoras vs. Caligula |
| Pythagoras vs. John Dillinger |
| Pythagoras vs. Xibulor |
| Zopzar vs. Caligula |
| Zopzar vs. John Dillinger |
| Zopzar vs. Xibulor |

Returned 9 row(s) in 0.33s

The full combination of rows from both tables is known as the Cartesian product. This type of result set is often
used for creating grid data structures. You can also filter the result set by including WHERE clauses that do not
explicitly compare columns between the two tables. The following example shows how you might produce a list of
combinations of year and quarter for use in a chart, and then a shorter list with only selected quarters.

[localhost:21000] > create table x axis (x int);

[localhost:21000] > create table y axis (y int);

[localhost:21000] > insert into x axis values (1), (2), (3), (4);

Inserted 4 rows in 2.14s

[localhost:21000] > insert into y axis values (2010), (2011), (2012), (2013),
(2014) ;

Inserted 5 rows in 1.32s

[localhost:21000] > select y as year, X as quarter from x axis cross join

WWWNDNDNDNNNE R

| Impala Tutorials | 52

| 2013 |
| 2014 |
| 2010 |
| 2011 |
| 2012 |
| 2013 |
| 2014 |

Returned 20 row(s) in 0.38s
[localhost:21000] > select y as year, X as quarter from x axis cross join
y _axis where x in (1,3);

10 row(s) in 0.39s

Dealing with Parquet Files with Unknown Schema

As data pipelines start to include more aspects such as NoSQL or loosely specified schemas, you might encounter
situations where you have data files (particularly in Parquet format) where you do not know the precise table
definition. This tutorial shows how you can build an Impala table around data that comes from non-Impala or even
non-SQL sources, where you do not have control of the table layout and might not be familiar with the characteristics
of the data.

The data used in this tutorial represents airline on-time arrival statistics, from October 1987 through April 2008. See
the details on the 2009 ASA Data Expo web site. You can also see the explanations of the columns; for purposes of
this exercise, wait until after following the tutorial before examining the schema, to better simulate a real-life situation
where you cannot rely on assumptions and assertions about the ranges and representations of data values.

We will download Parquet files containing this data from the Ibis blog. First, we download and unpack the data files.
There are 8 files totalling 1.4 GB. Each file is less than 256 MB.

$ wget -O airlines parquet.tar.gz https://www.dropbox.com/s/0l9x51ltgpécviyc/
airlines parquet.tar.gz?dl=0

Length: 1245204740 (1.2G) [application/octet-stream]
Saving to: “airlines parquet.tar.gz”

2015-08-12 17:14:24 (23.6 MB/s) - “airlines parquet.tar.gz” saved
[1245204740/1245204740]

$ tar xvzf airlines parquet.tar.gz

airlines parquet/

airlines parquet/93459d994898a9%ba-77674173b331fa% 2073981944 data.0.parqg
airlines parquet/93459d994898a9%ba- 77674173b331£fa99 1555718317 data.l.parqg
airlines parquet/93459d994898a9%ba- 77674173b33lfa99 1555718317 data 0.parqg
airlines parquet/93459d994898a9%ba- 77674173b331fa96 2118228804 data.0.parqg
airlines parquet/93459d994898a9%ba-77674173b331fa97 574780876 data.0.parqg
airlines parquet/93459d994898a9%ba- 77674173b331fa96 2118228804 data.l.parg
airlines parquet/93459d994898a9%ba- 77674173b331fa98 1194408366 _data.0.parg

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/the-data.html

| Impala Tutorials | 53

airlines parquet/93459d994898a9%ba-77674173b331fa% 1413430552 data.0.parg
$ cd airlines parquet/

$ du -kch *.parqg

253M 93459d994898a9ba-77674173b331fa9%96 2118228804 data.0.parqg
65M 93459d994898a9%ba-77674173b331fa%6 2118228804 data.l.parqg
156M 93459d994898a9%ba-77674173b331£fa97 574780876 data.0.parqg
240M 93459d994898a9%ba-77674173b331£fa98 1194408366 data.0.parqg
253M 93459d994898a9ba-77674173b331£fa99 1555718317 data.0.parqg
16M 93459d994898a9ba-77674173b331£fa99 1555718317 data.l.parqg
177M 93459d994898a9%ba-77674173b331fa%a 2073981944 data.0.parg
213M 93459d994898a9ba-77674173b331fa% 1413430552 data.0.parqg
1.4G total

Next, we put the Parquet data files in HDFS, all together in a single directory, with permissions on the directory and
the files so that the impala user will be able to read them.

Note: After unpacking, we saw the largest Parquet file was 253 MB. When copying Parquet files into HDFS for
Impala to use, for maximum query performance, make sure that each file resides in a single HDFS data block.
Therefore, we pick a size larger than any single file and specify that as the block size, using the argument —
Ddfs.block.size=256monthe hdfs dfs -put command.

$ hdfs dfs -mkdir -p hdfs://demo host.example.com:8020/user/impala/staging/
airlines

$ hdfs dfs -Ddfs.block.size=256m -put *.parqg /user/impala/staging/airlines

$ hdfs dfs -1s /user/impala/staging

Found 1 items

drwxrwxrwx - hdfs supergroup 0 2015-08-12 13:52 /user/impala/
staging/airlines

$ hdfs dfs -1s hdfs://demo host.example.com:8020/user/impala/staging/
airlines

Found 8 items

—Irw-r--r—-- 3 jrussell supergroup 265107489 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa9%96 2118228804 data.0.parqg
—rw-r--r-- 3 jrussell supergroup 67544715 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%0a-77674173b331fa%6 2118228804 data.l.parqg
-rw-r--r—-— 3 jrussell supergroup 162556490 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa97 574780876 data.0.parqg
—Irw-r--r—-- 3 jrussell supergroup 251603518 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331£fa98 1194408366 data.0.parqg
—rw-r--r-—-— 3 jrussell supergroup 265186603 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%0a-77674173b331fa%9 1555718317 data.0.parqg
-rw-r--r—-— 3 jrussell supergroup 16663754 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa9%99 1555718317 data.l.parqg
—Irw-r--r—-- 3 jrussell supergroup 185511677 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa% 2073981944 data.0.parqg
—rw-r--r-- 3 jrussell supergroup 222794621 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%0a-77674173b331fa% 1413430552 data.0.parqg

With the files in an accessible location in HDFS, we create a database table that uses the data in those files. The
CREATE EXTERNAL syntax and the LOCATION attribute point Impala at the appropriate HDFS directory. The
LIKE PARQUET 'path to any parquet file' clause means we skip the list of column names and types;
Impala automatically gets the column names and data types straight from the data files. (Currently, this technique
only works for Parquet files.) We ignore the warning about lack of READ WRITE access to the files in HDFS; the
impala user can read the files, which will be sufficient for us to experiment with queries and perform some copy
and transform operations into other tables.

$ impala-shell -i localhost
Starting Impala Shell without Kerberos authentication

Connected to localhost:21000
Server version: impalad version 2.8.x (build
X.Y.Z)

| Impala Tutorials | 54

Welcome to the Impala shell. Press TAB twice to see a list of available
commands .
(Shell
build version: Impala Shell v2.8.x (hash) built on
date)
[localhost:21000]

[localhost:21000]
[localhost:21000]

create database airline data;

use airline data;

create external table airlines external

like parquet 'hdfs://demo host.example.com:8020/user/

VvV V V V

impala/staging/

airlines/93459d994898a9%a-77674173b331fa%6 2118228804 data.0.parqg'
> stored as parquet location 'hdfs://

demo _host.example.com:8020/user/impala/staging/airlines’';

WARNINGS: Impala does not have READ WRITE access to path 'hdfs://

demo_host.example.com:8020/user/impala/staging'’

With the table created, we examine its physical and logical characteristics to confirm that the data is really there and
in a format and shape that we can work with. The SHOW TABLE STATS statement gives a very high-level summary
of the table, showing how many files and how much total data it contains. Also, it confirms that the table is expecting
all the associated data files to be in Parquet format. (The ability to work with all kinds of HDFS data files in different
formats means that it is possible to have a mismatch between the format of the data files, and the format that the table
expects the data files to be in.) The SHOW FILES statement confirms that the data in the table has the expected
number, names, and sizes of the original Parquet files. The DESCRIBE statement (or its abbreviation DESC) confirms
the names and types of the columns that Impala automatically created after reading that metadata from the Parquet
file. The DESCRIBE FORMATTED statement prints out some extra detail along with the column definitions; the
pieces we care about for this exercise are the containing database for the table, the location of the associated data files
in HDFS, the fact that it's an external table so Impala will not delete the HDFS files when we finish the experiments
and drop the table, and the fact that the table is set up to work exclusively with files in the Parquet format.

[localhost:21000] > show table stats airlines external;

- t——————— t——————— o —— o o
o +

| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |

Incremental stats |
t————— t————— t————— o ———— o t——————
e +

| -1 | 8 | 1.34GB | NOT CACHED | NOT CACHED | PARQUET |

false |
t————— t—————— t—————— o —— o t————————
o +

[localhost:21000] > show files in airlines external;
+ ___
e o +

| path

| size | partition |

+ ___
t————— o —_—_— +

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa9%96 2118228804 data.0.parg | 252.83MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa%6 2118228804 data.l.parqg | 64.42MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331£fa97 574780876 data.0.parg | 155.03MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa98 1194408366 data.0.parg | 239.95MB
| |

| Impala Tutorials | 55

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331£fa99 1555718317 data.0.parg | 252.90MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331£fa%99 1555718317 data.l.parqg | 15.89MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa% 2073981944 data.0.parg | 176.92MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa% 1413430552 data.0.parg | 212.47MB

+ ___

it e e e +

[localhost:21000] > describe airlines external;

f e —————————— F————————

- +

| name | type | comment
|

e e e e e e

e e +

| year | int | inferred from: optional int32 year
|

| month | int | inferred from: optional int32 month
|

| day | int | inferred from: optional int32 day
|

| dayofweek | int | inferred from: optional int32 dayofweek
|

| dep time | int | inferred from: optional int32 dep time
|

| crs _dep time | int | inferred from: optional int32 crs dep time
|

| arr time | int | inferred from: optional int32 arr time
|

| crs arr time | int | inferred from: optional int32 crs arr time
|

| carrier | string | inferred from: optional binary carrier
|

| flight num | int | inferred from: optional int32 flight num
|

| tail num | int | inferred from: optional int32 tail num
|

| actual elapsed time | int | inferred from: optional int32

actual elapsed time |
| crs_elapsed time | int | inferred from: optional int32
crs_elapsed time |

| airtime | int | inferred from: optional int32 airtime
|

| arrdelay | int | inferred from: optional int32 arrdelay
|

| depdelay | int | inferred from: optional int32 depdelay
|

| origin | string | inferred from: optional binary origin
|

| dest | string | inferred from: optional binary dest
|

| distance | int | inferred from: optional int32 distance
|

| taxi in | int | inferred from: optional int32 taxi in

| taxi out | int | inferred from: optional int32 taxi out

| Impala Tutorials | 56

| cancelled | int | inferred from: optional int32 cancelled
|

| cancellation code | string | inferred from: optional binary

cancellation code |

| diverted | int | inferred from: optional int32 diverted
|

| carrier delay | int | inferred from: optional int32 carrier delay
|

| weather delay | int | inferred from: optional int32 weather delay
|

| nas delay | int | inferred from: optional int32 nas delay
|

| security delay | int | inferred from: optional int32

security delay |

| late aircraft delay | int | inferred from: optional int32
late aircraft delay |

T __ ol __ e

o +

[localhost:21000] > desc formatted airlines external;

+ ______________________________ + ___________ : ___________________

| name | type

o o

| # Detailed Table Information | NULL

| Database: | airline data

| Owner: | jrussell

| Location: | /user/impala/staging/airlines

| Table Type: | EXTERNAL TABLE

| # Storage Information | NULL

| SerDe Library: | parquet.hive.serde.ParquetHiveSerDe

| InputFormat: | parquet.hive.DeprecatedParquetInputFormat
| |

OutputFormat: parquet.hive.DeprecatedParquetOutputFormat

Now that we are confident that the connections are solid between the Impala table and the underlying Parquet files,
we run some initial queries to understand the characteristics of the data: the overall number of rows, and the ranges
and how many different values are in certain columns. For convenience in understanding the magnitude of the
COUNT (*) result, we run another query dividing the number of rows by 1 million, demonstrating that there are 123
million rows in the table.

[localhost:21000] > select count(*) from airlines external;

o —— +
| count (*) |
o —— +
| 123534969 |
o ——— +

Fetched 1 row(s) in 1.32s
[localhost:21000] > select count(*) / le6 as 'millions of rows' from
airlines external;

o +
| millions of rows |
e +
| 123.534969 |
o +

Fetched 1 row(s) in 1.24s

The NDV () function stands for “number of distinct values”, which for performance reasons is an estimate when there
are lots of different values in the column, but is precise when the cardinality is less than 16 K. Use NDV () calls for
this kind of exploration rather than COUNT (DISTINCT colname), because Impala can evaluate multiple NDV ()
functions in a single query, but only a single instance of COUNT DISTINCT. Here we see that there are modest

| Impala Tutorials | 57

numbers of different airlines, flight numbers, and origin and destination airports. Two things jump out from this
query: the number of tail num values is much smaller than we might have expected, and there are more destination
airports than origin airports. Let's dig further. What we find is that most tail num values are NULL. It looks like
this was an experimental column that wasn't filled in accurately. We make a mental note that if we use this data as

a starting point, we'll ignore this column. We also find that certain airports are represented in the ORIGIN column

but not the DEST column; now we know that we cannot rely on the assumption that those sets of airport codes are

identical.

Note: A slight digression for some performance tuning. Notice how the first SELECT DISTINCT DEST query
takes almost 40 seconds. We expect all queries on such a small data set, less than 2 GB, to take a few seconds at
most. The reason is because the expression NOT IN (SELECT origin FROM airlines external)
produces an intermediate result set of 123 million rows, then runs 123 million comparisons on each data node against
the tiny set of destination airports. The way the NOT IN operator works internally means that this intermediate

result set with 123 million rows might be transmitted across the network to each data node in the cluster. Applying
another DISTINCT inside the NOT IN subquery means that the intermediate result set is only 340 items, resulting in
much less network traffic and fewer comparison operations. The more efficient query with the added DISTINCT is
approximately 7 times as fast.

[localhost:21000] > select ndv(carrier), ndv(flight num), ndv(tail num),

> ndv (origin), ndv(dest) from airlines external;
Fmm Fmm Fmm e fmm e +
| ndv(carrier) | ndv(flight num) | ndv(tail num) | ndv(origin) | ndv(dest) |
o —— o — o — o ———— o ——— +
| 29 | 9086 | 3 | 340 | 347
o — o o — o —— o —— +

[localhost:21000] > select tail num, count(*) as howmany from

airlines external
> group by tail num;

fom - fom +
| tail num | howmany |
R et R ettt +
715	1
0	406405
112	6562
NULL	123122001
e R +

Fetched 1 row(s) in 5.18s
[localhost:21000] > select distinct dest from airlines external
> where dest not in (select origin from

airlines_external);

t———— +
| dest |
+————— +
| LBF |
| CBM |
| RCA |
| SKA |
| LAR |
+————— +

Fetched 5 row(s) in 39.64s
[localhost:21000] > select distinct dest from airlines external
> where dest not in (select distinct origin from

airlines external);

| Impala Tutorials | 58

Fetched 5 row(s) in 5.59s
[localhost:21000] > select distinct origin from airlines external
> where origin not in (select distinct dest from
airlines_external);
Fetched 0 row(s) in 5.37s

Next, we try doing a simple calculation, with results broken down by year. This reveals that some years have no data
in the ATRTIME column. That means we might be able to use that column in queries involving certain date ranges,
but we cannot count on it to always be reliable. The question of whether a column contains any NULL values, and if
so what is their number, proportion, and distribution, comes up again and again when doing initial exploration of a
data set.

[localhost:21000] > select year, sum(airtime) from airlines external
> group by year order by year desc;

t————— o —— +
| year | sum(airtime) |
+———— o ———— +
2008	713050445
2007	748015545
2006	720372850
2005	708204026
2004	714276973
2003	665706940
2002	549761849
2001	590867745
2000	583537683
1999	561219227
1998	538050663
1997	536991229
1996	519440044
1995	513364265
1994	NULL
1993	NULL
1992	NULL
1991	NULL
1990	NULL
1989	NULL
1988	NULL
1987	NULL
t————— o ———— +

With the notion of NULL values in mind, let's come back to the TATILNUM column that we discovered had a lot of
NULLs. Let's quantify the NULL and non-NULL values in that column for better understanding. First, we just count
the overall number of rows versus the non-NULL values in that column. That initial result gives the appearance

of relatively few non-NULL values, but we can break it down more clearly in a single query. Once we have the
COUNT (*) and the COUNT (colname) numbers, we can encode that initial query in a WITH clause, then run a
followon query that performs multiple arithmetic operations on those values. Seeing that only one-third of one percent
of all rows have non-NULL values for the TATLNUM column clearly illustrates that that column is not of much use.

[localhost:21000] > select count(*) as 'rows', count(tail num) as 'non-null
tail numbers'

> from airlines external;
fom - o +
| rows | non-null tail numbers |
fomm B e +
| 123534969 | 412968 |
fom B T +

Fetched 1 row(s) in 1.51s
[localhost:21000] > with tl as
> (select count(*) as 'rows', count(tail num) as
'nonnull'’

| Impala Tutorials | 59

> from airlines external)
> select ‘rows', "nonnull’, ‘rows - ‘nonnull’ as 'nulls',
> (‘nonnull’ / “rows') * 100 as 'percentage non-null'
> from tl;
o t———————— o o +
| rows | nonnull | nulls | percentage non-null |
fom - e ettt fom - T ittt e e +
| 123534969 | 412968 | 123122001 | 0.3342923897119365 |
fomm fomm fomm - o +

By examining other columns using these techniques, we can form a mental picture of the way data is distributed
throughout the table, and which columns are most significant for query purposes. For this tutorial, we focus
mostly on the fields likely to hold discrete values, rather than columns such as ACTUAL ELAPSED TIME whose
names suggest they hold measurements. We would dig deeper into those columns once we had a clear picture of
which questions were worthwhile to ask, and what kinds of trends we might look for. For the final piece of initial
exploration, let's look at the YEAR column. A simple GROUP BY query shows that it has a well-defined range, a
manageable number of distinct values, and relatively even distribution of rows across the different years.

[localhost:21000] > select min(year), max(year), ndv(year) from
airlines external;

- - - +
| min(year) | max(year) | ndv(year) |
- - - +
| 1987 | 2008 | 22

- - - +

Fetched 1 row(s) in 2.03s
[localhost:21000] > select year, count (*) howmany from airlines external
> group by year order by year desc;

- o +
| year | howmany |
- o +
| 2008 | 7009728 |
| 2007 | 7453215 |
| 2006 | 7141922 |
| 2005 | 7140596 |
| 2004 | 7129270 |
| 2003 | 6488540 |
| 2002 | 5271359 |
| 2001 | 5967780 |
| 2000 | 5683047 |
| 1999 | 5527884 |
| 1998 | 5384721 |
| 1997 | 5411843 |
| 1996 | 5351983 |
| 1995 | 5327435 |
| 1994 | 5180048 |
| 1993 | 5070501 |
| 1992 | 5092157 |
| 1991 | 5076925 |
| 1990 | 5270893 |
| 1989 | 5041200 |
| 1988 | 5202096 |
| 1987 | 1311826 |
- o +

Fetched 22 row(s) in 2.13s

We could go quite far with the data in this initial raw format, just as we downloaded it from the web. If the data set
proved to be useful and worth persisting in Impala for extensive queries, we might want to copy it to an internal table,
letting Impala manage the data files and perhaps reorganizing a little for higher efficiency. In this next stage of the
tutorial, we copy the original data into a partitioned table, still in Parquet format. Partitioning based on the YEAR
column lets us run queries with clauses such as WHERE year = 2001 or WHERE year BETWEEN 1989 AND

| Impala Tutorials | 60

1999, which can dramatically cut down on I/O by ignoring all the data from years outside the desired range. Rather
than reading all the data and then deciding which rows are in the matching years, Impala can zero in on only the data
files from specific YEAR partitions. To do this, Impala physically reorganizes the data files, putting the rows from
each year into data files in a separate HDFS directory for each YEAR value. Along the way, we'll also get rid of the
TAIL NUM column that proved to be almost entirely NULL.

The first step is to create a new table with a layout very similar to the original ATRLINES EXTERNAL table. We'll
do that by reverse-engineering a CREATE TABLE statement for the first table, then tweaking it slightly to include a
PARTITION BY clause for YEAR, and excluding the TATIL. NUM column. The SHOW CREATE TABLE statement
gives us the starting point.

[localhost:21000] > show create table airlines external;

| CREATE EXTERNAL TABLE airline data.airlines external (
| year INT COMMENT 'inferred from: optional int32 year',
| month INT COMMENT 'inferred from: optional int32 month',
| day INT COMMENT 'inferred from: optional int32 day',
| dayofweek INT COMMENT 'inferred from: optional int32 dayofweek',
| dep time INT COMMENT 'inferred from: optional int32 dep time',
| crs_dep time INT COMMENT 'inferred from: optional int32 crs dep time',
| arr time INT COMMENT 'inferred from: optional int32 arr time',
| crs_arr time INT COMMENT 'inferred from: optional int32 crs arr time',
| carrier STRING COMMENT 'inferred from: optional binary carrier',
| flight num INT COMMENT 'inferred from: optional int32 flight num',
| tail num INT COMMENT 'inferred from: optional int32 tail num',
| actual elapsed time INT COMMENT 'inferred from: optional int32
actual elapsed time',
| crs_elapsed time INT COMMENT 'inferred from: optional int32
crs_elapsed time',
| airtime INT COMMENT 'inferred from: optional int32 airtime’',
| arrdelay INT COMMENT 'inferred from: optional int32 arrdelay',
| depdelay INT COMMENT 'inferred from: optional int32 depdelay',
| origin STRING COMMENT 'inferred from: optional binary origin',
| dest STRING COMMENT 'inferred from: optional binary dest',
| distance INT COMMENT 'inferred from: optional int32 distance',
| taxi in INT COMMENT 'inferred from: optional int32 taxi in',
| taxi out INT COMMENT 'inferred from: optional int32 taxi out',
| cancelled INT COMMENT 'inferred from: optional int32 cancelled',
| cancellation code STRING COMMENT 'inferred from: optional binary
cancellation code',
| diverted INT COMMENT 'inferred from: optional int32 diverted',
| carrier delay INT COMMENT 'inferred from: optional int32 carrier delay',
| weather delay INT COMMENT 'inferred from: optional int32 weather delay',
| nas_delay INT COMMENT 'inferred from: optional int32 nas delay',
| security delay INT COMMENT 'inferred from: optional int32
security delay',
| late aircraft delay INT COMMENT 'inferred from: optional int32
late aircraft delay'
)
| STORED AS PARQUET
| LOCATION 'hdfs://al730.example.com:8020/user/impala/staging/airlines’
| TBLPROPERTIES ('numFiles'='0', 'COLUMN STATS ACCURATE'='false',
| 'transient lastDdlTime'='1439425228', 'numRows'='-1', 'totalSize'='0",
| 'rawDataSize'='-1")

Fetched 1 row(s) in 0.03s
[localhost:21000] > quit;

| Impala Tutorials | 61

Although we could edit that output into a new SQL statement, all the ASCII box characters make such editing
inconvenient. To get a more stripped-down CREATE TABLE to start with, we restart the impala-shell command
with the —B option, which turns off the box-drawing behavior.

[localhost:21000] > quit;
Goodbye jrussell
$ impala-shell -i localhost -B -d airline data;
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
Server version: impalad version 2.8.x (build
X.Y.Z)
Welcome to the Impala shell. Press TAB twice to see a list of available
commands .
(Shell
build version: Impala Shell v2.8.x (hash) built on
date)
[localhost:21000] > show create table airlines external;
"CREATE EXTERNAL TABLE airline data.airlines_ external (
year INT COMMENT 'inferred from: optional int32 year',
month INT COMMENT 'inferred from: optional int32 month',
day INT COMMENT 'inferred from: optional int32 day',
dayofweek INT COMMENT 'inferred from: optional int32 dayofweek',
dep time INT COMMENT 'inferred from: optional int32 dep time',
crs_dep time INT COMMENT 'inferred from: optional int32 crs dep time',
arr_time INT COMMENT 'inferred from: optional int32 arr time',
crs_arr time INT COMMENT 'inferred from: optional int32 crs_arr time',
carrier STRING COMMENT 'inferred from: optional binary carrier',
flight num INT COMMENT 'inferred from: optional int32 flight num',
tail num INT COMMENT 'inferred from: optional int32 tail num',
actual elapsed time INT COMMENT 'inferred from: optional int32
actual elapsed time',
crs_elapsed time INT COMMENT 'inferred from: optional int32
crs_elapsed time',
airtime INT COMMENT 'inferred from: optional int32 airtime’',
arrdelay INT COMMENT 'inferred from: optional int32 arrdelay',
depdelay INT COMMENT 'inferred from: optional int32 depdelay',
origin STRING COMMENT 'inferred from: optional binary origin',
dest STRING COMMENT 'inferred from: optional binary dest',
distance INT COMMENT 'inferred from: optional int32 distance',
taxi in INT COMMENT 'inferred from: optional int32 taxi in',
taxi out INT COMMENT 'inferred from: optional int32 taxi out',
cancelled INT COMMENT 'inferred from: optional int32 cancelled',
cancellation code STRING COMMENT 'inferred from: optional binary
cancellation code',
diverted INT COMMENT 'inferred from: optional int32 diverted',
carrier delay INT COMMENT 'inferred from: optional int32 carrier delay',
weather delay INT COMMENT 'inferred from: optional int32 weather delay',
nas_delay INT COMMENT 'inferred from: optional int32 nas delay',
security delay INT COMMENT 'inferred from: optional int32 security delay',
late aircraft delay INT COMMENT 'inferred from: optional int32
late aircraft delay'
)
STORED AS PARQUET
LOCATION 'hdfs://al730.example.com:8020/user/impala/staging/airlines’
TBLPROPERTIES ('numFiles'='0', 'COLUMN STATS ACCURATE'='false',
'transient lastDd1Time'='1439425228"', 'numRows'='-1', 'totalSize'='0O",
'rawDataSize'="'-1")"
Fetched 1 row(s) in 0.01s

After copying and pasting the CREATE TABLE statement into a text editor for fine-tuning, we quit and restart
impala-shell without the —-B option, to switch back to regular output.

| Impala Tutorials | 62

Next we run the CREATE TABLE statement that we adapted from the SHOW CREATE TABLE output. We kept
the STORED AS PARQUET clause because we want to rearrange the data somewhat but still keep it in the high-
performance Parquet format. The LOCATION and TBLPROPERTIES clauses are not relevant for this new table, so
we edit those out. Because we are going to partition the new table based on the YEAR column, we move that column
name (and its type) into a new PARTITIONED BY clause.

[localhost:21000] CREATE TABLE airline data.airlines

>
>
> month INT,
> day INT,
> dayofweek INT,
> dep time INT,
> crs_dep time INT,
> arr_time INT,
> crs_arr_ time INT,
> carrier STRING,
> flight num INT,
> actual elapsed time INT,
> crs_elapsed time INT,
> airtime INT,
> arrdelay INT,
> depdelay INT,
> origin STRING,
> dest STRING,
> distance INT,
> taxi in INT,
> taxi out INT,
> cancelled INT,
> cancellation code STRING,
> diverted INT,
> carrier delay INT,
> weather delay INT,
> nas delay INT,
> security delay INT,
> late aircraft delay INT
>)
> STORED AS PARQUET
> PARTITIONED BY (year INT);
Fetched 0 row(s) in 0.10s

Next, we copy all the rows from the original table into this new one with an INSERT statement. (We edited

the CREATE TABLE statement to make an INSERT statement with the column names in the same order.)

The only change is to add a PARTITION (year) clause, and move the YEAR column to the very end of the
SELECT list of the INSERT statement. Specifying PARTITION (year), rather than a fixed value such as
PARTITION (year=2000), means that Impala figures out the partition value for each row based on the value of
the very last column in the SELECT list. This is the first SQL statement that legitimately takes any substantial time,
because the rows from different years are shuffled around the cluster; the rows that go into each partition are collected
on one node, before being written to one or more new data files.

[localhost:21000] > INSERT INTO airline data.airlines
> PARTITION (year)
> SELECT
> month,

day,

dayofweek,

dep time,

crs_dep time,

arr time,
crs_arr_ time,
carrier,
flight num,

VVVVVYVYVYV

VVVVVVVVVVVVVVYVYVYVVYVYV

actual elapsed time,
crs_elapsed time,
airtime,

arrdelay,

depdelay,

origin,

dest,

distance,

taxi in,

taxi out,

cancelled,
cancellation code,
diverted,

carrier delay,
weather delay,

nas delay,

security delay,

late aircraft delay,
year

Inserted 123534969 row(s) in 202.70s

FROM airline data.airlines_ external;

| Impala Tutorials | 63

Once partitioning or join queries come into play, it's important to have statistics that Impala can use to optimize
queries on the corresponding tables. The COMPUTE INCREMENTAL STATS statement is the way to collect
statistics for partitioned tables. Then the SHOW TABLE STATS statement confirms that the statistics are in place for
each partition, and also illustrates how many files and how much raw data is in each partition.

[localhost:21000]

e +

| summary

o +

| Updated 22 partition(s) and 27 column (s)

e +

[localhost:21000] > show table stats airlines;

t—————— o ——— o ———— o —————— o ——

o o +

| year | #Rows | #Files | Size |

| Incremental stats |

- o —— o e o —

o +————

| 1987 | 1311826 | 1 | 9.32MB |
PARQUET | true

| 1988 | 5202096 | 1 | 37.04MB |
PARQUET | true

| 1989 | 5041200 | 1 | 36.25MB |
PARQUET | true

| 1990 | 5270893 | 1 | 38.39MB |
PARQUET | true

| 1991 | 5076925 | 1 | 37.23MB |
PARQUET | true

| 1992 | 5092157 | 1 | 36.85MB |
PARQUET | true

| 1993 | 5070501 | 1 | 37.16MB |
PARQUET | true

| 1994 | 5180048 | 1 | 38.31MB |
PARQUET | true

| 1995 | 5327435 | 1 | 53.14MB |
PARQUET | true

| 1996 | 5351983 | 1 | 53.64MB |
PARQUET | true

| 1997 | 5411843 | 1 | 54.41MB |

PARQUET

true

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

> compute incremental stats airlines;

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

NOT

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

Format

| Impala Tutorials | 64

| 1998 | 5384721 | 1 | 54.01MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 1999 | 5527884 | 1 | 56.32MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2000 | 5683047 | 1 | 58.15MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2001 | 5967780 | 1 | 60.65MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2002 | 5271359 | 1 | 57.99MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2003 | 6488540 | 1 | 81.33MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2004 | 7129270 | 1 | 103.19MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2005 | 7140596 | 1 | 102.61MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2006 | 7141922 | 1 | 106.03MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2007 | 7453215 | 1 | 112.15MB | NOT CACHED | NOT CACHED |
PARQUET | true

| 2008 | 7009728 |1 | 105.76MB | NOT CACHED | NOT CACHED |
PARQUET | true

| Total | 123534969 | 22 | 1.30GB | OB |

|
- o —— o o o — o ———
o ==

At this point, we go through a quick thought process to sanity check the partitioning we did. All the partitions have
exactly one file, which is on the low side. A query that includes a clause WHERE year=2004 will only read a single
data block; that data block will be read and processed by a single data node; therefore, for a query targeting a single
year, all the other nodes in the cluster will sit idle while all the work happens on a single machine. It's even possible
that by chance (depending on HDFS replication factor and the way data blocks are distributed across the cluster), that
multiple year partitions selected by a filter such as WHERE year BETWEEN 1999 AND 2001 could all be read
and processed by the same data node. The more data files each partition has, the more parallelism you can get and

the less probability of “hotspots” occurring on particular nodes, therefore a bigger performance boost by having a big
cluster.

However, the more data files, the less data goes in each one. The overhead of dividing the work in a parallel query
might not be worth it if each node is only reading a few megabytes. 50 or 100 megabytes is a decent size for a Parquet
data block; 9 or 37 megabytes is on the small side. Which is to say, the data distribution we ended up with based on
this partitioning scheme is on the borderline between sensible (reasonably large files) and suboptimal (few files in
each partition). The way to see how well it works in practice is to run the same queries against the original flat table
and the new partitioned table, and compare times.

Spoiler: in this case, with my particular 4-node cluster with its specific distribution of data blocks and my particular
exploratory queries, queries against the partitioned table do consistently run faster than the same queries against

the unpartitioned table. But I could not be sure that would be the case without some real measurements. Here are
some queries I ran to draw that conclusion, first against ATRLINES EXTERNAL (no partitioning), then against
ATRLINES (partitioned by year). The ATRLINES queries are consistently faster. Changing the volume of data,
changing the size of the cluster, running queries that did or didn't refer to the partition key columns, or other factors
could change the results to favor one table layout or the other.

Note: If you find the volume of each partition is only in the low tens of megabytes, consider lowering the granularity
of partitioning. For example, instead of partitioning by year, month, and day, partition by year and month or even just
by year. The ideal layout to distribute work efficiently in a parallel query is many tens or even hundreds of megabytes
per Parquet file, and the number of Parquet files in each partition somewhat higher than the number of data nodes.

[localhost:21000] > select sum(airtime) from airlines external;

| Impala Tutorials | 65

| 8662859484 |

Fetched 1 row(s) in 2.02s
[localhost:21000] > select sum(airtime) from airlines;

e ——— +
| sum(airtime) |
o —— +
| 8662859484 |
o ———— +

Fetched 1 row(s) in 1.21s

[localhost:21000] > select sum(airtime) from airlines external where year =

2005;

o —— +

| sum(airtime) |

o ———— +

| 708204026 |
o —— +

Fetched 1 row(s) in 2.61ls
[localhost:21000] > select sum(airtime) from airlines where year = 2005;
o ———— +

| sum(airtime) |

e ——— +

| 708204026 |
o —— +

Fetched 1 row(s) in 1.19s

[localhost:21000] > select sum(airtime) from airlines external where
dayofweek = 1;

o +

| sum(airtime) |

fo—— +

| 1264945051 |

Fom +

Fetched 1 row(s) in 2.82s
[localhost:21000] > select sum(airtime) from airlines where dayofweek = 1;
fo— 1

| sum(airtime) |
fo—————— +

| 1264945051 |

Fom - +

Fetched 1 row(s) in 1.61ls

Now we can finally do some serious analysis with this data set that, remember, a few minutes ago all we had were
some raw data files and we didn't even know what columns they contained. Let's see whether the “air time” of a flight
tends to be different depending on the day of the week. We can see that the average is a little higher on day number 6;
perhaps Saturday is a busy flying day and planes have to circle for longer at the destination airport before landing.

[localhost:21000] > select dayofweek, avg(airtime) from airlines
> group by dayofweek order by dayofweek;
___________________ +
avg (airtime) |
___________________ +
102.1560425016671
102.1582931538807

fomm +
|
+
|
|
| 102.2170009256653
|
|
|
|
I
N

| dayofweek
+ ___________

102.2697358763511
105.3627448363705

| 1
| 2
| 3
| 4
| 5
| 6
| 7 103.4144351202054

|
|
|
102.37477661846 |
|
|
|

+ ___________

Fetched 7 row(s) in 2.25s

| Impala Administration | 66

To see if the apparent trend holds up over time, let's do the same breakdown by day of week, but also split up by year.
Now we can see that day number 6 consistently has a higher average air time in each year. We can also see that the
average air time increased over time across the board. And the presence of NULL for this column in years 1987 to
1994 shows that queries involving this column need to be restricted to a date range of 1995 and higher.

[localhost:21000] > select year, dayofweek, avg(airtime) from airlines
> group by year, dayofweek order by year desc, dayofweek;

t————— t————_—_— o +
| year | dayofweek | avg(airtime) |
t———— e —_—— e +
2008	1	103.1821651651355
2008	2	103.2149301386094
2008	3	103.0585076622796
2008	4	103.4671383539038
2008	5	103.5575385182659
2008	6	107.4006306562128
2008	7	104.8648851041755
2007	1	102.2196114337825
2007	2	101.9317791906348
2007	3	102.0964767689043
2007	4	102.6215927201686
2007	5	102.4289399000661
2007	6	105.1477448215756
2007	7	103.6305945644095
1996	1	99.33860750862108
1996	2	99.54225446396656
1996	3	99.41129336113134
1996	4	99.5110373340348
1996	5	99.22120745027595
1996	©	101.1717447111921
1996	7	99.95410136133704
1995	1	96.93779698300494
1995	2	96.93458674589712
1995	3	97.00972311337051
1995	4	96.90843832024412
1995	5	96.78382115425562
1995	6	98.70872826057003
1995	7	97.85570478374616
1994	1	NULL

| 1994 | 2 | NULL

| 1994 | 3 | NULL

| 1987 | 5 | NULL

| 1987 | 6 | NULL |
| 1987 | 7 | NULL

B e ————— e +

Impala Administration

As an administrator, you monitor Impala's use of resources and take action when necessary to keep Impala running
smoothly and avoid conflicts with other Hadoop components running on the same cluster. When you detect that an
issue has happened or could happen in the future, you reconfigure Impala or other components such as HDFS or even
the hardware of the cluster itself to resolve or avoid problems.

Related tasks:

| Impala Administration | 67

As an administrator, you can expect to perform installation, upgrade, and configuration tasks for Impala on all
machines in a cluster. See Installing Impala on page 24, Upgrading Impala on page 30, and Managing
Impala on page 25 for details.

For security tasks typically performed by administrators, see Impala Security on page 82.

Administrators also decide how to allocate cluster resources so that all Hadoop components can run smoothly
together. For Impala, this task primarily involves:

* Deciding how many Impala queries can run concurrently and with how much memory, through the admission
control feature. See Admission Control and Query Queuing on page 67 for details.

» Dividing cluster resources such as memory between Impala and other components, using YARN for overall
resource management, and Llama to mediate resource requests from Impala to YARN. See Resource Management
for Impala on page 75 for details.

Admission Control and Query Queuing

Admission control is an Impala feature that imposes limits on concurrent SQL queries, to avoid resource usage spikes
and out-of-memory conditions on busy clusters. It is a form of “throttling”. New queries are accepted and executed
until certain conditions are met, such as too many queries or too much total memory used across the cluster. When
one of these thresholds is reached, incoming queries wait to begin execution. These queries are queued and are
admitted (that is, begin executing) when the resources become available.

In addition to the threshold values for currently executing queries, you can place limits on the maximum number
of queries that are queued (waiting) and a limit on the amount of time they might wait before returning with an
error. These queue settings let you ensure that queries do not wait indefinitely, so that you can detect and correct
“starvation” scenarios.

Enable this feature if your cluster is underutilized at some times and overutilized at others. Overutilization is indicated
by performance bottlenecks and queries being cancelled due to out-of-memory conditions, when those same queries
are successful and perform well during times with less concurrent load. Admission control works as a safeguard to
avoid out-of-memory conditions during heavy concurrent usage.

Note:

The use of the Llama component for integrated resource management within YARN is no longer supported with
Impala 2.3 and higher. The Llama support code is removed entirely in Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service pools to define
the resources available to Impala and other components. Then within the area allocated for Impala, you can create
dynamic service pools, each with its own settings for the Impala admission control feature.

Overview of Impala Admission Control

On a busy cluster, you might find there is an optimal number of Impala queries that run concurrently. For example,
when the I/O capacity is fully utilized by I/O-intensive queries, you might not find any throughput benefit in running
more concurrent queries. By allowing some queries to run at full speed while others wait, rather than having all
queries contend for resources and run slowly, admission control can result in higher overall throughput.

For another example, consider a memory-bound workload such as many large joins or aggregation queries. Each such
query could briefly use many gigabytes of memory to process intermediate results. Because Impala by default cancels
queries that exceed the specified memory limit, running multiple large-scale queries at once might require re-running
some queries that are cancelled. In this case, admission control improves the reliability and stability of the overall
workload by only allowing as many concurrent queries as the overall memory of the cluster can accomodate.

The admission control feature lets you set an upper limit on the number of concurrent Impala queries and on the
memory used by those queries. Any additional queries are queued until the earlier ones finish, rather than being
cancelled or running slowly and causing contention. As other queries finish, the queued queries are allowed to
proceed.

| Impala Administration | 68

In Impala 2.5 and higher, you can specify these limits and thresholds for each pool rather than globally. That way,
you can balance the resource usage and throughput between steady well-defined workloads, rare resource-intensive
queries, and ad hoc exploratory queries.

For details on the internal workings of admission control, see How Impala Schedules and Enforces Limits on
Concurrent Queries on page 69.

Concurrent Queries and Admission Control

One way to limit resource usage through admission control is to set an upper limit on the number of concurrent
queries. This is the initial technique you might use when you do not have extensive information about memory usage
for your workload. This setting can be specified separately for each dynamic resource pool.

You can combine this setting with the memory-based approach described in Memory Limits and Admission Control
on page 68. If either the maximum number of or the expected memory usage of the concurrent queries is
exceeded, subsequent queries are queued until the concurrent workload falls below the threshold again.

Memory Limits and Admission Control

Each dynamic resource pool can have an upper limit on the cluster-wide memory used by queries executing in that
pool. This is the technique to use once you have a stable workload with well-understood memory requirements.

Always specify the Default Query Memory Limit for the expected maximum amount of RAM that a query might
require on each host, which is equivalent to setting the MEM_LIMIT query option for every query run in that

pool. That value affects the execution of each query, preventing it from overallocating memory on each host, and
potentially activating the spill-to-disk mechanism or cancelling the query when necessary.

Optionally, specify the Max Memory setting, a cluster-wide limit that determines how many queries can be safely
run concurrently, based on the upper memory limit per host multiplied by the number of Impala nodes in the cluster.

For example, consider the following scenario:

» The cluster is running impalad daemons on five DataNodes.

* A dynamic resource pool has Max Memory set to 100 GB.

* The Default Query Memory Limit for the pool is 10 GB. Therefore, any query running in this pool could use up
to 50 GB of memory (default query memory limit * number of Impala nodes).

* The maximum number of queries that Impala executes concurrently within this dynamic resource pool is two,
which is the most that could be accomodated within the 100 GB Max Memory cluster-wide limit.

» There is no memory penalty if queries use less memory than the Default Query Memory Limit per-host setting
or the Max Memory cluster-wide limit. These values are only used to estimate how many queries can be run
concurrently within the resource constraints for the pool.

Note: If you specify Max Memory for an Impala dynamic resource pool, you must also specify the Default Query
Memory Limit. Max Memory relies on the Default Query Memory Limit to produce a reliable estimate of overall
memory consumption for a query.

You can combine the memory-based settings with the upper limit on concurrent queries described in Concurrent
Queries and Admission Control on page 68. If either the maximum number of or the expected memory usage

of the concurrent queries is exceeded, subsequent queries are queued until the concurrent workload falls below the
threshold again.

How Impala Admission Control Relates to Other Resource Management Tools

The admission control feature is similar in some ways to the YARN resource management framework. These features
can be used separately or together. This section describes some similarities and differences, to help you decide which
combination of resource management features to use for Impala.

Admission control is a lightweight, decentralized system that is suitable for workloads consisting primarily of Impala
queries and other SQL statements. It sets “soft” limits that smooth out Impala memory usage during times of heavy
load, rather than taking an all-or-nothing approach that cancels jobs that are too resource-intensive.

| Impala Administration | 69

Because the admission control system does not interact with other Hadoop workloads such as MapReduce jobs, you
might use YARN with static service pools on clusters where resources are shared between Impala and other Hadoop
components. This configuration is recommended when using Impala in a multitenant cluster. Devote a percentage
of cluster resources to Impala, and allocate another percentage for MapReduce and other batch-style workloads. Let
admission control handle the concurrency and memory usage for the Impala work within the cluster, and let YARN
manage the work for other components within the cluster. In this scenario, Impala's resources are not managed by
YARN.

The Impala admission control feature uses the same configuration mechanism as the YARN resource manager to map
users to pools and authenticate them.

Although the Impala admission control feature uses a fair-scheduler.xml configuration file behind the scenes,
this file does not depend on which scheduler is used for YARN. You still use this file even when YARN is using the
capacity scheduler.

How Impala Schedules and Enforces Limits on Concurrent Queries

The admission control system is decentralized, embedded in each Impala daemon and communicating through the
statestore mechanism. Although the limits you set for memory usage and number of concurrent queries apply cluster-
wide, each Impala daemon makes its own decisions about whether to allow each query to run immediately or to queue
it for a less-busy time. These decisions are fast, meaning the admission control mechanism is low-overhead, but might
be imprecise during times of heavy load across many coordinators. There could be times when the more queries were
queued (in aggregate across the cluster) than the specified limit, or when number of admitted queries exceeds the
expected number. Thus, you typically err on the high side for the size of the queue, because there is not a big penalty
for having a large number of queued queries; and you typically err on the low side for configuring memory resources,
to leave some headroom in case more queries are admitted than expected, without running out of memory and being
cancelled as a result.

To avoid a large backlog of queued requests, you can set an upper limit on the size of the queue for queries that

are queued. When the number of queued queries exceeds this limit, further queries are cancelled rather than being
queued. You can also configure a timeout period per pool, after which queued queries are cancelled, to avoid
indefinite waits. If a cluster reaches this state where queries are cancelled due to too many concurrent requests or long
waits for query execution to begin, that is a signal for an administrator to take action, either by provisioning more
resources, scheduling work on the cluster to smooth out the load, or by doing /mpala performance tuning to enable
higher throughput.

How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)
Most aspects of admission control work transparently with client interfaces such as JDBC and ODBC:

» IfaSQL statement is put into a queue rather than running immediately, the API call blocks until the statement is
dequeued and begins execution. At that point, the client program can request to fetch results, which might also
block until results become available.

+ Ifa SQL statement is cancelled because it has been queued for too long or because it exceeded the memory limit
during execution, the error is returned to the client program with a descriptive error message.

In Impala 2.0 and higher, you can submit a SQL SET statement from the client application to change the
REQUEST POOL query option. This option lets you submit queries to different resource pools, as described in
REQUEST POOL Query Option on page 372.

At any time, the set of queued queries could include queries submitted through multiple different Impala daemon
hosts. All the queries submitted through a particular host will be executed in order, so a CREATE TABLE followed
by an INSERT on the same table would succeed. Queries submitted through different hosts are not guaranteed to be
executed in the order they were received. Therefore, if you are using load-balancing or other round-robin scheduling
where different statements are submitted through different hosts, set up all table structures ahead of time so that the
statements controlled by the queuing system are primarily queries, where order is not significant. Or, if a sequence of
statements needs to happen in strict order (such as an INSERT followed by a SELECT), submit all those statements
through a single session, while connected to the same Impala daemon host.

Admission control has the following limitations or special behavior when used with JDBC or ODBC applications:

| Impala Administration | 70

+ The other resource-related query options, RESERVATION REQUEST TIMEOUT and V_CPU_CORES, are no
longer used. Those query options only applied to using Impala with Llama, which is no longer supported.

SQL and Schema Considerations for Admission Control

When queries complete quickly and are tuned for optimal memory usage, there is less chance of performance or
capacity problems during times of heavy load. Before setting up admission control, tune your Impala queries to
ensure that the query plans are efficient and the memory estimates are accurate. Understanding the nature of your
workload, and which queries are the most resource-intensive, helps you to plan how to divide the queries into
different pools and decide what limits to define for each pool.

For large tables, especially those involved in join queries, keep their statistics up to date after loading substantial
amounts of new data or adding new partitions. Use the COMPUTE STATS statement for unpartitioned tables, and
COMPUTE INCREMENTAL STATS for partitioned tables.

When you use dynamic resource pools with a Max Memory setting enabled, you typically override the memory
estimates that Impala makes based on the statistics from the COMPUTE STATS statement. You either set the

MEM LIMIT query option within a particular session to set an upper memory limit for queries within that session, or
a default MEM LIMIT setting for all queries processed by the impalad instance, or a default MEM_LIMIT setting
for all queries assigned to a particular dynamic resource pool. By designating a consistent memory limit for a set of
similar queries that use the same resource pool, you avoid unnecessary query queuing or out-of-memory conditions
that can arise during high-concurrency workloads when memory estimates for some queries are inaccurate.

Follow other steps from Tuning Impala for Performance on page 591 to tune your queries.

Configuring Admission Control

The configuration options for admission control range from the simple (a single resource pool with a single set of
options) to the complex (multiple resource pools with different options, each pool handling queries for a different set
of users and groups).

Impala Service Flags for Admission Control (Advanced)

The following Impala configuration options let you adjust the settings of the admission control feature. When
supplying the options on the impalad command line, prepend the option name with —-.

queue_wait_timeout_ms Purpose: Maximum amount of time (in milliseconds)
that a request waits to be admitted before timing out.

Type: int64
Default: 60000

default pool max requests Purpose: Maximum number of concurrent outstanding
requests allowed to run before incoming requests are
queued. Because this limit applies cluster-wide, but each
Impala node makes independent decisions to run queries
immediately or queue them, it is a soft limit; the overall
number of concurrent queries might be slightly higher
during times of heavy load. A negative value indicates no
limit. Ignored if fair scheduler config path
and 1lama site path are set.

Type: int64

Default: -1, meaning unlimited (prior to Impala 2.5 the
default was 200)

default pool max queued Purpose: Maximum number of requests allowed
to be queued before rejecting requests. Because
this limit applies cluster-wide, but each Impala

default pool mem limit

disable_admission_control

disable_pool max requests

disable pool mem limits

fair scheduler_ allocation path

| Impala Administration | 71

node makes independent decisions to run queries
immediately or queue them, it is a soft limit; the
overall number of queued queries might be slightly
higher during times of heavy load. A negative value
or 0 indicates requests are always rejected once

the maximum concurrent requests are executing.
Ignored if fair scheduler config pathand
llama site path are set.

Type: int64

Default: unlimited

Purpose: Maximum amount of memory (across the
entire cluster) that all outstanding requests in this pool
can use before new requests to this pool are queued.
Specified in bytes, megabytes, or gigabytes by a number
followed by the suffix b (optional), m, or g, either
uppercase or lowercase. You can specify floating-
point values for megabytes and gigabytes, to represent
fractional numbers such as 1. 5. You can also specify
it as a percentage of the physical memory by specifying
the suffix %. 0 or no setting indicates no limit. Defaults
to bytes if no unit is given. Because this limit applies
cluster-wide, but each Impala node makes independent
decisions to run queries immediately or queue them, it
is a soft limit; the overall memory used by concurrent
queries might be slightly higher during times of heavy
load. Ignored if fair scheduler config path
and 11lama site path are set.

Note: Impala relies on the statistics produced by the
COMPUTE STATS statement to estimate memory usage
for each query. See COMPUTE STATS Statement on
page 237 for guidelines about how and when to use

this statement.

Type: string
Default: "" (empty string, meaning unlimited)

Purpose: Turns off the admission control feature
entirely, regardless of other configuration option settings.

Type: Boolean
Default: false

Purpose: Disables all per-pool limits on the maximum
number of running requests.

Type: Boolean
Default: false

Purpose: Disables all per-pool mem limits.
Type: Boolean
Default: false

Purpose: Path to the fair scheduler allocation file
(fair-scheduler.xml).

| Impala Administration | 72

Type: string
Default: "" (empty string)

Usage notes: Admission control only uses a small subset
of the settings that can go in this file, as described below.
For details about all the Fair Scheduler configuration
settings, see the Apache wiki.

llama site_path Purpose: Path to the configuration file used by
admission control (11lama-site.xml). If set,
fair scheduler allocation path mustalso
be set.

Type: string
Default: "" (empty string)

Usage notes: Admission control only uses a few of the
settings that can go in this file, as described below.

Configuring Admission Control Using the Command Line

To configure admission control, use a combination of startup options for the Impala daemon and edit or create the
configuration files fair-scheduler.xml and 11ama-site.xml.

For a straightforward configuration using a single resource pool named default, you can specify configuration
options on the command line and skip the fair-scheduler.xml and 11ama-site.xml configuration files.

For an advanced configuration with multiple resource pools using different settings, set up the fair-
scheduler.xml and 11ama-site.xml configuration files manually. Provide the paths to each one using the
impalad command-line options, -~fair scheduler allocation pathand --1lama site path
respectively.

The Impala admission control feature only uses the Fair Scheduler configuration settings to determine how to map
users and groups to different resource pools. For example, you might set up different resource pools with separate
memory limits, and maximum number of concurrent and queued queries, for different categories of users within your
organization. For details about all the Fair Scheduler configuration settings, see the Apache wiki.

The Impala admission control feature only uses a small subset of possible settings from the 11ama-site.xml
configuration file:

llama.am.throttling.maximum.placed.reservations.queue name
llama.am.throttling.maximum.queued.reservations.queue name
impala.admission-control.pool-default-query-options.queue name
impala.admission-control.pool-queue-timeout-ms.gqueue name

The impala.admission-control.pool-queue-timeout-ms setting specifies the timeout value for
this pool, in milliseconds. Theimpala.admission-control.pool-default-query-options settings
designates the default query options for all queries that run in this pool. Its argument value is a comma-delimited
string of 'key=value' pairs, for example,' keyl=vall, key2=val2'. For example, this is where you might set a
default memory limit for all queries in the pool, using an argument such as MEM LIMIT=5G.

The impala.admission-control.* configuration settings are available in Impala 2.5 and higher.

Example of Admission Control Configuration

Here are sample fair-scheduler.xml and 11ama-site.xml files that define resource pools
root.default, root.development, and root .production. These sample files are stripped down: in a
real deployment they might contain other settings for use with various aspects of the YARN component. The settings
shown here are the significant ones for the Impala admission control feature.

fair-scheduler.xml:

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

| Impala Administration | 73

Although Impala does not use the vcores value, you must still specify it to satisfy YARN requirements for the file
contents.

Each <aclSubmitApps> tag (other than the one for root) contains a comma-separated list of users, then a space,
then a comma-separated list of groups; these are the users and groups allowed to submit Impala statements to the
corresponding resource pool.

If you leave the <aclSubmitApps> element empty for a pool, nobody can submit directly to that pool; child pools
can specify their own <aclSubmitApps> values to authorize users and groups to submit to those pools.

<allocations>

<queue name="root">
<aclSubmitApps> </aclSubmitApps>
<queue name="default">
<maxResources>50000 mb, 0 vcores</maxResources>
<aclSubmitApps>*</aclSubmitApps>
</queue>
<queue name="development">
<maxResources>200000 mb, 0 vcores</maxResources>
<aclSubmitApps>userl,user2 dev,ops,admin</aclSubmitApps>
</queue>
<queue name="production">
<maxResources>1000000 mb, 0 vcores</maxResources>
<aclSubmitApps> ops,admin</aclSubmitApps>
</queue>
</queue>
<queuePlacementPolicy>
<rule name="specified" create="false"/>
<rule name="default" />
</queuePlacementPolicy>
</allocations>

llama-site.xml:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<property>
<name>llama.am.throttling.maximum.placed.reservations.root.default</
name>
<value>10</value>
</property>
<property>
<name>llama.am.throttling.maximum.queued.reservations.root.default</
name>
<value>50</value>
</property>
<property>
<name>impala.admission-control.pool-default-query-options.root.default</
name>
<value>mem limit=128m,query timeout s=20,max io buffers=10</value>
</property>
<property>
<name>impala.admission-control.pool-queue-timeout-ms.root.default</name>
<value>30000</value>
</property>
<property>
<name>llama.am.throttling.maximum.placed.reservations.root.development</
name>
<value>50</value>
</property>

| Impala Administration | 74

<property>
<name>llama.am.throttling.maximum.queued.reservations.root.development</
name>
<value>100</value>
</property>
<property>
<name>impala.admission-control.pool-default-query-
options.root.development</name>
<value>mem limit=256m,query timeout s=30,max io buffers=10</value>
</property>
<property>
<name>impala.admission-control.pool-queue-timeout-ms.root.development</
name>
<value>15000</value>
</property>
<property>
<name>llama.am.throttling.maximum.placed.reservations.root.production</
name>
<value>100</value>
</property>
<property>
<name>llama.am.throttling.maximum.queued.reservations.root.production</
name>
<value>200</value>
</property>
Ll==
Default query options for the 'root.production' pool.
THIS IS A NEW PARAMETER in Impala 2.5.
Note that the MEM LIMIT query option still shows up in here even
though it is a
separate box in the UI. We do that because it is the most important
query option
that people will need (everything else is somewhat advanced) .

MEM LIMIT takes a per-node memory limit which is specified using one
of the following:

- '<int>[bB]?' -> bytes (default if no unit given)
- '<float>[mM(bB)]'"' -> megabytes
- '<float>[gG(bB)]' -> in gigabytes

E.g. 'MEM LIMIT=12345' (no unit) means 12345 bytes, and you can
append m or g
to specify megabytes or gigabytes, though that is not required.
-—>
<property>
<name>impala.admission-control.pool-default-query-
options.root.production</name>
<value>mem limit=386m,query timeout s=30,max io buffers=10</value>
</property>
Ll==
Default queue timeout (ms) for the pool 'root.production'.
If this isn’t set, the process-wide flag is used.
THIS IS A NEW PARAMETER in Impala 2.5.
-—=>
<property>
<name>impala.admission-control.pool-queue-timeout-ms.root.production</
name>
<value>30000</value>
</property>
</configuration>

| Impala Administration | 75

Guidelines for Using Admission Control

To see how admission control works for particular queries, examine the profile output for the query. This information
is available through the PROFILE statement in impala-shell immediately after running a query in the shell, on
the queries page of the Impala debug web UI, or in the Impala log file (basic information at log level 1, more detailed
information at log level 2). The profile output contains details about the admission decision, such as whether the
query was queued or not and which resource pool it was assigned to. It also includes the estimated and actual memory
usage for the query, so you can fine-tune the configuration for the memory limits of the resource pools.

Remember that the limits imposed by admission control are “soft” limits. The decentralized nature of this mechanism
means that each Impala node makes its own decisions about whether to allow queries to run immediately or to queue
them. These decisions rely on information passed back and forth between nodes by the statestore service. If a sudden
surge in requests causes more queries than anticipated to run concurrently, then throughput could decrease due to
queries spilling to disk or contending for resources; or queries could be cancelled if they exceed the MEM LIMIT
setting while running.

In impala-shell, you can also specify which resource pool to direct queries to by setting the REQUEST POOL
query option.

The statements affected by the admission control feature are primarily queries, but also include statements that
write data such as INSERT and CREATE TABLE AS SELECT. Most write operations in Impala are not resource-
intensive, but inserting into a Parquet table can require substantial memory due to buffering intermediate data before
writing out each Parquet data block. See Loading Data into Parquet Tables on page 662 for instructions about
inserting data efficiently into Parquet tables.

Although admission control does not scrutinize memory usage for other kinds of DDL statements, if a query is
queued due to a limit on concurrent queries or memory usage, subsequent statements in the same session are also
queued so that they are processed in the correct order:

-- This query could be queued to avoid out-of-memory at times of heavy load.
select * from huge table join enormous_table using (id);

-- If so, this subsequent statement in the same session is also queued

-- until the previous statement completes.

drop table huge table;

If you set up different resource pools for different users and groups, consider reusing any classifications you
developed for use with Sentry security. See Enabling Sentry Authorization for Impala on page 86 for details.

For details about all the Fair Scheduler configuration settings, see Fair Scheduler Configuration, in particular the tags
such as <queue> and <aclSubmitApps> to map users and groups to particular resource pools (queues).

Resource Management for Impala

Note:

The use of the Llama component for integrated resource management within YARN is no longer supported with
Impala 2.3 and higher. The Llama support code is removed entirely in Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service pools to define
the resources available to Impala and other components. Then within the area allocated for Impala, you can create
dynamic service pools, each with its own settings for the Impala admission control feature.

You can limit the CPU and memory resources used by Impala, to manage and prioritize workloads on clusters that run
jobs from many Hadoop components.

How Resource Limits Are Enforced

Limits on memory usage are enforced by Impala's process memory limit (the MEM LIMIT query option setting). The
admission control feature checks this setting to decide how many queries can be safely run at the same time. Then the

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

| Impala Administration | 76

Impala daemon enforces the limit by activating the spill-to-disk mechanism when necessary, or cancelling a query
altogether if the limit is exceeded at runtime.
impala-shell Query Options for Resource Management

Before issuing SQL statements through the impala-shell interpreter, you can use the SET command to configure
the following parameters related to resource management:

» EXPLAIN LEVEL Query Option on page 354
* MEM LIMIT Query Option on page 363

Limitations of Resource Management for Impala

The MEM LIMIT query option, and the other resource-related query options, are settable through the ODBC or JDBC
interfaces in Impala 2.0 and higher. This is a former limitation that is now lifted.

Setting Timeout Periods for Daemons, Queries, and Sessions

Depending on how busy your cluster is, you might increase or decrease various timeout values. Increase timeouts if
Impala is cancelling operations prematurely, when the system is responding slower than usual but the operations are
still successful if given extra time. Decrease timeouts if operations are idle or hanging for long periods, and the idle or
hung operations are consuming resources and reducing concurrency.

Increasing the Statestore Timeout

If you have an extensive Impala schema, for example with hundreds of databases, tens of thousands of

tables, and so on, you might encounter timeout errors during startup as the Impala catalog service broadcasts
metadata to all the Impala nodes using the statestore service. To avoid such timeout errors on startup,

increase the statestore timeout value from its default of 10 seconds. Specify the timeout value using the -
statestore subscriber timeout seconds option for the statestore service, using the configuration
instructions in Modifying Impala Startup Options on page 32. The symptom of this problem is messages in the
impalad log such as:

Connection with state-store lost
Trying to re-register with state-store

See Scalability Considerations for the Impala Statestore on page 637 for more details about statestore operation
and settings on clusters with a large number of Impala-related objects such as tables and partitions.

Setting the Idle Query and Idle Session Timeouts for impalad

To keep long-running queries or idle sessions from tying up cluster resources, you can set timeout intervals for both
individual queries, and entire sessions.

Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle. For queries, this
means the query has results ready but is waiting for a client to fetch the data. A query can run for an arbitrary time
without triggering a timeout, because the query is computing results rather than sitting idle waiting for the results to
be fetched. The timeout period is intended to prevent unclosed queries from consuming resources and taking up slots
in the admission count of running queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.
Specify the following startup options for the impalad daemon:

* The --idle query timeout option specifies the time in seconds after which an idle query is cancelled. This
could be a query whose results were all fetched but was never closed, or one whose results were partially fetched
and then the client program stopped requesting further results. This condition is most likely to occur in a client

| Impala Administration | 77

program using the JDBC or ODBC interfaces, rather than in the interactive impala-shell interpreter. Once the
query is cancelled, the client program cannot retrieve any further results.

You can reduce the idle query timeout by using the QUERY TIMEOUT S query option. Any non-zero

value specified for the -—~idle query timeout startup option serves as an upper limit for the

QUERY TIMEOUT S query option. A zero value for --idle query timeout disables query timeouts. See
QUERY TIMEOUT S Query Option (Impala 2.0 or higher only) on page 372 for details.

*+ The --idle session_ timeout option specifies the time in seconds after which an idle session is expired.
A session is idle when no activity is occurring for any of the queries in that session, and the session has not started
any new queries. Once a session is expired, you cannot issue any new query requests to it. The session remains
open, but the only operation you can perform is to close it. The default value of 0 means that sessions never
expire.

For instructions on changing impalad startup options, see Modifying Impala Startup Options on page 32.
Note:

Impala checks periodically for idle sessions and queries to cancel. The actual idle time before cancellation might be
up to 50% greater than the specified configuration setting. For example, if the timeout setting was 60, the session or
query might be cancelled after being idle between 60 and 90 seconds.

Setting Timeout and Retries for Thrift Connections to the Backend Client

Impala connections to the backend client are subject to failure in cases when the network is momentarily overloaded.
To avoid failed queries due to transient network problems, you can configure the number of Thrift connection retries
using the following option:

* The --backend client connection num retries option specifies the number of times Impala will
try connecting to the backend client after the first connection attempt fails. By default, impalad will attempt
three re-connections before it returns a failure.

You can configure timeouts for sending and receiving data from the backend client. Therefore, if for some reason a
query hangs, instead of waiting indefinitely for a response, Impala will terminate the connection after a configurable
timeout.

* The --backend client rpc timeout ms option can be used to specify the number of milliseconds
Impala should wait for a response from the backend client before it terminates the connection and signals a failure.
The default value for this property is 300000 milliseconds, or 5 minutes.

Cancelling a Query

Sometimes, an Impala query might run for an unexpectedly long time, tying up resources in the cluster. You can
cancel the query explicitly, independent of the timeout period, by going into the web UI for the impalad host (on
port 25000 by default), and using the link on the /queries tab to cancel the running query. For example, press ~C
in impala-shell.

Using Impala through a Proxy for High Availability

For most clusters that have multiple users and production availability requirements, you might set up a proxy server to
relay requests to and from Impala.

Currently, the Impala statestore mechanism does not include such proxying and load-balancing features. Set up a
software package of your choice to perform these functions.

Note:

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

| Impala Administration | 78

Overview of Proxy Usage and Load Balancing for Impala
Using a load-balancing proxy server for Impala has the following advantages:

» Applications connect to a single well-known host and port, rather than keeping track of the hosts where the
impalad daemon is running.

+ If any host running the impalad daemon becomes unavailable, application connection requests still succeed
because you always connect to the proxy server rather than a specific host running the impalad daemon.

* The coordinator node for each Impala query potentially requires more memory and CPU cycles than the other
nodes that process the query. The proxy server can issue queries using round-robin scheduling, so that each
connection uses a different coordinator node. This load-balancing technique lets the Impala nodes share this
additional work, rather than concentrating it on a single machine.

The following setup steps are a general outline that apply to any load-balancing proxy software:

1. Download the load-balancing proxy software. It should only need to be installed and configured on a single host.
Pick a host other than the DataNodes where impalad is running, because the intention is to protect against the
possibility of one or more of these DataNodes becoming unavailable.

2. Configure the load balancer (typically by editing a configuration file). In particular:

» Setup a port that the load balancer will listen on to relay Impala requests back and forth.

» Consider enabling “sticky sessions”. Where practical, enable this setting so that stateless client applications
such as impalad and Hue are not disconnected from long-running queries. Evaluate whether this setting is
appropriate for your combination of workload and client applications.

» For Kerberized clusters, follow the instructions in Special Proxy Considerations for Clusters Using Kerberos
on page 78.

3. Specify the host and port settings for each Impala node. These are the hosts that the load balancer will choose

from when relaying each Impala query. See Ports Used by Impala on page 736 for when to use port 21000,

21050, or another value depending on what type of connections you are load balancing.

Note:

In particular, if you are using Hue or JDBC-based applications, you typically set up load balancing for both ports
21000 and 21050, because these client applications connect through port 21050 while the impala-shell
command connects through port 21000.

4. Run the load-balancing proxy server, pointing it at the configuration file that you set up.

5. For any scripts, jobs, or configuration settings for applications that formerly connected to a specific datanode to
run Impala SQL statements, change the connection information (such as the —i option in impala-shell)to
point to the load balancer instead.

Note: The following sections use the HAProxy software as a representative example of a load balancer that you can
use with Impala.

Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the
same one that is actually processing the request, to prevent man-in-the-middle attacks. To clarify that the load-
balancing proxy server is legitimate, perform these extra Kerberos setup steps:

1. This section assumes you are starting with a Kerberos-enabled cluster. See Enabling Kerberos Authentication
for Impala on page 98 for instructions for setting up Impala with Kerberos. See the documentation for your
Apache Hadoop distribution for general steps to set up Kerberos.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have
an entry impala/proxy host@realmin its keytab. If not, go back over the initial Kerberos configuration
steps for the keytab on each host running the impalad daemon.

3. Copy the keytab file from the proxy host to all other hosts in the cluster that run the impalad daemon. (For
optimal performance, impalad should be running on all DataNodes in the cluster.) Put the keytab file in a secure
location on each of these other hosts.

| Impala Administration | 79

Add an entry impala/actual hostname@realmto the keytab on each host running the impalad daemon.

For each impalad node, merge the existing keytab with the proxy’s keytab using ktutil, producing a new
keytab file. For example:

$ ktutil
ktutil: read kt proxy.keytab
ktutil: read kt impala.keytab
ktutil: write kt proxy impala.keytab
ktutil: quit

To verify that the keytabs are merged, run the command:

klist -k keytabfile

which lists the credentials for both principal and be principal on all nodes.
Make sure that the impala user has permission to read this merged keytab file.
Change the following configuration settings for each host in the cluster that participates in the load balancing:

* Inthe impalad option definition, add:

--principal=impala/proxy host@realm
--be principal=impala/actual host@realm
-—keytab file=path to merged keytab

Note: Every host has different --be principal because the actual hostname is different on each host.
Specify the fully qualified domain name (FQDN) for the proxy host, not the IP address. Use the exact FQDN
as returned by a reverse DNS lookup for the associated IP address.

* Modify the startup options. See Modifying Impala Startup Options on page 32 for the procedure to modify
the startup options.

9. Restart Impala to make the changes take effect. Restart the impalad daemons on all hosts in the cluster, as well

as the statestored and catalogd daemons.

Example of Configuring HAProxy Load Balancer for Impala

If you are not already using a load-balancing proxy, you can experiment with H4Proxy a free, open source load
balancer. This example shows how you might install and configure that load balancer on a Red Hat Enterprise Linux
system.

Install the load balancer: yum install haproxy

Set up the configuration file: /etc/haproxy/haproxy.cfg. See the following section for a sample
configuration file.

Run the load balancer (on a single host, preferably one not running impalad):

/usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg

In impala-shell, JDBC applications, or ODBC applications, connect to the listener port of the proxy host,
rather than port 21000 or 21050 on a host actually running impalad. The sample configuration file sets haproxy
to listen on port 25003, therefore you would send all requests to haproxy host:25003.

This is the sample haproxy.cfg used in this example:

global

To have these messages end up in /var/log/haproxy.log you will
need to:

1) configure syslog to accept network log events. This is done
by adding the '-r' option to the SYSLOGD OPTIONS in

#
#
#
/etc/sysconfig/syslog

http://haproxy.1wt.eu/

fil

1o

= = S S S

log

log
chroot
pidfile
maxconn
user
group
daemon

e. A line like the following can be added to

cal2.*

/etc/sysconfig/syslog

/var/log/haproxy.log

127.0.0.1 local0
127.0.0.1 locall notice
/var/lib/haproxy
/var/run/haproxy.pid

4000
haproxy
haproxy

turn on stats unix socket
fstats socket /var/lib/haproxy/stats

common defaults that all the 'listen' and

use if not designated in their block

#

You might need to adjust timing values to prevent timeouts.

defaults
mode
log
option
option
option
option
option
retries
maxconn
contime
clitime
srvtime

#

http

global
httplog
dontlognull

http-server-close

forwardfor

out 5000
out 50000
out 50000

except 127.0.

redispatch
3
3000

0.0/8

'backend’

This sets up the admin page for HA Proxy at port 25002.

#

listen stat
balance
mode ht
stats e

s :25002

tp
nable

stats auth username:password

This is the setup for Impala.

load balan

cer host:25003.

Impala client connect to

| Impala Administration | 80

2) configure local2 events to go to the /var/log/haproxy.log

sections will

HAProxy will balance connections among the list of servers listed below.

The list of Impalad is listening at port 21000 for beeswax

or origina

For JDBC or ODBC version 2.x driver,

listen impa

1 ODBC driver.

la :25003

mode tcp

option
balance

sServer
server
server
server

tcplog
leastconn

symbolic name 1
symbolic name 2
symbolic name 3
symbolic name 4

impala-host-1.
impala-host-2.
impala-host-3.
impala-host-4.

example.
example.
example.
example.

com
com
com
com

:21000
:21000
:21000
:21000

(impala-shell)

use port 21050 instead of 21000.

| Impala Administration | 81

Setup for Hue or other JDBC-enabled applications.
In particular, Hue requires sticky sessions.
The application connects to load balancer host:21051, and HAProxy balances
connections to the associated hosts, where Impala listens for JDBC
requests on port 21050.
listen impalajdbc :21051

mode tcp

option tcplog

balance source

server symbolic name 5 impala-host-1.example.com:21050

server symbolic name 6 impala-host-2.example.com:21050

server symbolic name 7 impala-host-3.example.com:21050

server symbolic name 8 impala-host-4.example.com:21050

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious
about reusing the connections. If the load balancer has set up connection timeout values, either check the connection
frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before
using it and create a new one if the connection has been closed.

Managing Disk Space for Impala Data

Although Impala typically works with many large files in an HDFS storage system with plenty of capacity, there are
times when you might perform some file cleanup to reclaim space, or advise developers on techniques to minimize
space consumption and file duplication.

» Use compact binary file formats where practical. Numeric and time-based data in particular can be stored in more
compact form in binary data files. Depending on the file format, various compression and encoding features can
reduce file size even further. You can specify the STORED AS clause as part of the CREATE TABLE statement,
or ALTER TABLE with the SET FILEFORMAT clause for an existing table or partition within a partitioned
table. See How Impala Works with Hadoop File Formats on page 652 for details about file formats, especially
Using the Parquet File Format with Impala Tables on page 661. See CREATE TABLE Statement on page
253 and ALTER TABLE Statement on page 223 for syntax details.

* You manage underlying data files differently depending on whether the corresponding Impala table is defined as
an internal or external table:

» Use the DESCRIBE FORMATTED statement to check if a particular table is internal (managed by Impala) or
external, and to see the physical location of the data files in HDFS. See DESCRIBE Statement on page 271
for details.

* For Impala-managed (“internal”) tables, use DROP TABLE statements to remove data files. See DROP
TABLE Statement on page 291 for details.

» For tables not managed by Impala (“external” tables), use appropriate HDFS-related commands such as
hadoop fs,hdfs dfs,or distcp, to create, move, copy, or delete files within HDFS directories that are
accessible by the impala user. Issue a REFRESH table name statement after adding or removing any
files from the data directory of an external table. See REFRESH Statement on page 314 for details.

» Use external tables to reference HDFS data files in their original location. With this technique, you avoid
copying the files, and you can map more than one Impala table to the same set of data files. When you drop the
Impala table, the data files are left undisturbed. See External Tables on page 214 for details.

» Use the LOAD DATA statement to move HDFS files into the data directory for an Impala table from inside
Impala, without the need to specify the HDFS path of the destination directory. This technique works for both
internal and external tables. See LOAD DATA Statement on page 310 for details.

* Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might
not be reclaimed for use by other files until sometime later, when the trashcan is emptied. See DROP TABLE
Statement on page 291 for details. See User Account Requirements on page 20 for permissions needed for
the HDFS trashcan to operate correctly.

* Drop all tables in a database before dropping the database itself. See DROP DATABASE Statement on page 283
for details.

| Impala Security | 82

* Clean up temporary files after failed INSERT statements. If an INSERT statement encounters an error, and you
see a directory named . impala insert stagingor impala insert staging left behind in the
data directory for the table, it might contain temporary data files taking up space in HDFS. You might be able to
salvage these data files, for example if they are complete but could not be moved into place due to a permission
error. Or, you might delete those files through commands such as hadoop fsorhdfs dfs, to reclaim space
before re-trying the INSERT. Issue DESCRIBE FORMATTED table name to see the HDFS path where you
can check for temporary files.

* By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored
in the directory /tmp/impala-scratch . These files are removed when the operation finishes. (Multiple
concurrent queries can perform operations that use the “spill to disk” technique, without any name conflicts
for these temporary files.) You can specify a different location by starting the impalad daemon with the —-
scratch dirs="path to directory" configuration option. You can specify a single directory, or a
comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You
might specify different directory paths for different hosts, depending on the capacity and speed of the available
storage devices. In Impala 2.3 or higher, Impala successfully starts (with a warning Impala successfully starts
(with a warning written to the log) if it cannot create or read and write files in one of the scratch directories. If
there is less than 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning
message to its log. If Impala encounters an error reading or writing files in a scratch directory during a query,
Impala logs the error and the query fails.

» Ifyouuse the Amazon Simple Storage Service (S3) as a place to offload data to reduce the volume of local
storage, Impala 2.2.0 and higher can query the data directly from S3. See Using Impala with the Amazon S3
Filesystem on page 709 for details.

Impala Security

Impala includes a fine-grained authorization framework for Hadoop, based on Apache Sentry. Sentry authorization
was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop security to

a new level needed for the requirements of highly regulated industries such as healthcare, financial services, and
government. Impala also includes an auditing capability which was added in Impala 1.1.1; Impala generates the audit
data which can be consumed, filtered, and visualized by cluster-management components focused on governance.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access

or perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized

access occurred, and detect whether any such attempts were made. This is a critical set of features for production
deployments in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where
multiple applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That

is, you should know the general security practices for Linux and Hadoop, and their associated commands and
configuration files. For example, you should know how to create Linux users and groups, manage Linux group
membership, set Linux and HDFS file permissions and ownership, and designate the default permissions and
ownership for new files. You should be familiar with the configuration of the nodes in your Hadoop cluster, and know
how to apply configuration changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization Which users are allowed to access which resources, and
what operations are they allowed to perform? Impala
relies on the open source Sentry project for authorization.
By default (when authorization is not enabled), Impala
does all read and write operations with the privileges of
the impala user, which is suitable for a development/
test environment but not for a secure production

| Impala Security | 83

environment. When authorization is enabled, Impala uses
the OS user ID of the user who runs impala-shell

or other client program, and associates various privileges
with each user. See Enabling Sentry Authorization for
Impala on page 86 for details about setting up and
managing authorization.

authentication How does Impala verify the identity of the user to
confirm that they really are allowed to exercise the
privileges assigned to that user? Impala relies on the
Kerberos subsystem for authentication. See Enabling
Kerberos Authentication for Impala on page 98 for
details about setting up and managing authentication.

auditing What operations were attempted, and did they succeed
or not? This feature provides a way to look back and
diagnose whether attempts were made to perform
unauthorized operations. You use this information to
track down suspicious activity, and to see where changes
are needed in authorization policies. The audit data
produced by this feature can be collected and presented
in a user-friendly form by cluster-management software.
See Auditing Impala Operations on page 104 for
details about setting up and managing auditing.

Security Guidelines for Impala

The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

» Secure the root account. The root user can tamper with the impalad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

* Restrict membership in the sudoers list (in the /etc/sudoers file). The users who can run the sudo
command can do many of the same things as the root user.

* Ensure the Hadoop ownership and permissions for Impala data files are restricted.

* Ensure the Hadoop ownership and permissions for Impala log files are restricted.

» Ensure that the Impala web Ul (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging on page 731 for details.

» Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups
(which by default map to Linux OS groups). Create the associated Linux groups using the groupadd command
if necessary.

» The Impala authorization feature makes use of the HDFS file ownership and permissions mechanism; for
background information, see the HDFS Permissions Guide. Set up users and assign them to groups at the OS
level, corresponding to the different categories of users with different access levels for various databases, tables,
and HDFS locations (URIs). Create the associated Linux users using the useradd command if necessary, and
add them to the appropriate groups with the usermod command.

» Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use the
* wildcard for the database containing the base tables, while specifying the precise names of the individual views.
(For specifying table or database names, you either specify the exact name or * to mean all the databases on a
server, or all the tables and views in a database.)

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

| Impala Security | 84

* Enable authorization by running the impalad daemons with the ~-server name and -
authorization policy file options on all nodes. (The authorization feature does not apply to the
statestored daemon, which has no access to schema objects or data files.)

» Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files

One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read and
write permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging on page 725.

All Impala read and write operations are performed under the filesystem privileges of the impala user. The impala
user must be able to read all directories and data files that you query, and write into all the directories and data files
for INSERT and LOAD DATA statements. At a minimum, make sure the impala user is in the hive group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements on page 20 for
more details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

» The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 86.
With authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is
blocked by Impala itself. The actual low-level read and write requests are still done by the impala user, so you
must have appropriate file and directory permissions for that user ID.

* You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 98, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new
host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

Installation Considerations for Impala Security

Impala 1.1 comes set up with all the software and settings needed to enable security when you run the impalad
daemon with the new security-related options (-server name and —authorization policy file). Youdo
not need to change any environment variables or install any additional JAR files.

Securing the Hive Metastore Database

It is important to secure the Hive metastore, so that users cannot access the names or other information about
databases and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive
metastore security, using the instructions in the documentation for your Apache Hadoop distribution for securing
different Hive components:

» Secure the Hive Metastore.

» In addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the
HiveServer2 server.

Securing the Impala Web User Interface

The instructions in this section presume you are familiar with the . htpasswd mechanism commonly used to
password-protect pages on web servers.

http://en.wikipedia.org/wiki/.htpasswd

| Impala Security | 85

Password-protect the Impala web UI that listens on port 25000 by default. Setup a . htpasswd file in
the SIMPALA HOME directory, or start both the impalad and statestored daemons with the ——
webserver password file option to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or
any other system. The domain field in the password file must match the domain supplied to Impala by the new
command-line option --webserver authentication domain. The defaultis mydomain.com.

Impala also supports using HTTPS for secure web traffic. To do so, set —~—webserver certificate file
to refer to a valid . pem TLS/SSL certificate file. Impala will automatically start using HTTPS once the TLS/
SSL certificate has been read and validated. A . pem file is basically a private key, followed by a signed TLS/SSL
certificate; make sure to concatenate both parts when constructing the . pem file.

If Impala cannot find or parse the . pem file, it prints an error message and quits.
Note:

If the private key is encrypted using a passphrase, Impala will ask for that passphrase on startup, which is not
useful for a large cluster. In that case, remove the passphrase and make the . pem file readable only by Impala and
administrators.

When you turn on TLS/SSL for the Impala web Ul, the associated URLs change from http: // prefixes to
https://. Adjust any bookmarks or application code that refers to those URLs.

Configuring TLS/SSL for Impala

Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such as
Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

Using the Command Line

To enable SSL for when client applications connect to Impala, add both of the following flags to the impalad
startup options:

* --ssl server certificate: the full path to the server certificate, on the local filesystem.
*+ --ssl private_ key: the full path to the server private key, on the local filesystem.

In Impala 2.3 and higher, Impala can also use SSL for its own internal communication between the

impalad, statestored, and catalogd daemons. To enable this additional SSL encryption, set the —-

ssl server certificateand--ssl private key flagsin the startup options for impalad,
catalogd, and statestored, and also add the --ss1 client ca certificate flag for all three of those
daemons.

Warning: Prior to Impala 2.3.2, you could enable Kerberos authentication between Impala internal

[= % components, or SSL encryption between Impala internal components, but not both at the same time. This
restriction has now been lifted. See IMPALA-2598 to see the maintenance releases for different levels of
Impala where the fix has been published.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2
requests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala on page 736 for
details.)

Since Impala uses passphrase-less certificates in PEM format, you can reuse a host's existing Java keystore by using
the openss1 toolkit to convert it to the PEM format.
Configuring TLS/SSL Communication for the Impala Shell

With SSL enabled for Impala, use the following options when starting the impala-shell interpreter:

https://issues.apache.org/jira/browse/IMPALA-2598

| Impala Security | 86

*+ —-ssl:enables TLS/SSL for impala-shell.
* --ca_cert: the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate
for self-signed server certificates.

If -—ca_cert isnot set, impala-shell enables TLS/SSL, but does not validate the server certificate. This is
useful for connecting to a known-good Impala that is only running over TLS/SSL, when a copy of the certificate is
not available (such as when debugging customer installations).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC
applications to Impala. See Configuring Impala to Work with JDBC on page 27 and Configuring Impala to Work
with ODBC on page 26 for details.

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Enabling Sentry Authorization for Impala

Authorization determines which users are allowed to access which resources, and what operations they are allowed to
perform. In Impala 1.1 and higher, you use Apache Sentry for authorization. Sentry adds a fine-grained authorization
framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write operations
with the privileges of the impala user, which is suitable for a development/test environment but not for a secure
production environment. When authorization is enabled, Impala uses the OS user ID of the user who runs impala-
shell or other client program, and associates various privileges with each user.

Note: Sentry is typically used in conjunction with Kerberos authentication, which defines which hosts are allowed
to connect to each server. Using the combination of Sentry and Kerberos prevents malicious users from being able to
connect by creating a named account on an untrusted machine. See Enabling Kerberos Authentication for Impala on
page 98 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with
a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object
automatically inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The object hierarchy for Impala covers Server, URI, Database, Table, and Column. (The Table privileges apply to
views as well; anywhere you specify a table name, you can specify a view name instead.) Column-level authorization
is available in Impala 2.3 and higher. Previously, you constructed views to query specific columns and assigned
privilege based on the views rather than the base tables. Now, you can use Impala's GRANT Statement (Impala 2.0 or
higher only) on page 297 and REVOKE Statement (Impala 2.0 or higher only) on page 318 statements to assign

and revoke privileges from specific columns in a table.

A restricted set of privileges determines what you can do with each object:

SELECT privilege Lets you read data from a table or view, for example
with the SELECT statement, the INSERT. . .SELECT
syntax, or CREATE TABLE. . .LIKE. Also required
to issue the DESCRIBE statement or the EXPLAIN
statement for a query against a particular table. Only
objects for which a user has this privilege are shown in
the output for SHOW DATABASES and SHOW TABLES
statements. The REFRESH statement and INVALIDATE
METADATA statements only access metadata for tables
for which the user has this privilege.

| Impala Security | 87

INSERT privilege Lets you write data to a table. Applies to the INSERT
and LOAD DATA statements.

ALL privilege Lets you create or modify the object. Required to run
DDL statements such as CREATE TABLE, ALTER
TABLE, or DROP TABLE for a table, CREATE
DATABASE or DROP DATABASE for a database, or
CREATE VIEW, ALTER VIEW, or DROP VIEW for
a view. Also required for the URI of the “location”
parameter for the CREATE EXTERNAL TABLE and
LOAD DATA statements.

Privileges can be specified for a table or view before that object actually exists. If you do not have sufficient privilege
to perform an operation, the error message does not disclose if the object exists or not.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the
emphasis of privilege management is moving towards being SQL-based. Although currently Impala does not have
GRANT or REVOKE statements, Impala can make use of privileges assigned through GRANT and REVOKE statements
done through Hive. The mode of operation with GRANT and REVOKE statements instead of the policy file requires
that a special Sentry service be enabled; this service stores, retrieves, and manipulates privilege information stored
inside the metastore database.

Starting the impalad Daemon with Sentry Authorization Enabled

To run the impalad daemon with authorization enabled, you add one or more options to the
IMPALA SERVER ARGS declaration in the /etc/default/impala configuration file:

* The -server name option turns on Sentry authorization for Impala. The authorization rules refer to a symbolic
server name, and you specify the name to use as the argument to the ~server name option.

» Ifyou specify just —~server name, Impala uses the Sentry service for authorization, relying on the results of
GRANT and REVOKE statements issued through Hive. (This mode of operation is available in Impala 1.4.0 and
higher.) Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, also specify the —
authorization policy file option as in the following item.

» Specifying the —~authorization policy file option in additionto -~server name makes Impala
read privilege information from a policy file, rather than from the metastore database. The argument to the -
authorization policy file option specifies the HDFS path to the policy file that defines the privileges
on different schema objects.

For example, you might adapt your /etc/default/impala configuration to contain lines like the following. To
use the Sentry service rather than the policy file:

IMPALA SERVER ARGS=" \
—server name=serverl \

Or to use the policy file, as in releases prior to Impala 1.4:

IMPALA SERVER ARGS=" \
—authorization policy file=/user/hive/warehouse/auth-policy.ini \
-server name=serverl \

The preceding examples set up a symbolic name of serverl to refer to the current instance of Impala. This
symbolic name is used in the following ways:

* Specify the serverl value for the sentry.hive.server property in the sentry-site.xml
configuration file for Hive, as well as in the ~server name option for impalad.

| Impala Security | 88

If the impalad daemon is not already running, start it as described in Starting Impala on page 31. If it is
already running, restart it with the command sudo /etc/init.d/impala-server restart.Runthe
appropriate commands on all the nodes where impalad normally runs.

» Ifyou use the mode of operation using the policy file, the rules in the [roles] section of the policy file refer to
this same serverl name. For example, the following rule sets up a role report generator that lets users
with that role query any table in a database named reporting db on a node where the impalad daemon was
started up with the ~server name=serverl option:

[roles]
report generator = server=serverl->db=reporting db->table=*->action=SELECT

When impalad is started with one or both of the ~-server name=serverl and -
authorization policy file options, Impala authorization is enabled. If Impala detects any errors or
inconsistencies in the authorization settings or the policy file, the daemon refuses to start.

Using Impala with the Sentry Service (Impala 1.4 or higher only)

When you use the Sentry service rather than the policy file, you set up privileges through GRANT and REVOKE
statement in either Impala or Hive, then both components use those same privileges automatically. (Impala added the
GRANT and REVOKE statements in Impala 2.0.)

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the impalad
daemon when you specify both the ~server name and ~authorization policy file startup options. It
controls which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to
impalad, and what operations that user can perform on the objects.

Note:

The Sentry service, as described in Using Impala with the Sentry Service (Impala 1.4 or higher only) on page 88,
stores authorization metadata in a relational database. This means you can manage user privileges for Impala tables
using traditional GRANT and REVOKE SQL statements, rather than the policy file approach described here.If you are
still using policy files, migrate to the database-backed service whenever practical.

The location of the policy file is listed in the auth-site.xml configuration file. To minimize overhead, the
security information from this file is cached by each impalad daemon and refreshed automatically, with a default
interval of 5 minutes. After making a substantial change to security policies, restart all Impala daemons to pick up the
changes immediately.

Policy File Location and Format

The policy file uses the familiar . ini format, divided into the major sections [groups] and [roles]. There is
also an optional [databases] section, which allows you to specify a specific policy file for a particular database,
as explained in Using Multiple Policy Files for Different Databases on page 93. Another optional section,

[users], allows you to override the OS-level mapping of users to groups; that is an advanced technique primarily
for testing and debugging, and is beyond the scope of this document.

In the [groups] section, you define various categories of users and select which roles are associated with each
category. The group and usernames correspond to Linux groups and users on the server where the impalad daemon
runs.

The group and usernames in the [groups] section correspond to Linux groups and users on the server where the
impalad daemon runs. When you access Impala through the impalad interpreter, for purposes of authorization,
the user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access
Impala through the ODBC or JDBC interfaces, the user and password specified through the connection string are used
as login credentials for the Linux server, and authorization is based on that username and the associated Linux group
membership.

| Impala Security | 89

In the [roles] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That
is, which objects users with that role can access, and what operations they can perform on those objects. This is the
lowest-level category of security information; the other sections in the policy file map the privileges to higher-level
divisions of groups and users. In the [groups] section, you specify which roles are associated with which groups.
The group and usernames correspond to Linux groups and users on the server where the impalad daemon runs. The
privileges are specified using patterns like:

server=server name->db=database name->table=table name->action=SELECT
server=server name->db=database name->table=table name->action=CREATE
server=server name->db=database name->table=table name->action=ALL

For the server_name value, substitute the same symbolic name you specify with the impalad -server name
option. You can use * wildcard characters at each level of the privilege specification to allow access to all such
objects. For example:

server=impala-host.example.com->db=default->table=tl->action=SELECT
server=impala-host.example.com->db=*->table=*->action=CREATE
server=impala-host.example.com->db=*->table=audit log->action=SELECT
server=impala-host.example.com->db=default->table=tl->action=%*

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any
user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user
are allowed; all other operations are not allowed. If a group or role is defined multiple times in the policy file, the last
definition takes precedence.

To understand the notion of whitelisting, set up a minimal policy file that does not provide any privileges

for any object. When you connect to an Impala node where this policy file is in effect, you get no results for

SHOW DATABASES, and an error when you issue any SHOW TABLES, USE database name, DESCRIBE
table name, SELECT, and or other statements that expect to access databases or tables, even if the corresponding
databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-
checked by each impalad node every 5 minutes. When you make a non-time-sensitive change such as adding
new privileges or new users, you can let the change take effect automatically a few minutes later. If you remove

or reduce privileges, and want the change to take effect immediately, restart the impalad daemon on all nodes,
again specifying the ~server name and ~authorization policy file options so that the rules from the
updated policy file are applied.

Examples of Policy File Rules for Security Scenarios

The following examples show rules that might go in the policy file to deal with various authorization-related
scenarios. For illustration purposes, this section shows several very small policy files with only a few rules each. In
your environment, typically you would define many roles to cover all the scenarios involving your own databases,
tables, and applications, and a smaller number of groups, whose members are given the privileges from one or more
roles.

A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error
messages do not disclose the names or existence of objects that the user is not authorized to read.

This is the experience you want a user to have if they somehow log into a system where they are
not an authorized Impala user. In a real deployment with a filled-in policy file, a user might have no
privileges because they are not a member of any of the relevant groups mentioned in the policy file.

| Impala Security | 90

Examples of Privileges for Administrative Users

When an administrative user has broad access to tables or databases, the associated rules in the
[roles] section typically use wildcards and/or inheritance. For example, in the following sample
policy file, db=* refers to all databases and db=*->table=* refers to all tables in all databases.

Omitting the rightmost portion of a rule means that the privileges apply to all the objects that could
be specified there. For example, in the following sample policy file, the a1l databases role has
all privileges for all tables in all databases, while the one _database role has all privileges for all
tables in one specific database. The all databases role does not grant privileges on URIS, so

a group with that role could not issue a CREATE TABLE statement with a LOCATION clause. The
entire server role has all privileges on both databases and URIs within the server.

[groups]
supergroup = all databases

[roles]

read all tables = server=serverl->db=*->table=*->action=SELECT
all tables = server=serverl->db=*->table=*

all databases = server=serverl->db=*

one database = server=serverl->db=test db

entire server = server=serverl

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but
nothing else. They can see the tables and their parent databases in the output of SHOW TABLES and
SHOW DATABASES, USE the appropriate databases, and perform the relevant actions (SELECT
and/or INSERT) based on the table privileges. To actually create a table requires the ALL privilege
at the database level, so you might define separate roles for the user that sets up a schema and other
users or applications that perform day-to-day operations on the tables.

The following sample policy file shows some of the syntax that is appropriate as the policy file
grows, such as the # comment syntax, \ continuation syntax, and comma separation for roles
assigned to groups or privileges assigned to roles.

[groups]

employee = training sysadmin, instructor

visitor = student

[roles]

training sysadmin = server=serverl->db=training, \

server=serverl->db=instructor private, \
server=serverl->db=lesson development

instructor = server=serverl->db=training->table=*->action=*, \
server=serverl->db=instructor private->table=*->action=%*, \
server=serverl->db=lesson development->table=lesson*

This particular course is all about queries, so the students
can SELECT but not INSERT or CREATE/DROP.

student = server=serverl->db=training->table=lesson *-
>action=SELECT

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS
location outside the normal Impala database directories, the user also needs appropriate permissions
on the URIs corresponding to those HDFS locations.

| Impala Security | 91

In this sample policy file:

* The external table role lets us insert into and query the Impala table,
external table.sample

* The staging dir role lets us specify the HDFS path /user/username/
external data with the LOAD DATA statement. Remember, when Impala queries or
loads data files, it operates on all the files in that directory, not just a single file, so any Impala
LOCATION parameters refer to a directory rather than an individual file.

* We included the IP address and port of the Hadoop name node in the HDFS URI of the
staging dir rule. We found those details in /etc/hadoop/conf/core-site.xml,
under the £s.default.name element. That is what we use in any roles that specify URIs
(that is, the locations of directories in HDFS).

* We start this example after the table external table.sample is already created. In the
policy file for the example, we have already taken away the external table adminrole
from the username group, and replaced it with the lesser-privileged external table role.

* We assign privileges to a subdirectory underneath /user/username in HDFS, because such
privileges also apply to any subdirectories underneath. If we had assigned privileges to the
parent directory /user/username, it would be too likely to mess up other files by specifying
a wrong location by mistake.

* The username under the [groups] section refers to the username group. (In this example,
there is a username user that is a member of a username group.)

Policy file:
[groups]
username = external table, staging dir
[roles]
external table admin = server=serverl->db=external table
external table = server=serverl->db=external table-

>table=sample->action=*
staging dir = server=serverl->uri=hdfs://127.0.0.1:8020/user/
username/external data->action=*

impala-shell session:

[localhost:21000] > use external table;
Query: use external table
[localhost:21000] > show tables;

Query: show tables

Query finished, fetching results

B +
| name |
T +
| sample |
B +

Returned 1 row(s) in 0.02s

[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results

R +
| x|
fo———- +
1
| 5 |
| 150 |
R +

Returned 3 row(s) in 1.04s

| Impala Security | 92

[localhost:21000] > load data inpath '/user/username/
external data' into table sample;

Query: load data inpath '/user/username/external data' into
table sample

Query finished, fetching results

o +
| summary |
e +
| Loaded 1 file(s) Total files in destination location: 2 |
e +

Returned 1 row(s) in 0.26s
[localhost:21000] > select * from sample;
Query: select * from sample

Query finished, fetching results

| x |
| |
| |
| |
| |
| 64738 |
| |
| |
| |
| |

Returned 9 row(s) in 0.22s

[localhost:21000] > load data inpath '/user/username/

unauthorized data' into table sample;

Query: load data inpath '/user/username/unauthorized data' into
table sample

ERROR: AuthorizationException: User 'username' does not have
privileges to access: hdfs://127.0.0.1:8020/user/username/

unauthorized data

Separating Administrator Responsibility from Read and Write Privileges

Remember that to create a database requires full privilege on that database, while day-to-day
operations on tables within that database can be performed with lower levels of privilege on specific
table. Thus, you might set up separate roles for each database or application: an administrative one
that could create or drop the database, and a user-level one that can access only the relevant tables.

For example, this policy file divides responsibilities between users in 3 different groups:

* Members of the supergroup group have the training sysadmin role and so can set up
a database named training.

* Members of the employee group have the instructor role and so can create, insert into,
and query any tables in the t raining database, but cannot create or drop the database itself.

* Members of the visitor group have the student role and so can query those tables in the
training database.

[groups]

supergroup = training sysadmin

employee = instructor

visitor = student

[roles]

training sysadmin = server=serverl->db=training

instructor = server=serverl->db=training->table=*->action=*

| Impala Security | 93

student = server=serverl->db=training->table=*->action=SELECT

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome to
update the security policy file for each privilege change or each new database, table, or view. You can allow security
to be managed separately for individual databases, by setting up a separate policy file for each database:

* Add the optional [databases] section to the main policy file.
* Add entries in the [databases] section for each database that has its own policy file.
» For each listed database, specify the HDFS path of the appropriate policy file.

For example:

[databases]

Defines the location of the per-DB policy files for the 'customers' and
'sales' databases.

customers = hdfs://ha-nn-uri/etc/access/customers.ini

sales = hdfs://ha-nn-uri/etc/access/sales.ini

To enable URIs in per-DB policy files, the Java configuration option sentry.allow.uri.db.policyfile
must be set to t rue. For example:

JAVA TOOL OPTIONS="-Dsentry.allow.uri.db.policyfile=true"

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of the db-level
policy file to grant himself/herself load privileges to anything the impala user has read permissions for in HDFS
(including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

Remember that in your role definitions, you specify privileges at the level of individual databases and tables, or all
databases or all tables within a database. To simplify the structure of these rules, plan ahead of time how to name your
schema objects so that data with different authorization requirements is divided into separate databases.

If you are adding security on top of an existing Impala deployment, remember that you can rename tables or even
move them between databases using the ALTER TABLE statement. In Impala, creating new databases is a relatively
inexpensive operation, basically just creating a new directory in HDFS.

You can also plan the security scheme and set up the policy file before the actual schema objects named in the policy
file exist. Because the authorization capability is based on whitelisting, a user can only create a new database or table
if the required privilege is already in the policy file: either by listing the exact name of the object being created, or a *
wildcard to match all the applicable objects within the appropriate container.

Privilege Model and Object Hierarchy

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with
a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object
automatically inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The kinds of objects in the schema hierarchy are:

Server

URI

Database
Table

The server name is specified by the ~server name option when impalad starts. Specify the same name for all
impalad nodes in the cluster.

| Impala Security | 94

URIs represent the HDFS paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD
DATA. Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdfs:// to
make clear that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege
applies to all the files in that directory and any directories underneath it.

In Impala 2.3 and higher, you can specify privileges for individual columns. Formerly, to specify read privileges at
this level, you created a view that queried specific columns and/or partitions from a base table, and gave SELECT
privilege on the view but not the underlying table. Now, you can use Impala's GRANT Statement (Impala 2.0 or
higher only) on page 297 and REVOKE Statement (Impala 2.0 or higher only) on page 318 statements to assign
and revoke privileges from specific columns in a table.

URIs must start with either hdfs:// or file://.If a URI starts with anything else, it will cause an exception and
the policy file will be invalid. When defining URIs for HDFS, you must also specify the NameNode. For example:

data read = server=serverl->uri=file:///path/to/dir, \
server=serverl->uri=hdfs://namenode:port/path/to/dir

Warning:

L2 Because the NameNode host and port must be specified, enable High Availability (HA) to ensure that the URI
will remain constant even if the NameNode changes.

data read = server=serverl->uri=file:///path/to/dir,\ server=serverl-
>uri=hdfs://ha-nn-uri/path/to/dir

Table 2: Valid privilege types and objects they apply to

Privilege Object

INSERT DB, TABLE

SELECT DB, TABLE, COLUMN
ALL SERVER, TABLE, DB, URI

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do not use the
actual keyword ALL in the policy file. When you code role entries in the policy file:

» To specify the ALL privilege for a server, use a role like server=server name.

» To specify the ALL privilege for a database, use a role like server=server name->db=database name.

» To specify the ALL privilege for a table, use arole like server=server name->db=database name-
>table=table name->action=*.

Operation Scope Privileges URI
EXPLAIN TABLE; COLUMN SELECT

LOAD DATA TABLE INSERT URI
CREATE DATABASE SERVER ALL

DROP DATABASE DATABASE ALL

CREATE TABLE DATABASE ALL

DROP TABLE TABLE ALL

| Impala Security | 95

Operation Scope Privileges URI
DESCRIBE TABLE TABLE SELECT/INSERT
-Output shows all columns

if the user has table level-

privileges or SELECT

privilege on at least one table

column

ALTER TABLE .. ADD TABLE ALL on DATABASE
COLUMNS

ALTER TABLE .. REPLACE TABLE ALL on DATABASE
COLUMNS

ALTER TABLE .. CHANGE TABLE ALL on DATABASE
column

ALTER TABLE .. RENAME TABLE ALL on DATABASE
ALTER TABLE .. SET TABLE ALL on DATABASE
TBLPROPERTIES

ALTER TABLE .. SET TABLE ALL on DATABASE
FILEFORMAT

ALTER TABLE .. SET TABLE ALL on DATABASE URI
LOCATION

ALTER TABLE .. ADD TABLE ALL on DATABASE
PARTITION

ALTER TABLE .. ADD TABLE ALL on DATABASE URI
PARTITION location

ALTER TABLE .. DROP TABLE ALL on DATABASE
PARTITION

ALTER TABLE .. TABLE ALL on DATABASE
PARTITION SET

FILEFORMAT

ALTER TABLE .. SET TABLE ALL on DATABASE
SERDEPROPERTIES

CREATE VIEW DATABASE; SELECT on ALL

-This operation is allowed TABLE;

if you have column-level

SELECT access to the

columns being used.

DROP VIEW VIEW/TABLE ALL

| Impala Security | 96

Operation

Scope Privileges URI

ALTER VIEW

ALTER TABLE .. SET
LOCATION

CREATE EXTERNAL
TABLE

SELECT

-You can grant the SELECT
privilege on a view to give
users access to specific
columns of a table they do not
otherwise have access to.

-See the documentation for
Apache Sentry for details
on allowed column-level
operations.

USE <dbName>
CREATE FUNCTION
DROP FUNCTION

REFRESH <table name>
or REFRESH <table
name> PARTITION
(<partition_spec>)

INVALIDATE METADATA

INVALIDATE METADATA
<table name>

COMPUTE STATS

SHOW TABLE STATS,
SHOW PARTITIONS

SHOW COLUMN STATS
SHOW FUNCTIONS

You need ALL privilege ALL, SELECT
on the named view and

the parent database, plus
SELECT privilege for any
tables or views referenced
by the view query. Once
the view is created or
altered by a high-privileged
system administrator,

it can be queried by a
lower-privileged user who
does not have full query
privileges for the base

tables.

TABLE ALL on DATABASE URI
Database (ALL), URI ALL, SELECT

(SELECT)

VIEW/TABLE; COLUMN SELECT

Any

SERVER ALL

SERVER ALL

TABLE SELECT/INSERT
SERVER ALL

TABLE SELECT/INSERT
TABLE ALL

TABLE SELECT/INSERT
TABLE SELECT/INSERT

DATABASE SELECT

| Impala Security | 97

Operation Scope Privileges URI

SHOW TABLES No special privileges
needed to issue the
statement, but only
shows objects you are
authorized for

SHOW DATABASES, No special privileges

SHOW SCHEMAS needed to issue the
statement, but only
shows objects you are
authorized for

Debugging Failed Sentry Authorization Requests

The

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

* Addlog4ij.logger.org.apache.sentry=DEBUG tothe log4j.properties file on each host in the
cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:
FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentry makes. The FilePermission is from the policy file, while
RequestPermission is the privilege required for the query. A RequestPermission will iterate over all
appropriate FilePermission settings until a match is found. If no matching privilege is found, Sentry returns
false indicating “Access Denied” .

DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important or
sensitive information out of the DEFAULT database into a named database whose privileges are specified in the policy
file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for example,
as a place you can reliably specify with a USE statement when preparing to drop a database.

Impala Authentication

Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such

as impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 86.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular users when they connect through Impala. See
Enabling Sentry Authorization for Impala on page 86 for details.

| Impala Security | 98

Enabling Kerberos Authentication for Impala

Impala supports an enterprise-grade authentication system called Kerberos. Kerberos provides strong security benefits
including capabilities that render intercepted authentication packets unusable by an attacker. It virtually eliminates the
threat of impersonation by never sending a user's credentials in cleartext over the network. For more information on
Kerberos, visit the MIT Kerberos website.

The rest of this topic assumes you have a working Kerberos Key Distribution Center (KDC) set up. To enable
Kerberos, you first create a Kerberos principal for each host running impalad or statestored.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 86.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala
on page 101.

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the
impala-shell interpreter to connect to a Kerberos-enabled Impala cluster:

sudo yum install python-devel openssl-devel python-pip
sudo pip-python install ssl

Important:

If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be renewed, and

you must configure krb5 . conf to request renewable tickets. Typically, you can do this by adding the
max_renewable 1ife setting to your realm in kdc . conf, and by adding the renew 1ifetime parameter
to the 1ibdefaults section of krb5. conf. For more information about renewable tickets, see the Kerberos
documentation.

Currently, you cannot use the resource management feature on a cluster that has Kerberos authentication enabled.

Start all impalad and statestored daemons with the ——principal and —-keytab-file flags set to the
principal and full path name of the keytab file containing the credentials for the principal.

To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

To enable Impala to work with Kerberos security on your Hadoop cluster, make sure you perform the installation
and configuration steps in Authentication in Hadoop. Note that when Kerberos security is enabled in Impala, a web
browser that supports Kerberos HTTP SPNEGO is required to access the Impala web console (for example, Firefox,
Internet Explorer, or Chrome).

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager, NodeManagers,
HttpFS, Oozie, Impala, or Impala statestore services are configured to use Kerberos HTTP SPNEGO authentication,
and two or more of these services are running on the same host, then all of the running services must use the same
HTTP principal and keytab file used for their HTTP endpoints.

Configuring Impala to Support Kerberos Security
Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

* Creating service principals for Impala and the HTTP service. Principal names take the form:
serviceName/fully.qualified.domain.name@KERBEROS .REALM.

In Impala 2.0 and later, user () returns the full Kerberos principal string, such as user@example.com, in a
Kerberized environment.

» Creating, merging, and distributing key tab files for these principals.

» Editing /etc/default/impala to accommodate Kerberos authentication.

https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/krb5-latest/doc/admin/install_kdc.html
http://web.mit.edu/Kerberos/krb5-1.8/
http://web.mit.edu/Kerberos/krb5-1.8/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SecureMode.html#Authentication

| Impala Security | 99

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the
fully qualified domain name of each node running impalad, and the realm name. For example:

$ kadmin
kadmin: addprinc -requires preauth -randkey impala/
impala host.example.com@TEST.EXAMPLE.COM

2. Create an HTTP service principal. For example:
kadmin: addprinc -randkey HTTP/impala host.example.com@TEST.EXAMPLE.COM

Note: The HTTP component of the service principal must be uppercase as shown in the preceding example.
3. Create keytab files with both principals. For example:

kadmin: xst -k impala.keytab impala/impala host.example.com
kadmin: xst -k http.keytab HTTP/impala host.example.com
kadmin: quit

4. Use ktutil to read the contents of the two keytab files and then write those contents to a new file. For example:

$ ktutil

ktutil: rkt impala.keytab
ktutil: rkt http.keytab
ktutil: wkt impala-http.keytab
ktutil: quit

5. (Optional) Test that credentials in the merged keytab file are valid, and that the “renew until” date is in the future.
For example:

S klist -e -k -t impala-http.keytab

6. Copy the impala-http.keytab file to the Impala configuration directory. Change the permissions to be only
read for the file owner and change the file owner to the impala user. By default, the Impala user and group are
both named impala. For example:

cp impala-http.keytab /etc/impala/conf
cd /etc/impala/conf

chmod 400 impala-http.keytab

chown impala:impala impala-http.keytab

Ur Ur >

7. Add Kerberos options to the Impala defaults file, /etc/default/impala. Add the options
for both the impalad and statestored daemons, using the IMPALA SERVER ARGS and
IMPALA STATE STORE ARGS variables. For example, you might add:

-kerberos reinit interval=60
-principal=impala 1/impala host.example.com@TEST.EXAMPLE.COM
-keytab file=/path/to/impala.keytab

For more information on changing the Impala defaults specified in /etc/default/impala, see Modifying
Impala Startup Options.

Note: Restart impalad and statestored for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual
impalad daemons on different hosts in the cluster. This configuration avoids connection problems in case of
machine failure, because the proxy server can route new requests through one of the remaining hosts in the cluster.
This configuration also helps with load balancing, because the additional overhead of being the “coordinator node”
for each query is spread across multiple hosts.

| Impala Security | 100

Although you can set up a proxy server with or without Kerberos authentication, typically users set up a secure
Kerberized configuration. For information about setting up a proxy server for Impala, including Kerberos-specific
steps, see Using Impala through a Proxy for High Availability on page 77.

Using a Web Browser to Access a URL Protected by Kerberos HTTP SPNEGO
Your web browser must support Kerberos HTTP SPNEGO. For example, Chrome, Firefox, or Internet Explorer.
To configure Firefox to access a URL protected by Kerberos HTTP SPNEGO:

1. Open the advanced settings Firefox configuration page by loading the about: config page.

2. Use the Filter text box to find network.negotiate-auth.trusted-uris.

3. Double-click the network.negotiate-auth.trusted-uris preference and enter the hostname or
the domain of the web server that is protected by Kerberos HTTP SPNEGO. Separate multiple domains and
hostnames with a comma.

4. Click OK.

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and BI Tools on page 103 for details about the delegation feature that
lets certain users submit queries using the credentials of other users.

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC
applications to Impala. See Configuring Impala to Work with JDBC on page 27 and Configuring Impala to Work
with ODBC on page 26 for details.

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Enabling Access to Internal Impala APIs for Kerberos Users

For applications that need direct access to Impala APIs, without going through the HiveServer2 or Beeswax
interfaces, you can specify a list of Kerberos users who are allowed to call those APIs. By default, the impala and
hdfs users are the only ones authorized for this kind of access. Any users not explicitly authorized through the
internal principals whitelist configuration setting are blocked from accessing the APIs. This setting
applies to all the Impala-related daemons, although currently it is primarily used for HDFS to control the behavior of
the catalog server.

Mapping Kerberos Principals to Short Names for Impala

In Impala 2.6 and higher, Impala recognizes the auth to_ local setting, specified through the HDFS
configuration setting hadoop.security.auth to local. This feature is disabled by default, to avoid an
unexpected change in security-related behavior. To enable it:

* Specify -—~load auth to local rules=true inthe impalad and catalogd configuration settings.

Kerberos-Related Memory Overhead for Large Clusters

On a kerberized cluster with high memory utilization, kinit commands executed after every
'kerberos_reinit interval' may cause out-of-memory errors, because executing the command involves a
fork of the Impala process. The error looks similar to the following:

Failed to obtain Kerberos ticket for principal: <varname>principal details</
varname> N

Failed to execute shell cmd: 'kinit -k -t <varname>keytab details</
varname>"',

error was: Error (l2): Cannot allocate memory

| Impala Security | 101

The following command changes the vm.overcommit memory setting immediately on a running host. However,
this setting is reset when the host is restarted.

echo 1 > /proc/sys/vm/overcommit memory

To change the setting in a persistent way, add the following line to the /etc/sysctl.conf file:

vm.overcommit memory=1

Then run sysctl -p. No reboot is needed.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala uses LDAP for authentication, verifying the credentials of each user who connects through impala-
shell, Hue, a Business Intelligence tool, JDBC or ODBC application, and so on.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 86.

An alternative form of authentication you can use is Kerberos, described in Enabling Kerberos Authentication for
Impala on page 98.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 adds support for secure
LDAP authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the
scenes.

Client-Server Considerations for LDAP
Only client->Impala connections can be authenticated by LDAP.

You must use the Kerberos authentication mechanism for connections between internal Impala components, such
as between the impalad, statestored, and catalogd daemons. See Enabling Kerberos Authentication for
Impala on page 98 on how to set up Kerberos for Impala.

Server-Side LDAP Setup
These requirements apply on the server side when configuring and starting Impala:
To enable LDAP authentication, set the following startup options for impalad:

* --enable ldap auth enables LDAP-based authentication between the client and Impala.

* --ldap uri sets the URI of the LDAP server to use. Typically, the URI is prefixed with 1dap://. In
Impala 1.4.0 and higher, you can specify secure SSL-based LDAP transport by using the prefix 1daps://.
The URI can optionally specify the port, for example: 1dap://ldap server.example.com:389 or
ldaps://1ldap_server.example.com: 636. (389 and 636 are the default ports for non-SSL and SSL
LDAP connections, respectively.)

» For 1daps:// connections secured by SSL, --1dap ca certificate="/path/to/certificate/
pem" specifies the location of the certificate in standard . PEM format. Store this certificate on the local
filesystem, in a location that only the impala user and other trusted users can read.

| Impala Security | 102

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, 'henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the impalad daemon on each DataNode:

*+ --ldap_ domain: Replaces the username with a string username@ ldap domain.
*+ --ldap baseDN: Replaces the username with a “distinguished name” (DN) of the form:
uid=userid, ldap baseDN. (This is equivalent to a Hive option).
* --ldap bind pattern: This is the most general option, and replaces the username with the string
ldap bind pattern where all instances of the string #UID are replaced with userid. For example, an
ldap bind pattern of "user=#UID,OU=foo, CN=bar" with a username of henry will construct a
bind name of "user=henry, OU=foo, CN=bar".

These options are mutually exclusive; Impala does not start if more than one of these options is specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of 1daps: // instead of 1dap: //. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS,
specify the following flags as startup options to the impalad daemon:

* --ldap tls tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be
done.
* --ldap ca certificate="/path/to/certificate/pem" specifies the location of the certificate in

standard . PEM format. Store this certificate on the local filesystem, in a location that only the impala user and
other trusted users can read.

LDAP Authentication for impala-shell Interpreter

To connect to Impala using LDAP authentication, you specify command-line options to the impala-shell
command interpreter and enter the password when prompted:

» -1 enables LDAP authentication.

» —u sets the user. Per Active Directory, the user is the short username, not the full LDAP distinguished name.
If your LDAP settings include a search base, use the -~1dap bind pattern onthe impalad daemon to
translate the short user name from impala-shell automatically to the fully qualified name.

* impala-shell automatically prompts for the password.
For the full list of available impala-shell options, see impala-shell Configuration Options on page 578.

LDAP authentication for JDBC applications: See Configuring Impala to Work with JDBC on page 27 for the
format to use with the JDBC connection string for servers using LDAP authentication.

http://en.wikipedia.org/wiki/Transport_Layer_Security

| Impala Security | 103

Enabling LDAP for Impala in Hue

Enabling LDAP for Impala in Hue Using the Command Line

LDAP authentication for the Impala app in Hue can be enabled by setting the following properties under the
[impala] sectionin hue.ini.

auth username LDAP username of Hue user to be authenticated.

auth_password LDAP password of Hue user to be authenticated.

These login details are only used by Impala to authenticate to LDAP. The Impala service trusts Hue to have already
validated the user being impersonated, rather than simply passing on the credentials.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and BI Tools on page 103 for details about the delegation feature that
lets certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each impalad daemon can
accept both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users
authenticate through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each impalad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that

was set up with the appropriate authentication type. Once the initial request was made using either Kerberos or
LDAP authentication, Impala automatically handled the process of coordinating the work across multiple nodes and
transmitting intermediate results back to the coordinator node.

Configuring Impala Delegation for Hue and Bl Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool,
typically all requests are treated as coming from the same user. In Impala 1.2 and higher, authentication is extended
by a new feature that allows applications to pass along credentials for the users that connect to them (known as
“delegation”), and issue Impala queries with the privileges for those users. Currently, the delegation feature is
available only for Impala queries submitted through application interfaces such as Hue and BI tools; for example,
Impala cannot issue queries using the privileges of the HDFS user.

The delegation feature is enabled by a startup option for impalad: -~—authorized proxy user config.
When you specify this option, users whose names you specify (such as hue) can delegate the execution of a query to
another user. The query runs with the privileges of the delegated user, not the original user such as hue. The name of
the delegated user is passed using the HiveServer2 configuration property impala.doas.user.

You can specify a list of users that the application user can delegate to, or * to allow a superuser to delegate to any
other user. For example:

impalad --authorized proxy user config 'hue=userl,user2;admin=*"'
Note: Make sure to use single quotes or escape characters to ensure that any * characters do not undergo wildcard

expansion when specified in command-line arguments.

See Modifving Impala Startup Options on page 32 for details about adding or changing impalad startup
options. See this blog post for background information about the delegation capability in HiveServer2.

To set up authentication for the delegated users:

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/

| Impala Security | 104

* On the server side, configure either user/password authentication through LDAP, or Kerberos authentication,
for all the delegated users. See Enabling LDAP Authentication for Impala on page 101 or Enabling Kerberos
Authentication for Impala on page 98 for details.

* On the client side, to learn how to enable delegation, consult the documentation for the ODBC driver you are
using.

Auditing Impala Operations

To monitor how Impala data is being used within your organization, ensure that your Impala authorization and
authentication policies are effective. To detect attempts at intrusion or unauthorized access to Impala data, you can
use the auditing feature in Impala 1.2.1 and higher:

» Enable auditing by including the option ~audit event log dir=directory pathinyour impalad
startup options. The log directory must be a local directory on the server, not an HDFS directory.

* Decide how many queries will be represented in each audit event log file. By default, Impala starts
a new audit event log file every 5000 queries. To specify a different number, include the option —-
max audit event log file size=number of gqueriesinthe impalad startup options.

* In Impala 2.9 and higher, you can control how many audit event log files are kept on each host. Specify the option
--max audit event log files=number of log files inthe impalad startup options. Once the
limit is reached, older files are rotated out using the same mechanism as for other Impala log files. The default
value for this setting is 0, representing an unlimited number of audit event log files.

* Use a cluster manager with governance capabilities to filter, visualize, and produce reports based on the audit logs
collected from all the hosts in the cluster.

Durability and Performance Considerations for Impala Auditing
The auditing feature only imposes performance overhead while auditing is enabled.

Because any Impala host can process a query, enable auditing on all hosts where the impalad daemon runs. Each
host stores its own log files, in a directory in the local filesystem. The log data is periodically flushed to disk (through
an fsync () system call) to avoid loss of audit data in case of a crash.

The runtime overhead of auditing applies to whichever host serves as the coordinator for the query, that is, the host
you connect to when you issue the query. This might be the same host for all queries, or different applications or users
might connect to and issue queries through different hosts.

To avoid excessive I/O overhead on busy coordinator hosts, Impala syncs the audit log data (using the fsync ()
system call) periodically rather than after every query. Currently, the fsync () calls are issued at a fixed interval,
every 5 seconds.

By default, Impala avoids losing any audit log data in the case of an error during a logging operation (such as a disk
full error), by immediately shutting down impalad on the host where the auditing problem occurred. You can
override this setting by specifying the option ~abort on failed audit event=false inthe impalad
startup options.

Format of the Audit Log Files

The audit log files represent the query information in JSON format, one query per line. Typically, rather than looking
at the log files themselves, you should use cluster-management software to consolidate the log data from all Impala
hosts and filter and visualize the results in useful ways. (If you do examine the raw log data, you might run the files
through a JSON pretty-printer first.)

All the information about schema objects accessed by the query is encoded in a single nested record on the same line.
For example, the audit log for an INSERT ... SELECT statement records that a select operation occurs on the
source table and an insert operation occurs on the destination table. The audit log for a query against a view records
the base table accessed by the view, or multiple base tables in the case of a view that includes a join query. Every
Impala operation that corresponds to a SQL statement is recorded in the audit logs, whether the operation succeeds or

| Impala Security | 105

fails. Impala records more information for a successful operation than for a failed one, because an unauthorized query
is stopped immediately, before all the query planning is completed.

The information logged for each query includes:
* Client session state:

+ Session ID

* User name

» Network address of the client connection
* SQL statement details:

* Query ID

» Statement Type - DML, DDL, and so on

* SQL statement text

» Execution start time, in local time

» Execution Status - Details on any errors that were encountered
» Target Catalog Objects:

* Object Type - Table, View, or Database
* Fully qualified object name
+ Privilege - How the object is being used (SELECT, INSERT, CREATE, and so on)

Which Operations Are Audited

The kinds of SQL queries represented in the audit log are:

* Queries that are prevented due to lack of authorization.
* Queries that Impala can analyze and parse to determine that they are authorized. The audit data is recorded
immediately after Impala finishes its analysis, before the query is actually executed.

The audit log does not contain entries for queries that could not be parsed and analyzed. For example, a query that
fails due to a syntax error is not recorded in the audit log. The audit log also does not contain queries that fail due to a
reference to a table that does not exist, if you would be authorized to access the table if it did exist.

Certain statements in the impala-shell interpreter, such as CONNECT, SUMMARY, PROFILE, SET, and QUIT,
do not correspond to actual SQL queries, and these statements are not reflected in the audit log.

Viewing Lineage Information for Impala Data

Lineage is a feature that helps you track where data originated, and how data propagates through the system through
SQL statements such as SELECT, INSERT, and CREATE TABLE AS SELECT.

This type of tracking is important in high-security configurations, especially in highly regulated industries such as
healthcare, pharmaceuticals, financial services and intelligence. For such kinds of sensitive data, it is important to
know all the places in the system that contain that data or other data derived from it; to verify who has accessed that
data; and to be able to doublecheck that the data used to make a decision was processed correctly and not tampered
with.

Column Lineage
Column lineage tracks information in fine detail, at the level of particular columns rather than entire tables.

For example, if you have a table with information derived from web logs, you might copy that data into other tables
as part of the ETL process. The ETL operations might involve transformations through expressions and function calls,
and rearranging the columns into more or fewer tables (normalizing or denormalizing the data). Then for reporting,
you might issue queries against multiple tables and views. In this example, column lineage helps you determine that
data that entered the system as RAW LOGS.FIELDI was then turned into WEBSITE REPORTS.IP ADDRESS
through an INSERT ... SELECT statement. Or, conversely, you could start with a reporting query against a view,

| Impala SQL Language Reference | 106

and trace the origin of the data in a field such as TOP_10 VISITORS.USER_ID back to the underlying table and
even further back to the point where the data was first loaded into Impala.

When you have tables where you need to track or control access to sensitive information at the column level, see
Enabling Sentry Authorization for Impala on page 86 for how to implement column-level security. You set

up authorization using the Sentry framework, create views that refer to specific sets of columns, and then assign
authorization privileges to those views rather than the underlying tables.

Lineage Data for Impala

The lineage feature is enabled by default. When lineage logging is enabled, the serialized column lineage graph is
computed for each query and stored in a specialized log file in JSON format.

Impala records queries in the lineage log if they complete successfully, or fail due to authorization errors. For write
operations such as INSERT and CREATE TABLE AS SELECT, the statement is recorded in the lineage log only if
it successfully completes. Therefore, the lineage feature tracks data that was accessed by successful queries, or that
was attempted to be accessed by unsuccessful queries that were blocked due to authorization failure. These kinds of
queries represent data that really was accessed, or where the attempted access could represent malicious activity.

Impala does not record in the lineage log queries that fail due to syntax errors or that fail or are cancelled before they
reach the stage of requesting rows from the result set.

To enable or disable this feature, set or remove the ~-1ineage event log dir configuration option for the
impalad daemon.

Impala SQL Language Reference

Impala uses SQL as its query language. To protect user investment in skills development and query design, Impala
provides a high degree of compatibility with the Hive Query Language (HiveQL):

» Because Impala uses the same metadata store as Hive to record information about table structure and properties,
Impala can access tables defined through the native Impala CREATE TABLE command, or tables created using
the Hive data definition language (DDL).

» Impala supports data manipulation (DML) statements similar to the DML component of HiveQL.

» Impala provides many built-in functions with the same names and parameter types as their HiveQL equivalents.

Impala supports most of the same statements and clauses as HiveQL, including, but not limited to JOIN,
AGGREGATE, DISTINCT, UNION ALL, ORDER BY, LIMIT and (uncorrelated) subquery in the FROM clause.
Impala also supports INSERT INTO and INSERT OVERWRITE.

Impala supports data types with the same names and semantics as the equivalent Hive data types: STRING,
TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, BOOLEAN, STRING, TIMESTAMP.

For full details about Impala SQL syntax and semantics, see Impala SQL Statements on page 221.

Most HiveQL SELECT and INSERT statements run unmodified with Impala. For information about Hive syntax not
available in Impala, see SQL Differences Between Impala and Hive on page 570.

For a list of the built-in functions available in Impala queries, see Impala Built-In Functions on page 402.

Comments

Impala supports the familiar styles of SQL comments:

* All text from a —- sequence to the end of the line is considered a comment and ignored. This type of comment can
occur on a single line by itself, or after all or part of a statement.

| Impala SQL Language Reference | 107

* All text from a /* sequence to the next * / sequence is considered a comment and ignored. This type of comment
can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a
statement, or before or after a statement.

For example:

—-— This line is a comment about a table.

create table ...;
/*
This is a multi-line comment about a query.
%y
$@LleCGt oo
select * from t /* This is an embedded comment about a query. */ where ...;
select * from t -- This is a trailing comment within a multi-line command.
where ...;
Data Types

Impala supports a set of data types that you can use for table columns, expression values, and function arguments and
return values.

Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing a table containing any
columns with unsupported types causes an error.
For the notation to write literals of each of these data types, see Literals on page 182.

See SQOL Differences Between Impala and Hive on page 570 for differences between Impala and Hive data types.

ARRAY Complex Type (Impala 2.3 or higher only)

A complex data type that can represent an arbitrary number of ordered elements. The elements can be scalars or
another complex type (ARRAY, STRUCT, or MAP).

Syntax:
column name ARRAY < type >
type ::= primitive type | complex type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 151 for
background information and usage examples.

The elements of the array have no names. You refer to the value of the array item using the ITEM pseudocolumn,
or its position in the array with the POS pseudocolumn. See ITEM and POS Pseudocolumns on page 166 for
information about these pseudocolumns.

Each row can have a different number of elements (including none) in the array for that row.

When an array contains items of scalar types, you can use aggregation functions on the array elements without using
join notation. For example, you can find the COUNT (), AVG (), SUM (), and so on of numeric array elements, or
the MAX () and MIN () of any scalar array elements by referring to table name.array column inthe FROM
clause of the query. When you need to cross-reference values from the array with scalar values from the same row,
such as by including a GROUP BY clause to produce a separate aggregated result for each row, then the join clause is
required.

| Impala SQL Language Reference | 108

A common usage pattern with complex types is to have an array as the top-level type for the column: an array of
structs, an array of maps, or an array of arrays. For example, you can model a denormalized table by creating a
column that is an ARRAY of STRUCT elements; each item in the array represents a row from a table that would
normally be used in a join query. This kind of data structure lets you essentially denormalize tables by associating
multiple rows from one table with the matching row in another table.

You typically do not create more than one top-level ARRAY column, because if there is some relationship between
the elements of multiple arrays, it is convenient to model the data as an array of another complex type element (either
STRUCT or MAP).

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al.Iftable T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE tl.s1.fl. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Added in: Impala 2.3.0
Restrictions:

» Columns with this data type can only be used in tables or partitions with the Parquet file format.

* Columns with this data type cannot be used as partition key columns in a partitioned table.

* The COMPUTE STATS statement does not produce any statistics for columns of this data type.

* The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» See Limitations and Restrictions for Complex Types on page 155 for a full list of limitations and associated
guidelines about complex type columns.

Kudu considerations:
Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
174 for the table definitions.

The following example shows how to construct a table with various kinds of ARRAY columns, both at the top level
and nested within other complex types. Whenever the ARRAY consists of a scalar value, such as in the PETS column
or the CHILDREN field, you can see that future expansion is limited. For example, you could not easily evolve the
schema to record the kind of pet or the child's birthday alongside the name. Therefore, it is more common to use an
ARRAY whose elements are of STRUCT type, to associate multiple fields with each array element.

Note: Practice the CREATE TABLE and query notation for complex type columns using empty tables, until you can
visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE array demo

(
id BIGINT,
name STRING,

-— An ARRAY of scalar type as a top-level column.
pets ARRAY <STRING>,

-—- An ARRAY with elements of complex type (STRUCT).
places lived ARRAY < STRUCT <
place: STRING,
start year: INT
>>, B

-— An ARRAY as a field (CHILDREN) within a STRUCT.
—-— (The STRUCT is inside another ARRAY, because it is rare

-— for a STRUCT to be a top-level column.)

marriages ARRAY < STRUCT <
spouse: STRING,

children: ARRAY <STRING>

>>

4

—-—- An ARRAY as the value part of a MAP.
-- The first MAP field (the key) would be a value such as

| Impala SQL Language Reference | 109

-—- 'Parent' or 'Grandparent', and the corresponding array would

-- represent 2 parents,

4 grandparents,

and so on.

ancestors MAP < STRING, ARRAY <STRING> >

)

STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more ARRAY columns by
using the DESCRIBE statement. You can visualize each ARRAY as its own two-column table, with columns ITEM

and POS.
DESCRIBE array demo;
T e +
| name | type
+—— 4 ————— +
id bigint
name string
pets array<string>
marriages array<struct<

places lived

ancestors

spouse:string,

>>

array<struct<
place:string,
start year:int

>> N

struct<
spouse:string,
children:array<string>

struct<
place:string, |
start year:int |

|
|
|
|
|
| children:array<string>
|
|
|
|
|
|

map<string,array<string>>

| Impala SQL Language Reference | 110

| | > |

- o — +
| name | type

- o — +
| key | string |
| value | array<string> |
t—————— o — +

The following example shows queries involving ARRAY columns containing elements of scalar or complex types.
You “unpack” each ARRAY column by referring to it in a join query, as if it were a separate table with TTEM and
POS columns. If the array element is a scalar type, you refer to its value using the T TEM pseudocolumn. If the array
element is a STRUCT, you refer to the STRUCT fields using dot notation and the field names. If the array element is
another ARRAY or a MAP, you use another level of join to unpack the nested collection elements.

-—- Array of scalar values.

-- Each array element represents a single string, plus we know its position
in the array.

SELECT id, name, pets.pos, pets.item FROM array demo, array demo.pets;

-- Array of structs.

-- Now each array element has named fields, possibly of different types.
-- You can consider an ARRAY of STRUCT to represent a table inside another
table.

SELECT id, name, places lived.pos, places lived.item.place,

places lived.item.start year

FROM array demo, array demo.places lived;

-— The .ITEM name is optional for array elements that are structs.
-- The following query is equivalent to the previous one, with .ITEM
-—- removed from the column references.
SELECT id, name, places lived.pos, places lived.place,
places lived.start year

FROM array demo, array demo.places lived;

-- To filter specific items from the array, do comparisons against the .POS
or .ITEM
-- pseudocolumns, or names of struct fields, in the WHERE clause.
SELECT id, name, pets.item FROM array demo, array demo.pets
WHERE pets.pos in (0, 1, 3);

SELECT id, name, pets.item FROM array demo, array demo.pets
WHERE pets.item LIKE 'Mr. %';

SELECT id, name, places lived.pos, places lived.place,
places lived.start year

FROM array demo, array demo.places lived
WHERE places lived.place like '%California%';

Related information:

Complex Types (Impala 2.3 or higher only) on page 151, STRUCT Complex Type (Impala 2.3 or higher only) on
page 135, MAP Complex Type (Impala 2.3 or higher only) on page 128

BIGINT Data Type

An 8-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

| Impala SQL Language Reference | 111

Syntax:

In the column definition of a CREATE TABLE statement:
column name BIGINT

Range: -9223372036854775808 .. 9223372036854775807. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a floating-point type (FLOAT or DOUBLE) automatically.

Use CAST () to convertto TINYINT, SMALLINT, INT, STRING, or TIMESTAMP. Casting an integer or
floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting -
use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Examples:

CREATE TABLE tl (x BIGINT)
SELECT CAST (1000 AS BIGINT) ;
Usage notes:

BIGINT is a convenient type to use for column declarations because you can use any kind of integer values in
INSERT statements and they are promoted to BIGINT where necessary. However, BIGINT also requires the most
bytes of any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possible if
you overuse this type. Therefore, prefer to use the smallest integer type with sufficient range to hold all input values,
and CAST () when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the BIGINT type, call the functions MIN BIGINT ()
and MAX BIGINT ().

If an integer value is too large to be represented as a BIGINT, use a DECIMAL instead with sufficient digits of
precision.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as an 8-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT 64 type, which
is represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was
imported this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 148, SMALLINT Data Type on page 132, INT
Data Type on page 127, BIGINT Data Type on page 110, DECIMAL Data Type (Impala 1.4 or higher only) on
page 116, Impala Mathematical Functions on page 403

| Impala SQL Language Reference | 112

BOOLEAN Data Type
A data type used in CREATE TABLE and ALTER TABLE statements, representing a single true/false choice.

Syntax:
In the column definition of a CREATE TABLE statement:

column name BOOLEAN

Range: TRUE or FALSE. Do not use quotation marks around the TRUE and FALSE literal values. You can write
the literal values in uppercase, lowercase, or mixed case. The values queried from a table are always returned in

lowercase, true or false.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an
explicit call to the CAST () function.

You can use CAST () to convert any integer or floating-point type to BOOLEAN: a value of 0 represents false, and
any non-zero value is converted to true.

SELECT CAST (42 AS BOOLEAN) AS nonzero_int, CAST(99.44 AS BOOLEAN) AS
nonzero_decimal,

CAST (000 AS BOOLEAN) AS zero_ int, CAST (0.0 AS BOOLEAN) AS zero decimal;
fomm o fomm fmm - +
| nonzero int | nonzero decimal | zero int | zero decimal |
o B it s o +
| true | true | false | false
fomm e o fomm fomm e +

When you cast the opposite way, from BOOLEAN to a numeric type, the result becomes either 1 or 0:

SELECT CAST (true AS INT) AS true int, CAST (true AS DOUBLE) AS true double,
CAST (false AS INT) AS false int, CAST(false AS DOUBLE) AS false double;
Fommmmmmm=e Fommmmmmmmom=s Fommmmmmmo=s Fommmmmmmmemm=s +

You can cast DECIMAL values to BOOLEAN, with the same treatment of zero and non-zero values as the other
numeric types. You cannot cast a BOOLEAN to a DECIMAL.

You cannot cast a STRING value to BOOLEAN, although you can cast a BOOLEAN value to STRING, returning '1"'
for true values and '0' for false values.

Although you can cast a TIMESTAMP to a BOOLEAN or a BOOLEAN to a TIMESTAMP, the results are unlikely to
be useful. Any non-zero TIMESTAMP (that is, any value other than 1970-01-01 00:00:00) becomes TRUE

when converted to BOOLEAN, while 1970-01-01 00:00:00 becomes FALSE. A value of FALSE becomes
1970-01-01 00:00:00 when converted to BOOLEAN, and TRUE becomes one second past this epoch date, that

is,1970-01-01 00:00:01.

NULL considerations: An expression of this type produces a NULL value if any argument of the expression is NULL.

Partitioning:
Do not use a BOOLEAN column as a partition key. Although you can create such a table, subsequent operations

produce errors:

[localhost:21000] > create table truth table (assertion string) partitioned

by (truth boolean);
[localhost:21000] > insert into truth table values ('Pigs can fly',6 false);
ERROR: AnalysisException: INSERT into table with BOOLEAN partition column

(Eruth) is not supported: partitioning.truth table

| Impala SQL Language Reference | 113

Examples:
SELECT 1 < 2;
SELECT 2 = 5;

SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING, really BOOLEAN) ;
INSERT INTO assertions VALUES
("1 is less than 2", 1 < 2),
("2 is the same as 5", 2 = 5),
("Grass is green", true),
("The moon is made of green cheese", false);
SELECT claim FROM assertions WHERE really = TRUE;

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.

Related information: Boolean Literals on page 185, SOL Operators on page 187, Impala Conditional
Functions on page 478

CHAR Data Type (Impala 2.0 or higher only)

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are
longer than the specified length, Impala truncates any trailing characters.

Syntax:

In the column definition of a CREATE TABLE statement:
column name CHAR (length)

The maximum length you can specify is 255.
Semantics of trailing spaces:

* When you store a CHAR value shorter than the specified length in a table, queries return the value padded with
trailing spaces if necessary; the resulting value has the same length as specified in the column definition.

» Ifyou store a CHAR value containing trailing spaces in a table, those trailing spaces are not stored in the data file.
When the value is retrieved by a query, the result could have a different number of trailing spaces. That is, the
value includes however many spaces are needed to pad it to the specified length of the column.

» If you compare two CHAR values that differ only in the number of trailing spaces, those values are considered
identical.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:

» This type can be read from and written to Parquet files.
» There is no requirement for a particular level of Parquet.

| Impala SQL Language Reference | 114

» Parquet files generated by Impala and containing this type can be freely interchanged with other components such
as Hive and MapReduce.

* Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.

» Parquet data files might contain values that are longer than allowed by the CHAR (n) length limit. Impala ignores
any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files might contain values that are longer than allowed for a particular CHAR (n) column. Any extra trailing
characters are ignored when Impala processes those values during a query. Text data files can also contain values that
are shorter than the defined length limit, and Impala pads them with trailing spaces up to the specified length. Any
text data files produced by Impala INSERT statements do not include any trailing blanks for CHAR columns.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Compatibility:
This type is available using Impala 2.0 or higher.
Some other database systems make the length specification optional. For Impala, the length is required.

Internal details: Represented in memory as a byte array with the same size as the length specification. Values that
are shorter than the specified length are padded on the right with trailing spaces.

Added in: Impala 2.0.0

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Examples:

These examples show how trailing spaces are not considered significant when comparing or processing CHAR values.
CAST () truncates any longer string to fit within the defined length. If a CHAR value is shorter than the specified
length, it is padded on the right with spaces until it matches the specified length. Therefore, LENGTH () represents the
length including any trailing spaces, and CONCAT () also treats the column value as if it has trailing spaces.

select cast('x' as char(4)) = cast('x ' as char(4)) as "unpadded equal to
padded";

- +

| unpadded equal to padded |

o +

| true |

e +

create table char length(c char(3));

insert into char length values (cast('l' as char(3))), (cast('l2' as
char(3))), (cast('1l23' as char(3))), (cast('123456' as char(3))):;
select concat("[",c,"]") as c, length(c) from char length;

fm—————— I + B

| c | length(c) |

- - +

[[T 1 1 3 |

| [12 1 | 3 |

| [123] | 3 |

| [123] | 3 |

- e +

| Impala SQL Language Reference | 115

This example shows a case where data values are known to have a specific length, where CHAR is a logical data type
to use.

create table addresses
(id bigint,
street name string,
state abbreviation char(2),
country abbreviation char(2));

The following example shows how values written by Impala do not physically include the trailing spaces. It creates

a table using text format, with CHAR values much shorter than the declared length, and then prints the resulting data
file to show that the delimited values are not separated by spaces. The same behavior applies to binary-format Parquet
data files.

create table char in text (a char(20), b char(30), c char(40))
row format delimited fields terminated by ',';

insert into char in text values (cast('foo' as char(20)), cast('bar'
as char (30)), cast('baz' as char(40))), (cast('hello' as char (20)),
cast ('goodbye' as char(30)), cast('aloha' as char(40))):

-- Running this Linux command inside impala-shell using the ! shortcut.
'hdfs dfs -cat 'hdfs://127.0.0.1:8020/user/hive/warehouse/

impala doc testing.db/char in text/*.*';

foo,bar,baz

hello,goodbye, aloha

The following example further illustrates the treatment of spaces. It replaces the contents of the previous table with
some values including leading spaces, trailing spaces, or both. Any leading spaces are preserved within the data file,
but trailing spaces are discarded. Then when the values are retrieved by a query, the leading spaces are retrieved
verbatim while any necessary trailing spaces are supplied by Impala.

insert overwrite char in text values (cast('trailing ' as char(20)),
cast (' leading and trailing ' as char (30)), cast(' leading' as
char (40))) ;

'hdfs dfs -cat 'hdfs://127.0.0.1:8020/user/hive/warehouse/

impala doc testing.db/char in text/*.*';

trailing, leading and trailing, leading
select concat('[',a,']') as a, concat('[',b,"']") as b, concat('[',c,']") as
c from char in text;
o o
e +
| a | b | ¢
|
o o
e +
| [trailing 1 1 [leading and trailing 1 1 [leading
11
o o
o +

Kudu considerations:
Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions:

Because the blank-padding behavior requires allocating the maximum length for each value in memory, for scalability
reasons avoid declaring CHAR columns that are much longer than typical values in that column.

| Impala SQL Language Reference | 116

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

When an expression compares a CHAR with a STRING or VARCHAR, the CHAR value is implicitly converted to
STRING first, with trailing spaces preserved.

select cast("foo " as char(5)) = 'foo' as "char equal to string";
e +
| char equal to string |
e ——————————— +
| false |
B i it +

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions
on both sides to CHAR values of the appropriate length:

select cast("foo " as char(5)) = cast('foo' as char(3)) as "char equal to
string";

- +

| char equal to string |

B e it +

| true |

- +*

This behavior is subject to change in future releases.
Related information:

STRING Data Type on page 133, VARCHAR Data Type (Impala 2.0 or higher only) on page 149, String Literals
on page 184, Impala String Functions on page 484

DECIMAL Data Type (Impala 1.4 or higher only)

A numeric data type with fixed scale and precision, used in CREATE TABLE and ALTER TABLE statements.
Suitable for financial and other arithmetic calculations where the imprecise representation and rounding behavior of
FLOAT and DOUBLE make those types impractical.

Syntax:

In the column definition of a CREATE TABLE statement:
column name DECIMAL[(precisionl[, scale])]

DECIMAL with no precision or scale values is equivalent to DECIMAL (9, 0).
Precision and Scale:

precision represents the total number of digits that can be represented by the column, regardless of the location of

the decimal point. This value must be between 1 and 38. For example, representing integer values up to 9999, and
floating-point values up to 99.99, both require a precision of 4. You can also represent corresponding negative values,
without any change in the precision. For example, the range -9999 to 9999 still only requires a precision of 4.

scale represents the number of fractional digits. This value must be less than or equal to precision. A scale of 0
produces integral values, with no fractional part. If precision and scale are equal, all the digits come after the decimal
point, making all the values between 0 and 0.999... or 0 and -0.999...

When precision and scale are omitted, a DECIMAL value is treated as DECIMAL (9, 0), that is, an integer value
ranging from =999, 999, 999 to 999, 999, 999. This is the largest DECIMAL value that can still be represented in
4 bytes. If precision is specified but scale is omitted, Impala uses a value of zero for the scale.

Both precision and scale must be specified as integer literals, not any other kind of constant expressions.

| Impala SQL Language Reference | 117

To check the precision or scale for arbitrary values, you can call the precision () and scale () built-in
functions. For example, you might use these values to figure out how many characters are required for various fields
in a report, or to understand the rounding characteristics of a formula as applied to a particular DECIMAL column.

Range:

The maximum precision value is 38. Thus, the largest integral value is represented by DECIMAL (38, 0) (999...
with 9 repeated 38 times). The most precise fractional value (between 0 and 1, or 0 and -1) is represented by
DECIMAL (38, 38), with 38 digits to the right of the decimal point. The value closest to 0 would be .0000...1 (37
zeros and the final 1). The value closest to 1 would be .999... (9 repeated 38 times).

For a given precision and scale, the range of DECIMAL values is the same in the positive and negative directions. For
example, DECIMAL (4, 2) can represent from -99.99 to 99.99. This is different from other integral numeric types
where the positive and negative bounds differ slightly.

When you use DECIMAL values in arithmetic expressions, the precision and scale of the result value are determined
as follows:

» For addition and subtraction, the precision and scale are based on the maximum possible result, that is, if all the
digits of the input values were 9s and the absolute values were added together.

* For multiplication, the precision is the sum of the precisions of the input values. The scale is the sum of the scales
of the input values.

» For division, Impala sets the precision and scale to values large enough to represent the whole and fractional parts
of the result.

* For UNION, the scale is the larger of the scales of the input values, and the precision is increased if necessary
to accommodate any additional fractional digits. If the same input value has the largest precision and the largest
scale, the result value has the same precision and scale. If one value has a larger precision but smaller scale, the
scale of the result value is increased. For example, DECIMAL (20,2) UNION DECIMAL (8, 6) produces a
result of type DECIMAL (24, 6) . The extra 4 fractional digits of scale (6-2) are accommodated by extending the
precision by the same amount (20+4).

* To doublecheck, you can always call the PRECISION () and SCALE () functions on the results of an arithmetic
expression to see the relevant values, or use a CREATE TABLE AS SELECT statement to define a column based
on the return type of the expression.

Compatibility:

» Using the DECIMAL type is only supported under Impala 1.4 and higher.

* Use the DECIMAL data type in Impala for applications where you used the NUMBER data type in Oracle. The
Impala DECIMAL type does not support the Oracle idioms of * for scale or negative values for precision.

Conversions and casting:

Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of
the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone.
If the setting —use local tz for unix timestamp conversions=true isin effect, the resulting
TIMESTAMP represents a date and time in the local time zone.

Impala automatically converts between DECIMAL and other numeric types where possible. A DECIMAL with zero
scale is converted to or from the smallest appropriate integral type. A DECIMAL with a fractional part is automatically
converted to or from the smallest appropriate floating-point type. If the destination type does not have sufficient
precision or scale to hold all possible values of the source type, Impala raises an error and does not convert the value.

For example, these statements show how expressions of DECIMAL and other types are reconciled to the same type in
the context of UNION queries and INSERT statements:

[localhost:21000] > select cast(l as int) as x union select cast(l.5 as

decimal (9,4)) as x;
e ————— +
| x |
o —— +
| 1.5000 |

| Impala SQL Language Reference | 118

e +
[localhost:21000] > create table int vs decimal as select cast(l as int) as
x union select cast (1.5 as decimal(9,4)) as x;

e +

| summary |

B ettt L e +

| Inserted 2 row(s) |

B i e +

[localhost:21000] > desc int vs decimal;

I T e

| name | type | comment |

+————— o - +

| x | decimal (14,4) |

+————— e —— o +

To avoid potential conversion errors, you can use CAST () to convert DECIMAL values to FLOAT, TINYINT,
SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You can use exponential notation in DECIMAL
literals or when casting from STRING, for example 1. 0e6 to represent one million.

If you cast a value with more fractional digits than the scale of the destination type, any extra fractional digits are
truncated (not rounded). Casting a value to a target type with not enough precision produces a result of NULL and
displays a runtime warning.

[localhost:21000] > select cast(1.239 as decimal(3,2));

e +
| cast(1.239 as decimal(3,2)) |

o +

| 1.23 |
o +
[localhost:21000] > select cast (1234 as decimal (3));
B e +

| cast (1234 as decimal (3,0)) |
e +

| NULL |
o +

WARNINGS: Expression overflowed, returning NULL

When you specify integer literals, for example in INSERT ... VALUES statements or arithmetic expressions,
those numbers are interpreted as the smallest applicable integer type. You must use CAST () calls for some
combinations of integer literals and DECIMAL precision. For example, INT has a maximum value that is 10 digits
long, TINYINT has a maximum value that is 3 digits long, and so on. If you specify a value such as 123456 to go
into a DECIMAL column, Impala checks if the column has enough precision to represent the largest value of that
integer type, and raises an error if not. Therefore, use an expression like CAST (123456 TO DECIMAL (9,0))
for DECIMAL columns with precision 9 or less, CAST (50 TO DECIMAL (2,0)) for DECIMAL columns with
precision 2 or less, and so on. For DECIMAL columns with precision 10 or greater, Impala automatically interprets
the value as the correct DECIMAL type; however, because DECIMAL (10) requires 8 bytes of storage while
DECIMAL (9) requires only 4 bytes, only use precision of 10 or higher when actually needed.

[localhost:21000] > create table decimals 9 0 (x decimal);

[localhost:21000] > insert into decimals 9 0 values (1), (2), (4), (8),
(16), (1024), (32768), (65536), (1000000)

ERROR: AnalysisException: Possible loss of precision for target table
'decimal testing.decimals 9 0'.

Expression 'l' (type: INT) would need to be cast to DECIMAL(9,0) for column
VXV

[localhost:21000] > insert into decimals 9 0 values (cast(l as decimal)),
(cast (2 as decimal)), (cast(4 as decimal)), (cast(8 as decimal)),
(cast (16 as decimal)), (cast (1024 as decimal)), (cast (32768 as decimal)),
(cast (65536 as decimal)), (cast (1000000 as decimal));

| Impala SQL Language Reference | 119

[localhost:21000] > create table decimals 10 0 (x decimal (10,0));
[localhost:21000] > insert into decimals 10 0 values (1), (2), (4), (8),
(16), (1024), (32768), (65536), (1000000) ;

Be aware that in memory and for binary file formats such as Parquet or Avro, DECIMAL (10) or higher consumes

8 bytes while DECIMAL (9) (the default for DECIMAL) or lower consumes 4 bytes. Therefore, to conserve space in
large tables, use the smallest-precision DECIMAL type that is appropriate and CAST () literal values where necessary,
rather than declaring DECIMAL columns with high precision for convenience.

To represent a very large or precise DECIMAL value as a literal, for example one that contains more digits than can
be represented by a BIGINT literal, use a quoted string or a floating-point value for the number, and CAST () to the
desired DECIMAL type:

insert into decimals 38 5 values (1), (2), (4), (8), (16), (1024), (32768),
(65536), (1000000),

(cast ("999999999999999999999999999999" as decimal (38,5))),

(cast (999999999999999999999999999999. as decimal (38,5)));

* The result of the SUM () aggregate function on DECIMAL values is promoted to a precision of 38, with the same
precision as the underlying column. Thus, the result can represent the largest possible value at that particular
precision.

* STRING columns, literals, or expressions can be converted to DECIMAL as long as the overall number of digits
and digits to the right of the decimal point fit within the specified precision and scale for the declared DECIMAL
type. By default, a DECIMAL value with no specified scale or precision can hold a maximum of 9 digits of an
integer value. If there are more digits in the string value than are allowed by the DECIMAL scale and precision, the
result is NULL.

The following examples demonstrate how STRING values with integer and fractional parts are represented when
converted to DECIMAL. If the scale is 0, the number is treated as an integer value with a maximum of precision
digits. If the precision is greater than 0, the scale must be increased to account for the digits both to the left and
right of the decimal point. As the precision increases, output values are printed with additional trailing zeros after
the decimal point if needed. Any trailing zeros after the decimal point in the STRING value must fit within the
number of digits specified by the precision.

[localhost:21000] > select cast('100' as decimal); -- Small integer value
fits within 9 digits of scale.

[localhost:21000] > select cast('100' as decimal (3,0)); -- Small integer
value fits within 3 digits of scale.

| cast('100' as decimal(3,0)) |

[localhost:21000] > select cast('100' as decimal(2,0)); -- 2 digits of
scale is not enough!

| cast('100' as decimal(2,0)) |

[localhost:21000] > select cast('100' as decimal(3,1)); -- (3,1) = 2
digits left of the decimal point, 1 to the right. Not enough.

| cast('100' as decimal(3,1)) |

| Impala SQL Language Reference | 120

e +

| NULL |

o +

[localhost:21000] > select cast('100' as decimal (4,1)); -- 4 digits total,
1 to the right of the decimal point.

B e +

| cast('100' as decimal(4,1)) |

o +

| 100.0 |

e +

[localhost:21000] > select cast('98.6' as decimal(3,1)); -- (3,1) can hold
a 3 digit number with 1 fractional digit.

e +

| cast('98.6' as decimal(3,1)) |

e +

| 98.6 |

e +

[localhost:21000] > select cast('98.6' as decimal (15,1)); -- Larger scale
allows bigger numbers but still only 1 fractional digit.

o +

| cast('98.6' as decimal (15,1)) |

e +

| 98.6 |

e +

[localhost:21000] > select cast('98.6' as decimal (15,5)); -- Larger
precision allows more fractional digits, outputs trailing zeros.

o +

| cast('98.6' as decimal (15,5)) |

e +

| 98.60000 |

e +

[localhost:21000] > select cast('98.60000' as decimal (15,1)); -- Trailing
zeros in the string must fit within 'scale' digits (1 in this case).
e +

| cast('98.60000"'" as decimal (15,1)) |
e +

| NULL |

o +

Most built-in arithmetic functions such as SIN () and COS () continue to accept only DOUBLE values because
they are so commonly used in scientific context for calculations of IEEE 954-compliant values. The built-in
functions that accept and return DECIMAL are:

« ABS()

e CEIL()

« COALESCE ()
« FLOOR()

* FNV_HASH()
* GREATEST ()

o IF()

+ ISNULL()

« LEAST()

+ NEGATIVE ()
+ NULLIF()

* POSITIVE ()
* PRECISION ()
e ROUND ()

* SCALE ()

* TRUNCATE ()

| Impala SQL Language Reference | 121

* ZEROIFNULL ()

See Impala Built-In Functions on page 402 for details.

* BIGINT, INT, SMALLINT, and TINYINT values can all be cast to DECIMAL. The number of digits to the left
of the decimal point in the DECIMAL type must be sufficient to hold the largest value of the corresponding integer
type. Note that integer literals are treated as the smallest appropriate integer type, meaning there is sometimes
a range of values that require one more digit of DECIMAL scale than you might expect. For integer values, the
precision of the DECIMAL type can be zero; if the precision is greater than zero, remember to increase the scale
value by an equivalent amount to hold the required number of digits to the left of the decimal point.

The following examples show how different integer types are converted to DECIMAL.

[localhost:21000] > select cast(l as decimal(1,0));

o +

| cast(l as decimal(1,0)) |
o +

| 1 |

B ittt et +

[localhost:21000] > select cast (9 as decimal (1,0));
o +

| cast (9 as decimal(1,0)) |
o +

| 9 |

B ittt et +

[localhost:21000] > select cast (10 as decimal(1,0));
o +

| cast (10 as decimal(1,0)) |
o +

| 10 |

o +

[localhost:21000] > select cast (10 as decimal(1l,1));
o +

| cast (10 as decimal(1l,1)) |
o +

| 10.0 |

o +

[localhost:21000] > select cast (100 as decimal(1l,1));
o +

| cast (100 as decimal(1l,1)) |
o +

| 100.0 |

o +

[localhost:21000] > select cast (1000 as decimal(1l,1));
o +

| cast (1000 as decimal(1,1)) |
o +

| 1000.0

e +

* When a DECIMAL value is converted to any of the integer types, any fractional part is truncated (that is, rounded
towards zero):

[localhost:21000] > create table num dec days (x decimal(4,1));
[localhost:21000] > insert into num dec days values (1), (2), (cast(4.5 as

decimal (4,1)));
[localhost:21000] > insert into num dec days values (cast (0.1 as

decimal (4,1))), (cast(.9 as decimal(4,1))), (cast(9.1 as decimal(4,1))),
(cast (9.9 as decimal (4,1)));
[localhost:21000] > select cast(x as int) from num dec days;
o +

| Impala SQL Language Reference | 122

* You cannot directly cast TIMESTAMP or BOOLEAN values to or from DECIMAL values. You can turn a
DECIMAL value into a time-related representation using a two-step process, by converting it to an integer value
and then using that result in a call to a date and time function such as from unixtime ().

[localhost:21000] > select from unixtime (cast(cast(1000.0 as decimal) as

bigint)):;

e e e e Lt +

| from unixtime (cast (cast (1000.0 as decimal(9,0)) as bigint)) |
e +

| 1970-01-01 00:16:40
o +
[localhost:21000] > select now() + interval cast(x as int) days from
num dec days; -- x is a DECIMAL column.

[localhost:21000] > create table num dec days (x decimal(4,1));
[localhost:21000] > insert into num dec days values (1), (2), (cast(4.5 as

decimal (4,1)));

[localhost:21000] > select now() + interval cast(x as int) days from
num dec days; -- The 4.5 value is truncated to 4 and becomes '4 days'.
B e e +

| now() + interval cast(x as int) days |
e +

| 2014-05-13 23:11:55.163284000 |
| 2014-05-14 23:11:55.163284000 |
| 2014-05-16 23:11:55.163284000 |

» Because values in INSERT statements are checked rigorously for type compatibility, be prepared to use CAST ()
function calls around literals, column references, or other expressions that you are inserting into a DECIMAL
column.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.
DECIMAL differences from integer and floating-point types:

With the DECIMAL type, you are concerned with the number of overall digits of a number rather than powers of 2 (as
in TINYINT, SMALLINT, and so on). Therefore, the limits with integral values of DECIMAL types fall around 99,
999, 9999, and so on rather than 32767, 65535, 2 32 -1, and so on. For fractional values, you do not need to account
for imprecise representation of the fractional part according to the IEEE-954 standard (as in FLOAT and DOUBLE).
Therefore, when you insert a fractional value into a DECIMAL column, you can compare, sum, query, GROUP BY,
and so on that column and get back the original values rather than some “close but not identical” value.

FLOAT and DOUBLE can cause problems or unexpected behavior due to inability to precisely represent certain
fractional values, for example dollar and cents values for currency. You might find output values slightly different
than you inserted, equality tests that do not match precisely, or unexpected values for GROUP BY columns.
DECIMAL can help reduce unexpected behavior and rounding errors, at the expense of some performance overhead
for assignments and comparisons.

Literals and expressions:

* When you use an integer literal such as 1 or 999 in a SQL statement, depending on the context, Impala will treat
it as either the smallest appropriate DECIMAL type, or the smallest integer type (TINYINT, SMALLINT, INT, or
BIGINT). To minimize memory usage, Impala prefers to treat the literal as the smallest appropriate integer type.

| Impala SQL Language Reference | 123

* When you use a floating-point literal such as 1.1 or 999. 44 in a SQL statement, depending on the context,
Impala will treat it as either the smallest appropriate DECIMAL type, or the smallest floating-point type (FLOAT or
DOUBLE). To avoid loss of accuracy, Impala prefers to treat the literal as a DECIMAL.

Storage considerations:

* Only the precision determines the storage size for DECIMAL values; the scale setting has no effect on the storage
size.

» Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these text-based file formats, leading zeros
are not stored, but trailing zeros are stored. In these tables, each DECIMAL value takes up as many bytes as there
are digits in the value, plus an extra byte if the decimal point is present and an extra byte for negative values.
Once the values are loaded into memory, they are represented in 4, 8, or 16 bytes as described in the following list
items. The on-disk representation varies depending on the file format of the table.

» Parquet and Avro tables use binary formats, In these tables, Impala stores each value in as few bytes as possible
depending on the precision specified for the DECIMAL column.

* In memory, DECIMAL values with precision of 9 or less are stored in 4 bytes.
* In memory, DECIMAL values with precision of 10 through 18 are stored in § bytes.
* In memory, DECIMAL values with precision greater than 18 are stored in 16 bytes.

File format considerations:

* The DECIMAL data type can be stored in any of the file formats supported by Impala, as described in How Impala
Works with Hadoop File Formats on page 652. Impala only writes to tables that use the Parquet and text
formats, so those formats are the focus for file format compatibility.

* Impala can query Avro, RCFile, or SequenceFile tables containing DECIMAL columns, created by other Hadoop
components.

* You can use DECIMAL columns in Impala tables that are mapped to HBase tables. Impala can query and insert
into such tables.

» Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these tables, each DECIMAL value takes up
as many bytes as there are digits in the value, plus an extra byte if the decimal point is present. The binary format
of Parquet or Avro files offers more compact storage for DECIMAL columns.

» Parquet and Avro tables use binary formats, In these tables, Impala stores each value in 4, 8, or 16 bytes
depending on the precision specified for the DECIMAL column.

UDF considerations: When writing a C++ UDF, use the DecimalVal data type defined in /usr/include/
impala udf/udf.h.

Partitioning:

You can use a DECIMAL column as a partition key. Doing so provides a better match between the partition key values
and the HDFS directory names than using a DOUBLE or FLOAT partitioning column:

Schema evolution considerations:

» For text-based formats (text, RCFile, and SequenceFile tables), you can issue an ALTER TABLE
REPLACE COLUMNS statement to change the precision and scale of an existing DECIMAL column. As long as
the values in the column fit within the new precision and scale, they are returned correctly by a query. Any values
that do not fit within the new precision and scale are returned as NULL, and Impala reports the conversion error.
Leading zeros do not count against the precision value, but trailing zeros after the decimal point do.

[localhost:21000] > create table text decimals (x string);
[localhost:21000] > insert into text decimals values ("1"), ("2"),

("99.99"), ("1.234"), ("000001"™), ("1.000000000M™);
[localhost:21000] > select * from text decimals;

| Impala SQL Language Reference | 124

| 1.234 |
| 000001 |
| 1.000000000 |

[localhost:21000] > alter table text decimals replace columns (x
decimal (4,2));
[localhost:21000] > select * from text decimals;

| x |

|

|

|

|

|

| NULL
+
ERRORS :

Backend 0O:Error converting column: 0 TO DECIMAL (4, 2) (Data is: 1.234)
file: hdfs://127.0.0.1:8020/user/hive/warehouse/decimal testing.db/
text decimals/634d4bd3aal

€8420-b4bl3bab7flbe787 56794587 data.0

record: 1.234

Error converting column: 0 TO DECIMAL (4, 2) (Data is: 1.000000000)
file: hdfs://127.0.0.1:8020/user/hive/warehouse/decimal testing.db/
text decimals/cd40dc68e20

c565a-cc4bd86c724c96ba 311873428 data.0
record: 1.000000000

* For binary formats (Parquet and Avro tables), although an ALTER TABLE ... REPLACE COLUMNS
statement that changes the precision or scale of a DECIMAL column succeeds, any subsequent attempt to query
the changed column results in a fatal error. (The other columns can still be queried successfully.) This is because
the metadata about the columns is stored in the data files themselves, and ALTER TABLE does not actually make
any updates to the data files. If the metadata in the data files disagrees with the metadata in the metastore database,
Impala cancels the query.

Examples:
CREATE TABLE tl (x DECIMAL, y DECIMAL(5,2), z DECIMAL(25,0));
INSERT INTO tl VALUES (5, 99.44, 123456), (300, 6.7, 999999999);
SELECT x+y, ROUND(y,1), z/98.6 FROM tl;
SELECT CAST (1000.5 AS DECIMAL) ;

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Kudu considerations:
Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Related information:

Numeric Literals on page 183, TINYINT Data Type on page 148, SMALLINT Data Type on page 132, INT
Data Type on page 127, BIGINT Data Type on page 110, DECIMAL Data Type (Impala 1.4 or higher only) on
page 116, Impala Mathematical Functions on page 403 (especially PRECISION () and SCALE ())

| Impala SQL Language Reference | 125

DOUBLE Data Type
A double precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name DOUBLE

Range: 4.94065645841246544¢-324d .. 1.79769313486231570e+308, positive or negative

Precision: 15 to 17 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 8 bytes, using /EEE 754 Double Precision Binary Floating Point format.

Conversions: Impala does not automatically convert DOUBLE to any other type. You can use CAST () to convert
DOUBLE values to FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You
can use exponential notation in DOUBLE literals or when casting from STRING, for example 1. 0e6 to represent
one million. Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past

the start of the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time
zone. If the setting —use local tz for unix timestamp conversions=true is in effect, the resulting
TIMESTAMP represents a date and time in the local time zone.

Usage notes:
The data type REAL is an alias for DOUBLE.

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns false:

SELECT CAST ('nan' AS DOUBLE)=CAST ('nan' AS DOUBLE) ;
Examples:

CREATE TABLE tl (x DOUBLE) ;
SELECT CAST (1000.5 AS DOUBLE) ;

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary slightly for
aggregate function calls such as SUM () and AVG () for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL data type for such operations instead of FLOAT or DOUBLE.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

| Impala SQL Language Reference | 126

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that
use different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information:

Numeric Literals on page 183, Impala Mathematical Functions on page 403, FLOAT Data Type on page 126

FLOAT Data Type
A single precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name FLOAT

Range: 1.40129846432481707¢-45 .. 3.40282346638528860¢+38, positive or negative

Precision: 6 to 9 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 4 bytes, using IEEE 754 Single Precision Binary Floating Point format.

Conversions: Impala automatically converts FLOAT to more precise DOUBLE values, but not the other way around.
You can use CAST () to convert FLOAT values to TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP,
or BOOLEAN. You can use exponential notation in FLOAT literals or when casting from STRING, for example
1.0e6 to represent one million. Casting an integer or floating-point value N to TIMESTAMP produces a value that
is N seconds past the start of the epoch date (January 1, 1970). By default, the result value represents a date and time
in the UTC time zone. If the setting ~use local tz for unix timestamp conversions=trueisin
effect, the resulting TIMESTAMP represents a date and time in the local time zone.

Usage notes:

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns false:

SELECT CAST ('nan' AS FLOAT)=CAST ('nan' AS FLOAT) ;
Examples:

CREATE TABLE tl (x FLOAT);
SELECT CAST (1000.5 AS FLOAT) ;

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

| Impala SQL Language Reference | 127

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary slightly for
aggregate function calls such as SUM () and AVG () for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL data type for such operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that
use different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information:
Numeric Literals on page 183, Impala Mathematical Functions on page 403, DOUBLE Data Type on page
125
INT Data Type
A 4-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name INT

Range: -2147483648 .. 2147483647. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (BIGINT) or a floating-point type (FLOAT or
DOUBLE) automatically. Use CAST () to convertto TINYINT, SMALLINT, STRING, or TIMESTAMP. Casting
an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
-use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Usage notes:
The data type INTEGER is an alias for INT.

For a convenient and automated way to check the bounds of the INT type, call the functions MIN INT () and
MAX_INT ().

If an integer value is too large to be represented as a INT, use a BIGINT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE tl (x INT);
SELECT CAST (1000 AS INT);

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations:

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

| Impala SQL Language Reference | 128

Internal details: Represented in memory as a 4-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 148, SMALLINT Data Type on page 132, INT
Data Type on page 127, BIGINT Data Type on page 110, DECIMAL Data Type (Impala 1.4 or higher only) on
page 116, Impala Mathematical Functions on page 403

MAP Complex Type (Impala 2.3 or higher only)

A complex data type representing an arbitrary set of key-value pairs. The key part is a scalar type, while the value part
can be a scalar or another complex type (ARRAY, STRUCT, or MAP).

Syntax:

column name MAP < primitive type, type >
type ::= primitive type | complex type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 151 for
background information and usage examples.

The MAP complex data type represents a set of key-value pairs. Each element of the map is indexed by a primitive
type such as BIGINT or STRING, letting you define sequences that are not continuous or categories with arbitrary
names. You might find it convenient for modelling data produced in other languages, such as a Python dictionary or
Java HashMap, where a single scalar value serves as the lookup key.

In a big data context, the keys in a map column might represent a numeric sequence of events during a manufacturing
process, or TIMESTAMP values corresponding to sensor observations. The map itself is inherently unordered, so you
choose whether to make the key values significant (such as a recorded TIMESTAMP) or synthetic (such as a random
global universal ID).

Note: Behind the scenes, the MAP type is implemented in a similar way as the ARRAY type. Impala does not enforce
any uniqueness constraint on the KEY values, and the KEY values are processed by looping through the elements

of the MAP rather than by a constant-time lookup. Therefore, this type is primarily for ease of understanding when
importing data and algorithms from non-SQL contexts, rather than optimizing the performance of key lookups.

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al.Iftable T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE t1.sl.fl.AnARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Added in: Impala 2.3.0
Restrictions:

» Columns with this data type can only be used in tables or partitions with the Parquet file format.

* Columns with this data type cannot be used as partition key columns in a partitioned table.

* The COMPUTE STATS statement does not produce any statistics for columns of this data type.

* The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» See Limitations and Restrictions for Complex Types on page 155 for a full list of limitations and associated
guidelines about complex type columns.

| Impala SQL Language Reference | 129

Kudu considerations:
Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
174 for the table definitions.

The following example shows a table with various kinds of MAP columns, both at the top level and nested within
other complex types. Each row represents information about a specific country, with complex type fields of various
levels of nesting to represent different information associated with the country: factual measurements such as area
and population, notable people in different categories, geographic features such as cities, points of interest within
each city, and mountains with associated facts. Practice the CREATE TABLE and query notation for complex type
columns using empty tables, until you can visualize a complex data structure and construct corresponding SQL
statements reliably.

create TABLE map demo

(
country id BIGINT,

-— Numeric facts about each country, looked up by name.
-- For example, 'Area':1000, 'Population':999999.
-- Using a MAP instead of a STRUCT because there could be
-- a different set of facts for each country.

metrics MAP <STRING, BIGINT>,

-- MAP whose value part is an ARRAY.

-- For example, the key 'Famous Politicians' could represent an array of 10
elements,

-- while the key 'Famous Actors' could represent an array of 20 elements.
notables MAP <STRING, ARRAY <STRING>>,

-—- MAP that is a field within a STRUCT.
-— (The STRUCT is inside another ARRAY, because it is rare
-— for a STRUCT to be a top-level column.)
-- For example, city #1 might have points of interest with key 'Zoo',
-- representing an array of 3 different zoos.
-— City #2 might have completely different kinds of points of interest.
-—- Because the set of field names is potentially large, and most entries
could be blank,
-— a MAP makes more sense than a STRUCT to represent such a sparse data
structure.
cities ARRAY < STRUCT <
name: STRING,
points of interest: MAP <STRING, ARRAY <STRING>>
>>,

-— MAP that is an element within an ARRAY. The MAP is inside a STRUCT field
to associate
-— the mountain name with all the facts about the mountain.
-—- The "key" of the map (the first STRING field) represents the name of some
fact whose value
-— can be expressed as an integer, such as 'Height', 'Year First Climbed',
and so on.
mountains ARRAY < STRUCT < name: STRING, facts: MAP <STRING, INT > > >
)
STORED AS PARQUET;

DESCRIBE map_ demo;

| Impala SQL Language Reference | 130

| name | type |
- - +
country id bigint
metrics map<string,bigint>

notables
cities

|
|
| map<string,array<string>>

| array<struct<

| name:string,

| points of interest:map<string,array<string>>
| >> -

| array<struct<

| name:string,

| facts:map<string,int>

| >>

mountains

- o +
| name | type |
- o +
| key | string |
| value | bigint |
- o +

- - +*
| name | type

+-—————— - +
| key | string |
| value | array<string> |
- +—— +

| struct< |
| name:string, |
| points of interest:map<string,array<string>> |
| |
| |

- o — +
| name | type

- o — +
| key | string |
| value | array<string> |
- o — +

| item | string |
| pos | bigint |

| Impala SQL Language Reference | 131

| struct< |
| name:string,

| facts:map<string, int> |
| |
| |

- o +
| name | type |
- o +
| key | string |
| value | int |
- o ———— +

The following example shows a table that uses a variety of data types for the MAP “key” field. Typically, you use
BIGINT or STRING to use numeric or character-based keys without worrying about exceeding any size or length
constraints.

CREATE TABLE map_ demo obscure
(

id BIGINT,

ml MAP <INT, INT>,

m2 MAP <SMALLINT, INT>,

m3 MAP <TINYINT, INT>,

m4 MAP <TIMESTAMP, INT>,

m5 MAP <BOOLEAN, INT>,

mé6 MAP <CHAR(5), INT>,

m7 MAP <VARCHAR (25), INT>,

m8 MAP <FLOAT, INT>,

m9 MAP <DOUBLE, INT>,

ml0 MAP <DECIMAL (12,2), INT>

)
STORED AS PARQUET;

CREATE TABLE celebrities (name STRING, birth year MAP < STRING, SMALLINT >)
STORED AS PARQUET;

-- A typical row might represent values with 2 different birth years, such
as:

-— ("Joe Movie Star", { "real": 1972, "claimed": 1977 1})

CREATE TABLE countries (name STRING, famous leaders MAP < INT, STRING >)
STORED AS PARQUET;

-- A typical row might represent values with different leaders, with key
values corresponding to their numeric sequence, such as:

-— ("United States", { 1l: "George Washington", 3: "Thomas Jefferson", 16:
"Abraham Lincoln" })

CREATE TABLE airlines (name STRING, special meals MAP < STRING, MAP <
STRING, STRING > >) STORED AS PARQUET;

-- A typical row might represent values with multiple kinds of meals, each
with several components:

-- ("Elegant Airlines",

== |

| Impala SQL Language Reference | 132

== "vegetarian": { "breakfast": "pancakes", "snack": "cookies",
"dinner": "rice pilaf" },
== "gluten free": { "breakfast": "oatmeal", "snack": "fruit", "dinner":

"chicken" }

-= })

Related information:

Complex Types (Impala 2.3 or higher only) on page 151, ARRAY Complex Type (Impala 2.3 or higher only) on
page 107, STRUCT Complex Type (Impala 2.3 or higher only) on page 135

REAL Data Type
An alias for the DOUBLE data type. See DOUBLE Data Type on page 125 for details.
Examples:

These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes
Impala treats them always as DOUBLE.

[localhost:21000
[localhost:21000

> create table rl (x real);
> describe rl;

]
]
- o o +
| name | type | comment |
- o o ————— +
| x | double | |
- o o +
[localhost:21000] > insert into rl values (1.5), (cast (2.2 as double));
[localhost:21000] > select cast (le6 as real);
o +
| cast (1000000.0 as double) |
o +
| 1000000 |
o +

SMALLINT Data Type
A 2-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name SMALLINT

Range: -32768 .. 32767. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (INT or BIGINT) or a floating-point type
(FLOAT or DOUBLE) automatically. Use CAST () to convertto TINYINT, STRING, or TIMESTAMP. Casting
an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
-use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Usage notes:

For a convenient and automated way to check the bounds of the SMALLINT type, call the functions
MIN SMALLINT () and MAX SMALLINT ().

If an integer value is too large to be represented as a SMALLINT, use an INT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

| Impala SQL Language Reference | 133

Examples:

CREATE TABLE tl (x SMALLINT) ;
SELECT CAST (1000 AS SMALLINT) ;

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE
LIKE PARQUET syntax, any TINYINT or SMALLINT columns in the original table turn into INT columns in the
new table.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 2-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 148, SMALLINT Data Type on page 132, INT
Data Type on page 127, BIGINT Data Type on page 110, DECIMAL Data Type (Impala 1.4 or higher only) on
page 116, Impala Mathematical Functions on page 403

STRING Data Type
A data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name STRING

Length: Maximum of 32,767 bytes. Do not use any length constraint when declaring STRING columns, as you might
be familiar with from VARCHAR, CHAR, or similar column types from relational database systems. If you do need

to manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare columns as
VARCHAR (max_length) or CHAR (length), but for best performance use STRING where practical.

Character sets: For full support in all Impala subsystems, restrict string values to the ASCII character set. Although
some UTF-8 character data can be stored in Impala and retrieved through queries, UTF-8 strings containing non-
ASCII characters are not guaranteed to work properly in combination with many SQL aspects, including but not
limited to:

+ String manipulation functions.

» Comparison operators.

* The ORDER BY clause.

* Values in partition key columns.

For any national language aspects such as collation order or interpreting extended ASCII variants such as ISO-8859-1
or ISO-8859-2 encodings, Impala does not include such metadata with the table definition. If you need to sort,

manipulate, or display data depending on those national language characteristics of string data, use logic on the
application side.

Conversions:

| Impala SQL Language Reference | 134

* Impala does not automatically convert STRING to any numeric type. Impala does automatically convert STRING
to TIMESTAMP if the value matches one of the accepted TIMESTAMP formats; see TIMESTAMP Data Type on
page 141 for details.

* Youcanuse CAST () to convert STRING values to TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, or
TIMESTAMP.

* You cannot directly cast a STRING value to BOOLEAN. You can use a CASE expression to evaluate string values
suchas 'T', 'true', and so on and return Boolean t rue and false values as appropriate.

* You can cast a BOOLEAN value to STRING, returning '1' for true values and '0' for false values.

Partitioning:

Although it might be convenient to use STRING columns for partition keys, even when those columns contain
numbers, for performance and scalability it is much better to use numeric columns as partition keys whenever
practical. Although the underlying HDFS directory name might be the same in either case, the in-memory storage
for the partition key columns is more compact, and computations are faster, if partition key columns such as YEAR,
MONTH, DAY and so on are declared as INT, SMALLINT, and so on.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length
strings (" "), NULL, and space to all be different values.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics
fields are filled in until you run the COMPUTE STATS statement.

Examples:

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for
quotation marks within string literals:

SELECT 'I am
SELECT "I am
SELECT 'I\'m
SELECT "I\'m
SELECT 'I am
SELECT "I am

single-quoted string';

double-quoted string";

single-quoted string with an apostrophe';
double-quoted string with an apostrophe";

"short" single-quoted string containing quotes';
\"short\" double-quoted string containing quotes";

O LYY YR

The following examples demonstrate calls to string manipulation functions to concatenate strings, convert numbers to
strings, or pull out substrings:

SELECT CONCAT ("Once upon a time, there were ", CAST(3 AS STRING), ' little
pigs.");
SELECT SUBSTR ("hello world",7,5);
The following examples show how to perform operations on STRING columns within a table:
CREATE TABLE tl (sl STRING, s2 STRING);

INSERT INTO tl VALUES ("hello", 'world'), (CAST(7 AS STRING), "wonders");
SELECT sl, s2, length(sl) FROM tl WHERE s2 LIKE 'w%';

Related information:

| Impala SQL Language Reference | 135

String Literals on page 184, CHAR Data Type (Impala 2.0 or higher only) on page 113, VARCHAR Data
Type (Impala 2.0 or higher only) on page 149, Impala String Functions on page 484, Impala Date and Time
Functions on page 434

STRUCT Complex Type (Impala 2.3 or higher only)

A complex data type, representing multiple fields of a single item. Frequently used as the element type of an ARRAY
or the VALUE part of a MAP.

Syntax:
column name STRUCT < name : type [COMMENT 'comment string']l, ... >
type ::= primitive type | complex type

The names and number of fields within the STRUCT are fixed. Each field can be a different type. A field within a
STRUCT can also be another STRUCT, or an ARRAY or a MAP, allowing you to create nested data structures with a
maximum nesting depth of 100.

A STRUCT can be the top-level type for a column, or can itself be an item within an ARRAY or the value part of the
key-value pair in a MAP.

When a STRUCT is used as an ARRAY element or a MAP value, you use a join clause to bring the ARRAY or MAP
elements into the result set, and then refer to array name.ITEM. fieldor map name.VALUE. field. Inthe
case of a STRUCT directly inside an ARRAY or MAP, you can omit the . ITEM and . VALUE pseudocolumns and refer
directly to array name.fieldor map name.field.

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 151 for
background information and usage examples.

A STRUCT is similar conceptually to a table row: it contains a fixed number of named fields, each with a predefined
type. To combine two related tables, while using complex types to minimize repetition, the typical way to represent
that data is as an ARRAY of STRUCT elements.

Because a STRUCT has a fixed number of named fields, it typically does not make sense to have a STRUCT as the
type of a table column. In such a case, you could just make each field of the STRUCT into a separate column of the
table. The STRUCT type is most useful as an item of an ARRAY or the value part of the key-value pair in a MAP. A
nested type column with a STRUCT at the lowest level lets you associate a variable number of row-like objects with
each row of the table.

The STRUCT type is straightforward to reference within a query. You do not need to include the STRUCT column
in a join clause or give it a table alias, as is required for the ARRAY and MAP types. You refer to the individual fields
using dot notation, such as struct column name.field name, without any pseudocolumn such as ITEM or
VALUE.

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al.Iftable T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE t1.sl.fl.AnARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Internal details:

Within the Parquet data file, the values for each STRUCT field are stored adjacent to each other, so that they can be
encoded and compressed using all the Parquet techniques for storing sets of similar or repeated values. The adjacency
applies even when the STRUCT values are part of an ARRAY or MAP. During a query, Impala avoids unnecessary I/O
by reading only the portions of the Parquet data file containing the requested STRUCT fields.

Added in: Impala 2.3.0

| Impala SQL Language Reference | 136

Restrictions:

* Columns with this data type can only be used in tables or partitions with the Parquet file format.

* Columns with this data type cannot be used as partition key columns in a partitioned table.

* The COMPUTE STATS statement does not produce any statistics for columns of this data type.

* The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» See Limitations and Restrictions for Complex Types on page 155 for a full list of limitations and associated
guidelines about complex type columns.

Kudu considerations:
Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
174 for the table definitions.

The following example shows a table with various kinds of STRUCT columns, both at the top level and nested within
other complex types. Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE struct demo
(

id BIGINT,

name STRING,

-—- A STRUCT as a top-level column. Demonstrates how the table ID column
-- and the ID field within the STRUCT can coexist without a name conflict.
employee info STRUCT < employer: STRING, id: BIGINT, address: STRING >,

—-— A STRUCT as the element type of an ARRAY.
places lived ARRAY < STRUCT <street: STRING, city: STRING, country: STRING
>>,

-- A STRUCT as the value portion of the key-value pairs in a MAP.
memorable moments MAP < STRING, STRUCT < year: INT, place: STRING,
details: STRING >>,

-— A STRUCT where one of the fields is another STRUCT.
current address STRUCT < street address: STRUCT <street number: INT,
street name: STRING, street type: STRING>, country: STRING, postal code:
STRING >

)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more STRUCT columns by

using the DESCRIBE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRIBE struct demo;

o o +
| name | type |
o B it +
id bigint
name string

struct<
employer:string,

employee info

| Impala SQL Language Reference | 137

id:bigint,
address:string

>

array<struct<
street:string,
city:string,
country:string

>>

map<string, struct<
year:int,
place:string,

|

|

|
places lived |
|
|
|
|
|
|
|
| details:string
|
|
|
|
|
|
|
|
|
|

memorable moments

>>
struct<
street address:struct<
street number:int,
street name:string,
street type:string
>, B
country:string,
postal code:string

current address

The top-level column EMPLOYEE INFO is a STRUCT. Describing table name.struct name displays the
fields of the STRUCT as if they were columns of a table:

DESCRIBE struct demo.employee info;

o ————— o ———— +
| name | type |
o o +
employer	string
id	bigint
address	string
o ————— o ———— +

Because PLACES_LIVED is a STRUCT inside an ARRAY, the initial DESCRIBE shows the structure of the ARRAY

DESCRIBE struct demo.places lived;

| struct< |
| street:string, |
| city:string, |
| country:string |
| |
| |

Ask for the details of the ITEM field of the ARRAY to see just the layout of the STRUCT:

DESCRIBE struct demo.places lived.item;

- - +
| name | type |
- - +*
| street | string |
| city | string |
| | |

country string

| Impala SQL Language Reference | 138

Likewise, MEMORABLE MOMENTS has a STRUCT inside a MAP, which requires an extra level of qualified name to
see just the STRUCT part:

DESCRIBE struct demo.memorable moments;

- t—— +
| name | type |
- - +
key string
value struct<

| |
| |
| year:int, |
| place:string, |
| details:string |
| |

For a MAP, ask to see the VALUE field to see the corresponding STRUCT fields in a table-like structure:

DESCRIBE struct demo.memorable moments.value;

o o +
| name | type |
o o +
year	int
place	string
details	string
o o +

For a STRUCT inside a STRUCT, we can see the fields of the outer STRUCT

DESCRIBE struct demo.current address;

struct<
street number:int,
street name:string,

street address | |
| |
| |
| street type:string |
| |
| |
| |

>
country string
postal code string
fom e et ittt e +

Then we can use a further qualified name to see just the fields of the inner STRUCT:

DESCRIBE struct demo.current address.street address;

oo mo== S e +
| name | type |
Fommmmmmmmmmom=e Fommmmm== +
street number	int
street name	string
street type	string
Fo————— ———————— fmm————— +

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRIBE statement. You can visualize each STRUCT as its own table, with columns named the same as

| Impala SQL Language Reference | 139

each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRIBE struct demo;

- - - +
| name | type | comment |
= e - +
id bigint
name string
employee info struct<
employer:string,
id:bigint,
address:string
>
places lived array<struct<

	street:string,	
	city:string,	
	country:string	
	>>	
memorable moments	map<string,struct<	
	year:int,	
	place:string,	
	details:string	
	>>	
[struct<	
	street address:struct<	
	street number:int,	
	street name:string,	
	street type:string	
	>y	
	country:string,	
	postal code:string	

current address

SELECT id, employee info.id FROM struct demo;
SELECT id, employee info.id AS employee id FROM struct demo;

SELECT id, employee info.id AS employee id, employee info.employer
FROM struct demo;

SELECT id, name, street, city, country
FROM struct demo, struct demo.places lived;

SELECT id, name, places lived.pos, places lived.street, places lived.city,
places lived.country
FROM struct demo, struct demo.places lived;

SELECT id, name, pl.pos, pl.street, pl.city, pl.country
FROM struct demo, struct demo.places lived AS pl;

SELECT id, name, places lived.pos, places lived.street, places lived.city,
places lived.country
FROM struct demo, struct demo.places lived;

SELECT id, name, pos, street, city, country
FROM struct demo, struct demo.places lived;

SELECT id, name, memorable moments.key,
memorable moments.value.year,
memorable moments.value.place,
memorable moments.value.details

| Impala SQL Language Reference | 140

FROM struct demo, struct demo.memorable moments
WHERE memorable moments.key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name, mm.key, mm.value.year, mm.value.place, mm.value.details
FROM struct demo, struct demo.memorable moments AS mm
WHERE mm.key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name, memorable moments.key, memorable moments.value.year,
memorable moments.value.place, memorable moments.value.details

FROM struct demo, struct demo.memorable moments

WHERE key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name, key, value.year, value.place, value.details
FROM struct demo, struct demo.memorable moments

WHERE key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name, key, year, place, details
FROM struct demo, struct demo.memorable moments

WHERE key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name,
current address.street address.street number,
current address.street address.street name,
current address.street address.street type,
current address.country,
current address.postal code

FROM struct demo;

For example, this table uses a struct that encodes several data values for each phone number associated with a person.
Each person can have a variable-length array of associated phone numbers, and queries can refer to the category field
to locate specific home, work, mobile, and so on kinds of phone numbers.

CREATE TABLE contact info many structs

(
id BIGINT, name STRING,
phone numbers ARRAY < STRUCT <category:STRING, country code:STRING,
area code:SMALLINT, full number:STRING, mobile:BOOLEAN, carrier:STRING > >
) STORED AS PARQUET;

Because structs are naturally suited to composite values where the fields have different data types, you might use
them to decompose things such as addresses:

CREATE TABLE contact info detailed address

(

id BIGINT, name STRING,

address STRUCT < house number:INT, street:STRING, street type:STRING,
apartment : STRING, city:STRING, region:STRING, country:STRING >

)i

In a big data context, splitting out data fields such as the number part of the address and the street name could let
you do analysis on each field independently. For example, which streets have the largest number range of addresses,
what are the statistical properties of the street names, which areas have a higher proportion of “Roads”, “Courts” or
“Boulevards”, and so on.

Related information:

Complex Types (Impala 2.3 or higher only) on page 151, ARRAY Complex Type (Impala 2.3 or higher only) on
page 107, MAP Complex Type (Impala 2.3 or higher only) on page 128

| Impala SQL Language Reference | 141

TIMESTAMP Data Type
A data type used in CREATE TABLE and ALTER TABLE statements, representing a point in time.
Syntax:

In the column definition of a CREATE TABLE statement:
column name TIMESTAMP

Range: Allowed date values range from 1400-01-01 to 9999-12-31; this range is different from the Hive
TIMESTAMP type. Internally, the resolution of the time portion of a TIMESTAMP value is in nanoseconds.

INTERVAL expressions:

You can perform date arithmetic by adding or subtracting a specified number of time units, using the INTERVAL
keyword and the + and - operators or date add () and date sub () functions. You can specify units as
YEAR[S],MONTH[S],WEEK[S], DAY [S], HOUR[S],MINUTE[S], SECOND[S],MILLISECOND[S],
MICROSECOND[S], and NANOSECOND [S]. You can only specify one time unit in each interval expression, for
example INTERVAL 3 DAYS or INTERVAL 25 HOURS, but you can produce any granularity by adding together
successive INTERVAL values, such as timestamp value + INTERVAL 3 WEEKS - INTERVAL 1 DAY
+ INTERVAL 10 MICROSECONDS.

For example:

select now() + interval 1 day;
select date sub(now(), interval 5 minutes);
insert into auction details
select auction id, auction start time, auction start time + interval 2
days + interval 12 hours
from new auctions;

Time zones:

By default, Impala does not store timestamps using the local timezone, to avoid undesired results from unexpected
time zone issues. Timestamps are stored and interpreted relative to UTC, both when written to or read from

data files, or when converted to or from Unix time values through functions such as from unixtime () or
unix timestamp (). To convert such a TIMESTAMP value to one that represents the date and time in a specific
time zone, convert the original value with the from utc timestamp () function.

Because Impala does not assume that TIMESTAMP values are in any particular time zone, you must be conscious of
the time zone aspects of data that you query, insert, or convert.

For consistency with Unix system calls, the TIMESTAMP returned by the now () function represents the local time in
the system time zone, rather than in UTC. To store values relative to the current time in a portable way, convert any
now () return values using the to_utc timestamp () function first. For example, the following example shows
that the current time in California (where this Impala cluster is located) is shortly after 2 PM. If that value was written
to a data file, and shipped off to a distant server to be analyzed alongside other data from far-flung locations, the dates
and times would not match up precisely because of time zone differences. Therefore, the to _utc timestamp ()
function converts it using a common reference point, the UTC time zone (descended from the old Greenwich Mean
Time standard). The ' PDT' argument indicates that the original value is from the Pacific time zone with Daylight
Saving Time in effect. When servers in all geographic locations run the same transformation on any local date and
time values (with the appropriate time zone argument), the stored data uses a consistent representation. Impala queries
can use functions such as EXTRACT (), MIN (), AVG (), and so on to do time-series analysis on those timestamps.

[localhost:21000] > select now();

e e +
| now () |
e e e oo oo e e e e e e +
| 2015-04-09 14:07:46.580465000 |
= e = +

[localhost:21000] > select to utc_ timestamp (now(), 'PDT');

| Impala SQL Language Reference | 142

e +
| to _utc timestamp (now(), 'pdt') |
o +
| 2015-04-09 21:08:07.664547000 |
e +

The converse function, from utc timestamp (), lets you take stored TIMESTAMP data or calculated results
and convert back to local date and time for processing on the application side. The following example shows how
you might represent some future date (such as the ending date and time of an auction) in UTC, and then convert back
to local time when convenient for reporting or other processing. The final query in the example tests whether this
arbitrary UTC date and time has passed yet, by converting it back to the local time zone and comparing it against the
current date and time.

[localhost:21000] > select to utc timestamp (now() + interval 2 weeks,

'"PDT") ;

e +
| to utc timestamp(now() + interval 2 weeks, 'pdt') |
e +
| 2015-04-23 21:08:34.152923000 |
e +

[localhost:21000] > select from utc timestamp('2015-04-23
21:08:34.152923000"', "PDT") ;

e +
| from utc timestamp('2015-04-23 21:08:34.152923000', 'pdt') |
e +
| 2015-04-23 14:08:34.152923000 |
e +

[localhost:21000] > select from utc timestamp('2015-04-23
21:08:34.152923000"', "PDT'") < now () ;

T T C R 4
| from utc timestamp('2015-04-23 21:08:34.152923000', 'pdt') < now() |
B T +
| false |
- +

If you have data files written by Hive, those TIMESTAMP values represent the local timezone of the

host where the data was written, potentially leading to inconsistent results when processed by Impala.

To avoid compatibility problems or having to code workarounds, you can specify one or both of these

impalad startup flags: —-use local tz for unix timestamp conversions=true

-convert legacy hive parquet utc timestamps=true. Although -

convert legacy hive parquet utc timestamps is turned off by default to avoid performance
overhead, where practical turn it on when processing TIMESTAMP columns in Parquet files written by Hive, to avoid

unexpected behavior.

The -use local tz for unix timestamp conversions setting affects conversions from
TIMESTAMP to BIGINT, or from BIGINT to TIMESTAMP. By default, Impala treats all TIMESTAMP values

as UTC, to simplify analysis of time-series data from different geographic regions. When you enable the -

use local tz for unix timestamp conversions setting, these operations treat the input values as if
they are in the local tie zone of the host doing the processing. See Impala Date and Time Functions on page 434

for the list of functions affected by the —-use local tz for unix timestamp conversions setting.

The following sequence of examples shows how the interpretation of TIMESTAMP values in Parquet tables is affected
by the setting of the —~convert legacy hive parquet utc timestamps setting.

Regardless of the ~convert legacy hive parquet utc timestamps setting, TIMESTAMP columns in
text tables can be written and read interchangeably by Impala and Hive:

Impala DDL and queries for text table:

[localhost:21000] > create table tl (x timestamp) ;
[localhost:21000] > insert into tl values (now()), (now() + interval 1 day);

| Impala SQL Language Reference | 143

[localhost:21000] > select x from tl;

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

e +
[localhost:21000] > select to utc timestamp(x, 'PDT') from tl;
e +

| to utc timestamp(x, 'pdt') |
e +

| 2015-04-07 22:43:02.892403000 |
| 2015-04-08 22:43:02.892403000 |

Hive query for text table:

hive> select * from tl;

OK

2015-04-07 15:43:02.892403

2015-04-08 15:43:02.892403

Time taken: 1.245 seconds, Fetched: 2 row(s)

When the table uses Parquet format, Impala expects any time zone adjustment to be applied prior to writing, while
TIMESTAMP values written by Hive are adjusted to be in the UTC time zone. When Hive queries Parquet data files
that it wrote, it adjusts the TIMESTAMP values back to the local time zone, while Impala does no conversion. Hive
does no time zone conversion when it queries Impala-written Parquet files.

Impala DDL and queries for Parquet table:

[localhost:21000] > create table pl stored as parquet as select x from tl;

| summary |
o +

| Inserted 2 row(s) |
o +
[localhost:21000] > select x from pl;
e +

| x |

o +

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

Hive DDL and queries for Parquet table:

hive> create table hl (x timestamp) stored as parquet;
OK

hive> insert into hl select * from pl;

OK

Time taken: 35.573 seconds

hive> select x from pl;

OK

2015-04-07 15:43:02.892403

2015-04-08 15:43:02.892403

Time taken: 0.324 seconds, Fetched: 2 row(s)
hive> select x from hl;

OK

2015-04-07 15:43:02.892403

2015-04-08 15:43:02.892403

Time taken: 0.197 seconds, Fetched: 2 row(s)

| Impala SQL Language Reference | 144

The discrepancy arises when Impala queries the Hive-created Parquet table. The underlying values in the
TIMESTAMP column are different from the ones written by Impala, even though they were copied from one table to
another by an INSERT ... SELECT statement in Hive. Hive did an implicit conversion from the local time zone
to UTC as it wrote the values to Parquet.

Impala query for TIMESTAMP values from Impala-written and Hive-written data:

[localhost:21000] > select * from pl;

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

Fetched 2 row(s) in 0.29s
[localhost:21000] > select * from hl;

| 2015-04-07 22:43:02.892403000 |
| 2015-04-08 22:43:02.892403000 |

Underlying integer values for Impala-written and Hive-written data:

[localhost:21000] > select cast(x as bigint) from pl;

e +
| cast(x as bigint) |
o +
| 1428421382 |
| 1428507782 |
o +

Fetched 2 row(s) in 0.38s
[localhost:21000] > select cast(x as bigint) from hl;

o +
| cast(x as bigint) |
o +
| 1428446582 |
| 1428532982 |
o +

Fetched 2 row(s) in 0.20s

When the —~convert legacy hive parquet utc timestamps setting is enabled, Impala recognizes the
Parquet data files written by Hive, and applies the same UTC-to-local-timezone conversion logic during the query as
Hive uses, making the contents of the Impala-written P1 table and the Hive-written H1 table appear identical, whether
represented as TIMESTAMP values or the underlying BIGINT integers:

[localhost:21000] > select x from pl;

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

Fetched 2 row(s) in 0.37s
[localhost:21000] > select x from hl;

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

| Impala SQL Language Reference | 145

Fetched 2 row(s) in 0.19s
[localhost:21000] > select cast(x as bigint) from pl;

e +
| cast(x as bigint) |
e +
| 1428446582 |
| 1428532982 |
. +

Fetched 2 row(s) in 0.29s
[localhost:21000] > select cast(x as bigint) from hl;

o +
| cast(x as bigint) |
o +
| 1428446582 |
| 1428532982 |
e +

Fetched 2 row(s) in 0.22s

Conversions:

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp
values are accepted in the format "yyyy-MM-dd HH:mm:ss.SSSSSS", and can consist of just the date,

or just the time, with or without the fractional second portion. For example, you can specify TIMESTAMP
values such as '1966-07-30", '08:30:00",0r '1985-09-25 17:45:30.005". Casting an integer
or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting -
use local tz for unix timestamp conversions=true is in effect, the resulting TTIMESTAMP
represents a date and time in the local time zone.

In Impala 1.3 and higher, the FROM_UNIXTIME () and UNIX TIMESTAMP () functions allow a wider range of
format strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. In
Impala 2.3 and higher, the UNIX TIMESTAMP () function also allows a numeric timezone offset to be specified as
part of the input string. See Impala Date and Time Functions on page 434 for details.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values use the
BIGINT type for parameters and return values, rather than INT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038 problem” or “Y2K38
problem”). This change affects the from unixtime () and unix timestamp () functions. You might need to
change application code that interacts with these functions, change the types of columns that store the return values,
or add CAST () calls to SQL statements that call these functions.

Partitioning:

Although you cannot use a TIMESTAMP column as a partition key, you can extract the individual years, months,
days, hours, and so on and partition based on those columns. Because the partition key column values are

represented in HDFS directory names, rather than as fields in the data files themselves, you can also keep the original
TIMESTAMP values if desired, without duplicating data or wasting storage space. See Partition Key Columns on page
650 for more details on partitioning with date and time values.

[localhost:21000] > create table timeline (event string) partitioned by
(happened timestamp) ;

ERROR: AnalysisException: Type 'TIMESTAMP' is not supported as partition-

column type in column: happened

NULL considerations: Casting any unrecognized STRING value to this type produces a NULL value.

Partitioning: Because this type potentially has so many distinct values, it is often not a sensible choice for a partition
key column. For example, events 1 millisecond apart would be stored in different partitions. Consider using the
TRUNC () function to condense the number of distinct values, and partition on a new column with the truncated
values.

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

| Impala SQL Language Reference | 146

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 16-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT 64 type, which
is represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was
imported this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

Restrictions:

If you cast a STRING with an unrecognized format to a TIMESTAMP, the result is NULL rather than an error. Make
sure to test your data pipeline to be sure any textual date and time values are in a format that Impala TTMESTAMP can
recognize.

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time values in Avro
tables, as a workaround you can use a STRING representation of the values, convert the values to BIGINT with the
UNIX TIMESTAMP () function, or create separate numeric columns for individual date and time fields using the
EXTRACT () function.

Kudu considerations:

In Impala 2.9 and higher, you can include TIMESTAMP columns in Kudu tables, instead of representing the date and
time as a BIGINT value. The behavior of TIMESTAMP for Kudu tables has some special considerations:

* Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/
time columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
TIMESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a
query.

* The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TIMESTAMP columns. You can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continue to use a BIGINT column to represent date/time values in performance-critical applications.

* The Impala TIMESTAMP type has a narrower range for years than the underlying Kudu data type. Impala
can represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impala
client, Impala returns NULL by default when reading those TIMESTAMP values during a query. Or, if the
ABORT_ ON_ERROR query option is enabled, the query fails when it encounters a value with an out-of-range year.

Examples:
The following examples demonstrate using TIMESTAMP values with built-in functions:
select cast('1966-07-30' as timestamp) ;

(l
select cast('1985-09-25 17:45:30.005"' as timestamp) ;
select cast('08:30:00"' as timestamp) ;

(l

select hour('1970-01-01 15:30:00") ; -— Succeeds, returns 15.

select hour ('1970-01-01 15:30"'"); -— Returns NULL because seconds
field required.

select hour ('1970-01-01 27:30:00") ; -— Returns NULL because hour

value out of range.

| Impala SQL Language Reference | 147

select dayofweek ('2004-06-13"); -- Returns 1, representing
Sunday.

select dayname ('2004-06-13"); -- Returns 'Sunday'.

select date add('2004-06-13', 365); -— Returns 2005-06-13 with zeros
for hh:mm:ss fields.

select day('2004-06-13"); -- Returns 13.

select datediff ('1989-12-31"','1984-09-01"); -- How many days between these 2
dates?

select now () ; -— Returns current date and time

in local timezone.
The following examples demonstrate using TIMESTAMP values with HDFS-backed tables:

create table dates and times (t timestamp);
insert into dates and times values
('1966-07-30"), ('1985-09-25 17:45:30.005"), ('08:30:00"), (now());

The following examples demonstrate using TIMESTAMP values with Kudu tables:

create table timestamp t (x int primary key, s string, t timestamp, b
bigint)

partition by hash (x) partitions 16

stored as kudu;

—-— The default value of now() has microsecond precision, so the final 3
digits

-- representing nanoseconds are all zero.

insert into timestamp t values (1, cast(now() as string), now(),

unix timestamp (now()));

—-— Values with 1-499 nanoseconds are rounded down in the Kudu TIMESTAMP
column.

insert into timestamp t values (2, cast(now() + interval 100 nanoseconds as
string), now() + interval 100 nanoseconds, unix timestamp (now() + interval
100 nanoseconds)) ;

insert into timestamp t values (3, cast(now() + interval 499 nanoseconds as
string), now() + interval 499 nanoseconds, unix timestamp (now() + interval
499 nanoseconds)) ;

-- Values with 500-999 nanoseconds are rounded up in the Kudu TIMESTAMP
column.

insert into timestamp t values (4, cast(now() + interval 500 nanoseconds as
string), now() + interval 500 nanoseconds, unix timestamp (now () + interval
500 nanoseconds)) ;

insert into timestamp t values (5, cast(now() + interval 501 nanoseconds as
string), now() + interval 501 nanoseconds, unix timestamp (now() + interval
501 nanoseconds)) ;

-- The string representation shows how underlying Impala TIMESTAMP can have
nanosecond precision.

—-— The TIMESTAMP column shows how timestamps in a Kudu table are rounded to
microsecond precision.

—-— The BIGINT column represents seconds past the epoch and so if not
affected much by nanoseconds.

select s, t, b from timestamp t order by t;

e et e
fomm +

| s | t (e
|

e e
fomm - +

| 2017-05-31 15:30:05.107157000 | 2017-05-31 15:30:05.107157000 | 1496244605

| Impala SQL Language Reference | 148

| 2017-05-31 15:30:28.868151100 | 2017-05-31 15:30:28.868151000 | 1496244628

|
| 2017-05-31 15:34:33.674692499 | 2017-05-31 15:34:33.674692000 | 1496244873

|
| 2017-05-31 15:35:04.769166500 | 2017-05-31 15:35:04.769167000 | 1496244904

| 2017-05-31 15:35:33.033082501 | 2017-05-31 15:35:33.033083000 | 1496244933

Related information:

» Timestamp Literals on page 185.

» To convert to or from different date formats, or perform date arithmetic, use the date and time functions described
in Impala Date and Time Functions on page 434. In particular, the from unixtime () function requires
a case-sensitive format string such as "yyyy-MM-dd HH:mm:ss.SSSS", matching one of the allowed
variations of a TIMESTAMP value (date plus time, only date, only time, optional fractional seconds).

» See SQL Differences Between Impala and Hive on page 570 for details about differences in TIMESTAMP
handling between Impala and Hive.

TINYINT Data Type
A 1-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name TINYINT

Range: -128 .. 127. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (SMALLINT, INT, or BIGINT) or a floating-
point type (FLOAT or DOUBLE) automatically. Use CAST () to convert to STRING or TIMESTAMP. Casting an
integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting -
use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and
overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest
value in the range for the type. For example, valid values for a tinyint range from -128 to 127. In Impala, a
tinyint with a value of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns 127.

Usage notes:

For a convenient and automated way to check the bounds of the TINYINT type, call the functions MIN TINYINT ()
andMAX_TINYINT(L

If an integer value is too large to be represented as a TINYINT, use a SMALLINT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE tl (x TINYINT);
SELECT CAST (100 AS TINYINT) ;

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE

| Impala SQL Language Reference | 149

LIKE PARQUET syntax, any TINYINT or SMALLINT columns in the original table turn into INT columns in the
new table.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 1-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 148, SMALLINT Data Type on page 132, INT
Data Type on page 127, BIGINT Data Type on page 110, DECIMAL Data Type (Impala 1.4 or higher only) on
page 116, Impala Mathematical Functions on page 403

VARCHAR Data Type (Impala 2.0 or higher only)
A variable-length character type, truncated during processing if necessary to fit within the specified length.
Syntax:

In the column definition of a CREATE TABLE statement:
column name VARCHAR (max lIength)

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:

* This type can be read from and written to Parquet files.

* There is no requirement for a particular level of Parquet.

» Parquet files generated by Impala and containing this type can be freely interchanged with other components such
as Hive and MapReduce.

» Parquet data files can contain values that are longer than allowed by the VARCHAR (n) length limit. Impala
ignores any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files can contain values that are longer than allowed by the VARCHAR (n) length limit. Any extra trailing
characters are ignored when Impala processes those values during a query.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2*¥*31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Schema evolution considerations:

You can use ALTER TABLE ... CHANGE to switch column data types to and from VARCHAR. You can convert
from STRING to VARCHAR (n), or from VARCHAR (n) to STRING, or from CHAR (n) to VARCHAR (n), or from
VARCHAR (n) to CHAR (n) . When switching back and forth between VARCHAR and CHAR, you can also change
the length value. This schema evolution works the same for tables using any file format. If a table contains values

| Impala SQL Language Reference | 150

longer than the maximum length defined for a VARCHAR column, Impala does not return an error. Any extra trailing
characters are ignored when Impala processes those values during a query.

Compatibility:
This type is available in Impala 2.0 or higher.
Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.

Added in: Impala 2.0.0

Column statistics considerations: Because the values of this type have variable size, none of the column statistics
fields are filled in until you run the COMPUTE STATS statement.

Kudu considerations:

Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions:

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

Examples:

The following examples show how long and short VARCHAR values are treated. Values longer than the maximum
specified length are truncated by CAST (), or when queried from existing data files. Values shorter than the
maximum specified length are represented as the actual length of the value, with no extra padding as seen with CHAR
values.

12

create table varchar 1 (s varchar(1l))
create table varchar 4 (s varchar(4));
create table varchar 20 (s varchar (20));

insert into varchar 1 values (cast('a' as varchar(l))), (cast('b' as
varchar(l))), (cast('hello' as varchar(l))), (cast('world' as wvarchar(l))):;
insert into varchar 4 values (cast('a' as varchar(4))), (cast('b' as
varchar(4))), (cast('hello' as varchar(4))), (cast('world' as wvarchar(4))):;
insert into varchar 20 values (cast('a' as varchar(20))), (cast('b'

as varchar (20))), (cast('hello' as varchar(20))), (cast('world' as

varchar (20))) ;

select * from varchar 1;

+———+
| s |

+———+

| a |

| b |

| h |

| w |

+———+

select * from varchar 4;

R + N

| s |

- +

| a |

| b |

| hell |

| worl |

- +

[localhost:21000] > select * from varchar 20;
fm————— + N
| s |

- +

| Impala SQL Language Reference | 151

| hello |

| world |

t————— +

select concat('[',s,']') as s from varchar 20;
o — + N
| s |

t———————— +

| [al |

| [b] |

| [hello] |

| [world] |

o +

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined with
different maximum lengths. Both tables contain 'a' and 'b"' values. The longer 'hello' and 'world' values
from the VARCHAR 20 table were truncated when inserted into the VARCHAR 1 table.

select s from varchar 1 join varchar 20 using (s);

+————— +
| s |
fo————— +
| a |
| b |
+—————— 1

The following examples show how VARCHAR values are freely interchangeable with STRING values in contexts such
as comparison operators and built-in functions:

select length(cast('foo' as varchar (100))) as length;

select cast('xyz' as varchar(5)) > cast('abc' as varchar(10)) as greater;

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Related information:

STRING Data Type on page 133, CHAR Data Type (Impala 2.0 or higher only) on page 113, String Literals on
page 184, Impala String Functions on page 484

Complex Types (Impala 2.3 or higher only)

Complex types (also referred to as nested types) let you represent multiple data values within a single row/column
position. They differ from the familiar column types such as BIGINT and STRING, known as scalar types or
primitive types, which represent a single data value within a given row/column position. Impala supports the complex
types ARRAY, MAP, and STRUCT in Impala 2.3 and higher. The Hive UNION type is not currently supported.

Once you understand the basics of complex types, refer to the individual type topics when you need to refresh your
memory about syntax and examples:

* ARRAY Complex Type (Impala 2.3 or higher only) on page 107
» STRUCT Complex Type (Impala 2.3 or higher only) on page 135

| Impala SQL Language Reference | 152

* MAP Complex Type (Impala 2.3 or higher only) on page 128

Benefits of Impala Complex Types
The reasons for using Impala complex types include the following:

* You already have data produced by Hive or other non-Impala component that uses the complex type column
names. You might need to convert the underlying data to Parquet to use it with Impala.

* Your data model originates with a non-SQL programming language or a NoSQL data management system.
For example, if you are representing Python data expressed as nested lists, dictionaries, and tuples, those data
structures correspond closely to Impala ARRAY, MAP, and STRUCT types.

* Your analytic queries involving multiple tables could benefit from greater locality during join processing. By
packing more related data items within each HDFS data block, complex types let join queries avoid the network
overhead of the traditional Hadoop shuffle or broadcast join techniques.

The Impala complex type support produces result sets with all scalar values, and the scalar components of complex
types can be used with all SQL clauses, such as GROUP BY, ORDER BY, all kinds of joins, subqueries, and inline
views. The ability to process complex type data entirely in SQL reduces the need to write application-specific code in
Java or other programming languages to deconstruct the underlying data structures.

Overview of Impala Complex Types

The ARRAY and MAP types are closely related: they represent collections with arbitrary numbers of elements, where
each element is the same type. In contrast, STRUCT groups together a fixed number of items into a single element.
The parts of a STRUCT element (the fields) can be of different types, and each field has a name.

The elements of an ARRAY or MAP, or the fields of a STRUCT, can also be other complex types. You can construct
elaborate data structures with up to 100 levels of nesting. For example, you can make an ARRAY whose elements are
STRUCTs. Within each STRUCT, you can have some fields that are ARRAY, MAP, or another kind of STRUCT. The
Impala documentation uses the terms complex and nested types interchangeably; for simplicity, it primarily uses the
term complex types, to encompass all the properties of these types.

When visualizing your data model in familiar SQL terms, you can think of each ARRAY or MAP as a miniature table,
and each STRUCT as a row within such a table. By default, the table represented by an ARRAY has two columns, POS
to represent ordering of elements, and I TEM representing the value of each element. Likewise, by default, the table
represented by a MAP encodes key-value pairs, and therefore has two columns, KEY and VALUE.

The ITEM and VALUE names are only required for the very simplest kinds of ARRAY and MAP columns, ones that
hold only scalar values. When the elements within the ARRAY or MAP are of type STRUCT rather than a scalar type,
then the result set contains columns with names corresponding to the STRUCT fields rather than ITEM or VALUE.

You write most queries that process complex type columns using familiar join syntax, even though the data for both
sides of the join resides in a single table. The join notation brings together the scalar values from a row with the
values from the complex type columns for that same row. The final result set contains all scalar values, allowing you
to do all the familiar filtering, aggregation, ordering, and so on for the complex data entirely in SQL or using business
intelligence tools that issue SQL queries.

Behind the scenes, Impala ensures that the processing for each row is done efficiently on a single host, without the
network traffic involved in broadcast or shuffle joins. The most common type of join query for tables with complex
type columns is INNER JOIN, which returns results only in those cases where the complex type contains some
elements. Therefore, most query examples in this section use either the INNER JOIN clause or the equivalent
comma notation.

Note:

Although Impala can query complex types that are present in Parquet files, Impala currently cannot create new
Parquet files containing complex types. Therefore, the discussion and examples presume that you are working with
existing Parquet data produced through Hive, Spark, or some other source. See Constructing Parquet Files with
Complex Columns Using Hive on page 176 for examples of constructing Parquet data files with complex type
columns.

| Impala SQL Language Reference | 153

For learning purposes, you can create empty tables with complex type columns and practice query syntax, even if you
do not have sample data with the required structure.

Design Considerations for Complex Types

When planning to use Impala complex types, and designing the Impala schema, first learn how this kind of schema
differs from traditional table layouts from the relational database and data warehousing fields. Because you might
have already encountered complex types in a Hadoop context while using Hive for ETL, also learn how to write high-
performance analytic queries for complex type data using Impala SQL syntax.

How Complex Types Differ from Traditional Data Warehouse Schemas

Complex types let you associate arbitrary data structures with a particular row. If you are familiar with schema design
for relational database management systems or data warehouses, a schema with complex types has the following
differences:

* Logically, related values can now be grouped tightly together in the same table.
In traditional data warehousing, related values were typically arranged in one of two ways:

» Split across multiple normalized tables. Foreign key columns specified which rows from each table were
associated with each other. This arrangement avoided duplicate data and therefore the data was compact, but
join queries could be expensive because the related data had to be retrieved from separate locations. (In the
case of distributed Hadoop queries, the joined tables might even be transmitted between different hosts in a
cluster.)

» Flattened into a single denormalized table. Although this layout eliminated some potential performance issues
by removing the need for join queries, the table typically became larger because values were repeated. The
extra data volume could cause performance issues in other parts of the workflow, such as longer ETL cycles or
more expensive full-table scans during queries.

Complex types represent a middle ground that addresses these performance and volume concerns. By physically
locating related data within the same data files, complex types increase locality and reduce the expense of join
queries. By associating an arbitrary amount of data with a single row, complex types avoid the need to repeat
lengthy values such as strings. Because Impala knows which complex type values are associated with each row,
you can save storage by avoiding artificial foreign key values that are only used for joins. The flexibility of the
STRUCT, ARRAY, and MAP types lets you model familiar constructs such as fact and dimension tables from a data
warehouse, and wide tables representing sparse matrixes.

Physical Storage for Complex Types

Physically, the scalar and complex columns in each row are located adjacent to each other in the same Parquet data
file, ensuring that they are processed on the same host rather than being broadcast across the network when cross-
referenced within a query. This co-location simplifies the process of copying, converting, and backing all the columns
up at once. Because of the column-oriented layout of Parquet files, you can still query only the scalar columns of a
table without imposing the I/O penalty of reading the (possibly large) values of the composite columns.

Within each Parquet data file, the constituent parts of complex type columns are stored in column-oriented format:

» Each field of a STRUCT type is stored like a column, with all the scalar values adjacent to each other and encoded,
compressed, and so on using the Parquet space-saving techniques.

» For an ARRAY containing scalar values, all those values (represented by the I TEM pseudocolumn) are stored
adjacent to each other.

» For a MAP, the values of the KEY pseudocolumn are stored adjacent to each other. If the VALUE pseudocolumn is
a scalar type, its values are also stored adjacent to each other.

» Ifan ARRAY element, STRUCT field, or MAP VALUE part is another complex type, the column-oriented storage
applies to the next level down (or the next level after that, and so on for deeply nested types) where the final
elements, fields, or values are of scalar types.

The numbers represented by the POS pseudocolumn of an ARRAY are not physically stored in the data files. They are
synthesized at query time based on the order of the ARRAY elements associated with each row.

| Impala SQL Language Reference | 154

File Format Support for Impala Complex Types

Currently, Impala queries support complex type data only in the Parquet file format. See Using the Parquet File
Format with Impala Tables on page 661 for details about the performance benefits and physical layout of this file
format.

Each table, or each partition within a table, can have a separate file format, and you can change file format at the table
or partition level through an ALTER TABLE statement. Because this flexibility makes it difficult to guarantee ahead
of time that all the data files for a table or partition are in a compatible format, Impala does not throw any errors when
you change the file format for a table or partition using ALTER TABLE. Any errors come at runtime when Impala
actually processes a table or partition that contains nested types and is not in one of the supported formats. If a query
on a partitioned table only processes some partitions, and all those partitions are in one of the supported formats, the
query succeeds.

Because Impala does not parse the data structures containing nested types for unsupported formats such as text, Avro,
SequenceFile, or RCFile, you cannot use data files in these formats with Impala, even if the query does not refer to
the nested type columns. Also, if a table using an unsupported format originally contained nested type columns, and
then those columns were dropped from the table using ALTER TABLE ... DROP COLUMN, any existing data
files in the table still contain the nested type data and Impala queries on that table will generate errors.

Note:

The one exception to the preceding rule is COUNT (*) queries on RCFile tables that include complex types. Such
queries are allowed in Impala 2.6 and higher.

You can perform DDL operations (even CREATE TABLE) for tables involving complex types in file formats other
than Parquet. The DDL support lets you set up intermediate tables in your ETL pipeline, to be populated by Hive,
before the final stage where the data resides in a Parquet table and is queryable by Impala. Also, you can have a
partitioned table with complex type columns that uses a non-Parquet format, and use ALTER TABLE to change
the file format to Parquet for individual partitions. When you put Parquet data files into those partitions, Impala can
execute queries against that data as long as the query does not involve any of the non-Parquet partitions.

If you use the parquet-tools command to examine the structure of a Parquet data file that includes complex
types, you see that both ARRAY and MAP are represented as a Bag in Parquet terminology, with all fields marked
Optional because Impala allows any column to be nullable.

Impala supports either 2-level and 3-level encoding within each Parquet data file. When constructing Parquet data
files outside Impala, use either encoding style but do not mix 2-level and 3-level encoding within the same data file.

Choosing Between Complex Types and Normalized Tables

Choosing between multiple normalized fact and dimension tables, or a single table containing complex types, is an
important design decision.

» If you are coming from a traditional database or data warehousing background, you might be familiar with how to
split up data between tables. Your business intelligence tools might already be optimized for dealing with this kind
of multi-table scenario through join queries.

» Ifyou are pulling data from Impala into an application written in a programming language that has data structures
analogous to the complex types, such as Python or Java, complex types in Impala could simplify data interchange
and improve understandability and reliability of your program logic.

* You might already be faced with existing infrastructure or receive high volumes of data that assume one layout
or the other. For example, complex types are popular with web-oriented applications, for example to keep
information about an online user all in one place for convenient lookup and analysis, or to deal with sparse or
constantly evolving data fields.

» If some parts of the data change over time while related data remains constant, using multiple normalized tables
lets you replace certain parts of the data without reloading the entire data set. Conversely, if you receive related
data all bundled together, such as in JSON files, using complex types can save the overhead of splitting the related
items across multiple tables.

* From a performance perspective:

+ In Parquet tables, Impala can skip columns that are not referenced in a query, avoiding the I/O penalty of
reading the embedded data. When complex types are nested within a column, the data is physically divided

| Impala SQL Language Reference | 155

at a very granular level; for example, a query referring to data nested multiple levels deep in a complex type
column does not have to read all the data from that column, only the data for the relevant parts of the column
type hierarchy.

» Complex types avoid the possibility of expensive join queries when data from fact and dimension tables is
processed in parallel across multiple hosts. All the information for a row containing complex types is typically
to be in the same data block, and therefore does not need to be transmitted across the network when joining
fields that are all part of the same row.

* The tradeoff with complex types is that fewer rows fit in each data block. Whether it is better to have more
data blocks with fewer rows, or fewer data blocks with many rows, depends on the distribution of your data
and the characteristics of your query workload. If the complex columns are rarely referenced, using them
might lower efficiency. If you are seeing low parallelism due to a small volume of data (relatively few data
blocks) in each table partition, increasing the row size by including complex columns might produce more data
blocks and thus spread the work more evenly across the cluster. See Scalability Considerations for Impala on
page 636 for more on this advanced topic.

Differences Between Impala and Hive Complex Types

Impala can query Parquet tables containing ARRAY, STRUCT, and MAP columns produced by Hive. There are some
differences to be aware of between the Impala SQL and HiveQL syntax for complex types, primarily for queries.

The syntax for specifying ARRAY, STRUCT, and MAP types in a CREATE TABLE statement is compatible between
Impala and Hive.

Because Impala STRUCT columns include user-specified field names, you use the NAMED STRUCT () constructor
in Hive rather than the STRUCT () constructor when you populate an Impala STRUCT column using a Hive INSERT
statement.

The Hive UNION type is not currently supported in Impala.

While Impala usually aims for a high degree of compatibility with HiveQL query syntax, Impala syntax differs
from Hive for queries involving complex types. The differences are intended to provide extra flexibility for queries
involving these kinds of tables.

» Impala uses dot notation for referring to element names or elements within complex types, and join notation
for cross-referencing scalar columns with the elements of complex types within the same row, rather than the
LATERAL VIEW clause and EXPLODE () function of HiveQL.

» Using join notation lets you use all the kinds of join queries with complex type columns. For example, you can
use a LEFT OUTER JOIN, LEFT ANTI JOIN,or LEFT SEMI JOIN query to evaluate different scenarios
where the complex columns do or do not contain any elements.

* You can include references to collection types inside subqueries and inline views. For example, you can construct
a FROM clause where one of the “tables” is a subquery against a complex type column, or use a subquery against a
complex type column as the argument to an IN or EXISTS clause.

* The Impala pseudocolumn POS lets you retrieve the position of elements in an array along with the elements
themselves, equivalent to the POSEXPLODE () function of HiveQL. You do not use index notation to retrieve a
single array element in a query; the join query loops through the array elements and you use WHERE clauses to
specify which elements to return.

+ Join clauses involving complex type columns do not require an ON or USING clause. Impala implicitly applies the
join key so that the correct array entries or map elements are associated with the correct row from the table.

» Impala does not currently support the UNION complex type.

Limitations and Restrictions for Complex Types
Complex type columns can only be used in tables or partitions with the Parquet file format.
Complex type columns cannot be used as partition key columns in a partitioned table.

When you use complex types with the ORDER BY, GROUP BY, HAVING, or WHERE clauses, you cannot refer to
the column name by itself. Instead, you refer to the names of the scalar values within the complex type, such as the
ITEM, POS, KEY, or VALUE pseudocolumns, or the field names from a STRUCT.

The maximum depth of nesting for complex types is 100 levels.

| Impala SQL Language Reference | 156

The maximum length of the column definition for any complex type, including declarations for any nested types, is
4000 characters.

For ideal performance and scalability, use small or medium-sized collections, where all the complex columns contain
at most a few hundred megabytes per row. Remember, all the columns of a row are stored in the same HDFS data
block, whose size in Parquet files typically ranges from 256 MB to 1 GB.

Including complex type columns in a table introduces some overhead that might make queries that do not reference
those columns somewhat slower than Impala queries against tables without any complex type columns. Expect at
most a 2x slowdown compared to tables that do not have any complex type columns.

Currently, the COMPUTE STATS statement does not collect any statistics for columns containing complex types.
Impala uses heuristics to construct execution plans involving complex type columns.

Currently, Impala built-in functions and user-defined functions cannot accept complex types as parameters or produce
them as function return values. (When the complex type values are materialized in an Impala result set, the result set
contains the scalar components of the values, such as the POS or ITEM for an ARRAY, the KEY or VALUE for a MAP,
or the fields of a STRUCT; these scalar data items can be used with built-in functions and UDFs as usual.)

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or INSERT ... SELECT. To create data files
containing complex type data, use the Hive INSERT statement, or another ETL mechanism such as MapReduce jobs,
Spark jobs, Pig, and so on.

Currently, Impala can query complex type columns only from Parquet tables or Parquet partitions within partitioned
tables. Although you can use complex types in tables with Avro, text, and other file formats as part of your ETL
pipeline, for example as intermediate tables populated through Hive, doing analytics through Impala requires that the
data eventually ends up in a Parquet table. The requirement for Parquet data files means that you can use complex
types with Impala tables hosted on other kinds of file storage systems such as Isilon and Amazon S3, but you cannot
use Impala to query complex types from HBase tables. See File Format Support for Impala Complex Types on page
154 for more details.

Using Complex Types from SQL

When using complex types through SQL in Impala, you learn the notation for < > delimiters for the complex type
columns in CREATE TABLE statements, and how to construct join queries to “unpack” the scalar values nested
inside the complex data structures. You might need to condense a traditional RDBMS or data warehouse schema
into a smaller number of Parquet tables, and use Hive, Spark, Pig, or other mechanism outside Impala to populate the
tables with data.

Complex Type Syntax for DDL Statements
The definition of data_type, as seen in the CREATE TABLE and ALTER TABLE statements, now includes complex

types in addition to primitive types:

primitive type
| array type

| map_type
| struct type

Unions are not currently supported.

Array, struct, and map column type declarations are specified in the CREATE TABLE statement. You can also add or
change the type of complex columns through the ALTER TABLE statement.

Note:

Currently, Impala queries allow complex types only in tables that use the Parquet format. If an Impala query
encounters complex types in a table or partition using another file format, the query returns a runtime error.

The Impala DDL support for complex types works for all file formats, so that you can create tables using text or other
non-Parquet formats for Hive to use as staging tables in an ETL cycle that ends with the data in a Parquet table. You

| Impala SQL Language Reference | 157

can alsouse ALTER TABLE ... SET FILEFORMAT PARQUET to change the file format of an existing table
containing complex types to Parquet, after which Impala can query it. Make sure to load Parquet files into the table
after changing the file format, because the ALTER TABLE ... SET FILEFORMAT statement does not convert
existing data to the new file format.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Because use cases for Impala complex types require that you already have Parquet data files produced outside of
Impala, you can use the Impala CREATE TABLE LIKE PARQUET syntax to produce a table with columns that
match the structure of an existing Parquet file, including complex type columns for nested data structures. Remember
to include the STORED AS PARQUET clause in this case, because even with CREATE TABLE LIKE PARQUET,
the default file format of the resulting table is still text.

Because the complex columns are omitted from the result set of an Impala SELECT * or SELECT col name
query, and because Impala currently does not support writing Parquet files with complex type columns, you cannot
use the CREATE TABLE AS SELECT syntax to create a table with nested type columns.

Note:

Once you have a table set up with complex type columns, use the DESCRIBE and SHOW CREATE TABLE
statements to see the correct notation with < and > delimiters and comma and colon separators within the complex
type definitions. If you do not have existing data with the same layout as the table, you can query the empty table to
practice with the notation for the SELECT statement. In the SELECT list, you use dot notation and pseudocolumns
such as ITEM, KEY, and VALUE for referring to items within the complex type columns. In the FROM clause, you use
join notation to construct table aliases for any referenced ARRAY and MAP columns.

For example, when defining a table that holds contact information, you might represent phone numbers differently
depending on the expected layout and relationships of the data, and how well you can predict those properties in
advance.

Here are different ways that you might represent phone numbers in a traditional relational schema, with equivalent
representations using complex types.

The traditional, simplest way to represent phone numbers in a relational table is to store all contact info in a single
table, with all columns having scalar types, and each potential phone number represented as a separate column. In this
example, each person can only have these 3 types of phone numbers. If the person does not have a particular kind of
phone number, the corresponding column is NULL for that row.

CREATE TABLE contacts fixed phones
(
id BIGINT
, name STRING
, address STRING
, home phone STRING
. work:phone STRING
, mobile phone STRING
S

) STORED AS PARQUET;

Figure 1: Traditional Relational Representation of Phone Numbers: Single Table

Using a complex type column to represent the phone numbers adds some extra flexibility. Now there could be an
unlimited number of phone numbers. Because the array elements have an order but not symbolic names, you could
decide in advance that phone number[0] is the home number, [1] is the work number, [2] is the mobile number, and
so on. (In subsequent examples, you will see how to create a more flexible naming scheme using other complex type
variations, such as a MAP or an ARRAY where each element is a STRUCT.)

CREATE TABLE contacts array of phones
(
id BIGINT
, name STRING

| Impala SQL Language Reference | 158

, address STRING
; phone number ARRAY < STRING >
) STORED AS PARQUET;

Figure 2: An Array of Phone Numbers

Another way to represent an arbitrary set of phone numbers is with a MAP column. With a MAP, each element is
associated with a key value that you specify, which could be a numeric, string, or other scalar type. This example uses
a STRING key to give each phone number a name, such as 'home' or 'mobile'. A query could filter the data
based on the key values, or display the key values in reports.

CREATE TABLE contacts unlimited phones

(
id BIGINT, name STRING, address STRING, phone number MAP < STRING, STRING >

) STORED AS PARQUET;

Figure 3: A Map of Phone Numbers

If you are an experienced database designer, you already know how to work around the limitations of the single-
table schema from Figure 1: Traditional Relational Representation of Phone Numbers: Single Table on page 157.
By normalizing the schema, with the phone numbers in their own table, you can associate an arbitrary set of phone
numbers with each person, and associate additional details with each phone number, such as whether it is a home,
work, or mobile phone.

The flexibility of this approach comes with some drawbacks. Reconstructing all the data for a particular person
requires a join query, which might require performance tuning on Hadoop because the data from each table might be
transmitted from a different host. Data management tasks such as backups and refreshing the data require dealing with
multiple tables instead of a single table.

This example illustrates a traditional database schema to store contact info normalized across 2 tables. The fact table
establishes the identity and basic information about person. A dimension table stores information only about phone
numbers, using an ID value to associate each phone number with a person ID from the fact table. Each person can
have 0, 1, or many phones; the categories are not restricted to a few predefined ones; and the phone table can contain
as many columns as desired, to represent all sorts of details about each phone number.

CREATE TABLE fact contacts (id BIGINT, name STRING, address STRING) STORED
AS PARQUET;

CREATE TABLE dim phones

(

contact id BIGINT

category STRING
international code STRING
area code STRING

exchange STRING

extension STRING

mobile BOOLEAN

carrier STRING

current BOOLEAN

service start date TIMESTAMP
service end date TIMESTAMP

N N N N N N N SN SN~

)
STORED AS PARQUET;

Figure 4: Traditional Relational Representation of Phone Numbers: Normalized Tables

To represent a schema equivalent to the one from Figure 4: Traditional Relational Representation of Phone Numbers:
Normalized Tables on page 158 using complex types, this example uses an ARRAY where each array element is

| Impala SQL Language Reference | 159

a STRUCT. As with the earlier complex type examples, each person can have an arbitrary set of associated phone
numbers. Making each array element into a STRUCT lets us associate multiple data items with each phone number,
and give a separate name and type to each data item. The STRUCT fields of the ARRAY elements reproduce the
columns of the dimension table from the previous example.

You can do all the same kinds of queries with the complex type schema as with the normalized schema from the
previous example. The advantages of the complex type design are in the areas of convenience and performance.

Now your backup and ETL processes only deal with a single table. When a query uses a join to cross-reference the
information about a person with their associated phone numbers, all the relevant data for each row resides in the same
HDFS data block, meaning each row can be processed on a single host without requiring network transmission.

CREATE TABLE contacts detailed phones
(
id BIGINT, name STRING, address STRING
, phone ARRAY < STRUCT <
category: STRING
, international code: STRING
, area code: STRING
, exchange: STRING
, extension: STRING
, mobile: BOOLEAN
, carrier: STRING
, current: BOOLEAN
, service start date: TIMESTAMP
, service end date: TIMESTAMP
>> -
) STORED AS PARQUET;

Figure 5: Phone Numbers Represented as an Array of Structs

SQL Statements that Support Complex Types

The Impala SQL statements that support complex types are currently CREATE TABLE, ALTER TABLE,
DESCRIBE, LOAD DATA, and SELECT. That is, currently Impala can create or alter tables containing complex type
columns, examine the structure of a table containing complex type columns, import existing data files containing
complex type columns into a table, and query Parquet tables containing complex types.

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or INSERT ... SELECT. To create data files
containing complex type data, use the Hive INSERT statement, or another ETL mechanism such as MapReduce jobs,
Spark jobs, Pig, and so on.

DDL Statements and Complex Types

Column specifications for complex or nested types use < and > delimiters:

-- What goes inside the < > for an ARRAY is a single type, either a scalar
or another
-- complex type (ARRAY, STRUCT, or MAP).
CREATE TABLE array t
(
id BIGINT,
al ARRAY <STRING>,
a2 ARRAY <BIGINT>,
a3 ARRAY <TIMESTAMP>,
a4 ARRAY <STRUCT <fl: STRING, f2: INT, f3: BOOLEAN>>
)
STORED AS PARQUET;

| Impala SQL Language Reference | 160

-- What goes inside the < > for a MAP is two comma-separated types
specifying the types of the key-value pair:
-- a scalar type representing the key, and a scalar or complex type
representing the value.
CREATE TABLE map t
(
id BIGINT,
ml MAP <STRING, STRING>,
m2 MAP <STRING, BIGINT>,
m3 MAP <BIGINT, STRING>,
m4 MAP <BIGINT, BIGINT>,
m5 MAP <STRING, ARRAY <STRING>>

)
STORED AS PARQUET;

—-— What goes inside the < > for a STRUCT is a comma-separated list of
fields, each field defined as

-- name:type. The type can be a scalar or a complex type. The field names
for each STRUCT do not clash

-- with the names of table columns or fields in other STRUCTs. A STRUCT is
most often used inside

—-- an ARRAY or a MAP rather than as a top-level column.

CREATE TABLE struct t

(
id BIGINT,
sl STRUCT <fl: STRING, f2: BIGINT>,
s2 ARRAY <STRUCT <fl: INT, £2: TIMESTAMP>>,
s3 MAP <BIGINT, STRUCT <name: STRING, birthday: TIMESTAMP>>

)
STORED AS PARQUET;

Queries and Complex Types

The result set of an Impala query always contains all scalar types; the elements and fields within any complex type
queries must be “unpacked” using join queries. A query cannot directly retrieve the entire value for a complex type
column. Impala returns an error in this case. Queries using SELECT * are allowed for tables with complex types, but
the columns with complex types are skipped.

The following example shows how referring directly to a complex type column returns an error, while SELECT * on
the same table succeeds, but only retrieves the scalar columns.

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
174 for the table definitions.

SELECT c_orders FROM customer LIMIT 1;
ERROR: AnalysisException: Expr 'c orders' in select list returns a

complex type 'ARRAY<STRUCT<o orderkey:BIGINT,o orderstatus:STRING,

1 receiptdate:STRING,1 shipinstruct:STRING,1l shipmode:STRING,1 comment:STRING>>>>'.
Only scalar types are allowed in the select list.

-- Original column has several scalar and one complex column.
DESCRIBE customer;

o —— B ettt +
| name | type |
- +--— +
| ¢ custkey | bigint

| c:name | string

| c_orders | array<struct<

| | o_orderkey:bigint, |
| | o_orderstatus:string, |

| Impala SQL Language Reference | 161

| | o totalprice:decimal(12,2), |

—-— When we SELECT * from that table, only the scalar columns come back in

the result set.
CREATE TABLE select_star_customer STORED AS PARQUET AS SELECT * FROM

customer;
B ettt +
| summary |
o +
| Inserted 150000 row(s) |
o +

-— The c_orders column, being of complex type, was not included in the
SELECT * result set.
DESC select star customer;

oo me=e o= +
| name | type |
o= o= +
c_custkey bigint
C_name string
c address string
c:nationkey smallint

c:acctbal decimal (12, 2)
c_mktsegment string

| |
| |
| |
| |
c_phone | string
| |
| |
Cc_comment | string |

References to fields within STRUCT columns use dot notation. If the field name is unambiguous, you can omit
qualifiers such as table name, column name, or even the ITEM or VALUE pseudocolumn names for STRUCT elements
inside an ARRAY or a MAP.

SELECT id, address.city FROM customers WHERE address.zip = 94305;
References to elements within ARRAY columns use the ITEM pseudocolumn:

select r name, r nations.item.n name from region, region.r nations limit 7;

| r name | item.n name |
e fom - +
EUROPE	UNITED KINGDOM
EUROPE	RUSSIA
EUROPE	ROMANIA
EUROPE	GERMANY
EUROPE	FRANCE

| ASIA | VIETNAM |
| ASIA | CHINA

fomm - o +

References to fields within MAP columns use the KEY and VALUE pseudocolumns. In this example, once the query
establishes the alias MAP_FIELD for a MAP column with a STRING key and an INT value, the query can refer

to MAP FIELD.KEY and MAP FIELD.VALUE, which have zero, one, or many instances for each row from the
containing table.

DESCRIBE table 0;

| Impala SQL Language Reference | 162

| field 0 | string |
| field 1 | map<string,int> |

SELECT field 0, map field.key, map field.value
FROM table 0, table 0.field 1 AS map field

WHERE length (field 0) =1

LIMIT 10; B

t——————— t—————_— t————— +
| field 0 | key | value |
e e —_—— t————— +
| b | gshsgkvd | NULL |
| b | twrtcxj6e | 18

b	2vp5	39
b	fhOs	13
v	2	41
v	8b58mz	20
v	hw	16
v	651388pyt	29

| v | 03k68g91z | 30

| v | r2hlg5b | NULL |
t—————— o —_—_— t————— +

When complex types are nested inside each other, you use a combination of joins, pseudocolumn names, and dot
notation to refer to specific fields at the appropriate level. This is the most frequent form of query syntax for complex
columns, because the typical use case involves two levels of complex types, such as an ARRAY of STRUCT elements.

SELECT id, phone numbers.area code FROM contact info many structs INNER JOIN
contact info many structs.phone numbers phone numbers LIMIT 3;

You can express relationships between ARRAY and MAP columns at different levels as joins. You include comparison
operators between fields at the top level and within the nested type columns so that Impala can do the appropriate join
operation.

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
174 for the table definitions.

For example, the following queries work equivalently. They each return customer and order data for customers that
have at least one order.

SELECT c.c_name, 0.0 orderkey FROM customer ¢, c.c orders o LIMIT 5;

o t—————_—— +
| ¢ name | o orderkey |
e~ e +
Customer#000072578	558821
Customer#000072578	2079810
Customer#000072578	5768068
Customer#000072578	1805604
Customer#000072578	3436389
e e ————— +

SELECT c.c _name, 0.0 orderkey FROM customer c INNER JOIN c.c orders o LIMIT

5;
o tm————_—— +
| ¢ name | o orderkey |
e~ e +
Customer#000072578	558821
Customer#000072578	2079810
Customer#000072578	5768068
Customer#000072578	1805604

| Impala SQL Language Reference | 163

| Customer#000072578 | 3436389 |
e e —_— +

The following query using an outer join returns customers that have orders, plus customers with no orders (no entries
in the C_ORDERS array):

SELECT c.c _custkey, o.0 orderkey
FROM customer ¢ LEFT OUTER JOIN c.c orders o

LIMIT 5;

o o ——— +
| ¢ custkey | o orderkey |
Fmm Fmm +
60210	NULL
147873	NULL
72578	558821
72578	2079810
72578	5768068
o o — +

The following query returns only customers that have no orders. (With LEFT ANTI JOINor LEFT SEMI JOIN,
the query can only refer to columns from the left-hand table, because by definition there is no matching information in
the right-hand table.)

SELECT c.c_custkey, c.c name
FROM customer ¢ LEFT ANTI JOIN c.c _orders o

LIMIT 5;

e e +
| ¢ custkey | c name

fmm e +
60210	Customer#000060210
147873	Customer#000147873
141576	Customer#000141576
85365	Customer#000085365
70998	Customer#000070998
t——_ e +

You can also perform correlated subqueries to examine the properties of complex type columns for each row in the
result set.

Count the number of orders per customer. Note the correlated reference to the table alias C. The COUNT (*) operation
applies to all the elements of the C_ ORDERS array for the corresponding row, avoiding the need for a GROUP BY
clause.

select ¢ _name, howmany FROM customer c, (SELECT COUNT (*) howmany FROM
c.c_orders) v limit 5;

e t——— +
| ¢ name | howmany |
e t——_ +
Customer#000030065	15
Customer#000065455	18
Customer#000113644	21
Customer#000111078	O
Customer#000024621	O
e t——_ +

Count the number of orders per customer, ignoring any customers that have not placed any orders:

SELECT c_name, howmany orders
FROM

| Impala SQL Language Reference | 164

customer c,
(SELECT COUNT (*) howmany orders FROM c.c orders) subgl
WHERE howmany orders > 0

LIMIT 5;

e e ————— +
| ¢ name | howmany orders |
Fmm Fom————— ———————— +
| Customer#000072578 | 7

| Customer#000046378 | 26

| Customer#000069815 | 11

| Customer#000079058 | 12

| Customer#000092239 | 26
o — o —— +

Count the number of line items in each order. The reference to C.C_ORDERS in the FROM clause is needed because
the O _ORDERKEY field is a member of the elements in the C_ORDERS array. The subquery labelled SUBQ1 is
correlated: it is re-evaluated for the C_ ORDERS.O_ LINEITEMS array from each row of the CUSTOMERS table.

SELECT c_name, o_orderkey, howmany line items
FROM

customer c,

c.c_orders t2,

(SELECT COUNT (*) howmany line items FROM c.c orders.o lineitems) subgl
WHERE howmany line items > 0

LIMIT 5;

o o ——— o +
| ¢ name | o orderkey | howmany line items |
T ____ YT ____ Yo ___ T T _____ +
| Customer#000020890 | 1884930 | 95

| Customer#000020890 | 4570754 | 95

| Customer#000020890 | 3771072 | 95

| Customer#000020890 | 2555489 | 95

| Customer#000020890 | 919171 | 95
e o ——— e +

Get the number of orders, the average order price, and the maximum items in any order per customer. For this
example, the subqueries labelled SUBQ1 and SUBQ2 are correlated: they are re-evaluated for each row from the
original CUSTOMER table, and only apply to the complex columns associated with that row.

SELECT c_name, howmany, average price, most items
FROM
customer c,
(SELECT COUNT (*) howmany, AVG (o _totalprice) average price FROM c.c_orders)

subqgl,
(SELECT MAX (1l quantity) most items FROM c.c orders.o lineitems) subg2

LIMIT 5;

o fo—— et fo— 1
| ¢ name | howmany | average price | most items |
e fmm fmm————— ——————- R ——————- +
| Customer#000030065 | 15 | 128908.34 | 50.00

| Customer#000088191 | O | NULL | NULL

| Customer#000101555 | 10 | 164250.31 | 50.00

| Customer#000022092 | O | NULL | NULL

| Customer#000036277 | 27 | 166040.06 | 50.00

fom e o —— tom +

For example, these queries show how to access information about the ARRAY elements within the CUSTOMER table
from the “nested TPC-H” schema, starting with the initial ARRAY elements and progressing to examine the STRUCT
fields of the ARRAY, and then the elements nested within another ARRAY of STRUCT:

—-—- How many orders does each customer have?

| Impala SQL Language Reference | 165

-- The type of the ARRAY column doesn't matter, this is just counting the
elements.
SELECT c_custkey, count (*)
FROM customer, customer.c orders
GROUP BY c custkey

LIMIT 5;

o —— o +
| ¢ custkey | count(*) |
fmm fmm +
61081	21
115987	15
69685	19
109124	15
50491	12
o —— e +

-- How many line items are part of each customer order?
-- Now we examine a field from a STRUCT nested inside the ARRAY.
SELECT c custkey, c orders.o orderkey, count (*)

FROM customer, customer.c orders c_orders, c_orders.o lineitems
GROUP BY c_custkey, c orders.o orderkey

LIMIT 5;

S e Fommmmmemmee= e e +
| c custkey | o orderkey | count(*) |
Fmm Fmm Fmm +
| 63367 | 4985959 |7

| 53989 | 1972230 | 2 |
| 143513 | 5750498 | 5 |
| 17849 | 4857989 | 1

| 89881 | 1046437 | 1
Fommmmmmmo=e e Fommmmmmm=e +

-— What are the line items in each customer order?
—-— One of the STRUCT fields inside the ARRAY is another
-- ARRAY containing STRUCT elements. The join finds
-— all the related items from both levels of ARRAY.
SELECT c custkey, o orderkey, 1 partkey

FROM customer, customer.c orders, c_orders.o lineitems

LIMIT 5;

Fo— o —— Fo— +
| ¢ _custkey | o orderkey | 1 partkey |
o = o +
113644	2738497	175846
113644	2738497	27309
113644	2738497	175873
113644	2738497	88559
113644	2738497	8032
o = o +

Pseudocolumns for ARRAY and MAP Types

Each element in an ARRAY type has a position, indexed starting from zero, and a value. Each element in a MAP type
represents a key-value pair. Impala provides pseudocolumns that let you retrieve this metadata as part of a query, or
filter query results by including such things in a WHERE clause. You refer to the pseudocolumns as part of qualified
column names in queries:

* ITEM: The value of an array element. If the ARRAY contains STRUCT elements, you can refer to either
array name.ITEM. field name or use the shorthand array name.field name.

* POS: The position of an element within an array.

* KEY: The value forming the first part of a key-value pair in a map. It is not necessarily unique.

| Impala SQL Language Reference | 166

* VALUE: The data item forming the second part of a key-value pair in a map. If the VALUE part of the MAP
element is a STRUCT, you can refer to either map name.VALUE. field name or use the shorthand
map name.field name.

ITEM and POS Pseudocolumns

When an ARRAY column contains STRUCT elements, you can refer to a field within the STRUCT using a qualified
name of the form array column.field name. If the ARRAY contains scalar values, Impala recognizes the
special name array column.ITEM to represent the value of each scalar array element. For example, if a column
contained an ARRAY where each element was a STRING, you would use array name.ITEM to refer to each scalar
value in the SELECT list, or the WHERE or other clauses.

This example shows a table with two ARRAY columns whose elements are of the scalar type STRING. When referring
to the values of the array elements in the SELECT list, WHERE clause, or ORDER BY clause, you use the ITEM
pseudocolumn because within the array, the individual elements have no defined names.

create TABLE persons of interest
(

person_id BIGINT,

aliases ARRAY <STRING>,
associates ARRAY <STRING>,

real name STRING

)
STORED AS PARQUET;

-- Get all the aliases of each person.
SELECT real name, aliases.ITEM

FROM persons of interest, persons of interest.aliases
ORDER BY real name, aliases.item;

-- Search for particular associates of each person.
SELECT real name, associates.ITEM

FROM persons_ of interest, persons of interest.associates
WHERE associates.item LIKE '$ MacGuffin';

Because an array is inherently an ordered data structure, Impala recognizes the special name array column.POS
to represent the numeric position of each element within the array. The POS pseudocolumn lets you filter or reorder
the result set based on the sequence of array elements.

The following example uses a table from a flattened version of the TPC-H schema. The REGION table only has a few
rows, such as one row for Europe and one for Asia. The row for each region represents all the countries in that region
as an ARRAY of STRUCT elements:

[localhost:21000] > desc region;

+ _____________
e +
| name | type
|
+ _____________
e +
| r regionkey | smallint
|
| r name | string
|
| r comment | string

|
| r nations |
array<struct<n nationkey:smallint,n name:string,n comment:string>> |

| Impala SQL Language Reference | 167

To find the countries within a specific region, you use a join query. To find out the order of elements in the array, you
also refer to the POS pseudocolumn in the select list:

[localhost:21000] > SELECT rl.r name, r2.n name, r2.POS
> FROM region rl INNER JOIN rl.r nations r2

> WHERE rl.r name = 'ASIA';
fmm R R +
| r name | n name | pos |
o ———— o ——— t———— +
| ASIA | VIETNAM | O |
| ASIA | CHINA | 1 |
| ASIA | JAPAN | 2 [
| ASIA | INDONESIA | 3 |
| ASIA | INDIA | 4 |
o ——— o t———— +

Once you know the positions of the elements, you can use that information in subsequent queries, for example to
change the ordering of results from the complex type column or to filter certain elements from the array:

[localhost:21000] > SELECT rl.r name, r2.n name, r2.POS
> FROM region rl INNER JOIN rl.r nations r2

> WHERE rl.r name = 'ASIA'
> ORDER BY r2.POS DESC;

o o +———— +

| r name | n name | pos |

o o ——— - +

| ASIA | INDIA | 4 |

| ASIA | INDONESIA | 3 |

| ASIA | JAPAN |2 |

| ASIA | CHINA | 1 |

| ASIA | VIETNAM | 0 |

o o ——— - +

[localhost:21000] > SELECT rl.r name, r2.n name, r2.POS
> FROM region rl INNER JOIN rl.r nations r2

> WHERE rl.r name = 'ASIA' AND r2.POS BETWEEN 1 and 3;
fom R +————- +
| r name | n name | pos |
fmm————— Fmm e +
| ASIA | CHINA 1
| ASIA | JAPAN |2 |
| ASIA | INDONESIA | 3 |
fom R +————- +

KEY and VALUE Pseudocolumns

The MAP data type is suitable for representing sparse or wide data structures, where each row might only have

entries for a small subset of named fields. Because the element names (the map keys) vary depending on the row,

a query must be able to refer to both the key and the value parts of each key-value pair. The KEY and VALUE
pseudocolumns let you refer to the parts of the key-value pair independently within the query, as map column.KEY
and map column.VALUE.

The KEY must always be a scalar type, such as STRING, BIGINT, or TIMESTAMP. It can be NULL. Values of the
KEY field are not necessarily unique within the same MAP. You apply any required DISTINCT, GROUP BY, and
other clauses in the query, and loop through the result set to process all the values matching any specified keys.

The VALUE can be cither a scalar type or another complex type. If the VALUE is a STRUCT, you can construct
a qualified name map column.VALUE. struct fieldto refer to the individual fields inside the value
part. If the VALUE is an ARRAY or another MAP, you must include another join condition that establishes a
table alias for map column.VALUE, and then construct another qualified name using that alias, for example
table alias.ITEMor table alias.KEY and table alias.VALUE

| Impala SQL Language Reference | 168

The following example shows different ways to access a MAP column using the KEY and VALUE pseudocolumns. The
DETAILS column has a STRING first part with short, standardized values such as 'Recurring', 'Lucid"', or
'Anxiety’'. This is the “key” that is used to look up particular kinds of elements from the MAP. The second part,
also a STRING, is a longer free-form explanation. Impala gives you the standard pseudocolumn names KEY and
VALUE for the two parts, and you apply your own conventions and interpretations to the underlying values.

Note: If you find that the single-item nature of the VALUE makes it difficult to model your data accurately, the
solution is typically to add some nesting to the complex type. For example, to have several sets of key-value pairs,
make the column an ARRAY whose elements are MAP. To make a set of key-value pairs that holds more elaborate
information, make a MAP column whose VALUE part contains an ARRAY or a STRUCT.

CREATE TABLE dream journal
(
dream id BIGINT,
details MAP <STRING, STRING>

)
STORED AS PARQUET;

—-— What are all the types of dreams that are recorded?
SELECT DISTINCT details.KEY FROM dream journal, dream journal.details;

—-— How many lucid dreams were recorded?
—-- Because there is no GROUP BY, we count the 'Lucid' keys across all rows.
SELECT COUNT (details.KEY)
FROM dream journal, dream journal.details
WHERE details.KEY = 'Lucid';

-- Print a report of a subset of dreams, filtering based on both the lookup
key

-- and the detailed value.

SELECT dream id, details.KEY AS "Dream Type", details.VALUE AS "Dream
Summary"

FROM dream journal, dream journal.details

WHERE

details.KEY IN ('Happy', 'Pleasant', 'Joyous')

AND details.VALUE LIKE '$%$childhood$%'’;

The following example shows a more elaborate version of the previous table, where the VALUE part of the MAP entry
is a STRUCT rather than a scalar type. Now instead of referring to the VALUE pseudocolumn directly, you use dot
notation to refer to the STRUCT fields inside it.

CREATE TABLE better dream journal

(
dream id BIGINT,
details MAP <STRING, STRUCT <summary: STRING, when happened: TIMESTAMP,
duration: DECIMAL (5,2), woke up: BOOLEAN> >

)

STORED AS PARQUET;

-- Do more elaborate reporting and filtering by examining multiple
attributes within the same dream.
SELECT dream id, details.KEY AS "Dream Type", details.VALUE.summary AS

"Dream Summary", details.VALUE.duration AS "Duration"

FROM better dream journal, better dream journal.details
WHERE

details.KEY IN ('Anxiety', 'Nightmare')

AND details.VALUE.duration > 60

AND details.VALUE.woke_up = TRUE;

-— Remember that if the ITEM or VALUE contains a STRUCT, you can reference

| Impala SQL Language Reference | 169

-— the STRUCT fields directly without the .ITEM or .VALUE qualifier.
SELECT dream id, details.KEY AS "Dream Type", details.summary AS "Dream

Summary", details.duration AS "Duration"

FROM better dream journal, better dream journal.details
WHERE B B B B

details.KEY IN ('Anxiety', 'Nightmare')

AND details.duration > 60

AND details.woke up = TRUE;

Loading Data Containing Complex Types

Because the Impala INSERT statement does not currently support creating new data with complex type columns, or
copying existing complex type values from one table to another, you primarily use Impala to query Parquet tables
with complex types where the data was inserted through Hive, or create tables with complex types where you already
have existing Parquet data files.

If you have created a Hive table with the Parquet file format and containing complex types, use the same table for
Impala queries with no changes. If you have such a Hive table in some other format, use a Hive CREATE TABLE
AS SELECT ... STORED AS PARQUET or INSERT ... SELECT statement to produce an equivalent
Parquet table that Impala can query.

If you have existing Parquet data files containing complex types, located outside of any Impala or Hive table, such as
data files created by Spark jobs, you can use an Impala CREATE TABLE ... STORED AS PARQUET statement,
followed by an Impala LOAD DATA statement to move the data files into the table. As an alternative, you can use

an Impala CREATE EXTERNAL TABLE statement to create a table pointing to the HDFS directory that already
contains the data files.

Perhaps the simplest way to get started with complex type data is to take a denormalized table containing duplicated
values, and use an INSERT ... SELECT statement to copy the data into a Parquet table and condense the
repeated values into complex types. With the Hive INSERT statement, you use the COLLECT LIST (),

NAMED STRUCT (), and MAP () constructor functions within a GROUP BY query to produce the complex type
values. COLLECT LIST () turns a sequence of values into an ARRAY. NAMED STRUCT () uses the first, third, and
so on arguments as the field names for a STRUCT, to match the field names from the CREATE TABLE statement.

Note: Because Hive currently cannot construct individual rows using complex types through the INSERT

VALUES syntax, you prepare the data in flat form in a separate table, then copy it to the table with complex columns
using INSERT ... SELECT and the complex type constructors. See Constructing Parquet Files with Complex
Columns Using Hive on page 176 for examples.

Using Complex Types as Nested Types

The ARRAY, STRUCT, and MAP types can be the top-level types for “nested type” columns. That is, each of these
types can contain other complex or scalar types, with multiple levels of nesting to a maximum depth of 100. For
example, you can have an array of structures, a map containing other maps, a structure containing an array of other
structures, and so on. At the lowest level, there are always scalar types making up the fields of a STRUCT, elements of
an ARRAY, and keys and values of a MAP.

Schemas involving complex types typically use some level of nesting for the complex type columns.

For example, to model a relationship like a dimension table and a fact table, you typically use an ARRAY where each
array element is a STRUCT. The STRUCT fields represent what would traditionally be columns in a separate joined
table. It makes little sense to use a STRUCT as the top-level type for a column, because you could just make the fields
of the STRUCT into regular table columns.

Perhaps the only use case for a top-level STRUCT would be to to allow STRUCT fields with the same name as
columns to coexist in the same table. The following example shows how a table could have a column named ID,
and two separate STRUCT fields also named ID. Because the STRUCT fields are always referenced using qualified
names, the identical ID names do not cause a conflict.

CREATE TABLE struct namespaces

(
id BIGINT

| Impala SQL Language Reference | 170

, sl STRUCT < id: BIGINT, fieldl: STRING >
, 82 STRUCT < id: BIGINT, when happened: TIMESTAMP >

)
STORED AS PARQUET;

select id, sl.id, s2.id from struct namespaces;

It is common to make the value portion of each key-value pair in a MAP a STRUCT, ARRAY of STRUCT, or other
complex type variation. That way, each key in the MAP can be associated with a flexible and extensible data structure.
The key values are not predefined ahead of time (other than by specifying their data type). Therefore, the MAP can
accomodate a rapidly evolving schema, or sparse data structures where each row contains only a few data values
drawn from a large set of possible choices.

Although you can use an ARRAY of scalar values as the top-level column in a table, such a simple array is typically of
limited use for analytic queries. The only property of the array elements, aside from the element value, is the ordering
sequence available through the POS pseudocolumn. To record any additional item about each array element, such as a
TIMESTAMP or a symbolic name, you use an ARRAY of STRUCT rather than of scalar values.

If you are considering having multiple ARRAY or MAP columns, with related items under the same position in each
ARRAY or the same key in each MAP, prefer to use a STRUCT to group all the related items into a single ARRAY or
MAP. Doing so avoids the additional storage overhead and potential duplication of key values from having an extra
complex type column. Also, because each ARRAY or MAP that you reference in the query SELECT list requires an
additional join clause, minimizing the number of complex type columns also makes the query easier to read and
maintain, relying more on dot notation to refer to the relevant fields rather than a sequence of join clauses.

For example, here is a table with several complex type columns all at the top level and containing only scalar types.
To retrieve every data item for the row requires a separate join for each ARRAY or MAP column. The fields of the
STRUCT can be referenced using dot notation, but there is no real advantage to using the STRUCT at the top level
rather than just making separate columns FIELDI1 and FIELD2.

CREATE TABLE complex types top level
(
id BIGINT,
al ARRAY<INT>,
a2 ARRAY<STRING>,
s STRUCT<fieldl: INT, field2: STRING>,
—— Numeric lookup key for a string value.
ml MAP<INT, STRING>,
—-- String lookup key for a numeric value.
m2 MAP<STRING, INT>
)
STORED AS PARQUET;

describe complex types top level;

+————— = +
| name | type |
+————— - ——— +

id bigint

al array<int>

a2 array<string>

S struct<

field2:string

| |
| |
| |
| |
| fieldl:int, |
| |
| > |
| |
| |

ml map<int, string>
m2 map<string, int>
+————— = +
select
id,

al.item,

| Impala SQL Language Reference | 171

a2.item,
s.fieldl,
s.field?2,
ml.key,
ml.value,
m2.key,
m2.value

from
complex types top level,
complex types top level.al,
complex types top level.aZz,
complex types top level.ml,
complex types top level.m2;

For example, here is a table with columns containing an ARRAY of STRUCT, a MAP where each key value is a
STRUCT, and a MAP where each key value is an ARRAY of STRUCT.

CREATE TABLE nesting demo
(

user id BIGINT,

family members ARRAY < STRUCT < name: STRING, email: STRING, date joined:
TIMESTAMP >>,

foo map < STRING, STRUCT < fl1l: INT, f2: INT, f3: TIMESTAMP, f4: BOOLEAN
>>,

gameplay MAP < STRING , ARRAY < STRUCT <

name: STRING, highest: BIGINT, lives used: INT, total spent:

DECIMAL (16, 2)

>>>
)
STORED AS PARQUET;

The DESCRIBE statement rearranges the < and > separators and the field names within each STRUCT for easy
readability:

DESCRIBE nesting demo;

user id
family members

| bigint

| array<struct< |
| name:string, |
| email:string, |
| date joined:timestamp |
| >> B |
foo | map<string, struct<

| fl:int,

| f2:int,

| f3:timestamp, |
| f4:boolean |
| >>

| map<string,array<struct< |
| name:string, |
| highest:bigint, |
| lives used:int,

| total spent:decimal (16,2) |
| >>> N |

gameplay

| Impala SQL Language Reference | 172

To query the complex type columns, you use join notation to refer to the lowest-level scalar values. If the value is an
ARRAY element, the fully qualified name includes the ITEM pseudocolumn. If the value is inside a MAP, the fully
qualified name includes the KEY or VALUE pseudocolumn. Each reference to a different ARRAY or MAP (even if
nested inside another complex type) requires an additional join clause.

SELECT
-— The lone scalar field doesn't require any dot notation or join clauses.
user id
-— Retrieve the fields of a STRUCT inside an ARRAY.
—-— The FAMILY MEMBERS name refers to the FAMILY MEMBERS table alias defined
later in the FROM clause.
, family members.item.name
, family members.item.email
, family members.item.date joined
-— Retrieve the KEY and VALUE fields of a MAP, with the value being a STRUCT
consisting of more fields.
-— The FOO name refers to the FOO table alias defined later in the FROM
clause.
, foo.key
, foo.value.fl
, foo.value.f2
, foo.value.f3
, foo.value.f4
-- Retrieve the KEY fields of a MAP, and expand the VALUE part into ARRAY
items consisting of STRUCT fields.
-— The GAMEPLAY name refers to the GAMEPLAY table alias defined later in the
FROM clause (referring to the MAP item).
-- The GAME N name refers to the GAME N table alias defined later in the
FROM clause (referring to the ARRAY
-- inside the MAP item's VALUE part.)
, gameplay.key
, game_ n.name
, game n.highest
, game n.lives used
, game n.total spent
FROM
nesting demo
, nesting demo.family members AS family members
, nesting demo.foo AS foo
, nesting demo.gameplay AS gameplay
, nesting demo.gameplay.value AS game n;

Once you understand the notation to refer to a particular data item in the SELECT list, you can use the same qualified
name to refer to that data item in other parts of the query, such as the WHERE clause, ORDER BY or GROUP BY
clauses, or calls to built-in functions. For example, you might frequently retrieve the VALUE part of each MAP item in
the SELECT list, while choosing the specific MAP items by running comparisons against the KEY part in the WHERE
clause.

Accessing Complex Type Data in Flattened Form Using Views

The layout of complex and nested types is largely a physical consideration. The complex type columns reside in

the same data files rather than in separate normalized tables, for your convenience in managing related data sets

and performance in querying related data sets. You can use views to treat tables with complex types as if they were
flattened. By putting the join logic and references to the complex type columns in the view definition, you can query
the same tables using existing queries intended for tables containing only scalar columns. This technique also lets
you use tables with complex types with BI tools that are not aware of the data types and query notation for accessing
complex type columns.

| Impala SQL Language Reference | 173

For example, the variation of the TPC-H schema containing complex types has a table REGION. This table has 5
rows, corresponding to 5 regions such as NORTH AMERICA and AFRICA. Each row has an ARRAY column, where
each array item is a STRUCT containing details about a country in that region.

DESCRIBE region;

fom e o +
| name | type
fom e o +
r regionkey smallint
r name string
r:comment string
r nations array<struct<

n name:string,
n_comment:string

| |
| |
| |
| |
| n nationkey:smallint, |
| |
| |
| >> |

The same data could be represented in traditional denormalized form, as a single table where the information about
each region is repeated over and over, alongside the information about each country. The nested complex types let us
avoid the repetition, while still keeping the data in a single table rather than normalizing across multiple tables.

To use this table with a JDBC or ODBC application that expected scalar columns, we could create a view that
represented the result set as a set of scalar columns (three columns from the original table, plus three more from the
STRUCT fields of the array elements). In the following examples, any column with an R_* prefix is taken unchanged
from the original table, while any column with an N_* prefix is extracted from the STRUCT inside the ARRAY.

CREATE VIEW region view AS
SELECT
r regionkey,
r name,
r comment,
array field.item.n nationkey AS n nationkey,
array field.item.n name AS n_ name,
array field.n comment AS n_comment
FROM
region, region.r nations AS array field;

Then we point the application queries at the view rather than the original table. From the perspective of the view,
there are 25 rows in the result set, one for each nation in each region, and queries can refer freely to fields related to
the region or the nation.

-— Retrieve info such as the nation name from the original R NATIONS array
elements.
select n name from region view where r name in ('EUROPE', 'ASIA');

| UNITED KINGDOM |
| RUSSIA |
| ROMANIA |
| GERMANY |
| FRANCE

| VIETNAM |
| CHINA |
| JAPAN |
| INDONESIA |
| INDIA |

-— UNITED STATES in AMERICA and UNITED KINGDOM in EUROPE.

| Impala SQL Language Reference | 174

SELECT DISTINCT r name FROM region view WHERE n name LIKE 'UNITEDS';

| r name |
o +
| AMERICA |
| EUROPE |
o +

-- For conciseness, we only list some view columns in the SELECT list.

-— SELECT * would bring back all the data, unlike SELECT *

-- gqueries on the original table with complex type columns.

SELECT r regionkey, r name, n nationkey, n name FROM region view LIMIT 7;

fom e fom = fom e R e e +
| r regionkey | r name | n nationkey | n name

Fmm fmmm———— Fmm Fmm e +
| 3 | EUROPE | 23 | UNITED KINGDOM |
| 3 | EUROPE | 22 | RUSSIA

| 3 | EUROPE | 19 | ROMANIA

| 3 | EUROPE | 7 | GERMANY

| 3 | EUROPE | 6 | FRANCE

| 2 | ASIA | 21 | VIETNAM

| 2 | ASIA | 18 | CHINA
B fomm B fom e +

Tutorials and Examples for Complex Types

The following examples illustrate the query syntax for some common use cases involving complex type columns.

Sample Schema and Data for Experimenting with Impala Complex Types

The tables used for earlier examples of complex type syntax are trivial ones with no actual data. The more substantial
examples of the complex type feature use these tables, adapted from the schema used for TPC-H testing:

SHOW TABLES;

| customer |
| part |
| region |
| supplier |

o= it e e L e L L L e e L et +
| name | type |
o +—— +

c_custkey bigint

C_name string

c_address string

c_nationkey smallint

c_phone string

c_acctbal decimal (12, 2)

c_mktsegment string

c_comment string

o_orderkey:bigint,
o_orderstatus:string,

o _totalprice:decimal(12,2),
o_orderdate:string,

o _orderpriority:string,
o_clerk:string,

| |
| |
| |
| |
| |
| |
| |
| |
c_orders | array<struct<
| |
| |
| |
| |
| |
| |
| o_shippriority:int, |

| Impala SQL Language Reference | 175

| o _comment:string, |
| o lineitems:array<struct< |
| 1 partkey:bigint, |
| 1 suppkey:bigint, |
| 1 linenumber:int, |
| 1 quantity:decimal(12,2), |
| 1 extendedprice:decimal (12,2), |
| 1 discount:decimal (12,2), |
| 1 tax:decimal (12,2), |
| 1 returnflag:string, |
| 1 linestatus:string, |
| 1 shipdate:string, |
| 1 commitdate:string, |
| 1 receiptdate:string, |
| 1 shipinstruct:string, |
| 1 shipmode:string, |
| 1 comment:string |
| |
| |
+

>>
>>

o +
DESCRIBE part;
e ——— e ——— +
| name | type |
- - +
| p_partkey | bigint |
| p_name | string
| p_mfgr | string |
| p_brand | string |
| p_type | string
| p _size | int
p_container	string
p_retailprice	decimal(12,2)
p comment	string
o o +
DESCRIBE region;
+ _____________
Bttt it +
| name | type

|
+ _____________
t—————_—— +
| r regionkey | smallint

|
| r name | string

|
| r comment | string

|
| r nations |
array<struct<n nationkey:smallint,n name:string,n_ comment:string>> |

o —— B et ettt T e e e +
| name | type

o —— e +
| s _suppkey | bigint

| s name | string |
| s _address | string |
| s_nationkey | smallint

| s_phone | string

| | |

s_acctbal decimal (12, 2)

| Impala SQL Language Reference | 176

string |
array<struct<ps partkey:bigint, |
ps_availgty:int,ps supplycost:decimal (12,2), |
ps_comment:string>>

S _comment
S_partsupps

The volume of data used in the following examples is:

SELECT count (*) FROM customer;

o ————— +
| count (*) |
o +
| 150000 |
o —————— +

SELECT count (*) FROM part;

e +
| count (*) |
o ——————— +
| 200000 |
o +

SELECT count (*) FROM region;

t————— +
| count (*) |
e ———— +
| 5 |
t——————— +

SELECT count (*) FROM supplier;

t———— +
| count (*) |
t————————— +
| 10000 |
t——————— +

Constructing Parquet Files with Complex Columns Using Hive

The following examples demonstrate the Hive syntax to transform flat data (tables with all scalar columns) into
Parquet tables where Impala can query the complex type columns. Each example shows the full sequence of steps,
including switching back and forth between Impala and Hive. Although the source table can use any file format, the
destination table must use the Parquet file format.

Create table with ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hive shell or beeline) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including an ARRAY column. Then Impala can run analytic queries on the
Parquet table, using join notation to unpack the ARRAY column.

/* Initial DDL and loading of flat, denormalized data happens in impala-
shell */CREATE TABLE flat array (country STRING, city STRING);INSERT INTO
flat array VALUES

(TCanada', 'Toronto') , ('Canada', 'Vancouver') , ('Canada', "St. John
\IS")
, ('Canada', 'Saint John') , ('Canada', 'Montreal') , ('Canada',
'Halifax"'")
("Canada' 'Winnipeg') , ('Canada', 'Calgary') , ('Canada', 'Saskatoon')

14 14
, ('Canada', 'Ottawa') , ('Canada', 'Yellowknife') , ('France', 'Paris')
, ('France', 'Nice') , ('France', 'Marseilles') , ('France', 'Cannes')

4 (4

'Greece' 'Athens') , ('Greece', 'Piraeus') , ('Greece', 'Hania')

| Impala SQL Language Reference | 177

;, ('Greece', 'Heraklion') , ('Greece', 'Rethymnon') , ('Greece', 'Fira');

CREATE TABLE complex array (country STRING, city ARRAY <STRING>) STORED AS
PARQUET;

/* Conversion to Parquet and complex and/or nested columns happens in Hive

*/

INSERT INTO complex array SELECT country, collect list(city) FROM flat array
GROUP BY country;

Query ID = dev _20151108160808 84477ff2-82bd-4ba4-9a77-554fa7b8c0cb

Total jobs =1

Launching Job 1 out of 1

/* Back to impala-shell again for analytic queries */

REFRESH complex array;
SELECT country, city.item FROM complex array, complex array.city

o o —— +
| country | item |
o o —— +
Canada	Toronto
Canada	Vancouver
Canada	St. John's
Canada	Saint John
Canada	Montreal
Canada	Halifax
Canada	Winnipeg
Canada	Calgary
Canada	Saskatoon
Canada	Ottawa
Canada	Yellowknife
France	Paris
France	Nice
France	Marseilles
France	Cannes
Greece	Athens
Greece	Piraeus
Greece	Hania
Greece	Heraklion
Greece	Rethymnon
Greece	Fira
o o —— +

Create table with STRUCT and ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hive shell or beeline) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including a STRUCT column with an ARRAY field. Then Impala can run
analytic queries on the Parquet table, using join notation to unpack the ARRAY field from the STRUCT column.

/* Initial DDL and loading of flat, denormalized data happens in impala-
shell */

CREATE TABLE flat struct array (continent STRING, country STRING, city
STRING) ;
INSERT INTO flat struct array VALUES

| Impala SQL Language Reference | 178

("North America', 'Canada', 'Toronto') , ('North America', 'Canada',
'Vancouver')
, ('North America', 'Canada', "St. John\'s") , ('North America', 'Canada',
'Saint John')
, ('North America', 'Canada', 'Montreal') , ('North America', 'Canada',
'Halifax"')
, ('"North America', 'Canada', 'Winnipeg') , ('North America', 'Canada',
'Calgary')
, ('North America', 'Canada', 'Saskatoon') , ('North America', 'Canada',
'Ottawa')

A 4 A A A A 4 A A A A A

4 4 4 4 4

, ("North America Canada Yellowknife') ('Europe France
'Paris')
, ('Europe', 'France', 'Nice') , ('Europe', 'France', 'Marseilles')
, ('Europe', 'France', 'Cannes') , ('Europe', 'Greece', 'Athens')
, ('"Europe', 'Greece', 'Piraeus') , ('Europe', 'Greece', 'Hania')
, ('Europe', 'Greece', 'Heraklion') , ('Europe', 'Greece', 'Rethymnon')

(

'Europe’', 'Greece', 'Fira');

CREATE TABLE complex struct array (continent STRING, country STRUCT <name:
STRING, city: ARRAY <STRING> >) STORED AS PARQUET;

/* Conversion to Parquet and complex and/or nested columns happens in Hive

*/

INSERT INTO complex struct array SELECT continent, named struct('name',
country, 'city', collect list(city)) FROM flat array array GROUP BY
continent, country;

Query ID = dev_20151108163535 11a4fa53-0003-4638-97ec6-efl3cdb8el9%e

Total jobs = 1

Launching Job 1 out of 1

/* Back to impala-shell again for analytic queries */

REFRESH complex struct array;
SELECT tl.continent, tl.country.name, t2.item
FROM complex struct array tl, tl.country.city t2

o — o — o —— +
| continent | country.name | item |
o — o — o —— +
| Europe | France | Paris

| Europe | France | Nice

| Europe | France | Marseilles |
| Europe | France | Cannes

| Europe | Greece | Athens

| Europe | Greece | Piraeus

| Europe | Greece | Hania

| Europe | Greece | Heraklion |
| Europe | Greece | Rethymnon |
| Europe | Greece | Fira

| North America | Canada | Toronto

North America	Canada	Vancouver
North America	Canada	St. John's
North America	Canada	Saint John
North America	Canada	Montreal
North America	Canada	Halifax
North America	Canada	Winnipeg
North America	Canada	Calgary

| North America | Canada | Saskatoon

| North America | Canada | Ottawa |

| Impala SQL Language Reference | 179

| North America | Canada | Yellowknife |

Flattening Normalized Tables into a Single Table with Complex Types

One common use for complex types is to embed the contents of one table into another. The traditional technique of
denormalizing results in a huge number of rows with some column values repeated over and over. With complex
types, you can keep the same number of rows as in the original normalized table, and put all the associated data from
the other table in a single new column.

In this flattening scenario, you might frequently use a column that is an ARRAY consisting of STRUCT elements,
where each field within the STRUCT corresponds to a column name from the table that you are combining.

The following example shows a traditional normalized layout using two tables, and then an equivalent layout using
complex types in a single table.

/* Traditional relational design */

-- This table just stores numbers, allowing us to look up details about the
employee
-- and details about their vacation time using a three-table join query.
CREATE table employee vacations
(
employee id BIGINT,
vacation id BIGINT
)
STORED AS PARQUET;

-- Each kind of information to track gets its own "fact table".
CREATE table vacation details
(
vacation id BIGINT,
vacation start TIMESTAMP,
duration INT
)
STORED AS PARQUET;

-- Any time we print a human-readable report, we join with this table to
-- display info about employee #1234.
CREATE TABLE employee contact
(

employee id BIGINT,

name STRING,

address STRING,

phone STRING,

email STRING,

address_type STRING /* 'home', 'work', 'remote', etc. */
)
STORED AS PARQUET;

/* Equivalent flattened schema using complex types */

-- For analytic queries using complex types, we can bundle the dimension
table

-- and multiple fact tables into a single table.

CREATE TABLE employee vacations nested types

(

-— We might still use the employee id for other join queries.

-- The table needs at least one scalar column to serve as an identifier

—-- for the complex type columns.
employee id BIGINT,

| Impala SQL Language Reference | 180

—-— Columns of the VACATION DETAILS table are folded into a STRUCT.
-— We drop the VACATION ID column because Impala doesn't need
-- synthetic IDs to join a complex type column.
-— Each row from the VACATION DETAILS table becomes an array element.
vacation ARRAY < STRUCT <
vacation start: TIMESTAMP,
duration: INT
>>,

-— The ADDRESS TYPE column, with a small number of predefined values that
are distinct
-- for each employee, makes the EMPLOYEE CONTACT table a good candidate to
turn into a MAP,
-— with each row represented as a STRUCT. The string value from ADDRESS TYPE
becomes the
-- "key" (the anonymous first field) of the MAP.
contact MAP < STRING, STRUCT <
address: STRING,
phone: STRING,
email: STRING
>>
)
STORED AS PARQUET;

Interchanging Complex Type Tables and Data Files with Hive and Other Components
You can produce Parquet data files through several Hadoop components and APIs.

If you have a Hive-created Parquet table that includes ARRAY, STRUCT, or MAP columns, Impala can query that same
table in Impala 2.3 and higher, subject to the usual restriction that all other columns are of data types supported by
Impala, and also that the file type of the table must be Parquet.

If you have a Parquet data file produced outside of Impala, Impala can automatically deduce the appropriate table
structure using the syntax CREATE TABLE ... LIKE PARQUET 'hdfs path of parquet file'.In
Impala 2.3 and higher, this feature works for Parquet files that include ARRAY, STRUCT, or MAP types.

/* In impala-shell, find the HDFS data directory of the original table.
DESCRIBE FORMATTED tpch nested parquet.customer;

| Location: | hdfs://localhost:20500/test-warehouse/tpch nested parquet.db/
customer | NULL |

In the Unix shell, find the path of any Parquet data file in that HDFS
directory.

$ hdfs dfs -1s hdfs://localhost:20500/test-warehouse/tpch nested parquet.db/
customer

Found 4 items

—rWXTr—Xr-X 3 dev supergroup 171298918 2015-09-22 23:30 hdfs://
localhost:20500/blah/tpch nested parquet.db/customer/000000 0

/* Back in impala-shell, use the HDFS path in a CREATE TABLE LIKE PARQUET
statement. */
CREATE TABLE customer ctlp
LIKE PARQUET 'hdfs://localhost:20500/blah/tpch nested parquet.db/
customer/000000 0'
STORED AS PARQUET;

/* Confirm that old and new tables have the same column layout, including
complex types. */

DESCRIBE tpch nested parquet.customer

o= it e e L e L L L e e L et o= +

comment
orders

c_custkey

file.

C_name

file.

c_address

file.

c_nationkey

file.

c phone

file.

c_acctbal

file.

c_mktsegment

file.

c_comment

file.

c_orders

file.

smallint
string
decimal (12, 2)
string
string
array<struct<
o_orderkey:bigint,
o_orderstatus:string,
o0 _totalprice:decimal(12,2),
o_orderdate:string,
o_orderpriority:string,
o _clerk:string,
o _shippriority:int,
o _comment:string,
o lineitems:array<struct<
1 partkey:bigint,
1 suppkey:bigint,
1 linenumber:int,
1 quantity:decimal(12,2),
1 extendedprice:decimal (12,2),
1 discount:decimal (12,2),
1 tax:decimal (12,2),
1 returnflag:string,
1 linestatus:string,
1 shipdate:string,
1 commitdate:string,
1 receiptdate:string,
1 shipinstruct:string,
1 shipmode:string,
1 comment:string

string

int

string
decimal (12, 2)
string
string

array<struct<

| Impala SQL Language Reference | 181

comment

Inferred from Parquet
Inferred from Parquet
Inferred from Parquet
Inferred from Parquet
Inferred from Parquet
Inferred from Parquet
Inferred from Parquet
Inferred from Parquet

Inferred from Parquet

Literals

o _orderkey:bigint,
o_orderstatus:string,

o _totalprice:decimal(12,2),
o_orderdate:string,
o_orderpriority:string,

o _clerk:string,
o_shippriority:int,
o_comment:string,

o lineitems:array<struct<

1 partkey:bigint,
1 suppkey:bigint,
1 linenumber:int,

1 quantity:decimal(12,2),

1 extendedprice:decimal (12,2),

1 discount:decimal(12,2),
1 tax:decimal (12,2),

1 returnflag:string,

1 linestatus:string,

1 shipdate:string,

1 commitdate:string,

1 receiptdate:string,

1 shipinstruct:string,

1 shipmode:string,

1 comment:string

| Impala SQL Language Reference | 182

Each of the Impala data types has corresponding notation for literal values of that type. You specify literal values in
SQL statements, such as in the SELECT list or WHERE clause of a query, or as an argument to a function call. See

Data Types on page 107 for a complete list of types, ranges, and conversion rules.

| Impala SQL Language Reference | 183

Numeric Literals

To write literals for the integer types (TINYINT, SMALLINT, INT, and BIGINT), use a sequence of digits with
optional leading zeros.

To write literals for the floating-point types (DECIMAL, FLOAT, and DOUBLE), use a sequence of digits with an
optional decimal point (. character). To preserve accuracy during arithmetic expressions, Impala interprets floating-
point literals as the DECIMAL type with the smallest appropriate precision and scale, until required by the context to
convert the result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

You can also use exponential notation by including an e character. For example, 1e6 is 1 times 10 to the power of 6
(1 million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the “smallest” that can accurately represent the
value. The type is promoted to larger or more accurate types if necessary, based on subsequent parts of an expression.

For example, you can see by the types Impala defines for the following table columns how it interprets the
corresponding numeric literals:

[localhost:21000] > create table ten as select 10 as x;

o +

| summary |
o +

| Inserted 1 row(s) |
o +
[localhost:21000] > desc ten;
- o o +
| name | type | comment |
- o o +
| x | tinyint | |
- o o +

[localhost:21000] > create table four k as select 4096 as x;

o +

| summary |
o +

| Inserted 1 row(s) |
o +
[localhost:21000] > desc four k;
- e o +
| name | type | comment |
- o —————— o ————— +
| x | smallint |

- o o +

[localhost:21000] > create table one point five as select 1.5 as x;

o +

| summary |
o +

| Inserted 1 row(s) |
o +
[localhost:21000] > desc one point five;
+———— o ———— t—————— +
| name | type | comment |
+————— o —— o +
| x | decimal(2,1) |

t————— o —— t———————— +

[localhost:21000] > create table one point three three three as select 1.333
as x;

| Impala SQL Language Reference | 184

| summary |

- +

| Inserted 1 row(s) |

= +

[localhost:21000] > desc one point three three three;
+————— +—— - +

| name | type | comment |

- - - +

| x | decimal (4,3) |

+————— - - +

String Literals

String literals are quoted using either single or double quotation marks. You can use either kind of quotes for string
literals, even both kinds for different literals within the same statement.

Quoted literals are considered to be of type STRING. To use quoted literals in contexts requiring a CHAR or
VARCHAR value, CAST () the literal to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:
To encode special characters within a string literal, precede them with the backslash (\) escape character:

* \'t represents a tab.

* \n represents a newline or linefeed. This might cause extra line breaks in impala-shell output.

* \r represents a carriage return. This might cause unusual formatting (making it appear that some content is
overwritten) in impala-shell output.

* \Db represents a backspace. This might cause unusual formatting (making it appear that some content is
overwritten) in impala-shell output.

* \O0 represents an ASCII nul character (not the same as a SQL NULL). This might not be visible in impala-
shell output.

» \Z represents a DOS end-of-file character. This might not be visible in impala-shell output.

* \%and _can be used to escape wildcard characters within the string passed to the LIKE operator.

+ \ followed by 3 octal digits represents the ASCII code of a single character; for example, \101 is ASCII 65, the
character A.

» Use two consecutive backslashes (\\) to prevent the backslash from being interpreted as an escape character.

» Use the backslash to escape single or double quotation mark characters within a string literal, if the literal is
enclosed by the same type of quotation mark.

+ If the character following the \ does not represent the start of a recognized escape sequence, the character is
passed through unchanged.

Quotes within quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation
marks, and optionally escape the single quote as a \ ' sequence. Earlier releases required escaping a single quote
inside double quotes. Continue using escape sequences in this case if you also need to run your SQL code on older
versions of Impala.

To include a double quotation character within a string value, enclose the literal with single quotation marks, no
escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as a
\" sequence.

[localhost:21000] > select "What\'s happening?" as single within double,

> 'I\'m not sure.' as single within single,
> "Homer wrote \"The Iliad\"." as
double within double,
> 'Homer also wrote "The Odyssey".' as
double within single;
+ ______ : ______ : ________ + ______________________ + __________________________

| Impala SQL Language Reference | 185

| single within double | single within single | double within double
double within single

+ ______ : ______ : ________ + ______________________ + __________________________

e +

| What's happening? | I'm not sure. | Homer wrote "The Iliad".
Homer also wrote "The Odyssey". |

B e T e B e T e e e L e

B et +

Field terminator character in CREATE TABLE:

Note: The CREATE TABLE clauses FIELDS TERMINATED BY,ESCAPED BY,and LINES TERMINATED BY
have special rules for the string literal used for their argument, because they all require a single character. You can use
a regular character surrounded by single or double quotation marks, an octal sequence such as '\054 "' (representing
a comma), or an integer in the range '-127'..'128' (with quotation marks but no backslash), which is interpreted as a
single-byte ASCII character. Negative values are subtracted from 256; for example, FIELDS TERMINATED BY
'-2" sets the field delimiter to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data
formats.

impala-shell considerations:

When dealing with output that includes non-ASCII or non-printable characters such as linefeeds and backspaces, use
the impala-shell options to save to a file, turn off pretty printing, or both rather than relying on how the output
appears visually. See impala-shell Configuration Options on page 578 for a list of impala-shell options.

Boolean Literals
For BOOLEAN values, the literals are TRUE and FALSE, with no quotation marks and case-insensitive.

Examples:

select true;

select * from tl where assertion = false;
select case bool col when true then 'yes' when false 'no' else 'null' end
from t1;

Timestamp Literals

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp
values are accepted in the format "yyyy-MM-dd HH:mm:ss.SSSSSS", and can consist of just the date,
or just the time, with or without the fractional second portion. For example, you can specify TIMESTAMP
values such as '1966-07-30", '08:30:00",0r '1985-09-25 17:45:30.005". Casting an integer
or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting -
use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

You can also use INTERVAL expressions to add or subtract from timestamp literal values, such as
CAST('1966-07-30"'" AS TIMESTAMP) + INTERVAL 5 YEARS + INTERVAL 3 DAYS. See
TIMESTAMP Data Type on page 141 for details.

Depending on your data pipeline, you might receive date and time data as text, in notation that does not exactly match
the format for Impala TIMESTAMP literals. See Impala Date and Time Functions on page 434 for functions that

can convert between a variety of string literals (including different field order, separators, and timezone notation) and
equivalent TIMESTAMP or numeric values.

NULL

The notion of NULL values is familiar from all kinds of database systems, but each SQL dialect can have its own
behavior and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are

| Impala SQL Language Reference | 186

significant: any misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming
to correct for large data sets.

* NULL is a different value than an empty string. The empty string is represented by a string literal with nothing
inside, ""or ' '.

* In a delimited text file, the NULL value is represented by the special token \N.

* When Impala inserts data into a partitioned table, and the value of one of the partitioning columns is NULL or
the empty string, the data is placed in a special partition that holds only these two kinds of values. When these
values are returned in a query, the result is NULL whether the value was originally NULL or an empty string. This
behavior is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty
strings as partition keys, and it returns a string value suchas HIVE DEFAULT PARTITION instead of
NULL when such values are returned from a query. For example:

create table tl (i int) partitioned by (x int, y string);

-- Select an INT column from another table, with all rows going into a
special HDFS subdirectory

--— named HIVE DEFAULT PARTITION . Depending on whether one or both of
the partitioning keys

--— are null, this special directory name occurs at different levels of the
physical data directory

-- for the table.

insert into tl partition (x=NULL, y=NULL) select cl from some other table;
insert into tl partition(x, y=NULL) select cl, c2 from some other table;
insert into tl partition(x=NULL, y) select cl, c3 from some other table;

* There is no NOT NULL clause when defining a column to prevent NULL values in that column.

* There is no DEFAULT clause to specify a non-NULL default value.

» Ifan INSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all
inserted rows.

* InImpala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries,
and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater
than all other values for sorting purposes. The original Impala behavior always put NULL values at the end, even
for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other
popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL
by adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

Note: Because the NULLS FIRST and NULLS LAST keywords are not currently available in Hive queries, any
views you create using those keywords will not be available through Hive.

* In all other contexts besides sorting with ORDER BY, comparing a NULL to anything else returns NULL, making
the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also produces NULL, 5
BETWEEN 1 AND NULL produces NULL, and so on.

Several built-in functions serve as shorthand for evaluating expressions and returning NULL, 0, or some
other substitution value depending on the expression result: ifnull (), isnull(),nvl(),nullif (),
nullifzero(),and zeroifnull (). See Impala Conditional Functions on page 478 for details.

Kudu considerations:

Columns in Kudu tables have an attribute that specifies whether or not they can contain NULL values. A column with
a NULL attribute can contain nulls. A column with a NOT NULL attribute cannot contain any nulls, and an INSERT,

UPDATE, or UPSERT statement will skip any row that attempts to store a null in a column designated as NOT NULL.
Kudu tables default to the NULL setting for each column, except columns that are part of the primary key.

In addition to columns with the NOT NULL attribute, Kudu tables also have restrictions on NULL values in columns
that are part of the primary key for a table. No column that is part of the primary key in a Kudu table can contain any
NULL values.

| Impala SQL Language Reference | 187

SQL Operators

SQL operators are a class of comparison functions that are widely used within the WHERE clauses of SELECT
statements.

Arithmetic Operators

The arithmetic operators use expressions with a left-hand argument, the operator, and then (in most cases) a right-
hand argument.

Syntax:

left hand arg binary operator right hand arg
unary operator single arg

* +and -: Can be used either as unary or binary operators.

* With unary notation, such as +5, -2 .5, or ~col name, they multiply their single numeric argument by
+1 or 1. Therefore, unary + returns its argument unchanged, while unary - flips the sign of its argument.
Although you can double up these operators in expressions such as ++5 (always positive) or —+2 or +-2
(both always negative), you cannot double the unary minus operator because —- is interpreted as the start of
a comment. (You can use a double unary minus operator if you separate the - characters, for example with a
space or parentheses.)

* With binary notation, such as 2+2, 5-2.5,0r coll + col2,they add or subtract respectively the right-
hand argument to (or from) the left-hand argument. Both arguments must be of numeric types.

» * and /: Multiplication and division respectively. Both arguments must be of numeric types.

When multiplying, the shorter argument is promoted if necessary (such as SMALLINT to INT or BIGINT,
or FLOAT to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a
TINYINT and an INT produces a BIGINT result. Multiplying a FLOAT and a FLOAT produces a DOUBLE
result. Multiplying a FLOAT and a DOUBLE or a DOUBLE and a DOUBLE produces a DECIMAL (38,17),
because DECIMAL values can represent much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE values to avoid losing precision. If you
need to insert the results of a division operation into a FLOAT column, use the CAST () function to convert the
result to the correct type.

* DIV: Integer division. Arguments are not promoted to a floating-point type, and any fractional result is discarded.
For example, 13 DIV 7returns 1,14 DIV 7returns 2,and 15 DIV 7 returns 2. This operator is the same as
the QUOTIENT () function.

* %: Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both
arguments must be of one of the integer types.

* &, |,~,and ~: Bitwise operators that return the logical AND, logical OR, NOT, or logical XOR (exclusive OR) of
their argument values. Both arguments must be of one of the integer types. If the arguments are of different type,
the argument with the smaller type is implicitly extended to match the argument with the longer type.

You can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example,
prior to Impala 2.2, there is no MOD () function equivalent to the $ modulo operator. Conversely, there are some
arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use the POW ()
function, but there is no ** exponentiation operator. See /mpala Mathematical Functions on page 403 for the
arithmetic functions you can use.

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or

| Impala SQL Language Reference | 188

value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 151 for details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the I TEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM () and AVG () are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX () and MIN () values are computed from the string N NAME
field.

describe region;

e L b L e e E L L L L L L L e S e e +
| name | type | comment |
F————————————— e ————————— f————————— +

r regionkey smallint

r name string

r:comment string

r nations array<struct<

n name:string,
n_comment:string

n nationkey:smallint,	
>>	

select r name, r nations.item.n nationkey
from region, region.r nations as r nations
order by r name, r nations.item.n nationkey;

o —— o +
| r name | item.n nationkey |
Fmm R R +
AFRICA	O
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24

| ASIA | 8

| ASIA | 9 |
| ASIA | 12

| ASIA | 18

| ASIA | 21

EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10

| MIDDLE EAST | 11

| MIDDLE EAST | 13 |
| MIDDLE EAST | 20 |
o —_—_————— B +
select

r name,

count (r nations.item.n nationkey) as count,
sum(r nations.item.n nationkey) as sum,
avg (r_nations.item.n nationkey) as avg,
min(r nations.item.n name) as minimum,

max (r nations.item.n name)
ndv (r_nations.item.n nationkey) as distinct vals

from

as maximum,

region, region.r nations as r nations

group by r name

order by r name;

o —— - +———— +

o — +

| r name | count | sum |

distinct vals |

o ———— t—————— +———— +

o — +

| AFRICA | 5 | 50 |
|

| AMERICA | 5 | 47 |
|

| ASIA | 5 | 68 |
|

| EUROPE | 5 |77 |
|

| MIDDLE EAST | 5 | 58 |
|

o ———— t—————— +———— +

o — +

| Impala SQL Language Reference | 189

______ o
avg | minimum | maximum
______ o
10 | ALGERIA | MOZAMBIQUE | 5
9.4 | ARGENTINA | UNITED STATES | 5
13.6 | CHINA | VIETNAM | 5
15.4 | FRANCE | UNITED KINGDOM | 5
11.6 | EGYPT | SAUDI ARABIA | 5
______ o

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot

notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;

| name

r regionkey
r name

r comment

r nations

smallint
string

string
array<struct<

n nationkey:smallint,

n name:stri
n comment:s
>>

——————————— -
| comment |
——————————— -
| |
| |
| |
| |
| |
ng, | |
tring | |
| |
——————————— -

-— When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r name, nation.item.n name, nation.item.n nationkey * 10

from region,

region.r natio

ns as nation

where nation.item.n nationkey < 5;

| AMERICA
| AMERICA
| AMERICA
| MIDDLE EAST

_____________ +
item.n name |
_______ Ty
CANADA |
BRAZIL |
ARGENTINA |
EGYPT |

30
20
10
40

| Impala SQL Language Reference | 190

| AFRICA | ALGERIA | O

BETWEEN Operator

In a WHERE clause, compares an expression to both a lower and upper bound. The comparison is successful is the
expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values
are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:
expression BETWEEN lower bound AND upper bound

Data types: Typically used with numeric data types. Works with any data type, although not very practical for
BOOLEAN values. (BETWEEN false AND true will match all BOOLEAN values.) Use CAST () if necessary
to ensure the lower and upper bound values are compatible types. Call string or date/time functions if necessary to
extract or transform the relevant portion to compare, especially if the value can be transformed into a number.

Usage notes:

Be careful when using short string operands. A longer string that starts with the upper bound value will not be
included, because it is considered greater than the upper bound. For example, BETWEEN 'A' and 'M' would not
match the string value 'Midway'. Use functions such as upper (), lower (), substr (), trim(), and so on if
necessary to ensure the comparison works as expected.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

-- Retrieve data for January through June, inclusive.
select cl from tl where month between 1 and 6;

-- Retrieve data for names beginning with 'A' through 'M' inclusive.

-- Only test the first letter to ensure all the values starting with 'M' are
matched.

-- Do a case-insensitive comparison to match names with various
capitalization conventions.

select last name from customers where upper (substr(last name,1,1)) between
'A' and 'M’';

-- Retrieve data for only the first week of each month.
select count (distinct visitor id)) from web traffic where
dayofmonth (when viewed) between 1 and 7;

The following example shows how to do a BETWEEN comparison using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in a
comparison operator:

—-— The SMALLINT is a field within an array of structs.
describe region;

fom e o fom - +
| name | type | comment |
fom e o fom +
r regionkey	smallint
r name	string
r comment	string

| Impala SQL Language Reference | 191

array<struct<	
n nationkey:smallint,	
n name:string,	
n_comment:string	
>>	

-- When we refer to the scalar value using dot notation,
-—- we can use arithmetic and comparison operators on it

-- like any other number.

select r name, nation.item.n name, nation.item.n nationkey
from region, region.r nations as nation

where nation.item.n nationkey between 3 and 5

t—————_————— t—————_—_——— e +
| r name | item.n name | item.n nationkey |
fmm e fm—————— ———— fm—————— - +
AMERICA	CANADA	3
MIDDLE EAST	EGYPT	4
AFRICA	ETHIOPIA	5
t—————_————— t—————_————— e +

Comparison Operators
Impala supports the familiar comparison operators for checking equality and sort order for the column data types:

Syntax:
left hand expression comparison operator right hand expression

* =, = <>:apply to all types.
* <, <=, >, >=:apply to all types; for BOOLEAN, TRUE is considered greater than FALSE.

Alternatives:

The IN and BETWEEN operators provide shorthand notation for expressing combinations of equality, less than, and
greater than comparisons with a single operator.

Because comparing any value to NULL produces NULL rather than TRUE or FALSE, use the IS NULL and IS NOT
NULL operators to check if a value is NULL or not.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an
item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used with a
comparison operator such as <:

—-- The SMALLINT is a field within an array of structs.
describe region;

fom e o fom - +
| name | type | comment |
fom e o e +
r regionkey smallint
r:name string

r nations array<struct<
n nationkey:smallint,
n name:string,

| | |

| | |
r comment | string |

| | |

| | |

| | |

| Impala SQL Language Reference | 192

| | n_comment:string | |
| | >> | |

-— When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it

-- like any other number.

select r name, nation.item.n name, nation.item.n nationkey
from region, region.r nations as nation

where nation.item.n nationkey < 5

o ——————— e —_—_———— e +
| r name | item.n name | item.n nationkey |
Fmm Fm————— ——— Fm————— ———————— +
AMERICA	CANADA	3
AMERICA	BRAZIL	2
AMERICA	ARGENTINA	1
MIDDLE EAST	EGYPT	4
AFRICA	ALGERIA	0
o —— o —— o +

EXISTS Operator

The EXISTS operator tests whether a subquery returns any results. You typically use it to find values from one table
that have corresponding values in another table.

The converse, NOT EXISTS, helps to find all the values from one table that do not have any corresponding values in
another table.

Syntax:

EXISTS (subguery)
NOT EXISTS (subquery)

Usage notes:

The subquery can refer to a different table than the outer query block, or the same table. For example, you might use
EXISTS or NOT EXISTS to check the existence of parent/child relationships between two columns of the same
table.

You can also use operators and function calls within the subquery to test for other kinds of relationships other than
strict equality. For example, you might use a call to COUNT () in the subquery to check whether the number of
matching values is higher or lower than some limit. You might call a UDF in the subquery to check whether values in
one table matches a hashed representation of those same values in a different table.

NULL considerations:
If the subquery returns any value at all (even NULL), EXISTS returns TRUE and NOT EXISTS returns false.

The following example shows how even when the subquery returns only NULL values, EXISTS still returns TRUE
and thus matches all the rows from the table in the outer query block.

localhost:21000] > create table all nulls (x int);

localhost:21000] > insert into all nulls values (null), (null), (null);

localhost:21000] > select y from t2 where exists (select x from all nulls);

-———+
y o

-———+
2 |
4 |
6 |

[
[
[
I
|
+
|
|
|
+-——+

| Impala SQL Language Reference | 193

However, if the table in the subquery is empty and so the subquery returns an empty result set, EXISTS returns
FALSE:

[localhost:21000] > create table empty (x int);
[localhost:21000] > select y from t2 where exists (select x from empty):;
[localhost:21000] >

Added in: Impala 2.0.0

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Prior to Impala 2.6, the NOT EXISTS operator required a correlated subquery. In Impala 2.6 and higher, NOT
EXISTS works with uncorrelated queries also.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot

notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples refer to these simple tables containing small sets of integers or strings:

[localhost:21000] create table tl (x int);
[localhost:21000] > insert into tl wvalues (1), (2), (3), ((4), (5), (0);

\4

[localhost:21000] > create table t2 (y int);
[localhost:21000] > insert into t2 values (2), (4), (6);

[localhost:21000] > create table t3 (z int);
[localhost:21000] > insert into t3 wvalues (1), (3), (5);
[localhost:21000] > create table month names (m string);
[localhost:21000] > insert into month names values
> ('January'), ('February'), ('March'),
> ('April'), ('May'), ('June'), ('July'),
> ('August'), ('September'), ('October'),
> ('November'), ('December');

The following example shows a correlated subquery that finds all the values in one table that exist in another table.
For each value X from T1, the query checks if the Y column of T2 contains an identical value, and the EXISTS
operator returns TRUE or FALSE as appropriate in each case.

localhost:21000] > select x from tl where exists (select y from t2 where
tl.x = y);

+———

| x|

+———

| 2 |

| 4 |

| 6 |

+———

An uncorrelated query is less interesting in this case. Because the subquery always returns TRUE, all rows from T1
are returned. If the table contents where changed so that the subquery did not match any rows, none of the rows from
T1 would be returned.

[localhost:21000] > select x from tl where exists (select y from t2 where y
> 5);

| Impala SQL Language Reference | 194

R
| x|
d— et

o Ui W N

| |
| |
| |
| |
| |
+-——+
The following example shows how an uncorrelated subquery can test for the existence of some condition within a

table. By using LIMIT 1 or an aggregate function, the query returns a single result or no result based on whether the

subquery matches any rows. Here, we know that T1 and T2 contain some even numbers, but T3 does not.

[localhost:21000] > select "contains an even number" from tl where exists

(select x from tl where x $ 2 = 0) limit 1;
o +
| 'contains an even number' |
o +
| contains an even number |
o +
[localhost:21000] > select "contains an even number" as assertion from tl
where exists (select x from tl where x $ 2 = 0) limit 1;
B ettt +
| assertion |
e +
| contains an even number |
o +
[localhost:21000] > select "contains an even number" as assertion from t2
where exists (select x from t2 where y % 2 = 0) limit 1;

A}

ERROR: AnalysisException: couldn't resolve column reference: 'x
[localhost:21000] > select "contains an even number" as assertion from t2

where exists (select y from t2 where y $ 2 = 0) limit 1;

o +

| assertion |

B ettt +

| contains an even number |

e +

[localhost:21000] > select "contains an even number" as assertion from t3
where exists (select z from t3 where z $ 2 = 0) limit 1;

[localhost:21000] >

The following example finds numbers in one table that are 1 greater than numbers from another table. The EXISTS
notation is simpler than an equivalent CROSS JOIN between the tables. (The example then also illustrates how the
same test could be performed using an IN operator.)

[localhost:21000] > select x from tl where exists (select y from t2 where x
=y + 1);

+———

| x |

+-———+

| 3 |

| 5 |

+———

[localhost:21000] > select x from tl where x in (select y + 1 from t2);
+———

| x |

+-———+

| 3 |

| 5 |

+———

| Impala SQL Language Reference | 195

The following example finds values from one table that do not exist in another table.

[localhost:21000] > select x from tl where not exists (select y from t2
where x = vy);

fr===dk

I x|

+———+

[1 |

[3 |

| 5 |

fr===dk

The following example uses the NOT EXISTS operator to find all the leaf nodes in tree-structured data. This
simplified “tree of life” has multiple levels (class, order, family, and so on), with each item pointing upward through
a PARENT pointer. The example runs an outer query and a subquery on the same table, returning only those items
whose ID value is not referenced by the PARENT of any other item.

[localhost:21000]
[localhost:21000]

create table tree (id int, parent int, name string);
insert overwrite tree values
(0, null, "animals"),

"tigers"),
"red kangaroo"),
, "wallabies");
select name as "leaf node" from tree one
> where not exists (select parent from tree two where
one.id = two.parent);

(1, 0, "placentals"),
(2, 0, "marsupials"),
(3, 1, "bats"),
(4, 1, "cats"),
(5, 2, "kangaroos"),
(6, 4, "lions"),
(7, 4,
(5,

2

>
>
>
>
>
>
>
>
>
>
>
>
>

[localhost:21000]

o — +
| leaf node |
o — +
| bats |
| lions |
| tigers |
| red kangaroo |
| wallabies |
o — +

Related information:

Subqueries in Impala SELECT Statements on page 338

ILIKE Operator

A case-insensitive comparison operator for STRING data, with basic wildcard capability using _ to match a single
character and % to match multiple characters. The argument expression must match the entire string value. Typically,
it is more efficient to put any % wildcard match at the end of the string.

This operator, available in Impala 2.5 and higher, is the equivalent of the LIKE operator, but with case-insensitive
comparisons.

Syntax:

string expression ILIKE wildcard expression
string expression NOT ILIKE wildcard expression

Complex type considerations:

| Impala SQL Language Reference | 196

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

In the following examples, strings that are the same except for differences in uppercase and lowercase match
successfully with TLIKE, but do not match with LIKE:

select 'fooBar' ilike 'FOOBAR';

o +
| "foobar' ilike 'foobar' |
e +
| true |
e +

select 'fooBar' like 'FOOBAR';

o +
| "foobar' like 'foobar' |
B e +
| false |
e +

e 4
| 'foobar' ilike 'f%' |
e +
| true |
e +

e +
| "foobar' like 'f%' |
o — +
| false |
o +

select 'ABCXYZ' not ilike 'ab xyz';

o +
| not 'abcxyz' ilike 'ab xyz' |
Fm ———— +
| false |
o +

select 'ABCXYZ' not like 'ab xyz';

o +
| not 'abcxyz' like 'ab xyz' |
e —————- +
| true |
e +

Related information:

For case-sensitive comparisons, see LIKE Operator on page 203. For a more general kind of search operator using
regular expressions, see REGEXP Operator on page 206 or its case-insensitive counterpart [IREGEXP Operator on
page 199.

IN Operator

The IN operator compares an argument value to a set of values, and returns TRUE if the argument matches any value
in the set. The NOT 1IN operator reverses the comparison, and checks if the argument value is not part of a set of
values.

| Impala SQL Language Reference | 197

Syntax:

expression IN (expression [, expression])
expression IN (subgquery)

expression NOT IN (expression [, expression])
expression NOT IN (subquery)
The left-hand expression and the set of comparison values must be of compatible types.

The left-hand expression must consist only of a single value, not a tuple. Although the left-hand expression is
typically a column name, it could also be some other value. For example, the WHERE clauses WHERE id IN (5)
and WHERE 5 IN (id) produce the same results.

The set of values to check against can be specified as constants, function calls, column names, or other expressions in
the query text. The maximum number of expressions in the IN list is 9999. (The maximum number of elements of a
single expression is 10,000 items, and the IN operator itself counts as one.)

In Impala 2.0 and higher, the set of values can also be generated by a subquery. IN can evaluate an unlimited number
of results using a subquery.

Usage notes:

Any expression using the IN operator could be rewritten as a series of equality tests connected with OR, but the IN
syntax is often clearer, more concise, and easier for Impala to optimize. For example, with partitioned tables, queries
frequently use IN clauses to filter data by comparing the partition key columns to specific values.

NULL considerations:

If there really is a matching non-null value, IN returns TRUE:

[localhost:21000] > select 1 in (1,null,2,3);

o +
| 1 in (1, null, 2, 3) |
o +

| true |
e +
[localhost:21000] > select 1 not in (1,null,2,3);
e +

| 1 not in (1, null, 2, 3) |
o +

| false |
e +

If the searched value is not found in the comparison values, and the comparison values include NULL, the result is
NULL:

[localhost:21000] > select 5 in (1,null,2,3);

o +

| 5 in (1, null, 2, 3) |
o +

| NULL |
o +
[localhost:21000] > select 5 not in (1,null,2,3);
o +

| 5 not in (1, null, 2, 3) |
o +

| NULL |
e +
[localhost:21000] > select 1 in (null);
o —— +

| 1 in (null) |

o —— +

| Impala SQL Language Reference | 198

o —— +

[localhost:21000] > select 1 not in (null);
o —————— +

| 1 not in (null) |

e +

| NULL |

e +

If the left-hand argument is NULL, IN always returns NULL. This rule applies even if the comparison values include
NULL.

[localhost:21000] > select null in (1,2,3);

o +

| null in (1, 2, 3) |

e +

| NULL |

o +

[localhost:21000] > select null not in (1,2,3);
o +

| null not in (1, 2, 3) |
e +

| NULL |
o +
[localhost:21000] > select null in (null);
o —————— +

| null in (null) |

e ————— +

| NULL |

o —— +

[localhost:21000] > select null not in (null);
o +

| null not in (null) |
e +

| NULL |
o — +

Added in: Available in earlier Impala releases, but new capabilities were added in Impala 2.0.0
Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;

n nationkey:smallint,

n name:string,

n comment:string
>>

e B e - +
| name | type | comment |
e - - +*
r regionkey | smallint
r name | string |
r comment | string
r nations | array<struct<
| |
| |
| |
| |

| Impala SQL Language Reference | 199

-—- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it

-- like any other number.

select r name, nation.item.n name, nation.item.n nationkey
from region, region.r nations as nation

where nation.item.n nationkey in (1, 3,5)

t——————— t————_—_———— o +
| r name | item.n name | item.n nationkey |
e fm———— ————- fm———— ——— +
| AMERICA | CANADA | 3

| AMERICA | ARGENTINA | 1

| AFRICA | ETHIOPIA | 5

t——————— t————_—_———— o +
Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Examples:

-- Using IN is concise and self-documenting.

SELECT * FROM tl WHERE cl IN (1,2,10);

-- Equivalent to series of = comparisons ORed together.
SELECT * FROM tl WHERE cl = 1 OR cl = 2 OR cl1 = 10;

SELECT cl AS "starts with vowel" FROM t2 WHERE upper (substr(cl,1,1)) IN
(IAI IEI III lOl IU').
14 14 14 14 14

SELECT COUNT(DISTINCT(visitoriid)) FROM webitraffic WHERE month IN
("January', '"June', 'July"');
Related information:

Subqueries in Impala SELECT Statements on page 338

IREGEXP Operator

Tests whether a value matches a regular expression, using case-insensitive string comparisons. Uses the POSIX
regular expression syntax where ~ and $ match the beginning and end of the string, . represents any single character,
* represents a sequence of zero or more items, + represents a sequence of one or more items, ? produces a non-
greedy match, and so on.

This operator, available in Impala 2.5 and higher, is the equivalent of the REGEXP operator, but with case-insensitive
comparisons.

Syntax:

string expression IREGEXP regular expression

Usage notes:

The regular expression must match the entire value, not just occur somewhere inside it. Use . * at the beginning,
the end, or both if you only need to match characters anywhere in the middle. Thus, the ~ and $ atoms are often
redundant, although you might already have them in your expression strings that you reuse from elsewhere.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do
not allow backreferences. To retrieve the part of a value matched within a () section, use the regexp extract ()
built-in function. (Currently, there is not any case-insensitive equivalent for the regexp extract () function.)

Note:

| Impala SQL Language Reference | 200

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by . *. See
REGEXP Operator on page 206 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression
support for popular database systems. There is no change to the behavior of the regexp extract () and
regexp replace () built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including . *? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 on page 771 for details.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the syntax for the IREGEXP operator.

select 'abcABCaabbcc' iregexp '“[a-cl+$';

o +
| 'abcabcaabbcc' iregexp '[a-c]+' |
o +
| true |
o +

Related information:

REGEXP Operator on page 206

IS DISTINCT FROM Operator

The IS DISTINCT FROM operator, and its converse the IS NOT DISTINCT FROM operator, test whether or not
values are identical. IS NOT DISTINCT FROM is similar to the = operator, and IS DISTINCT FROM is similar
to the ! = operator, except that NULL values are treated as identical. Therefore, IS NOT DISTINCT FROM returns
true rather than NULL, and IS DISTINCT FROM returns false rather than NULL, when comparing two NULL
values. If one of the values being compared is NULL and the other is not, IS DISTINCT FROM returns true and
IS NOT DISTINCT FROM returns false, again instead of returning NULL in both cases.

Syntax:
expressionl IS DISTINCT FROM expressionZ2

expressionl IS NOT DISTINCT FROM expressionZ?
expressionl <=> expression2

The operator <=> is an alias for IS NOT DISTINCT FROM. It is typically used as a NULL-safe equality operator in
join queries. That is, A <=> B s true if A equals B or if both A and B are NULL.
Usage notes:

This operator provides concise notation for comparing two values and always producing a true or false result,
without treating NULL as a special case. Otherwise, to unambiguously distinguish between two values requires a
compound expression involving IS [NOT] NULL tests of both operands in addition to the = or ! = operator.

https://code.google.com/p/re2/

| Impala SQL Language Reference | 201

The <=> operator, used like an equality operator in a join query, is more efficient than the equivalent clause: A = B
OR (A IS NULL AND B IS NULL).The <=> operator can use a hash join, while the OR expression cannot.

Examples:

The following examples show how IS DISTINCT FROM gives output similar to the ! = operator, and IS NOT
DISTINCT FROM gives output similar to the = operator. The exception is when the expression involves a NULL
value on one side or both sides, where ! = and = return NULL but the IS [NOT] DISTINCT FROM operators still
return true or false.

select 1 is distinct from 0, 1 != 0;
o o +

| 1 is distinct from O | 1 != 0 |
o o +

| true | true |
o o +

select 1 is distinct from 1, 1 != 1;
o o +

| 1 is distinct from 1 | 1 != 1 |

B ittt e e e o +

| false | false |
o o ———— +

select 1 is distinct from null, 1 != null;
e o ——— +

| 1 is distinct from null | 1 != null |

o o —— +

| true | NULL |

o o —— +
select null is distinct from null, null !'= null;
o o +
| null is distinct from null | null != null |
e o — +
| false | NULL |
e o — +
select 1 is not distinct from 0, 1 = 0;

o - +

| 1 is not distinct from O | 1 = 0 |
o - +

| false | false |
e t—————— +

select 1 is not distinct from 1, 1 = 1;

e - +

| 1 is not distinct from 1 | 1 = 1 |
o - +

| true | true |

B et - +

select 1 is not distinct from null, 1 = null;
o e +

| 1 is not distinct from null | 1 = null |
o o —————— +

| false | NULL |

o o +
select null is not distinct from null, null = null;
e o —— +

| null is not distinct from null | null = null |

| Impala SQL Language Reference | 202

The following example shows how IS DISTINCT FROM considers CHAR values to be the same (not distinct from
each other) if they only differ in the number of trailing spaces. Therefore, sometimes the result of an IS [NOT]
DISTINCT FROM operator differs depending on whether the values are STRING/VARCHAR or CHAR.

select
'x'" is distinct from 'x ' as string with trailing spaces,
cast ('x'" as char(5)) is distinct from cast('x ' as char(5)) as
char with trailing spaces;
4o~ ___—_______Z o ___ e n
| string with trailing spaces | char with trailing spaces |
yo___Z o T _______ o __ Yo T T _______ o __ +
| true | false |
R et T o +

IS NULL Operator

The IS NULL operator, and its converse the IS NOT NULL operator, test whether a specified value is NULL.
Because using NULL with any of the other comparison operators such as = or ! = also returns NULL rather than TRUE
or FALSE, you use a special-purpose comparison operator to check for this special condition.

Syntax:
expression IS NULL
expression IS NOT NULL

Usage notes:

In many cases, NULL values indicate some incorrect or incomplete processing during data ingestion or conversion.
You might check whether any values in a column are NULL, and if so take some followup action to fill them in.

With sparse data, often represented in “wide” tables, it is common for most values to be NULL with only an
occasional non-NULL value. In those cases, you can use the IS NOT NULL operator to identify the rows containing
any data at all for a particular column, regardless of the actual value.

With a well-designed database schema, effective use of NULL values and IS NULL and IS NOT NULL operators
can save having to design custom logic around special values such as 0, -1, 'N/A", empty string, and so on. NULL
lets you distinguish between a value that is known to be 0, false, or empty, and a truly unknown value.

Complex type considerations:

This operator is not applicable to complex type columns (STRUCT, ARRAY, or MAP). Using a complex type column
with IS NULLor IS NOT NULL causes a query error.

Examples:

-- If this value is non-zero, something is wrong.
select count (*) from employees where employee id is null;

-- With data from disparate sources, some fields might be blank.
-- Not necessarily an error condition.
select count (*) from census where household income is null;

-—- Sometimes we expect fields to be null, and followup action
—-- 1is needed when they are not.
select count (*) from web traffic where weird http code is not null;

| Impala SQL Language Reference | 203

LIKE Operator

A comparison operator for STRING data, with basic wildcard capability using the underscore (_) to match a single
character and the percent sign (%) to match multiple characters. The argument expression must match the entire string
value. Typically, it is more efficient to put any % wildcard match at the end of the string.

Syntax:

string expression LIKE wildcard expression
string expression NOT LIKE wildcard expression

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

select distinct ¢ _last name from customer where c_last name like 'Mc%' or
c _last name like 'Mac5%';

select count (c_last name) from customer where c last name like 'M
select ¢ email address from customer where c email address like '

s';
$.edu';

-— We can find 4-letter names beginning with 'M' by calling functions...
select distinct ¢ _last name from customer where length(c_last name) = 4 and

substr (c_last name,1,1) = 'M';

-— ...0r in a more readable way by matching M followed by exactly 3
characters.

select distinct ¢ last name from customer where c last name like 'M ';

For case-insensitive comparisons, see /LIKE Operator on page 195. For a more general kind of search operator
using regular expressions, see REGEXP Operator on page 206 or its case-insensitive counterpart IREGEXP
Operator on page 199.

Logical Operators

Logical operators return a BOOLEAN value, based on a binary or unary logical operation between arguments that are
also Booleans. Typically, the argument expressions use comparison operators.

Syntax:

boolean expression binary logical operator boolean expression
unary logical operator boolean expression

The Impala logical operators are:

* AND: A binary operator that returns true if its left-hand and right-hand arguments both evaluate to t rue, NULL
if either argument is NULL, and false otherwise.

* OR: A binary operator that returns t rue if either of its left-hand and right-hand arguments evaluate to true,
NULL if one argument is NULL and the other is either NULL or false, and false otherwise.

* NOT: A unary operator that flips the state of a Boolean expression from true to false, or false to true.
If the argument expression is NULL, the result remains NULL. (When NOT is used this way as a unary logical
operator, it works differently than the IS NOT NULL comparison operator, which returns t rue when applied to
aNULL.)

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,

| Impala SQL Language Reference | 204

or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;

fom e o fom +
| name | type | comment |
fomm - e e e fomm - +

r regionkey smallint

r:name string

r comment string

n nationkey:smallint,

n name:string,

n comment:string
>>

r nations	array<struct<

-— When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r name, nation.item.n name, nation.item.n nationkey
from region, region.r nations as nation
where
nation.item.n nationkey between 3 and 5
or nation.item.n nationkey < 15;

o —— o o +
| r name | item.n name | item.n nationkey |
fmm R ———————— R R +
| EUROPE | UNITED KINGDOM | 23

| EUROPE | RUSSIA | 22

| EUROPE | ROMANIA | 19

| ASIA | VIETNAM | 21

| ASIA | CHINA | 18

| AMERICA | UNITED STATES | 24

| AMERICA | PERU | 17

| AMERICA | CANADA | 3

| MIDDLE EAST | SAUDI ARABIA | 20

| MIDDLE EAST | EGYPT | 4

| AFRICA | MOZAMBIQUE | 16

| AFRICA | ETHIOPIA | 5

o —— o o — +

Examples:

These examples demonstrate the AND operator:

[localhost:21000] > select true and true;

[localhost:21000] > select true and false;

| Impala SQL Language Reference | 205

o +

[localhost:21000] > select false and false;
o +

| false and false |

o — +

| false

o +

[localhost:21000] > select true and null;
o — +

| true and null |

o — +

| NULL

o — +

[localhost:21000] > select (10 > 2) and (6 !'= 9);
o +

| (10 > 2) and (6 !'= 9) |
o +

| true |

B ettt +

These examples demonstrate the OR operator:

[localhost:21000] > select true or true;

o — +

| true or true |

o —— +

| true |

o — +

[localhost:21000] > select true or false;
o — +

| true or false |

o — +

| true |

o — +

[localhost:21000] > select false or false;
o +

| false or false |

o —— +

| false |

o +

[localhost:21000] > select true or null;
o — +

| true or null |

o —— +

| true |

o — +

[localhost:21000] > select null or true;
o — +

| null or true |

o —— +

| true |

o — +

[localhost:21000] > select false or null;
o — +

| false or null |

o — +

| NULL

o — +

[localhost:21000] > select (1 = 1) or ('hello' = 'world'):;
e +

| (1L = 1) or ('hello' = 'world') |
e +

| Impala SQL Language Reference | 206

e +

[localhost:21000] > select (2 + 2 != 4) or (-1 > 0);
o +

| (2 + 2 !=4) or (-1 > 0) |
e +

| false |
e +

These examples demonstrate the NOT operator:

[localhost:21000] > select not true;

[localhost:21000] > select not false;

[localhost:21000] > select not null;

[localhost:21000] > select not (1=1);

REGEXP Operator

Tests whether a value matches a regular expression. Uses the POSIX regular expression syntax where ~ and $ match
the beginning and end of the string, . represents any single character, * represents a sequence of zero or more items,
+ represents a sequence of one or more items, ? produces a non-greedy match, and so on.

Syntax:
string expression REGEXP regular expression

Usage notes:

The regular expression must match the entire value, not just occur somewhere inside it. Use . * at the beginning,
the end, or both if you only need to match characters anywhere in the middle. Thus, the ~ and $ atoms are often
redundant, although you might already have them in your expression strings that you reuse from elsewhere.

The RLIKE operator is a synonym for REGEXP.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do
not allow backreferences. To retrieve the part of a value matched withina () section, use the regexp extract ()
built-in function.

Note:

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by . *. See
REGEXP Operator on page 206 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression

| Impala SQL Language Reference | 207

support for popular database systems. There is no change to the behavior of the regexp extract () and
regexp replace () built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including . *? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 on page 771 for details.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

-- Find all customers whose first name starts with 'J', followed by 0 or
more of any character.

select ¢ _first name, c_last name from customer where c first name regexp
IAJ.*I;

select ¢ first name, c_ last name from customer where c first name rlike
IAJ-*I;

-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be
upper- or lowercase.

-- The "...$ are required, to match the start and end of the value.

select ¢ first name, c last name from customer where c last name regexp
'“Ma?c[Dd]onalds$’;

select ¢ first name, c_ last name from customer where c last name rlike '"Ma?

c[Dd]onalds';

—-— Match multiple character sequences, either 'Mac' or 'Mc'.

select ¢ first name, c last name from customer where c last name regexp
'~ (Mac|Mc)donalds$';

select ¢ first name, c_last name from customer where c last name rlike
'~ (Mac |Mc)donalds$';

-- Find names starting with 'S', then one or more vowels, then 'r', then any
other characters.

-- Matches 'Searcy', 'Sorenson', 'Sauer'.

select ¢ first name, c_last name from customer where c last name regexp
'“"Slaeioul+r.*$"';

select ¢ _first name, c_last name from customer where c_ last name rlike
'“"Slaeioul+r.*S$"';

-- Find names that end with 2 or more vowels: letters from the set
a,e,i,o,u.

select ¢ _first name, c_last name from customer where c last name regexp
'.*[aeioul {2,}S8";

select ¢ first name, c_last name from customer where c last name rlike
'.*[aeioul{2,}8";

-- You can use letter ranges in the [] blocks, for example to find names
starting with A, B, or C.

select ¢ _first name, c_last name from customer where c last name regexp
IA[A_C].*I;

select ¢ first name, c last name from customer where c last name rlike '~ [A-

Clo%"¢

https://code.google.com/p/re2/

| Impala SQL Language Reference | 208

-- If you are not sure about case, leading/trailing spaces, and so on, you
can process the

-- column using string functions first.

select ¢ first name, c_last name from customer where

lower (trim(c_last name)) regexp '“de.*';
select ¢ first name, c last name from customer where
lower (trim(c_last name)) rlike '“de.*';

Related information:

For regular expression matching with case-insensitive comparisons, see /[REGEXP Operator on page 199.

RLIKE Operator
Synonym for the REGEXP operator. See REGEXP Operator on page 206 for details.
Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

-- Find all customers whose first name starts with 'J', followed by 0 or
more of any character.

select ¢ first name, c_last name from customer where c first name regexp

TATLxY

select ¢ first name, c_last name from customer where c first name rlike

U L L

-- Find '"Macdonald', where the first 'a' is optional and the 'D' can be
upper- or lowercase.

-- The ~...$ are required, to match the start and end of the value.

select ¢ first name, c_last name from customer where c last name regexp
'“"Ma?c[Dd]onalds$’';

select ¢ _first name, c_last name from customer where c last name rlike '“Ma?

c[Dd]onalds$';

-- Match multiple character sequences, either 'Mac' or 'Mc'.

select ¢ first name, c_last name from customer where c last name regexp
'~ (Mac |Mc)donalds$';

select ¢ _first name, c_last name from customer where c_ last name rlike
'~ (Mac |Mc)donalds$';

-- Find names starting with 'S', then one or more vowels, then 'r', then any
other characters.

—-— Matches 'Searcy', 'Sorenson', 'Sauer'.

select ¢ _first name, c_last name from customer where c last name regexp
'“"Slaeioul+r.*S$"';

select ¢ first name, c_ last name from customer where c last name rlike
'~Slaeioul+r.*$"';

-— Find names that end with 2 or more vowels: letters from the set
a,e,i,o,u.

select ¢ _first name, c_last name from customer where c last name regexp
'.*[aeioul] {2,1}S$';

select ¢ first name, c_last name from customer where c last name rlike
'.*[aeiou]l {2,}S";

-- You can use letter ranges in the [] blocks, for example to find names
starting with A, B, or C.

select ¢ first name, c_ last name from customer where c last name regexp
'“"[A-C].*"';

select ¢ _first name, c_ last name from customer where c last name rlike '"[A-

Clo*"g

| Impala SQL Language Reference | 209

-- If you are not sure about case, leading/trailing spaces, and so on, you
can process the

—-— column using string functions first.

select ¢ _first name, c_last name from customer where

lower(tzim(c_fast_name)) rggexp '*de.*';
select c first name, c last name from customer where
lower (trim(c_last name)) rlike '“de.*';

Impala Schema Objects and Object Names

With Impala, you work with schema objects that are familiar to database users: primarily databases, tables, views, and
functions. The SQL syntax to work with these objects is explained in Impala SOL Statements on page 221. This
section explains the conceptual knowledge you need to work with these objects and the various ways to specify their
names.

Within a table, partitions can also be considered a kind of object. Partitioning is an important subject for Impala,
with its own documentation section covering use cases and performance considerations. See Partitioning for Impala
Tables on page 645 for details.

Impala does not have a counterpart of the “tablespace” notion from some database systems. By default, all the data
files for a database, table, or partition are located within nested folders within the HDFS file system. You can also
specify a particular HDFS location for a given Impala table or partition. The raw data for these objects is represented
as a collection of data files, providing the flexibility to load data by simply moving files into the expected HDFS
location.

Information about the schema objects is held in the metastore database. This database is shared between Impala
and Hive, allowing each to create, drop, and query each other's databases, tables, and so on. When Impala makes a
change to schema objects through a CREATE, ALTER, DROP, INSERT, or LOAD DATA statement, it broadcasts
those changes to all nodes in the cluster through the catalog service. When you make such changes through Hive or
directly through manipulating HDFS files, you use the REFRESH or INVALIDATE METADATA statements on the
Impala side to recognize the newly loaded data, new tables, and so on.

Overview of Impala Aliases

When you write the names of tables, columns, or column expressions in a query, you can assign an alias at the same
time. Then you can specify the alias rather than the original name when making other references to the table or
column in the same statement. You typically specify aliases that are shorter, easier to remember, or both than the
original names. The aliases are printed in the query header, making them useful for self-documenting output.

To set up an alias, add the AS alias clause immediately after any table, column, or expression name in the
SELECT list or FROM list of a query. The AS keyword is optional; you can also specify the alias immediately after the
original name.

-— Make the column headers of the result set easier to understand.

SELECT cl AS name, c2 AS address, c3 AS phone FROM table with terse columns;
SELECT SUM(ss_xyz dollars net) AS total sales FROM

table with cryptic columns;

-- The alias can be a quoted string for extra readability.

SELECT cl AS "Employee ID", c2 AS "Date of hire" FROM tl;

-— The AS keyword is optional.

SELECT cl "Employee ID", c2 "Date of hire"™ FROM tl;

—-- The table aliases assigned in the FROM clause can be used both earlier
--— in the query (the SELECT list) and later (the WHERE clause).
SELECT one.name, two.address, three.phone
FROM census one, building directory two, phonebook three
WHERE one.id = two.id and two.id = three.id;

| Impala SQL Language Reference | 210

—-- The aliases cl and c2 let the query handle columns with the same names
from 2 joined tables.
-— The aliases tl and t2 let the query abbreviate references to long or
cryptically named tables.
SELECT tl.column n AS cl, t2.column n AS c2 FROM long name table AS t1,
very long name table2 AS t2
WHERE cl = c2;
SELECT tl.column n cl, t2.column n c2 FROM tablel tl, table2 t2
WHERE cl = c2;

To use an alias name that matches one of the Impala reserved keywords (listed in Impala Reserved Words on page
737), surround the identifier with either single or double quotation marks, or * * characters (backticks).

Aliases follow the same rules as identifiers when it comes to case insensitivity. Aliases can be longer than identifiers
(up to the maximum length of a Java string) and can include additional characters such as spaces and dashes when
they are quoted using backtick characters.

Complex type considerations:

Queries involving the complex types (ARRAY, STRUCT, and MAP), typically make extensive use of table aliases.
These queries involve join clauses where the complex type column is treated as a joined table. To construct two-part
or three-part qualified names for the complex column elements in the FROM list, sometimes it is syntactically required
to construct a table alias for the complex column where it is referenced in the join clause. See Complex Types (Impala
2.3 or higher only) on page 151 for details and examples.

Alternatives:

Another way to define different names for the same tables or columns is to create views. See Overview of Impala
Views on page 217 for details.

Overview of Impala Databases

In Impala, a database is a logical container for a group of tables. Each database defines a separate namespace. Within
a database, you can refer to the tables inside it using their unqualified names. Different databases can contain tables
with identical names.

Creating a database is a lightweight operation. There are minimal database-specific properties to configure, only
LOCATION and COMMENT. There is no ALTER DATABASE statement.

Typically, you create a separate database for each project or application, to avoid naming conflicts between tables
and to make clear which tables are related to each other. The USE statement lets you switch between databases.
Unqualified references to tables, views, and functions refer to objects within the current database. You can also refer
to objects in other databases by using qualified names of the form dbname.object name.

Each database is physically represented by a directory in HDFS. When you do not specify a LOCATION attribute, the
directory is located in the Impala data directory with the associated tables managed by Impala. When you do specify
a LOCATION attribute, any read and write operations for tables in that database are relative to the specified HDFS
directory.

There is a special database, named de fault, where you begin when you connect to Impala. Tables created in
default are physically located one level higher in HDFS than all the user-created databases.

Impala includes another predefined database, impala builtins, that serves as the location for the built-in

Sfunctions. To see the built-in functions, use a statement like the following:

show functions in impala builtins;
show functions in impala builtins like '*substring*';
Related statements:

CREATE DATABASE Statement on page 244, DROP DATABASE Statement on page 283, USE Statement on
page 401, SHOW DATABASES on page 383

| Impala SQL Language Reference | 211

Overview of Impala Functions

Functions let you apply arithmetic, string, or other computations and transformations to Impala data. You typically
use them in SELECT lists and WHERE clauses to filter and format query results so that the result set is exactly what
you want, with no further processing needed on the application side.

Scalar functions return a single result for each input row. See Impala Built-In Functions on page 402.
[localhost:21000] > select name, population from country where continent =

'North America' order by population desc limit 4;
[localhost:21000] > select upper (name), population from country where

continent = 'North America' order by population desc limit 4;
e fom e —— +
| upper (name) | population |
fo— fo— 4
USA	320000000
MEXICO	122000000
CANADA	25000000
GUATEMALA	16000000
fo— o +

Aggregate functions combine the results from multiple rows: either a single result for the entire table, or a separate
result for each group of rows. Aggregate functions are frequently used in combination with GROUP BY and HAVING
clauses in the SELECT statement. See Impala Aggregate Functions on page 503.

[localhost:21000] > select continent, sum(population) as howmany from
country group by continent order by howmany desc;

o —— - +
| continent | howmany |
o —————— o ——— +
Asia	4298723000
Africa	1110635000
Europe	742452000
North America	565265000
South America	406740000
Oceania	38304000
tm————————— o ——— +

User-defined functions (UDFs) let you code your own logic. They can be either scalar or aggregate functions. UDFs
let you implement important business or scientific logic using high-performance code for Impala to automatically
parallelize. You can also use UDFs to implement convenience functions to simplify reporting or porting SQL from
other database systems. See Impala User-Defined Functions (UDFs) on page 553.

[localhost:21000] > select rotl3('Hello world!') as 'Weak obfuscation';

o ———————— +
| weak obfuscation |
e +
| Uryyb jbeyqg! |
o +

[localhost:21000] > select likelihood of new_subatomic particle(sensorl,
sensor2, sensor3) as probability
> from experimental results group by experiment;

Each function is associated with a specific database. For example, if you issue a USE somedb statement followed
by CREATE FUNCTION somefunc, the new function is created in the somedb database, and you could refer to
it through the fully qualified name somedb . somefunc. You could then issue another USE statement and create a
function with the same name in a different database.

| Impala SQL Language Reference | 212

Impala built-in functions are associated with a special database named impala builtins, which lets you refer
to them from any database without qualifying the name.

[localhost:21000] > show databases;

| _impala builtins |
| analytic_ functions |
| avro testing |
| data file size |

[localhost:21000] > show functions in impala builtins like '*subs*';
e B e it +
signature |

|
o e +
STRING	substr (STRING, BIGINT)
STRING	substr (STRING, BIGINT, BIGINT)
STRING	substring (STRING, BIGINT)
STRING	substring (STRING, BIGINT, BIGINT)
fom e e et +

Related statements: CREATE FUNCTION Statement on page 246, DROP FUNCTION Statement on page 285

Overview of Impala Identifiers

Identifiers are the names of databases, tables, or columns that you specify in a SQL statement. The rules for identifiers
govern what names you can give to things you create, the notation for referring to names containing unusual
characters, and other aspects such as case sensitivity.

* The minimum length of an identifier is 1 character.

* The maximum length of an identifier is currently 128 characters, enforced by the metastore database.

* An identifier must start with an alphabetic character. The remainder can contain any combination of alphanumeric
characters and underscores. Quoting the identifier with backticks has no effect on the allowed characters in the
name.

* An identifier can contain only ASCII characters.

* To use an identifier name that matches one of the Impala reserved keywords (listed in /mpala Reserved Words
on page 737), surround the identifier with * ° characters (backticks). Quote the reserved word even if it is part
of a fully qualified name. The following example shows how a reserved word can be used as a column name if it
is quoted with backticks in the CREATE TABLE statement, and how the column name must also be quoted with
backticks in a query:

[localhost:21000] > create table reserved ("data’ string);

[localhost:21000] > select data from reserved;

ERROR: AnalysisException: Syntax error in line 1:

select data from reserved

Encountered: DATA

Expected: ALL, CASE, CAST, DISTINCT, EXISTS, FALSE, IF, INTERVAL, NOT,
NULL, STRAIGHT JOIN, TRUE, IDENTIFIER

CAUSED BY: Exception: Syntax error

[localhost:21000] > select reserved.data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select reserved.data from reserved

Encountered: DATA

Expected: IDENTIFIER

CAUSED BY: Exception: Syntax error

| Impala SQL Language Reference | 213

[localhost:21000] > select reserved. data from reserved;

[localhost:21000] >

Important: Because the list of reserved words grows over time as new SQL syntax is added, consider adopting
coding conventions (especially for any automated scripts or in packaged applications) to always quote all
identifiers with backticks. Quoting all identifiers protects your SQL from compatibility issues if new reserved
words are added in later releases.

» Impala identifiers are always case-insensitive. That is, tables named t 1 and T1 always refer to the same table,
regardless of quote characters. Internally, Impala always folds all specified table and column names to lowercase.
This is why the column headers in query output are always displayed in lowercase.

See Overview of Impala Aliases on page 209 for how to define shorter or easier-to-remember aliases if the
original names are long or cryptic identifiers. Aliases follow the same rules as identifiers when it comes to case
insensitivity. Aliases can be longer than identifiers (up to the maximum length of a Java string) and can include
additional characters such as spaces and dashes when they are quoted using backtick characters.

Another way to define different names for the same tables or columns is to create views. See Overview of Impala
Views on page 217 for details.

Overview of Impala Tables

Tables are the primary containers for data in Impala. They have the familiar row and column layout similar to other
database systems, plus some features such as partitioning often associated with higher-end data warehouse systems.

Logically, each table has a structure based on the definition of its columns, partitions, and other properties.

Physically, each table that uses HDFS storage is associated with a directory in HDFS. The table data consists of all
the data files underneath that directory:

» Internal tables are managed by Impala, and use directories inside the designated Impala work area.
» External tables use arbitrary HDFS directories, where the data files are typically shared between different Hadoop
components.

» Large-scale data is usually handled by partitioned tables, where the data files are divided among different HDFS
subdirectories.

Impala tables can also represent data that is stored in HBase, or in the Amazon S3 filesystem (Impala 2.2 or higher),
or on Isilon storage devices (Impala 2.2.3 or higher). See Using Impala to Query HBase Tables on page 699, Using
Impala with the Amazon S3 Filesystem on page 709, and Using Impala with Isilon Storage on page 724 for

details about those special kinds of tables.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions . tmp or . copying are not considered part of the Impala table. The suffix matching is case-insensitive,
so for example Impala ignores both . copying and . COPYING suffixes.

Related statements: CREATE TABLE Statement on page 253, DROP TABLE Statement on page 291, ALTER
TABLE Statement on page 223 INSERT Statement on page 298, LOAD DATA Statement on page 310,
SELECT Statement on page 319

Internal Tables

The default kind of table produced by the CREATE TABLE statement is known as an internal table. (Its counterpart is
the external table, produced by the CREATE EXTERNAL TABLE syntax.)

» Impala creates a directory in HDFS to hold the data files.
* You can create data in internal tables by issuing INSERT or LOAD DATA statements.

» Ifyou add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that
Impala recognizes the changes in data files, block locations, and so on.

* When you issue a DROP TABLE statement, Impala physically removes all the data files from the directory.

| Impala SQL Language Reference | 214

» To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE
FORMATTED table name. The Table Type field displays MANAGED TABLE for internal tables and
EXTERNAL TABLE for external tables. The Location field displays the path of the table directory as an HDFS
URL

* When you issue an ALTER TABLE statement to rename an internal table, all data files are moved into the new
HDFS directory for the table. The files are moved even if they were formerly in a directory outside the Impala
data directory, for example in an internal table with a LOCATION attribute pointing to an outside HDFS directory.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='TRUE') ;

-— Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='FALSE') ;

Related information:

External Tables on page 214, CREATE TABLE Statement on page 253, DROP TABLE Statement on page
291, ALTER TABLE Statement on page 223, DESCRIBE Statement on page 271

External Tables

The syntax CREATE EXTERNAL TABLE sets up an Impala table that points at existing data files, potentially in
HDFS locations outside the normal Impala data directories.. This operation saves the expense of importing the data
into a new table when you already have the data files in a known location in HDFS, in the desired file format.

* You can use Impala to query the data in this table.

* You can create data in external tables by issuing INSERT or LOAD DATA statements.

» Ifyou add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that
Impala recognizes the changes in data files, block locations, and so on.

* When you issue a DROP TABLE statement in Impala, that removes the connection that Impala has with the
associated data files, but does not physically remove the underlying data. You can continue to use the data files
with other Hadoop components and HDFS operations.

» To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE
FORMATTED table name. The Table Type field displays MANAGED TABLE for internal tables and
EXTERNAL TABLE for external tables. The Location field displays the path of the table directory as an HDFS
URL

* When you issue an ALTER TABLE statement to rename an external table, all data files are left in their original
locations.

* You can point multiple external tables at the same HDFS directory by using the same LOCATION attribute for
each one. The tables could have different column definitions, as long as the number and types of columns are
compatible with the schema evolution considerations for the underlying file type. For example, for text data files,
one table might define a certain column as a STRING while another defines the same column as a BIGINT.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE tableﬁname SET TBLPROPERTIES ('EXTERNAL'='TRUE') ;

-— Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='FALSE') ;

Related information:

| Impala SQL Language Reference | 215

Internal Tables on page 213, CREATE TABLE Statement on page 253, DROP TABLE Statement on page
291, ALTER TABLE Statement on page 223, DESCRIBE Statement on page 271

File Formats

Each table has an associated file format, which determines how Impala interprets the associated data files. See How
Impala Works with Hadoop File Formats on page 652 for details.

You set the file format during the CREATE TABLE statement, or change it later using the ALTER TABLE statement.
Partitioned tables can have a different file format for individual partitions, allowing you to change the file format used
in your ETL process for new data without going back and reconverting all the existing data in the same table.

Any INSERT statements produce new data files with the current file format of the table. For existing data files,
changing the file format of the table does not automatically do any data conversion. You must use TRUNCATE
TABLE or INSERT OVERWRITE to remove any previous data files that use the old file format. Then you use the
LOAD DATA statement, INSERT ... SELECT, or other mechanism to put data files of the correct format into the
table.

The default file format, text, is the most flexible and easy to produce when you are just getting started with Impala.
The Parquet file format offers the highest query performance and uses compression to reduce storage requirements;
therefore, where practical, use Parquet for Impala tables with substantial amounts of data. Also, the complex types
(ARRAY, STRUCT, and MAP) available in Impala 2.3 and higher are currently only supported with the Parquet file
type. Based on your existing ETL workflow, you might use other file formats such as Avro, possibly doing a final
conversion step to Parquet to take advantage of its performance for analytic queries.

Kudu Tables

Tables stored in Apache Kudu are treated specially, because Kudu manages its data independently of HDFS files.
Some information about the table is stored in the metastore database for use by Impala. Other table metadata is
managed internally by Kudu.

When you create a Kudu table through Impala, it is assigned an internal Kudu table name of the form

impala: :db_name.table name. You can see the Kudu-assigned name in the output of DESCRIBE
FORMATTED, in the kudu. table name field of the table properties. The Kudu-assigned name remains the

same even if you use ALTER TABLE to rename the Impala table or move it to a different Impala database. If you
issue the statement ALTER TABLE impala name SET TBLPROPERTIES ('kudu.table name' =
'different kudu table name'), the effect is different depending on whether the Impala table was created
with a regular CREATE TABLE statement (that is, if it is an internal or managed table), or if it was created with a
CREATE EXTERNAL TABLE statement (and therefore is an external table). Changing the kudu.table name
property of an internal table physically renames the underlying Kudu table to match the new name. Changing the
kudu.table name property of an external table switches which underlying Kudu table the Impala table refers to;
the underlying Kudu table must already exist.

The following example shows what happens with both internal and external Kudu tables as the kudu.table name
property is changed. In practice, external tables are typically used to access underlying Kudu tables that were created
outside of Impala, that is, through the Kudu APIL

-- This is an internal table that we will create and then rename.
create table old name (id bigint primary key, s string)
partition by hash(id) partitions 2 stored as kudu;

-— Initially, the name OLD NAME is the same on the Impala and Kudu sides.
describe formatted old name;

Location:

| | hdfs://host.example.com:8020/path/user.db/old name
| Table Type: | MANAGE D TABLE | NULL

| Table Parameters: | NULL | NULL

| | DO_NOT UPDATE STATS | true

| | kudu.master addresses | vd0342.example.com

| | |

kudu.table name impala::user.old name

| Impala SQL Language Reference | 216

-—- ALTER TABLE RENAME TO changes the Impala name but not the underlying Kudu
name.
alter table old name rename to new_name;

describe formatted new name;

| Location: | hdfs://host.example.com:8020/path/user.db/new name
| Table Type: | MANAGED TABLE | NULL

| Table Parameters: | NULL | NULL

| | DO_NOT UPDATE STATS | true

| | kudu.master addresses | vd0342.example.com

| | |

kudu.table name impala::user.old name

-—- Setting TBLPROPERTIES changes the underlying Kudu name.
alter table new name
set tblproperties('kudu.table name' = 'impala::user.new name');

describe formatted new name;

| Location: | hdfs://host.example.com:8020/path/user.db/new name
| Table Type: | MANAGED TABLE | NULL

| Table Parameters: | NULL | NULL

| | DO_NOT UPDATE STATS | true

| | kudu.master addresses | vd0342.example.com

| | |

kudu.table name impala::user.new name

-- Put some data in the table to demonstrate how external tables can map to
-- different underlying Kudu tables.

insert into new _name values (0, 'zero'), (1, 'one'), (2, 'two');

-— This external table points to the same underlying Kudu table, NEW NAME,
-- as we created above. No need to declare columns or other table aspects.
create external table kudu table alias stored as kudu

tblproperties ('kudu.table name' = 'impala::user.new_name');

-—- The external table can fetch data from the NEW NAME table that already
-- existed and already had data.
select * from kudu table alias limit 100;

ot +
| id | s |
ot +
1	one
O	zero
2	two
ot +

-— We cannot re-point the external table at a different underlying Kudu
table
-- unless that other underlying Kudu table already exists.
alter table kudu table alias
set tblproperties('kudu.table name' = 'impala::user.yet another name');
ERROR:
TableLoadingException: Error opening Kudu table
'impala::user.yet another name',
Kudu error: The table does not exist: table name:
"impala::user.yet another name"

—-— Once the underlying Kudu table exists, we can re-point the external table
to it.
create table yet another name (id bigint primary key, x int, y int, s
string)
partition by hash(id) partitions 2 stored as kudu;

alter table kudu table alias
set tblproperties('kudu.table name' = 'impala::user.yet another name');

| Impala SQL Language Reference | 217

-- Now no data is returned because this other table is empty.
select * from kudu table alias limit 100;

—-— The Impala table automatically recognizes the table schema of the new

table,
—-—- for example the extra X and Y columns not present in the original table.

describe kudu table alias;

- o ———— o o —— o ————— +.
| name | type | comment | primary key | nullable |

I fmm———— fmm fmm———— e T +

| id | bigint | | true | false

| x | int | | false | true |

|y | int | | false | true |

| s | string | | false | true | .
- o o o —— e +.

The SHOW TABLE STATS output for a Kudu table shows Kudu-specific details about the layout of the table. Instead
of information about the number and sizes of files, the information is divided by the Kudu tablets. For each tablet,

the output includes the fields # Rows (although this number is not currently computed), Start Key, Stop Key,
Leader Replica,and # Replicas. The output of SHOW COLUMN STATS, illustrating the distribution of
values within each column, is the same for Kudu tables as for HDFS-backed tables.

The distinction between internal and external tables has some special details for Kudu tables. Tables created
entirely through Impala are internal tables. The table name as represented within Kudu includes notation such

as an impala: : prefix and the Impala database name. External Kudu tables are those created by a non-Impala
mechanism, such as a user application calling the Kudu APIs. For these tables, the CREATE EXTERNAL TABLE
syntax lets you establish a mapping from Impala to the existing Kudu table:

CREATE EXTERNAL TABLE impala name STORED AS KUDU
TBLPROPERTIES ('kudu.table name' = 'original kudu name');

External Kudu tables differ in one important way from other external tables: adding or dropping a column or range
partition changes the data in the underlying Kudu table, in contrast to an HDFS-backed external table where existing

data files are left untouched.

Overview of Impala Views

Views are lightweight logical constructs that act as aliases for queries. You can specify a view name in a query (a
SELECT statement or the SELECT portion of an INSERT statement) where you would usually specify a table name.

A view lets you:

» Issue complicated queries with compact and simple syntax:

-- Take a complicated reporting query, plug it into a CREATE VIEW

Statement...
create view vl as select cl, c2, avg(c3) from tl group by c3 order by cl

desc limit 10;
-- ... and now you can produce the report with 1 line of code.

select * from vl;

* Reduce maintenance, by avoiding the duplication of complicated queries across multiple applications in multiple
languages:

create view v2 as select tl.cl, tl.c2, t2.c3 from tl join t2 on (tl.id =

t2.1d) ;
—-— This simple query is safer to embed in reporting applications than the

longer query above.
—-— The view definition can remain stable even if the structure of the

underlying tables changes.

| Impala SQL Language Reference | 218

select cl, c2, c3 from v2;

* Build a new, more refined query on top of the original query by adding new clauses, select-list expressions,
function calls, and so on:

create view average price by category as select category, avg(price) as
avg _price from products group by category;

create view expensive categories as select category, avg price from
average price by category order by avg price desc limit 10000;

create view top 10 expensive categories as select category, avg price from
expensive categories limit 10;

This technique lets you build up several more or less granular variations of the same query, and switch between
them when appropriate.

» Set up aliases with intuitive names for tables, columns, result sets from joins, and so on:

—-— The original tables might have cryptic names inherited from a legacy
system.

create view action items as select rrptsk as assignee, treq as due date,
dmisc as notes from vxy tl br;

-- You can leave original names for compatibility, build new applications
using more intuitive ones.

select assignee, due date, notes from action items;

» Swap tables with others that use different file formats, partitioning schemes, and so on without any downtime for
data copying or conversion:

create table slow (x int, s string) stored as textfile;

create view report as select s from slow where x between 20 and 30;
—-— Query is kind of slow due to inefficient table definition, but it
works.

select * from report;

create table fast (s string) partitioned by (x int) stored as parquet;
-— ...Copy data from SLOW to FAST. Queries against REPORT view continue to
work. ..

-- After changing the view definition, queries will be faster due to
partitioning,

-- binary format, and compression in the new table.

alter view report as select s from fast where x between 20 and 30;
select * from report;

* Avoid coding lengthy subqueries and repeating the same subquery text in many other queries.

» Set up fine-grained security where a user can query some columns from a table but not other columns. Because
Impala 2.3 and higher support column-level authorization, this technique is no longer required. If you formerly
implemented column-level security through views, see the documentation for Apache Sentry for details about the
column-level authorization feature.

The SQL statements that configure views are CREATE VIEW Statement on page 267, ALTER VIEW Statement on
page 236, and DROP VIEW Statement on page 293. You can specify view names when querying data (SELECT
Statement on page 319) and copying data from one table to another (INSERT Statement on page 298). The

WITH clause creates an inline view, that only exists for the duration of a single query.

[localhost:21000] > create view trivial as select * from customer;
[localhost:21000] > create view some columns as select c_first name,
c last name, c_login from customer;

[localhost:21000] > select * from some columns limit 5;

Query finished, fetching results

Fommmmmemem=o=e e S 1

| ¢ first name | c last name | c login |

T __ - __ 4o T ____ o T __ :

| Impala SQL Language Reference | 219

Javier	Lewis	
Amy	Moses	
Latisha	Hamilton	
Michael	White	
Robert	Moran	
o o —— o +

[localhost:21000] > create view ordered results as select * from
some columns order by ¢ last name desc, c_first name desc limit 1000;
[localhost:21000] > select * from ordered results limit 5;
Query: select * from ordered results limit 5
Query finished, fetching results

o o —— o +
| ¢ first name | c last name | c login |
T __ T __ 4o T_____ o _Z___ ¥
Thomas	Zuniga	
Sarah	Zuniga	
Norma	Zuniga	
Lloyd	Zuniga	
Lisa	Zuniga	
o — o —— o +

Returned 5 row(s) in 0.48s

The previous example uses descending order for ORDERED RESULTS because in the sample TPCD-H data, there
are some rows with empty strings for both C FIRST NAME and C_LAST NAME, making the lowest-ordered names
unuseful in a sample query.

create view visitors by day as select day, count(distinct visitors) as
howmany from web traffic group by day;

create view top 10 days as select day, howmany from visitors by day order by
howmany limit 10; S

select * from top 10 days;

Usage notes:

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original
CREATE VIEW statement:

[localhost:21000] > create view vl as select * from tl;
[localhost:21000] > describe formatted vl;
Query finished, fetching results

o o o ——— +
| name | type | comment |
o o o — +
# col name	data type	comment
	NULL	NULL
x	int	None
vy	int	None
s	string	None
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	views	NULL
Owner:	doc_demo	NULL
CreateTime:	Mon Jul 08 15:56:27 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	O	NULL
Table Type:	VIRTUAL VIEW	NULL
Table Parameters:	NULL	NULL
	transient lastDdlTime	1373313387
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL

| Impala SQL Language Reference | 220

SELECT * FROM tl

View Expanded Text:
+ ______________________________

| OutputFormat: | null | NULL |
| Compressed: | No | NULL
Num Buckets:	O	NULL
Bucket Columns:	[]	NULL
Sort Columns:	1	NULL
	NULL	NULL
# View Information	NULL	NULL
View Original Text:	SELECT * FROM tl	NULL
I I I I
+ +

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view name syntax. In Impala 1.4.0
and higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE
technique. Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no
underlying file format, so CREATE TABLE LIKE view name produces a text table by default. To specify a
different file format, include a STORED AS file format clause at the end of the CREATE TABLE LIKE
statement.

Complex type considerations:

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically use join queries to refer to the
complex values. You can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 172 for details.

Restrictions:

* You cannot insert into an Impala view. (In some database systems, this operation is allowed and inserts rows into
the base table.) You can use a view name on the right-hand side of an INSERT statement, in the SELECT part.

+ Ifaview applies to a partitioned table, any partition pruning considers the clauses on both the original query and
any additional WHERE predicates in the query that refers to the view. Prior to Impala 1.4, only the WHERE clauses
on the original query from the CREATE VIEW statement were used for partition pruning.

* An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to
sort the entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view.
You can still make a simple “top 10” report by combining the ORDER BY and LIMIT clauses in the same view
definition:

[localhost:21000] > create table unsorted (x bigint);

[localhost:21000] > insert into unsorted wvalues (1), (9), (3), (7)), (5),
(8), (4), (6), (2);

[localhost:21000] > create view sorted view as select x from unsorted
order by x;

[localhost:21000] > select x from sorted view; —-- ORDER BY clause in view
has no effect.

+-———+

| x|

+———+

| 1 |

| 9 |

| 3 |

|7 |

| 5 |

| 8 |

| 4 |

| 6 |

| 2 |

+-———+

[localhost:21000] > select x from sorted view order by x; -- View query
requires ORDER BY at outermost level.

+———+

| x|

-

| Impala SQL Language Reference | 221

O o Jo Ul W

|
|
|
|
|
|
|
|
| |

F———

[localhost:21000] > create view top 3 view as select x from unsorted order
by x limit 3;

[localhost:21000] > select x from top 3 view; -- ORDER BY and LIMIT
together in view definition are preserved.

===

I x|

+———+

[1 |

[2 |

| 3 |

===

Related statements: CREATE VIEW Statement on page 267, ALTER VIEW Statement on page 236, DROP
VIEW Statement on page 293

Impala SQL Statements

The Impala SQL dialect supports a range of standard elements, plus some extensions for Big Data use cases related to
data loading and data warehousing.

Note:

In the impala-shell interpreter, a semicolon at the end of each statement is required. Since the semicolon is not
actually part of the SQL syntax, we do not include it in the syntax definition of each statement, but we do show it in
examples intended to be run in impala-shell.

DDL Statements

DDL refers to “Data Definition Language”, a subset of SQL statements that change the structure of the database
schema in some way, typically by creating, deleting, or modifying schema objects such as databases, tables, and
views. Most Impala DDL statements start with the keywords CREATE, DROP, or ALTER.

The Impala DDL statements are:

* ALTER TABLE Statement on page 223

* ALTER VIEW Statement on page 236

* COMPUTE STATS Statement on page 237

* CREATE DATABASE Statement on page 244

* CREATE FUNCTION Statement on page 246

* CREATE ROLE Statement (Impala 2.0 or higher only) on page 253
* CREATE TABLE Statement on page 253

* CREATE VIEW Statement on page 267

* DROP DATABASE Statement on page 283

* DROP FUNCTION Statement on page 285

* DROP ROLE Statement (Impala 2.0 or higher only) on page 286
* DROP TABLE Statement on page 291

* DROP VIEW Statement on page 293

* GRANT Statement (Impala 2.0 or higher only) on page 297

| Impala SQL Language Reference | 222

* REVOKE Statement (Impala 2.0 or higher only) on page 318

After Impala executes a DDL command, information about available tables, columns, views, partitions, and so
on is automatically synchronized between all the Impala nodes in a cluster. (Prior to Impala 1.2, you had to issue
aREFRESH or INVALIDATE METADATA statement manually on the other nodes to make them aware of the
changes.)

If the timing of metadata updates is significant, for example if you use round-robin scheduling where each query
could be issued through a different Impala node, you can enable the SYNC DDL query option to make the DDL
statement wait until all nodes have been notified about the metadata changes.

See Using Impala with the Amazon S3 Filesystem on page 709 for details about how Impala DDL statements
interact with tables and partitions stored in the Amazon S3 filesystem.

Although the INSERT statement is officially classified as a DML (data manipulation language) statement, it also
involves metadata changes that must be broadcast to all Impala nodes, and so is also affected by the SYNC DDL
query option.

Because the SYNC DDL query option makes each DDL operation take longer than normal, you might only enable

it before the last DDL operation in a sequence. For example, if you are running a script that issues multiple of DDL
operations to set up an entire new schema, add several new partitions, and so on, you might minimize the performance
overhead by enabling the query option only before the last CREATE, DROP, ALTER, or INSERT statement. The
script only finishes when all the relevant metadata changes are recognized by all the Impala nodes, so you could
connect to any node and issue queries through it.

The classification of DDL, DML, and other statements is not necessarily the same between Impala and Hive. Impala
organizes these statements in a way intended to be familiar to people familiar with relational databases or data
warehouse products. Statements that modify the metastore database, such as COMPUTE STATS, are classified

as DDL. Statements that only query the metastore database, such as SHOW or DESCRIBE, are put into a separate
category of utility statements.

Note: The query types shown in the Impala debug web user interface might not match exactly the categories listed
here. For example, currently the USE statement is shown as DDL in the debug web UI. The query types shown in the
debug web UI are subject to change, for improved consistency.

Related information:

The other major classifications of SQL statements are data manipulation language (see DML Statements on page
222) and queries (see SELECT Statement on page 319).

DML Statements

DML refers to “Data Manipulation Language”, a subset of SQL statements that modify the data stored in tables.
Because Impala focuses on query performance and leverages the append-only nature of HDFS storage, currently
Impala only supports a small set of DML statements:

* DELETE Statement (Impala 2.8 or higher only) on page 269. Works for Kudu tables only.
» INSERT Statement on page 298.

» LOAD DATA Statement on page 310. Does not apply for HBase or Kudu tables.

» UPDATE Statement (Impala 2.8 or higher only) on page 399. Works for Kudu tables only.
» UPSERT Statement (Impala 2.8 or higher only) on page 400. Works for Kudu tables only.

INSERT in Impala is primarily optimized for inserting large volumes of data in a single statement, to make effective
use of the multi-megabyte HDFS blocks. This is the way in Impala to create new data files. If you intend to insert one
or a few rows at a time, such as using the INSERT ... VALUES syntax, that technique is much more efficient for
Impala tables stored in HBase. See Using Impala to Query HBase Tables on page 699 for details.

LOAD DATA moves existing data files into the directory for an Impala table, making them immediately available for
Impala queries. This is one way in Impala to work with data files produced by other Hadoop components. (CREATE
EXTERNAL TABLE is the other alternative; with external tables, you can query existing data files, while the files
remain in their original location.)

| Impala SQL Language Reference | 223

In Impala 2.8 and higher, Impala does support the UPDATE, DELETE, and UPSERT statements for Kudu tables. For
HDFS or S3 tables, to simulate the effects of an UPDATE or DELETE statement in other database systems, typically
you use INSERT or CREATE TABLE AS SELECT to copy data from one table to another, filtering out or changing
the appropriate rows during the copy operation.

You can also achieve a result similar to UPDATE by using Impala tables stored in HBase. When you insert a row into
an HBase table, and the table already contains a row with the same value for the key column, the older row is hidden,
effectively the same as a single-row UPDATE.

Impala can perform DML operations for tables or partitions stored in the Amazon S3 filesystem with Impala 2.6 and
higher. See Using Impala with the Amazon S3 Filesystem on page 709 for details.

Related information:

The other major classifications of SQL statements are data definition language (see DDL Statements on page 221)
and queries (see SELECT Statement on page 319).

ALTER TABLE Statement

The ALTER TABLE statement changes the structure or properties of an existing Impala table.

In Impala, this is primarily a logical operation that updates the table metadata in the metastore database that Impala
shares with Hive. Most ALTER TABLE operations do not actually rewrite, move, and so on the actual data files.
(The RENAME TO clause is the one exception; it can cause HDFS files to be moved to different paths.) When you do
an ALTER TABLE operation, you typically need to perform corresponding physical filesystem operations, such as
rewriting the data files to include extra fields, or converting them to a different file format.

Syntax:

ALTER TABLE [old db name.]old table name RENAME TO
[new db name.]new table name

ALTER TABLE name ADD COLUMNS (col spec[, col spec ...])
ALTER TABLE name DROP [COLUMN] columnﬁname

ALTER TABLE name CHANGE column name new name new_type
ALTER TABLE name REPLACE COLUMNS (col spec[, col spec ...])

ALTER TABLE name ADD [IF NOT EXISTS] PARTITION (partition spec)
[location spec]
[cache spec]
ALTER TABLE name ADD [IF NOT EXISTS] RANGE PARTITION (kudq_partition_spec)

ALTER TABLE name DROP [IF EXISTS] PARTITION (partition spec)
[PURGE]
ALTER TABLE name DROP [IF EXISTS] RANGE PARTITION kudu partition spec

ALTER TABLE name RECOVER PARTITIONS
ALTER TABLE name [PARTITION (partition_spec)]
SET { FILEFORMAT file format
| LOCATION 'hdfs path of directory'
| TBLPROPERTIES (table properties)
| SERDEPROPERTIES (serde properties) }

ALTER TABLE name colname
('statsKey'='val, ...)

statsKey ::= numDVs | numNulls | avgSize | maxSize

ALTER TABLE name [PARTITION (partition spec)] SET { CACHED IN
'pool name' [WITH REPLICATION = integer] | UNCACHED }

new _name ::= [new database.]new table name

| Impala SQL Language Reference | 224

col spec ::= col name type name [kudu attributes]

kudu attributes ::= { [NOT] NULL | ENCODING codec | COMPRESSION algorithm |
DEFAULT constant | BLOCK SIZE number }

partition spec ::= simple partition spec | complex partition spec

simple partition spec ::= partition col=constant value

complex partition spec ::= comparison expression on partition col

kudu partition spec ::= constant range operator

VALUES range operator constant | VALUE = constant

cache spec ::= CACHED IN 'pool name' [WITH REPLICATION = integer] | UNCACHED
location spec ::= LOCATION 'hdfs path of directory'

table properties ::= 'name'='value'([, 'name'='value' ...]

serde properties ::= 'name'='value'[, 'name'='value' ...]

file format ::= { PARQUET | TEXTFILE | RCFILE | SEQUENCEFILE | AVRO }

Statement type: DDL
Complex type considerations:

In Impala 2.3 and higher, the ALTER TABLE statement can change the metadata for tables containing complex types
(ARRAY, STRUCT, and MAP). For example, you can use an ADD COLUMNS, DROP COLUMN, or CHANGE clause to
modify the table layout for complex type columns. Although Impala queries only work for complex type columns in
Parquet tables, the complex type support in the ALTER TABLE statement applies to all file formats. For example,
you can use Impala to update metadata for a staging table in a non-Parquet file format where the data is populated by
Hive. Or you can use ALTER TABLE SET FILEFORMAT to change the format of an existing table to Parquet so
that Impala can query it. Remember that changing the file format for a table does not convert the data files within the
table; you must prepare any Parquet data files containing complex types outside Impala, and bring them into the table
using LOAD DATA or updating the table's LOCATION property. See Complex Types (Impala 2.3 or higher only) on
page 151 for details about using complex types.

Usage notes:

Whenever you specify partitions in an ALTER TABLE statement, through the PARTITION (partition spec)
clause, you must include all the partitioning columns in the specification.

Most of the ALTER TABLE operations work the same for internal tables (managed by Impala) as for external tables
(with data files located in arbitrary locations). The exception is renaming a table; for an external table, the underlying
data directory is not renamed or moved.

Dropping or altering multiple partitions:

In Impala 2.8 and higher, the expression for the partition clause with a DROP or SET operation can include
comparison operators such as <, IN, or BETWEEN, and Boolean operators such as AND and OR.

For example, you might drop a group of partitions corresponding to a particular date range after the data “ages out™:

alter table historical data drop partition (year < 1995);
alter table historical data drop partition (year = 1996 and month between 1
and 6) ;

| Impala SQL Language Reference | 225

For tables with multiple partition keys columns, you can specify multiple conditions separated by commas, and the
operation only applies to the partitions that match all the conditions (similar to using an AND clause):

alter table historical data drop partition (year < 1995, last name like 'A

$');

This technique can also be used to change the file format of groups of partitions, as part of an ETL pipeline that
periodically consolidates and rewrites the underlying data files in a different file format:

alter table fast growing data partition (year = 2016, month in (10,11,12))
set fileformat parquet;

Note:

The extended syntax involving comparison operators and multiple partitions applies to the SET FILEFORMAT, SET
TBLPROPERTIES, SET SERDEPROPERTIES, and SET [UN]CACHED clauses. You can also use this syntax
with the PARTITION clause in the COMPUTE INCREMENTAL STATS statement, and with the PARTITION clause
of the SHOW FILES statement. Some forms of ALTER TABLE still only apply to one partition at a time: the SET
LOCATION and ADD PARTITION clauses. The PARTITION clauses in the LOAD DATA and INSERT statements
also only apply to one partition at a time.

A DDL statement that applies to multiple partitions is considered successful (resulting in no changes) even if no
partitions match the conditions. The results are the same as if the IF EXISTS clause was specified.

The performance and scalability of this technique is similar to issuing a sequence of single-partition ALTER TABLE
statements in quick succession. To minimize bottlenecks due to communication with the metastore database, or
causing other DDL operations on the same table to wait, test the effects of performing ALTER TABLE statements
that affect large numbers of partitions.

Amazon S3 considerations:

You can specify an s3a:// prefix on the LOCATION attribute of a table or partition to make Impala query data
from the Amazon S3 filesystem. In Impala 2.6 and higher, Impala automatically handles creating or removing the
associated folders when you issue ALTER TABLE statements with the ADD PARTITION or DROP PARTITION
clauses.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 709 for details about reading and writing S3 data with Impala.

HDFS caching (CACHED IN clause):

If you specify the CACHED 1IN clause, any existing or future data files in the table directory or the partition
subdirectories are designated to be loaded into memory with the HDFS caching mechanism. See Using HDF'S
Caching with Impala (Impala 2.1 or higher only) on page 620 for details about using the HDFS caching feature.

In Impala 2.2 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets
you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Where practical, specify a value greater than or equal to the HDFS block
replication factor.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC DDL Query Option on page 377 for details.

| Impala SQL Language Reference | 226

The following sections show examples of the use cases for various ALTER TABLE clauses.
To rename a table (RENAME TO clause):
The RENAME TO clause lets you change the name of an existing table, and optionally which database it is located in.

For internal tables, this operation physically renames the directory within HDFS that contains the data files; the
original directory name no longer exists. By qualifying the table names with database names, you can use this
technique to move an internal table (and its associated data directory) from one database to another. For example:

create database dl;

create database d2;

create database d3;

use dil;

create table mobile (x int);

use dz2;

-— Move table from another database to the current one.
alter table dl.mobile rename to mobile;

use dil;

-— Move table from one database to another.
alter table d2.mobile rename to d3.mobile;

For external tables,

To change the physical location where Impala looks for data files associated with a table or partition:

ALTER TABLE table name [PARTITION (partition spec)] SET LOCATION
'hdfs path of directory';

The path you specify is the full HDFS path where the data files reside, or will be created. Impala does not create any
additional subdirectory named after the table. Impala does not move any data files to this new location or change any
data files that might already exist in that directory.

To set the location for a single partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (month int, day int);

-— Each ADD PARTITION clause creates a subdirectory in HDFS.

alter table pl add partition (month=1, day=1);

alter table pl add partition (month=1, day=2);

alter table pl add partition (month=2, day=1l);

alter table pl add partition (month=2, day=2);

-—- Redirect queries, INSERT, and LOAD DATA for one partition

-- to a specific different directory.

alter table pl partition (month=1, day=1) set location '/usr/external data/
new years day';

Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use a
single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather than separate
statements with ADD PARTITION and SET LOCATION clauses.

To automatically detect new partition directories added through Hive or HDFS operations:

In Impala 2.3 and higher, the RECOVER PARTITIONS clause scans a partitioned table to detect if any new partition
directories were added outside of Impala, such as by Hive ALTER TABLE statements or by hdfs dfs or hadoop
fs commands. The RECOVER PARTITIONS clause automatically recognizes any data files present in these new
directories, the same as the REFRESH statement does.

For example, here is a sequence of examples showing how you might create a partitioned table in Impala, create new
partitions through Hive, copy data files into the new partitions with the hdfs command, and have Impala recognize
the new partitions and new data:

| Impala SQL Language Reference | 227

In Impala, create the table, and a single partition for demonstration purposes:

create database recover partitions;
use recover partitions;
create table tl (s string) partitioned by (yy int, mm int);

insert into tl partition (yy = 2016, mm = 1) values ('Partition exists');

show files in t1;

+ ___

fom==== o= +

| Path | Size
| Partition

+ ___

fremmm== oo me=e +

| /user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=1/data.txt | 17B
| yy=2016/mm=1 |

In Hive, create some new partitions. In a real use case, you might create the partitions and populate them with data as
the final stages of an ETL pipeline.

hive> use recover partitions;

OK
hive> alter table tl add partition (yy = 2016, mm = 2);
OK
hive> alter table tl add partition (yy = 2016, mm = 3);
OK

hive> quit;

For demonstration purposes, manually copy data (a single row) into these new partitions, using manual HDFS
operations:

$ hdfs dfs -1ls /user/hive/warehouse/recover partitions.db/tl/yy=2016/
Found 3 items

drwxr-xr-x - impala hive 0 2016-05-09 16:06 /user/hive/warehouse/
recover partitions.db/tl/yy=2016/mm=1

drwxr-xr-x - jrussell hive 0 2016-05-09 16:14 /user/hive/warehouse/
recover partitions.db/tl/yy=2016/mm=2

drwxr-xr-x — jrussell hive 0 2016-05-09 16:13 /user/hive/warehouse/
recover partitions.db/tl/yy=2016/mm=3

$ hdfs dfs -cp /user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=1/
data.txt \

/user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=2/data.txt
$ hdfs dfs -cp /user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=1/
data.txt \

/user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=3/data.txt

hive> select * from tl;
OK

| Impala SQL Language Reference | 228

Partition exists 2016 1
Partition exists 2016 2
Partition exists 2016 3
hive> quit;

In Impala, initially the partitions and data are not visible. Running ALTER TABLE with the RECOVER
PARTITIONS clause scans the table data directory to find any new partition directories, and the data files inside

them:

select * from tl;

o t————— +————
| s | vy | mm |
e t———— +————t
| Partition exists | 2016 | 1 |
o +————— +————4

alter table tl recover partitions;
select * from tl;

e t———— +————t
| s | vy | mm |
o +————— +————4
Partition exists	2016	1
Partition exists	2016	3
Partition exists	2016	2
e t———— +————t

To change the key-value pairs of the TBLPROPERTIES and SERDEPROPERTIES fields:

ALTER TABLE table name SET TBLPROPERTIES ('keyl'='valuel',

'key2'='valuel2'[, ...1);
ALTER TABLE table name SET SERDEPROPERTIES ('keyl'='valuel',

'key2'="value2'[, ...1);

The TBLPROPERTIES clause is primarily a way to associate arbitrary user-specified data items with a particular
table.

The SERDEPROPERTIES clause sets up metadata defining how tables are read or written, needed in some cases by
Hive but not used extensively by Impala. You would use this clause primarily to change the delimiter in an existing
text table or partition, by setting the ' serialization.format"' and 'field.delim' property values to the

new delimiter character:

-- This table begins life as pipe-separated text format.
create table change to csv (sl string, s2 string) row format delimited

fields terminated by '|';
-- Then we change it to a CSV table.
alter table change to csv set SERDEPROPERTIES ('serialization.format'=',6',

'field.delim'=",");
insert overwrite change to csv values ('stop','go'), ('yes','no');
'hdfs dfs -cat 'hdfs://hostname:8020/data directory/dbname.db/

change to csv/data file';
stop, go
yes, no

Use the DESCRIBE FORMATTED statement to see the current values of these properties for an existing table.
See CREATE TABLE Statement on page 253 for more details about these clauses. See Setting the NUMROWS
Value Manually through ALTER TABLE on page 609 for an example of using table properties to fine-tune the

performance-related table statistics.

| Impala SQL Language Reference | 229

To manually set or update table or column statistics:

Although for most tables the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement is all you need
to keep table and column statistics up to date for a table, sometimes for a very large table or one that is updated
frequently, the length of time to recompute all the statistics might make it impractical to run those statements as often
as needed. As a workaround, you can use the ALTER TABLE statement to set table statistics at the level of the entire
table or a single partition, or column statistics at the level of the entire table.

You can set the numrows value for table statistics by changing the TBLPROPERTIES setting for a table or partition.
For example:

create table analysis data stored as parquet as select * from raw data;
Inserted 1000000000 rows in 181.98s

compute stats analysis data;
insert into analysis data select * from smaller table we forgot before;

Inserted 1000000 rows in 15.32s
—-- Now there are 1001000000 rows. We can update this single data point in

the stats.
alter table analysis data set tblproperties('numRows'='1001000000",
'"STATS GENERATED VIA STATS TASK'='true');

-—- If the table originally contained 1 million rows, and we add another
partition with 30 thousand rows,
-- change the numRows property for the partition and the overall table.
alter table partitioned data partition(year=2009, month=4) set tblproperties
("numRows'='30000"', 'STATS GENERATED VIA STATS TASK'='true');
alter table partitioned data set tblproperties ('numRows'='1030000",
'"STATS GENERATED VIA STATS TASK'='true');

See Setting the NUMROWS Value Manually through ALTER TABLE on page 609 for details.

In Impala 2.6 and higher, you can use the SET COLUMN STATS clause to set a specific stats value for a particular
column.

You specify a case-insensitive symbolic name for the kind of statistics: numDVs, numNulls, avgSize, maxSize
The key names and values are both quoted. This operation applies to an entire table, not a specific partition. For
example:

create table tl (x int, s string);
insert into tl wvalues (1, 'one'), (2, 'two'), (2, 'deux');
show column stats tl;

t————— t————— o ———————— t————— t—————— t—————— +
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
e e e e e e +
| x | INT | =1 | =1 | 4 | 4

| s | STRING | -1 | =1 | =1 | =1
t—————— t—————— o — t—————— t——————— t——————— +
alter table tl set column stats x ('numDVs'='2', 'numNulls'='0");
alter table tl set column stats s ('numdvs'='3', 'maxsize'='4");

show column stats tl;

t——————— t——————— e t——————— o o +
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
t—————— t—————— o — t—————— t——————— t——————— +
| x | INT | 2 | O | 4 | 4

| s | STRING | 3 [~ = | 4 [~ =
e e e e e e +

To reorganize columns for a table:

ALTER TABLE table name ADD COLUMNS (column defs);
ALTER TABLE table name REPLACE COLUMNS (column defs);

| Impala SQL Language Reference | 230

ALTER TABLE table name CHANGE column name new name new_ type;
ALTER TABLE table name DROP column name;

The column_spec is the same as in the CREATE TABLE statement: the column name, then its data type, then an
optional comment. You can add multiple columns at a time. The parentheses are required whether you add a single
column or multiple columns. When you replace columns, all the original column definitions are discarded. You might
use this technique if you receive a new set of data files with different data types or columns in a different order. (The
data files are retained, so if the new columns are incompatible with the old ones, use INSERT OVERWRITE or LOAD
DATA OVERWRITE to replace all the data before issuing any further queries.)

For example, here is how you might add columns to an existing table. The first ALTER TABLE adds two new
columns, and the second ALTER TABLE adds one new column. A single Impala query reads both the old and new
data files, containing different numbers of columns. For any columns not present in a particular data file, all the
column values are considered to be NULL.

create table tl (x int);
insert into tl values (1), (2);

alter table tl add columns (s string, t timestamp);
insert into tl values (3, 'three', now());

alter table tl add columns (b boolean);
insert into tl values (4, 'four', now(), true);

select * from tl order by x;

fom - o fo—— - +
| x | s | t | b |
fom o fo—— +
1	NULL	NULL	NULL
2	NULL	NULL	NULL
3	three	2016-05-11 11:19:45.054457000	NULL
4	four	2016-05-11 11:20:20.260733000	true
fom - o fo————- +

You might use the CHANGE clause to rename a single column, or to treat an existing column as a different type than
before, such as to switch between treating a column as STRING and TIMESTAMP, or between INT and BIGINT.
You can only drop a single column at a time; to drop multiple columns, issue multiple ALTER TABLE statements, or
define the new set of columns with a single ALTER TABLE ... REPLACE COLUMNS statement.

The following examples show some safe operations to drop or change columns. Dropping the final column in a table
lets Impala ignore the data causing any disruption to existing data files. Changing the type of a column works if
existing data values can be safely converted to the new type. The type conversion rules depend on the file format of
the underlying table. For example, in a text table, the same value can be interpreted as a STRING or a numeric value,
while in a binary format such as Parquet, the rules are stricter and type conversions only work between certain sizes of
integers.

create table optional columns (x int, y int, z int, al int, a2 int);
insert into optional columns values (1,2,3,0,0), (2,3,4,100,100);

—-— When the last column in the table is dropped, Impala ignores the
-- values that are no longer needed. (Dropping Al but leaving A2

-- would cause problems, as we will see in a subsequent example.)
alter table optional columns drop column a2;

alter table optional columns drop column al;

select * from optional columns;

| Impala SQL Language Reference | 231

11 21 3|
21 31 4|
fo——t———t———+

create table int to string (s string, x int);
insert into int to string values ('one', 1), ('two', 2);

-- What was an INT column will now be interpreted as STRING.

-- This technique works for text tables but not other file formats.

-— The second X represents the new name of the column, which we keep the
same.

alter table int to string change x x string;

-- Once the type is changed, we can insert non-integer values into the X
column
-- and treat that column as a string, for example by uppercasing or

concatenating.

insert into int to string values ('three', 'trois');
select s, upper(x) from int to string;

fm————— Fmm + o

| s | upper (x) |

f——————— f—————————— +

| one | 1 |

| two | 2 |

| three | TROIS |

e it +

Remember that Impala does not actually do any conversion for the underlying data files as a result of ALTER TABLE
statements. If you use ALTER TABLE to create a table layout that does not agree with the contents of the underlying
files, you must replace the files yourself, such as using LOAD DATA to load a new set of data files, or INSERT
OVERWRITE to copy from another table and replace the original data.

The following example shows what happens if you delete the middle column from a Parquet table containing three
columns. The underlying data files still contain three columns of data. Because the columns are interpreted based
on their positions in the data file instead of the specific column names, a SELECT * query now reads the first and
second columns from the data file, potentially leading to unexpected results or conversion errors. For this reason,

if you expect to someday drop a column, declare it as the last column in the table, where its data can be ignored by
queries after the column is dropped. Or, re-run your ETL process and create new data files if you drop or change the
type of a column in a way that causes problems with existing data files.

-- Parquet table showing how dropping a column can produce unexpected
results.
create table pl (sl string, s2 string, s3 string) stored as parquet;

A} A}

insert into pl values ('one', 'un', 'uno'), ('two', 'deux', 'dos'),
("three', 'trois', 'tres');

select * from pl;

t—————— t—————— - +
| sl | s2 | s3 |
- - - +
one	un	uno
two	deux	dos
three	trois	tres
t—————— t—————— - +

alter table pl drop column s2;

—-- The S3 column contains unexpected results.

—-— Because S2 and S3 have compatible types, the query reads

-- values from the dropped S2, because the existing data files
-- still contain those values as the second column.

| Impala SQL Language Reference | 232

select * from pl;

t————— t————— +
| s1 | s3 |
t————— t————— +
one	un
two	deux
three	trois
t————— t————— +

-- Parquet table showing how dropping a column can produce conversion
errors.
create table p2 (sl string, x int, s3 string) stored as parquet;

insert into p2 values ('one', 1, 'uno'), ('two', 2, 'dos'), ('three', 3,
'tres');

select * from p2;

- -t +

| sl | x | s3 |

- -t +

| one | 1 | uno |

| two | 2 | dos |

| three | 3 | tres |

t—————— -t +

alter table p2 drop column x;

select * from p2;

WARNINGS:

File 'hdfs filename' has an incompatible Parquet schema for column
'add columns.p2.s3'.

Column type: STRING, Parquet schema:

optional int32 x [i:1 d:1 r:0]

File 'hdfs filename' has an incompatible Parquet schema for column
'add columns.p2.s3'.

Column type: STRING, Parquet schema:

optional int32 x [i:1 d:1 r:0]

In Impala 2.6 and higher, if an Avro table is created without column definitions in the CREATE TABLE statement,
and columns are later added through ALTER TABLE, the resulting table is now queryable. Missing values from the
newly added columns now default to NULL.

To change the file format that Impala expects data to be in, for a table or partition:

Use an ALTER TABLE ... SET FILEFORMAT clause. You can include an optional PARTITION
(coll=vall, col2=val2, ... clause so that the file format is changed for a specific partition rather than the
entire table.

Because this operation only changes the table metadata, you must do any conversion of existing data using regular
Hadoop techniques outside of Impala. Any new data created by the Impala INSERT statement will be in the new
format. You cannot specify the delimiter for Text files; the data files must be comma-delimited.

To set the file format for a single partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (month int, day int);
-—- Each ADD PARTITION clause creates a subdirectory in HDFS.
alter table pl add partition (month=1, day=1);

alter table pl add partition (month=1, day=2);

alter table pl add partition (month=2, day=1);

alter table pl add partition (month=2, day=2);

—-— Queries and INSERT statements will read and write files

-- in this format for this specific partition.

| Impala SQL Language Reference | 233

alter table pl partition (month=2, day=2) set fileformat parquet;

To add or drop partitions for a table, the table must already be partitioned (that is, created with a PARTITIONED
BY clause). The partition is a physical directory in HDFS, with a name that encodes a particular column value (the
partition key). The Impala INSERT statement already creates the partition if necessary, so the ALTER TABLE
ADD PARTITION is primarily useful for importing data by moving or copying existing data files into the HDFS
directory corresponding to a partition. (You can use the LOAD DATA statement to move files into the partition
directory, or ALTER TABLE ... PARTITION (...) SET LOCATION to point a partition at a directory that
already contains data files.

The DROP PARTITION clause is used to remove the HDFS directory and associated data files for a particular

set of partition key values; for example, if you always analyze the last 3 months worth of data, at the beginning of
each month you might drop the oldest partition that is no longer needed. Removing partitions reduces the amount of
metadata associated with the table and the complexity of calculating the optimal query plan, which can simplify and
speed up queries on partitioned tables, particularly join queries. Here is an example showing the ADD PARTITION
and DROP PARTITION clauses.

To avoid errors while adding or dropping partitions whose existence is not certain, add the optional IF [NOT]
EXISTS clause between the ADD or DROP keyword and the PARTITION keyword. That is, the entire clause
becomes ADD IF NOT EXISTS PARTITION or DROP IF EXISTS PARTITION. The following example
shows how partitions can be created automatically through INSERT statements, or manually through ALTER TABLE
statements. The IF [NOT] EXISTS clauses letthe ALTER TABLE statements succeed even if a new requested
partition already exists, or a partition to be dropped does not exist.

Inserting 2 year values creates 2 partitions:

create table partition t (s string) partitioned by (y int);

insert into partition t (s,y) values ('two thousand',2000), ('nineteen
ninety',1990);

show partitions partition t;

- - B +————— o —— o t———————
o +
|y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
| Incremental stats |
t————— t————— t————— t———— e ——— e t—————
- +
| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT
| false |
| 2000 | =1 |1 | 13B | NOT CACHED | NOT CACHED | TEXT
| false |
| Total | -1 | 2 | 29B | OB |
| |
- - t——————— +————— o —— o t———————
t————— +

Without the ITF NOT EXISTS clause, an attempt to add a new partition might fail:

alter table partition t add partition (y=2000);
ERROR: AnalysisException: Partition spec already exists: (y=2000).

The IF NOT EXISTS clause makes the statement succeed whether or not there was already a partition with the
specified key value:

alter table partition t add if not exists partition (y=2000);
alter table partition t add if not exists partition (y=2010);
show partitions partition t;

| Impala SQL Language Reference | 234

| vy | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
| Incremental stats |
+-—————— +-—————— B et +————— - - B et
- +
| 1990 | =1 [1 | 16B | NOT CACHED | NOT CACHED | TEXT
| false |
| 2000 | -1 | 1 | 13B | NOT CACHED | NOT CACHED | TEXT
| false |
| 2010 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT
| false |
| Total | -1 | 2 | 29B | OB |
| |
- - - - - - -
- +

Likewise, the IF EXISTS clause lets DROP PARTITION succeed whether or not the partition is already in the
table:

alter table partition t drop if exists partition (y=2000);
alter table partition t drop if exists partition (y=1950);
show partitions partition t;

- - B +————— o —— o t———————
o +
|y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
| Incremental stats |
t————— t————— t————— t———— e ——— e t—————
- +
| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT
| false |
| 2010 | =1 | O | OB | NOT CACHED | NOT CACHED | TEXT
| false |
| Total | -1 | 1 | 16B | OB |
| |
- - t——————— +————— o —— o t———————
t————— +

The optional PURGE keyword, available in Impala 2.3 and higher, is used with the DROP PARTITION clause to
remove associated HDFS data files immediately rather than going through the HDFS trashcan mechanism. Use this
keyword when dropping a partition if it is crucial to remove the data as quickly as possible to free up space, or if there
is a problem with the trashcan, such as the trash cannot being configured or being in a different HDFS encryption
zone than the data files.

-— Create an empty table and define the partitioning scheme.

create table part t (x int) partitioned by (month int);

-- Create an empty partition into which you could copy data files from some
other source.

alter table part t add partition (month=1);

-- After changing the underlying data, issue a REFRESH statement to make the
data visible in Impala.

refresh part t;

-- Later, do the same for the next month.

alter table part t add partition (month=2);

-- Now you no longer need the older data.

alter table part t drop partition (month=1);

-—- If the table was partitioned by month and year, you would issue a
statement like:

-— alter table part t drop partition (year=2003,month=1);

-- which would require 12 ALTER TABLE statements to remove a year's worth of
data.

| Impala SQL Language Reference | 235

-- If the data files for subsequent months were in a different file format,
-- you could set a different file format for the new partition as you create
it.

alter table part t add partition (month=3) set fileformat=parquet;

The value specified for a partition key can be an arbitrary constant expression, without any references to columns. For
example:

alter table time data add partition (month=concat ('Decem', 'ber'));
alter table sales data add partition (zipcode = cast (9021 * 10 as string));

Note:

An alternative way to reorganize a table and its associated data files is to use CREATE TABLE to create a variation
of the original table, then use INSERT to copy the transformed or reordered data to the new table. The advantage of
ALTER TABLE is that it avoids making a duplicate copy of the data files, allowing you to reorganize huge volumes
of data in a space-efficient way using familiar Hadoop techniques.

To switch a table between internal and external:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-— Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='TRUE') ;

-- Switch a table from external to internal.
ALTER TABLE tableﬁname SET TBLPROPERTIES ('EXTERNAL'='FALSE') ;

Cancellation: Cannot be cancelled.
HDFS permissions:

Most ALTER TABLE clauses do not actually read or write any HDFS files, and so do not depend on specific HDFS
permissions. For example, the SET FILEFORMAT clause does not actually check the file format existing data files or
convert them to the new format, and the SET LOCATION clause does not require any special permissions on the new
location. (Any permission-related failures would come later, when you actually query or insert into the table.)

In general, ALTER TABLE clauses that do touch HDFS files and directories require the same HDFS permissions

as corresponding CREATE, INSERT, or SELECT statements. The permissions allow the user ID that the impalad
daemon runs under, typically the impala user, to read or write files or directories, or (in the case of the execute

bit) descend into a directory. The RENAME TO clause requires read, write, and execute permission in the source and
destination database directories and in the table data directory, and read and write permission for the data files within
the table. The ADD PARTITION and DROP PARTITION clauses require write and execute permissions for the
associated partition directory.

Kudu considerations:

Because of the extra constraints and features of Kudu tables, such as the NOT NULL and DEFAULT attributes for
columns, ALTER TABLE has specific requirements related to Kudu tables:

* InanADD COLUMNS operation, you can specify the NULL, NOT NULL, and DEFAULT default value
column attributes. -

* In Impala 2.9 and higher, you can also specify the ENCODING, COMPRESSION, and BLOCK SIZE attributes
when adding a column.

+ Ifyouadd a column with a NOT NULL attribute, it must also have a DEFAULT attribute, so the default value can
be assigned to that column for all existing rows.

* The DROP COLUMN clause works the same for a Kudu table as for other kinds of tables.

* Although you can change the name of a column with the CHANGE clause, you cannot change the type of a column
in a Kudu table.

| Impala SQL Language Reference | 236

* You cannot change the default value, nullability, encoding, compression, or block size of existing columns in a
Kudu table.
* You cannot use the REPLACE COLUMNS clause with a Kudu table.

* The RENAME TO clause for a Kudu table only affects the name stored in the metastore database
that Impala uses to refer to the table. To change which underlying Kudu table is associated
with an Impala table name, you must change the TBLPROPERTIES property of the table: SET
TBLPROPERTIES ('kudu.table name'='kudu tbl name).Doing so causes Kudu to change the name
of the underlying Kudu table.

The following are some examples of using the ADD COLUMNS clause for a Kudu table:

CREATE TABLE tl (x INT, PRIMARY KEY (x))
PARTITION BY HASH (x) PARTITIONS 16
STORED AS KUDU

ALTER TABLE tl ADD COLUMNS (y STRING ENCODING prefix encoding);

ALTER TABLE tl1 ADD COLUMNS (z INT DEFAULT 10);

ALTER TABLE tl ADD COLUMNS (a STRING NOT NULL DEFAULT '', t TIMESTAMP
COMPRESSION default compression);

Kudu tables all use an underlying partitioning mechanism. The partition syntax is different than for non-Kudu tables.
You can use the ALTER TABLE statement to add and drop range partitions from a Kudu table. Any new range
must not overlap with any existing ranges. Dropping a range removes all the associated rows from the table. See
Partitioning for Kudu Tables on page 691 for details.

Related information:

Overview of Impala Tables on page 213, CREATE TABLE Statement on page 253, DROP TABLE Statement on
page 291, Partitioning for Impala Tables on page 645, Internal Tables on page 213, External Tables on page
214

ALTER VIEW Statement

Changes the characteristics of a view. The syntax has two forms:

* The AS clause associates the view with a different query.
* The RENAME TO clause changes the name of the view, moves the view to a different database, or both.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

ALTER VIEW [database name.]view name AS select statement
ALTER VIEW [database name.]view name RENAME TO [database name.]view name

Statement type: DDL

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC _DDL Query Option on page 377 for details.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

| Impala SQL Language Reference | 237

Examples:

create table tl (x int, y int, s string);
create table t2 like t1;

create view vl as select * from tl;

alter view vl as select * from t2;

alter view vl as select x, upper(s) s from t2;

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original
CREATE VIEW statement:

[localhost:21000] > create view vl as select * from tl;
[localhost:21000] > describe formatted vl;
Query finished, fetching results

o o o ——— +
| name | type | comment |
o o o +
# col name	data type	comment
	NULL	NULL
x	int	None
y	int	None
s	string	None
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	views	NULL
Owner:	doc_demo	NULL
CreateTime:	Mon Jul 08 15:56:27 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Table Type:	VIRTUAL_VIEW	NULL
Table Parameters:	NULL	NULL
	transient lastDdlTime	1373313387
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL
OutputFormat:	null	NULL
Compressed:	No	NULL
Num Buckets:	0	NULL
Bucket Columns:	[]	NULL
Sort Columns:	[]	NULL
	NULL	NULL
# View Information	NULL	NULL
View Original Text:	SELECT * FROM tl	NULL
View Expanded Text:	SELECT * FROM tl	NULL
o o o ——— +

Related information:

Overview of Impala Views on page 217, CREATE VIEW Statement on page 267, DROP VIEW Statement on
page 293

COMPUTE STATS Statement

Gathers information about volume and distribution of data in a table and all associated columns and partitions.

The information is stored in the metastore database, and used by Impala to help optimize queries. For example, if
Impala can determine that a table is large or small, or has many or few distinct values it can organize parallelize the
work appropriately for a join query or insert operation. For details about the kinds of information gathered by this
statement, see Table and Column Statistics on page 601.

| Impala SQL Language Reference | 238

Syntax:

COMPUTE STATS [db _name.] table name
COMPUTE INCREMENTAL STATS [db_name.] table_name [PARTITION (parti tion_spec)]

partition spec ::= simple partition spec | complex partition spec
simple partition spec ::= partition col=constant value
complex partition spec ::= comparison expression on partition col

The PARTITION clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE
INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions
through the PARTITION (partiti on_spec) clause in a COMPUTE INCREMENTAL STATS or DROP
INCREMENTAL STATS statement, you must include all the partitioning columns in the specification, and specify
constant values for all the partition key columns.

Usage notes:

Originally, Impala relied on users to run the Hive ANALYZE TABLE statement, but that method of gathering
statistics proved unreliable and difficult to use. The Impala COMPUTE STATS statement is built from the ground up
to improve the reliability and user-friendliness of this operation. COMPUTE STATS does not require any setup steps
or special configuration. You only run a single Impala COMPUTE STATS statement to gather both table and column
statistics, rather than separate Hive ANALYZE TABLE statements for each kind of statistics.

The COMPUTE INCREMENTAL STATS variation is a shortcut for partitioned tables that works on a subset of
partitions rather than the entire table. The incremental nature makes it suitable for large tables with many partitions,
where a full COMPUTE STATS operation takes too long to be practical each time a partition is added or dropped. See
Overview of Incremental Statistics on page 605 for full usage details.

COMPUTE INCREMENTAL STATS only applies to partitioned tables. If you use the INCREMENTAL clause for an
unpartitioned table, Impala automatically uses the original COMPUTE STATS statement. Such tables display false
under the Incremental stats column of the SHOW TABLE STATS output.

Note: Because many of the most performance-critical and resource-intensive operations rely on table and column
statistics to construct accurate and efficient plans, COMPUTE STATS is an important step at the end of your ETL
process. Run COMPUTE STATS on all tables as your first step during performance tuning for slow queries, or
troubleshooting for out-of-memory conditions:

* Accurate statistics help Impala construct an efficient query plan for join queries, improving performance and
reducing memory usage.

» Accurate statistics help Impala distribute the work effectively for insert operations into Parquet tables, improving
performance and reducing memory usage.

» Accurate statistics help Impala estimate the memory required for each query, which is important when you use
resource management features, such as admission control and the YARN resource management framework. The
statistics help Impala to achieve high concurrency, full utilization of available memory, and avoid contention with
workloads from other Hadoop components.

* In Impala 2.8 and higher, when you run the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement
against a Parquet table, Impala automatically applies the query option setting MT DOP=4 to increase the amount
of intra-node parallelism during this CPU-intensive operation. See MT'_DOP Query Option on page 365 for
details about what this query option does and how to use it with CPU-intensive SELECT statements.

Computing stats for groups of partitions:

In Impala 2.8 and higher, you can run COMPUTE INCREMENTAL STATS on multiple partitions, instead of the
entire table or one partition at a time. You include comparison operators other than = in the PARTITION clause, and
the COMPUTE INCREMENTAL STATS statement applies to all partitions that match the comparison expression.

For example, the INT PARTITIONS table contains 4 partitions. The following COMPUTE INCREMENTAL
STATS statements affect some but not all partitions, as indicated by the Updated n partition (s) messages.

| Impala SQL Language Reference | 239

The partitions that are affected depend on values in the partition key column X that match the comparison expression

in the PARTITION clause.

show partitions int partitions;

Fo————— Fo————— Fo—————— +o——— Fom e o
+-————————- Fooo
| x | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
[...
+o————— +o————— +-——— +-————— Fomm o
+-———-——- To oo
| 99 | -1 | O | OB | NOT CACHED | NOT CACHED | PARQUET
| ...
| 120 | =1 | 0 | OB | NOT CACHED | NOT CACHED | TEXT
[...
| 150 | -1 | 0 | OB | NOT CACHED | NOT CACHED | TEXT
| ...
| 200 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT
| ...
| Total | -1 | 0 | OB | OB |
| o
+o————— +o————— +-——— +-————— Fomm o
R +
compute incremental stats int partitions partition (x < 100);
B et ettt e e +
| summary |
o +
| Updated 1 partition(s) and 1 column (s) |
B e e +
compute incremental stats int partitions partition (x in (100, 150, 200));

B e ittt E e P +
| summary |
e +
| Updated 2 partition(s) and 1 column (s) |
o +

e +
| summary |
e +
| Updated 2 partition(s) and 1 column (s) |
o +

x < 100);
- +
| summary |
e e +
| Updated 3 partition(s) and 1 column (s) |
- +*

B b ettt T +
| summary |
fo——_— +
| Updated 3 partition(s) and 1 column(s). |
o - +

Complex type considerations:

between 100 and 175);

in (100, 150, 200) or

'=150);

| Impala SQL Language Reference | 240

Currently, the statistics created by the COMPUTE STATS statement do not include information about complex type
columns. The column stats metrics for complex columns are always shown as -1. For queries involving complex type
columns, Impala uses heuristics to estimate the data distribution within such columns.

HBase considerations:

COMPUTE STATS works for HBase tables also. The statistics gathered for HBase tables are somewhat different
than for HDFS-backed tables, but that metadata is still used for optimization when HBase tables are involved in join
queries.

Amazon S3 considerations:

COMPUTE STATS also works for tables where data resides in the Amazon Simple Storage Service (S3). See Using
Impala with the Amazon S3 Filesystem on page 709 for details.

Performance considerations:

The statistics collected by COMPUTE STATS are used to optimize join queries INSERT operations into Parquet
tables, and other resource-intensive kinds of SQL statements. See Table and Column Statistics on page 601 for
details.

For large tables, the COMPUTE STATS statement itself might take a long time and you might need to tune its
performance. The COMPUTE STATS statement does not work with the EXPLAIN statement, or the SUMMARY
command in impala-shell. You can use the PROFILE statement in impala-shell to examine timing
information for the statement as a whole. If a basic COMPUTE STATS statement takes a long time for a partitioned
table, consider switching to the COMPUTE INCREMENTAL STATS syntax so that only newly added partitions are
analyzed each time.

Examples:

This example shows two tables, T1 and T2, with a small number distinct values linked by a parent-child relationship
between T1.IDand T2.PARENT. T1 is tiny, while T2 has approximately 100K rows. Initially, the statistics
includes physical measurements such as the number of files, the total size, and size measurements for fixed-length
columns such as with the INT type. Unknown values are represented by -1. After running COMPUTE STATS for
each table, much more information is available through the SHOW STATS statements. If you were running a join
query involving both of these tables, you would need statistics for both tables to get the most effective optimization
for the query.

[localhost:21000] > show table stats tl;
Query: show table stats tl

o e o e 4
| #Rows | #Files | Size | Format |
ommmmoe ommmmmoe fommmoo ommmmmoe +
| =1 | 1 | 33B | TEXT |
o —— fmm——— R fmm——— +

Returned 1 row(s) in 0.02s
[localhost:21000] > show table stats t2;
Query: show table stats t2

t————— e e ————— e +
| #Rows | #Files | Size | Format |
t————— t——————— t—————— t——————— +
| -1 | 28 | 960.00KB | TEXT |
t————— t————— t————— t————— +

Returned 1 row(s) in 0.01ls
[localhost:21000] > show column stats tl;
Query: show column stats tl

to—————— to—————— fom e to—————— tom————— tom————— +
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
to——— to——— e to——— o —— o —— +
| id | INT | =1 | =1 | 4 | 4
| s | STRING | -1 | =1 | =1 | =1
tomm———— tomm———— o tomm———— o o +

Returned 2 row(s) in 1.71s
[localhost:21000] > show column stats t2;

| Impala SQL Language Reference | 241

Query: show column stats t2

t—————— t—————— e t—————— t——————— t——————— +
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
t————— t————— B t————— t————— t————— +
| parent | INT | =1 | =1 | 4 | 4

| s | STRING | -1 | -1 | -1 | -1 |
t——————— t——————— o t——————— t————————— t————————— +
Returned 2 row(s) in 0.01ls

[localhost:21000] > compute stats tl;

Query: compute stats tl

B e +

| summary |

e +

| Updated 1 partition(s) and 2 column(s). |
e +

Returned 1 row(s) in 5.30s

[localhost:21000] > show table stats tl;

Query: show table stats tl

- t——————— +————— t——————— +

| #Rows | #Files | Size | Format |

t————— t—————— t————— t—————— +

| 3 | 1 | 33B | TEXT |

t————— t————— t———— t————— +

Returned 1 row(s) in 0.01s

[localhost:21000] > show column stats tl;

Query: show column stats tl

t—————— t—————— o t—————— t——————— t——————— +
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
t————— t————— e t————— t———— t———— +
| id | INT | 3 | =1 | 4 | 4

| s | STRING | 3 | =1 | =1 | =1
t—————— t—————— e t—————— t——————— t——————— +
Returned 2 row(s) in 0.02s

[localhost:21000] > compute stats t2;

Query: compute stats t2

e +

| summary |

e +

| Updated 1 partition(s) and 2 column(s). |
e +

Returned 1 row(s) in 5.70s

[localhost:21000] > show table stats t2;

Query: show table stats t2

t————— t—————— t——————— t—————— +

| #Rows | #Files | Size | Format |

t————— t————— t————— t————— +

| 98304 | 1 | 960.00KB | TEXT |

- t——————— e t——————— +

Returned 1 row(s) in 0.03s

[localhost:21000] > show column stats t2;

Query: show column stats t2

t————— t————— B t————— t————— t————— +
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
t——————— t——————— e t——————— e e +
| parent | INT | 3 | -1 | 4 | 4

| s | STRING | 6 | -1 | 14 | 9.3
t—————— t—————— o t—————— t——————— t——————— +

| Impala SQL Language Reference | 242

The following example shows how to use the INCREMENTAL clause, available in Impala 2.1.0 and higher. The
COMPUTE INCREMENTAL STATS syntax lets you collect statistics for newly added or changed partitions, without
rescanning the entire table.

-- Initially the table has no incremental stats, as indicated
-- by -1 under #Rows and false under Incremental stats.
show table stats item partitioned;

t———— - B - - -

+ __________________

| i category | #Rows | #Files | Size | Bytes Cached | Format |
Incremental stats

- - e et e - -

+ __________________

| Books =l | 1 | 223.74KB | NOT CACHED | PARQUET | false
| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | false
| Jewelry | =1 [1 | 223.72KB | NOT CACHED | PARQUET | false
| Men | -1 [1 | 231.25KB | NOT CACHED | PARQUET | false
| Music | =1 [1 | 237.90KB | NOT CACHED | PARQUET | false
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | false
| Total | =1 | 10 | 2.25MB | OB |

- +-—————— B et - - -

+ __________________

-- After the first COMPUTE INCREMENTAL STATS,

-- all partitions have stats.

compute incremental stats item partitioned;

e R +

| summary |

B e ettt et PP +

| Updated 10 partition(s) and 21 column (s) |

- +*

show table stats item partitioned;

Fmm R R fmm Fmm fmm

+ __________________

| i category | #Rows | #Files | Size | Bytes Cached | Format |
Incremental stats

e - - I et - -

+ __________________

| Books | 1733 [1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 [1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 [1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 [1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 [1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | OB |

- - e et e - -

+ __________________

-- Add a new partition...

alter table item partitioned add partition (i category='Camping');

-- Add or replace files in HDFS outside of Impala,

-- rendering the stats for a partition obsolete.

!import data into sports partition.sh

refresh item partitioned;

drop incremental stats item partitioned partition (i category='Sports');

| Impala SQL Language Reference | 243

-- Now some partitions have incremental stats
-- and some do not.
show table stats item partitioned;

t———— - B - - -

+ __________________

| i category | #Rows | #Files | Size | Bytes Cached | Format |
Incremental stats

- - e et e - -

+ __________________

| Books | 1733 [1 | 223.74KB | NOT CACHED | PARQUET | true
| Camping | =1 | 1 | 408.02KB | NOT CACHED | PARQUET | false
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 [1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 [1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 [1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | 1790 [1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | 0B |

t———— - B - - -

+ __________________

-— After another COMPUTE INCREMENTAL STATS,

-- all partitions have incremental stats, and only the 2

-- partitions without incremental stats were scanned.

compute incremental stats item partitioned;

e e +

| summary |

- +*

| Updated 2 partition(s) and 21 column (s) |

- +

show table stats item partitioned;

e T e e o — o o —

+ __________________

| i category | #Rows | #Files | Size | Bytes Cached | Format |
Incremental stats

- +-—————— B et - - -

+ __________________

| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Camping | 5328 | 1 | 408.02KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 |1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 [1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 [1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 [1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 [1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | 0B |

e - - t——— o -

+ __________________

File format considerations:

The COMPUTE STATS statement works with tables created with any of the file formats supported by Impala. See
How Impala Works with Hadoop File Formats on page 652 for details about working with the different file
formats. The following considerations apply to COMPUTE STATS depending on the file format of the table.

The COMPUTE STATS statement works with text tables with no restrictions. These tables can be created through
either Impala or Hive.

| Impala SQL Language Reference | 244

The COMPUTE STATS statement works with Parquet tables. These tables can be created through either Impala or
Hive.

The COMPUTE STATS statement works with Avro tables without restriction in Impala 2.2 and higher. In earlier
releases, COMPUTE STATS worked only for Avro tables created through Hive, and required the CREATE TABLE
statement to use SQL-style column names and types rather than an Avro-style schema specification.

The COMPUTE STATS statement works with RCFile tables with no restrictions. These tables can be created through
either Impala or Hive.

The COMPUTE STATS statement works with SequenceFile tables with no restrictions. These tables can be created
through either Impala or Hive.

The COMPUTE STATS statement works with partitioned tables, whether all the partitions use the same file format, or
some partitions are defined through ALTER TABLE to use different file formats.

Statement type: DDL

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATS) can be
cancelled during some stages, when running INSERT or SELECT operations internally. To cancel this statement, use
Ctrl-C from the impala-shell interpreter, the Cancel button from the Watch page in Hue, or Cancel from the list
of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

Restrictions:

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column and recorded
that figure in the metastore database. Because Impala does not currently use the NULL count during query planning,
Impala 1.4.0 and higher speeds up the COMPUTE STATS statement by skipping this NULL counting.

Internal details:

Behind the scenes, the COMPUTE STATS statement executes two statements: one to count the rows of each
partition in the table (or the entire table if unpartitioned) through the COUNT (*) function, and another to count the
approximate number of distinct values in each column through the NDV () function. You might see these queries in
your monitoring and diagnostic displays. The same factors that affect the performance, scalability, and execution of
other queries (such as parallel execution, memory usage, admission control, and timeouts) also apply to the queries
run by the COMPUTE STATS statement.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for all
affected files in the source directory: all files in the case of an unpartitioned table or a partitioned table in the case of
COMPUTE STATS; or all the files in partitions without incremental stats in the case of COMPUTE INCREMENTAL
STATS. It must also have read and execute permissions for all relevant directories holding the data files. (Essentially,
COMPUTE STATS requires the same permissions as the underlying SELECT queries it runs against the table.)

Kudu considerations:

The COMPUTE STATS statement applies to Kudu tables. Impala does not compute the number of rows for each
partition for Kudu tables. Therefore, you do not need to re-run the operation when you see -1 in the # Rows column
of the output from SHOW TABLE STATS. That column always shows -1 for all Kudu tables.

Related information:

DROP STATS Statement on page 287, SHOW TABLE STATS Statement on page 388, SHOW COLUMN STATS
Statement on page 390, Table and Column Statistics on page 601

CREATE DATABASE Statement
Creates a new database.
In Impala, a database is both:

» A logical construct for grouping together related tables, views, and functions within their own namespace. You
might use a separate database for each application, set of related tables, or round of experimentation.

| Impala SQL Language Reference | 245

» A physical construct represented by a directory tree in HDFS. Tables (internal tables), partitions, and data files
are all located under this directory. You can perform HDFS-level operations such as backing it up and measuring
space usage, or remove it with a DROP DATABASE statement.

Syntax:

CREATE (DATABASE |SCHEMA) [IF NOT EXISTS] database_name[COMMENT
'database comment']
[LOCATION hdfs path];

Statement type: DDL
Usage notes:

A database is physically represented as a directory in HDFS, with a filename extension . db, under the main Impala
data directory. If the associated HDFS directory does not exist, it is created for you. All databases and their associated
directories are top-level objects, with no physical or logical nesting.

After creating a database, to make it the current database within an impala-shell session, use the USE statement.
You can refer to tables in the current database without prepending any qualifier to their names.

When you first connect to Impala through impala-shell, the database you start in (before issuing any CREATE
DATABASE or USE statements) is named default.

Impala includes another predefined database, impala builtins, that serves as the location for the built-in
functions. To see the built-in functions, use a statement like the following:

show functions in _impala builtins;
show functions in impala builtins like '*substring*';

After creating a database, your impala-shell session or another impala-shell connected to the same node
can immediately access that database. To access the database through the Impala daemon on a different node, issue
the INVALIDATE METADATA statement first while connected to that other node.

Setting the LOCATION attribute for a new database is a way to work with sets of files in an HDFS directory structure
outside the default Impala data directory, as opposed to setting the LOCATION attribute for each individual table.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC _DDL Query Option on page 377 for details.

Hive considerations:

When you create a database in Impala, the database can also be used by Hive. When you create a database in Hive,
issue an INVALIDATE METADATA statement in Impala to make Impala permanently aware of the new database.

The SHOW DATABASES statement lists all databases, or the databases whose name matches a wildcard pattern.
In Impala 2.5 and higher, the SHOW DATABASES output includes a second column that displays the associated
comment, if any, for each database.

Amazon S3 considerations:

To specify that any tables created within a database reside on the Amazon S3 system, you can include an s3a://
prefix on the LOCATION attribute. In Impala 2.6 and higher, Impala automatically creates any required folders as the
databases, tables, and partitions are created, and removes them when they are dropped.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 709 for details about reading and writing S3 data with Impala.

Cancellation: Cannot be cancelled.

HDFS permissions:

| Impala SQL Language Reference | 246

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for the
parent HDFS directory under which the database is located.

Examples:

create database first db;
use first db;
create table tl (x int);

create database second db;

use second db;

-- Each database has its own namespace for tables.

-- You can reuse the same table names in each database.
create table tl (s string);

create database temp;

-- You can either USE a database after creating it,

-- or qualify all references to the table name with the name of the
database.

-— Here, tables T2 and T3 are both created in the TEMP database.

create table temp.t2 (x int, y int);
use database temp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statement.
drop database temp;
ERROR: AnalysisException: Cannot drop current default database: temp

-- The always-available database 'default' is a convenient one to USE
-- before dropping a database you created.
use default;

-—- Before dropping a database, first drop all the tables inside it,

-— or in Impala 2.3 and higher use the CASCADE clause.

drop database temp;

ERROR: ImpalaRuntimeException: Error making 'dropDatabase' RPC to Hive
Metastore:

CAUSED BY: InvalidOperationException: Database temp is not empty

show tables in temp;

- +
| name |
- +
| €3 |
- +

-- Impala 2.3 and higher:
drop database temp cascade;

-- Earlier releases:
drop table temp.t3;
drop database temp;

Related information:

Overview of Impala Databases on page 210, DROP DATABASE Statement on page 283, USE Statement on page
401, SHOW DATABASES on page 383, Overview of Impala Tables on page 213

CREATE FUNCTION Statement

Creates a user-defined function (UDF), which you can use to implement custom logic during SELECT or INSERT
operations.

| Impala SQL Language Reference | 247

Syntax:

The syntax is different depending on whether you create a scalar UDF, which is called once for each row and
implemented by a single function, or a user-defined aggregate function (UDA), which is implemented by multiple
functions that compute intermediate results across sets of rows.

In Impala 2.5 and higher, the syntax is also different for creating or dropping scalar Java-based UDFs. The statements
for Java UDFs use a new syntax, without any argument types or return type specified. Java-based UDFs created using
the new syntax persist across restarts of the Impala catalog server, and can be shared transparently between Impala
and Hive.

To create a persistent scalar C++ UDF with CREATE FUNCTION:

CREATE FUNCTION [IF NOT EXISTS]
[db_name.] function name([arg typel, arg type...])
RETURNS return type
LOCATION 'hdfs path to dot so'
SYMBOL="'symbol name'

To create a persistent Java UDF with CREATE FUNCTION:

CREATE FUNCTION [IF NOT EXISTS] [db_ name.] function name
LOCATION 'hdfs path to jar'
SYMBOL="'class name'

To create a persistent UDA, which must be written in C++, issue a CREATE AGGREGATE FUNCTION statement:

CREATE [AGGREGATE] FUNCTION [IF NOT EXISTS]
[db_name.] function name([arg typel, arg type...])
RETURNS return type
LOCATION 'hdfsﬁpath'

[INIT FN='function]
UPDATE_FN:'function
MERGE FN='function
[PREPARE FN='function]
[CLOSEFN="' function]
[SERIALIZE FN='function]
[FINALIZE_FN='function]
[INTERMEDIATE type spec]

Statement type: DDL

Varargs notation:

Note:

Variable-length argument lists are supported for C++ UDFs, but currently not for Java UDFs.

If the underlying implementation of your function accepts a variable number of arguments:

* The variable arguments must go last in the argument list.

* The variable arguments must all be of the same type.

* You must include at least one instance of the variable arguments in every function call invoked from SQL.

* You designate the variable portion of the argument list in the CREATE FUNCTION statement by including . . .
immediately after the type name of the first variable argument. For example, to create a function that accepts
an INT argument, followed by a BOOLEAN, followed by one or more STRING arguments, your CREATE
FUNCTION statement would look like:

CREATE FUNCTION func name (INT, BOOLEAN, STRING ...)
RETURNS type LOCATION 'path' SYMBOL='entry point';

| Impala SQL Language Reference | 248

See Variable-Length Argument Lists on page 559 for how to code a C++ UDF to accept variable-length argument
lists.

Scalar and aggregate functions:

The simplest kind of user-defined function returns a single scalar value each time it is called, typically once for
each row in the result set. This general kind of function is what is usually meant by UDF. User-defined aggregate
functions (UDAs) are a specialized kind of UDF that produce a single value based on the contents of multiple rows.
You usually use UDAs in combination with a GROUP BY clause to condense a large result set into a smaller one, or
even a single row summarizing column values across an entire table.

You create UDAs by using the CREATE AGGREGATE FUNCTION syntax. The clauses INI T_FN, UPDATE_FN,
MERGE_FN, SERIALIZE_FN, FINALI ZE_FN, and INTERMEDIATE Only apply when you create a UDA rather
than a scalar UDF.

The * FN clauses specify functions to call at different phases of function processing.

+ Initialize: The function you specify with the INIT FN clause does any initial setup, such as initializing member
variables in internal data structures. This function is often a stub for simple UDAs. You can omit this clause and a
default (no-op) function will be used.

» Update: The function you specify with the UPDATE FN clause is called once for each row in the original result
set, that is, before any GROUP BY clause is applied. A separate instance of the function is called for each different
value returned by the GROUP BY clause. The final argument passed to this function is a pointer, to which you
write an updated value based on its original value and the value of the first argument.

* Merge: The function you specify with the MERGE _FN clause is called an arbitrary number of times, to combine
intermediate values produced by different nodes or different threads as Impala reads and processes data files in
parallel. The final argument passed to this function is a pointer, to which you write an updated value based on its
original value and the value of the first argument.

» Serialize: The function you specify with the SERIALIZE FN clause frees memory allocated to intermediate
results. It is required if any memory was allocated by the Allocate function in the Init, Update, or Merge functions,
or if the intermediate type contains any pointers. See the UDA code samples for details.

 Finalize: The function you specify with the FINALIZE FN clause does any required teardown for resources
acquired by your UDF, such as freeing memory, closing file handles if you explicitly opened any files, and so on.
This function is often a stub for simple UDAs. You can omit this clause and a default (no-op) function will be
used. It is required in UDAs where the final return type is different than the intermediate type. or if any memory
was allocated by the Allocate function in the Init, Update, or Merge functions. See the UDA code samples for
details.

If you use a consistent naming convention for each of the underlying functions, Impala can automatically determine
the names based on the first such clause, so the others are optional.

For end-to-end examples of UDAs, see Impala User-Defined Functions (UDFs) on page 553.
Complex type considerations:

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types (STRUCT, ARRAY, or
MAP).

Usage notes:

* You can write Impala UDFs in either C++ or Java. C++ UDFs are new to Impala, and are the recommended
format for high performance utilizing native code. Java-based UDFs are compatible between Impala and Hive, and
are most suited to reusing existing Hive UDFs. (Impala can run Java-based Hive UDFs but not Hive UDAs.)

* Impala 2.5 introduces UDF improvements to persistence for both C++ and Java UDFs, and better compatibility
between Impala and Hive for Java UDFs. See Impala User-Defined Functions (UDFs) on page 553 for details.

» The body of the UDF is represented by a . so or . jar file, which you store in HDFS and the CREATE
FUNCTION statement distributes to each Impala node.

» Impala calls the underlying code during SQL statement evaluation, as many times as needed to process all the
rows from the result set. All UDFs are assumed to be deterministic, that is, to always return the same result when
passed the same argument values. Impala might or might not skip some invocations of a UDF if the result value
is already known from a previous call. Therefore, do not rely on the UDF being called a specific number of times,

| Impala SQL Language Reference | 249

and do not return different result values based on some external factor such as the current time, a random number
function, or an external data source that could be updated while an Impala query is in progress.

* The names of the function arguments in the UDF are not significant, only their number, positions, and data types.

* You can overload the same function name by creating multiple versions of the function, each with a different
argument signature. For security reasons, you cannot make a UDF with the same name as any built-in function.

» In the UDF code, you represent the function return result as a struct. This struct contains 2 fields. The first
field is a boolean representing whether the value is NULL or not. (When this field is t rue, the return value is
interpreted as NULL.) The second field is the same type as the specified function return type, and holds the return
value when the function returns something other than NULL.

» In the UDF code, you represent the function arguments as an initial pointer to a UDF context structure, followed
by references to zero or more structs, corresponding to each of the arguments. Each st ruct has the same 2
fields as with the return value, a boolean field representing whether the argument is NULL, and a field of the
appropriate type holding any non-NULL argument value.

» For sample code and build instructions for UDFs, see the sample UDFs in the Impala github repo.

* Because the file representing the body of the UDF is stored in HDFS, it is automatically available to all the Impala
nodes. You do not need to manually copy any UDF-related files between servers.

» Because Impala currently does not have any ALTER FUNCTION statement, if you need to rename a function,
move it to a different database, or change its signature or other properties, issue a DROP FUNCTION statement
for the original function followed by a CREATE FUNCTION with the desired properties.

» Because each UDF is associated with a particular database, either issue a USE statement before doing any
CREATE FUNCTION statements, or specify the name of the function as db_name. function name.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC _DDL Query Option on page 377 for details.

Compatibility:

Impala can run UDFs that were created through Hive, as long as they refer to Impala-compatible data types (not
composite or nested column types). Hive can run Java-based UDFs that were created through Impala, but not Impala
UDFs written in C++.

The Hive current user () function cannot be called from a Java UDF through Impala.
Persistence:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the catalogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must reload those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the catalogd daemon. Prior to Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

For additional examples of all kinds of user-defined functions, see Impala User-Defined Functions (UDF’s) on page
553.

The following example shows how to take a Java jar file and make all the functions inside one of its classes into
UDFs under a single (overloaded) function name in Impala. Each CREATE FUNCTION or DROP FUNCTION
statement applies to all the overloaded Java functions with the same name. This example uses the signatureless syntax
for CREATE FUNCTION and DROP FUNCTION, which is available in Impala 2.5 and higher.

| Impala SQL Language Reference | 250

At the start, the jar file is in the local filesystem. Then it is copied into HDFS, so that it is available for Impala to
reference through the CREATE FUNCTION statement and queries that refer to the Impala function name.

$ jar -tvf udf-examples.jar
0 Mon Feb 22 04:06:50 PST 2016 META-INF/
122 Mon Feb 22 04:06:48 PST 2016 META-INF/MANIFEST.MF
0 Mon Feb 22 04:06:46 PST 2016 org/
0 Mon Feb 22 04:06:46 PST 2016 org/apache/
0 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/
2460 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/
IncompatibleUdfTest.class
541 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/TestUdfException.class
3438 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/JavaUdfTest.class
5872 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/TestUdf.class

$ hdfs dfs -put udf-examples.jar /user/impala/udfs
$ hdfs dfs -1ls /user/impala/udfs
Found 2 items

—Irw-r--r—- 3 jrussell supergroup 853 2015-10-09 14:05 /user/impala/
udfs/hello world.jar
—rw-r--r-—-— 3 jrussell supergroup 7366 2016-06-08 14:25 /user/impala/

udfs/udf-examples.jar

In impala-shell, the CREATE FUNCTION refers to the HDFS path of the jar file and the fully qualified class
name inside the jar. Each of the functions inside the class becomes an Impala function, each one overloaded under the
specified Impala function name.

[localhost:21000] > create function testudf location '/user/impala/udfs/udf-
examples.jar' symbol='org.apache.impala.TestUdf"';
[localhost:21000] > show functions;

Fomm - o Fomm -

Fom e +

| return type | signature | binary type | is

persistent |

o B et et it e o

o +

| BIGINT | testudf (BIGINT) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN, BOOLEAN) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN, BOOLEAN, BOOLEAN) | JAVA | true
|

| DOUBLE | testudf (DOUBLE) | JAVA | true
|

| DOUBLE | testudf (DOUBLE, DOUBLE) | JAVA | true
|

| DOUBLE | testudf (DOUBLE, DOUBLE, DOUBLE) | JAVA | true
|

| FLOAT | testudf (FLOAT) | JAVA | true
|

| FLOAT | testudf (FLOAT, FLOAT) | JAVA | true
|

| FLOAT | testudf (FLOAT, FLOAT, FLOAT) | JAVA | true
|

| INT | testudf (INT) | JAVA | true

| DOUBLE | testudf (INT, DOUBLE) | JAVA | true
|

| Impala SQL Language Reference | 251

| INT | testudf (INT, INT) | JAVA | true
| INT | | testudf (INT, INT, INT) | JAVA | true
| SMALLI&T | testudf (SMALLINT) | JAVA | true
| SMALLI&T | testudf (SMALLINT, SMALLINT) | JAVA | true
| SMALLI&T | testudf (SMALLINT, SMALLINT, SMALLINT) | JAVA | true
| STRING| | testudf (STRING) | JAVA | true
| STRING| | testudf (STRING, STRING) | JAVA | true
| STRING| | testudf (STRING, STRING, STRING) | JAVA | true
| TINYIN% | testudf (TINYINT) | JAVA | true
+———————l ————— o Fomm -

Fom e +

These are all simple functions that return their single arguments, or sum, concatenate, and so on their multiple
arguments. Impala determines which overloaded function to use based on the number and types of the arguments.

insert into bigint x values (1), (2), (4), (3);
select testudf (x) from bigint x;

o +
| udfs.testudf (x) |
o +
| 1 |
| 2 |
| 4 |
| 3 |
o +

insert into int x values (1), (2), (4), (3);
select testudf (x, x+1, x*x) from int x;

e +
| udfs.testudf(x, x + 1, x * x) |
e +
[4 |
| 9 |
| 25 |
| 16 |
e +

| oneone |
| twotwo |
| fourfour |

| Impala SQL Language Reference | 252

| threethree |

The previous example used the same Impala function name as the name of the class. This example shows how the
Impala function name is independent of the underlying Java class or function names. A second CREATE FUNCTION
statement results in a set of overloaded functions all named my func, to go along with the overloaded functions all
named testudf.

create function my func location '/user/impala/udfs/udf-examples.jar'
symbol="'org.apache.impala.TestUdf"';

show functions;

fo—— o fo——

o —— +

| return type | signature | binary type | is

persistent |

o e o

et 1

| BIGINT | my func (BIGINT) | JAVA | true
|

| BOOLEAN | my func (BOOLEAN) | JAVA | true
|

| BOOLEAN | my func (BOOLEAN, BOOLEAN) | JAVA | true
|

| BIGINT | testudf (BIGINT) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN, BOOLEAN) | JAVA | true

The corresponding DROP FUNCTION statement with no signature drops all the overloaded functions with that name.

drop function my func;
show functions;

Fomm - o Fomm -

Fom e +

| return type | signature | binary type | is

persistent |

o B et et it e o

o +

| BIGINT | testudf (BIGINT) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN, BOOLEAN) | JAVA | true

The signatureless CREATE FUNCTION syntax for Java UDFs ensures that the functions shown in this example
remain available after the Impala service (specifically, the Catalog Server) are restarted.

Related information:

Impala User-Defined Functions (UDFs) on page 553 for more background information, usage instructions, and
examples for Impala UDFs; DROP FUNCTION Statement on page 285

| Impala SQL Language Reference | 253

CREATE ROLE Statement (Impala 2.0 or higher only)

The CREATE ROLE statement creates a role to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to users. A user that has been assigned a role will only be able to exercise the privileges
of that role. Only users that have administrative privileges can create/drop roles. By default, the hive, impala and
hue users have administrative privileges in Sentry.

Syntax:
CREATE ROLE role name

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this
statement.

Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive
makes use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT
and REVOKE statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike
the equivalent Hive statements.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDEFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 86, GRANT Statement (Impala 2.0 or higher only) on page
297, REVOKE Statement (Impala 2.0 or higher only) on page 318, DROP ROLE Statement (Impala 2.0 or
higher only) on page 286, SHOW Statement on page 378

CREATE TABLE Statement

Creates a new table and specifies its characteristics. While creating a table, you optionally specify aspects such as:

* Whether the table is internal or external.

* The columns and associated data types.

» The columns used for physically partitioning the data.
» The file format for data files.

» The HDFS directory where the data files are located.

Syntax:
The general syntax for creating a table and specifying its columns is as follows:

Explicit column definitions:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db name.] table name
(col name data type
[COMMENT 'col comment']
[, -..1
)

[PARTITIONED BY (col name data type [COMMENT 'col comment'], ...)]
[SORT BY ([column [, column ...]])]

[COMMENT 'table comment']

[WITH SERDEPROPERTIES ('keyl'='valuel', 'key2'='valuel', ...)]

[

[ROW FORMAT row format] [STORED AS file format]

]

[LOCATION 'hdfs path']

[TBLPROPERTIES ('keyl'='valuel', 'key2'='value2', ...)]

| Impala SQL Language Reference | 254

[CACHED IN 'pool name' [WITH REPLICATION = integer] | UNCACHED]
CREATE TABLE AS SELECT:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] db_name.]table_name
[PARTITIONED BY (col name[, ...])]
[SORT BY ([column [, column ...]])]
[COMMENT 'table comment']
[WITH SERDEPROPERTIES ('keyl'='valuel', 'key2'='valuel2', ...)]
[

[ROW FORMAT row format] [STORED AS ctas file format]

]
[LOCATION 'hdfs path']
[TBLPROPERTIES ('keyl'='valuel', 'key2'='valuelZ',6 ...)]
[CACHED IN 'poolﬁname' [WITH REPLICATION = integer] | UNCACHED]
AS

select statement

primitive type:
TINYINT

| SMALLINT

| INT

| BIGINT

| BOOLEAN

| FLOAT

| DOUBLE

| DECIMAL

| STRING

| CHAR

| VARCHAR

| TIMESTAMP

complex type:
struct type
| array type

| map_type

struct type: STRUCT < name : primitive or complex type [COMMENT
'comment string'l, ... >

array type: ARRAY < primitive or complex type >
map type: MAP < primitive type, primitive or complex type >

row format:
DELIMITED [FIELDS TERMINATED BY 'char' [ESCAPED BY 'char']]
[LINES TERMINATED BY 'char']

file format:
PARQUET
| TEXTFILE
| AVRO
| SEQUENCEFILE
| RCFILE

ctas file format:
PARQUET
| TEXTFILE

Column definitions inferred from data file:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db name.] table name

| Impala SQL Language Reference | 255

LIKE PARQUET 'hdfs path of parquet file'
[SORT BY ([column [, column ...]])]

[COMMENT 'table comment']

[PARTITIONED BY (col name data type [COMMENT 'col comment'], ...)]
[WITH SERDEPROPERTIES ('keyl'='valuel', 'key2'='valuelZ', ...)]

[

[ROW FORMAT row format] [STORED AS file_format]

]
[LOCATION 'hdfs path']
[TBLPROPERTIES ('keyl'='valuel', 'key2'='value2', ...)]

[CACHED IN 'pool name' [WITH REPLICATION = integer] | UNCACHED]
data type:

primitive type
| array type
| map_type
| struct type

Kudu tables:

CREATE TABLE [IF NOT EXISTS] [db name.] table name
(col name data type
[kudu column attribute ...]
[COMMENT 'col comment']
[cool
[PRIMARY KEY (col name[, ...])]
)
[PARTITION BY kudu partition clause
[COMMENT 'table comment']
STORED AS KUDU
[TBLPROPERTIES ('keyl'='valuel', 'key2'='value2', ...)]

Kudu column attributes:

PRIMARY KEY
| [NOT] NULL
| ENCODING codec
| COMPRESSION algorithm
| DEFAULT constant
| BLOCK SIZE number

kudu_partition_clause:

kudu partition clause ::= PARTITION BY [hash clause] [,

. range clause
[, range clause]]

hash clause ::=
HASH [(pk col [, ...1)]
PARTITIONS n

range clause ::=
RANGE [(pk col [, ...]) 1]
(
{
PARTITION constant expression range comparison operator
VALUES range comparison operator constant expression
| PARTITION VALUE = constant expression or tuple

Ly, ...1]
)

| Impala SQL Language Reference | 256

range comparison operator ::= { < | <= }
External Kudu tables:

CREATE EXTERNAL TABLE [IF NOT EXISTS] [db _name.]table name
[COMMENT 'table comment']
STORED AS KUDU
[TBLPROPERTIES ('kudu.table name'='internal kudu name')]

CREATE TABLE AS SELECT for Kudu tables:

CREATE TABLE [IF NOT EXISTS] db name.] table name

[PRIMARY KEY (col name[, ...])]

[PARTITION BY kudu partition clause

[COMMENT 'table comment']

STORED AS KUDU

[TBLPROPERTIES ('keyl'='valuel', 'key2'='valuelZ',6 ...)]
AS

select statement

Statement type: DDL
Column definitions:
Depending on the form of the CREATE TABLE statement, the column definitions are required or not allowed.

With the CREATE TABLE AS SELECT and CREATE TABLE LIKE syntax, you do not specify the columns at
all; the column names and types are derived from the source table, query, or data file.

With the basic CREATE TABLE syntax, you must list one or more columns, its name, type, and optionally a
comment, in addition to any columns used as partitioning keys. There is one exception where the column list is not
required: when creating an Avro table with the STORED AS AVRO clause, you can omit the list of columns and
specify the same metadata as part of the TBLPROPERTIES clause.

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in Impala 2.3 and higher. Because you can nest
these types (for example, to make an array of maps or a struct with an array field), these types are also sometimes
referred to as nested types. See Complex Types (Impala 2.3 or higher only) on page 151 for usage details.

Impala can create tables containing complex type columns, with any supported file format. Because currently Impala
can only query complex type columns in Parquet tables, creating tables with complex type columns and other file
formats such as text is of limited use. For example, you might create a text table including some columns with
complex types with Impala, and use Hive as part of your to ingest the nested type data and copy it to an identical
Parquet table. Or you might create a partitioned table containing complex type columns using one file format, and use
ALTER TABLE to change the file format of individual partitions to Parquet; Impala can then query only the Parquet-
format partitions in that table.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.
Internal and external tables (EXTERNAL and LOCATION clauses):

By default, Impala creates an “internal” table, where Impala manages the underlying data files for the table, and
physically deletes the data files when you drop the table. If you specify the EXTERNAL clause, Impala treats the
table as an “external” table, where the data files are typically produced outside Impala and queried from their original
locations in HDFS, and Impala leaves the data files in place when you drop the table. For details about internal and
external tables, see Overview of Impala Tables on page 213.

Typically, for an external table you include a LOCATION clause to specify the path to the HDFS directory where
Impala reads and writes files for the table. For example, if your data pipeline produces Parquet files in the HDFS
directory /user/etl/destination, you might create an external table as follows:

CREATE EXTERNAL TABLE external parquet (cl INT, c2 STRING, c3 TIMESTAMP)

| Impala SQL Language Reference | 257

STORED AS PARQUET LOCATION '/user/etl/destination';

Although the EXTERNAL and LOCATION clauses are often specified together, LOCATION is optional for external
tables, and you can also specify LOCATION for internal tables. The difference is all about whether Impala “takes
control” of the underlying data files and moves them when you rename the table, or deletes them when you drop the
table. For more about internal and external tables and how they interact with the LOCATION attribute, see Overview
of Impala Tables on page 213.

Partitioned tables (PARTITIONED BY clause):

The PARTITIONED BY clause divides the data files based on the values from one or more specified columns.
Impala queries can use the partition metadata to minimize the amount of data that is read from disk or transmitted
across the network, particularly during join queries. For details about partitioning, see Partitioning for Impala Tables
on page 645.

Note:

All Kudu tables require partitioning, which involves different syntax than non-Kudu tables. See the PARTITION BY
clause, rather than PARTITIONED BY, for Kudu tables.

Prior to Impala 2.5, you could use a partitioned table as the source and copy data from it, but could not specify any
partitioning clauses for the new table. In Impala 2.5 and higher, you can now use the PARTITIONED BY clause
with a CREATE TABLE AS SELECT statement. See the examples under the following discussion of the CREATE
TABLE AS SELECT syntax variation.

Sorted tables (SORT BY clause):

The optional SORT BY clause lets you specify zero or more columns that are sorted in the data files created by each
Impala INSERT or CREATE TABLE AS SELECT operation. Creating data files that are sorted is most useful

for Parquet tables, where the metadata stored inside each file includes the minimum and maximum values for each
column in the file. (The statistics apply to each row group within the file; for simplicity, Impala writes a single row
group in each file.) Grouping data values together in relatively narrow ranges within each data file makes it possible
for Impala to quickly skip over data files that do not contain value ranges indicated in the WHERE clause of a query,
and can improve the effectiveness of Parquet encoding and compression.

This clause is not applicable for Kudu tables or HBase tables. Although it works for other HDFS file formats besides
Parquet, the more efficient layout is most evident with Parquet tables, because each Parquet data file includes
statistics about the data values in that file.

The SORT BY columns cannot include any partition key columns for a partitioned table, because those column values
are not represented in the underlying data files.

Because data files can arrive in Impala tables by mechanisms that do not respect the SORT BY clause, such as LOAD
DATA or ETL tools that create HDFS files, Impala does not guarantee or rely on the data being sorted. The sorting
aspect is only used to create a more efficient layout for Parquet files generated by Impala, which helps to optimize
the processing of those Parquet files during Impala queries. During an INSERT or CREATE TABLE AS SELECT
operation, the sorting occurs when the SORT BY clause applies to the destination table for the data, regardless of
whether the source table has a SORT BY clause.

For example, when creating a table intended to contain census data, you might define sort columns such as last name
and state. If a data file in this table contains a narrow range of last names, for example from Smith to Smythe,
Impala can quickly detect that this data file contains no matches for a WHERE clause such as WHERE last name =
'"Jones' and avoid reading the entire file.

CREATE TABLE census_data (last name STRING, first name STRING, state STRING,
address STRING)

SORT BY (last name, state)

STORED AS PARQUET;

| Impala SQL Language Reference | 258

Likewise, if an existing table contains data without any sort order, you can reorganize the data in a more efficient way
by using INSERT or CREATE TABLE AS SELECT to copy that data into a new table with a SORT BY clause:

CREATE TABLE sorted census data
SORT BY (last name, state)
STORED AS PARQUET
AS SELECT last name, first name, state, address
FROM unsorted census data;

The metadata for the SORT BY clause is stored in the TBLPROPERTIES fields for the table. Other SQL engines that
can interoperate with Impala tables, such as Hive and Spark SQL, do not recognize this property when inserting into a
table that has a SORT BY clause.

Kudu considerations:

Because Kudu tables do not support clauses related to HDFS and S3 data files and partitioning mechanisms, the
syntax associated with the STORED AS KUDU clause is shown separately in the above syntax descriptions. Kudu
tables have their own syntax for CREATE TABLE, CREATE EXTERNAL TABLE, and CREATE TABLE AS
SELECT. All internal Kudu tables require a PARTITION BY clause, different than the PARTITIONED BY clause
for HDFS-backed tables.

Here are some examples of creating empty Kudu tables:

-- Single-column primary key.
CREATE TABLE kudu tl (id BIGINT PRIMARY key, s STRING, b BOOLEAN)
PARTITION BY HASH (id) PARTITIONS 20 STORED AS KUDU;

-- Multi-column primary key.
CREATE TABLE kudu t2 (id BIGINT, s STRING, b BOOLEAN, PRIMARY KEY (id,s))
PARTITION BY HASH (s) PARTITIONS 30 STORED AS KUDU;

-— Meaningful primary key column is good for range partitioning.
CREATE TABLE kudu t3 (id BIGINT, year INT, s STRING,
b BOOLEAN, PRIMARY KEY (id,year))
PARTITION BY HASH (id) PARTITIONS 20,
RANGE (year) (PARTITION 1980 <= VALUES < 1990,
PARTITION 1990 <= VALUES < 2000,
PARTITION VALUE = 2001,
PARTITION 2001 < VALUES)
STORED AS KUDU;

Here is an example of creating an external Kudu table:

—— Inherits column definitions from original table.
-— For tables created through Impala, the kudu.table name property
-- comes from DESCRIBE FORMATTED output from the original table.
CREATE EXTERNAL TABLE external tl STORED AS KUDU

TBLPROPERTIES ('kudu.table name'='kudu tbl created via api');

Here is an example of CREATE TABLE AS SELECT syntax for a Kudu table:

-- The CTAS statement defines the primary key and partitioning scheme.
-- The rest of the column definitions are derived from the select list.
CREATE TABLE ctas_ tl

PRIMARY KEY (id) PARTITION BY HASH (id) PARTITIONS 10

STORED AS KUDU

AS SELECT id, s FROM kudu tl;

| Impala SQL Language Reference | 259

The following CREATE TABLE clauses are not supported for Kudu tables:

PARTITIONED BY (Kudu tables use the clause PARTITION BY instead)
LOCATION

ROWFORMAT

CACHED IN | UNCACHED

WITH SERDEPROPERTIES

For more on the PRIMARY KEY clause, see Primary Key Columns for Kudu Tables on page 687 and PRIMARY
KEY Attribute on page 687.

For more on the NULL and NOT NULL attributes, see NULL | NOT NULL Attribute on page 689.

For more on the ENCODING attribute, see ENCODING Attribute on page 690.

For more on the COMPRESSION attribute, see COMPRESSION Attribute on page 691.

For more on the DEFAULT attribute, see DEFAULT Attribute on page 689.

For more on the BLOCK_SIZE attribute, see BLOCK_SIZE Attribute on page 691.
Partitioning for Kudu tables (PARTITION BY clause)

For Kudu tables, you specify logical partitioning across one or more columns using the PARTITION BY clause. In
contrast to partitioning for HDFS-based tables, multiple values for a partition key column can be located in the same
partition. The optional HASH clause lets you divide one or a set of partition key columns into a specified number of
buckets. You can use more than one HASH clause, specifying a distinct set of partition key columns for each. The
optional RANGE clause further subdivides the partitions, based on a set of comparison operations for the partition key
columns.

Here are some examples of the PARTITION BY HASH syntax:

-— Apply hash function to 1 primary key column.

create table hash tl (x bigint, y bigint, s string, primary key (x,y))
partition by hash (x) partitions 10
stored as kudu;

-- Apply hash function to a different primary key column.

create table hash t2 (x bigint, y bigint, s string, primary key (x,y))
partition by hash (y) partitions 10
stored as kudu;

-- Apply hash function to both primary key columns.

-— In this case, the total number of partitions is 10.

create table hash t3 (x bigint, y bigint, s string, primary key (x,y))
partition by hash (x,y) partitions 10
stored as kudu;

—-— When the column list is omitted, apply hash function to all primary key
columns.
create table hash t4 (x bigint, y bigint, s string, primary key (x,y))
partition by hash partitions 10
stored as kudu;

-- Hash the X values independently from the Y values.

-- In this case, the total number of partitions is 10 x 20.

create table hash t5 (x bigint, y bigint, s string, primary key (x,y))
partition by hash (x) partitions 10, hash (y) partitions 20
stored as kudu;

| Impala SQL Language Reference | 260

Here are some examples of the PARTITION BY RANGE syntax:

-- Create partitions that cover every possible value of X.
-- Ranges that span multiple values use the keyword VALUES between
-- a pair of < and <= comparisons.
create table range tl (x bigint, s string, s2 string, primary key (x, s))
partition by range (x)
(
partition 0 <= values <= 49, partition 50 <= wvalues <= 100,
partition values < 0, partition 100 < values
)

stored as kudu;

-- Create partitions that cover some possible values of X.
—-- Values outside the covered range(s) are rejected.
-- New range partitions can be added through ALTER TABLE.
create table range t2 (x bigint, s string, s2 string, primary key (x, s))
partition by range (x)
(
partition 0 <= values <= 49, partition 50 <= values <= 100

)

stored as kudu;

-- A range can also specify a single specific value, using the keyword VALUE
-- with an = comparison.
create table range t3 (x bigint, s string, s2 string, primary key (x, s))
partition by range (s)
(
partition value = 'Yes', partition value = 'No', partition value =
'Maybe'
)

stored as kudu;

—-- Using multiple columns in the RANGE clause and tuples inside the
partition spec
-- only works for partitions specified with the VALUE= syntax.
create table range t4 (x bigint, s string, s2 string, primary key (x, s))
partition by range (x,s)
(
partition value = (0, 'zero'), partition value = (1,'one'), partition

value = (2, 'two')

)

stored as kudu;

Here are some examples combining both HASH and RANGE syntax for the PARTITION BY clause:

-- Values from each range partition are hashed into 10 associated buckets.
-- Total number of partitions in this case is 10 x 2.
create table combined tl (x bigint, s string, s2 string, primary key (x, s))
partition by hash (x) partitions 10, range (x)
(
partition 0 <= values <= 49, partition 50 <= values <= 100

)

stored as kudu;

—-— The hash partitioning and range partitioning can apply to different
columns.

-- But all the columns used in either partitioning scheme must be from the
primary key.

create table combined t2 (x bigint, s string, s2 string, primary key (x, s))

| Impala SQL Language Reference | 261

partition by hash (s) partitions 10, range (x)
(

partition 0 <= values <= 49, partition 50 <= values <= 100

)

stored as kudu;

For more usage details and examples of the Kudu partitioning syntax, see Using Impala to Query Kudu Tables on
page 685.

Specifying file format (STORED AS and ROW FORMAT clauses):

The STORED AS clause identifies the format of the underlying data files. Currently, Impala can query more types
of file formats than it can create or insert into. Use Hive to perform any create or data load operations that are not
currently available in Impala. For example, Impala can create an Avro, SequenceFile, or RCFile table but cannot
insert data into it. There are also Impala-specific procedures for using compression with each kind of file format. For
details about working with data files of various formats, see How Impala Works with Hadoop File Formats on page
652.

Note: In Impala 1.4.0 and higher, Impala can create Avro tables, which formerly required doing the CREATE
TABLE statement in Hive. See Using the Avro File Format with Impala Tables on page 675 for details and
examples.

By default (when no STORED AS clause is specified), data files in Impala tables are created as text files with Ctrl-
A (hex 01) characters as the delimiter. Specify the ROW FORMAT DELIMITED clause to produce or ingest data
files that use a different delimiter character such as tab or |, or a different line end character such as carriage return
or newline. When specifying delimiter and line end characters with the FIELDS TERMINATED BY and LINES
TERMINATED BY clauses, use '\t ' fortab, '\n' for newline or linefeed, '\ r' for carriage return, and \ 0 for
ASCII nul (hex 00). For more examples of text tables, see Using Text Data Files with Impala Tables on page 653.

The ESCAPED BY clause applies both to text files that you create through an INSERT statement to an Impala
TEXTFILE table, and to existing data files that you put into an Impala table directory. (You can ingest existing data
files either by creating the table with CREATE EXTERNAL TABLE ... LOCATION,the LOAD DATA statement,
or through an HDFS operation such as hdfs dfs -put file hdfs path.) Choose an escape character that
is not used anywhere else in the file, and put it in front of each instance of the delimiter character that occurs within

a field value. Surrounding field values with quotation marks does not help Impala to parse fields with embedded
delimiter characters; the quotation marks are considered to be part of the column value. If you want to use \ as the
escape character, specify the clause in impala-shell as ESCAPED BY '"\\'.

Note: The CREATE TABLE clauses FIELDS TERMINATED BY, ESCAPED BY,and LINES TERMINATED BY
have special rules for the string literal used for their argument, because they all require a single character. You can use
a regular character surrounded by single or double quotation marks, an octal sequence such as '\ 054" (representing
a comma), or an integer in the range '-127'..'128' (with quotation marks but no backslash), which is interpreted as a
single-byte ASCII character. Negative values are subtracted from 256; for example, FIELDS TERMINATED BY
'-2" sets the field delimiter to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data
formats.

Cloning tables (LIKE clause):

To create an empty table with the same columns, comments, and other attributes as another table, use the following
variation. The CREATE TABLE ... LIKE form allows a restricted set of clauses, currently only the LOCATION,
COMMENT, and STORED AS clauses.

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db name.] table name
LIKE { [db_name.]table name | PARQUET 'hdfs path of parquet file' }
[COMMENT 'table comment']
[STORED AS file format]
[LOCATION 'hdfs path']

Note:

| Impala SQL Language Reference | 262

To clone the structure of a table and transfer data into it in a single operation, use the CREATE TABLE AS SELECT
syntax described in the next subsection.

When you clone the structure of an existing table using the CREATE TABLE ... LIKE syntax, the new table
keeps the same file format as the original one, so you only need to specify the STORED AS clause if you want to use
a different file format, or when specifying a view as the original table. (Creating a table “like” a view produces a text
table by default.)

Although normally Impala cannot create an HBase table directly, Impala can clone the structure of an existing HBase
table with the CREATE TABLE ... LIKE syntax, preserving the file format and metadata from the original table.

There are some exceptions to the ability to use CREATE TABLE ... LIKE with an Avro table. For example, you
cannot use this technique for an Avro table that is specified with an Avro schema but no columns. When in doubt,
check ifa CREATE TABLE ... LIKE operation works in Hive; if not, it typically will not work in Impala either.

If the original table is partitioned, the new table inherits the same partition key columns. Because the new table is
initially empty, it does not inherit the actual partitions that exist in the original one. To create partitions in the new
table, insert data or issue ALTER TABLE ... ADD PARTITION statements.

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view name syntax. In Impala 1.4.0
and higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE
technique. Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no
underlying file format, so CREATE TABLE LIKE view name produces a text table by default. To specify a
different file format, include a STORED AS file format clause at the end of the CREATE TABLE LIKE
statement.

Because CREATE TABLE ... LIKE only manipulates table metadata, not the physical data of the table, issue
INSERT INTO TABLE statements afterward to copy any data from the original table into the new one, optionally
converting the data to a new file format. (For some file formats, Impala can do a CREATE TABLE ... LIKE to
create the table, but Impala cannot insert data in that file format; in these cases, you must load the data in Hive. See
How Impala Works with Hadoop File Formats on page 652 for details.)

CREATE TABLE AS SELECT:

The CREATE TABLE AS SELECT syntax is a shorthand notation to create a table based on column definitions
from another table, and copy data from the source table to the destination table without issuing any separate INSERT
statement. This idiom is so popular that it has its own acronym, “CTAS”.

The following examples show how to copy data from a source table T1 to a variety of destinations tables, applying
various transformations to the table properties, table layout, or the data itself as part of the operation:

-- Sample table to be the source of CTAS operations.
CREATE TABLE tl (x INT, y STRING);
INSERT INTO tl VALUES (1, 'one'), (2, 'two'), (3, 'three');

—-— Clone all the columns and data from one table to another.
CREATE TABLE Clone_of_tl AS SELECT * FROM tl1;

o +
| summary |
o +
| Inserted 3 row(s) |
B et P e +

—-— Clone the columns and data, and convert the data to a different file
format.
CREATE TABLE parquet_version_of_tl STORED AS PARQUET AS SELECT * FROM t1;

| Impala SQL Language Reference | 263

-— Copy only some rows to the new table.

CREATE TABLE subset of tl AS SELECT * FROM tl WHERE x >= 2;
+ __________________ :+_

| summary |

B et L L +

| Inserted 2 row(s) |

- +*

as CREATE TABLE LIKE: clone table layout but do not copy any

Same idea

data.
CREATE TABLE empty_clone_of_tl AS SELECT * FROM tl WHERE 1=0;
o +
| summary |
o +
| Inserted 0 row(s) |
o +

-— Reorder and rename columns and transform the data.

CREATE TABLE t5 AS SELECT upper(y) AS s, xt+1 AS a, 'Entirely new column' AS
n FROM t1;

o +

| summary |
et +

| Inserted 3 row(s) |
o +

SELECT * FROM t5;

fom o +
| s |l a | n |
B o +
ONE	2	Entirely new column
TWO	3	Entirely new column
THREE	4	Entirely new column
fom o +

See SELECT Statement on page 319 for details about query syntax for the SELECT portion of a CREATE TABLE
AS SELECT statement.

The newly created table inherits the column names that you select from the original table, which you can override by
specifying column aliases in the query. Any column or table comments from the original table are not carried over to
the new table.

Note: When using the STORED AS clause with a CREATE TABLE AS SELECT statement, the destination table
must be a file format that Impala can write to: currently, text or Parquet. You cannot specify an Avro, SequenceFile,
or RCFile table as the destination table for a CTAS operation.

Prior to Impala 2.5 you could use a partitioned table as the source and copy data from it, but could not specify any
partitioning clauses for the new table. In Impala 2.5 and higher, you can now use the PARTITIONED BY clause with
a CREATE TABLE AS SELECT statement. The following example demonstrates how you can copy data from an
unpartitioned table in a CREATE TABLE AS SELECT operation, creating a new partitioned table in the process.
The main syntax consideration is the column order in the PARTITIONED BY clause and the select list: the partition
key columns must be listed last in the select list, in the same order as in the PARTITIONED BY clause. Therefore, in
this case, the column order in the destination table is different from the source table. You also only specify the column
names in the PARTITIONED BY clause, not the data types or column comments.

create table partitions no (year smallint, month tinyint, s string);
insert into partitions no values (2016, 1, 'January 2016'),
(2016, 2, 'February 2016'), (2016, 3, 'March 2016');

-- Prove that the source table is not partitioned.
show partitions partitions no;

| Impala SQL Language Reference | 264

ERROR: AnalysisException: Table is not partitioned:
ctas partition by.partitions no

-- Create new table with partitions based on column values from source
table.
create table partitions_yes partitioned by (year, month)

as select s, year, month from partitions no;

o —————————— +
| summary |
o +
| Inserted 3 row(s) |
o +

-—- Prove that the destination table is partitioned.
show partitions partitions yes;

o o o e it o= +
| year | month | #Rows | #Files | Size |
B R R fomm e +
2016	1	-1	1	13B
2016	2	-1	1	14B
2016	3	-1	1	11B
Total		-1	3	38B
fomm fomm fomm fomm - o +

The most convenient layout for partitioned tables is with all the partition key columns at the end. The CTAS
PARTITIONED BY syntax requires that column order in the select list, resulting in that same column order in the
destination table.

describe partitions no;

- o —— t————— +
| name | type | comment |
- - - +
| year | smallint |

| month | tinyint | |
| s | string | |
- o —— t————— +

-- The CTAS operation forced us to put the partition key columns last.
-- Having those columns last works better with idioms such as SELECT *
-- for partitioned tables.

describe partitions yes;

- o —— t————— +
| name | type | comment |
- - - +
| s | string | |
| year smallint |

| month tinyint | |
o —— t————— +

Attempting to use a select list with the partition key columns not at the end results in an error due to a column name

mismatch:

-— We expect this CTAS to fail because non-key column S
-- comes after key columns YEAR and MONTH in the select list.
create table partitions maybe partitioned by (year, month)

as select year, month, s from partitions no;

ERROR: AnalysisException:

For example, the following statements show how you can clone all the data in a table, or a subset of the columns and/

Partition column name mismatch: year

or rows, or reorder columns, rename them, or construct them out of expressions:

!'= month

| Impala SQL Language Reference | 265

As part of a CTAS operation, you can convert the data to any file format that Impala can write (currently, TEXTFILE
and PARQUET). You cannot specify the lower-level properties of a text table, such as the delimiter.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement,
any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation
potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data
being stored in sorted order is impractical.

CREATE TABLE LIKE PARQUET:

The variation CREATE TABLE ... LIKE PARQUET 'hdfs path of parquet file' lets you skip

the column definitions of the CREATE TABLE statement. The column names and data types are automatically
configured based on the organization of the specified Parquet data file, which must already reside in HDFS. You can
use a data file located outside the Impala database directories, or a file from an existing Impala Parquet table; either
way, Impala only uses the column definitions from the file and does not use the HDFS location for the LOCATION
attribute of the new table. (Although you can also specify the enclosing directory with the LOCATION attribute, to
both use the same schema as the data file and point the Impala table at the associated directory for querying.)

The following considerations apply when you use the CREATE TABLE LIKE PARQUET technique:

* Any column comments from the original table are not preserved in the new table. Each column in the new table
has a comment stating the low-level Parquet field type used to deduce the appropriate SQL column type.

» Ifyou use a data file from a partitioned Impala table, any partition key columns from the original table are left
out of the new table, because they are represented in HDFS directory names rather than stored in the data file.

To preserve the partition information, repeat the same PARTITION clause as in the original CREATE TABLE
statement.

» The file format of the new table defaults to text, as with other kinds of CREATE TABLE statements. To make the
new table also use Parquet format, include the clause STORED AS PARQUET in the CREATE TABLE LIKE
PARQUET statement.

» If the Parquet data file comes from an existing Impala table, currently, any TINYINT or SMALLINT columns are
turned into INT columns in the new table. Internally, Parquet stores such values as 32-bit integers.

* When the destination table uses the Parquet file format, the CREATE TABLE AS SELECT and INSERT
SELECT statements always create at least one data file, even if the SELECT part of the statement does not match
any rows. You can use such an empty Parquet data file as a template for subsequent CREATE TABLE LIKE
PARQUET statements.

For more details about creating Parquet tables, and examples of the CREATE TABLE LIKE PARQUET syntax, see
Using the Parquet File Format with Impala Tables on page 661.

Visibility and Metadata (TBLPROPERTIES and WITH SERDEPROPERTIES clauses):

You can associate arbitrary items of metadata with a table by specifying the TBLPROPERTIES clause. This clause
takes a comma-separated list of key-value pairs and stores those items in the metastore database. You can also

change the table properties later with an ALTER TABLE statement. You can observe the table properties for different
delimiter and escape characters using the DESCRIBE FORMATTED command, and change those settings for an
existing table with ALTER TABLE ... SET TBLPROPERTIES.

You can also associate SerDes properties with the table by specifying key-value pairs through the WITH
SERDEPROPERTIES clause. This metadata is not used by Impala, which has its own built-in serializer and
deserializer for the file formats it supports. Particular property values might be needed for Hive compatibility with
certain variations of file formats, particularly Avro.

Some DDL operations that interact with other Hadoop components require specifying particular values in the
SERDEPROPERTIES or TBLPROPERTIES fields, such as creating an Avro table or an HBase table. (You typically
create HBase tables in Hive, because they require additional clauses not currently available in Impala.)

To see the column definitions and column comments for an existing table, for example before issuing a CREATE
TABLE ... LIKEoraCREATE TABLE ... AS SELECT statement, issue the statement DESCRIBE
table name. To see even more detail, such as the location of data files and the values for clauses such as
ROW FORMAT and STORED AS, issue the statement DESCRIBE FORMATTED tabl € name. DESCRIBE
FORMATTED is also needed to see any overall table comment (as opposed to individual column comments).

| Impala SQL Language Reference | 266

After creating a table, your impala-shell session or another impala-shell connected to the same node can
immediately query that table. There might be a brief interval (one statestore heartbeat) before the table can be queried
through a different Impala node. To make the CREATE TABLE statement return only when the table is recognized by
all Impala nodes in the cluster, enable the SYNC DDL query option.

HDEFS caching (CACHED IN clause):

If you specify the CACHED 1IN clause, any existing or future data files in the table directory or the partition
subdirectories are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS
Caching with Impala (Impala 2.1 or higher only) on page 620 for details about using the HDFS caching feature.

In Impala 2.2 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets
you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Where practical, specify a value greater than or equal to the HDFS block
replication factor.

Column order:

If you intend to use the table to hold data files produced by some external source, specify the columns in the same
order as they appear in the data files.

If you intend to insert or copy data into the table through Impala, or if you have control over the way externally
produced data files are arranged, use your judgment to specify columns in the most convenient order:

+ If certain columns are often NULL, specify those columns last. You might produce data files that omit these
trailing columns entirely. Impala automatically fills in the NULL values if so.

» If an unpartitioned table will be used as the source for an INSERT ... SELECT operation into a partitioned
table, specify last in the unpartitioned table any columns that correspond to partition key columns in the
partitioned table, and in the same order as the partition key columns are declared in the partitioned table. This
technique lets you use INSERT ... SELECT * when copying data to the partitioned table, rather than
specifying each column name individually.

» Ifyou specify columns in an order that you later discover is suboptimal, you can sometimes work around the
problem without recreating the table. You can create a view that selects columns from the original table in a
permuted order, then do a SELECT * from the view. When inserting data into a table, you can specify a permuted
order for the inserted columns to match the order in the destination table.

Hive considerations:

Impala queries can make use of metadata about the table and columns, such as the number of rows in a table or the
number of different values in a column. Prior to Impala 1.2.2, to create this metadata, you issued the ANALYZE
TABLE statement in Hive to gather this information, after creating the table and loading representative data into it. In
Impala 1.2.2 and higher, the COMPUTE STATS statement produces these statistics within Impala, without needing to
use Hive at all.

HBase considerations:
Note:

The Impala CREATE TABLE statement cannot create an HBase table, because it currently does not support the
STORED BY clause needed for HBase tables. Create such tables in Hive, then query them through Impala. For
information on using Impala with HBase tables, see Using Impala to Query HBase Tables on page 699.

Amazon S3 considerations:

To create a table where the data resides in the Amazon Simple Storage Service (S3), specify a s3a: // prefix
LOCATION attribute pointing to the data files in S3.

In Impala 2.6 and higher, you can use this special LOCATION syntax as part of a CREATE TABLE AS SELECT
statement.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove

| Impala SQL Language Reference | 267

folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 709 for details about reading and writing S3 data with Impala.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement,
any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation
potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data
being stored in sorted order is impractical.

HDFS considerations:

The CREATE TABLE statement for an internal table creates a directory in HDFS. The CREATE EXTERNAL

TABLE statement associates the table with an existing HDFS directory, and does not create any new directory in
HDFS. To locate the HDFS data directory for a table, issue a DESCRIBE FORMATTED table statement. To
examine the contents of that HDFS directory, use an OS command such as hdfs dfs -1s hdfs://path, either
from the OS command line or through the shell or ! commands in impala-shell.

The CREATE TABLE AS SELECT syntax creates data files under the table data directory to hold any data copied
by the INSERT portion of the statement. (Even if no data is copied, Impala might create one or more empty data
files.)

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have both execute and write
permission for the database directory where the table is being created.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATS) can be
cancelled during some stages, when running INSERT or SELECT operations internally. To cancel this statement, use
Ctrl-C from the impala-shell interpreter, the Cancel button from the Watch page in Hue, or Cancel from the list
of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

Related information:

Overview of Impala Tables on page 213, ALTER TABLE Statement on page 223, DROP TABLE Statement on
page 291, Partitioning for Impala Tables on page 645, Internal Tables on page 213, External Tables on page
214, COMPUTE STATS Statement on page 237, SYNC _DDL Query Option on page 377, SHOW TABLES
Statement on page 384, SHOW CREATE TABLE Statement on page 385, DESCRIBE Statement on page 271

CREATE VIEW Statement

The CREATE VIEW statement lets you create a shorthand abbreviation for a more complicated query. The base query
can involve joins, expressions, reordered columns, column aliases, and other SQL features that can make a query hard
to understand or maintain.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

CREATE VIEW [IF NOT EXISTS] view name [(column 1ist)]
AS select statement

Statement type: DDL
Usage notes:

The CREATE VIEW statement can be useful in scenarios such as the following:

| Impala SQL Language Reference | 268

* To turn even the most lengthy and complicated SQL query into a one-liner. You can issue simple queries against
the view from applications, scripts, or interactive queries in impala-shell. For example:

select * from view name;
select * from view name order by cl desc limit 10;

The more complicated and hard-to-read the original query, the more benefit there is to simplifying the query using
a view.

* To hide the underlying table and column names, to minimize maintenance problems if those names change. In
that case, you re-create the view using the new names, and all queries that use the view rather than the underlying
tables keep running with no changes.

* To experiment with optimization techniques and make the optimized queries available to all applications. For
example, if you find a combination of WHERE conditions, join order, join hints, and so on that works the best for a
class of queries, you can establish a view that incorporates the best-performing techniques. Applications can then
make relatively simple queries against the view, without repeating the complicated and optimized logic over and
over. If you later find a better way to optimize the original query, when you re-create the view, all the applications
immediately take advantage of the optimized base query.

» To simplify a whole class of related queries, especially complicated queries involving joins between multiple
tables, complicated expressions in the column list, and other SQL syntax that makes the query difficult to
understand and debug. For example, you might create a view that joins several tables, filters using several WHERE
conditions, and selects several columns from the result set. Applications might issue queries against this view that
only vary in their LIMIT, ORDER BY, and similar simple clauses.

For queries that require repeating complicated clauses over and over again, for example in the select list, ORDER BY,
and GROUP BY clauses, you can use the WITH clause as an alternative to creating a view.

Complex type considerations:

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically use join queries to refer to the
complex values. You can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 172 for details.

Because you cannot directly issue SELECT col name against a column of complex type, you cannot use a view or
a WITH clause to “rename” a column by selecting it with a column alias.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC DDL Query Option on page 377 for details.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDEFS files or directories, therefore no HDFS permissions are
required.

Examples:

-- Create a view that is exactly the same as the underlying table.
create view vl as select * from tl;

-- Create a view that includes only certain columns from the underlying
table.
create view v2 as select cl, c3, c7 from tl;

-- Create a view that filters the values from the underlying table.

| Impala SQL Language Reference | 269

create view v3 as select distinct cl, c3, c¢7 from tl where cl is not null
and c5 > 0;

-- Create a view that that reorders and renames columns from the underlying
table.

create view v4 as select c4 as last name, c6 as address, c2 as birth date
from t1;

-— Create a view that runs functions to convert or transform certain
columns.

create view v5 as select cl, cast(c3 as string) c3, concat(c4,c5) cb5,
trim(c6) c6, "Constant" c¢8 from tl;

-- Create a view that hides the complexity of a view query.
create view v6 as select tl.cl, t2.c2 from tl join t2 on tl.id = t2.id;

The following example creates a series of views and then drops them. These examples illustrate how views are
associated with a particular database, and both the view definitions and the view names for CREATE VIEW and
DROP VIEW can refer to a view in the current database or a fully qualified view name.

-- Create and drop a view in the current database.
CREATE VIEW few rows from tl AS SELECT * FROM tl LIMIT 10;
DROP VIEW few rows from tl;

-- Create and drop a view referencing a table in a different database.
CREATE VIEW table from other db AS SELECT x FROM dbl.foo WHERE x IS NOT
NULL;

DROP VIEW table from other db;

USE dbl;

-- Create a view in a different database.

CREATE VIEW db2.vl AS SELECT * FROM db2.foo;

-- Switch into the other database and drop the view.
USE db2;

DROP VIEW vl1;

USE dbl;

—-— Create a view in a different database.
CREATE VIEW db2.v1l AS SELECT * FROM db2.foo;
-—- Drop a view in the other database.

DROP VIEW db2.vl;

Related information:

Overview of Impala Views on page 217, ALTER VIEW Statement on page 236, DROP VIEW Statement on page
293

DELETE Statement (Impala 2.8 or higher only)

Deletes an arbitrary number of rows from a Kudu table. This statement only works for Impala tables that use the
Kudu storage engine.

Syntax:

DELETE [FROM] [database name.]table name [WHERE where conditions]

DELETE table ref FROM [joined table refs] [WHERE where conditions]

The first form evaluates rows from one table against an optional WHERE clause, and deletes all the rows that match
the WHERE conditions, or all rows if WHERE is omitted.

| Impala SQL Language Reference | 270

The second form evaluates one or more join clauses, and deletes all matching rows from one of the tables. The join
clauses can include non-Kudu tables, but the table from which the rows are deleted must be a Kudu table. The FROM
keyword is required in this case, to separate the name of the table whose rows are being deleted from the table names
of the join clauses.

Usage notes:

The conditions in the WHERE clause are the same ones allowed for the SELECT statement. See SELECT Statement on
page 319 for details.

The conditions in the WHERE clause can refer to any combination of primary key columns or other columns.
Referring to primary key columns in the WHERE clause is more efficient than referring to non-primary key columns.

If the WHERE clause is omitted, all rows are removed from the table.

Because Kudu currently does not enforce strong consistency during concurrent DML operations, be aware that the
results after this statement finishes might be different than you intuitively expect:

+ If some rows cannot be deleted because their some primary key columns are not found, due to their being deleted
by a concurrent DELETE operation, the statement succeeds but returns a warning.

* A DELETE statement might also overlap with INSERT, UPDATE, or UPSERT statements running concurrently on
the same table. After the statement finishes, there might be more or fewer rows than expected in the table because
it is undefined whether the DELETE applies to rows that are inserted or updated while the DELETE is in progress.

The number of affected rows is reported in an impala-shell message and in the query profile.
Statement type: DML

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

The following examples show how to delete rows from a specified table, either all rows or rows that match a WHERE
clause:

-— Deletes all rows. The FROM keyword is optional.
DELETE FROM kudu table;
DELETE kudu table;

-— Deletes 0, 1, or more rows.

-— (If cl is a single-column primary key, the statement could only
—-— delete 0 or 1 rows.)

DELETE FROM kudu table WHERE cl = 100;

—— Deletes all rows that match all the WHERE conditions.
DELETE FROM kudu_table WHERE

(cl > ¢c2 OR ¢c3 IN ('hello','world')) AND c4 IS NOT NULL;
DELETE FROM tl WHERE

(cl IN (1,2,3) AND c2 > c3) OR c4 IS NOT NULL;
DELETE FROM time series WHERE

year = 2016 AND month IN (11,12) AND day > 15;

-— WHERE condition with a subquery.
DELETE FROM tl WHERE
c5 IN (SELECT DISTINCT other col FROM other table);

—-- Does not delete any rows, because the WHERE condition is always false.
DELETE FROM kudu_table WHERE 1 = 0;

| Impala SQL Language Reference | 271

The following examples show how to delete rows that are part of the result set from a join:

-- Remove all rows from tl that have a matching X value in t2.
DELETE tl FROM tl JOIN t2 ON tl.x = t2.x;

-- Remove some rows from tl that have a matching X value in t2.
DELETE tl1 FROM tl JOIN t2 ON tl.x = t2.x
WHERE tl.y = FALSE and t2.z > 100;

—— Delete from a Kudu table based on a join with a non-Kudu table.
DELETE tl FROM kudu table tl JOIN non kudu table t2 ON tl.x = t2.x;

-- The tables can be joined in any order as long as the Kudu table
-- 1s specified as the deletion target.
DELETE t2 FROM non_ kudu table tl JOIN kudu table t2 ON tl.x = t2.x;

Related information:

Using Impala to Query Kudu Tables on page 685, INSERT Statement on page 298, UPDATE Statement (Impala
2.8 or higher only) on page 399, UPSERT Statement (Impala 2.8 or higher only) on page 400

DESCRIBE Statement

The DESCRIBE statement displays metadata about a table, such as the column names and their data types. In Impala
2.3 and higher, you can specify the name of a complex type column, which takes the form of a dotted path. The path
might include multiple components in the case of a nested type definition. In Impala 2.5 and higher, the DESCRIBE

DATABASE form can display information about a database.

Syntax:

DESCRIBE [DATABASE] [FORMATTED|EXTENDED] object name

object name ::=
[db_name.] table name[.complex col name ...]
| db_ name

You can use the abbreviation DESC for the DESCRIBE statement.

The DESCRIBE FORMATTED variation displays additional information, in a format familiar to users of Apache
Hive. The extra information includes low-level details such as whether the table is internal or external, when it was
created, the file format, the location of the data in HDFS, whether the object is a table or a view, and (for views) the
text of the query from the view definition.

Note: The Compressed field is not a reliable indicator of whether the table contains compressed data. It typically
always shows No, because the compression settings only apply during the session that loads data and are not stored
persistently with the table metadata.

Describing databases:

By default, the DESCRIBE output for a database includes the location and the comment, which can be set by the
LOCATION and COMMENT clauses on the CREATE DATABASE statement.

The additional information displayed by the FORMATTED or EXTENDED keyword includes the HDFS user ID that
is considered the owner of the database, and any optional database properties. The properties could be specified by
the WITH DBPROPERTIES clause if the database is created using a Hive CREATE DATABASE statement. Impala
currently does not set or do any special processing based on those properties.

The following examples show the variations in syntax and output for describing databases. This feature is available in
Impala 2.5 and higher.

describe database default;

| Impala SQL Language Reference | 272

e B e +
| name | location | comment

t—— e e ———— +
| default | /user/hive/warehouse | Default Hive database |
e ————— T TR T R +

t—— B e +
| name | location | comment

e e B +
default	/user/hive/warehouse	Default Hive database
Owner:		
	public	ROLE
t—— B e +

e ————— T TR T R +
| name | location | comment

e e e +
default	/user/hive/warehouse	Default Hive database
Owner:		
	public	ROLE
e ————— T TR T R +
Describing tables:

If the DATABASE keyword is omitted, the default for the DESCRIBE statement is to refer to a table.

-- By default, the table is assumed to be in the current database.
describe my table;

- o o +
| name | type | comment |
- o ———— o ————— +
| x | int | |
| s | string | |
- o ———— o +

-- Use a fully qualified table name to specify a table in any database.
describe my database.my table;

+————— - - +
| name | type | comment |
- e et - +
| x | int | |
| s | string | |
+————— - - +

-- The formatted or extended output includes additional useful information.

—-— The LOCATION field is especially useful to know for DDL statements and
HDFS commands

-— during ETL jobs. (The LOCATION includes a full hdfs:// URL, omitted here
for readability.)

describe formatted my table;

+ ______________________________
B et ettt T e e e o +
| name | type

| comment
+ ______________________________
o B ittt e e e +
| # col name | data type

| comment |

| | NULL
| NULL |

| Impala SQL Language Reference | 273

| x int
| NULL |
| s string
| NULL |
| NULL
| NULL |
| # Detailed Table Information NULL
| NULL |
| Database: my database
| NULL |
| Owner: jrussell
| NULL |
| CreateTime: Fri Mar 18 15:58:00 PDT 2016
| NULL |
| LastAccessTime: UNKNOWN
| NULL |
| Protect Mode: None
| NULL |
| Retention: 0
| NULL |
| Location: /user/hive/warehouse/my database.db/

my table | NULL

Table Type:

| NULL

Table Parameters:
| NULL

| 1458341880

| NULL

Storage Information
| NULL

SerDe Library:
| NULL
InputFormat:

| NULL
OutputFormat:

| NULL
Compressed:

| NULL
Num Buckets:

| NULL

Bucket Columns:
| NULL

MANAGED TABLE

NULL

transient lastDdlTime

NULL

NULL

org.LazySimpleSerDe
org.apache.hadoop.mapred.TextInputFormat
org.HiveIgnoreKeyTextOutputFormat

No

| Sort Columns:
| NULL |

Complex type considerations:

Because the column definitions for complex types can become long, particularly when such types are nested, the
DESCRIBE statement uses special formatting for complex type columns to make the output readable.

For the ARRAY, STRUCT, and MAP types available in Impala 2.3 and higher, the DESCRIBE output is formatted to
avoid excessively long lines for multiple fields within a STRUCT, or a nested sequence of complex types.

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al.Iftable T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE tl.s1.f1l. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

| Impala SQL Language Reference | 274

For example, here is the DESCRIBE output for a table containing a single top-level column of each complex type:

create table tl (x int, a array<int>, s struct<fl: string, f2: bigint>, m
map<string, int>) stored as parquet;

describe t1;

- o — t———————— +
| name | type | comment |
- o o +
| x | int | |
| a | array<int> | |
| s | struct< | |
| | fl:string, | |
| | f2:bigint | |
| | > | |
| m | map<string,int> | |
- o o +

Here are examples showing how to “drill down” into the layouts of complex types, including using multi-part names
to examine the definitions of nested types. The < > delimiters identify the columns with complex types; these are
the columns where you can descend another level to see the parts that make up the complex type. This technique
helps you to understand the multi-part names you use as table references in queries involving complex types, and the
corresponding column names you refer to in the SELECT list. These tables are from the “nested TPC-H” schema,
shown in detail in Sample Schema and Data for Experimenting with Impala Complex Types on page 174.

The REGION table contains an ARRAY of STRUCT elements:

» The first DESCRIBE specifies the table name, to display the definition of each top-level column.

» The second DESCRIBE specifies the name of a complex column, REGION.R_NATIONS, showing that when you
include the name of an ARRAY column in a FROM clause, that table reference acts like a two-column table with
columns ITEM and POS.

» The final DESCRIBE specifies the fully qualified name of the ITEM field, to display the layout of its underlying
STRUCT type in table format, with the fields mapped to column names.

-- #1: The overall layout of the entire table.
describe region;
o B e T

r regionkey
r name
r comment

|

| string
|

| r nations

|

|

|

|

string
array<struct<
n nationkey:smallint,
n name:string,
n comment:string
>>

+
|
+
smallint |
|
|
|
|
|
|
|
+

e ———— & —

-— #2: The ARRAY column within the table.
describe region.r nations;

struct<
n nationkey:smallint,
n name:string,
n_comment:string

>

+
| |
t———— e t—————— +
| |
|
|
| |
| |
| bigint |

| Impala SQL Language Reference | 275

-- #3: The STRUCT that makes up each ARRAY element.
== The fields of the STRUCT act like columns of a table.
describe region.r nations.item;

o —— o o +
| name | type | comment |
o —— o ————— o +
| n nationkey | smallint |

| n_name | string | |
| n comment | string |

o D e o +

The CUSTOMER table contains an ARRAY of STRUCT elements, where one field in the STRUCT is another ARRAY of
STRUCT elements:

» Again, the initial DESCRIBE specifies only the table name.

» The second DESCRIBE specifies the qualified name of the complex column, CUSTOMER.C_ORDERS, showing
how an ARRAY is represented as a two-column table with columns ITEM and POS.

» The third DESCRIBE specifies the qualified name of the ITEM of the ARRAY column, to see the structure of the
nested ARRAY. Again, it has has two parts, ITEM and POS. Because the ARRAY contains a STRUCT, the layout of
the STRUCT is shown.

* The fourth and fifth DESCRIBE statements drill down into a STRUCT field that is itself a complex type, an
ARRAY of STRUCT. The ITEM portion of the qualified name is only required when the ARRAY elements
are anonymous. The fields of the STRUCT give names to any other complex types nested inside the
STRUCT. Therefore, the DESCRIBE parameters CUSTOMER.C_ORDERS.ITEM.O LINEITEMS and
CUSTOMER.C ORDERS.O_ LINEITEMS are equivalent. (For brevity, leave out the ITEM portion of a qualified
name when it is not required.)

* The final DESCRIBE shows the layout of the deeply nested STRUCT type. Because there are no more complex
types nested inside this STRUCT, this is as far as you can drill down into the layout for this table.

-— #1: The overall layout of the entire table.
describe customer;

- B e et +
| name | type |
+—— 4+ +
| c_custkey | bigint
more scalar columns
c_orders array<struct<

|

| o_orderkey:bigint,

| o_orderstatus:string,

| o_totalprice:decimal (12,2),
| o_orderdate:string,

| o_orderpriority:string,

| o_clerk:string,

| o_shippriority:int,

| o_comment:string,

| o0 lineitems:array<struct<

| 1 partkey:bigint,

| 1 suppkey:bigint,

| 1 linenumber:int,

| 1 quantity:decimal(12,2),
| 1 extendedprice:decimal (12,2),
| 1 discount:decimal (12,2),
| 1 tax:decimal (12,2),

| 1 returnflag:string,

| 1 linestatus:string,

| 1 shipdate:string,

| 1 commitdate:string,

| 1 receiptdate:string,

| | 1 shipinstruct:string,
| | 1 shipmode:string,

| | 1 comment:string

| | >>

| |

-- #2: The ARRAY column within the table.
describe customer.c_ orders;

| item | struct<
| | o_orderkey:bigint,
| | o_orderstatus:string,
more struct fields ...
| | o lineitems:array<struct<
| | 1 partkey:bigint,
| | 1 suppkey:bigint,
more nested struct fields
| | 1 comment:string
[[>>
|
|

-- #3: The STRUCT that makes up each ARRAY element.
== The fields of the STRUCT act like columns of a table.

describe customer.c orders.item;

1 partkey:bigint,

B et e e e +
| name | type |
Bt it B ittt +
| o orderkey | bigint

| o orderstatus | string

| o totalprice | decimal (12, 2) |
| o orderdate | string

| o orderpriority | string

| o clerk | string

| o shippriority | int

| o comment | string

| o lineitems | array<struct<

| | |
| |

| 1 suppkey:bigint,
more struct fields

| | 1 comment:string

| | >>

| Impala SQL Language Reference | 276

—-— #4: The ARRAY nested inside the STRUCT elements of the first ARRAY.

describe customer.c orders.item.o lineitems;

item	struct<
	1 partkey:bigint,
	1 suppkey:bigint,
more struct fields	
1 comment:string	

-— #5: Shorter form of the previous DESCRIBE.

name

Omits the

.ITEM portion of the

| Impala SQL Language Reference | 277

== because O LINEITEMS and other field names provide a way to refer to
things

== inside the ARRAY element.

describe customer.c orders.o lineitems;

t———— e +
| name | type |
+————— e +
item	struct<
	1 partkey:bigint,
	1 suppkey:bigint,
... more struct fields

	1 comment:string
	>
pos	bigint
t————— e +

-— #6: The STRUCT representing ARRAY elements nested inside

== another ARRAY of STRUCTs. The lack of any complex types
== in this output means this is as far as DESCRIBE can

== descend into the table layout.

describe customer.c_orders.o lineitems.item;

o o — +
| name | type
o o — +
| 1 partkey | bigint |
| 1 suppkey | bigint |
more scalar columns
| 1 comment | string
o o +

Usage notes:

After the impalad daemons are restarted, the first query against a table can take longer than subsequent queries,
because the metadata for the table is loaded before the query is processed. This one-time delay for each table can
cause misleading results in benchmark tests or cause unnecessary concern. To “warm up” the Impala metadata cache,
you can issue a DESCRIBE statement in advance for each table you intend to access later.

When you are dealing with data files stored in HDFS, sometimes it is important to know details such as the path

of the data files for an Impala table, and the hostname for the namenode. You can get this information from the
DESCRIBE FORMATTED output. You specify HDFS URIs or path specifications with statements such as LOAD
DATA and the LOCATION clause of CREATE TABLE or ALTER TABLE. You might also use HDFS URIs or paths
with Linux commands such as hadoop and hdfs to copy, rename, and so on, data files in HDFS.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC _DDL Query Option on page 377 for details.

Each table can also have associated table statistics and column statistics. To see these categories of information, use
the SHOW TABLE STATS table name and SHOW COLUMN STATS table name statements. See SHOW
Statement on page 378 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

The following example shows the results of both a standard DESCRIBE and DESCRIBE FORMATTED for different
kinds of schema objects:

| Impala SQL Language Reference | 278

DESCRIBE for a table or a view returns the name, type, and comment for each of the columns. For a view, if the
column value is computed by an expression, the column name is automatically generated as _c0, c1, and so on
depending on the ordinal number of the column.

A table created with no special format or storage clauses is designated as a MANAGED TABLE (an “internal table”
in Impala terminology). Its data files are stored in an HDFS directory under the default Hive data directory. By
default, it uses Text data format.

A view is designated as VIRTUAL VIEW in DESCRIBE FORMATTED output. Some of its properties are NULL
or blank because they are inherited from the base table. The text of the query that defines the view is part of the
DESCRIBE FORMATTED output.

A table with additional clauses in the CREATE TABLE statement has differences in DESCRIBE FORMATTED
output. The output for T2 includes the EXTERNAL TABLE keyword because of the CREATE EXTERNAL
TABLE syntax, and different InputFormat and OutputFormat fields to reflect the Parquet file format.

[localhost:21000] > create table tl (x int, y int, s string);
Query: create table tl (x int, y int, s string)
[localhost:21000] > describe tl;

Query: describe tl

Query finished, fetching results

+————— B - +
| name | type | comment |
+———— T - +
x	int	
y	int	
s	string	
+————— B - +
)

Returned 3 row(s

in 0.13s

[localhost:21000] > describe formatted tl;
Query: describe formatted tl
Query finished, fetching results

o o
o ——— +
| name | type
| comment |
o o
o — +
| # col name | data type
| comment |
| | NULL
| NULL |
| x | int
| None |
|y | int
| None |
| s | string
| None |
| | NULL
| NULL |
| # Detailed Table Information | NULL
| NULL |
| Database: | describe formatted
| NULL |
| Owner: | doc_demo
| NULL |
| CreateTime: | Mon Jul 22 17:03:16 EDT 2013
| NULL |
| LastAccessTime: | UNKNOWN
| NULL |
| Protect Mode: | None
| NULL |
| Retention: | 0

| NULL |

| Location:

| |
|

| NULL |
| Table Type:

| NULL |
| Table Parameters:

| NULL |
|

| 1374526996 |
|

| NULL |
| # Storage Information

| NULL |
| SerDe Library:

| |
|

| NULL |
| InputFormat:

| NULL |
| OutputFormat:

| |
|

| NULL |
| Compressed:

| NULL |
| Num Buckets:

| NULL |
| Bucket Columns:

| NULL |
| Sort Columns:

| NULL |

Returned 26 row(s) in 0.03s
[localhost:21000]
Query:
[localhost:21000]

Query: describe vl

Query finished,

+————— - - +

| name | type | comment |

- - - +*

| x | int | |

| cl | string | |

e fmm +
)

Returned 2 row(s) in 0.10s
[localhost:21000]
Query: describe formatted vl

Query finished,

o +
| name
|
+ ______________________________
o +

> create view vl as select x,
create view vl as select x,
> describe vl;

fetching results

fetching results

| Impala SQL Language Reference | 279

hdfs://127.0.0.1:8020/user/hive/warehouse/
describe formatted.db/tl

MANAGED TABLE

NULL

transient lastDdlTime

NULL

NULL

org.apache.hadoop.hive.serde2.lazy.
LazySimpleSerDe

org.apache.hadoop.mapred.TextInputFormat

org.apache.hadoop.hive.gl.io.
HiveIgnoreKeyTextOutputFormat

No

> describe formatted vl;

upper (s) from tl;
upper (s) from tl
type | comment
.
data_ type | comment
NULL | NULL
int | None
string | None

| Impala SQL Language Reference | 280

| | NULL | NULL
| # Detaiied Table Information | NULL | NULL
| Databasé: | describe formatted | NULL
| Owner: | | doc demo | NULL
| CreateTlme: | Mon Jul 22 16:56:38 EDT 2013 | NULL
| LastAccéssTime: | UNKNOWN | NULL
| Protecthode: | None | NULL
| Retentién: | O | NULL
| Table Tilfpe 3 | VIRTUAL VIEW | NULL
| Table Pgrameters: | NULL | NULL
| | | transient lastDdlTime | 1374526598
| | | NULL | NULL
| # Storage Information | NULL | NULL
| SerDe lerary: | null | NULL
| InputFoimat: | null | NULL
| OutputFérmat: | null | NULL
| Compreséed: | No | NULL
| Num Bucﬁets: | O | NULL
| Bucket éolumns: [[] | NULL
| Sort Columns: | [] | NULL
| | | NULL | NULL
| # View information | NULL | NULL
| View Orlginal Text: | SELECT x, upper(s) FROM tl | NULL
| View Ex;anded Text: | SELECT x, upper(s) FROM tl | NULL
PR PR
- +

Returned 28 row(s) in 0.03s

[localhost:21000] > create external table t2 (x int, y int, s string) stored
as parquet location '/user/doc demo/sample data';

[localhost:21000] > describe formatted t2;

Query: describe formatted t2

Query finished, fetching results

+ ______________________________
e e —————— +
| name | type

| comment
+ ______________________________
e e —_— +
| # col name | data_ type

| comment

| Impala SQL Language Reference | 281

| | NULL
| NULL |
| x | int
| None |
| v | int
| None |
| s | string
| None |
| | NULL
| NULL |
| # Detailed Table Information | NULL
| NULL |
| Database: | describe formatted
| NULL |
| Owner: | doc_demo
| NULL |
| CreateTime: | Mon Jul 22 17:01:47 EDT 2013
| NULL |
| LastAccessTime: | UNKNOWN
| NULL |
| Protect Mode: | None
| NULL |
| Retention: | O
| NULL |
| Location: | hdfs://127.0.0.1:8020/user/doc_demo/
sample data | NULL |
| Table Type: | EXTERNAL TABLE
| NULL |
| Table Parameters: | NULL
| NULL |
| | EXTERNAL
| TRUE |
| | transient lastDdlTime
| 1374526907 |
| | NULL
| NULL |
| # Storage Information | NULL
| NULL |
| SerDe Library: |
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe | NULL |
| InputFormat: |
org.apache.impala.hive.serde.ParquetInputFormat | NULL |
| OutputFormat: |
org.apache.impala.hive.serde.ParquetOutputFormat | NULL |
| Compressed: | No
| NULL |
| Num Buckets: | O
| NULL |
| Bucket Columns: | []
| NULL |
| Sort Columns: | []
| NULL |
+ ______________________________
4+ 4 +

Returned 27 row(s) in O

Cancellation: Cannot be cancelled

HDFS permissions:

.17s

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute
permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it

| Impala SQL Language Reference | 282

is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory
based on its LOCATION attribute.)

Kudu considerations:

The information displayed for Kudu tables includes the additional attributes that are only applicable for Kudu tables:

Whether or not the column is part of the primary key. Every Kudu table has a t rue value here for at least one
column. There could be multiple t rue values, for tables with composite primary keys.

Whether or not the column is nullable. Specified by the NULL or NOT NULL attributes on the CREATE TABLE
statement. Columns that are part of the primary key are automatically non-nullable.

The default value, if any, for the column. Specified by the DEFAULT attribute on the CREATE TABLE statement.
If the default value is NULL, that is not indicated in this column. It is implied by nullable being true and no
other default value specified.

The encoding used for values in the column. Specified by the ENCODING attribute on the CREATE TABLE
statement.

The compression used for values in the column. Specified by the COMPRESSION attribute on the CREATE
TABLE statement.

The block size (in bytes) used for the underlying Kudu storage layer for the column. Specified by the
BLOCK_SIZEaﬁﬁhﬂemlmeCREATE TABLE statement.

The following example shows DESCRIBE output for a simple Kudu table, with a single-column primary key and all
column attributes left with their default values:

describe million rows;

I I e o e o
o B et o —— +

| name | type | comment | primary key | nullable | default value |
encoding | compression | block size |

fm———— fmm————— fmm———— Fmm fmm Fmm e
o B et o —— +

| id | string | | true | false |

AUTO ENCODING | DEFAULT COMPRESSION | O |

| s | string | | false | false |

AUTO ENCODING | DEFAULT COMPRESSION | O |

Fmm R e Fmm Fmm e
o B et o —— +

The following example shows DESCRIBE output for a Kudu table with a two-column primary key, and Kudu-
specific attributes applied to some columns:

create table kudu describe example

(

cl int, c2 int,

c3 string, c4 string not null, c¢5 string default 'n/a', c6 string default

ll,

c7 bigint not null, c8 bigint null default null, c¢9 bigint default -1
encoding bit shuffle,

primary key(cl,c2)

)
partition by hash (cl, c2) partitions 10 stored as kudu;

describe kudu describe example;

+————— - - o o o
T - - +

| name | type | comment | primary key | nullable | default value |
encoding | compression | block size |

R O fmm Fmm e Fmm e

| Impala SQL Language Reference | 283

| cl | int | | true | false |
AUTO_ENCODING | DEFAULT COMPRESSION | 0 |

| c2 | int | | true | false |
AUTO ENCODING | DEFAULT COMPRESSION | 0 |

| c3 | string | | false | true |
AUTO ENCODING | DEFAULT COMPRESSION | O |

| c4 | string | | false | false |
AUTO_ENCODING | DEFAULT COMPRESSION | 0 |

| @5 | string | | false | true | n/a
AUTO ENCODING | DEFAULT COMPRESSION | 0 |

| c6 | string | | false | true |
AUTO ENCODING | DEFAULT COMPRESSION | O |

| c7 | bigint | | false | false |
AUTO_ENCODING | DEFAULT COMPRESSION | 0 |

| c8 | bigint | | false | true |
AUTO ENCODING | DEFAULT COMPRESSION | 0 |

| c9 | bigint | | false | true | =1
BIT SHUFFLE | DEFAULT COMPRESSION | O

Fmm Fm————— e Fmm Fmm

Fom e o Fomm +

Related information:

Overview of Impala Tables on page 213, CREATE TABLE Statement on page 253, SHOW TABLES Statement
on page 384, SHOW CREATE TABLE Statement on page 385

DROP DATABASE Statement

Removes a database from the system. The physical operations involve removing the metadata for the database from
the metastore, and deleting the corresponding * . db directory from HDFS.

Syntax:
DROP (DATABASE|SCHEMA) [IF EXISTS] database name [RESTRICT | CASCADE];

Statement type: DDL
Usage notes:
By default, the database must be empty before it can be dropped, to avoid losing any data.

In Impala 2.3 and higher, you can include the CASCADE clause to make Impala drop all tables and other objects in
the database before dropping the database itself. The RESTRICT clause enforces the original requirement that the
database be empty before being dropped. Because the RESTRICT behavior is still the default, this clause is optional.

The automatic dropping resulting from the CASCADE clause follows the same rules as the corresponding DROP
TABLE, DROP VIEW, and DROP FUNCTION statements. In particular, the HDFS directories and data files for any
external tables are left behind when the tables are removed.

When you do not use the CASCADE clause, drop or move all the objects inside the database manually before dropping
the database itself:

» Use the SHOW TABLES statement to locate all tables and views in the database, and issue DROP TABLE and
DROP VIEW statements to remove them all.

e Use the SHOW FUNCTIONS and SHOW AGGREGATE FUNCTIONS statements to locate all user-defined
functions in the database, and issue DROP FUNCTION and DROP AGGREGATE FUNCTION statements to
remove them all.

» To keep tables or views contained by a database while removing the database itself, use ALTER TABLE and
ALTER VIEW to move the relevant objects to a different database before dropping the original database.

You cannot drop the current database, that is, the database your session connected to either through the USE statement
or the —d option of impala-shell. Issue a USE statement to switch to a different database first. Because the

| Impala SQL Language Reference | 284

default database is always available, issuing USE default is a convenient way to leave the current database
before dropping it.

Hive considerations:
When you drop a database in Impala, the database can no longer be used by Hive.
Examples:

See CREATE DATABASE Statement on page 244 for examples covering CREATE DATABASE, USE, and DROP
DATABASE.

Amazon S3 considerations:

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 709 for details about reading and writing S3 data with Impala.

Cancellation: Cannot be cancelled.
HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for the
directory associated with the database.

Examples:

create database first db;
use first db;
create table tl (x int);

create database second db;

use second db;

-- Each database has its own namespace for tables.

-- You can reuse the same table names in each database.
create table tl (s string);

create database temp;

-- You can either USE a database after creating it,

-- or qualify all references to the table name with the name of the
database.

-— Here, tables T2 and T3 are both created in the TEMP database.

create table temp.t2 (x int, y int);
use database temp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statement.
drop database temp;
ERROR: AnalysisException: Cannot drop current default database: temp

-- The always-available database 'default' is a convenient one to USE
-- before dropping a database you created.
use default;

-—- Before dropping a database, first drop all the tables inside it,

-- or in Impala 2.3 and higher use the CASCADE clause.

drop database temp;

ERROR: ImpalaRuntimeException: Error making 'dropDatabase' RPC to Hive
Metastore:

CAUSED BY: InvalidOperationException: Database temp is not empty

show tables in temp;

| Impala SQL Language Reference | 285

- +
| name |
- +
| €3 |
- +

-- Impala 2.3 and higher:
drop database temp cascade;

-- Earlier releases:

drop table temp.t3;

drop database temp;
Related information:

Overview of Impala Databases on page 210, CREATE DATABASE Statement on page 244, USE Statement on
page 401, SHOW DATABASES on page 383, DROP TABLE Statement on page 291

DROP FUNCTION Statement

Removes a user-defined function (UDF), so that it is not available for execution during Impala SELECT or INSERT
operations.

Syntax:
To drop C++ UDFs and UDAs:
DROP [AGGREGATE] FUNCTION [IF EXISTS]
[db_name.] function name (typel, type...])
Note:

The preceding syntax, which includes the function signature, also applies to Java UDFs that were created using the
corresponding CREATE FUNCTION syntax that includes the argument and return types. After upgrading to Impala
2.5 or higher, consider re-creating all Java UDFs with the CREATE FUNCTION syntax that does not include the
function signature. Java UDFs created this way are now persisted in the metastore database and do not need to be re-
created after an Impala restart.

To drop Java UDFs (created using the CREATE FUNCTION syntax with no function signature):
DROP FUNCTION [IF EXISTS] [db name.] function name

Statement type: DDL
Usage notes:

Because the same function name could be overloaded with different argument signatures, you specify the argument
types to identify the exact function to drop.

Restrictions:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the catalogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must reload those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the catalogd daemon. Prior to Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

Cancellation: Cannot be cancelled.

HDFS permissions:

| Impala SQL Language Reference | 286

The user ID that the impalad daemon runs under, typically the impala user, does not need any particular HDFS
permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files
and directories.

Examples:

The following example shows how to drop Java functions created with the signatureless CREATE FUNCTION syntax
in Impala 2.5 and higher. Issuing DROP FUNCTION function name removes all the overloaded functions under
that name. (See CREATE FUNCTION Statement on page 246 for a longer example showing how to set up such
functions in the first place.)

create function my func location '/user/impala/udfs/udf-examples.jar'
symbol="'org.apache.impala.TestUdf"';

show functions;

o o o

Fomm +

| return type | signature | binary type | is

persistent |

Fomm B it ittt Fomm

o +

| BIGINT | my func (BIGINT) | JAVA | true
|

| BOOLEAN | my func (BOOLEAN) | JAVA | true
|

| BOOLEAN | my func (BOOLEAN, BOOLEAN) | JAVA | true
|

| BIGINT | testudf (BIGINT) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN, BOOLEAN) | JAVA | true

drop function my func;
show functions;

o o o

o +

| return type | signature | binary type | is

persistent |

Fom o Fom

o +

| BIGINT | testudf (BIGINT) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN) | JAVA | true
|

| BOOLEAN | testudf (BOOLEAN, BOOLEAN) | JAVA | true

Related information:

Impala User-Defined Functions (UDFs) on page 553, CREATE FUNCTION Statement on page 246

DROP ROLE Statement (Impala 2.0 or higher only)

The DROP ROLE statement removes a role from the metastore database. Once dropped, the role is revoked for all
users to whom it was previously assigned, and all privileges granted to that role are revoked. Queries that are already
executing are not affected. Impala verifies the role information approximately every 60 seconds, so the effects of
DROP ROLE might not take effect for new Impala queries for a brief period.

| Impala SQL Language Reference | 287

Syntax:
DROP ROLE role name

Required privileges:

Only administrative users (initially, a predefined set of users specified in the Sentry service configuration file) can use
this statement.

Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive
makes use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT
and REVOKE statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike
the equivalent Hive statements.

Related information:

Enabling Sentry Authorization for Impala on page 86, GRANT Statement (Impala 2.0 or higher only) on page
297 REVOKE Statement (Impala 2.0 or higher only) on page 318, CREATE ROLE Statement (Impala 2.0 or
higher only) on page 253, SHOW Statement on page 378

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

DROP STATS Statement

Removes the specified statistics from a table or partition. The statistics were originally created by the COMPUTE
STATS or COMPUTE INCREMENTAL STATS statement.

Syntax:

DROP STATS [database name.]table name
DROP INCREMENTAL STATS [database name.]table name PARTITION (partition spec)

partition spec ::= partition col=constant value

The PARTITION clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE
INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions
through the PARTITION (partiti on spec) clause in a COMPUTE INCREMENTAL STATS or DROP
INCREMENTAL STATS statement, you must include all the partitioning columns in the specification, and specify
constant values for all the partition key columns.

DROP STATS removes all statistics from the table, whether created by COMPUTE STATS or COMPUTE
INCREMENTAL STATS.

DROP INCREMENTAL STATS only affects incremental statistics for a single partition, specified through the
PARTITION clause. The incremental stats are marked as outdated, so that they are recomputed by the next COMPUTE
INCREMENTAL STATS statement.

Usage notes:

You typically use this statement when the statistics for a table or a partition have become stale due to data files being
added to or removed from the associated HDFS data directories, whether by manual HDFS operations or INSERT,
INSERT OVERWRITE, or LOAD DATA statements, or adding or dropping partitions.

When a table or partition has no associated statistics, Impala treats it as essentially zero-sized when constructing the
execution plan for a query. In particular, the statistics influence the order in which tables are joined in a join query.

To ensure proper query planning and good query performance and scalability, make sure to run COMPUTE STATS or
COMPUTE INCREMENTAL STATS on the table or partition after removing any stale statistics.

| Impala SQL Language Reference | 288

Dropping the statistics is not required for an unpartitioned table or a partitioned table covered by the original type of
statistics. A subsequent COMPUTE STATS statement replaces any existing statistics with new ones, for all partitions,
regardless of whether the old ones were outdated. Therefore, this statement was rarely used before the introduction of
incremental statistics.

Dropping the statistics is required for a partitioned table containing incremental statistics, to make a subsequent
COMPUTE INCREMENTAL STATS statement rescan an existing partition. See Table and Column Statistics on page
601 for information about incremental statistics, a new feature available in Impala 2.1.0 and higher.

Statement type: DDL
Cancellation: Cannot be cancelled.
HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, does not need any particular HDFS
permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files
and directories.

Examples:

The following example shows a partitioned table that has associated statistics produced by the COMPUTE
INCREMENTAL STATS statement, and how the situation evolves as statistics are dropped from specific partitions,
then the entire table.

Initially, all table and column statistics are filled in.

show table stats item partitioned;

o ——_———— t————— t—————— t——————— o ——— t———————

+ _________________

| i category | #Rows | #Files | Size | Bytes Cached | Format |
Incremental stats

- - t——————— o B o

+ _________________

| Books | 1733 |1 | 223.74KB | NOT CACHED | PARQUET | true

| Children | 1786 |1 | 230.05KB | NOT CACHED | PARQUET | true

| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true

| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true

| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true

| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true

| Music | 1860 |1 | 237.90KB | NOT CACHED | PARQUET | true

| Shoes | 1835 |1 | 234.90KB | NOT CACHED | PARQUET | true

| Sports | 1783 |1 | 227.97KB | NOT CACHED | PARQUET | true

| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true

| Total | 17957 | 10 | 2.25MB | OB |

o —— t—————— t——————— t————————— o —— t————————

+ _________________

show column stats item partitioned;

T T o T T e e

+ ______________

| Column | Type | #Distinct Values | #Nulls | Max Size | Avg
Size

o — t—————_— o — t—————— t———————

+ ______________

| i item sk | INT | 19443 [~ = | 4 | 4

| i item id | STRING | 9025 | =1 | 16 | 16

| 1 rec start date | TIMESTAMP | 4 | -1 | 16 | 16

| i _rec end date | TIMESTAMP | 3 | =1 | 16 | 16

| i item desc | STRING | 13330 | =1 | 200
100.302803039

| i current price | FLOAT | 2807 [S=lk | 4 | 4

| i wholesale cost | FLOAT | 2105 [=1 | 4 | 4

| i brand id | INT | 965 | -1 | 4 | 4

| Impala SQL Language Reference | 289

| i brand | STRING | 725 | -1 | 22
16.1776008605

| i class_id | INT | 16 | -1 | 4 | 4

| i class | STRING | 101 | =1 | 15
7.76749992370

| 1 category id | INT | 10 | =1 | 4 | 4

| i manufact id | INT | 1857 | -1 | 4 | 4

| i manufact | STRING | 1028 | =1 | 15
11.3295001983

| i size | STRING | 8 | =1 | 11
4.33459997177

| i formulation | STRING | 12884 | =1 | 20
19.9799995422

| i color | STRING | 92 | =1 | 10
5.38089990615

| i units | STRING | 22 | =1 |7
4.18690013885

| 1 container | STRING | 2 | -1 |7
6.99259996414

| i manager id | INT | 105 | =1 | 4 | 4

| i product name | STRING | 19094 | =1 | 25
18.0233001708

| i category | STRING | 10 | 0 il il

fomm e R e fo—m - e

To remove statistics for particular partitions, use the DROP INCREMENTAL STATS statement. After removing
statistics for two partitions, the table-level statistics reflect that change in the #Rows and Incremental stats
fields. The counts, maximums, and averages of the column-level statistics are unaffected.

Note: (It is possible that the row count might be preserved in future after a DROP INCREMENTAL STATS
statement. Check the resolution of the issue IMPALA-1615.)

drop incremental stats item partitioned partition (i category='Sports');
drop incremental stats item partitioned partition
(i _category='Electronics');

show table stats item partitioned

o —— - t——————— t————————— o —— t————————

+ __________________

| i category | #Rows | #Files | Size | Bytes Cached | Format |
Incremental stats

o ———————— t————— e e e ——— t——————

+ _________________

| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 |1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | 1807 |1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 |1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | =1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | 1790 |1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | OB |

- - t——————— o B o

+ _________________

show column stats item partitioned

e fmm e fmm R

+ ______________

| Column | Type | #Distinct Values | #Nulls | Max Size | Avg

https://issues.apache.org/jira/browse/IMPALA-1615

| Impala SQL Language Reference | 290

o o ——— o t——————— t——————

+ ______________

| i item sk | INT | 19443 | -1 | 4 | 4
| i item id | STRING | 9025 [~ = | 16 | 16
| i rec start date | TIMESTAMP | 4 [=1 | 16 | 16
| 1 rec end date | TIMESTAMP | 3 | -1 | 16 | 16
| 1 item desc | STRING | 13330 | -1 | 200
100.302803039

| i current price | FLOAT | 2807 | =1 | 4 | 4
| i wholesale cost | FLOAT | 2105 =l | 4 | 4
| i brand id | INT | 965 | -1 | 4 | 4
| i brand | STRING | 725 | -1 | 22
16.1776008605

| i class_id | INT | 16 | =1 | 4 | 4
| i class | STRING | 101 | -1 | 15
7.76749992370

| i category id | INT | 10 | -1 | 4 | 4
| i manufact id | INT | 1857 | -1 | 4 | 4
| i manufact | STRING | 1028 | =1 | 15
11.3295001983

| i size | STRING | 8 | -1 | 11
4.33459997177

| i formulation | STRING | 12884 | =1 | 20
19.9799995422

| i color | STRING | 92 | =1 | 10
5.38089990615

| i units | STRING | 22 | -1 | 7
4.18690013885

| i container | STRING | 2 | =1 | 7
6.99259996414

| 1 manager id | INT | 105 | =1 | 4 | 4
| i product name | STRING | 19094 | -1 | 25
18.0233001708

| i category | STRING | 10 | 0 =l =l

e e o e o —

To remove all statistics from the table, whether produced by COMPUTE STATS or COMPUTE INCREMENTAL
STATS, use the DROP STATS statement without the INCREMENTAL clause). Now, both table-level and column-
level statistics are reset.

drop stats item partitioned;

show table stats item partitioned

t———— - B - - -

+ __________________

| i category | #Rows | #Files | Size | Bytes Cached | Format |
Incremental stats

- - e et e - -

+ __________________

| Books =l | 1 | 223.74KB | NOT CACHED | PARQUET | false
| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | false
| Jewelry | =1 [1 | 223.72KB | NOT CACHED | PARQUET | false
| Men | -1 [1 | 231.25KB | NOT CACHED | PARQUET | false
| Music | =1 [1 | 237.90KB | NOT CACHED | PARQUET | false
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | false
| Total | =1 | 10 | 2.25MB | OB |

- +-—————— B et - - -

| Impala SQL Language Reference | 291

show column stats item partitioned

fom fo——— fom fo——— R

R +

| Column | Type | #Distinct Values | #Nulls | Max Size | Avg
Size |

fom o fom f——— f——

e 1

| i item sk | INT | -1 | -1 | 4 | 4
| i_ilem_id | STRING | -1 | -1 | -1 | -1
| iirécistartidate | TIMESTAMP | -1 | -1 | 16 | 16
| i_réc_end_date | TIMESTAMP | -1 | -1 | 16 | 16
| i_ilem_desc | STRING =l =l =l =l
| iichrentiprice | FLOAT | =1 | =1 | 4 | 4

| i_wgolesale_cost | FLOAT | -1 | -1 [4 | 4

| i_biand_id | INT | -1 | -1 | 4 | 4

| iibiand | STRING | -1 | -1 | -1 | -1
| i_c{ass_id | INT | -1 | -1 | 4 | 4

| i_ciass | STRING =l =l =l =l
| iicgtegoryiid | INT | -1 | -1 | 4 | 4

| i_anufact_id | INT | -1 | -1 | 4 | 4

| i_mgnufact | STRING | -1 | -1 | -1 | -1
| iislze | STRING | =1 | =1 | =1 | =1
| i_férmulation | STRING | =1 | =1 | =1 | -1
| i_célor | STRING | -1 | -1 | -1 | -1
| iiur'lits | STRING | -1 | -1 | -1 | -1
| i_céntainer | STRING | =1 | =1 | -1 | -1
| i_mgnager_id | INT =l =l | 4 | 4

| iipioductiname | STRING | -1 | -1 | -1 | -1
| i_cgtegory | STRING | 10 | O | =1 | =1

+————l ————————————— Fo— o fo—————— fo—

Related information:
COMPUTE STATS Statement on page 237, SHOW TABLE STATS Statement on page 388, SHOW COLUMN
STATS Statement on page 390, Table and Column Statistics on page 601

DROP TABLE Statement

Removes an Impala table. Also removes the underlying HDFS data files for internal tables, although not for external
tables.

| Impala SQL Language Reference | 292

Syntax:
DROP TABLE [IF EXISTS] [db name.]table name [PURGE]

IF EXISTS clause:

The optional IF EXISTS clause makes the statement succeed whether or not the table exists. If the table does exist,
it is dropped; if it does not exist, the statement has no effect. This capability is useful in standardized setup scripts
that remove existing schema objects and create new ones. By using some combination of IF EXISTS for the DROP
statements and IF NOT EXISTS clauses for the CREATE statements, the script can run successfully the first time
you run it (when the objects do not exist yet) and subsequent times (when some or all of the objects do already exist).

PURGE clause:

The optional PURGE keyword, available in Impala 2.3 and higher, causes Impala to remove the associated HDFS data
files immediately, rather than going through the HDFS trashcan mechanism. Use this keyword when dropping a table
if it is crucial to remove the data as quickly as possible to free up space, or if there is a problem with the trashcan,
such as the trash cannot being configured or being in a different HDFS encryption zone than the data files.

Statement type: DDL
Usage notes:

By default, Impala removes the associated HDFS directory and data files for the table. If you issue a DROP TABLE
and the data files are not deleted, it might be for the following reasons:

+ If'the table was created with the EXTERNAL clause, Impala leaves all files and directories untouched. Use external
tables when the data is under the control of other Hadoop components, and Impala is only used to query the data
files from their original locations.

» Impala might leave the data files behind unintentionally, if there is no HDFS location available to hold the HDFS
trashcan for the impala user. See User Account Requirements on page 20 for the procedure to set up the
required HDFS home directory.

Make sure that you are in the correct database before dropping a table, either by issuing a USE statement first or by
using a fully qualified name db_name. table name.

If you intend to issue a DROP DATABASE statement, first issue DROP TABLE statements to remove all the tables in
that database.

Examples:

create database temporary;

use temporary;

create table unimportant (x int);

create table trivial (s string);

-- Drop a table in the current database.

drop table unimportant;

-- Switch to a different database.

use default;

-- To drop a table in a different database...
drop table trivial;

ERROR: AnalysisException: Table does not exist: default.trivial
--— ...use a fully qualified name.

drop table temporary.trivial;

For other tips about managing and reclaiming Impala disk space, see Managing Disk Space for Impala Data on page
81.

Amazon S3 considerations:

The DROP TABLE statement can remove data files from S3 if the associated S3 table is an internal table. In Impala
2.6 and higher, as part of improved support for writing to S3, Impala also removes the associated folder when
dropping an internal table that resides on S3. See Using Impala with the Amazon S3 Filesystem on page 709 for
details about working with S3 tables.

| Impala SQL Language Reference | 293

For best compatibility with the S3 write support in Impala 2.6 and higher:

» Use native Hadoop techniques to create data files in S3 for querying through Impala.
* Use the PURGE clause of DROP TABLE when dropping internal (managed) tables.

By default, when you drop an internal (managed) table, the data files are moved to the HDFS trashcan. This operation
is expensive for tables that reside on the Amazon S3 filesystem. Therefore, for S3 tables, prefer to use DROP TABLE
table name PURGE rather than the default DROP TABLE statement. The PURGE clause makes Impala delete the
data files immediately, skipping the HDFS trashcan. For the PURGE clause to work effectively, you must originally
create the data files on S3 using one of the tools from the Hadoop ecosystem, such as hadoop fs -cp, or INSERT
in Impala or Hive.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 709 for details about reading and writing S3 data with Impala.

Cancellation: Cannot be cancelled.
HDFS permissions:

For an internal table, the user ID that the impalad daemon runs under, typically the impala user, must have write
permission for all the files and directories that make up the table.

For an external table, dropping the table only involves changes to metadata in the metastore database. Because Impala
does not remove any HDFS files or directories when external tables are dropped, no particular permissions are needed
for the associated HDFS files or directories.

Kudu considerations:

Kudu tables can be managed or external, the same as with HDFS-based tables. For a managed table, the underlying
Kudu table and its data are removed by DROP TABLE. For an external table, the underlying Kudu table and its data
remain after a DROP TABLE.

Related information:

Overview of Impala Tables on page 213, ALTER TABLE Statement on page 223, CREATE TABLE Statement on
page 253, Partitioning for Impala Tables on page 645, Internal Tables on page 213, External Tables on page
214

DROP VIEW Statement

Removes the specified view, which was originally created by the CREATE VIEW statement. Because a view is
purely a logical construct (an alias for a query) with no physical data behind it, DROP VIEW only involves changes to
metadata in the metastore database, not any data files in HDFS.

Syntax:
DROP VIEW [IF EXISTS] [db name.]view name

Statement type: DDL
Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

| Impala SQL Language Reference | 294

The following example creates a series of views and then drops them. These examples illustrate how views are
associated with a particular database, and both the view definitions and the view names for CREATE VIEW and
DROP VIEW can refer to a view in the current database or a fully qualified view name.

-- Create and drop a view in the current database.
CREATE VIEW few rows from tl AS SELECT * FROM tl LIMIT 10;
DROP VIEW few rows from tl;

—-- Create and drop a view referencing a table in a different database.
CREATE VIEW table from other db AS SELECT x FROM dbl.foo WHERE x IS NOT
NULL;

DROP VIEW table from other db;

USE dbl;

-— Create a view in a different database.

CREATE VIEW db2.v1l AS SELECT * FROM db2.foo;

-- Switch into the other database and drop the view.
USE db2;

DROP VIEW vl1;

USE dbl;

-— Create a view in a different database.
CREATE VIEW db2.vl AS SELECT * FROM db2.foo;
-- Drop a view in the other database.

DROP VIEW db2.vl;

Related information:

Overview of Impala Views on page 217, CREATE VIEW Statement on page 267, ALTER VIEW Statement on
page 236

EXPLAIN Statement

Returns the execution plan for a statement, showing the low-level mechanisms that Impala will use to read the data,
divide the work among nodes in the cluster, and transmit intermediate and final results across the network. Use
explain followed by a complete SELECT query. For example:

Syntax:
EXPLAIN { select query | ctas stmt | insert stmt }

The select_query is a SELECT statement, optionally prefixed by a WITH clause. See SELECT Statement on page
319 for details.

The insert_stmt is an INSERT statement that inserts into or overwrites an existing table. It can use either the
INSERT ... SELECTor INSERT ... VALUES syntax. See INSERT Statement on page 298 for details.

The ctas_stmt is a CREATE TABLE statement using the AS SELECT clause, typically abbreviated as a “CTAS”
operation. See CREATE TABLE Statement on page 253 for details.

Usage notes:

You can interpret the output to judge whether the query is performing efficiently, and adjust the query and/or the
schema if not. For example, you might change the tests in the WHERE clause, add hints to make join operations more
efficient, introduce subqueries, change the order of tables in a join, add or change partitioning for a table, collect
column statistics and/or table statistics in Hive, or any other performance tuning steps.

The EXPLAIN output reminds you if table or column statistics are missing from any table involved in the query.
These statistics are important for optimizing queries involving large tables or multi-table joins. See COMPUTE
STATS Statement on page 237 for how to gather statistics, and Table and Column Statistics on page 601 for how
to use this information for query tuning.

| Impala SQL Language Reference | 295

Read the EXPLAIN plan from bottom to top:

» The last part of the plan shows the low-level details such as the expected amount of data that will be read, where
you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan a table
based on total data size and the size of the cluster.

* As you work your way up, next you see the operations that will be parallelized and performed on each Impala
node.

» At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from one
node to another.

» See EXPLAIN LEVEL Query Option on page 354 for details about the EXPLAIN LEVEL query option, which
lets you customize how much detail to show in the EXPLAIN plan depending on whether you are doing high-level
or low-level tuning, dealing with logical or physical aspects of the query.

If you come from a traditional database background and are not familiar with data warehousing, keep in mind that
Impala is optimized for full table scans across very large tables. The structure and distribution of this data is typically
not suitable for the kind of indexing and single-row lookups that are common in OLTP environments. Seeing a query
scan entirely through a large table is common, not necessarily an indication of an inefficient query. Of course, if you
can reduce the volume of scanned data by orders of magnitude, for example by using a query that affects only certain
partitions within a partitioned table, then you might be able to optimize a query so that it executes in seconds rather
than minutes.

For more information and examples to help you interpret EXPLAIN output, see Using the EXPLAIN Plan for
Performance Tuning on page 627.

Extended EXPLAIN output:

For performance tuning of complex queries, and capacity planning (such as using the admission control and resource
management features), you can enable more detailed and informative output for the EXPLAIN statement. In the
impala-shell interpreter, issue the command SET EXPLAIN LEVEL=Ievel, where level is an integer from 0
to 3 or corresponding mnemonic values minimal, standard, extended, or verbose.

When extended EXPLAIN output is enabled, EXPLAIN statements print information about estimated memory
requirements, minimum number of virtual cores, and so on.

See EXPLAIN LEVEL Query Option on page 354 for details and examples.
Examples:

This example shows how the standard EXPLAIN output moves from the lowest (physical) level to the higher
(logical) levels. The query begins by scanning a certain amount of data; each node performs an aggregation operation
(evaluating COUNT (*)) on some subset of data that is local to that node; the intermediate results are transmitted back
to the coordinator node (labelled here as the EXCHANGE node); lastly, the intermediate results are summed to display
the final result.

[impalad-host:21000] > explain select count(*) from customer address;

Estimated Per-Host Requirements: Memory=42.00MB VCores=1

03:AGGREGATE [MERGE FINALIZE]
| output: sum(count (*))

02 :EXCHANGE [PARTITION=UNPARTITIONED]

01 :AGGREGATE
| output: count (*)

00:SCAN HDFS [default.customer address]
partitions=1/1 size=5.25MB

| Impala SQL Language Reference | 296

These examples show how the extended EXPLAIN output becomes more accurate and informative as statistics are
gathered by the COMPUTE STATS statement. Initially, much of the information about data size and distribution

is marked “unavailable”. Impala can determine the raw data size, but not the number of rows or number of distinct
values for each column without additional analysis. The COMPUTE STATS statement performs this analysis, so a
subsequent EXPLATIN statement has additional information to use in deciding how to optimize the distributed query.

[localhost:21000] > set explain level=extended;
EXPLAIN LEVEL set to extended
[localhost:21000] > explain select x from tl;
[localhost:21000] > explain select x from tl;

Estimated Per-Host Requirements: Memory=32.00MB VCores=1

| |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
| | hosts=1 per-host-mem=unavailable

| | tuple-ids=0 row-size=4B cardinality=unavailable |
|| |
| 00:SCAN HDFS [default.t2, PARTITION=RANDOM]

| partitions=1/1 size=36B

| table stats: unavailable |
| column stats: unavailable |
| hosts=1 per-host-mem=32.00MB

| tuple-ids=0 row-size=4B cardinality=unavailable |

[localhost:21000] > compute stats tl;

B e e +

| summary |

B et ittt Lo +

| Updated 1 partition(s) and 1 column (s) |
o +
[localhost:21000] > explain select x from tl;
o +
| Explain String |
e +

Estimated Per-Host Requirements: Memory=64.00MB VCores=1

| |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
(. hosts=1 per-host-mem=unavailable

| | tuple-ids=0 row-size=4B cardinality=0

[|
| 00:SCAN HDFS [default.tl, PARTITION=RANDOM]

| partitions=1/1 size=36B

| table stats: 0 rows total

| column stats: all |
| hosts=1 per-host-mem=64.00MB

| tuple-ids=0 row-size=4B cardinality=0

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Cannot be cancelled

HDFS permissions:

| Impala SQL Language Reference | 297

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute
permissions for all applicable directories in all source tables for the query that is being explained. (A SELECT
operation could read files from multiple different HDFS directories if the source table is partitioned.)

Kudu considerations:

The EXPLAIN statement displays equivalent plan information for queries against Kudu tables as for queries against
HDFS-based tables.

To see which predicates Impala can “push down” to Kudu for efficient evaluation, without transmitting unnecessary
rows back to Impala, look for the kudu predicates item in the scan phase of the query. The label kudu
predicates indicates a condition that can be evaluated efficiently on the Kudu side. The label predicatesina
SCAN KUDU node indicates a condition that is evaluated by Impala. For example, in a table with primary key column
X and non-primary key column Y, you can see that some operators in the WHERE clause are evaluated immediately by
Kudu and others are evaluated later by Impala:

EXPLAIN SELECT x,y from kudu table WHERE
x = 1 AND y NOT IN (2,3) AND z =1
AND a IS NOT NULL AND b > 0 AND length(s) > 5;

| 00:SCAN KUDU [kudu table]
| predicates: y NOT IN (2, 3), length(s) >
| kudu predicates: a IS NOT NULL, b > 0, x =1, z =1

ul

Only binary predicates, IS NULL and IS NOT NULL (in Impala 2.9 and higher), and IN predicates containing
literal values that exactly match the types in the Kudu table, and do not require any casting, can be pushed to Kudu.

Related information:

SELECT Statement on page 319, INSERT Statement on page 298, CREATE TABLE Statement on page 253,
Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles on page 627

GRANT Statement (Impala 2.0 or higher only)

The GRANT statement grants roles or privileges on specified objects to groups. Only Sentry administrative users can
grant roles to a group.

Syntax:
GRANT ROLE role name TO GROUP group name

GRANT privilege ON object type object name
TO [ROLE] roleName
[WITH GRANT OPTION]

privilege ::= SELECT | SELECT (column name) | INSERT | ALL
object type ::= TABLE | DATABASE | SERVER | URI

Typically, the object name is an identifier. For URIs, it is a string literal.

Required privileges:

Only administrative users (initially, a predefined set of users specified in the Sentry service configuration file) can use
this statement.

The WITH GRANT OPTION clause allows members of the specified role to issue GRANT and REVOKE statements
for those same privileges Hence, if a role has the ALL privilege on a database and the WITH GRANT OPTION set,
users granted that role can execute GRANT/REVOKE statements only for that database or child tables of the database.
This means a user could revoke the privileges of the user that provided them the GRANT OPTION.

| Impala SQL Language Reference | 298

Impala does not currently support revoking only the WITH GRANT OPTION from a privilege previously granted to
arole. To remove the WITH GRANT OPTION, revoke the privilege and grant it again without the WITH GRANT
OPTION flag.

The ability to grant or revoke SELECT privilege on specific columns is available in Impala 2.3 and higher. See the
documentation for Apache Sentry for details.

Compatibility:

* The Impala GRANT and REVOKE statements are available in Impala 2.0 and later.

* InImpala 1.4 and later, Impala can make use of any roles and privileges specified by the GRANT and REVOKE
statements in Hive, when your system is configured to use the Sentry service instead of the file-based policy
mechanism.

* The Impala GRANT and REVOKE statements for privileges do not require the ROLE keyword to be repeated before
each role name, unlike the equivalent Hive statements.

» Currently, each Impala GRANT or REVOKE statement can only grant or revoke a single privilege to or from a
single role.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Kudu considerations:

Access to Kudu tables must be granted to and revoked from roles as usual. Only users with ALL privileges on
SERVER can create external Kudu tables. Currently, access to a Kudu table is “all or nothing”: enforced at the table
level rather than the column level, and applying to all SQL operations rather than individual statements such as
INSERT. Because non-SQL APIs can access Kudu data without going through Sentry authorization, currently the
Sentry support is considered preliminary and subject to change.

Related information:

Enabling Sentry Authorization for Impala on page 86, REVOKE Statement (Impala 2.0 or higher only) on page
318, CREATE ROLE Statement (Impala 2.0 or higher only) on page 253, DROP ROLE Statement (Impala 2.0
or higher only) on page 286, SHOW Statement on page 378

INSERT Statement

Impala supports inserting into tables and partitions that you create with the Impala CREATE TABLE statement, or
pre-defined tables and partitions created through Hive.

Syntax:

[with clause]
INSERT { INTO | OVERWRITE } [TABLE] table_name

[(column 1ist)]

[PARTITION (partition clause)]
{

[hint clause] select statement

| VALUES (value [, value ...]) [, (value [, value ...]) ...]

}

partition clause ::= col name [= constant] [, col name [= constant] ...]

hint clause ::=
hint with dashes |
hint with cstyle delimiters |
hint with brackets

hint with dashes ::= —-- +SHUFFLE | -- +NOSHUFFLE -- +CLUSTERED

| Impala SQL Language Reference | 299

hint with cstyle comments ::= /* +SHUFFLE */ | /* +NOSHUFFLE */ | /*
+CLUSTERED */

hint with brackets ::= [SHUFFLE] | [NOSHUFFLE]
(With this hint format, the square brackets are part of the syntax.)

Note: The square bracket style of hint is now deprecated and might be removed in a future release. For that reason,
any newly added hints are not available with the square bracket syntax.

Appending or replacing (INTO and OVERWRITE clauses):

The INSERT INTO syntax appends data to a table. The existing data files are left as-is, and the inserted data is put
into one or more new data files.

The INSERT OVERWRITE syntax replaces the data in a table. Currently, the overwritten data files are deleted
immediately; they do not go through the HDFS trash mechanism.

Complex type considerations:

The INSERT statement currently does not support writing data files containing complex types (ARRAY, STRUCT,
and MAP). To prepare Parquet data for such tables, you generate the data files outside Impala and then use LOAD
DATA or CREATE EXTERNAL TABLE to associate those data files with the table. Currently, such tables must use
the Parquet file format. See Complex Types (Impala 2.3 or higher only) on page 151 for details about working with
complex types.

Kudu considerations:
Currently, the INSERT OVERWRITE syntax cannot be used with Kudu tables.

Kudu tables require a unique primary key for each row. If an INSERT statement attempts to insert a row with the
same values for the primary key columns as an existing row, that row is discarded and the insert operation continues.
When rows are discarded due to duplicate primary keys, the statement finishes with a warning, not an error. (This is
a change from early releases of Kudu where the default was to return in error in such cases, and the syntax INSERT
IGNORE was required to make the statement succeed. The IGNORE clause is no longer part of the INSERT syntax.)

For situations where you prefer to replace rows with duplicate primary key values, rather than discarding the new
data, you can use the UPSERT statement instead of INSERT. UPSERT inserts rows that are entirely new, and for
rows that match an existing primary key in the table, the non-primary-key columns are updated to reflect the values in
the “upserted” data.

If you really want to store new rows, not replace existing ones, but cannot do so because of the primary key
uniqueness constraint, consider recreating the table with additional columns included in the primary key.

See Using Impala to Query Kudu Tables on page 685 for more details about using Impala with Kudu.
Usage notes:
Impala currently supports:

» Copy data from another table using SELECT query. In Impala 1.2.1 and higher, you can combine CREATE
TABLE and INSERT operations into a single step with the CREATE TABLE AS SELECT syntax, which
bypasses the actual INSERT keyword.

* An optional WITH clause before the INSERT keyword, to define a subquery referenced in the SELECT portion.

* Create one or more new rows using constant expressions through VALUES clause. (The VALUES clause was
added in Impala 1.0.1.)

* By default, the first column of each newly inserted row goes into the first column of the table, the second column
into the second column, and so on.

You can also specify the columns to be inserted, an arbitrarily ordered subset of the columns in the destination
table, by specifying a column list immediately after the name of the destination table. This feature lets you adjust
the inserted columns to match the layout of a SELECT statement, rather than the other way around. (This feature
was added in Impala 1.1.)

| Impala SQL Language Reference | 300

The number of columns mentioned in the column list (known as the “column permutation”) must match the
number of columns in the SELECT list or the VALUES tuples. The order of columns in the column permutation
can be different than in the underlying table, and the columns of each input row are reordered to match. If the
number of columns in the column permutation is less than in the destination table, all unmentioned columns are
set to NULL.

» For a partitioned table, the optional PARTITION clause identifies which partition or partitions the new values go
into. If a partition key column is given a constant value such as PARTITION (year=2012) or PARTITION
(year=2012, month=2), all the inserted rows use those same values for those partition key columns and
you omit any corresponding columns in the source table from the SELECT list. This form is known as “static
partitioning”.

If a partition key column is mentioned but not assigned a value, such as in PARTITION (year, region)
(both columns unassigned) or PARTITION (year, region='CA') (year column unassigned), the
unassigned columns are filled in with the final columns of the SELECT list. In this case, the number of columns
in the SELECT list must equal the number of columns in the column permutation plus the number of partition key
columns not assigned a constant value. This form is known as “dynamic partitioning”.

See Static and Dynamic Partitioning Clauses on page 646 for examples and performance characteristics of
static and dynamic partitioned inserts.

* An optional hint clause immediately before the SELECT keyword, to fine-tune the behavior when doing an
INSERT ... SELECT operation into partitioned Parquet tables. The hint keywords are [SHUFFLE] and
[NOSHUFFLE], including the square brackets. Inserting into partitioned Parquet tables can be a resource-
intensive operation because it potentially involves many files being written to HDFS simultaneously, and separate
large memory buffers being allocated to buffer the data for each partition. For usage details, see Loading Data into
Parquet Tables on page 662.

Note:

» Insert commands that partition or add files result in changes to Hive metadata. Because Impala uses Hive
metadata, such changes may necessitate a metadata refresh. For more information, see the REFRESH function.

* Currently, Impala can only insert data into tables that use the text and Parquet formats. For other file formats,
insert the data using Hive and use Impala to query it.

* As an alternative to the INSERT statement, if you have existing data files elsewhere in HDFS, the LOAD DATA
statement can move those files into a table. This statement works with tables of any file format.

Statement type: DML (but still affected by SYNC DDL query option)
Usage notes:

When you insert the results of an expression, particularly of a built-in function call, into a small numeric column such
as INT, SMALLINT, TINYINT, or FLOAT, you might need to use a CAST () expression to coerce values into the
appropriate type. Impala does not automatically convert from a larger type to a smaller one. For example, to insert
cosine values into a FLOAT column, write CAST (COS (angle) AS FLOAT) inthe INSERT statement to make
the conversion explicit.

File format considerations:

Because Impala can read certain file formats that it cannot write, the INSERT statement does not work for all kinds of
Impala tables. See How Impala Works with Hadoop File Formats on page 652 for details about what file formats
are supported by the INSERT statement.

Any INSERT statement for a Parquet table requires enough free space in the HDFS filesystem to write one block.
Because Parquet data files use a block size of 1 GB by default, an INSERT might fail (even for a very small amount
of data) if your HDFS is running low on space.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC DDL Query Option on page 377 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD

| Impala SQL Language Reference | 301

DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

The following example sets up new tables with the same definition as the TABR1 table from the Tutorial section, using
different file formats, and demonstrates inserting data into the tables created with the STORED AS TEXTFILE and
STORED AS PARQUET clauses:

CREATE DATABASE IF NOT EXISTS file_formats;
USE file formats;

DROP TABLE IF EXISTS text table;

CREATE TABLE text table

(id INT, col 1 BOOLEAN, col 2 DOUBLE, col 3 TIMESTAMP)
STORED AS TEXTFILE;

DROP TABLE IF EXISTS parquet table;
CREATE TABLE parquet table
(id INT, col 1 BOOLEAN, col 2 DOUBLE, col 3 TIMESTAMP)

STORED AS PARQUET;

With the INSERT INTO TABLE syntax, each new set of inserted rows is appended to any existing data in the
table. This is how you would record small amounts of data that arrive continuously, or ingest new batches of data
alongside the existing data. For example, after running 2 INSERT INTO TABLE statements with 5 rows each, the

table contains 10 rows total:

[localhost:21000] > insert into table text table select * from default.tabl;
Inserted 5 rows in 0.41s

[localhost:21000] > insert into table text table select * from default.tabl;
Inserted 5 rows in 0.46s

[localhost:21000] > select count(*) from text table;

o ————— +
| count (*) |
o +
| 10 |
o +

Returned 1 row(s) in 0.26s

With the INSERT OVERWRITE TABLE syntax, each new set of inserted rows replaces any existing data in the
table. This is how you load data to query in a data warchousing scenario where you analyze just the data for a
particular day, quarter, and so on, discarding the previous data each time. You might keep the entire set of data in
one raw table, and transfer and transform certain rows into a more compact and efficient form to perform intensive
analysis on that subset.

For example, here we insert 5 rows into a table using the INSERT INTO clause, then replace the data by inserting 3
rows with the INSERT OVERWRITE clause. Afterward, the table only contains the 3 rows from the final INSERT

statement.

[localhost:21000] > insert into table parquet table select * from

default.tabl;
Inserted 5 rows in 0.35s

[localhost:21000] > insert overwrite table parquet table select * from
default.tabl limit 3;

Inserted 3 rows in 0.43s
[localhost:21000] > select count(*) from parquet table;

| Impala SQL Language Reference | 302

Returned 1 row(s) in 0.43s

The VALUES clause lets you insert one or more rows by specifying constant values for all the columns. The number,
types, and order of the expressions must match the table definition.

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of data into HDFS-

based tables, because the insert operations cannot be parallelized, and each one produces a separate data file. Use

it for setting up small dimension tables or tiny amounts of data for experimenting with SQL syntax, or with HBase
tables. Do not use it for large ETL jobs or benchmark tests for load operations. Do not run scripts with thousands

of INSERT ... VALUES statements that insert a single row each time. If you do run INSERT ... VALUES
operations to load data into a staging table as one stage in an ETL pipeline, include multiple row values if possible
within each VALUES clause, and use a separate database to make cleanup easier if the operation does produce many
tiny files.

The following example shows how to insert one row or multiple rows, with expressions of different types, using

literal values, expressions, and function return values:

create table val test 1 (cl int, c2 float, c¢3 string, c4 boolean, c5
timestamp) ;

insert into val test 1 values (100, 99.9/10, 'abc', true, now());
create table val test 2 (id int, token string);
insert overwrite val test 2 values (1, 'a'), (2, 'b'), (-1,'xyzzy');

These examples show the type of “not implemented” error that you see when attempting to insert data into a table
with a file format that Impala currently does not write to:

DROP TABLE IF EXISTS sequence table;

CREATE TABLE sequence_ table

(id INT, col 1 BOOLEAN, col 2 DOUBLE, col 3 TIMESTAMP)
STORED AS SEQUENCEFILE;

DROP TABLE IF EXISTS rc_table;

CREATE TABLE rc_table

(id INT, col 1 BOOLEAN, col 2 DOUBLE, col 3 TIMESTAMP)
STORED AS RCFILE;

[localhost:21000] > insert into table rc table select * from default.tabl;
Remote error
Backend 0:RC_FILE not implemented.

[localhost:21000] > insert into table sequence table select * from
default.tabl;

Remote error

Backend 0:SEQUENCE FILE not implemented.

Inserting data into partitioned tables requires slightly different syntax that divides the partitioning columns from the
others:

create table tl (i int) partitioned by (x int, y string);

—-— Select an INT column from another table.

-- All inserted rows will have the same x and y values, as specified in the
INSERT statement.

-— This technique of specifying all the partition key values is known as
static partitioning.

insert into tl partition(x=10, y='a') select cl from some other table;

-— Select two INT columns from another table.

-- All inserted rows will have the same y value, as specified in the INSERT
statement.

| Impala SQL Language Reference | 303

-- Values from c2 go into tl.x.

-- Any partitioning columns whose value 1s not specified are filled in

-— from the columns specified last in the SELECT list.

-- This technique of omitting some partition key values is known as dynamic
partitioning.

insert into tl partition(x, y='b') select cl, c2 from some other table;

-— Select an INT and a STRING column from another table.

-— All inserted rows will have the same x value, as specified in the INSERT
Statement.

-- Values from c3 go into tl.y.

insert into tl partition(x=20, y) select cl, c3 from some other table;

The following examples show how you can copy the data in all the columns from one table to another, copy the data
from only some columns, or specify the columns in the select list in a different order than they actually appear in the
table:

-— Start with 2 identical tables.
create table tl (cl int, c2 int);
create table t2 like tl;

-— If there is no () part after the destination table name,
-- all columns must be specified, either as * or by name.
insert into t2 select * from tl;

insert into t2 select cl, c2 from tl;

-— With the () notation following the destination table name,

-- you can omit columns (all values for that column are NULL

—--— in the destination table), and/or reorder the values

-- selected from the source table. This is the "column permutation" feature.
insert into t2 (cl) select cl from tl;

insert into t2 (c2, cl) select cl, c2 from tl;

—-— The column names can be entirely different in the source and destination
tables.

-- You can copy any columns, not just the corresponding ones, from the
source table.

—-— But the number and type of selected columns must match the columns
mentioned in the () part.

alter table t2 replace columns (x int, y int);

insert into t2 (y) select cl from tl;

-- For partitioned tables, all the partitioning columns must be mentioned in
the () column list

—-— or a PARTITION clause; these columns cannot be defaulted to NULL.
create table ptl (x int, y int) partitioned by (z int);

-— The values from cl are copied into the column x in the new table,
-- all in the same partition based on a constant value for z.

-- The values of y in the new table are all NULL.

insert into ptl (x) partition (z=5) select cl from tl;

-- Again we omit the values for column y so they are all NULL.

—-- The inserted x values can go into different partitions, based on
-- the different values inserted into the partitioning column z.
insert into ptl (x,z) select x, z from t2;

SELECT * for a partitioned table requires that all partition key columns in the source table be declared as the last
columns in the CREATE TABLE statement. You still include a PARTITION BY clause listing all the partition key
columns. These partition columns are automatically mapped to the last columns from the SELECT * list.

create table source (x int, y int, year int, month int, day int);

create table destination (x int, y int) partitioned by (year int, month int,
day int);

...load some data into the unpartitioned source table...

| Impala SQL Language Reference | 304

-- Insert a single partition of data.

-- The SELECT * means you cannot specify partition (year=2014, month, day).
insert overwrite destination partition (year, month, day) select * from
source where year=2014;

-- Insert the data for all year/month/day combinations.

insert overwrite destination partition (year, month, day) select * from
source;

-— If one of the partition columns is omitted from the source table,

-- then you can specify a specific value for that column in the PARTITION
clause.

—-—- Here the source table holds only data from 2014, and so does not include
a year column.

create table source 2014 (x int, y int, month, day);

...load some data into the unpartitioned source 2014 table...

insert overwrite destination partition (year=2014, month, day) select * from
source 2014;

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement,
any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation
potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data
being stored in sorted order is impractical.

Concurrency considerations: Each INSERT operation creates new data files with unique names, so you can run
multiple INSERT INTO statements simultaneously without filename conflicts. While data is being inserted into an
Impala table, the data is staged temporarily in a subdirectory inside the data directory; during this period, you cannot
issue queries against that table in Hive. If an INSERT operation fails, the temporary data file and the subdirectory
could be left behind in the data directory. If so, remove the relevant subdirectory and any data files it contains
manually, by issuing an hdfs dfs -rm -r command, specifying the full path of the work subdirectory, whose
name endsin _dir.

VALUES Clause

The VALUES clause is a general-purpose way to specify the columns of one or more rows, typically within an
INSERT statement.

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of data into HDFS-

based tables, because the insert operations cannot be parallelized, and each one produces a separate data file. Use

it for setting up small dimension tables or tiny amounts of data for experimenting with SQL syntax, or with HBase
tables. Do not use it for large ETL jobs or benchmark tests for load operations. Do not run scripts with thousands

of INSERT ... VALUES statements that insert a single row each time. If you do run INSERT ... VALUES
operations to load data into a staging table as one stage in an ETL pipeline, include multiple row values if possible
within each VALUES clause, and use a separate database to make cleanup easier if the operation does produce many
tiny files.

The following examples illustrate:

* How to insert a single row using a VALUES clause.

* How to insert multiple rows using a VALUES clause.

* How the row or rows from a VALUES clause can be appended to a table through INSERT INTO, or replace the
contents of the table through INSERT OVERWRITE

* How the entries in a VALUES clause can be literals, function results, or any other kind of expression. See Literals
on page 182 for the notation to use for literal values, especially String Literals on page 184 for quoting
and escaping conventions for strings. See SOL Operators on page 187 and Impala Built-In Functions on page
402 for other things you can include in expressions with the VALUES clause.

[localhost:21000] > describe val example;
Query: describe val example

Query finished, fetching results
- o o +

| name | type | comment |

| Impala SQL Language Reference | 305

- o o +
| id | int | |
| col 1 | boolean | |
| col 2 | double | |
e T o — +

[localhost:21000] > insert into val example values (1,true,100.0);

Inserted 1 rows in 0.30s
[localhost:21000] > select * from val example;

ot ——— e +
| id | col 1 | col 2 |
ot ——— +o————— +
| 1 | true | 100 |
tom— to————— +

[localhost:21000] > insert overwrite val example values (10,false,pow(2,5)),

(50, true, 10/3) ;
Inserted 2 rows in 0.16s
[localhost:21000] > select * from val example;

B e o +
| id | col 1 | col 2 |
e e +
| 10 | false | 32 |
| 50 | true | 3.333333333333333 |
B e o +

When used in an INSERT statement, the Impala VALUES clause can specify some or all of the columns in the
destination table, and the columns can be specified in a different order than they actually appear in the table. To
specify a different set or order of columns than in the table, use the syntax:

INSERT INTO destination
(col x, col y, col z)
VALUES
(val x, val y, val z);

Any columns in the table that are not listed in the INSERT statement are set to NULL.
To use a VALUES clause like a table in other statements, wrap it in parentheses and use AS clauses to specify aliases

for the entire object and any columns you need to refer to:

[localhost:21000] > select * from (values(4,5,6),(7,8,9)) as t;

[localhost:21000] > select * from (values(l as cl, true as c2, 'abc' as c3),
(100, false, 'xyz')) as t;

For example, you might use a tiny table constructed like this from constant literals or function return values as part of
a longer statement involving joins or UNION ALL.
HDFS considerations:

Impala physically writes all inserted files under the ownership of its default user, typically impala. Therefore, this
user must have HDFS write permission in the corresponding table directory.

| Impala SQL Language Reference | 306

The permission requirement is independent of the authorization performed by the Sentry framework. (If the connected
user is not authorized to insert into a table, Sentry blocks that operation immediately, regardless of the privileges
available to the impala user.) Files created by Impala are not owned by and do not inherit permissions from the
connected user.

The number of data files produced by an INSERT statement depends on the size of the cluster, the number of data
blocks that are processed, the partition key columns in a partitioned table, and the mechanism Impala uses for
dividing the work in parallel. Do not assume that an INSERT statement will produce some particular number of
output files. In case of performance issues with data written by Impala, check that the output files do not suffer from
issues such as many tiny files or many tiny partitions. (In the Hadoop context, even files or partitions of a few tens of
megabytes are considered “tiny”.)

The INSERT statement has always left behind a hidden work directory inside the data directory of the table.
Formerly, this hidden work directory was named . impala insert staging.InImpala 2.0.1 and later, this
directory name is changed to _impala insert staging.(While HDFS tools are expected to treat names
beginning either with underscore and dot as hidden, in practice names beginning with an underscore are more widely
supported.) If you have any scripts, cleanup jobs, and so on that rely on the name of this work directory, adjust them
to use the new name.

HBase considerations:
You can use the INSERT statement with HBase tables as follows:

* You can insert a single row or a small set of rows into an HBase table with the INSERT ... VALUES syntax.
This is a good use case for HBase tables with Impala, because HBase tables are not subject to the same kind of
fragmentation from many small insert operations as HDFS tables are.

* You can insert any number of rows at once into an HBase table using the INSERT ... SELECT syntax.

» If more than one inserted row has the same value for the HBase key column, only the last inserted row with that
value is visible to Impala queries. You can take advantage of this fact with INSERT ... VALUES statements to
effectively update rows one at a time, by inserting new rows with the same key values as existing rows. Be aware
that after an INSERT ... SELECT operation copying from an HDFS table, the HBase table might contain

fewer rows than were inserted, if the key column in the source table contained duplicate values.

* Youcannot INSERT OVERWRITE into an HBase table. New rows are always appended.

* When you create an Impala or Hive table that maps to an HBase table, the column order you specify with the
INSERT statement might be different than the order you declare with the CREATE TABLE statement. Behind
the scenes, HBase arranges the columns based on how they are divided into column families. This might cause a
mismatch during insert operations, especially if you use the syntax INSERT INTO hbase table SELECT
* FROM hdfs_table. Before inserting data, verify the column order by issuing a DESCRIBE statement for
the table, and adjust the order of the select list in the INSERT statement.

See Using Impala to Query HBase Tables on page 699 for more details about using Impala with HBase.
Amazon S3 considerations:

In Impala 2.6 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Amazon Simple Storage Service (S3). The syntax of the
DML statements is the same as for any other tables, because the S3 location for tables and partitions is specified by an
s3a:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
S3 using the normal S3 transfer mechanisms instead of Impala DML statements, issue a REFRESH statement for the
table before using Impala to query the S3 data.

Because of differences between S3 and traditional filesystems, DML operations for S3 tables can take longer

than for tables on HDFS. For example, both the LOAD DATA statement and the final stage of the INSERT and
CREATE TABLE AS SELECT statements involve moving files from one directory to another. (In the case of
INSERT and CREATE TABLE AS SELECT, the files are moved from a temporary staging directory to the final
destination directory.) Because S3 does not support a “rename” operation for existing objects, in these cases Impala
actually copies the data files from one location to another and then removes the original files. In Impala 2.6, the
S3_SKIP_INSERT_ STAGING query option provides a way to speed up INSERT statements for S3 tables and
partitions, with the tradeoff that a problem during statement execution could leave data in an inconsistent state. It does

| Impala SQL Language Reference | 307

not apply to INSERT OVERWRITE or LOAD DATA statements. See S3_SKIP INSERT STAGING Query Option
(Impala 2.6 or higher only) on page 375 for details.

See Using Impala with the Amazon S3 Filesystem on page 709 for details about reading and writing S3 data with
Impala.

ADLS considerations:

In Impala 2.9 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Azure Data Lake Store (ADLS). The syntax of the DML
statements is the same as for any other tables, because the ADLS location for tables and partitions is specified by an
adl:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
ADLS using the normal ADLS transfer mechanisms instead of Impala DML statements, issue a REFRESH statement
for the table before using Impala to query the ADLS data.

See Using Impala with the Azure Data Lake Store (ADLS) on page 716 for details about reading and writing ADLS
data with Impala.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the
Cancel button from the Watch page in Hue, or Cancel from the list of in-flight queries (for a particular node) on the
Queries tab in the Impala web UI (port 25000).

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for

the files in the source directory of an INSERT ... SELECT operation, and write permission for all affected
directories in the destination table. (An INSERT operation could write files to multiple different HDFS directories if
the destination table is partitioned.) This user must also have write permission to create a temporary work directory
in the top-level HDFS directory of the destination table. An INSERT OVERWRITE operation does not require write
permission on the original data files in the table, only on the table directories themselves.

Restrictions:

For INSERT operations into CHAR or VARCHAR columns, you must cast all STRING literals or expressions returning
STRING to to a CHAR or VARCHAR type with the appropriate length.

Related startup options:

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those
subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the
same permissions as its parent directory in HDFS, specify the -—insert inherit permissions startup
option for the impalad daemon.

INVALIDATE METADATA Statement

Marks the metadata for one or all tables as stale. Required after a table is created through the Hive shell, before

the table is available for Impala queries. The next time the current Impala node performs a query against a table
whose metadata is invalidated, Impala reloads the associated metadata before the query proceeds. This is a relatively
expensive operation compared to the incremental metadata update done by the REFRESH statement, so in the
common scenario of adding new data files to an existing table, prefer REFRESH rather than INVALIDATE
METADATA. If you are not familiar with the way Impala uses metadata and how it shares the same metastore database
as Hive, see Overview of Impala Metadata and the Metastore on page 18 for background information.

Syntax:

INVALIDATE METADATA [[db name.] table name]

| Impala SQL Language Reference | 308

By default, the cached metadata for all tables is flushed. If you specify a table name, only the metadata for that one
table is flushed. Even for a single table, INVALIDATE METADATA is more expensive than REFRESH, so prefer
REFRESH in the common case where you add new data files for an existing table.

Internal details:

To accurately respond to queries, Impala must have current metadata about those databases and tables that clients
query directly. Therefore, if some other entity modifies information used by Impala in the metastore that Impala and
Hive share, the information cached by Impala must be updated. However, this does not mean that all metadata updates
require an Impala update.

Note:

In Impala 1.2.4 and higher, you can specify a table name with INVALIDATE METADATA after the table is created
in Hive, allowing you to make individual tables visible to Impala without doing a full reload of the catalog metadata.
Impala 1.2.4 also includes other changes to make the metadata broadcast mechanism faster and more responsive,
especially during Impala startup. See New Features in Impala 1.2.4 on page 760 for details.

In Impala 1.2 and higher, a dedicated daemon (catalogd) broadcasts DDL changes made through Impala to all
Impala nodes. Formerly, after you created a database or table while connected to one Impala node, you needed to
issue an INVALIDATE METADATA statement on another Impala node before accessing the new database or table
from the other node. Now, newly created or altered objects are picked up automatically by all Impala nodes. You
must still use the INVALIDATE METADATA technique after creating or altering objects through Hive. See The
Impala Catalog Service on page 15 for more information on the catalog service.

The INVALIDATE METADATA statement is new in Impala 1.1 and higher, and takes over some of the use cases of
the Impala 1.0 REFRESH statement. Because REFRESH now requires a table name parameter, to flush the metadata
for all tables at once, use the INVALIDATE METADATA statement.

Because REFRESH table name only works for tables that the current Impala node is already aware of, when you
create a new table in the Hive shell, enter INVALIDATE METADATA new_ table before you can see the new
table in impala-shell. Once the table is known by Impala, you can issue REFRESH table name after you add
data files for that table.

INVALIDATE METADATA and REFRESH are counterparts: INVALIDATE METADATA waits to reload the
metadata when needed for a subsequent query, but reloads all the metadata for the table, which can be an expensive
operation, especially for large tables with many partitions. REFRESH reloads the metadata immediately, but

only loads the block location data for newly added data files, making it a less expensive operation overall. If data
was altered in some more extensive way, such as being reorganized by the HDFS balancer, use INVALIDATE
METADATA to avoid a performance penalty from reduced local reads. If you used Impala version 1.0, the
INVALIDATE METADATA statement works just like the Impala 1.0 REFRESH statement did, while the Impala 1.1
REFRESH is optimized for the common use case of adding new data files to an existing table, thus the table name
argument is now required.

Usage notes:
A metadata update for an impalad instance is required if:

* A metadata change occurs.
* and the change is made from another impalad instance in your cluster, or through Hive.

» and the change is made to a metastore database to which clients such as the Impala shell or ODBC directly
connect.

A metadata update for an Impala node is not required when you issue queries from the same Impala node where you
ran ALTER TABLE, INSERT, or other table-modifying statement.

Database and table metadata is typically modified by:

* Hive - via ALTER, CREATE, DROP or INSERT operations.
* Impalad - via CREATE TABLE, ALTER TABLE, and INSERT operations.

INVALIDATE METADATA causes the metadata for that table to be marked as stale, and reloaded the next time the
table is referenced. For a huge table, that process could take a noticeable amount of time; thus you might prefer to

| Impala SQL Language Reference | 309

use REFRESH where practical, to avoid an unpredictable delay later, for example if the next reference to the table is
during a benchmark test.

Examples:

The following example shows how you might use the INVALIDATE METADATA statement after creating new tables
(such as SequenceFile or HBase tables) through the Hive shell. Before the INVALIDATE METADATA statement
was issued, Impala would give a “table not found” error if you tried to refer to those table names. The DESCRIBE
statements cause the latest metadata to be immediately loaded for the tables, avoiding a delay the next time those
tables are queried.

[impalad-host:21000] > invalidate metadata;
[impalad-host:21000] > describe tl1;

[impalad-host:21000] > describe t2;

For more examples of using REFRESH and INVALIDATE METADATA with a combination of Impala and Hive
operations, see Switching Back and Forth Between Impala and Hive on page 49.

If you need to ensure that the metadata is up-to-date when you start an impala-shell session, run impala-
shell with the -r or —-—refresh after connect command-line option. Because this operation adds a delay
to the next query against each table, potentially expensive for large tables with many partitions, try to avoid using this
option for day-to-day operations in a production environment.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have execute permissions

for all the relevant directories holding table data. (A table could have data spread across multiple directories, or in
unexpected paths, if it uses partitioning or specifies a LOCAT ION attribute for individual partitions or the entire
table.) Issues with permissions might not cause an immediate error for this statement, but subsequent statements such
as SELECT or SHOW TABLE STATS could fail.

HDFS considerations:

By default, the INVALIDATE METADATA command checks HDFS permissions of the underlying data files and
directories, caching this information so that a statement can be cancelled immediately if for example the impala
user does not have permission to write to the data directory for the table. (This checking does not apply if you have
set the catalogd configuration option --load catalog in background=false.) Impala reports any lack
of write permissions as an INFO message in the log file, in case that represents an oversight. If you change HDFS
permissions to make data readable or writeable by the Impala user, issue another INVALIDATE METADATA to make
Impala aware of the change.

Usage notes:

This example illustrates creating a new database and new table in Hive, then doing an INVALIDATE METADATA
statement in Impala using the fully qualified table name, after which both the new table and the new database are
visible to Impala. The ability to specify INVALIDATE METADATA table name for a table created in Hive is a
new capability in Impala 1.2.4. In earlier releases, that statement would have returned an error indicating an unknown
table, requiring you to do INVALIDATE METADATA with no table name, a more expensive operation that reloaded
metadata for all tables and databases.

S hive

hive> create database new db from hive;

OK - -

Time taken: 4.118 seconds

hive> create table new db from hive.new table from hive (x int);
OK

Time taken: 0.618 seconds

hive> quit;

S impala-shell

[localhost:21000] > show databases like 'new*';

| Impala SQL Language Reference | 310

[localhost:21000] > refresh new db from hive.new table from hive;
ERROR: AnalysisException: Database does not exist: new db from hive
[localhost:21000] > invalidate metadata

new db from hive.new table from hive;

[localhost:21000] > show databases like 'new*';

o +

| name |

o +

| new db from hive |

o +

[localhost:21000] > show tables in new db from hive;
o + - B
| name |

o +

| new table from hive |

B T et +

Amazon S3 considerations:

The REFRESH and INVALIDATE METADATA statements also cache metadata for tables where the data resides in
the Amazon Simple Storage Service (S3). In particular, issue a REFRESH for a table after adding or removing files in
the associated S3 data directory. See Using Impala with the Amazon S3 Filesystem on page 709 for details about
working with S3 tables.

Cancellation: Cannot be cancelled.
Kudu considerations:

Much of the metadata for Kudu tables is handled by the underlying storage layer. Kudu tables have less reliance
on the metastore database, and require less metadata caching on the Impala side. For example, information about
partitions in Kudu tables is managed by Kudu, and Impala does not cache any block locality metadata for Kudu
tables.

The REFRESH and INVALIDATE METADATA statements are needed less frequently for Kudu tables than for
HDFS-backed tables. Neither statement is needed when data is added to, removed, or updated in a Kudu table, even if
the changes are made directly to Kudu through a client program using the Kudu API. Run REFRESH table name
or INVALIDATE METADATA table name for a Kudu table only after making a change to the Kudu table
schema, such as adding or dropping a column, by a mechanism other than Impala.

Related information:

Overview of Impala Metadata and the Metastore on page 18, REFRESH Statement on page 314

LOAD DATA Statement

The LOAD DATA statement streamlines the ETL process for an internal Impala table by moving a data file or all the
data files in a directory from an HDFS location into the Impala data directory for that table.

Syntax:
LOAD DATA INPATH 'hdfs file or directory path' [OVERWRITE] INTO

TABLE tablename
[PARTITION (partcoll=vall, partcolZ=valZ ...)]

When the LOAD DATA statement operates on a partitioned table, it always operates on one partition at a time. Specify
the PARTITION clauses and list all the partition key columns, with a constant value specified for each.

Statement type: DML (but still affected by SYNC DDL query option)

Usage notes:

* The loaded data files are moved, not copied, into the Impala data directory.

* You can specify the HDFS path of a single file to be moved, or the HDFS path of a directory to move all the files
inside that directory. You cannot specify any sort of wildcard to take only some of the files from a directory.

| Impala SQL Language Reference | 311

When loading a directory full of data files, keep all the data files at the top level, with no nested directories
underneath.

* Currently, the Impala LOAD DATA statement only imports files from HDFS, not from the local filesystem. It does
not support the LOCAL keyword of the Hive LOAD DATA statement. You must specify a path, not an hdfs://
URI.

* In the interest of speed, only limited error checking is done. If the loaded files have the wrong file format,
different columns than the destination table, or other kind of mismatch, Impala does not raise any error for the
LOAD DATA statement. Querying the table afterward could produce a runtime error or unexpected results.
Currently, the only checking the LOAD DATA statement does is to avoid mixing together uncompressed and LZO-
compressed text files in the same table.

* When you specify an HDFS directory name as the LOAD DATA argument, any hidden files in that directory (files
whose names start with a .) are not moved to the Impala data directory.

» The operation fails if the source directory contains any non-hidden directories. Prior to Impala 2.5 if the source
directory contained any subdirectory, even a hidden one suchas _impala insert staging, the LOAD
DATA statement would fail. In Impala 2.5 and higher, LOAD DATA ignores hidden subdirectories in the source
directory, and only fails if any of the subdirectories are non-hidden.

* The loaded data files retain their original names in the new location, unless a name conflicts with an existing
data file, in which case the name of the new file is modified slightly to be unique. (The name-mangling is a slight
difference from the Hive LOAD DATA statement, which replaces identically named files.)

* By providing an easy way to transport files from known locations in HDFS into the Impala data directory
structure, the LOAD DATA statement lets you avoid memorizing the locations and layout of HDFS directory tree
containing the Impala databases and tables. (For a quick way to check the location of the data files for an Impala
table, issue the statement DESCRIBE FORMATTED table name.)

» The PARTITION clause is especially convenient for ingesting new data for a partitioned table. As you receive
new data for a time period, geographic region, or other division that corresponds to one or more partitioning
columns, you can load that data straight into the appropriate Impala data directory, which might be nested several
levels down if the table is partitioned by multiple columns. When the table is partitioned, you must specify
constant values for all the partitioning columns.

Complex type considerations:

Because Impala currently cannot create Parquet data files containing complex types (ARRAY, STRUCT, and MAP),

the LOAD DATA statement is especially important when working with tables containing complex type columns.

You create the Parquet data files outside Impala, then use either LOAD DATA, an external table, or HDFS-level file
operations followed by REFRESH to associate the data files with the corresponding table. See Complex Types (Impala
2.3 or higher only) on page 151 for details about using complex types.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC _DDL Query Option on page 377 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

First, we use a trivial Python script to write different numbers of strings (one per line) into files stored in the
doc_demo HDFS user account. (Substitute the path for your own HDFS user account when doing hdfs dfs
operations like these.)

$ random strings.py 1000 | hdfs dfs -put - /user/doc demo/

thousand strings.txt

$ random strings.py 100 | hdfs dfs -put - /user/doc demo/hundred strings.txt
$ random strings.py 10 | hdfs dfs -put - /user/doc demo/ten strings.txt

| Impala SQL Language Reference | 312

Next, we create a table and load an initial set of data into it. Remember, unless you specify a STORED AS clause,
Impala tables default to TEXTFILE format with Ctrl-A (hex 01) as the field delimiter. This example uses a single-
column table, so the delimiter is not significant. For large-scale ETL jobs, you would typically use binary format data
files such as Parquet or Avro, and load them into Impala tables that use the corresponding file format.

[localhost:21000] > create table tl (s string);

[localhost:21000] > load data inpath '/user/doc demo/thousand strings.txt'
into table tl1;

Query finished, fetching results

o +
| summary |
e +
| Loaded 1 file(s) Total files in destination location: 1 |
e +

Returned 1 row(s) in 0.61ls
[kilo2-202-961.cslcloud.internal:21000] > select count (*) from tl;
Query finished, fetching results

fommm== +
| _cO0 |
fommm== +
| 1000 |
Fo———— +

Returned 1 row(s) in 0.67s

[localhost:21000] > load data inpath '/user/doc demo/thousand strings.txt'
into table tl1;

ERROR: AnalysisException: INPATH location '/user/doc demo/

thousand strings.txt' does not exist.

As indicated by the message at the end of the previous example, the data file was moved from its original location.
The following example illustrates how the data file was moved into the Impala data directory for the destination table,
keeping its original filename:

$ hdfs dfs -1s /user/hive/warehouse/load data testing.db/tl

Found 1 items

—rw-r--r-—-— 1 doc _demo doc_ demo 13926 2013-06-26 15:40 /user/hive/
warehouse/load data testing.db/tl/thousand strings.txt

The following example demonstrates the difference between the INTO TABLE and OVERWRITE TABLE clauses.
The table already contains 1000 rows. After issuing the LOAD DATA statement with the INTO TABLE clause, the
table contains 100 more rows, for a total of 1100. After issuing the LOAD DATA statement with the OVERWRITE
INTO TABLE clause, the former contents are gone, and now the table only contains the 10 rows from the just-loaded
data file.

[localhost:21000] > load data inpath '/user/doc demo/hundred strings.txt'
into table tl;
Query finished, fetching results

e +
| summary |
e +
| Loaded 1 file(s) Total files in destination location: 2 |
B et e +

Returned 1 row(s) in 0.24s
[localhost:21000] > select count(*) from tl;
Query finished, fetching results

fommm== +
| cO0 |
e +
| 1100 |
Fommm== +

Returned 1 row(s) in 0.55s

| Impala SQL Language Reference | 313

[localhost:21000] > load data inpath '/user/doc demo/ten strings.txt'
overwrite into table tl;
Query finished, fetching results

B et e +
| summary |
e +
| Loaded 1 file(s) Total files in destination location: 1 |
e +

Returned 1 row(s) in 0.26s
[localhost:21000] > select count (*) from tl;
Query finished, fetching results

s +
| _c0 |
S +
| 10 |
+-———- +

Returned 1 row(s) in 0.62s

Amazon S3 considerations:

In Impala 2.6 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Amazon Simple Storage Service (S3). The syntax of the
DML statements is the same as for any other tables, because the S3 location for tables and partitions is specified by an
s3a:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
S3 using the normal S3 transfer mechanisms instead of Impala DML statements, issue a REFRESH statement for the
table before using Impala to query the S3 data.

Because of differences between S3 and traditional filesystems, DML operations for S3 tables can take longer

than for tables on HDFS. For example, both the LOAD DATA statement and the final stage of the INSERT and
CREATE TABLE AS SELECT statements involve moving files from one directory to another. (In the case of
INSERT and CREATE TABLE AS SELECT, the files are moved from a temporary staging directory to the final
destination directory.) Because S3 does not support a “rename” operation for existing objects, in these cases Impala
actually copies the data files from one location to another and then removes the original files. In Impala 2.6, the

S3 SKIP INSERT STAGING query option provides a way to speed up INSERT statements for S3 tables and
partitions, with the tradeoff that a problem during statement execution could leave data in an inconsistent state. It does
not apply to INSERT OVERWRITE or LOAD DATA statements. See S3 SKIP INSERT STAGING Query Option
(Impala 2.6 or higher only) on page 375 for details.

See Using Impala with the Amazon S3 Filesystem on page 709 for details about reading and writing S3 data with
Impala.

ADLS considerations:

In Impala 2.9 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Azure Data Lake Store (ADLS). The syntax of the DML
statements is the same as for any other tables, because the ADLS location for tables and partitions is specified by an
adl:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
ADLS using the normal ADLS transfer mechanisms instead of Impala DML statements, issue a REFRESH statement
for the table before using Impala to query the ADLS data.

See Using Impala with the Azure Data Lake Store (ADLS) on page 716 for details about reading and writing ADLS
data with Impala.

Cancellation: Cannot be cancelled.
HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and write permissions
for the files in the source directory, and write permission for the destination directory.

Kudu considerations:

The LOAD DATA statement cannot be used with Kudu tables.

| Impala SQL Language Reference | 314

HBase considerations:
The LOAD DATA statement cannot be used with HBase tables.
Related information:

The LOAD DATA statement is an alternative to the TNSERT statement. Use LOAD DATA when you have the data
files in HDFS but outside of any Impala table.

The LOAD DATA statement is also an alternative to the CREATE EXTERNAL TABLE statement. Use LOAD DATA
when it is appropriate to move the data files under Impala control rather than querying them from their original
location. See External Tables on page 214 for information about working with external tables.

REFRESH Statement

To accurately respond to queries, the Impala node that acts as the coordinator (the node to which you are connected
through impala-shell, JDBC, or ODBC) must have current metadata about those databases and tables that are
referenced in Impala queries. If you are not familiar with the way Impala uses metadata and how it shares the same
metastore database as Hive, see Overview of Impala Metadata and the Metastore on page 18 for background
information.

Syntax:

REFRESH [db name.] table name [PARTITION (key coll=vall
[, key colZ=valZ...])]
REFRESH FUNCTIONS db_name

Usage notes:

Use the REFRESH statement to load the latest metastore metadata and block location data for a particular table in
these scenarios:

* After loading new data files into the HDFS data directory for the table. (Once you have set up an ETL pipeline
to bring data into Impala on a regular basis, this is typically the most frequent reason why metadata needs to be
refreshed.)

* After issuing ALTER TABLE, INSERT, LOAD DATA, or other table-modifying SQL statement in Hive.
Note:

In Impala 2.3 and higher, the syntax ALTER TABLE table name RECOVER PARTITIONS is a faster
alternative to REFRESH when the only change to the table data is the addition of new partition directories through
Hive or manual HDFS operations. See ALTER TABLE Statement on page 223 for details.

You only need to issue the REFRESH statement on the node to which you connect to issue queries. The coordinator
node divides the work among all the Impala nodes in a cluster, and sends read requests for the correct HDFS blocks
without relying on the metadata on the other nodes.

REFRESH reloads the metadata for the table from the metastore database, and does an incremental reload of the low-
level block location data to account for any new data files added to the HDFS data directory for the table. It is a low-
overhead, single-table operation, specifically tuned for the common scenario where new data files are added to HDFS.

Only the metadata for the specified table is flushed. The table must already exist and be known to Impala, either
because the CREATE TABLE statement was run in Impala rather than Hive, or because a previous INVALIDATE
METADATA statement caused Impala to reload its entire metadata catalog.

Note:

The catalog service broadcasts any changed metadata as a result of Impala ALTER TABLE, INSERT and LOAD
DATA statements to all Impala nodes. Thus, the REFRESH statement is only required if you load data through Hive or
by manipulating data files in HDFS directly. See The Impala Catalog Service on page 15 for more information on

the catalog service.

Another way to avoid inconsistency across nodes is to enable the SYNC DDL query option before performing a DDL
statement or an INSERT or LOAD DATA.

| Impala SQL Language Reference | 315

The table name is a required parameter. To flush the metadata for all tables, use the INVALTIDATE METADATA
command.

Because REFRESH table name only works for tables that the current Impala node is already aware of, when you
create a new table in the Hive shell, enter INVALIDATE METADATA new_table before you can see the new
table in impala-shell. Once the table is known by Impala, you can issue REFRESH table name after you add
data files for that table.

INVALIDATE METADATA and REFRESH are counterparts: INVALIDATE METADATA waits to reload the
metadata when needed for a subsequent query, but reloads all the metadata for the table, which can be an expensive
operation, especially for large tables with many partitions. REFRESH reloads the metadata immediately, but

only loads the block location data for newly added data files, making it a less expensive operation overall. If data
was altered in some more extensive way, such as being reorganized by the HDFS balancer, use INVALIDATE
METADATA to avoid a performance penalty from reduced local reads. If you used Impala version 1.0, the
INVALIDATE METADATA statement works just like the Impala 1.0 REFRESH statement did, while the Impala 1.1
REFRESH is optimized for the common use case of adding new data files to an existing table, thus the table name
argument is now required.

A metadata update for an impalad instance is required if:

* A metadata change occurs.

+ and the change is made through Hive.

» and the change is made to a metastore database to which clients such as the Impala shell or ODBC directly
connect.

A metadata update for an Impala node is not required after you run ALTER TABLE, INSERT, or other table-
modifying statement in Impala rather than Hive. Impala handles the metadata synchronization automatically through
the catalog service.

Database and table metadata is typically modified by:

* Hive - through ALTER, CREATE, DROP or INSERT operations.
* Impalad - through CREATE TABLE, ALTER TABLE, and INSERT operations. Such changes are propagated to
all Impala nodes by the Impala catalog service.

REFRESH causes the metadata for that table to be immediately reloaded. For a huge table, that process could take a
noticeable amount of time; but doing the refresh up front avoids an unpredictable delay later, for example if the next
reference to the table is during a benchmark test.

Refreshing a single partition:

In Impala 2.7 and higher, the REFRESH statement can apply to a single partition at a time, rather than the whole table.
Include the optional PARTITION (partition spec) clause and specify values for each of the partition key
columns.

The following examples show how to make Impala aware of data added to a single partition, after data is loaded into a
partition's data directory using some mechanism outside Impala, such as Hive or Spark. The partition can be one that
Impala created and is already aware of, or a new partition created through Hive.

impala> create table p (x int) partitioned by (y int);
impala> insert into p (x,y) values (1,2), (2,2), (2,1);
impala> show partitions p;

fm——— fm——— fmm—— t————— +...
|y | #Rows | #Files | Size |.
o ——— o ——— e ———— to———— +.
|1 | =1 |1 | 2B | .
| 2 | -1 | 1 | 4B .
| Total | -1 | 2 | 6B | .
fm——— fm——— fmm—— o +.

-- ... Data is inserted into one of the partitions by some external
mechanism

| Impala SQL Language Reference | 316

beeline> insert into p partition (y = 1) values(1000);

impala> refresh p partition (y=1);
impala> select x from p where y=1;

- +

| x |

- +

| 2 | <- Original data created by Impala

| 1000 | <- Additional data inserted through Beeline
- +

The same applies for tables with more than one partition key column. The PARTITION clause of the REFRESH
statement must include all the partition key columns.

impala> create table p2 (x int) partitioned by (y int, =z int);
impala> insert into p2 (x,y,z) values (0,0,0), (1,2,3), (2,2,3);
impala> show partitions p2;

e e ———— f———— to———— +.
Y | z | #Rows | #Files | Size |

R et R +o———— +.
| 0 | 0 | -1 | 1 | 2B | .
| 2 | 3 | -1 | 1 | 4B | .
| Total | | =1 | 2 | 6B | .
e e ———— f———— to———— +.

-— ... Data is inserted into one of the partitions by some external

mechanism
beeline> insert into p2 partition (y = 2, z = 3) values (1000);

impala> refresh p2 partition (y=2, z=3);
impala> select x from p where y=2 and z = 3;

+————— +

| % |

+o———— +

| 1 | <- Original data created by Impala

| 2 | <- Original data created by Impala

| 1000 | <- Additional data inserted through Beeline
+————— +

The following examples show how specifying a nonexistent partition does not cause any error, and the order of the
partition key columns does not have to match the column order in the table. The partition spec must include all the
partition key columns; specifying an incomplete set of columns does cause an error.

-- Partition doesn't exist.

refresh p2 partition (y=0, z=3);

refresh p2 partition (y=0, z=-1)

-- Key columns specified in a different order than the table definition.
refresh p2 partition (z=1, y=0)

—-— Incomplete partition spec causes an error.

refresh p2 partition (y=0)

ERROR: AnalysisException: Items in partition spec must exactly match the
partition columns in the table definition: default.p2 (1 vs 2)

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC _DDL Query Option on page 377 for details.

| Impala SQL Language Reference | 317

Examples:

The following example shows how you might use the REFRESH statement after manually adding new HDFS data
files to the Impala data directory for a table:

[impalad-host:21000]
[impalad-host:21000]
[impalad-host:21000]

\Y

refresh tl;
refresh t2;
select * from tl;

Vv Vv

4

[impalad-host:21000] select * from t2;

For more examples of using REFRESH and INVALIDATE METADATA with a combination of Impala and Hive
operations, see Switching Back and Forth Between Impala and Hive on page 49.

Related impala-shell options:

The impala-shell option —r issues an INVALIDATE METADATA statement when starting up the shell,
effectively performing a REFRESH of all tables. Due to the expense of reloading the metadata for all tables, the
impala-shell -r option is not recommended for day-to-day use in a production environment. (This option was
mainly intended as a workaround for synchronization issues in very old Impala versions.)

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have execute permissions

for all the relevant directories holding table data. (A table could have data spread across multiple directories, or in
unexpected paths, if it uses partitioning or specifies a LOCATION attribute for individual partitions or the entire
table.) Issues with permissions might not cause an immediate error for this statement, but subsequent statements such
as SELECT or SHOW TABLE STATS could fail.

All HDFS and Sentry permissions and privileges are the same whether you refresh the entire table or a single
partition.

HDFS considerations:

The REFRESH command checks HDFS permissions of the underlying data files and directories, caching this
information so that a statement can be cancelled immediately if for example the impala user does not have
permission to write to the data directory for the table. Impala reports any lack of write permissions as an INFO
message in the log file, in case that represents an oversight. If you change HDFS permissions to make data readable or
writeable by the Impala user, issue another REFRESH to make Impala aware of the change.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Amazon S3 considerations:

The REFRESH and INVALIDATE METADATA statements also cache metadata for tables where the data resides in
the Amazon Simple Storage Service (S3). In particular, issue a REFRESH for a table after adding or removing files in
the associated S3 data directory. See Using Impala with the Amazon S3 Filesystem on page 709 for details about
working with S3 tables.

Cancellation: Cannot be cancelled.
Kudu considerations:

Much of the metadata for Kudu tables is handled by the underlying storage layer. Kudu tables have less reliance
on the metastore database, and require less metadata caching on the Impala side. For example, information about
partitions in Kudu tables is managed by Kudu, and Impala does not cache any block locality metadata for Kudu
tables.

| Impala SQL Language Reference | 318

The REFRESH and INVALIDATE METADATA statements are needed less frequently for Kudu tables than for
HDFS-backed tables. Neither statement is needed when data is added to, removed, or updated in a Kudu table, even if
the changes are made directly to Kudu through a client program using the Kudu API. Run REFRESH table name
or INVALIDATE METADATA table name for a Kudu table only after making a change to the Kudu table
schema, such as adding or dropping a column, by a mechanism other than Impala.

UDF considerations:

In Impala 2.9 and higher, you can refresh the user-defined functions (UDFs) that Impala recognizes, at the database
level, by running the REFRESH FUNCTIONS statement with the database name as an argument. Java-based UDFs
can be added to the metastore database through Hive CREATE FUNCTION statements, and made visible to Impala
by subsequently running REFRESH FUNCTIONS. For example:

CREATE DATABASE shared udfs;
USE shared udfs;
..use CREATE FUNCTION statements in Hive to create some Java-based UDF's
that Impala is not initially aware of...
REFRESH FUNCTIONS shared udfs;
SELECT udf created by hive(cl) FROM

Related information:

Overview of Impala Metadata and the Metastore on page 18, INVALIDATE METADATA Statement on page
307

REVOKE Statement (Impala 2.0 or higher only)

The REVOKE statement revokes roles or privileges on a specified object from groups. Only Sentry administrative
users can revoke the role from a group. The revocation has a cascading effect. For example, revoking the ALL
privilege on a database also revokes the same privilege for all the tables in that database.

Syntax:

REVOKE ROLE role name FROM GROUP group name

REVOKE privilege ON object type object name
FROM [ROLE] role name

privilege ::= SELECT | SELECT (column name) | INSERT | ALL
object type ::= TABLE | DATABASE | SERVER | URI

Typically, the object name is an identifier. For URIs, it is a string literal.

The ability to grant or revoke SELECT privilege on specific columns is available in Impala 2.3 and higher. See the
documentation for Apache Sentry for details.

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this
statement.

Compatibility:

* The Impala GRANT and REVOKE statements are available in Impala 2.0 and higher.

* InImpala 1.4 and higher, Impala makes use of any roles and privileges specified by the GRANT and REVOKE
statements in Hive, when your system is configured to use the Sentry service instead of the file-based policy
mechanism.

» The Impala GRANT and REVOKE statements do not require the ROLE keyword to be repeated before each role
name, unlike the equivalent Hive statements.

» Currently, each Impala GRANT or REVOKE statement can only grant or revoke a single privilege to or from a
single role.

| Impala SQL Language Reference | 319

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Kudu considerations:

Access to Kudu tables must be granted to and revoked from roles as usual. Only users with ALL privileges on
SERVER can create external Kudu tables. Currently, access to a Kudu table is “all or nothing”: enforced at the table
level rather than the column level, and applying to all SQL operations rather than individual statements such as
INSERT. Because non-SQL APIs can access Kudu data without going through Sentry authorization, currently the
Sentry support is considered preliminary and subject to change.

Related information:

Enabling Sentry Authorization for Impala on page 86, GRANT Statement (Impala 2.0 or higher only) on page
297 CREATE ROLE Statement (Impala 2.0 or higher only) on page 253, DROP ROLE Statement (Impala 2.0 or
higher only) on page 286, SHOW Statement on page 378

SELECT Statement

The SELECT statement performs queries, retrieving data from one or more tables and producing result sets consisting
of rows and columns.

The Impala TNSERT statement also typically ends with a SELECT statement, to define data to copy from one table to
another.

Syntax:

[WITH name AS (select expression) [, ...]]
SELECT
[ALL | DISTINCT]
[STRAIGHT_JOIN]
expression [, expression ...]
FROM table reference [, table reference ...]
[[FULL | [EEFT | RIGHT] INNER_I [LEFT | RIGHT] OUTER | [LEFT | RIGHT] SEMI |
[LEFT | RIGHT] ANTI | CROSS]
JOIN table reference
[ON join equality clauses | USING (coll[, col2 ...]]
WHERE conditions
GROUP BY { column | expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

[, -..1 1}
HAVING conditions

GROUP BY { column | expression [ASC | DESC] [, ...] }
LIMIT expression [OFFSET expression]
[UNION [ALL] select statement] ...]

Impala SELECT queries support:

+ SQL scalar data types: BOOLEAN, TINYINT, SMALLINT, INT, BIGINT, DECIMAL FLOAT, DOUBLE,
TIMESTAMP, STRING, VARCHAR, CHAR.

» The complex data types ARRAY, STRUCT, and MAP, are available in Impala 2.3 and higher. Queries involving
these types typically involve special qualified names using dot notation for referring to the complex column fields,
and join clauses for bringing the complex columns into the result set. See Complex Types (Impala 2.3 or higher
only) on page 151 for details.

* An optional WITH clause before the SELECT keyword, to define a subquery whose name or column names can
be referenced from later in the main query. This clause lets you abstract repeated clauses, such as aggregation
functions, that are referenced multiple times in the same query.

* By default, one DISTINCT clause per query. See DISTINCT Operator on page 341 for details. See
APPX COUNT DISTINCT Query Option (Impala 2.0 or higher only) on page 348 for a query option to allow
multiple COUNT (DISTINCT) impressions in the same query.

| Impala SQL Language Reference | 320

» Subqueries in a FROM clause. In Impala 2.0 and higher, subqueries can also go in the WHERE clause, for example
with the IN (), EXISTS, and NOT EXISTS operators.

* WHERE, GROUP BY, HAVING clauses.

* ORDER BY. Prior to Impala 1.4.0, Impala required that queries using an ORDER BY clause also include a LTMIT
clause. In Impala 1.4.0 and higher, this restriction is lifted; sort operations that would exceed the Impala memory
limit automatically use a temporary disk work area to perform the sort.

» Impala supports a wide variety of JOIN clauses. Left, right, semi, full, and outer joins are supported in all Impala
versions. The CROSS JOIN operator is available in Impala 1.2.2 and higher. During performance tuning, you can
override the reordering of join clauses that Impala does internally by including the keyword STRAIGHT JOIN
immediately after the SELECT keyword

See Joins in Impala SELECT Statements on page 321 for details and examples of join queries.
e UNION ALL.
e LIMIT.
» External tables.
» Relational operators such as greater than, less than, or equal to.
» Arithmetic operators such as addition or subtraction.
» Logical/Boolean operators AND, OR, and NOT. Impala does not support the corresponding symbols &&, | |, and !.

* Common SQL built-in functions such as COUNT, SUM, CAST, LIKE, IN, BETWEEN, and COALESCE. Impala
specifically supports built-ins described in Impala Built-In Functions on page 402.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions . tmp or . copying are not considered part of the Impala table. The suffix matching is case-insensitive,
so for example Impala ignores both . copying and . COPYING suffixes.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Amazon S3 considerations:

In Impala 2.6 and higher, Impala queries are optimized for files stored in Amazon S3. For Impala tables that use

the file formats Parquet, RCFile, SequenceFile, Avro, and uncompressed text, the setting £s.s3a.block.size
in the core-site.xml configuration file determines how Impala divides the I/O work of reading the data files.
This configuration setting is specified in bytes. By default, this value is 33554432 (32 MB), meaning that Impala
parallelizes S3 read operations on the files as if they were made up of 32 MB blocks. For example, if your S3 queries
primarily access Parquet files written by MapReduce or Hive, increase fs.s3a.block.size to 134217728 (128
MB) to match the row group size of those files. If most S3 queries involve Parquet files written by Impala, increase
fs.s3a.block.size to 268435456 (256 MB) to match the row group size produced by Impala.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the
Cancel button from the Watch page in Hue, or Cancel from the list of in-flight queries (for a particular node) on the
Queries tab in the Impala web UI (port 25000).

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permissions for
the files in all applicable directories in all source tables, and read and execute permissions for the relevant data
directories. (A SELECT operation could read files from multiple different HDFS directories if the source table is
partitioned.) If a query attempts to read a data file and is unable to because of an HDFS permission error, the query
halts and does not return any further results.

Related information:

The SELECT syntax is so extensive that it forms its own category of statements: queries. The other major
classifications of SQL statements are data definition language (see DDL Statements on page 221) and data
manipulation language (see DML Statements on page 222).

| Impala SQL Language Reference | 321

Because the focus of Impala is on fast queries with interactive response times over huge data sets, query performance
and scalability are important considerations. See Tuning Impala for Performance on page 591 and Scalability
Considerations for Impala on page 636 for details.

Joins in Impala SELECT Statements

A join query is a SELECT statement that combines data from two or more tables, and returns a result set containing
items from some or all of those tables. It is a way to cross-reference and correlate related data that is organized into
multiple tables, typically using identifiers that are repeated in each of the joined tables.

Syntax:

Impala supports a wide variety of JOIN clauses. Left, right, semi, full, and outer joins are supported in all Impala
versions. The CROSS JOIN operator is available in Impala 1.2.2 and higher. During performance tuning, you can
override the reordering of join clauses that Impala does internally by including the keyword STRAIGHT JOIN
immediately after the SELECT keyword

SELECT select list FROM
table or subqueryl [INNER] JOIN table or subqueryZ2 |
table or subqueryl {LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]}
JOIN table or subqueryZ2 |
table or subqueryl {LEFT | RIGHT} SEMI JOIN table or subqueryZ2 |
table or subqueryl {LEFT | RIGHT} ANTI JOIN table or subqueryZ2 |
[ON coll = col2 [AND col3 = col4 ...] |
USING (coll [, col2 ...])]
[other join clause ...]
[WHERE where clauses]

SELECT select list FROM
table or subqueryl, table or subquery2 [, table or subquery3 ...]
[other join clause ...]
WHERE B
coll = col2 [AND col3 = col4d ...]

SELECT select list FROM
table or subqueryl CROSS JOIN table or subqueryZ
[other join clause ...]

[WHERE where clauses]

SQL-92 and SQL-89 Joins:

Queries with the explicit JOIN keywords are known as SQL-92 style joins, referring to the level of the SQL standard
where they were introduced. The corresponding ON or USING clauses clearly show which columns are used as the
join keys in each case:

SELECT tl.cl, t2.c2 FROM tl1 JOIN t2
ON tl.id = t2.id and tl.type flag = t2.type_ flag
WHERE tl.cl > 100;

SELECT tl.cl, t2.c2 FROM tl JOIN t2
USING (id, type flag)
WHERE tl.cl > 100;

The ON clause is a general way to compare columns across the two tables, even if the column names are different.
The USING clause is a shorthand notation for specifying the join columns, when the column names are the same in
both tables. You can code equivalent WHERE clauses that compare the columns, instead of ON or USING clauses, but
that practice is not recommended because mixing the join comparisons with other filtering clauses is typically less
readable and harder to maintain.

Queries with a comma-separated list of tables and subqueries are known as SQL-89 style joins. In these queries,
the equality comparisons between columns of the joined tables go in the WHERE clause alongside other kinds of

| Impala SQL Language Reference | 322

comparisons. This syntax is easy to learn, but it is also easy to accidentally remove a WHERE clause needed for the
join to work correctly.

SELECT tl.cl, t2.c2 FROM tl1, t2
WHERE
tl.id = t2.id AND tl.type flag = t2.type flag
AND tl.cl > 100;

Self-joins:

Impala can do self-joins, for example to join on two different columns in the same table to represent parent-child
relationships or other tree-structured data. There is no explicit syntax for this; just use the same table name for both
the left-hand and right-hand table, and assign different table aliases to use when referring to the fully qualified column
names:

-— Combine fields from both parent and child rows.
SELECT lhs.id, rhs.parent, lhs.cl, rhs.c2 FROM tree data lhs, tree data rhs
WHERE lhs.id = rhs.parent;

Cartesian joins:

To avoid producing huge result sets by mistake, Impala does not allow Cartesian joins of the form:

SELECT ... FROM tl JOIN t2;
SELECT ... FROM tl, t2;

If you intend to join the tables based on common values, add ON or WHERE clauses to compare columns across the
tables. If you truly intend to do a Cartesian join, use the CROSS JOIN keyword as the join operator. The CROSS
JOIN form does not use any ON clause, because it produces a result set with all combinations of rows from the left-
hand and right-hand tables. The result set can still be filtered by subsequent WHERE clauses. For example:

SELECT ... FROM tl CROSS JOIN t2;
SELECT ... FROM tl CROSS JOIN t2 WHERE tests on non join columns;

Inner and outer joins:

An inner join is the most common and familiar type: rows in the result set contain the requested columns from the
appropriate tables, for all combinations of rows where the join columns of the tables have identical values. If a
column with the same name occurs in both tables, use a fully qualified name or a column alias to refer to the column
in the select list or other clauses. Impala performs inner joins by default for both SQL-89 and SQL-92 join syntax:

-— The following 3 forms are all equivalent.

SELECT tl.id, cl, c2 FROM tl, t2 WHERE tl.id = t2.id;

SELECT tl1.id, cl, c2 FROM tl JOIN t2 ON tl.id = t2.id;
SELECT tl1.id, cl, c2 FROM tl INNER JOIN t2 ON tl.id = t2.id;

An outer join retrieves all rows from the left-hand table, or the right-hand table, or both; wherever there is no
matching data in the table on the other side of the join, the corresponding columns in the result set are set to NULL. To
perform an outer join, include the OUTER keyword in the join operator, along with either LEFT, RIGHT, or FULL:

SELECT * FROM tl LEFT OUTER JOIN t2 ON tl.id = t2.id;
SELECT * FROM tl RIGHT OUTER JOIN t2 ON tl.id = t2.id;
SELECT * FROM tl FULL OUTER JOIN t2 ON tl.id = t2.id;

For outer joins, Impala requires SQL-92 syntax; that is, the JOIN keyword instead of comma-separated table names.
Impala does not support vendor extensions such as (+) or *= notation for doing outer joins with SQL-89 query
syntax.

Equijoins and Non-Equijoins:

| Impala SQL Language Reference | 323

By default, Impala requires an equality comparison between the left-hand and right-hand tables, either through ON,
USING, or WHERE clauses. These types of queries are classified broadly as equijoins. Inner, outer, full, and semi joins
can all be equijoins based on the presence of equality tests between columns in the left-hand and right-hand tables.

In Impala 1.2.2 and higher, non-equijoin queries are also possible, with comparisons such as ! = or < between the join
columns. These kinds of queries require care to avoid producing huge result sets that could exceed resource limits.
Once you have planned a non-equijoin query that produces a result set of acceptable size, you can code the query
using the CROSS JOIN operator, and add the extra comparisons in the WHERE clause:

SELECT * FROM tl CROSS JOIN t2 WHERE tl.total > t2.maximum price;

In Impala 2.3 and higher, additional non-equijoin queries are possible due to the addition of nested loop joins. These
queries typically involve SEMI JOIN, ANTI JOIN, or FULL OUTER JOIN clauses. Impala sometimes also uses
nested loop joins internally when evaluating OUTER JOIN queries involving complex type columns. Query phases
involving nested loop joins do not use the spill-to-disk mechanism if they exceed the memory limit. Impala decides
internally when to use each join mechanism; you cannot specify any query hint to choose between the nested loop
join or the original hash join algorithm.

SELECT * FROM tl LEFT OUTER JOIN t2 ON tl.int col < t2.int col;

Semi-joins:

Semi-joins are a relatively rarely used variation. With the left semi-join, only data from the left-hand table is returned,
for rows where there is matching data in the right-hand table, based on comparisons between join columns in ON or
WHERE clauses. Only one instance of each row from the left-hand table is returned, regardless of how many matching
rows exist in the right-hand table. A right semi-join (available in Impala 2.0 and higher) reverses the comparison and
returns data from the right-hand table.

SELECT tl.cl, tl.c2, tl.c2 FROM tl LEFT SEMI JOIN t2 ON tl.id = t2.id;

Natural joins (not supported):

Impala does not support the NATURAL JOIN operator, again to avoid inconsistent or huge result sets. Natural joins
do away with the ON and USING clauses, and instead automatically join on all columns with the same names in the
left-hand and right-hand tables. This kind of query is not recommended for rapidly evolving data structures such

as are typically used in Hadoop. Thus, Impala does not support the NATURAL JOIN syntax, which can produce
different query results as columns are added to or removed from tables.

If you do have any queries that use NATURAL JOIN, make sure to rewrite them with explicit USING clauses,
because Impala could interpret the NATURAL keyword as a table alias:

-— 'NATURAL' is interpreted as an alias for 'tl' and Impala attempts an
inner join,

—-- resulting in an error because inner joins require explicit comparisons
between columns.

SELECT tl.cl, t2.c2 FROM tl NATURAL JOIN t2;

ERROR: NotImplementedException: Join with 't2' requires at least one
conjunctive equality predicate.
To perform a Cartesian product between two tables, use a CROSS JOIN.

-- If you expect the tables to have identically named columns with matching
values,

-- list the corresponding column names in a USING clause.

SELECT tl.cl, t2.c2 FROM tl JOIN t2 USING (id, type flag, name, address);

Anti-joins (Impala 2.0 and higher only):

Impala supports the LEFT ANTI JOIN and RIGHT ANTI JOIN clauses in Impala 2.0 and higher. The LEFT or
RIGHT keyword is required for this kind of join. For LEFT ANTI JOIN, this clause returns those values from the
left-hand table that have no matching value in the right-hand table. RIGHT ANTI JOIN reverses the comparison

| Impala SQL Language Reference | 324

and returns values from the right-hand table. You can express this negative relationship either through the ANT I
JOIN clause or through a NOT EXISTS operator with a subquery.

Complex type considerations:

When referring to a column with a complex type (STRUCT, ARRAY, or MAP) in a query, you use join notation

to “unpack” the scalar fields of the struct, the elements of the array, or the key-value pairs of the map. (The join
notation is not required for aggregation operations, such as COUNT () or SUM () for array elements.) Because Impala
recognizes which complex type elements are associated with which row of the result set, you use the same syntax as
for a cross or cartesian join, without an explicit join condition. See Complex Types (Impala 2.3 or higher only) on
page 151 for details about Impala support for complex types.

Usage notes:
You typically use join queries in situations like these:

* When related data arrives from different sources, with each data set physically residing in a separate table. For
example, you might have address data from business records that you cross-check against phone listings or census
data.

Note: Impala can join tables of different file formats, including Impala-managed tables and HBase tables. For
example, you might keep small dimension tables in HBase, for convenience of single-row lookups and updates,
and for the larger fact tables use Parquet or other binary file format optimized for scan operations. Then, you can
issue a join query to cross-reference the fact tables with the dimension tables.

* When data is normalized, a technique for reducing data duplication by dividing it across multiple tables. This kind
of organization is often found in data that comes from traditional relational database systems. For example, instead
of repeating some long string such as a customer name in multiple tables, each table might contain a numeric
customer ID. Queries that need to display the customer name could “join” the table that specifies which customer
ID corresponds to which name.

* When certain columns are rarely needed for queries, so they are moved into separate tables to reduce overhead for
common queries. For example, a biography field might be rarely needed in queries on employee data. Putting
that field in a separate table reduces the amount of I/O for common queries on employee addresses or phone
numbers. Queries that do need the biography column can retrieve it by performing a join with that separate
table.

* In Impala 2.3 or higher, when referring to complex type columns in queries. See Complex Types (Impala 2.3 or
higher only) on page 151 for details.

When comparing columns with the same names in ON or WHERE clauses, use the fully qualified names such as
db_name. table name, or assign table aliases, column aliases, or both to make the code more compact and
understandable:

select tl.cl as first id, t2.c2 as second id from
tl join t2 on first id = second id;

select fact.custno, dimension.custno from
customer data as fact join customer address as dimension
using (custno)

Note:

Performance for join queries is a crucial aspect for Impala, because complex join queries are resource-intensive
operations. An efficient join query produces much less network traffic and CPU overhead than an inefficient one. For
best results:

* Make sure that both table and column statistics are available for all the tables involved in a join query, and
especially for the columns referenced in any join conditions. Impala uses the statistics to automatically deduce an
efficient join order. Use SHOW TABLE STATS table name and SHOW COLUMN STATS table name
to check if statistics are already present. Issue the COMPUTE STATS table name for a nonpartitioned table,
or (in Impala 2.1.0 and higher) COMPUTE INCREMENTAL STATS table name for a partitioned table,
to collect the initial statistics at both the table and column levels, and to keep the statistics up to date after any
substantial INSERT or LOAD DATA operations.

| Impala SQL Language Reference | 325

+ Iftable or column statistics are not available, join the largest table first. You can check the existence of statistics
with the SHOW TABLE STATS table nameand SHOW COLUMN STATS table name statements.

+ Iftable or column statistics are not available, join subsequent tables according to which table has the most
selective filter, based on overall size and WHERE clauses. Joining the table with the most selective filter results in
the fewest number of rows being returned.

For more information and examples of performance for join queries, see Performance Considerations for Join
Queries on page 594.

To control the result set from a join query, include the names of corresponding column names in both tables in an ON
or USING clause, or by coding equality comparisons for those columns in the WHERE clause.

[localhost:21000] > select c last name, ca city from customer join
customer address where c customer sk = ca address_sk;

o —— o — +
| ¢ last name | ca city |
e o +
| Lewis | Fairfield

| Moses | Fairview

| Hamilton | Pleasant Valley |
| White | Oak Ridge

| Moran | Glendale

| Richards | Lakewood

| Day | Lebanon

| Painter | Oak Hill |
| Bentley | Greenfield |
| Jones | Stringtown
o —— o +

One potential downside of joins is the possibility of excess resource usage in poorly constructed queries. Impala
imposes restrictions on join queries to guard against such issues. To minimize the chance of runaway queries on
large data sets, Impala requires every join query to contain at least one equality predicate between the columns of the
various tables. For example, if T1 contains 1000 rows and T2 contains 1,000,000 rows, a query SELECT columns
FROM tl JOIN t2 could return up to 1 billion rows (1000 * 1,000,000); Impala requires that the query include a
clausesuchas ON tl.cl = t2.c2 or WHERE tl.cl = t2.c2.

Because even with equality clauses, the result set can still be large, as we saw in the previous example, you might use
a LIMIT clause to return a subset of the results:

[localhost:21000] > select c_last name, ca city from customer,
customer address where c customer sk = ca address_ sk limit 10;

o ———— o — +
| ¢ last name | ca city |
T T_____ T __ ¥
| Lewis | Fairfield

| Moses | Fairview

| Hamilton | Pleasant Valley |
| White | Oak Ridge

| Moran | Glendale

| Sharp | Lakeview

Wiles	Farmington
Shipman	Union
Gilbert	New Hope
Brunson	Martinsville
o —— o +

Returned 10 row(s) in 0.63s

| Impala SQL Language Reference | 326

Or you might use additional comparison operators or aggregation functions to condense a large result set into a
smaller set of values:

[localhost:21000] > -- Find the names of customers who live in one
particular town.
[localhost:21000] > select distinct c_last name from customer,
customer address where

c_customer sk = ca_ address sk

and ca city = "Green Acres";

| Hensley

| Pearson

| Mayer

| Montgomery
| Ricks

| Barrett
| Price

| Hill

| Hansen
| Meeks

Returned 332 row(s) in 0.97s

[localhost:21000] > -- See how many different customers in this town have
names starting with "A".
[localhost:21000] > select count(distinct c_last name) from customer,
customer address where

c_customer sk = ca_ address sk

and ca city = "Green Acres"

and substr (c last name,1,1) = "A";
e _ o T _____ n
| count (distinct ¢ last name) |
e T T _____ :
| 12 |
e +

Returned 1 row(s) in 1.00s

Because a join query can involve reading large amounts of data from disk, sending large amounts of data across
the network, and loading large amounts of data into memory to do the comparisons and filtering, you might do
benchmarking, performance analysis, and query tuning to find the most efficient join queries for your data set,
hardware capacity, network configuration, and cluster workload.

The two categories of joins in Impala are known as partitioned joins and broadcast joins. If inaccurate table
or column statistics, or some quirk of the data distribution, causes Impala to choose the wrong mechanism for
a particular join, consider using query hints as a temporary workaround. For details, see Query Hints in Impala
SELECT Statements on page 342.

Handling NULLSs in Join Columns:

By default, join key columns do not match if either one contains a NULL value. To treat such columns as equal if
both contain NULL, you can use an expressionsuchasA = B OR (A IS NULL AND B IS NULL).In Impala
2.5 and higher, the <=> operator (shorthand for IS NOT DISTINCT FROM) performs the same comparison in a
concise and efficient form. The <=> operator is more efficient in for comparing join keys in a NULL-safe manner,
because the operator can use a hash join while the OR expression cannot.

Examples:

The following examples refer to these simple tables containing small sets of integers:

[localhost:21000] > create table tl (x int);

| Impala SQL Language Reference | 327

[localhost:21000] > insert into tl wvalues (1), (2), (3), (4), (5), (6);

[localhost:21000] > create table t2 (y int);
[localhost:21000] > insert into t2 wvalues (2), (4), (06);

[localhost:21000] > create table t3 (z int);
[localhost:21000] > insert into t3 wvalues (1), (3), (5);

The following example demonstrates an anti-join, returning the values from T1 that do not exist in T2 (in this case,
the odd numbers 1, 3, and 5):

[localhost:21000] > select x from tl left anti join t2 on (tl.x = t2.y);
+———
| x|
+———
[1 |
| 3 |
| 5 |
+———

Related information:

See these tutorials for examples of different kinds of joins:

* Cross Joins and Cartesian Products with the CROSS JOIN Operator on page 50

ORDER BY Clause

The familiar ORDER BY clause of a SELECT statement sorts the result set based on the values from one or more
columns.

For distributed queries, this is a relatively expensive operation, because the entire result set must be produced and
transferred to one node before the sorting can happen. This can require more memory capacity than a query without
ORDER BY. Even if the query takes approximately the same time to finish with or without the ORDER BY clause,
subjectively it can appear slower because no results are available until all processing is finished, rather than results
coming back gradually as rows matching the WHERE clause are found. Therefore, if you only need the first N
results from the sorted result set, also include the LIMIT clause, which reduces network overhead and the memory
requirement on the coordinator node.

Note:

In Impala 1.4.0 and higher, the LIMIT clause is now optional (rather than required) for queries that use the ORDER
BY clause. Impala automatically uses a temporary disk work area to perform the sort if the sort operation would
otherwise exceed the Impala memory limit for a particular DataNode.

Syntax:

The full syntax for the ORDER BY clause is:

ORDER BY col ref [, col ref ...] [ASC | DESC] [NULLS FIRST | NULLS LAST]

col ref ::= column name | integer literal

Although the most common usage is ORDER BY column name, you can also specify ORDER BY 1 to sort by the
first column of the result set, ORDER BY 2 to sort by the second column, and so on. The number must be a numeric
literal, not some other kind of constant expression. (If the argument is some other expression, even a STRING value,
the query succeeds but the order of results is undefined.)

ORDER BY column number can only be used when the query explicitly lists the columns in the SELECT list, not
with SELECT * queries.

Ascending and descending sorts:

| Impala SQL Language Reference | 328

The default sort order (the same as using the ASC keyword) puts the smallest values at the start of the result set, and
the largest values at the end. Specifying the DESC keyword reverses that order.

Sort order for NULL values:

See NULL on page 185 for details about how NULL values are positioned in the sorted result set, and how to use
the NULLS FIRST and NULLS LAST clauses. (The sort position for NULL values in ORDER BY ... DESC
queries is changed in Impala 1.2.1 and higher to be more standards-compliant, and the NULLS FIRST and NULLS
LAST keywords are new in Impala 1.2.1.)

Prior to Impala 1.4.0, Impala required any query including an ORDER BY clause to also use a LTMIT clause. In
Impala 1.4.0 and higher, the LIMIT clause is optional for ORDER BY queries. In cases where sorting a huge result
set requires enough memory to exceed the Impala memory limit for a particular node, Impala automatically uses a
temporary disk work area to perform the sort operation.

Complex type considerations:

In Impala 2.3 and higher, the complex data types STRUCT, ARRAY, and MAP are available. These columns cannot
be referenced directly in the ORDER BY clause. When you query a complex type column, you use join notation
to “unpack” the elements of the complex type, and within the join query you can include an ORDER BY clause to
control the order in the result set of the scalar elements from the complex type. See Complex Types (Impala 2.3 or
higher only) on page 151 for details about Impala support for complex types.

The following query shows how a complex type column cannot be directly used in an ORDER BY clause:

CREATE TABLE games (id BIGINT, score ARRAY <BIGINT>) STORED AS PARQUET;
..use LOAD DATA to load externally created Parquet files into the table...

SELECT id FROM games ORDER BY score DESC;

ERROR: AnalysisException: ORDER BY expression 'score' with complex type
'ARRAY<BIGINT>' is not supported.

Examples:

The following query retrieves the user ID and score, only for scores greater than one million, with the highest scores
for each user listed first. Because the individual array elements are now represented as separate rows in the result
set, they can be used in the ORDER BY clause, referenced using the I TEM pseudocolumn that represents each array
element.

SELECT id, item FROM games, games.score
WHERE item > 1000000
ORDER BY id, item desc;

The following queries use similar ORDER BY techniques with variations of the GAMES table, where the complex type
is an ARRAY containing STRUCT or MAP elements to represent additional details about each game that was played.
For an array of structures, the fields of the structure are referenced as ITEM. field name. For an array of maps,
the keys and values within each array element are referenced as ITEM.KEY and ITEM. VALUE.

CREATE TABLE games2 (id BIGINT, play array < struct <game name: string,
score: BIGINT, high score: boolean> >) STORED AS PARQUET
...use LOAD DATA to load externally created Parquet files into the table...
SELECT id, item.game name, item.score FROM games2, games2.play
WHERE item.score > 1000000
ORDER BY id, item.score DESC;

CREATE TABLE games3 (id BIGINT, play ARRAY < MAP <STRING, BIGINT> >) STORED
AS PARQUET;
...use LOAD DATA to load externally created Parquet files into the table...
SELECT id, info.key AS k, info.value AS v from games3, games3.play AS plays,
games3.play.item AS info
WHERE info.KEY = 'score' AND info.VALUE > 1000000
ORDER BY id, info.value desc;

| Impala SQL Language Reference | 329

Usage notes:

Although the LIMIT clause is now optional on ORDER BY queries, if your query only needs some number of rows
that you can predict in advance, use the LIMIT clause to reduce unnecessary processing. For example, if the query
has a clause LIMIT 10, each data node sorts its portion of the relevant result set and only returns 10 rows to the
coordinator node. The coordinator node picks the 10 highest or lowest row values out of this small intermediate result
set.

If an ORDER BY clause is applied to an early phase of query processing, such as a subquery or a view definition,
Impala ignores the ORDER BY clause. To get ordered results from a subquery or view, apply an ORDER BY clause to
the outermost or final SELECT level.

ORDER BY is often used in combination with LIMIT to perform “top-N” queries:

SELECT user id AS "Top 10 Visitors", SUM(page views) FROM web stats
GROUP BY page views, user id
ORDER BY SUM (page views) DESC LIMIT 10;

ORDER BY is sometimes used in combination with OFFSET and LIMIT to paginate query results, although it is
relatively inefficient to issue multiple queries like this against the large tables typically used with Impala:

SELECT page title AS "Page 1 of search results", page url FROM
search content
WHERE LOWER (page title) LIKE '$game%')
ORDER BY page title LIMIT 10 OFFSET O;

SELECT page_ title AS "Page 2 of search results", page url FROM
search content
WHERE LOWER (page title) LIKE '%game%')
ORDER BY page title LIMIT 10 OFFSET 10;

SELECT page title AS "Page 3 of search results", page url FROM
search content
WHERE LOWER (page title) LIKE '%game%')
ORDER BY page title LIMIT 10 OFFSET 20;

Internal details:

Impala sorts the intermediate results of an ORDER BY clause in memory whenever practical. In a cluster of N
DataNodes, each node sorts roughly 1/Nth of the result set, the exact proportion varying depending on how the data
matching the query is distributed in HDFS.

If the size of the sorted intermediate result set on any DataNode would cause the query to exceed the Impala memory
limit, Impala sorts as much as practical in memory, then writes partially sorted data to disk. (This technique is known
in industry terminology as “external sorting” and “spilling to disk™.) As each 8 MB batch of data is written to disk,
Impala frees the corresponding memory to sort a new 8 MB batch of data. When all the data has been processed,

a final merge sort operation is performed to correctly order the in-memory and on-disk results as the result set is
transmitted back to the coordinator node. When external sorting becomes necessary, Impala requires approximately
60 MB of RAM at a minimum for the buffers needed to read, write, and sort the intermediate results. If more RAM is
available on the DataNode, Impala will use the additional RAM to minimize the amount of disk I/O for sorting.

This external sort technique is used as appropriate on each DataNode (possibly including the coordinator node) to sort
the portion of the result set that is processed on that node. When the sorted intermediate results are sent back to the
coordinator node to produce the final result set, the coordinator node uses a merge sort technique to produce a final
sorted result set without using any extra resources on the coordinator node.

Configuration for disk usage:

By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored

in the directory /tmp/impala-scratch . These files are removed when the operation finishes. (Multiple
concurrent queries can perform operations that use the “spill to disk” technique, without any name conflicts

for these temporary files.) You can specify a different location by starting the impalad daemon with the —-
scratch dirs="path to directory" configuration option. You can specify a single directory, or a
comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You might

| Impala SQL Language Reference | 330

specify different directory paths for different hosts, depending on the capacity and speed of the available storage
devices. In Impala 2.3 or higher, Impala successfully starts (with a warning Impala successfully starts (with a warning
written to the log) if it cannot create or read and write files in one of the scratch directories. If there is less than 1 GB
free on the filesystem where that directory resides, Impala still runs, but writes a warning message to its log. If Impala
encounters an error reading or writing files in a scratch directory during a query, Impala logs the error and the query
fails.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement,
any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation
potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data
being stored in sorted order is impractical.

An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to sort the
entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view. You can still
make a simple “top 10” report by combining the ORDER BY and LIMIT clauses in the same view definition:

[localhost:21000] > create table unsorted (x bigint);

[localhost:21000] > insert into unsorted values (1), (9), (3), (7), (5),
(8), (4), (6), (2);

[localhost:21000] > create view sorted view as select x from unsorted order
by x;

[localhost:21000] > select x from sorted view; —-- ORDER BY clause in view
has no effect.

+———+

| x|

+———+

NoYyd OO JW W0

|
|
|
|
|
|
|
| |

+-——+

[localhost:21000] > select x from sorted view order by x; -- View query
requires ORDER BY at outermost level.

+-——+

O oo Jo U Wb

|

|

|

|

|

|

|

|
Fp=m=dF
[localhost:21000] > create view top 3 view as select x from unsorted order
by x limit 3;

[localhost:21000] > select x from top 3 view; -- ORDER BY and LIMIT together
in view definition are preserved.

Fpoo=dr

I x|

Fom==dt

1

I 2 |

I3 1

Fpoo=dr

| Impala SQL Language Reference | 331

With the lifting of the requirement to include a LIMIT clause in every ORDER BY query (in Impala 1.4 and higher):

* Now the use of scratch disk space raises the possibility of an “out of disk space” error on a particular DataNode,
as opposed to the previous possibility of an “out of memory” error. Make sure to keep at least 1 GB free on the
filesystem used for temporary sorting work.

« The query options DEFAULT ORDER BY LIMIT and ABORT ON DEFAULT LIMIT EXCEEDED, which
formerly controlled the behavior of ORDER BY queries with no limit specified, are now ignored.

In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries,
and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater
than all other values for sorting purposes. The original Impala behavior always put NULL values at the end, even
for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other
popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by
adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers values (1), (null), (2), (null),

(3):
[localhost:21000] > select x from numbers order by x nulls first;

I +
| x |
e +
| NULL |
| NULL |
| 1 |
| 2 |
| 3 |
e +

[localhost:21000] > select x from numbers order by x desc nulls first;

[localhost:21000] > select x from numbers order by x nulls last;

[localhost:21000] > select x from numbers order by x desc nulls last;

Related information:

See SELECT Statement on page 319 for further examples of queries with the ORDER BY clause.

| Impala SQL Language Reference | 332

Analytic functions use the ORDER BY clause in a different context to define the sequence in which rows are
analyzed. See Impala Analytic Functions on page 534 for details.

GROUP BY Clause

Specify the GROUP BY clause in queries that use aggregation functions, such as COUNT (), SUM (), AVG (), MIN(),
and MAX (). Specify in the GROUP BY clause the names of all the columns that do not participate in the aggregation
operation.

Complex type considerations:

In Impala 2.3 and higher, the complex data types STRUCT, ARRAY, and MAP are available. These columns cannot
be referenced directly in the ORDER BY clause. When you query a complex type column, you use join notation
to “unpack” the elements of the complex type, and within the join query you can include an ORDER BY clause to
control the order in the result set of the scalar elements from the complex type. See Complex Types (Impala 2.3 or
higher only) on page 151 for details about Impala support for complex types.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length
strings (" "), NULL, and space to all be different values.

Examples:

For example, the following query finds the 5 items that sold the highest total quantity (using the SUM () function,
and also counts the number of sales transactions for those items (using the COUNT () function). Because the column
representing the item IDs is not used in any aggregation functions, we specify that column in the GROUP BY clause.

select
ss_item sk as Item,
count (ss_item sk) as Times Purchased,
sum(ss_quantity) as Total Quantity Purchased
from store sales
group by ss_item sk
order by sum(ss_quantity) desc

limit 5;
+-———— o —— R ettt +
| item | times purchased | total quantity purchased |
R R R R ————————— R +
| 9325 | 372 | 19072
| 4279 | 357 | 18501
| 7507 | 371 | 18475
| 5953 | 369 | 18451
| 16753 | 375 | 18446
Fo————— o o +

The HAVING clause lets you filter the results of aggregate functions, because you cannot refer to those expressions in
the WHERE clause. For example, to find the 5 lowest-selling items that were included in at least 100 sales transactions,
we could use this query:

select

ss_item sk as Item,

count (ss_item sk) as Times Purchased,

sum (ss_quantity) as Total Quantity Purchased
from store sales

group by ss_item sk

having times_ purchased >= 100

order by sum(ss_quantity)

limit 5;
+o————— o o +
| item | times purchased | total gquantity purchased |
+-———— o o +
| 13943 | 105 | 4087
| 2992 | 101 | 4176
| 4773 | 107 | 4204 |

| Impala SQL Language Reference | 333

| 14350 | 103 | 4260 |
| 11956 | 102 | 4275
fo—m Fomm o +

When performing calculations involving scientific or financial data, remember that columns with type FLOAT or
DOUBLE are stored as true floating-point numbers, which cannot precisely represent every possible fractional value.
Thus, if you include a FLOAT or DOUBLE column in a GROUP BY clause, the results might not precisely match
literal values in your query or from an original Text data file. Use rounding operations, the BETWEEN operator, or
another arithmetic technique to match floating-point values that are “near” literal values you expect. For example,
this query on the ss_wholesale cost column returns cost values that are close but not identical to the original
figures that were entered as decimal fractions.

select ss wholesale cost, avg(ss quantity * ss _sales price) as
avg_revenue per sale
from sales
group by ss wholesale cost
order by avg revenue per sale desc
limit 5;
e e e e +
| ss wholesale cost | avg revenue per sale |
Fommmmmemeemeesmem=s e T+
96.94000244140625 | 4454.351539300434
95.93000030517578 |
|
|
|
+

|

| 4423.119941283189
| 98.37999725341797

|

|

|

|

4332.516490316291 |
97.97000122070312 |
98.52999877929688 |

4330.480601655014
4291.316953108634

Notice how wholesale cost values originally entered as decimal fractions such as 96. 94 and 98 . 38 are slightly

larger or smaller in the result set, due to precision limitations in the hardware floating-point types. The imprecise

representation of FLOAT and DOUBLE values is why financial data processing systems often store currency using
data types that are less space-efficient but avoid these types of rounding errors.

Related information:

SELECT Statement on page 319, Impala Aggregate Functions on page 503

HAVING Clause

Performs a filter operation on a SELECT query, by examining the results of aggregation functions rather than testing
each individual table row. Therefore, it is always used in conjunction with a function such as COUNT (), SUM (),
AVG(),MIN(),or MAX (), and typically with the GROUP BY clause also.

Restrictions:
The filter expression in the HAVING clause cannot include a scalar subquery.
Related information:

SELECT Statement on page 319, GROUP BY Clause on page 332, Impala Aggregate Functions on page 503

LIMIT Clause

The LIMIT clause in a SELECT query sets a maximum number of rows for the result set. Pre-selecting the maximum
size of the result set helps Impala to optimize memory usage while processing a distributed query.

Syntax:
LIMIT constant integer expression
The argument to the LIMIT clause must evaluate to a constant value. It can be a numeric literal, or another kind

of numeric expression involving operators, casts, and function return values. You cannot refer to a column or use a
subquery.

| Impala SQL Language Reference | 334

Usage notes:
This clause is useful in contexts such as:

* To return exactly N items from a top-N query, such as the 10 highest-rated items in a shopping category or the 50
hostnames that refer the most traffic to a web site.

* To demonstrate some sample values from a table or a particular query. (To display some arbitrary items, use a
query with no ORDER BY clause. An ORDER BY clause causes additional memory and/or disk usage during the
query.)

» To keep queries from returning huge result sets by accident if a table is larger than expected, or a WHERE clause
matches more rows than expected.

Originally, the value for the LIMIT clause had to be a numeric literal. In Impala 1.2.1 and higher, it can be a numeric
expression.

Prior to Impala 1.4.0, Impala required any query including an ORDER BY clause to also use a LTMIT clause. In
Impala 1.4.0 and higher, the LIMIT clause is optional for ORDER BY queries. In cases where sorting a huge result
set requires enough memory to exceed the Impala memory limit for a particular node, Impala automatically uses a
temporary disk work area to perform the sort operation.

See ORDER BY Clause on page 327 for details.

In Impala 1.2.1 and higher, you can combine a LIMIT clause with an OFFSET clause to produce a small result

set that is different from a top-N query, for example, to return items 11 through 20. This technique can be used to
simulate “paged” results. Because Impala queries typically involve substantial amounts of I/O, use this technique
only for compatibility in cases where you cannot rewrite the application logic. For best performance and scalability,
wherever practical, query as many items as you expect to need, cache them on the application side, and display small
groups of results to users using application logic.

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Examples:

The following example shows how the LIMIT clause caps the size of the result set, with the limit being applied after
any other clauses such as WHERE.

[localhost:21000] > create database limits;

[localhost:21000] > use limits;

[localhost:21000] > create table numbers (x int);

[localhost:21000] > insert into numbers values (1), (3), ((4), (5), (2);
Inserted 5 rows in 1.34s

[localhost:21000] > select x from numbers limit 100;

+———

+———+
Returned 5 row(s) in 0.26s

[localhost:21000] > select x from numbers limit 3;
+———

| x|

+———

| 1 |

| 3 |

| 4 |

+———

Returned 3 row(s) in 0.27s

[localhost:21000] > select x from numbers where x > 2 limit 2;

| Impala SQL Language Reference | 335

+———4
| x |
+———
| 3 |
| 4 |
+-———+
Returned 2 row(s) in 0.27s

For top-N and bottom-N queries, you use the ORDER BY and LIMIT clauses together:

[localhost:21000] > select x as "Top 3" from numbers order by x desc limit

3
fo————— +
| top 3 |
Fommmm=e +
| 5 |
| 4 |
| 2 |
fo————— +

[localhost:21000] > select x as "Bottom 3" from numbers order by x limit 3;

You can use constant values besides integer literals as the LIMIT argument:

—-— Other expressions that yield constant integer values work too.

SELECT x FROM tl LIMIT le6; —-— Limit is one million.
SELECT x FROM tl LIMIT length('hello world'); -— Limit is 11.
SELECT x FROM tl LIMIT 2+2; -— Limit is 4.
SELECT x FROM tl LIMIT cast (truncate(9.9) AS INT),; -- Limit is 9.

OFFSET Clause

The OFFSET clause in a SELECT query causes the result set to start some number of rows after the logical first item.
The result set is numbered starting from zero, so OFFSET 0 produces the same result as leaving out the OFFSET
clause. Always use this clause in combination with ORDER BY (so that it is clear which item should be first, second,
and so on) and LIMIT (so that the result set covers a bounded range, such as items 0-9, 100-199, and so on).

In Impala 1.2.1 and higher, you can combine a LIMIT clause with an OFFSET clause to produce a small result

set that is different from a top-N query, for example, to return items 11 through 20. This technique can be used to
simulate “paged” results. Because Impala queries typically involve substantial amounts of I/O, use this technique
only for compatibility in cases where you cannot rewrite the application logic. For best performance and scalability,
wherever practical, query as many items as you expect to need, cache them on the application side, and display small
groups of results to users using application logic.

Examples:

The following example shows how you could run a “paging” query originally written for a traditional database
application. Because typical Impala queries process megabytes or gigabytes of data and read large data files from
disk each time, it is inefficient to run a separate query to retrieve each small group of items. Use this technique only
for compatibility while porting older applications, then rewrite the application code to use a single query with a large
result set, and display pages of results from the cached result set.

[localhost:21000] > create table numbers (x int);

[localhost:21000] > insert into numbers select x from very long sequence;
Inserted 1000000 rows in 1.34s

[localhost:21000] > select x from numbers order by x limit 5 offset 0;

| Impala SQL Language Reference | 336

T —
| x|
St
[1 |
2 |
| 3 |
| 4 |
| 5 |
St

[localhost:21000] > select x from numbers order by x limit 5 offset 5;
+————t

UNION Clause

The UNION clause lets you combine the result sets of multiple queries. By default, the result sets are combined as if
the DISTINCT operator was applied.

Syntax:
query 1 UNION [DISTINCT | ALL] query 2

Usage notes:

The UNION keyword by itself is the same as UNTON DISTINCT. Because eliminating duplicates can be a memory-
intensive process for a large result set, prefer UNION ALL where practical. (That is, when you know the different
queries in the union will not produce any duplicates, or where the duplicate values are acceptable.)

When an ORDER BY clause applies to a UNION ALL or UNION query, in Impala 1.4 and higher, the LIMIT clause
is no longer required. To make the ORDER BY and LIMIT clauses apply to the entire result set, turn the UNION
query into a subquery, SELECT from the subquery, and put the ORDER BY clause at the end, outside the subquery.

Examples:

First, we set up some sample data, including duplicate 1 values.

[localhost:21000] > create table few ints (x int);
[localhost:21000] > insert into few ints values (1), (1), (2), (3);
[localhost:21000] > set default order by 1imit=1000;

This example shows how UNION ALL returns all rows from both queries, without any additional filtering to
eliminate duplicates. For the large result sets common with Impala queries, this is the most memory-efficient
technique.

[localhost:21000] > select x from few ints order by x;
- N

| x|

+———+

| 1 |

1 |

[2 |

I 3 |

+-——+

Returned 4 row(s) in 0.41s

[localhost:21000] > select x from few ints union all select x from few ints;
+———+

|
+_
|
|
|
|
|
|
|

+_

Returned 8 row/(s)
[localhost:21000]
from few ints)

X |
-—+
|
|
|
|
|
|
|

WN R R WN R

-—+

o=+

Returned 8 row(s)
[localhost:21000]

+-———+
| x|
===
| 10 |
[1 |
[1 |
2 |
| 3 |
===

Returned 5 row(s)

| Impala SQL Language Reference | 337

in 0.42s
> select * from (select x from few ints union all select x
as tl order by x;

in 0.53s
> select x from few ints union all select 10;

in 0.38s

This example shows how the UNION clause without the ALL keyword condenses the result set to eliminate all
duplicate values, making the query take more time and potentially more memory. The extra processing typically
makes this technique not recommended for queries that return result sets with millions or billions of values.

[localhost:21000]
+———

+-——+

+———
Returned 4 row (s)
[localhost:21000]

S
| x|
+-———+
2
| 10 |
|1 |
| 3 |
R

Returned 4 row(s)

x |

3 |
4 |
1
2|

> select x from few ints union select x+1 from few ints;

in 0.51s
> select x from few ints union select 10;

in 0.49s

| Impala SQL Language Reference | 338

[localhost:21000] > select * from (select x from few ints union select x
from few ints) as tl order by x;

-t N

| x|

+———+

[1 |

| 2 |

| 3 |

+———+

Returned 3 row(s) in 0.53s

Subqueries in Impala SELECT Statements

A subquery is a query that is nested within another query. Subqueries let queries on one table dynamically adapt
based on the contents of another table. This technique provides great flexibility and expressive power for SQL
queries.

A subquery can return a result set for use in the FROM or WITH clauses, or with operators such as IN or EXISTS.

A scalar subquery produces a result set with a single row containing a single column, typically produced by an
aggregation function such as MAX () or SUM () . This single result value can be substituted in scalar contexts such as
arguments to comparison operators. If the result set is empty, the value of the scalar subquery is NULL. For example,
the following query finds the maximum value of T2 .Y and then substitutes that value into the WHERE clause of the
outer block that queries T1:

SELECT x FROM tl1 WHERE x > (SELECT MAX(y) FROM t2);

Uncorrelated subqueries do not refer to any tables from the outer block of the query. The same value or set of values
produced by the subquery is used when evaluating each row from the outer query block. In this example, the subquery
returns an arbitrary number of values from T2 . Y, and each value of T1 . X is tested for membership in that same set
of values:

SELECT x FROM tl WHERE x IN (SELECT y FROM t2);

Correlated subqueries compare one or more values from the outer query block to values referenced in the WHERE
clause of the subquery. Each row evaluated by the outer WHERE clause can be evaluated using a different set of
values. These kinds of subqueries are restricted in the kinds of comparisons they can do between columns of the inner
and outer tables. (See the following Restrictions item.)

For example, the following query finds all the employees with salaries that are higher than average for their
department. The subquery potentially computes a different AVG () value for each employee.

SELECT employee name, employee id FROM employees one WHERE
salary > (SELECT avg(salary) FROM employees two WHERE one.dept id =
two.dept id);
Syntax:
Subquery in the FROM clause:
SELECT select list FROM table ref [, table ref ...]
table ref ::= table name | (select statement)
Subqueries in WHERE clause:
WHERE value comparison operator (scalar select statement)
WHERE value [NOT] IN (select statement)

WHERE [NOT] EXISTS (correlatgd_select_statement)
WHERE NOT EXISTS (correlated select statement)

| Impala SQL Language Reference | 339

comparison_ operator isanumeric comparison such as =, <=, !'=, and so on, or a string comparison operator
such as LIKE or REGEXP.

Although you can use non-equality comparison operators such as < or >=, the subquery must include at least one
equality comparison between the columns of the inner and outer query blocks.

All syntax is available for both correlated and uncorrelated queries, except that the NOT EXISTS clause cannot be
used with an uncorrelated subquery.

Impala subqueries can be nested arbitrarily deep.

Standards compliance: Introduced in SOL:1999.

Examples:

This example illustrates how subqueries can be used in the FROM clause to organize the table names, column names,

and column values by producing intermediate result sets, especially for join queries.

SELECT avg(tl.x), max(t2.y) FROM

(SELECT id, cast(a AS DECIMAL(10,5)) AS x FROM raw_data WHERE a BETWEEN O
AND 100) AS t1

JOIN

(SELECT id, length(s) AS y FROM raw_data WHERE s LIKE 'A%') AS t2;

USING (id);

These examples show how a query can test for the existence of values in a separate table using the EXISTS ()
operator with a subquery.

The following examples show how a value can be compared against a set of values returned by a subquery.

SELECT count (x) FROM tl WHERE EXISTS (SELECT 1 FROM t2 WHERE tl.x = t2.y *
10);

SELECT x FROM tl WHERE x IN (SELECT y FROM t2 WHERE state = 'CA');

The following examples demonstrate scalar subqueries. When a subquery is known to return a single value, you can
substitute it where you would normally put a constant value.

SELECT x FROM tl WHERE y = (SELECT max(z) FROM t2);
SELECT x FROM tl WHERE y > (SELECT count(z) FROM t2);

Usage notes:

If the same table is referenced in both the outer and inner query blocks, construct a table alias in the outer query block
and use a fully qualified name to distinguish the inner and outer table references:

SELECT * FROM tl one WHERE id IN (SELECT parent FROM tl two WHERE tl.parent
= t2.id);

Internal details:

Internally, subqueries involving IN, NOT IN, EXISTS, or NOT EXISTS clauses are rewritten into join queries.
Depending on the syntax, the subquery might be rewritten to an outer join, semi join, cross join, or anti join.

A query is processed differently depending on whether the subquery calls any aggregation functions. There are
correlated and uncorrelated forms, with and without calls to aggregation functions. Each of these four categories is
rewritten differently.

Column statistics considerations:

Because queries that include correlated and uncorrelated subqueries in the WHERE clause are written into join queries,
to achieve best performance, follow the same guidelines for running the COMPUTE STATS statement as you do for
tables involved in regular join queries. Run the COMPUTE STATS statement for each associated tables after loading
or substantially changing the data in that table. See Table and Column Statistics on page 601 for details.

http://en.wikipedia.org/wiki/SQL:1999

| Impala SQL Language Reference | 340

Added in: Subqueries are substantially enhanced starting in Impala 2.0. Now, they can be used in the WHERE clause,
in combination with clauses such as EXISTS and IN, rather than just in the FROM clause.

Restrictions:
The initial Impala support for nested subqueries addresses the most common use cases. Some restrictions remain:

» Although you can use subqueries in a query involving UNION or UNION ALL in Impala 2.1.0 and higher,
currently you cannot construct a union of two subqueries (for example, in the argument of an IN or EXISTS
operator).

» Subqueries returning scalar values cannot be used with the operators ANY or ALL. (Impala does not currently have
a SOME operator, but if it did, the same restriction would apply.)

* Forthe EXISTS and NOT EXISTS clauses, any subquery comparing values from the outer query block to
another table must use at least one equality comparison, not exclusively other kinds of comparisons such as less
than, greater than, BETWEEN, or !=.

* Currently, a scalar subquery cannot be used as the first or second argument to the BETWEEN operator.

* A subquery cannot be used inside an OR conjunction. Expressions inside a subquery, for example in the WHERE
clause, can use OR conjunctions; the restriction only applies to parts of the query “above” the subquery.

» Scalar subqueries are only supported in numeric contexts. You cannot use a scalar subquery as an argument to
the LIKE, REGEXP, or RLIKE operators, or compare it to a value of a non-numeric type such as TIMESTAMP or
BOOLEAN.

* You cannot use subqueries with the CASE function to generate the comparison value, the values to be compared
against, or the return value.

* A subquery is not allowed in the filter condition for the HAVING clause. (Strictly speaking, a subquery cannot
appear anywhere outside the WITH, FROM, and WHERE clauses.)

* You must use a fully qualified name (table name.column name or
database name.table name.column name) when referring to any column from the outer query block
within a subquery.

Complex type considerations:

For the complex types (ARRAY, STRUCT, and MAP) available in Impala 2.3 and higher, the join queries that
“unpack” complex type columns often use correlated subqueries in the FROM clause. For example, if the first
table in the join clause is CUSTOMER, the second join clause might have a subquery that selects from the column
CUSTOMER.C_ ORDERS, which is an ARRAY. The subquery re-evaluates the ARRAY elements corresponding to
each row from the CUSTOMER table. See Complex Types (Impala 2.3 or higher only) on page 151 for details and
examples of using subqueries with complex types.

Related information:

EXISTS Operator on page 192, IN Operator on page 196

WITH Clause

A clause that can be added before a SELECT statement, to define aliases for complicated expressions that are
referenced multiple times within the body of the SELECT. Similar to CREATE VIEW, except that the table and
column names defined in the WITH clause do not persist after the query finishes, and do not conflict with names used
in actual tables or views. Also known as “subquery factoring”.

You can rewrite a query using subqueries to work the same as with the WITH clause. The purposes of the WITH
clause are:

» Convenience and ease of maintenance from less repetition with the body of the query. Typically used with queries
involving UNION, joins, or aggregation functions where the similar complicated expressions are referenced
multiple times.

* SQL code that is easier to read and understand by abstracting the most complex part of the query into a separate
block.

* Improved compatibility with SQL from other database systems that support the same clause (primarily Oracle
Database).

| Impala SQL Language Reference | 341

Note:

The Impala WITH clause does not support recursive queries in the WITH, which is supported in some other
database systems.

Standards compliance: Introduced in SOL:1999.

Examples:

—-— Define 2 subqueries that can be referenced from the body of a longer
query.

with tl as (select 1), t2 as (select 2) insert into tab select * from tl
union all select * from t2;

-—- Define one subquery at the outer level, and another at the inner level as
part of the

-- initial stage of the UNION ALL query.

with tl as (select 1) (with t2 as (select 2) select * from t2) union all
select * from tl;

DISTINCT Operator

The DISTINCT operator in a SELECT statement filters the result set to remove duplicates:

-- Returns the unique values from one column.

-- NULL is included in the set of values if any rows have a NULL in this
column.

select distinct ¢ birth country from customer;

-- Returns the unique combinations of values from multiple columns.
select distinct c¢_salutation, c¢_last name from customer;

You can use DISTINCT in combination with an aggregation function, typically COUNT (), to find how many
different values a column contains:

-- Counts the unique values from one column.

-— NULL is not included as a distinct value in the count.

select count (distinct c _birth country) from customer;

-— Counts the unique combinations of values from multiple columns.
select count (distinct c¢_salutation, c_last name) from customer;

One construct that Impala SQL does not support is using DISTINCT in more than one aggregation function in the
same query. For example, you could not have a single query with both COUNT (DISTINCT c_first name) and
COUNT (DISTINCT c_last name) inthe SELECT list.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length
strings (" "), NULL, and space to all be different values.

Note:
By default, Impala only allows a single COUNT (DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column by specifying
NDV (column); a query can contain multiple instances of NDV (column) . To make Impala automatically rewrite
COUNT (DISTINCT) expressions to NDV (), enable the APPX COUNT DISTINCT query option.

To produce the same result as multiple COUNT (DISTINCT) expressions, you can use the following technique for
queries involving a single table:

select vl.cl resultl, v2.cl result2 from
(select count (distinct coll) as cl from tl) vl
cross join
(select count(distinct col2) as cl from tl) v2;

http://en.wikipedia.org/wiki/SQL:1999

| Impala SQL Language Reference | 342

Because CROSS JOIN is an expensive operation, prefer to use the NDV () technique wherever practical.
Note:

In contrast with some database systems that always return DISTINCT values in sorted order, Impala does not do
any ordering of DISTINCT values. Always include an ORDER BY clause if you need the values in alphabetical or
numeric sorted order.

Query Hints in Impala SELECT Statements

The Impala SQL dialect supports query hints, for fine-tuning the inner workings of queries. Specify hints as a
temporary workaround for expensive queries, where missing statistics or other factors cause inefficient performance.

Hints are most often used for the most resource-intensive kinds of Impala queries:

» Join queries involving large tables, where intermediate result sets are transmitted across the network to evaluate
the join conditions.

» Inserting into partitioned Parquet tables, where many memory buffers could be allocated on each host to hold
intermediate results for each partition.

Syntax:

You can also represent the hints as keywords surrounded by [] square brackets; include the brackets in the text of the
SQL statement.

Note: The square bracket style of hint is now deprecated and might be removed in a future release. For that reason,
any newly added hints are not available with the square bracket syntax.

SELECT STRAIGHT JOIN select list FROM
join left hand table
JOIN [{ /* +BROADCAST */ | /* +SHUFFLE */ }]
join right hand table
remainder of query;

INSERT insert clauses
[{ /* +SHUFFLE */ | /* +NOSHUFFLE */ }]
[/* +CLUSTERED */]
SELECT remainder of query;

In Impala 2.0 and higher, you can also specify the hints inside comments that use either the /* */ or —- notation.
Specify a + symbol immediately before the hint name. Recently added hints are only available using the /* */ and
-- notation. For clarity, the /* */ and -~ styles are used in the syntax and examples throughout this section. With
the /* */ or —- notation for hints, specify a + symbol immediately before the first hint name. Multiple hints can be
specified separated by commas, for example /* +clustered, shuffle */

SELECT STRAIGHT JOIN select list FROM
join left hand table

JOIN /* +BROADCAST |SHUFFLE */
join right hand table
remainder of query;

SELECT select list FROM
join left hand table

JOIN -- +BROADCAST | SHUFFLE
join right hand table
remainder of query;

INSERT insert clauses
/* +SHUFFLE | NOSHUFFLE */
SELECT remainder of query;

INSERT insert clauses
-—- +SHUFFLE | NOSHUFFLE

| Impala SQL Language Reference | 343

SELECT remainder of query;

SELECT select list
FROM
table ref
/% +{SCHEDULE CACHE LOCAL | SCHEDULE DISK LOCAL | SCHEDULE REMOTE}
[,RANDOM REPLICA] */
remainder of query;

INSERT insert clauses
-—- +CLUSTERED
SELECT remainder of query;

INSERT insert clauses
/* +CLUSTERED */
SELECT remainder of query;

Usage notes:

With both forms of hint syntax, include the STRAIGHT JOIN keyword immediately after the SELECT keyword to
prevent Impala from reordering the tables in a way that makes the join-related hints ineffective.

To reduce the need to use hints, run the COMPUTE STATS statement against all tables involved in joins, or used as
the source tables for INSERT ... SELECT operations where the destination is a partitioned Parquet table. Do this
operation after loading data or making substantial changes to the data within each table. Having up-to-date statistics
helps Impala choose more efficient query plans without the need for hinting. See Table and Column Statistics on page
601 for details and examples.

To see which join strategy is used for a particular query, examine the EXPLAIN output for that query. See Using the
EXPLAIN Plan for Performance Tuning on page 627 for details and examples.

Hints for join queries:

The /* +BROADCAST */and /* +SHUFFLE */ hints control the execution strategy for join queries. Specify
one of the following constructs immediately after the JOIN keyword in a query:

* /* +SHUFFLE */ - Makes that join operation use the “partitioned” technique, which divides up corresponding
rows from both tables using a hashing algorithm, sending subsets of the rows to other nodes for processing. (The
keyword SHUFFLE is used to indicate a “partitioned join”, because that type of join is not related to “partitioned
tables”.) Since the alternative “broadcast” join mechanism is the default when table and index statistics are
unavailable, you might use this hint for queries where broadcast joins are unsuitable; typically, partitioned joins
are more efficient for joins between large tables of similar size.

+ /* +BROADCAST */ - Makes that join operation use the “broadcast” technique that sends the entire contents
of the right-hand table to all nodes involved in processing the join. This is the default mode of operation when
table and index statistics are unavailable, so you would typically only need it if stale metadata caused Impala to
mistakenly choose a partitioned join operation. Typically, broadcast joins are more efficient in cases where one
table is much smaller than the other. (Put the smaller table on the right side of the JOIN operator.)

Hints for INSERT ... SELECT queries:

When inserting into partitioned tables, especially using the Parquet file format, you can include a hint in the INSERT
statement to fine-tune the overall performance of the operation and its resource usage:

* You would only use hints if an INSERT into a partitioned Parquet table was failing due to capacity limits, or if
such an INSERT was succeeding but with less-than-optimal performance.

* To use a hint to influence the join order, put the hint keyword /* +SHUFFLE */ or /* +NOSHUFFLE */
(including the square brackets) after the PARTITION clause, immediately before the SELECT keyword.

* /* +SHUFFLE */ selects an execution plan that reduces the number of files being written simultaneously to
HDFS, and the number of memory buffers holding data for individual partitions. Thus it reduces overall resource
usage for the INSERT operation, allowing some INSERT operations to succeed that otherwise would fail. It does
involve some data transfer between the nodes so that the data files for a particular partition are all constructed on
the same node.

| Impala SQL Language Reference | 344

* /* +NOSHUFFLE */ selects an execution plan that might be faster overall, but might also produce a larger
number of small data files or exceed capacity limits, causing the INSERT operation to fail. Use /* +SHUFFLE
* / in cases where an INSERT statement fails or runs inefficiently due to all nodes attempting to construct data for
all partitions.

» Impala automatically uses the /* +SHUFFLE */ method if any partition key column in the source table,
mentioned in the INSERT ... SELECT query, does not have column statistics. In this case, only the /*
+NOSHUFFLE */ hint would have any effect.

» If column statistics are available for all partition key columns in the source table mentioned in the INSERT
SELECT query, Impala chooses whether to use the /* +SHUFFLE */ or /* +NOSHUFFLE */ technique
based on the estimated number of distinct values in those columns and the number of nodes involved in the
INSERT operation. In this case, you might need the /* +SHUFFLE */ or the /* +NOSHUFFLE */ hintto
override the execution plan selected by Impala.

* In Impala 2.8 or higher, you can make the INSERT operation organize (“cluster”) the data for each partition to
avoid buffering data for multiple partitions and reduce the risk of an out-of-memory condition. Specify the hint as
/* +CLUSTERED */. This technique is primarily useful for inserts into Parquet tables, where the large block
size requires substantial memory to buffer data for multiple output files at once.

Hints for scheduling of HDFS blocks:

The hints /* +SCHEDULE_CACHE_LOCAL */, /* +SCHEDULE DISK LOCAL */,and /*

+SCHEDULE REMOTE */ have the same effect as specifying the REPLICA PREFERENCE query option with the
respective option settings of CACHE LOCAL, DISK LOCAL, or REMOTE. The hint /* +RANDOM REPLICA */
is the same as enabling the SCHEDULE RANDOM REPLICA query option.

You can use these hints in combination by separating them with commas, for example, /*

+SCHEDULE_CACHE LOCAL,RANDOM REPLICA */.See REPLICA PREFERENCE Query Option (Impala 2.7
or higher only) on page 372 and SCHEDULE RANDOM REPLICA Query Option (Impala 2.5 or higher only) on
page 377 for information about how these settings influence the way Impala processes HDFS data blocks.

Specifying the replica preference as a query hint always overrides the query option setting. Specifying either the
SCHEDULE RANDOM REPLICA query option or the corresponding RANDOM REPLICA query hint enables the
random tie-breaking behavior when processing data blocks during the query.

Suggestions versus directives:

In early Impala releases, hints were always obeyed and so acted more like directives. Once Impala gained join order
optimizations, sometimes join queries were automatically reordered in a way that made a hint irrelevant. Therefore,
the hints act more like suggestions in Impala 1.2.2 and higher.

To force Impala to follow the hinted execution mechanism for a join query, include the STRAIGHT JOIN keyword
in the SELECT statement. See Overriding Join Reordering with STRAIGHT JOIN on page 595 for details. When
you use this technique, Impala does not reorder the joined tables at all, so you must be careful to arrange the join
order to put the largest table (or subquery result set) first, then the smallest, second smallest, third smallest, and so on.
This ordering lets Impala do the most I/O-intensive parts of the query using local reads on the DataNodes, and then
reduce the size of the intermediate result set as much as possible as each subsequent table or subquery result set is
joined.

Restrictions:

Queries that include subqueries in the WHERE clause can be rewritten internally as join queries. Currently, you cannot
apply hints to the joins produced by these types of queries.

Because hints can prevent queries from taking advantage of new metadata or improvements in query planning, use
them only when required to work around performance issues, and be prepared to remove them when they are no
longer required, such as after a new Impala release or bug fix.

In particular, the /* +BROADCAST */and /* +SHUFFLE */ hints are expected to be needed much less
frequently in Impala 1.2.2 and higher, because the join order optimization feature in combination with the COMPUTE
STATS statement now automatically choose join order and join mechanism without the need to rewrite the query and
add hints. See Performance Considerations for Join Queries on page 594 for details.

Compatibility:

| Impala SQL Language Reference | 345

The hints embedded within —— comments are compatible with Hive queries. The hints embedded within /* */
comments or [] square brackets are not recognized by or not compatible with Hive. For example, Hive raises an
error for Impala hints within /* */ comments because it does not recognize the Impala hint names.

Considerations for views:

If you use a hint in the query that defines a view, the hint is preserved when you query the view. Impala internally
rewrites all hints in views to use the —— comment notation, so that Hive can query such views without errors due to
unrecognized hint names.

Examples:

For example, this query joins a large customer table with a small lookup table of less than 100 rows. The right-hand
table can be broadcast efficiently to all nodes involved in the join. Thus, you would use the /* +broadcast */
hint to force a broadcast join strategy:

select straight join customer.address, state lookup.state name
from customer join /* +broadcast */ state lookup
on customer.state id = state lookup.state id;

This query joins two large tables of unpredictable size. You might benchmark the query with both kinds of hints and
find that it is more efficient to transmit portions of each table to other nodes for processing. Thus, you would use the
/* +shuffle */ hint to force a partitioned join strategy:

select straight join weather.wind velocity, geospatial.altitude
from weather join /* +shuffle */ geospatial
on weather.lat = geospatial.lat and weather.long = geospatial.long;

For joins involving three or more tables, the hint applies to the tables on either side of that specific JOIN keyword.
The STRAIGHT JOIN keyword ensures that joins are processed in a predictable order from left to right. For
example, this query joins t 1 and t2 using a partitioned join, then joins that result set to £ 3 using a broadcast join:

select straight join tl.name, t2.id, t3.price
from tl join /* +shuffle */ t2 join /* +broadcast */ t3
on tl.id = t2.id and t2.id = t3.id;

Related information:

For more background information about join queries, see Joins in Impala SELECT Statements on page 321. For
performance considerations, see Performance Considerations for Join Queries on page 594.

SET Statement
Specifies values for query options that control the runtime behavior of other statements within the same session.

In Impala 2.5 and higher, SET also defines user-specified substitution variables for the impala-shell interpreter.
This feature uses the SET command built into impala-shell instead of the SQL SET statement. Therefore the
substitution mechanism only works with queries processed by impala-shell, not with queries submitted through
JDBC or ODBC.

Syntax:
SET [query option=option value]

SET with no arguments returns a result set consisting of all available query options and their current values.
The query option name and any string argument values are case-insensitive.

Each query option has a specific allowed notation for its arguments. Boolean options can be enabled and disabled by
assigning values of either true and false, or 1 and 0. Some numeric options accept a final character signifying
the unit, such as 2g for 2 gigabytes or 100m for 100 megabytes. See Query Options for the SET Statement on page
347 for the details of each query option.

| Impala SQL Language Reference | 346

User-specified substitution variables:

In Impala 2.5 and higher, you can specify your own names and string substitution values within the impala-shell
interpreter. Once a substitution variable is set up, its value is inserted into any SQL statement in that same impala-
shell session that contains the notation $ {var: varname}. Using SET in an interactive impala-shell session
overrides any value for that same variable passed in through the --var=varname=value command-line option.

For example, to set up some default parameters for report queries, but then override those default within an impala-
shell session, you might issue commands and statements such as the following:

-- Initial setup for this example.
create table staging table (s string);
insert into staging table values ('foo'), ('bar'), ('bletch');

create table production table (s string);
insert into production table values ('North America'), ('EMEA'), ('Asia');
quit;

-- Start impala-shell with user-specified substitution variables,
-- run a query, then override the variables with SET and run the query
again.
$ impala-shell --var=table name=staging table --var=cutoff=2
banner message
[localhost:21000] > select s from ${var:table name} order by s limit
S{var:cutoff};
Query: select s from staging table order by s limit 2

o +
| s |
o ———— +
| bar |
| bletch |
o ———— +

Fetched 2 row(s) in 1.06s

[localhost:21000] > set var:table name=production table;
Variable TABLE NAME set to production table
[localhost:21000] > set var:cutoff=3;

Variable CUTOFF set to 3

[localhost:21000] > select s from ${var:table name} order by s limit
S{var:cutoff};
Query: select s from production table order by s limit 3

o ——————— +
| & |
o —— +
| Asia |
| EMEA |
| North America |
o ——————— +

The following example shows how SET with no parameters displays all user-specified substitution variables, and how
UNSET removes the substitution variable entirely:

[localhost:21000] > set;
Query options (defaults shown in []):
ABORT ON DEFAULT LIMIT EXCEEDED: [0]

V_CPU_CORES: [0]

Shell Options
LIVE PROGRESS: False

| Impala SQL Language Reference | 347

LIVE SUMMARY: False

Variables:
CUTOFF: 3
TABLE NAME: staging table

[localhost:21000] > unset var:cutoff;

Unsetting variable CUTOFF

[localhost:21000] > select s from ${var:table name} order by s limit
S{var:cutoff};

Error: Unknown variable CUTOFF

See Running Commands and SQL Statements in impala-shell on page 584 for more examples of using the --var,
SET, and ${var:varname} substitution technique in impala-shell.
Usage notes:

MEM LIMIT is probably the most commonly used query option. You can specify a high value to allow a resource-
intensive query to complete. For testing how queries would work on memory-constrained systems, you might specify
an artificially low value.

Complex type considerations:
Examples:
The following example sets some numeric and some Boolean query options to control usage of memory, disk space,

and timeout periods, then runs a query whose success could depend on the options in effect:

set mem limit=64g;
set DISKBLE_UNSAFE_SPILLS=true;
set parquet file size=400m;
set RESERVATION_REQUEST_TIMEOUT:9000OO;
insert overwrite parquet table select cl, c2, count(c3) from text table
group by cl, c2, c3;
Added in: Impala 2.0.0

SET has always been available as an impala-shell command. Promoting it to a SQL statement lets you use this
feature in client applications through the JDBC and ODBC APIs.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

See Query Options for the SET Statement on page 347 for the query options you can adjust using this statement.

Query Options for the SET Statement

You can specify the following options using the SET statement, and those settings affect all queries issued from that
session.

Some query options are useful in day-to-day operations for improving usability, performance, or flexibility.

Other query options control special-purpose aspects of Impala operation and are intended primarily for advanced
debugging or troubleshooting.

Options with Boolean parameters can be set to 1 or t rue to enable, or 0 or false to turn off.
Note:

In Impala 2.0 and later, you can set query options directly through the JDBC and ODBC interfaces by using the SET
statement. Formerly, SET was only available as a command within the impala-shell interpreter.

| Impala SQL Language Reference | 348

Related information:
SET Statement on page 345
ABORT_ON_DEFAULT_LIMIT_EXCEEDED Query Option

Now that the ORDER BY clause no longer requires an accompanying LIMIT clause in Impala 1.4.0 and higher, this
query option is deprecated and has no effect.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false (shown as 0 in output of SET statement)
ABORT_ON_ERROR Query Option

When this option is enabled, Impala cancels a query immediately when any of the nodes encounters an error, rather
than continuing and possibly returning incomplete results. This option is disabled by default, to help gather maximum
diagnostic information when an error occurs, for example, whether the same problem occurred on all nodes or only a
single node. Currently, the errors that Impala can skip over involve data corruption, such as a column that contains a
string value when expected to contain an integer value.

To control how much logging Impala does for non-fatal errors when ABORT ON_ERROR is turned off, use the
MAX ERRORS option.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false (shown as 0 in output of SET statement)

Related information:

MAX ERRORS Query Option on page 361, Using Impala Logging on page 725
ALLOW_UNSUPPORTED_FORMATS Query Option

An obsolete query option from early work on support for file formats. Do not use. Might be removed in the future.
Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false (shown as 0 in output of SET statement)

APPX_COUNT_DISTINCT Query Option (Impala 2.0 or higher only)

Allows multiple COUNT (DISTINCT) operations within a single query, by internally rewriting each
COUNT (DISTINCT) to use the NDV () function. The resulting count is approximate rather than precise.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false (shown as 0 in output of SET statement)
Examples:

The following examples show how the APPX COUNT DISTINCT lets you work around the restriction where a
query can only evaluate COUNT (DISTINCT col name) for a single column. By default, you can count the
distinct values of one column or another, but not both in a single query:

[localhost:21000] > select count(distinct x) from int t;

o +

| count (distinct x) |
o +

| 10 |
o +
[localhost:21000] > select count(distinct property) from int t;
o +
| count (distinct property) |
o +
| 7 |
R e L e +

[localhost:21000] > select count(distinct x), count(distinct property) from
int t;

| Impala SQL Language Reference | 349

ERROR: AnalysisException: all DISTINCT aggregate functions need to have the
same set of parameters
as count (DISTINCT x); deviating function: count (DISTINCT property)

When you enable the APPX COUNT DISTINCT query option, now the query with multiple COUNT (DISTINCT)
works. The reason this behavior requires a query option is that each COUNT (DISTINCT) is rewritten internally to
use the NDV () function instead, which provides an approximate result rather than a precise count.

[localhost:21000] > set APPX COUNT DISTINCT=true;
[localhost:21000] > select count(distinct x), count(distinct property) from

int t;
o o +
| count (distinct x) | count (distinct property) |
o o +
| 10 | 7 |
o e +

Related information:
COUNT Function on page 509, DISTINCT Operator on page 341, NDV Function on page 524
BATCH_SIZE Query Option

Number of rows evaluated at a time by SQL operators. Unspecified or a size of 0 uses a predefined default size. Using
a large number improves responsiveness, especially for scan operations, at the cost of a higher memory footprint.

This option is primarily for testing during Impala development, or for use under the direction of the appropriate
support channel.

Type: numeric
Default: 0 (meaning the predefined default of 1024)
COMPRESSION_CODEC Query Option (Impala 2.0 or higher only)

When Impala writes Parquet data files using the INSERT statement, the underlying compression is controlled by the
COMPRESSTON CODEC query option.

Note: Prior to Impala 2.0, this option was named PARQUET COMPRESSION CODEC. In Impala 2.0 and later, the
PARQUET COMPRESSION CODEC name is not recognized. Use the more general name COMPRESSION CODEC
for new code.

Syntax:
SET COMPRESSION CODEC=codec name;

The allowed values for this query option are SNAPPY (the default), GZIP, and NONE.

Note: A Parquet file created with COMPRESSION CODEC=NONE is still typically smaller than the original data,
due to encoding schemes such as run-length encoding and dictionary encoding that are applied separately from
compression.

The option value is not case-sensitive.

If the option is set to an unrecognized value, all kinds of queries will fail due to the invalid option setting, not just
queries involving Parquet tables. (The value BZIP2 is also recognized, but is not compatible with Parquet tables.)

Type: STRING
Default: SNAPPY

Examples:

set compression codec=gzip;
insert into parquet table highly compressed select * from tl;

| Impala SQL Language Reference | 350

set compression codec=snappy;
insert into parquet table compression plus fast queries select * from tl;

set compression codec=none;
insert into parquet table no compression select * from tl;

set compression codec=foo;
select * from tl limit 5;
ERROR: Invalid compression codec: foo

Related information:

For information about how compressing Parquet data files affects query performance, see Snappy and GZip
Compression for Parquet Data Files on page 665.

DEBUG_ACTION Query Option

Introduces artificial problem conditions within queries. For internal debugging and troubleshooting.
Type: STRING

Default: empty string

DEFAULT_JOIN_DISTRIBUTION_MODE Query Option

This option determines the join distribution that Impala uses when any of the tables involved in a join query is
missing statistics.

Impala optimizes join queries based on the presence of table statistics, which are produced by the Impala COMPUTE
STATS statement. By default, when a table involved in the join query does not have statistics, Impala uses the
“broadcast” technique that transmits the entire contents of the table to all executor nodes participating in the query. If
one table involved in a join has statistics and the other does not, the table without statistics is broadcast. If both tables
are missing statistics, the table that is referenced second in the join order is broadcast. This behavior is appropriate
when the table involved is relatively small, but can lead to excessive network, memory, and CPU overhead if the table
being broadcast is large.

Because Impala queries frequently involve very large tables, and suboptimal joins for such tables could result in
spilling or out-of-memory errors, the setting DEFAULT JOIN DISTRIBUTION MODE=SHUFFLE lets you
override the default behavior. The shuffle join mechanism divides the corresponding rows of each table involved in a
join query using a hashing algorithm, and transmits subsets of the rows to other nodes for processing. Typically, this
kind of join is more efficient for joins between large tables of similar size.

The setting DEFAULT JOIN DISTRIBUTION MODE=SHUFFLE is recommended when setting up and deploying
new clusters, because it is less likely to result in serious consequences such as spilling or out-of-memory errors if
the query plan is based on incomplete information. This setting is not the default, to avoid changing the performance
characteristics of join queries for clusters that are already tuned for their existing workloads.

Type: integer

The allowed values are BROADCAST (equivalent to 0) or SHUFFLE (equivalent to 1).

Examples:

The following examples demonstrate appropriate scenarios for each setting of this query option.

—-- Create a billion-row table.
create table big table stored as parquet
as select * from huge table limit 1e9;

-- For a big table with no statistics, the
-- shuffle join mechanism is appropriate.
set default join distribution mode=shuffle;

| Impala SQL Language Reference | 351

...Jjoln queries involving the big table...

-- Create a hundred-row table.
create table tiny table stored as parquet
as select * from huge table limit 100;

-- For a tiny table with no statistics, the
-- broadcast join mechanism is appropriate.
set default join distribution mode=broadcast;

...Jjoin queries involving the tiny table...

compute stats tiny table;
compute stats big table;

-— Once the stats are computed, the query option has

-- no effect on join queries involving these tables.

-- Impala can determine the absolute and relative sizes
-—- of each side of the join query by examining the

-- row size, cardinality, and so on of each table.

.join queries involving both of these tables...

Related information:

COMPUTE STATS Statement on page 237, Joins in Impala SELECT Statements on page 321, Performance
Considerations for Join Queries on page 594

DEFAULT_ORDER_BY_LIMIT Query Option

Now that the ORDER BY clause no longer requires an accompanying LIMIT clause in Impala 1.4.0 and higher, this
query option is deprecated and has no effect.

Prior to Impala 1.4.0, Impala queries that use the ORDER BY clause must also include a LTMIT clause, to avoid
accidentally producing huge result sets that must be sorted. Sorting a huge result set is a memory-intensive operation.
In Impala 1.4.0 and higher, Impala uses a temporary disk work area to perform the sort if that operation would
otherwise exceed the Impala memory limit on a particular host.

Type: numeric
Default: -1 (no default limit)
DISABLE_CODEGEN Query Option

This is a debug option, intended for diagnosing and working around issues that cause crashes. If a query fails with an
“illegal instruction” or other hardware-specific message, try setting DISABLE CODEGEN=true and running the
query again. If the query succeeds only when the DISABLE CODEGEN option is turned on, submit the problem to
the appropriate support channel and include that detail in the problem report. Do not otherwise run with this setting
turned on, because it results in lower overall performance.

Because the code generation phase adds a small amount of overhead for each query, you might turn on the
DISABLE CODEGEN option to achieve maximum throughput when running many short-lived queries against small
tables.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false (shown as 0 in output of SET statement)

DECIMAL_V2 Query Option

A query option that changes behavior related to the DECIMAL data type.

Important:

| Impala SQL Language Reference | 352

This query option is currently unsupported. Its precise behavior is currently undefined and might change in the future.
Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

DISABLE_ROW_RUNTIME_FILTERING Query Option (Impala 2.5 or higher only)

The DISABLE ROW RUNTIME FILTERING query option reduces the scope of the runtime filtering feature.
Queries still dynamically prune partitions, but do not apply the filtering logic to individual rows within partitions.

Only applies to queries against Parquet tables. For other file formats, Impala only prunes at the level of partitions, not
individual rows.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false

Added in: Impala 2.5.0

Usage notes:

Impala automatically evaluates whether the per-row filters are being effective at reducing the amount of intermediate
data. Therefore, this option is typically only needed for the rare case where Impala cannot accurately determine how
effective the per-row filtering is for a query.

Because the runtime filtering feature applies mainly to resource-intensive and long-running queries, only adjust this
query option when tuning long-running queries involving some combination of large partitioned tables and joins
involving large tables.

Because this setting only improves query performance in very specific circumstances, depending on the query
characteristics and data distribution, only use it when you determine through benchmarking that it improves
performance of specific expensive queries. Consider setting this query option immediately before the expensive query
and unsetting it immediately afterward.

Related information:

Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 615, RUNTIME FILTER MODE Query
Option (Impala 2.5 or higher only) on page 374

DISABLE_STREAMING_PREAGGREGATIONS Query Option (Impala 2.5 or higher only)

Turns off the “streaming preaggregation” optimization that is available in Impala 2.5 and higher. This optimization
reduces unnecessary work performed by queries that perform aggregation operations on columns with few or no
duplicate values, for example DISTINCT id columnor GROUP BY unique column. If the optimization
causes regressions in existing queries that use aggregation functions, you can turn it off as needed by setting this
query option.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false (shown as 0 in output of SET statement)

Note: In Impala 2.5.0, only the value 1 enables the option, and the value t rue is not recognized. This limitation is
tracked by the issue /IMPALA-3334, which shows the releases where the problem is fixed.

Usage notes:

Typically, queries that would require enabling this option involve very large numbers of aggregated values, such as a
billion or more distinct keys being processed on each worker node.

Added in: Impala 2.5.0
DISABLE_UNSAFE_SPILLS Query Option (Impala 2.0 or higher only)

Enable this option if you prefer to have queries fail when they exceed the Impala memory limit, rather than write
temporary data to disk.

Queries that “spill” to disk typically complete successfully, when in earlier Impala releases they would have failed.
However, queries with exorbitant memory requirements due to missing statistics or inefficient join clauses could

https://issues.apache.org/jira/browse/IMPALA-3334

| Impala SQL Language Reference | 353

become so slow as a result that you would rather have them cancelled automatically and reduce the memory usage
through standard Impala tuning techniques.

This option prevents only “unsafe” spill operations, meaning that one or more tables are missing statistics or the query
does not include a hint to set the most efficient mechanism for a join or INSERT ... SELECT into a partitioned
table. These are the tables most likely to result in suboptimal execution plans that could cause unnecessary spilling.
Therefore, leaving this option enabled is a good way to find tables on which to run the COMPUTE STATS statement.

See SOL Operations that Spill to Disk on page 639 for information about the “spill to disk” feature for queries
processing large result sets with joins, ORDER BY, GROUP BY, DISTINCT, aggregation functions, or analytic
functions.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false (shown as 0 in output of SET statement)

Added in: Impala 2.0.0

EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option (Impala 2.1 or higher only)

This setting controls the cutoff point (in terms of number of rows scanned) below which Impala treats a query as

a “small” query, turning off optimizations such as parallel execution and native code generation. The overhead for
these optimizations is applicable for queries involving substantial amounts of data, but it makes sense to skip them
for queries involving tiny amounts of data. Reducing the overhead for small queries allows Impala to complete them
more quickly, keeping YARN resources, admission control slots, and so on available for data-intensive queries.

Syntax:
SET EXEC SINGLE NODE ROWS THRESHOLD=number of rows

Type: numeric
Default: 100

Usage notes: Typically, you increase the default value to make this optimization apply to more queries. If incorrect
or corrupted table and column statistics cause Impala to apply this optimization incorrectly to queries that actually
involve substantial work, you might see the queries being slower as a result of remote reads. In that case, recompute
statistics with the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement. If there is a problem
collecting accurate statistics, you can turn this feature off by setting the value to -1.

Internal details:

This setting applies to query fragments where the amount of data to scan can be accurately determined, either through
table and column statistics, or by the presence of a LIMIT clause. If Impala cannot accurately estimate the size of the
input data, this setting does not apply.

In Impala 2.3 and higher, where Impala supports the complex data types STRUCT, ARRAY, and MAP, if a query
refers to any column of those types, the small-query optimization is turned off for that query regardless of the
EXEC SINGLE NODE ROWS THRESHOLD setting.

For a query that is determined to be “small”, all work is performed on the coordinator node. This might result in some
I/0O being performed by remote reads. The savings from not distributing the query work and not generating native
code are expected to outweigh any overhead from the remote reads.

Added in: Impala 2.1.0
Examples:

A common use case is to query just a few rows from a table to inspect typical data values. In this example, Impala
does not parallelize the query or perform native code generation because the result set is guaranteed to be smaller than
the threshold value from this query option:

SET EXEC_SINGLE NODE ROWS THRESHOLD=500;
SELECT * FROM enormous_table LIMIT 300;

| Impala SQL Language Reference | 354

EXPLAIN_LEVEL Query Option

Controls the amount of detail provided in the output of the EXPLAIN statement. The basic output can help you
identify high-level performance issues such as scanning a higher volume of data or more partitions than you expect.
The higher levels of detail show how intermediate results flow between nodes and how different SQL operations such
as ORDER BY, GROUP BY, joins, and WHERE clauses are implemented within a distributed query.

Type: STRING or INT

Default: 1

Arguments:

The allowed range of numeric values for this option is 0 to 3:

* 0 or MINIMAL: A barebones list, one line per operation. Primarily useful for checking the join order in very long
queries where the regular EXPLAIN output is too long to read easily.

* 1 or STANDARD: The default level of detail, showing the logical way that work is split up for the distributed
query.

* 2 or EXTENDED: Includes additional detail about how the query planner uses statistics in its decision-making
process, to understand how a query could be tuned by gathering statistics, using query hints, adding or removing
predicates, and so on.

* 3 or VERBOSE: The maximum level of detail, showing how work is split up within each node into “query
fragments” that are connected in a pipeline. This extra detail is primarily useful for low-level performance testing
and tuning within Impala itself, rather than for rewriting the SQL code at the user level.

Note: Prior to Impala 1.3, the allowed argument range for EXPLAIN LEVEL was 0 to 1: level 0 had the mnemonic
NORMAL, and level 1 was VERBOSE. In Impala 1.3 and higher, NORMAL is not a valid mnemonic value, and
VERBOSE still applies to the highest level of detail but now corresponds to level 3. You might need to adjust the
values if you have any older impala-shell script files that set the EXPLAIN LEVEL query option.

Changing the value of this option controls the amount of detail in the output of the EXPLAIN statement. The
extended information from level 2 or 3 is especially useful during performance tuning, when you need to confirm
whether the work for the query is distributed the way you expect, particularly for the most resource-intensive
operations such as join queries against large tables, queries against tables with large numbers of partitions, and insert
operations for Parquet tables. The extended information also helps to check estimated resource usage when you use
the admission control or resource management features explained in Resource Management for Impala on page

75. See EXPLAIN Statement on page 294 for the syntax of the EXPLAIN statement, and Using the EXPLAIN

Plan for Performance Tuning on page 627 for details about how to use the extended information.

Usage notes:

As always, read the EXPLAIN output from bottom to top. The lowest lines represent the initial work of the query
(scanning data files), the lines in the middle represent calculations done on each node and how intermediate results
are transmitted from one node to another, and the topmost lines represent the final results being sent back to the
coordinator node.

The numbers in the left column are generated internally during the initial planning phase and do not represent the
actual order of operations, so it is not significant if they appear out of order in the EXPLAIN output.

At all EXPLAIN levels, the plan contains a warning if any tables in the query are missing statistics. Use the
COMPUTE STATS statement to gather statistics for each table and suppress this warning. See Table and Column
Statistics on page 601 for details about how the statistics help query performance.

The PROFILE command in impala-shell always starts with an explain plan showing full detail, the same as
with EXPLAIN LEVEL=3. After the explain plan comes the executive summary, the same output as produced by the
SUMMARY command in impala-shell.

Examples:

| Impala SQL Language Reference | 355

These examples use a trivial, empty table to illustrate how the essential aspects of query planning are shown in
EXPLATIN output:

[
[
[

localhost:21000] > create table tl (x int, s string);

localhost:21000] > set explain level=1;
localhost:21000] > explain select count(*) from tl;

Estimated Per-Host Requirements:
WARNING: The following tables are missing relevant table and/or column

statistics.

explain plan.tl

:AGGREGATE [MERGE FINALIZE]
output: sum(count (*))

:EXCHANGE [PARTITION=UNPARTITIONED]

:AGGREGATE
output: count (*)

:SCAN HDFS [explain plan.tl]
partitions=1/1 size=0B

[localhost:21000] > explain select * from tl;

Estimated Per-Host Requirements:

statistics.

explain plan.tl

01

|
00

:EXCHANGE [PARTITION=UNPARTITIONED]

:SCAN HDFS [explain plan.tl]
partitions=1/1 size=0B

[localhost:21000] > set explain level=2;
[localhost:21000] > explain select * from tl;

Estimated Per-Host Requirements:

statistics.

explain plan.tl

01
|
|

|
00

:EXCHANGE [PARTITION=UNPARTITIONED]
hosts=0 per-host-mem=unavailable
tuple-ids=0 row-size=19B cardinality=unavailable

:SCAN HDFS [explain_plan.tl, PARTITION=RANDOM]
partitions=1/1 size=0B

table stats: unavailable

column stats: unavailable

hosts=0 per-host-mem=0B

tuple-ids=0 row-size=19B cardinality=unavailable

[localhost:21000] > set explain level=3;
[localhost:21000] > explain select * from tl;

Memory=10.00MB VCores=1

Memory=-9223372036854775808B VCores=0
WARNING: The following tables are missing relevant table and/or column

Memory=-9223372036854775808B VCores=0
WARNING: The following tables are missing relevant table and/or column

| Impala SQL Language Reference | 356

| Explain String |

Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0

WARNING: The following tables are missing relevant table and/or column
statistics.

explain plan.tl

|

I

|

I

|

FO1l:PLAN FRAGMENT [PARTITION=UNPARTITIONED]

01 :EXCHANGE [PARTITION=UNPARTITIONED]
hosts=0 per-host-mem=unavailable

tuple-ids=0 row-size=19B cardinality=unavailable
|
|
|
|
|
I
I
|
|

FOO:PLAN FRAGMENT [PARTITION=RANDOM]
DATASTREAM SINK [FRAGMENT=F01l, EXCHANGE=01, PARTITION=UNPARTITIONED]
00:SCAN HDFS [explain plan.tl, PARTITION=RANDOM]
partitions=1/1 size=0B
table stats: unavailable
column stats: unavailable
hosts=0 per-host-mem=0B
tuple-ids=0 row-size=19B cardinality=unavailable

As the warning message demonstrates, most of the information needed for Impala to do efficient query planning, and
for you to understand the performance characteristics of the query, requires running the COMPUTE STATS statement
for the table:

[localhost:21000] > compute stats tl;

e +

| summary |

B e +

| Updated 1 partition(s) and 2 column (s) |
e +

[localhost:21000] > explain select * from tl;

e +
| Explain String |
e +

Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0

FOl:PLAN FRAGMENT [PARTITION=UNPARTITIONED]
01 :EXCHANGE [PARTITION=UNPARTITIONED]
hosts=0 per-host-mem=unavailable
tuple-ids=0 row-size=20B cardinality=0

| |
| |
| |
| |
| |
| |
| |
| FOO:PLAN FRAGMENT [PARTITION=RANDOM]

| DATASTREAM SINK [FRAGMENT=F01l, EXCHANGE=01, PARTITION=UNPARTITIONED] |
| 00:SCAN HDFS [explain plan.tl, PARTITION=RANDOM]

| partitions=1/1 size=0B

| table stats: 0 rows total

| column stats: all |
| hosts=0 per-host-mem=0B

| tuple-ids=0 row-size=20B cardinality=0

Joins and other complicated, multi-part queries are the ones where you most commonly need to examine the
EXPLAIN output and customize the amount of detail in the output. This example shows the default EXPLAIN output
for a three-way join query, then the equivalent output with a [SHUFFLE] hint to change the join mechanism between
the first two tables from a broadcast join to a shuffle join.

[localhost:21000] > set explain level=l;
[localhost:21000] > explain select one.*, two.*, three.* from tl one, tl
two, tl three where one.x = two.x and two.x = three.x;

| Impala SQL Language Reference | 357

| Explain String |
Estimated Per-Host Requirements: Memory=4.00GB VCores=3

|
|
07 :EXCHANGE [PARTITION=UNPARTITIONED]
| |
04:HASH JOIN [INNER JOIN, BROADCAST] |
| hash predicates: two.x = three.x
| |
| --06: EXCHANGE [BROADCAST] [
| |
02:SCAN HDFS [explain plan.tl three] |
partitions=1/1 size=0B |
|
I
|
|
I
|
|
|
|
|
|

3:HASH JOIN [INNER JOIN, BROADCAST]
hash predicates: one.x = two.x

|
|
|
|
0
|
|
| --05:EXCHANGE [BROADCAST]
| |
| O01:SCAN HDFS [explain plan.tl two]
| partitions=1/1 size=0B
|
00:SCAN HDFS [explain plan.tl one]
partitions=1/1 size=0B

[localhost:21000] > explain select one.*, two.*, three.*
> from tl one join [shuffle] tl two join tl three
> where one.x = two.x and two.x = three.x;

Estimated Per-Host Requirements: Memory=4.00GB VCores=3

08 :EXCHANGE [PARTITION=UNPARTITIONED]
|
04 :HASH JOIN [INNER JOIN, BROADCAST]
| hash predicates: two.x = three.x

|
| --07:EXCHANGE [BROADCAST]

|
02:SCAN HDFS [explain plan.tl three]
partitions=1/1 size=0B

hash predicates: one.x = two.x

--06:EXCHANGE [PARTITION=HASH (two.x)]

|
01:SCAN HDFS [explain plan.tl two]
partitions=1/1 size=0B

|
|
|
|
I
|
|
I
| |
| |
| |
| |
03:HASH JOIN [INNER JOIN, PARTITIONED] |
| |
| |
I I
| |
| |
| |
| |
05:EXCHANGE [PARTITION=HASH (one.x)] |
| |
00:SCAN HDFS [explain plan.tl one]
partitions=1/1 size=0B |

For a join involving many different tables, the default EXPLATIN output might stretch over several pages, and the
only details you care about might be the join order and the mechanism (broadcast or shuffle) for joining each pair of
tables. In that case, you might set EXPLAIN LEVEL to its lowest value of 0, to focus on just the join order and join
mechanism for each stage. The following example shows how the rows from the first and second joined tables are

| Impala SQL Language Reference | 358

hashed and divided among the nodes of the cluster for further filtering; then the entire contents of the third table are
broadcast to all nodes for the final stage of join processing.

[localhost:21000] > set explain level=0;

[localhost:21000] > explain select one.*, two.*, three.*
> from tl one join [shuffle] tl two join tl three
> where one.x = two.xX and two.x = three.x;

e +

| Explain String |

B e +

Estimated Per-Host Requirements: Memory=4.00GB VCores=3

|
|
08 :EXCHANGE [PARTITION=UNPARTITIONED] |
04:HASH JOIN [INNER JOIN, BROADCAST] [
| --—07 : EXCHANGE [BROADCAST] [
| 02:SCAN HDFS [explain plan.tl three] |
03:HASH JOIN [INNER JOIN, PARTITIONED] [
| --—06: EXCHANGE [PARTITION=HASH (two.x)] [
| 01:SCAN HDFS [explain plan.tl two] |
05:EXCHANGE [PARTITION=HASH (one.x)] [
00:SCAN HDFS [explain plan.tl one] |

HBASE_CACHE_BLOCKS Query Option

Setting this option is equivalent to calling the setCacheBlocks method of the class
org.apache.hadoop.hbase.client.Scan, in an HBase Java application. Helps to control the memory pressure on the
HBase RegionServer, in conjunction with the HBASE CACHING query option.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false
Default: false (shown as 0 in output of SET statement)

Related information:

Using Impala to Query HBase Tables on page 699, HBASE CACHING Query Option on page 358
HBASE_CACHING Query Option

Setting this option is equivalent to calling the setCaching method of the class
org.apache.hadoop.hbase.client.Scan, in an HBase Java application. Helps to control the memory pressure on the
HBase RegionServer, in conjunction with the HBASE CACHE BLOCKS query option.

Type: BOOLEAN

Default: 0

Related information:

Using Impala to Query HBase Tables on page 699, HBASE CACHE BLOCKS Query Option on page 358
LIVE_PROGRESS Query Option (Impala 2.3 or higher only)

For queries submitted through the impala-shell command, displays an interactive progress bar showing roughly
what percentage of processing has been completed. When the query finishes, the progress bar is erased from the
impala-shell console output.

Type: Boolean; recognized values are 1 and 0, or t rue and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Command-line equivalent:

You can enable this query option within impala-shell by starting the shell with the -~1ive progress
command-line option. You can still turn this setting off and on again within the shell through the SET command.

Usage notes:

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

| Impala SQL Language Reference | 359

The output from this query option is printed to standard error. The output is only displayed in interactive mode, that
is, not when the —g or —f options are used.

For a more detailed way of tracking the progress of an interactive query through all phases of processing, see
LIVE SUMMARY Query Option (Impala 2.3 or higher only) on page 359.

Restrictions:

Because the percentage complete figure is calculated using the number of issued and completed “scan ranges”,
which occur while reading the table data, the progress bar might reach 100% before the query is entirely finished.
For example, the query might do work to perform aggregations after all the table data has been read. If many of
your queries fall into this category, consider using the LIVE SUMMARY option instead for more granular progress
reporting.

The LIVE_PROGRESS and LIVE SUMMARY query options currently do not produce any output during COMPUTE
STATS operations.

Because the LIVE PROGRESS and LIVE SUMMARY query options are available only within the impala-shell
interpreter:

* You cannot change these query options through the SQL SET statement using the JDBC or ODBC interfaces. The
SET command in impala-shell recognizes these names as shell-only options.

* Be careful when using impala-shell on a pre-Impala 2.3 system to connect to a system running Impala 2.3 or
higher. The older impala-shell does not recognize these query option names. Upgrade impala-shell on
the systems where you intend to use these query options.

» Likewise, the impala-shell command relies on some information only available in Impala 2.3 and higher to
prepare live progress reports and query summaries. The LIVE PROGRESS and LIVE SUMMARY query options
have no effect when impala-shell connects to a cluster running an older version of Impala.

Added in: Impala 2.3.0

Examples:

[localhost:21000] > set live progress=true;
LIVE PROGRESS set to true
[localhost:21000] > select count(*) from customer;

S e e +

| count (*) |

o= +

| 150000 |

+———— +

[localhost:21000] > select count(*) from customer tl cross join customer t2;
[H4HHHH A HH A AHHH SRS] 50%
[

FHAFAE A A A R A R A R A]
100%

To see how the LIVE PROGRESS and LIVE SUMMARY query options work in real time, see this animated demo.
LIVE_SUMMARY Query Option (Impala 2.3 or higher only)

For queries submitted through the impala-shell command, displays the same output as the SUMMARY command,
with the measurements updated in real time as the query progresses. When the query finishes, the final SUMMARY
output remains visible in the impala-shell console output.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Command-line equivalent:

You can enable this query option within impala-shell by starting the shell with the -~1ive summary
command-line option. You can still turn this setting off and on again within the shell through the SET command.

https://asciinema.org/a/1rv7qippo0fe7h5k1b6k4nexk

| Impala SQL Language Reference | 360

Usage notes:

The live summary output can be useful for evaluating long-running queries, to evaluate which phase of execution
takes up the most time, or if some hosts take much longer than others for certain operations, dragging overall
performance down. By making the information available in real time, this feature lets you decide what action to take
even before you cancel a query that is taking much longer than normal.

For example, you might see the HDFS scan phase taking a long time, and therefore revisit performance-related
aspects of your schema design such as constructing a partitioned table, switching to the Parquet file format, running
the COMPUTE STATS statement for the table, and so on. Or you might see a wide variation between the average
and maximum times for all hosts to perform some phase of the query, and therefore investigate if one particular host
needed more memory or was experiencing a network problem.

The output from this query option is printed to standard error. The output is only displayed in interactive mode, that
is, not when the —q or —f options are used.

For a simple and concise way of tracking the progress of an interactive query, see LIVE_PROGRESS Query Option
(Impala 2.3 or higher only) on page 358.

Restrictions:

The LIVE PROGRESS and LIVE SUMMARY query options currently do not produce any output during COMPUTE
STATS operations.

Because the LIVE PROGRESS and LIVE SUMMARY query options are available only within the impala-shell
interpreter:

* You cannot change these query options through the SQL SET statement using the JDBC or ODBC interfaces. The
SET command in impala-shell recognizes these names as shell-only options.

* Be careful when using impala-shell on a pre-Impala 2.3 system to connect to a system running Impala 2.3 or
higher. The older impala-shell does not recognize these query option names. Upgrade impala-shell on
the systems where you intend to use these query options.

» Likewise, the impala-shell command relies on some information only available in Impala 2.3 and higher to
prepare live progress reports and query summaries. The LIVE PROGRESS and LIVE SUMMARY query options
have no effect when impala-shell connects to a cluster running an older version of Impala.

Added in: Impala 2.3.0
Examples:

The following example shows a series of LIVE SUMMARY reports that are displayed during the course of a query,
showing how the numbers increase to show the progress of different phases of the distributed query. When you do
the same in impala-shell, only a single report is displayed at any one time, with each update overwriting the
previous numbers.

[localhost:21000] > set live summary=true;
LIVE SUMMARY set to true
[localhost:21000] > select count(*) from customer tl cross join customer t2;

o — t——————— t———————— t———————— t——————— o ——————
t——————— t—————_—_———— e +
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows
| Peak Mem | Est. Peak Mem | Detail
e e e ————— e ————— o e ———
e ————— e —— e +
| 06:AGGREGATE | 0 | Ons | Ons | 0 | 1
| 0B | -1 B | FINALIZE [
| 05:EXCHANGE | O | Ons | Ons | O | 1
| 0 B | -1 B | UNPARTITIONED
| 03:AGGREGATE | O | Ons | Ons | O | 1
| 0 B | 10.00 MB |
| 02:NESTED LOOP JOIN | O | Ons | Ons | 0 | 22.50B
| O B | O B | CROSS JOIN, BROADCAST |
| |--04:EXCHANGE | 0 | Ons | Ons | 0 | 150.00K

| 0B | 0B | BROADCAST

| Impala SQL Language Reference | 361

| | 01:SCAN HDFS | 1 | 503.57ms | 503.57ms | 150.00K | 150.00K
| 24.09 MB | 64.00 MB | tpch.customer t2 |
| 00:SCAN HDFS | O | Ons | Ons | O | 150.00K
| O B | 64.00 MB | tpch.customer tl
e t————— t———— t———— t—————— o ———
e o —— B it ittt +
o t—————— t——————— t——————— t———————— o ———
t——————— tm————————— o +
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows
| Peak Mem | Est. Peak Mem | Detail
o t——————— e e o -
t————————— tm—m e ——— o +
| 06:AGGREGATE | 0 | Ons | Ons | 0 | 1
| O B | -1 B | FINALIZE
| 05:EXCHANGE | 0 | Ons | Ons | 0 | 1
| 0 B | -1 B | UNPARTITIONED
| 03:AGGREGATE | 1 | Ons | Ons | 0 | 1
| 20.00 KB | 10.00 MB |
| 02:NESTED LOOP JOIN | 1 | 17.62s | 17.62s | 81.14M | 22.50B
| 3.23 MB | O B | CROSS JOIN, BROADCAST |
| |--04:EXCHANGE | 1 | 26.29ms | 26.29ms | 150.00K | 150.00K
| 0 B | 0 B | BROADCAST
| | 01:SCAN HDFS | 1 | 503.57ms | 503.57ms | 150.00K | 150.00K
| 24.09 MB | 64.00 MB | tpch.customer t2 |
| 00:SCAN HDFS | 1 | 247.53ms | 247.53ms | 1.02K | 150.00K
| 24.39 MB | 64.00 MB | tpch.customer tl |
e t————— t————— t————— t—————— o ———
t———— o —————— e +
o t——————— t————————— t————————— t———————— o —————
t——————— o —————— e +
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows
| Peak Mem | Est. Peak Mem | Detail
e t————— t———— t———— t—————— o ———
e o —— B it ittt +
| 06:AGGREGATE | 0 | Ons | Ons | 0 | 1
| OB | -1 B | FINALIZE
| 05:EXCHANGE | O | Ons | Ons | O | 1
| O B | -1 B | UNPARTITIONED
| 03:AGGREGATE | 1 | Ons | Ons | O | 1
| 20.00 KB | 10.00 MB |
| 02:NESTED LOOP JOIN | 1 | 61.85s | 61.85s | 283.43M | 22.50B
| 3.23 MB | OB | CROSS JOIN, BROADCAST |
| |--04:EXCHANGE | 1 | 26.29ms | 26.29ms | 150.00K | 150.00K
| O B | O B | BROADCAST
| | 01:SCAN HDFS | 1 | 503.57ms | 503.57ms | 150.00K | 150.00K
| 24.09 MB | 64.00 MB | tpch.customer t2 |
| 00:SCAN HDFS | 1 | 247.59ms | 247.59ms | 2.05K | 150.00K
| 24.39 MB | 64.00 MB | tpch.customer tl |
B t—————— t——————— t——————— t——————— o ———
t————— o ——————— e +

To see how the LIVE PROGRESS and LIVE SUMMARY query options work in real time, see this animated demo.
MAX_ERRORS Query Option

Maximum number of non-fatal errors for any particular query that are recorded in the Impala log file. For example, if
a billion-row table had a non-fatal data error in every row, you could diagnose the problem without all billion errors
being logged. Unspecified or 0 indicates the built-in default value of 1000.

This option only controls how many errors are reported. To specify whether Impala continues or halts when it
encounters such errors, use the ABORT ON_ERROR option.

https://asciinema.org/a/1rv7qippo0fe7h5k1b6k4nexk

| Impala SQL Language Reference | 362

Type: numeric

Default: 0 (meaning 1000 errors)

Related information:

ABORT ON_ERROR Query Option on page 348, Using Impala Logging on page 725
MAX_IO_BUFFERS Query Option

Deprecated query option. Currently has no effect.

Type: numeric

Default: 0

MAX_SCAN_RANGE_LENGTH Query Option

Maximum length of the scan range. Interacts with the number of HDFS blocks in the table to determine how many
CPU cores across the cluster are involved with the processing for a query. (Each core processes one scan range.)

Lowering the value can sometimes increase parallelism if you have unused CPU capacity, but a too-small value can
limit query performance because each scan range involves extra overhead.

Only applicable to HDFS tables. Has no effect on Parquet tables. Unspecified or 0 indicates backend default, which is
the same as the HDFS block size for each table.

Although the scan range can be arbitrarily long, Impala internally uses an 8 MB read buffer so that it can query tables
with huge block sizes without allocating equivalent blocks of memory.

Type: numeric

In Impala 2.7 and higher, the argument value can include unit specifiers, such as 100m or 1 00mb. In previous
versions, Impala interpreted such formatted values as 0, leading to query failures.

Default: 0
MAX_NUM_RUNTIME_FILTERS Query Option (Impala 2.5 or higher only)

The MAX NUM RUNTIME FILTERS query option sets an upper limit on the number of runtime filters that can be
produced for each query.

Type: integer

Default: 10

Added in: Impala 2.5.0
Usage notes:

Each runtime filter imposes some memory overhead on the query. Depending on the setting of the
RUNTIME BLOOM FILTER_ SIZE query option, each filter might consume between 1 and 16 megabytes per plan
fragment. There are typically 5 or fewer filters per plan fragment.

Impala evaluates the effectiveness of each filter, and keeps the ones that eliminate the largest number of partitions
or rows. Therefore, this setting can protect against potential problems due to excessive memory overhead for filter
production, while still allowing a high level of optimization for suitable queries.

Because the runtime filtering feature applies mainly to resource-intensive and long-running queries, only adjust this
query option when tuning long-running queries involving some combination of large partitioned tables and joins
involving large tables.

Related information:

Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 615,
RUNTIME BLOOM _FILTER _SIZE Query Option (Impala 2.5 or higher only) on page 373,
RUNTIME _FILTER _MODE Query Option (Impala 2.5 or higher only) on page 374

| Impala SQL Language Reference | 363

MEM_LIMIT Query Option

When resource management is not enabled, defines the maximum amount of memory a query can allocate on each
node. Therefore, the total memory that can be used by a query is the MEM LIMIT times the number of nodes.

There are two levels of memory limit for Impala. The -mem 1imit startup option sets an overall limit for the
impalad process (which handles multiple queries concurrently). That limit is typically expressed in terms of a
percentage of the RAM available on the host, such as -mem 1imit=70%. The MEM LIMIT query option, which
you set through