Java Platform, Standard Edition
Java Virtual Machine Guide

Release 9
E68512-05
October 2017

ORACLE"

Java Platform, Standard Edition Java Virtual Machine Guide, Release 9
E68512-05
Copyright © 1993, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Vi
Documentation Accessibility Vi
Related Documents Vi
Conventions Vi

1 Java Virtual Machine Technology Overview
2 Compiler Control

Writing Directives 2-1
List of Compiler Control Options 2-2
Writing a Directives File 2-5
Writing a Compiler Directive 2-6
Writing a Method Pattern in a Compiler Directive 2-8
Writing an Inline Directive Option 2-9
Preventing Duplication with the Enable Option 2-9
Understanding Directives Better 2-11
What Is the Default Directive? 2-11
How Are Directives Applied to Code? 2-13
Compiler Control and Backward Compatibility 2-14
Commands to Work with Directive Files 2-15
Compiler Directives and the Command Line 2-15
Compiler Directives and Diagnostic Commands 2-16
Getting Your Java Process Identification Number 2-16
Adding Directives Through Diagnostic Commands 2-16
Removing Directives Through Diagnostic Commands 2-16
Printing Directives Through Diagnostic Commands 2-17
How Are Directives Ordered in the Directives Stack? 2-17

ORACLE

Garbage Collection

Class Data Sharing

Overview of Class Data Sharing 4-1
Regenerating the Shared Archive 4-2
Manually Controlling Class Data Sharing 4-2
Java HotSpot Virtual Machine Performance Enhancements
Compact Strings 5-1
Tiered Compilation 5-2
Compressed Ordinary Object Pointer 5-2
Zero-Based Compressed Ordinary Object Pointers 5-3
Escape Analysis 5-3
Support for Non-Java Languages
Introduction to Non-Java Language Features 6-1
Static and Dynamic Typing 6-2
Statically-Typed Languages Are Not Necessarily Strongly-Typed Languages 6-3
The Challenge of Compiling Dynamically-Typed Languages 6-3
The invokedynamic Instruction 6-5
Defining the Bootstrap Method 6-6
Specifying Constant Pool Entries 6-6
Example Constant Pool 6-7
Using the invokedynamic Instruction 6-8
Signal Chaining
Native Memory Tracking
Key Features 8-1
Using Native Memory Tracking 8-1
Enabling NMT 8-1
Accessing NMT Data using jcmd 8-2
Obtaining NMT Data at VM Exit 8-2

ORACLE"

O DTrace Probes in HotSpot VM

Using the hotspot Provider 9-1
VM Lifecycle Probes 9-1
Thread Lifecycle Probes 9-2
Classloading Probes 9-2
Garbage Collection Probes 9-3
Method Compilation Probes 9-4
Monitor Probes 9-5
Application Tracking Probes 9-6

Using the hotspot_jni Provider 9-7

Sample DTrace Probes 9-7

10 Fatal Error Reporting

Error Report Example 10-1

11 Java Virtual Machine Related Resources

Tools 11-1

ORACLE" Y

Preface

Preface

This document provides information about the features supported by Java Virtual
Machine technology.

Audience

This document is intended for experienced developers who build applications using
the Java HotSpot technology.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

See Oracle JDK 9 Documentation for other Oracle Java Development Kit (JDK) 9
guides.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=homepage

Java Virtual Machine Technology Overview

ORACLE

This chapter describes the implementation of the Java Virtual Machine (JVM) and the
main features of the Java HotSpot technology:

Adaptive compiler: A standard interpreter is used to launch the applications. When
the application runs, the code is analyzed to detect performance bottlenecks, or
hot spots. The Java HotSpot VM compiles the performance-critical portions of the
code for a boost in performance, but does not compile the seldom-used code
(most of the application). The Java HotSpot VM uses the adaptive compiler to
decide how to optimize compiled code with techniques such as inlining.

Rapid memory allocation and garbage collection: Java HotSpot technology
provides rapid memory allocation for objects and fast, efficient, state-of-the-art
garbage collectors.

Thread synchronization: Java HotSpot technology provides a thread-handling
capability that is designed to scale for use in large, shared-memory multiprocessor
servers.

In Oracle Java Runtime Environment (JRE) 8 and earlier, different implementations of
the JVM, (the client VM, server VM, and minimal VM), were supported for
configurations commonly used as clients, servers, and for embedded systems. As
most systems can now take advantage of the server VM, the Oracle Java Runtime
Environment (JRE) 9 provides only that VM implementation.

1-1

Compiler Control

Compiler Control provides a way to control Java Virtual Machine (JVM) compilation
through compiler directive options. The level of control is runtime-manageable and
method specific.

A compiler directive is an instruction that tells the JVM how compilation should occur.
A directive provides method-context precision in controlling the compilation process.
Directives are a powerful tool for writing small, contained, JVM compiler tests because
tests can be run without restarting the entire JVM. Compiler Control is also very useful
for creating workarounds for bugs in the JVM compilers.

You can specify a file that contains compiler directives while starting a program
through the command line. You can also add or remove directives from an already
running program through diagnostic commands.

Compiler Control supersedes and is backward compatible with CompileCommand.

Topics:
* Writing Directives
— Writing a Directives File
— Writing a Compiler Directive
— Writing a Method Pattern in a Compiler Directive
— Writing an Inline Directive Option
— Preventing Duplication with the Enable Option
* Understanding Directives Better
— What Is the Default Directive?
— How Are Directives Applied to Code?
— Compiler Control and Backward Compatibility
+ Commands to Work with Directive Files
— Compiler Directives and the Command Line
— Compiler Directives and Diagnostic Commands

— How Are Directives Ordered in the Directives Stack?

Writing Directives

ORACLE

This topic examines Compiler Control options and steps for writing directives from
those options.

Topics:

e List of Compiler Control Options

2-1

Chapter 2
Writing Directives

* Writing a Directives File

* Writing a Compiler Directive

* Writing a Method Pattern in a Compiler Directive

* Writing an Inline Directive Option

* Preventing Duplication with the Enable Option

List of Compiler Control Options

Options are instructions for compilation. Options provide method-context precision.
Available options vary by compiler and require specific types of values.

Table 2-1 Common Options

Option

Description Value Type Default Value

Enabl e

Hides a directive and bool true
renders it unmatchable

ifitis setto fal se.

This is useful for

preventing option

duplication. See

Preventing Duplication

with the Enable

Option.

Excl ude

Excludes methods bool fal se
from compilation.

Br eak At Execut e

Sets a breakpoint to bool fal se
stop execution at the

beginning of the

specified methods

when debugging the

JVM.

Br eakAt Conpi | e

Sets a breakpoint to bool fal se
stop compilation at the

beginning of the

specified methods

when debugging the

JVM.

Log

Places only the bool fal se
specified methods in a

log. You must first set

the command-line

option - XX:

+LogConpi | ation. The

default value f al se

places all compiled

methods in a log.

Print Assenbl y

Prints assembly code bool fal se
for bytecoded and

native methods by

using the external

di sassenbl er. so

library.

ORACLE

2-2

ORACLE

Chapter 2
Writing Directives

Table 2-1 (Cont.) Common Options

Option

Description Value Type Default Value

Printlnlining

Prints which methods bool fal se

are inlined, and where.

Pri nt NMet hods

Prints nmethods as bool fal se

they are generated.

Backgr oundConpi | ati
on

Compiles methods as hool true
a background task.

Methods run in

interpreter mode until

the background

compilation finishes.

The value f al se

compiles methods as

a foreground task.

Repl ayl nli ne

Enables the same bool fal se
Cl Repl ay functionality

as the corresponding

global option, but on a

per-method basis.

DunpRepl ay

Enables the same bool fal se
Cl Repl ay functionality

as the corresponding

global option, but on a

per-method basis.

Dunpl nline

Enables the same bool fal se
Cl Repl ay functionality

as the corresponding

global option, but on a

per-method basis.

Conpi l erDirecti vesl
gnor eConpi | eCommand
s

Disregards all bool fal se

CompileCommands.

Di sablelntrinsic

Disables the use of cestr No default value.
intrinsics based on
method-matching

criteria.

inline

Forces or prevents No default value.
inlining of a method

based on method-

matching criteria. See

Writing an Inline

Directive Option.

cestr(]

Table 2-2 C2 Exclusive Options

Option

Description Value Type Default Value

Bl ockLayout ByFreque
ncy

Moves infrequent bool true
execution branches

from the hot path.

2-3

ORACLE

Table 2-2 (Cont.) C2 Exclusive Options

Chapter 2
Writing Directives

]
Default Value

Option

Description

Value Type

Pri nt Opt 0Assenbl y

Prints generated
assembly code after
compilation by using
the external

di sassenbl er. so
library. This requires a
debugging build of the
JVM.

bool

fal se

Printintrinsics

Prints which intrinsic
methods are used,
and where.

bool

fal se

TraceOpt oPi pel i ni ng

Traces pipelining
information, similar to
the corresponding
global option, but on a
per-method basis.
This is intended for
slow and fast
debugging builds.

bool

fal se

TraceOpt oQut put

Traces pipelining
information, similar to
the corresponding
global option, but on a
per-method basis.
This is intended for
slow and fast
debugging builds.

bool

fal se

TraceSpilling

Traces variable
spilling.

bool

fal se

Vectori ze

Performs calculations
in parallel, across
vector registers.

bool

fal se

Vect ori zeDebug

Performs calculations
in parallel, across
vector registers. This
requires a debugging
build of the JVM.

intx

Q oneMapDebug

Enables you to
examine the Cl oneMap
generated from
vectorization. This
requires a debugging
build of the JVM.

bool

fal se

| GVPri nt Level

Specifies the points
where the compiler
graph is printed in
Hotspot's Ideal
Graphic Visualizer
(IGV). A higher value
means higher
granularity.

intx

2-4

Chapter 2
Writing Directives

Table 2-2 (Cont.) C2 Exclusive Options

___|
Option Description Value Type Default Value

MaxNodeLi mi t Sets the maximum intx 80000

number of nodes to be
used during a single
method’s compilation.

A ccstr value type is a method pattern. See Writing a Method Pattern in a Compiler
Directive.

The default directive supplies default values for compiler options. See What Is the
Default Directive?

Writing a Directives File

Individual compiler directives are written in a directives file. Only directive files, not
individual directives, can be added to the stack of active directives.

ORACLE

1.

Create a file with a . j son extension. Directive files are written using a subset of
JSON syntax with minor additions and deviations.

Insert the following syntax as a template you can work from:

[//Array of Directives
{ I/Directive Block
//Directive 1

{ I/Directive Block
[IDirective 2

The components of this template are:
Array of Directives:

» Adirectives file stores an array of directive blocks, denoted with a pair of
brackets ([]).

* The brackets are optional if the file contains only a single directive block.
Directive Block:

* Ablock is denoted with a pair of braces ({}).

* A block contains one individual directive.

e Afile can contain any number of directive blocks.

» Blocks are separated with a comma (,).

* A comma is optional following the final block in the array.

Individual Directive:

« Each individual directive must exist within a directive block.

» Files can contain multiple directives when they contain multiple directive
blocks.

Comments:

2-5

Chapter 2
Writing Directives

* Single-line comments are inserted with two slashes (//).
* Multiline comments are not allowed.

3. Add or remove directive blocks from the template to match the number of
directives you want in the file.

4. Fillin each directive block with one compiler directive. See Writing a Compiler
Directive.

5. Reorder the directive blocks if necessary. The ordering of directives within a file is
significant. Directives written closer to the beginning of the array receive higher
priority. For more information, see How Are Directives Ordered in the Directives
Stack? and How Are Directives Applied to Code?

[//Aray of directives
{ //Directive Block

[IDirective 1

match: ["java*.*", "oracle*.*"],

cl: {
Enabl e: true,
Excl ude: true,
Br eak At Execute: true,

b
c2: {
Enabl e: fal se,
MaxNodeLi m t: 1000,
b

Br eakAt Conpi | e: true,
DunpRepl ay: true,

{ //Directive Block
[/Directive 2
mat ch: ["*Concurrent.*"],
c2: {

Excl ude: true,

b

b

]

Writing a Compiler Directive

ORACLE

Compiler directives must be written within a directives file. Repeat these steps for each
individual compiler directive you want to write in a directives file.

An individual compiler directive is written within a directive block in a directives file.
See Writing a Directives File.

1. Insert the following block of code, as a template you can work from, to write an
individual compiler directive. This block of code is a directive block.

{
match: [],
cl: {
[1cl directive options
h
c2: {
/1c2 directive options
h
[/Directive options applicable to all conpilers
h

2-6

ORACLE

Chapter 2
Writing Directives

Provide the mat ch attribute with an array of method patterns. See Writing a Method
Pattern in a Compiler Directive.

For example:
match: ["java*.*", "oracle*.*"],

Provide the c1 attribute with a block of comma-separated directive options. Ensure
that these options are valid for the c1 compiler.

For example:

cl: {
Enabl e: true,
Excl ude: true,
Break At Execute: true,

b

Provide the c2 attribute with a block of comma-separated directive options. This
block can contain a mix of common and c2 exclusive compiler options.

For example:

c2: {
Enabl e: fal se,
MaxNodeLi m t: 1000,

b

Provide, at the end of the directive, options you want applicable to all compilers.
These options are considered written within the scope of the common block.
Options are comma-separated.

For example:

Br eakAt Conpi l e: true,
DunpRepl ay: true,

Clean up the file:

a. Check the ordering and potential duplication of directive options. If there is a
conflict, then the last occurrence of an option takes priority. Conflicts most
likely occur between the common block and the c1 or c2 blocks, not between
¢l and c2 blocks.

b. Avoid writing c2—exclusive directive options in the common block. Although the
common block can accept a mix of common and c2—exclusive options, it's
misleading to structure a directive this way because c2—exclusive options in
the common block have no effect on the c1 compiler. Write c2—exclusive
options within the ¢2 block instead.

c. If either the c1 or c2 attribute has no corresponding directive options, then omit
the attribute-value syntax for that compiler.

The resulting directive, based on earlier examples, is:

{
match: ["java*.*", "oracle*.*"],
cl: {
Enabl e: true,

Excl ude: true,
BreakAt Execute: true,

b
c2: {
Enabl e: fal se,
MaxNodeLi mit: 1000,
b

2-7

Chapter 2
Writing Directives

Br eakAt Conpi l e: true,
DunpRepl ay: true,
h

The JSON format of directive files allows certain deviations in syntax:

Extra trailing commas are optional in arrays and objects.
Attributes are strings and are optionally placed within quotation marks.

If an array contains only one element, then brackets are optional.

Therefore, a valid example of a compiler directive is:

{
"match": "*Concurrent.*",
c2: {
"Excl ude": true,
}
b

Writing a Method Pattern in a Compiler Directive

ORACLE

A ccstr is a method pattern. It can be written precisely or generalized with wildcard
characters. It specifies what best-matching Java code should have accompanying
directive options applied, or what Java code should be inlined.

To write a method pattern:

1.

Fill in the following syntax to format your method pattern: package/
cl ass. net hod(paranmeter_|ist). If you're unable to be precise, see Step 2 for ways
to generalize a method pattern with wildcard characters.

An example method pattern that uses this style of formatting is:

javallang/ String.index()

Other formatting styles are available. This ensures backward compatibility with
earlier ways of method matching such as CompileCommand. Valid formatting
alternatives for the previous example include:

* javallang/ String.indexO()
°* javallang/String,index(()
e javal/lang/String index(f()
°* java.lang.String::indexO()

You may find the last formatting style preferable because it matches the Hotspot
output.

Insert a wildcard character (*) where you need to generalize part of the method
pattern.

The following are valid generalizations of the method pattern example from Step 1:
° javallang/String.indexCf*

* *lang/String.indexCf*

* *vallang*. *dex*

° javallang/String.*

. *

2-8

Chapter 2
Writing Directives

Increased generalization leads to decreased precision in these examples. This is
risky because more Java code becomes a potential match with the method
pattern. Therefore, it's important to use the wildcard character (*) judiciously.

Modify the signature portion of the method pattern. Signatures are written
according to the Java Specifications. Signature matches must be exact, otherwise
a signature defaults to a wildcard character (*). Omitted signatures also default to
a wildcard character. Signatures themselves cannot contain the wildcard
character.

Optional: If you're writing a method pattern to accompany the i nl i ne directive
option, then there are additional characters you must prefix the method pattern
with. See Writing an Inline Directive Option.

Writing an Inline Directive Option

The attribute for an i nl i ne directive option requires an array of method patterns with
special commands prefixed. This indicates which method patterns should or shouldn't

inline.

1. Writeinline: inthe common block, c1, or c2 block of a directive.

2. Accompany this with an array of carefully ordered method patterns. The prefixed
command on the first matching method pattern is executed. The remaining method
patterns in the array are ignored.

3. Prefix a + to force inlining of any matching Java code.

4. Prefix a - to prevent inlining of any matching Java code.

5. Optional: If you need inlining behavior applied to multiple method patterns, then

repeat these steps to write multiple i nl i ne statements. Don’t write a single array
that contains all patterns.

Examples of i nl i ne directive options are:

inline: ["+javallang*.*", "-sun*.*"]

inline: "+javallang*.*"

Preventing Duplication with the Enable Option

ORACLE

The Enabl e option hides aspects of directives. This option prevents duplication

between directives.

Here is an example directives file:

[

{
match: ["java*.*"],
cl: {
Break At Execute: true,
Br eakAt Conpi l e: true,
DunpRepl ay: true,
Dunplnline: true,
¥
c2: {
MaxNodeLi mt: 1000,
¥
¥
{

2-9

Chapter 2
Writing Directives

match: ["oracle*.*"],
cl: {
Break At Execute: true,
Break At Conpi | e: true,
DunpRepl ay: true,
Dunpl nline: true,

H
c2: {

MaxNodeLi m t: 2000,
H

b
]

The c1 attribute of both directives are identical. This undesirable code duplication is
resolved with the Enabl e option. Enabl e hides a block directives and renders them
unmatchable. This produces the example solution:

[

match: ["java*.*"],
cl: {

Enabl e: fal se,
b
c2: {

MaxNodeLi m t: 1000,
b

match: ["oracle*.*"],
cl: {
Enabl e: fal se,

H
c2: {

MaxNodeLi m t: 2000,
H

match: ["java*.*", "oracle*.*"],
cl: {
Break At Execute: true,
Br eakAt Conpi l e: true,
DunpRepl ay: true,
Dunplnline: true,

c2: {
/I'Unr eachabl e code

b
]

The Enabl e option provides an exception to this rule; the first matching directive is
applied to a method’s compilation. Any method that would be compiled by c1 in the first
or second directive is now compiled with the c1 block of the third directive. The c2
block of the third directive is unreachable because the c2 blocks in the first and second
directive take priority.

ORACLE 2-10

Chapter 2
Understanding Directives Better

Understanding Directives Better

The following topic examines how directives behave and interact.

Topics
* What Is the Default Directive?
* How Are Directives Applied to Code?

e Compiler Control and Backward Compatibility

What Is the Default Directive?

ORACLE

The default directive is a compiler directive that contains default values for all possible
directive options. It is at the bottom of the directives stack and matches every method
submitted for compilation.

When you design a new directive, you specify how the new directive differs from the
default directive. The default directive becomes a template to guide your design
decisions.

Directive Option Values in the Default Directive

Printing an empty directive stack reveals the default directive’s matching criteria and
values for all directive options:

Directive: (default)
mat ching: *.*
cl directives:
inline: -
Enabl e: true Exclude: fal se BreakAt Execute:fal se BreakAt Conpile:false Log:false
Print Assenbly: fal se PrintInlining:false PrintNwethods:false
BackgroundConpi | ati on:true Replaylnline:fal se DunpReplay:fal se Dunplnline:fal se
Conpi | erDi recti vesl gnor eConpi | eCommands: f al se Di sabl el ntrinsic:
Bl ockLayout ByFrequency: true PrintOptoAssenbly:false Printlntrinsics:false
TraceOpt oPi pel i ning: fal se TraceOpt oQut put: fal se TraceSpilling:fal se Vectorize:false
Vect ori zeDebug: 0 C oneMapDebug: fal se 1 G/PrintLevel : 0 MaxNodeLimit: 80000

c2 directives:

inline: -

Enabl e: true Exclude: fal se BreakAt Execute:fal se BreakAt Conpile:false Log:false
Print Assenbly: fal se PrintInlining:false PrintNwethods:false
BackgroundConpi | ati on:true Replaylnline:fal se DunpRepl ay:fal se Dunplnline:fal se
Conpi | erDi recti vesl gnor eConpi | eCommands: f al se Di sabl el ntrinsic:
Bl ockLayout ByFrequency: true PrintOptoAssenbly:false Printlntrinsics:false
TraceOpt oPi pel i ning: fal se TraceOpt oQut put: fal se TraceSpilling:fal se Vectorize:false
Vect ori zeDebug: 0 C oneMapDebug: fal se 1 G/PrintLevel : 0 MaxNodeLi mit: 80000

Note:

Although these printouts provide a thorough account of all directive options
and their values, certain options are applicable exclusively to the c2 compiler.
For a complete list, see Table 2-2.

2-11

ORACLE

Chapter 2
Understanding Directives Better

Directive Option Values in New Directives

New directives must specify how they differ from the default directive. If a directive
option is not mentioned, then that option retains the value from the default directive.

For example:
[

match: ["*Concurrent.*"],
c2: {
MaxNodeLi m t: 1000,
1
Excl ude: true,
|3
]

When you add this directive to the directives stack, the default directive becomes the
bottom-most directive of the stack. See How Are Directives Ordered in the Directives
Stack? for a description of this process. The printout from the resulting directives stack
shows how only the directive options specified in the example differ from the values
found in the default directive:

Directive:
mat chi ng: *Concurrent.*
cl directives:
inline: -
Enabl e: true Exclude:true BreakAt Execute:fal se BreakAt Conpile:false Log:false
PrintAssenbly:false Printlnlining:false PrintNwethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se Dunplnline:fal se
Conpi | erDi recti vesl gnor eConpi | eConmmands: f al se Di sabl el ntrinsic:
Bl ockLayout ByFrequency: true Print Opt oAssenbl y: fal se Printintrinsics:false
TraceOpt oPi pel i ning: fal se TraceOpt oQut put: fal se TraceSpilling:fal se Vectorize:false
Vect ori zeDebug: 0 C oneMapDebug: fal se 1 G/PrintLevel : 0 MaxNodeLimit: 80000

c2 directives:

inline: -

Enabl e: true Exclude:true BreakAt Execute:fal se BreakAt Conpile:false Log:false
PrintAssenbly:false Printlnlining:false PrintNwethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se Dunplnline:fal se
Conpi | erDi recti vesl gnor eConpi | eCommands: f al se Di sabl el ntrinsic:
Bl ockLayout ByFrequency: true Print Opt oAssenbl y: fal se Printintrinsics:false
TraceOpt oPi pel i ning: fal se TraceOpt oQut put: fal se TraceSpilling:fal se Vectorize:false
Vect ori zeDebug: 0 C oneMapDebug: fal se 1 GVPrintLevel : 0 MaxNodeLimit: 1000

Directive: (default)
matching: *.*
cl directives:
inline: -
Enabl e: true Exclude:fal se BreakAt Execute:fal se BreakAt Conpile:false Log:false
PrintAssenbly:false Printlnlining:false PrintNwethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se Dunplnline:fal se
Conpi | erDi recti vesl gnor eConpi | eCommands: f al se Di sabl el ntri nsic:
Bl ockLayout ByFrequency: true Print Opt oAssenbl y: fal se Printintrinsics:false
TraceOpt oPi pel i ning: fal se TraceOpt oQut put: fal se TraceSpilling:false Vectorize:false
Vect ori zeDebug: 0 C oneMapDebug: fal se 1 GVPrintLevel : 0 MaxNodeLimit: 80000

c2 directives:
inline: -

2-12

Chapter 2
Understanding Directives Better

Enabl e: true Exclude: fal se BreakAt Execute: fal se BreakAt Conpile:fal se Log: fal se
Print Assenbly:false Printlnlining:false PrintNVethods:false
Backgr oundConpi | ation: true Replaylnline:fal se DunpRepl ay: fal se Dunplnline:fal se
Conpi | erDi recti vesl gnor eConpi | eCommands: f al se Di sabl el ntrinsic:
Bl ockLayout ByFrequency: true Print Opt oAssenbly: fal se Printintrinsics:false
TraceOpt oPi pel i ning: fal se TraceOpt oQut put: fal se TraceSpilling:false Vectorize:false
Vect ori zeDebug: 0 C oneMapDebug: fal se |1 GVPrintLevel : 0 MaxNodeLimit: 80000

How Are Directives Applied to Code?

ORACLE

A directive is applied to code based on a method matching process. Every method
submitted for compilation is matched with a directive in the directives stack.

The process of brokering a match between a method and the directives stack is
performed by the CompilerBroker.

The Method Matching Process

When a method is submitted for compilation, its fully qualified name is compared to the
matching criteria in the directives stack. The first matching directive in the stack is
applied to the method. The remaining directives in the stack are ignored. If no other
match is found, then the default directive is applied.

This process is repeated for all methods in a compilation. Therefore, more than one
directive could be applied in a compilation, while only one directive is applied per
method. All directives in the stack are considered active because they are potentially
applicable. The key differences between active and applied directives are:

e Adirective is active if it's present in the directives stack.
* Adirective is applied if it's affecting code.

Example 2-1 When a Match Is Found

Example of a method submitted for compilation:

public int exanpl eMet hod(int x){
return x;
}

Based on method-matching criteria, Directive 2 is applied from the following example
directive stack:

Directive 2:

mat ching: *.*exanpl e*
Directive 1:

mat chi ng: *. *exanpl eMet hod*
Directive 0: (default)
matching: *.*

Example 2-2 When No Match Is Found

The following example method is submitted for compilation:

public int otherMthod(int y){
return y;
}

Based on method-matching criteria in the following example directive stack, Directive
0 (the default directive) is applied:

2-13

Chapter 2
Understanding Directives Better

Directive 2

mat ching: *.*exanpl e*
Directive 1

mat chi ng: *. *exanpl eMet hod*
Directive 0: (default)
matching: *.*

Other Guidelines

e Carefully write the directives’ method-matching criteria. There’s no feedback
mechanism to verify which directive is applied to a given method. Instead, a
profiler such as JMX is used to measure the cumulative effects of applied
directives.

* The CompilerBroker ignores directive options that create bad code, such as
forcing hardware instructions on a platform that doesn't offer support. A warning
message is displayed.

» Directive options have the same limitations as typical command-line flags. For
example, instructions to inline code are followed only if the Intermediate
Representation (IR) doesn’t become too large.

Compiler Control and Backward Compatibility

ORACLE

CompileCommand and command-line flags can be used alongside Compiler Control
directives.

Although Compiler Control can replace CompileCommand for all use cases, backward
compatibility is still provided. It's possible to utilize both at the same time. Compiler
Control receives priority. Conflicts are handled based on the following prioritization:

1. Compiler Control

2. CompileCommand
3. Command-line flags
4. Default values

Example 2-3 Mixing Compiler Control and CompileCommand

The following list shows a small number of compilation options and some ways of
assigning values to those options:

e Compiler Control:

— Exclude: true

— BreakAtExecute: false
e CompileCommand:

— BreakAtExecute: true

— BreakAt Conpile: true
o Default values:

— Exclude: false

— BreakAtExecute: false

— BreakAtConpile: false

— Log: false

2-14

Chapter 2
Commands to Work with Directive Files

For the options and values in this example, the resulting effects on compilation are
determined through the rules for handling backward compatibility conflicts:

e Exclude: true
e BreakAtExecute: false
* BreakAt Conpile: true

* Log: false

Commands to Work with Directive Files

This topic examines commands and the effects of working with completed directive
files.

e Compiler Directives and the Command Line
e Compiler Directives and Diagnostic Commands

* How Are Directives Ordered in the Directives Stack?

Compiler Directives and the Command Line

ORACLE

The command line provides an interface to add and print compiler directives while
starting a program.

Only one directives file is specifiable from the command line. All directives within that
file are added to the directives stack and are immediately active as the program starts.
This makes it possible to test the performance effects of directives during a program’s
early stages. You're also free to focus on debugging and developing your program.

Adding Directives Through the Command Line

The command-line option that specifies a directives file is:

XX: Conpi l erDirectivesFile=file

Include this command-line option when you start a Java program. This is shown in the
following example, which starts Test Progr am

java - XX: +Unl ockDi agnosti cVMXtions - XX ConpilerDirectivesFile=File_A json

Test Program

e - XX +Unl ockDi agnost i cVMXt i ons enables diagnostic options. You must enter this

before working with directives on the command line.

e -XX ConpilerDirectivesFil e is a type of diagnostic option. It specifies one
directives file to add to the directives stack.

e File_Ajsonis adirectives file. It contains any number of directives, all of which are
added to the stack of active directives as the program starts.

» IfFile_A json contains syntax errors or malformed directives, then an error
message is displayed and Test Programdoes not start.

Printing Directives Through the Command Line

It's possible to automatically print the directives stack when a program starts or when
additional directives are added through diagnostic commands. The command-line
option to enable this behavior is:

2-15

Chapter 2
Commands to Work with Directive Files

- XX: +Conpi | erDirecti vesPrint

An example of including this diagnostic command on the command line is:

java - XX: +Unl ockDi agnosti cVMptions - XX: +Conpi | erDirectivesPrint -
XX: Conpi | erDirectivesFile=File_A json TestProgram

Compiler Directives and Diagnostic Commands

Diagnostic commands provide an interface to manage which directives are active at
runtime. You can add directives to or remove directives from a running program
without restarting it.

Crafting a single perfect directives file may take some iteration and experimentation.
However, diagnostic commands provide powerful mechanisms for testing different
configurations of directives in the directives stack. Diagnostic commands let you add
or remove directives without restarting a running program’s JVM.

Getting Your Java Process Identification Number

The first step in testing directives is to find the process identification (pid) number of
your running program.

1. Open aterminal.
2. Enter the following: j cnd

This command returns a list of every Java process running on your machine, along
with their pid numbers. For example, you may see the following information returned
about Test Program

11084 Test Program

Adding Directives Through Diagnostic Commands

All directives in a file are added to the directives stack through a single diagnostic
command.

Enter the following:

jemd pid Conpiler.directives_add file

An example is:

jemd 11084 Conpiler.directives_add File B.json

The terminal reports the number of individual directives added. However, if the
directives file contains syntax errors or malformed directives, then an error message is
displayed, and no directives from the file are added to the stack. There are no changes
to the running program.

Removing Directives Through Diagnostic Commands

There are two diagnostic commands that remove directives.

To remove the top-most, individual directive from the directive stack, enter:

jemd pid Conpiler.directives_remve

ORACLE 2-16

Chapter 2
Commands to Work with Directive Files

To clear every directive you added to the directives stack, enter:

jemd pid Conpiler.directives_clear

It's not possible to specify an entire file of directives to remove, nor is there any other
way to remove directives in bulk.

Printing Directives Through Diagnostic Commands

Diagnostic commands are used to print the directives stack of a running program.
A detailed description of the full directives stack is printed each time you enter:

jemd pid Conpiler.directives_print

Example output is shown in What Is the Default Directive?

How Are Directives Ordered in the Directives Stack?

ORACLE

The order directives are written in a file, or added to the stack, is very important. The
top-most best-matching directive in the stack receives priority and is applied to code
compilation.

Diagrams in this topic illustrate the ordering effects in an example directives stack.
There are three directive files in this scenario:

e File_ AcontainsDirective 1andDirective 2.
e File_ BcontainsDirective 3.

* File_CcontainsDirective 4 and Directive 5.

The Initial State of the Directives Stack

Test Programcan be started without involving directive files.

» Enter the following on the command line to start a program without adding any
directives:

java TestProgram
* Test Programstarts without any directives file specified.

* The default directive is always at the bottom of the directives stack. Figure 2-1
shows the default directive as Directive 0. When you don't specify a directives file,
then the default directive is also the top directive and receives priority.

2-17

ORACLE

Chapter 2
Commands to Work with Directive Files

Figure 2-1 Starting a Program Without Directives

T > Directives Stack
java TestProgram

r— r—
File_A File_B File_C
D!rective 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

Alternatively, directives can be added to the directives stack when you start
Test Progrant

e Enter the following on the command line to add all directives from File_A.json to
the directives stack:

java - XX: +Unl ockDi agnosti cVMptions - XX ConpilerDirectivesFile=File_A json
Test Program

» Directives are added to the stack in the reverse order they're written. The top-most
directive in the file becomes the top-most directive on the stack.

* Figure 2-2 shows that the order of directives in the stack, from top to bottom,
becomes: [1, 2, O].

Figure 2-2 Starting a Program with Directives

I Directives Stack
-XX: CompilerDirectivesFile=File A.json

r— -
File_A File_B File_C
Directive 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

Additions to the Directives Stack

If Test Programis running, then you must supply additional directives through diagnostic
commands:

» Enter the following to add all directives from Fi | e_B to the directives stack:
jcmd 11084 Conpiler.directives_add File_B.json

* Directive 3is added to the top of the stack. This is the only directive found in
File_B.

2-18

ORACLE

Chapter 2
Commands to Work with Directive Files

» Figure 2-3 shows that the order of directives in the stack becomes: [3, 1, 2, 0].

Figure 2-3 Adding a Directive to a Running Program

T > Directives Stack
Compiler.directives_add File B.json

r— r—
File_A File_B File_C
D!rective 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

More directive files can be added through diagnostic commands if Test Progr am
continues running:

e Enter the following to add all directives from Fi | e_C to the directives stack.
jemd 11084 Conpiler.directives_add File C. json

* Figure 2-4 shows that the order of directives in the stack becomes: [4, 5, 3, 1, 2,
0].

Figure 2-4 Adding Many Directives to a Running Program

——> Directives Stack

Compiler.directives add File C.json i i
s mesy
r— r—
. .
File_A File_B File_C
Directive 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

Removals from the Directives Stack
The top-most directive is removable through diagnostic commands:
e Enter the following to remove Directive 4 from the stack:

jcnd 11084 Conpil er. directives_renove

e Top directives are removable one at a time by repeating this diagnostic command
until only the default directive remains. You can’t remove the default directive.

e Figure 2-5 shows that the order of directives in the stack becomes: [5, 3, 1, 2, 0].

2-19

Chapter 2
Commands to Work with Directive Files

Figure 2-5 Removing One Directive from the Stack

T > Directives Stack

Compiler.directives remove . i
- Directive 4 (X
[§ F F ; ;
A
. .
File_A File_B File_C
Directive 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

There is one mechanism to bulk-remove directives from the directives stack:
» Enter the following to clear the directives stack:
jcmd 11084 Conpiler.directives_clear

» All directives are removed at one time except the default directive. You can't
remove the default directive.

* Figure 2-6 shows that only Directive 0 remains in the stack.

Figure 2-6 Removing All Directives from the Stack

T > Directives Stack
Compiler.directives_clear

N = = -
k Directive 5 (X
Directive 3 (X
. Directive 1 (X
File_A File_B File_C
Directive 2 (%
Directive 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

ORACLE"

2-20

Garbage Collection

The Java HotSpot VM includes several garbage collectors that you can use to help
optimize the performance of your application. A garbage collector is especially helpful
if your application handles large amounts of data (multiple gigabytes), has many
threads, and high transaction rates.

For descriptions of the available garbage collectors, see Garbage Collection
Implementation in the Java Platform, Standard Edition HotSpot Virtual Machine
Garbage Collection Tuning Guide.

ORACLE 3-1

Class Data Sharing

This chapter describes the class data sharing (CDS) feature that helps reduce the
startup time and memory footprints for Java applications.

Topics:
* Overview of Class Data Sharing
* Regenerating the Shared Archive

* Manually Controlling Class Data Sharing

Overview of Class Data Sharing

ORACLE

Class data sharing (CDS) offers dynamic sharing of data between multiple Java Virtual
Machines (JVM), which helps to reduce the startup time and memory footprint.

When the JRE is installed using the installer, the installer loads a set of classes from
the system Java Archive (JAR) file into a private internal representation, and dumps
that representation to a file called a shared archive. If JRE installer is not being used,
then you can generate the shared archive manually.

When the JVM starts, the shared archive is memory-mapped to allow sharing of read-
only JVM metadata for these classes among multiple JVM processes. The startup time
is reduced thus saving the cost because restoring the shared archive is faster than
loading the classes.

Class data sharing is supported with the G1, serial, parallel, and parallelOIdGC
garbage collectors. The shared string feature (part of class data sharing) supports only
the G1 garbage collector on 64-bit non-Windows platforms.

The primary motivation for including CDS in Java SE is to decrease in startup time.
The smaller the application relative to the number of core classes it uses, the larger
the saved fraction of startup time.

The footprint cost of new JVM instances has been reduced in two ways:

1. A portion of the shared archive on the same host is mapped as read-only and
shared among multiple JVM processes. Otherwise, this data would need to be
replicated in each JVM instance, which would increase the startup time of your
application.

2. The shared archive contains class data in the form that the Java Hotspot VM uses
it. The memory that would otherwise be required to access the original class
information in the runtime modular image, is not needed. These savings allow
more applications to be run concurrently on the same system. In Windows
applications, the footprint of a process, as measured by various tools, might
appear to increase, because more pages are mapped to the process’s address
space. This is offset by the reduced amount of memory (inside Windows) that is
needed to hold portions on the runtime modular image. Reducing footprint remains
a high priority.

4-1

Chapter 4
Regenerating the Shared Archive

Regenerating the Shared Archive

You can regenerate the shared archive for all supported platforms.

The default class list contains only a small set of core library classes. You might want
to include other classes in the shared archive. To create a class list from the class
loading tracing output or running applications, enter the following command to dump
all loaded library classes:

java - XX: DunpLoadedd assLi st=<class_list _file>

The class list created based on profiling should be used for generating the shared
archive.

You can find the archive file along with the shared library for the JVM in the following
locations:

e On Solaris, Linux, and macOS platforms, the shared archive is stored in/ | i b/
[arch]/server/cl asses. jsa

* On Windows platforms, the shared archive is stored in / bi n/ server/
cl asses.jsa

If the archive file exists, when you generate a new archive file, then it overwrites the
existing one. You don’'t need to manually remove the old archive before you generate
a new archive.

To regenerate the archive file , log in as the administrator. In networked situations, log
on to a computer of the same architecture as the Java SE installation. Ensure that you
have permission to write to the installation directory.

To regenerate the shared archive by using a user defined class list enter the following
command:

java - XX: Sharedd assLi stFil e=<class_list_file> -Xshare: dunp

Diagnostic information is printed when the archive is generated.

Manually Controlling Class Data Sharing

ORACLE

By default, the class data sharing feature is enabled. You can manually enable and
disable this feature.

You can use the following command-line options for diagnostic and debugging
purposes.

- Xshare: of f
Disable class data sharing.

- Xshare: on
Require class data sharing to be enabled. If it could not be enabled for various
reasons, print an error message and exit.

- Xshare: auto
The default; enable class data sharing whenever possible.

4-2

Java HotSpot Virtual Machine Performance
Enhancements

This chapter describes the performance enhancements in the Java HotSpot Virtual
Machine technology.

Topics:

e Compact Strings

e Tiered Compilation

e Compressed Ordinary Object Pointer

e Zero-Based Compressed Ordinary Object Pointers

* Escape Analysis

Compact Strings

ORACLE

Compact strings is a feature that introduces a space-efficient internal representation
for strings.

Data from different applications suggests that strings are a major component of Java
heap usage and that most j ava. | ang. Stri ng objects contain only Latin-1 characters.
Such characters require only one byte of storage. As a result, half of the space in the
internal character arrays of j ava. | ang. Stri ng objects are not used. The compact
strings feature, introduced in Java SE 9 reduces the memory footprint, and also
achieves reductions in garbage collection activity. The feature can be disabled if you
observe performance regression issues in an application.

The compact strings feature modifies the internal representation of the

java.lang. String class from a UTF-16 (two bytes) character array to a byte array with
an additional field to identify character encoding. Other string-related classes, such as
Abstract StringBuil der, StringBuil der, and StringBuffer are updated to use a similar
internal representation. The compact strings feature does not introduce new public
APIs or interfaces, it purely modifies the internal representation of strings.

In Java SE 9, the compact strings feature is enabled by default. Therefore the
java.lang. String class stores characters as one byte per character, encoded as
Latin-1. The additional character encoding field indicates which encoding is being
used. The HotSpot VM string intrinsics are updated and optimized to support the
internal representation.

The compact strings feature can be disabled by using the - XX: - Conpact St ri ngs flag with
the j ava command line. When the feature is disabled, the j ava. | ang. Stri ng class
stores characters as two bytes, encoded as UTF-16. This also reverts the HotSpot VM
string intrinsics to use UTF-16 encoding.

5-1

Chapter 5
Tiered Compilation

Tiered Compilation

Tiered compilation, introduced in Java SE 7, brings client VM startup speeds to the
server VM. Without tired compilation, a server VM uses the interpreter to collect
profiling information about methods that is sent to the compiler. With tiered
compilation, in addition to using the interpreter, the server VM uses the client compiler
to generate compiled versions of methods that collect profiling information about
themselves. The compiled code is substantially faster than the interpreter, and the
program executes with greater performance during the profiling phase. In many cases,
the startup is faster than the client VM startup speed because the final code produced
by the server compiler might be available during the early stages of application
initialization. The tiered compilation can also achieve better peak performance than a
regular server VM because the faster profiling phase allows a longer period of
profiling, which can yield better optimization.

Tiered compilation is enabled by default for the server VM. The 64-bit mode and
Compressed Ordinary Object Pointer are supported. You can disable tiered
compilation by using the - XX: - Ti er edConpi | ati on flag with the j ava command.

Compressed Ordinary Object Pointer

An ordinary object pointer (oop) in Java Hotspot parlance, is a managed pointer to an
object. Typically, an oop is the same size as a native machine pointer, which is 64-bit
on an LP64 system. On an ILP32 system, maximum heap size is less than 4
gigabytes, which is insufficient for many applications. On an LP64 system, the heap
used by a given program might have to be around 1.5 times larger than when it is run
on an ILP32 system. This requirement is due to the expanded size of managed
pointers. Memory is inexpensive, but these days bandwidth and cache are in short
supply, so significantly increasing the size of the heap and only getting just over the 4
gigabyte limit is undesirable.

Managed pointers in the Java heap point to objects that are aligned on 8-byte address
boundaries. Compressed oops represent managed pointers (in many but not all places
in the Java Virtual Machine (JVM) software) as 32-bit object offsets from the 64-bit
Java heap base address. Because they're object offsets rather than byte offsets, oops
can be used to address up to four billion objects (not bytes), or a heap size of up to
about 32 gigabytes. To use them, they must be scaled by a factor of 8 and added to
the Java heap base address to find the object to which they refer. Object sizes using
compressed oops are comparable to those in ILP32 mode.

The term decode refer to the operation by which a 32-bit compressed oop is converted
to a 64-bit native address and added into the managed heap. The term encode refers
to that inverse operation.

Compressed oops is supported and enabled by default in Java SE 6u23 and later. In
Java SE 7, compressed oops is enabled by default for 64-bit JVM processes when -
Xmx isn't specified and for values of - Xnx less than 32 gigabytes. For JDK releases
earlier than 6u23 release, use the - XX: +UseConpr essedOops flag with the j ava command
to enable the compressed oops.

ORACLE 5-2

Chapter 5
Zero-Based Compressed Ordinary Object Pointers

Zero-Based Compressed Ordinary Object Pointers

When the JVM uses compressed ordinary object pointers (oops) in a 64-bit JVM
process, the JVM software sends a request to the operating system to reserve
memory for the Java heap starting at virtual address zero. If the operating system
supports such a request and can reserve memory for the Java heap at virtual address
zero, then zero-based compressed oops are used.

When zero-based compressed oops are used, a 64-bit pointer can be decoded from a
32-bit object offset without including the Java heap base address. For heap sizes less
than 4 gigabytes, the JVM software can use a byte offset instead of an object offset
and thus also avoid scaling the offset by 8. Encoding a 64-bit address into a 32-bit
offset is correspondingly efficient.

For Java heap sizes up to 26 gigabytes, the Solaris, Linux, and Windows operating
systems typically can allocate the Java heap at virtual address zero.

Escape Analysis

ORACLE

Escape analysis is a technique by which the Java HotSpot Server Compiler can
analyze the scope of a new object's uses and decide whether to allocate the object on
the Java heap.

Escape analysis is supported and enabled by default in Java SE 6u23 and later.

The Java HotSpot Server Compiler implements the flow-insensitive escape analysis
algorithm described in:

[Choi 99] Jong- Deok Choi, Manish Qupta, Mauricio Seffano,
Vugranam C. Sreedhar, Sam M dkiff,
"Escape Analysis for Java", Procedings of ACM S| GPLAN
OOPSLA Conference, Novenber 1, 1999

An object's escape state, based on escape analysis, can be one of the following
states:

* (@ obal Escape: The object escapes the method and thread. For example, an object
stored in a static field, stored in a field of an escaped object, or returned as the
result of the current method.

e ArgEscape: The object is passed as an argument or referenced by an argument but
does not globally escape during a call. This state is determined by analyzing the
bytecode of the called method.

* NoEscape: The object is a scalar replaceable object, which means that its allocation
could be removed from generated code.

After escape analysis, the server compiler eliminates the scalar replaceable object
allocations and the associated locks from generated code. The server compiler also
eliminates locks for objects that do not globally escape. It does not replace a heap
allocation with a stack allocation for objects that do not globally escape.

The following examples describe some scenarios for escape analysis:

e The server compiler might eliminate certain object allocations. For example, a
method makes a defensive copy of an object and returns the copy to the caller.

5-3

ORACLE

Chapter 5
Escape Analysis

public class Person {
private String nane;
private int age;
public Person(String personNane, int personAge) {
name = personNane;
age = personAge;
1

public Person(Person p) { this(p.getNanme(), p.getAge()); }
public int getName() { return nane; }
public int getAge() { return age; }

}

public class Enployee {
private Person person;

/1 makes a defensive copy to protect against modifications by caller
public Person getPerson() { return new Person(person) };

public void printEnpl oyeeDetail (Enpl oyee enp) {
Person person = enp. get Person();
/1 this caller does not nodify the object, so defensive copy was
unnecessary

Systemout.println ("Enmpl oyee's name: " + person.getNange() + "
age: " + person.getAge());

}

The method makes a copy to prevent modification of the original object by the
caller. If the compiler determines that the get Per son method is being invoked in a
loop, then the compiler inlines that method. By using escape analysis, when the
compiler determines that the original object is never modified, the compiler can
optimize and eliminate the call to make a copy.

The server compiler might eliminate synchronization blocks (lock elision) if it
determines that an object is thread local. For example, methods of classes such
as StringBuffer and Vector are synchronized because they can be accessed by
different threads. However, in most scenarios, they are used in a thread local
manner. In cases where the usage is thread local, the compiler can optimize and
remove the synchronization blocks.

5-4

Support for Non-Java Languages

This chapter describes the Non-Java Language features in the Java Virtual Machine.

Topics:

* Introduction to Non-Java Language Features

e Static and Dynamic Typing

* The Challenge of Compiling Dynamically-Typed Languages

* The invokedynamic Instruction

Introduction to Non-Java Language Features

The Java Platform, Standard Edition (Java SE) enables the development of
applications with the following features:

e Can be written once and run anywhere
e Can be run securely because of the Java sandbox security model
e Easy to package and deliver

The Java SE platform provides robust support in the following areas:

e Concurrency
* Garbage collection
» Reflective access to classes and objects

* JVM Tool Interface (JVM TI): A native programming interface for use by tools. It
provides both a way to inspect the state and to control the execution of
applications running in the JVM.

Oracle's HotSpot JVM provides the following tools and features:

» DTrace: A dynamic tracing utility that monitors the behavior of applications and the
operating system.

e Performance optimizations

* PrintAssembly: A Java HotSpot option that prints assembly code for bytecoded
and native methods.

The Java SE 7 platform enables non-Java languages to use the infrastructure and
potential performance optimizations of the JVM. The key mechanism is the

i nvokedynani ¢ instruction, which simplifies the implementation of compilers and runtime
systems for dynamically-typed languages on the JVM.

ORACLE 6-1

Chapter 6
Static and Dynamic Typing

Static and Dynamic Typing

ORACLE

A programming language is statically-typed if it performs type checking at compile
time. Type checking is the process of verifying that a program is type safe. A program
is type safe if the arguments of all of its operations are the correct type.

Java is a statically-typed language. Type information is available for class and
instance variables, method parameters, return values, and other variables when a
program is compiled. The compiler for the Java programming language uses this type
information to produce strongly typed bytecode, which can then be efficiently executed
by the JVM at runtime.

The following example of a Hello World program demonstrates static typing. Types are
shown in bold.

import java.util.Date;

public class HelloWrld {
public static void main(String[] argv) {
String hello = "Hello ";
Date currDate = new Date();
for (String a : argv) {
Systemout.printin(hello + a);
Systemout. printin("Today's date is: " + currDate);

}

A programming language is dynamically-typed if it performs type checking at runtime.
JavaScript and Ruby are examples of dynamically typed languages. These languages
verify at runtime, rather than at compile time, that values in an application conform to
expected types. Typically, type information for these languages is not available when
an application is compiled. The type of an object is determined only at runtime. In the
past, it was difficult to efficiently implement dynamically-typed languages on the JVM.

The following is an example of the Hello World program written in the Ruby
programming language:

#!/usr/bin/env ruby
require 'date'

hello = "Hello "
currDate = DateTi me. now
ARGV. each do| a|
puts hello + a
puts "Date and time: " + currDate.to_s
end

In the example, every name is introduced without a type declaration. The main
program is not located inside a holder type (the Java class Hel | ovr | d). The Ruby
equivalent of the Java f or loop is inside the dynamic type ARGV variable. The body of
the loop is contained in a block called a closure, which is a common feature in
dynamic languages.

6-2

Chapter 6
The Challenge of Compiling Dynamically-Typed Languages

Statically-Typed Languages Are Not Necessarily Strongly-Typed

Languages

Statically-typed programming languages can employ strong typing or weak typing. A
programming language that employs strong typing specifies restrictions on the types of
values supplied to its operations, and it prevents the execution of an operation if its
arguments have the wrong type. A language that employs weak typing would implicitly
convert (or cast) arguments of an operation if those arguments have the wrong or
incompatible types.

Dynamically-typed languages can employ strong typing or weak typing. For example,
the Ruby programming language is dynamically-typed and strongly-typed. When a
variable is initialized with a value of some type, the Ruby programming language does
not implicitly convert the variable into another data type.

In the following example, the Ruby programming language does not implicitly cast the
number 2, which has a Fi xnumtype, to a string.

" 40"
a+ 2

a
b

The Challenge of Compiling Dynamically-Typed Languages

ORACLE

Consider the following dynamically-typed method, addt wo, adds any two numbers
(which can be of any numeric type) and returns the sum:

def addtwo(a, b)
a+ b;
end

Suppose your organization is implementing a compiler and runtime system for the
programming language in which the method addt wo is written. In a strongly-typed
language, whether typed statically or dynamically, the behavior of + (the addition
operator) depends on the operand types. A compiler for a statically-typed language
chooses the appropriate implementation of + based on the static types of a and b. For
example, a Java compiler implements + with the i add JVM instruction if the types of a
and b are i nt. The addition operator is compiled to a method call because the JVM

i add instruction requires the operand types to be statically known.

A compiler for a dynamically-typed language must defer the choice until runtime. The
statement a + b is compiled as the method call +(a, b), where + is the method name.
A method named + is permitted in the JVM but not in the Java programming language.
If the runtime system for the dynamically-typed language is able to identify that a and b
are variables of integer type, then the runtime system would prefer to call an
implementation of + that is specialized for integer types rather than arbitrary object

types.

The challenge of compiling dynamically-typed languages is how to implement a
runtime system that can choose the most appropriate implementation of a method or
function — after the program has been compiled. Treating all variables as objects of
bj ect type would not work efficiently; the Ooj ect class does not contain a method
named +.

6-3

ORACLE

Chapter 6
The Challenge of Compiling Dynamically-Typed Languages

In Java SE 7 and later, the i nvokedynani ¢ instruction enables the runtime system to
customize the linkage between a call site and a method implementation. In this
example, the i nvokedynani ¢ call site is +. An i nvokedynani ¢ call site is linked to a
method by means of a bootstrap method, which is a method specified by the compiler
for the dynamically-typed language that is called once by the JVM to link the site.
Assuming the compiler emitted an i nvokedynani ¢ instruction that invokes +, and
assuming that the runtime system knows about the method adder (I nt eger, I nteger),
the runtime can link the i nvokedynani ¢ call site to the adder method as follows:

IntegerOps.java

class IntegerQOps {

public static Integer adder(Integer x, Integer y) {
return x +y;

}
}

Example.java

inmport java.util.*;

inport java.lang.invoke.*;

inport static java.lang.invoke. Met hodType. *;
inmport static java.lang.invoke. Met hodHandl es. *;

class Exanple {

public static CallSite mybsm
Met hodHandl es. Lookup cal | erC ass, String dynMet hodName, MethodType dynMet hodType)
throws Throwabl e {

Met hodHandl e mh =
cal lerd ass. findStatic(
Exanpl e. cl ass,
"I nt eger Ops. adder ",
Met hodType. net hodType(| nteger.class, Integer.class, Integer.class));

if (!dynMethodType. equal s(mh.type())) {
mh = mh. asType(dynMet hodType);
}

return new Constant Cal | Site(nh);

}
}

In this example, the I nt eger Ops class belongs to the library that accompanies runtime
system for the dynamically-typed language.

The Exanpl e. nybsmmethod is a bootstrap method that links the i nvokedynani ¢ call site
to the adder method.

The cal | er G ass object is a | ookup object, which is a factory for creating method
handles.

The Met hodHandl es. Lookup. fi ndSt ati ¢ method (called from the cal | er € ass | ookup
object) creates a static method handle for the method adder .

Note: This bootstrap method links an i nvokedynani ¢ call site to only the code that is
defined in the adder method. It assumes that the arguments given to the i nvokedynani ¢

6-4

Chapter 6
The invokedynamic Instruction

call site are I nt eger objects. A bootstrap method requires additional code to properly
link i nvokedynani ¢ call sites to the appropriate code to execute if the parameters of the
bootstrap method (in this example, cal | er 0 ass, dynMet hodNane, and dynMet hodType)
vary.

The j ava. | ang. i nvoke. Met hodHandl es class and j ava. | ang. i nvoke. Met hodHandl e class
contain various methods that create method handles based on existing method
handles. This example calls the asType method if the method type of the mh method
handle does not match the method type specified by the dynMet hodType parameter. This
enables the bootstrap method to link i nvokedynani ¢ call sites to Java methods whose
method types don't exactly match.

The Const ant Cal | Si t e instance returned by the bootstrap method represents a call site
to be associated with a distinct i nvokedynani ¢ instruction. The target for a

Constant Cal | Si t e instance is permanent and can never be changed. In this case, one
Java method, adder, is a candidate for executing the call site. This method does not
have to be a Java method. Instead, if several such methods are available to the
runtime system, each handling different argument types, the nybsmbootstrap method
could dynamically select the correct method, based on the dynhet hodType argument.

The invokedynamic Instruction

You can use the i nvokedynani ¢ instruction simplifies and potentially improves
implementations of compilers and runtime systems for dynamic languages on the
JVM. The i nvokedynanmi ¢ instruction enables the language implementer to define
custom linkage. This contrasts with other JVM instructions such as i nvokevi rtual , in
which linkage behavior specific to Java classes and interfaces is hard-wired by the
JVM.

Each instance of an i nvokedynani ¢ instruction is called a dynamic call site. When an
instance of the dynamic call site is created, it is in an unlinked state, with no method
specified for the call site to invoke. The dynamic call site is linked to a method by
means of a bootstrap method. A dynamic call site's bootstrap method is a method
specified by the compiler for the dynamically-typed language. The method is called
once by the JVM to link the site. The object returned from the bootstrap method
permanently determines the call site's activity.

The i nvokedynani ¢ instruction contains a constant pool index (in the same format as for
the other i nvoke instructions). This constant pool index references a

CONSTANT _I nvokeDynani ¢ entry. This entry specifies the bootstrap method (a
CONSTANT_Met hodHandl e entry), the name of the dynamically-linked method, and the
argument types and return type of the call to the dynamically-linked method.

In the following example, the runtime system links the dynamic call site specified by
the i nvokedynani ¢ instruction (which is +, the addition operator) to the IntegerOps.adder
method by using the Example.mybsm bootstrap method. The adder method and nybsm
method are defined in The Challenge of Compiling Dynamically Typed Languages
(line breaks have been added for clarity):

i nvokedynanic I nvokeDynani ¢
REF invokeStatic:
Exanpl e. nybsm
"(Ljaval/l ang/ i nvoke/ Met hodHand! es/ Lookup;
Lj ava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType;)
Lj ava/l ang/invoke/ Cal | Site;":

ORACLE 6-5

Chapter 6
The invokedynamic Instruction

+
"(Ljaval/l ang/ I nt eger;

Lj ava/l ang/ | nt eger;)
Lj ava/lang/ | nteger;";

Note:

The bytecode examples use the syntax of the ASM Java bytecode
manipulation and analysis framework.

Invoking a dynamically-linked method with the i nvokedynani ¢ instruction involves the
following steps:

1. Defining the Bootstrap Method
2. Specifying Constant Pool Entries

3. Using the i nvokedynani ¢ Instruction

Defining the Bootstrap Method

At runtime, the first time the JVM encounters an i nvokedynani ¢ instruction, it calls the
bootstrap method. This method links the name that the i nvokedynani ¢ instruction
specifies with the code to execute the target method, which is referenced by a method
handle. The next time the JVM executes the same i nvokedynani ¢ instruction, it does
not call the bootstrap method; it automatically calls the linked method handle.

The bootstrap method's return type must be j ava. | ang. i nvoke. Cal | Site. The Cal | Site
object represents the linked state of the i nvokedynani ¢ instruction and the method
handle to which it is linked.

The bootstrap method takes three or more of the following parameters:

e Met hodHandl es. Lookup object: A factory for creating method handles in the context
of the i nvokedynani ¢ instruction.

e String object: The method name mentioned in the dynamic call site.
* MethodType object: The resolved type signature of the dynamic call site.

* One or more additional static arguments to the i nvokedynani ¢ instruction: Optional
arguments, drawn from the constant pool, are intended to help language
implementers safely and compactly encode additional metadata useful to the
bootstrap method. In principle, the name and extra arguments are redundant
because each call site could be given its own unique bootstrap method. However,
such a practice is likely to produce large class files and constant pools

See The Challenge of Compiling Dynamically Typed Languages for an example of a
bootstrap method.

Specifying Constant Pool Entries

ORACLE

The i nvokedynani ¢ instruction contains a reference to an entry in the constant pool with
the CONSTANT_I nvokeDynani ¢ tag. This entry contains references to other entries in the
constant pool and references to attributes. See, j ava. | ang. i nvoke package
docunent at i on and The Java Virtual Machine Specification.

6-6

http://asm.ow2.org/
http://docs.oracle.com/javase/9/docs/api/java/lang/invoke/package-summary.html
http://docs.oracle.com/javase/9/docs/api/java/lang/invoke/package-summary.html

Chapter 6
The invokedynamic Instruction

Example Constant Pool

The following example shows an excerpt from the constant pool for the class Exanpl e,
which contains the bootstrap method Exanpl e. nybsmthat links the method + with the
Java method adder :

class #159; [/ #47

Uf8 "adder"; // #83

Uf8 "(Ljaval/lang/Integer;Ljavallang/Integer;)Ljaval/lang/lInteger;"; // #84

Utf8 "nybsnt'; // #87

Ut f8 "(Ljavallang/invoke/ Met hodHandl es/ Lookup; Lj ava/l ang/ String;Lj ava/ | ang/
i nvoke/ Met hodType;)

javallang/invoke/CallSite;"; // #88
Uf8 "Exanmple"; // #159
uf8 "+"; [/ #166

...

NameAndType #83 #84; [/ #228

Met hod #47 #228; [/ #229

Met hodHandl e 6b #229; // #230
NameAndType #87 #88; // #231

Met hod #47 #231; [/ #232

Met hodHandl e 6b #232; [/ #233
NameAndType #166 #84; [/ #234
Ut f8 "BootstraphMethods"; // #235
I nvokeDynami ¢ 0s #234; [/ #236

The constant pool entry for the i nvokedynani ¢ instruction in this example contains three
values:

e CONSTANT_I nvokeDynami ¢ tag
* Unsigned short of value 0
* Constant pool index #234.

The value, 0 refers to the first bootstrap method specifier in the array of specifiers that
are stored in the Boot st r apMet hods attribute. Bootstrap method specifiers are not in the
constant pool table. They are contained in this separate array of specifiers. Each
bootstrap method specifier contains an index to a CONSTANT_Met hodHandl e constant pool
entry, which is the bootstrap method itself.

The following example shows an excerpt from the same constant pool that shows the
Boot st r apMet hods attribute, which contains the array of bootstrap method specifiers:

[3] { /] Attributes
...

Attr(#235, 6) { // BootstrapMethods at 0xOF63
[1] { // bootstrap_nethods
{ Il bootstrap_nethod
#233; /I bootstrap_nethod_ref
[0] { /! bootstrap_arguments
} Il bootstrap_argunents
} I/ bootstrap_nethod
1

ORACLE .

Chapter 6
The invokedynamic Instruction

} /1 end Boot strapMet hods
} /1 Attributes

The constant pool entry for the bootstrap method mybsmmethod handle contains the
following values:

e CONSTANT_Met hodHandl e tag
* Unsigned byte of value 6
* Constant pool index #232.

The value, 6 is the REF_i nvokeSt ati ¢ subtag. See the next section, Using the
invokedynamic Instruction, for more information about this subtag.

Using the invokedynamic Instruction

The following example shows how the bytecode uses the i nvokedynani ¢ instruction to
call the nybsmbootstrap method, which links the dynamic call site (+, the addition
operator) to the adder method. This example uses the + method to add the numbers 40
and 2 (line breaks have been added for clarity):

bi push 40;
i nvokestatic Met hod javal/lang/Integer.valueO:"(1)Ljavallang/Integer;";
i const_2;
i nvokestatic Met hod javallang/Integer.valueO:"(1)Ljavallang/Integer;";
i nvokedynani ¢ I nvokeDynani ¢
REF invokeStati c:
Exanpl e. nybsm
"(Ljava/l ang/ i nvoke/ Met hodHand! es/ Lookup;
Lj ava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType;)
Lj ava/l ang/invoke/Cal | Site;":
+
"(Ljaval/l ang/ I nteger;
Lj ava/l ang/ I nt eger;)
Lj ava/l ang/ I nteger;";

The first four instructions put the integers 40 and 2 in the stack and boxes them in the
java.lang. | nteger wrapper type. The fifth instruction invokes a dynamic method. This
instruction refers to a constant pool entry with a CONSTANT | nvokeDynani ¢ tag:

REF i nvokeStatic:
Exanpl e. nybsm
"(Ljavall ang/ i nvoke/ Met hodHand! es/ Lookup;
Lj ava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType;)
Lj ava/l ang/invoke/ Cal | Site;":
+
"(Ljavallang/ I nteger;
Lj ava/l ang/ I nt eger;)
Lj ava/l ang/ I nteger;";

Four bytes follow the CONSTANT | nvokeDynani ¢ tag in this entry.

* The first two bytes form a reference to a CONSTANT_Met hodHandl e entry that
references a bootstrap method specifier:

ORACLE 6-8

ORACLE

Chapter 6
The invokedynamic Instruction

REF_i nvokeStati c:
Exanpl e. nybsm
"(Lj avall ang/ i nvoke/ Met hodHandl es/ Lookup;
Lj aval/l ang/ Stri ng;
Lj ava/l ang/ i nvoke/ Met hodType;)
Lj aval/l ang/invoke/Cal I Site;"

This reference to a bootstrap method specifier is not in the constant pool table. It is
contained in a separate array defined by a class file attribute named

Boot st rapMet hods. The bootstrap method specifier contains an index to a
CONSTANT_Met hodHandl e constant pool entry, which is the bootstrap method itself.

Three bytes follow this CONSTANT_Met hodHandl e constant pool entry:

— The first byte is the REF_i nvokeSt ati ¢ subtag. This means that this bootstrap
method will create a method handle for a static method; note that this
bootstrap method is linking the dynamic call site with the static Java adder
method.

— The next two bytes form a CONSTANT Met hodr ef entry that represents the
method for which the method handle is to be created:

Exanpl e. nybsm
"(Ljavall ang/ i nvoke/ Met hodHandl es/ Lookup;
Lj ava/l ang/ String;
Lj avall ang/ i nvoke/ Met hodType;)
Lj ava/l ang/invoke/Cal | Site;"

In this example, the fully qualified name of the bootstrap method is
Exanpl e. mybsm. The argument types are Met hodHandl es. Lookup, String, and
Met hodType. The return type is Cal | Si te.

* The next two bytes form a reference to a CONSTANT_NameAndType entry:

+
“(Ljaval/l ang/ I nt eger;

Lj aval/l ang/ I nteger;)
Lj ava/l ang/ | nt eger;"

This constant pool entry specifies the method name (+), the argument types (two
I nt eger instances), and return type of the dynamic call site (I nt eger).

In this example, the dynamic call site is presented with boxed integer values, which
exactly match the type of the eventual target, the adder method. In practice, the
argument and return types don't need to exactly match. For example, the

i nvokedynani ¢ instruction could pass either or both of its operands on the JVM stack as
primitive i nt values. Either or both operands could be untyped Ovj ect values. The

i nvokedynani ¢ instruction could receive its result as a primitive i nt value, or an untyped
bj ect value. In any case, the dynMet hodType argument to mybsmaccurately describes
the method type that is required by the i nvokedynani ¢ instruction.

The adder method could be given primitive or untyped arguments or return values. The
bootstrap method is responsible for making up any difference between the

dynMet hodType and the type of the adder method. As shown in the code, this is easily
done with an asType call on the target method.

6-9

Signal Chaining

ORACLE

Signal chaining enables you to write applications that need to install their own signal
handlers. This facility is available on Solaris, Linux, and macOS.

The signal chaining facility has the following features:

Support for preinstalled signal handlers when you create Oracle’s HotSpot Virtual
Machine.

When the HotSpot VM is created, the signal handlers for signals that are used by
the HotSpot VM are saved. During execution, when any of these signals are raised
and are not to be targeted at the HotSpot VM, the preinstalled handlers are
invoked. In other words, preinstalled signal handlers are chained behind the
HotSpot VM handlers for these signals.

Support for the signal handlers that are installed after you create the HotSpot VM,
either inside the Java Native Interface code or from another native thread.

Your application can link and load the i bj si g. so shared library before the I i bc/

l'i bthread/|ibpthread library. This library ensures that calls such as si gnal (),

si gset (), and si gaction() are intercepted and don’t replace the signal handlers
that are used by the HotSpot VM, if the handlers conflict with the signal handlers
that are already installed by HotSpot VM. Instead, these calls save the new signal
handlers. The new signal handlers are chained behind the HotSpot VM signal
handlers for the signals. During execution, when any of these signals are raised
and are not targeted at the HotSpot VM, the preinstalled handlers are invoked.

If support for signal handler installation after the creation of the VM is not required,
then the I bj si g. so shared library is not needed.

To enable signal chaining, perform one of the following procedures to use the
l'i bj si g. so shared library:

— Link the I'i bj si g. so shared library with the application that creates or embeds
the HotSpot VM:

cc -L libjvmso-directory -ljsig -1jvmjava_application.c
— Use the LD _PRELOAD environment variable:
* Korn shell (ksh):
export LD PRELOAD=Ii bjvm so-directory/libjsig.so; java_application
* C shell (csh):
setenv LD PRELQOAD |ibjvmso-directory/libjsig.so; java_application

The interposed si gnal () , sigset () , and si gaction() calls return the saved signal
handlers, not the signal handlers installed by the HotSpot VM and are seen by the
operating system.

7-1

ORACLE

Chapter 7

Note:

The SIGQUI T, SI GTERM SI G NT, and SI GHUP signals cannot be chained. If the
application must handle these signals, then consider using the —Xrs option.

Enable Signal Chaining in macOS
To enable signal chaining in macOS, set the following environment variables:

e DYLD I NSERT_LI BRARI ES: Preloads the specified libraries instead of the LD_PRELOAD
environment variable available on Solaris and Linux.

e DYLD FORCE_FLAT_NAMESPACE: Enables functions in the | i bj si g library and replaces
the OS implementations, because of macOS’s two-level namespace (a symbol's
fully qualified name includes its library). To enable this feature, set this
environment variable to any value.

The following command enables signal chaining by preloading the I i bj si g library:

$ DYLD_FORCE_FLAT_NAMESPACE=0 DYLD_| NSERT_LI BRARI ES="JAVA HOVE/ | i b/ |'i bj si g. dyl i b"
java MSpi ffyJavaApp

Note:

The library file name on macOS is | i bjsig.dylib notlibjsig.soasitison
Solaris or Linux.

7-2

Native Memory Tracking

This chapter describes the Native Memory Tracking (NMT) feature. NMT is a Java
Hotspot VM feature that tracks internal memory usage for a HotSpot VM. You can
access NMT data by using the j cnd utility. NMT does not track memory allocations for
third-party native code and Oracle Java Development Kit (JDK) class libraries. NMT
does not include NMT MBean in HotSpot for Java Mission Control (JMC).
Topics:
* Key Features
* Using Native Memory Tracking

— Enabling NMT

— Accessing NMT Data using jcmd

e Obtaining NMT Data at VM Exit

Key Features

When you use Native Memory Tracking with j cnd, you can track Java Virtual Machine
(JVM) or HotSpot VM memory usage at different levels. NMT tracks only the memory
that the JVM or HotSpot VM uses, not the user's native memory. NMT doesn't give
complete information for the memory used by the class data sharing (CDS) archive.

NMT supports the following features:

e NMT for HotSpot VM is turned off by default. You can turn on NMT by using the
JVM command-line option. See java in the Java Platform, Standard Edition Tools
Reference for information about advanced runtime options.

e You can access NMT using the j cnd utility. See Use jcmd to Access NMT Data.
You can stop NMT by using the j cnd utility, but you can't start or restart NMT by
using the j cnd utilty.

* Generate summary and detail reports.
» Establish an early baseline for later comparison.

* Request a memory usage report at JVM exit with the JVM command-line option.
See NMT at VM exit.

Using Native Memory Tracking

You must enable NMT and then use the j cnd utility to access the NMT data.

Enabling NMT

To enable NMT, use the following command-line options:

- XX: Nati veMenoryTracki ng=[of f | summary | detail]

ORACLE 8-1

Chapter 8
Obtaining NMT Data at VM Exit

Note:
Enabling NMT causes a 5% -10% performance overhead.
The following table describes the NMT command-line usage options:

Table 8-1 NMT Usage Options
]

NMT Options Description

of f NMT is turned of f by default.

sumary Collect only memory usage aggregated by subsystem.
detail Collect the memory usage by individual call sites.

Accessing NMT Data using jcmd

Use j cmd to dump the data that is collected and optionally compare the data to the last
baseline.

jenmd <pid> VM native_nenory [summary | detail | baseline | summary.diff |
detail.diff | shutdown] [scale= KB | MB | GB|

Table 8-2 jcmd NMT Options
- __]

jcmd NMT Option Description
sumary Print a summary, aggregated by category.
detail » Print memory usage, aggregated by category

e Print virtual memory map
* Print memory usage, aggregated by call site

basel i ne Create a new memory usage snapshot for comparison.
summary. di ff Print a new summary report against the last baseline.
detail.diff Print a new detail report against the last baseline.

shut down Stop NMT.

Obtaining NMT Data at VM Exit

To obtain data for the last memory usage at VM exit, when Native Memory Tracking is
enabled, use the following VM diagnostic command-line options. The level of detail is
based on tracking level.

- XX: +Unl ockDi agnost i cVMOptions - XX +Print NMIStatistics

See Native Memory Tracking in the Java Platform, Standard Edition Troubleshooting
Guide for information about how to monitor VM internal memory allocations and
diagnose VM memory leaks.

ORACLE 8-2

DTrace Probes in HotSpot VM

This chapter describes the DTrace support in Oracle’s HotSpot VM. The hotspot and
hotspot_jni providers make available probes that are used to monitor JVM internal
state and activities as well as the Java application that is running. All of the probes are
USDT probes and are accessed using the process-id of the JVM process.
Topics:
* Using the hotspot Provider

— VM Lifecycle Probes

— Thread Lifecycle Probes

— Classloading Probes

— Garbage Collection Probes

— Method Compilation Probes

— Monitor Probes

— Application Tracking Probes
e Using the hotspot_jni Provider

e Sample DTrace Probes

Using the hotspot Provider

The hotspot provider makes available probes that you can use to track the lifespan of
the VM, thread start and stop events, garbage collector (GC) and memory pool
statistics, method compilations, and monitor activity. With a startup flag, additional
probes are enabled that can be used to monitor the running Java program, such as
method enter and return probes, and object allocations. The hotspot probes originate
in the VM library (libjvm.so0), so they are provided from programs that embed the VM.

Many of the probes in the provider have arguments for providing further details on the
state of the VM. Many of these arguments are opaque IDs which can be used to link
probe firings to each other, however strings and other data are also provided. When
string values are provided, they are always present as a pair: a pointer to unterminated
modified UTF-8 data (see JVM spec) , and a length value which indicates the extent of
that data. The string data (even when none of the characters are outside the ASCII
range) is not guaranteed to be terminated by a NUL character, and it is necessary to
use the length-terminated copyi nstr () intrinsic to read the string data.

VM Lifecycle Probes

The following probes are available for tracking VM lifecycle activities. None have any
arguments.

ORACLE 9-1

http://docs.oracle.com/javase/specs/

Chapter 9
Using the hotspot Provider

Table 9-1 VM Lifecycle Probes
]

Probe Description
vminit-begin Probe that starts when the VM initialization begins
vminit-end Probe that starts when the VM initialization finishes, and

the VM is ready to start running application code

vm shut down Probe that starts as the VM is shuts down due to
program termination or an error

Thread Lifecycle Probes

The following probes are available for tracking thread start and stop events.

Probe Description
thread-start Probe that starts when a thread starts.
t hread- st op Probe that starts when the thread has completed.

The following argument are available for the thread lifecycle probes:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the thread
name.

args[1] The length of the thread name data (in bytes).

args[2] The Java thread ID. This value matches other HotSpot
VM probes that contain a thread argument.

args[3] The native or OS thread ID. This ID is assigned by the
host operating system.

args[4] A boolean value that indicates whether this thread is a
daemon or not. A value of 0 indicates a non-daemon
thread.

Classloading Probes

The following probes are available for tracking class loading and unloading activity.

Probe Description

cl ass- 1 oaded Probe that fires when a class is loaded

cl ass-unl oaded Probe that fires when a class is unloaded from the
system

The following arguments are available for the cl assl oadi ng probes:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the name of
the class that is loaded

ORACLE 9-2

Chapter 9
Using the hotspot Provider

Probe Arguments

Description

args[1] The length of the class name data (in bytes)

args[2] The class loader ID, which is a unique identifier for a
class loader in the VM. (This is the class loader that
loaded the class.)

args[3] A boolean value that indicates whether the class is a

shared class (if the class was loaded from the shared
archive)

Garbage Collection Probes

Probes are available that you can use to measure the duration of a system-wide
garbage collection cycle (for those garbage collectors that have a defined begin and
end). Each memory pool is tracked independently. The probes for individual pools
pass the memory manager's hame, the pool name, and pool usage information at both
the beginning and ending of pool collection.

The following probes are available for garbage collecting activities:

Probe Description

gc-begin Probe that starts when a system-wide collection starts.
The one argument available for this probe, (arg[0]), is a
boolean value that indicates whether to perform a Full
GC.

gc-end Probe that starts when a system-wide collection is

completed. No arguments.

mem pool - gc- begin

Probe that starts when an individual memory pool is
collected.

mem pool - gc- end

Probe that starts after an individual memory pool is
collected.

The following arguments are available for the memory pool probes:

Probe Arguments

Description

args[0] A pointer to the UTF-8 string data that contains the
name of the manager that manages this memory pool.

args[1] The length of the manager name data (in bytes).

args[2] A pointer to the UTF-8 string data that contains the
name of the memory pool.

args[3] The length of the memory pool name data (in bytes).

args[4] The initial size of the memory pool (in bytes).

args| 5] The amount of memory in use in the memory pool (in
bytes).

args| 6] The number of committed pages in the memory pool.

args[7] The maximum size of the memory pool.

ORACLE’ 0-3

Method Compilation Probes

Chapter 9
Using the hotspot Provider

Probes are available to indicate which methods are being compiled and by which
compiler, and to track when the compiled methods are installed or uninstalled.

The following probes are available to mark the beginning and ending of method

compilation:

Probe

Description

met hod- conpi | e- begin

Probe that starts when the method compilation begins.

met hod- conpi | e-end

Probe that starts when method compilation is
completed. In addition to the following arguments, the
argv[8] argument is a boolean value that indicates
whether the compilation was successful.

The following arguments are available for the method compilation probes:

Probe Arguments

Description

args[0] A pointer to UTF-8 string data that contains the name of
the compiler that is compiling this method.
args[1] The length of the compiler name data (in bytes).
args| 2] A pointer to UTF-8 string data that contains the name of
the class of the method being compiled.
args| 3] The length of the class name data (in bytes).
args[4] A pointer to UTF-8 string data that contains the name of
the method being compiled.
args[5] The length of the method name data (in bytes).
args| 6] A pointer to UTF-8 string data that contains the
signature of the method being compiled.
args[7] The length of the signature data (in bytes).
The following probes are available when compiled methods are installed for execution
or uninstalled:
Probe Description

conpi | ed- met hod- | oad

Probe that starts when a compiled method is installed.
The additional argument, ar gv[6] contains a pointer to
the compiled code, and the ar gv[7] is the size of the
compiled code.

conpi | ed- et hod- unl oad

Probe that starts when a compiled method is uninstalled.

The following arguments are available for the compiled method loading probe:

Probe Arguments

Description

args|[0] A pointer to UTF-8 string data that contains the name of
the class of the method being installed.

args[1] The length of the class name data (in bytes).

ORACLE 9-4

Chapter 9
Using the hotspot Provider

Probe Arguments Description

args| 2]

A pointer to UTF-8 string data that contains the name of
the method being installed.

args| 3] The length of the method name data (in bytes).

args[4] A pointer to UTF-8 string data that contains the
signature of the method being installed.

args[5] The length of the signature data (in bytes).

Monitor Probes

When your Java application runs, threads enter and exit monitors, wait on monitors,
and perform natifications. Probes are available for all wait and notification events, and
for contended monitor entry and exit events.

A contended monitor entry occurs when a thread attempts to enter a monitor while
another thread is in the monitor. A contended monitor exit event occurs when a thread
leaves a monitor while other threads are waiting to enter to the monitor. The
contended monitor entry and contended monitor exit events might not match each
other in relation to the thread that encounters these events, athough a contended exit
from one thread is expected to match up to a contended enter on another thread (the
thread waiting to enter the monitor).

Monitor events provide the thread ID, a monitor ID, and the type of the class of the
object as arguments. The thread ID and the class type can map back to the Java
program, while the monitor ID can provide matching information between probe firings.

The existence of these probes in the VM causes performance degradation, and they
start only when the - XX: +Ext endedDTr acePr obes flag is set on the Java command line.
This flag is turned on and off dynamically at runtime by using the j i nf o utility.

If the flag is off, the monitor probes are present in the probe listing that is obtainable
from Dtrace, but the probes remain dormant and don’t start. Removal of this restriction
is planned for future releases of the VM, and these probes will be enabled with no
impact to performance.

The following probes are available for monitoring events:

Probe Description

nmoni t or - cont ended- ent er Probe that starts when a thread attempts to enter a
contended monitor

moni t or - cont ended- ent er ed Probe that starts when a thread successfully enters the
contended monitor

moni t or - cont ended- exi t Probe that starts when a thread leaves a monitor and

other threads are waiting to enter

moni t or - wai t

Probe that starts when a thread begins a wait on a
monitor by using the bj ect . wai t () . The additional
argument, ar gs[4] is a long value that indicates the
timeout being used.

moni tor-wai t ed

Probe that starts when a thread completes an
bj ect. wait() action.

ORACLE

9-5

Chapter 9
Using the hotspot Provider

Probe

Description

moni tor-notify

Probe that starts when a thread calls Cbj ect. noti fy()
to notify waiters on a monitor.

moni tor-noti fyAll

Probe that starts when a thread calls
bj ect. notifyAll () to notify waiters on a monitor.

The following arguments are available for the monitor:

Probe Arguments

Description

args[0] The Java thread identifier for the thread performing the
monitor operation.

args[1] A unique, but opaque identifier for the specific monitor
that the action is performed upon.

args[2] A pointer to UTF-8 string data which contains the class
name of the object being acted upon.

args| 3] The length of the class name data (in bytes).

Application Tracking Probes

You can use probes to allow fine-grained examination of Java thread execution. The
application tracking probes start when a method is entered or returned from, or when a

Java object has been allocated.

The existence of these probes in the VM causes performance degradation, and they
will start only when the VM has the Ext endedDTr acePr obes flag enabled. By default, the
probes are present in any listing of the probes in the VM, but are dormant without the
appropriate flag. Removal of this restriction is planned in future releases of the VM,
and these probes will be enabled no impact to performance.

The following probes are available for the method entry and exit:

Probe

Description

met hod-entry

Probe that starts when a method is being entered.

met hod-return

Probe that starts when a method returns, either normally
or due to an exception.

The following arguments are available for the method entry and exit:

Probe Arguments

Description

args[0] The Java thread ID of the thread that is entering or
leaving the method.

args[1] A pointer to UTF-8 string data that contains the name of
the class of the method.

args[2] The length of the class name data (in bytes).

args[3] A pointer to UTF-8 string data that contains the name of
the method.

args[4] The length of the method name data (in bytes).

ORACLE

9-6

Chapter 9
Using the hotspot_jni Provider

Probe Arguments Description

args| 5] A pointer to UTF-8 string data that contains the
signature of the method.

args| 6] The length of the signature data (in bytes).

The following probe is available for the object allocation:

Probe Description

obj ect-al | oc Probe that starts when any object is allocated, provided
that the Ext endedDTr acePr obes flag is enabled.

The following arguments are available for the object allocation probe:

Probe Arguments Description

args[0] The Java thread ID of the thread that is allocating the
object.

args[1] A pointer to UTF-8 string data that contains the class
name of the object being allocated.

args| 2] The length of the class hame data (in bytes).

args| 3] The size of the object being allocated.

Using the hotspot_jni Provider

In order to call from native code to Java code, due to embedding of the VM in an
application or execution of native code within a Java application, the native code must
make a call through the Java Native Interface (JNI) interface. The JNI interface
provides a number of methods for invoking Java code and examining the state of the
VM. DTrace probes are provided at the entry point and return point for each of these
methods. The probes are provided by the hotspot_jni provider. The name of the probe
is the name of the JNI method, appended with - ent ry for entry probes, and - ret urn for
return probes. The arguments available at each entry probe are the arguments that
were provided to the function, with the exception of the | nvoke* methods, which omit
the arguments that are passed to the Java method. The return probes have the return
value of the method as an argument (if available).

Sample DTrace Probes

provider hotspot {
probe vminit-begin();
probe vminit-end();
probe vm shut down();
probe cl ass- | oaded(
char* class_nane, uintptr_t class_nane_len, uintptr_t class_|oader_id, bool
i s_shared);
probe cl ass-unl oaded(
char* class_nane, uintptr_t class_nane_|len, uintptr_t class_|oader_id, bool
i s_shared);
probe gc-begin(bool is_full);

ORACLE 9.7

Chapter 9
Sample DTrace Probes

probe gc-end();
probe mem pool - gc- begi n(
char* ngr_nane, uintptr_t mgr_nane_|l en, char* pool _name, uintptr_t
pool _nane_| en,
uintptr_t initial _size, uintptr_t used, uintptr_t committed, uintptr_t
max_si ze) ;
probe mem pool - gc- end(
char* ngr_nane, uintptr_t mgr_nane_|l en, char* pool _name, uintptr_t
pool _nane_| en,
uintptr_t initial_size, uintptr_t used, uintptr_t committed, uintptr_t
max_si ze) ;
probe thread-start(
char* thread_nane, uintptr_t thread_nanme_| ength,
uintptr_t java_thread_id, uintptr_t native_thread_id, bool is_daenon);
probe thread- st op(
char* thread_nane, uintptr_t thread_name_| ength,
uintptr_t java_thread_id, uintptr_t native_thread_id, bool is_daenon);
probe net hod- conpi | e- begi n(
char* class_nane, uintptr_t class_nane_len,
char* nethod_nane, uintptr_t method_name_| en,
char* signature, uintptr_t signature_len);
probe net hod- conpi | e- end(
char* class_nane, uintptr_t class_nane_len,
char* nethod_nane, uintptr_t method_name_| en,
char* signature, uintptr_t signature_|en,
bool is_success);
probe conpi | ed- net hod- | oad(
char* class_nane, uintptr_t class_nane_len,
char* nethod_nane, uintptr_t method_name_| en,
char* signature, uintptr_t signature_|en,
voi d* code, uintptr_t code_size);
probe conpi | ed- net hod- unl oad(
char* class_nane, uintptr_t class_nane_len,
char* nethod_nane, uintptr_t method_name_| en,
char* signature, uintptr_t signature_len);
probe nonitor-contended-enter(
uintptr_t java_thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len);
probe noni tor-cont ended- ent er ed(
uintptr_t java_thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len);
probe noni tor-cont ended- exit (
uintptr_t java_thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len);
probe nonitor-wait (
uintptr_t java_thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len,
uintptr_t timeout);
probe noni tor-wai t ed(
uintptr_t java_thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len);
probe nonitor-notify(
uintptr_t java_thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len);
probe nonitor-notifyAl(
uintptr_t java_thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len);
probe net hod-entry(
uintptr_t java_thread_id, char* class_nane, uintptr_t class_nane_|en,
char* nethod_nane, uintptr_t method_name_| en,
char* signature, uintptr_t signature_len);

ORACLE 9-8

ORACLE

pr obe

Chapter 9
Sample DTrace Probes

met hod- r et ur n(

uintptr_t java_thread_id, char* class_nane, uintptr_t class_nane_|en,
char* nethod_nane, uintptr_t method_name_| en,
char* signature, uintptr_t signature_len);

pr obe

obj ect - al | oc(

uintptr_t java_thread_id, char* class_nane, uintptr_t class_nane_|en,
uintptr_t size);

b

provider hotspot_jni {

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Al'l ocObj ect-entry(void*, void*);

Al'l ocObj ect-return(voi d*);

AttachCurrent Thr eadAsDaenon- entry(voi d*, voi d**, void*);
AttachCurrent Thr eadAsDaermon-return(uint32_t);
AttachCurrent Thread- entry(voi d*, void**, void*);
AttachCurrent Thread-return(uint32_t);

Cal | Bool eanMet hodA-ent ry(voi d*, void*, uintptr_t);
Cal | Bool eanMet hodA-return(uintptr_t);

Cal | Bool eanMet hod- entry(voi d*, void*, uintptr_t);
Cal | Bool eanMet hod-return(uintptr_t);

Cal | Bool eanMet hodV-ent ry(voi d*, void*, uintptr_t);
Cal | Bool eanMet hodV-return(uintptr_t);

Cal | Byt eMet hodA-entry(voi d*, void*, uintptr_t);
Cal | Byt eMet hodA-return(char);

Cal | Byt eMet hod- entry(voi d*, void*, uintptr_t);

Cal | Byt eMet hod-ret urn(char);

Cal | Byt eMet hodV-entry(voi d*, void*, uintptr_t);

Cal | Byt eMet hodV-return(char);

Cal | Char Met hodA-entry(voi d*, void*, uintptr_t);
Cal | Char Met hodA-return(uint16_t);

Cal | Char Met hod-entry(voi d*, void*, uintptr_t);
Cal | Char Met hod-return(uint16_t);

Cal | Char Met hodV-entry(voi d*, void*, uintptr_t);
Cal | Char Met hodV-return(uint16_t);

Cal | Doubl eMet hodA-entry(voi d*, void*, uintptr_t);
Cal | Doubl eMet hodA-r et urn(doubl e) ;

Cal | Doubl eMet hod-entry(voi d*, void*, uintptr_t);
Cal | Doubl eMet hod- r et urn(doubl e) ;

Cal | Doubl eMet hodV-entry(voi d*, void*, uintptr_t);
Cal | Doubl eMet hodV-r et urn(doubl e) ;

Cal | Fl oat Met hodA-entry(void*, void*, uintptr_t);
Cal | Fl oat Met hodA-return(float);

Cal | Fl oat Met hod-entry(voi d*, void*, uintptr_t);
Cal | Fl oat Met hod-return(float);

Cal | Fl oat Met hodV-entry(void*, void*, uintptr_t);
Cal | Fl oat Met hodV-return(float);

Cal I I nt Met hodA-entry(voi d*, void*, uintptr_t);
Cal I I nt Met hodA-return(uint32_t);

Cal I I nt Met hod-entry(voi d*, void*, uintptr_t);
Cal I I nt Met hod-return(uint32_t);

Cal I I nt Met hodV-entry(voi d*, void*, uintptr_t);
Cal | I nt Met hodV-return(uint32_t);

Cal | LongMet hodA- entry(voi d*, void*, uintptr_t);
Cal | LongMet hodA-return(uintptr_t);

Cal | LongMet hod- ent ry(voi d*, void*, uintptr_t);
Cal | LongMet hod-return(uintptr_t);

Cal | LongMet hodV-entry(voi d*, void*, uintptr_t);
Cal | LongMet hodV-return(uintptr_t);

Cal | Nonvi rt ual Bool eanMet hodA-ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Bool eanMet hodA-return(uintptr_t);

9-9

ORACLE

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Chapter 9
Sample DTrace Probes

Cal | Nonvi rt ual Bool eanMet hod- ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Bool eanMet hod-return(uintptr_t);

Cal | Nonvi rt ual Bool eanMet hodV-ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Bool eanMet hodV-return(uintptr_t);

Cal | Nonvi rt ual Byt eMet hodA-entry(voi d*, void*, void*, uintptr_t);
Cal I Nonvi rt ual Byt eMet hodA-ret urn(char);

Cal | Nonvi rt ual Byt eMet hod-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Byt eMet hod-ret urn(char);

Cal | Nonvi rt ual Byt eMet hodV-ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Byt eMet hodV-ret urn(char);

Cal | Nonvi rt ual Char Met hodA-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Char Met hodA-return(uint16_t);

Cal | Nonvi rt ual Char Met hod-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Char Met hod-return(uint16_t);

Cal | Nonvi rt ual Char Met hodV-ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Char Met hodV-return(uint16_t);

Cal | Nonvi rt ual Doubl eMet hodA- ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Doubl eMet hodA-r et ur n(doubl e) ;

Cal | Nonvi rt ual Doubl eMet hod-ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Doubl eMet hod-r et ur n(doubl e) ;

Cal | Nonvi rt ual Doubl eMet hodV- ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Doubl eMet hodV-r et ur n(doubl e) ;

Cal | Nonvi rtual Fl oat Met hodA-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Fl oat Met hodA-return(float);

Cal | Nonvi rtual Fl oat Met hod- entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Fl oat Met hod-return(float);

Cal | Nonvi rtual Fl oat Met hodV-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Fl oat Met hodV-return(float);

Cal I Nonvi rtual I nt Met hodA-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual I nt Met hodA-return(uint32_t);

Cal | Nonvi rtual I nt Met hod-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual I nt Met hod-return(uint3t);

Cal I Nonvi rtual I nt Met hodV-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual I nt Met hodV-return(uint32_t);

Cal I Nonvi rt ual LongMet hodA- ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual LongMet hodA-return(uintptr_t);

Cal | Nonvi rtual LongMet hod-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual LongMet hod-return(uintptr_t);

Cal | Nonvi rtual LongMet hodV-ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual LongMet hodV-return(uintptr_t);

Cal | Nonvi rt ual oj ect Met hodA-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Qoj ect Met hodA-ret urn(voi d*);

Cal | Nonvi rtual oj ect Met hod-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Coj ect Met hod-r et urn(voi d*);

Cal | Nonvi rt ual Ooj ect Met hodV-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Coj ect Met hodV-ret urn(voi d*);

Cal | Nonvi rtual Short Met hodA-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Short Met hodA-return(uint16_t);

Cal | Nonvi rtual Short Met hod- entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Short Met hod-return(uint16_t);

Cal | Nonvi rtual Short Met hodV-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rtual Short Met hodV-return(uint16_t);

Cal | Nonvi rt ual Voi dvet hodA-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Voi dMet hodA-ret urn();

Cal | Nonvi rt ual Voi dMet hod-entry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Voi dMet hod-return();

Cal | Nonvi rt ual Voi dMet hodV-ent ry(voi d*, void*, void*, uintptr_t);
Cal | Nonvi rt ual Voi dMet hodV-ret urn();

Cal | Qbj ect Met hodA-entry(voi d*, void*, uintptr_t);

Cal | Obj ect Met hodA-return(voi d*);

Cal | Qbj ect Met hod-entry(voi d*, void*, uintptr_t);

9-10

ORACLE

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Chapter 9
Sample DTrace Probes

Cal | Qbj ect Met hod-return(voi d*);

Cal | Qbj ect Met hodV-entry(voi d*, void*, uintptr_t);

Cal | Qbj ect Met hodV-return(voi d*);

Cal | Short Met hodA-entry(voi d*, void*, uintptr_t);

Cal | Short Met hodA-return(uint16_t);

Cal | Short Met hod-entry(voi d*, void*, uintptr_t);

Cal | Short Met hod-return(uint16_t);

Cal | Short Met hodV-entry(voi d*, void*, uintptr_t);

Cal | Short Met hodV-return(uint16_t);

Cal | St ati cBool eanMet hodA-entry(voi d*, void*, uintptr_t);
Cal | Stati cBool eanMet hodA-return(uintptr_t);

Cal | St ati cBool eanMet hod- entry(voi d*, void*, uintptr_t);
Cal | Stati cBool eanMet hod-return(uintptr_t);

Cal | St ati cBool eanMet hodV-entry(voi d*, void*, uintptr_t);
Cal | Stati cBool eanMet hodV-return(uintptr_t);

Cal | St ati cByt eMet hodA-entry(void*, void*, uintptr_t);
Cal | StaticByt eMet hodA-return(char);

Cal | St ati cByt eMet hod-entry(voi d*, void*, uintptr_t);
Cal | StaticByteMet hod-return(char);

Cal | St ati cByt eMet hodV-entry(void*, void*, uintptr_t);
Cal | StaticByteMet hodV-return(char);

Cal | St ati cChar Met hodA-entry(void*, void*, uintptr_t);
Cal | StaticChar Met hodA-return(uint16_t);

Cal | St ati cChar Met hod-entry(voi d*, void*, uintptr_t);
Cal | StaticChar Met hod-return(uint16_t);

Cal | St ati cChar Met hodV-entry(void*, void*, uintptr_t);
Cal | StaticChar Met hodV-return(uint16_t);

Cal | St ati cDoubl eMet hodA- entry(voi d*, void*, uintptr_t);
Cal | Stati cDoubl eMet hodA-ret urn(doubl e);

Cal | St ati cDoubl eMet hod-entry(voi d*, void*, uintptr_t);
Cal | Stati cDoubl eMet hod- r et ur n(doubl e) ;

Cal | St ati cDoubl eMet hodV-entry(voi d*, void*, uintptr_t);
Cal | Stati cDoubl eMet hodV-ret urn(doubl e);

Cal | Stati cFl oat Met hodA-entry(voi d*, void*, uintptr_t);
Cal | Stati cFl oat Met hodA-return(float);

Cal | Stati cFl oat Met hod-entry(voi d*, void*, uintptr_t);
Cal | StaticFl oat Met hod-return(float);

Cal | Stati cFl oat Met hodV-entry(voi d*, void*, uintptr_t);
Cal | StaticFl oat Met hodV-return(float);

Cal | StaticlntMethodA-entry(void*, void*, uintptr_t);
Cal | StaticlntMet hodA-return(uint32_t);

Cal | StaticlntMthod-entry(void*, void*, uintptr_t);

Cal | StaticlntMthod-return(uint32_t);

Cal | StaticlntMethodentry(void*, void*, uintptr_t);

Cal | StaticlntMethodV-return(uint32_t);

Cal | St ati cLongMet hodA-entry(void*, void*, uintptr_t);
Cal | StaticLongMet hodA-return(uintptr_t);

Cal | StaticLongMet hod-entry(voi d*, void*, uintptr_t);
Cal | StaticLongMet hod-return(uintptr_t);

Cal | Stati cLongMet hodV-entry(void*, void*, uintptr_t);
Cal | StaticLongMet hodV-return(uintptr_t);

Cal | Stati cOoj ect Met hodA-entry(voi d*, void*, uintptr_t);
Cal | Staticnj ect Met hodA-return(voi d*);

Cal | Stati cOoj ect Met hod-entry(voi d*, void*, uintptr_t);
Cal | Stati cOoj ect Met hod-return(voi d*);

Cal | Stati cOoj ect Met hodV-entry(voi d*, void*, uintptr_t);
Cal | Staticnoj ect Met hodV-return(voi d*);

Cal | StaticShort Met hodA-entry(voi d*, void*, uintptr_t);
Cal | StaticShort Met hodA-return(uint16_t);

Cal | StaticShort Met hod-entry(void*, void*, uintptr_t);
Cal | StaticShortMethod-return(uintl6_t);

9-11

ORACLE

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Chapter 9
Sample DTrace Probes

Cal | StaticShort Met hodV-entry(voi d*, void*, uintptr_t);
Cal | StaticShort Met hodV-return(uint16_t);

Cal | St ati cVoi dMet hodA-entry(voi d*, void*, uintptr_t);
Cal | StaticVoi dMet hodA-return();

Cal | St ati cVoi dvet hod-entry(voi d*, void*, uintptr_t);
Cal | StaticVoi dMet hod-return();

Cal | St ati cVoi dvet hodV-entry(voi d*, void*, uintptr_t);
Cal | StaticVoi dMet hodV-return();

Cal | Voi dMet hodA-entry(voi d*, void*, uintptr_t);

Cal | Voi dMet hodA-return();

Cal | Voi dMet hod- entry(voi d*, void*, uintptr_t);

Cal | Voi dMet hod-return();

Cal | Voi dMet hodV-entry(voi d*, void*, uintptr_t);

Cal | Voi dMet hodV-return();

Creat eJavaVM entry(voi d**, voi d**, void*);
CreateJavaVM return(uint32_t);

DefineC ass-entry(voi d*, const char*, void*, char, uintptr_t);
DefineC ass-return(voi d*);

Del et ed obal Ref -entry(voi d*, void*);

Del et ed obal Ref -return();

Del et eLocal Ref -entry(voi d*, void*);

Del eteLocal Ref-return();

Del et eWeakd obal Ref -entry(voi d*, void*);

Del et eVeakd obal Ref-return();

Dest royJavaVM ent ry(voi d*);
DestroyJavaVMreturn(uint32_t);

Det achCurrent Thread- ent ry(voi d*);

Det achCurrent Thread-return(uint32_t);

EnsurelLocal Capacity-entry(void*, uint32_t);
EnsurelLocal Capacity-return(uint32_t);

Excepti onCheck-entry(voi d*);

Excepti onCheck-return(uintptr_t);

Excepti onC ear-entry(voi d*);

ExceptionC ear-return();

Excepti onDescri be-entry(voi d*);

Excepti onDescri be-return();

Excepti onCeccurred-entry(void*);

Excepti onCeccurred-return(void*);

Fatal Error-entry(voi d* env, const char*);

Fi ndd ass-entry(voi d*, const char*);

Fi ndd ass-return(voi d*);

FronRef | ect edFi el d-entry(voi d*, void*);

FronRef | ect edFi el d-return(uintptr_t);

FronRef | ect edMet hod- entry(voi d*, voi d*);

FronRef | ect edMet hod-return(uintptr_t);

Get ArrayLengt h-entry(voi d*, void*);

Get ArrayLength-return(uintptr_t);

Get Bool eanArrayEl ement s-entry(voi d*, void*, uintptr_t*);
Get Bool eanArrayEl ements-return(uintptr_t*);

Get Bool eanArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, uintptr_t*);
Get Bool eanArrayRegi on-return();

Get Bool eanFi el d-entry(voi d*, void*, uintptr_t);

Get Bool eanFi el d-return(uintptr_t);

Get Byt eArrayEl enent s-entry(voi d*, void*, uintptr_t*);
Get Byt eArrayEl enents-return(char*);

Cet Byt eArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, char*);
Get Byt eArrayRegi on-return();

Get Byt eFi el d-entry(void*, void*, uintptr_t);

Get Byt eFi el d-return(char);

Get Char ArrayEl enent s-entry(voi d*, void*, uintptr_t*);
Get Char ArrayEl enents-return(uint16_t*);

9-12

ORACLE

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Chapter 9
Sample DTrace Probes

Get Char ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, uint16_t*);
Get Char ArrayRegi on-return();

Get Char Fi el d-entry(void*, void*, uintptr_t);
GetCharField-return(uint16_t);

Get CreatedJavaVMs-eintptr_t*);

Get Creat edJavaVMs-return(uintptr_t);

Get CreateJavaVMs-entry(voi d*, uintptr_t, uintptr_t*);

Cet Creat eJavaVMs-return(uint32_t);

Get Def aul t JavaVM ni t Args-entry(voi d*);

Get Def aul t JavaVM ni t Args-return(uint32_t);

Get Di rect Buf f er Addr ess-entry(voi d*, void*);

Get Di rect Buf f er Addr ess-return(voi d*);

Get Di rect Buf f er Capaci ty-entry(voi d*, void*);

Get Di rect Buf fer Capacity-return(uintptr_t);

Get Doubl eArrayEl ement s-entry(voi d*, void*, uintptr_t*);
Get Doubl eArrayEl enent s-r et urn(doubl e*);

Get Doubl eArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, double*);
Get Doubl eArrayRegi on-return();

Get Doubl eFi el d-entry(voi d*, void*, uintptr_t);

Get Doubl eFi el d-return(doubl e);

Get Env-entry(voi d*, void*, void*);
GetEnv-return(uint32_t);

Get Fi el dl D-entry(voi d*, void*, const char*, const char*);
GetFieldl D-return(uintptr_t);

Get Fl oat ArrayEl enent s-entry(voi d*, void*, uintptr_t*);

Get Fl oat ArrayEl enents-return(float*);

Get Fl oat ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, float*);
Get Fl oat ArrayRegi on-return();

Get Fl oat Fi el d-entry(voi d*, void*, uintptr_t);

GetFl oatFiel d-return(float);

GetInt ArrayEl enents-entry(voi d*, void*, uintptr_t*);
GetIntArrayEl enents-return(uint32_t*);

GetInt ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, uint32_t*);
Get I nt ArrayRegi on-return();

GetIntField-entry(void*, void*, uintptr_t);
GetIntField-return(uint32_t);

Get JavaVM ent ry(voi d*, voi d**);

Cet JavaVM return(uint32_t);

Get LongArrayEl enent s-entry(voi d*, void*, uintptr_t*);

Get LongArrayEl enents-return(uintptr_t*);

Get LongArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, uintptr_t*);
Get LongAr rayRegi on-return();

Get LongFi el d-entry(voi d*, void*, uintptr_t);

Get LongFi el d-return(uintptr_t);

Get Met hodl D-entry(voi d*, void*, const char*, const char*);
Get Met hodl D-return(uintptr_t);

Get Cbj ect ArrayEl ement -entry(voi d*, void*, uintptr_t);

Get Cbj ect ArrayEl ement -return(voi d*);

Get Cbj ect G ass-entry(voi d*, void*);

Get Cbj ect Gl ass-return(voi d*);

Get Cbj ect Fi el d-entry(voi d*, void*, uintptr_t);

Get Cbj ect Fi el d-return(voi d*);

Get Obj ect Ref Type-entry(voi d*, void*);

Get Obj ect Ref Type-return(voi d*);

GetPrimtiveArrayCritical -entry(void*, void*, uintptr_t*);
GetPrimtiveArrayCritical -return(void*);

Get Short ArrayEl enent s-entry(voi d*, void*, uintptr_t*);

Get Short ArrayEl enents-return(uint16_t*);

Get Short ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, uint16_t*);
Get Short ArrayRegi on-return();

Get Short Fi el d-entry(voi d*, void*, uintptr_t);

9-13

ORACLE

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Chapter 9
Sample DTrace Probes

Get ShortFiel d-return(uint16_t);

Get St ati cBool eanFi el d-entry(void*, void*, uintptr_t);
Cet St ati cBool eanFi el d-return(uintptr_t);

Get Stati cByteFiel d-entry(void*, void*, uintptr_t);
Cet StaticByteField-return(char);

Get StaticCharField-entry(void*, void*, uintptr_t);
GetStaticCharField-return(uint16_t);

Get Stati cDoubl eFi el d-entry(voi d*, void*, uintptr_t);
Get St ati cDoubl eFi el d-return(doubl e);

GetStaticFieldl D-entry(void*, void*, const char*, const char*);
CetStaticFieldl D-return(uintptr_t);

Get StaticFloat Field-entry(void*, void*, uintptr_t);
GetStaticFloatField-return(float);
GetStaticlntField-entry(void*, void*, uintptr_t);
CetStaticlntField-return(uint32_t);

Get StaticLongFi el d-entry(voi d*, void*, uintptr_t);
Get StaticLongFi el d-return(uintptr_t);

Get Stati cMet hodl D-entry(voi d*, void*, const char*, const char*);
Get StaticMethodl D-return(uintptr_t);

Get StaticQnjectField-entry(void*, void*, uintptr_t);
Get StaticQbjectField-return(void*);

Get StaticShortField-entry(void*, void*, uintptr_t);
GetStaticShortField-return(uint16_t);

pro GetStringChars-entry(void*, void*, uintptr_t*);

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Get StringChars-return(const uint16_t*);
GetStringCritical-entry(void*, void*, uintptr_t*);
GetStringCritical-return(const uint16_t*);

Get StringLengt h-entry(void*, void*);
GetStringlLength-return(uintptr_t);

Get StringRegion-entry(voi d*, void*, uintptr_t, uintptr_t, uint16_t*);
Get StringRegion-return();

Get StringUTFChar s-entry(voi d*, void*, uintptr_t*);
Get StringUTFChar s-return(const char*);

Get StringUTFLengt h-entry(voi d*, void*);

Get StringUTFLengt h-return(uintptr_t);

Get StringUTFRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, char*);
Get StringUTFRegi on-return();

Get Super cl ass-entry(voi d*, void*);

Get Super cl ass-return(voi d*);

Get Versi on-entry(voi d*);

Get Version-return(uint32_t);

| sAssi gnabl eFrom entry(voi d*, void*, void*);

| sAssi gnabl eFromreturn(uintptr_t);

I sl nstanceO -entry(voi d*, void*, void*);
I'slnstanceO -return(uintptr_t);

| sSameQhj ect -entry(voi d*, void*, void*);

| sSameQhj ect-return(uintptr_t);

Moni t or Enter-entry(voi d*, void*);
MonitorEnter-return(uint32_t);

Moni t or Exi t-entry(voi d*, void*);

Moni tor Exit-return(uint32_t);

NewBool eanArray-entry(voi d*, uintptr_t);

NewBool eanArray-return(void*);

NewByt eArray-entry(voi d*, uintptr_t);

NewByt eArray-return(void*);

NewChar Array-entry(voi d*, uintptr_t);

NewChar Array-return(voi d*);

NewDi r ect Byt eBuf fer-entry(voi d*, void*, uintptr_t);
NewDi r ect Byt eBuf f er-return(voi d*);

NewDoubl eArray-entry(void*, uintptr_t);

NewDoubl eAr ray-return(voi d*);

9-14

ORACLE

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
uintptr_
pr obe

Chapter 9
Sample DTrace Probes

NewFl oat Array-entry(void*, uintptr_t);

NewFl| oat Array-return(voi d*);

Newd obal Ref -entry(voi d*, void*);

Newd obal Ref -ret urn(voi d*);

Newl nt Array-entry(void*, uintptr_t);

Newl nt Array-return(void*);

NewLocal Ref -entry(voi d*, void*);

NewLocal Ref -return(voi d*);

NewLongArray-entry(voi d*, uintptr_t);

NewLongArray-ret urn(voi d*);

Newbj ect A-entry(voi d*, void*, uintptr_t);

Newbj ect A-r et urn(voi d*);

Newhj ect Array-entry(void*, uintptr_t, void*, void*);

Newhj ect Array-return(voi d*);

Newbj ect -entry(voi d*, void*, uintptr_t);

Newbj ect -return(voi d*);

Newbj ect V-entry(voi d*, void*, uintptr_t);

Newbj ect V-r et urn(voi d*);

NewShort Array-entry(void*, uintptr_t);

NewShort Array-return(voi d*);

NewString-entry(void*, const uintl6_t*, uintptr_t);
NewString-return(void*);

NewSt ri ngUTF-entry(voi d*, const char*);

NewSt ri ngUTF-r et urn(voi d*);

NewWeakd obal Ref - ent ry(voi d*, void*);

NewWéakd obal Ref - ret urn(voi d*);

PopLocal Frane-entry(voi d*, void*);

PopLocal Frane-return(voi d*);

PushLocal Frane-entry(void*, uint32_t);

PushLocal Frane-return(uint32_t);

Regi st er Nati ves-entry(voi d*, void*, const void*, uint32_t);

Regi sterNatives-return(uint32_t);

Rel easeBool eanArrayEl ement s-entry(voi d*, void*, uintptr_t*, uint32_t);
Rel easeBool eanArrayEl ements-return();

Rel easeByt eArrayEl ement s-entry(voi d*, void*, char*, uint32_t);
Rel easeByt eArrayEl enents-return();

Rel easeChar ArrayEl ement s-entry(voi d*, void*, uint16_t*, uint32_t);
Rel easeChar ArrayEl enent s-return();

Rel easeDoubl eArrayEl enent s-entry(voi d*, void*, double*, uint32_t);
Rel easeDoubl eArrayEl ements-return();

Rel easeFl oat ArrayEl enent s-entry(voi d*, void*, float*, uint32_t);
Rel easeFl oat ArrayEl ement s-return();

Rel easel nt ArrayEl ement s-entry(voi d*, void*, uint32_t*, uint32_t);
Rel easel nt ArrayEl enents-return();

Rel easeLongArrayEl ement s-entry(voi d*, void*, uintptr_t*, uint32_t);
Rel easeLongArrayEl enents-return();

Rel easehj ect ArrayEl enent s-entry(voi d*, void*, void**, uint32_t);
Rel easehj ect ArrayEl ements-return();

Rel easey(voi d*, void*, void*, uint32_t);

Rel easePrimtiveArrayCritical-return();

Rel easeShort ArrayEl enent s-entry(voi d*, void*, uintl6_t*, uint32_t);
Rel easeShort ArrayEl ements-return();

Rel easeStringChars-entry(void*, void*, const uint16_t*);

Rel easeStringChars-return();

Rel easeStringCritical -entry(void*, void*, const uintl6 t*);

Rel easeStringCritical-return();

Rel easeStri ngUTFChar s-entry(voi d*, void*, const char*);

Rel easeStringUTFChars-return();

Set Bool eanArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, const
t*);

Set Bool eanArrayRegi on-return();

9-15

ORACLE

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Chapter 9
Sample DTrace Probes

Set Bool eanFi el d-entry(voi d*, void*, uintptr_t, uintptr_t);

Set Bool eanFi el d-return();

Set Byt eArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, const char*);
Set Byt eArrayRegi on-return();

Set Byt eFi el d-entry(voi d*, void*, uintptr_t, char);

SetByteField-return();

Set Char ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, const

uint16_t*);

pr obe
pr obe
pr obe
pr obe

Set Char ArrayRegi on-return();

Set Char Fi el d-entry(void*, void*, uintptr_t, uint16_t);

Set Char Fi el d-return();

Set Doubl eArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, const

doubl e*);

u

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
ntptr_
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

intl6_t

pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe
pr obe

Set Doubl eAr rayRegi on-return();

Set Doubl eFi el d-entry(voi d*, void*, uintptr_t, double);

Set Doubl eFi el d-return();

Set Fl oat ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, const float*);
Set Fl oat ArrayRegi on-return();

Set Fl oat Fi el d-entry(voi d*, void*, uintptr_t, float);

Set Fl oatFiel d-return();

Set I nt ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, const uint32_t*);
Set I nt ArrayRegi on-return();

SetIntField-entry(void*, void*, uintptr_t, uint32_t);
SetIntField-return();

Set LongAr r ayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, const
t*);

Set LongArrayRegi on-return();

Set LongFi el d-entry(voi d*, void*, uintptr_t, uintptr_t);

Set LongFi el d-return();

Set Cbj ect ArrayEl ement -entry(voi d*, void*, uintptr_t, void*);

Set bj ect ArrayEl ement -return();

Set Cbj ect Fi el d-entry(voi d*, void*, uintptr_t, void*);

Set Qvj ect Fi el d-return();

Set Short ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, const
*),

Set Short ArrayRegi on-return();

Set Short Fi el d-entry(voi d*, void*, uintptr_t, uintl6_t);

Set Short Fi el d-return();

Set St ati cBool eanFi el d-entry(voi d*, void*, uintptr_t, uintptr_t);
Set St ati cBool eanFi el d-return();

Set StaticByteFiel d-entry(void*, void*, uintptr_t, char);

Set StaticByteField-return();

Set StaticCharFiel d-entry(void*, void*, uintptr_t, uintl6_t);

Set StaticCharField-return();

Set St ati cDoubl eFi el d-entry(voi d*, void*, uintptr_t, double);

Set St ati cDoubl eFi el d-return();

Set StaticFl oat Fi el d-entry(void*, void*, uintptr_t, float);

Set StaticFloatField-return();

Set StaticlntField-entry(void*, void*, uintptr_t, uint32_t);
SetStaticlntField-return();

Set StaticLongFi el d-entry(voi d*, void*, uintptr_t, uintptr_t);
Set StaticLongFiel d-return();

Set StaticOhj ectField-entry(void*, void*, uintptr_t, void*);

Set StaticObj ectField-return();

Set StaticShortField-entry(void*, void*, uintptr_t, uintl6_t);
Set StaticShortField-return();

Throwent ry(voi d*, void*);

Thr owNew ent ry(voi d*, void*, const char*);

Thr owNew-r et urn(ui nt 32_t);

Throwreturn(uint32_t);

ToRef | ect edFi el d-entry(voi d*, void*, uintptr_t, uintptr_t);

9-16

Chapter 9
Sample DTrace Probes

probe ToRefl ectedFi el d-return(void*);

probe ToRefl ectedMet hod-entry(voi d*, void*, uintptr_t, uintptr_t);
probe ToRef| ect edMet hod-ret urn(voi d*);

probe UnregisterNatives-entry(void*, void*);

probe UnregisterNatives-return(uint32_t);

ORACLE 9-17

Fatal Error Reporting

Fatal errors are errors such as native memory exhaustion, memory access errors, or
explicit signals directed to the process. Fatal errors can be triggered by native code
within the application (for example developer-written Java Native Interface (JNI) code),
third-party native libraries that the application or the JVM, or native code in the JVM. If
a fatal error causes the process that is hosting the Java Virtual Machine (JVM) to
terminate, the JVM gathers information about the error and writes a crash report.

The JVM tries to identify the nature and location of the error. If possible write detailed
information about the state of the JVM and the process, at the time of the crash. The
details that are available can depend on the platform and the nature of the crash. The
information that is provided by this error-reporting mechanism enables you to more
easily and efficiently debug your applications, or identify issues in third-party code.
When an error message indicates a problem in the JVM code, you can submit a more
accurate and helpful bug report. In some cases, crash report generation causes
secondary errors that prevent full details from being reported.

Error Report Example

ORACLE

The following example shows the start of an error report (file
hs_err _pi d18240. | og) for a crash in the native JNI code for an application:

#

A fatal error has been detected by the Java Runtinme Environnent:

#

SIGSEGV (0xb) at pc=0x00007f0f 159f 857d, pi d=18240, tid=18245

#

JRE version: Java(TM SE Runtime Environment (9.0+167) (build 9-ea+l67)
Java VM Java Hot Spot(TM 64-Bit Server VM (9-eatl67, mixed node, tiered,
conpressed oops, gl gc, |inux-and64)

Probl ematic frane:

C [!ibMApp. so+0x57d] Java_MyApp_readDat a+0x11

H

Core dunp will be witten. Default |ocation: /cores/core.18240)

If you would like to subnit a bug report, please visit:
http://bugreport.java.con bugreport/crash.jsp

The crash happened outside the Java Virtual Mchine in native code.

See problematic frame for where to report the bug.

H oH H H HH R H R

--------------- SUMMARY ----emmnnnne
Conmand Line: M/App

Host: Intel (R Xeon(R) CPU X5675 @3.07GHz, 24 cores, 141G Ubuntu 12.04
#;rie Fri Apr 28 02:57:13 2017 EDT el apsed time: 2 seconds (0d Oh Om 2s)

--------------- THREAD --eeemmnnnnans

10-1

ORACLE

Chapter 10
Error Report Example

Current thread (0x00007f102c013000): JavaThread "main" [_thread_in_native
i d=18245, stack(0x00007f 10345c0000, 0x00007f 10346c0000)]

Stack: [0x00007f 10345c0000, 0x00007f 10346c0000], sp=0x00007f 10346be930, free
space=1018k

Native frames: (J=conpiled Java code, A=aot conpiled Java code, j=interpreted, W=WM
code, C=native code)

C [libMApp. so+0x57d] Java_MyApp_readDat a+0x11

i MyApp.readData()l+0

i MApp. mai n([Ljavall ang/ String;) V+15

v ~StubRoutines::call_stub

V [libjvmso+0x839eea] JavaCalls::call_hel per(JavaVal ue*, nmethodHandl e const g,
JavaCal | Argunent s*, Thread*)+0x47a

V [libjvmso+0x896fcf] jni_invoke_static(JNIEnv_*, JavaVal ue*, _jobject*,

JNI Cal | Type, _jnmethodl D*, JNI _Argument Pusher*, Thread*) [clone .isra.90]+0x21f
V [libjvmso+0x8a7fle] jni_Call StaticVoi dvet hod+0x14e

C [libjli.so+0x4142] JavaMai n+0x812

C [libpthread.so.0+0x7e9a] start_thread+Oxda

Java frames: (J=conpiled Java code, j=interpreted, W=VM code)
i MyApp.readData()I+0

i MApp. mai n([Ljaval/l ang/ String;) V+15

v ~StubRoutines::call_stub

siginfo: si_signo: 11 (SIGSEQV), si_code: 1 (SEGV_MAPERR), si_addr:
0x0000000000000000

10-2

Java Virtual Machine Related Resources

The following related links are related to the JVM.

* java.lang.invoke package documentation

e The Da Vinci Machine Project

Tools

You can control some operating characteristics of the Java HotSpot VM by using
command-line flags. For more information about the Java application launcher, see
Commands to Monitor the JVM in the Java Platform, Standard Edition Tools
Reference.

ORACLE 11-1

http://download.java.net/java/jdk9/docs/api/java/lang/invoke/package-summary.html
http://openjdk.java.net/projects/mlvm/

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Java Virtual Machine Technology Overview
	2 Compiler Control
	Writing Directives
	List of Compiler Control Options
	Writing a Directives File
	Writing a Compiler Directive
	Writing a Method Pattern in a Compiler Directive
	Writing an Inline Directive Option
	Preventing Duplication with the Enable Option

	Understanding Directives Better
	What Is the Default Directive?
	How Are Directives Applied to Code?
	Compiler Control and Backward Compatibility

	Commands to Work with Directive Files
	Compiler Directives and the Command Line
	Compiler Directives and Diagnostic Commands
	Getting Your Java Process Identification Number
	Adding Directives Through Diagnostic Commands
	Removing Directives Through Diagnostic Commands
	Printing Directives Through Diagnostic Commands

	How Are Directives Ordered in the Directives Stack?

	3 Garbage Collection
	4 Class Data Sharing
	Overview of Class Data Sharing
	Regenerating the Shared Archive
	Manually Controlling Class Data Sharing

	5 Java HotSpot Virtual Machine Performance Enhancements
	Compact Strings
	Tiered Compilation
	Compressed Ordinary Object Pointer
	Zero-Based Compressed Ordinary Object Pointers
	Escape Analysis

	6 Support for Non-Java Languages
	Introduction to Non-Java Language Features
	Static and Dynamic Typing
	Statically-Typed Languages Are Not Necessarily Strongly-Typed Languages

	The Challenge of Compiling Dynamically-Typed Languages
	The invokedynamic Instruction
	Defining the Bootstrap Method
	Specifying Constant Pool Entries
	Example Constant Pool

	Using the invokedynamic Instruction

	7 Signal Chaining
	8 Native Memory Tracking
	Key Features
	Using Native Memory Tracking
	Enabling NMT
	Accessing NMT Data using jcmd

	Obtaining NMT Data at VM Exit

	9 DTrace Probes in HotSpot VM
	Using the hotspot Provider
	VM Lifecycle Probes
	Thread Lifecycle Probes
	Classloading Probes
	Garbage Collection Probes
	Method Compilation Probes
	Monitor Probes
	Application Tracking Probes

	Using the hotspot_jni Provider
	Sample DTrace Probes

	10 Fatal Error Reporting
	Error Report Example

	11 Java Virtual Machine Related Resources
	Tools

