Apache Impala Guide

| Contents | ii

Contents

Introducing Apache Impala..........ciiceiinsriissiinsnicssnicssnncnseecsssesssssecssseecssseecess 14

IMPALA BENETILS. . ectiieiiiiiieeieeie ettt ettt et e e te e st e e teestae e beessbeesbeesssaesseessbeensaensseanseanssesnseessseeseenes 14
How Impala Works with Apache Hadoop.......ccueeiiiiiieiieiieeiece sttt eebe e b e eaeesnae e 14
Primary ImMpala FEATUIES.coiiiiiiiiieieee ettt ettt bt et et e et et e saeeneenaeas 15

Impala Concepts and ArchiteCture........eeecvceeeiissneeccssneecsssnneecssnencsssnnencsssnnnees 15

Components of the IMPala SETVET.........ccceviiiririririie ettt ettt ettt sae e 15
The TMPala DACIINON.eeiiiieieieetieieeiete ettt ettt st et e st e e st e e e e st e teeseenseeseenteeneenseeneenneeneesseennes 15
The IMPala STALESOTE.ccuetiuiriiirtietirie ettt ettt ettt ettt sttt s sa ettt eae et eaeebe b e 16
The Impala Catalog SEIVICE........coirirriririeieieietetete ettt sttt ettt ettt sa et be s seene e 16
Developing Impala APPIICALIONS.cc.eeiueiiieieieeieiieiestteteste ettt e et e et e e et e e e eneesseeneesseenseeseensesseensesnsenseennens 17
Overview of the Impala SQL DIalECt.......cc.coiveririiriiiiniiieieieeeenere sttt 17
Overview of Impala Programming INterfaces..........c.ceccevirirerininiininincnenccteeceeeeeeeceeee e 18
How Impala Fits Into the Hadoop ECOSYSLEML........ceoiuiiiiiiieieciieeciieeeee ettt 18
How Impala Works With HIVe.........cooiiiiiieieiieese ettt s enees 18
Overview of Impala Metadata and the Metastore...........cccecveeeiriririninenenieneneneeet ettt 19
How Impala Uses HDFS.......ccocciiiiiieeeetetete ettt ettt e 19
How Impala Uses HBASE.......cccouiririiriiiiiiicieicictcteeee sttt ettt st e 19

Planning for Impala Deployment.............cccveiiiiivnicnsssneicsssnnnccscnnecsssnsescssassecssesss 19

IMPala REQUITEIMENLS.ceivieieiiieieitieteetieteettete et esteeetestesstessessaesseessessaessessaessessaessessaenseassensesssessesssessesssessessens 20
Supported OPErating SYSEEIMS.eevverierierieieriesieetesteetesseetesseestesseessesseessesseessesssessesssessesssessesssessesnes 20
Hive Metastore and Related Configuration...........c.oceecverieriieieniieiienie et eee 20
JAVA DEPENACIICIES.ueivieiiieiieiieierie ettt e et e et e e et e te e b e sseessesseessessaessesssesseessansaesseasaensenseensenses 20
Networking Configuration REQUITCIMENLS.ccveiieriieieriieiieieieeieteeee e eesreeae e esesteessesssensesseensennns 21
Hardware REQUITEIMENLS.c.eeieriiiieriieierieeie st ete st ete et ete et esteesaesseeseesseessesseessesssessesssessesssensenssensennes 21
User ACCOUNt REQUITEIMENLS...........eivieieriieieetietietesteetesteete e eaesieeseseeessesseesseesaesseeseesseessesseessesseensesses 21
Guidelines for Designing Impala SChemas..........c.occveviiiieriiiiiiiceeeseee et beeneens 21

Installing Impala...........0.........0.0.........0.0.........0.0.........0.0.........0.0.........0.0......'..0.0..... 23
What is Included in an Impala InStallation............ceeeieiiiierieriiieiecie et sae e e ssaeesbe e 23

Managing IMpPala........eeiccinninnnniiicinssnnnnniccsssssnnneccsssssssssscsssssssssssssssssssssssssssssssssssscs 24

Post-Installation Configuration for IMpala...........cccccereriiiiiiiiiiiii ettt 24
Configuring Impala to Work with ODBC........cc.coiiiiriiiiiiieieietneeee ettt st 26
Configuring Impala to Work with JDBC....c..cccoiiiiiiiiiiiiiicntneenese ettt 26
Configuring the JDBEC POrt.....c..ccuoiiiiiiiiiiiiieenreeec ettt ettt sttt 26
ChooSINg the JDBEC DITVEL....cc.coiiiiiiiiiiieieieieitet ettt sttt sttt ettt ettt et ebe b sae et sbenaen 26
Enabling Impala JDBC Support on Client SYStEIMS.c..ceveverueriirienienieieieieteieeieeeeieeiesie e seenes 27
Establishing JDBC CONNECHIONS.c..couerteiiieieiieiiieeieeieniente sttt sttt ettt eseeseesesbe st st saesaestesseneens 28
Notes about JDBC and ODBC Interaction with Impala SQL Features...........cc.ccccecererenenenenenennenne. 28
Kudu Considerations for DML Statements............cccecueteirirenineneneneneneneeteeeeeeeeeeesesesneseessessenee 29

Upgrading Impala.........ioeiininniicninnnicnssnnicnssniessssssncsssssscssssssesssssssssssssssssssssses 29

| Contents | iii

UPGrading IMPala.........c.oocveriiiieriiiieiiciesieet ettt ettt et st e st esbeseeesbesse e seessesbeesaesseessenseesseseessenseensesseensennns 29
Impala Upgrade ConSIACTationsS.ccviveriirieriiriesiieieseetesseetesseesesseesesseessesssessesssessesssessesssessesssessesssessesnes 30
Default Setting CRANGES.c.ccverviiieiieieieeiete ettt ettt esae e essesaesbessaesseessesseessesseessesssessesseesesses 30

Starting IMpala......ccoeeiicinnnniicnnnniinnnnnicnnnniissssnsicssssssicssssssssssssssssssssssssssssssssssssssse 30

Starting Impala from the Command LiNe..........cccoocoeiiiiiiiiiiiiiiiieeeee e 30
Modifying Impala Startup OPHONS.coueiuieriiitieieet ettt ettt sttt ettt s b et sbe et e be et ebe et saeeneeeae 31
Configuring Impala Startup Options through the Command Line............ccoceeveeniiieninienieniencececenee. 31
Checking the Values of Impala Configuration Options.cccceeueeieririenenieneeiereee e 33
Startup Options for impalad DaGmON.c.eeviieiiiiiiieieeie et saaeesaeenes 33
Startup Options for statestored DaCmON.........c.cecuiiriieiiieiie ittt e e sreeeae e taeesaeeneee s 34
Startup Options for catalogd DaemOn...........coeiiiiiiiiirieiee e 34

Impala TutorialS......iieiiniiiininiiiiiniicssneiicnsneiccssneecssssnescsssssesssssssscssssescssssee 34

Tutorials for Getting STATTEd........ccueieiririiirieteeret ettt ettt ettt sae st be e e ene 34
Explore a New Impala INStANCE........ceeiirieriieieriieiecieee ettt ettt ae st aesneenneas 34
Load CSV Data from Local Files.........cccviiiririininiiiiiiicieiececetnenest ettt 39
Point an Impala Table at Existing Data Files..........cccocieririiiiiienieeeeeeeeeee e 41
Describe the ITmpala Table.........cccveiiiiiiieeee ettt nee s 43
Query the ImMpPala TabIe.......c.coiiiiiieieiee et ettt ettt et e s etesseeneeneeneeneens 44
Data Loading and Querying EXamPIEs.........cccceeciiririiriieieiieiesiieeetete ettt 44
AdVANCEA TULOTIALS. ...ttt ettt ettt sttt et ettt et eae e bt ebeebesuesaenes 46
Attaching an External Partitioned Table to an HDFS Directory Structure..........c.cccceceeveveeerencrennenne. 46
Switching Back and Forth Between Impala and Hive........ccccocovivinininiinininiiiiiicinccceceeneceeen 49
Cross Joins and Cartesian Products with the CROSS JOIN Operator...........ccccceeceeeererenenenenenennennes 49
Dealing with Parquet Files with Unknown SChema...........cccccueviiiiiniinininiiinneneecceeeeeeeeceieee e 52

Impala AdmINiStration......ccceeiieiiiciiciisniinsssnnicsssnnecsssssicssssssessssssnssssssssssssssscsssnses 00

Admission Control and QUErY QUEUING.........c.cccveruirierierierieriesiertesreeetesteessesseesesseessesseessesseessesseessessesssesssensens 66
Overview of Impala Admission CONEIOL........c.ccvecvirieiiiiiieriieierie ettt s e e sseeseesseenees 67
Concurrent Queries and Admission CONIIOL..........c.civviiiiiiiiieiiieeie ettt ettt eereeeee v eeneevee e 67
Memory Limits and Admission CONtIOL...........ccueviiieriirieiieienieeieeieteeeesiesee e see e sae e essesseessesseens 67
How Impala Admission Control Relates to Other Resource Management Tools.........c.ccoevevenenienene. 68
How Impala Schedules and Enforces Limits on Concurrent QUETIES........c..ccvevveeeerierienereenenieeriennens 68
How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2).........cccccveevervennenne 69
SQL and Schema Considerations for Admission CONtrol..........c.ccccueevveevieeirieiieeieeeiee e 69
Configuring Admission CONMIOL..........cceviirieiieiiiiieieeeeie ettt ettt ste et e e ae e eaesreessesseessesseenseeseenes 70

Resource Management fOr IMPala............cccooiiiiriiiiiiiiieceeeee sttt see e e sa e s sa e beessessenssenseens 75
How Resource Limits Are ENfOrced........cooiiriiriiniiiiiiiiiiii et 75
impala-shell Query Options for Resource Management...........c.ccvevververienienieneenieeienieeeeseeeeseeensesenes 75
Limitations of Resource Management for Impala............ccccovveriiriiiiiniiniieieicee e 75

Setting Timeout Periods for Daemons, Queries, and SESSIONS...........ccevierrerierierierieneeiesresieseeseseresseenesseees 75
Increasing the Statestore TIMEOUL.........c.cciicieriiiierieeiesteeieseet et e e steereeteesaeseeessesseessesssessesssesseessessanns 75
Setting the Idle Query and Idle Session Timeouts for impalad............ccceecvevieciinieriniiere e 76
Setting Timeout and Retries for Thrift Connections to the Backend Client...........cccceceeeririnenenennene. 76
CancCelling @ QUETY......ccueeieriieteeiteteetesteeeteste et e eteetesteesaesseessesssesseessesseasseseesseaseassesssessesseessesssessenssensens 77

Using Impala through a Proxy for High Availability..........ccceceverieciirieiirieieeeee et 77
Overview of Proxy Usage and Load Balancing for Impala.............cccoeeieviieieniniienieienecieseeieseens 77
Choosing the Load-Balancing AlZOrithm...........c.cccevieiiiiiiiiiieiecieieeeee e 78
Special Proxy Considerations for Clusters Using Kerberos...........ccoccvveverircieniecienieeieneeieneeieseeenens 78
Example of Configuring HAProxy Load Balancer for Impala.............cccoovevieriicieiieiecieeeieceeee 80

Managing Disk Space for Impala Data............ccecvieieriiiienieierieee ettt seete e esae e essesreesesseesesseens 81

| Contents | iv

IMPAala SECUTILY.cccueiiiiiiiriiiiitrisiiiisneinsticssnticsssncsssiesssnsssssnessssncssssssssssesssssssssssssss 32

Security Guidelines fOr IMPala..........ccccooiiiiiiiiiiiee ettt ettt e see s 83
Securing Impala Data and Log Files........cooiiiiiiiiie ettt s 84
Installation Considerations for Impala SECUTITLY.......ccoiiiriiiiirieie e 85
Securing the Hive Metastore Database...........ccouieieriiiiniiieiieie ettt ettt sbee b saeeneas 85
Securing the Impala Web User INtErface...........ooiuiiiiiiiiiiiiiiiiee et 85
Configuring TLS/SSL fOr IMPala..........cooiiiiiiiiiiieee ettt sttt sttt 85
Using the Command LiINe........c.coiiiiiieiiiiieiiiet ettt ettt ettt e e eaees 86
Using TLS/SSL with Business Intelligence TOOlS........c.ccooiiiiiiiiiiinieiieeeeeeee e 86
Specifying TLS/SSL Minimum Allowed Version and Ciphers..........ccccoeceriroienineninnenieienieeeeeenne 86
Enabling Sentry Authorization for Impala...........cocoiiiiiiiiiii e 87
The Sentry Privilege MOAEL......cc.ooiiiiiiiiiiie ettt 87
Starting the impalad Daemon with Sentry Authorization Enabled...........cccoccoiiiiinininiiniiiiee 88
Using Impala with the Sentry Service (Impala 1.4 or higher only).......ccocoevieiiniininiiniiieees 89
Using Impala with the Sentry Policy File........cccooiiiiiiiiiiiii e 89
Setting Up Schema Objects for a Secure Impala Deployment...........c.ccocereiieniniiniiniinieeieneeencene. 94
Privilege Model and Object Hierarchy.........ccooeeoiiiiriiiiiiieiieieiee ettt 94
Debugging Failed Sentry Authorization ReqUeStS.........ccceouiiiiiiiiiiiiiiiieeeeceeeee e 97
The DEFAULT Database in a Secure Deployment.............cooceeviiiiniiiiiinieninieieeeeeeee e 98
IMPala AUTRENTICATION.ieitieeiiieiee ettt ettt et e et e stteebeessteesbeessaeesseesaeassaeseesssaesaessseensseasseenseesnseensennns 98
Enabling Kerberos Authentication for Impala............cccooiiiiiiiiiiiiiie e 98
Enabling LDAP Authentication for Impala...........ccooiiiiiiiiiiiiiee e 101
Using Multiple Authentication Methods with Impala...........ccccoooeiiiiiiiiinieee, 103
Configuring Impala Delegation for Hue and BI To0OIS.........cccoceiiiiiniiiiiiiiieeeeeeeeee 104
Auditing Impala OPErations...........ceeeruieieririerieee sttt ettt este bt e tesbe e besseesbesetenbeeetesbeentenaeeneenne 104
Durability and Performance Considerations for Impala Auditing..........cccceceveevineeniiieencniencneene 104
Format of the Audit Log Files......coooiiiiiiiiiiieieeee et 105
Which Operations Are AUIted..........ceviiriiiiieeieeiie ettt e te et et seee b e e seeeesaeessaeensaesee s 105
Viewing Lineage Information for Impala Data...........cccoiiiiiiiiiniiiiiiiieeeeeee e 106

Impala SQL Language Reference........eicceciccneriiccssssnnnnnicsssscnnnnccsssssnssssscssssesss 106

COMUIMENLS.ottt ettt ettt et st e e st e e s ae e s e s ae et e e e e et e eas et e eate st ennesneennesaeennesaeennesaeen 107
DALA TYPS. ettt ettt b e ettt et e bt e s a e e bt e s bt e bt h et e bt e e h b et e e shb e e bt e nhe e e bt e baesbeesbeesatees 107
ARRAY Complex Type (Impala 2.3 or higher only)........ccccoceevivierinininininiciieeenencseeeceene 108
BIGINT DAt TYPE.....ieuieiieiiniieiieieete ettt ettt ettt ettt st st et s et e s e sae e e s et e eaeeneeane 111
BOOLEAN Data TYPE.....coueiuiiieiieieniieieeieete ettt ettt ettt st see e sttt enesaeene st enesaeen 112
CHAR Data Type (Impala 2.0 or higher only)........ccccocereriiiiiiininiiininneneeeseeeeeeeeee e 113
DECIMAL Data Type (Impala 1.4 or higher only).......ccccocevierininineneniiiciccinenceenencseeeseeee 117
DOUBLE Data TYPe......coueeiieiiiieiieiieieetteee ettt ettt ettt ettt ene s esre e e 125
FLOAT Data TYPe.....cooieiiriieiiiieie ettt ettt st st st e ae e 126
INT DAt TYPE..uevteeiiriiiitieeite ettt ettt et ettt et e s e et e bt et esbe e s bt e bt e sabeesbtesabeenbtesaseenbeesabeebeens 127
MAP Complex Type (Impala 2.3 or higher only)......c.ccocoevvirininininiiiiccceeceececee e 128
REAL Daata TYPe...ceoteeeieeiieiieetteette ettt ettt et sb e ettt bt e st st e sat e e bt e saeeebeesatesabeessnesanee e 132
SMALLINT Data TYPe..c..eveeeuteteiiriirierierttstesie sttt ettt ettt sae sttt st et et se et et eseeaeebesaesaesbenee 133
STRING Daata TYPE....cooueeieiieiirieeieeiteteete ettt ettt ettt st sttt be e e sreesneeneesneeaeeaeeae 134
STRUCT Complex Type (Impala 2.3 or higher only)........ccccecererinieninininenenicieieeceeencsceeneneens 135
TIMESTAMP Data TYPE....coeeuireririirtinientintetenteteteit ettt sttt st st ettt ettt et sae st be e e ne e 141
TINYINT Data TyYPe..ceoueeetieeieeiieriteeitesitt ettt ettt ettt et sat e e beesate e bt e sabe e bt e sa bt esbtesabeesbaesabeenbeeeas 149
VARCHAR Data Type (Impala 2.0 or higher only)........ccccoceveiirininininiiiiecincnenencsceeseneene 150
Complex Types (Impala 2.3 or higher only)......cccoccviriririnininiiceee e 152
LIEETALS. ...ttt ettt et b bbbttt ettt eb e bt b e e a e eh ekt h e et b e e e e enee 183
NUMETIC LIETALS.cvetitieiitirtetee ettt ettt ettt ettt be bttt sbe e b ne e eneen 183

| Contents | v

B001@AN LILETALS.....cuetiiiieieieieteeee ettt ettt sttt ettt b e 186
TIMEStAMP LALETALS...c.vieuieiieeieii ettt ettt sbe e esteeseesaeessesseessesseensenseensenseenes 186
INULL .tttk ettt es et e a e bt e bt e bt e bt e bt b e sb et e et et et et eseentebeebeebeebeabenaen 186
SQL OPETALOTS.veeeeeeieeriieeitesteetee st etee sttt eteestteebeessaeeteessseenseessseassaessseenseesssesnseesaseenseesnseensaesssesseesssesnseesns 187
ATTERMETIC OPEIALOTS.ieviieieieieieteeterteetesteetesteesesteessesteessesseesseassessesssessesssessesssesesssenseessenseessenseenes 187
BETWEEN OPETALOT...c.utiitieiitiiienieettesite et etteetesteeseteesteesateesstesasesseesssesnseessseenseessseenseesseesnseessnesnse 190
COMPATISON OPCIALOTS.eveeererriereereetiertesteetesseessesseesesseessesssessesssessesssessesssesseessesseessesssessesssessesssensens 192
EXISTS OPETALOT.....cecueiiiieriieeiieiiteettentteeteestt e st ettesite e tte sttt e beesabeeteesaseesseessseensaesssesnseesssesnseesssesseens 193
TLTKE OPETALOT. ... eeeutieiieeieesiieeieesite et e eite et e ste et e stteesbeesatessbeesaaesateesssesnseessseenseenssesnsaenssesnseesssesnseennns 196
IIN OPETALOT......eoutieiieeiiieeiie ettt ettt ettt et e bt e bt e et e e bt e sabeesbeesabe e saesabeenbaessbeenseesaseenseessseensaensseans 197
TREGEXP OPETALOT.....ccutieiieiieeiieitieeteerite st esitesiteettesteebeesateesseesateeseesstessbaesssesnseessseenseessseenseenseeens 200
IS DISTINCT FROM OPETALOT......ceiiieiieeieeniieeteesiiesteesieeseteesieesteeteessseeteessseeseessseenseesssessessssessses 201
IS INULL OPCIALOT...ccuutietieriiieiienittettesteeteesteeteesiteesteesateesaesaseeseessseesseesnseesssessseenseesnsessseesnsessseessees 203
IS TRIUE OPETALOT.....ccutiriiiiierieeiteiie ettt et e site st e st e et esateebee sttt esbeesatesabeesaseenseessseenseessnesnseesssesnses 204
LIKE OPEIALOT....ccuuieiiiteiieeiteettesite et esite et esttesteesttesebeesttesateesbeesabeenseesaseenseessseenseessseensaesssesnseesnsesnseens 204
LOZICAL OPETALOLS. ...c.viieieiieiietieieieeieett et e et et e et eteseeessessaesseessesseessesseesseeseessessaessesssensesssesesssessesssensens 205
REGEXP OPCIaOT...ccuviiiieiiiieiieiiteiie sttt et ette st esaeeseteesbteebeesteessseesseesabeesssesnseessaesnseenssesnseessnesnses 208
RLIKE OPETALOT.....ccitieiieeiieitieeieesttesteesite st esitesteesteeebeeteesabeesseesateessaessseensaesnseensaesnseenseesnseensnesssennss 210
Impala Schema Objects and ODJECt NAMES........ccueevieiiieieriieieiieierteeee e eee e esreesbesreesseeseesseeseesseeseessesnseses 211
OVErview Of TMPala ALLASES.....c.eccverriecieriieieiiesie st ete st ie st e ste st et e esaesteeseesseessesseessesseessessnensesssensanssens 211
Overview of Impala Databases........ccoecverieriiiieriiiieie ettt saeesaesreessesaeessessaensesnees 212
Overview of Impala FUNCHONS..........ccciiviiiieiiiierecieeeese ettt sae e essaessesesesseessenseens 212
Overview of Impala IANtIfICrS......cc.ivciirieiieeiicie ettt sae b e seaebe e esbessnens 214
Overview Of ITMpPala TabLeS........cccevuiiieiiieieiieiecieet ettt ettt b e e st eesaesseessessaensenseenns 215
OVerview Of IMPala VIBWS.......coiiieiiiiieiiciecieeet ettt sttt st esse e sseesseeseensenes 219
Impala SQL STAtCIMENLS.......ccuiiieiiiiierieetete et eieetete et e ste et e steestesseessesseessesseessesssessesssessenssensenssenseessenseensesseenss 223
DL STAtEIMENLS.eeuiinieiiieieriieieetet ettt ettt sttt e e st s bt et sat et s bt et e e bt et eae et eatenaeeneenaee 223
DML SEAEIMENLS. ...c..eoutiiieiiiiietertetert ettt ettt et e e sbe et sbe e et sb e sue et e sasebeeaee b e eanenaeenee 224
ALTER TABLE Statement........cccueiitiiiiiiiieiieeieesit ettt e steeieeste et esiteebeeseseenbeesssesnseesnseenseesssean 225
ALTER VIEW StateMENL.....c..eeouiriiiirieniirieniieieettete ettt sttt st eeses ettt essesbeennesbeesesmeenaeennen 239
COMPUTE STATS Statement........cccueevieeiiieiiieiiesiiteiteeteerteesteetee e eieeseteebeeseteebeessesseessseenseessnes 240
CREATE DATABASE Statement.........ccocueiiieriieeiieiiieeieeneeeieesee st esitesteesiteeseesseesnseesssessseesssesnseens 248
CREATE FUNCTION Statement.........cccveriieiierieiiienieeieesteeieesitesseestesteesssesseesssesssessseesnsessseesnses 250
CREATE ROLE Statement (Impala 2.0 or higher only).........ccccccevuiiienienieniieieieee e 256
CREATE TABLE Statement........ccceeeiiiiiieiiieiieeie ettt st eite st esieeseteesieesseesteesaseesaeesnseensnesaseenne 257
CREATE VIEW Statement.........cooiiiiiieriieiiierieeitenite et esiteeieesitesteesitesateesiteesseesasesnsaesssesnseesasesnseesnns 271
DELETE Statement (Impala 2.8 or higher Only).........ccccocvivieiiiieniiiieieeeeeeeee e 273
DESCRIBE Satement.......c..cocueruiiiiriiiieniieienieeieeiteieeiteste ettt st st ettt ettt saeeneesaeenees 275
DROP DATABASE Statement.........ccceeriiiiiienieeiierieeitesite ettt steeieesiteeteesateenseesaseenbeessseeseenas 287
DROP FUNCTION Statement........ccccveeruierieeiienieeitiesteeieesiteesitesiteesieesisesbeessseeseessseessessssessseesssesnses 289
DROP ROLE Statement (Impala 2.0 or higher only)..........cccooieviinievierieieiieeceee e 290
DROP STATS StatemENL.....ccueouteiiriieniieiientietenteete ettt sttt sttt et et e st et sbeesaesaeenaesseenueesnenuees 291
DROP TABLE StatemMeNt.......cccuierieeiieiieeiieeittertiesiteeteesteeieesiteeseesiteeseesssesnbeesssessseesssesnseessseensesnsees 295
DROP VIEW Stat@MENL.....c.coruiriiiiiiienieniieienienieeteeteeiteeteete st etesieete it esaesbtenaesasesbesenenteeanenteesnenueene 297
EXPLAIN STAteIMENL......coctiriiiiiiiiiiiiitenieiteseet ettt sttt ettt sttt sb e st be e sbe s e sbe e s e b enee 298
GRANT Statement (Impala 2.0 or higher Only).......ccccveeirieiiiiiiiicieeeeeeeeee e 301
INSERT StatemeENt.......cocuieiiriiriiiiiiienieeiesieetesteeteste ettt ettt et et sbeesteeatesaeestesbeestesbeesnesbeennesbeenneane 302
INVALIDATE METADATA Statement.......cccveecuieriieiiieniieiieenieeieesiteeteesieesseesseesaseesssessseesseesnsesnses 311
LOAD DATA StatemeNt......c.ceecuieriieiiieniieetierteeieesite et esieesteesieeseteesteessbeesseessseenseesaseenseessseesseessesnses 314
REFRESH Statement.......cccccoieiiiiiiiiniiieieeentee ettt ettt ettt et eae st esae st sene b senenie e 318
REVOKE Statement (Impala 2.0 or higher Only).........cccocieiiriiecienieiereeie e 322
SELECT SHAtBIMENL......ccueiiiiiiiiiiiiiieiieteeiteteeit ettt sttt ettt et sttt sbe e s et ses et eaeenbeesnenaeenee 323
SET SEAtEIMENL....ccuveitieiiriieiintietieitett ettt ettt ettt ettt ettt et eat e st est e st e e bt ebeeaesbee et saeenaeeneenaeennenbens 353
SHOW STAtEIMENL.......oueiiiiiritiitietirieeiteetcet ettt ettt ettt ettt et bt et sae et sbee et saeenaeeanenueennens 393
TRUNCATE TABLE Statement (Impala 2.3 or higher only).........cccccovvevieiieriinieieeieieeeee e 411

UPDATE Statement (Impala 2.8 or higher only).......c.cceciiiiriiiieniiiee e 414

| Contents | vi

UPSERT Statement (Impala 2.8 or higher Only).........ccccccevierieiieniiiieieeieeeee e 415
USE SEAEIMENL.coueiiiiitiiieiieieeetee ettt ettt ettt sae e et sbee bt saee s bt eane bt eanesbeesnesbeenee 416
OPHMIZET HINES. .. oeviiiiiitiiieiieeieeieetesteete ettt ettt et e st et e st e se st e bessbesseesseseessesseessenseessenseessenseensenses 417
Impala BUilt-In FUNCLIONS........c.cciiiieiieiicieieciett ettt sttt st et et e b e eteessessaesseeseenseeseesseensesseensensens 422
Impala Mathematical FUNCLIONS...........ccueriirieiieieniieieet ettt sne e sreesseees 423
Impala Bit FUNCHONS.......cc.iiiiiiiieie ettt ettt ettt et ste et e saeesesaeesbesseessesssessassseseessensesssenseenes 442
Impala Type Conversion FUNCIONS.........c.ccuervirieriieieie et etestesee e sve e eaesteessesseessesseesesseessesssenses 453
Impala Date and Time FUNCHONS.cccuerieiieriirieiieieieeeesieeee st eeesteesee e essesaeessesseessessaensesssensenseenns 458
Impala Conditional FUNCHONS.c.ccveriiiiiiieieie ettt este et e sbe s e ste e s e sseessesseessessaessesssensessnes 509
Impala String FUNCHIONS........cceiviiietieierie ettt et et e et e eteesbesseessesseesesseesseessessesssessasssesseessensenns 516
Impala Miscellaneous FUNCLIONS...........cciviiriiiieiiiieieeieie ettt ettt sse e e sbessaesbesssensaessenseens 541
Impala AgEregate FUNCHONS.ccuiiieieiieie ettt ettt ettt esreesbesaaesessaesesssensesssenseessenseenes 543
Impala ANalytic FUNCHONS........cceoiiieiiieiecieeiectteteetete ettt ae e tessaesaeesaesseessesseessesseessesssensenns 574
Impala User-Defined Functions (UDFS).......ccoccuerieiiinieiiiieiecieieseesie ettt sve e snee s enees 593
SQL Differences Between Impala and HiVe.........cccoecvieiiiiiieniiicccceceseeeseee sttt s 610
HiveQL Features not Available in IMpPala............cceceiieriiiienienieiieieie e e eenens 610
Semantic Differences Between Impala and HiveQL Features..........ccocvevveviecieniecieneeieneeieseeieeeeens 611
Porting SQL from Other Database Systems to IMpala............cccecvevircieriiiiieiieiinieie e 612
Porting DDL and DML Statements..........cceccververieriirieriieienieeiesseeseesseesesseesesseessesssesesssessesssensesssenns 612
Porting Data Types from Other Database SYStEMS.........ccvvcveriiiiieriirieniieienieeeeeeeeeete e seesseseeessesenes 613
SQL Statements t0 RemMOVE 0F AdAPL......c..cveviiiieriiiieiiciereeeestteet ettt sre e sseensesrees 615
SQL Constructs t0 DOUDIECRECK.ccuiiiviiiriieiieciie ettt ettt e eveeeaeeve e s treeeveeseneens 616
Next Porting Steps after Verifying Syntax and Semantics..........cccccvevvereeriereenienienienieieeeeneeeeeneeenns 617

Using the Impala Shell (impala-shell Command)..........c.ccceeveeicvneecsieeccsseeeceneee 618

impala-shell Configuration OPLIONS........cc.eeiiriieiiriete ettt ettt sttt se et sbee et sbeenaesaeesbeeaeenneas 618
Summary of impala-shell Configuration OPHONS.........cccueruirieriieiienieireee et 618
impala-shell Configuration File..........ccoooiiiiiiiiiiee e e 622

Connecting to impalad through impala-shell..............cocoiiiiiiiiiie e 623

Running Commands and SQL Statements in impala-shell..............cocoooiiiiiiiiiiine e 625
Rerunning impala-shell Commands...........coeeueiiiiiiiiiiiiee e 628

impala-shell Command REfETeNCE...........cocuiiiiiiiiiiiiicieecece ettt e e et e saeebeesebeeaeennees 629

Tuning Impala for Performance.......cccoccueereccivccnnrrcccssssnnnecccssssnnnsnccssssnnssncccsss 032

Impala Performance Guidelines and Best PractiCes..........cccoererieieriiiriniiininencncieseetcreeeeee e 633
Performance Considerations for JOIn QUETIES.ccevieierieriieierie ettt sttt e e e e enes 635
How Joins Are Processed when Statistics Are Unavailable............cococevvninininininininineincncnee, 636
Overriding Join Reordering with STRAIGHT JOIN......ccccoiiiiiiiiiiiinininineneneceeeeeeteeeeee e 636
Examples of Join Order OptimiZation..........c.ccoeeverierieieieieieinenenene sttt eeeaeeeeeesesresresaens 637
Table and ColUMN STATISTICS.couertirtirtirteietetetetet ettt sttt ettt ettt et et ebe et sbesae st besae e e nenee 642
OVErview Of Table StatISTICS......couirtirterririeieieieiiet ettt sttt et ettt sbe et be e e nennene 642
Overview Of ColUMN StAtISTICS......coviererrirterieieietetetet ettt ettt ettt ettt sbe b s seenes 643
How Table and Column Statistics Work for Partitioned Tables........c..cccceererenienenienieiincninincncnnens 645
Generating Table and Column StatiStICS......c..eoereririerieieteietrereeere ettt saea 647
Detecting MiSSING StAtISTICS. c..e.veveteieiiririerteriest ettt ettt ettt st sre et et eseeae b ae e 650
Manually Setting Table and Column Statistics with ALTER TABLE.........cccccccceciivininnininincnenn 652
Examples of Using Table and Column Statistics with Impala.........c..ccccoeneiiiiiiiinininnnncncenn 653
Benchmarking Impala QUETIES.eecueeuieriieieiieierit ettt sttt st ete st et et e e e sse e eeeseenseeneenseeneesseeneesseeneesseensens 657
Controlling Impala ReSOUICE USAZE.cc.cruiriirririiriiieieieieiieteiteitete sttt ettt ettt ettt sae et sbe st re e 658
Runtime Filtering for Impala Queries (Impala 2.5 or higher only)........ccoocoeoiiieiininiiee e 658
Background Information for Runtime Filtering...........cccoecirieiiriiiiiiee e 658
Runtime Filtering INternals..........ccooieiiiiieiieiieiieieie ettt sttt st sne e e s e e s enes 659
File Format Considerations for Runtime Filtering..........ccccoeverierienieniiiiiiiininencrceene e 660

Wait Intervals for RUNTIME FIIEIS......coouvviiiiiiiiiiiieeeeeeie ettt e et e e e e s enaaeee s 660

| Contents | vii

Query Options for RUntime Filtering..........cccccveviiriieiiiiieieiieie ettt ae e ae s 660
Runtime Filtering and QUETY PIANS..........cccoeciiiiieiieiieiieieiectec ettt ese e e 660
Examples of Queries that Benefit from Runtime Filtering...........cccocvevvivierincienieienieieceee e 661
Tuning and Troubleshooting Queries that Use Runtime Filtering............ccoccoevevivecienieceneeieneeienenn 662
Limitations and Restrictions for Runtime Filtering..........c.cccoeceviivieniriienieieeieieceeie e 663
Using HDFS Caching with Impala (Impala 2.1 or higher only).........ccccooveieriniiiniiieeceeeeeeee e 663
Overview of HDFS Caching for Impala...........ccccoecieriiiiiniiiienieieeeeceee et e 663
Setting Up HDFS Caching for Impala..........c.cccoeeuiiieiiiieiieieiicies e 664
Enabling HDFS Caching for Impala Tables and Partitions.............cccecevveviereeneneenenienesiesieeeeniens 664
Loading and Removing Data with HDFS Caching Enabled..............cccccoevivieiiinieniieiecceecee e, 665
Administration for HDFS Caching with Impala............cccocveiieniiiiiniiiiccccece e 666
Performance Considerations for HDFS Caching with Impala..........c.ccecovieviiniiiniiiieeciee e, 667
Testing Impala PerfOrmance...........c.ocveriiiieriiiieiieiereetesteete ettt sttt ste b e s beesbesteesseesaenseeseeseensenseensas 668
Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles..........ccccceveniiiiincncnene. 669
Using the EXPLAIN Plan for Performance TUNINg...........ccccerieeiirieniinieieeienieeeesieseesie e sveeesenieens 670
Using the SUMMARY Report for Performance Tuning............ccceevvveveriercieninienieiesieieeeeve e 670
Using the Query Profile for Performance TUNINg...........cccocveviirieniiicieniinienieeieseeie e 672
Detecting and Correcting HDFS Block SKew CoNnditions............ccueevervieieniiniienieeieneeieseessesieessesseessesaessenns 678

Scalability Considerations for Impala............ccoveieirvniccscsnnicsscnnccsssnsecsssnseccees 679

Impact of Many Tables or Partitions on Impala Catalog Performance and Memory Usage...........ccccevueeneenee. 679
Scalability Considerations for the Impala StateStore.........ceeruerieiiiiiiiiieee e 680
Controlling which Hosts are Coordinators and EXECULOTS.c..cecueriiiiriiieniiiiiieiesiceieeeee e 681
Effect of Buffer Pool on Memory Usage (Impala 2.10 and higher).........ccccooeiiriiniiiiniiniieccee e 681
SQL Operations that SPIll t0 DISK........cveriiiiiiiiieiieie ettt ve et saeebeessae e beessaeennes 682
Limits on Query Size and COmPIEXitY.......ccocieriiieriiiiiirierie ettt ettt s te sttt sbe e sae e 685
Scalability Considerations for Impala I/O.........ccccoooiiiiiiiiiiii et 685
Scalability Considerations for Table Layout...........cccoieieriieiiniiiiiiee et 686
Kerberos-Related Network Overhead for Large CIUSEErS........cccevieiiiieninieniiienie e 686
Kerberos-Related Memory Overhead for Large CIUSLErS.........eeriiieriirieniieienieeiesiceee et 686
Avoiding CPU Hotspots for HDFS Cached Data............cceeouiiieiiiiiiiiieieeeseeeseee e 687
Scalability Considerations for NameNode Traffic with File Handle Caching............ccoccovoeniiviniininnnenen. 687

Partitioning for Impala Tables........cciiciiivvrneriiciisssnnnniccssssnnnneccsssssnsssssssssnsssseess 088

When to Use Partitioned TabIes........cc.ccueieieiiiiiiininriieeseet ettt sttt 688
SQL Statements for Partitioned Tables..........coecirieriiieiieereee ettt aesneens 689
Static and Dynamic Partitioning CIAUSES..........cc.eceeiriririnireniineeretetetecetee sttt 689
Refreshing @ Single Partition.........coceovciiriririnincteicictetetetee ettt ettt s b e e 690
Permissions for Partition SUDAITECLOTIES.c..evueiiieieiieiieieieeie ettt e 690
Partition Pruning fOr QUETIES.eeouiiieiieieie ettt ettt ettt ettt et et e saeestesseestesneesseenaessennnenseens 690

Checking if Partition Pruning Happens for @ QUETY........cccocevireriniinieiienieieieieeeceenesecerese e 690

What SQL Constructs Work with Partition Pruning...........cc.ceceverenenenenieiieiennenincncncnc e 691

Dynamic Partition Pruning...........cccoiieiiiiiieiieieieee ettt sttt 692
Partition Key COIUMIS.ccuioiiiiiiiiiiiereneretes sttt ettt st sttt sttt ettt ebe b sae e 693
Setting Different File Formats for Partitions..........ccccocevuerierienieieinininineneseneseesteeteeeeeeeeeeeeie e e 694
MANAGING PATTIIONS. ... eetieuiietieieeteie ettt sttt e e et e e e st e et eae e et eaeesaeeneesseensesseenseestenseeseenseeneenseeneenseenes 694
Using Partitioning with Kudu TabIes.........ccoeririiriinieiiiiiiiieineneeesesceese ettt 695
Keeping Statistics Up to Date for Partitioned TabIles.........ccceceeiriririninieninineneeiereececeeceeeese e 695

How Impala Works with Hadoop File Formats.............ccccceveevuericscnenccccneneeec 697

Choosing the File Format for @ Table.........c.ccoeieviiiieniiiieiesieieeese ettt ettt seeese e e sse e sseesnens 698
Using Text Data Files with Impala TabIes........ccoccverirviirieiiiiieie ettt saesaesae e esnens 699
Query Performance for Impala Text Tables........coccirieiirieiiiieieceee e 699

| Contents | viii

Creating TEXt TaADICS.....iccveriieieiiieie ettt ettt ettt et e s e e aesae e b e sseesseeseenseesaenseeseensenseensennes 700
Data Files fOr TeXt TabIes........coiririerieieieieieteiie ettt ettt s 701
Loading Data into Impala TeXt Tables........cccccirieeiirieriieieieciese et 702
Using LZO-Compressed TeXt FIles.......ccoviviiiieriieieiieieiieiesit ettt sne s essesseennas 703
Using gzip, bzip2, or Snappy-Compressed Text Files.........ccoovivieriiiieninieieieseeieeeee e 705
Using the Parquet File Format with Impala Tables........cccccveviirieriiiieiiciee et 706
Creating Parquet Tables in Impala..........cccooieieiiieiiniieieccese et 707
Loading Data into Parquet Tables.........cccovcveriiiieiiiiieiicieieeeeie ettt seese e se e sbeesseseens 707
Query Performance for Impala Parquet Tables........cocoieieiieiieniieieicese e 709
Snappy and GZip Compression for Parquet Data Files........cccccevieviirinniiiieiecieieceeccee e 711
Parquet Tables for Impala CompleX TYPES.....ceceerierieriirieiieierie ettt ste e sre e seeesesreeseeseesseesaenns 713
Exchanging Parquet Data Files with Other Hadoop Components..............ccecveevereecreseesieneesieseennenns 713
How Parquet Data Files Are Organized..........ccoccvecvervieienieiinieieseenieseesteseessessesiessse e sssesseessesseenns 716
Compacting Data Files for Parquet TabIes.........c.eoieieriieiirieiesieie ettt ees 717
Schema Evolution for Parquet TabIes.........c.ccveieriiiieniieieiieie ettt sre e sse e seees 718
Data Type Considerations for Parquet Tables..........ccooveeveriecierieiecieieceeeeeee e 720
Using the Avro File Format with Impala Tables..........c.cccovieriiiieriieieiiieieceeere e 720
Creating AVIO TaDIES........ccvieieiieieeieieetete sttt ettt et e e et e e e e seeseesseessesseessesseensesssensesssensensnens 721
Using a Hive-Created Avro Table in Impala..........ccccceeviiriiiiinieniiiieicceeeceeeee e 723
Specifying the Avro Schema through JSON.........ccciiiiiiiiiiierieiee e 723
Loading Data into an AVI0 Table.........cccceiieiiiieiieieiieeeie ettt esa e see s 723
Enabling Compression for AVIO TabIes........ccocveriirieriieieiieierie ettt se e seeese e seesaeseens 723
How Impala Handles Avro Schema EVOIULION..........cccceviriiriiiiiiieieiieeee et 724
Data Type Considerations for AVIo Tables........cccieieriirierieierieie sttt 725
Query Performance for Impala Avro TabIes.........ccoovvieriiiieniieienieieeee et 726
Using the RCFile File Format with Impala Tables...........cccoeieiiiriiiiiiieie et 726
Creating RCFile Tables and Loading Data.............ccceeeeierieiienieiieieiceeesie et sie e sve e se e sseesesneens 726
Enabling Compression for RCFile TabIes........cccccveciiiieiiiiieiicieiicieie et senens 727
Query Performance for Impala RCFile TabIes.........cccoivveriiiieniinienieeieeieeeeeeeve e 728
Using the SequenceFile File Format with Impala Tables..........cccooiviiriieiiniieiiciecceee e 728
Creating SequenceFile Tables and Loading Data............cccoecveeiieieriieiienieieeieieceee e 729
Enabling Compression for SequenceFile Tables.........ccvviicieriiiiieniiiienicieseeeeeee et 729
Query Performance for Impala SequenceFile Tables..........cccooivcieriicieriiienieieeeeeeee e 730

Using Impala to Query Kudu Tables.........ccouuiiiiisvnricsscnricscsnniccscnnncsssnnsecssnnes 731

Benefits of Using Kudu Tables with Impala...........cccooiiiiiiiiiiiiiieicee et 731
Configuring Impala for Use With KUdU........cccooiiiiiiiii e 731
Cluster Topology for Kudu Tables.........coiiiiiiiiiiiiiiieieeee et 731
Impala DDL Enhancements for Kudu Tables (CREATE TABLE and ALTER TABLE)........cccccecvveviveennnee. 732
Primary Key Columns for Kudu Tables...........cccoeoiiiiiiiiiiiienieeeeeeee e e 732
Kudu-Specific Column Attributes for CREATE TABLE.........ccccoeviiiiiiiiieieceeeeceeeese e 732
Partitioning for Kudu Tables........cccoiiiiiiiiieee ettt 737
Handling Date, Time, or Timestamp Data with Kudu..........cccoocooiiiiiiiiiiiieeeeee 739
How Impala Handles Kudu Metadata............cooeeeiiiiiieiiieiieiieciecce ettt 742
Loading Data into Kudu TabIes.........cocuiiiiiiiiiiiiieieeee ettt s st 742
Impala DML Support for Kudu Tables (INSERT, UPDATE, DELETE, UPSERT)......cccccccovvvviiinieeireenee. 743
Consistency Considerations for Kudu Tables..........ccccooiiiiiiiiiiiiiieeeeeeeeee e 743
Security Considerations for Kudu Tables..........cccooriiiiiiiiiiieeeeee e 743
Impala Query Performance for Kudu Tables...........coceiiiiiiiiiiiii et 744

Using Impala to Query HBase Tables.........eeeeeercvcnnericcssccnnnncccssscnnnencccsscnnsnneees 744
Overview of Using HBase With Impala..........cccoeiiiiiiiiiiiiiiininiesesecectcteteeeeeee s 745
Configuring HBase for Use with Impala.........c.ccocoeiiiiiiiiiiiiiiiise ettt 745
Supported Data Types for HBase COIUMS........ccccoirtirierieieiieiieeinencsteeteste ettt ettt s see s 745

| Contents | ix

Performance Considerations for the Impala-HBase INntegration.............cccveeveriieieniecieneeieneeiesieeie e eeeenns 746
Use Cases for Querying HBase through Impala............cccooiiviiiieiiniiiicieec e 751
Loading Data into an HBase TabIe...........cccecirriiiiiiiiiieiecieicetee ettt ettt ste et ensessae s e essenseenns 752
Limitations and Restrictions of the Impala and HBase Integration.............ccceceeeveeriecienienieneenesienieseesieenens 752
Examples of Querying HBase Tables from Impala............ccocveieriieiinieniinieieciene et 752

Using Impala with the Amazon S3 Filesysten...........ccccevueieserccsneecssneccsncccsnnnes 755

How Impala SQL Statements Work With S3.........cciiiiiiiiiiiieiet et 755
Specifying Impala Credentials to Access Data in S3.......ccoiiiiiiiiiiiii e 755
Loading Data into S3 for Impala QUETIES........cc.eeriiiiiriiiiiieitieeetee ettt ettt 756

Using Impala DML Statements for S3 Data.........ccccooiiiiiiiiiniiieieeeeeeeeee e 756

Manually Loading Data into Impala Tables 0n S3.........ccccoiiiiiiiiniiieieeecee e 756
Creating Impala Databases, Tables, and Partitions for Data Stored on S3.........ccccooiiiiiiniiniiiiniieceeee 757
Internal and External Tables Located 0n S3.........cooiiiiiiiiiiiiieeee et 758
Running and Tuning Impala Queries for Data Stored on S3..........ccooiiiiiiiiiiiiieee e 760

Understanding and Tuning Impala Query Performance for S3 Data..........ccccoceviiiiniininiiniienene, 760
Restrictions on Impala Support TOT S3......ooiiiiieie et be e st e e be e aeeereessaeenraens 761
Best Practices for Using Impala With S3.. ..o e 762

Using Impala with the Azure Data Lake Store (ADLS)......cccceeevueeecscnneecncnne. 762

g3 (0 L] 1< PRSP 762
How Impala SQL Statements Work with ADLS.......c.ccoiiiiiiiiii e 763
Specifying Impala Credentials to Access Data in ADLS.........ccccoiiiiiiiiiiiiinrnereeeeeeeeee e 763
Loading Data into ADLS for Impala QUETIES..........cccereruiriiienieieieieieeecse sttt ettt 764

Using Impala DML Statements for ADLS Data.........cccocoveririenieniiiiiiieininenceesencseesesveseeeeeeneene 764

Manually Loading Data into Impala Tables on ADLS.........c.ccccoiviiniririnnineneneene e 764
Creating Impala Databases, Tables, and Partitions for Data Stored on ADLS........c.cccccceviiinininininincnene. 764
Internal and External Tables Located on ADLS........ccociiiiiiiiiiiceeteeeceeee st 766
Running and Tuning Impala Queries for Data Stored on ADLS........cc.ccccoiiiiiiiiierininnnnenese e 768

Understanding and Tuning Impala Query Performance for ADLS Data........c.ccccecevvevencninincncnene. 768
Restrictions on Impala Support for ADLS..........ccooiiiiiiiceeeere ettt 769
Best Practices for Using Impala with ADLS.........ccoiiiiiiiiiin ettt 769

Using Impala with Isilon Storage..........iicvvveeicnisniicssnnncsscnnnecsssnnecsssssenccscnnes 169

Using Impala LogZINg......ccovveiiercnnricsssnricsssnsicsssnssecss 1 10

Locations and Names of Impala Log Files.......cccooiiiiiiiiiiieeeeee e 770
Managing IMPala LOES.ooeiriiieieeeieee ettt sttt et b ettt et b et et e b et e bt eneenaean 771
ROtating IMPala LLOZS. . coueeiiiieiiiieteeeet ettt sttt ettt ettt et e sbe et e bt eaesbeeneeneens 771
Reviewing IMPala LOES......oouiiiiiiiieeee ettt b et e a ettt e bt et bt et e sbeeneenaean 771
Understanding Impala Log CONtENES.cc.eiriiiiriiiieiieieteeterte ettt sttt ettt eee et et e st et esbeeneeseee 772
Setting LOZEING LEVELS...c..eiiiiiiiiiiiieiees ettt ettt sttt sttt be et e et e st ettt e saeeeesaeeeeenean 772
Redacting Sensitive Information from Impala Log Files.........ccoocoiiiiiiiiiiiiiceeee e 773

Troubleshooting Impala.........ccoiiiiiiiiivnnniicinssnsnnnieccsssssnnnnsccssssssssscssssssssssssssss 113

Troubleshooting Impala SQL Syntax ISSUES.........cccevirieriiriiiiiiieicintrteeene ettt ettt 773
Troubleshooting I/O Capacity ProbIEIS.ccccoveriiiiiiiiiiiiiicir et 774
Impala Troubleshooting QuUick REfEIENCE.c.evuiriiiriieiieiieieeiee et 774
Impala Web User Interface for DebUZZING.......cc.coueriiiiiiiiiiiiiicrircrceseseee ettt 776

Debug Web UL for impalad.........c..coeiiiiiiiiiiiinneeeeeneeseseeet ettt ettt s 777

Breakpad Minidumps for Impala (Impala 2.6 or higher only)...........ccccoeieiieieniiiiee e 778

| Contents | x

Enabling or Disabling Minidump GeNeration..............ccverueevierrerierieriuesieeeesieesesseessessessesseessessaessesses 779
Specifying the Location for Minidump Files..........cccooiriiriieiiinieiieieicccec e 779
Controlling the Number of Minidump Files.........cccoeoveriiiiiiriieiiiiieieceee e 779
Detecting Crash EVENTS........c.occiiiiiiieiiiiiereete ettt ettt sseesaessaesaeesaesseessessaessasssensenssensenns 779
Demonstration of Breakpad FEature...........ccvecveviiiiiriieiiiiieieceeiecteieet ettt 779

Ports Used by IMPala.......ccccccrnccnneiiccisisnnniiccsssssneneccsssssnsenncsssssssssnscsssssssssscsssssss 18 1

Impala Reserved Words.....eiicnieiecinseeeciisnneccssneecsssnsencsssssescsssssssssssssssssssseccs 1 82

List of Current ReServed WOTdS.ccueiieiiiiiee ettt st st te st e e neesesneanseens 783
Planning for Future ReServed WOTS.........cccuieieiiiiiieieiieie ettt st sae e ne e nneas 786

Impala Frequently Asked QUEeSLIONS.......ccccerievveircrssnnricsssnnncsssnnccssnsncsssnssecsenss 188

Impala Release NOes......cceeeeeciiseeeissneecsssnencssneessssneecsssneecssssseecssssesssssssescssnes 188

New Features in Apache TMPala...........cooiiiiiiiiiiiiiiieeeee ettt beestaeebeesbaeenseenseens 788
New Features in IMpala 2.12.....cccuiiiiiiiieiecieeeee ettt e e beeeaeebeessseebeessseensaennses 788
New Features in IMpala 2.1 1.....ccoioiiiiieieciceee ettt ettt s e et esaeebeessseenseensne s 788
New Features in IMpala 2.10.......c.coiiiiiiiieiiieieee ettt e e e s aeebeessseeseeseseenseensseas 788
New Features in IMpala 2.9.......ccouiiiiiiiiiiececeee ettt et ve e aeebeestaesrbeessaeenseas 788
New Features in IMpala 2.8.......coouiiiiiiieeiieece ettt et eve et eebeestaesebeessaeensees 788
New Features in IMPala 2.7.......cooiiiiiiiieeie ettt e et sae e ve e eaeebeestaesebeensaeenseas 791
New Features in IMPala 2.6........cceeiiiiiiieiieiiecieeiee ettt ee et sae e aeebeessaessbeessneensees 791
New Features in IMpala 2.5.......coouiiiiiieie ettt te et ve e taeeveestaesebeessaeenseas 793
New Features in IMpala 2.4.......ccoueiiiiiieeiececeee ettt e et sae e be e taeebeestaessbeessaesnseas 796
New Features in Impala 2.3.......coiiiiiiieeie ettt e et sae e be e taeebeesseeseseensaeenseas 796
New Features in IMpala 2.8.......coouiiiiiiieeiececeee ettt et ebe et eebeestaesebeessaeenseas 798
New Features in IMpala 2. 1.......cooiiiiiiiieeiecieceeee ettt e et ebe e taeebeesseesebaessaeenseas 800
New Features in IMpala 2.0.......cccveiiiiiieiiiciecieeee ettt e et s aeebe e eaeebeessaessseensaeesseas 800
New Features in IMpala 1.4.......cooeoiiiiiieee ettt et sae e e aaeebeesseeseseensaeenseas 802
New Features in IMpala 1.3.2. ..ottt st re e s e e eaeestaeenseenee s 803
New Features in IMpala 1.3. 1. ..ottt et e et s e e e e e taeenseeeee s 804
New Features in Impala 1.3......oooiiiiieiee ettt sae e e teeebeessaesrbeessneenseas 804
New Features in IMpala 1.2.4........ooouiiiiieiei ettt et aeete e s saeebeestaesnsaensee s 805
New Features in Impala 1.2.3....c..oooiiiee ettt ettt et eete e e e ebe e taesnseensne s 805
New Features in IMpala 1.2.2....c.c.oooiiiiiieiece ettt ettt ee et e s e ebeessaeenseenee s 805
New Features in IMpala 1.2. 1. ..ottt ettt ee et s eebe e baeensaesee s 806
New Features in Impala 1.2.0 (Beta)......cccciiriieiieiiieiecie ettt ettt seae e see 807
New Features in IMpala 1.1 1. ..ottt eebe e raeenseeeee s 809
New Features in IMpala 1.1 ...c.oooiiiiiiieii ettt s ebe et e e b e e saaesebeessaeenseas 809
New Features in Impala 1.0.1....ccveeiiiiieiece ettt et aeebe e taeenseeene s 810
New Features in Impala 1.0.......ccoieiiieiieeiicieceeiee ettt re et s eeeae e taeebeessaesebeensaeensees 810
New Features in Version 0.7 of the Impala Beta Release.........cccocveviienienciienieeieeieciecee e 810
New Features in Version 0.6 of the Impala Beta Release.........cccoccveviieeienciieiienieciececee e 811
New Features in Version 0.5 of the Impala Beta Release.........cccooveviienienciieiienieeiececee e 811
New Features in Version 0.4 of the Impala Beta Release.........cccoccveviieniinciiiiienieeiececee e 811
New Features in Version 0.3 of the Impala Beta Release.........cccoccveviverienciienieeieeieciecee e, 811
New Features in Version 0.2 of the Impala Beta Release.........cccoocveviievienciieiieeieeiececee e 811

Incompatible Changes and Limitations in Apache Impala...........ccccooiiiiiiiiiniiiiineeeee 811
Incompatible Changes Introduced in Impala 2.12.X.....ccooieiiiiiniiiiniee e 811
Incompatible Changes Introduced in Impala 2.11.X....cocoiiiiiiiiiniiiiiee e 812

Incompatible Changes Introduced in Impala 2.10.X.....ccooceeiiriininiiniieeee e 812

| Contents | xi

Incompatible Changes Introduced in Impala 2.9.X........ccecivieriieienieieni et 812
Incompatible Changes Introduced in Impala 2.8.X........cccevuieieriieiieniieienieie sttt ees 812
Incompatible Changes Introduced in IMpala 2.7.X.......cccevieieriieienieiene et see e ees 812
Incompatible Changes Introduced in IMpala 2.6.X........cccecvieieriieieniieienieee et eie e ees 812
Incompatible Changes Introduced in Impala 2.5.X.....c.cccuevirieriieiienieieneee e 813
Incompatible Changes Introduced in IMpala 2.4.X........ccecveieriieieniieieneeie et ees 814
Incompatible Changes Introduced in Impala 2.3.X.....c.cccveviieieriieiienieiene e eee e 814
Incompatible Changes Introduced in Impala 2.2.X.......ccccevirieriieiienieieri e ere et ees 815
Incompatible Changes Introduced in Impala 2.1.X.....c.cccveriirieriieiieniieiene et ees 815
Incompatible Changes Introduced in Impala 2.0.5........ccccirieriieiienieieeiee e 815
Incompatible Changes Introduced in Impala 2.0.4...........cccoeieriieienieieeiee et 815
Incompatible Changes Introduced in Impala 2.0.3..........c.ccvviiriiiiieniieee et 815
Incompatible Changes Introduced in Impala 2.0.2..........c.ccveiiriieiienieieiee e 815
Incompatible Changes Introduced in Impala 2.0.1........cccccveieriieiieniieieice e 816
Incompatible Changes Introduced in Impala 2.0.0..........c.ccvvieriieiienieieieie e 816
Incompatible Changes Introduced in Impala 1.4.4...........ccoecieviieieniieiieciee et 817
Incompatible Changes Introduced in Impala 1.4.3.........cccieiiiiieiiniieee e 817
Incompatible Changes Introduced in Impala 1.4.2..........c.ccoeiiriieieniieieriee et 817
Incompatible Changes Introduced in Impala 1.4.1........cccovviiiiieieniieiei et 817
Incompatible Changes Introduced in Impala 1.4.0.........c.ccvvieriiriiiniieieriee e 818
Incompatible Changes Introduced in Impala 1.3.3........ccooiriiiiieiienieee et 818
Incompatible Changes Introduced in Impala 1.3.2........cccciriiriieienieieiee e 818
Incompatible Changes Introduced in Impala 1.3.1........ccooiieiiiiieienieieeee e 818
Incompatible Changes Introduced in Impala 1.3.0........cccciriiriieienieiei et 818
Incompatible Changes Introduced in Impala 1.2.4...........ccoeieiieiieniieieriee et 819
Incompatible Changes Introduced in Impala 1.2.3........cccciriiiiieieiieieciee e 819
Incompatible Changes Introduced in Impala 1.2.2.........cccieiiiiieieniieieriee e 819
Incompatible Changes Introduced in Impala 1.2.1........ccoouiriiiiieiienieieniee e 820
Incompatible Changes Introduced in Impala 1.2.0 (Beta)........cceecvevieviirierieiieniecieie e 820
Incompatible Changes Introduced in Impala 1.1.1........ccooiriiriieiieniieieece e 821
Incompatible Change Introduced in Impala 1.1.......cccoocieviiiiiniiienieieeeeeeee e 821
Incompatible Changes Introduced in Impala 1.0..........cccccovieriiiiiniiniinicieeeeecee e 821
Known Issues and Workarounds in IMpPala............cocieeieriiiieniiiiienieieceeieeeete ettt sae e aeesaesneas 821
Impala Known ISSUES: Startlp.........cccccievieriiecieniieiesiieieeieieeeeteseesaesseessesaessesssessesssesseessesseessesseessenns 821
Impala Known Issues: Crashes and Hangs...........ccceeveeieriiriienieiienicicccee e 822
Impala Known Issues: Performance............ccoevevuieieriiiieniieiesie et 823
Impala Known ISSUEs: USADILItY........ccivieriirieriiiieiisierie ettt ettt esseeae e esessaessessnesennnens 825
Impala Known Issues: JDBC and ODBC DIIVETS.........ccoiiieriiiieniiiienieeiesieeeeeieesesseessesseesesseesseenas 825
Impala KNOwn ISSUES: SCCUTITLY......cecviiieriieieriieiestietesieete st eiesttesteseesseeesesbeessesseessesseessesseessesssessesses 826
Catalog server's kerberos ticket gets deleted after 'ticket lifetime' on SLEST1.......ccoovvvveiieieinnnnne 826
Impala Known ISSUES: RESOUICES........ccviiiiieiieiieiieieie ettt ettt ae e sae st e e esaesseessesseessesseessesseensenens 827
Impala KNown ISSUES: COITECNESS.ccuertieieiterieitieteeiieteeseeseestesseseesseeseesseessesseessesseessesseesensesssenns 830
Impala Known ISSUes: MEtadata...........cccoecveriiiieriiiieiieiesieeieetete ettt st sre e sseesaesseessessaessasseens 835
Impala Known Issues: INteroperability........c.cccueviieieriieieriieieniieiese et sse e s e 836
Impala Known ISSUes: LiMITAtionS.......c.cccvervieieriieiinierteeeenieseesiestesseesesteessesseessesseessesseessesssessesssenses 837
Impala Known Issues: Miscellaneous / OLlder ISSUES.......cceecveeieriieienienieie et 838
Fixed Issues in APache IMPala.........c.ccoecieriiiiiiiiieiieie ettt ettt eeeesae e e s e sseesseessesseessesseessessesnsansenns 839
Issues Fixed in IMPala 2.12.......cooiiiieiiiieiecierieeie sttt ettt e et se e be st sesssebeessenseessenseessenseenns 839
Issues Fixed in IMPala 2.1 1. .c..ioiiiiiieiecieieceieeeste ettt sttt esaesteessesseessenseenes 839
Issues Fixed in IMPala 2.10.......ccoooiiiieriiiieiieeieieeie sttt et se e see e bestaessessaebeessesseessenseessenseenns 839
Issues Fixed in IMpPala 2.9.0........ccoviiiirieiieiecieieeeett ettt ettt se e sae et e s aeesbestae b e esaeseesseseessenseenns 839
Issues Fixed in IMpala 2.8.0......c.cccveiieriiiieieeieieeieste ettt et ste et e e ae e ebesaeesbestaesseesaeseessenseessenseenns 839
Issues Fixed in IMpPala 2.7.0......ccocoiiiieiiiiieiieieieeeste ettt et ste et e st ae e esbesaeebessaesseesseseesseseesseseenes 839
Issues Fixed in IMpPala 2.6.3........ccoviiieiiiieiieieieeeestt ettt ettt et se e sae et e s aeesbessaesbeesaeseesseseesseseenns 839
Issues Fixed in IMpPala 2.6.2.........ccuiiieieiiieieeieieeieieee ettt ete e s aeebesteebessaesseesaeseesseseesseseenns 839

Issues Fixed in IMpPala 2.6.0.........ccueiieieiiieiiieieieeieie ettt ettt ete e ae e esbesaeessessaesseesseseesseseessenseenns 839

| Contents | xii

Issues Fixed in IMPala 2.5.4........ccouiiieieiieieeieieeestt ettt ettt ettt et e st estaesbeesaeseesseseesseseenes 841
Issues Fixed in IMPala 2.5.2.....ccooiiiieieciieieeieieeett ettt eebe s teesbe st esbeesaeseesseseesneseenns 841
Issues Fixed in IMPala 2.5. 1. c..coiiiiiieiiiieieeieieeett ettt ettt st eb e st e st esbeesaeseesseseesseseenns 841
Issues Fixed in IMpPala 2.5.0.....cc.oooiiiieiiiiieiecieie ettt ettt et e e saeebesteesbessaenseesaeseessenseessenseenns 841
Issues Fixed in IMPala 2.4, L.cocoiiiieieiieieeieie ettt ettt et et ae b e s teesbessaesbeesseseesseseesseseenns 844
Issues Fixed in IMpPala 2.4.0........ccoveiierieiieieeieieeiesie ettt et steesae e ae e esesteessessaesseessesesssensesssensennns 844
Issues Fixed in IMPala 2.3.4........cooiiiieiiiieieeieie ettt ettt ettt st et e steesbesta e b e esaeseesseseesnenseenes 844
Issues Fixed in IMPala 2.3.2.....ccooiiiieiicieiecieie ettt ettt ettt s besaeebestaesbeesseseesseseessenseenns 844
Issues Fixed in IMPala 2.3, 1. ...coiiiiiieieiieiecieie ettt ettt ae et s e st e e esaebeesseseesseseenes 847
Issues Fixed in IMpPala 2.3.0......cccoiiiiiiiiiieieeieieeeett ettt ettt se e sae e e s teesbestae b e esaeseessenseesseseenns 847
Issues Fixed in IMpala 2.2.10.......ccoiiiiieiieiecieieeie ettt ettt ae st be s e seessessaessesseessesseensenes 847
Issues Fixed in IMpPala 2.2.9......c.cooiiiieiiiieieeieieeett ettt ettt se e st b et be st e b e esaeseesseseessenseenes 847
Issues Fixed in IMpPala 2.2.8......c.ocoiiiieieiieieeieieetestt ettt ettt et ae b e s teebessae b e esseseesseseesneseenns 849
Issues Fixed in IMPala 2.2.7.....cccoooiiiieieiieieeieieetest ettt et sre et ae e esesaeesbessaesseesaeseessenseessesseenes 849
Issues Fixed in Impala Impala 2.2.5.......ccooieiiiiiiicieicee ettt e 851
Issues Fixed in IMpPala 2.2.3.oooiiiieiecieieeieieeet ettt ettt e e e sbesteebess s e b e esaeseesseseessenseenns 852
Issues Fixed in IMPala 2.2. 1. ...ccoiiiiieieiieiecieie ettt ettt e e s eeaesae b e staesbeesaeseessenseesseseenns 852
Issues Fixed in IMpPala 2.2.0......c.ccoviiieiieiieiieieieeieie ettt et steesae e eae e essesteessessaesseesaeseessenseessenseenns 852
Issues Fixed in IMpala 2. 1. 10 ...cciiiieieiieieeiieieeie ettt ae sttt e st esaesse e s e sseessessaensenes 854
Issues Fixed in IMPala 2. 1.7 .c..coiiiiiieiecieiecieie ettt ettt e e st ebe s teesbesssesbeesaeseesseseesseseenns 854
Issues Fixed in IMPala 2.1.6........ccoviiieriiiieieeieieeeete ettt ae e sae s e steesbessaesbeesaeseesseseesseseenns 854
Issues Fixed in IMpPala 2.1.5. . ..ccioiiiieiecieiecieie ettt ettt e e st e st ebesta e b e esaeseesseseesnesseenns 855
Issues Fixed in IMPala 2. 1.4c.oooviiieiieieieeieie ettt ettt s be st sbe st sbeesaeseesseseessenseenns 855
Issues Fixed in IMpPala 2.1.3. ..ottt ettt et et s b e st essa e b e esaeseesseseessenseenns 856
Issues Fixed in IMPala 2.1.2.....cccoooiiiieieiieiecieieetest ettt ettt eebesteesbessae b e esaeseessenseessenseenns 857
Issues Fixed in IMPala 2. 1. 1..c.ciiiiiiiieiiiieiecieieetee ettt ettt s b e st sbestae b e esaeseessenseesseseens 857
Issues Fixed in IMpPala 2.1.0......ccooiiiierieiieieeieieeeeste ettt ettt e e ae e be e esbessaesseesaeseesseseessenseenns 858
Issues Fixed in IMpala 2.0.5........cooiiiiiiiiieieeieieeest ettt e e et e e be st e b e esaeseessenseessenseenns 858
Issues Fixed in IMpala 2.0.4.........coviiieiiiieieeieieeeestt ettt ettt e e et e st ebestaesbeesaeseesseseessenseenns 858
Issues Fixed in ImMpala 2.0.3........cooiiiiiiiiieiecieieee sttt ettt se b e st estae b e esaeseesseseessenseenns 859
Issues Fixed in IMpala 2.0.2........cccviiieiiiieieeieieeteste ettt ettt se et saeebesaeesbessaesbeesaeseessenseesseseenns 859
Issues Fixed in IMpala 2.0. 1.coooiiiieiiiiieiecieieeeet ettt e e e e b e s ae e e ssae s e esaeseessenseesnenseenns 860
Issues Fixed in ImMpala 2.0.0........ccoiiiirieiieieeieieeeesitee ettt seeebesteesessaesseesaeseessenseesseseenes 860
Issues Fixed in IMPala 1.4, 4.cooviiieieieieeieieeeet ettt ettt e st e b e esaeseesseseeseeseenes 862
Issues Fixed in IMpPala 1.4.3. . .ccooiiiieiecieieceee ettt ettt et b e st e b e esaeseesseseesneseenes 862
Issues Fixed in IMPala 1.4. 2.cooiiiieiieieieeieieeet ettt ettt et s ae et sta e b e esaeseesseseessenseenes 862
Issues Fixed in IMPala 1.4, L. ...cccviiiiieieiieiecieieeeett ettt ettt se e st besta e b e esaeseesseseesseseenns 862
Issues Fixed in IMpPala 1.4.0......c.oooviiieiieiieieeieieeeeit ettt ettt se e e be st sbe st e b e esaeseessenseessenseenns 863
Issues Fixed in IMpPala 1.3.3 . ..coiiiiiieiecicieceeee ettt s st esae b e esseseesneseens 864
Issues Fixed in IMPala 1.3.2. . ..cciiiiiieieiieieceieeet ettt ettt esae s e esseseessenseenes 864
Issues Fixed in IMPala 1.3, 1. oiiiiiiiieieciciecieieeet ettt ettt s e e st esa e b e eseenseesnenseens 865
Issues Fixed in IMpPala 1.3.0.....cccoeoiiiieiiiieieeieieeeet ettt ettt et eae s ebestae b e esae s e esseseesnenseens 866
Issues Fixed in the 1.2.4 ReleaSC......cccveviiiiecieiieiecieiieieie ettt ettt ae st aesreesbessaessessaenseesnensens 868
Issues Fixed in the 1.2.3 ReleASC......cccieciiiieieiieieciieiieiieie ettt ettt sre e s reessessaensessaenseens 869
Issues Fixed in the 1.2.2 ReLEASE......cccveciiiieiieiiieieciieieetiete ettt ettt ettt sre e s seessessaensessaenseens 869
Issues Fixed in the 1.2.1 RELEASE......ccciecviiieieiiieieciieieetiete ettt ettt st sbe e esbessaensessnenseens 870
Issues Fixed in the 1.2.0 Beta ReleaSC......cccveciiviiiiiiieieiieie ettt 871
Issues Fixed in the 1.1.1 ReLEASE......cccieciiiirieiiieieciieieeete ettt sttt estaessessaenseesaenseens 871
Issues Fixed in the 1.1.0 RelEASE......cccieciiiieiiiiieieciieiietieteeeee ettt ste e st ssa et e e esaenseees 872
Issues Fixed in the 1.0.1 RELEASE......cccieciiiiriiiiieieciieieeeete ettt ettt ste e s taessessaenseesaenseens 872
Issues Fixed in the 1.0 GA ReICASC......cciivieriiiieriieieciteiesteete ettt ettt saeesbe e esseeseens 874
Issues Fixed in Version 0.7 of the Beta Release.........coovvveiiieiiiiieiinieiecieeecee e 876
Issues Fixed in Version 0.6 of the Beta Release.........coovvviiiieieiiieiinieieceeeee e 877
Issues Fixed in Version 0.5 of the Beta Release.........ceouvvveriieieniieiinieiecieeccec e 878
Issues Fixed in Version 0.4 of the Beta Release.........ccovvvveiiiiiiiiiciinieiicieeecee e 878

Issues Fixed in Version 0.3 of the Beta REIEASE.......c..ooevveiiiieeiiiiiieeeeeeeeeee e 879

| Contents | xiii

Issues Fixed in Version 0.2 of the Beta REIEASE........c..eoevveiiiieiiiiiieeeeee e 879

| Introducing Apache Impala | 14

Introducing Apache Impala

Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS, HBase, or the
Amazon Simple Storage Service (S3). In addition to using the same unified storage platform, Impala also uses the
same metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Impala query Ul in Hue) as Apache Hive.
This provides a familiar and unified platform for real-time or batch-oriented queries.

Impala is an addition to tools available for querying big data. Impala does not replace the batch processing
frameworks built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for
long running batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

Note: Impala graduated from the Apache Incubator on November 15, 2017. In places where the documentation
formerly referred to “Cloudera Impala”, now the official name is “Apache Impala”.

Impala Benefits

Impala provides:

» Familiar SQL interface that data scientists and analysts already know.

» Ability to query high volumes of data (“big data”) in Apache Hadoop.

» Distributed queries in a cluster environment, for convenient scaling and to make use of cost-effective commodity
hardware.

* Ability to share data files between different components with no copy or export/import step; for example, to write
with Pig, transform with Hive and query with Impala. Impala can read from and write to Hive tables, enabling
simple data interchange using Impala for analytics on Hive-produced data.

» Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for
analytics.

How Impala Works with Apache Hadoop

The Impala solution is composed of the following components:

* Clients - Entities including Hue, ODBC clients, JDBC clients, and the Impala Shell can all interact with Impala.
These interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.

* Hive Metastore - Stores information about the data available to Impala. For example, the metastore lets Impala
know what databases are available and what the structure of those databases is. As you create, drop, and alter
schema objects, load data into tables, and so on through Impala SQL statements, the relevant metadata changes are
automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

* Impala - This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can
receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these
nodes then act as workers, executing parallel query fragments.

» HBase and HDFS - Storage for data to be queried.

Queries executed using Impala are handled as follows:

1. User applications send SQL queries to Impala through ODBC or JDBC, which provide standardized querying
interfaces. The user application may connect to any impalad in the cluster. This impalad becomes the
coordinator for the query.

2. Impala parses the query and analyzes it to determine what tasks need to be performed by impalad instances
across the cluster. Execution is planned for optimal efficiency.

3. Services such as HDFS and HBase are accessed by local impalad instances to provide data.
4. Each impalad returns data to the coordinating impalad, which sends these results to the client.

| Impala Concepts and Architecture | 15

Primary Impala Features

Impala provides support for:

* Most common SQL-92 features of Hive Query Language (HiveQL) including SELECT, joins, and aggregate
functions.

+ HDFS, HBase, and Amazon Simple Storage System (S3) storage, including:

» HDFS file formats: delimited text files, Parquet, Avro, SequenceFile, and RCFile.
» Compression codecs: Snappy, GZIP, Deflate, BZIP.
+ Common data access interfaces including:

* JDBC driver.

* ODBC driver.

* Hue Beeswax and the Impala Query UL
* impala-shell command-line interface.
* Kerberos authentication.

Impala Concepts and Architecture

The following sections provide background information to help you become productive using Impala and its
features. Where appropriate, the explanations include context to help understand how aspects of Impala relate to
other technologies you might already be familiar with, such as relational database management systems and data
warehouses, or other Hadoop components such as Hive, HDFS, and HBase.

Components of the Impala Server

The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different
daemon processes that run on specific hosts within your cluster.

The Impala Daemon

The core Impala component is a daemon process that runs on each DataNode of the cluster, physically represented
by the impalad process. It reads and writes to data files; accepts queries transmitted from the impala-shell
command, Hue, JDBC, or ODBC; parallelizes the queries and distributes work across the cluster; and transmits
intermediate query results back to the central coordinator node.

You can submit a query to the Impala daemon running on any DataNode, and that instance of the daemon serves as
the coordinator node for that query. The other nodes transmit partial results back to the coordinator, which constructs
the final result set for a query. When running experiments with functionality through the impala-shell command,
you might always connect to the same Impala daemon for convenience. For clusters running production workloads,
you might load-balance by submitting each query to a different Impala daemon in round-robin style, using the JDBC
or ODBC interfaces.

The Impala daemons are in constant communication with the statestore, to confirm which nodes are healthy and can
accept new work.

They also receive broadcast messages from the catalogd daemon (introduced in Impala 1.2) whenever any Impala
node in the cluster creates, alters, or drops any type of object, or when an INSERT or LOAD DATA statement is
processed through Impala. This background communication minimizes the need for REFRESH or INVALIDATE
METADATA statements that were needed to coordinate metadata across nodes prior to Impala 1.2.

| Impala Concepts and Architecture | 16

In Impala 2.9 and higher, you can control which hosts act as query coordinators and which act as query executors, to
improve scalability for highly concurrent workloads on large clusters. See Scalability Considerations for Impala on
page 679 for details.

Related information: Modifying Impala Startup Options on page 31, Starting Impala on page 30, Setting
the Idle Query and Idle Session Timeouts for impalad on page 76, Ports Used by Impala on page 781, Using
Impala through a Proxy for High Availability on page 77

The Impala Statestore

The Impala component known as the statestore checks on the health of Impala daemons on all the DataNodes in

a cluster, and continuously relays its findings to each of those daemons. It is physically represented by a daemon
process named statestored; you only need such a process on one host in the cluster. If an Impala daemon goes
offline due to hardware failure, network error, software issue, or other reason, the statestore informs all the other
Impala daemons so that future queries can avoid making requests to the unreachable node.

Because the statestore's purpose is to help when things go wrong, it is not critical to the normal operation of an Impala
cluster. If the statestore is not running or becomes unreachable, the Impala daemons continue running and distributing
work among themselves as usual; the cluster just becomes less robust if other Impala daemons fail while the statestore
is offline. When the statestore comes back online, it re-establishes communication with the Impala daemons and
resumes its monitoring function.

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

Related information:

Scalability Considerations for the Impala Statestore on page 680, Modifying Impala Startup Options on page
31, Starting Impala on page 30, Increasing the Statestore Timeout on page 75, Ports Used by Impala on
page 781

The Impala Catalog Service

The Impala component known as the catalog service relays the metadata changes from Impala SQL statements to all
the Impala daemons in a cluster. It is physically represented by a daemon process named catalogd; you only need
such a process on one host in the cluster. Because the requests are passed through the statestore daemon, it makes
sense to run the statestored and catalogd services on the same host.

The catalog service avoids the need to issue REFRESH and INVALIDATE METADATA statements when the
metadata changes are performed by statements issued through Impala. When you create a table, load data, and so on
through Hive, you do need to issue REFRESH or INVALIDATE METADATA on an Impala node before executing a
query there.

This feature touches a number of aspects of Impala:

» See Installing Impala on page 23, Upgrading Impala on page 29 and Starting Impala on page 30, for
usage information for the catalogd daemon.

* The REFRESH and INVALIDATE METADATA statements are not needed when the CREATE TABLE, INSERT,
or other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on
page 318 and INVALIDATE METADATA Statement on page 311 for the latest usage information for those
statements.

Use --load catalog in background option to control when the metadata of a table is loaded.

» Ifsetto false, the metadata of a table is loaded when it is referenced for the first time. This means that
the first run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
load catalog in backgroundis false.

| Impala Concepts and Architecture | 17

+ Ifsetto true, the catalog service attempts to load metadata for a table even if no query needed that metadata. So
metadata will possibly be already loaded when the first query that would need it is run. However, for the following
reasons, we recommend not to set the option to true.

* Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

» Impala may load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

Note:

In Impala 1.2.4 and higher, you can specify a table name with INVALIDATE METADATA after the table is created
in Hive, allowing you to make individual tables visible to Impala without doing a full reload of the catalog metadata.
Impala 1.2.4 also includes other changes to make the metadata broadcast mechanism faster and more responsive,
especially during Impala startup. See New Features in Impala 1.2.4 on page 805 for details.

Related information: Modifying Impala Startup Options on page 31, Starting Impala on page 30, Ports
Used by Impala on page 781

Developing Impala Applications

The core development language with Impala is SQL. You can also use Java or other languages to interact with Impala
through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of
analysis, you can supplement the SQL built-in functions by writing user-defined functions (UDFs) in C++ or Java.

Overview of the Impala SQL Dialect

The Impala SQL dialect is highly compatible with the SQL syntax used in the Apache Hive component (HiveQL).
As such, it is familiar to users who are already familiar with running SQL queries on the Hadoop infrastructure.
Currently, Impala SQL supports a subset of HiveQL statements, data types, and built-in functions. Impala also
includes additional built-in functions for common industry features, to simplify porting SQL from non-Hadoop
systems.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might seem familiar:

* The SELECT statement includes familiar clauses such as WHERE, GROUP BY, ORDER BY, and WITH. You
will find familiar notions such as joins, built-in functions for processing strings, numbers, and dates, aggregate
Sfunctions, subqueries, and comparison operators such as IN () and BETWEEN. The SELECT statement is the
place where SQL standards compliance is most important.

* From the data warehousing world, you will recognize the notion of partitioned tables. One or more columns
serve as partition keys, and the data is physically arranged so that queries that refer to the partition key columns
in the WHERE clause can skip partitions that do not match the filter conditions. For example, if you have 10 years
worth of data and use a clause such as WHERE year = 2015, WHERE year > 2010, or WHERE year IN

(2014, 2015), Impala skips all the data for non-matching years, greatly reducing the amount of I/O for the
query.

* InImpala 1.2 and higher, UDFs let you perform custom comparisons and transformation logic during SELECT
and INSERT. . .SELECT statements.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might require some learning and practice for you to become proficient in the Hadoop environment:

| Impala Concepts and Architecture | 18

Impala SQL is focused on queries and includes relatively little DML. There is no UPDATE or DELETE statement.
Stale data is typically discarded (by DROP TABLE or ALTER TABLE ... DROP PARTITION statements) or
replaced (by INSERT OVERWRITE statements).

All data creation is done by INSERT statements, which typically insert data in bulk by querying from other tables.
There are two variations, INSERT INTO which appends to the existing data, and INSERT OVERWRITE which
replaces the entire contents of a table or partition (similar to TRUNCATE TABLE followed by a new INSERT).
Although there is an INSERT ... VALUES syntax to create a small number of values in a single statement, it is
far more efficient to use the INSERT ... SELECT to copy and transform large amounts of data from one table
to another in a single operation.

You often construct Impala table definitions and data files in some other environment, and then attach Impala so
that it can run real-time queries. The same data files and table metadata are shared with other components of the
Hadoop ecosystem. In particular, Impala can access tables created by Hive or data inserted by Hive, and Hive can
access tables and data produced by Impala. Many other Hadoop components can write files in formats such as
Parquet and Avro, that can then be queried by Impala.

Because Hadoop and Impala are focused on data warehouse-style operations on large data sets, Impala SQL
includes some idioms that you might find in the import utilities for traditional database systems. For example, you
can create a table that reads comma-separated or tab-separated text files, specifying the separator in the CREATE
TABLE statement. You can create external tables that read existing data files but do not move or transform them.
Because Impala reads large quantities of data that might not be perfectly tidy and predictable, it does not require
length constraints on string data types. For example, you can define a database column as STRING with unlimited
length, rather than CHAR (1) or VARCHAR (64) . (Although in Impala 2.0 and later, you can also use length-
constrained CHAR and VARCHAR types.)

Related information: /mpala SOL Language Reference on page 106, especially Impala SOL Statements on page
223 and Impala Built-In Functions on page 422

Overview of Impala Programming Interfaces

You can connect and submit requests to the Impala daemons through:

The impala-shell interactive command interpreter.
The Hue web-based user interface.

JDBC.

ODBC.

With these options, you can use Impala in heterogeneous environments, with JDBC or ODBC applications running on
non-Linux platforms. You can also use Impala on combination with various Business Intelligence tools that use the
JDBC and ODBC interfaces.

Each impalad daemon process, running on separate nodes in a cluster, listens to several ports for incoming
requests. Requests from impala-shell and Hue are routed to the impalad daemons through the same port. The
impalad daemons listen on separate ports for JDBC and ODBC requests.

How Impala Fits Into the Hadoop Ecosystem

Impala makes use of many familiar components within the Hadoop ecosystem. Impala can interchange data with
other Hadoop components, as both a consumer and a producer, so it can fit in flexible ways into your ETL and ELT
pipelines.

How Impala Works with Hive

A major Impala goal is to make SQL-on-Hadoop operations fast and efficient enough to appeal to new categories
of users and open up Hadoop to new types of use cases. Where practical, it makes use of existing Apache Hive
infrastructure that many Hadoop users already have in place to perform long-running, batch-oriented SQL queries.

http://gethue.com/

| Planning for Impala Deployment | 19

In particular, Impala keeps its table definitions in a traditional MySQL or PostgreSQL database known as the
metastore, the same database where Hive keeps this type of data. Thus, Impala can access tables defined or loaded by
Hive, as long as all columns use Impala-supported data types, file formats, and compression codecs.

The initial focus on query features and performance means that Impala can read more types of data with the SELECT
statement than it can write with the INSERT statement. To query data using the Avro, RCFile, or SequenceFile file
formats, you load the data using Hive.

The Impala query optimizer can also make use of table statistics and column statistics. Originally, you gathered this
information with the ANALYZE TABLE statement in Hive; in Impala 1.2.2 and higher, use the Impala COMPUTE
STATS statement instead. COMPUTE STATS requires less setup, is more reliable, and does not require switching
back and forth between impala-shell and the Hive shell.

Overview of Impala Metadata and the Metastore

As discussed in How Impala Works with Hive on page 18, Impala maintains information about table definitions in

a central database known as the metastore. Impala also tracks other metadata for the low-level characteristics of data
files:

» The physical locations of blocks within HDFS.

For tables with a large volume of data and/or many partitions, retrieving all the metadata for a table can be time-
consuming, taking minutes in some cases. Thus, each Impala node caches all of this metadata to reuse for future
queries against the same table.

If the table definition or the data in the table is updated, all other Impala daemons in the cluster must receive the latest
metadata, replacing the obsolete cached metadata, before issuing a query against that table. In Impala 1.2 and higher,
the metadata update is automatic, coordinated through the catalogd daemon, for all DDL and DML statements
issued through Impala. See The Impala Catalog Service on page 16 for details.

For DDL and DML issued through Hive, or changes made manually to files in HDFS, you still use the REFRESH
statement (when new data files are added to existing tables) or the INVALIDATE METADATA statement (for entirely
new tables, or after dropping a table, performing an HDFS rebalance operation, or deleting data files). Issuing
INVALIDATE METADATA by itself retrieves metadata for all the tables tracked by the metastore. If you know that
only specific tables have been changed outside of Impala, you can issue REFRESH table name for each affected
table to only retrieve the latest metadata for those tables.

How Impala Uses HDFS

Impala uses the distributed filesystem HDEFS as its primary data storage medium. Impala relies on the redundancy
provided by HDFS to guard against hardware or network outages on individual nodes. Impala table data is physically
represented as data files in HDFS, using familiar HDFS file formats and compression codecs. When data files are
present in the directory for a new table, Impala reads them all, regardless of file name. New data is added in files with
names controlled by Impala.

How Impala Uses HBase

HBase is an alternative to HDFS as a storage medium for Impala data. It is a database storage system built on top of
HDFS, without built-in SQL support. Many Hadoop users already have it configured and store large (often sparse)
data sets in it. By defining tables in Impala and mapping them to equivalent tables in HBase, you can query the
contents of the HBase tables through Impala, and even perform join queries including both Impala and HBase tables.
See Using Impala to Query HBase Tables on page 744 for details.

Planning for Impala Deployment

Before you set up Impala in production, do some planning to make sure that your hardware setup has sufficient
capacity, that your cluster topology is optimal for Impala queries, and that your schema design and ETL processes
follow the best practices for Impala.

| Planning for Impala Deployment | 20

Impala Requirements

To perform as expected, Impala depends on the availability of the software, hardware, and configurations described in
the following sections.

Supported Operating Systems

Apache Impala runs on Linux systems only. See the README . md file for more information.

Hive Metastore and Related Configuration

Impala can interoperate with data stored in Hive, and uses the same infrastructure as Hive for tracking metadata about
schema objects such as tables and columns. The following components are prerequisites for Impala:

* MySQL or PostgreSQL, to act as a metastore database for both Impala and Hive.
Note:

Installing and configuring a Hive metastore is an Impala requirement. Impala does not work without the metastore
database. For the process of installing and configuring the metastore, see Installing Impala on page 23.

Always configure a Hive metastore service rather than connecting directly to the metastore database. The Hive
metastore service is required to interoperate between different levels of metastore APIs if this is necessary for your
environment, and using it avoids known issues with connecting directly to the metastore database.

A summary of the metastore installation process is as follows:

» Install a MySQL or PostgreSQL database. Start the database if it is not started after installation.

» Download the MySQL connector or the PostgreSQL connector and place it in the /usr/share/java/
directory.

* Use the appropriate command line tool for your database to create the metastore database.

* Use the appropriate command line tool for your database to grant privileges for the metastore database to the
hive user.

* Modify hive-site.xml to include information matching your particular database: its URL, username, and
password. You will copy the hive-site.xml file to the Impala Configuration Directory later in the Impala
installation process.

* Optional: Hive. Although only the Hive metastore database is required for Impala to function, you might install
Hive on some client machines to create and load data into tables that use certain file formats. See How Impala
Works with Hadoop File Formats on page 697 for details. Hive does not need to be installed on the same
DataNodes as Impala; it just needs access to the same metastore database.

Java Dependencies
Although Impala is primarily written in C++, it does use Java to communicate with various Hadoop components:

» The officially supported JVM for Impala is the Oracle JVM. Other JVMs might cause issues, typically resulting in
a failure at impalad startup. In particular, the JamVM used by default on certain levels of Ubuntu systems can
cause impalad to fail to start.

» Internally, the impalad daemon relies on the JAVA HOME environment variable to locate the system Java
libraries. Make sure the impalad service is not run from an environment with an incorrect setting for this
variable.

» All Java dependencies are packaged in the impala-dependencies.jar file, which is located at /uszr/
lib/impala/lib/. These map to everything that is built under fe/target/dependency.

http://www.mysql.com/products/connector/
http://jdbc.postgresql.org/download.html

| Planning for Impala Deployment | 21

Networking Configuration Requirements

As part of ensuring best performance, Impala attempts to complete tasks on local data, as opposed to using network
connections to work with remote data. To support this goal, Impala matches the hostname provided to each Impala
daemon with the IP address of cach DataNode by resolving the hostname flag to an IP address. For Impala to work
with local data, use a single IP interface for the DataNode and the Impala daemon on each machine. Ensure that

the Impala daemon's hostname flag resolves to the IP address of the DataNode. For single-homed machines, this is
usually automatic, but for multi-homed machines, ensure that the Impala daemon's hostname resolves to the correct
interface. Impala tries to detect the correct hostname at start-up, and prints the derived hostname at the start of the log
in a message of the form:

Using hostname: impala-daemon-1.example.com

In the majority of cases, this automatic detection works correctly. If you need to explicitly set the hostname, do so by
setting the ——hostname flag.

Hardware Requirements

During join operations, portions of data from each joined table are loaded into memory. Data sets can be very large,
so ensure your hardware has sufficient memory to accommodate the joins you anticipate completing.

While requirements vary according to data set size, the following is generally recommended:
* CPU - Impala version 2.2 and higher uses the SSSE3 instruction set, which is included in newer processors.

Note: This required level of processor is the same as in Impala version 1.x. The Impala 2.0 and 2.1 releases had a
stricter requirement for the SSE4.1 instruction set, which has now been relaxed.

* Memory - 128 GB or more recommended, ideally 256 GB or more. If the intermediate results during query
processing on a particular node exceed the amount of memory available to Impala on that node, the query writes
temporary work data to disk, which can lead to long query times. Note that because the work is parallelized, and
intermediate results for aggregate queries are typically smaller than the original data, Impala can query and join
tables that are much larger than the memory available on an individual node.

» Storage - DataNodes with 12 or more disks each. I/O speeds are often the limiting factor for disk performance
with Impala. Ensure that you have sufficient disk space to store the data Impala will be querying.

User Account Requirements

Impala creates and uses a user and group named impala. Do not delete this account or group and do not modify the
account's or group's permissions and rights. Ensure no existing systems obstruct the functioning of these accounts and
groups. For example, if you have scripts that delete user accounts not in a white-list, add these accounts to the list of
permitted accounts.

For correct file deletion during DROP TABLE operations, Impala must be able to move files to the HDFS trashcan.
You might need to create an HDFS directory /user/impala, writeable by the impala user, so that the trashcan
can be created. Otherwise, data files might remain behind after a DROP TABLE statement.

Impala should not run as root. Best Impala performance is achieved using direct reads, but root is not permitted to use
direct reads. Therefore, running Impala as root negatively affects performance.

By default, any user can connect to Impala and access all the associated databases and tables. You can enable
authorization and authentication based on the Linux OS user who connects to the Impala server, and the associated
groups for that user. Impala Security on page 82 for details. These security features do not change the underlying
file permission requirements; the impala user still needs to be able to access the data files.

Guidelines for Designing Impala Schemas

The guidelines in this topic help you to construct an optimized and scalable schema, one that integrates well with
your existing data management processes. Use these guidelines as a checklist when doing any proof-of-concept work,
porting exercise, or before deploying to production.

| Planning for Impala Deployment | 22

If you are adapting an existing database or Hive schema for use with Impala, read the guidelines in this section and
then see Porting SOL from Other Database Systems to Impala on page 612 for specific porting and compatibility
tips.

Prefer binary file formats over text-based formats.

To save space and improve memory usage and query performance, use binary file formats for any large or intensively
queried tables. Parquet file format is the most efficient for data warehouse-style analytic queries. Avro is the other
binary file format that Impala supports, that you might already have as part of a Hadoop ETL pipeline.

Although Impala can create and query tables with the RCFile and SequenceFile file formats, such tables are relatively
bulky due to the text-based nature of those formats, and are not optimized for data warehouse-style queries due to
their row-oriented layout. Impala does not support INSERT operations for tables with these file formats.

Guidelines:

» For an efficient and scalable format for large, performance-critical tables, use the Parquet file format.

* To deliver intermediate data during the ETL process, in a format that can also be used by other Hadoop
components, Avro is a reasonable choice.

» For convenient import of raw data, use a text table instead of RCFile or SequenceFile, and convert to Parquet in a
later stage of the ETL process.

Use Snappy compression where practical.

Snappy compression involves low CPU overhead to decompress, while still providing substantial space savings. In
cases where you have a choice of compression codecs, such as with the Parquet and Avro file formats, use Snappy
compression unless you find a compelling reason to use a different codec.

Prefer numeric types over strings.

If you have numeric values that you could treat as either strings or numbers (such as YEAR, MONTH, and DAY for
partition key columns), define them as the smallest applicable integer types. For example, YEAR can be SMALLINT,
MONTH and DAY can be TINYINT. Although you might not see any difference in the way partitioned tables or text
files are laid out on disk, using numeric types will save space in binary formats such as Parquet, and in memory when
doing queries, particularly resource-intensive queries such as joins.

Partition, but do not over-partition.

Partitioning is an important aspect of performance tuning for Impala. Follow the procedures in Partitioning for
Impala Tables on page 688 to set up partitioning for your biggest, most intensively queried tables.

If you are moving to Impala from a traditional database system, or just getting started in the Big Data field, you might
not have enough data volume to take advantage of Impala parallel queries with your existing partitioning scheme.

For example, if you have only a few tens of megabytes of data per day, partitioning by YEAR, MONTH, and DAY
columns might be too granular. Most of your cluster might be sitting idle during queries that target a single day, or
each node might have very little work to do. Consider reducing the number of partition key columns so that each
partition directory contains several gigabytes worth of data.

For example, consider a Parquet table where each data file is 1 HDFS block, with a maximum block size of 1 GB.
(In Impala 2.0 and later, the default Parquet block size is reduced to 256 MB. For this exercise, let's assume you have
bumped the size back up to 1 GB by setting the query option PARQUET FILE SIZE=1g.)if you have a 10-node
cluster, you need 10 data files (up to 10 GB) to give each node some work to do for a query. But each core on each
machine can process a separate data block in parallel. With 16-core machines on a 10-node cluster, a query could
process up to 160 GB fully in parallel. If there are only a few data files per partition, not only are most cluster nodes
sitting idle during queries, so are most cores on those machines.

You can reduce the Parquet block size to as low as 128 MB or 64 MB to increase the number of files per partition and
improve parallelism. But also consider reducing the level of partitioning so that analytic queries have enough data to
work with.

| Installing Impala | 23

Always compute stats after loading data.

Impala makes extensive use of statistics about data in the overall table and in each column, to help plan resource-
intensive operations such as join queries and inserting into partitioned Parquet tables. Because this information is only
available after data is loaded, run the COMPUTE STATS statement on a table after loading or replacing data in a table
or partition.

Having accurate statistics can make the difference between a successful operation, or one that fails due to an out-
of-memory error or a timeout. When you encounter performance or capacity issues, always use the SHOW STATS
statement to check if the statistics are present and up-to-date for all tables in the query.

When doing a join query, Impala consults the statistics for each joined table to determine their relative sizes and
to estimate the number of rows produced in each join stage. When doing an INSERT into a Parquet table, Impala
consults the statistics for the source table to determine how to distribute the work of constructing the data files for
each partition.

See COMPUTE STATS Statement on page 240 for the syntax of the COMPUTE STATS statement, and Table and
Column Statistics on page 642 for all the performance considerations for table and column statistics.

Verify sensible execution plans with EXPLAIN and SUMMARY.

Before executing a resource-intensive query, use the EXPLAIN statement to get an overview of how Impala intends
to parallelize the query and distribute the work. If you see that the query plan is inefficient, you can take tuning steps
such as changing file formats, using partitioned tables, running the COMPUTE STATS statement, or adding query
hints. For information about all of these techniques, see Tuning Impala for Performance on page 632.

After you run a query, you can see performance-related information about how it actually ran by issuing the
SUMMARY command in impala-shell. Prior to Impala 1.4, you would use the PROFILE command, but its highly
technical output was only useful for the most experienced users. SUMMARY, new in Impala 1.4, summarizes the most
useful information for all stages of execution, for all nodes rather than splitting out figures for each node.

Installing Impala

Impala is an open-source analytic database for Apache Hadoop that returns rapid responses to queries.
Follow these steps to set up Impala on a cluster by building from source:

» Download the latest release. See the Impala downloads page for the link to the latest release.

* Check the README . md file for a pointer to the build instructions.

» Please check the MD5 and SHA1 and GPG signature, the latter by using the code signing keys of the release
managers.

» Developers interested in working on Impala can clone the Impala source repository:

git clone https://git-wip-us.apache.org/repos/asf/impala.git

What is Included in an Impala Installation

Impala is made up of a set of components that can be installed on multiple nodes throughout your cluster. The key
installation step for performance is to install the impalad daemon (which does most of the query processing work)
on all DataNodes in the cluster.

Impala primarily consists of these executables, which should be available after you build from source:

* impalad - The Impala daemon. Plans and executes queries against HDFS, HBase, and Amazon S3 data. Run one
impalad process on each node in the cluster that has a DataNode.

http://impala.apache.org/downloads.html

| Managing Impala | 24

* statestored - Name service that tracks location and status of all impalad instances in the cluster. Run
one instance of this daemon on a node in your cluster. Most production deployments run this daemon on the
namenode.

* catalogd - Metadata coordination service that broadcasts changes from Impala DDL and DML statements to
all affected Impala nodes, so that new tables, newly loaded data, and so on are immediately visible to queries
submitted through any Impala node. (Prior to Impala 1.2, you had to run the REFRESH or INVALIDATE
METADATA statement on each node to synchronize changed metadata. Now those statements are only required if
you perform the DDL or DML through an external mechanism such as Hive or by uploading data to the Amazon
S3 filesystem.) Run one instance of this daemon on a node in your cluster, preferably on the same host as the
statestored daemon.

* impala-shell - Command-line interface for issuing queries to the Impala daemon. You install this on one or
more hosts anywhere on your network, not necessarily DataNodes or even within the same cluster as Impala. It
can connect remotely to any instance of the Impala daemon.

Before starting working with Impala, ensure that you have all necessary prerequisites. See Impala Requirements on
page 20 for details.

Managing Impala

This section explains how to configure Impala to accept connections from applications that use popular programming
APIs:

* Post-Installation Configuration for Impala on page 24
» Configuring Impala to Work with ODBC on page 26
» Configuring Impala to Work with JDBC on page 26

This type of configuration is especially useful when using Impala in combination with Business Intelligence tools,
which use these standard interfaces to query different kinds of database and Big Data systems.

You can also configure these other aspects of Impala:

» Impala Security on page 82
* Modifying Impala Startup Options on page 31

Post-Installation Configuration for Impala

This section describes the mandatory and recommended configuration settings for Impala. If Impala is installed
using cluster management software, some of these configurations might be completed automatically; you must still
configure short-circuit reads manually. If you want to customize your environment, consider making the changes
described in this topic.

* You must enable short-circuit reads, whether or not Impala was installed with cluster management software. This
setting goes in the Impala configuration settings, not the Hadoop-wide settings.

* You must enable block location tracking, and you can optionally enable native checksumming for optimal
performance.

Mandatory: Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to
communicate through the DataNodes, improving performance. This setting also minimizes the number of additional
copies of data. Short-circuit reads requires 1 ibhadoop. so (the Hadoop Native Library) to be accessible to both the
server and the client. 1ibhadoop. so is not available if you have installed from a tarball. You must install from an
.rpm, . deb, or parcel to use short-circuit local reads.

To configure DataNodes for short-circuit reads:

| Managing Impala | 25

1. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration
directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/
conf.

2. On all Impala nodes, configure the following properties in Impala's copy of hdfs-site.xml as shown:

<property>
<name>dfs.client.read.shortcircuit</name>
<value>true</value>

</property>

<property>
<name>dfs.domain.socket.path</name>
<value>/var/run/hdfs-sockets/dn</value>
</property>

<property>
<name>dfs.client.file-block-storage-locations.timeout.millis</name>
<value>10000</value>

</property>

3. If /var/run/hadoop-hdfs/ is group-writable, make sure its group is root.

Note: If you are also going to enable block location tracking, you can skip copying configuration files and
restarting DataNodes and go straight to Optional: Block Location Tracking. Configuring short-circuit reads and
block location tracking require the same process of copying files and restarting services, so you can complete that
process once when you have completed all configuration changes. Whether you copy files and restart services now
or during configuring block location tracking, short-circuit reads are not enabled until you complete those final
steps.

4. After applying these changes, restart all DataNodes.

Mandatory: Block Location Tracking

Enabling block location metadata allows Impala to know which disk data blocks are located on, allowing better
utilization of the underlying disks. Impala will not start unless this setting is enabled.

To enable block location tracking:

1. For each DataNode, adding the following to the hdfs-site.xml file:

<property>
<name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
<value>true</value>

</property>

2. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration
directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/
conft.

3. After applying these changes, restart all DataNodes.

Optional: Native Checksumming

Enabling native checksumming causes Impala to use an optimized native library for computing checksums, if that
library is available.

To enable native checksumming:

If you installed from packages, the native checksumming library is installed and setup correctly. In such a case, no
additional steps are required. Conversely, if you installed by other means, such as with tarballs, native checksumming
may not be available due to missing shared objects. Finding the message "Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable"inthe
Impala logs indicates native checksumming may be unavailable. To enable native checksumming, you must build and
install 1ibhadoop. so (the Hadoop Native Library).

| Managing Impala | 26

Configuring Impala to Work with ODBC

Third-party products, especially business intelligence and reporting tools, can access Impala using the ODBC
protocol. For the best experience, ensure any third-party product you intend to use is supported. Verifying support
includes checking that the versions of Impala, ODBC, the operating system, the Apache Hadoop distribution, and
the third-party product have all been approved by the appropriate suppliers for use together. To configure your
systems to use ODBC, download and install a connector, typically from the supplier of the third-party product or the
Hadoop distribution. You may need to sign in and accept license agreements before accessing the pages required for
downloading ODBC connectors.

Configuring Impala to Work with JDBC

Impala supports the standard JDBC interface, allowing access from commercial Business Intelligence tools and
custom software written in Java or other programming languages. The JDBC driver allows you to access Impala from
a Java program that you write, or a Business Intelligence or similar tool that uses JDBC to communicate with various
database products.

Setting up a JDBC connection to Impala involves the following steps:

* Verifying the communication port where the Impala daemons in your cluster are listening for incoming JDBC
requests.

* Installing the JDBC driver on every system that runs the JDBC-enabled application.

* Specifying a connection string for the JDBC application to access one of the servers running the impalad
daemon, with the appropriate security settings.

Configuring the JDBC Port

The default port used by JDBC 2.0 and later (as well as ODBC 2.x) is 21050. Impala server accepts JDBC
connections through this same port 21050 by default. Make sure this port is available for communication with other
hosts on your network, for example, that it is not blocked by firewall software. If your JDBC client software connects
to a different port, specify that alternative port number with the ~-hs2 port option when starting impalad. See
Starting Impala on page 30 for details about Impala startup options. See Ports Used by Impala on page 781 for
information about all ports used for communication between Impala and clients or between Impala components.

Choosing the JDBC Driver

In Impala 2.0 and later, you can use the Hive 0.13 JDBC driver. If you are already using JDBC applications with an
earlier Impala release, you should update your JDBC driver, because the Hive 0.12 driver that was formerly the only
choice is not compatible with Impala 2.0 and later.

The Hive JDBC driver provides a substantial speed increase for JDBC applications with Impala 2.0 and higher, for
queries that return large result sets.

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in Impala 2.3 and higher. To use these types with
JDBC requires version 2.5.28 or higher of the JDBC Connector for Impala. To use these types with ODBC requires
version 2.5.30 or higher of the ODBC Connector for Impala. Consider upgrading all JDBC and ODBC drivers at the
same time you upgrade from Impala 2.3 or higher.

Although the result sets from queries involving complex types consist of all scalar values, the queries involve join
notation and column references that might not be understood by a particular JDBC or ODBC connector. Consider
defining a view that represents the flattened version of a table containing complex type columns, and pointing the
JDBC or ODBC application at the view. See Complex Types (Impala 2.3 or higher only) on page 152 for details.

| Managing Impala | 27

Enabling Impala JDBC Support on Client Systems

Using the Hive JDBC Driver

You install the Hive JDBC driver (hive-3jdbc package) through the Linux package manager, on hosts within the
cluster. The driver consists of several Java JAR files. The same driver can be used by Impala and Hive.

To get the JAR files, install the Hive JDBC driver on each host in the cluster that will run JDBC applications.

Note: The latest JDBC driver, corresponding to Hive 0.13, provides substantial performance improvements for
Impala queries that return large result sets. Impala 2.0 and later are compatible with the Hive 0.13 driver. If you
already have an older JDBC driver installed, and are running Impala 2.0 or higher, consider upgrading to the latest
Hive JDBC driver for best performance with JDBC applications.

If you are using JDBC-enabled applications on hosts outside the cluster, you cannot use the the same install procedure
on the hosts. Install the JDBC driver on at least one cluster host using the preceding procedure. Then download the
JAR files to each client machine that will use JDBC with Impala:

commons-logging-X.X.X.jar
hadoop-common. jar
hive-common-X.XX.X.jar
hive-jdbc-X.XX.X.jar
hive-metastore-X.XX.X.jar
hive-service-X.XX.X.jar
httpclient-X.X.X.jar
httpcore-X.X.X.jar
1ibfb303-X.X.X.jar
libthrift-X.X.X.jar
log4j-X.X.XX.jar
slfd4j-api-X.X.X.Jjar
slfd4j-1logXjXX-X.X.X.jar

To enable JDBC support for Impala on the system where you run the JDBC application:
1. Download the JAR files listed above to each client machine.

Note: For Maven users, see this sample github page for an example of the dependencies you could add to a pom
file instead of downloading the individual JARs.

2. Store the JAR files in a location of your choosing, ideally a directory already referenced in your CLASSPATH
setting. For example:

* On Linux, you might use a location such as /opt/jars/.
* On Windows, you might use a subdirectory underneath C: \Program Files.

3. To successfully load the Impala JDBC driver, client programs must be able to locate the associated JAR files.
This often means setting the CLASSPATH for the client process to include the JARs. Consult the documentation

for your JDBC client for more details on how to install new JDBC drivers, but some examples of how to set
CLASSPATH variables include:

* On Linux, if you extracted the JARs to /opt/jars/, you might issue the following command to prepend the
JAR files path to an existing classpath:

export CLASSPATH=/opt/jars/*.Jjar:$CLASSPATH

* On Windows, use the System Properties control panel item to modify the Environment Variables for your
system. Modify the environment variables to include the path to which you extracted the files.

Note: If the existing CLASSPATH on your client machine refers to some older version of the Hive JARs,
ensure that the new JARs are the first ones listed. Either put the new JAR files earlier in the listings, or delete
the other references to Hive JAR files.

https://github.com/onefoursix/Cloudera-Impala-JDBC-Example

| Managing Impala | 28

Establishing JDBC Connections
The JDBC driver class depends on which driver you select.

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious
about reusing the connections. If the load balancer has set up connection timeout values, either check the connection
frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before
using it and create a new one if the connection has been closed.

Using the Hive JDBC Driver

For example, with the Hive JDBC driver, the class name is org.apache.hive.jdbc.HiveDriver.
Once you have configured Impala to work with JDBC, you can establish connections between the two.

To do so for a cluster that does not use Kerberos authentication, use a connection string of the form
jdbc:hive2://host:port/;auth=noSasl. For example, you might use:

jdbc:hive2://myhost.example.com:21050/;auth=noSasl

To connect to an instance of Impala that requires Kerberos authentication, use a connection string of the form
jdbc:hive2://host:port/;principal=principal name. The principal must be the same user
principal you used when starting Impala. For example, you might use:

jdbc:hive2://myhost.example.com:21050/;principal=impala/
myhost.example.com@H2 . EXAMPLE . COM

To connect to an instance of Impala that requires LDAP authentication, use a connection string of the form
jdbc:hive2://host:port/db_name;user=ldap userid;password=Ildap password. For
example, you might use:

jdbc:hive2://myhost.example.com:21050/test db;user=fred;password=xyz123

Note:

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the impala-shell interpreter of the JDBC or ODBC APIs.
The following are some exceptions to keep in mind when switching between the interactive shell and applications
using the APIs:

* Complex type considerations:

* Queries involving the complex types (ARRAY, STRUCT, and MAP) require notation that might not be available
in all levels of JDBC and ODBC drivers. If you have trouble querying such a table due to the driver level or
inability to edit the queries used by the application, you can create a view that exposes a “flattened” version of
the complex columns and point the application at the view. See Complex Types (Impala 2.3 or higher only) on
page 152 for details.

* The complex types available in Impala 2.3 and higher are supported by the JDBC getColumns () APIL Both
MAP and ARRAY are reported as the JDBC SQL Type ARRAY, because this is the closest matching Java SQL
type. This behavior is consistent with Hive. STRUCT types are reported as the JDBC SQL Type STRUCT.

To be consistent with Hive's behavior, the TYPE NAME field is populated with the primitive type name

for scalar types, and with the full toSqgl () for complex types. The resulting type names are somewhat
inconsistent, because nested types are printed differently than top-level types. For example, the following list
shows how toSQL () for Impala types are translated to TYPE NAME values:

DECIMAL (10,10) becomes DECIMAL

CHAR (10) becomes
VARCHAR (10) becomes
ARRAY<DECIMAL (10,10)> Dbecomes
ARRAY<CHAR (10) > becomes
ARRAY<VARCHAR (10) > becomes

Kudu Considerations for DML Statements

| Upgrading Impala | 29

CHAR

VARCHAR
ARRAY<DECIMAL (10, 10)>
ARRAY<CHAR (10) >
ARRAY<VARCHAR (10) >

Currently, Impala INSERT, UPDATE, or other DML statements issued through the JDBC interface against a
Kudu table do not return JDBC error codes for conditions such as duplicate primary key columns. Therefore, for
applications that issue a high volume of DML statements, prefer to use the Kudu Java API directly rather than a

JDBC application.

Upgrading Impala

Upgrading Impala involves building or acquiring new Impala-related binaries, and then restarting Impala services.

Upgrading Impala

» Shut down all Impala-related daemons on all relevant hosts in the cluster:

1. Stop impalad on each Impala node in your cluster:

$ sudo service impala-server stop

2. Stop any instances of the state store in your cluster:

$ sudo service impala-state-store stop

3. Stop any instances of the catalog service in your cluster:

$ sudo service impala-catalog stop

» Follow the build procedure in the README . md file to produce new Impala binaries.
* Replace the binaries for all Impala-related daemons on all relevant hosts in the cluster.

* Check if there are new recommended or required configuration settings to put into place in the configuration
files, typically under /etc/impala/conf. See Post-Installation Configuration for Impala on page 24 for

settings related to performance and scalability.

» Restart all Impala-related daemons on all relevant hosts in the cluster:

1. Restart the Impala state store service on the desired nodes in your cluster. Expect to see a process named
statestored if the service started successfully.

$ sudo service impala-state-store start

$ ps ax | grep [s]tatestored

6819 2 sl 0:07 /usr/lib/impala/sbin/statestored -log dir=/
var/log/impala -state store port=24000

Restart the state store service before the Impala server service to avoid “Not connected” errors when you run

impala-shell.

2. Restart the Impala catalog service on whichever host it runs on in your cluster. Expect to see a process named

catalogd if the service started successfully.

$ sudo service impala-catalog restart

$ ps ax | grep [clatalogd

| Starting Impala | 30

6068 2 sl 4:06 /usr/lib/impala/sbin/catalogd

3. Restart the Impala daemon service on each node in your cluster. Expect to see a process named impalad if
the service started successfully.

$ sudo service impala-server start

$ ps ax | grep [ilmpalad

7936 2 Sl 0:12 /usr/lib/impala/sbin/impalad -log dir=/var/
log/impala -state store port=24000

-state store host=127.0.0.1 -be port=22000

Note:

If the services did not start successfully (even though the sudo service command might display [OK]), check for
errors in the Impala log file, typically in /var/log/impala.

Impala Upgrade Considerations

Default Setting Changes

Release Changed Setting Default Value
Impala 2.12 compact catalog topic true
Impala 2.12 max cached file handle 20000

Starting Impala

To activate Impala if it is installed but not yet started:

1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options on page
31 for details.

2. Start one instance of the Impala statestore. The statestore helps Impala to distribute work efficiently, and
to continue running in the event of availability problems for other Impala nodes. If the statestore becomes
unavailable, Impala continues to function.

3. Start one instance of the Impala catalog service.

4. Start the main Impala service on one or more DataNodes, ideally on all DataNodes to maximize local processing
and avoid network traffic due to remote reads.

Once Impala is running, you can conduct interactive experiments using the instructions in /mpala Tutorials on page
34 and try Using the Impala Shell (impala-shell Command) on page 618.

Starting Impala from the Command Line

To start the Impala state store and Impala from the command line or a script, you can either use the service
command or you can start the daemons directly through the impalad, statestored, and catalogd
executables.

Start the Impala statestore and then start impalad instances. You can modify the values the service initialization
scripts use when starting the statestore and Impala by editing /etc/default/impala.

Start the statestore service using a command similar to the following:

$ sudo service impala-state-store start

| Starting Impala | 31

Start the catalog service using a command similar to the following:
$ sudo service impala-catalog start

Start the Impala service on each DataNode using a command similar to the following:
$ sudo service impala-server start

Note:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the catalogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must reload those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the catalogd daemon. Prior to Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

If any of the services fail to start, review:

* Reviewing Impala Logs on page 771
» Troubleshooting Impala on page 773

Modifying Impala Startup Options

The configuration options for the Impala-related daemons let you choose which hosts and ports to use for the services
that run on a single host, specify directories for logging, control resource usage and security, and specify other aspects
of the Impala software.

Configuring Impala Startup Options through the Command Line

The Impala server, statestore, and catalog services start up using values provided in a defaults file, /etc/default/
impala.

This file includes information about many resources used by Impala. Most of the defaults included in this file should
be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable,
but you would always set the address used by the statestore server. Some of the content you might modify includes:

IMPALA STATE STORE HOST=127.0.0.1
IMPALA STATE STORE PORT=24000
IMPALA BACKEND PORT=22000

IMPALA LOG DIR= /var/log/lmpala
IMPALA CATALOG SERVICE HOST=.
IMPALA STATE STORE HOST=...

export IMPALA STATE STORE ARGS=${IMPALA STATE STORE ARGS:- \
—log_dir:${IMPALA_LOG_DIR} —state_store_port:${IMPALA_STATE_STORE_PORT}}

IMPALA SERVER ARGS=" \

-log dir=${IMPALA LOG DIR} \

-catalog service host=${IMPALA CATALOG SERVICE HOST} \

-state store port ${IMPALA STATE STORE PORT} \

-state store host= ${IMPALA STATE STORE_HOST} \

-be port ${IMPALA BACKEND PORT}"

export ENABLE CORE DUMPS= ${ENABLE COREDUMPS:-false}

To use alternate values, edit the defaults file, then restart all the Impala-related services so that the changes take
effect. Restart the Impala server using the following commands:

$ sudo service impala-server restart

| Starting Impala | 32

Stopping Impala Server: [OK]
Starting Impala Server: [OK]

Restart the Impala statestore using the following commands:

$ sudo service impala-state-store restart
Stopping Impala State Store Server: [OK]
Starting Impala State Store Server: [OK]

Restart the Impala catalog service using the following commands:

$ sudo service impala-catalog restart
Stopping Impala Catalog Server: [OK]
Starting Impala Catalog Server: [OK]

Some common settings to change include:

+ Statestore address. Where practical, put the statestore on a separate host not running the impalad daemon. In
that recommended configuration, the impalad daemon cannot refer to the statestore server using the loopback
address. If the statestore is hosted on a machine with an IP address of 192.168.0.27, change:

IMPALA STATE STORE HOST=127.0.0.1
to:

IMPALA STATE STORE HOST=192.168.0.27

» Catalog server address (including both the hostname and the port number). Update the value of the
IMPALA CATALOG SERVICE HOST variable. Where practical, run the catalog server on the same host as the
statestore. In that recommended configuration, the impalad daemon cannot refer to the catalog server using
the loopback address. If the catalog service is hosted on a machine with an IP address of 192.168.0.27, add the
following line:

IMPALA CATALOG SERVICE HOST=192.168.0.27:26000

The /etc/default/impala defaults file currently does not define an IMPALA CATALOG ARGS
environment variable, but if you add one it will be recognized by the service startup/shutdown
script. Add a definition for this variable to /etc/default/impala and add the option —
catalog service host=hostname. If the port is different than the default 26000, also add the option -
catalog service port=port.

* Memory limits. You can limit the amount of memory available to Impala. For example, to allow Impala to use no
more than 70% of system memory, change:

export IMPALA SERVER ARGS=${IMPALA SERVER ARGS:- \
-log dir=${IMPALA LOG DIR} \
-state store port=${IMPALA STATE STORE PORT} \
-state store host=${IMPALA STATE STORE HOST} \
-be port=${IMPALA BACKEND PORT}}

to:

export IMPALA SERVER ARGS=${IMPALA SERVER ARGS:- \
-log dir=${IMPALA LOG DIR} -state store port=
${IMPALA STATE STORE PORT} \
-state store host=${IMPALA STATE STORE HOST} \
—beiport=${IMPALAﬁBACKENDfPORT} -mem_ 1imit=70%}

You can specify the memory limit using absolute notation such as 500m or 2G, or as a percentage of physical
memory such as 60%.

| Starting Impala | 33

Note: Queries that exceed the specified memory limit are aborted. Percentage limits are based on the physical
memory of the machine and do not consider cgroups.

* Core dump enablement. To enable core dumps, change:
export ENABLE CORE DUMPS=${ENABLE COREDUMPS:-false}
to:
export ENABLE CORE DUMPS=${ENABLE COREDUMPS:-true}

Note:

* The location of core dump files may vary according to your operating system configuration.
» Other security settings may prevent Impala from writing core dumps even when this option is enabled.

+ Authorization using the open source Sentry plugin. Specify the ~server name and -
authorization policy file options as part of the IMPALA SERVER ARGS and
IMPALA STATE STORE ARGS settings to enable the core Impala support for authentication. See Starting the
impalad Daemon with Sentry Authorization Enabled on page 88 for details.

* Auditing for successful or blocked Impala queries, another aspect of security. Specify
the —audit event log dir=directory path option and optionally the
-max_audit event log file size=number of queriesand -
abort on failed audit event options as part of the IMPALA SERVER_ ARGS settings, for each
Impala node, to enable and customize auditing. See Auditing Impala Operations on page 104 for details.

» Password protection for the Impala web UI, which listens on port 25000 by default. This feature involves adding
some or all of the ~-webserver password file, --webserver authentication domain,
and --webserver certificate file optionstothe IMPALA SERVER ARGS and
IMPALA STATE STORE ARGS settings. See Security Guidelines for Impala on page 83 for details.

* Another setting you might add to IMPALA SERVER_ARGS is a comma-separated list of query options and
values:

-default query options='option=value,option=value,..."'
These options control the behavior of queries performed by this impalad instance. The option values you
specify here override the default values for Impala query options, as shown by the SET statement in impala-
shell.

* During troubleshooting, the appropriate support channel might direct you to change other values, particularly for
IMPALA SERVER_ARGS, to work around issues or gather debugging information.

Note:

These startup options for the impalad daemon are different from the command-line options for the impala-
shell command. For the impala-shell options, see impala-shell Configuration Options on page 618.

Checking the Values of Impala Configuration Options

You can check the current runtime value of all these settings through the Impala web interface,
available by default at http://impala hostname:25000/varz for the impalad
daemon, http://impala hostname:25010/varz for the statestored daemon, or
http://impala hostname:25020/varz for the catalogd daemon.

Startup Options for impalad Daemon

The impalad daemon implements the main Impala service, which performs query processing and reads and writes
the data files.

| Impala Tutorials | 34

Startup Options for statestored Daemon

The statestored daemon implements the Impala statestore service, which monitors the availability of Impala
services across the cluster, and handles situations such as nodes becoming unavailable or becoming available again.

Startup Options for catalogd Daemon

The catalogd daemon implements the Impala catalog service, which broadcasts metadata changes to all the Impala
nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

Use --load catalog in background option to control when the metadata of a table is loaded.

» Ifsetto false, the metadata of a table is loaded when it is referenced for the first time. This means that
the first run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
load catalog in backgroundis false.

« Ifsetto true, the catalog service attempts to load metadata for a table even if no query needed that metadata. So
metadata will possibly be already loaded when the first query that would need it is run. However, for the following
reasons, we recommend not to set the option to t rue.

* Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

+ Impala may load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Impala Tutorials

This section includes tutorial scenarios that demonstrate how to begin using Impala once the software is installed. It
focuses on techniques for loading data, because once you have some data in tables and can query that data, you can
quickly progress to more advanced Impala features.

Note:

Where practical, the tutorials take you from “ground zero” to having the desired Impala tables and data. In some
cases, you might need to download additional files from outside sources, set up additional software components,
modify commands or scripts to fit your own configuration, or substitute your own sample data.

Before trying these tutorial lessons, install Impala using one of these procedures:

+ Ifyou already have some Apache Hadoop environment set up and just need to add Impala to it, follow the
installation process described in /nstalling Impala on page 23. Make sure to also install the Hive metastore
service if you do not already have Hive configured.

Tutorials for Getting Started

These tutorials demonstrate the basics of using Impala. They are intended for first-time users, and for trying out
Impala on any new cluster to make sure the major components are working correctly.

Explore a New Impala Instance

This tutorial demonstrates techniques for finding your way around the tables and databases of an unfamiliar (possibly
empty) Impala instance.

When you connect to an Impala instance for the first time, you use the SHOW DATABASES and SHOW TABLES
statements to view the most common types of objects. Also, call the version () function to confirm which version
of Impala you are running; the version number is important when consulting documentation and dealing with support
issues.

| Impala Tutorials | 35

A completely empty Impala instance contains no tables, but still has two databases:

* default, where new tables are created when you do not specify any other database.
* _impala builtins, asystem database used to hold all the built-in functions.

The following example shows how to see the available databases, and the tables in each. If the list of databases or
tables is long, you can use wildcard notation to locate specific databases or tables based on their names.

$ impala-shell -i localhost --quiet

Starting Impala Shell without Kerberos authentication

Welcome to the Impala shell. Press TAB twice to see a list of available
commands .

(Shell

build version: Impala Shell v2.12.x (hash) built on
date)
[localhost:21000] > select version|();
+ ___
| version ()
+ ___
| impalad version
| Built on
+ ___
[localhost:21000] > show databases;
B bttt +
| name |
o +
| impala builtins |
| ctas |
| dl |
| d2 |
| d3 |
| default |
| explain plans |
| external table |
| file formats |
| tpc |
B bt +
[localhost:21000] > select current database();
o +
| current database() |
- —— +
| default
o +
[localhost:21000] > show tables;
+—————— +
| name |
t—————— +
| ex t |
| tl |
- +

[localhost:21000] > show tables in d3;

[localhost:21000] > show tables in tpc;

fom— e +
| name |
fo—_— = +
city
customer

customer demographics
household demographics

| |
| |
| customer address |
| |
| |
| item |

| Impala Tutorials | 36

| promotion |
| store |
| store2 |
| store sales |
| ticket view |
| time dim |
| |

tpc tables
Fm +
[localhost:21000] > show tables in tpc like 'customer*';
o +
| name |
B ettt +
| customer |

| customer address |
| customer demographics |

Once you know what tables and databases are available, you descend into a database with the USE statement. To
understand the structure of each table, you use the DESCRIBE command. Once inside a database, you can issue
statements such as INSERT and SELECT that operate on particular tables.

The following example explores a database named TPC whose name we learned in the previous example. It shows
how to filter the table names within a database based on a search string, examine the columns of a table, and run
queries to examine the characteristics of the table data. For example, for an unfamiliar table you might want to know
the number of rows, the number of different values for a column, and other properties such as whether the column
contains any NULL values. When sampling the actual data values from a table, use a LIMIT clause to avoid excessive
output if the table contains more rows or distinct values than you expect.

[localhost:21000] > use tpc;
[localhost:21000] > show tables like '*view*';

e e +

| name |

e +

| ticket view |

fm———— ————- +

[localhost:21000] > describe city;

e e Fommmmm=e S S +

| name | type | comment |
e Fommmmmme S +

| id | int | |

| name | string |

| countrycode | string |

| district | string |

| population | int | |
e Fommmmmme S +
[localhost:21000] > select count(*) from city;
Fommmememee +

| count (*) |

LSS +

| 0 |

S e +

[localhost:21000] > desc customer;
Femmmemememeeeessss e Fommmemee S +
| name | type | comment |
e Fommmmm=e S S +
| c_customer sk | int |

| ¢ _customer id | string |

| ¢ _current cdemo sk | int |

| ¢ _current hdemo sk | int |

| ¢ _current addr sk | int |

| c first shipto date sk | int |

| c first sales date sk | int |

| | | |

c_salutation string

| Impala Tutorials | 37

| ¢ first name | string |

| c_last name | string |

| c preferred cust flag | string |

| ¢ birth day | int |

| ¢ birth month | int |

| ¢ birth year | int |

| ¢ birth country | string |

| c login | string | |
| ¢ email address | string |

| ¢ last review date | string |

fmm e ———— I o — +
[localhost:21000] > select count(*) from customer;
o +

| count (*) |

e +

| 100000 |

o ——————— +

[localhost:21000] > select count(distinct c¢ birth month) from customer;

b +

| 12 |

e +

[localhost:21000] > select count(*) from customer where c email address is
null;

S 4

| count (*) |

Fommmememee +

| 0 |

Fommmmmmo=e T+

[localhost:21000] > select distinct c salutation from customer limit 10;

When you graduate from read-only exploration, you use statements such as CREATE DATABASE and CREATE
TABLE to set up your own database objects.

The following example demonstrates creating a new database holding a new table. Although the last example ended
inside the TPC database, the new EXPERIMENTS database is not nested inside TPC; all databases are arranged in a
single top-level list.

[localhost:21000] > create database experiments;
[localhost:21000] > show databases;

_impala builtins |
ctas |
dl |
d2 |
d3 |
default |
experiments |
explain plans |

| external table
| file formats
|

[localhost:21000] >

| experiments |
| explain plans |

show databases like 'exp*';

| Impala Tutorials | 38

The following example creates a new table, T1. To illustrate a common mistake, it creates this table inside the wrong
database, the TPC database where the previous example ended. The ALTER TABLE statement lets you move the
table to the intended database, EXPERIMENTS, as part of a rename operation. The USE statement is always needed
to switch to a new database, and the current database () function confirms which database the session is in, to

avoid these kinds of mistakes.

[localhost:21000] >

[localhost:21000] >

city
customer
customer address

item
promotion
store
store?2
store sales
tl

ticket view
time dim
tpc tables

[localhost:21000] >

[localhost:21000] >
[localhost:21000] >
[localhost:21000] >

- +

| name |

- +

| tl |

- +
[localhost:21000] >
I ___________________
| current database ()
+ ___________________
| experiments

+ ___________________

customer demographics
household demographics

create table tl (x int);

show tables;

select current database();

alter table tl rename to experiments.tl;
use experiments;
show tables;

select current database();

For your initial experiments with tables, you can use ones with just a few columns and a few rows, and text-format

data files.

| Impala Tutorials | 39

Note: As you graduate to more realistic scenarios, you will use more elaborate tables with many columns, features
such as partitioning, and file formats such as Parquet. When dealing with realistic data volumes, you will bring in data
using LOAD DATA or INSERT ... SELECT statements to operate on millions or billions of rows at once.

The following example sets up a couple of simple tables with a few rows, and performs queries involving sorting,
aggregate functions and joins.

[localhost:21000] > insert into tl wvalues (1), (3), (2), (4);
[localhost:21000] > select x from tl order by x desc;

==t
| x|

+———+

| 4 |

| 3 |

| 2 |

| 1 |

t———

[localhost:21000] > select min(x), max(x), sum(x), avg(x) from tl;
e e e e +

| min(x) | max(x) | sum(x) | avg(x) |

fomm - fomm - fomm - fomm - +

| 1 | 4 | 10 | 2.5 |

fom— fom— fom— fom— +

\

[localhost:21000] create table t2 (id int, word string);
[localhost:21000] > insert into t2 wvalues (1, "one"), (3, "three"), (5,
'five');

[localhost:21000] > select word from tl join t2 on (tl.x = t2.id);

After completing this tutorial, you should now know:

* How to tell which version of Impala is running on your system.

* How to find the names of databases in an Impala instance, either displaying the full list or searching for specific
names.

* How to find the names of tables in an Impala database, either displaying the full list or searching for specific
names.

» How to switch between databases and check which database you are currently in.

* How to learn the column names and types of a table.

* How to create databases and tables, insert small amounts of test data, and run simple queries.

Load CSV Data from Local Files

This scenario illustrates how to create some very small tables, suitable for first-time users to experiment with Impala
SQL features. TAB1 and TAB2 are loaded with data from files in HDFS. A subset of data is copied from TAB1I into
TAB3.

Populate HDFS with the data you want to query. To begin this process, create one or more new subdirectories
underneath your user directory in HDFS. The data for each table resides in a separate subdirectory. Substitute your
own username for username where appropriate. This example uses the —p option with the mkdi r operation to
create any necessary parent directories if they do not already exist.

S whoami

username

$ hdfs dfs -1ls /user
Found 3 items

| Impala Tutorials | 40

drwxr—-xr—-x - username username 0 2013-04-22 18:54 /user/
username

drwxrwx——- - mapred mapred 0 2013-03-15 20:11 /user/history
drwxr—-xr-x - hue supergroup 0 2013-03-15 20:10 /user/hive

$ hdfs dfs -mkdir -p /user/username/sample data/tabl /user/username/
sample data/tab2

Here is some sample data, for two tables named TAB1 and TAB2.
Copy the following content to . csv files in your local filesystem:

tabl.csv:

1,true,123.123,2012-10-24 08:55:00
2,false,1243.5,2012-10-25 13:40:00

3,false, 24453.325,2008-08-22 09:33:21.123
4,false,243423.325,2007-05-12 22:32:21.33454
5,true, 243.325,1953-04-22 09:11:33

tab2.csv:

1,true,12789.123
2,false,1243.5
3,false,24453.325
4,false,2423.3254
5,true,243.325

60, false,243565423.325
70, true, 243.325

80, false, 243423.325
90, true,243.325

Put each . csv file into a separate HDFS directory using commands like the following, which use paths available in
the Impala Demo VM:

$ hdfs dfs -put tabl.csv /user/username/sample data/tabl

$ hdfs dfs -1ls /user/username/sample data/tabl

Found 1 items

—rw-r--r-- 1 username username 192 2013-04-02 20:08 /user/username/
sample data/tabl/tabl.csv

$ hdfs dfs -put tab2.csv /user/username/sample data/tab2

$ hdfs dfs -1ls /user/username/sample data/tab2

Found 1 items

—rw-r--r-- 1 username username 158 2013-04-02 20:09 /user/username/
sample data/tab2/tab2.csv

The name of each data file is not significant. In fact, when Impala examines the contents of the data directory for the
first time, it considers all files in the directory to make up the data of the table, regardless of how many files there are
or what the files are named.

To understand what paths are available within your own HDFS filesystem and what the permissions are for the
various directories and files, issue hdfs dfs -1s / and work your way down the tree doing —1s operations for
the various directories.

Use the impala-shell command to create tables, either interactively or through a SQL script.

The following example shows creating three tables. For each table, the example shows creating columns with various
attributes such as Boolean or integer types. The example also includes commands that provide information about how
the data is formatted, such as rows terminating with commas, which makes sense in the case of importing data from a
. csv file. Where we already have . csv files containing data in the HDFS directory tree, we specify the location of

| Impala Tutorials | 41

the directory containing the appropriate . csv file. Impala considers all the data from all the files in that directory to
represent the data for the table.

DROP TABLE IF EXISTS tabl;
—-— The EXTERNAL clause means the data is located outside the central
location
-- for Impala data files and is preserved when the associated Impala table
is dropped.
-— We expect the data to already exist in the directory specified by the
LOCATION clause.
CREATE EXTERNAL TABLE tabl
(
id INT,
col 1 BOOLEAN,
col 2 DOUBLE,
col 3 TIMESTAMP
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/username/sample data/tabl’;

DROP TABLE IF EXISTS tab2;
-— TAB2 is an external table, similar to TABIl.
CREATE EXTERNAL TABLE tab2
(
id INT,
col 1 BOOLEAN,
col 2 DOUBLE
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/username/sample data/tab2';

DROP TABLE IF EXISTS tab3;

—-- Leaving out the EXTERNAL clause means the data will be managed
-- in the central Impala data directory tree. Rather than reading
-- existing data files when the table is created, we load the

-- data after creating the table.

CREATE TABLE tab3

(
id INT,
Col_l BOOLEAN,
col 2 DOUBLE,
month INT,
day INT

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ', ';

Note: Getting through these CREATE TABLE statements successfully is an important validation step to confirm
everything is configured correctly with the Hive metastore and HDFS permissions. If you receive any errors during
the CREATE TABLE statements:

* Make sure you followed the installation instructions closely, in Installing Impala on page 23.

* Make sure the hive.metastore.warehouse.dir property points to a directory that Impala can write to.
The ownership should be hive:hive, and the impala user should also be a member of the hive group.

Point an Impala Table at Existing Data Files

A convenient way to set up data for Impala to access is to use an external table, where the data already exists in a set
of HDFS files and you just point the Impala table at the directory containing those files. For example, you might run
in impala-shell a *.sqgl file with contents similar to the following, to create an Impala table that accesses an
existing data file used by Hive.

| Impala Tutorials | 42

The following examples set up 2 tables, referencing the paths and sample data from the sample TPC-DS kit for
Impala. For historical reasons, the data physically resides in an HDFS directory tree under /user/hive, although
this particular data is entirely managed by Impala rather than Hive. When we create an external table, we specify
the directory containing one or more data files, and Impala queries the combined content of all the files inside that
directory. Here is how we examine the directories and files within the HDFS filesystem:

$ cd ~/username/datasets
$./tpcds-setup.sh
Downloads and unzips the kit, builds the data and loads it into HDFS
$ hdfs dfs -1s /user/hive/tpcds/customer
Found 1 items
—rw-r--r-—- 1 username supergroup 13209372 2013-03-22 18:09 /user/hive/
tpcds/customer/customer.dat
$ hdfs dfs -cat /user/hive/tpcds/customer/customer.dat | more
1 |AAAAAAAABAAAAAAA|98012417135]13294612452238(12452208 |Mr. |Javier|Lewis|Y|9]|
1211936 |CHILE| | Javie
r.Lewis@VFAxX1InZEvOx.org|2452508|
2 |AAAAAAAACAAAAAAA|819667|1461131655(1245231812452288|Dr. |Amy|Moses|Y |94
1966 | TOGO| |Amy.Moses@
Ovk9KjHH.com| 2452318 |
3 |AAAAAAAADAAAAAAA | 1473522 1624714857212449130(12449100|Miss|Latisha|Hamilton|
N|18|9|1979|NIUE] |
Latisha.Hamilton@V.com|2452313|
4 |AAAAAAAAEAAAAAAA|170321413986139558(1245003012450000|Dr. |[Michael|White|N]|7|
61983 |MEXICO]| |Mic
hael.White@i.org|2452361 |
5 |AAAAAAAAFAAAAAAA|9533721447013636812449438(12449408|Sir|Robert|Moran|N|8]|5|
1956 |FIJI| |Robert.
Moran@Hh.edu| 2452469 |

Here is a SQL script to set up Impala tables pointing to some of these data files in HDFS. (The script in the VM
sets up tables like this through Hive; ignore those tables for purposes of this demonstration.) Save the following as
customer setup.sql

-- store sales fact table and surrounding dimension tables only

create database tpcds;
use tpcds;

drop table if exists customer;
create external table customer

(

c_customer sk int,
c_customer id string,
c_current cdemo sk int,
c_current hdemo sk int,
c_current addr_ sk int,
c first shipto date sk int,
c first sales date sk int,
c_salutation string,
c first name string,
c_last name string,
c preferred cust flag string,
c _birth day int,
c _birth month int,
c birth year int,
c birth country string,
c_login string,
c_email address string,

c_last review date string

| Impala Tutorials | 43

)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer';

drop table if exists customer address;
create external table customer address

(

ca_ address_sk int,
ca_address_id string,
ca_street number string,
ca street name string,
ca_street type string,
ca_ suite number string,
ca_city string,
ca_county string,
ca_state string,
ca zip string,
ca_country string,
ca gmt offset float,
ca_ location_ type string

)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer address';

We would run this script with a command such as:

impala-shell -i localhost -f customer setup.sqgl

Describe the Impala Table

Now that you have updated the database metadata that Impala caches, you can confirm that the expected tables are
accessible by Impala and examine the attributes of one of the tables. We created these tables in the database named
default. If the tables were in a database other than the default, we would issue a command use db name

to switch to that database before examining or querying its tables. We could also qualify the name of a table by
prepending the database name, for example default.customer and default.customer name

[impala-host:21000] > show databases

Query finished, fetching results

default

Returned 1 row(s) in 0.00s

[impala-host:21000] > show tables

Query finished, fetching results

customer

customer address

Returned 2 row(s) in 0.00s

[impala-host:21000] > describe customer address

o — o ———— o ————— +
| name | type | comment |
o o o +
ca address_ sk	int	
ca_address id	string	
ca street number	string	
ca street name	string	
ca street type	string	
ca suite number	string	
ca city	string	
ca_county	string	
ca state	string	
ca zip	string	
ca country	string	
ca gmt offset	float	
ca location type	string	

| Impala Tutorials | 44

o t——————— t———————— +
Returned 13 row(s) in 0.01

Query the Impala Table

You can query data contained in the tables. Impala coordinates the query execution across a single node or multiple
nodes depending on your configuration, without the overhead of running MapReduce jobs to perform the intermediate
processing.

There are a variety of ways to execute queries on Impala:

* Using the impala-shell command in interactive mode:

$ impala-shell -i impala-host

Connected to localhost:21000

[impala-host:21000] > select count(*) from customer address;
50000

Returned 1 row(s) in 0.37s

» Passing a set of commands contained in a file:
$ impala-shell -i impala-host -f myquery.sqgl
Connected to localhost:21000

50000
Returned 1 row(s) in 0.19s

+ Passing a single command to the impala-shell command. The query is executed, the results are returned, and
the shell exits. Make sure to quote the command, preferably with single quotation marks to avoid shell expansion
of characters such as *.

$ impala-shell -i impala-host -g 'select count(*) from customer address'
Connected to localhost:21000

50000

Returned 1 row(s) in 0.29s

Data Loading and Querying Examples
This section describes how to create some sample tables and load data into them. These tables can then be queried
using the Impala shell.
Loading Data
Loading data involves:
» Establishing a data set. The example below uses . csv files.
» Creating tables to which to load data.
* Loading the data into the tables you created.
Sample Queries

To run these sample queries, create a SQL query file query. sql, copy and paste each query into the query file,
and then run the query file using the shell. For example, to run query.sgl on impala-host, you might use the
command:

impala-shell.sh -i impala-host -f query.sqgl

The examples and results below assume you have loaded the sample data into the tables as described above.

| Impala Tutorials | 45

Example: Examining Contents of Tables

Let's start by verifying that the tables do contain the data we expect. Because Impala often deals
with tables containing millions or billions of rows, when examining tables of unknown size, include
the LIMIT clause to avoid huge amounts of unnecessary output, as in the final query. (If your
interactive query starts displaying an unexpected volume of data, press Ctr1-C in impala-
shell to cancel the query.)

SELECT * FROM tabl;
SELECT * FROM tab2;
SELECT * FROM tab2 LIMIT 5;

Results:
ot o ——— e +
| id | col 1 | col 2 | col 3
to—— = - e +
| 1 | true | 123.123 | 2012-10-24 08:55:00
| 2 | false | 1243.5 | 2012-10-25 13:40:00
3	false	24453.325	2008-08-22 09:33:21.123000000
4	false	243423.325	2007-05-12 22:32:21.334540000
5	true	243.325	1953-04-22 09:11:33
ot ——— - e +			
ot ————— o —————— +			
id	col 1	col 2	
e e +			
1	true	12789.123	
2	false	1243.5	
3	false	24453.325	
4	false	2423.3254	
5	true	243.325	
60	false	243565423.325	
70	true	243.325	
80	false	243423.325	
90	true	243.325	
ot ————— o —————— +			
ot o —_—_— +			
id	col 1	col 2	
to—— = o +			
1	true	12789.123	
2	false	1243.5	
3	false	24453.325	
4	false	2423.3254	
5	true	243.325	
ot ——— o +

Example: Aggregate and Join

SELECT tabl.col 1, MAX(tab2.col 2), MIN(tab2.col 2)
FROM tab2 JOIN tabl USING (id)
GROUP BY col_l ORDER BY 1 LIMIT 5;

Results:
fom— o o +
| col 1 | max(tab2.col 2) | min(tab2.col 2) |
fo—— Fom - Fom - +
| |

| true | 12789.123 | 243.325 |

| Impala Tutorials | 46

Example: Subquery, Aggregate and Joins

SELECT tab2.*

FROM tab2,
(SELECT tabl.col 1, MAX(tab2.col 2) AS max col2

FROM tab2, tabl

WHERE tabl.id = tab2.id
GROUP BY col 1) subqueryl
WHERE subqueryl.max col2 = tab2.col 2;

Results:

12789.123 |
24453.325 |

Example: INSERT Query

INSERT OVERWRITE TABLE tab3
SELECT id, col 1, col 2, MONTH(col 3), DAYOFMONTH (col 3)
FROM tabl WHERE YEAR(00173) = 2012;

Query TAB3 to check the result:

SELECT * FROM tab3;

Results:

Advanced Tutorials

These tutorials walk you through advanced scenarios or specialized features.

Attaching an External Partitioned Table to an HDFS Directory Structure

This tutorial shows how you might set up a directory tree in HDFS, put data files into the lowest-level subdirectories,

and then use an Impala external table to query the data files from their original locations.

The tutorial uses a table with web log data, with separate subdirectories for the year, month, day, and host. For

simplicity, we use a tiny amount of CSV data, loading the same data into each partition.

| Impala Tutorials | 47

First, we make an Impala partitioned table for CSV data, and look at the underlying HDFS directory structure to
understand the directory structure to re-create elsewhere in HDFS. The columns fieldl, field2,and field3
correspond to the contents of the CSV data files. The year, month, day, and host columns are all represented as
subdirectories within the table structure, and are not part of the CSV files. We use STRING for each of these columns
so that we can produce consistent subdirectory names, with leading zeros for a consistent length.

create database external partitions;
use external partitions;
create table logs (fieldl string, field2 string, field3 string)
partitioned by (year string, month string , day string, host string)
row format delimited fields terminated by ',';
insert into logs partition (year="2013", month="07", day="28", host="hostl")
values ("foo","foo","foo");

insert into logs partition (year="2013", month="07", day="28", host="host2")

(
values ("foo","foo","foo");
insert into logs partition (year="2013", month="07", day="29", host="hostl")
values ("foo","foo","foo");
insert into logs partition (year="2013", month="07", day="29", host="host2")
values ("foo","foo","foo");

(
insert into logs partition (year="2013", month="08", day="01", host="hostl")
values ("foo","foo","foo");

Back in the Linux shell, we examine the HDFS directory structure. (Your Impala data directory might be in a different
location; for historical reasons, it is sometimes under the HDFS path /user/hive/warehouse.) We use the
hdfs dfs -1s command to examine the nested subdirectories corresponding to each partitioning column, with
separate subdirectories at each level (with = in their names) representing the different values for each partitioning
column. When we get to the lowest level of subdirectory, we use the hdfs dfs -cat command to examine the
data file and see CSV-formatted data produced by the INSERT statement in Impala.

$ hdfs dfs -1s /user/impala/warehouse/external partitions.db

Found 1 items

drwxrwxrwt - impala hive 0 2013-08-07 12:24 /user/impala/
warehouse/external partitions.db/logs

$ hdfs dfs -1s /user/impala/warehouse/external partitions.db/logs

Found 1 items

drwxr—-xr-x - impala hive 0 2013-08-07 12:24 /user/impala/
warehouse/external partitions.db/logs/year=2013

$ hdfs dfs -1ls /user/impala/warehouse/external partitions.db/logs/year=2013
Found 2 items

drwxr-xr-x - impala hive 0 2013-08-07 12:23 /user/impala/
warehouse/external partitions.db/logs/year=2013/month=07
drwxr—-xr-x - impala hive 0 2013-08-07 12:24 /user/impala/

warehouse/external partitions.db/logs/year=2013/month=08

$ hdfs dfs -1ls /user/impala/warehouse/external partitions.db/logs/year=2013/
month=07

Found 2 items

drwxr—-xr-x - impala hive 0 2013-08-07 12:22 /user/impala/
warehouse/external partitions.db/logs/year=2013/month=07/day=28
drwxr-xr-x - impala hive 0 2013-08-07 12:23 /user/impala/

warehouse/external partitions.db/logs/year=2013/month=07/day=29

$ hdfs dfs -1ls /user/impala/warehouse/external partitions.db/logs/year=2013/
month=07/day=28

Found 2 items

drwxr—-xr-x - impala hive 0 2013-08-07 12:21 /user/impala/
warehouse/external partitions.db/logs/year=2013/month=07/day=28/host=hostl
drwxr-xr-x - impala hive 0 2013-08-07 12:22 /user/impala/

warehouse/external partitions.db/logs/year=2013/month=07/day=28/host=host2

$ hdfs dfs -1ls /user/impala/warehouse/external partitions.db/logs/year=2013/
month=07/day=28/host=host1l

Found 1 items

—Irw-r--r—-- 3 impala hive 12 2013-08-07 12:21 /user/impala/
warehouse/external partiti

| Impala Tutorials | 48

ons.db/logs/year=2013/month=07/day=28/
host=host1/3981726974111751120--8907184999369517436 822630111 data.O
$ hdfs dfs -cat /user/impala/warehouse/external partitions.db/logs/
year=2013/month=07/day=28/\

host=host1/3981726974111751120--8 907184999369517436 822630111 data.0
foo, foo, foo

Still in the Linux shell, we use hdfs dfs -mkdir to create several data directories outside the HDFS directory
tree that Impala controls (/user/impala/warehouse in this example, maybe different in your case). Depending
on your configuration, you might need to log in as a user with permission to write into this HDFS directory tree; for
example, the commands shown here were run while logged in as the hdfs user.

$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=hostl
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=host2
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=hostl
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=29/
host=hostl
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=08/day=01/
host=hostl

We make a tiny CSV file, with values different than in the INSERT statements used earlier, and put a copy within
each subdirectory that we will use as an Impala partition.

$ cat >dummy log data

bar,baz,bletch

$ hdfs dfs -mkdir -p /user/impala/data/external partitions/year=2013/
month=08/day=01/host=host1l

$ hdfs dfs -mkdir -p /user/impala/data/external partitions/year=2013/
month=07/day=28/host=host1l

$ hdfs dfs -mkdir -p /user/impala/data/external partitions/year=2013/
month=07/day=28/host=host?2

$ hdfs dfs -mkdir -p /user/impala/data/external partitions/year=2013/
month=07/day=29/host=host1l

$ hdfs dfs -put dummy log data /user/impala/data/logs/year=2013/month=07/
day=28/host=hostl

$ hdfs dfs -put dummy log data /user/impala/data/logs/year=2013/month=07/
day=28/host=host2

$ hdfs dfs -put dummy log data /user/impala/data/logs/year=2013/month=07/
day=29/host=host1l

$ hdfs dfs -put dummy log data /user/impala/data/logs/year=2013/month=08/
day=01/host=hostl

Back in the impala-shell interpreter, we move the original Impala-managed table aside, and create a new
external table with a LOCATION clause pointing to the directory under which we have set up all the partition
subdirectories and data files.

use external partitions;

alter table logs rename to logs original;

create external table logs (fieldl string, field2 string, field3 string)
partitioned by (year string, month string, day string, host string)
row format delimited fields terminated by ','
location '/user/impala/data/logs’';

Because partition subdirectories and data files come and go during the data lifecycle, you must identify each of the
partitions through an ALTER TABLE statement before Impala recognizes the data files they contain.

alter table logs add partition
(year="2013",month="07",day="28",host="hostl")

| Impala Tutorials | 49

alter table log type add partition
(year="2013",month="07",day="28",host="host2") ;

alter table log type add partition
(year="2013",month="07",day="29", host="hostl") ;

alter table log type add partition
(year="2013",month="08",day="01",host="hostl") ;

We issue a REFRESH statement for the table, always a safe practice when data files have been manually added,
removed, or changed. Then the data is ready to be queried. The SELECT * statement illustrates that the data from
our trivial CSV file was recognized in each of the partitions where we copied it. Although in this case there are only a
few rows, we include a LIMIT clause on this test query just in case there is more data than we expect.

refresh log type;
select * from log type limit 100;

t—————— t—————— t—————— t————— t————— +————- t————— +
| fieldl | field2 | field3 | year | month | day | host |
t————— t————— t————— t———— t————— +———— t————— +
bar	baz	bletch	2013	07	28	hostl
bar	baz	bletch	2013	08	01	hostl
bar	baz	bletch	2013	07	29	hostl
bar	baz	bletch	2013	07	28	host2
t————— t————— t————— +———— t————— +————- t————— +

Switching Back and Forth Between Impala and Hive

Sometimes, you might find it convenient to switch to the Hive shell to perform some data loading or transformation
operation, particularly on file formats such as RCFile, SequenceFile, and Avro that Impala currently can query but not

write to.

Whenever you create, drop, or alter a table or other kind of object through Hive, the next time you switch back to the
impala-shell interpreter, issue a one-time INVALIDATE METADATA statement so that Impala recognizes the

new or changed object.

Whenever you load, insert, or change data in an existing table through Hive (or even through manual HDFS
operations such as the hdfs command), the next time you switch back to the impala-shell interpreter, issue a
one-time REFRESH table name statement so that Impala recognizes the new or changed data.

For examples showing how this process works for the REFRESH statement, look at the examples of creating RCFile
and SequenceFile tables in Impala, loading data through Hive, and then querying the data through Impala. See Using
the RCFile File Format with Impala Tables on page 726 and Using the SequenceFile File Format with Impala
Tables on page 728 for those examples.

For examples showing how this process works for the INVALIDATE METADATA statement, look at the example
of creating and loading an Avro table in Hive, and then querying the data through Impala. See Using the Avro File
Format with Impala Tables on page 720 for that example.

Note:
Originally, Impala did not support UDFs, but this feature is available in Impala starting in Impala 1.2. Some
INSERT ... SELECT transformations that you originally did through Hive can now be done through Impala. See

Impala User-Defined Functions (UDFs) on page 593 for details.

Prior to Impala 1.2, the REFRESH and INVALIDATE METADATA statements needed to be issued on each Impala
node to which you connected and issued queries. In Impala 1.2 and higher, when you issue either of those statements
on any Impala node, the results are broadcast to all the Impala nodes in the cluster, making it truly a one-step
operation after each round of DDL or ETL operations in Hive.

Cross Joins and Cartesian Products with the CROSS JOIN Operator

Originally, Impala restricted join queries so that they had to include at least one equality comparison between the
columns of the tables on each side of the join operator. With the huge tables typically processed by Impala, any

| Impala Tutorials | 50

miscoded query that produced a full Cartesian product as a result set could consume a huge amount of cluster
resources.

In Impala 1.2.2 and higher, this restriction is lifted when you use the CROSS JOIN operator in the query. You still
cannot remove all WHERE clauses from a query like SELECT * FROM tl1 JOIN t2 to produce all combinations
of rows from both tables. But you can use the CROSS JOIN operator to explicitly request such a Cartesian product.
Typically, this operation is applicable for smaller tables, where the result set still fits within the memory of a single
Impala node.

The following example sets up data for use in a series of comic books where characters battle each other. At first, we
use an equijoin query, which only allows characters from the same time period and the same planet to meet.

[localhost:21000] > create table heroes (name string, era string, planet
string) ;
[localhost:21000] > create table villains (name string, era string, planet
string) ;
[localhost:21000] > insert into heroes values
> ('Tesla', '20th century', 'Earth'),
> ('Pythagoras', 'Antiquity', 'Earth'),
> ('Zopzar', 'Far Future', 'Mars');
Inserted 3 rows in 2.28s
[localhost:21000] > insert into wvillains values

> ('Caligula', "Antiquity', 'Earth'),

> ('John Dillinger', '20th century', 'Earth'),

> ('Xibulor', 'Far Future', 'Venus');
Inserted 3 rows in 1.93s
[localhost:21000] > select concat (heroces.name,' vs. ',villains.name) as
battle

> from heroes join villains

> where heroes.era = villains.era and heroes.planet =

villains.planet;

| Tesla vs. John Dillinger |
| Pythagoras vs. Caligula |

Returned 2 row(s) in 0.47s

Readers demanded more action, so we added elements of time travel and space travel so that any hero could face any
villain. Prior to Impala 1.2.2, this type of query was impossible because all joins had to reference matching values
between the two tables:

[localhost:21000] > -- Cartesian product not possible in Impala 1.1.
> select concat (heroes.name,' vs. ',villains.name) as
battle from heroces join villains;
ERROR: NotImplementedException: Join between 'heroes' and 'villains'
requires at least one conjunctive equality predicate between the two tables

With Impala 1.2.2, we rewrite the query slightly to use CROSS JOIN rather than JOIN, and now the result set
includes all combinations:

[localhost:21000] > -- Cartesian product available in Impala 1.2.2 with the
CROSS JOIN syntax.

> select concat (heroes.name,' vs. ',villains.name) as
battle from heroes cross join villains;
B ettt +
| battle |
e +

| Tesla vs. Caligula
| Tesla vs. John Dillinger |
| Tesla vs. Xibulor |

| Impala Tutorials | 51

| Pythagoras vs. Caligula |
| Pythagoras vs. John Dillinger |
| Pythagoras vs. Xibulor |
| Zopzar vs. Caligula |
| Zopzar vs. John Dillinger |
| Zopzar vs. Xibulor |

Returned 9 row(s) in 0.33s

The full combination of rows from both tables is known as the Cartesian product. This type of result set is often
used for creating grid data structures. You can also filter the result set by including WHERE clauses that do not
explicitly compare columns between the two tables. The following example shows how you might produce a list of
combinations of year and quarter for use in a chart, and then a shorter list with only selected quarters.

[localhost:21000] > create table x axis (x int);

[localhost:21000] > create table y axis (y int);

[localhost:21000] > insert into x axis values (1), (2), (3), (4);

Inserted 4 rows in 2.14s

[localhost:21000] > insert into y axis values (2010), (2011), (2012), (2013),
(2014) ;

Inserted 5 rows in 1.32s

[localhost:21000] > select y as year, X as quarter from x axis cross join

Returned 20 row(s) in 0.38s
[localhost:21000] > select y as year, X as quarter from x axis cross join
y_axis where x in (1,3);

+
|
Fo———— Fom +
|
|
|
|
|
|
|
|
|
|

WwwwwrrrFkrRPk R

| Impala Tutorials | 52

+————— t———————— +
Returned 10 row(s) in 0.39s

Dealing with Parquet Files with Unknown Schema

As data pipelines start to include more aspects such as NoSQL or loosely specified schemas, you might encounter
situations where you have data files (particularly in Parquet format) where you do not know the precise table
definition. This tutorial shows how you can build an Impala table around data that comes from non-Impala or even
non-SQL sources, where you do not have control of the table layout and might not be familiar with the characteristics
of the data.

The data used in this tutorial represents airline on-time arrival statistics, from October 1987 through April 2008. See
the details on the 2009 ASA Data Expo web site. You can also see the explanations of the columns; for purposes of
this exercise, wait until after following the tutorial before examining the schema, to better simulate a real-life situation
where you cannot rely on assumptions and assertions about the ranges and representations of data values.

We will download Parquet files containing this data from the Ibis blog. First, we download and unpack the data files.
There are 8 files totalling 1.4 GB. Each file is less than 256 MB.

$ wget -O airlines parquet.tar.gz https://www.dropbox.com/s/0l9x51ltgpécviyc/
airlines parquet.tar.gz?dl=0

Length: 1245204740 (1.2G) [application/octet-stream]
Saving to: “airlines parquet.tar.gz”

2015-08-12 17:14:24 (23.6 MB/s) - “airlines parquet.tar.gz” saved
[1245204740/1245204740]

$ tar xvzf airlines parquet.tar.gz

airlines parquet/

airlines parquet/93459d994898a9ba-77674173b331fa% 2073981944 data.0.parqg
airlines parquet/93459d994898a9%ba- 77674173b331fa99 1555718317 data.l.parqg
airlines parquet/93459d994898a9%ba- 77674173b33lfa99 1555718317 data 0.parqg
airlines parquet/93459d994898a9%ba- 77674173b331fa96 2118228804 data.0.parg
airlines parquet/93459d994898a9%ba-77674173b331fa97 574780876 data.0.parqg
airlines parquet/93459d994898a9%ba- 77674173b331fa96 2118228804 data.l.parg
airlines parquet/93459d994898a9%ba- 77674173b331fa98 1194408366 data.0.parqg
airlines parquet/93459d994898a9%ba- 77674173b331fa9b 1413430552 data 0.parqg
$ cd airlines parquet/

$ du -kch *.parqg

253M 93459d994898a9%ba-77674173b331fa9%6 2118228804 data.0.parqg

65M 93459d994898a9%0a-77674173b331fa%6 2118228804 data.l.parqg

156M 93459d994898a9%0a-77674173b331£fa97 574780876 data.0.parqg

240M 93459d994898a9ba-77674173b331£fa98 1194408366 data.0.parqg

253M 93459d994898a9ba-77674173b331fa99 1555718317 data.0.parqg

16M 93459d994898a9%ba-77674173b331fa99 1555718317 data.l.parg

177M 93459d994898a9ba-77674173b331fa% 2073981944 data.0.parqg

213M 93459d994898a9ba- 77674173b331fa9b_1413430552_data.O.parq

1.4G total

Next, we put the Parquet data files in HDFS, all together in a single directory, with permissions on the directory and
the files so that the impala user will be able to read them.

Note: After unpacking, we saw the largest Parquet file was 253 MB. When copying Parquet files into HDFS for
Impala to use, for maximum query performance, make sure that each file resides in a single HDFS data block.
Therefore, we pick a size larger than any single file and specify that as the block size, using the argument -
Ddfs.block.size=256monthe hdfs dfs -put command.

$ hdfs dfs -mkdir -p hdfs://demo host.example.com:8020/user/impala/staging/
airlines

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/the-data.html

| Impala Tutorials | 53

$ hdfs dfs -Ddfs.block.size=256m -put *.parq /user/impala/staging/airlines

$ hdfs dfs -1s /user/impala/staging

Found 1 items

drwxrwxrwx - hdfs supergroup 0 2015-08-12 13:52 /user/impala/
staging/airlines

$ hdfs dfs -1s hdfs://demo host.example.com:8020/user/impala/staging/
airlines

Found 8 items

-rw-r--r—-— 3 jrussell supergroup 265107489 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa%6 2118228804 data.0.parqg
—Irw-r--r—-- 3 jrussell supergroup 67544715 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa%6 2118228804 data.l.parqg
—rw-r--r-—-— 3 jrussell supergroup 162556490 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%0a-77674173b331fa%7 574780876 data.0.parg
-rw-r--r—-— 3 jrussell supergroup 251603518 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa98 1194408366 data.0.parqg
—Irw-r--r—- 3 jrussell supergroup 265186603 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa%99 1555718317 data.0.parqg
—rw-r--r-- 3 jrussell supergroup 16663754 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%0a-77674173b331fa%99 1555718317 data.l.parqg
-rw-r--r—-— 3 jrussell supergroup 185511677 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa% 2073981944 data.0.parqg
—Irw-r--r—-- 3 jrussell supergroup 222794621 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9%ba-77674173b331fa% 1413430552 data.0.parqg

With the files in an accessible location in HDFS, we create a database table that uses the data in those files. The
CREATE EXTERNAL syntax and the LOCATION attribute point Impala at the appropriate HDFS directory. The
LIKE PARQUET 'path to any parquet file' clause means we skip the list of column names and types;
Impala automatically gets the column names and data types straight from the data files. (Currently, this technique
only works for Parquet files.) We ignore the warning about lack of READ WRITE access to the files in HDFS; the
impala user can read the files, which will be sufficient for us to experiment with queries and perform some copy
and transform operations into other tables.

S impala-shell -i localhost
Starting Impala Shell without Kerberos authentication

Connected to localhost:21000
Server version: impalad version 2.12.x (build
X.y.2Z)
Welcome to the Impala shell. Press TAB twice to see a list of available
commands .
(Shell
build version: Impala Shell v2.12.x (hash) built on
date)
[localhost:21000] > create database airline data;
[localhost:21000] > use airline data;
[localhost:21000] > create external table airlines external
> like parquet 'hdfs://demo host.example.com:8020/user/
impala/staging/
airlines/93459d994898a9%a-77674173b331fa%6 2118228804 data.0.parqg'
> stored as parquet location 'hdfs://
demo _host.example.com:8020/user/impala/staging/airlines"';
WARNINGS: Impala does not have READ WRITE access to path 'hdfs://
demo_host.example.com:8020/user/impala/staging'’

With the table created, we examine its physical and logical characteristics to confirm that the data is really there and

in a format and shape that we can work with. The SHOW TABLE STATS statement gives a very high-level summary
of the table, showing how many files and how much total data it contains. Also, it confirms that the table is expecting
all the associated data files to be in Parquet format. (The ability to work with all kinds of HDFS data files in different
formats means that it is possible to have a mismatch between the format of the data files, and the format that the table

| Impala Tutorials | 54

expects the data files to be in.) The SHOW FILES statement confirms that the data in the table has the expected
number, names, and sizes of the original Parquet files. The DESCRIBE statement (or its abbreviation DESC) confirms
the names and types of the columns that Impala automatically created after reading that metadata from the Parquet
file. The DESCRIBE FORMATTED statement prints out some extra detail along with the column definitions; the
pieces we care about for this exercise are the containing database for the table, the location of the associated data files
in HDFS, the fact that it's an external table so Impala will not delete the HDFS files when we finish the experiments
and drop the table, and the fact that the table is set up to work exclusively with files in the Parquet format.

[localhost:21000] > show table stats airlines external;

- o ———— o ———— o — o o
o +

| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |

Incremental stats |
- o o o o o
o +

| =1 | 8 | 1.34GB | NOT CACHED | NOT CACHED | PARQUET |

false |
- o o o — o o
o +

[localhost:21000] > show files in airlines external;
+ ___
o ————— o +

| path

| size | partition |

+ ___
o o +

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa9%96 2118228804 data.0.parg | 252.83MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa%6 2118228804 data.l.parqg | 64.42MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa97 574780876 data.0.parg | 155.03MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa98 1194408366 data.0.parg | 239.95MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331£fa99 1555718317 data.0.parg | 252.90MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331£fa9%99 1555718317 data.l.parqg | 15.89MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa% 2073981944 data.0.parg | 176.92MB
| |

| /user/impala/staging/

airlines/93459d994898a9%ba-77674173b331fa% 1413430552 data.0.parg | 212.47MB

+ ___
o ————— o +
[localhost:21000] > describe airlines external;
e e B
e +
| name | type | comment
|
o o ————
e +

| year | int | inferred from: optional int32 year

| month

| day |

| dayof*eek

| dep_tlme

| crs_dép_time

| arr_tlme

| crs_air_time
|

| carrier
|

| flight num
|

| tail num

| actual elapsed time
actual elapsed time |
| crs_elapsed time
crs_elapsed time

| airtime
|

| arrdelay
| depdeiay
| origiA
| dest |

|

| distance
|

| taxi in
|

| taxi out

| cancelled

| cancellation code
cancellation code

| diverted

| carrier delay

| weather delay

| nas delay

| security delay
security delay
| late aircraft delay
late aircraft delay |

int
int
int
int
int
int
int
string
int
int
int
int
int
int
int
string
string
int
int
int
int
string
int
int
int
int

int

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

inferred

| # Detailed Table Information | NULL

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

from:

optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional

optional

int32 month

int32 day

| Impala Tutorials | 55

int32 dayofweek

int32 dep time
int32
int32 arr time
int32
binary carrier
int32
int32 tail num
int32

int32

int32 airtime
int32 arrdelay
int32 depdelay
binary origin
binary dest
int32 distance
int32 taxi in
int32 taxi out
int32
binary
int32 diverted

int32

crs_dep time

crs_arr time

flight num

cancelled

carrier delay

int32 weather delay

int32 nas_delay

int32

int32

| Impala Tutorials | 56

| Database: | airline data

| Owner: | jrussell

| Location: | /user/impala/staging/airlines

| Table Type: | EXTERNAL TABLE

| # Storage Information | NULL

| SerDe Library: | parquet.hive.serde.ParquetHiveSerDe

| InputFormat: | parquet.hive.DeprecatedParquetInputFormat
| |

OutputFormat: parquet.hive.DeprecatedParquetOutputFormat

Now that we are confident that the connections are solid between the Impala table and the underlying Parquet files,
we run some initial queries to understand the characteristics of the data: the overall number of rows, and the ranges
and how many different values are in certain columns. For convenience in understanding the magnitude of the
COUNT (*) result, we run another query dividing the number of rows by 1 million, demonstrating that there are 123
million rows in the table.

[localhost:21000] > select count(*) from airlines external;

o —— +
| count (*) |
o —— +
| 123534969 |
o ——— +

Fetched 1 row(s) in 1.32s
[localhost:21000] > select count(*) / le6 as 'millions of rows' from
airlines external;

o +
| millions of rows |
e +
| 123.534969 |
o +

Fetched 1 row(s) in 1.24s

The NDV () function stands for “number of distinct values”, which for performance reasons is an estimate when there
are lots of different values in the column, but is precise when the cardinality is less than 16 K. Use NDV () calls for
this kind of exploration rather than COUNT (DISTINCT colname), because Impala can evaluate multiple NDV ()
functions in a single query, but only a single instance of COUNT DISTINCT. Here we see that there are modest
numbers of different airlines, flight numbers, and origin and destination airports. Two things jump out from this
query: the number of tail num values is much smaller than we might have expected, and there are more destination
airports than origin airports. Let's dig further. What we find is that most tail num values are NULL. It looks like
this was an experimental column that wasn't filled in accurately. We make a mental note that if we use this data as

a starting point, we'll ignore this column. We also find that certain airports are represented in the ORIGIN column
but not the DEST column; now we know that we cannot rely on the assumption that those sets of airport codes are
identical.

Note: A slight digression for some performance tuning. Notice how the first SELECT DISTINCT DEST query
takes almost 40 seconds. We expect all queries on such a small data set, less than 2 GB, to take a few seconds at
most. The reason is because the expression NOT IN (SELECT origin FROM airlines external)
produces an intermediate result set of 123 million rows, then runs 123 million comparisons on each data node against
the tiny set of destination airports. The way the NOT IN operator works internally means that this intermediate

result set with 123 million rows might be transmitted across the network to each data node in the cluster. Applying
another DISTINCT inside the NOT IN subquery means that the intermediate result set is only 340 items, resulting in
much less network traffic and fewer comparison operations. The more efficient query with the added DISTINCT is
approximately 7 times as fast.

[localhost:21000] > select ndv(carrier), ndv(flight num), ndv(tail num),
> ndv (origin) ndv (dest) from airlines external;

ndv (tail num) | ndv(origin) | ndv(dest) |

[localhost:21000] > select tail num, count(*) as howmany from
airlines external
> group by tail num;

fom R ettt +
| tail num | howmany |
fom e fom +
715	1
0	406405
112	6562
NULL	123122001
fom e fom +

Fetched 1 row(s) in 5.18s

[localhost:21000] > select distinct dest from airlines external
> where dest not in (select origin from

airlines external);

- +
| dest |
- +
| LBF |
| CBM |
| RCA |
| SKA |
| LAR |
- +

Fetched 5 row(s) in 39.64s
[localhost:21000] > select distinct dest from airlines external

> where dest not in (select distinct origin from
airlines external);

- +
| dest |
- +
| LBF |
| RCA |
| CBM |
| SKA |
| LAR |
- +

Fetched 5 row(s) in 5.59s
[localhost:21000] > select distinct origin from airlines external
> where origin not in (select distinct dest from
airlines external);
Fetched 0 row(s) in 5.37s

| Impala Tutorials | 57

Next, we try doing a simple calculation, with results broken down by year. This reveals that some years have no data
in the ATRTIME column. That means we might be able to use that column in queries involving certain date ranges,
but we cannot count on it to always be reliable. The question of whether a column contains any NULL values, and if
so what is their number, proportion, and distribution, comes up again and again when doing initial exploration of a

data set.

[localhost:21000] > select year, sum(airtime) from airlines external
> group by year order by year desc;

- o +
| year | sum(airtime) |
- o — +
| 2008 | 713050445 |
| 2007 | 748015545 |
| 2006 | 720372850 |
| 2005 | 708204026 |
| 2004 | 714276973 |
| 2003 | 665706940 |

| Impala Tutorials | 58

2002	549761849
2001	590867745
2000	583537683
1999	561219227
1998	538050663
1997	536991229
1996	519440044
1995	513364265
1994	NULL
1993	NULL
1992	NULL
1991	NULL
1990	NULL
1989	NULL
1988	NULL
1987	NULL
== ———— == ——————— +

With the notion of NULL values in mind, let's come back to the TATLNUM column that we discovered had a lot of
NULLs. Let's quantify the NULL and non-NULL values in that column for better understanding. First, we just count
the overall number of rows versus the non-NULL values in that column. That initial result gives the appearance

of relatively few non-NULL values, but we can break it down more clearly in a single query. Once we have the

COUNT (*) and the COUNT (colname) numbers, we can encode that initial query in a WITH clause, then run a
followon query that performs multiple arithmetic operations on those values. Seeing that only one-third of one percent
of all rows have non-NULL values for the TATLNUM column clearly illustrates that that column is not of much use.

[localhost:21000] > select count(*) as 'rows', count(tail num) as 'non-null
tail numbers'

> from airlines external;
R e —+
| rows | non-null tail numbers |
o ——— o +
| 123534969 | 412968 |
o —— B ettt +

Fetched 1 row(s) in 1.51s
[localhost:21000] > with tl as

> (select count(*) as 'rows', count(tail num) as
'nonnull'’

> from airlines external)
> select ‘rows', "nonnull’, ‘rows - ‘nonnull’ as 'nulls',
> (‘nonnull® / “rows') * 100 as 'percentage non-null'
> from tl;

fomm fomm fomm o +

| rows | nonnull | nulls | percentage non-null |

fomm fom - fomm o +

| 123534969 | 412968 | 123122001 | 0.3342923897119365 |

fomm - fomm fomm - o +

By examining other columns using these techniques, we can form a mental picture of the way data is distributed
throughout the table, and which columns are most significant for query purposes. For this tutorial, we focus
mostly on the fields likely to hold discrete values, rather than columns such as ACTUAL ELAPSED TIME whose
names suggest they hold measurements. We would dig deeper into those columns once we had a clear picture of
which questions were worthwhile to ask, and what kinds of trends we might look for. For the final piece of initial
exploration, let's look at the YEAR column. A simple GROUP BY query shows that it has a well-defined range, a
manageable number of distinct values, and relatively even distribution of rows across the different years.

[localhost:21000] > select min(year), max(year), ndv(year) from
airlines external;

e e e +

| min(year) | max(year) | ndv(year) |

o ———— o ———— o ———— +

| Impala Tutorials | 59

| 1987 | 2008 | 22

Fetched 1 row(s) in 2.03s
[localhost:21000] > select year, count(*) howmany from airlines external
> group by year order by year desc;

- o +
| year | howmany |
- o +
| 2008 | 7009728 |
| 2007 | 7453215 |
| 2006 | 7141922 |
| 2005 | 7140596 |
| 2004 | 7129270 |
| 2003 | 6488540 |
| 2002 | 5271359 |
| 2001 | 5967780 |
| 2000 | 5683047 |
| 1999 | 5527884 |
| 1998 | 5384721 |
| 1997 | 5411843 |
| 1996 | 5351983 |
| 1995 | 5327435 |
| 1994 | 5180048 |
| 1993 | 5070501 |
| 1992 | 5092157 |
| 1991 | 5076925 |
| 1990 | 5270893 |
| 1989 | 5041200 |
| 1988 | 5202096 |
| 1987 | 1311826 |
- o +

Fetched 22 row(s) in 2.13s

We could go quite far with the data in this initial raw format, just as we downloaded it from the web. If the data set
proved to be useful and worth persisting in Impala for extensive queries, we might want to copy it to an internal table,
letting Impala manage the data files and perhaps reorganizing a little for higher efficiency. In this next stage of the
tutorial, we copy the original data into a partitioned table, still in Parquet format. Partitioning based on the YEAR
column lets us run queries with clauses such as WHERE year = 2001 or WHERE year BETWEEN 1989 AND
1999, which can dramatically cut down on I/O by ignoring all the data from years outside the desired range. Rather
than reading all the data and then deciding which rows are in the matching years, Impala can zero in on only the data
files from specific YEAR partitions. To do this, Impala physically reorganizes the data files, putting the rows from
each year into data files in a separate HDFS directory for each YEAR value. Along the way, we'll also get rid of the
TAIL NUM column that proved to be almost entirely NULL.

The first step is to create a new table with a layout very similar to the original ATRLINES EXTERNAL table. We'll
do that by reverse-engineering a CREATE TABLE statement for the first table, then tweaking it slightly to include a
PARTITION BY clause for YEAR, and excluding the TATIL NUM column. The SHOW CREATE TABLE statement
gives us the starting point.

[localhost:21000] > show create table airlines external;

| CREATE EXTERNAL TABLE airline data.airlines external (

| year INT COMMENT 'inferred from: optional int32 year',

| month INT COMMENT 'inferred from: optional int32 month',

| day INT COMMENT 'inferred from: optional int32 day',

| dayofweek INT COMMENT 'inferred from: optional int32 dayofweek',

| dep time INT COMMENT 'inferred from: optional int32 dep time',

| crs _dep time INT COMMENT 'inferred from: optional int32 crs dep time',
| arr_time INT COMMENT 'inferred from: optional int32 arr time',

| crs_arr time INT COMMENT 'inferred from: optional int32 crs_arr time',

| Impala Tutorials | 60

| carrier STRING COMMENT 'inferred from: optional binary carrier',

| flight num INT COMMENT 'inferred from: optional int32 flight num',

| tail num INT COMMENT 'inferred from: optional int32 tail num',

| actual elapsed time INT COMMENT 'inferred from: optional int32
actual elapsed time',

| crs elapsed time INT COMMENT 'inferred from: optional int32
crs_elapsed time',

| airtime INT COMMENT 'inferred from: optional int32 airtime’',

| arrdelay INT COMMENT 'inferred from: optional int32 arrdelay',

| depdelay INT COMMENT 'inferred from: optional int32 depdelay',

| origin STRING COMMENT 'inferred from: optional binary origin',

| dest STRING COMMENT 'inferred from: optional binary dest',

| distance INT COMMENT 'inferred from: optional int32 distance',

| taxi in INT COMMENT 'inferred from: optional int32 taxi in',

| taxi out INT COMMENT 'inferred from: optional int32 taxi out',

| cancelled INT COMMENT 'inferred from: optional int32 cancelled',

| cancellation code STRING COMMENT 'inferred from: optional binary
cancellation code',

| diverted INT COMMENT 'inferred from: optional int32 diverted',

| carrier delay INT COMMENT 'inferred from: optional int32 carrier delay',

| weather delay INT COMMENT 'inferred from: optional int32 weather delay',

| nas_delay INT COMMENT 'inferred from: optional int32 nas delay',

| security delay INT COMMENT 'inferred from: optional int32
security delay',

| late aircraft delay INT COMMENT 'inferred from: optional int32
late aircraft delay'

)

| STORED AS PARQUET

| LOCATION 'hdfs://al730.example.com:8020/user/impala/staging/airlines’

| TBLPROPERTIES ('numFiles'='0', 'COLUMN STATS ACCURATE'='false',

| 'transient lastDdlTime'='1439425228', 'numRows'='-1', 'totalSize'='0",

| 'rawDataSize'='-1")

Fetched 1 row(s) in 0.03s
[localhost:21000] > quit;

Although we could edit that output into a new SQL statement, all the ASCII box characters make such editing
inconvenient. To get a more stripped-down CREATE TABLE to start with, we restart the impala-shell command
with the —-B option, which turns off the box-drawing behavior.

[localhost:21000] > quit;
Goodbye jrussell
$ impala-shell -i localhost -B -d airline data;
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
Server version: impalad version 2.12.x (build
X.y.2Z)
Welcome to the Impala shell. Press TAB twice to see a list of available
commands .
(Shell
build version: Impala Shell v2.12.x (hash) built on
date)
[localhost:21000] > show create table airlines external;
"CREATE EXTERNAL TABLE airline data.airlines external (
year INT COMMENT 'inferred from: optional int32 year',
month INT COMMENT 'inferred from: optional int32 month',
day INT COMMENT 'inferred from: optional int32 day',
dayofweek INT COMMENT 'inferred from: optional int32 dayofweek',
dep time INT COMMENT 'inferred from: optional int32 dep time',
crs_dep time INT COMMENT 'inferred from: optional int32 crs dep time',
arr_time INT COMMENT 'inferred from: optional int32 arr time',
crs_arr time INT COMMENT 'inferred from: optional int32 crs_arr time',

| Impala Tutorials | 61

carrier STRING COMMENT 'inferred from: optional binary carrier',
flight num INT COMMENT 'inferred from: optional int32 flight num',
tail num INT COMMENT 'inferred from: optional int32 tail num',
actual elapsed time INT COMMENT 'inferred from: optional int32
actual elapsed time',
crs elapsed time INT COMMENT 'inferred from: optional int32
crs_elapsed time',
airtime INT COMMENT 'inferred from: optional int32 airtime’',
arrdelay INT COMMENT 'inferred from: optional int32 arrdelay',
depdelay INT COMMENT 'inferred from: optional int32 depdelay',
origin STRING COMMENT 'inferred from: optional binary origin',
dest STRING COMMENT 'inferred from: optional binary dest',
distance INT COMMENT 'inferred from: optional int32 distance',
taxi in INT COMMENT 'inferred from: optional int32 taxi in',
taxi out INT COMMENT 'inferred from: optional int32 taxi out',
cancelled INT COMMENT 'inferred from: optional int32 cancelled',
cancellation code STRING COMMENT 'inferred from: optional binary
cancellation code',
diverted INT COMMENT 'inferred from: optional int32 diverted',
carrier delay INT COMMENT 'inferred from: optional int32 carrier delay',
weather delay INT COMMENT 'inferred from: optional int32 weather delay',
nas_delay INT COMMENT 'inferred from: optional int32 nas delay',
security delay INT COMMENT 'inferred from: optional int32 security delay',
late aircraft delay INT COMMENT 'inferred from: optional int32
late aircraft delay'
)
STORED AS PARQUET
LOCATION 'hdfs://al730.example.com:8020/user/impala/staging/airlines’
TBLPROPERTIES ('numFiles'='0O', 'COLUMN STATS ACCURATE'='false',
'transient lastDdlTime'='1439425228"', 'numRows'='-1', 'totalSize'='0",
'rawDataSize'='-1")"
Fetched 1 row(s) in 0.01ls

After copying and pasting the CREATE TABLE statement into a text editor for fine-tuning, we quit and restart
impala-shell without the —B option, to switch back to regular output.

Next we run the CREATE TABLE statement that we adapted from the SHOW CREATE TABLE output. We kept
the STORED AS PARQUET clause because we want to rearrange the data somewhat but still keep it in the high-
performance Parquet format. The LOCATION and TBLPROPERTIES clauses are not relevant for this new table, so
we edit those out. Because we are going to partition the new table based on the YEAR column, we move that column
name (and its type) into a new PARTITIONED BY clause.

[localhost:21000] CREATE TABLE airline data.airlines

(
month INT,
day INT,
dayofweek INT,
dep time INT,
crs_dep time INT,
arr_time INT,
crs arr time INT,
carrier STRING,
flight num INT,
actual elapsed time INT,
crs_elapsed time INT,
airtime INT,
arrdelay INT,
depdelay INT,
origin STRING,
dest STRING,
distance INT,
taxi in INT,
taxi out INT,

VVVVVVVVVVVVVVVYVYVYVYVYVYV

VVVVYVYVYVYV

>

)

cancelled INT,
cancellation code STRING,
diverted INT,

carrier delay INT,
weather delay INT,
nas_delay INT,

security delay INT,

late aircraft delay INT

> STORED AS PARQUET
> PARTITIONED BY (year INT);
Fetched 0 row(s) in 0.10s

Next, we copy all the rows from the original table into this new one with an INSERT statement. (We edited
the CREATE TABLE statement to make an INSERT statement with the column names in the same order.)

| Impala Tutorials | 62

The only change is to add a PARTITION (year) clause, and move the YEAR column to the very end of the

SELECT list of the INSERT statement. Specifying PARTITION (year), rather than a fixed value such as

PARTITION (year=2000), means that Impala figures out the partition value for each row based on the value of
the very last column in the SELECT list. This is the first SQL statement that legitimately takes any substantial time,
because the rows from different years are shuffled around the cluster; the rows that go into each partition are collected
on one node, before being written to one or more new data files.

[localhost:21000] > INSERT INTO airline data.airlines

> PARTITION (year)

> SELECT

> month,
day,
dayofweek,
dep time,

VVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

crs_dep_ time,
arr_time,

crs_arr_ time,
carrier,

flight num,

actual elapsed time,
crs_elapsed time,
airtime,

arrdelay,
depdelay,

origin,

dest,

distance,

taxi in,

taxi out,
cancelled,
cancellation code,
diverted,

carrier delay,
weather delay,

nas delay,
security delay,
late aircraft delay,
year

FROM airline data.airlines_ external;

Inserted 123534969 row(s) in 202.70s

Once partitioning or join queries come into play, it's important to have statistics that Impala can use to optimize
queries on the corresponding tables. The COMPUTE INCREMENTAL STATS statement is the way to collect

| Impala Tutorials | 63

statistics for partitioned tables. Then the SHOW TABLE STATS statement confirms that the statistics are in place for
each partition, and also illustrates how many files and how much raw data is in each partition.

[localhost:21000] > compute incremental stats airlines;

e +

| summary |

e +

| Updated 22 partition(s) and 27 column (s) |

o +

[localhost:21000] > show table stats airlines;

- o o ———— o ————— o — o —

o o +

| year | #Rows | #Files | Size | Bytes Cached | Cache Repl | Format

| Incremental stats |

- o o o o o ———

o +————

| 1987 | 1311826 |1 | 9.32MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1988 | 5202096 |1 | 37.04MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1989 | 5041200 | 1 | 36.25MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1990 | 5270893 |1 | 38.39MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1991 | 5076925 | 1 | 37.23MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1992 | 5092157 | 1 | 36.85MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1993 | 5070501 |1 | 37.16MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1994 | 5180048 | 1 | 38.31MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1995 | 5327435 | 1 | 53.14MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1996 | 5351983 |1 | 53.64MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1997 | 5411843 | 1 | 54.41MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1998 | 5384721 | 1 | 54.01MB | NOT CACHED | NOT CACHED |
PARQUET true

| 1999 | 5527884 |1 | 56.32MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2000 | 5683047 | 1 | 58.15MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2001 | 5967780 | 1 | 60.65MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2002 | 5271359 |1 | 57.99MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2003 | 6488540 |1 | 81.33MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2004 | 7129270 | 1 | 103.19MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2005 | 7140596 |1 | 102.61MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2006 | 7141922 |1 | 106.03MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2007 | 7453215 | 1 | 112.15MB | NOT CACHED | NOT CACHED |
PARQUET true

| 2008 | 7009728 |1 | 105.76MB | NOT CACHED | NOT CACHED |
PARQUET true

| Total | 123534969 | 22 | 1.30GB | OB |

| Impala Tutorials | 64

At this point, we go through a quick thought process to sanity check the partitioning we did. All the partitions have
exactly one file, which is on the low side. A query that includes a clause WHERE year=2004 will only read a single
data block; that data block will be read and processed by a single data node; therefore, for a query targeting a single
year, all the other nodes in the cluster will sit idle while all the work happens on a single machine. It's even possible
that by chance (depending on HDFS replication factor and the way data blocks are distributed across the cluster), that
multiple year partitions selected by a filter such as WHERE year BETWEEN 1999 AND 2001 could all be read
and processed by the same data node. The more data files each partition has, the more parallelism you can get and

the less probability of “hotspots” occurring on particular nodes, therefore a bigger performance boost by having a big
cluster.

However, the more data files, the less data goes in each one. The overhead of dividing the work in a parallel query
might not be worth it if each node is only reading a few megabytes. 50 or 100 megabytes is a decent size for a Parquet
data block; 9 or 37 megabytes is on the small side. Which is to say, the data distribution we ended up with based on
this partitioning scheme is on the borderline between sensible (reasonably large files) and suboptimal (few files in
each partition). The way to see how well it works in practice is to run the same queries against the original flat table
and the new partitioned table, and compare times.

Spoiler: in this case, with my particular 4-node cluster with its specific distribution of data blocks and my particular
exploratory queries, queries against the partitioned table do consistently run faster than the same queries against

the unpartitioned table. But I could not be sure that would be the case without some real measurements. Here are
some queries I ran to draw that conclusion, first against ATRLINES EXTERNAL (no partitioning), then against
ATRLINES (partitioned by year). The ATRLINES queries are consistently faster. Changing the volume of data,
changing the size of the cluster, running queries that did or didn't refer to the partition key columns, or other factors
could change the results to favor one table layout or the other.

Note: If you find the volume of each partition is only in the low tens of megabytes, consider lowering the granularity
of partitioning. For example, instead of partitioning by year, month, and day, partition by year and month or even just
by year. The ideal layout to distribute work efficiently in a parallel query is many tens or even hundreds of megabytes
per Parquet file, and the number of Parquet files in each partition somewhat higher than the number of data nodes.

[localhost:21000] > select sum(airtime) from airlines external;

e ———— +
| sum(airtime) |
e —— +
| 8662859484 |
e —_———— +

Fetched 1 row(s) in 2.02s
[localhost:21000] > select sum(airtime) from airlines;

e ——— +
| sum(airtime) |
o —— +
| 8662859484 |
o ———— +

Fetched 1 row(s) in 1.21s

[localhost:21000] > select sum(airtime) from airlines external where year =

2005;

o —— +

| sum(airtime) |

o ———— +

| 708204026 |
o —— +

Fetched 1 row(s) in 2.61ls
[localhost:21000] > select sum(airtime) from airlines where year = 2005;
o ———— +

| sum(airtime) |

e ——— +

| 708204026 |

| Impala Tutorials | 65

Fetched 1 row(s) in 1.19s

[localhost:21000] > select sum(airtime) from airlines external where
dayofweek = 1;

o +

| sum(airtime) |

fo—— +

| 1264945051 |

Fom +

Fetched 1 row(s) in 2.82s
[localhost:21000] > select sum(airtime) from airlines where dayofweek = 1;
fo— 1

| sum(airtime) |
fo—————— +

| 1264945051 |

Fom - +

Fetched 1 row(s) in 1.61ls

Now we can finally do some serious analysis with this data set that, remember, a few minutes ago all we had were
some raw data files and we didn't even know what columns they contained. Let's see whether the “air time” of a flight
tends to be different depending on the day of the week. We can see that the average is a little higher on day number 6;
perhaps Saturday is a busy flying day and planes have to circle for longer at the destination airport before landing.

[localhost:21000] > select dayofweek, avg(airtime) from airlines
> group by dayofweek order by dayofweek;

- +
| avg(airtime) |
B et L L +
| 102.1560425016671

| 102.1582931538807

| 102.2170009256653
|
|
|
|
+
w

102.2697358763511
105.3627448363705

|
|
|
102.37477661846 |
|
|
103.4144351202054 |

(s) in 2.25s

To see if the apparent trend holds up over time, let's do the same breakdown by day of week, but also split up by year.
Now we can see that day number 6 consistently has a higher average air time in each year. We can also see that the
average air time increased over time across the board. And the presence of NULL for this column in years 1987 to
1994 shows that queries involving this column need to be restricted to a date range of 1995 and higher.

[localhost:21000] > select year, dayofweek, avg(airtime) from airlines

> group by year, dayofweek order by year desc, dayofweek;
___________________ +
avg (airtime) |

+ +

| |
fomm fomm - Fom e +
2008	1	103.1821651651355
2008	2	103.2149301386094
2008	3	103.0585076622796
2008	4	103.4671383539038
2008	5	103.5575385182659
2008	6	107.4006306562128
2008	7	104.8648851041755
2007	1	102.2196114337825
2007	2	101.9317791906348
2007	3	102.0964767689043
2007	4	102.6215927201686
2007	5	102.4289399000661
2007	6	105.1477448215756

| Impala Administration | 66

2007	7	103.6305945644095
1996	1	99.33860750862108
1996	2	99.54225446396656
1996	3	99.41129336113134
1996	4	99.5110373340348
1996	5	99.22120745027595
1996	6	101.1717447111921
1996	7	99.95410136133704
1995	1	96.93779698300494
1995	2	96.93458674589712
1995	3	97.00972311337051
1995	4	96.90843832024412
1995	5	96.78382115425562
1995	6	98.70872826057003
1995	7	97.85570478374616
1994	1	NULL
1994	2	NULL
1994	3	NULL
1987	5	NULL
1987	6	NULL
1987	7	NULL
fFommm== S Fommmmmmemeemesmm=ms +

Impala Administration

As an administrator, you monitor Impala's use of resources and take action when necessary to keep Impala running
smoothly and avoid conflicts with other Hadoop components running on the same cluster. When you detect that an
issue has happened or could happen in the future, you reconfigure Impala or other components such as HDFS or even
the hardware of the cluster itself to resolve or avoid problems.

Related tasks:

As an administrator, you can expect to perform installation, upgrade, and configuration tasks for Impala on all
machines in a cluster. See Installing Impala on page 23, Upgrading Impala on page 29, and Managing
Impala on page 24 for details.

For security tasks typically performed by administrators, see Impala Security on page 82.

Administrators also decide how to allocate cluster resources so that all Hadoop components can run smoothly
together. For Impala, this task primarily involves:

* Deciding how many Impala queries can run concurrently and with how much memory, through the admission
control feature. See Admission Control and Query Queuing on page 66 for details.

» Dividing cluster resources such as memory between Impala and other components, using YARN for overall
resource management, and Llama to mediate resource requests from Impala to YARN. See Resource Management
for Impala on page 75 for details.

Admission Control and Query Queuing

Admission control is an Impala feature that imposes limits on concurrent SQL queries, to avoid resource usage spikes
and out-of-memory conditions on busy clusters. It is a form of “throttling”. New queries are accepted and executed
until certain conditions are met, such as too many queries or too much total memory used across the cluster. When
one of these thresholds is reached, incoming queries wait to begin execution. These queries are queued and are
admitted (that is, begin executing) when the resources become available.

| Impala Administration | 67

In addition to the threshold values for currently executing queries, you can place limits on the maximum number
of queries that are queued (waiting) and a limit on the amount of time they might wait before returning with an
error. These queue settings let you ensure that queries do not wait indefinitely, so that you can detect and correct
“starvation” scenarios.

Enable this feature if your cluster is underutilized at some times and overutilized at others. Overutilization is indicated
by performance bottlenecks and queries being cancelled due to out-of-memory conditions, when those same queries
are successful and perform well during times with less concurrent load. Admission control works as a safeguard to
avoid out-of-memory conditions during heavy concurrent usage.

Note:

The use of the Llama component for integrated resource management within YARN is no longer supported with
Impala 2.3 and higher. The Llama support code is removed entirely in Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service pools to define
the resources available to Impala and other components. Then within the area allocated for Impala, you can create
dynamic service pools, each with its own settings for the Impala admission control feature.

Overview of Impala Admission Control

On a busy cluster, you might find there is an optimal number of Impala queries that run concurrently. For example,
when the I/O capacity is fully utilized by I/O-intensive queries, you might not find any throughput benefit in running
more concurrent queries. By allowing some queries to run at full speed while others wait, rather than having all
queries contend for resources and run slowly, admission control can result in higher overall throughput.

For another example, consider a memory-bound workload such as many large joins or aggregation queries. Each such
query could briefly use many gigabytes of memory to process intermediate results. Because Impala by default cancels
queries that exceed the specified memory limit, running multiple large-scale queries at once might require re-running
some queries that are cancelled. In this case, admission control improves the reliability and stability of the overall
workload by only allowing as many concurrent queries as the overall memory of the cluster can accomodate.

The admission control feature lets you set an upper limit on the number of concurrent Impala queries and on the
memory used by those queries. Any additional queries are queued until the earlier ones finish, rather than being
cancelled or running slowly and causing contention. As other queries finish, the queued queries are allowed to
proceed.

In Impala 2.5 and higher, you can specify these limits and thresholds for each pool rather than globally. That way,
you can balance the resource usage and throughput between steady well-defined workloads, rare resource-intensive
queries, and ad hoc exploratory queries.

For details on the internal workings of admission control, see How Impala Schedules and Enforces Limits on
Concurrent Queries on page 68.

Concurrent Queries and Admission Control

One way to limit resource usage through admission control is to set an upper limit on the number of concurrent
queries. This is the initial technique you might use when you do not have extensive information about memory usage
for your workload. This setting can be specified separately for each dynamic resource pool.

You can combine this setting with the memory-based approach described in Memory Limits and Admission Control
on page 67. If either the maximum number of or the expected memory usage of the concurrent queries is
exceeded, subsequent queries are queued until the concurrent workload falls below the threshold again.

Memory Limits and Admission Control

Each dynamic resource pool can have an upper limit on the cluster-wide memory used by queries executing in that
pool. This is the technique to use once you have a stable workload with well-understood memory requirements.

Always specify the Default Query Memory Limit for the expected maximum amount of RAM that a query might
require on each host, which is equivalent to setting the MEM_LIMIT query option for every query run in that

| Impala Administration | 68

pool. That value affects the execution of each query, preventing it from overallocating memory on each host, and
potentially activating the spill-to-disk mechanism or cancelling the query when necessary.

Optionally, specify the Max Memory setting, a cluster-wide limit that determines how many queries can be safely
run concurrently, based on the upper memory limit per host multiplied by the number of Impala nodes in the cluster.

For example, consider the following scenario:

* The cluster is running impalad daemons on five DataNodes.

* A dynamic resource pool has Max Memory set to 100 GB.

* The Default Query Memory Limit for the pool is 10 GB. Therefore, any query running in this pool could use up
to 50 GB of memory (default query memory limit * number of Impala nodes).

* The maximum number of queries that Impala executes concurrently within this dynamic resource pool is two,
which is the most that could be accomodated within the 100 GB Max Memory cluster-wide limit.

» There is no memory penalty if queries use less memory than the Default Query Memory Limit per-host setting
or the Max Memory cluster-wide limit. These values are only used to estimate how many queries can be run
concurrently within the resource constraints for the pool.

Note: If you specify Max Memory for an Impala dynamic resource pool, you must also specify the Default Query
Memory Limit. Max Memory relies on the Default Query Memory Limit to produce a reliable estimate of overall
memory consumption for a query.

You can combine the memory-based settings with the upper limit on concurrent queries described in Concurrent
Queries and Admission Control on page 67. If either the maximum number of or the expected memory usage

of the concurrent queries is exceeded, subsequent queries are queued until the concurrent workload falls below the
threshold again.

How Impala Admission Control Relates to Other Resource Management Tools

The admission control feature is similar in some ways to the YARN resource management framework. These features
can be used separately or together. This section describes some similarities and differences, to help you decide which
combination of resource management features to use for Impala.

Admission control is a lightweight, decentralized system that is suitable for workloads consisting primarily of Impala
queries and other SQL statements. It sets “soft” limits that smooth out Impala memory usage during times of heavy
load, rather than taking an all-or-nothing approach that cancels jobs that are too resource-intensive.

Because the admission control system does not interact with other Hadoop workloads such as MapReduce jobs, you
might use YARN with static service pools on clusters where resources are shared between Impala and other Hadoop
components. This configuration is recommended when using Impala in a multitenant cluster. Devote a percentage
of cluster resources to Impala, and allocate another percentage for MapReduce and other batch-style workloads. Let
admission control handle the concurrency and memory usage for the Impala work within the cluster, and let YARN
manage the work for other components within the cluster. In this scenario, Impala's resources are not managed by
YARN.

The Impala admission control feature uses the same configuration mechanism as the YARN resource manager to map
users to pools and authenticate them.

Although the Impala admission control feature uses a fair-scheduler.xml configuration file behind the scenes,
this file does not depend on which scheduler is used for YARN. You still use this file even when YARN is using the
capacity scheduler.

How Impala Schedules and Enforces Limits on Concurrent Queries

The admission control system is decentralized, embedded in each Impala daemon and communicating through the
statestore mechanism. Although the limits you set for memory usage and number of concurrent queries apply cluster-
wide, each Impala daemon makes its own decisions about whether to allow each query to run immediately or to queue
it for a less-busy time. These decisions are fast, meaning the admission control mechanism is low-overhead, but might
be imprecise during times of heavy load across many coordinators. There could be times when the more queries were
queued (in aggregate across the cluster) than the specified limit, or when number of admitted queries exceeds the
expected number. Thus, you typically err on the high side for the size of the queue, because there is not a big penalty

| Impala Administration | 69

for having a large number of queued queries; and you typically err on the low side for configuring memory resources,
to leave some headroom in case more queries are admitted than expected, without running out of memory and being
cancelled as a result.

To avoid a large backlog of queued requests, you can set an upper limit on the size of the queue for queries that

are queued. When the number of queued queries exceeds this limit, further queries are cancelled rather than being
queued. You can also configure a timeout period per pool, after which queued queries are cancelled, to avoid
indefinite waits. If a cluster reaches this state where queries are cancelled due to too many concurrent requests or long
waits for query execution to begin, that is a signal for an administrator to take action, either by provisioning more
resources, scheduling work on the cluster to smooth out the load, or by doing /mpala performance tuning to enable
higher throughput.

How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)

Most aspects of admission control work transparently with client interfaces such as JDBC and ODBC:

+ IfaSQL statement is put into a queue rather than running immediately, the API call blocks until the statement is
dequeued and begins execution. At that point, the client program can request to fetch results, which might also
block until results become available.

» Ifa SQL statement is cancelled because it has been queued for too long or because it exceeded the memory limit
during execution, the error is returned to the client program with a descriptive error message.

In Impala 2.0 and higher, you can submit a SQL SET statement from the client application to change the
REQUEST POOL query option. This option lets you submit queries to different resource pools, as described in
REQUEST POOL Query Option on page 387.

At any time, the set of queued queries could include queries submitted through multiple different Impala daemon
hosts. All the queries submitted through a particular host will be executed in order, so a CREATE TABLE followed
by an INSERT on the same table would succeed. Queries submitted through different hosts are not guaranteed to be
executed in the order they were received. Therefore, if you are using load-balancing or other round-robin scheduling
where different statements are submitted through different hosts, set up all table structures ahead of time so that the
statements controlled by the queuing system are primarily queries, where order is not significant. Or, if a sequence of
statements needs to happen in strict order (such as an INSERT followed by a SELECT), submit all those statements
through a single session, while connected to the same Impala daemon host.

Admission control has the following limitations or special behavior when used with JDBC or ODBC applications:

* The other resource-related query options, RESERVATION REQUEST TIMEOUT and V. CPU_CORES, are no
longer used. Those query options only applied to using Impala with Llama, which is no longer supported.

SQL and Schema Considerations for Admission Control

When queries complete quickly and are tuned for optimal memory usage, there is less chance of performance or
capacity problems during times of heavy load. Before setting up admission control, tune your Impala queries to
ensure that the query plans are efficient and the memory estimates are accurate. Understanding the nature of your
workload, and which queries are the most resource-intensive, helps you to plan how to divide the queries into
different pools and decide what limits to define for each pool.

For large tables, especially those involved in join queries, keep their statistics up to date after loading substantial
amounts of new data or adding new partitions. Use the COMPUTE STATS statement for unpartitioned tables, and
COMPUTE INCREMENTAL STATS for partitioned tables.

When you use dynamic resource pools with a Max Memory setting enabled, you typically override the memory
estimates that Impala makes based on the statistics from the COMPUTE STATS statement. You either set the

MEM LIMIT query option within a particular session to set an upper memory limit for queries within that session, or
a default MEM LIMIT setting for all queries processed by the impalad instance, or a default MEM LIMIT setting
for all queries assigned to a particular dynamic resource pool. By designating a consistent memory limit for a set of
similar queries that use the same resource pool, you avoid unnecessary query queuing or out-of-memory conditions
that can arise during high-concurrency workloads when memory estimates for some queries are inaccurate.

Follow other steps from Tuning Impala for Performance on page 632 to tune your queries.

Configuring Admission Control

| Impala Administration | 70

The configuration options for admission control range from the simple (a single resource pool with a single set of
options) to the complex (multiple resource pools with different options, each pool handling queries for a different set

of users and groups).

Impala Service Flags for Admission Control (Advanced)

The following Impala configuration options let you adjust the settings of the admission control feature. When
supplying the options on the impalad command line, prepend the option name with —-.

queue wait timeout ms

default_pool max requests

default pool max queued

default pool mem limit

Purpose: Maximum amount of time (in milliseconds)
that a request waits to be admitted before timing out.

Type: int64
Default: 60000

Purpose: Maximum number of concurrent outstanding
requests allowed to run before incoming requests are
queued. Because this limit applies cluster-wide, but each
Impala node makes independent decisions to run queries
immediately or queue them, it is a soft limit; the overall
number of concurrent queries might be slightly higher
during times of heavy load. A negative value indicates no
limit. Ignored if fair scheduler config path
and 11lama site path are set.

Type: int64

Default: -1, meaning unlimited (prior to Impala 2.5 the
default was 200)

Purpose: Maximum number of requests allowed

to be queued before rejecting requests. Because

this limit applies cluster-wide, but each Impala
node makes independent decisions to run queries
immediately or queue them, it is a soft limit; the
overall number of queued queries might be slightly
higher during times of heavy load. A negative value
or 0 indicates requests are always rejected once

the maximum concurrent requests are executing.
Ignored if fair scheduler config pathand
llama site path are set.

Type: int64
Default: unlimited

Purpose: Maximum amount of memory (across the
entire cluster) that all outstanding requests in this pool
can use before new requests to this pool are queued.
Specified in bytes, megabytes, or gigabytes by a number
followed by the suffix b (optional), m, or g, either
uppercase or lowercase. You can specify floating-
point values for megabytes and gigabytes, to represent
fractional numbers such as 1. 5. You can also specify
it as a percentage of the physical memory by specifying
the suffix %. 0 or no setting indicates no limit. Defaults
to bytes if no unit is given. Because this limit applies
cluster-wide, but each Impala node makes independent

| Impala Administration | 71

decisions to run queries immediately or queue them, it
is a soft limit; the overall memory used by concurrent
queries might be slightly higher during times of heavy
load. Ignored if fair scheduler config path
and 1lama site path are set.

Note: Impala relies on the statistics produced by the
COMPUTE STATS statement to estimate memory usage
for each query. See COMPUTE STATS Statement on
page 240 for guidelines about how and when to use

this statement.

Type: string
Default: "" (empty string, meaning unlimited)

disable pool max requests Purpose: Disables all per-pool limits on the maximum
number of running requests.

Type: Boolean
Default: false

disable pool mem limits Purpose: Disables all per-pool mem limits.
Type: Boolean

Default: false

fair scheduler_allocation_ path Purpose: Path to the fair scheduler allocation file
(fair-scheduler.xml).

Type: string

Default: "" (empty string)

Usage notes: Admission control only uses a small subset
of the settings that can go in this file, as described below.

For details about all the Fair Scheduler configuration
settings, see the Apache wiki.

llama_site path Purpose: Path to the configuration file used by
admission control (1lama-site.xml). If set,
fair scheduler allocation path mustalso
be set.

Type: string
Default: "" (empty string)

Usage notes: Admission control only uses a few of the
settings that can go in this file, as described below.

Configuring Admission Control Using the Command Line

To configure admission control, use a combination of startup options for the Impala daemon and edit or create the
configuration files fair-scheduler.xml and 11lama-site.xml.

For a straightforward configuration using a single resource pool named de fault, you can specify configuration
options on the command line and skip the fair-scheduler.xml and 11ama-site.xml configuration files.

For an advanced configuration with multiple resource pools using different settings, set up the fair-
scheduler.xml and 11lama-site.xml configuration files manually. Provide the paths to each one using the
impalad command-line options, -~fair scheduler allocation pathand --llama site path
respectively.

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

| Impala Administration | 72

The Impala admission control feature only uses the Fair Scheduler configuration settings to determine how to map
users and groups to different resource pools. For example, you might set up different resource pools with separate
memory limits, and maximum number of concurrent and queued queries, for different categories of users within your
organization. For details about all the Fair Scheduler configuration settings, see the Apache wiki.

The Impala admission control feature only uses a small subset of possible settings from the 11ama-site.xml
configuration file:

llama.am.throttling.maximum.placed.reservations.queue name
llama.am.throttling.maximum.queued.reservations.queue name
impala.admission-control.pool-default-query-options.queue name
impala.admission-control.pool-queue-timeout-ms.qgueue name

The impala.admission-control.pool-queue-timeout-ms setting specifies the timeout value for
this pool, in milliseconds. Theimpala.admission-control.pool-default-query-options settings
designates the default query options for all queries that run in this pool. Its argument value is a comma-delimited
string of 'key=value' pairs, for example, ' keyl=vall, key2=val2'. For example, this is where you might set a
default memory limit for all queries in the pool, using an argument such as MEM LIMIT=5G.

The impala.admission-control.* configuration settings are available in Impala 2.5 and higher.

Example of Admission Control Configuration

Here are sample fair-scheduler.xml and 11ama-site.xml files that define resource pools
root.default, root.development, and root .production. These sample files are stripped down: in a
real deployment they might contain other settings for use with various aspects of the YARN component. The settings
shown here are the significant ones for the Impala admission control feature.

fair-scheduler.xml:

Although Impala does not use the vcores value, you must still specify it to satisfy YARN requirements for the file
contents.

Each <aclSubmitApps> tag (other than the one for root) contains a comma-separated list of users, then a space,
then a comma-separated list of groups; these are the users and groups allowed to submit Impala statements to the
corresponding resource pool.

If you leave the <aclSubmitApps> element empty for a pool, nobody can submit directly to that pool; child pools
can specify their own <aclSubmitApps> values to authorize users and groups to submit to those pools.

<allocations>

<queue name="root">
<aclSubmitApps> </aclSubmitApps>
<queue name="default">
<maxResources>50000 mb, 0 vcores</maxResources>
<aclSubmitApps>*</aclSubmitApps>
</queue>
<queue name="development">
<maxResources>200000 mb, 0 vcores</maxResources>
<aclSubmitApps>userl,user2 dev,ops,admin</aclSubmitApps>
</queue>
<gueue name="production">
<maxResources>1000000 mb, 0 vcores</maxResources>
<aclSubmitApps> ops,admin</aclSubmitApps>
</queue>
</queue>
<queuePlacementPolicy>
<rule name="specified" create="false"/>
<rule name="default" />
</queuePlacementPolicy>
</allocations>

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

| Impala Administration | 73

llama-site.xml:

<?xml version="1.0" encoding="UTF-8"?2>
<configuration>
<property>
<name>llama.am.throttling.maximum.placed.reservations.root.default</
name>
<value>10</value>
</property>
<property>
<name>llama.am.throttling.maximum.queued.reservations.root.default</
name>
<value>50</value>
</property>
<property>
<name>impala.admission-control.pool-default-query-options.root.default</
name>
<value>mem 1imit=128m, query timeout s=20,max io buffers=10</value>
</property>
<property>
<name>impala.admission-control.pool-queue-timeout-ms.root.default</name>
<value>30000</value>
</property>
<property>
<name>llama.am.throttling.maximum.placed.reservations.root.development</
name>
<value>50</value>
</property>
<property>
<name>llama.am.throttling.maximum.queued.reservations.root.development</
name>
<value>100</value>
</property>
<property>
<name>impala.admission-control.pool-default-query-
options.root.development</name>
<value>mem limit=256m,query timeout s=30,max io buffers=10</value>
</property>
<property>
<name>impala.admission-control.pool-queue-timeout-ms.root.development</
name>
<value>15000</value>
</property>
<property>
<name>llama.am.throttling.maximum.placed.reservations.root.production</
name>
<value>100</value>
</property>
<property>
<name>llama.am.throttling.maximum.queued.reservations.root.production</
name>
<value>200</value>
</property>
==
Default query options for the 'root.production' pool.
THIS IS A NEW PARAMETER in Impala 2.5.
Note that the MEM LIMIT query option still shows up in here even
though it is a
separate box in the UI. We do that because it is the most important
query option

| Impala Administration | 74

that people will need (everything else is somewhat advanced).

MEM LIMIT takes a per-node memory limit which is specified using one
of the following:

- '<int>[bB]?' -> bytes (default if no unit given)
- '<float>[mM(bB)]'"' -> megabytes
- '<float>[gG(bB)]'" -> in gigabytes

E.g. 'MEM LIMIT=12345' (no unit) means 12345 bytes, and you can
append m or g
to specify megabytes or gigabytes, though that is not required.
-—=>
<property>
<name>impala.admission-control.pool-default-query-
options.root.production</name>
<value>mem limit=386m,query timeout s=30,max io buffers=10</value>
</property>
<!--
Default queue timeout (ms) for the pool 'root.production'.
If this isn’t set, the process-wide flag is used.
THIS IS A NEW PARAMETER in Impala 2.5.
-——>
<property>
<name>impala.admission-control.pool-queue-timeout-ms.root.production</
name>
<value>30000</value>
</property>
</configuration>

Guidelines for Using Admission Control

To see how admission control works for particular queries, examine the profile output for the query. This information
is available through the PROFILE statement in impala-shell immediately after running a query in the shell, on
the queries page of the Impala debug web UI, or in the Impala log file (basic information at log level 1, more detailed
information at log level 2). The profile output contains details about the admission decision, such as whether the
query was queued or not and which resource pool it was assigned to. It also includes the estimated and actual memory
usage for the query, so you can fine-tune the configuration for the memory limits of the resource pools.

Remember that the limits imposed by admission control are “soft” limits. The decentralized nature of this mechanism
means that each Impala node makes its own decisions about whether to allow queries to run immediately or to queue
them. These decisions rely on information passed back and forth between nodes by the statestore service. If a sudden
surge in requests causes more queries than anticipated to run concurrently, then throughput could decrease due to
queries spilling to disk or contending for resources; or queries could be cancelled if they exceed the MEM LIMIT
setting while running.

In impala-shell, you can also specify which resource pool to direct queries to by setting the REQUEST POOL
query option.

The statements affected by the admission control feature are primarily queries, but also include statements that
write data such as INSERT and CREATE TABLE AS SELECT. Most write operations in Impala are not resource-
intensive, but inserting into a Parquet table can require substantial memory due to buffering intermediate data before
writing out each Parquet data block. See Loading Data into Parquet Tables on page 707 for instructions about
inserting data efficiently into Parquet tables.

Although admission control does not scrutinize memory usage for other kinds of DDL statements, if a query is
queued due to a limit on concurrent queries or memory usage, subsequent statements in the same session are also
queued so that they are processed in the correct order:

-- This query could be queued to avoid out-of-memory at times of heavy load.
select * from huge table join enormous_table using (id);

-- If so, this subsequent statement in the same session is also queued

-- until the previous statement completes.

| Impala Administration | 75

drop table huge table;

If you set up different resource pools for different users and groups, consider reusing any classifications you
developed for use with Sentry security. See Enabling Sentry Authorization for Impala on page 87 for details.

For details about all the Fair Scheduler configuration settings, see Fair Scheduler Configuration, in particular the tags
such as <queue> and <aclSubmitApps> to map users and groups to particular resource pools (queues).

Resource Management for Impala

Note:

The use of the Llama component for integrated resource management within YARN is no longer supported with
Impala 2.3 and higher. The Llama support code is removed entirely in Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service pools to define
the resources available to Impala and other components. Then within the area allocated for Impala, you can create
dynamic service pools, each with its own settings for the Impala admission control feature.

You can limit the CPU and memory resources used by Impala, to manage and prioritize workloads on clusters that run
jobs from many Hadoop components.

How Resource Limits Are Enforced

Limits on memory usage are enforced by Impala's process memory limit (the MEM_LIMIT query option setting). The
admission control feature checks this setting to decide how many queries can be safely run at the same time. Then the
Impala daemon enforces the limit by activating the spill-to-disk mechanism when necessary, or cancelling a query
altogether if the limit is exceeded at runtime.

impala-shell Query Options for Resource Management

Before issuing SQL statements through the impala-shell interpreter, you can use the SET command to configure
the following parameters related to resource management:

* EXPLAIN LEVEL Query Option on page 364
* MEM LIMIT Query Option on page 376

Limitations of Resource Management for Impala

The MEM LIMIT query option, and the other resource-related query options, are settable through the ODBC or JDBC
interfaces in Impala 2.0 and higher. This is a former limitation that is now lifted.

Setting Timeout Periods for Daemons, Queries, and Sessions

Depending on how busy your cluster is, you might increase or decrease various timeout values. Increase timeouts if
Impala is cancelling operations prematurely, when the system is responding slower than usual but the operations are
still successful if given extra time. Decrease timeouts if operations are idle or hanging for long periods, and the idle or
hung operations are consuming resources and reducing concurrency.

Increasing the Statestore Timeout

If you have an extensive Impala schema, for example with hundreds of databases, tens of thousands of

tables, and so on, you might encounter timeout errors during startup as the Impala catalog service broadcasts
metadata to all the Impala nodes using the statestore service. To avoid such timeout errors on startup,

increase the statestore timeout value from its default of 10 seconds. Specify the timeout value using the —
statestore subscriber timeout seconds option for the statestore service, using the configuration

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

| Impala Administration | 76

instructions in Modifying Impala Startup Options on page 31. The symptom of this problem is messages in the
impalad log such as:

Connection with state-store lost
Trying to re-register with state-store

See Scalability Considerations for the Impala Statestore on page 680 for more details about statestore operation
and settings on clusters with a large number of Impala-related objects such as tables and partitions.

Setting the Idle Query and Idle Session Timeouts for impalad

To keep long-running queries or idle sessions from tying up cluster resources, you can set timeout intervals for both
individual queries, and entire sessions.

Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle. For queries, this
means the query has results ready but is waiting for a client to fetch the data. A query can run for an arbitrary time
without triggering a timeout, because the query is computing results rather than sitting idle waiting for the results to
be fetched. The timeout period is intended to prevent unclosed queries from consuming resources and taking up slots
in the admission count of running queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.
Specify the following startup options for the impalad daemon:

* The --idle query_ timeout option specifies the time in seconds after which an idle query is cancelled. This
could be a query whose results were all fetched but was never closed, or one whose results were partially fetched
and then the client program stopped requesting further results. This condition is most likely to occur in a client
program using the JDBC or ODBC interfaces, rather than in the interactive impala-shell interpreter. Once the
query is cancelled, the client program cannot retrieve any further results.

You can reduce the idle query timeout by using the QUERY TIMEOUT S query option. Any non-zero

value specified for the -—~idle query timeout startup option serves as an upper limit for the

QUERY TIMEOUT S query option. A zero value for --idle query timeout disables query timeouts. See
QUERY TIMEOUT S Query Option (Impala 2.0 or higher only) on page 386 for details.

» The --idle session timeout option specifies the time in seconds after which an idle session is expired.
A session is idle when no activity is occurring for any of the queries in that session, and the session has not started
any new queries. Once a session is expired, you cannot issue any new query requests to it. The session remains
open, but the only operation you can perform is to close it. The default value of 0 means that sessions never
expire.

For instructions on changing impalad startup options, see Modifying Impala Startup Options on page 31.
Note:

Impala checks periodically for idle sessions and queries to cancel. The actual idle time before cancellation might be
up to 50% greater than the specified configuration setting. For example, if the timeout setting was 60, the session or
query might be cancelled after being idle between 60 and 90 seconds.

Setting Timeout and Retries for Thrift Connections to the Backend Client

Impala connections to the backend client are subject to failure in cases when the network is momentarily overloaded.
To avoid failed queries due to transient network problems, you can configure the number of Thrift connection retries
using the following option:

* The --backend client connection num_ retries option specifies the number of times Impala will
try connecting to the backend client after the first connection attempt fails. By default, impalad will attempt
three re-connections before it returns a failure.

| Impala Administration | 77

You can configure timeouts for sending and receiving data from the backend client. Therefore, if for some reason a
query hangs, instead of waiting indefinitely for a response, Impala will terminate the connection after a configurable
timeout.

* The --backend client rpc timeout ms option can be used to specify the number of milliseconds
Impala should wait for a response from the backend client before it terminates the connection and signals a failure.
The default value for this property is 300000 milliseconds, or 5 minutes.

Cancelling a Query

Sometimes, an Impala query might run for an unexpectedly long time, tying up resources in the cluster. You can
cancel the query explicitly, independent of the timeout period, by going into the web Ul for the impalad host (on
port 25000 by default), and using the link on the /queries tab to cancel the running query. For example, press ~C
in impala-shell.

Using Impala through a Proxy for High Availability

For most clusters that have multiple users and production availability requirements, you might set up a proxy server to
relay requests to and from Impala.

Currently, the Impala statestore mechanism does not include such proxying and load-balancing features. Set up a
software package of your choice to perform these functions.

Note:

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

Overview of Proxy Usage and Load Balancing for Impala
Using a load-balancing proxy server for Impala has the following advantages:

» Applications connect to a single well-known host and port, rather than keeping track of the hosts where the
impalad daemon is running.

» If any host running the impalad daemon becomes unavailable, application connection requests still succeed
because you always connect to the proxy server rather than a specific host running the impalad daemon.

» The coordinator node for each Impala query potentially requires more memory and CPU cycles than the other
nodes that process the query. The proxy server can issue queries using round-robin scheduling, so that each
connection uses a different coordinator node. This load-balancing technique lets the Impala nodes share this
additional work, rather than concentrating it on a single machine.

The following setup steps are a general outline that apply to any load-balancing proxy software:

1. Select and download the load-balancing proxy software or other load-balancing hardware appliance. It should
only need to be installed and configured on a single host, typically on an edge node. Pick a host other than the
DataNodes where impalad is running, because the intention is to protect against the possibility of one or more
of these DataNodes becoming unavailable.

2. Configure the load balancer (typically by editing a configuration file). In particular:

» Setup a port that the load balancer will listen on to relay Impala requests back and forth.
» See Choosing the Load-Balancing Algorithm on page 78 for load balancing algorithm options.
» For Kerberized clusters, follow the instructions in Special Proxy Considerations for Clusters Using Kerberos
on page 78.
3. Ifyou are using Hue or JDBC-based applications, you typically set up load balancing for both ports 21000 and
21050, because these client applications connect through port 21050 while the impala-shell command

| Impala Administration | 78

connects through port 21000. See Ports Used by Impala on page 781 for when to use port 21000, 21050, or
another value depending on what type of connections you are load balancing.

4. Run the load-balancing proxy server, pointing it at the configuration file that you set up.

5. For any scripts, jobs, or configuration settings for applications that formerly connected to a specific DataNode to
run Impala SQL statements, change the connection information (such as the -i option in impala-shell)to
point to the load balancer instead.

Note: The following sections use the HAProxy software as a representative example of a load balancer that you can
use with Impala.

Choosing the Load-Balancing Algorithm

Load-balancing software offers a number of algorithms to distribute requests. Each algorithm has its own
characteristics that make it suitable in some situations but not others.

Leastconn Connects sessions to the coordinator with the fewest
connections, to balance the load evenly. Typically used
for workloads consisting of many independent, short-
running queries. In configurations with only a few client
machines, this setting can avoid having all requests go to
only a small set of coordinators.

Recommended for Impala with F5.

Source IP Persistence Sessions from the same IP address always go to the
same coordinator. A good choice for Impala workloads
containing a mix of queries and DDL statements, such
as CREATE TABLE and ALTER TABLE. Because the
metadata changes from a DDL statement take time to
propagate across the cluster, prefer to use the Source
IP Persistence in this case. If you are unable to choose
Source IP Persistence, run the DDL and subsequent
queries that depend on the results of the DDL through the
same session, for example by running impala-shell
-f script file tosubmit several statements
through a single session.

Required for setting up high availability with Hue.

Round-robin Distributes connections to all coordinator nodes.
Typically not recommended for Impala.

You might need to perform benchmarks and load testing to determine which setting is optimal for your use case.
Always set up using two load-balancing algorithms: Source IP Persistence for Hue and Leastconn for others.

Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the
same one that is actually processing the request, to prevent man-in-the-middle attacks.

In Impala 2.11 and lower versions, once you enable a proxy server in a Kerberized cluster, users will not be able to
connect to individual impala daemons directly from impala-shell.

In Impala 2.12 and higher, if you enable a proxy server in a Kerberized cluster, users have an option to connect to
Impala daemons directly from impala-shell usingthe -b/--kerberos host_ fqgdn option when you start
impala-shell. This option can be used for testing or troubleshooting purposes, but not recommended for live
production environments as it defeats the purpose of a load balancer/proxy.

| Impala Administration | 79

Example:

impala-shell -i impalad-1.mydomain.com -k -b loadbalancer-1.mydomain.com
Alternatively, with the fully qualified configurations:

impala-shell --impalad=impalad-1.mydomain.com:21000 --kerberos --
kerberos host fgdn=loadbalancer-1.mydomain.com

See impala-shell Configuration Options on page 618 for information about the option.
To clarify that the load-balancing proxy server is legitimate, perform these extra Kerberos setup steps:

1. This section assumes you are starting with a Kerberos-enabled cluster. See Enabling Kerberos Authentication
Jfor Impala on page 98 for instructions for setting up Impala with Kerberos. See the documentation for your
Apache Hadoop distribution for general steps to set up Kerberos.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have
anentry impala/proxy host@realmin its keytab. If not, go back over the initial Kerberos configuration
steps for the keytab on each host running the impalad daemon.

3. Copy the keytab file from the proxy host to all other hosts in the cluster that run the impalad daemon. (For
optimal performance, impalad should be running on all DataNodes in the cluster.) Put the keytab file in a secure
location on each of these other hosts.

4. Add anentry impala/actual hostname@realmto the keytab on each host running the impalad daemon.

5. For each impalad node, merge the existing keytab with the proxy’s keytab using ktutil, producing a new
keytab file. For example:

$ ktutil
ktutil: read kt proxy.keytab
ktutil: read kt impala.keytab
ktutil: write kt proxy impala.keytab
ktutil: quit

6. To verify that the keytabs are merged, run the command:

klist -k keytabfile

which lists the credentials for both principal and be principal on all nodes.
7. Make sure that the impala user has permission to read this merged keytab file.
8. Change the following configuration settings for each host in the cluster that participates in the load balancing:

* Inthe impalad option definition, add:

--principal=impala/proxy host@realm
--be principal=impala/actual host@realm
-—keytab file=path to merged keytab

Note: Every host has different --be principal because the actual hostname is different on each host.
Specify the fully qualified domain name (FQDN) for the proxy host, not the IP address. Use the exact FQDN
as returned by a reverse DNS lookup for the associated IP address.
* Modify the startup options. See Modifying Impala Startup Options on page 31 for the procedure to modify
the startup options.
9. Restart Impala to make the changes take effect. Restart the impalad daemons on all hosts in the cluster, as well
as the statestored and catalogd daemons.

| Impala Administration | 80

Example of Configuring HAProxy Load Balancer for Impala

If you are not already using a load-balancing proxy, you can experiment with H4Proxy a free, open source load
balancer. This example shows how you might install and configure that load balancer on a Red Hat Enterprise Linux
system.

Install the load balancer: yum install haproxy

Set up the configuration file: /etc/haproxy/haproxy.cfg. See the following section for a sample
configuration file.

Run the load balancer (on a single host, preferably one not running impalad):

/usr/sbin/haproxy —-f /etc/haproxy/haproxy.cfg

In impala-shell, JDBC applications, or ODBC applications, connect to the listener port of the proxy host,
rather than port 21000 or 21050 on a host actually running impalad. The sample configuration file sets haproxy
to listen on port 25003, therefore you would send all requests to haproxy host:25003.

This is the sample haproxy.cfg used in this example:

global
To have these messages end up in /var/log/haproxy.log you will
need to:

1) configure syslog to accept network log events. This is done
by adding the '-r' option to the SYSLOGD OPTIONS in
/etc/sysconfig/syslog

2) configure local2 events to go to the /var/log/haproxy.log
file. A line like the following can be added to
/etc/sysconfig/syslog

local2.* /var/log/haproxy.log

R -

log 127.0.0.1 localol

log 127.0.0.1 locall notice
chroot /var/lib/haproxy
pidfile /var/run/haproxy.pid
maxconn 4000

user haproxy

group haproxy

daemon

turn on stats unix socket

fstats socket /var/lib/haproxy/stats

common defaults that all the 'listen' and 'backend' sections will
use if not designated in their block

#
You might need to adjust timing values to prevent timeouts.

defaults

mode http

log global

option httplog

option dontlognull

option http-server-close

option forwardfor except 127.0.0.0/8

option redispatch

retries 3

maxconn 3000

contimeout 5000
clitimeout 50000

http://haproxy.1wt.eu/

| Impala Administration | 81

srvtimeout 50000

#
This sets up the admin page for HA Proxy at port 25002.
#
listen stats :25002
balance
mode http

stats enable
stats auth username:password

This is the setup for Impala. Impala client connect to
load balancer host:25003.
HAProxy will balance connections among the list of servers listed below.
The list of Impalad is listening at port 21000 for beeswax (impala-shell)
or original ODBC driver.
For JDBC or ODBC version 2.x driver, use port 21050 instead of 21000.
listen impala :25003

mode tcp

option tcplog

balance leastconn

server symbolic name 1 impala-host-1.example.com:21000
server symbolic name 2 impala-host-2.example.com:21000
server symbolic name 3 impala-host-3.example.com:21000
server symbolic name 4 impala-host-4.example.com:21000

Setup for Hue or other JDBC-enabled applications.
In particular, Hue requires sticky sessions.
The application connects to load balancer host:21051, and HAProxy balances
connections to the associated hosts, where Impala listens for JDBC
requests on port 21050.
listen impalajdbc :21051
mode tcp
option tcplog
balance source
server symbolic name 5 impala-host-1.example.com:21050 check
server symbolic name 6 impala-host-2.example.com:21050 check
server symbolic name 7 impala-host-3.example.com:21050 check
server symbolic name 8 impala-host-4.example.com:21050 check

Important: Hue requires the check option at end of each line in the above file to ensure HAProxy can detect any
unreachable Impalad server, and failover can be successful. Without the TCP check, you may hit an error when the
impalad daemon to which Hue tries to connect is down.

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious
about reusing the connections. If the load balancer has set up connection timeout values, either check the connection
frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before
using it and create a new one if the connection has been closed.

Managing Disk Space for Impala Data

Although Impala typically works with many large files in an HDFS storage system with plenty of capacity, there are
times when you might perform some file cleanup to reclaim space, or advise developers on techniques to minimize
space consumption and file duplication.

» Use compact binary file formats where practical. Numeric and time-based data in particular can be stored in more
compact form in binary data files. Depending on the file format, various compression and encoding features can
reduce file size even further. You can specify the STORED AS clause as part of the CREATE TABLE statement,
or ALTER TABLE with the SET FILEFORMAT clause for an existing table or partition within a partitioned
table. See How Impala Works with Hadoop File Formats on page 697 for details about file formats, especially

| Impala Security | 82

Using the Parquet File Format with Impala Tables on page 706. See CREATE TABLE Statement on page
257 and ALTER TABLE Statement on page 225 for syntax details.

* You manage underlying data files differently depending on whether the corresponding Impala table is defined as
an internal or external table:

* Usethe DESCRIBE FORMATTED statement to check if a particular table is internal (managed by Impala) or
external, and to see the physical location of the data files in HDFS. See DESCRIBE Statement on page 275
for details.

» For Impala-managed (“internal”) tables, use DROP TABLE statements to remove data files. See DROP
TABLE Statement on page 295 for details.

» For tables not managed by Impala (“external” tables), use appropriate HDFS-related commands such as
hadoop fs,hdfs dfs,ordistcp, to create, move, copy, or delete files within HDFS directories that are
accessible by the impala user. Issue a REFRESH table name statement after adding or removing any
files from the data directory of an external table. See REFRESH Statement on page 318 for details.

» Use external tables to reference HDFS data files in their original location. With this technique, you avoid
copying the files, and you can map more than one Impala table to the same set of data files. When you drop the
Impala table, the data files are left undisturbed. See External Tables on page 216 for details.

* Use the LOAD DATA statement to move HDFS files into the data directory for an Impala table from inside
Impala, without the need to specify the HDFS path of the destination directory. This technique works for both
internal and external tables. See LOAD DATA Statement on page 314 for details.

* Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might
not be reclaimed for use by other files until sometime later, when the trashcan is emptied. See DROP TABLE
Statement on page 295 for details. See User Account Requirements on page 21 for permissions needed for
the HDFS trashcan to operate correctly.

* Drop all tables in a database before dropping the database itself. See DROP DATABASE Statement on page 287
for details.

* Clean up temporary files after failed INSERT statements. If an INSERT statement encounters an error, and you
see a directory named . impala insert stagingor impala insert staging left behind in the
data directory for the table, it might contain temporary data files taking up space in HDFS. You might be able to
salvage these data files, for example if they are complete but could not be moved into place due to a permission
error. Or, you might delete those files through commands such as hadoop fs or hdfs dfs, to reclaim space
before re-trying the INSERT. Issue DESCRIBE FORMATTED table name to see the HDFS path where you
can check for temporary files.

* By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored
in the directory /tmp/impala-scratch . These files are removed when the operation finishes. (Multiple
concurrent queries can perform operations that use the “spill to disk” technique, without any name conflicts
for these temporary files.) You can specify a different location by starting the impalad daemon with the —-
scratch dirs="path to directory" configuration option. You can specify a single directory, or a
comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You
might specify different directory paths for different hosts, depending on the capacity and speed of the available
storage devices. In Impala 2.3 or higher, Impala successfully starts (with a warning Impala successfully starts
(with a warning written to the log) if it cannot create or read and write files in one of the scratch directories. If
there is less than 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning
message to its log. If Impala encounters an error reading or writing files in a scratch directory during a query,
Impala logs the error and the query fails.

» Ifyou use the Amazon Simple Storage Service (S3) as a place to offload data to reduce the volume of local
storage, Impala 2.2.0 and higher can query the data directly from S3. See Using Impala with the Amazon S3
Filesystem on page 755 for details.

Impala Security

Impala includes a fine-grained authorization framework for Hadoop, based on Apache Sentry. Sentry authorization
was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop security to

| Impala Security | 83

a new level needed for the requirements of highly regulated industries such as healthcare, financial services, and
government. Impala also includes an auditing capability which was added in Impala 1.1.1; Impala generates the audit
data which can be consumed, filtered, and visualized by cluster-management components focused on governance.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access

or perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized

access occurred, and detect whether any such attempts were made. This is a critical set of features for production
deployments in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where
multiple applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That

is, you should know the general security practices for Linux and Hadoop, and their associated commands and
configuration files. For example, you should know how to create Linux users and groups, manage Linux group
membership, set Linux and HDFS file permissions and ownership, and designate the default permissions and
ownership for new files. You should be familiar with the configuration of the nodes in your Hadoop cluster, and know
how to apply configuration changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization Which users are allowed to access which resources, and
what operations are they allowed to perform? Impala
relies on the open source Sentry project for authorization.
By default (when authorization is not enabled), Impala
does all read and write operations with the privileges of
the impala user, which is suitable for a development/
test environment but not for a secure production
environment. When authorization is enabled, Impala uses
the OS user ID of the user who runs impala-shell
or other client program, and associates various privileges
with each user. See Enabling Sentry Authorization for
Impala on page 87 for details about setting up and
managing authorization.

authentication How does Impala verify the identity of the user to
confirm that they really are allowed to exercise the
privileges assigned to that user? Impala relies on the
Kerberos subsystem for authentication. See Enabling
Kerberos Authentication for Impala on page 98 for
details about setting up and managing authentication.

auditing What operations were attempted, and did they succeed
or not? This feature provides a way to look back and
diagnose whether attempts were made to perform
unauthorized operations. You use this information to
track down suspicious activity, and to see where changes
are needed in authorization policies. The audit data
produced by this feature can be collected and presented
in a user-friendly form by cluster-management software.
See Auditing Impala Operations on page 104 for
details about setting up and managing auditing.

Security Guidelines for Impala

The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

| Impala Security | 84

» Secure the root account. The root user can tamper with the impalad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

* Restrict membership in the sudoers list (in the /etc/sudoers file). The users who can run the sudo
command can do many of the same things as the root user.

* Ensure the Hadoop ownership and permissions for Impala data files are restricted.

* Ensure the Hadoop ownership and permissions for Impala log files are restricted.

* Ensure that the Impala web Ul (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging on page 776 for details.

» Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups
(which by default map to Linux OS groups). Create the associated Linux groups using the groupadd command
if necessary.

* The Impala authorization feature makes use of the HDFS file ownership and permissions mechanism; for
background information, see the HDF'S Permissions Guide. Set up users and assign them to groups at the OS
level, corresponding to the different categories of users with different access levels for various databases, tables,
and HDFS locations (URIs). Create the associated Linux users using the useradd command if necessary, and
add them to the appropriate groups with the usermod command.

» Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use the
* wildcard for the database containing the base tables, while specifying the precise names of the individual views.
(For specifying table or database names, you either specify the exact name or * to mean all the databases on a
server, or all the tables and views in a database.)

* Enable authorization by running the impalad daemons with the ~-server name and -
authorization policy file options on all nodes. (The authorization feature does not apply to the
statestored daemon, which has no access to schema objects or data files.)

» Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files

One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read and
write permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging on page 770.

All Impala read and write operations are performed under the filesystem privileges of the impala user. The impala
user must be able to read all directories and data files that you query, and write into all the directories and data files
for INSERT and LOAD DATA statements. At a minimum, make sure the impala user is in the hive group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements on page 21 for
more details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

» The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 87.
With authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is
blocked by Impala itself. The actual low-level read and write requests are still done by the impala user, so you
must have appropriate file and directory permissions for that user ID.

* You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 98, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new
host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

| Impala Security | 85

Installation Considerations for Impala Security

Impala 1.1 comes set up with all the software and settings needed to enable security when you run the impalad
daemon with the new security-related options (-server name and —~authorization policy file). Youdo
not need to change any environment variables or install any additional JAR files.

Securing the Hive Metastore Database

It is important to secure the Hive metastore, so that users cannot access the names or other information about
databases and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive
metastore security, using the instructions in the documentation for your Apache Hadoop distribution for securing
different Hive components:

» Secure the Hive Metastore.

» In addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the
HiveServer2 server.

Securing the Impala Web User Interface

The instructions in this section presume you are familiar with the . htpasswd mechanism commonly used to
password-protect pages on web servers.

Password-protect the Impala web UI that listens on port 25000 by default. Setup a . htpasswd file in
the SIMPALA HOME directory, or start both the impalad and statestored daemons with the ——
webserver password file option to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or
any other system. The domain field in the password file must match the domain supplied to Impala by the new
command-line option —~—-webserver authentication domain. The defaultis mydomain.com.

Impala also supports using HTTPS for secure web traffic. To do so, set ——webserver certificate file
to refer to a valid . pem TLS/SSL certificate file. Impala will automatically start using HTTPS once the TLS/
SSL certificate has been read and validated. A . pem file is basically a private key, followed by a signed TLS/SSL
certificate; make sure to concatenate both parts when constructing the . pem file.

If Impala cannot find or parse the . pem file, it prints an error message and quits.
Note:

If the private key is encrypted using a passphrase, Impala will ask for that passphrase on startup, which is not
useful for a large cluster. In that case, remove the passphrase and make the . pem file readable only by Impala and
administrators.

When you turn on TLS/SSL for the Impala web UI, the associated URLs change from http: // prefixes to
https://. Adjust any bookmarks or application code that refers to those URLs.

Configuring TLS/SSL for Impala

Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such as
Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

http://en.wikipedia.org/wiki/.htpasswd

| Impala Security | 86

Using the Command Line

To enable SSL for when client applications connect to Impala, add both of the following flags to the impalad
startup options:

* --ssl server certificate: the full path to the server certificate, on the local filesystem.
*+ --ssl private key: the full path to the server private key, on the local filesystem.

In Impala 2.3 and higher, Impala can also use SSL for its own internal communication between the

impalad, statestored, and catalogd daemons. To enable this additional SSL encryption, set the ——

ssl server certificateand --ssl private key flags in the startup options for impalad,
catalogd, and statestored, and also add the -~—-ss1 client ca certificate flag for all three of those
daemons.

Warning: Prior to Impala 2.3.2, you could enable Kerberos authentication between Impala internal

/= % components, or SSL encryption between Impala internal components, but not both at the same time. This
restriction has now been lifted. See IMPALA-2598 to see the maintenance releases for different levels of
Impala where the fix has been published.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2
requests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala on page 781 for
details.)

Since Impala uses passphrase-less certificates in PEM format, you can reuse a host's existing Java keystore by using
the openss]1 toolkit to convert it to the PEM format.

Configuring TLS/SSL Communication for the Impala Shell
With SSL enabled for Impala, use the following options when starting the impala-shell interpreter:

*+ —-ssl:enables TLS/SSL for impala-shell.

* -—-ca_cert: the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate
for self-signed server certificates.

If -—ca cert isnot set, impala-shell enables TLS/SSL, but does not validate the server certificate. This is
useful for connecting to a known-good Impala that is only running over TLS/SSL, when a copy of the certificate is
not available (such as when debugging customer installations).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC
applications to Impala. See Configuring Impala to Work with JDBC on page 26 and Configuring Impala to Work
with ODBC on page 26 for details.

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Specifying TLS/SSL Minimum Allowed Version and Ciphers

Depending on your cluster configuration and the security practices in your organization, you might need to restrict
the allowed versions of TLS/SSL used by Impala. Older TLS/SSL versions might have vulnerabilities or lack certain
features. In Impala 2.10, you can use startup options for the impalad, catalogd, and statestored daemons to
specify a minimum allowed version of TLS/SSL.

Specify one of the following values for the ~——ss1 minimum version configuration setting:

* tlsvl: Allow any TLS version of 1.0 or higher. This setting is the default when TLS/SSL is enabled.
* tlsvl.1l: Allow any TLS version of 1.1 or higher.
* tlsvl.2: Allow any TLS version of 1.2 or higher.

https://issues.apache.org/jira/browse/IMPALA-2598

| Impala Security | 87

Along with specifying the version, you can also specify the allowed set of TLS ciphers by using the —-
ssl cipher 1list configuration setting. The argument to this option is a list of keywords, separated by colons,
commas, or spaces, and optionally including other notation. For example:

--ssl cipher 1list="RC4-SHA,RC4-MD5"

By default, the cipher list is empty, and Impala uses the default cipher list for the underlying platform. See the output
ofman ciphers for the full set of keywords and notation allowed in the argument string.

Enabling Sentry Authorization for Impala

Authorization determines which users are allowed to access which resources, and what operations they are allowed to
perform. In Impala 1.1 and higher, you use Apache Sentry for authorization. Sentry adds a fine-grained authorization
framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write operations
with the privileges of the impala user, which is suitable for a development/test environment but not for a secure
production environment. When authorization is enabled, Impala uses the OS user ID of the user who runs impala-
shell or other client program, and associates various privileges with each user.

Note: Sentry is typically used in conjunction with Kerberos authentication, which defines which hosts are allowed
to connect to each server. Using the combination of Sentry and Kerberos prevents malicious users from being able to
connect by creating a named account on an untrusted machine. See Enabling Kerberos Authentication for Impala on
page 98 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with
a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object
automatically inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The object hierarchy for Impala covers Server, URI, Database, Table, and Column. (The Table privileges apply to
views as well; anywhere you specify a table name, you can specify a view name instead.) Column-level authorization
is available in Impala 2.3 and higher. Previously, you constructed views to query specific columns and assigned
privilege based on the views rather than the base tables. Now, you can use Impala's GRANT Statement (Impala 2.0 or
higher only) on page 301 and REVOKE Statement (Impala 2.0 or higher only) on page 322 statements to assign

and revoke privileges from specific columns in a table.

A restricted set of privileges determines what you can do with each object:

SELECT privilege Lets you read data from a table or view, for example
with the SELECT statement, the INSERT. . .SELECT
syntax, or CREATE TABLE. . .LIKE. Also required
to issue the DESCRIBE statement or the EXPLAIN
statement for a query against a particular table. Only
objects for which a user has this privilege are shown in
the output for SHOW DATABASES and SHOW TABLES
statements. The REFRESH statement and INVALIDATE
METADATA statements only access metadata for tables
for which the user has this privilege.

INSERT privilege Lets you write data to a table. Applies to the INSERT
and LOAD DATA statements.

ALL privilege Lets you create or modify the object. Required to run
DDL statements such as CREATE TABLE, ALTER
TABLE, or DROP TABLE for a table, CREATE
DATABASE or DROP DATABASE for a database, or
CREATE VIEW, ALTER VIEW, or DROP VIEW for

| Impala Security | 88

a view. Also required for the URI of the “location”
parameter for the CREATE EXTERNAL TABLE and
LOAD DATA statements.

Privileges can be specified for a table or view before that object actually exists. If you do not have sufficient privilege
to perform an operation, the error message does not disclose if the object exists or not.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the
emphasis of privilege management is moving towards being SQL-based. Although currently Impala does not have
GRANT or REVOKE statements, Impala can make use of privileges assigned through GRANT and REVOKE statements
done through Hive. The mode of operation with GRANT and REVOKE statements instead of the policy file requires
that a special Sentry service be enabled; this service stores, retrieves, and manipulates privilege information stored
inside the metastore database.

Starting the impalad Daemon with Sentry Authorization Enabled

To run the impalad daemon with authorization enabled, you add one or more options to the
IMPALA SERVER_ARGS declaration in the /etc/default/impala configuration file:

* The -server name option turns on Sentry authorization for Impala. The authorization rules refer to a symbolic
server name, and you specify the name to use as the argument to the ~server name option.

» Ifyou specify just -server name, Impala uses the Sentry service for authorization, relying on the results of
GRANT and REVOKE statements issued through Hive. (This mode of operation is available in Impala 1.4.0 and
higher.) Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, also specify the -
authorization policy file option as in the following item.

» Specifying the ~authorization policy file option in additionto -~server name makes Impala
read privilege information from a policy file, rather than from the metastore database. The argument to the -
authorization policy file option specifies the HDFS path to the policy file that defines the privileges
on different schema objects.

For example, you might adapt your /etc/default/impala configuration to contain lines like the following. To
use the Sentry service rather than the policy file:

IMPALA_SERVER_ARGS=" \
-server name=serverl \

Or to use the policy file, as in releases prior to Impala 1.4:

IMPALA SERVER ARGS=" \
—authorization policy file=/user/hive/warehouse/auth-policy.ini \
—-server name=serverl \

The preceding examples set up a symbolic name of serverl to refer to the current instance of Impala. This
symbolic name is used in the following ways:

» Specify the serverl value for the sentry.hive.server property in the sentry-site.xml
configuration file for Hive, as well as in the ~server name option for impalad.

If the impalad daemon is not already running, start it as described in Starting Impala on page 30. If it is
already running, restart it with the command sudo /etc/init.d/impala-server restart.Runthe
appropriate commands on all the nodes where impalad normally runs.

» If you use the mode of operation using the policy file, the rules in the [roles] section of the policy file refer to
this same serverl name. For example, the following rule sets up a role report generator that lets users
with that role query any table in a database named reporting db on a node where the impalad daemon was
started up with the ~server name=serverl option:

[roles]

| Impala Security | 89

report generator = server=serverl->db=reporting db->table=*->action=SELECT

When impalad is started with one or both of the ~-server name=serverl and -
authorization policy file options, Impala authorization is enabled. If Impala detects any errors or
inconsistencies in the authorization settings or the policy file, the daemon refuses to start.

Using Impala with the Sentry Service (Impala 1.4 or higher only)

When you use the Sentry service rather than the policy file, you set up privileges through GRANT and REVOKE
statement in either Impala or Hive, then both components use those same privileges automatically. (Impala added the
GRANT and REVOKE statements in Impala 2.0.)

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the impalad
daemon when you specify both the ~server name and —~authorization policy file startup options. It
controls which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to
impalad, and what operations that user can perform on the objects.

Note:

The Sentry service, as described in Using Impala with the Sentry Service (Impala 1.4 or higher only) on page 89,
stores authorization metadata in a relational database. This means you can manage user privileges for Impala tables
using traditional GRANT and REVOKE SQL statements, rather than the policy file approach described here.If you are
still using policy files, migrate to the database-backed service whenever practical.

The location of the policy file is listed in the auth-site.xml configuration file. To minimize overhead, the
security information from this file is cached by each impalad daemon and refreshed automatically, with a default
interval of 5 minutes. After making a substantial change to security policies, restart all Impala daemons to pick up the
changes immediately.

Policy File Location and Format

The policy file uses the familiar . ini format, divided into the major sections [groups] and [roles]. There is
also an optional [databases] section, which allows you to specify a specific policy file for a particular database,
as explained in Using Multiple Policy Files for Different Databases on page 93. Another optional section,

[users], allows you to override the OS-level mapping of users to groups; that is an advanced technique primarily
for testing and debugging, and is beyond the scope of this document.

In the [groups] section, you define various categories of users and select which roles are associated with each
category. The group and usernames correspond to Linux groups and users on the server where the impalad daemon
runs.

The group and usernames in the [groups] section correspond to Linux groups and users on the server where the
impalad daemon runs. When you access Impala through the impalad interpreter, for purposes of authorization,
the user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access
Impala through the ODBC or JDBC interfaces, the user and password specified through the connection string are used
as login credentials for the Linux server, and authorization is based on that username and the associated Linux group
membership.

In the [roles] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That
is, which objects users with that role can access, and what operations they can perform on those objects. This is the
lowest-level category of security information; the other sections in the policy file map the privileges to higher-level
divisions of groups and users. In the [groups] section, you specify which roles are associated with which groups.
The group and usernames correspond to Linux groups and users on the server where the impalad daemon runs. The
privileges are specified using patterns like:

server=server name->db=database name->table=table name->action=SELECT
server=server name->db=database name->table=table name->action=CREATE
server=server name->db=database name->table=table name->action=ALL

| Impala Security | 90

For the server_name value, substitute the same symbolic name you specify with the impalad -server name
option. You can use * wildcard characters at each level of the privilege specification to allow access to all such
objects. For example:

server=impala-host.example.com->db=default->table=tl->action=SELECT
server=impala-host.example.com->db=*->table=*->action=CREATE
server=impala-host.example.com->db=*->table=audit log->action=SELECT
server=impala-host.example.com->db=default->table=tl->action=*

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any
user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user
are allowed; all other operations are not allowed. If a group or role is defined multiple times in the policy file, the last
definition takes precedence.

To understand the notion of whitelisting, set up a minimal policy file that does not provide any privileges

for any object. When you connect to an Impala node where this policy file is in effect, you get no results for

SHOW DATABASES, and an error when you issue any SHOW TABLES, USE database name, DESCRIBE
table name, SELECT, and or other statements that expect to access databases or tables, even if the corresponding
databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-
checked by each impalad node every 5 minutes. When you make a non-time-sensitive change such as adding
new privileges or new users, you can let the change take effect automatically a few minutes later. If you remove

or reduce privileges, and want the change to take effect immediately, restart the impalad daemon on all nodes,
again specifying the ~server name and ~authorization policy file options so that the rules from the
updated policy file are applied.

Examples of Policy File Rules for Security Scenarios

The following examples show rules that might go in the policy file to deal with various authorization-related
scenarios. For illustration purposes, this section shows several very small policy files with only a few rules each. In
your environment, typically you would define many roles to cover all the scenarios involving your own databases,
tables, and applications, and a smaller number of groups, whose members are given the privileges from one or more
roles.

A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error
messages do not disclose the names or existence of objects that the user is not authorized to read.

This is the experience you want a user to have if they somehow log into a system where they are
not an authorized Impala user. In a real deployment with a filled-in policy file, a user might have no
privileges because they are not a member of any of the relevant groups mentioned in the policy file.

Examples of Privileges for Administrative Users

When an administrative user has broad access to tables or databases, the associated rules in the
[roles] section typically use wildcards and/or inheritance. For example, in the following sample
policy file, db=* refers to all databases and db=*->table=* refers to all tables in all databases.

Omitting the rightmost portion of a rule means that the privileges apply to all the objects that could
be specified there. For example, in the following sample policy file, the al1 databases role has
all privileges for all tables in all databases, while the one database role has all privileges for all
tables in one specific database. The all databases role does not grant privileges on URIs, so

a group with that role could not issue a CREATE TABLE statement with a LOCATION clause. The
entire server role has all privileges on both databases and URIs within the server.

[groups]
supergroup = all databases

| Impala Security | 91

[roles]

read all tables = server=serverl->db=*->table=*->action=SELECT
all tables = server=serverl->db=*->table=*

all databases = server=serverl->db=*

one database = server=serverl->db=test db

entire server = server=serverl

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but
nothing else. They can see the tables and their parent databases in the output of SHOW TABLES and
SHOW DATABASES, USE the appropriate databases, and perform the relevant actions (SELECT
and/or INSERT) based on the table privileges. To actually create a table requires the ALL privilege
at the database level, so you might define separate roles for the user that sets up a schema and other
users or applications that perform day-to-day operations on the tables.

The following sample policy file shows some of the syntax that is appropriate as the policy file
grows, such as the # comment syntax, \ continuation syntax, and comma separation for roles
assigned to groups or privileges assigned to roles.

[groups]

employee = training sysadmin, instructor

visitor = student

[roles]

training sysadmin = server=serverl->db=training, \

server=serverl->db=instructor private, \
server=serverl->db=lesson_ development

instructor = server=serverl->db=training->table=*->action=%*, \
server=serverl->db=instructor private->table=*->action=%*, \
server=serverl->db=lesson development->table=lesson*

This particular course is all about queries, so the students
can SELECT but not INSERT or CREATE/DROP.

student = server=serverl->db=training->table=lesson *-

>action=SELECT

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS
location outside the normal Impala database directories, the user also needs appropriate permissions
on the URIs corresponding to those HDFS locations.

In this sample policy file:

* The external table role lets us insert into and query the Impala table,
external table.sample

» The staging dir role lets us specify the HDFS path /user/username/
external data with the LOAD DATA statement. Remember, when Impala queries or
loads data files, it operates on all the files in that directory, not just a single file, so any Impala
LOCATION parameters refer to a directory rather than an individual file.

* We included the IP address and port of the Hadoop name node in the HDFS URI of the
staging_ dir rule. We found those details in /etc/hadoop/conf/core-site.xml,
under the £s.default.name element. That is what we use in any roles that specify URIs
(that is, the locations of directories in HDFS).

* We start this example after the table external table.sample is already created. In the
policy file for the example, we have already taken away the external table admin role
from the username group, and replaced it with the lesser-privileged external table role.

| Impala Security | 92

* We assign privileges to a subdirectory underneath /user/username in HDFS, because such
privileges also apply to any subdirectories underneath. If we had assigned privileges to the
parent directory /user/username, it would be too likely to mess up other files by specifying
a wrong location by mistake.

* The username under the [groups] section refers to the username group. (In this example,
there is a username user that is a member of a username group.)

Policy file:
[groups]
username = external table, staging dir
[roles]
external table admin = server=serverl->db=external table
external table = server=serverl->db=external table-

>table=sample->action=*
staging dir = server=serverl->uri=hdfs://127.0.0.1:8020/user/
username/external data->action=*

impala-shell session:

[localhost:21000] > use external table;
Query: use external table
[localhost:21000] > show tables;

Query: show tables

Query finished, fetching results

B +
| name |
T +
| sample |
B +

Returned 1 row(s) in 0.02s

[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results

R +
| x|
fo———- +
1
| 5 |
| 150 |
R +

Returned 3 row(s) in 1.04s

[localhost:21000] > load data inpath '/user/username/
external data' into table sample;

Query: load data inpath '/user/username/external data' into
table sample

Query finished, fetching results

e +
| summary |
B ittt ettt ittt e e e e +
| Loaded 1 file(s) Total files in destination location: 2 |
e +

Returned 1 row(s) in 0.26s
[localhost:21000] > select * from sample;
Query: select * from sample

Query finished, fetching results

| Impala Security | 93

| |
| |
| |
| |
| 64738 |
| |
| |
| 5 |
| |
+

Returned 9 row(s) in 0.22s

[localhost:21000] > load data inpath '/user/username/

unauthorized data' into table sample;

Query: load data inpath '/user/username/unauthorized data' into
table sample

ERROR: AuthorizationException: User 'username' does not have
privileges to access: hdfs://127.0.0.1:8020/user/username/

unauthorized data

Separating Administrator Responsibility from Read and Write Privileges

Remember that to create a database requires full privilege on that database, while day-to-day
operations on tables within that database can be performed with lower levels of privilege on specific
table. Thus, you might set up separate roles for each database or application: an administrative one
that could create or drop the database, and a user-level one that can access only the relevant tables.

For example, this policy file divides responsibilities between users in 3 different groups:

* Members of the supergroup group have the training sysadmin role and so can set up
a database named training

* Members of the employee group have the instructor role and so can create, insert into,
and query any tables in the t raining database, but cannot create or drop the database itself.

* Members of the visitor group have the student role and so can query those tables in the
training database.

[groups]

supergroup = training sysadmin

employee = instructor

visitor = student

[roles]

training sysadmin = server=serverl->db=training

instructor = server=serverl->db=training->table=*->action=*
student = server=serverl->db=training->table=*->action=SELECT

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome to
update the security policy file for each privilege change or each new database, table, or view. You can allow security
to be managed separately for individual databases, by setting up a separate policy file for each database:

* Add the optional [databases] section to the main policy file.
* Add entries in the [databases] section for each database that has its own policy file.
» For each listed database, specify the HDFS path of the appropriate policy file.

For example:

[databases]

| Impala Security | 94

Defines the location of the per-DB policy files for the 'customers' and
'sales' databases.

customers = hdfs://ha-nn-uri/etc/access/customers.ini

sales = hdfs://ha-nn-uri/etc/access/sales.ini

To enable URIs in per-DB policy files, the Java configuration option sentry.allow.uri.db.policyfile
must be set to true. For example:

JAVA TOOL OPTIONS="-Dsentry.allow.uri.db.policyfile=true"

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of the db-level
policy file to grant himself/herself load privileges to anything the impala user has read permissions for in HDFS
(including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

Remember that in your role definitions, you specify privileges at the level of individual databases and tables, or all
databases or all tables within a database. To simplify the structure of these rules, plan ahead of time how to name your
schema objects so that data with different authorization requirements is divided into separate databases.

If you are adding security on top of an existing Impala deployment, remember that you can rename tables or even
move them between databases using the ALTER TABLE statement. In Impala, creating new databases is a relatively
inexpensive operation, basically just creating a new directory in HDFS.

You can also plan the security scheme and set up the policy file before the actual schema objects named in the policy
file exist. Because the authorization capability is based on whitelisting, a user can only create a new database or table
if the required privilege is already in the policy file: either by listing the exact name of the object being created, or a *
wildcard to match all the applicable objects within the appropriate container.

Privilege Model and Object Hierarchy

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with
a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object
automatically inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The kinds of objects in the schema hierarchy are:

Server

URI

Database
Table

The server name is specified by the ~server name option when impalad starts. Specify the same name for all
impalad nodes in the cluster.

URIs represent the HDFS paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD
DATA. Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdfs:// to
make clear that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege
applies to all the files in that directory and any directories underneath it.

In Impala 2.3 and higher, you can specify privileges for individual columns. Formerly, to specify read privileges at
this level, you created a view that queried specific columns and/or partitions from a base table, and gave SELECT
privilege on the view but not the underlying table. Now, you can use Impala's GRANT Statement (Impala 2.0 or
higher only) on page 301 and REVOKE Statement (Impala 2.0 or higher only) on page 322 statements to assign
and revoke privileges from specific columns in a table.

URIs must start with either hdfs:// or £ile://.If a URI starts with anything else, it will cause an exception and
the policy file will be invalid. When defining URIs for HDFS, you must also specify the NameNode. For example:

data read = server=serverl->uri=file:///path/to/dir, \

| Impala Security | 95

server=serverl->uri=hdfs://namenode:port/path/to/dir

' Warning:
L% 1 Because the NameNode host and port must be specified, enable High Availability (HA) to ensure that the URI
will remain constant even if the NameNode changes.

data read = server=serverl->uri=file:///path/to/dir,\ server=serverl-
>uri=hdfs://ha-nn-uri/path/to/dir

Table 1: Valid privilege types and objects they apply to

Privilege Object

INSERT DB, TABLE

SELECT DB, TABLE, COLUMN
ALL SERVER, TABLE, DB, URI

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do not use the
actual keyword ALL in the policy file. When you code role entries in the policy file:

» To specify the ALL privilege for a server, use a role like server=server name.

» To specify the ALL privilege for a database, use arole like server=server name->db=database name.

» To specify the ALL privilege for a table, use a role like server=server name->db=database name-
>table=table name->action=*.

Operation Scope Privileges URI
EXPLAIN TABLE; COLUMN SELECT

LOAD DATA TABLE INSERT URI
CREATE DATABASE SERVER ALL

DROP DATABASE DATABASE ALL

CREATE TABLE DATABASE ALL

DROP TABLE TABLE ALL

DESCRIBE TABLE TABLE SELECT/INSERT

-Output shows al/ columns
if the user has table level-
privileges or SELECT
privilege on at least one table

column

ALTER TABLE .. ADD TABLE ALL on DATABASE
COLUMNS

ALTER TABLE .. REPLACE TABLE ALL on DATABASE
COLUMNS

ALTER TABLE .. CHANGE TABLE ALL on DATABASE
column

ALTER TABLE .. RENAME TABLE ALL on DATABASE
ALTER TABLE .. SET TABLE ALL on DATABASE

TBLPROPERTIES

| Impala Security | 96

Operation Scope Privileges URI
ALTER TABLE .. SET TABLE ALL on DATABASE
FILEFORMAT

ALTER TABLE .. SET TABLE ALL on DATABASE URI
LOCATION

ALTER TABLE .. ADD TABLE ALL on DATABASE
PARTITION

ALTER TABLE .. ADD TABLE ALL on DATABASE URI
PARTITION location

ALTER TABLE .. DROP TABLE ALL on DATABASE
PARTITION

ALTER TABLE .. TABLE ALL on DATABASE
PARTITION SET

FILEFORMAT

ALTER TABLE .. SET TABLE ALL on DATABASE
SERDEPROPERTIES

CREATE VIEW DATABASE; SELECT on ALL

-This operation is allowed TABLE;

if you have column-level

SELECT access to the

columns being used.

DROP VIEW VIEW/TABLE ALL

ALTER VIEW You need ALL privilege ALL, SELECT

ALTER TABLE .. SET
LOCATION

CREATE EXTERNAL
TABLE

on the named view and
the parent database, plus
SELECT privilege for any
tables or views referenced
by the view query. Once
the view is created or

altered by a high-privileged

system administrator,

it can be queried by a
lower-privileged user who
does not have full query
privileges for the base
tables.

TABLE

Database (ALL), URI
(SELECT)

ALL on DATABASE URI

ALL, SELECT

| Impala Security | 97

Operation

Scope

Privileges URI

SELECT

-You can grant the SELECT
privilege on a view to give
users access to specific
columns of a table they do not
otherwise have access to.

-See the documentation for
Apache Sentry for details
on allowed column-level
operations.

USE <dbName>
CREATE FUNCTION
DROP FUNCTION

REFRESH <table name>
or REFRESH <table
name> PARTITION
(<partition_spec>)

INVALIDATE METADATA

INVALIDATE METADATA
<table name>

COMPUTE STATS

SHOW TABLE STATS,
SHOW PARTITIONS

SHOW COLUMN STATS
SHOW FUNCTIONS
SHOW TABLES

SHOW DATABASES,
SHOW SCHEMAS

VIEW/TABLE; COLUMN SELECT

Any
SERVER
SERVER
TABLE

SERVER
TABLE

TABLE
TABLE

TABLE
DATABASE

ALL
ALL
SELECT/INSERT

ALL
SELECT/INSERT

ALL
SELECT/INSERT

SELECT/INSERT
SELECT

No special privileges
needed to issue the
statement, but only
shows objects you are
authorized for

No special privileges
needed to issue the
statement, but only
shows objects you are
authorized for

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

* Addlog4j.logger.org.apache.sentry=DEBUG tothe 1og4j.properties file on each host in the
cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..

-

RequestPermission server...., result [true|false]

| Impala Security | 98

which indicate each evaluation Sentry makes. The FilePermission is from the policy file, while
RequestPermission is the privilege required for the query. A RequestPermission will iterate over all
appropriate FilePermission settings until a match is found. If no matching privilege is found, Sentry returns
false indicating “Access Denied” .

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important or
sensitive information out of the DEFAULT database into a named database whose privileges are specified in the policy
file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for example,
as a place you can reliably specify with a USE statement when preparing to drop a database.

Impala Authentication

Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such

as impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 87.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular users when they connect through Impala. See
Enabling Sentry Authorization for Impala on page 87 for details.

Enabling Kerberos Authentication for Impala

Impala supports an enterprise-grade authentication system called Kerberos. Kerberos provides strong security benefits
including capabilities that render intercepted authentication packets unusable by an attacker. It virtually eliminates the
threat of impersonation by never sending a user's credentials in cleartext over the network. For more information on
Kerberos, visit the MIT Kerberos website.

The rest of this topic assumes you have a working Kerberos Key Distribution Center (KDC) set up. To enable
Kerberos, you first create a Kerberos principal for each host running impalad or statestored.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 87.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala
on page 101.

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the
impala-shell interpreter to connect to a Kerberos-enabled Impala cluster:

sudo yum install python-devel openssl-devel python-pip
sudo pip-python install ssl

Important:

https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/krb5-latest/doc/admin/install_kdc.html

| Impala Security | 99

If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be renewed, and

you must configure krb5 . conf to request renewable tickets. Typically, you can do this by adding the
max_renewable 1ife setting to your realm in kdc . conf, and by adding the renew 1ifetime parameter
to the 1ibdefaults section of krb5. conf. For more information about renewable tickets, see the Kerberos
documentation.

Currently, you cannot use the resource management feature on a cluster that has Kerberos authentication enabled.

Start all impalad and statestored daemons with the ——principal and —-keytab-file flags set to the
principal and full path name of the keytab file containing the credentials for the principal.

To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

To enable Impala to work with Kerberos security on your Hadoop cluster, make sure you perform the installation
and configuration steps in Authentication in Hadoop. Note that when Kerberos security is enabled in Impala, a web
browser that supports Kerberos HTTP SPNEGO is required to access the Impala web console (for example, Firefox,
Internet Explorer, or Chrome).

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager, NodeManagers,
HttpFS, Oozie, Impala, or Impala statestore services are configured to use Kerberos HTTP SPNEGO authentication,
and two or more of these services are running on the same host, then all of the running services must use the same
HTTP principal and keytab file used for their HTTP endpoints.

Configuring Impala to Support Kerberos Security
Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

» Creating service principals for Impala and the HTTP service. Principal names take the form:
serviceName/fully.qualified.domain.name@KERBEROS .REALM.

In Impala 2.0 and later, user () returns the full Kerberos principal string, such as user@example.com, ina
Kerberized environment.

» Creating, merging, and distributing key tab files for these principals.
» Editing /etc/default/impala to accommodate Kerberos authentication.

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the
fully qualified domain name of each node running impalad, and the realm name. For example:

$ kadmin
kadmin: addprinc -requires preauth -randkey impala/
impala host.example.com@TEST.EXAMPLE.COM

2. Create an HTTP service principal. For example:
kadmin: addprinc -randkey HTTP/impala host.example.com@TEST.EXAMPLE.COM

Note: The HTTP component of the service principal must be uppercase as shown in the preceding example.
3. Create keytab files with both principals. For example:

kadmin: xst -k impala.keytab impala/impala host.example.com
kadmin: xst -k http.keytab HTTP/impala host.example.com
kadmin: quit

4. Use ktutil to read the contents of the two keytab files and then write those contents to a new file. For example:

$ ktutil

ktutil: rkt impala.keytab
ktutil: rkt http.keytab
ktutil: wkt impala-http.keytab
ktutil: quit

http://web.mit.edu/Kerberos/krb5-1.8/
http://web.mit.edu/Kerberos/krb5-1.8/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SecureMode.html#Authentication

| Impala Security | 100

5. (Optional) Test that credentials in the merged keytab file are valid, and that the “renew until” date is in the future.
For example:

S klist -e -k -t impala-http.keytab

6. Copy the impala-http.keytab file to the Impala configuration directory. Change the permissions to be only
read for the file owner and change the file owner to the impala user. By default, the Impala user and group are
both named impala. For example:

cp impala-http.keytab /etc/impala/conf
cd /etc/impala/conf

chmod 400 impala-http.keytab

chown impala:impala impala-http.keytab

Ur Ur > -

7. Add Kerberos options to the Impala defaults file, /etc/default/impala. Add the options
for both the impalad and statestored daemons, using the IMPALA SERVER ARGS and
IMPALA STATE STORE ARGS variables. For example, you might add:

-kerberos reinit interval=60
-principal=impala 1/impala host.example.com@TEST.EXAMPLE.COM
-keytab file=/path/to/impala.keytab

For more information on changing the Impala defaults specified in /etc/default/impala, see Modifving
Impala Startup Options.

Note: Restart impalad and statestored for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual
impalad daemons on different hosts in the cluster. This configuration avoids connection problems in case of
machine failure, because the proxy server can route new requests through one of the remaining hosts in the cluster.
This configuration also helps with load balancing, because the additional overhead of being the “coordinator node”
for each query is spread across multiple hosts.

Although you can set up a proxy server with or without Kerberos authentication, typically users set up a secure
Kerberized configuration. For information about setting up a proxy server for Impala, including Kerberos-specific
steps, see Using Impala through a Proxy for High Availability on page 77.

Using a Web Browser to Access a URL Protected by Kerberos HTTP SPNEGO
Your web browser must support Kerberos HTTP SPNEGO. For example, Chrome, Firefox, or Internet Explorer.

To configure Firefox to access a URL protected by Kerberos HTTP SPNEGO:

1. Open the advanced settings Firefox configuration page by loading the about : config page.

2. Use the Filter text box to find network.negotiate-auth.trusted-uris.

3. Double-click the network.negotiate-auth.trusted-uris preference and enter the hostname or
the domain of the web server that is protected by Kerberos HTTP SPNEGO. Separate multiple domains and
hostnames with a comma.

4. Click OK.

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and BI Tools on page 104 for details about the delegation feature that
lets certain users submit queries using the credentials of other users.

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC
applications to Impala. See Configuring Impala to Work with JDBC on page 26 and Configuring Impala to Work
with ODBC on page 26 for details.

| Impala Security | 101

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Enabling Access to Internal Impala APIs for Kerberos Users

For applications that need direct access to Impala APIs, without going through the HiveServer2 or Beeswax
interfaces, you can specify a list of Kerberos users who are allowed to call those APIs. By default, the impala and
hdfs users are the only ones authorized for this kind of access. Any users not explicitly authorized through the
internal principals whitelist configuration setting are blocked from accessing the APIs. This setting
applies to all the Impala-related daemons, although currently it is primarily used for HDFS to control the behavior of
the catalog server.

Mapping Kerberos Principals to Short Names for Impala

In Impala 2.6 and higher, Impala recognizes the auth to_ local setting, specified through the HDFS
configuration setting hadoop.security.auth to local. This feature is disabled by default, to avoid an
unexpected change in security-related behavior. To enable it:

* Specify --1load auth to local rules=true inthe impalad and catalogd configuration settings.

Kerberos-Related Memory Overhead for Large Clusters

On a kerberized cluster with high memory utilization, kinit commands executed after every
'kerberos_reinit interval' may cause out-of-memory errors, because executing the command involves a
fork of the Impala process. The error looks similar to the following:

Failed to obtain Kerberos ticket for principal: <varname>principal details</
varname>

Failed to execute shell cmd: 'kinit -k -t <varname>keytab details</
varname>"',

error was: Error (l2): Cannot allocate memory

The following command changes the vmm. overcommit memory setting immediately on a running host. However,
this setting is reset when the host is restarted.

echo 1 > /proc/sys/vm/overcommit memory
To change the setting in a persistent way, add the following line to the /etc/sysctl.conf file:
vm.overcommit memory=1

Then run sysctl -p. No reboot is needed.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala uses LDAP for authentication, verifying the credentials of each user who connects through impala-
shell, Hue, a Business Intelligence tool, JDBC or ODBC application, and so on.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 87.

| Impala Security | 102

An alternative form of authentication you can use is Kerberos, described in Enabling Kerberos Authentication for
Impala on page 98.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 adds support for secure
LDAP authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the
scenes.

Client-Server Considerations for LDAP
Only client->Impala connections can be authenticated by LDAP.

You must use the Kerberos authentication mechanism for connections between internal Impala components, such
as between the impalad, statestored, and catalogd daemons. See Enabling Kerberos Authentication for
Impala on page 98 on how to set up Kerberos for Impala.

Server-Side LDAP Setup
These requirements apply on the server side when configuring and starting Impala:
To enable LDAP authentication, set the following startup options for impalad:

* --enable ldap auth enables LDAP-based authentication between the client and Impala.

* --1ldap uri sets the URI of the LDAP server to use. Typically, the URI is prefixed with 1dap://. In
Impala 1.4.0 and higher, you can specify secure SSL-based LDAP transport by using the prefix 1daps://.
The URI can optionally specify the port, for example: 1dap://ldap server.example.com:389 or
ldaps://1ldap_server.example.com: 636. (389 and 636 are the default ports for non-SSL and SSL
LDAP connections, respectively.)

» For 1daps:// connections secured by SSL, ~-1dap ca certificate="/path/to/certificate/
pem" specifies the location of the certificate in standard . PEM format. Store this certificate on the local
filesystem, in a location that only the impala user and other trusted users can read.

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, 'henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the impalad daemon on each DataNode:

*+ --ldap domain: Replaces the username with a string username@ldap domain.

*+ --ldap baseDN: Replaces the username with a “distinguished name” (DN) of the form:
uid=userid, ldap baseDN. (This is equivalent to a Hive option).
*+ --ldap bind pattern: This is the most general option, and replaces the username with the string
ldap bind pattern where all instances of the string #UID are replaced with userid. For example, an
ldap bind pattern of "user=#UID, OU=foo, CN=bar" with a username of henry will construct a
bind name of "user=henry, OU=foo, CN=bar".

These options are mutually exclusive; Impala does not start if more than one of these options is specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

| Impala Security | 103

For SSL-enabled LDAP connections, specify a prefix of 1daps: // instead of 1dap: //. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS,
specify the following flags as startup options to the impalad daemon:

* --ldap tls tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be
done.
* --ldap ca certificate="/path/to/certificate/pem" specifies the location of the certificate in

standard . PEM format. Store this certificate on the local filesystem, in a location that only the impala user and
other trusted users can read.
LDAP Authentication for impala-shell Interpreter

To connect to Impala using LDAP authentication, you specify command-line options to the impala-shell
command interpreter and enter the password when prompted:

e -1 enables LDAP authentication.

» —u sets the user. Per Active Directory, the user is the short username, not the full LDAP distinguished name.
If your LDAP settings include a search base, use the ~—~1dap bind pattern onthe impalad daemon to
translate the short user name from impala-shell automatically to the fully qualified name.

* impala-shell automatically prompts for the password.
For the full list of available impala-shell options, see impala-shell Configuration Options on page 618.

LDAP authentication for JDBC applications: See Configuring Impala to Work with JDBC on page 26 for the
format to use with the JDBC connection string for servers using LDAP authentication.

Enabling LDAP for Impalain Hue

Enabling LDAP for Impala in Hue Using the Command Line

LDAP authentication for the Impala app in Hue can be enabled by setting the following properties under the
[impala] sectionin hue.ini.

auth username LDAP username of Hue user to be authenticated.

auth_password LDAP password of Hue user to be authenticated.

These login details are only used by Impala to authenticate to LDAP. The Impala service trusts Hue to have already
validated the user being impersonated, rather than simply passing on the credentials.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and BI Tools on page 104 for details about the delegation feature that
lets certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each impalad daemon can
accept both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users
authenticate through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each impalad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that

http://en.wikipedia.org/wiki/Transport_Layer_Security

| Impala Security | 104

was set up with the appropriate authentication type. Once the initial request was made using either Kerberos or
LDAP authentication, Impala automatically handled the process of coordinating the work across multiple nodes and
transmitting intermediate results back to the coordinator node.

Configuring Impala Delegation for Hue and Bl Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool,
typically all requests are treated as coming from the same user. In Impala 1.2 and higher, authentication is extended
by a new feature that allows applications to pass along credentials for the users that connect to them (known as
“delegation”), and issue Impala queries with the privileges for those users. Currently, the delegation feature is
available only for Impala queries submitted through application interfaces such as Hue and BI tools; for example,
Impala cannot issue queries using the privileges of the HDFS user.

The delegation feature is enabled by a startup option for impalad: ~-—authorized proxy user config.
When you specify this option, users whose names you specify (such as hue) can delegate the execution of a query to
another user. The query runs with the privileges of the delegated user, not the original user such as hue. The name of
the delegated user is passed using the HiveServer2 configuration property impala.doas.user.

You can specify a list of users that the application user can delegate to, or * to allow a superuser to delegate to any
other user. For example:

impalad --authorized proxy user config 'hue=userl,user2;admin=*"
Note: Make sure to use single quotes or escape characters to ensure that any * characters do not undergo wildcard
expansion when specified in command-line arguments.

See Modifying Impala Startup Options on page 31 for details about adding or changing impalad startup
options. See this blog post for background information about the delegation capability in HiveServer2.

To set up authentication for the delegated users:

* On the server side, configure either user/password authentication through LDAP, or Kerberos authentication,
for all the delegated users. See Enabling LDAP Authentication for Impala on page 101 or Enabling Kerberos
Authentication for Impala on page 98 for details.

* On the client side, to learn how to enable delegation, consult the documentation for the ODBC driver you are
using.

Auditing Impala Operations

To monitor how Impala data is being used within your organization, ensure that your Impala authorization and
authentication policies are effective. To detect attempts at intrusion or unauthorized access to Impala data, you can
use the auditing feature in Impala 1.2.1 and higher:

» Enable auditing by including the option ~audit event log dir=directory pathinyour impalad
startup options. The log directory must be a local directory on the server, not an HDFS directory.

* Decide how many queries will be represented in each audit event log file. By default, Impala starts
a new audit event log file every 5000 queries. To specify a different number, include the option ——
max audit event log file size=number of queriesinthe impalad startup options.

* InImpala 2.9 and higher, you can control how many audit event log files are kept on each host. Specify the option
--max_audit event log files=number of log files inthe impalad startup options. Once the
limit is reached, older files are rotated out using the same mechanism as for other Impala log files. The default
value for this setting is 0, representing an unlimited number of audit event log files.

» Use a cluster manager with governance capabilities to filter, visualize, and produce reports based on the audit logs
collected from all the hosts in the cluster.

Durability and Performance Considerations for Impala Auditing

The auditing feature only imposes performance overhead while auditing is enabled.

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/

| Impala Security | 105

Because any Impala host can process a query, enable auditing on all hosts where the impalad daemon runs. Each
host stores its own log files, in a directory in the local filesystem. The log data is periodically flushed to disk (through
an fsync () system call) to avoid loss of audit data in case of a crash.

The runtime overhead of auditing applies to whichever host serves as the coordinator for the query, that is, the host
you connect to when you issue the query. This might be the same host for all queries, or different applications or users
might connect to and issue queries through different hosts.

To avoid excessive 1/O overhead on busy coordinator hosts, Impala syncs the audit log data (using the fsync ()
system call) periodically rather than after every query. Currently, the fsync () calls are issued at a fixed interval,
every 5 seconds.

By default, Impala avoids losing any audit log data in the case of an error during a logging operation (such as a disk
full error), by immediately shutting down impalad on the host where the auditing problem occurred. You can
override this setting by specifying the option ~abort on failed audit event=falseinthe impalad
startup options.

Format of the Audit Log Files

The audit log files represent the query information in JSON format, one query per line. Typically, rather than looking
at the log files themselves, you should use cluster-management software to consolidate the log data from all Impala
hosts and filter and visualize the results in useful ways. (If you do examine the raw log data, you might run the files
through a JSON pretty-printer first.)

All the information about schema objects accessed by the query is encoded in a single nested record on the same line.
For example, the audit log for an INSERT ... SELECT statement records that a select operation occurs on the
source table and an insert operation occurs on the destination table. The audit log for a query against a view records
the base table accessed by the view, or multiple base tables in the case of a view that includes a join query. Every
Impala operation that corresponds to a SQL statement is recorded in the audit logs, whether the operation succeeds or
fails. Impala records more information for a successful operation than for a failed one, because an unauthorized query
is stopped immediately, before all the query planning is completed.

The information logged for each query includes:
* Client session state:

» Session ID

» User name

* Network address of the client connection
* SQL statement details:

* Query ID

» Statement Type - DML, DDL, and so on

* SQL statement text

» Execution start time, in local time

» Execution Status - Details on any errors that were encountered
» Target Catalog Objects:

* Object Type - Table, View, or Database
* Fully qualified object name
» Privilege - How the object is being used (SELECT, INSERT, CREATE, and so on)

Which Operations Are Audited

The kinds of SQL queries represented in the audit log are:

* Queries that are prevented due to lack of authorization.

* Queries that Impala can analyze and parse to determine that they are authorized. The audit data is recorded
immediately after Impala finishes its analysis, before the query is actually executed.

| Impala SQL Language Reference | 106

The audit log does not contain entries for queries that could not be parsed and analyzed. For example, a query that
fails due to a syntax error is not recorded in the audit log. The audit log also does not contain queries that fail due to a
reference to a table that does not exist, if you would be authorized to access the table if it did exist.

Certain statements in the impala-shell interpreter, such as CONNECT, SUMMARY, PROFILE, SET, and QUIT,
do not correspond to actual SQL queries, and these statements are not reflected in the audit log.

Viewing Lineage Information for Impala Data

Lineage is a feature that helps you track where data originated, and how data propagates through the system through
SQL statements such as SELECT, INSERT, and CREATE TABLE AS SELECT.

This type of tracking is important in high-security configurations, especially in highly regulated industries such as
healthcare, pharmaceuticals, financial services and intelligence. For such kinds of sensitive data, it is important to
know all the places in the system that contain that data or other data derived from it; to verify who has accessed that
data; and to be able to doublecheck that the data used to make a decision was processed correctly and not tampered
with.

Column Lineage
Column lineage tracks information in fine detail, at the level of particular columns rather than entire tables.

For example, if you have a table with information derived from web logs, you might copy that data into other tables
as part of the ETL process. The ETL operations might involve transformations through expressions and function calls,
and rearranging the columns into more or fewer tables (normalizing or denormalizing the data). Then for reporting,
you might issue queries against multiple tables and views. In this example, column lineage helps you determine that
data that entered the system as RAW LOGS . FIELD1 was then turned into WEBSITE REPORTS.IP ADDRESS
through an INSERT ... SELECT statement. Or, conversely, you could start with a reporting query against a view,
and trace the origin of the data in a field such as TOP_10 VISITORS.USER_ID back to the underlying table and
even further back to the point where the data was first loaded into Impala.

When you have tables where you need to track or control access to sensitive information at the column level, see
Enabling Sentry Authorization for Impala on page 87 for how to implement column-level security. You set

up authorization using the Sentry framework, create views that refer to specific sets of columns, and then assign
authorization privileges to those views rather than the underlying tables.

Lineage Data for Impala

The lineage feature is enabled by default. When lineage logging is enabled, the serialized column lineage graph is
computed for each query and stored in a specialized log file in JSON format.

Impala records queries in the lineage log if they complete successfully, or fail due to authorization errors. For write
operations such as INSERT and CREATE TABLE AS SELECT, the statement is recorded in the lineage log only if
it successfully completes. Therefore, the lineage feature tracks data that was accessed by successful queries, or that
was attempted to be accessed by unsuccessful queries that were blocked due to authorization failure. These kinds of
queries represent data that really was accessed, or where the attempted access could represent malicious activity.

Impala does not record in the lineage log queries that fail due to syntax errors or that fail or are cancelled before they
reach the stage of requesting rows from the result set.

To enable or disable this feature, set or remove the ~-1ineage event log dir configuration option for the
impalad daemon.

Impala SQL Language Reference

Impala uses SQL as its query language. To protect user investment in skills development and query design, Impala
provides a high degree of compatibility with the Hive Query Language (HiveQL):

| Impala SQL Language Reference | 107

» Because Impala uses the same metadata store as Hive to record information about table structure and properties,
Impala can access tables defined through the native Impala CREATE TABLE command, or tables created using
the Hive data definition language (DDL).

» Impala supports data manipulation (DML) statements similar to the DML component of HiveQL.
» Impala provides many built-in functions with the same names and parameter types as their HiveQL equivalents.

Impala supports most of the same statements and clauses as HiveQL, including, but not limited to JOIN,
AGGREGATE, DISTINCT, UNION ALL, ORDER BY, LIMIT and (uncorrelated) subquery in the FROM clause.
Impala also supports INSERT INTO and INSERT OVERWRITE.

Impala supports data types with the same names and semantics as the equivalent Hive data types: STRING,
TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, BOOLEAN, STRING, TIMESTAMP.

For full details about Impala SQL syntax and semantics, see Impala SQL Statements on page 223.

Most HiveQL SELECT and INSERT statements run unmodified with Impala. For information about Hive syntax not
available in Impala, see SQL Differences Between Impala and Hive on page 610.

For a list of the built-in functions available in Impala queries, see Impala Built-In Functions on page 422.

Comments

Impala supports the familiar styles of SQL comments:

* All text from a —- sequence to the end of the line is considered a comment and ignored. This type of comment can
occur on a single line by itself, or after all or part of a statement.

* All text from a /* sequence to the next */ sequence is considered a comment and ignored. This type of comment
can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a
statement, or before or after a statement.

For example:

-— This line is a comment about a table.

create table ...;
/*
This is a multi-line comment about a query.
*/
3@LEEE o008
select * from t /* This is an embedded comment about a query. */ where ...;
select * from t -- This is a trailing comment within a multi-line command.
where ...;
Data Types

Impala supports a set of data types that you can use for table columns, expression values, and function arguments and
return values.

Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing a table containing any
columns with unsupported types causes an error.
For the notation to write literals of each of these data types, see Literals on page 183.

See SOL Differences Between Impala and Hive on page 610 for differences between Impala and Hive data types.

| Impala SQL Language Reference | 108

ARRAY Complex Type (Impala 2.3 or higher only)

A complex data type that can represent an arbitrary number of ordered elements. The elements can be scalars or
another complex type (ARRAY, STRUCT, or MAP).

Syntax:
column name ARRAY < type >
type ::= primitive type | complex type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 152 for
background information and usage examples.

The elements of the array have no names. You refer to the value of the array item using the ITEM pseudocolumn,
or its position in the array with the POS pseudocolumn. See ITEM and POS Pseudocolumns on page 166 for
information about these pseudocolumns.

Each row can have a different number of elements (including none) in the array for that row.

When an array contains items of scalar types, you can use aggregation functions on the array elements without using
join notation. For example, you can find the COUNT (), AVG (), SUM (), and so on of numeric array elements, or
the MAX () and MIN () of any scalar array elements by referring to table name.array column inthe FROM
clause of the query. When you need to cross-reference values from the array with scalar values from the same row,
such as by including a GROUP BY clause to produce a separate aggregated result for each row, then the join clause is
required.

A common usage pattern with complex types is to have an array as the top-level type for the column: an array of
structs, an array of maps, or an array of arrays. For example, you can model a denormalized table by creating a
column that is an ARRAY of STRUCT elements; each item in the array represents a row from a table that would
normally be used in a join query. This kind of data structure lets you essentially denormalize tables by associating
multiple rows from one table with the matching row in another table.

You typically do not create more than one top-level ARRAY column, because if there is some relationship between
the elements of multiple arrays, it is convenient to model the data as an array of another complex type element (either
STRUCT or MAP).

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al.Iftable T1 contained a STRUCT column S1, and a field F'1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE tl.sl.fl. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Added in: Impala 2.3.0
Restrictions:

* Columns with this data type can only be used in tables or partitions with the Parquet file format.
* Columns with this data type cannot be used as partition key columns in a partitioned table.
+ The COMPUTE STATS statement does not produce any statistics for columns of this data type.

* The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» See Limitations and Restrictions for Complex Types on page 156 for a full list of limitations and associated
guidelines about complex type columns.

Kudu considerations:

Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

| Impala SQL Language Reference | 109

Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

The following example shows how to construct a table with various kinds of ARRAY columns, both at the top level
and nested within other complex types. Whenever the ARRAY consists of a scalar value, such as in the PETS column
or the CHILDREN field, you can see that future expansion is limited. For example, you could not easily evolve the
schema to record the kind of pet or the child's birthday alongside the name. Therefore, it is more common to use an
ARRAY whose elements are of STRUCT type, to associate multiple fields with each array element.

Note: Practice the CREATE TABLE and query notation for complex type columns using empty tables, until you can
visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE array demo

(
id BIGINT,
name STRING,

-— An ARRAY of scalar type as a top-level column.
pets ARRAY <STRING>,

-— An ARRAY with elements of complex type (STRUCT).
places lived ARRAY < STRUCT <
place: STRING,
start year: INT
>>, N

-— An ARRAY as a field (CHILDREN) within a STRUCT.
—-— (The STRUCT is inside another ARRAY, because it is rare
—-—- for a STRUCT to be a top-level column.)
marriages ARRAY < STRUCT <
spouse: STRING,
children: ARRAY <STRING>
>>,

—-— An ARRAY as the value part of a MAP.
-— The first MAP field (the key) would be a value such as
—-- 'Parent' or 'Grandparent', and the corresponding array would
-- represent 2 parents, 4 grandparents, and so on.
ancestors MAP < STRING, ARRAY <STRING> >

)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more ARRAY columns by
using the DESCRIBE statement. You can visualize each ARRAY as its own two-column table, with columns ITEM
and POS.

DESCRIBE array demo;

o= e +
| name | type
o= e i e e L e +
id bigint
name string
pets array<string>
marriages array<struct<

children:array<string>
>>
array<struct<

place:string,

start year:int

places lived

|
|
|
|
spouse:string,
|
|
|
|
|

| Impala SQL Language Reference | 110

| | >> |

| pos | bigint |

| struct< |
| spouse:string, |
| children:array<string> |
| |
| |

| struct< |
| place:string, |
| start year:int |
| |
| |

- o — +
| name | type

- o — +
| key | string |
| value | array<string> |
t—————— o — +

The following example shows queries involving ARRAY columns containing elements of scalar or complex types.
You “unpack” each ARRAY column by referring to it in a join query, as if it were a separate table with TTEM and
POS columns. If the array element is a scalar type, you refer to its value using the I TEM pseudocolumn. If the array
element is a STRUCT, you refer to the STRUCT fields using dot notation and the field names. If the array element is
another ARRAY or a MAP, you use another level of join to unpack the nested collection elements.

-—- Array of scalar values.

-- Each array element represents a single string, plus we know its position
in the array.

SELECT id, name, pets.pos, pets.item FROM array demo, array demo.pets;

-- Array of structs.

-- Now each array element has named fields, possibly of different types.
-- You can consider an ARRAY of STRUCT to represent a table inside another
table.

SELECT id, name, places lived.pos, places lived.item.place,

places lived.item.start year

FROM array demo, array demo.places lived;

-— The .ITEM name is optional for array elements that are structs.

| Impala SQL Language Reference | 111

-- The following query is equivalent to the previous one, with .ITEM
-- removed from the column references.
SELECT id, name, places lived.pos, places lived.place,
places lived.start year
FROM array demo, array demo.places lived;

-- To filter specific items from the array, do comparisons against the .POS
or .ITEM
-- pseudocolumns, or names of struct fields, in the WHERE clause.
SELECT id, name, pets.item FROM array demo, array demo.pets
WHERE pets.pos in (0, 1, 3);

SELECT id, name, pets.item FROM array demo, array demo.pets
WHERE pets.item LIKE 'Mr. %';

SELECT id, name, places lived.pos, places lived.place,
places lived.start year

FROM array demo, array demo.places lived
WHERE places lived.place like '%California%';

Related information:

Complex Types (Impala 2.3 or higher only) on page 152, STRUCT Complex Type (Impala 2.3 or higher only) on
page 135, MAP Complex Type (Impala 2.3 or higher only) on page 128

BIGINT Data Type
An 8-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name BIGINT

Range: -9223372036854775808 .. 9223372036854775807. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a floating-point type (FLOAT or DOUBLE) automatically.
USeCAST()tocm“wﬂtoTINYINT,SMALLINT,INT,STRING,orTIMESTAMP.Caﬁhgzmjnmgm

or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting ——
use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Examples:

CREATE TABLE tl (x BIGINT);
SELECT CAST (1000 AS BIGINT) ;

Usage notes:

BIGINT is a convenient type to use for column declarations because you can use any kind of integer values in
INSERT statements and they are promoted to BIGINT where necessary. However, BIGINT also requires the most
bytes of any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possible if
you overuse this type. Therefore, prefer to use the smallest integer type with sufficient range to hold all input values,
and CAST () when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the BIGINT type, call the functions MIN BIGINT ()
andMAX_BIGINT(L

If an integer value is too large to be represented as a BIGINT, use a DECIMAL instead with sufficient digits of
precision.

| Impala SQL Language Reference | 112

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as an 8-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT 64 type, which
is represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was
imported this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 423

BOOLEAN Data Type
A data type used in CREATE TABLE and ALTER TABLE statements, representing a single true/false choice.
Syntax:

In the column definition of a CREATE TABLE statement:
column name BOOLEAN

Range: TRUE or FALSE. Do not use quotation marks around the TRUE and FALSE literal values. You can write
the literal values in uppercase, lowercase, or mixed case. The values queried from a table are always returned in
lowercase, true or false.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an
explicit call to the CAST () function.

You can use CAST () to convert any integer or floating-point type to BOOLEAN: a value of 0 represents false, and

any non-zero value is converted to true.

SELECT CAST (42 AS BOOLEAN) AS nonzero_int, CAST (99.44 AS BOOLEAN) AS
nonzero decimal,

CAST (000 AS BOOLEAN) AS zero int, CAST(0.0 AS BOOLEAN) AS zero decimal;
e ————— e e ————— e —— +
| nonzero int | nonzero decimal | zero int | zero decimal |
fomm o fomm fomm - +
| true | true | false | false
fomm B fomm fomm - +

When you cast the opposite way, from BOOLEAN to a numeric type, the result becomes either 1 or 0:

SELECT CAST (true AS INT) AS true int, CAST(true AS DOUBLE) AS true double,
CAST (false AS INT) AS false int, CAST(false AS DOUBLE) AS false double;
Fommmmmmm=o Fommmmmmmmom=s Fommmmmmmo=s Fommmmmmmmmmm=s +

| Impala SQL Language Reference | 113

You can cast DECIMAL values to BOOLEAN, with the same treatment of zero and non-zero values as the other
numeric types. You cannot cast a BOOLEAN to a DECIMAL.

You cannot cast a STRING value to BOOLEAN, although you can cast a BOOLEAN value to STRING, returning '1"'
for true values and '0' for false values.

Although you can cast a TIMESTAMP to a BOOLEAN or a BOOLEAN to a TIMESTAMP, the results are unlikely to
be useful. Any non-zero TIMESTAMP (that is, any value other than 1970-01-01 00:00:00) becomes TRUE
when converted to BOOLEAN, while 1970-01-01 00:00:00 becomes FALSE. A value of FALSE becomes
1970-01-01 00:00:00 when converted to BOOLEAN, and TRUE becomes one second past this epoch date, that
is,1970-01-01 00:00:01.

NULL considerations: An expression of this type produces a NULL value if any argument of the expression is NULL.
Partitioning:

Do not use a BOOLEAN column as a partition key. Although you can create such a table, subsequent operations
produce errors:

[localhost:21000] > create table truth table (assertion string) partitioned
by (truth boolean);

[localhost:21000] > insert into truth table values ('Pigs can fly',6 false);

ERROR: AnalysisException: INSERT into table with BOOLEAN partition column
(Eruth) is not supported: partitioning.truth table

Examples:
SELECT 1 < 2;
SELECT 2 = 5;

SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING, really BOOLEAN) ;
INSERT INTO assertions VALUES
("1 is less than 2", 1 < 2),
("2 is the same as 5", 2 = 5),
("Grass is green", true),
("The moon is made of green cheese", false);
SELECT claim FROM assertions WHERE really = TRUE;

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information: Boolean Literals on page 186, SQL Operators on page 187, Impala Conditional
Functions on page 509
CHAR Data Type (Impala 2.0 or higher only)

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are
longer than the specified length, Impala truncates any trailing characters.

| Impala SQL Language Reference | 114

Syntax:

In the column definition of a CREATE TABLE statement:
column name CHAR (length)

The maximum length you can specify is 255.
Semantics of trailing spaces:

* When you store a CHAR value shorter than the specified length in a table, queries return the value padded with
trailing spaces if necessary; the resulting value has the same length as specified in the column definition.

» Ifyou store a CHAR value containing trailing spaces in a table, those trailing spaces are not stored in the data file.
When the value is retrieved by a query, the result could have a different number of trailing spaces. That is, the
value includes however many spaces are needed to pad it to the specified length of the column.

» If you compare two CHAR values that differ only in the number of trailing spaces, those values are considered
identical.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:

» This type can be read from and written to Parquet files.

» There is no requirement for a particular level of Parquet.

» Parquet files generated by Impala and containing this type can be freely interchanged with other components such
as Hive and MapReduce.

* Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.

» Parquet data files might contain values that are longer than allowed by the CHAR (n) length limit. Impala ignores
any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files might contain values that are longer than allowed for a particular CHAR (n) column. Any extra trailing
characters are ignored when Impala processes those values during a query. Text data files can also contain values that
are shorter than the defined length limit, and Impala pads them with trailing spaces up to the specified length. Any
text data files produced by Impala INSERT statements do not include any trailing blanks for CHAR columns.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Compatibility:
This type is available using Impala 2.0 or higher.
Some other database systems make the length specification optional. For Impala, the length is required.

Internal details: Represented in memory as a byte array with the same size as the length specification. Values that
are shorter than the specified length are padded on the right with trailing spaces.

Added in: Impala 2.0.0

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

| Impala SQL Language Reference | 115

Examples:

These examples show how trailing spaces are not considered significant when comparing or processing CHAR values.
CAST () truncates any longer string to fit within the defined length. If a CHAR value is shorter than the specified
length, it is padded on the right with spaces until it matches the specified length. Therefore, LENGTH () represents the
length including any trailing spaces, and CONCAT () also treats the column value as if it has trailing spaces.

select cast('x' as char(4)) = cast('x ' as char(4)) as "unpadded equal to
padded";

o +

| unpadded equal to padded |

e +

| true |

o +

create table char length(c char(3));

insert into char length values (cast('l' as char(3))), (cast('l2' as
char(3))), (cast('1l23' as char(3))), (cast('123456' as char(3))):;
select concat ("[",c,"]") as c, length(c) from char length;

fo————— Fmm + N

| @ | length(c) |

- o —— +

[[1 13 |

| (12 1 | 3 |

| [123] | 3 |

| [123] | 3 |

- o +

This example shows a case where data values are known to have a specific length, where CHAR is a logical data type
to use.

create table addresses
(id bigint,
street name string,
state abbreviation char(2),
country abbreviation char(2));

The following example shows how values written by Impala do not physically include the trailing spaces. It creates
a table using text format, with CHAR values much shorter than the declared length, and then prints the resulting data
file to show that the delimited values are not separated by spaces. The same behavior applies to binary-format Parquet

data files.

create table char in text (a char(20), b char(30), c char (40))
row format delimited fields terminated by ',';

A}

insert into char in text values (cast('foo' as char(20)), cast('bar

as char(30)), cast ('baz' as char (40))), (cast('hello' as char (20)),
cast ('goodbye' as char(30)), cast('aloha' as char(40)));
-- Running this Linux command inside impala-shell using the ! shortcut.

'hdfs dfs -cat 'hdfs://127.0.0.1:8020/user/hive/warehouse/
impala doc testing.db/char in text/*.*';

foo,bar,baz

hello,goodbye, aloha

The following example further illustrates the treatment of spaces. It replaces the contents of the previous table with
some values including leading spaces, trailing spaces, or both. Any leading spaces are preserved within the data file,

| Impala SQL Language Reference | 116

but trailing spaces are discarded. Then when the values are retrieved by a query, the leading spaces are retrieved
verbatim while any necessary trailing spaces are supplied by Impala.

insert overwrite char in text values (cast('trailing ' as char (20)),
cast (' leading and trailing ' as char(30)), cast (' leading' as
char (40))) ;

'hdfs dfs -cat 'hdfs://127.0.0.1:8020/user/hive/warehouse/

impala doc testing.db/char in text/*.*';

trailing, leading and trailing, leading
select concat('[',a,']') as a, concat('[',b,"']") as b, concat('[',c,"']") as
c from char in text;
B ettt o
e +
| a | b | ¢
|
o o
e +
| [trailing 1 1 1 leading and trailing 1 1 1 leading
11
o Bt et
e +

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions:

Because the blank-padding behavior requires allocating the maximum length for each value in memory, for scalability
reasons avoid declaring CHAR columns that are much longer than typical values in that column.

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

When an expression compares a CHAR with a STRING or VARCHAR, the CHAR value is implicitly converted to
STRING first, with trailing spaces preserved.

select cast("foo " as char(5)) = 'foo' as "char equal to string";
o +
| char equal to string |
o +
| false |
o +

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions
on both sides to CHAR values of the appropriate length:

select cast("foo " as char(5)) = cast('foo' as char(3)) as "char equal to
string";

o +

| char equal to string |

B ittt e e e +

| true |

o +

This behavior is subject to change in future releases.
Related information:

STRING Data Type on page 134, VARCHAR Data Type (Impala 2.0 or higher only) on page 150, String Literals
on page 185, Impala String Functions on page 516

| Impala SQL Language Reference | 117

DECIMAL Data Type (Impala 1.4 or higher only)

A numeric data type with fixed scale and precision, used in CREATE TABLE and ALTER TABLE statements.
Suitable for financial and other arithmetic calculations where the imprecise representation and rounding behavior of
FLOAT and DOUBLE make those types impractical.

Syntax:

In the column definition of a CREATE TABLE statement:
column name DECIMAL[(precisionl[, scale])]

DECIMAL with no precision or scale values is equivalent to DECIMAL (9, 0) .
Precision and Scale:

precision represents the total number of digits that can be represented by the column, regardless of the location of

the decimal point. This value must be between 1 and 38. For example, representing integer values up to 9999, and
floating-point values up to 99.99, both require a precision of 4. You can also represent corresponding negative values,
without any change in the precision. For example, the range -9999 to 9999 still only requires a precision of 4.

scale represents the number of fractional digits. This value must be less than or equal to precision. A scale of 0
produces integral values, with no fractional part. If precision and scale are equal, all the digits come after the decimal
point, making all the values between 0 and 0.999... or 0 and -0.999...

When precision and scale are omitted, a DECIMAL value is treated as DECIMAL (9, 0), that is, an integer value
ranging from =999, 999, 999 to 999, 999, 999. This is the largest DECIMAL value that can still be represented in
4 bytes. If precision is specified but scale is omitted, Impala uses a value of zero for the scale.

Both precision and scale must be specified as integer literals, not any other kind of constant expressions.

To check the precision or scale for arbitrary values, you can call the precision () and scale () built-in
functions. For example, you might use these values to figure out how many characters are required for various fields
in a report, or to understand the rounding characteristics of a formula as applied to a particular DECIMAL column.

Range:

The maximum precision value is 38. Thus, the largest integral value is represented by DECIMAL (38, 0) (999...
with 9 repeated 38 times). The most precise fractional value (between 0 and 1, or 0 and -1) is represented by
DECIMAL (38, 38), with 38 digits to the right of the decimal point. The value closest to 0 would be .0000...1 (37
zeros and the final 1). The value closest to 1 would be .999... (9 repeated 38 times).

For a given precision and scale, the range of DECIMAL values is the same in the positive and negative directions. For
example, DECIMAL (4, 2) can represent from -99.99 to 99.99. This is different from other integral numeric types
where the positive and negative bounds differ slightly.

When you use DECIMAL values in arithmetic expressions, the precision and scale of the result value are determined
as follows:

» For addition and subtraction, the precision and scale are based on the maximum possible result, that is, if all the
digits of the input values were 9s and the absolute values were added together.

» For multiplication, the precision is the sum of the precisions of the input values. The scale is the sum of the scales
of the input values.

» For division, Impala sets the precision and scale to values large enough to represent the whole and fractional parts
of the result.

* For UNION, the scale is the larger of the scales of the input values, and the precision is increased if necessary
to accommodate any additional fractional digits. If the same input value has the largest precision and the largest
scale, the result value has the same precision and scale. If one value has a larger precision but smaller scale, the
scale of the result value is increased. For example, DECIMAL (20,2) UNION DECIMAL (8, 6) produces a
result of type DECIMAL (24, 6) . The extra 4 fractional digits of scale (6-2) are accommodated by extending the
precision by the same amount (20+4).

| Impala SQL Language Reference | 118

* To doublecheck, you can always call the PRECISION () and SCALE () functions on the results of an arithmetic
expression to see the relevant values, or use a CREATE TABLE AS SELECT statement to define a column based

on the return type of the expression.
Compatibility:
» Using the DECIMAL type is only supported under Impala 1.4 and higher.

* Use the DECIMAL data type in Impala for applications where you used the NUMBER data type in Oracle. The
Impala DECIMAL type does not support the Oracle idioms of * for scale or negative values for precision.

Conversions and casting:

Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of
the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If
the setting ~—use local tz for unix timestamp conversions=true is in effect, the resulting
TIMESTAMP represents a date and time in the local time zone.

Impala automatically converts between DECIMAL and other numeric types where possible. A DECIMAL with zero
scale is converted to or from the smallest appropriate integral type. A DECIMAL with a fractional part is automatically
converted to or from the smallest appropriate floating-point type. If the destination type does not have sufficient
precision or scale to hold all possible values of the source type, Impala raises an error and does not convert the value.

For example, these statements show how expressions of DECIMAL and other types are reconciled to the same type in
the context of UNION queries and INSERT statements:

[localhost:21000] > select cast(l as int) as x union select cast(l.5 as

decimal (9,4)) as x;
o ——————— +
| x |
o +
| 1.5000 |
| 1.0000 |
o ——————— +
[localhost:21000] > create table int vs decimal as select cast(l as int) as
X union select cast(l.5 as decimal(9,4)) as x;
o +
| summary |
o +
| Inserted 2 row(s) |
o —————————— +
[localhost:21000] > desc int vs decimal;
Fm———— Fmm Fo———————
| name | type | comment |
t————— t—————_—_———— t—————— +
| x | decimal (14,4) |
t———— o —_—————— t—————— +

To avoid potential conversion errors, you can use CAST () to convert DECIMAL values to FLOAT, TINYINT,
SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You can use exponential notation in DECIMAL
literals or when casting from STRING, for example 1 .0e6 to represent one million.

If you cast a value with more fractional digits than the scale of the destination type, any extra fractional digits are
truncated (not rounded). Casting a value to a target type with not enough precision produces a result of NULL and
displays a runtime warning.

[localhost:21000] > select cast(1.239 as decimal(3,2));

B +
| cast(1.239 as decimal(3,2)) |
B et +
| 1.23 |
e +

[localhost:21000] > select cast (1234 as decimal (3));

| Impala SQL Language Reference | 119

e +
| cast (1234 as decimal(3,0)) |
o +
| NULL |
B e +

WARNINGS: Expression overflowed, returning NULL

When you specify integer literals, for example in INSERT ... VALUES statements or arithmetic expressions,
those numbers are interpreted as the smallest applicable integer type. You must use CAST () calls for some
combinations of integer literals and DECIMAL precision. For example, INT has a maximum value that is 10 digits
long, TINYINT has a maximum value that is 3 digits long, and so on. If you specify a value such as 123456 to go
into a DECIMAL column, Impala checks if the column has enough precision to represent the largest value of that
integer type, and raises an error if not. Therefore, use an expression like CAST (123456 TO DECIMAL (9,0))
for DECIMAL columns with precision 9 or less, CAST (50 TO DECIMAL (2,0)) for DECIMAL columns with
precision 2 or less, and so on. For DECIMAL columns with precision 10 or greater, Impala automatically interprets
the value as the correct DECIMAL type; however, because DECIMAL (10) requires 8 bytes of storage while
DECIMAL (9) requires only 4 bytes, only use precision of 10 or higher when actually needed.

[localhost:21000] > create table decimals 9 0 (x decimal);
[localhost:21000] > insert into decimals 9 0 values (1), (2), (4), (8),
(16), (1024), (32768), (65536), (1000000)

ERROR: AnalysisException: Possible loss of precision for target table
'decimal testing.decimals 9 0'.

Expression 'l' (type: INT) would need to be cast to DECIMAL(9,0) for column
le

[localhost:21000] > insert into decimals 9 0 values (cast(l as decimal)),
(cast (2 as decimal)), (cast(4 as decimal)), (cast(8 as decimal)),
(cast (16 as decimal)), (cast(1024 as decimal)), (cast (32768 as decimal)),
(cast (65536 as decimal)), (cast (1000000 as decimal)) ;

[localhost:21000] > create table decimals 10 0 (x decimal (10,0));
[localhost:21000] > insert into decimals 10 0 values (1), (2), (4), (8),
(16), (1024), (32768), (65536), (1000000);

Be aware that in memory and for binary file formats such as Parquet or Avro, DECIMAL (10) or higher consumes

8 bytes while DECIMAL (9) (the default for DECIMAL) or lower consumes 4 bytes. Therefore, to conserve space in
large tables, use the smallest-precision DECIMAL type that is appropriate and CAST () literal values where necessary,
rather than declaring DECIMAL columns with high precision for convenience.

To represent a very large or precise DECIMAL value as a literal, for example one that contains more digits than can
be represented by a BIGINT literal, use a quoted string or a floating-point value for the number, and CAST () to the
desired DECIMAL type:

insert into decimals 38 5 values (1), (2), (4), (8), (16), (1024), (32768),
(65536), (1000000),
(cast ("999999999999999999999999999999" as decimal (38,5))
(cast (999999999999999999999999999999. as decimal (38,5)))

) 14

* The result of the SUM () aggregate function on DECIMAL values is promoted to a precision of 38, with the same
precision as the underlying column. Thus, the result can represent the largest possible value at that particular
precision.

* STRING columns, literals, or expressions can be converted to DECIMAL as long as the overall number of digits
and digits to the right of the decimal point fit within the specified precision and scale for the declared DECIMAL
type. By default, a DECIMAL value with no specified scale or precision can hold a maximum of 9 digits of an
integer value. If there are more digits in the string value than are allowed by the DECIMAL scale and precision, the
result is NULL.

| Impala SQL Language Reference | 120

The following examples demonstrate how STRING values with integer and fractional parts are represented when
converted to DECIMAL. If the scale is 0, the number is treated as an integer value with a maximum of precision
digits. If the precision is greater than 0, the scale must be increased to account for the digits both to the left and
right of the decimal point. As the precision increases, output values are printed with additional trailing zeros after
the decimal point if needed. Any trailing zeros after the decimal point in the STRING value must fit within the
number of digits specified by the precision.

[localhost:21000] > select cast('100' as decimal); -- Small integer value
fits within 9 digits of scale.

[localhost:21000] > select cast('100' as decimal (3,0)); -- Small integer
value fits within 3 digits of scale.

[localhost:21000] > select cast('100' as decimal(2,0)); -- 2 digits of
scale is not enough!

[localhost:21000] > select cast('100' as decimal(3,1)); -- (3,1) = 2
digits left of the decimal point, 1 to the right. Not enough.

[localhost:21000] > select cast('100' as decimal(4,1)); -- 4 digits total,
1 to the right of the decimal point.

[localhost:21000] > select cast('98.6' as decimal(3,1)); -- (3,1) can hold
a 3 digit number with 1 fractional digit.

| cast('98.6' as decimal(3,1)) |

[localhost:21000] > select cast('98.6' as decimal (15,1)); -- Larger scale
allows bigger numbers but still only 1 fractional digit.

| cast('98.6' as decimal (15,1)) |

[localhost:21000] > select cast('98.6' as decimal (15,5)); —-- Larger
precision allows more fractional digits, outputs trailing zeros.

| 98.60000 |

| Impala SQL Language Reference | 121

e +

[localhost:21000] > select cast('98.60000' as decimal (15,1)); -- Trailing
zeros in the string must fit within 'scale' digits (1 in this case).
e +

| cast('98.60000"'" as decimal (15,1)) |
e +

| NULL |
e +

Most built-in arithmetic functions such as SIN () and COS () continue to accept only DOUBLE values because
they are so commonly used in scientific context for calculations of IEEE 954-compliant values. The built-in
functions that accept and return DECIMAL are:

« ABS()

e CEIL()

« COALESCE ()
« FLOOR()

* FNV_HASH()
* GREATEST ()

* IF()

+ ISNULL()

« LEAST()

+ NEGATIVE ()
e NULLIF()

« POSITIVE ()

« PRECISION()
« ROUND ()

« SCALE ()

« TRUNCATE ()

« ZEROIFNULL ()

See Impala Built-In Functions on page 422 for details.

BIGINT, INT, SMALLINT, and TINYINT values can all be cast to DECIMAL. The number of digits to the left
of the decimal point in the DECIMAL type must be sufficient to hold the largest value of the corresponding integer
type. Note that integer literals are treated as the smallest appropriate integer type, meaning there is sometimes

a range of values that require one more digit of DECIMAL scale than you might expect. For integer values, the
precision of the DECIMAL type can be zero; if the precision is greater than zero, remember to increase the scale
value by an equivalent amount to hold the required number of digits to the left of the decimal point.

The following examples show how different integer types are converted to DECIMAL.

[localhost:21000] > select cast(l as decimal (1,0));

o +

| cast(l as decimal(1,0)) |
e +

| 1 |
e +

[localhost:21000] > select cast (9 as decimal (1,0));
o +

| cast(9 as decimal(1,0)) |
e +

| 9 |
e +

[localhost:21000] > select cast (10 as decimal(1,0));
o +

| cast (10 as decimal(1,0)) |
e +

| Impala SQL Language Reference | 122

B e it T +

[localhost:21000] > select cast (10 as decimal(l,1));
e +

| cast (10 as decimal(1l,1)) |
e +

| 10.0 |
e +

[localhost:21000] > select cast (100 as decimal(1l,1));
e e e e +

| cast (100 as decimal(1l,1)) |
e +

| 100.0 |

B e ettt +

[localhost:21000] > select cast (1000 as decimal(1l,1));
B ittt L L e e +

| cast (1000 as decimal(1,1)) |
e +

| 1000.0

B e e e e e +

* When a DECIMAL value is converted to any of the integer types, any fractional part is truncated (that is, rounded
towards zero):

[localhost:21000] > create table num dec days (x decimal(4,1));
[localhost:21000] > insert into num dec days values (1), (2), (cast(4.5 as

decimal (4,1)));

[localhost:21000] > insert into num dec days values (cast (0.1 as
decimal (4,1))), (cast(.9 as decimal(4,1))), (cast(9.1 as decimal(4,1))),
(cast (9.9 as decimal (4,1)));

[localhost:21000] > select cast(x as int) from num dec days;

o —— +

| cast(x as int) |

o +

| 1 |

| 2 |

| 4 |

| O |

| O |

| 9 |

| 9 |

o +

* You cannot directly cast TIMESTAMP or BOOLEAN values to or from DECIMAL values. You can turn a
DECIMAL value into a time-related representation using a two-step process, by converting it to an integer value
and then using that result in a call to a date and time function such as from unixtime ().

[localhost:21000] > select from unixtime (cast (cast(1000.0 as decimal) as

bigint));

B ettt e bttt +

| from unixtime (cast(cast (1000.0 as decimal(9,0)) as bigint)) |

o +

| 1970-01-01 00:16:40

B it et it e e e +
[localhost:21000] > select now() + interval cast(x as int) days from
num _dec days; -- x is a DECIMAL column.

[localhost:21000] > create table num dec days (x decimal(4,1));
[localhost:21000] > insert into num dec days values (1), (2), (cast(4.5 as
decimal (4,1)));

[localhost:21000] > select now() + interval cast(x as int) days from

num dec days; -- The 4.5 value is truncated to 4 and becomes '4 days'.

| Impala SQL Language Reference | 123

e +
| now() + interval cast(x as int) days |
e +
| 2014-05-13 23:11:55.163284000 |
| 2014-05-14 23:11:55.163284000 |
| 2014-05-16 23:11:55.163284000 |
e +

* Because values in INSERT statements are checked rigorously for type compatibility, be prepared to use CAST ()
function calls around literals, column references, or other expressions that you are inserting into a DECIMAL
column.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.
DECIMAL differences from integer and floating-point types:

With the DECIMAL type, you are concerned with the number of overall digits of a number rather than powers of 2 (as
in TINYINT, SMALLINT, and so on). Therefore, the limits with integral values of DECIMAL types fall around 99,
999, 9999, and so on rather than 32767, 65535, 2 32 -1, and so on. For fractional values, you do not need to account
for imprecise representation of the fractional part according to the IEEE-954 standard (as in FLOAT and DOUBLE).
Therefore, when you insert a fractional value into a DECIMAL column, you can compare, sum, query, GROUP BY,
and so on that column and get back the original values rather than some “close but not identical” value.

FLOAT and DOUBLE can cause problems or unexpected behavior due to inability to precisely represent certain
fractional values, for example dollar and cents values for currency. You might find output values slightly different
than you inserted, equality tests that do not match precisely, or unexpected values for GROUP BY columns.
DECIMAL can help reduce unexpected behavior and rounding errors, at the expense of some performance overhead
for assignments and comparisons.

Literals and expressions:

* When you use an integer literal such as 1 or 999 in a SQL statement, depending on the context, Impala will treat
it as either the smallest appropriate DECIMAL type, or the smallest integer type (TINYINT, SMALLINT, INT, or
BIGINT). To minimize memory usage, Impala prefers to treat the literal as the smallest appropriate integer type.

* When you use a floating-point literal suchas 1.1 or 999. 44 in a SQL statement, depending on the context,
Impala will treat it as either the smallest appropriate DECIMAL type, or the smallest floating-point type (FLOAT or
DOUBLE). To avoid loss of accuracy, Impala prefers to treat the literal as a DECIMAL.

Storage considerations:

* Only the precision determines the storage size for DECIMAL values; the scale setting has no effect on the storage
size.

» Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these text-based file formats, leading zeros
are not stored, but trailing zeros are stored. In these tables, each DECIMAL value takes up as many bytes as there
are digits in the value, plus an extra byte if the decimal point is present and an extra byte for negative values.
Once the values are loaded into memory, they are represented in 4, 8, or 16 bytes as described in the following list
items. The on-disk representation varies depending on the file format of the table.

» Parquet and Avro tables use binary formats, In these tables, Impala stores each value in as few bytes as possible
depending on the precision specified for the DECIMAL column.

* In memory, DECIMAL values with precision of 9 or less are stored in 4 bytes.
* In memory, DECIMAL values with precision of 10 through 18 are stored in 8 bytes.
* In memory, DECIMAL values with precision greater than 18 are stored in 16 bytes.

File format considerations:

» The DECIMAL data type can be stored in any of the file formats supported by Impala, as described in How Impala
Works with Hadoop File Formats on page 697. Impala only writes to tables that use the Parquet and text
formats, so those formats are the focus for file format compatibility.

» Impala can query Avro, RCFile, or SequenceFile tables containing DECIMAL columns, created by other Hadoop
components.

| Impala SQL Language Reference | 124

* You can use DECIMAL columns in Impala tables that are mapped to HBase tables. Impala can query and insert
into such tables.

» Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these tables, each DECIMATL value takes up
as many bytes as there are digits in the value, plus an extra byte if the decimal point is present. The binary format
of Parquet or Avro files offers more compact storage for DECTIMAL columns.

» Parquet and Avro tables use binary formats, In these tables, Impala stores each value in 4, 8, or 16 bytes
depending on the precision specified for the DECIMAL column.

UDF considerations: When writing a C++ UDF, use the DecimalVal data type defined in /usr/include/
impala udf/udf.h.

Partitioning:

You can use a DECIMAL column as a partition key. Doing so provides a better match between the partition key values
and the HDFS directory names than using a DOUBLE or FLOAT partitioning column:

Schema evolution considerations:

» For text-based formats (text, RCFile, and SequenceFile tables), you can issue an ALTER TABLE
REPLACE COLUMNS statement to change the precision and scale of an existing DECIMAL column. As long as
the values in the column fit within the new precision and scale, they are returned correctly by a query. Any values
that do not fit within the new precision and scale are returned as NULL, and Impala reports the conversion error.
Leading zeros do not count against the precision value, but trailing zeros after the decimal point do.

[localhost:21000] > create table text decimals (x string);
[localhost:21000] > insert into text decimals values ("1"), ("2"),

("99.99"), ("1.234"™), ("000001"), ("1.000000000™);
[localhost:21000] > select * from text decimals;

fo— +
| x |
Fom +
| 1 |
| 2 |
| 99.99 |
| 1.234 |
| 000001 |
| 1.000000000 |
o +

[localhost:21000] > alter table text decimals replace columns (x
decimal (4,2));
[localhost:21000] > select * from text decimals;

ERRORS :

Backend O:Error converting column: O TO DECIMAL (4, 2) (Data is: 1.234)
file: hdfs://127.0.0.1:8020/user/hive/warehouse/decimal testing.db/
text decimals/634d4bd3aal

€8420-b4bl3bab7flbe787 56794587 data.0

record: 1.234

Error converting column: 0 TO DECIMAL (4, 2) (Data is: 1.000000000)
file: hdfs://127.0.0.1:8020/user/hive/warehouse/decimal testing.db/
text decimals/cd40dc68e20

c565a-cc4bd86c724c96ba 311873428 data.0

record: 1.000000000

| Impala SQL Language Reference | 125

» For binary formats (Parquet and Avro tables), although an ALTER TABLE ... REPLACE COLUMNS
statement that changes the precision or scale of a DECIMAL column succeeds, any subsequent attempt to query
the changed column results in a fatal error. (The other columns can still be queried successfully.) This is because
the metadata about the columns is stored in the data files themselves, and ALTER TABLE does not actually make
any updates to the data files. If the metadata in the data files disagrees with the metadata in the metastore database,
Impala cancels the query.

Examples:

CREATE TABLE tl (x DECIMAL, y DECIMAL(5,2), z DECIMAL(25,0));
INSERT INTO tl VALUES (5, 99.44, 123456), (300, 6.7, 999999999);
SELECT x+y, ROUND(y,1), z/98.6 FROM tl;

SELECT CAST (1000.5 AS DECIMAL) ;

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 423 (especially PRECISION () and SCALE ())

DOUBLE Data Type
A double precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name DOUBLE

Range: 4.94065645841246544¢e-324d .. 1.79769313486231570e+308, positive or negative

Precision: 15 to 17 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 8 bytes, using /EEE 754 Double Precision Binary Floating Point format.

Conversions: Impala does not automatically convert DOUBLE to any other type. You can use CAST () to convert
DOUBLE values to FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You can
use exponential notation in DOUBLE literals or when casting from STRING, for example 1. 0e6 to represent one
million. Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start
of the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone.

If the setting —-use_local tz for unix timestamp conversions=true is in effect, the resulting
TIMESTAMP represents a date and time in the local time zone.

Usage notes:

The data type REAL is an alias for DOUBLE.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

| Impala SQL Language Reference | 126

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns false:

SELECT CAST ('nan' AS DOUBLE)=CAST ('nan' AS DOUBLE) ;
Examples:

CREATE TABLE tl (x DOUBLE) ;
SELECT CAST(1000.5 AS DOUBLE) ;

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary slightly for
aggregate function calls such as SUM () and AVG () for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL data type for such operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that
use different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information:

Numeric Literals on page 183, Impala Mathematical Functions on page 423, FLOAT Data Type on page 126

FLOAT Data Type
A single precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name FLOAT

Range: 1.40129846432481707e-45 .. 3.40282346638528860e+38, positive or negative

Precision: 6 to 9 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 4 bytes, using /EEE 754 Single Precision Binary Floating Point format.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

| Impala SQL Language Reference | 127

Conversions: Impala automatically converts FLOAT to more precise DOUBLE values, but not the other way around.
You can use CAST () to convert FLOAT values to TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP,
or BOOLEAN. You can use exponential notation in FLOAT literals or when casting from STRING, for example
1.0e6 to represent one million. Casting an integer or floating-point value N to TIMESTAMP produces a value that
is N seconds past the start of the epoch date (January 1, 1970). By default, the result value represents a date and time
in the UTC time zone. If the setting -~—use local tz for unix timestamp conversions=trueisin
effect, the resulting TIMESTAMP represents a date and time in the local time zone.

Usage notes:

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns false:

SELECT CAST ('nan' AS FLOAT)=CAST ('nan' AS FLOAT) ;
Examples:

CREATE TABLE tl (x FLOAT);
SELECT CAST (1000.5 AS FLOAT) ;

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary slightly for
aggregate function calls such as SUM () and AVG () for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL data type for such operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that
use different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information:
Numeric Literals on page 183, Impala Mathematical Functions on page 423, DOUBLE Data Type on page
125
INT Data Type
A 4-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

| Impala SQL Language Reference | 128

In the column definition of a CREATE TABLE statement:
column name INT

Range: -2147483648 .. 2147483647. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (BIGINT) or a floating-point type (FLOAT or
DOUBLE) automatically. Use CAST () to convert to TINYINT, SMALLINT, STRING, or TIMESTAMP. Casting
an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Usage notes:
The data type INTEGER is an alias for INT.

For a convenient and automated way to check the bounds of the INT type, call the functions MIN INT () and
MAX INT ().

If an integer value is too large to be represented as a INT, use a BIGINT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE tl (x INT);
SELECT CAST (1000 AS INT);

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations:

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 4-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 423

MAP Complex Type (Impala 2.3 or higher only)

A complex data type representing an arbitrary set of key-value pairs. The key part is a scalar type, while the value part
can be a scalar or another complex type (ARRAY, STRUCT, or MAP).

Syntax:
column name MAP < primitive type, type >
type ::= primitive type | complex type

Usage notes:

| Impala SQL Language Reference | 129

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 152 for
background information and usage examples.

The MAP complex data type represents a set of key-value pairs. Each element of the map is indexed by a primitive
type such as BIGINT or STRING, letting you define sequences that are not continuous or categories with arbitrary
names. You might find it convenient for modelling data produced in other languages, such as a Python dictionary or
Java HashMap, where a single scalar value serves as the lookup key.

In a big data context, the keys in a map column might represent a numeric sequence of events during a manufacturing
process, or TIMESTAMP values corresponding to sensor observations. The map itself is inherently unordered, so you
choose whether to make the key values significant (such as a recorded TIMESTAMP) or synthetic (such as a random
global universal ID).

Note: Behind the scenes, the MAP type is implemented in a similar way as the ARRAY type. Impala does not enforce
any uniqueness constraint on the KEY values, and the KEY values are processed by looping through the elements

of the MAP rather than by a constant-time lookup. Therefore, this type is primarily for ease of understanding when
importing data and algorithms from non-SQL contexts, rather than optimizing the performance of key lookups.

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al.Iftable T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE tl.sl.fl.An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Added in: Impala 2.3.0
Restrictions:

* Columns with this data type can only be used in tables or partitions with the Parquet file format.

* Columns with this data type cannot be used as partition key columns in a partitioned table.

* The COMPUTE STATS statement does not produce any statistics for columns of this data type.

* The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» See Limitations and Restrictions for Complex Types on page 156 for a full list of limitations and associated
guidelines about complex type columns.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

The following example shows a table with various kinds of MAP columns, both at the top level and nested within
other complex types. Each row represents information about a specific country, with complex type fields of various
levels of nesting to represent different information associated with the country: factual measurements such as area
and population, notable people in different categories, geographic features such as cities, points of interest within
each city, and mountains with associated facts. Practice the CREATE TABLE and query notation for complex type
columns using empty tables, until you can visualize a complex data structure and construct corresponding SQL
statements reliably.

create TABLE map demo

(
country id BIGINT,

-— Numeric facts about each country, looked up by name.
-- For example, 'Area':1000, 'Population':999999.

| Impala SQL Language Reference | 130

-- Using a MAP instead of a STRUCT because there could be
-- a different set of facts for each country.
metrics MAP <STRING, BIGINT>,

-- MAP whose value part is an ARRAY.

-— For example, the key 'Famous Politicians' could represent an array of 10
elements,

-- while the key 'Famous Actors' could represent an array of 20 elements.
notables MAP <STRING, ARRAY <STRING>>,

-- MAP that is a field within a STRUCT.
—-— (The STRUCT is inside another ARRAY, because it is rare
-— for a STRUCT to be a top-level column.)
-- For example, city #1 might have points of interest with key 'Zoo',
-- representing an array of 3 different zoos.
-— City #2 might have completely different kinds of points of interest.
-—- Because the set of field names is potentially large, and most entries
could be blank,
-— a MAP makes more sense than a STRUCT to represent such a sparse data
Structure.
cities ARRAY < STRUCT <
name: STRING,
points of interest: MAP <STRING, ARRAY <STRING>>
>>,

-— MAP that is an element within an ARRAY. The MAP is inside a STRUCT field
to associate
-— the mountain name with all the facts about the mountain.
-- The "key" of the map (the first STRING field) represents the name of some
fact whose value
-- can be expressed as an integer, such as 'Height', 'Year First Climbed',
and so on.
mountains ARRAY < STRUCT < name: STRING, facts: MAP <STRING, INT > > >
)
STORED AS PARQUET;

DESCRIBE map demo;

o ——— o +
| name | type |
o —— B et ettt it e +
country id bigint
metrics map<string,bigint>

notables
cities

| |
| |
| map<string,array<string>>

| array<struct<

| name:string, |
| points of interest:map<string,array<string>> |
| >> - |
| array<struct<

| name:string, |
| facts:map<string,int> |
| >> |

mountains

- o +
| name | type |
- o +
| key | string |
| value | bigint |
- o +

DESCRIBE map_ demo.notables;

| Impala SQL Language Reference | 131

- o — +
| name | type

- o — +
| key | string |
| value | array<string> |
- o — +

| pos | bigint |

| struct< |
| name:string, |
| points of interest:map<string,array<string>> |
| |
| |

- o — +
| name | type

- o — +
| key | string |
| value | array<string> |
- o — +

| struct< |
| name:string,

| facts:map<string,int> |
| |
| |

+—————— - +
| name | type |
t—————— t———— +
| key | string |
| value | int |

| Impala SQL Language Reference | 132

The following example shows a table that uses a variety of data types for the MAP “key” field. Typically, you use
BIGINT or STRING to use numeric or character-based keys without worrying about exceeding any size or length
constraints.

CREATE TABLE map demo obscure
(

id BIGINT,

ml MAP <INT, INT>,

m2 MAP <SMALLINT, INT>,

m3 MAP <TINYINT, INT>,

m4 MAP <TIMESTAMP, INT>,

m5 MAP <BOOLEAN, INT>,

mé6 MAP <CHAR(5), INT>,

m7 MAP <VARCHAR (25), INT>,

m8 MAP <FLOAT, INT>,

m9 MAP <DOUBLE, INT>,

ml0 MAP <DECIMAL(12,2), INT>
)
STORED AS PARQUET;

CREATE TABLE celebrities (name STRING, birth year MAP < STRING, SMALLINT >)
STORED AS PARQUET;

-- A typical row might represent values with 2 different birth years, such
as:

-- ("Joe Movie Star", { "real": 1972, "claimed": 1977 1})

CREATE TABLE countries (name STRING, famous leaders MAP < INT, STRING >)
STORED AS PARQUET;

-- A typical row might represent values with different leaders, with key
values corresponding to their numeric sequence, such as:

-— ("United States", { 1: "George Washington", 3: "Thomas Jefferson", 16:
"Abraham Lincoln" })

CREATE TABLE airlines (name STRING, special meals MAP < STRING, MAP <
STRING, STRING > >) STORED AS PARQUET;

-- A typical row might represent values with multiple kinds of meals, each
with several components:

-- ("Elegant Airlines",

=

== "vegetarian": { "breakfast": "pancakes", "snack": "cookies",
"dinner": "rice pilaf" },
== "gluten free": { "breakfast": "oatmeal", "snack": "fruit", "dinner":

"chicken" }

-= })

Related information:
Complex Types (Impala 2.3 or higher only) on page 152, ARRAY Complex Type (Impala 2.3 or higher only) on
page 108, STRUCT Complex Type (Impala 2.3 or higher only) on page 135
REAL Data Type
An alias for the DOUBLE data type. See DOUBLE Data Type on page 125 for details.
Examples:

These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes
Impala treats them always as DOUBLE.

[localhost:21000] > create table rl (x real);
[localhost:21000] > describe rl;

| Impala SQL Language Reference | 133

+————— +——————— - -+
| name | type | comment |

+————— t———— o +

| x | double | |

+————— +————— o +

[localhost:21000] > insert into rl wvalues (1.5), (cast (2.2 as double));
[localhost:21000] > select cast (le6 as real);
o +

| cast (1000000.0 as double) |

o +

| 1000000 |

- +

SMALLINT Data Type
A 2-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name SMALLINT

Range: -32768 .. 32767. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (INT or BIGINT) or a floating-point type
(FLOAT or DOUBLE) automatically. Use CAST () to convertto TINYINT, STRING, or TIMESTAMP. Casting
an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Usage notes:

For a convenient and automated way to check the bounds of the SMALLINT type, call the functions
MIN_SMALLINT()andMAX_SMALLINT(L

If an integer value is too large to be represented as a SMALLINT, use an INT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE tl (x SMALLINT) ;
SELECT CAST (1000 AS SMALLINT) ;
Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE
LIKE PARQUET syntax, any TINYINT or SMALLINT columns in the original table turn into INT columns in the

new table.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 2-byte value.

Added in: Available in all versions of Impala.

| Impala SQL Language Reference | 134

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 423

STRING Data Type
A data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name STRING

Length: Maximum of 32,767 bytes. Do not use any length constraint when declaring STRING columns, as you might
be familiar with from VARCHAR, CHAR, or similar column types from relational database systems. If you do need

to manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare columns as
VARCHAR (max_length) or CHAR (length), but for best performance use STRING where practical.

Character sets: For full support in all Impala subsystems, restrict string values to the ASCII character set. Although
some UTF-8 character data can be stored in Impala and retrieved through queries, UTF-8 strings containing non-
ASCII characters are not guaranteed to work properly in combination with many SQL aspects, including but not
limited to:

+ String manipulation functions.

» Comparison operators.

» The ORDER BY clause.

* Values in partition key columns.

For any national language aspects such as collation order or interpreting extended ASCII variants such as ISO-8859-1
or ISO-8859-2 encodings, Impala does not include such metadata with the table definition. If you need to sort,
manipulate, or display data depending on those national language characteristics of string data, use logic on the
application side.

Conversions:

* Impala does not automatically convert STRING to any numeric type. Impala does automatically convert STRING
to TIMESTAMP if the value matches one of the accepted TIMESTAMP formats; see TIMESTAMP Data Type on
page 141 for details.

* Youcanuse CAST () to convert STRING values to TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, or
TIMESTAMP.

* You cannot directly cast a STRING value to BOOLEAN. You can use a CASE expression to evaluate string values
suchas 'T', 'true', and so on and return Boolean t rue and false values as appropriate.

* You can cast a BOOLEAN value to STRING, returning '1' for true values and '0' for false values.

Partitioning:

Although it might be convenient to use STRING columns for partition keys, even when those columns contain
numbers, for performance and scalability it is much better to use numeric columns as partition keys whenever
practical. Although the underlying HDFS directory name might be the same in either case, the in-memory storage
for the partition key columns is more compact, and computations are faster, if partition key columns such as YEAR,
MONTH, DAY and so on are declared as INT, SMALLINT, and so on.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length
strings (" "), NULL, and space to all be different values.

| Impala SQL Language Reference | 135

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2*¥*31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics
fields are filled in until you run the COMPUTE STATS statement.

Examples:

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for
quotation marks within string literals:

SELECT 'I am
SELECT "I am
SELECT 'I\'m
SELECT "I\'m
SELECT 'I am
SELECT "I am

single-quoted string';

double-quoted string";

single-quoted string with an apostrophe';
double-quoted string with an apostrophe";

"short" single-quoted string containing quotes';
\"short\" double-quoted string containing quotes";

OB OB VRV)

The following examples demonstrate calls to string manipulation functions to concatenate strings, convert numbers to
strings, or pull out substrings:

SELECT CONCAT ("Once upon a time, there were ", CAST (3 AS STRING), ' little
pigs.');
SELECT SUBSTR("hello world",7,5);

The following examples show how to perform operations on STRING columns within a table:

CREATE TABLE tl (sl STRING, s2 STRING)
INSERT INTO tl VALUES ("hello", 'world'), (CAST(7 AS STRING), "wonders");
SELECT sl1, s2, length(sl) FROM tl WHERE s2 LIKE 'w%';

Related information:

String Literals on page 185, CHAR Data Type (Impala 2.0 or higher only) on page 113, VARCHAR Data
Type (Impala 2.0 or higher only) on page 150, Impala String Functions on page 516, Impala Date and Time
Functions on page 458

STRUCT Complex Type (Impala 2.3 or higher only)

A complex data type, representing multiple fields of a single item. Frequently used as the element type of an ARRAY
or the VALUE part of a MAP.

Syntax:
column name STRUCT < name : type [COMMENT 'comment string'], ... >
type ::= primitive type | complex type

The names and number of fields within the STRUCT are fixed. Each field can be a different type. A field within a
STRUCT can also be another STRUCT, or an ARRAY or a MAP, allowing you to create nested data structures with a
maximum nesting depth of 100.

A STRUCT can be the top-level type for a column, or can itself be an item within an ARRAY or the value part of the
key-value pair in a MAP.

| Impala SQL Language Reference | 136

When a STRUCT is used as an ARRAY element or a MAP value, you use a join clause to bring the ARRAY or MAP
elements into the result set, and then refer to array name.ITEM. fieldormap name.VALUE. field. Inthe
case of a STRUCT directly inside an ARRAY or MAP, you can omit the . ITEM and . VALUE pseudocolumns and refer
directly to array name.fieldor map name.field.

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 152 for
background information and usage examples.

A STRUCT is similar conceptually to a table row: it contains a fixed number of named fields, each with a predefined
type. To combine two related tables, while using complex types to minimize repetition, the typical way to represent
that data is as an ARRAY of STRUCT elements.

Because a STRUCT has a fixed number of named fields, it typically does not make sense to have a STRUCT as the
type of a table column. In such a case, you could just make each field of the STRUCT into a separate column of the
table. The STRUCT type is most useful as an item of an ARRAY or the value part of the key-value pair in a MAP. A
nested type column with a STRUCT at the lowest level lets you associate a variable number of row-like objects with
each row of the table.

The STRUCT type is straightforward to reference within a query. You do not need to include the STRUCT column
in a join clause or give it a table alias, as is required for the ARRAY and MAP types. You refer to the individual fields
using dot notation, such as struct column name.field name, without any pseudocolumn such as ITEM or
VALUE.

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al.Iftable T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE tl.sl1.fl.AnARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Internal details:

Within the Parquet data file, the values for each STRUCT field are stored adjacent to each other, so that they can be
encoded and compressed using all the Parquet techniques for storing sets of similar or repeated values. The adjacency
applies even when the STRUCT values are part of an ARRAY or MAP. During a query, Impala avoids unnecessary /0
by reading only the portions of the Parquet data file containing the requested STRUCT fields.

Added in: Impala 2.3.0
Restrictions:

* Columns with this data type can only be used in tables or partitions with the Parquet file format.
* Columns with this data type cannot be used as partition key columns in a partitioned table.
* The COMPUTE STATS statement does not produce any statistics for columns of this data type.

* The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» See Limitations and Restrictions for Complex Types on page 156 for a full list of limitations and associated
guidelines about complex type columns.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

| Impala SQL Language Reference | 137

The following example shows a table with various kinds of STRUCT columns, both at the top level and nested within
other complex types. Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE struct demo
(

id BIGINT,

name STRING,

-— A STRUCT as a top-level column. Demonstrates how the table ID column
-- and the ID field within the STRUCT can coexist without a name conflict.
employee info STRUCT < employer: STRING, id: BIGINT, address: STRING >,

-— A STRUCT as the element type of an ARRAY.
places lived ARRAY < STRUCT <street: STRING, city: STRING, country: STRING
>>,

-- A STRUCT as the value portion of the key-value pairs in a MAP.
memorable moments MAP < STRING, STRUCT < year: INT, place: STRING,
details: STRING >>,

-— A STRUCT where one of the fields is another STRUCT.
current address STRUCT < street address: STRUCT <street number: INT,
street name: STRING, street type: STRING>, country: STRING, postal code:
STRING >

)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRIBE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRIBE struct demo;

- - +
| name | type |
= e +
id bigint
name string
employee info struct<
employer:string,
id:bigint,
address:string
>
places lived array<struct<

street:string,
city:string,
country:string
>>
map<string, struct<
year:int,
place:string,
details:string
>>
struct<
street address:struct<
street number:int,
street name:string,
street type:string
>, N
country:string,

memorable moments

current address

| Impala SQL Language Reference | 138

| | postal code:string |

The top-level column EMPLOYEE INFO is a STRUCT. Describing table name.struct name displays the
fields of the STRUCT as if they were columns of a table:

DESCRIBE struct demo.employee info;

o o +
| name | type |
o ————— o ———— +
| employer | string |
| id | bigint |
| address | string |
o o +

Because PLACES LIVED is a STRUCT inside an ARRAY, the initial DESCRIBE shows the structure of the ARRAY:

DESCRIBE struct demo.places lived;
| name | type |

| struct< |
| street:string, |
| city:string, |
| country:string |
| |
| |

Ask for the details of the ITEM field of the ARRAY to see just the layout of the STRUCT:

DESCRIBE struct demo.places lived.item;

o o +
| name | type |
o ————— o ———— +
| street | string |
| city | string |
| country | string |
o o +

Likewise, MEMORABLE MOMENTS has a STRUCT inside a MAP, which requires an extra level of qualified name to
see just the STRUCT part:

DESCRIBE struct demo.memorable moments;

- - +
| name | type |
- - +
key string
value struct<

place:string,

| |
| |
| year:int, |
| |
| details:string |
| |

| Impala SQL Language Reference | 139

For a MAP, ask to see the VALUE field to see the corresponding STRUCT fields in a table-like structure:

DESCRIBE struct demo.memorable moments.value;

————————— t—————
name | type |
————————— t—————
year | int |
place | string |
details | string |
————————— t—————

For a STRUCT inside a STRUCT, we can see the fields of the outer STRUCT

DESCRIBE struct demo.current address;

________________ +_______________________
name | type
________________ +_______________________
street address | struct<
| street number:int,
| street name:string,
| street type:string
[>
country | string
postal code | string
________________ +_______________________

Then we can use a further qualified name to see just the fields of the inner STRUCT:

DESCRIBE struct demo.current address.street address;

—— i — — —— ——— ———— +____
name | typ
—— e —— o — — — ——— +____
street number | int
street name | str
street type | str
—— i — — —— ——— ———— +____

ing |
ing |

The following example shows how to examine the structure of a table containing one or more STRUCT columns by

using the DESCRIBE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRIBE struct demo;

___________________ +
name |
___________________ +
id |
name |
employee info |
|
|
|
|
places lived |
|
|
|
|
|

memorable moments

type

bigint

string

struct<
employer:string,
id:bigint,
address:string

>

array<struct<

street:string,
city:string,
country:string
>>
map<string, struct<

| Impala SQL Language Reference | 140

| year:int, | |
| place:string, | |
| details:string | |
| >> | |
current address | struct< |
| street address:struct< |
| street number:int, | |
| street name:string, | |
| street type:string |
| >, | |
| country:string, | |
| postal code:string | |
| | |

SELECT id, employee info.id FROM struct demo;
SELECT id, employee info.id AS employee id FROM struct demo;

SELECT id, employee info.id AS employee id, employee info.employer
FROM struct demo;

SELECT id, name, street, city, country
FROM struct demo, struct demo.places lived;

SELECT id, name, places lived.pos, places lived.street, places lived.city,
places lived.country
FROM struct demo, struct demo.places lived;

SELECT id, name, pl.pos, pl.street, pl.city, pl.country
FROM struct demo, struct demo.places lived AS pl;

SELECT id, name, places lived.pos, places lived.street, places lived.city,
places lived.country
FROM struct demo, struct demo.places lived;

SELECT id, name, pos, street, city, country
FROM struct demo, struct demo.places lived;

SELECT id, name, memorable moments.key,
memorable moments.value.year,
memorable moments.value.place,
memorable moments.value.details
FROM struct demo, struct demo.memorable moments
WHERE memorable moments.key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name, mm.key, mm.value.year, mm.value.place, mm.value.details
FROM struct demo, struct demo.memorable moments AS mm
WHERE mm.key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name, memorable moments.key, memorable moments.value.year,
memorable moments.value.place, memorable moments.value.details

FROM struct demo, struct demo.memorable moments

WHERE key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name, key, value.year, value.place, value.details
FROM struct demo, struct demo.memorable moments

WHERE key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name, key, year, place, details
FROM struct demo, struct demo.memorable moments

WHERE key IN ('Birthday', 'Anniversary', 'Graduation');

SELECT id, name,

| Impala SQL Language Reference | 141

current address.street address.street number,
current address.street address.street name,
current address.street address.street type,
current address.country,
current address.postal code

FROM struct demo;

For example, this table uses a struct that encodes several data values for each phone number associated with a person.
Each person can have a variable-length array of associated phone numbers, and queries can refer to the category field
to locate specific home, work, mobile, and so on kinds of phone numbers.

CREATE TABLE contact info many structs

(
id BIGINT, name STRING,
phone numbers ARRAY < STRUCT <category:STRING, country code:STRING,
area code:SMALLINT, full number:STRING, mobile:BOOLEAN, carrier:STRING > >
) STORED AS PARQUET;

Because structs are naturally suited to composite values where the fields have different data types, you might use
them to decompose things such as addresses:

CREATE TABLE contact info detailed address

(

id BIGINT, name STRING,

address STRUCT < house number:INT, street:STRING, street type:STRING,
apartment :STRING, city:STRING, region:STRING, country:STRING >

)

In a big data context, splitting out data fields such as the number part of the address and the street name could let
you do analysis on each field independently. For example, which streets have the largest number range of addresses,
what are the statistical properties of the street names, which areas have a higher proportion of “Roads”, “Courts” or
“Boulevards”, and so on.

Related information:

Complex Types (Impala 2.3 or higher only) on page 152, ARRAY Complex Type (Impala 2.3 or higher only) on
page 108, MAP Complex Type (Impala 2.3 or higher only) on page 128

TIMESTAMP Data Type
A data type used in CREATE TABLE and ALTER TABLE statements, representing a point in time.
Syntax:

In the column definition of a CREATE TABLE statement:
column name TIMESTAMP

Range: Allowed date values range from 1400-01-01 to 9999-12-31; this range is different from the Hive
TIMESTAMP type. Internally, the resolution of the time portion of a TIMESTAMP value is in nanoseconds.

INTERVAL expressions:

You can perform date arithmetic by adding or subtracting a specified number of time units, using the INTERVAL
keyword and the + and - operators or date add () and date sub () functions. You can specify units as
YEAR[S],MONTH[S],WEEK[S],DAY[S], HOUR[S],MINUTE[S], SECOND[S],MILLISECOND[S],
MICROSECOND[S], and NANOSECOND [S]. You can only specify one time unit in each interval expression, for
example INTERVAL 3 DAYS or INTERVAL 25 HOURS, but you can produce any granularity by adding together

| Impala SQL Language Reference | 142

successive INTERVAL values, such as timestamp value + INTERVAL 3 WEEKS - INTERVAL 1 DAY
+ INTERVAL 10 MICROSECONDS.

For example:

select now() + interval 1 day;
select date sub(now(), interval 5 minutes);
insert into auction details
select auction id, auction start time, auction start time + interval 2
days + interval 12 hours
from new auctions;

Time zones:

By default, Impala does not store timestamps using the local timezone, to avoid undesired results from unexpected
time zone issues. Timestamps are stored and interpreted relative to UTC, both when written to or read from

data files, or when converted to or from Unix time values through functions such as from unixtime () or
unix timestamp (). To convert such a TIMESTAMP value to one that represents the date and time in a specific
time zone, convert the original value with the from utc timestamp () function.

Because Impala does not assume that TIMESTAMP values are in any particular time zone, you must be conscious of
the time zone aspects of data that you query, insert, or convert.

For consistency with Unix system calls, the TIMESTAMP returned by the now () function represents the local time in
the system time zone, rather than in UTC. To store values relative to the current time in a portable way, convert any
now () return values using the to_utc_timestamp () function first. For example, the following example shows
that the current time in California (where this Impala cluster is located) is shortly after 2 PM. If that value was written
to a data file, and shipped off to a distant server to be analyzed alongside other data from far-flung locations, the dates
and times would not match up precisely because of time zone differences. Therefore, the to_utc timestamp ()
function converts it using a common reference point, the UTC time zone (descended from the old Greenwich Mean
Time standard). The ' PDT ' argument indicates that the original value is from the Pacific time zone with Daylight
Saving Time in effect. When servers in all geographic locations run the same transformation on any local date and
time values (with the appropriate time zone argument), the stored data uses a consistent representation. Impala queries
can use functions such as EXTRACT (), MIN (), AVG (), and so on to do time-series analysis on those timestamps.

[localhost:21000] > select now();

[localhost:21000] > select to utc timestamp (now(), 'PDT');

The converse function, from utc timestamp (), lets you take stored TIMESTAMP data or calculated results
and convert back to local date and time for processing on the application side. The following example shows how
you might represent some future date (such as the ending date and time of an auction) in UTC, and then convert back
to local time when convenient for reporting or other processing. The final query in the example tests whether this
arbitrary UTC date and time has passed yet, by converting it back to the local time zone and comparing it against the
current date and time.

[localhost:21000] > select to utc timestamp (now() + interval 2 weeks,
'PDT"') ;

| to utc timestamp(now() + interval 2 weeks, 'pdt') |

| 2015-04-23 21:08:34.152923000

| Impala SQL Language Reference | 143

[localhost:21000] > select from utc timestamp('2015-04-23
21:08:34.152923000"', "PDT"') ;

o +
| from utc timestamp('2015-04-23 21:08:34.152923000', 'pdt') |
o +
| 2015-04-23 14:08:34.152923000 |
et e et e L L e +

[localhost:21000] > select from utc timestamp('2015-04-23
21:08:34.152923000"', '"PDT'") < now () ;

i — o o ——————————— +
| from utc timestamp ('2015-04-23 21:08:34.152923000', 'pdt') < now() |
R e e e e +
| false |
o mee s r s s m e e T e e e s e T e e T e S e T e T e e T ST S S eSS ee s +

If you have data files written by Hive, those TIMESTAMP values represent the local timezone of the

host where the data was written, potentially leading to inconsistent results when processed by Impala.

To avoid compatibility problems or having to code workarounds, you can specify one or both of these

impalad startup flags: -—use local tz for unix timestamp conversions=true

-convert legacy hive parquet utc_ timestamps=true. Although -

convert legacy hive parquet utc timestamps is turned off by default to avoid performance
overhead, where practical turn it on when processing TIMESTAMP columns in Parquet files written by Hive, to avoid
unexpected behavior.

The --use local tz for unix timestamp conversions setting affects conversions from
TIMESTAMP to BIGINT, or from BIGINT to TIMESTAMP. By default, Impala treats all TIMESTAMP values

as UTC, to simplify analysis of time-series data from different geographic regions. When you enable the --

use local tz for unix timestamp conversions setting, these operations treat the input values as if
they are in the local tie zone of the host doing the processing. See Impala Date and Time Functions on page 458

for the list of functions affected by the -—~use local tz for unix timestamp conversions setting.

The following sequence of examples shows how the interpretation of TIMESTAMP values in Parquet tables is affected
by the setting of the —~convert legacy hive parquet utc timestamps setting.

Regardless of the ~convert legacy hive parquet utc timestamps setting, TIMESTAMP columns in
text tables can be written and read interchangeably by Impala and Hive:

Impala DDL and queries for text table:

localhost:21000] > create table tl (x timestamp);

[

[localhost:21000] > insert into tl values (now()), (now() + interval 1 day);
[localhost:21000] > select x from tl;

o +

| x |

e +

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

o +

[localhost:21000] > select to utc timestamp(x, 'PDT') from tl;
e +

| to utc timestamp(x, 'pdt') |
e +

| 2015-04-07 22:43:02.892403000 |
| 2015-04-08 22:43:02.892403000 |

Hive query for text table:
hive> select * from tl;

OK
2015-04-07 15:43:02.892403

| Impala SQL Language Reference | 144

2015-04-08 15:43:02.892403
Time taken: 1.245 seconds, Fetched: 2 row(s)

When the table uses Parquet format, Impala expects any time zone adjustment to be applied prior to writing, while
TIMESTAMP values written by Hive are adjusted to be in the UTC time zone. When Hive queries Parquet data files
that it wrote, it adjusts the TIMESTAMP values back to the local time zone, while Impala does no conversion. Hive
does no time zone conversion when it queries Impala-written Parquet files.

Impala DDL and queries for Parquet table:

[localhost:21000] > create table pl stored as parquet as select x from tl;

| summary |

fom - +

| Inserted 2 row(s) |
o +
[localhost:21000] > select x from pl;
o +

| x |
o +

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

Hive DDL and queries for Parquet table:

hive> create table hl (x timestamp) stored as parquet;
OK

hive> insert into hl select * from pl;

OK

Time taken: 35.573 seconds

hive> select x from pl;

OK

2015-04-07 15:43:02.892403

2015-04-08 15:43:02.892403

Time taken: 0.324 seconds, Fetched: 2 row(s)
hive> select x from hl;

OK

2015-04-07 15:43:02.892403

2015-04-08 15:43:02.892403

Time taken: 0.197 seconds, Fetched: 2 row(s)

The discrepancy arises when Impala queries the Hive-created Parquet table. The underlying values in the
TIMESTAMP column are different from the ones written by Impala, even though they were copied from one table to
another by an INSERT ... SELECT statement in Hive. Hive did an implicit conversion from the local time zone
to UTC as it wrote the values to Parquet.

Impala query for TIMESTAMP values from Impala-written and Hive-written data:

[localhost:21000] > select * from pl;

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

Fetched 2 row(s) in 0.29s
[localhost:21000] > select * from hl;

| 2015-04-07 22:43:02.892403000 |
| 2015-04-08 22:43:02.892403000 |

Fetched 2 row(s) in 0.41s

| Impala SQL Language Reference | 145

Underlying integer values for Impala-written and Hive-written data:

[localhost:21000] > select cast(x as bigint) from pl;

o +
| cast(x as bigint) |
e +
| 1428421382 |
| 1428507782 |
o +

Fetched 2 row(s) in 0.38s

[localhost:21000] > select cast(x as bigint) from hl;

e +
| cast(x as bigint) |
o +
| 1428446582 |
| 1428532982 |
o +

Fetched 2 row(s) in 0.20s

When the ~convert legacy hive parquet utc timestamps setting is enabled, Impala recognizes the
Parquet data files written by Hive, and applies the same UTC-to-local-timezone conversion logic during the query as
Hive uses, making the contents of the Impala-written P1 table and the Hive-written H1 table appear identical, whether

represented as TIMESTAMP values or the underlying BIGINT integers:

[localhost:21000] > select x from pl;

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

Fetched 2 row(s) in 0.37s
[localhost:21000] > select x from hl;

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |

Fetched 2 row(s) in 0.19s

[localhost:21000] > select cast(x as bigint) from pl;

e +
| cast(x as bigint) |
o +
| 1428446582 |
| 1428532982 |
o +

Fetched 2 row(s) in 0.29s

[localhost:21000] > select cast(x as bigint) from hl;

o +
| cast(x as bigint) |
o +
| 1428446582 |
| 1428532982 |
o +

Fetched 2 row(s) in 0.22s

| Impala SQL Language Reference | 146

Conversions:

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp values
are accepted in the format "yyyy-MM-dd HH:mm:ss.SSSSSS", and can consist of just the date, or just the
time, with or without the fractional second portion. For example, you can specify TIMESTAMP values such as
'1966-07-30",'08:30:00",0r '1985-09-25 17:45:30.005".

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the time
component, such as hour, minute, and second. For example, Impala accepts both "2018-1-1 01:02:03" and
"2018-01-01 1:2:3" as valid.

When you convert or cast a STRING literal to TIMESTAMP, you can use the following separators between the date
part and the time part:

* One or more space characters

Example: CAST ('2001-01-09 01:05:01' AS TIMESTAMP)
e The character “T”

Example: CAST ('2001-01-09T01:05:01' AS TIMESTAMP)

Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of
the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If
the setting ~—~use local tz for unix timestamp conversions=true is in effect, the resulting
TIMESTAMP represents a date and time in the local time zone.

In Impala 1.3 and higher, the FROM_UNIXTIME () and UNIX TIMESTAMP () functions allow a wider range of
format strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. In
Impala 2.3 and higher, the UNIX TIMESTAMP () function also allows a numeric timezone offset to be specified as
part of the input string. See Impala Date and Time Functions on page 458 for details.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values use the
BIGINT type for parameters and return values, rather than INT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038 problem” or “Y2K38
problem”). This change affects the from unixtime () and unix timestamp () functions. You might need to
change application code that interacts with these functions, change the types of columns that store the return values,
or add CAST () calls to SQL statements that call these functions.

Partitioning:

Although you cannot use a TIMESTAMP column as a partition key, you can extract the individual years, months,
days, hours, and so on and partition based on those columns. Because the partition key column values are

represented in HDFS directory names, rather than as fields in the data files themselves, you can also keep the original
TIMESTAMP values if desired, without duplicating data or wasting storage space. See Partition Key Columns on page
693 for more details on partitioning with date and time values.

[localhost:21000] > create table timeline (event string) partitioned by
(happened timestamp) ;

ERROR: AnalysisException: Type 'TIMESTAMP' is not supported as partition-

column type in column: happened

NULL considerations: Casting any unrecognized STRING value to this type produces a NULL value.

Partitioning: Because this type potentially has so many distinct values, it is often not a sensible choice for a partition
key column. For example, events 1 millisecond apart would be stored in different partitions. Consider using the
TRUNC () function to condense the number of distinct values, and partition on a new column with the truncated
values.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

| Impala SQL Language Reference | 147

Internal details: Represented in memory as a 16-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT 64 type, which
is represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was
imported this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

Restrictions:

If you cast a STRING with an unrecognized format to a TIMESTAMP, the result is NULL rather than an error. Make
sure to test your data pipeline to be sure any textual date and time values are in a format that Impala TTMESTAMP can
recognize.

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time values in Avro
tables, as a workaround you can use a STRING representation of the values, convert the values to BIGINT with the
UNIX TIMESTAMP () function, or create separate numeric columns for individual date and time fields using the
EXTRACT () function.

Kudu considerations:

In Impala 2.9 and higher, you can include TIMESTAMP columns in Kudu tables, instead of representing the date and
time as a BIGINT value. The behavior of TIMESTAMP for Kudu tables has some special considerations:

* Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/
time columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
TIMESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a
query.

* The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TIMESTAMP columns. You can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continue to use a BIGINT column to represent date/time values in performance-critical applications.

* The Impala TIMESTAMP type has a narrower range for years than the underlying Kudu data type. Impala
can represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impala
client, Impala returns NULL by default when reading those TIMESTAMP values during a query. Or, if the
ABORT_ ON_ERROR query option is enabled, the query fails when it encounters a value with an out-of-range year.

Examples:

The following examples demonstrate using TIMESTAMP values with built-in functions:

select cast('1966-07-30' as timestamp) ;

select cast('1985-09-25 17:45:30.005" as timestamp) ;
select cast('08:30:00"'" as timestamp) ;
(l

select hour('1970-01-01 15:30:00"); -— Succeeds, returns 15.

select hour ('1970-01-01 15:30"'"); —-— Returns NULL because seconds
field required.

select hour('1970-01-01 27:30:00") ; -— Returns NULL because hour
value out of range.

select dayofweek('2004-06-13"); -— Returns 1, representing
Sunday.

select dayname ('2004-06-13"); -- Returns 'Sunday'.

select date add('2004-06-13"', 365); -— Returns 2005-06-13 with zeros
for hh:mm:ss fields.

select day('2004-06-13"); -— Returns 13.

select datediff ('1989-12-31"','1984-09-01"); -- How many days between these 2

dates?

| Impala SQL Language Reference | 148

select now(); -— Returns current date and time
in local timezone.

The following examples demonstrate using TTMESTAMP values with HDFS-backed tables:

create table dates and times (t timestamp);
insert into dates and times values
('1966-07-30"), ('1985-09-25 17:45:30.005'), ('08:30:00"), (now()):;

The following examples demonstrate using TIMESTAMP values with Kudu tables:

create table timestamp t (x int primary key, s string, t timestamp, b
bigint)

partition by hash (x) partitions 16

stored as kudu;

-— The default value of now() has microsecond precision, so the final 3
digits

-—- representing nanoseconds are all zero.

insert into timestamp t values (1, cast(now() as string), now(),

unix timestamp (now()));

-— Values with 1-499 nanoseconds are rounded down in the Kudu TIMESTAMP
column.

insert into timestamp t values (2, cast(now() + interval 100 nanoseconds as
string), now() + interval 100 nanoseconds, unix timestamp (now() + interval
100 nanoseconds)) ;

insert into timestamp t values (3, cast(now() + interval 499 nanoseconds as
string), now() + interval 499 nanoseconds, unix timestamp (now() + interval
499 nanoseconds)) ;

-- Values with 500-999 nanoseconds are rounded up in the Kudu TIMESTAMP
column.

insert into timestamp t values (4, cast(now() + interval 500 nanoseconds as
string), now() + interval 500 nanoseconds, unix timestamp (now() + interval
500 nanoseconds)) ;

insert into timestamp t values (5, cast(now() + interval 501 nanoseconds as
string), now() + interval 501 nanoseconds, unix timestamp (now() + interval
501 nanoseconds)) ;

-- The string representation shows how underlying Impala TIMESTAMP can have
nanosecond precision.

—-— The TIMESTAMP column shows how timestamps in a Kudu table are rounded to
microsecond precision.

—-— The BIGINT column represents seconds past the epoch and so if not
affected much by nanoseconds.

select s, t, b from timestamp t order by t;

e e
fomm - +

| s | t | b
|

o o
Fomm +

| 2017-05-31 15:30:05.107157000 | 2017-05-31 15:30:05.107157000 | 1496244605
| 2017-05-31 15:30:28.868151100 | 2017-05-31 15:30:28.868151000 | 1496244628

| 2017-05-31 15:34:33.674692499 | 2017-05-31 15:34:33.674692000 | 1496244873
|

| 2017-05-31 15:35:04.769166500 | 2017-05-31 15:35:04.769167000 | 1496244904
|

| 2017-05-31 15:35:33.033082501 | 2017-05-31 15:35:33.033083000 | 1496244933
|

| Impala SQL Language Reference | 149

Related information:

» Timestamp Literals on page 186.

* To convert to or from different date formats, or perform date arithmetic, use the date and time functions described
in Impala Date and Time Functions on page 458. In particular, the from unixtime () function requires
a case-sensitive format string such as "yyyy-MM-dd HH:mm:ss.SSSS", matching one of the allowed
variations of a TIMESTAMP value (date plus time, only date, only time, optional fractional seconds).

» See SQOL Differences Between Impala and Hive on page 610 for details about differences in TIMESTAMP
handling between Impala and Hive.

TINYINT Data Type
A 1-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:

In the column definition of a CREATE TABLE statement:
column name TINYINT

Range: -128 .. 127. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (SMALLINT, INT, or BIGINT) or a floating-
point type (FLOAT or DOUBLE) automatically. Use CAST () to convert to STRING or TIMESTAMP. Casting an
integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting ——
use local tz for unix timestamp conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and
overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest
value in the range for the type. For example, valid values for a tinyint range from -128 to 127. In Impala, a
tinyint with a value of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns 127.

Usage notes:

For a convenient and automated way to check the bounds of the TINYINT type, call the functions MIN TINYINT ()
andMAX_TINYINT(L

If an integer value is too large to be represented as a TINYINT, use a SMALLINT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE tl (x TINYINT);
SELECT CAST (100 AS TINYINT) ;
Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE
LIKE PARQUET syntax, any TINYINT or SMALLINT columns in the original table turn into INT columns in the
new table.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 1-byte value.

| Impala SQL Language Reference | 150

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 423

VARCHAR Data Type (Impala 2.0 or higher only)

A variable-length character type, truncated during processing if necessary to fit within the specified length.
Syntax:

In the column definition of a CREATE TABLE statement:
column name VARCHAR (max lIength)

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:

* This type can be read from and written to Parquet files.
» There is no requirement for a particular level of Parquet.

» Parquet files generated by Impala and containing this type can be freely interchanged with other components such
as Hive and MapReduce.

» Parquet data files can contain values that are longer than allowed by the VARCHAR (n) length limit. Impala
ignores any extra trailing characters when it processes those values during a query.
Text table considerations:

Text data files can contain values that are longer than allowed by the VARCHAR (n) length limit. Any extra trailing
characters are ignored when Impala processes those values during a query.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2*¥*31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Schema evolution considerations:

You can use ALTER TABLE ... CHANGE to switch column data types to and from VARCHAR. You can convert
from STRING to VARCHAR (n), or from VARCHAR (n) to STRING, or from CHAR (n) to VARCHAR (n), or from
VARCHAR (n) to CHAR (n) . When switching back and forth between VARCHAR and CHAR, you can also change
the length value. This schema evolution works the same for tables using any file format. If a table contains values
longer than the maximum length defined for a VARCHAR column, Impala does not return an error. Any extra trailing
characters are ignored when Impala processes those values during a query.

Compatibility:
This type is available in Impala 2.0 or higher.
Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.

Added in: Impala 2.0.0

| Impala SQL Language Reference | 151

Column statistics considerations: Because the values of this type have variable size, none of the column statistics
fields are filled in until you run the COMPUTE STATS statement.

Kudu considerations:

Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions:

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

Examples:

The following examples show how long and short VARCHAR values are treated. Values longer than the maximum
specified length are truncated by CAST (), or when queried from existing data files. Values shorter than the
maximum specified length are represented as the actual length of the value, with no extra padding as seen with CHAR
values.

create table varchar 1 (s varchar(l));
create table varchar 4 (s varchar (4

))
_))
create table varchar 20 (s varchar (20));

insert into varchar 1 values (cast('a' as varchar(l))), (cast('b' as
varchar(l))), (cast('hello' as varchar(l))), (cast('world' as wvarchar(l))):;
insert into varchar 4 values (cast('a' as varchar(4))), (cast('b' as
varchar(4))), (cast('hello' as varchar(4))), (cast('world' as wvarchar(4))):;
insert into varchar 20 values (cast('a' as varchar(20))), (cast('b'

as varchar (20))), (cast('hello' as varchar(20))), (cast('world' as

varchar (20))) ;

select * from varchar 1;
-t N

| s |

+———4

| a |

| b |

| h |

| w |

+———+

select * from varchar 4;

[localhost:21000] > select * from varchar 20;

select concat('[',s,']"') as s from varchar 20;

| Impala SQL Language Reference | 152

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined with
different maximum lengths. Both tables contain 'a' and 'b"' values. The longer 'hello' and 'world' values
from the VARCHAR 20 table were truncated when inserted into the VARCHAR 1 table.

select s from varchar 1 join varchar 20 using (s);

e +
| s |
R +
| a |
| b |
f——————— +

The following examples show how VARCHAR values are freely interchangeable with STRING values in contexts such
as comparison operators and built-in functions:

select length(cast('foo' as varchar(100))) as length;

select cast('xyz' as wvarchar(5)) > cast('abc' as wvarchar(10)) as greater;

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Related information:

STRING Data Type on page 134, CHAR Data Type (Impala 2.0 or higher only) on page 113, String Literals on
page 185, Impala String Functions on page 516

Complex Types (Impala 2.3 or higher only)

Complex types (also referred to as nested types) let you represent multiple data values within a single row/column
position. They differ from the familiar column types such as BIGINT and STRING, known as scalar types or
primitive types, which represent a single data value within a given row/column position. Impala supports the complex
types ARRAY, MAP, and STRUCT in Impala 2.3 and higher. The Hive UNION type is not currently supported.

Once you understand the basics of complex types, refer to the individual type topics when you need to refresh your
memory about syntax and examples:

* ARRAY Complex Type (Impala 2.3 or higher only) on page 108

* STRUCT Complex Type (Impala 2.3 or higher only) on page 135

* MAP Complex Type (Impala 2.3 or higher only) on page 128

Benefits of Impala Complex Types

The reasons for using Impala complex types include the following:

* You already have data produced by Hive or other non-Impala component that uses the complex type column
names. You might need to convert the underlying data to Parquet to use it with Impala.

| Impala SQL Language Reference | 153

* Your data model originates with a non-SQL programming language or a NoSQL data management system.
For example, if you are representing Python data expressed as nested lists, dictionaries, and tuples, those data
structures correspond closely to Impala ARRAY, MAP, and STRUCT types.

* Your analytic queries involving multiple tables could benefit from greater locality during join processing. By
packing more related data items within each HDFS data block, complex types let join queries avoid the network
overhead of the traditional Hadoop shuffle or broadcast join techniques.

The Impala complex type support produces result sets with all scalar values, and the scalar components of complex
types can be used with all SQL clauses, such as GROUP BY, ORDER BY, all kinds of joins, subqueries, and inline
views. The ability to process complex type data entirely in SQL reduces the need to write application-specific code in
Java or other programming languages to deconstruct the underlying data structures.

Overview of Impala Complex Types

The ARRAY and MAP types are closely related: they represent collections with arbitrary numbers of elements, where
each element is the same type. In contrast, STRUCT groups together a fixed number of items into a single element.
The parts of a STRUCT element (the fields) can be of different types, and each field has a name.

The elements of an ARRAY or MAP, or the fields of a STRUCT, can also be other complex types. You can construct
elaborate data structures with up to 100 levels of nesting. For example, you can make an ARRAY whose elements are
STRUCTs. Within each STRUCT, you can have some fields that are ARRAY, MAP, or another kind of STRUCT. The
Impala documentation uses the terms complex and nested types interchangeably; for simplicity, it primarily uses the
term complex types, to encompass all the properties of these types.

When visualizing your data model in familiar SQL terms, you can think of each ARRAY or MAP as a miniature table,
and each STRUCT as a row within such a table. By default, the table represented by an ARRAY has two columns, POS
to represent ordering of elements, and I TEM representing the value of each element. Likewise, by default, the table
represented by a MAP encodes key-value pairs, and therefore has two columns, KEY and VALUE.

The ITEM and VALUE names are only required for the very simplest kinds of ARRAY and MAP columns, ones that
hold only scalar values. When the elements within the ARRAY or MAP are of type STRUCT rather than a scalar type,
then the result set contains columns with names corresponding to the STRUCT fields rather than ITEM or VALUE.

You write most queries that process complex type columns using familiar join syntax, even though the data for both
sides of the join resides in a single table. The join notation brings together the scalar values from a row with the
values from the complex type columns for that same row. The final result set contains all scalar values, allowing you
to do all the familiar filtering, aggregation, ordering, and so on for the complex data entirely in SQL or using business
intelligence tools that issue SQL queries.

Behind the scenes, Impala ensures that the processing for each row is done efficiently on a single host, without the
network traffic involved in broadcast or shuffle joins. The most common type of join query for tables with complex
type columns is INNER JOIN, which returns results only in those cases where the complex type contains some
elements. Therefore, most query examples in this section use either the INNER JOIN clause or the equivalent
comma notation.

Note:

Although Impala can query complex types that are present in Parquet files, Impala currently cannot create new
Parquet files containing complex types. Therefore, the discussion and examples presume that you are working with
existing Parquet data produced through Hive, Spark, or some other source. See Constructing Parquet Files with
Complex Columns Using Hive on page 177 for examples of constructing Parquet data files with complex type
columns.

For learning purposes, you can create empty tables with complex type columns and practice query syntax, even if you
do not have sample data with the required structure.

Design Considerations for Complex Types

When planning to use Impala complex types, and designing the Impala schema, first learn how this kind of schema
differs from traditional table layouts from the relational database and data warehousing fields. Because you might
have already encountered complex types in a Hadoop context while using Hive for ETL, also learn how to write high-
performance analytic queries for complex type data using Impala SQL syntax.

| Impala SQL Language Reference | 154

How Complex Types Differ from Traditional Data Warehouse Schemas

Complex types let you associate arbitrary data structures with a particular row. If you are familiar with schema design
for relational database management systems or data warehouses, a schema with complex types has the following
differences:

* Logically, related values can now be grouped tightly together in the same table.
In traditional data warehousing, related values were typically arranged in one of two ways:

» Split across multiple normalized tables. Foreign key columns specified which rows from each table were
associated with each other. This arrangement avoided duplicate data and therefore the data was compact, but
join queries could be expensive because the related data had to be retrieved from separate locations. (In the
case of distributed Hadoop queries, the joined tables might even be transmitted between different hosts in a
cluster.)

* Flattened into a single denormalized table. Although this layout eliminated some potential performance issues
by removing the need for join queries, the table typically became larger because values were repeated. The
extra data volume could cause performance issues in other parts of the workflow, such as longer ETL cycles or
more expensive full-table scans during queries.

Complex types represent a middle ground that addresses these performance and volume concerns. By physically
locating related data within the same data files, complex types increase locality and reduce the expense of join
queries. By associating an arbitrary amount of data with a single row, complex types avoid the need to repeat
lengthy values such as strings. Because Impala knows which complex type values are associated with each row,
you can save storage by avoiding artificial foreign key values that are only used for joins. The flexibility of the
STRUCT, ARRAY, and MAP types lets you model familiar constructs such as fact and dimension tables from a data
warehouse, and wide tables representing sparse matrixes.

Physical Storage for Complex Types

Physically, the scalar and complex columns in each row are located adjacent to each other in the same Parquet data
file, ensuring that they are processed on the same host rather than being broadcast across the network when cross-
referenced within a query. This co-location simplifies the process of copying, converting, and backing all the columns
up at once. Because of the column-oriented layout of Parquet files, you can still query only the scalar columns of a
table without imposing the I/O penalty of reading the (possibly large) values of the composite columns.

Within each Parquet data file, the constituent parts of complex type columns are stored in column-oriented format:

» Each field of a STRUCT type is stored like a column, with all the scalar values adjacent to each other and encoded,
compressed, and so on using the Parquet space-saving techniques.

» For an ARRAY containing scalar values, all those values (represented by the ITEM pseudocolumn) are stored
adjacent to each other.

* For a MAP, the values of the KEY pseudocolumn are stored adjacent to each other. If the VALUE pseudocolumn is
a scalar type, its values are also stored adjacent to each other.

+ Ifan ARRAY element, STRUCT field, or MAP VALUE part is another complex type, the column-oriented storage
applies to the next level down (or the next level after that, and so on for deeply nested types) where the final
elements, fields, or values are of scalar types.

The numbers represented by the POS pseudocolumn of an ARRAY are not physically stored in the data files. They are
synthesized at query time based on the order of the ARRAY elements associated with each row.

File Format Support for Impala Complex Types

Currently, Impala queries support complex type data only in the Parquet file format. See Using the Parquet File
Format with Impala Tables on page 706 for details about the performance benefits and physical layout of this file
format.

Each table, or each partition within a table, can have a separate file format, and you can change file format at the table
or partition level through an ALTER TABLE statement. Because this flexibility makes it difficult to guarantee ahead
of time that all the data files for a table or partition are in a compatible format, Impala does not throw any errors when
you change the file format for a table or partition using ALTER TABLE. Any errors come at runtime when Impala
actually processes a table or partition that contains nested types and is not in one of the supported formats. If a query

| Impala SQL Language Reference | 155

on a partitioned table only processes some partitions, and all those partitions are in one of the supported formats, the
query succeeds.

Because Impala does not parse the data structures containing nested types for unsupported formats such as text, Avro,
SequenceFile, or RCFile, you cannot use data files in these formats with Impala, even if the query does not refer to
the nested type columns. Also, if a table using an unsupported format originally contained nested type columns, and
then those columns were dropped from the table using ALTER TABLE ... DROP COLUMN, any existing data
files in the table still contain the nested type data and Impala queries on that table will generate errors.

Note:

The one exception to the preceding rule is COUNT (*) queries on RCFile tables that include complex types. Such
queries are allowed in Impala 2.6 and higher.

You can perform DDL operations (even CREATE TABLE) for tables involving complex types in file formats other
than Parquet. The DDL support lets you set up intermediate tables in your ETL pipeline, to be populated by Hive,
before the final stage where the data resides in a Parquet table and is queryable by Impala. Also, you can have a
partitioned table with complex type columns that uses a non-Parquet format, and use ALTER TABRLE to change
the file format to Parquet for individual partitions. When you put Parquet data files into those partitions, Impala can
execute queries against that data as long as the query does not involve any of the non-Parquet partitions.

If you use the parquet-tools command to examine the structure of a Parquet data file that includes complex
types, you see that both ARRAY and MAP are represented as a Bag in Parquet terminology, with all fields marked
Optional because Impala allows any column to be nullable.

Impala supports either 2-level and 3-level encoding within each Parquet data file. When constructing Parquet data
files outside Impala, use either encoding style but do not mix 2-level and 3-level encoding within the same data file.

Choosing Between Complex Types and Normalized Tables

Choosing between multiple normalized fact and dimension tables, or a single table containing complex types, is an
important design decision.

+ Ifyou are coming from a traditional database or data warehousing background, you might be familiar with how to
split up data between tables. Your business intelligence tools might already be optimized for dealing with this kind
of multi-table scenario through join queries.

» Ifyou are pulling data from Impala into an application written in a programming language that has data structures
analogous to the complex types, such as Python or Java, complex types in Impala could simplify data interchange
and improve understandability and reliability of your program logic.

* You might already be faced with existing infrastructure or receive high volumes of data that assume one layout
or the other. For example, complex types are popular with web-oriented applications, for example to keep
information about an online user all in one place for convenient lookup and analysis, or to deal with sparse or
constantly evolving data fields.

» If some parts of the data change over time while related data remains constant, using multiple normalized tables
lets you replace certain parts of the data without reloading the entire data set. Conversely, if you receive related
data all bundled together, such as in JSON files, using complex types can save the overhead of splitting the related
items across multiple tables.

» From a performance perspective:

» In Parquet tables, Impala can skip columns that are not referenced in a query, avoiding the I/O penalty of
reading the embedded data. When complex types are nested within a column, the data is physically divided
at a very granular level; for example, a query referring to data nested multiple levels deep in a complex type
column does not have to read all the data from that column, only the data for the relevant parts of the column
type hierarchy.

» Complex types avoid the possibility of expensive join queries when data from fact and dimension tables is
processed in parallel across multiple hosts. All the information for a row containing complex types is typically
to be in the same data block, and therefore does not need to be transmitted across the network when joining
fields that are all part of the same row.

* The tradeoff with complex types is that fewer rows fit in each data block. Whether it is better to have more
data blocks with fewer rows, or fewer data blocks with many rows, depends on the distribution of your data

| Impala SQL Language Reference | 156

and the characteristics of your query workload. If the complex columns are rarely referenced, using them
might lower efficiency. If you are seeing low parallelism due to a small volume of data (relatively few data
blocks) in each table partition, increasing the row size by including complex columns might produce more data
blocks and thus spread the work more evenly across the cluster. See Scalability Considerations for Impala on
page 679 for more on this advanced topic.

Differences Between Impala and Hive Complex Types

Impala can query Parquet tables containing ARRAY, STRUCT, and MAP columns produced by Hive. There are some
differences to be aware of between the Impala SQL and HiveQL syntax for complex types, primarily for queries.

The syntax for specifying ARRAY, STRUCT, and MAP types in a CREATE TABLE statement is compatible between
Impala and Hive.

Because Impala STRUCT columns include user-specified field names, you use the NAMED STRUCT () constructor
in Hive rather than the STRUCT () constructor when you populate an Impala STRUCT column using a Hive INSERT
statement.

The Hive UNION type is not currently supported in Impala.

While Impala usually aims for a high degree of compatibility with HiveQL query syntax, Impala syntax differs
from Hive for queries involving complex types. The differences are intended to provide extra flexibility for queries
involving these kinds of tables.

» Impala uses dot notation for referring to element names or elements within complex types, and join notation
for cross-referencing scalar columns with the elements of complex types within the same row, rather than the
LATERAL VIEW clause and EXPLODE () function of HiveQL.

» Using join notation lets you use all the kinds of join queries with complex type columns. For example, you can
usea LEFT OUTER JOIN, LEFT ANTI JOIN,or LEFT SEMI JOIN query to evaluate different scenarios
where the complex columns do or do not contain any elements.

* You can include references to collection types inside subqueries and inline views. For example, you can construct
a FROM clause where one of the “tables” is a subquery against a complex type column, or use a subquery against a
complex type column as the argument to an IN or EXISTS clause.

» The Impala pseudocolumn POS lets you retrieve the position of elements in an array along with the elements
themselves, equivalent to the POSEXPLODE () function of HiveQL. You do not use index notation to retrieve a
single array element in a query; the join query loops through the array elements and you use WHERE clauses to
specify which elements to return.

+ Join clauses involving complex type columns do not require an ON or USING clause. Impala implicitly applies the
join key so that the correct array entries or map elements are associated with the correct row from the table.

» Impala does not currently support the UNION complex type.

Limitations and Restrictions for Complex Types
Complex type columns can only be used in tables or partitions with the Parquet file format.
Complex type columns cannot be used as partition key columns in a partitioned table.

When you use complex types with the ORDER BY, GROUP BY, HAVING, or WHERE clauses, you cannot refer to
the column name by itself. Instead, you refer to the names of the scalar values within the complex type, such as the
ITEM, POS, KEY, or VALUE pseudocolumns, or the field names from a STRUCT.

The maximum depth of nesting for complex types is 100 levels.

The maximum length of the column definition for any complex type, including declarations for any nested types, is
4000 characters.

For ideal performance and scalability, use small or medium-sized collections, where all the complex columns contain
at most a few hundred megabytes per row. Remember, all the columns of a row are stored in the same HDFS data
block, whose size in Parquet files typically ranges from 256 MB to 1 GB.

Including complex type columns in a table introduces some overhead that might make queries that do not reference
those columns somewhat slower than Impala queries against tables without any complex type columns. Expect at
most a 2x slowdown compared to tables that do not have any complex type columns.

| Impala SQL Language Reference | 157

Currently, the COMPUTE STATS statement does not collect any statistics for columns containing complex types.
Impala uses heuristics to construct execution plans involving complex type columns.

Currently, Impala built-in functions and user-defined functions cannot accept complex types as parameters or produce
them as function return values. (When the complex type values are materialized in an Impala result set, the result set
contains the scalar components of the values, such as the POS or ITEM for an ARRAY, the KEY or VALUE for a MAP,
or the fields of a STRUCT; these scalar data items can be used with built-in functions and UDFs as usual.)

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or INSERT ... SELECT. To create data files
containing complex type data, use the Hive INSERT statement, or another ETL mechanism such as MapReduce jobs,
Spark jobs, Pig, and so on.

Currently, Impala can query complex type columns only from Parquet tables or Parquet partitions within partitioned
tables. Although you can use complex types in tables with Avro, text, and other file formats as part of your ETL
pipeline, for example as intermediate tables populated through Hive, doing analytics through Impala requires that the
data eventually ends up in a Parquet table. The requirement for Parquet data files means that you can use complex
types with Impala tables hosted on other kinds of file storage systems such as Isilon and Amazon S3, but you cannot
use Impala to query complex types from HBase tables. See File Format Support for Impala Complex Types on page
154 for more details.

Using Complex Types from SQL

When using complex types through SQL in Impala, you learn the notation for < > delimiters for the complex type
columns in CREATE TABLE statements, and how to construct join queries to “unpack” the scalar values nested
inside the complex data structures. You might need to condense a traditional RDBMS or data warehouse schema
into a smaller number of Parquet tables, and use Hive, Spark, Pig, or other mechanism outside Impala to populate the
tables with data.

Complex Type Syntax for DDL Statements

The definition of data_type, as seen in the CREATE TABLE and ALTER TABLE statements, now includes complex
types in addition to primitive types:

primitive type
| array type

| map_ type
| struct type

Unions are not currently supported.

Array, struct, and map column type declarations are specified in the CREATE TABLE statement. You can also add or
change the type of complex columns through the ALTER TABLE statement.

Note:

Currently, Impala queries allow complex types only in tables that use the Parquet format. If an Impala query
encounters complex types in a table or partition using another file format, the query returns a runtime error.

The Impala DDL support for complex types works for all file formats, so that you can create tables using text or other
non-Parquet formats for Hive to use as staging tables in an ETL cycle that ends with the data in a Parquet table. You
can alsouse ALTER TABLE ... SET FILEFORMAT PARQUET to change the file format of an existing table
containing complex types to Parquet, after which Impala can query it. Make sure to load Parquet files into the table
after changing the file format, because the ALTER TABLE ... SET FILEFORMAT statement does not convert
existing data to the new file format.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Because use cases for Impala complex types require that you already have Parquet data files produced outside of
Impala, you can use the Impala CREATE TABLE LIKE PARQUET syntax to produce a table with columns that
match the structure of an existing Parquet file, including complex type columns for nested data structures. Remember

| Impala SQL Language Reference | 158

to include the STORED AS PARQUET clause in this case, because even with CREATE TABLE LIKE PARQUET,
the default file format of the resulting table is still text.

Because the complex columns are omitted from the result set of an Impala SELECT * or SELECT col name
query, and because Impala currently does not support writing Parquet files with complex type columns, you cannot
use the CREATE TABLE AS SELECT syntax to create a table with nested type columns.

Note:

Once you have a table set up with complex type columns, use the DESCRIBE and SHOW CREATE TABLE
statements to see the correct notation with < and > delimiters and comma and colon separators within the complex
type definitions. If you do not have existing data with the same layout as the table, you can query the empty table to
practice with the notation for the SELECT statement. In the SELECT list, you use dot notation and pseudocolumns
such as ITEM, KEY, and VALUE for referring to items within the complex type columns. In the FROM clause, you use
join notation to construct table aliases for any referenced ARRAY and MAP columns.

For example, when defining a table that holds contact information, you might represent phone numbers differently
depending on the expected layout and relationships of the data, and how well you can predict those properties in
advance.

Here are different ways that you might represent phone numbers in a traditional relational schema, with equivalent
representations using complex types.

The traditional, simplest way to represent phone numbers in a relational table is to store all contact info in a single
table, with all columns having scalar types, and each potential phone number represented as a separate column. In this
example, each person can only have these 3 types of phone numbers. If the person does not have a particular kind of
phone number, the corresponding column is NULL for that row.

CREATE TABLE contacts fixed phones
(
id BIGINT

, name STRING

, address STRING

, home phone STRING

. work:phone STRING

, mobile phone STRING

S

) STORED AS PARQUET;

Figure 1: Traditional Relational Representation of Phone Numbers: Single Table

Using a complex type column to represent the phone numbers adds some extra flexibility. Now there could be an
unlimited number of phone numbers. Because the array elements have an order but not symbolic names, you could
decide in advance that phone number[0] is the home number, [1] is the work number, [2] is the mobile number, and
so on. (In subsequent examples, you will see how to create a more flexible naming scheme using other complex type
variations, such as a MAP or an ARRAY where each element is a STRUCT.)

CREATE TABLE contacts array of phones
(
id BIGINT
, name STRING
, address STRING
; phone number ARRAY < STRING >
) STORED AS PARQUET;

Figure 2: An Array of Phone Numbers

Another way to represent an arbitrary set of phone numbers is with a MAP column. With a MAP, each element is
associated with a key value that you specify, which could be a numeric, string, or other scalar type. This example uses

| Impala SQL Language Reference | 159

a STRING key to give each phone number a name, such as 'home ' or 'mobile'. A query could filter the data
based on the key values, or display the key values in reports.

CREATE TABLE contacts unlimited phones

(
id BIGINT, name STRING, address STRING, phone number MAP < STRING, STRING >

) STORED AS PARQUET;

Figure 3: A Map of Phone Numbers

If you are an experienced database designer, you already know how to work around the limitations of the single-
table schema from Figure 1: Traditional Relational Representation of Phone Numbers: Single Table on page 158.
By normalizing the schema, with the phone numbers in their own table, you can associate an arbitrary set of phone
numbers with each person, and associate additional details with each phone number, such as whether it is a home,
work, or mobile phone.

The flexibility of this approach comes with some drawbacks. Reconstructing all the data for a particular person
requires a join query, which might require performance tuning on Hadoop because the data from each table might be
transmitted from a different host. Data management tasks such as backups and refreshing the data require dealing with
multiple tables instead of a single table.

This example illustrates a traditional database schema to store contact info normalized across 2 tables. The fact table
establishes the identity and basic information about person. A dimension table stores information only about phone
numbers, using an ID value to associate each phone number with a person ID from the fact table. Each person can
have 0, 1, or many phones; the categories are not restricted to a few predefined ones; and the phone table can contain
as many columns as desired, to represent all sorts of details about each phone number.

CREATE TABLE fact contacts (id BIGINT, name STRING, address STRING) STORED
AS PARQUET;

CREATE TABLE dim_phones

(

contact id BIGINT

category STRING
international code STRING
area code STRING

exchange STRING

extension STRING

mobile BOOLEAN

carrier STRING

current BOOLEAN

service start date TIMESTAMP
service end date TIMESTAMP

N N N N N SN SN SN S~ O~

)
STORED AS PARQUET;

Figure 4: Traditional Relational Representation of Phone Numbers: Normalized Tables

To represent a schema equivalent to the one from Figure 4: Traditional Relational Representation of Phone Numbers.
Normalized Tables on page 159 using complex types, this example uses an ARRAY where each array element is

a STRUCT. As with the earlier complex type examples, each person can have an arbitrary set of associated phone
numbers. Making each array element into a STRUCT lets us associate multiple data items with each phone number,
and give a separate name and type to each data item. The STRUCT fields of the ARRAY elements reproduce the
columns of the dimension table from the previous example.

You can do all the same kinds of queries with the complex type schema as with the normalized schema from the
previous example. The advantages of the complex type design are in the areas of convenience and performance.
Now your backup and ETL processes only deal with a single table. When a query uses a join to cross-reference the

| Impala SQL Language Reference | 160

information about a person with their associated phone numbers, all the relevant data for each row resides in the same
HDFS data block, meaning each row can be processed on a single host without requiring network transmission.

CREATE TABLE contacts detailed phones
(
id BIGINT, name STRING, address STRING
, phone ARRAY < STRUCT <
category: STRING
, international code: STRING
, area code: STRING
, exchange: STRING
, extension: STRING
, mobile: BOOLEAN
, carrier: STRING
, current: BOOLEAN
, service start date: TIMESTAMP
, service end date: TIMESTAMP
>> -
) STORED AS PARQUET;

Figure 5: Phone Numbers Represented as an Array of Structs

SQL Statements that Support Complex Types

The Impala SQL statements that support complex types are currently CREATE TABLE, ALTER TABLE,
DESCRIBE, LOAD DATA, and SELECT. That is, currently Impala can create or alter tables containing complex type
columns, examine the structure of a table containing complex type columns, import existing data files containing
complex type columns into a table, and query Parquet tables containing complex types.

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or INSERT ... SELECT. To create data files
containing complex type data, use the Hive INSERT statement, or another ETL mechanism such as MapReduce jobs,
Spark jobs, Pig, and so on.

DDL Statements and Complex Types

Column specifications for complex or nested types use < and > delimiters:

-- What goes inside the < > for an ARRAY is a single type, either a scalar
or another
-- complex type (ARRAY, STRUCT, or MAP).
CREATE TABLE array t
(
id BIGINT,
al ARRAY <STRING>,
a2 ARRAY <BIGINT>,
a3 ARRAY <TIMESTAMP>,
a4 ARRAY <STRUCT <fl: STRING, f2: INT, f£3: BOOLEAN>>

)
STORED AS PARQUET;

—-- What goes inside the < > for a MAP is two comma-separated types
specifying the types of the key-value pair:

-- a scalar type representing the key, and a scalar or complex type
representing the value.

CREATE TABLE map t

(
id BIGINT,
ml MAP <STRING, STRING>,

| Impala SQL Language Reference | 161

m2 MAP <STRING, BIGINT>,
m3 MAP <BIGINT, STRING>,
m4 MAP <BIGINT, BIGINT>,
m5 MAP <STRING, ARRAY <STRING>>

)
STORED AS PARQUET;

—-- What goes inside the < > for a STRUCT is a comma-separated list of
fields, each field defined as

-- name:type. The type can be a scalar or a complex type. The field names
for each STRUCT do not clash

-— with the names of table columns or fields in other STRUCTs. A STRUCT is
most often used inside

-- an ARRAY or a MAP rather than as a top-level column.

CREATE TABLE struct t

(
id BIGINT,
sl STRUCT <fl: STRING, f2: BIGINT>,
s2 ARRAY <STRUCT <fl: INT, f2: TIMESTAMP>>,
s3 MAP <BIGINT, STRUCT <name: STRING, birthday: TIMESTAMP>>

)
STORED AS PARQUET;

Queries and Complex Types

The result set of an Impala query always contains all scalar types; the elements and fields within any complex type
queries must be “unpacked” using join queries. A query cannot directly retrieve the entire value for a complex type
column. Impala returns an error in this case. Queries using SELECT * are allowed for tables with complex types, but
the columns with complex types are skipped.

The following example shows how referring directly to a complex type column returns an error, while SELECT * on
the same table succeeds, but only retrieves the scalar columns.

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

SELECT c_orders FROM customer LIMIT 1;
ERROR: AnalysisException: Expr 'c orders' in select list returns a
complex type 'ARRAY<STRUCT<o orderkey:BIGINT,o orderstatus:STRING,

1 receiptdate:STRING,1 shipinstruct:STRING,l shipmode:STRING,1 comment:STRING>>>>"'.

Only scalar types are allowed in the select list.

—-— Original column has several scalar and one complex column.
DESCRIBE customer;

- - +
| name | type |
t——— o +
| c_custkey | bigint
| ¢ name | string

c orders array<struct<

o_orderstatus:string,

| |
| o_orderkey:bigint, |
| |
| o _totalprice:decimal(12,2), |

—-— When we SELECT * from that table, only the scalar columns come back in
the result set.

| Impala SQL Language Reference | 162

CREATE TABLE select star customer STORED AS PARQUET AS SELECT * FROM

customer;
o +
| summary |
B e +
| Inserted 150000 row(s) |
e +

-— The c_orders column, being of complex type, was not included in the
SELECT * result set.
DESC select star customer;

Fommmmmmoeo=o=e Fommmmmememeeem=s T+
| name | type |
e Fommmmmemmemmo=s 4
c_custkey bigint
C_name string
c_address string
c_nationkey smallint

c_acctbal decimal (12,2)
c_mktsegment string

| |
| |
| |
| |
c phone | string
| |
| |
c_comment | string |

References to fields within STRUCT columns use dot notation. If the field name is unambiguous, you can omit
qualifiers such as table name, column name, or even the ITEM or VALUE pseudocolumn names for STRUCT elements
inside an ARRAY or a MAP.

SELECT id, address.city FROM customers WHERE address.zip = 94305;

References to elements within ARRAY columns use the I TEM pseudocolumn:

select r name, r nations.item.n name from region, region.r nations limit 7;

| r name | item.n name |
o — fm———— ———————— +
| EUROPE | UNITED KINGDOM |
| EUROPE | RUSSIA |
| EUROPE | ROMANIA |
| EUROPE | GERMANY |
| EUROPE | FRANCE

| ASIA | VIETNAM |
| ASIA | CHINA

t——————— o —— +

References to fields within MAP columns use the KEY and VALUE pseudocolumns. In this example, once the query
establishes the alias MAP_FIELD for a MAP column with a STRING key and an INT value, the query can refer

to MAP FIELD.KEY and MAP_FIELD.VALUE, which have zero, one, or many instances for each row from the
containing table.

DESCRIBE table 0;

| field O | string |
| field 1 | map<string,int> |

SELECT field 0, map field.key, map field.value
FROM table 0, table O0.field 1 AS map field

WHERE length (field 0) =1

| Impala SQL Language Reference | 163

LIMIT 10;

t———————— t—————_— t————— +
| field 0 | key | value |
t—————— o —_—_— t————— +
| b | gshsgkvd | NULL |
| b | twrtcxj6e | 18

| b | 2vp5 | 39 |
| b | fhOs | 13 |
| v | 2 | 41 |
| v | 8b58mz | 20 |
| v | hw | 16 |
| v | 651388pyt | 29

| v | 03k68g91z | 30

| v | r2hlg5b | NULL |
t——————— t————_—_— t————— +

When complex types are nested inside each other, you use a combination of joins, pseudocolumn names, and dot
notation to refer to specific fields at the appropriate level. This is the most frequent form of query syntax for complex
columns, because the typical use case involves two levels of complex types, such as an ARRAY of STRUCT elements.

SELECT id, phone numbers.area code FROM contact info many structs INNER JOIN
contact info many structs.phone numbers phone numbers LIMIT 3;

You can express relationships between ARRAY and MAP columns at different levels as joins. You include comparison
operators between fields at the top level and within the nested type columns so that Impala can do the appropriate join
operation.

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

For example, the following queries work equivalently. They each return customer and order data for customers that
have at least one order.

SELECT c.c _name, 0.0 orderkey FROM customer c, c.c orders o LIMIT 5;

o t———————— +
| ¢ name | o orderkey |
T e +
| Customer#000072578 | 558821 |
| Customer#000072578 | 2079810 |
| Customer#000072578 | 5768068 |
| Customer#000072578 | 1805604 |
| Customer#000072578 | 3436389 |
e o —_—— +

SELECT c.c _name, 0.0 orderkey FROM customer c INNER JOIN c.c orders o LIMIT

5;
o o ——— +
| ¢ name | o orderkey |
T e +
| Customer#000072578 | 558821 |
| Customer#000072578 | 2079810 |
| Customer#000072578 | 5768068 |
| Customer#000072578 | 1805604 |
| Customer#000072578 | 3436389 |
e o —_—— +

The following query using an outer join returns customers that have orders, plus customers with no orders (no entries
in the C_ORDERS array):

SELECT c.c _custkey, o.0 orderkey

| Impala SQL Language Reference | 164

FROM customer c¢ LEFT OUTER JOIN c.c orders o

LIMIT 5;

o —— o ——— +
| ¢ custkey | o orderkey |
o — o +
| 60210 | NULL |
| 147873 | NULL |
| 72578 | 558821 |
| 72578 | 2079810 |
| 72578 | 5768068 |
o ——— o +

The following query returns only customers that have no orders. (With LEFT ANTI JOINor LEFT SEMI JOIN,
the query can only refer to columns from the left-hand table, because by definition there is no matching information in
the right-hand table.)

SELECT c.c_custkey, c.c name
FROM customer c¢ LEFT ANTI JOIN c.c orders o

LIMIT 5;

e —_—— e +
| ¢ _custkey | c _name |
o ———— o +
| 60210 | Customer#000060210 |
| 147873 | Customer#000147873 |
| 141576 | Customer#000141576 |
| 85365 | Customer#000085365 |
| 70998 | Customer#000070998 |
o ———— e +

You can also perform correlated subqueries to examine the properties of complex type columns for each row in the
result set.

Count the number of orders per customer. Note the correlated reference to the table alias C. The COUNT (*) operation
applies to all the elements of the C_ ORDERS array for the corresponding row, avoiding the need for a GROUP BY
clause.

select c¢c name, howmany FROM customer c, (SELECT COUNT (*) howmany FROM
c.c _orders) v limit 5;

e t—————— +
| ¢ name | howmany |
o o +
| Customer#000030065 | 15 |
| Customer#000065455 | 18 |
| Customer#000113644 | 21 |
| Customer#000111078 | O |
| Customer#000024621 | O |
e o +

Count the number of orders per customer, ignoring any customers that have not placed any orders:

SELECT ¢ name, howmany orders
FROM B B

customer c,

(SELECT COUNT (*) howmany orders FROM c.c orders) subgl
WHERE howmany orders > 0

LIMIT 5;

o o +
| ¢ name | howmany orders |
o o +
| Customer#000072578 | 7

| Impala SQL Language Reference | 165

| Customer#000046378 | 26
| Customer#000069815 | 11
| Customer#000079058 | 12
| Customer#000092239 | 26
T T e +

Count the number of line items in each order. The reference to C.C_ORDERS in the FROM clause is needed because
the O ORDERKEY field is a member of the elements in the C ORDERS array. The subquery labelled SUBQ1 is
correlated: it is re-evaluated for the C_ ORDERS.O_LINEITEMS array from each row of the CUSTOMERS table.

SELECT c_name, o orderkey, howmany line items
FROM

customer c,

c.c_orders t2,

(SELECT COUNT (*) howmany line items FROM c.c orders.o lineitems) subgl
WHERE howmany line items > 0

LIMIT 5;

t————— - t————— +
| ¢ name | o orderkey | howmany line items |
T _____ T ______ o ___ T _T______ ¥
| Customer#000020890 | 1884930 | 95

| Customer#000020890 | 4570754 | 95

| Customer#000020890 | 3771072 | 95

| Customer#000020890 | 2555489 | 95

| Customer#000020890 | 919171 | 95
o e o +

Get the number of orders, the average order price, and the maximum items in any order per customer. For this
example, the subqueries labelled SUBQ1 and SUBQ2 are correlated: they are re-evaluated for each row from the
original CUSTOMER table, and only apply to the complex columns associated with that row.

SELECT c_name, howmany, average price, most items
FROM
customer c,
(SELECT COUNT (*) howmany, AVG (o totalprice) average price FROM c.c_orders)
subqgl,
(SELECT MAX (1l quantity) most items FROM c.c_orders.o lineitems) subg2
LIMIT 5;

e ettt fom e it fom e +
| ¢ name | howmany | average price | most items |
Fmm Fmm Fom————— ——————— Fo———- ——————— +
| Customer#000030065 | 15 | 128908.34 | 50.00
| Customer#000088191 | O | NULL | NULL
| Customer#000101555 | 10 | 164250.31 | 50.00
| Customer#000022092 | O | NULL | NULL
| Customer#000036277 | 27 | 166040.06 | 50.00
o fo—— et fo— 1

For example, these queries show how to access information about the ARRAY elements within the CUSTOMER table
from the “nested TPC-H” schema, starting with the initial ARRAY elements and progressing to examine the STRUCT
fields of the ARRAY, and then the elements nested within another ARRAY of STRUCT:

—-—- How many orders does each customer have?
-- The type of the ARRAY column doesn't matter, this is Jjust counting the
elements.
SELECT c_custkey, count (*)
FROM customer, customer.c orders
GROUP BY c_ custkey
LIMIT 5;
- - +
| ¢ _custkey | count(*) |
o — o — +

| Impala SQL Language Reference | 166

| 61081 | 21 |
| 115987 | 15 |
| 69685 | 19 |
| 109124 | 15 |
| 50491 | 12 |
fommm - fommm - +

-- How many line items are part of each customer order?
-— Now we examine a field from a STRUCT nested inside the ARRAY.
SELECT c_custkey, c orders.o orderkey, count (*)

FROM customer, customer.c orders c orders, ¢ orders.o lineitems
GROUP BY c custkey, c orders.o orderkey

LIMIT 5;

e Fosmmemsmssos e it T
| c_custkey | o _orderkey | count(*) |
fmm e fmm +
| 63367 | 4985959 | 7

| 53989 | 1972230 | 2 |
| 143513 | 5750498 | 5 |
| 17849 | 4857989 | 1

| 89881 | 1046437 | 1
e S e s 1+

-— What are the line items in each customer order?
—-— One of the STRUCT fields inside the ARRAY is another
-— ARRAY containing STRUCT elements. The join finds
-— all the related items from both levels of ARRAY.
SELECT c_custkey, o orderkey, 1 partkey

FROM customer, customer.c orders, c orders.o lineitems

LIMIT 5;

o= e mme=e=e o= +
| ¢ custkey | o orderkey | 1 partkey |
fmm fmm fmm +
| 113644 | 2738497 | 175846 |
| 113644 | 2738497 | 27309 |
| 113644 | 2738497 | 175873 |
| 113644 | 2738497 | 88559 |
| 113644 | 2738497 | 8032 |
e e o= e e +

Pseudocolumns for ARRAY and MAP Types

Each element in an ARRAY type has a position, indexed starting from zero, and a value. Each element in a MAP type
represents a key-value pair. Impala provides pseudocolumns that let you retrieve this metadata as part of a query, or
filter query results by including such things in a WHERE clause. You refer to the pseudocolumns as part of qualified
column names in queries:

» ITEM: The value of an array element. If the ARRAY contains STRUCT elements, you can refer to either
array name.IlTEM. field name or use the shorthand array name.field name.

* POS: The position of an element within an array.

* KEY: The value forming the first part of a key-value pair in a map. It is not necessarily unique.

* VALUE: The data item forming the second part of a key-value pair in a map. If the VALUE part of the MAP
element is a STRUCT, you can refer to either map name.VALUE. field name or use the shorthand
map name.field name.

ITEM and POS Pseudocolumns

When an ARRAY column contains STRUCT elements, you can refer to a field within the STRUCT using a qualified
name of the form array column.field name.If the ARRAY contains scalar values, Impala recognizes the
special name array column.ITEM to represent the value of each scalar array element. For example, if a column

| Impala SQL Language Reference | 167

contained an ARRAY where each element was a STRING, you would use array name.ITEM to refer to each scalar
value in the SELECT list, or the WHERE or other clauses.

This example shows a table with two ARRAY columns whose elements are of the scalar type STRING. When referring
to the values of the array elements in the SELECT list, WHERE clause, or ORDER BY clause, you use the ITEM
pseudocolumn because within the array, the individual elements have no defined names.

create TABLE persons of interest
(

person_id BIGINT,

aliases ARRAY <STRING>,
associates ARRAY <STRING>,

real name STRING

)
STORED AS PARQUET;

-— Get all the aliases of each person.
SELECT real name, aliases.ITEM

FROM persons of interest, persons of interest.aliases
ORDER BY real name, aliases.item;

-- Search for particular associates of each person.
SELECT real name, associates.ITEM

FROM persons_of interest, persons of interest.associates
WHERE associates.item LIKE '$ MacGuffin';

Because an array is inherently an ordered data structure, Impala recognizes the special name array column.POS
to represent the numeric position of each element within the array. The POS pseudocolumn lets you filter or reorder
the result set based on the sequence of array elements.

The following example uses a table from a flattened version of the TPC-H schema. The REGION table only has a few
rows, such as one row for Europe and one for Asia. The row for each region represents all the countries in that region
as an ARRAY of STRUCT elements:

[localhost:21000] > desc region;

+ _____________
e +
| name | type
|
+ _____________
e +
| r regionkey | smallint
|
| r name | string
|
| r comment | string

|
| r nations |
array<struct<n nationkey:smallint,n name:string,n comment:string>> |

To find the countries within a specific region, you use a join query. To find out the order of elements in the array, you
also refer to the POS pseudocolumn in the select list:

[localhost:21000] > SELECT rl.r name, r2.n name, r2.POS
> FROM region rl INNER JOIN rl.r nations r2
> WHERE rl.r name = 'ASIA';

| r name | n name | pos |

| Impala SQL Language Reference | 168

fomm fomm - o +
| ASIA | VIETNAM | O |
| ASIA | CHINA | 1 |
| ASIA | JAPAN | 2 |
| ASIA | INDONESIA | 3 |
| ASIA | INDIA | 4 |
fomm fomm fo——— +

Once you know the positions of the elements, you can use that information in subsequent queries, for example to
change the ordering of results from the complex type column or to filter certain elements from the array:

[localhost:21000] > SELECT rl.r name, r2.n name, r2.POS
> FROM region rl INNER JOIN rl.r nations r2

> WHERE rl.r name = 'ASIA'
> ORDER BY r2.POS DESC;

o o +———— +

| r name | n_name | pos |

o o +———— +

| ASIA | INDIA | 4 |

| ASIA | INDONESIA | 3 |

| ASIA | JAPAN | 2 |

| ASIA | CHINA |1 |

| ASIA | VIETNAM | 0 |

o o +———— +

[localhost:21000] > SELECT rl.r name, r2.n name, r2.POS
> FROM region rl INNER JOIN rl.r nations r2
> WHERE rl.r name = 'ASIA' AND r2.POS BETWEEN 1 and 3;

o o —— +———— +

| r name | n name | pos |

o ——— o — f——— +

| ASIA | CHINA |1 |

| ASIA | JAPAN |2 |

| ASIA | INDONESIA | 3 |

o o —— +———— +

KEY and VALUE Pseudocolumns

The MAP data type is suitable for representing sparse or wide data structures, where each row might only have

entries for a small subset of named fields. Because the element names (the map keys) vary depending on the row,

a query must be able to refer to both the key and the value parts of each key-value pair. The KEY and VALUE
pseudocolumns let you refer to the parts of the key-value pair independently within the query, as map column.KEY
and map column.VALUE.

The KEY must always be a scalar type, such as STRING, BIGINT, or TIMESTAMP. It can be NULL. Values of the
KEY field are not necessarily unique within the same MAP. You apply any required DISTINCT, GROUP BY, and
other clauses in the query, and loop through the result set to process all the values matching any specified keys.

The VALUE can be either a scalar type or another complex type. If the VALUE is a STRUCT, you can construct
a qualified name map column.VALUE.struct fieldto refer to the individual fields inside the value
part. If the VALUE is an ARRAY or another MAP, you must include another join condition that establishes a
table alias for map column.VALUE, and then construct another qualified name using that alias, for example
table alias.ITEMor table alias.KEY and table alias.VALUE

The following example shows different ways to access a MAP column using the KEY and VALUE pseudocolumns. The
DETAILS column has a STRING first part with short, standardized values such as 'Recurring', 'Lucid"', or
'Anxiety"'. This is the “key” that is used to look up particular kinds of elements from the MAP. The second part,
also a STRING, is a longer free-form explanation. Impala gives you the standard pseudocolumn names KEY and
VALUE for the two parts, and you apply your own conventions and interpretations to the underlying values.

Note: If you find that the single-item nature of the VALUE makes it difficult to model your data accurately, the
solution is typically to add some nesting to the complex type. For example, to have several sets of key-value pairs,

| Impala SQL Language Reference | 169

make the column an ARRAY whose elements are MAP. To make a set of key-value pairs that holds more elaborate
information, make a MAP column whose VALUE part contains an ARRAY or a STRUCT.

CREATE TABLE dream journal
(
dream id BIGINT,
details MAP <STRING, STRING>

)
STORED AS PARQUET;

-— What are all the types of dreams that are recorded?
SELECT DISTINCT details.KEY FROM dream journal, dream journal.details;

—-— How many lucid dreams were recorded?
—-- Because there is no GROUP BY, we count the 'Lucid' keys across all rows.
SELECT COUNT (details.KEY)
FROM dream journal, dream journal.details
WHERE details.KEY = 'Lucid';

-- Print a report of a subset of dreams, filtering based on both the lookup
key
-- and the detailed wvalue.
SELECT dream id, details.KEY AS "Dream Type", details.VALUE AS "Dream
Summary"
FROM dream journal, dream journal.details
WHERE
details.KEY IN ('Happy', 'Pleasant', 'Joyous')
AND details.VALUE LIKE '$%$childhood%';

The following example shows a more elaborate version of the previous table, where the VALUE part of the MAP entry
is a STRUCT rather than a scalar type. Now instead of referring to the VALUE pseudocolumn directly, you use dot
notation to refer to the STRUCT fields inside it.

CREATE TABLE better dream journal

(
dream id BIGINT,
details MAP <STRING, STRUCT <summary: STRING, when happened: TIMESTAMP,
duration: DECIMAL (5,2), woke up: BOOLEAN> >

)
STORED AS PARQUET;

-- Do more elaborate reporting and filtering by examining multiple
attributes within the same dream.
SELECT dream id, details.KEY AS "Dream Type", details.VALUE.summary AS
"Dream Summary", details.VALUE.duration AS "Duration"
FROM better dream journal, better dream journal.details
WHERE
details.KEY IN ('Anxiety', 'Nightmare')
AND details.VALUE.duration > 60
AND details.VALUE.woke_up = TRUE;

-— Remember that if the ITEM or VALUE contains a STRUCT, you can reference
—-- the STRUCT fields directly without the .ITEM or .VALUE qualifier.
SELECT dream id, details.KEY AS "Dream Type", details.summary AS "Dream

Summary", details.duration AS "Duration"

FROM better dream journal, better dream journal.details
WHERE

details.KEY IN ('Anxiety', 'Nightmare')

AND details.duration > 60

| Impala SQL Language Reference | 170

AND details.woke up = TRUE;

Loading Data Containing Complex Types

Because the Impala INSERT statement does not currently support creating new data with complex type columns, or
copying existing complex type values from one table to another, you primarily use Impala to query Parquet tables
with complex types where the data was inserted through Hive, or create tables with complex types where you already
have existing Parquet data files.

If you have created a Hive table with the Parquet file format and containing complex types, use the same table for
Impala queries with no changes. If you have such a Hive table in some other format, use a Hive CREATE TABLE
AS SELECT ... STORED AS PARQUET or INSERT ... SELECT statement to produce an equivalent
Parquet table that Impala can query.

If you have existing Parquet data files containing complex types, located outside of any Impala or Hive table, such as
data files created by Spark jobs, you can use an Impala CREATE TABLE ... STORED AS PARQUET statement,
followed by an Impala LOAD DATA statement to move the data files into the table. As an alternative, you can use

an Impala CREATE EXTERNAL TABLE statement to create a table pointing to the HDFS directory that already
contains the data files.

Perhaps the simplest way to get started with complex type data is to take a denormalized table containing duplicated
values, and use an INSERT ... SELECT statement to copy the data into a Parquet table and condense the
repeated values into complex types. With the Hive INSERT statement, you use the COLLECT LIST (),

NAMED STRUCT (), and MAP () constructor functions within a GROUP BY query to produce the complex type
values. COLLECT LIST () turns a sequence of values into an ARRAY. NAMED STRUCT () uses the first, third, and
so on arguments as the field names for a STRUCT, to match the field names from the CREATE TABLE statement.

Note: Because Hive currently cannot construct individual rows using complex types through the INSERT

VALUES syntax, you prepare the data in flat form in a separate table, then copy it to the table with complex columns
using INSERT ... SELECT and the complex type constructors. See Constructing Parquet Files with Complex
Columns Using Hive on page 177 for examples.

Using Complex Types as Nested Types

The ARRAY, STRUCT, and MAP types can be the top-level types for “nested type” columns. That is, each of these
types can contain other complex or scalar types, with multiple levels of nesting to a maximum depth of 100. For
example, you can have an array of structures, a map containing other maps, a structure containing an array of other
structures, and so on. At the lowest level, there are always scalar types making up the fields of a STRUCT, elements of
an ARRAY, and keys and values of a MAP.

Schemas involving complex types typically use some level of nesting for the complex type columns.

For example, to model a relationship like a dimension table and a fact table, you typically use an ARRAY where each
array element is a STRUCT. The STRUCT fields represent what would traditionally be columns in a separate joined
table. It makes little sense to use a STRUCT as the top-level type for a column, because you could just make the fields
of the STRUCT into regular table columns.

Perhaps the only use case for a top-level STRUCT would be to to allow STRUCT fields with the same name as
columns to coexist in the same table. The following example shows how a table could have a column named ID,
and two separate STRUCT fields also named ID. Because the STRUCT fields are always referenced using qualified
names, the identical ID names do not cause a conflict.

CREATE TABLE struct namespaces
(
id BIGINT
;, 81 STRUCT < id: BIGINT, fieldl: STRING >
, 82 STRUCT < id: BIGINT, when happened: TIMESTAMP >
)
STORED AS PARQUET;

select id, sl.id, s2.id from struct namespaces;

| Impala SQL Language Reference | 171

It is common to make the value portion of each key-value pair in a MAP a STRUCT, ARRAY of STRUCT, or other
complex type variation. That way, each key in the MAP can be associated with a flexible and extensible data structure.
The key values are not predefined ahead of time (other than by specifying their data type). Therefore, the MAP can
accomodate a rapidly evolving schema, or sparse data structures where each row contains only a few data values
drawn from a large set of possible choices.

Although you can use an ARRAY of scalar values as the top-level column in a table, such a simple array is typically of
limited use for analytic queries. The only property of the array elements, aside from the element value, is the ordering
sequence available through the POS pseudocolumn. To record any additional item about each array element, such as a
TIMESTAMP or a symbolic name, you use an ARRAY of STRUCT rather than of scalar values.

If you are considering having multiple ARRAY or MAP columns, with related items under the same position in each
ARRAY or the same key in each MAP, prefer to use a STRUCT to group all the related items into a single ARRAY or
MAP. Doing so avoids the additional storage overhead and potential duplication of key values from having an extra
complex type column. Also, because each ARRAY or MAP that you reference in the query SELECT list requires an
additional join clause, minimizing the number of complex type columns also makes the query easier to read and
maintain, relying more on dot notation to refer to the relevant fields rather than a sequence of join clauses.

For example, here is a table with several complex type columns all at the top level and containing only scalar types.
To retrieve every data item for the row requires a separate join for each ARRAY or MAP column. The fields of the
STRUCT can be referenced using dot notation, but there is no real advantage to using the STRUCT at the top level
rather than just making separate columns FIELDI1 and FIELD2.

CREATE TABLE complex types top level
(
id BIGINT,
al ARRAY<INT>,
a2 ARRAY<STRING>,
s STRUCT<fieldl: INT, field2: STRING>,
—-— Numeric lookup key for a string value.
ml MAP<INT, STRING>,
-- String lookup key for a numeric value.
m2 MAP<STRING, INT>
)
STORED AS PARQUET;

describe complex types top level;

+————— - +
| name | type |
+————— B e e +

id bigint

al array<int>

az array<string>

S struct<

| |
| |
| |
| |
| fieldl:int, |
| field2:string |
| > |
| map<int,string> |
| map<string,int> |
select

el

al.item,

a2.item,

s.fieldl,

s.field?2,

ml.key,

ml.value,

m2.key,

m2.value
from

| Impala SQL Language Reference | 172

complex types top level,

complex types top level.al,
complex types top level.aZ2,
complex types top level.ml,
complex types top level.m2;

For example, here is a table with columns containing an ARRAY of STRUCT, a MAP where each key value is a
STRUCT, and a MAP where each key value is an ARRAY of STRUCT.

CREATE TABLE nesting demo
(

user id BIGINT,

family members ARRAY < STRUCT < name: STRING, email: STRING, date joined:
TIMESTAMP >>,

foo map < STRING, STRUCT < fl: INT, f2: INT, f£3: TIMESTAMP, f4: BOOLEAN
>>,

gameplay MAP < STRING , ARRAY < STRUCT <

name: STRING, highest: BIGINT, lives used: INT, total spent:

DECIMAL (16,2)

>>>
)
STORED AS PARQUET;

The DESCRIBE statement rearranges the < and > separators and the field names within each STRUCT for easy
readability:

DESCRIBE nesting demo;

user id
family members

| bigint

| array<struct< |
| name:string, |
| email:string, |
| date joined:timestamp |
| >>

foo | map<string,struct<

| fl:int,

| f2:int,

| f3:timestamp, |
| f4:boolean |
| >>

| map<string,array<struct< |
| name:string, |
| highest:bigint, |
| lives used:int,

| total spent:decimal (16,2) |
| >>> |

gameplay

To query the complex type columns, you use join notation to refer to the lowest-level scalar values. If the value is an
ARRAY element, the fully qualified name includes the I TEM pseudocolumn. If the value is inside a MAP, the fully
qualified name includes the KEY or VALUE pseudocolumn. Each reference to a different ARRAY or MAP (even if
nested inside another complex type) requires an additional join clause.

SELECT

—-— The lone scalar field doesn't require any dot notation or join clauses.
user id

-— Retrieve the fields of a STRUCT inside an ARRAY.

| Impala SQL Language Reference | 173

-- The FAMILY MEMBERS name refers to the FAMILY MEMBERS table alias defined
later in the FROM clause.
, family members.item.name
, family members.item.email
, family members.item.date joined
-—- Retrieve the KEY and VALUE fields of a MAP, with the value being a STRUCT
consisting of more fields.
-- The FOO name refers to the FOO table alias defined later in the FROM
clause.
, foo.key
, foo.value.fl
, foo.value.f2
, foo.value.f3
, foo.value.f4
-— Retrieve the KEY fields of a MAP, and expand the VALUE part into ARRAY
items consisting of STRUCT fields.
-— The GAMEPLAY name refers to the GAMEPLAY table alias defined later in the
FROM clause (referring to the MAP item).
-—- The GAME N name refers to the GAME N table alias defined later in the
FROM clause (referring to the ARRAY
-- inside the MAP item's VALUE part.)
, gameplay.key
, game n.name
, game n.highest
, game n.lives used
;, game n.total spent
FROM
nesting demo
, nesting demo.family members AS family members
, nesting demo.foo AS foo
, nesting demo.gameplay AS gameplay
, nesting demo.gameplay.value AS game n;

Once you understand the notation to refer to a particular data item in the SELECT list, you can use the same qualified
name to refer to that data item in other parts of the query, such as the WHERE clause, ORDER BY or GROUP BY
clauses, or calls to built-in functions. For example, you might frequently retrieve the VALUE part of each MAP item in
the SELECT list, while choosing the specific MAP items by running comparisons against the KEY part in the WHERE
clause.

Accessing Complex Type Data in Flattened Form Using Views

The layout of complex and nested types is largely a physical consideration. The complex type columns reside in

the same data files rather than in separate normalized tables, for your convenience in managing related data sets

and performance in querying related data sets. You can use views to treat tables with complex types as if they were
flattened. By putting the join logic and references to the complex type columns in the view definition, you can query
the same tables using existing queries intended for tables containing only scalar columns. This technique also lets
you use tables with complex types with BI tools that are not aware of the data types and query notation for accessing
complex type columns.

For example, the variation of the TPC-H schema containing complex types has a table REGION. This table has 5
rows, corresponding to 5 regions such as NORTH AMERICA and AFRICA. Each row has an ARRAY column, where
each array item is a STRUCT containing details about a country in that region.

DESCRIBE region;

o ———— e +
| name | type

o —— o +
| r regionkey | smallint

| r name | string

| r comment | string

| | |

r nations array<struct<

| Impala SQL Language Reference | 174

| | n nationkey:smallint, |
| | n_name:string, |
| | n_comment:string |
| | |

The same data could be represented in traditional denormalized form, as a single table where the information about
each region is repeated over and over, alongside the information about each country. The nested complex types let us
avoid the repetition, while still keeping the data in a single table rather than normalizing across multiple tables.

To use this table with a JDBC or ODBC application that expected scalar columns, we could create a view that
represented the result set as a set of scalar columns (three columns from the original table, plus three more from the
STRUCT fields of the array elements). In the following examples, any column with an R_* prefix is taken unchanged
from the original table, while any column with an N_* prefix is extracted from the STRUCT inside the ARRAY.

CREATE VIEW region view AS
SELECT
r regionkey,
r name,
r comment,
array field.item.n nationkey AS n nationkey,
array field.item.n name AS n name,
array field.n comment AS n_comment
FROM
region, region.r nations AS array field;

Then we point the application queries at the view rather than the original table. From the perspective of the view,
there are 25 rows in the result set, one for each nation in each region, and queries can refer freely to fields related to
the region or the nation.

-— Retrieve info such as the nation name from the original R NATIONS array

elements.
select n name from region view where r name in ('EUROPE', 'ASIA');

| UNITED KINGDOM
| RUSSIA

| ROMANIA

| GERMANY

| FRANCE

| VIETNAM

| CHINA

| JAPAN

| INDONESIA

| INDIA

-— UNITED STATES in AMERICA and UNITED KINGDOM in EUROPE.
SELECT DISTINCT r name FROM region view WHERE n name LIKE 'UNITEDS%';

| r name |
o +
| AMERICA |
| EUROPE |
o +

-- For conciseness, we only list some view columns in the SELECT list.

-- SELECT * would bring back all the data, unlike SELECT *

-- queries on the original table with complex type columns.

SELECT r regionkey, r name, n nationkey, n name FROM region view LIMIT 7;

| Impala SQL Language Reference | 175

fom e fom = fom e o +
| r regionkey | r name | n nationkey | n name

Fmm fmmm———— Fmm Fmm e +
| 3 | EUROPE | 23 | UNITED KINGDOM |
| 3 | EUROPE | 22 | RUSSIA

| 3 | EUROPE | 19 | ROMANIA

| 3 | EUROPE | 7 | GERMANY

| 3 | EUROPE | 6 | FRANCE

| 2 | ASIA | 21 | VIETNAM

| 2 | ASIA | 18 | CHINA
B fomm B fom e +

Tutorials and Examples for Complex Types

The following examples illustrate the query syntax for some common use cases involving complex type columns.

Sample Schema and Data for Experimenting with Impala Complex Types

The tables used for earlier examples of complex type syntax are trivial ones with no actual data. The more substantial
examples of the complex type feature use these tables, adapted from the schema used for TPC-H testing:

SHOW TABLES;

| customer |
| part |
| region |
| supplier |

o= it e e L e L L L e e L et +
| name type |
- +

c_custkey bigint

C_name string

c_address string

c_nationkey smallint

c_phone string

c_acctbal decimal (12, 2)

c_mktsegment string

c_comment string

c orders array<struct<

|
+
| |
| |
| |
| |
| |
| |
| |
| |
i | |
| o_orderkey:bigint, |
| o_orderstatus:string, |
| o _totalprice:decimal(12,2), |
| o_orderdate:string, |
| o _orderpriority:string, |
| o_clerk:string, |
| o_shippriority:int, |
| o_comment:string, |
| o lineitems:array<struct< |
| 1 partkey:bigint, |
| 1 suppkey:bigint, |
| 1 linenumber:int, |
| 1 quantity:decimal(12,2), |
| 1 extendedprice:decimal (12,2), |
| 1 discount:decimal(12,2), |
| 1 tax:decimal(12,2), |
| 1 returnflag:string, |
| 1 linestatus:string, |
| 1 shipdate:string, |

| Impala SQL Language Reference | 176

| | 1 commitdate:string, |
| | 1 receiptdate:string,

| | 1 shipinstruct:string, |
| | 1 shipmode:string, |
| | 1 comment:string |
| | |
| | |

>>
>>

e o +
DESCRIBE part;
e ——— e ——— +
| name | type |
- - +
| p_partkey | bigint |
| p_name | string
| p_mfgr | string |
| p_brand | string |
| p_type | string
| p _size | int
| p_container | string |
| p_retailprice | decimal(12,2) |
| p comment | string |
o o +
DESCRIBE region;
+ _____________
Bttt it +
| name | type

|
+ _____________
t—————_—— +
| r regionkey | smallint

|
| r name | string

|
| r comment | string

|
| r nations |
array<struct<n nationkey:smallint,n name:string,n_ comment:string>> |

s _partsupps array<struct<ps partkey:bigint,
ps_availgty:int,ps supplycost:decimal (12,2),

ps_comment:string>>

o —— B et ettt T e e e +
| name | type

o —— e +
| s _suppkey | bigint

| s name | string |
| s address | string |
| s_nationkey | smallint

| s_phone | string

| s_acctbal | decimal (12, 2)

| s _comment | string |
| | |
| | |
| | |

The volume of data used in the following examples is:

SELECT count (*) FROM customer;

SELECT count (*) FROM part;

o +
| count (*) |
e +
| 200000 |
o —————— +

SELECT count (*) FROM region;

o ————— +
| count (*) |
o +
| & |
o +

SELECT count (*) FROM supplier;

e +
| count (*) |
o —————— +
| 10000 |
o +

Constructing Parquet Files with Complex Columns Using Hive

| Impala SQL Language Reference | 177

The following examples demonstrate the Hive syntax to transform flat data (tables with all scalar columns) into
Parquet tables where Impala can query the complex type columns. Each example shows the full sequence of steps,
including switching back and forth between Impala and Hive. Although the source table can use any file format, the

destination table must use the Parquet file format.

Create table with ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hive shell or beeline) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including an ARRAY column. Then Impala can run analytic queries on the

Parquet table, using join notation to unpack the ARRAY column.

/* Initial DDL and loading of flat, denormalized data happens in impala-
shell */CREATE TABLE flat array (country STRING, city STRING);INSERT INTO

flat array VALUES

A} A} A} A} A} A} A} A}
14 14 14
('Canada Toronto"') ('Canada Vancouver')
\'S")
, ('Canada', 'Saint John') , ('Canada', 'Montreal')
'Halifax"')

, ('Canada', 'Winnipeg') , ('Canada', 'Calgary')
, ('Canada', 'Ottawa') , ('Canada', 'Yellowknife')
, ('"France', 'Nice') , ('France', 'Marseilles')
, ('Greece', 'Athens') , ('Greece', 'Piraeus')
, ('Greece', 'Heraklion') , ('Greece', 'Rethymnon')

("Canada', "St. John
('Canada',

("Canada', 'Saskatoon')
('"France', 'Paris')
("France', 'Cannes')
("Greece', 'Hania')
('"Greece', 'Fira');

CREATE TABLE complex array (country STRING, city ARRAY <STRING>) STORED AS

PARQUET;

/* Conversion to Parquet and complex and/or nested columns happens in Hive

*/

INSERT INTO complex array SELECT country, collect list(city) FROM flat array

GROUP BY country;

| Impala SQL Language Reference | 178

Query ID = dev 20151108160808 84477ff2-82bd-4ba4-9a77-554fa7b8c0cb
Total jobs =1
Launching Job 1 out of 1

/* Back to impala-shell again for analytic queries */

REFRESH complex array;
SELECT country, city.item FROM complex array, complex array.city

o o —— +
| country | item |
o o —— +
| Canada | Toronto |
| Canada | Vancouver |
| Canada | St. John's |
| Canada | Saint John |
| Canada | Montreal |
| Canada | Halifax |
| Canada | Winnipeg |
| Canada | Calgary |
| Canada | Saskatoon |
| Canada | Ottawa |
| Canada | Yellowknife |
| France | Paris |
| France | Nice |
| France | Marseilles |
| France | Cannes |
| Greece | Athens |
| Greece | Piraeus |
| Greece | Hania |
| Greece | Heraklion |
| Greece | Rethymnon |
| Greece | Fira |
o o —— +

Create table with STRUCT and ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hive shell or beeline) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including a STRUCT column with an ARRAY field. Then Impala can run
analytic queries on the Parquet table, using join notation to unpack the ARRAY field from the STRUCT column.

/* Initial DDL and loading of flat, denormalized data happens in impala-
shell */

CREATE TABLE flat struct array (continent STRING, country STRING, city
STRING) ;
INSERT INTO flat struct array VALUES

("North America', 'Canada', 'Toronto') , ('North America', 'Canada',
'Vancouver')
, ('"North America', 'Canada', "St. John\'s") , ('North America', 'Canada',
'Saint John'")
, ('North America', 'Canada', 'Montreal') , ('North America', 'Canada',
'Halifax"'")
, ('North America', 'Canada', 'Winnipeg') , ('North America', 'Canada',
'Calgary')
, ("North America', 'Canada', 'Saskatoon') , ('North America', 'Canada',
'Ottawa')
, ('North America', 'Canada', 'Yellowknife') , ('Europe', 'France',

'Paris')

| Impala SQL Language Reference | 179

, ('Europe', 'France', 'Nice') , ('Europe', 'France', 'Marseilles')

, ('Europe', 'France', 'Cannes') , ('Europe', 'Greece', 'Athens')

, ('Europe', 'Greece', 'Piraeus') , ('Europe', 'Greece', 'Hania')

, ('Europe', 'Greece', 'Heraklion') , ('Europe', 'Greece', 'Rethymnon')
(

'Europe’', 'Greece', 'Fira');

CREATE TABLE complex struct array (continent STRING, country STRUCT <name:
STRING, city: ARRAY <STRING> >) STORED AS PARQUET;

/* Conversion to Parquet and complex and/or nested columns happens in Hive

*/

INSERT INTO complex struct array SELECT continent, named struct('name',
country, 'city', collect list(city)) FROM flat array array GROUP BY
continent, country;

Query ID = dev_20151108163535 11a4fa53-0003-4638-97e6-efl3cdb8el9%e

Total jobs = 1

Launching Job 1 out of 1

/* Back to impala-shell again for analytic queries */

REFRESH complex struct array;
SELECT tl.continent, tl.country.name, t2.item
FROM complex struct array tl, tl.country.city t2

o — o — o —— +
| continent | country.name | item |
o — o — o —— +
| Europe | France | Paris

| Europe | France | Nice

| Europe | France | Marseilles |
| Europe | France | Cannes

| Europe | Greece | Athens

| Europe | Greece | Piraeus

| Europe | Greece | Hania

| Europe | Greece | Heraklion |
| Europe | Greece | Rethymnon |
| Europe | Greece | Fira

| North America | Canada | Toronto

| North America | Canada | Vancouver |
| North America | Canada | St. John's |
| North America | Canada | Saint John |
| North America | Canada | Montreal |
| North America | Canada | Halifax |
| North America | Canada | Winnipeg |
| North America | Canada | Calgary

| North America | Canada | Saskatoon

| North America | Canada | Ottawa |
| North America | Canada | Yellowknife |
o — o — o —— +

Flattening Normalized Tables into a Single Table with Complex Types

One common use for complex types is to embed the contents of one table into another. The traditional technique of
denormalizing results in a huge number of rows with some column values repeated over and over. With complex
types, you can keep the same number of rows as in the original normalized table, and put all the associated data from
the other table in a single new column.

| Impala SQL Language Reference | 180

In this flattening scenario, you might frequently use a column that is an ARRAY consisting of STRUCT elements,
where each field within the STRUCT corresponds to a column name from the table that you are combining.

The following example shows a traditional normalized layout using two tables, and then an equivalent layout using
complex types in a single table.

/* Traditional relational design */

-- This table just stores numbers, allowing us to look up details about the
employee
-- and details about their vacation time using a three-table join query.
CREATE table employee vacations
(

employee id BIGINT,

vacation id BIGINT

)
STORED AS PARQUET;

-- Each kind of information to track gets its own "fact table".
CREATE table vacation details
(

vacation id BIGINT,

vacation start TIMESTAMP,

duration INT

)
STORED AS PARQUET;

-- Any time we print a human-readable report, we join with this table to
-- display info about employee #1234.
CREATE TABLE employee contact
(

employee id BIGINT,

name STRING,

address STRING,

phone STRING,

email STRING,

address type STRING /* 'home', 'work', 'remote', etc. */
)
STORED AS PARQUET;

/* Equivalent flattened schema using complex types */

-- For analytic queries using complex types, we can bundle the dimension
table
-- and multiple fact tables into a single table.
CREATE TABLE employee vacations nested types
(
-— We might still use the employee id for other join queries.
-- The table needs at least one scalar column to serve as an identifier
—-—- for the complex type columns.
employee id BIGINT,

—-— Columns of the VACATION DETAILS table are folded into a STRUCT.
-— We drop the VACATION ID column because Impala doesn't need
-- synthetic IDs to join a complex type column.
-— Each row from the VACATION DETAILS table becomes an array element.
vacation ARRAY < STRUCT <
vacation start: TIMESTAMP,
duration: INT
>>,

-— The ADDRESS TYPE column, with a small number of predefined values that
are distinct

| Impala SQL Language Reference | 181

-— for each employee, makes the EMPLOYEE CONTACT table a good candidate to
turn into a MAP,
-— with each row represented as a STRUCT. The string value from ADDRESS TYPE
becomes the
-—- "key" (the anonymous first field) of the MAP.
contact MAP < STRING, STRUCT <
address: STRING,
phone: STRING,
email: STRING
>>

)
STORED AS PARQUET;

Interchanging Complex Type Tables and Data Files with Hive and Other Components
You can produce Parquet data files through several Hadoop components and APIs.

If you have a Hive-created Parquet table that includes ARRAY, STRUCT, or MAP columns, Impala can query that same
table in Impala 2.3 and higher, subject to the usual restriction that all other columns are of data types supported by
Impala, and also that the file type of the table must be Parquet.

If you have a Parquet data file produced outside of Impala, Impala can automatically deduce the appropriate table
structure using the syntax CREATE TABLE ... LIKE PARQUET 'hdfs path of parquet file'.In
Impala 2.3 and higher, this feature works for Parquet files that include ARRAY, STRUCT, or MAP types.

/* In impala-shell, find the HDFS data directory of the original table.
DESCRIBE FORMATTED tpch nested parquet.customer;

| Location: | hdfs://localhost:20500/test-warehouse/tpch nested parquet.db/
customer | NULL |

In the Unix shell, find the path of any Parquet data file in that HDFS
directory.

$ hdfs dfs -1s hdfs://localhost:20500/test-warehouse/tpch nested parquet.db/
customer

Found 4 items

—YWXY—Xr-x 3 dev supergroup 171298918 2015-09-22 23:30 hdfs://

localhost:20500/blah/tpch nested parquet.db/customer/000000 0

/* Back in impala-shell, use the HDFS path in a CREATE TABLE LIKE PARQUET
statement. */
CREATE TABLE customer ctlp
LIKE PARQUET 'hdfs://localhost:20500/blah/tpch nested parquet.db/
customer/000000 0'
STORED AS PARQUET;

/* Confirm that old and new tables have the same column layout, including
complex types. */
DESCRIBE tpch nested parquet.customer

|

I

c_custkey |
C_name | string

|

|

|

|

|

|

|

————————— i —
|
|
|
|
|
|
|
|
|
+

| |
| |
| c_address string

| ¢ nationkey smallint

| c_phone string |
| c_acctbal decimal (12, 2)

| ¢ mktsegment string

| c_comment string

| |

c_orders array<struct<

c_custkey

file.

C_name

file.

c_address

file.

c_nationkey

file.

c phone

file.

c_acctbal

file.

c_mktsegment

file.

Cc_comment

file.

c_orders

file.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

o _orderkey:bigint,
o_orderstatus:string,
o0 _totalprice:decimal(12,2),
o_orderdate:string,
o_orderpriority:string,
o _clerk:string,
o_shippriority:int,
o_comment:string,
o lineitems:array<struct<

1 partkey:bigint,

1 suppkey:bigint,

1 linenumber:int,

1 quantity:decimal(12,2),

1 extendedprice:decimal (12,2),

l:discount:decimal(12,2),
1 tax:decimal (12,2),

1 returnflag:string,

1 linestatus:string,

1 shipdate:string,

1 commitdate:string,

1 receiptdate:string,

1 shipinstruct:string,

1 shipmode:string,

1 comment:string

string
decimal (12, 2)
string
string

array<struct<

o_orderkey:bigint,
o_orderstatus:string,

o _totalprice:decimal(12,2),
o_orderdate:string,

o_orderpriority:string,

e e e e e e e e e e e e e e e e e e — —

| Impala SQL Language Reference | 182

comment

Inferred

Inferred

Inferred

Inferred

Inferred

Inferred

Inferred

Inferred

Inferred

from

from

from

from

from

from

from

from

from

Parquet
Parquet
Parquet
Parquet
Parquet
Parquet
Parquet
Parquet

Parquet

Literals

o_clerk:string,
o_shippriority:int,
o_comment:string,

o lineitems:array<struct<

1 partkey:bigint,
1 suppkey:bigint,
1 linenumber:int,

1 quantity:decimal(12,2),

1 extendedprice:decimal (12,2),

1 discount:decimal (12,2),
1 tax:decimal (12,2),

1 returnflag:string,

1 linestatus:string,

1 shipdate:string,

1 commitdate:string,

1 receiptdate:string,

1 shipinstruct:string,

1 shipmode:string,

1 comment:string

| Impala SQL Language Reference | 183

Each of the Impala data types has corresponding notation for literal values of that type. You specify literal values in
SQL statements, such as in the SELECT list or WHERE clause of a query, or as an argument to a function call. See

Data Types on page 107 for a complete list of types, ranges, and conversion rules.

Numeric Literals

To write literals for the integer types (TINYINT, SMALLINT, INT, and BIGINT), use a sequence of digits with

optional leading zeros.

To write literals for the floating-point types (DECIMAL, FLOAT, and DOUBLE), use a sequence of digits with an
optional decimal point (. character). To preserve accuracy during arithmetic expressions, Impala interprets floating-

| Impala SQL Language Reference | 184

point literals as the DECIMAL type with the smallest appropriate precision and scale, until required by the context to
convert the result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

You can also use exponential notation by including an e character. For example, 1e6 is 1 times 10 to the power of 6
(1 million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the “smallest” that can accurately represent the
value. The type is promoted to larger or more accurate types if necessary, based on subsequent parts of an expression.

For example, you can see by the types Impala defines for the following table columns how it interprets the
corresponding numeric literals:

[localhost:21000] > create table ten as select 10 as x;

o +

| summary |
o +

| Inserted 1 row(s) |
o +
[localhost:21000] > desc ten;
- o o +
| name | type | comment |
- o o +
| x | tinyint | |
- o o +

[localhost:21000] > create table four k as select 4096 as x;

o +

| summary |
o +

| Inserted 1 row(s) |
o +
[localhost:21000] > desc four k;
- e o +
| name | type | comment |
- o —————— o ————— +
| x | smallint |

- o o +

[localhost:21000] > create table one point five as select 1.5 as x;
o +

| summary |
o +

| Inserted 1 row(s) |
o +

[localhost:21000] > desc one point five;
+———— o ———— t—————— +

| name | type | comment |
+————— o —— o +

| x | decimal(2,1) |

t————— o —— t———————— +

[localhost:21000] > create table one point three three three as select 1.333

as x;
4 ————— +

| summary |

- +

| Inserted 1 row(s) |

= +

[localhost:21000] > desc one point three three three;
+————— +—— - +

| name | type | comment |

| Impala SQL Language Reference | 185

| x | decimal (4,3) |
fo—— - fomm - fomm +

String Literals

String literals are quoted using either single or double quotation marks. You can use either kind of quotes for string
literals, even both kinds for different literals within the same statement.

Quoted literals are considered to be of type STRING. To use quoted literals in contexts requiring a CHAR or
VARCHAR value, CAST () the literal to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:
To encode special characters within a string literal, precede them with the backslash (\) escape character:

* \t represents a tab.

* \n represents a newline or linefeed. This might cause extra line breaks in impala-shell output.

* \r represents a carriage return. This might cause unusual formatting (making it appear that some content is
overwritten) in impala-shell output.

* \D represents a backspace. This might cause unusual formatting (making it appear that some content is
overwritten) in impala-shell output.

* \O0 represents an ASCII nul character (not the same as a SQL NULL). This might not be visible in impala-
shell output.

* \Z represents a DOS end-of-file character. This might not be visible in impala-shell output.

* \%and \ can be used to escape wildcard characters within the string passed to the LIKE operator.

+ \ followed by 3 octal digits represents the ASCII code of a single character; for example, \101 is ASCII 65, the
character A.

» Use two consecutive backslashes (\\) to prevent the backslash from being interpreted as an escape character.

» Use the backslash to escape single or double quotation mark characters within a string literal, if the literal is
enclosed by the same type of quotation mark.

» If the character following the \ does not represent the start of a recognized escape sequence, the character is
passed through unchanged.

Quotes within quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation
marks, and optionally escape the single quote as a \ ' sequence. Earlier releases required escaping a single quote
inside double quotes. Continue using escape sequences in this case if you also need to run your SQL code on older
versions of Impala.

To include a double quotation character within a string value, enclose the literal with single quotation marks, no
escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as a
\" sequence.

[localhost:21000] > select "What\'s happening?" as single within double,

> 'I\'m not sure.' as single within single,
> "Homer wrote \"The Iliad\"." as
double within double,
> 'Homer also wrote "The Odyssey".' as
double within single;
o o o
o +
| single within double | single within single | double within double
double within single
+ ______ : ______ : ________ + ______________________ + __________________________
o +
| What's happening? | I'm not sure. | Homer wrote "The Iliad".
Homer also wrote "The Odyssey". |
o o o

| Impala SQL Language Reference | 186

Field terminator character in CREATE TABLE:

Note: The CREATE TABLE clauses FIELDS TERMINATED BY, ESCAPED BY,and LINES TERMINATED BY
have special rules for the string literal used for their argument, because they all require a single character. You can use
a regular character surrounded by single or double quotation marks, an octal sequence such as '\054 "' (representing
a comma), or an integer in the range '-127'..'128' (with quotation marks but no backslash), which is interpreted as a
single-byte ASCII character. Negative values are subtracted from 256; for example, FIELDS TERMINATED BY
'-2" sets the field delimiter to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data
formats.

impala-shell considerations:

When dealing with output that includes non-ASCII or non-printable characters such as linefeeds and backspaces, use

the impala-shell options to save to a file, turn off pretty printing, or both rather than relying on how the output

appears visually. See impala-shell Configuration Options on page 618 for a list of impala-shell options.
Boolean Literals

For BOOLEAN values, the literals are TRUE and FALSE, with no quotation marks and case-insensitive.

Examples:

select true;

select * from tl where assertion = false;
select case bool col when true then 'yes' when false 'no' else 'null' end
from tl1;

Timestamp Literals

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp values
are accepted in the format "yyyy-MM-dd HH:mm:ss.SSSSSS", and can consist of just the date, or just the
time, with or without the fractional second portion. For example, you can specify TIMESTAMP values such as
'1966-07-30", '08:30:00",0r '1985-09-25 17:45:30.005".

You can also use INTERVAL expressions to add or subtract from timestamp literal values, such as
CAST('1966-07-30' AS TIMESTAMP) + INTERVAL 5 YEARS + INTERVAL 3 DAYS. See
TIMESTAMP Data Type on page 141 for details.

Depending on your data pipeline, you might receive date and time data as text, in notation that does not exactly match
the format for Impala TIMESTAMP literals. See Impala Date and Time Functions on page 458 for functions that

can convert between a variety of string literals (including different field order, separators, and timezone notation) and
equivalent TIMESTAMP or numeric values.

NULL

The notion of NULL values is familiar from all kinds of database systems, but each SQL dialect can have its own
behavior and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are
significant: any misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming
to correct for large data sets.

* NULL is a different value than an empty string. The empty string is represented by a string literal with nothing
inside, ""or ' '.

* In a delimited text file, the NULL value is represented by the special token \N.

* When Impala inserts data into a partitioned table, and the value of one of the partitioning columns is NULL or
the empty string, the data is placed in a special partition that holds only these two kinds of values. When these
values are returned in a query, the result is NULL whether the value was originally NULL or an empty string. This
behavior is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty

| Impala SQL Language Reference | 187

strings as partition keys, and it returns a string value suchas HIVE DEFAULT PARTITION instead of
NULL when such values are returned from a query. For example:

create table tl (i int) partitioned by (x int, y string);

—-- Select an INT column from another table, with all rows going into a
special HDFS subdirectory

-— named _ HIVE DEFAULT PARTITION . Depending on whether one or both of
the partitioning keys

-- are null, this special directory name occurs at different levels of the
physical data directory

-- for the table.

insert into tl partition(x=NULL, y=NULL) select cl from some other table;
insert into tl partition(x, y=NULL) select cl, c2 from some other table;
insert into tl partition(x=NULL, y) select cl, c3 from some other table;

* There is no NOT NULL clause when defining a column to prevent NULL values in that column.

* There is no DEFAULT clause to specify a non-NULL default value.

+ Ifan INSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all
inserted rows.

* InImpala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries,
and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater
than all other values for sorting purposes. The original Impala behavior always put NULL values at the end, even
for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other
popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL
by adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

Note: Because the NULLS FIRST and NULLS LAST keywords are not currently available in Hive queries, any
views you create using those keywords will not be available through Hive.

+ In all other contexts besides sorting with ORDER BY, comparing a NULL to anything else returns NULL, making
the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also produces NULL, 5
BETWEEN 1 AND NULL produces NULL, and so on.

Several built-in functions serve as shorthand for evaluating expressions and returning NULL, 0, or some
other substitution value depending on the expression result: i fnull (), isnull (), nv1 (), nullif (),
nullifzero(),and zeroifnull (). See Impala Conditional Functions on page 509 for details.

Kudu considerations:

Columns in Kudu tables have an attribute that specifies whether or not they can contain NULL values. A column with
a NULL attribute can contain nulls. A column with a NOT NULL attribute cannot contain any nulls, and an INSERT,

UPDATE, or UPSERT statement will skip any row that attempts to store a null in a column designated as NOT NULL.
Kudu tables default to the NULL setting for each column, except columns that are part of the primary key.

In addition to columns with the NOT NULL attribute, Kudu tables also have restrictions on NULL values in columns
that are part of the primary key for a table. No column that is part of the primary key in a Kudu table can contain any
NULL values.

SQL Operators

SQL operators are a class of comparison functions that are widely used within the WHERE clauses of SELECT
statements.

Arithmetic Operators

The arithmetic operators use expressions with a left-hand argument, the operator, and then (in most cases) a right-
hand argument.

| Impala SQL Language Reference | 188

Syntax:

left hand arg binary operator right hand arg
unary operator single arg

* +and -: Can be used either as unary or binary operators.

* With unary notation, such as +5, -2 .5, or ~col name, they multiply their single numeric argument by
+1 or —-1. Therefore, unary + returns its argument unchanged, while unary - flips the sign of its argument.
Although you can double up these operators in expressions such as ++5 (always positive) or —+2 or +-2
(both always negative), you cannot double the unary minus operator because —- is interpreted as the start of
a comment. (You can use a double unary minus operator if you separate the — characters, for example with a
space or parentheses.)

* With binary notation, such as 2+2, 5-2.5,0r coll + col2,they add or subtract respectively the right-
hand argument to (or from) the left-hand argument. Both arguments must be of numeric types.

* *and /: Multiplication and division respectively. Both arguments must be of numeric types.

When multiplying, the shorter argument is promoted if necessary (such as SMALLINT to INT or BIGINT,
or FLOAT to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a
TINYINT and an INT produces a BIGINT result. Multiplying a FLOAT and a FLOAT produces a DOUBLE
result. Multiplying a FLOAT and a DOUBLE or a DOUBLE and a DOUBLE produces a DECIMAL (38,17),
because DECIMAL values can represent much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE values to avoid losing precision. If you
need to insert the results of a division operation into a FLOAT column, use the CAST () function to convert the
result to the correct type.

* DIV: Integer division. Arguments are not promoted to a floating-point type, and any fractional result is discarded.
For example, 13 DIV 7returns 1,14 DIV 7returns2,and 15 DIV 7 returns 2. This operator is the same as
the QUOTIENT () function.

* %: Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both
arguments must be of one of the integer types.

* &, |,~,and ": Bitwise operators that return the logical AND, logical OR, NOT, or logical XOR (exclusive OR) of
their argument values. Both arguments must be of one of the integer types. If the arguments are of different type,
the argument with the smaller type is implicitly extended to match the argument with the longer type.

You can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example,
prior to Impala 2.2, there is no MOD () function equivalent to the $ modulo operator. Conversely, there are some
arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use the POW ()
function, but there is no * * exponentiation operator. See Impala Mathematical Functions on page 423 for the
arithmetic functions you can use.

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM () and AVG () are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX () and MIN () values are computed from the string N NAME
field.

describe region;

| name | type | comment |

| Impala SQL Language Reference | 189

Fommmcmse=ess Foccemcoosess s ses e s es s Fommmmmmos o
r regionkey smallint
r name string
r comment string
r

| | |
| | |
| | |
nations | array<struct< |
| n nationkey:smallint, | |
| n name:string, | |
| n_comment:string | |
| >> | |
select r name, r nations.item.n nationkey

from region, region.r nations as r nations
order by r name, r nations.item.n nationkey;

o —— o +
| r name | item.n nationkey |
o fm———— ——— +
| AFRICA | 0 |
| AFRICA | 5 |
| AFRICA | 14 |
| AFRICA | 15 |
| AFRICA | 16 |
| AMERICA |1 |
| AMERICA | 2 |
| AMERICA | 3 |
| AMERICA | 17 |
| AMERICA | 24

| ASIA | 8 |
| ASIA | 9 |
| ASIA | 12

| ASIA | 18

| ASIA | 21

| EUROPE | 6 |
| EUROPE |7 |
| EUROPE | 19 |
| EUROPE | 22 |
| EUROPE | 23 |
| MIDDLE EAST | 4 |
| MIDDLE EAST | 10

| MIDDLE EAST | 11

| MIDDLE EAST | 13

| MIDDLE EAST | 20 |
o —— o +
select

r name,

count (r nations.item.n nationkey) as count,
sum(r nations.item.n nationkey) as sum,
avg (r nations.item.n nationkey) as avg,
min(r nations.item.n name) as minimum,
max (r nations.item.n name) as maximum,
ndv (r nations.item.n nationkey) as distinct vals
from
region, region.r nations as r nations
group by r name
order by r name;

t—————_———— t————— +————- t————— t————_—_— o ——————
o ——————— +

| r name | count | sum | avg | minimum | maximum
distinct wvals |

Fmm————— e Fo———- Fo———— Fmm Fmm e
o —————— +

| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBIQUE | 5
|

| AMERICA | 5 | 47 | 9.4

| ASiA | 5 | 68 | 13.6
| EUAOPE | 5 | 77 | 15.4
| MI$DLE EAST | 5 | 58 | 11.6
+———l ————————— fo—m fo——— fo——
Fomm +

ARGENTINA |

CHINA

FRANCE |

EGYPT

| Impala SQL Language Reference | 190

UNITED STATES | 5
VIETNAM | 5
UNITED KINGDOM | 5
SAUDI ARABIA | 5

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot

notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an

arithmetic expression, such as multiplying by 10:

—-— The SMALLINT is a field within an array of structs.

describe region;

o —— B ettt +
| name | type

o —— e +
| r regionkey | smallint

| r name | string

| r comment | string

| r nations | array<struct<

| | n nationkey:smallint, |
| | n name:string, |
| | n_comment:string |
| | >> |
o —— o +

-—- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it

-- like any other number.

select r name, nation.item.n name,
from region,

where nation.item.n nationkey < 5;

nation.item.n nationkey * 10
region.r nations as nation

t————_—_———— t————_—_———— o +
| r name | item.n name | nation.item.n nationkey * 10 |
o fm———— ————- o e +
| AMERICA | CANADA | 30
| AMERICA | BRAZIL | 20
| AMERICA | ARGENTINA | 10
| MIDDLE EAST | EGYPT | 40
| AFRICA | ALGERIA | 0
o ——————— o ——————— Bt +

BETWEEN Operator

In a WHERE clause, compares an expression to both a lower and upper bound. The comparison is successful is the
expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values
are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:

expression BETWEEN lower bound AND upper bound

| Impala SQL Language Reference | 191

Data types: Typically used with numeric data types. Works with any data type, although not very practical for
BOOLEAN values. (BETWEEN false AND true will match all BOOLEAN values.) Use CAST () if necessary
to ensure the lower and upper bound values are compatible types. Call string or date/time functions if necessary to
extract or transform the relevant portion to compare, especially if the value can be transformed into a number.

Usage notes:

Be careful when using short string operands. A longer string that starts with the upper bound value will not be
included, because it is considered greater than the upper bound. For example, BETWEEN 'A' and 'M' would not
match the string value 'Midway'. Use functions such as upper (), lower (), substr (), trim(), and so on if
necessary to ensure the comparison works as expected.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

-- Retrieve data for January through June, inclusive.
select cl from tl where month between 1 and 6;

-- Retrieve data for names beginning with 'A' through 'M' inclusive.

-- Only test the first letter to ensure all the values starting with 'M' are
matched.

-- Do a case-insensitive comparison to match names with various
capitalization conventions.

select last name from customers where upper (substr(last name,1,1)) between
'A' and 'M';

-- Retrieve data for only the first week of each month.
select count (distinct visitor id)) from web traffic where
dayofmonth (when viewed) between 1 and 7;

The following example shows how to do a BETWEEN comparison using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in a
comparison operator:

-- The SMALLINT is a field within an array of structs.
describe region;

e e o +——— +
| name | type | comment |
e L e e e e e e e +

r regionkey smallint

r name string

r comment string

n nationkey:smallint,

n name:string,

n comment:string
>>

| | |
| | |
| | |
r nations | array<struct< |
| | |
| | |
| | |
| | |

—-— When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it

-- like any other number.

select r name, nation.item.n name, nation.item.n nationkey
from region, region.r nations as nation

where nation.item.n nationkey between 3 and 5

| Impala SQL Language Reference | 192

| r name | item.n name | item.n nationkey |
Fmm Fo————— ————— fm————— ——————— +
| AMERICA | CANADA | 3
| MIDDLE EAST | EGYPT | 4
| AFRICA | ETHIOPIA | 5
o —— o —— o +

Comparison Operators
Impala supports the familiar comparison operators for checking equality and sort order for the column data types:
Syntax:
left hand expression comparison operator right hand expression
+ =, = <>:apply to all types.
* <, <=, >, >=:apply to all types; for BOOLEAN, TRUE is considered greater than FALSE.

Alternatives:

The IN and BETWEEN operators provide shorthand notation for expressing combinations of equality, less than, and
greater than comparisons with a single operator.

Because comparing any value to NULL produces NULL rather than TRUE or FALSE, use the IS NULL and IS NOT
NULL operators to check if a value is NULL or not.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot

notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an
item within an ARRAY column. Once the scalar numeric value R NATIONKEY is extracted, it can be used with a
comparison operator such as <:

—-— The SMALLINT is a field within an array of structs.
describe region;

- - - +
| name | type | comment |
- - - +

r regionkey smallint

r name string

r comment string

r nations array<struct<
n nationkey:smallint,
n name:string,
n_comment:string

>>

-— When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it

-- like any other number.

select r name, nation.item.n name, nation.item.n nationkey
from region, region.r nations as nation

where nation.item.n nationkey < 5

| AMERICA | CANADA | 3

| Impala SQL Language Reference | 193

| AMERICA | BRAZIL | 2
| AMERICA | ARGENTINA [1
| MIDDLE EAST | EGYPT | 4
| AFRICA | ALGERIA | 0
Fmmm Fmmm Fmm +

EXISTS Operator

The EXISTS operator tests whether a subquery returns any results. You typically use it to find values from one table
that have corresponding values in another table.

The converse, NOT EXISTS, helps to find all the values from one table that do not have any corresponding values in
another table.

Syntax:

EXISTS (subquery)
NOT EXISTS (subquery)

Usage notes:

The subquery can refer to a different table than the outer query block, or the same table. For example, you might use
EXISTS or NOT EXISTS to check the existence of parent/child relationships between two columns of the same
table.

You can also use operators and function calls within the subquery to test for other kinds of relationships other than
strict equality. For example, you might use a call to COUNT () in the subquery to check whether the number of
matching values is higher or lower than some limit. You might call a UDF in the subquery to check whether values in
one table matches a hashed representation of those same values in a different table.

NULL considerations:
If the subquery returns any value at all (even NULL), EXISTS returns TRUE and NOT EXISTS returns false.

The following example shows how even when the subquery returns only NULL values, EXISTS still returns TRUE
and thus matches all the rows from the table in the outer query block.

[localhost:21000] > create table all nulls (x int);

[localhost:21000] > insert into all nulls values (null), (null), (null);
[localhost:21000] > select y from t2 where exists (select x from all nulls);
+———+

| |

+

|
|

|
+

y
-—+
2|
4 |
6 |
———+

However, if the table in the subquery is empty and so the subquery returns an empty result set, EXISTS returns
FALSE:

[localhost:21000] > create table empty (x int);
[localhost:21000] > select y from t2 where exists (select x from empty):;
[localhost:21000] >

Added in: Impala 2.0.0
Restrictions:
Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Prior to Impala 2.6, the NOT EXISTS operator required a correlated subquery. In Impala 2.6 and higher, NOT
EXISTS works with uncorrelated queries also.

| Impala SQL Language Reference | 194

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples refer to these simple tables containing small sets of integers or strings:

[localhost:21000] create table tl (x int);
[localhost:21000] > insert into tl values (1), (2), (3), (4), (5), (6);

\Y

[localhost:21000] > create table t2 (y int);
[localhost:21000] > insert into t2 wvalues (2), (4), (06);

[localhost:21000] > create table t3 (z int);
[localhost:21000] > insert into t3 values (1), (3), (5);
[localhost:21000] > create table month names (m string);
[localhost:21000] > insert into month names values
> ('January'), ('February'), ('March'),
> ('April'), ('May'), ('June'), ('July'),
> ('August'), ('September'), ('October'),
> ('November'), ('December');

The following example shows a correlated subquery that finds all the values in one table that exist in another table.
For each value X from T1, the query checks if the Y column of T2 contains an identical value, and the EXISTS
operator returns TRUE or FALSE as appropriate in each case.

localhost:21000] > select x from tl where exists (select y from t2 where
tl.x = vy);

+———+

| x |

+———+

| 2 |

| 4 |

| 6 |

+———+

An uncorrelated query is less interesting in this case. Because the subquery always returns TRUE, all rows from T1
are returned. If the table contents where changed so that the subquery did not match any rows, none of the rows from
T1 would be returned.

[localhost:21000] > select x from tl where exists (select y from t2 where y
> 5);

+-——+

I x|

+-——4

| |
| |
| |
| |
| |
| |
+-——+

| Impala SQL Language Reference | 195

The following example shows how an uncorrelated subquery can test for the existence of some condition within a
table. By using LIMIT 1 or an aggregate function, the query returns a single result or no result based on whether the
subquery matches any rows. Here, we know that T1 and T2 contain some even numbers, but T3 does not.

[localhost:21000] > select "contains an even number" from tl where exists

(select x from tl where x $ 2 = 0) limit 1;
o +

| 'contains an even number' |
o +

| contains an even number |
o +

[localhost:21000] > select "contains an even number" as assertion from tl
where exists (select x from tl where x % 2 = 0) limit 1;

e +

| assertion |

o +

| contains an even number |

B ettt +

[localhost:21000] > select "contains an even number" as assertion from t2
where exists (select x from t2 where y $ 2 = 0) limit 1;

ERROR: AnalysisException: couldn't resolve column reference: 'x'
[localhost:21000] > select "contains an even number" as assertion from t2
where exists (select y from t2 where y % 2 = 0) limit 1;

B ettt +

| assertion |

e +

| contains an even number |

o +

[localhost:21000] > select "contains an even number" as assertion from t3
where exists (select z from t3 where z % 2 = 0) limit 1;

[localhost:21000] >

The following example finds numbers in one table that are 1 greater than numbers from another table. The EXISTS
notation is simpler than an equivalent CROSS JOIN between the tables. (The example then also illustrates how the
same test could be performed using an IN operator.)

[localhost:21000] > select x from tl where exists (select y from t2 where x
=y + 1);

+-———+

| x |

+———1

[3 |

| 5 |

+———

[localhost:21000] > select x from tl where x in (select y + 1 from t2);
+-———+

| x |

+———

| 3 |

| 5 |

+-———+

The following example finds values from one table that do not exist in another table.

[localhost:21000] > select x from tl where not exists (select y from t2
where x = vy);

fr===dk

I x|

+———+

[1 |

[3 |

| 5 |

| Impala SQL Language Reference | 196

+-——+

The following example uses the NOT EXISTS operator to find all the leaf nodes in tree-structured data. This
simplified “tree of life” has multiple levels (class, order, family, and so on), with each item pointing upward through
a PARENT pointer. The example runs an outer query and a subquery on the same table, returning only those items
whose ID value is not referenced by the PARENT of any other item.

[localhost:21000] > create table tree (id int, parent int, name string);
[localhost:21000] > insert overwrite tree values

> (0, null, "animals"),

> (1, 0, "placentals"),

> (2, 0, "marsupials"),

> (3, 1, "bats"),

> (4, 1, "cats"),

> (5, 2, "kangaroos"),

> (6, 4, "lions"),

> (7, 4, "tigers"),

> (8, 5, "red kangaroo"),

> (9, 2, "wallabies");
[localhost:21000] > select name as "leaf node" from tree one

> where not exists (select parent from tree two where
one.id = two.parent);

o —— +
| leaf node |
o — +
| bats |
| lions |
| tigers |
| red kangaroo |
| wallabies |
o — +

Related information:

Subqueries in Impala SELECT Statements on page 342

ILIKE Operator

A case-insensitive comparison operator for STRING data, with basic wildcard capability using _ to match a single
character and % to match multiple characters. The argument expression must match the entire string value. Typically,
it is more efficient to put any % wildcard match at the end of the string,.

This operator, available in Impala 2.5 and higher, is the equivalent of the LIKE operator, but with case-insensitive
comparisons.

Syntax:

string expression ILIKE wildcard expression
string expression NOT ILIKE wildcard expression

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

In the following examples, strings that are the same except for differences in uppercase and lowercase match
successfully with TLIKE, but do not match with LIKE:

select 'fooBar' ilike 'FOOBAR';

| Impala SQL Language Reference | 197

o +
| "foobar' ilike 'foobar' |
o +
| true |
e +

select 'fooBar' like 'FOOBAR';

e +
| "foobar' like 'foobar' |
o +
| false |
e +

B +
| '"foobar' ilike 'f%' |
i +
| true |
e +

e +
| 'foobar' like 'f%' |
e +
| false |
e +

select 'ABCXYZ' not ilike 'ab xyz';

e +
| not 'abcxyz' ilike 'ab xyz' |
e +
| false |
o +

select 'ABCXYZ' not like 'ab xyz';

o +
| not 'abcxyz' like 'ab xyz' |
Fm ———— +
| true |
e +

Related information:

For case-sensitive comparisons, see LIKE Operator on page 204. For a more general kind of search operator using
regular expressions, see REGEXP Operator on page 208 or its case-insensitive counterpart /REGEXP Operator on
page 200.

IN Operator

The IN operator compares an argument value to a set of values, and returns TRUE if the argument matches any value
in the set. The NOT 1IN operator reverses the comparison, and checks if the argument value is not part of a set of
values.

Syntax:

expression IN (expression [, expression])
expression IN (subgquery)

expression NOT IN (expression [, expression])
expression NOT IN (subquery)

The left-hand expression and the set of comparison values must be of compatible types.

| Impala SQL Language Reference | 198

The left-hand expression must consist only of a single value, not a tuple. Although the left-hand expression is
typically a column name, it could also be some other value. For example, the WHERE clauses WHERE id IN (5)
and WHERE 5 IN (id) produce the same results.

The set of values to check against can be specified as constants, function calls, column names, or other expressions in
the query text. The maximum number of expressions in the IN list is 9999. (The maximum number of elements of a
single expression is 10,000 items, and the IN operator itself counts as one.)

In Impala 2.0 and higher, the set of values can also be generated by a subquery. IN can evaluate an unlimited number
of results using a subquery.

Usage notes:

Any expression using the IN operator could be rewritten as a series of equality tests connected with OR, but the IN
syntax is often clearer, more concise, and easier for Impala to optimize. For example, with partitioned tables, queries
frequently use IN clauses to filter data by comparing the partition key columns to specific values.

NULL considerations:

If there really is a matching non-null value, IN returns TRUE:

[localhost:21000] > select 1 in (1,null,2,3);

o +
| 1 in (1, null, 2, 3) |
o +

| true |
e +
[localhost:21000] > select 1 not in (1,null,2,3);
e +

| 1 not in (1, null, 2, 3) |

B T +

| false |
e +

If the searched value is not found in the comparison values, and the comparison values include NULL, the result is
NULL:

[localhost:21000] > select 5 in (1,null,2,3);

o +

| 5 in (1, null, 2, 3) |
o +

| NULL |
e +
[localhost:21000] > select 5 not in (1,null,2,3);
e +

| 5 not in (1, null, 2, 3) |

B T +

| NULL |
e +
[localhost:21000] > select 1 in (null);
t—————_————— +

| 1 in (null) |

tm———_—_————— +

| NULL |

o —— +

[localhost:21000] > select 1 not in (null);
o ——— +

| 1 not in (null) |

o ——————— +

| NULL |

| Impala SQL Language Reference | 199

If the left-hand argument is NULL, IN always returns NULL. This rule applies even if the comparison values include
NULL.

[localhost:21000] > select null in (1,2,3);

o +

| null in (1, 2, 3) |

o +

| NULL |

o +

[localhost:21000] > select null not in (1,2,3);
e +

| null not in (1, 2, 3) |
e +

| NULL |

B it ittt +
[localhost:21000] > select null in (null);
o ——— +

| null in (null) |

o —————— +

| NULL |

o +

[localhost:21000] > select null not in (null);
e +

| null not in (null) |
e +

| NULL |
e +

Added in: Available in earlier Impala releases, but new capabilities were added in Impala 2.0.0
Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;

fom e o fom +
| name | type | comment |
fomm - e e e fomm - +

r regionkey smallint

r:name string

r comment string

n nationkey:smallint,

n name:string,

n comment:string
>>

| | |
| | |
| | |
r nations | array<struct< |
| | |
| | |
| | |
| | |

-— When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it

-- like any other number.

select r name, nation.item.n name, nation.item.n nationkey
from region, region.r nations as nation

where nation.item.n nationkey in (1,3,5)

| Impala SQL Language Reference | 200

o o —— o +
| r name | item.n name | item.n nationkey |
fmm R —————— R R +
| AMERICA | CANADA | 3

| AMERICA | ARGENTINA |1

| AFRICA | ETHIOPIA | 5

o o —— o +
Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Examples:

-- Using IN is concise and self-documenting.

SELECT * FROM tl1 WHERE cl IN (1,2,10);

-- Equivalent to series of = comparisons ORed together.
SELECT * FROM tl WHERE cl = 1 OR cl = 2 OR cl1 = 10;

SELECT cl AS "starts with vowel" FROM t2 WHERE upper (substr(cl,1,1)) IN
(lAl’lEl’lIl’lOl’lUl);

SELECT COUNT(DISTINCT(ViSitor_id)) FROM web_traffic WHERE month IN
('"January', 'June', 'July');

Related information:

Subqueries in Impala SELECT Statements on page 342

IREGEXP Operator

Tests whether a value matches a regular expression, using case-insensitive string comparisons. Uses the POSIX
regular expression syntax where ~ and $ match the beginning and end of the string, . represents any single character,
* represents a sequence of zero or more items, + represents a sequence of one or more items, ? produces a non-

greedy match, and so on.

This operator, available in Impala 2.5 and higher, is the equivalent of the REGEXP operator, but with case-insensitive
comparisons.

Syntax:

string expression IREGEXP regular expression

Usage notes:

The regular expression must match the entire value, not just occur somewhere inside it. Use . * at the beginning,
the end, or both if you only need to match characters anywhere in the middle. Thus, the ~ and $ atoms are often
redundant, although you might already have them in your expression strings that you reuse from elsewhere.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do
not allow backreferences. To retrieve the part of a value matched within a () section, use the regexp extract ()
built-in function. (Currently, there is not any case-insensitive equivalent for the regexp extract () function.)

Note:

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by . *. See
REGEXP Operator on page 208 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression
support for popular database systems. There is no change to the behavior of the regexp extract () and
regexp replace () built-in functions.

| Impala SQL Language Reference | 201

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including . *? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 on page 816 for details.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the syntax for the IREGEXP operator.

select 'abcABCaabbcc' iregexp '“[a-cl+$';

B it ettt e e +
| '"abcabcaabbcc' iregexp '[a-c]+' |
o +
| true |
o +

Related information:

REGEXP Operator on page 208

IS DISTINCT FROM Operator

The IS DISTINCT FROM operator, and its converse the IS NOT DISTINCT FROM operator, test whether or not
values are identical. IS NOT DISTINCT FROM is similar to the = operator, and IS DISTINCT FROM is similar
to the ! = operator, except that NULL values are treated as identical. Therefore, IS NOT DISTINCT FROM returns
true rather than NULL, and IS DISTINCT FROM returns false rather than NULL, when comparing two NULL
values. If one of the values being compared is NULL and the other is not, IS DISTINCT FROM returns true and
IS NOT DISTINCT FROM returns false, again instead of returning NULL in both cases.

Syntax:
expressionl IS DISTINCT FROM expressionZ2

expressionl IS NOT DISTINCT FROM expressionZ
expressionl <=> expression2

The operator <=> is an alias for IS NOT DISTINCT FROM. It is typically used as a NULL-safe equality operator in
join queries. That is, A <=> B is true if A equals B or if both A and B are NULL.
Usage notes:

This operator provides concise notation for comparing two values and always producing a true or false result,
without treating NULL as a special case. Otherwise, to unambiguously distinguish between two values requires a
compound expression involving IS [NOT] NULL tests of both operands in addition to the = or ! = operator.

The <=> operator, used like an equality operator in a join query, is more efficient than the equivalent clause: 2 = B
OR (A IS NULL AND B IS NULL).The <=> operator can use a hash join, while the OR expression cannot.

Examples:

The following examples show how IS DISTINCT FROM gives output similar to the ! = operator, and IS NOT
DISTINCT FROM gives output similar to the = operator. The exception is when the expression involves a NULL

https://code.google.com/p/re2/

| Impala SQL Language Reference | 202

value on one side or both sides, where ! = and = return NULL but the IS [NOT] DISTINCT FROM operators still
return true or false.

o o +
| 1 is distinct from O | 1 != 0 |
o o +
| true | true |
o o +
select 1 is distinct from 1, 1 != 1;
o o +
| 1 is distinct from 1 | 1 != 1 |
B ittt e e e o +
| false | false |
o o ———— +

o fom +
| 1 is distinct from null | 1 != null |
o fom - +
| true | NULL |
o fomm - +

select null is distinct from null, null !'= null;

e e fomm +
| null is distinct from null | null != null |
B ettt fom e +
| false | NULL |
B ettt it fom e +

o - +
| 1 is not distinct from O | 1 = 0 |
o - +
| false | false |
e t—————— +

select 1 is not distinct from 1, 1 = 1;

e t————— +
| 1 is not distinct from 1 | 1 = 1 |
B T t————— +
| true | true |
e - +

select 1 is not distinct from null, 1 = null;

o t——————— +
| 1 is not distinct from null | 1 = null |
e t———— +
| false | NULL |
o t————————— +

| Impala SQL Language Reference | 203

The following example shows how IS DISTINCT FROM considers CHAR values to be the same (not distinct from
each other) if they only differ in the number of trailing spaces. Therefore, sometimes the result of an IS [NOT]
DISTINCT FROM operator differs depending on whether the values are STRING/VARCHAR or CHAR.

select
'x' is distinct from 'x ' as string with trailing spaces,
cast ('x' as char(5)) is distinct from cast('x ' as char(5)) as
char with trailing spaces;
e o +
| string with trailing spaces | char with trailing spaces |
o __Z T T ______Z T __ o _ T T ______Z T __ ¥
| true | false |
o o +

IS NULL Operator

The IS NULL operator, and its converse the IS NOT NULL operator, test whether a specified value is NULL.
Because using NULL with any of the other comparison operators such as = or ! = also returns NULL rather than TRUE
or FALSE, you use a special-purpose comparison operator to check for this special condition.

In Impala 2.11 and higher, you can use the operators IS UNKNOWN and IS NOT UNKNOWN as synonyms for IS
NULL and IS NOT NULL, respectively.

Syntax:

expression IS NULL
expression IS NOT NULL

expression IS UNKNOWN
expression IS NOT UNKNOWN

Usage notes:

In many cases, NULL values indicate some incorrect or incomplete processing during data ingestion or conversion.
You might check whether any values in a column are NULL, and if so take some followup action to fill them in.

With sparse data, often represented in “wide” tables, it is common for most values to be NULL with only an
occasional non-NULL value. In those cases, you can use the IS NOT NULL operator to identify the rows containing
any data at all for a particular column, regardless of the actual value.

With a well-designed database schema, effective use of NULL values and IS NULL and IS NOT NULL operators
can save having to design custom logic around special values such as 0, -1, 'N/A", empty string, and so on. NULL
lets you distinguish between a value that is known to be 0, false, or empty, and a truly unknown value.

Complex type considerations:

The IS [NOT] UNKNOWN operator, as with the IS [NOT] NULL operator, is not applicable to complex type
columns (STRUCT, ARRAY, or MAP). Using a complex type column with this operator causes a query error.

Examples:

-— If this value is non-zero, something is wrong.
select count (*) from employees where employee id is null;

-- With data from disparate sources, some fields might be blank.
-- Not necessarily an error condition.
select count (*) from census where household income is null;

-—- Sometimes we expect fields to be null, and followup action
—-- 1is needed when they are not.
select count (*) from web traffic where weird http code is not null;

| Impala SQL Language Reference | 204

IS TRUE Operator
This variation of the IS operator tests for truth or falsity, with right-hand arguments [NOT] TRUE, [NOT] FALSE,
and [NOT] UNKNOWN.

Syntax:

expression IS TRUE
expression IS NOT TRUE

expression IS FALSE
expression IS NOT FALSE

Usage notes:

This IS TRUE and IS FALSE forms are similar to doing equality comparisons with the Boolean values TRUE
and FALSE, except that IS TRUE and IS FALSE always return either TRUE or FALSE, even if the left-hand side

expression returns NULL

These operators let you simplify Boolean comparisons that must also check for NULL, for example X != 10 AND
X IS NOT NULLis equivalentto (X != 10) IS TRUE.

In Impala 2.11 and higher, you can use the operators IS [NOT] TRUE and IS [NOT] FALSE as equivalents for
the built-in functions istrue (), isnottrue (), isfalse (), and isnotfalse ().

Complex type considerations:

The IS [NOT] TRUE and IS [NOT] FALSE operators are not applicable to complex type columns (STRUCT,
ARRAY, or MAP). Using a complex type column with these operators causes a query error.

Added in: Impala 2.11.0

Examples:

select assertion, b, b is true, b is false, b is unknown
from boolean test;

fmm e Fmm e e e e +
| assertion | b | istrue(b) | isfalse(b) | b is null |
o —— - o o ——— o +
| 2 + 2 =4 | true | true | false | false

| 2 + 2 =5 | false | false | true | false

| 1 = null | NULL | false | false | true |
| null = null | NULL | false | false | true |
o ———— t—————— o ——— o o ——— +

LIKE Operator

A comparison operator for STRING data, with basic wildcard capability using the underscore (_) to match a single
character and the percent sign (%) to match multiple characters. The argument expression must match the entire string
value. Typically, it is more efficient to put any $ wildcard match at the end of the string.

Syntax:

string expression LIKE wildcard expression
string expression NOT LIKE wildcard expression

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,

| Impala SQL Language Reference | 205

or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

select distinct ¢ last name from customer where c last name like 'Mc%' or
c_last name like 'Mac%';

select count (c_last name) from customer where c_last name like 'M%';
select ¢ _email address from customer where ¢ email address like '$.edu';

-— We can find 4-letter names beginning with 'M' by calling functions...

select distinct ¢ last name from customer where length(c last name) = 4 and
substr (c_last name,1,1) = 'M';

-— ...0r in a more readable way by matching M followed by exactly 3
characters.

select distinct c last name from customer where c last name like 'M ;

For case-insensitive comparisons, see /LIKE Operator on page 196. For a more general kind of search operator
using regular expressions, see REGEXP Operator on page 208 or its case-insensitive counterpart IREGEXP
Operator on page 200.

Logical Operators

Logical operators return a BOOLEAN value, based on a binary or unary logical operation between arguments that are
also Booleans. Typically, the argument expressions use comparison operators.

Syntax:

boolean expression binary logical operator boolean expression
unary logical operator boolean expression

The Impala logical operators are:

* AND: A binary operator that returns t rue if its left-hand and right-hand arguments both evaluate to true, NULL
if either argument is NULL, and false otherwise.

* OR: A binary operator that returns true if either of its left-hand and right-hand arguments evaluate to true,
NULL if one argument is NULL and the other is either NULL or false, and false otherwise.

* NOT: A unary operator that flips the state of a Boolean expression from true to false, or false to true.
If the argument expression is NULL, the result remains NULL. (When NOT is used this way as a unary logical
operator, it works differently than the IS NOT NULL comparison operator, which returns t rue when applied to
a NULL.)

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

—-—- The SMALLINT is a field within an array of structs.
describe region;

fom e o fom +
| name | type | comment |
B o fomm +
| r regionkey | smallint |
| r name | string |
| r comment | string |

| Impala SQL Language Reference | 206

| array<struct< | |
| n nationkey:smallint, | |
| n name:string, | |
| n_comment:string | |
| >> | |

-- When we refer to the scalar value using dot notation,
-—- we can use arithmetic and comparison operators on it
-- like any other number.
select r name, nation.item.n name, nation.item.n nationkey
from region, region.r nations as nation
where
nation.item.n nationkey between 3 and 5
or nation.item.n nationkey < 15;

fomm o o +
| r name | item.n name | item.n nationkey |
fom - fom - Fom - +
| EUROPE | UNITED KINGDOM | 23
| EUROPE | RUSSIA | 22
| EUROPE | ROMANIA | 19
| ASIA | VIETNAM | 21
| ASIA | CHINA | 18
| AMERICA | UNITED STATES | 24
| AMERICA | PERU | 17
| AMERICA | CANADA | 3
| MIDDLE EAST | SAUDI ARABIA | 20
| MIDDLE EAST | EGYPT | 4
| AFRICA | MOZAMBIQUE | 16
| AFRICA | ETHIOPIA | 5
o o i +
Examples:

These examples demonstrate the AND operator:

[localhost:21000] > select true and true;

[localhost:21000] > select true and false;

[localhost:21000] > select true and null;

[localhost:21000] > select (10 > 2) and (6 !'= 9);

| Impala SQL Language Reference | 207

These examples demonstrate the OR operator:

[localhost:21000] > select true or true;

o —— +

| true or true |

o — +

| true |

o — +

[localhost:21000] > select true or false;
o — +

| true or false |

o — +

| true |

o — +

[localhost:21000] > select false or false;
o —— +

| false or false |

o +

| false |

o +

[localhost:21000] > select true or null;
o —— +

| true or null |

o — +

| true |

o — +

[localhost:21000] > select null or true;
o —— +

| null or true |

o — +

| true |

o — +

[localhost:21000] > select false or null;
o — +

| false or null |

o — +

| NULL |

o — +

[localhost:21000] > select (1 = 1) or ('hello' = 'world');
e +

| (1 = 1) or ('hello' = 'world') |

e +

| true |

e +
[localhost:21000] > select (2 + 2 != 4) or (-1 > 0);
e +

| (2 + 2 !'=4) or (-1 > 0) |

o +

| false |
o +

These examples demonstrate the NOT operator:

[localhost:21000] > select not true;

| Impala SQL Language Reference | 208

[localhost:21000] > select not false;

o +

| not false |

o +

| true |

o +

[localhost:21000] > select not null;
o ————— +

| not null |

o +

| NULL |

o +

[localhost:21000] > select not (1=1);
o —— +

| not (1 = 1) |

o —— +

| false |

o —— +

REGEXP Operator

Tests whether a value matches a regular expression. Uses the POSIX regular expression syntax where ~ and $ match
the beginning and end of the string, . represents any single character, * represents a sequence of zero or more items,
+ represents a sequence of one or more items, ? produces a non-greedy match, and so on.

Syntax:
string expression REGEXP regular expression

Usage notes:

The regular expression must match the entire value, not just occur somewhere inside it. Use . * at the beginning,
the end, or both if you only need to match characters anywhere in the middle. Thus, the ~ and $ atoms are often
redundant, although you might already have them in your expression strings that you reuse from elsewhere.

The RLIKE operator is a synonym for REGEXP.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do
not allow backreferences. To retrieve the part of a value matched within a () section, use the regexp extract ()
built-in function.

Note:

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by . *. See
REGEXP Operator on page 208 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression
support for popular database systems. There is no change to the behavior of the regexp extract () and
regexp replace () built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including . *? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 on page 816 for details.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,

https://code.google.com/p/re2/

| Impala SQL Language Reference | 209

or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

-- Find all customers whose first name starts with 'J', followed by 0 or
more of any character.

select ¢ _first name, c_last name from customer where c first name regexp
l/\J.*l;

select ¢ first name, c_last name from customer where c first name rlike

V/\J *x V.
. ’

-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be
upper- or lowercase.

-- The ~...$ are required, to match the start and end of the value.

select ¢ first name, c_last name from customer where c last name regexp
'“Ma?c[Dd]onalds$’;

select ¢ first name, c last name from customer where c last name rlike '“Ma?

c[Dd]onalds$';

—-- Match multiple character sequences, either 'Mac' or 'Mc'.

select ¢ first name, c_last name from customer where c last name regexp
'~ (Mac|Mc)donalds$';

select ¢ first name, c_ last name from customer where c last name rlike
'~ (Mac |Mc)donalds$';

-- Find names starting with 'S', then one or more vowels, then 'r', then any
other characters.

-- Matches 'Searcy', 'Sorenson', 'Sauer'.

select ¢ first name, c last name from customer where c last name regexp
'“"Slaeioul+r.*s"';

select ¢ _first name, c_last name from customer where c_last name rlike
'“"Slaeioul+r.*s"';

-- Find names that end with 2 or more vowels: letters from the set
a,e,i,o,u.

select ¢ _first name, c_last name from customer where c last name regexp
'.*[aeioul {2,}8";

select ¢ first name, c_last name from customer where c last name rlike
'.*[aeioul{2,}8";

-- You can use letter ranges in the [] blocks, for example to find names
starting with A, B, or C.

select ¢ _first name, c_last name from customer where c last name regexp
TAA=C] %" ¢

select ¢ _first name, c_last name from customer where c last name rlike '"[A-

Cl].*';

-- If you are not sure about case, leading/trailing spaces, and so on, you
can process the

-- column using string functions first.

select ¢ first name, c_last name from customer where

lower (trim(c_last name)) regexp '~de.*';
select ¢ first name, c last name from customer where
lower (trim(c_last name)) rlike '“de.*';

Related information:

For regular expression matching with case-insensitive comparisons, see /[REGEXP Operator on page 200.

| Impala SQL Language Reference | 210

RLIKE Operator
Synonym for the REGEXP operator. See REGEXP Operator on page 208 for details.
Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

-- Find all customers whose first name starts with 'J', followed by 0 or
more of any character.

select c_first name, c_ last name from customer where c_ first name regexp
IAJ.*I;

select c_first name, c last name from customer where c_ first name rlike
l/\J.*l;

-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be
upper- or lowercase.

-- The ~...$ are required, to match the start and end of the value.

select c_first name, c last name from customer where c_ last name regexp
'“Ma?c[Dd]onalds$’;

select c_first name, c last name from customer where c_ last name rlike '”"Ma?

c[Dd]onalds';

—-- Match multiple character sequences, either 'Mac' or 'Mc'.

select c_first name, c last name from customer where c_ last name regexp
'~ (Mac|Mc)donalds$';

select c_first name, c_last name from customer where c last name rlike
'~ (Mac |Mc)donalds$';

-- Find names starting with 'S', then one or more vowels, then 'r', then any
other characters.

-- Matches 'Searcy', 'Sorenson', 'Sauer'.

select c_first name, c last name from customer where c_ last name regexp
'“"Slaeioul+r.*s"';

select c_first name, c_last name from customer where c_last name rlike
'“"Slaeioul+r.*S$"';

-- Find names that end with 2 or more vowels: letters from the set
a,e,i,o,u.

select c_first name, c last name from customer where c_last name regexp
'.*[aeioul {2,}8";

select c_first name, c_last name from customer where c_ last name rlike
'.*[aeioul{2,}8";

-- You can use letter ranges in the [] blocks, for example to find names
starting with A, B, or C.

select c_first name, c last name from customer where c_last name regexp
IA[A_C].*I;

select c_first name, c last name from customer where c last name rlike '"[A-

c]_*v;

-- If you are not sure about case, leading/trailing spaces, and so on, you
can process the

-- column using string functions first.

select c_first name, c last name from customer where

lower (trim(c_last name)) regexp '“de.*';

select c_first name, c last name from customer where

lower (trim(c_last name)) rlike '“de.*';

| Impala SQL Language Reference | 211

Impala Schema Objects and Object Names

With Impala, you work with schema objects that are familiar to database users: primarily databases, tables, views, and
functions. The SQL syntax to work with these objects is explained in Impala SQL Statements on page 223. This
section explains the conceptual knowledge you need to work with these objects and the various ways to specify their
names.

Within a table, partitions can also be considered a kind of object. Partitioning is an important subject for Impala,
with its own documentation section covering use cases and performance considerations. See Partitioning for Impala
Tables on page 688 for details.

Impala does not have a counterpart of the “tablespace” notion from some database systems. By default, all the data
files for a database, table, or partition are located within nested folders within the HDFS file system. You can also
specify a particular HDFS location for a given Impala table or partition. The raw data for these objects is represented
as a collection of data files, providing the flexibility to load data by simply moving files into the expected HDFS
location.

Information about the schema objects is held in the metastore database. This database is shared between Impala
and Hive, allowing each to create, drop, and query each other's databases, tables, and so on. When Impala makes a
change to schema objects through a CREATE, ALTER, DROP, INSERT, or LOAD DATA statement, it broadcasts
those changes to all nodes in the cluster through the catalog service. When you make such changes through Hive or
directly through manipulating HDFS files, you use the REFRESH or INVALIDATE METADATA statements on the
Impala side to recognize the newly loaded data, new tables, and so on.

Overview of Impala Aliases

When you write the names of tables, columns, or column expressions in a query, you can assign an alias at the same
time. Then you can specify the alias rather than the original name when making other references to the table or
column in the same statement. You typically specify aliases that are shorter, easier to remember, or both than the
original names. The aliases are printed in the query header, making them useful for self-documenting output.

To set up an alias, add the AS alias clause immediately after any table, column, or expression name in the
SELECT list or FROM list of a query. The AS keyword is optional; you can also specify the alias immediately after the
original name.

—-— Make the column headers of the result set easier to understand.

SELECT cl AS name, c2 AS address, c3 AS phone FROM table with terse columns;
SELECT SUM(ss_xyz dollars net) AS total sales FROM

table with cryptic columns;

-- The alias can be a quoted string for extra readability.

SELECT cl AS "Employee ID", c2 AS "Date of hire" FROM tl;

-- The AS keyword is optional.

SELECT cl "Employee ID", c2 "Date of hire" FROM tl;

—-- The table aliases assigned in the FROM clause can be used both earlier
-- in the query (the SELECT list) and later (the WHERE clause).
SELECT one.name, two.address, three.phone
FROM census one, building directory two, phonebook three
WHERE one.id = two.id and two.id = three.id;

—-- The aliases cl and c2 let the query handle columns with the same names
from 2 joined tables.
-—- The aliases tl and t2 let the query abbreviate references to long or
cryptically named tables.
SELECT tl.column n AS cl, tZ2.column n AS c2 FROM long name table AS tl,
very long name table2 AS t2
WHERE cl = c2;
SELECT tl.column n cl, t2.column n c2 FROM tablel tl, table2 t2
WHERE cl = c2;

| Impala SQL Language Reference | 212

To use an alias name that matches one of the Impala reserved keywords (listed in Impala Reserved Words on page
782), surround the identifier with either single or double quotation marks, or * * characters (backticks).

Aliases follow the same rules as identifiers when it comes to case insensitivity. Aliases can be longer than identifiers
(up to the maximum length of a Java string) and can include additional characters such as spaces and dashes when
they are quoted using backtick characters.

Complex type considerations:

Queries involving the complex types (ARRAY, STRUCT, and MAP), typically make extensive use of table aliases.
These queries involve join clauses where the complex type column is treated as a joined table. To construct two-part
or three-part qualified names for the complex column elements in the FROM list, sometimes it is syntactically required
to construct a table alias for the complex column where it is referenced in the join clause. See Complex Types (Impala
2.3 or higher only) on page 152 for details and examples.

Alternatives:

Another way to define different names for the same tables or columns is to create views. See Overview of Impala
Views on page 219 for details.

Overview of Impala Databases

In Impala, a database is a logical container for a group of tables. Each database defines a separate namespace. Within
a database, you can refer to the tables inside it using their unqualified names. Different databases can contain tables
with identical names.

Creating a database is a lightweight operation. There are minimal database-specific properties to configure, only
LOCATION and COMMENT. There is no ALTER DATABASE statement.

Typically, you create a separate database for each project or application, to avoid naming conflicts between tables
and to make clear which tables are related to each other. The USE statement lets you switch between databases.
Unqualified references to tables, views, and functions refer to objects within the current database. You can also refer
to objects in other databases by using qualified names of the form dbname. object name.

Each database is physically represented by a directory in HDFS. When you do not specify a LOCATION attribute, the
directory is located in the Impala data directory with the associated tables managed by Impala. When you do specify
a LOCATION attribute, any read and write operations for tables in that database are relative to the specified HDFS
directory.

There is a special database, named default, where you begin when you connect to Impala. Tables created in
default are physically located one level higher in HDFS than all the user-created databases.

Impala includes another predefined database, impala builtins, that serves as the location for the built-in

functions. To see the built-in functions, use a statement like the following:

show functions in _impala builtins;
show functions in impala builtins like '*substring*';

Related statements:

CREATE DATABASE Statement on page 248, DROP DATABASE Statement on page 287, USE Statement on
page 416, SHOW DATABASES on page 398

Overview of Impala Functions

Functions let you apply arithmetic, string, or other computations and transformations to Impala data. You typically
use them in SELECT lists and WHERE clauses to filter and format query results so that the result set is exactly what
you want, with no further processing needed on the application side.

Scalar functions return a single result for each input row. See Impala Built-In Functions on page 422.

[localhost:21000] > select name, population from country where continent =
'North America' order by population desc limit 4;

| Impala SQL Language Reference | 213

[localhost:21000] > select upper (name), population from country where

continent = 'North America' order by population desc limit 4;
o= o= +
| upper (name) | population |
e e o +
| USA | 320000000 |
| MEXICO | 122000000 |
| CANADA | 25000000 |
| GUATEMALA | 16000000 |
F————————————— f———————————— +

Aggregate functions combine the results from multiple rows: either a single result for the entire table, or a separate
result for each group of rows. Aggregate functions are frequently used in combination with GROUP BY and HAVING
clauses in the SELECT statement. See Impala Aggregate Functions on page 543.

[localhost:21000] > select continent, sum(population) as howmany from
country group by continent order by howmany desc;

o —————— o —_——— +
| continent | howmany |
e — e ——— +
| Asia | 4298723000 |
| Africa | 1110635000 |
| Europe | 742452000 |
| North America | 565265000 |
| South America | 406740000 |
| Oceania | 38304000 |
o ——— - +

User-defined functions (UDFs) let you code your own logic. They can be either scalar or aggregate functions. UDFs
let you implement important business or scientific logic using high-performance code for Impala to automatically
parallelize. You can also use UDFs to implement convenience functions to simplify reporting or porting SQL from
other database systems. See Impala User-Defined Functions (UDFs) on page 593.

[localhost:21000] > select rotl3('Hello world!') as 'Weak obfuscation';

[localhost:21000] > select likelihood of new_subatomic_particle (sensorl,
sensor2, sensor3) as probability
> from experimental results group by experiment;

Each function is associated with a specific database. For example, if you issue a USE somedb statement followed
by CREATE FUNCTION somefunc, the new function is created in the somedb database, and you could refer to
it through the fully qualified name somedb . somefunc. You could then issue another USE statement and create a
function with the same name in a different database.

Impala built-in functions are associated with a special database named impala builtins, which lets you refer

to them from any database without qualifying the name.

[localhost:21000] > show databases;
| name |

_impala builtins
analytic functions
avro_testing

data file size

[localhost:21000] > show functions in impala builtins like '*subs*';

| Impala SQL Language Reference | 214

e - &
| return type | signature |
- - +
| STRING | substr (STRING, BIGINT) |
| STRING | substr (STRING, BIGINT, BIGINT) |
| STRING | substring (STRING, BIGINT) |
| STRING | substring (STRING, BIGINT, BIGINT) |
- - +

Related statements: CREATE FUNCTION Statement on page 250, DROP FUNCTION Statement on page 289

Overview of Impala Identifiers

Identifiers are the names of databases, tables, or columns that you specify in a SQL statement. The rules for identifiers
govern what names you can give to things you create, the notation for referring to names containing unusual
characters, and other aspects such as case sensitivity.

* The minimum length of an identifier is 1 character.

* The maximum length of an identifier is currently 128 characters, enforced by the metastore database.

* An identifier must start with an alphabetic character. The remainder can contain any combination of alphanumeric
characters and underscores. Quoting the identifier with backticks has no effect on the allowed characters in the
name.

* An identifier can contain only ASCII characters.

* To use an identifier name that matches one of the Impala reserved keywords (listed in Impala Reserved Words
on page 782), surround the identifier with * * characters (backticks). Quote the reserved word even if it is part
of a fully qualified name. The following example shows how a reserved word can be used as a column name if it
is quoted with backticks in the CREATE TABLE statement, and how the column name must also be quoted with
backticks in a query:

[localhost:21000] > create table reserved ("data’ string);

[localhost:21000] > select data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select data from reserved

A

Encountered: DATA

Expected: ALL, CASE, CAST, DISTINCT, EXISTS, FALSE, IF, INTERVAL, NOT,
NULL, STRAIGHT JOIN, TRUE, IDENTIFIER

CAUSED BY: Exception: Syntax error

[localhost:21000] > select reserved.data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select reserved.data from reserved

A

Encountered: DATA
Expected: IDENTIFIER
CAUSED BY: Exception: Syntax error

[localhost:21000] > select reserved. data from reserved;

[localhost:21000] >

Important: Because the list of reserved words grows over time as new SQL syntax is added, consider adopting
coding conventions (especially for any automated scripts or in packaged applications) to always quote all
identifiers with backticks. Quoting all identifiers protects your SQL from compatibility issues if new reserved
words are added in later releases.

+ Impala identifiers are always case-insensitive. That is, tables named t1 and T1 always refer to the same table,
regardless of quote characters. Internally, Impala always folds all specified table and column names to lowercase.
This is why the column headers in query output are always displayed in lowercase.

| Impala SQL Language Reference | 215

See Overview of Impala Aliases on page 211 for how to define shorter or easier-to-remember aliases if the
original names are long or cryptic identifiers. Aliases follow the same rules as identifiers when it comes to case
insensitivity. Aliases can be longer than identifiers (up to the maximum length of a Java string) and can include
additional characters such as spaces and dashes when they are quoted using backtick characters.

Another way to define different names for the same tables or columns is to create views. See Overview of Impala
Views on page 219 for details.

Overview of Impala Tables

Tables are the primary containers for data in Impala. They have the familiar row and column layout similar to other
database systems, plus some features such as partitioning often associated with higher-end data warehouse systems.

Logically, each table has a structure based on the definition of its columns, partitions, and other properties.

Physically, each table that uses HDFS storage is associated with a directory in HDFS. The table data consists of all
the data files underneath that directory:

» Internal tables are managed by Impala, and use directories inside the designated Impala work area.

» External tables use arbitrary HDFS directories, where the data files are typically shared between different Hadoop
components.

» Large-scale data is usually handled by partitioned tables, where the data files are divided among different HDFS
subdirectories.

Impala tables can also represent data that is stored in HBase, or in the Amazon S3 filesystem (Impala 2.2 or higher),
or on Isilon storage devices (Impala 2.2.3 or higher). See Using Impala to Query HBase Tables on page 744, Using
Impala with the Amazon S3 Filesystem on page 755, and Using Impala with Isilon Storage on page 769 for

details about those special kinds of tables.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions . tmp or . copying are not considered part of the Impala table. The suffix matching is case-insensitive,
so for example Impala ignores both . copying and . COPYING suffixes.

Related statements: CREATE TABLE Statement on page 257, DROP TABLE Statement on page 295, ALTER
TABLE Statement on page 225 INSERT Statement on page 302, LOAD DATA Statement on page 314,
SELECT Statement on page 323

Internal Tables

The default kind of table produced by the CREATE TABLE statement is known as an internal table. (Its counterpart is
the external table, produced by the CREATE EXTERNAL TABLE syntax.)

» Impala creates a directory in HDFS to hold the data files.

* You can create data in internal tables by issuing INSERT or LOAD DATA statements.

» Ifyou add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that
Impala recognizes the changes in data files, block locations, and so on.

* When you issue a DROP TABLE statement, Impala physically removes all the data files from the directory.

» To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE
FORMATTED table name.The Table Type field displays MANAGED TABLE for internal tables and
EXTERNAL TABLE for external tables. The Location field displays the path of the table directory as an HDFS
URL

* When you issue an ALTER TABLE statement to rename an internal table, all data files are moved into the new
HDFS directory for the table. The files are moved even if they were formerly in a directory outside the Impala
data directory, for example in an internal table with a LOCATION attribute pointing to an outside HDFS directory.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

| Impala SQL Language Reference | 216

-— Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='TRUE') ;

-—- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='FALSE') ;

Related information:

External Tables on page 216, CREATE TABLE Statement on page 257, DROP TABLE Statement on page
295, ALTER TABLE Statement on page 225, DESCRIBE Statement on page 275

External Tables

The syntax CREATE EXTERNAL TABLE sets up an Impala table that points at existing data files, potentially in
HDFS locations outside the normal Impala data directories.. This operation saves the expense of importing the data
into a new table when you already have the data files in a known location in HDFS, in the desired file format.

* You can use Impala to query the data in this table.

* You can create data in external tables by issuing INSERT or LOAD DATA statements.

» Ifyou add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that
Impala recognizes the changes in data files, block locations, and so on.

* When you issue a DROP TABLE statement in Impala, that removes the connection that Impala has with the
associated data files, but does not physically remove the underlying data. You can continue to use the data files
with other Hadoop components and HDFS operations.

» To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE
FORMATTED table name.The Table Type field displays MANAGED TABLE for internal tables and
EXTERNAL TABLE for external tables. The Location field displays the path of the table directory as an HDFS
URL

* When you issue an ALTER TABLE statement to rename an external table, all data files are left in their original
locations.

* You can point multiple external tables at the same HDFS directory by using the same LOCATION attribute for
each one. The tables could have different column definitions, as long as the number and types of columns are
compatible with the schema evolution considerations for the underlying file type. For example, for text data files,
one table might define a certain column as a STRING while another defines the same column as a BIGINT.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-— Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='TRUE') ;

-— Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='FALSE') ;

Related information:

Internal Tables on page 215, CREATE TABLE Statement on page 257, DROP TABLE Statement on page
295, ALTER TABLE Statement on page 225, DESCRIBE Statement on page 275

File Formats

Each table has an associated file format, which determines how Impala interprets the associated data files. See How
Impala Works with Hadoop File Formats on page 697 for details.

You set the file format during the CREATE TABLE statement, or change it later using the ALTER TABLE statement.
Partitioned tables can have a different file format for individual partitions, allowing you to change the file format used
in your ETL process for new data without going back and reconverting all the existing data in the same table.

| Impala SQL Language Reference | 217

Any INSERT statements produce new data files with the current file format of the table. For existing data files,
changing the file format of the table does not automatically do any data conversion. You must use TRUNCATE
TABLE or INSERT OVERWRITE to remove any previous data files that use the old file format. Then you use the
LOAD DATA statement, INSERT ... SELECT, or other mechanism to put data files of the correct format into the
table.

The default file format, text, is the most flexible and easy to produce when you are just getting started with Impala.
The Parquet file format offers the highest query performance and uses compression to reduce storage requirements;
therefore, where practical, use Parquet for Impala tables with substantial amounts of data. Also, the complex types
(ARRAY, STRUCT, and MAP) available in Impala 2.3 and higher are currently only supported with the Parquet file
type. Based on your existing ETL workflow, you might use other file formats such as Avro, possibly doing a final
conversion step to Parquet to take advantage of its performance for analytic queries.

Kudu Tables

Tables stored in Apache Kudu are treated specially, because Kudu manages its data independently of HDFS files.
Some information about the table is stored in the metastore database for use by Impala. Other table metadata is
managed internally by Kudu.

When you create a Kudu table through Impala, it is assigned an internal Kudu table name of the form
impala::db _name.table name. You can see the Kudu-assigned name in the output of DESCRIBE
FORMATTED, in the kudu. table name field of the table properties. The Kudu-assigned name remains the

same even if you use ALTER TABLE to rename the Impala table or move it to a different Impala database. If you
issue the statement ALTER TABLE impala name SET TBLPROPERTIES ('kudu.table name' =
'different kudu table name'), the effect is different depending on whether the Impala table was created
with a regular CREATE TABLE statement (that is, if it is an internal or managed table), or if it was created with a
CREATE EXTERNAL TABLE statement (and therefore is an external table). Changing the kudu.table name
property of an internal table physically renames the underlying Kudu table to match the new name. Changing the
kudu.table name property of an external table switches which underlying Kudu table the Impala table refers to;
the underlying Kudu table must already exist.

The following example shows what happens with both internal and external Kudu tables as the kudu.table name
property is changed. In practice, external tables are typically used to access underlying Kudu tables that were created
outside of Impala, that is, through the Kudu APIL.

-— This is an internal table that we will create and then rename.
create table old name (id bigint primary key, s string)
partition by hash(id) partitions 2 stored as kudu;

-— Initially, the name OLD NAME is the same on the Impala and Kudu sides.
describe formatted old name;

Location:

kudu.master addresses
kudu.table name

vd0342.example.com

|
|
| Table Parameters:
|
|
| impala::user.old name

| hdfs://host.example.com:8020/path/user.db/old name
Table Type: | MANAGED TABLE | NULL

| NULL | NULL

| DO _NOT UPDATE STATS | true

| |

| |

-—- ALTER TABLE RENAME TO changes the Impala name but not the underlying Kudu
name.
alter table old name rename to new_name;

describe formatted new name;

| Location: | hdfs://host.example.com:8020/path/user.db/new name
| Table Type: | MANAGED TABLE | NULL -

| Table Parameters: | NULL | NULL

| | DO_NOT UPDATE STATS | true

| | kudu.master addresses | vd0342.example.com

| | |

kudu.table name impala::user.old name

| Impala SQL Language Reference | 218

-- Setting TBLPROPERTIES changes the underlying Kudu name.
alter table new name
set tblproperties('kudu.table name' = 'impala::user.new name');

describe formatted new name;

| Location: | hdfs://host.example.com:8020/path/user.db/new name
| Table Type: | MANAGED TABLE | NULL -

| Table Parameters: | NULL | NULL

| | DO_NOT UPDATE STATS | true

| | kudu.master addresses | vd0342.example.com

| | |

kudu.table name impala::user.new name

-- Put some data in the table to demonstrate how external tables can map to
-- different underlying Kudu tables.

insert into new name values (0, 'zero'), (1, 'one'), (2, 'two');

-— This external table points to the same underlying Kudu table, NEW NAME,
-— as we created above. No need to declare columns or other table aspects.
create external table kudu table alias stored as kudu

tblproperties ('kudu.table name' = 'impala::user.new _name');

-— The external table can fetch data from the NEW NAME table that already
-- existed and already had data.
select * from kudu table alias limit 100;

ot +
| id | s |
ot +
| 1 | one |
| 0 | zero |
| 2 | two |
ot +

—-— We cannot re-point the external table at a different underlying Kudu
table
-- unless that other underlying Kudu table already exists.
alter table kudu table alias
set tblproperties('kudu.table name' = 'impala::user.yet another name');
ERROR:
TablelLoadingException: Error opening Kudu table
'impala::user.yet another name',
Kudu error: The table does not exist: table name:
"impala::user.yet another name"

—-— Once the underlying Kudu table exists, we can re-point the external table
to it.
create table yet another name (id bigint primary key, x int, y int, s
string)
partition by hash(id) partitions 2 stored as kudu;

alter table kudu table alias
set tblproperties('kudu.table name' = 'impala::user.yet another name');

-- Now no data is returned because this other table is empty.
select * from kudu table alias limit 100;

-- The Impala table automatically recognizes the table schema of the new
table,

-- for example the extra X and Y columns not present in the original table.
describe kudu table alias;

| Impala SQL Language Reference | 219

| x | int | | false | true |
|y | int | | false | true |
| s | string | | false | true |
- o o o —— o +

The SHOW TABLE STATS output for a Kudu table shows Kudu-specific details about the layout of the table. Instead
of information about the number and sizes of files, the information is divided by the Kudu tablets. For each tablet,

the output includes the fields # Rows (although this number is not currently computed), Start Key, Stop Key,
Leader Replica,and # Replicas. The output of SHOW COLUMN STATS, illustrating the distribution of
values within each column, is the same for Kudu tables as for HDFS-backed tables.

The distinction between internal and external tables has some special details for Kudu tables. Tables created
entirely through Impala are internal tables. The table name as represented within Kudu includes notation such

as an impala: : prefix and the Impala database name. External Kudu tables are those created by a non-Impala
mechanism, such as a user application calling the Kudu APIs. For these tables, the CREATE EXTERNAL TABLE
syntax lets you establish a mapping from Impala to the existing Kudu table:

CREATE EXTERNAL TABLE impala name STORED AS KUDU
TBLPROPERTIES ('kudu.table name' = 'original kudu name');

External Kudu tables differ in one important way from other external tables: adding or dropping a column or range
partition changes the data in the underlying Kudu table, in contrast to an HDFS-backed external table where existing
data files are left untouched.

Overview of Impala Views

Views are lightweight logical constructs that act as aliases for queries. You can specify a view name in a query (a
SELECT statement or the SELECT portion of an INSERT statement) where you would usually specify a table name.

A view lets you:

» Issue complicated queries with compact and simple syntax:

-- Take a complicated reporting query, plug it into a CREATE VIEW
statement...

create view vl as select cl, c2, avg(c3) from tl group by c3 order by cl
desc limit 10;

-- ... and now you can produce the report with 1 line of code.

select * from vl;

* Reduce maintenance, by avoiding the duplication of complicated queries across multiple applications in multiple
languages:

create view v2 as select tl.cl, tl.c2, t2.c3 from tl join t2 on (tl.id =
t2.id) ;

-— This simple query is safer to embed in reporting applications than the
longer query above.

—-— The view definition can remain stable even if the structure of the
underlying tables changes.

select cl, c2, c3 from v2;

* Build a new, more refined query on top of the original query by adding new clauses, select-list expressions,
function calls, and so on:

create view average price by category as select category, avg(price) as
avg price from products group by category;

create view expensive categories as select category, avg price from
average price by category order by avg price desc limit 10000;

create view top 10 expensive categories as select category, avg price from
expensive categories limit 10;

| Impala SQL Language Reference | 220

This technique lets you build up several more or less granular variations of the same query, and switch between
them when appropriate.
» Set up aliases with intuitive names for tables, columns, result sets from joins, and so on:

—-— The original tables might have cryptic names inherited from a legacy
system.

create view action items as select rrptsk as assignee, treqg as due date,
dmisc as notes from vxy tl br;

-- You can leave original names for compatibility, build new applications
using more intuitive ones.

select assignee, due date, notes from action items;

» Swap tables with others that use different file formats, partitioning schemes, and so on without any downtime for
data copying or conversion:

create table slow (x int, s string) stored as textfile;

create view report as select s from slow where x between 20 and 30;
—-— Query is kind of slow due to inefficient table definition, but it
works.

select * from report;

create table fast (s string) partitioned by (x int) stored as parquet;
-- ...Copy data from SLOW to FAST. Queries against REPORT view continue to
work. ..

-- After changing the view definition, queries will be faster due to
partitioning,

-- binary format, and compression in the new table.

alter view report as select s from fast where x between 20 and 30;
select * from report;

* Avoid coding lengthy subqueries and repeating the same subquery text in many other queries.

» Set up fine-grained security where a user can query some columns from a table but not other columns. Because
Impala 2.3 and higher support column-level authorization, this technique is no longer required. If you formerly
implemented column-level security through views, see the documentation for Apache Sentry for details about the
column-level authorization feature.

The SQL statements that configure views are CREATE VIEW Statement on page 271, ALTER VIEW Statement on
page 239, and DROP VIEW Statement on page 297. You can specify view names when querying data (SELECT
Statement on page 323) and copying data from one table to another (/NSERT Statement on page 302). The

WITH clause creates an inline view, that only exists for the duration of a single query.

[localhost:21000] > create view trivial as select * from customer;
[localhost:21000] > create view some columns as select c first name,
c_last name, c_login from customer;

[localhost:21000] > select * from some columns limit 5;

Query finished, fetching results

o —— +

| ¢ first name | c last name | c login |
oo mmes ce—mee e o +
| Javier | Lewis |

| Amy | Moses | |
| Latisha | Hamilton |

| Michael | White |

| Robert | Moran | |
o — o —— o +

[localhost:21000] > create view ordered results as select * from
some columns order by c¢ last name desc, c_first name desc limit 1000;
[localhost:21000] > select * from ordered results limit 5;
Query: select * from ordered results limit 5
Query finished, fetching results

| Impala SQL Language Reference | 221

o — o —— o +
| ¢ first name | c last name | c login |
oo —oes ce—oee = o +
| Thomas | Zuniga | |
| Sarah | Zuniga |
| Norma | Zuniga |
| Lloyd | Zuniga | |
| Lisa | Zuniga | |
o — o —— o +

Returned 5 row(s) in 0.48s

The previous example uses descending order for ORDERED RESULTS because in the sample TPCD-H data, there
are some rows with empty strings for both C FIRST NAME and C_LAST NAME, making the lowest-ordered names
unuseful in a sample query.

create view visitors by day as select day, count(distinct visitors) as
howmany from web traffic group by day;

create view top 10 days as select day, howmany from visitors by day order by
howmany limit 10;

select * from top 10 days;

Usage notes:

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original
CREATE VIEW statement:

[localhost:21000] > create view vl as select * from tl;
[localhost:21000] > describe formatted vl;
Query finished, fetching results

o o o ——— +
| name | type | comment |
o o o ——— +
| # col name | data type | comment |
| | NULL | NULL |
| x | int | None |
|y | int | None |
| s | string | None |
| | NULL | NULL |
| # Detailed Table Information | NULL | NULL
| Database: | views | NULL |
| Owner: | doc_demo | NULL |
| CreateTime: | Mon Jul 08 15:56:27 EDT 2013 | NULL
| LastAccessTime: | UNKNOWN | NULL
| Protect Mode: | None | NULL
| Retention: | 0 | NULL |
| Table Type: | VIRTUAL VIEW | NULL
| Table Parameters: | NULL | NULL
| | transient lastDdlTime | 1373313387 |
| | NULL | NULL |
| # Storage Information | NULL | NULL
| SerDe Library: | null | NULL
| InputFormat: | null | NULL |
| OutputFormat: | null | NULL |
| Compressed: | No | NULL
| Num Buckets: | 0 | NULL |
| Bucket Columns: | [] | NULL |
| Sort Columns: | [] | NULL |
| | NULL | NULL |
| # View Information | NULL | NULL
| View Original Text: | SELECT * FROM tl | NULL
| View Expanded Text: | SELECT * FROM tl | NULL

| Impala SQL Language Reference | 222

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view name syntax. In Impala 1.4.0
and higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE
technique. Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no
underlying file format, so CREATE TABLE LIKE view name produces a text table by default. To specify a
different file format, include a STORED AS file format clause at the end of the CREATE TABLE LIKE
statement.

Complex type considerations:

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically use join queries to refer to the
complex values. You can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 173 for details.

The STRAIGHT JOIN hint affects the join order of table references in the query block containing the hint. It does
not affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint
for performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

Restrictions:

* You cannot insert into an Impala view. (In some database systems, this operation is allowed and inserts rows into
the base table.) You can use a view name on the right-hand side of an INSERT statement, in the SELECT part.

» Ifaview applies to a partitioned table, any partition pruning considers the clauses on both the original query and
any additional WHERE predicates in the query that refers to the view. Prior to Impala 1.4, only the WHERE clauses
on the original query from the CREATE VIEW statement were used for partition pruning.

* An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to
sort the entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view.
You can still make a simple “top 10” report by combining the ORDER BY and LIMIT clauses in the same view
definition:

[localhost:21000] > create table unsorted (x bigint);

[localhost:21000] > insert into unsorted wvalues (1), (9), (3), (7)), (5),
(8), (4), (6), (2);

[localhost:21000] > create view sorted view as select x from unsorted
order by x;

[localhost:21000] > select x from sorted view; -- ORDER BY clause in view
has no effect.

+-———+

NoYyd OO JdJW W

|

|

|

|

|

|

|

|
o=
[localhost:21000] > select x from sorted view order by x; -- View query
requires ORDER BY at outermost level.

o=

| Impala SQL Language Reference | 223

| 8 |

| 9 |

+-——+

[localhost:21000] > create view top 3 view as select x from unsorted order
by x limit 3;

[localhost:21000] > select x from top 3 view; -- ORDER BY and LIMIT
together in view definition are preserved.

+-——+

| x|

+-——+

1 |

| 2 |

| 3 |

+-——+

* The TABLESAMPLE clause of the SELECT statement does not apply to a table reference derived from a view, a
subquery, or anything other than a real base table. This clause only works for tables backed by HDFS or HDFS-
like data files, therefore it does not apply to Kudu or HBase tables.

Related statements: CREATE VIEW Statement on page 271, ALTER VIEW Statement on page 239, DROP
VIEW Statement on page 297

Impala SQL Statements

The Impala SQL dialect supports a range of standard elements, plus some extensions for Big Data use cases related to
data loading and data warehousing.

Note:

In the impala-shell interpreter, a semicolon at the end of each statement is required. Since the semicolon is not
actually part of the SQL syntax, we do not include it in the syntax definition of each statement, but we do show it in
examples intended to be run in impala-shell.

DDL Statements

DDL refers to “Data Definition Language”, a subset of SQL statements that change the structure of the database
schema in some way, typically by creating, deleting, or modifying schema objects such as databases, tables, and
views. Most Impala DDL statements start with the keywords CREATE, DROP, or ALTER.

The Impala DDL statements are:

* ALTER TABLE Statement on page 225

* ALTER VIEW Statement on page 239

* COMPUTE STATS Statement on page 240

* CREATE DATABASE Statement on page 248

* CREATE FUNCTION Statement on page 250

* CREATE ROLE Statement (Impala 2.0 or higher only) on page 256
* CREATE TABLE Statement on page 257

* CREATE VIEW Statement on page 271

* DROP DATABASE Statement on page 287

* DROP FUNCTION Statement on page 289

* DROP ROLE Statement (Impala 2.0 or higher only) on page 290
* DROP TABLE Statement on page 295

* DROP VIEW Statement on page 297

* GRANT Statement (Impala 2.0 or higher only) on page 301

* REVOKE Statement (Impala 2.0 or higher only) on page 322

After Impala executes a DDL command, information about available tables, columns, views, partitions, and so
on is automatically synchronized between all the Impala nodes in a cluster. (Prior to Impala 1.2, you had to issue

| Impala SQL Language Reference | 224

aREFRESH or INVALIDATE METADATA statement manually on the other nodes to make them aware of the
changes.)

If the timing of metadata updates is significant, for example if you use round-robin scheduling where each query
could be issued through a different Impala node, you can enable the SYNC DDL query option to make the DDL
statement wait until all nodes have been notified about the metadata changes.

See Using Impala with the Amazon S3 Filesystem on page 755 for details about how Impala DDL statements
interact with tables and partitions stored in the Amazon S3 filesystem.

Although the INSERT statement is officially classified as a DML (data manipulation language) statement, it also
involves metadata changes that must be broadcast to all Impala nodes, and so is also affected by the SYNC DDL
query option.

Because the SYNC DDL query option makes each DDL operation take longer than normal, you might only enable

it before the last DDL operation in a sequence. For example, if you are running a script that issues multiple of DDL
operations to set up an entire new schema, add several new partitions, and so on, you might minimize the performance
overhead by enabling the query option only before the last CREATE, DROP, ALTER, or INSERT statement. The
script only finishes when all the relevant metadata changes are recognized by all the Impala nodes, so you could
connect to any node and issue queries through it.

The classification of DDL, DML, and other statements is not necessarily the same between Impala and Hive. Impala
organizes these statements in a way intended to be familiar to people familiar with relational databases or data
warehouse products. Statements that modify the metastore database, such as COMPUTE STATS, are classified

as DDL. Statements that only query the metastore database, such as SHOW or DESCRIBE, are put into a separate
category of utility statements.

Note: The query types shown in the Impala debug web user interface might not match exactly the categories listed
here. For example, currently the USE statement is shown as DDL in the debug web UI. The query types shown in the
debug web UI are subject to change, for improved consistency.

Related information:

The other major classifications of SQL statements are data manipulation language (see DML Statements on page
224) and queries (see SELECT Statement on page 323).

DML Statements

DML refers to “Data Manipulation Language”, a subset of SQL statements that modify the data stored in tables.
Because Impala focuses on query performance and leverages the append-only nature of HDFS storage, currently
Impala only supports a small set of DML statements:

* DELETE Statement (Impala 2.8 or higher only) on page 273. Works for Kudu tables only.
» INSERT Statement on page 302.

* LOAD DATA Statement on page 314. Does not apply for HBase or Kudu tables.

» UPDATE Statement (Impala 2.8 or higher only) on page 414. Works for Kudu tables only.
» UPSERT Statement (Impala 2.8 or higher only) on page 415. Works for Kudu tables only.

INSERT in Impala is primarily optimized for inserting large volumes of data in a single statement, to make effective
use of the multi-megabyte HDFS blocks. This is the way in Impala to create new data files. If you intend to insert one
or a few rows at a time, such as using the INSERT ... VALUES syntax, that technique is much more efficient for
Impala tables stored in HBase. See Using Impala to Query HBase Tables on page 744 for details.

LOAD DATA moves existing data files into the directory for an Impala table, making them immediately available for
Impala queries. This is one way in Impala to work with data files produced by other Hadoop components. (CREATE
EXTERNAL TABLE is the other alternative; with external tables, you can query existing data files, while the files
remain in their original location.)

In Impala 2.8 and higher, Impala does support the UPDATE, DELETE, and UPSERT statements for Kudu tables. For
HDFS or S3 tables, to simulate the effects of an UPDATE or DELETE statement in other database systems, typically
you use INSERT or CREATE TABLE AS SELECT to copy data from one table to another, filtering out or changing
the appropriate rows during the copy operation.

| Impala SQL Language Reference | 225

You can also achieve a result similar to UPDATE by using Impala tables stored in HBase. When you insert a row into
an HBase table, and the table already contains a row with the same value for the key column, the older row is hidden,
effectively the same as a single-row UPDATE.

Impala can perform DML operations for tables or partitions stored in the Amazon S3 filesystem with Impala 2.6 and
higher. See Using Impala with the Amazon S3 Filesystem on page 755 for details.

Related information:

The other major classifications of SQL statements are data definition language (see DDL Statements on page 223)
and queries (see SELECT Statement on page 323).

ALTER TABLE Statement

The ALTER TABLE statement changes the structure or properties of an existing Impala table.

In Impala, this is primarily a logical operation that updates the table metadata in the metastore database that Impala
shares with Hive. Most ALTER TABLE operations do not actually rewrite, move, and so on the actual data files.
(The RENAME TO clause is the one exception; it can cause HDFS files to be moved to different paths.) When you do
an ALTER TABLE operation, you typically need to perform corresponding physical filesystem operations, such as
rewriting the data files to include extra fields, or converting them to a different file format.

Syntax:

ALTER TABLE [old db name.]old table name RENAME TO
[new db name.]new table name

ALTER TABLE name ADD COLUMNS (col spec[, col spec ...])
ALTER TABLE name DROP [COLUMN] column name
ALTER TABLE name CHANGE column name new name new_type

ALTER TABLE name REPLACE COLUMNS (col spec[, col spec ...])

-- Kudu tables only.
ALTER TABLE name ALTER [COLUMN] column name
{ SET kudu storage attr attr value
| DROP DEFAULT }

kudu storage attr ::= { DEFAULT | BLOCK SIZE | ENCODING | COMPRESSION }

—-- Non-Kudu tables only.
ALTER TABLE name ALTER [COLUMN] column_name
SET COMMENT 'comment text'

ALTER TABLE name ADD [IF NOT EXISTS] PARTITION (partition spec)
[location spec]
[cache spec]

ALTER TABLE name ADD [IF NOT EXISTS] RANGE PARTITION kudq_partition_spec

ALTER TABLE name DROP [IF EXISTS] PARTITION (partition spec)
[PURGE]
ALTER TABLE name DROP [IF EXISTS] RANGE PARTITION kudu partition spec

ALTER TABLE name RECOVER PARTITIONS

ALTER TABLE name [PARTITION (partition_spec)]
SET { FILEFORMAT file format
| LOCATION 'hdfs path of directory'
| TBLPROPERTIES (table properties)
| SERDEPROPERTIES (serde properties) }

ALTER TABLE name colname
('statsKey'='val, ...)

| Impala SQL Language Reference | 226

statsKey ::= numDVs | numNulls | avgSize | maxSize

ALTER TABLE name [PARTITION (partition spec)] SET { CACHED IN

'pool name' [WITH REPLICATION = integer] | UNCACHED }

new _name ::= [new database.]new table name

col spec ::= col name type name [kudu attributes]

kudu attributes ::= { [NOT] NULL | ENCODING codec | COMPRESSION algorithm |
DEFAULT constant | BLOCK SIZE number }

partition spec ::= simple partition spec | complex partition spec

simple partition spec ::= partition col=constant value

complex partition spec ::= comparison expression on partition col

kudu partition spec ::= constant range operator

VALUES range operator constant | VALUE = constant

cache spec ::= CACHED IN 'pool name' [WITH REPLICATION = integer] | UNCACHED
location spec ::= LOCATION 'hdfs path of directory'

table properties ::= 'name'='value'([, 'name'='value' ...]

serde properties ::= 'name'='value'[, 'name'='value' ...]

file format ::= { PARQUET | TEXTFILE | RCFILE | SEQUENCEFILE | AVRO }

Statement type: DDL
Complex type considerations:

In Impala 2.3 and higher, the ALTER TABLE statement can change the metadata for tables containing complex types
(ARRAY, STRUCT, and MAP). For example, you can use an ADD COLUMNS, DROP COLUMN, or CHANGE clause to
modify the table layout for complex type columns. Although Impala queries only work for complex type columns in
Parquet tables, the complex type support in the ALTER TABLE statement applies to all file formats. For example,
you can use Impala to update metadata for a staging table in a non-Parquet file format where the data is populated by
Hive. Or you can use ALTER TABLE SET FILEFORMAT to change the format of an existing table to Parquet so
that Impala can query it. Remember that changing the file format for a table does not convert the data files within the
table; you must prepare any Parquet data files containing complex types outside Impala, and bring them into the table
using LOAD DATA or updating the table's LOCATION property. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types.

Usage notes:

Whenever you specify partitions in an ALTER TABLE statement, through the PARTITION (partition spec)
clause, you must include all the partitioning columns in the specification.

Most of the ALTER TABLE operations work the same for internal tables (managed by Impala) as for external tables
(with data files located in arbitrary locations). The exception is renaming a table; for an external table, the underlying
data directory is not renamed or moved.

Dropping or altering multiple partitions:

In Impala 2.8 and higher, the expression for the partition clause with a DROP or SET operation can include
comparison operators such as <, IN, or BETWEEN, and Boolean operators such as AND and OR.

For example, you might drop a group of partitions corresponding to a particular date range after the data “ages out™:

alter table historical data drop partition (year < 1995);

| Impala SQL Language Reference | 227

alter table historical data drop partition (year = 1996 and month between 1
and 6) ;

For tables with multiple partition keys columns, you can specify multiple conditions separated by commas, and the
operation only applies to the partitions that match all the conditions (similar to using an AND clause):

alter table historical data drop partition (year < 1995, last name like 'A

5');

This technique can also be used to change the file format of groups of partitions, as part of an ETL pipeline that
periodically consolidates and rewrites the underlying data files in a different file format:

alter table fast growing data partition (year = 2016, month in (10,11,12))
set fileformat parquet;

Note:

The extended syntax involving comparison operators and multiple partitions applies to the SET FILEFORMAT, SET
TBLPROPERTIES, SET SERDEPROPERTIES, and SET [UN]CACHED clauses. You can also use this syntax
with the PARTITION clause in the COMPUTE INCREMENTAL STATS statement, and with the PARTITION clause
of the SHOW FILES statement. Some forms of ALTER TABLE still only apply to one partition at a time: the SET
LOCATION and ADD PARTITION clauses. The PARTITION clauses in the LOAD DATA and INSERT statements
also only apply to one partition at a time.

A DDL statement that applies to multiple partitions is considered successful (resulting in no changes) even if no
partitions match the conditions. The results are the same as if the IF EXISTS clause was specified.

The performance and scalability of this technique is similar to issuing a sequence of single-partition ALTER TABLE
statements in quick succession. To minimize bottlenecks due to communication with the metastore database, or
causing other DDL operations on the same table to wait, test the effects of performing ALTER TABLE statements
that affect large numbers of partitions.

Amazon S3 considerations:

You can specify an s3a: // prefix on the LOCATION attribute of a table or partition to make Impala query data
from the Amazon S3 filesystem. In Impala 2.6 and higher, Impala automatically handles creating or removing the
associated folders when you issue ALTER TABLE statements with the ADD PARTITION or DROP PARTITION
clauses.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 755 for details about reading and writing S3 data with Impala.

HDFS caching (CACHED IN clause):

If you specify the CACHED 1IN clause, any existing or future data files in the table directory or the partition
subdirectories are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS
Caching with Impala (Impala 2.1 or higher only) on page 663 for details about using the HDFS caching feature.

In Impala 2.2 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets
you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Where practical, specify a value greater than or equal to the HDFS block
replication factor.

| Impala SQL Language Reference | 228

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC _DDL Query Option on page 392 for details.

The following sections show examples of the use cases for various ALTER TABLE clauses.
To rename a table (RENAME TO clause):
The RENAME TO clause lets you change the name of an existing table, and optionally which database it is located in.

For internal tables, this operation physically renames the directory within HDFS that contains the data files; the
original directory name no longer exists. By qualifying the table names with database names, you can use this
technique to move an internal table (and its associated data directory) from one database to another. For example:

create database dl;

create database d2;

create database d3;

use dil;

create table mobile (x int);

use dz2;

-— Move table from another database to the current one.
alter table dl.mobile rename to mobile;

use dil;

-— Move table from one database to another.
alter table d2.mobile rename to d3.mobile;

For external tables,

To change the physical location where Impala looks for data files associated with a table or partition:

ALTER TABLE table name [PARTITION (partition spec)] SET LOCATION
'hdfs path of directory';

The path you specify is the full HDFS path where the data files reside, or will be created. Impala does not create any
additional subdirectory named after the table. Impala does not move any data files to this new location or change any
data files that might already exist in that directory.

To set the location for a single partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (month int, day int);

-— Each ADD PARTITION clause creates a subdirectory in HDFS.

alter table pl add partition (month=1, day=1);

alter table pl add partition (month=1, day=2);

alter table pl add partition (month=2, day=1l);

alter table pl add partition (month=2, day=2);

-- Redirect queries, INSERT, and LOAD DATA for one partition

-- to a specific different directory.

alter table pl partition (month=1, day=1) set location '/usr/external data/
new years day';

Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use a
single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather than separate
statements with ADD PARTITION and SET LOCATION clauses.

To automatically detect new partition directories added through Hive or HDFS operations:

In Impala 2.3 and higher, the RECOVER PARTITIONS clause scans a partitioned table to detect if any new partition
directories were added outside of Impala, such as by Hive ALTER TABLE statements or by hdfs dfs or hadoop
fs commands. The RECOVER PARTITIONS clause automatically recognizes any data files present in these new
directories, the same as the REFRESH statement does.

| Impala SQL Language Reference | 229

For example, here is a sequence of examples showing how you might create a partitioned table in Impala, create new
partitions through Hive, copy data files into the new partitions with the hdfs command, and have Impala recognize
the new partitions and new data:

In Impala, create the table, and a single partition for demonstration purposes:

create database recover partitions;
use recover partitions;
create table tl (s string) partitioned by (yy int, mm int);

insert into tl partition (yy = 2016, mm = 1) values ('Partition exists');

show files in tl1;

+ ___

fom==== o= +

| Path | Size
| Partition

+ ___

fremmm== oo me=e +

| /user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=1/data.txt | 17B
| yy=2016/mm=1 |

In Hive, create some new partitions. In a real use case, you might create the partitions and populate them with data as
the final stages of an ETL pipeline.

hive> use recover partitions;

OK
hive> alter table tl add partition (yy = 2016, mm = 2);
OK
hive> alter table tl add partition (yy = 2016, mm = 3);
OK

hive> quit;

For demonstration purposes, manually copy data (a single row) into these new partitions, using manual HDFS
operations:

$ hdfs dfs -1ls /user/hive/warehouse/recover partitions.db/tl/yy=2016/
Found 3 items

drwxr-xr-x - impala hive 0 2016-05-09 16:06 /user/hive/warehouse/
recover partitions.db/tl/yy=2016/mm=1

drwxr-xr-x - jrussell hive 0 2016-05-09 16:14 /user/hive/warehouse/
recover partitions.db/tl/yy=2016/mm=2

drwxr-xr-x — jrussell hive 0 2016-05-09 16:13 /user/hive/warehouse/
recover partitions.db/tl/yy=2016/mm=3

$ hdfs dfs -cp /user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=1/
data.txt \

/user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=2/data.txt
$ hdfs dfs -cp /user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=1/
data.txt \

/user/hive/warehouse/recover partitions.db/tl/yy=2016/mm=3/data.txt

| Impala SQL Language Reference | 230

hive> select * from tl;
OK

Partition exists 2016 1
Partition exists 2016 2
Partition exists 2016 3
hive> quit;

In Impala, initially the partitions and data are not visible. Running ALTER TABLE with the RECOVER
PARTITIONS clause scans the table data directory to find any new partition directories, and the data files inside

them:

select * from tl;

Fmm e fo— -+t
| s | vy | mm |
Fm o -+
| Partition exists | 2016 | 1 |
e o +-———+

alter table tl recover partitions;
select * from tl;

B +———— +————
| & | vy | mm |
e +————— +————1
| Partition exists | 2016 | 1 |
| Partition exists | 2016 | 3 |
| Partition exists | 2016 | 2 |
B +———— +————

To change the key-value pairs of the TBLPROPERTIES and SERDEPROPERTIES fields:

ALTER TABLE table name SET TBLPROPERTIES ('keyl'='valuel',

'key2'="value2'[, ...1);:
ALTER TABLE table name SET SERDEPROPERTIES ('keyl'='valuel',
'key2'='value2'[, ...1);

The TRLPROPERTIES clause is primarily a way to associate arbitrary user-specified data items with a particular
table.

The SERDEPROPERTIES clause sets up metadata defining how tables are read or written, needed in some cases by
Hive but not used extensively by Impala. You would use this clause primarily to change the delimiter in an existing
text table or partition, by setting the 'serialization.format' and 'field.delim' property values to the

new delimiter character:

-- This table begins life as pipe-separated text format.

create table change to csv (sl string, s2 string) row format delimited
fields terminated by '|';

-- Then we change it to a CSV table.

alter table change to csv set SERDEPROPERTIES ('serialization.format'=',"',
'field.delim'=",");

insert overwrite change to csv values ('stop','go'), ('yes','no');

'hdfs dfs -cat 'hdfs://hostname:8020/data directory/dbname.db/

change to csv/data file';

stop, go

| Impala SQL Language Reference | 231

yes, no

Use the DESCRIBE FORMATTED statement to see the current values of these properties for an existing table. See
CREATE TABLE Statement on page 257 for more details about these clauses. See #unique 297 for an example of
using table properties to fine-tune the performance-related table statistics.

To manually set or update table or column statistics:

Although for most tables the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement is all you need
to keep table and column statistics up to date for a table, sometimes for a very large table or one that is updated
frequently, the length of time to recompute all the statistics might make it impractical to run those statements as often
as needed. As a workaround, you can use the ALTER TABLE statement to set table statistics at the level of the entire
table or a single partition, or column statistics at the level of the entire table.

You can set the numrows value for table statistics by changing the TRLPROPERTIES setting for a table or partition.
For example:

create table analysis data stored as parquet as select * from raw _data;
Inserted 1000000000 rows in 181.98s

compute stats analysis data;

insert into analysis data select * from smaller table we forgot before;

Inserted 1000000 rows in 15.32s
—-- Now there are 1001000000 rows. We can update this single data point in

the stats.
alter table analysis data set tblproperties('numRows'='1001000000",
'STATS GENERATED VIA STATS TASK'='true');

-- If the table originally contained 1 million rows, and we add another
partition with 30 thousand rows,
-- change the numRows property for the partition and the overall table.
alter table partitioned data partition(year=2009, month=4) set tblproperties
('numRows'='30000', 'STATS GENERATED VIA STATS TASK'='true');
alter table partitioned data set tblproperties ('numRows'='1030000",
'"STATS GENERATED VIA STATS TASK'='true');

See #unique 297 for details.

In Impala 2.6 and higher, you can use the SET COLUMN STATS clause to set a specific stats value for a particular
column.

You specify a case-insensitive symbolic name for the kind of statistics: numDVs, numNulls, avgSize, maxSize.
The key names and values are both quoted. This operation applies to an entire table, not a specific partition. For
example:

create table tl (x int, s string);
insert into tl values (1, 'one'), (2, 'two'), (2, 'deux');
show column stats tl;

o o o o t————————— t————————— +
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
o o o o o o +
| x | INT | -1 | -1 | 4 | 4

| s | STRING | -1 | -1 | -1 | -1
o o o o o ———— o ———— +
alter table tl set column stats x ('numDVs'='2"', 'numNulls'='0");
alter table tl set column stats s ('numdvs'='3', 'maxsize'='4");

show column stats tl;

o ———— o ———— o o ———— o o +
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
o o o o o ———— o ———— +
| x | INT | 2 | 0 | 4 | 4

| s | STRING | 3 | -1 | 4 | -1

| Impala SQL Language Reference | 232

To reorganize columns for a table:

ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE

table name
table name
table name
table name

ADD COLUMNS (column defs) ;

REPLACE COLUMNS (column defs);

CHANGE column name new_name new_type;
DROP column name;

The column_spec is the same as in the CREATE TABLE statement: the column name, then its data type, then an
optional comment. You can add multiple columns at a time. The parentheses are required whether you add a single
column or multiple columns. When you replace columns, all the original column definitions are discarded. You might
use this technique if you receive a new set of data files with different data types or columns in a different order. (The
data files are retained, so if the new columns are incompatible with the old ones, use INSERT OVERWRITE or LOAD
DATA OVERWRITE to replace all the data before issuing any further queries.)

For example, here is how you might add columns to an existing table. The first ALTER TABLE adds two new
columns, and the second ALTER TABLE adds one new column. A single Impala query reads both the old and new
data files, containing different numbers of columns. For any columns not present in a particular data file, all the
column values are considered to be NULL.

create table tl

insert into

alter table
insert into

alter table
insert into

select * from tl order by x;

(x int);
tl values (1), (2);
tl add columns (s string, t timestamp) ;
tl values (3, 'three', now());
tl add columns (b boolean);
tl values (4, 'four', now(), true);
o - +
| t | b |
o - +
| NULL | NULL |
| NULL | NULL |
| 2016-05-11 11:19:45.054457000 | NULL |
| 2016-05-11 11:20:20.260733000 | true |
o e +

You might use the CHANGE clause to rename a single column, or to treat an existing column as a different type than
before, such as to switch between treating a column as STRING and TIMESTAMP, or between INT and BIGINT.
You can only drop a single column at a time; to drop multiple columns, issue multiple ALTER TABLE statements, or

define the new set of columns with a single ALTER TABLE

REPLACE COLUMNS statement.

The following examples show some safe operations to drop or change columns. Dropping the final column in a table
lets Impala ignore the data causing any disruption to existing data files. Changing the type of a column works if
existing data values can be safely converted to the new type. The type conversion rules depend on the file format of
the underlying table. For example, in a text table, the same value can be interpreted as a STRING or a numeric value,
while in a binary format such as Parquet, the rules are stricter and type conversions only work between certain sizes of

integers.

create table optional columns
insert into optional columns values

—-— When the last column in the table is dropped,
-- values that are no longer needed.
-—- would cause problems,

z int, al int, a2 int);
(2,3,4,100,100) ;

(x int, y int,
(1/2/31010) 7

Impala ignores the
(Dropping Al but leaving A2
as we will see in a subsequent example.)

alter table optional columns drop column a2;

| Impala SQL Language Reference | 233

alter table optional columns drop column al;

select * from optional columns;
Fomofoomdtommdt

l x| v | z |
Femmtfremmtteaadt
| 11 2 | 3 |
| 2 | 3 | 4 |

Fo——t———t———+

create table int to string (s string, x int);
insert into int to string values ('one', 1), ('two', 2);

-- What was an INT column will now be interpreted as STRING.

-- This technique works for text tables but not other file formats.

-— The second X represents the new name of the column, which we keep the
same.

alter table int to string change x x string;

-- Once the type is changed, we can insert non-integer values into the X

column
-- and treat that column as a string, for example by uppercasing or

concatenating.

insert into int to string values ('three', 'trois');
select s, upper(x) from int to string;

fm————— Fmm + o

| s | upper (x) |

f——————— f—————————— +

| one | 1 |

| two | 2 |

| three | TROIS |

e it +

Remember that Impala does not actually do any conversion for the underlying data files as a result of ALTER TABLE
statements. If you use ALTER TABLE to create a table layout that does not agree with the contents of the underlying
files, you must replace the files yourself, such as using LOAD DATA to load a new set of data files, or INSERT
OVERWRITE to copy from another table and replace the original data.

The following example shows what happens if you delete the middle column from a Parquet table containing three
columns. The underlying data files still contain three columns of data. Because the columns are interpreted based
on their positions in the data file instead of the specific column names, a SELECT * query now reads the first and
second columns from the data file, potentially leading to unexpected results or conversion errors. For this reason,

if you expect to someday drop a column, declare it as the last column in the table, where its data can be ignored by
queries after the column is dropped. Or, re-run your ETL process and create new data files if you drop or change the
type of a column in a way that causes problems with existing data files.

-- Parquet table showing how dropping a column can produce unexpected

results.

create table pl (sl string, s2 string, s3 string) stored as parquet;

insert into pl values ('one', 'un', 'uno'), ('two', 'deux', 'dos'),
("three', 'trois', 'tres');

select * from pl;

t—————— t—————— - +
| sl | s2 | s3 |
- - - +
| one | un | uno |
| two | deux | dos |
| three | trois | tres |

| Impala SQL Language Reference | 234

alter table pl drop column s2;

-— The S3 column contains unexpected results.

-- Because S2 and S3 have compatible types, the query reads

-- values from the dropped S2, because the existing data files
-- still contain those values as the second column.

select * from pl;

t————— t————— +
| s1 | s3 |
t————— t————— +
| one | un |
| two | deux |
| three | trois |
t————— t————— +

—-- Parquet table showing how dropping a column can produce conversion

errors.
create table p2 (sl string, x int, s3 string) stored as parquet;

insert into p2 values ('one', 1, 'uno'), ('two', 2, 'dos'), ('three', 3,
'tres');

select * from p2;

t—————— -t +

| sl | x | s3 |

- -t +

| one | 1 | uno |

| two | 2 | dos |

| three | 3 | tres |

t—————— -t +

alter table p2 drop column x;

select * from p2;

WARNINGS:

File 'hdfs filename' has an incompatible Parquet schema for column
'add columns.p2.s3'.

Column type: STRING, Parquet schema:

optional int32 x [i:1 d:1 r:0]

File 'hdfs filename' has an incompatible Parquet schema for column
'add columns.p2.s3'.

Column type: STRING, Parquet schema:

optional int32 x [i:1 d:1 r:0]

In Impala 2.6 and higher, if an Avro table is created without column definitions in the CREATE TABLE statement,
and columns are later added through ALTER TABLE, the resulting table is now queryable. Missing values from the
newly added columns now default to NULL.

To change the file format that Impala expects data to be in, for a table or partition:

Use an ALTER TABLE ... SET FILEFORMAT clause. You can include an optional PARTITION
(coll=vall, col2=val2, ... clause so that the file format is changed for a specific partition rather than the
entire table.

Because this operation only changes the table metadata, you must do any conversion of existing data using regular
Hadoop techniques outside of Impala. Any new data created by the Impala INSERT statement will be in the new
format. You cannot specify the delimiter for Text files; the data files must be comma-delimited.

To set the file format for a single partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (month int, day int);
-—- Each ADD PARTITION clause creates a subdirectory in HDFS.

| Impala SQL Language Reference | 235

12

alter table pl add partition (month=1, day=1)
alter table pl add partition (month=1, day=2);
alter table pl add partition (month=2, day=1)
alter table pl add partition (month=2, day=2);

-— Queries and INSERT statements will read and write files

—-— in this format for this specific partition.

alter table pl partition (month=2, day=2) set fileformat parquet;

’

To add or drop partitions for a table, the table must already be partitioned (that is, created with a PARTITIONED
BY clause). The partition is a physical directory in HDFS, with a name that encodes a particular column value (the
partition key). The Impala INSERT statement already creates the partition if necessary, so the ALTER TABLE
ADD PARTITION is primarily useful for importing data by moving or copying existing data files into the HDFS
directory corresponding to a partition. (You can use the LOAD DATA statement to move files into the partition
directory, or ALTER TABLE ... PARTITION (...) SET LOCATION to point a partition at a directory that
already contains data files.

The DROP PARTITION clause is used to remove the HDFS directory and associated data files for a particular

set of partition key values; for example, if you always analyze the last 3 months worth of data, at the beginning of
each month you might drop the oldest partition that is no longer needed. Removing partitions reduces the amount of
metadata associated with the table and the complexity of calculating the optimal query plan, which can simplify and
speed up queries on partitioned tables, particularly join queries. Here is an example showing the ADD PARTITION
and DROP PARTITION clauses.

To avoid errors while adding or dropping partitions whose existence is not certain, add the optional IF [NOT]
EXISTS clause between the ADD or DROP keyword and the PARTITION keyword. That is, the entire clause
becomes ADD IF NOT EXISTS PARTITION or DROP IF EXISTS PARTITION. The following example
shows how partitions can be created automatically through INSERT statements, or manually through ALTER TABLE
statements. The IF [NOT] EXISTS clauses let the ALTER TABLE statements succeed even if a new requested
partition already exists, or a partition to be dropped does not exist.

Inserting 2 year values creates 2 partitions:

create table partition t (s string) partitioned by (y int);

insert into partition t (s,y) values ('two thousand',2000), ('nineteen
ninety',1990);

show partitions partition t;

- - B +————— o —— o t———————
o +
|y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
| Incremental stats |
t————— t————— t————— t———— e ——— e t—————
- +
| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT
| false |
| 2000 | =1 |1 | 13B | NOT CACHED | NOT CACHED | TEXT
| false |
| Total | -1 | 2 | 29B | OB |
| |
- - t——————— +————— o —— o t———————
t————— +

Without the ITF NOT EXISTS clause, an attempt to add a new partition might fail:

alter table partition t add partition (y=2000);
ERROR: AnalysisException: Partition spec already exists: (y=2000).

| Impala SQL Language Reference | 236

The IF NOT EXISTS clause makes the statement succeed whether or not there was already a partition with the
specified key value:

alter table partition t add if not exists partition (y=2000);
alter table partition t add if not exists partition (y=2010);
show partitions partition t;

- - - +————— o B et L L -
4 ————— +
| vy | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
| Incremental stats |
+-—————— +-—————— B et +-————— - - B et
- +
| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT
| false |
| 2000 | -1 | 1 | 13B | NOT CACHED | NOT CACHED | TEXT
| false |
| 2010 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT
| false |
| Total | -1 | 2 | 29B | OB |
| |
- - - - - - -
- +

Likewise, the IF EXISTS clause lets DROP PARTITION succeed whether or not the partition is already in the
table:

alter table partition t drop if exists partition (y=2000);
alter table partition t drop if exists partition (y=1950);
show partitions partition t;

- - B +————— o —— o t———————
o +
|y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
| Incremental stats |
t————— t————— t————— t———— e ——— e t—————
- +
| 1990 | =1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT
| false |
| 2010 | =1 | O | OB | NOT CACHED | NOT CACHED | TEXT
| false |
| Total | -1 | 1 | 16B | OB |
| |
- - t——————— +————— o —— o t———————
t————— +

The optional PURGE keyword, available in Impala 2.3 and higher, is used with the DROP PARTITION clause to
remove associated HDFS data files immediately rather than going through the HDFS trashcan mechanism. Use this
keyword when dropping a partition if it is crucial to remove the data as quickly as possible to free up space, or if there
is a problem with the trashcan, such as the trash cannot being configured or being in a different HDFS encryption
zone than the data files.

-— Create an empty table and define the partitioning scheme.

create table part t (x int) partitioned by (month int);

-- Create an empty partition into which you could copy data files from some
other source.

alter table part t add partition (month=1);

-- After changing the underlying data, issue a REFRESH statement to make the
data visible in Impala.

refresh part t;

-- Later, do the same for the next month.

alter table part t add partition (month=2);

| Impala SQL Language Reference | 237

-- Now you no longer need the older data.

alter table part t drop partition (month=1);

-- If the table was partitioned by month and year, you would issue a
statement like:

-— alter table part t drop partition (year=2003,month=1);

-- which would require 12 ALTER TABLE statements to remove a year's worth of
data.

-— If the data files for subsequent months were in a different file format,
-- you could set a different file format for the new partition as you create
it.

alter table part t add partition (month=3) set fileformat=parquet;

The value specified for a partition key can be an arbitrary constant expression, without any references to columns. For
example:

alter table time data add partition (month=concat ('Decem', 'ber'));
alter table sales data add partition (zipcode = cast (9021 * 10 as string));

Note:

An alternative way to reorganize a table and its associated data files is to use CREATE TABLE to create a variation
of the original table, then use INSERT to copy the transformed or reordered data to the new table. The advantage of
ALTER TABLE is that it avoids making a duplicate copy of the data files, allowing you to reorganize huge volumes
of data in a space-efficient way using familiar Hadoop techniques.

To switch a table between internal and external:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE tableﬁname SET TBLPROPERTIES ('EXTERNAL'='TRUE') ;

-— Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES ('EXTERNAL'='FALSE') ;

Cancellation: Cannot be cancelled.
HDFS permissions:

Most ALTER TABLE clauses do not actually read or write any HDFS files, and so do not depend on specific HDFS
permissions. For example, the SET FILEFORMAT clause does not actually check the file format existing data files or
convert them to the new format, and the SET LOCATION clause does not require any special permissions on the new
location. (Any permission-related failures would come later, when you actually query or insert into the table.)

In general, ALTER TABLE clauses that do touch HDFS files and directories require the same HDFS permissions

as corresponding CREATE, INSERT, or SELECT statements. The permissions allow the user ID that the impalad
daemon runs under, typically the impala user, to read or write files or directories, or (in the case of the execute

bit) descend into a directory. The RENAME TO clause requires read, write, and execute permission in the source and
destination database directories and in the table data directory, and read and write permission for the data files within
the table. The ADD PARTITION and DROP PARTITION clauses require write and execute permissions for the
associated partition directory.

Kudu considerations:

Because of the extra constraints and features of Kudu tables, such as the NOT NULL and DEFAULT attributes for
columns, ALTER TABLE has specific requirements related to Kudu tables:

* Inan ADD COLUMNS operation, you can specify the NULL, NOT NULL, and DEFAULT default value
column attributes.

| Impala SQL Language Reference | 238

* In Impala 2.9 and higher, you can also specify the ENCODING, COMPRESSION, and BLOCK_SIZE attributes
when adding a column.

» Ifyouadd a column with a NOT NULL attribute, it must also have a DEFAULT attribute, so the default value can
be assigned to that column for all existing rows.

» The DROP COLUMN clause works the same for a Kudu table as for other kinds of tables.

» Although you can change the name of a column with the CHANGE clause, you cannot change the type of a column
in a Kudu table.

* You cannot change the nullability of existing columns in a Kudu table.

* InImpala 2.10, you can change the default value, encoding, compression, or block size of existing columns in a
Kudu table by using the SET clause.

* You cannot use the REPLACE COLUMNS clause with a Kudu table.

* The RENAME TO clause for a Kudu table only affects the name stored in the metastore database
that Impala uses to refer to the table. To change which underlying Kudu table is associated
with an Impala table name, you must change the TBLPROPERTIES property of the table: SET
TBLPROPERTIES ('kudu.table name'='kudu tbl name).Doing so causes Kudu to change the name
of the underlying Kudu table.

The following are some examples of using the ADD COLUMNS clause for a Kudu table:

CREATE TABLE tl (x INT, PRIMARY KEY (x))
PARTITION BY HASH (x) PARTITIONS 16
STORED AS KUDU

ALTER TABLE tl ADD COLUMNS (y STRING ENCODING prefix encoding);

ALTER TABLE tl ADD COLUMNS (z INT DEFAULT 10);

ALTER TABLE tl ADD COLUMNS (a STRING NOT NULL DEFAULT '', t TIMESTAMP
COMPRESSION default compression);

The following are some examples of modifying column defaults and storage attributes for a Kudu table:

create table kt (x bigint primary key, s string default 'yes', t timestamp)
stored as kudu;

-- You can change the default value for a column, which affects any rows
-- inserted after this change is made.
alter table kt alter column s set default 'no';

-- You can remove the default value for a column, which affects any rows
-- inserted after this change is made. If the column is nullable, any

-—- future inserts default to NULL for this column. If the column is marked
-- NOT NULL, any future inserts must specify a value for the column.

alter table kt alter column s drop default;

insert into kt values (1, 'foo', now());

-—- Because of the DROP DEFAULT above, omitting S from the insert
-- gives it a value of NULL.

insert into kt (x, t) values (2, now());

select * from kt;

Fo— - o +
| x | s | t |
s o +
| 2 | NULL | 2017-10-02 00:03:40.652156000 |
| 1 | foo | 2017-10-02 00:03:04.346185000 |
ot et e e L e L e +

-- Other storage-related attributes can also be changed for columns.
—-- These changes take effect for any newly inserted rows, or rows

| Impala SQL Language Reference | 239

-- rearranged due to compaction after deletes or updates.
alter table kt alter column s set encoding prefix encoding;
-—- The COLUMN keyword is optional in the syntax.

alter table kt alter x set block size 2048;

alter table kt alter column t set compression zlib;

desc kt;
- - - - e -
- - - +

| name | type | comment | primary key | nullable | default value |
encoding | compression | block size |

+————— - - +———— - +——
- - - +*

| x | bigint | | true | false |

AUTO_ENCODING | DEFAULT COMPRESSION | 2048 |

| s | string | | false | true |

PREFIX ENCODING | DEFAULT COMPRESSION | 0 |

| t | timestamp | | false | true |

AUTO ENCODING | ZLIB | 0 |

e T Fmm Fmm Fmm Fmm
- - +——— +

Kudu tables all use an underlying partitioning mechanism. The partition syntax is different than for non-Kudu tables.
You can use the ALTER TABLE statement to add and drop range partitions from a Kudu table. Any new range
must not overlap with any existing ranges. Dropping a range removes all the associated rows from the table. See
Partitioning for Kudu Tables on page 737 for details.

Related information:

Overview of Impala Tables on page 215, CREATE TABLE Statement on page 257, DROP TABLE Statement on
page 295, Partitioning for Impala Tables on page 688, Internal Tables on page 215, External Tables on page
216

ALTER VIEW Statement

Changes the characteristics of a view. The syntax has two forms:

» The AS clause associates the view with a different query.
* The RENAME TO clause changes the name of the view, moves the view to a different database, or both.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

ALTER VIEW [database name.]view name AS select statement
ALTER VIEW [database name.]view name RENAME TO [database name.]view name
Statement type: DDL

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC DDL Query Option on page 392 for details.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

| Impala SQL Language Reference | 240

Examples:

create table tl (x int, y int, s string);
create table t2 like t1;

create view vl as select * from tl;

alter view vl as select * from t2;

alter view vl as select x, upper(s) s from t2;

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original
CREATE VIEW statement:

[localhost:21000] > create view vl as select * from tl;
[localhost:21000] > describe formatted vl;
Query finished, fetching results

o o o ——— +
| name | type | comment |
o o o +
| # col name | data type | comment |
| | NULL | NULL |
| x | int | None |
|y | int | None |
| s | string | None |
| | NULL | NULL |
| # Detailed Table Information | NULL | NULL
| Database: | views | NULL |
| Owner: | doc_demo | NULL |
| CreateTime: | Mon Jul 08 15:56:27 EDT 2013 | NULL
| LastAccessTime: | UNKNOWN | NULL
| Protect Mode: | None | NULL
| Retention: | 0 | NULL |
| Table Type: | VIRTUAL_VIEW | NULL
| Table Parameters: | NULL | NULL
| | transient lastDdlTime | 1373313387 |
| | NULL | NULL |
| # Storage Information | NULL | NULL
| SerDe Library: | null | NULL
| InputFormat: | null | NULL |
| OutputFormat: | null | NULL |
| Compressed: | No | NULL
| Num Buckets: | 0 | NULL |
| Bucket Columns: | [] | NULL |
| Sort Columns: | [] | NULL |
| | NULL | NULL |
| # View Information | NULL | NULL
| View Original Text: | SELECT * FROM tl | NULL |
| View Expanded Text: | SELECT * FROM tl | NULL
o o o ——— +

Related information:

Overview of Impala Views on page 219, CREATE VIEW Statement on page 271, DROP VIEW Statement on
page 297

COMPUTE STATS Statement

The COMPUTE STATS statement gathers information about volume and distribution of data in a table and all
associated columns and partitions. The information is stored in the metastore database, and used by Impala to help
optimize queries. For example, if Impala can determine that a table is large or small, or has many or few distinct
values it can organize and parallelize the work appropriately for a join query or insert operation. For details about the
kinds of information gathered by this statement, see Table and Column Statistics on page 642.

| Impala SQL Language Reference | 241

Syntax:

COMPUTE STATS [db _name.] table name [(column 1list)] [TABLESAMPLE
SYSTEM (percentage) [REPEATABLE (seed)]]

column list ::= column name [, column name, ...]

COMPUTE INCREMENTAL STATS [db _name.] table name [PARTITION (partition spec)]

partition spec ::= simple partition spec | complex partition spec
simple partition spec ::= partition col=constant value
complex partition spec ::= comparison expression on partition col

The PARTITION clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE
INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions
through the PARTITION (partiti on_spec) clause in a COMPUTE INCREMENTAL STATS or DROP
INCREMENTAL STATS statement, you must include all the partitioning columns in the specification, and specify
constant values for all the partition key columns.

Usage notes:

Originally, Impala relied on users to run the Hive ANALYZE TABLE statement, but that method of gathering
statistics proved unreliable and difficult to use. The Impala COMPUTE STATS statement was built to improve the
reliability and user-friendliness of this operation. COMPUTE STATS does not require any setup steps or special
configuration. You only run a single Impala COMPUTE STATS statement to gather both table and column statistics,
rather than separate Hive ANALYZE TABLE statements for each kind of statistics.

For non-incremental COMPUTE STATS statement, the columns for which statistics are computed can be specified
with an optional comma-separate list of columns.

If no column list is given, the COMPUTE STATS statement computes column-level statistics for all columns of the
table. This adds potentially unneeded work for columns whose stats are not needed by queries. It can be especially
costly for very wide tables and unneeded large string fields.

COMPUTE STATS returns an error when a specified column cannot be analyzed, such as when the column does not
exist, the column is of an unsupported type for COMPUTE STATS, e.g. colums of complex types, or the column is a
partitioning column.

If an empty column list is given, no column is analyzed by COMPUTE STATS.

In Impala 2.12 and higher, an optional TABLESAMPLE clause immediately after a table reference specifies that the
COMPUTE STATS operation only processes a specified percentage of the table data. For tables that are so large that
a full COMPUTE STATS operation is impractical, you can use COMPUTE STATS with a TABLESAMPLE clause to
extrapolate statistics from a sample of the table data. See Table and Column Statisticsabout the experimental stats
extrapolation and sampling features.

The COMPUTE INCREMENTAL STATS variation is a shortcut for partitioned tables that works on a subset of
partitions rather than the entire table. The incremental nature makes it suitable for large tables with many partitions,
where a full COMPUTE STATS operation takes too long to be practical each time a partition is added or dropped. See
#Hunique 299 for full usage details.

Important:

For a particular table, use either COMPUTE STATS or COMPUTE INCREMENTAL STATS, but never combine the
two or alternate between them. If you switch from COMPUTE STATS to COMPUTE INCREMENTAL STATS during
the lifetime of a table, or vice versa, drop all statistics by running DROP STATS before making the switch.

When you run COMPUTE INCREMENTAL STATS on a table for the first time, the statistics are computed again
from scratch regardless of whether the table already has statistics. Therefore, expect a one-time resource-intensive
operation for scanning the entire table when running COMPUTE INCREMENTAL STATS for the first time on a
given table.

| Impala SQL Language Reference | 242

For a table with a huge number of partitions and many columns, the approximately 400 bytes of metadata per column
per partition can add up to significant memory overhead, as it must be cached on the catalogd host and on every
impalad host that is eligible to be a coordinator. If this metadata for all tables combined exceeds 2 GB, you might
experience service downtime.

COMPUTE INCREMENTAL STATS only applies to partitioned tables. If you use the INCREMENTAL clause for an
unpartitioned table, Impala automatically uses the original COMPUTE STATS statement. Such tables display false
under the Incremental stats column ofthe SHOW TABLE STATS output.

Note:

Because many of the most performance-critical and resource-intensive operations rely on table and column statistics
to construct accurate and efficient plans, COMPUTE STATS is an important step at the end of your ETL process. Run
COMPUTE STATS on all tables as your first step during performance tuning for slow queries, or troubleshooting for
out-of-memory conditions:

» Accurate statistics help Impala construct an efficient query plan for join queries, improving performance and
reducing memory usage.

» Accurate statistics help Impala distribute the work effectively for insert operations into Parquet tables, improving
performance and reducing memory usage.

* Accurate statistics help Impala estimate the memory required for each query, which is important when you use
resource management features, such as admission control and the YARN resource management framework. The
statistics help Impala to achieve high concurrency, full utilization of available memory, and avoid contention with
workloads from other Hadoop components.

* In Impala 2.8 and higher, when you run the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement
against a Parquet table, Impala automatically applies the query option setting MT DOP=4 to increase the amount
of intra-node parallelism during this CPU-intensive operation. See MT _DOP Query Option on page 379 for
details about what this query option does and how to use it with CPU-intensive SELECT statements.

Computing stats for groups of partitions:

In Impala 2.8 and higher, you can run COMPUTE INCREMENTAL STATS on multiple partitions, instead of the
entire table or one partition at a time. You include comparison operators other than = in the PARTITION clause, and
the COMPUTE INCREMENTAL STATS statement applies to all partitions that match the comparison expression.

For example, the INT PARTITIONS table contains 4 partitions. The following COMPUTE INCREMENTAL
STATS statements affect some but not all partitions, as indicated by the Updated n partition (s) messages.
The partitions that are affected depend on values in the partition key column X that match the comparison expression
in the PARTITION clause.

show partitions int partitions;

R R fmmm———— R o e
e e=— Tooo
| x | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
[...
o ——— o ——— o ———— o ————— = e ————————
Fommmmme== +...
| 99 | =1 | 0 | 0B | NOT CACHED | NOT CACHED | PARQUET
[...
| 120 | =1 | 0 | OB | NOT CACHED | NOT CACHED | TEXT
[...
| 150 | =1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT
| ...
| 200 | =1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT
[...
| Total | -1 | 0 | OB | OB |
| .
o ——— o ——— o ———— o ————— = o ———
o +

compute incremental stats int partitions partition (x < 100);

| Impala SQL Language Reference | 243

e +
| summary |
e +
| Updated 1 partition(s) and 1 column (s) |
e +

compute incremental stats int partitions partition (x in (100, 150, 200));

o +
| summary |
B b e +
| Updated 2 partition(s) and 1 column (s) |
fo——_— +

compute incremental stats int partitions partition (x between 100 and 175);

- +
| summary |
e e +
| Updated 2 partition(s) and 1 column (s) |
- +*

compute incremental stats int partitions partition (x in (100, 150, 200) or
x < 100);

B et ittt Lo +
| summary |
o +

| Updated 3 partition(s) and 1 column (s) |

B e e +
compute incremental stats int partitions partition (x != 150);
fo——_—_ +

|