
Java Platform, Standard Edition
Troubleshooting Guide

Release 9
E61074-05
October 2017

Java Platform, Standard Edition Troubleshooting Guide, Release 9

E61074-05

Copyright © 1995, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Related Documents xii

Conventions xii

Part I General Java Troubleshooting

1 Prepare Java for Troubleshooting

Set Up Java for Troubleshooting 1-1

Enable Options and Flags for JVM Troubleshooting 1-1

Gather Relevant Data 1-3

Make a Java Application Easier to Debug 1-4

2 Diagnostic Tools

Diagnostic Tools Overview 2-1

Java Mission Control 2-2

Troubleshoot with Java Mission Control 2-3

What Are Java Flight Recordings 2-3

Types of Recordings 2-4

How to Produce a Flight Recording 2-5

Use Java Mission Control to Produce a Flight Recording 2-5

Use Startup Flags at the Command Line to Produce a Flight Recording 2-9

Use Triggers for Automatic Recordings 2-10

Inspect a Flight Recording 2-11

How to Get a Sample JFR to Inspect 2-11

Range Navigator 2-12

General Tab 2-12

Memory Tab 2-13

Code Tab 2-16

iii

Threads Tab 2-17

I/O Tab 2-19

System Tab 2-19

Events Tab 2-19

The jcmd Utility 2-19

Useful Commands for the jcmd Utility 2-21

Troubleshoot with the jcmd Utility 2-22

Native Memory Tracking 2-22

Use NMT to Detect a Memory Leak 2-23

How to Monitor VM Internal Memory 2-23

JConsole 2-27

Troubleshoot with the JConsole Tool 2-28

Monitor Local and Remote Applications with JConsole 2-29

The jdb Utility 2-30

Troubleshoot with the jdb Utility 2-31

Attach a Process 2-31

Attach to a Core File on the Same Machine 2-32

Attach to a Core File or a Hung Process from a Different Machine 2-32

The jinfo Utility 2-33

Troubleshooting with the jinfo Utility 2-35

The jmap Utility 2-35

Heap Configuration and Usage 2-36

Heap Histogram 2-37

Permanent Generation Statistics 2-38

The jps Utility 2-40

The jstack Utility 2-41

Troubleshoot with the jstack Utility 2-41

Stack Trace from a Core Dump 2-41

Mixed Stack 2-42

The jstat Utility 2-43

The visualgc Tool 2-45

Control+Break Handler 2-45

Thread Dump 2-46

Detect Deadlocks 2-47

Heap Summary 2-48

Native Operating System Tools 2-48

DTrace Tool 2-49

Probe Providers in Java HotSpot VM 2-49

Improvements to the pmap Utility 2-50

Improvements to the pstack Utility 2-51

Custom Diagnostic Tools 2-51

iv

Java Platform Debugger Architecture 2-51

NMT Memory Categories 2-52

Postmortem Diagnostic Tools 2-52

Hung Processes Tools 2-54

Monitoring Tools 2-54

Other Tools, Options, Variables, and Properties 2-55

The java.lang.management Package 2-57

The java.lang.instrument Package 2-57

The java.lang.Thread Class 2-58

JVM Tool Interface 2-58

The jrunscript Utility 2-58

The jsadebugd Daemon 2-59

The jstatd Daemon 2-59

Thread States for a Thread Dump 2-59

Troubleshooting Tools Based on the Operating System 2-59

3 Troubleshoot Memory Leaks

Debug a Memory Leak Using Java Flight Recorder 3-1

Detect a Memory Leak 3-1

Find the Leaking Class 3-2

Find the Leak 3-3

Understand the OutOfMemoryError Exception 3-4

Troubleshoot a Crash Instead of OutOfMemoryError 3-7

Diagnose Leaks in Java Language Code 3-7

Get a Heap Histogram 3-8

Monitor the Objects Pending Finalization 3-9

Diagnose Leaks in Native Code 3-10

Track All Memory Allocation and Free Calls 3-10

Track All Memory Allocations in the JNI Library 3-10

Track Memory Allocation with Operating System Support 3-11

Find Leaks with the dbx Debugger 3-12

Find Leaks with the libumem Tool 3-14

4 Troubleshoot Performance Issues Using JFR

JFR Overhead 4-1

Find Bottlenecks 4-2

Garbage Collection Performance 4-4

Synchronization Performance 4-6

I/O Performance 4-7

v

Code Execution Performance 4-8

Part II Debug JVM Issues

5 Troubleshoot System Crashes

Determine Where the Crash Occurred 5-1

Crash the Native Code 5-2

Crash in the Compiled Code 5-3

Crash in the HotSpot Compiler Thread 5-4

Crash in the VM Thread 5-4

Crash Due to Stack Overflow 5-4

Find a Workaround 5-5

Working Around Crashes in the HotSpot Compiler Thread or Compiled Code 5-6

Working Around Crashes During Garbage Collection 5-8

Working Around Crashes Caused by Class Data Sharing 5-9

Microsoft Visual C++ Version Considerations 5-10

6 Troubleshoot Process Hangs and Loops

Diagnose a Loop Process 6-1

Diagnose a Hung Process 6-2

Deadlock Detected 6-2

Deadlock Not Detected 6-4

No Thread Dump 6-4

Oracle Solaris 8 Thread Library 6-5

7 Handle Signals and Exceptions

Handle Signals on Oracle Solaris, Linux, and macOS 7-1

Handle Exceptions on Windows 7-1

Signal Chaining 7-3

Handle Exceptions Using the Java HotSpot VM 7-4

Console Handlers 7-5

Signals Used in Oracle Solaris, Linux, and macOS 7-5

Part III Debug Core Library Issues

vi

8 Time Zone Settings in the JRE

Native Time Zone Information and the JRE 8-1

Determine the Time Zone Data Version in Use 8-2

Troubleshoot Problems with TZupdater 8-2

Determine the Default Time Zone on Windows 8-3

Check the Default Time Zone JRE Reports 8-3

Determine the Setting in the Control Panel 8-4

Check for Automatic Daylight Saving Time Adjustment 8-4

Set the Default Time Zone in the Control Panel 8-5

Check -Duser.timezone System Property 8-5

Special Tools in Windows 7 8-6

JRE Internal Representation of Time Zone Mappings 8-6

Part IV Debug Client Issues

9 Introduction to Client Issues

Java SE Desktop Technologies 9-1

General Steps to Troubleshoot an Issue 9-3

Identify the Type of Issue 9-3

Java Client Crashes 9-4

Performance Problems 9-4

Behavior Problems 9-5

Basic Tools 9-6

Java Debug Wire Protocol 9-6

10

AWT

Debug Tips for AWT 10-1

Layout Manager Issues 10-2

Key Events 10-2

Modality Issues 10-3

AWT Crashes 10-4

Focus Events 10-5

How to Trace Focus Events 10-5

Native Focus System 10-6

Focus System in Java Plug-in 10-7

Focus Models Supported by X Window Managers 10-7

Miscellaneous Problems with Focus 10-8

Data Transfer 10-9

vii

Debug Drag-and-Drop Applications 10-10

Frequent Issues with Data Transfer 10-10

Other Issues 10-12

Splash Screen Issues 10-12

Tray Icon Issues 10-13

Pop-up Menu Issues 10-13

Background or Foreground Color Inheritance 10-13

AWT Panel Size Restriction 10-13

Hangs During Debugging of Pop-up Menus and Similar Components on X11 10-14

Window.toFront()/toBack() Behavior on X11 10-14

Heavyweight or Lightweight Components Mix 10-15

11

Java 2D Pipeline Rendering and Properties

Oracle Solaris and Linux: X11 Pipeline 11-1

X11 Pipeline Pixmaps Properties 11-2

X11 Pipeline MIT Shared Memory Extension 11-3

Oracle Solaris on SPARC: DGA Support 11-3

Oracle Solaris on SPARC - Change Java 2D Default Visual 11-4

Windows OS - DirectDraw/GDI Pipeline 11-4

Windows OS - Direct3D Pipeline in Full-Screen Mode 11-6

OpenGL Pipeline in Oracle Solaris, Linux, and Windows 11-7

Enable OpenGL Pipeline 11-7

Minimum Requirements 11-7

Diagnose Startup Issues 11-8

Diagnose Rendering and Performance Issues 11-9

Latest OpenGL Drivers 11-9

12

Java 2D

Generic Performance Issues 12-1

Hardware-Accelerated Rendering Primitives 12-1

Primitive Tracing to Detect and Avoid Non-Accelerated Rendering 12-2

Causes of Poor Rendering Performance 12-3

Improve Performance of Software-only Rendering 12-5

Text-Related Issues 12-6

Application Crash During Text Rendering 12-6

Differences in Text Appearance 12-8

Metrics 12-9

Java 2D Printing 12-9

viii

13

Swing

General Debug Tips for Swing 13-1

Specific Debug Tips for Swing 13-2

Incorrect Threading 13-2

JComponent Children Overlap 13-3

Display Update 13-3

Model Change 13-4

Add or Remove Components 13-4

Opaque Override 13-4

Permanent Changes to Graphics 13-4

Custom Painting and Double Buffering 13-5

Opaque Content Pane 13-5

Renderer Call for Each Cell Performance 13-5

Possible Leaks 13-5

Mix Heavyweight and Lightweight Components 13-6

Use Synth 13-6

Track Activity on Event Dispatch Thread 13-6

Specify Default Layout Manager 13-6

Listener Object Dispatched to Incorrect Component 13-6

Add a Component to Content Pane 13-7

Drag and Drop Support 13-7

One Parent for a Component 13-7

JFileChooser Issues with Windows Shortcuts 13-7

14

Internationalization

Troubleshoot Internationalization and Localization 14-1

15

Java Sound

Troubleshoot Java Sound Issues 15-1

16

Applets and Java Web Start Applications

Configuration Problems 16-1

Validation 16-1

Common Configuration Problems 16-2

Manage Java Runtime 16-3

Pass Parameters to the JRE 16-4

Java Deployment Home 16-5

Deployment Tracing 16-5

ix

Deployment Cache 16-6

Network Configuration 16-6

Troubleshoot Applets 16-6

Plugin Cheat Sheet for Applet Start 16-7

Browser or Java Process Crash 16-7

Unresponsive Web page 16-8

Avoid Security Dialog Boxes 16-9

Signed Applications 16-9

Mixed-Code Issues 16-9

Development Tips 16-10

Part V Submit Bug Reports

17

Submit a Bug Report

Check for Fixes in Update Releases 17-1

Prepare to Submit a Bug Report 17-1

Collect Data for a Bug Report 17-2

Hardware Details 17-2

Operating System Details 17-3

Java SE Version 17-3

Command-Line Options 17-3

Environment Variables 17-4

Fatal Error Log 17-4

Core and Crash Dump 17-5

Detailed Description of the Problem 17-5

Logs and Traces 17-5

Results from Troubleshooting Steps 17-6

Collect Core Dumps 17-6

Collect Core Dumps on Oracle Solaris 17-6

Collect Core Dumps on Linux 17-8

Reasons for Not Getting a Core File 17-9

Collect Crash Dumps on Windows 17-10

Part VI Appendices

A Fatal Error Log

Location of Fatal Error Log A-1

Description of Fatal Error Log A-2

x

Header Format A-2

Thread Section Format A-4

Process Section Format A-8

System Section Format A-13

B Java 2D Properties

Properties on Oracle Solaris and Linux B-1

Properties on Windows B-2

C Environment Variables and System Properties

The JAVA_HOME Environment Variable C-1

The JAVA_TOOL_OPTIONS Environment Variable C-1

The java.security.debug System Property C-2

D Command-Line Options

Java HotSpot VM Command-Line Options D-1

Other Command-Line Options D-5

E Summary of Tools in This Release

xi

Preface

This document helps you to troubleshoot issues that might occur with Java Client
applications created on the Java Platform, Standard Edition (Java SE) and on Java
HotSpot VM. This document provides a description of the available tools and
command-line options that can help to analyze problems. This document also provides
guidance about debugging core library and client issues and describes some general
issues, such as crashes, hangs, and memory leaks. Finally, this document provides
directions for data collection and bug report preparation.

Audience
The target audience for this document comprises developers who are using the Java
Development Kit (JDK), which is Oracle's implementation of the Java Platform,
Standard Edition (Java SE). The current release is Java SE 9 and JDK 9; however,
most of the information in this document can be applied to previous releases.

This document is intended for readers with a detailed understanding of the Java Client
technologies, a high-level understanding of the components of the Java HotSpot VM,
as well as some understanding of concepts such as garbage collection, threads, and
native libraries. In addition, it is assumed that the reader is reasonably proficient with
the operating system where the Java application is developed and run.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information about Java SE and the relevant client/desktop technologies, visit
Java SE Home.

Conventions
The following text conventions are used in this document:

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/java/javase

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xiii

Part I
General Java Troubleshooting

Java troubleshooting techniques for various diagnostic and monitoring tools,
diagnosing memory leaks, and identifying performance issues.

This part describes general Java troubleshooting techniques and contains the
following topics.

• Prepare Java for Troubleshooting

Provides guidelines for setting up both Java and a Java application for better
troubleshooting techniques. These proactive Java setups help debug and narrow
down issues with Java and a Java application.

• Diagnostic Tools

Describes various diagnostic and monitoring tools used with Java Development Kit
(JDK). Further describes the troubleshooting tools available for JDK 9 and
explains custom tools development using application programming interfaces
(APIs).

• Troubleshoot Memory Leaks

Provides suggestions for diagnosing problems involving possible memory leaks.

• Troubleshoot Performance Issues Using JFR

Identifies performance issues with a Java application and debugs issues using the
Java Flight Recorder.

1
Prepare Java for Troubleshooting

This chapter provides some guidelines for setting up both Java and a Java application
for better troubleshooting techniques. These proactive Java setups help debug and
narrow down issues with Java and the application. Not all suggestions apply to every
application.
This chapter contains the following sections:

• Set Up Java for Troubleshooting

• Enable Options and Flags for JVM Troubleshooting

• Gather Relevant Data

Set Up Java for Troubleshooting
Set up the Java environment and command-line options to enable gathering relevant
data for troubleshooting.

To set up Java, perform the following:

1. Update the Java version: Use the latest Java version to avoid spending time on
troubleshooting issues in Java that were fixed. Often, a problem caused by a bug
in the Java runtime is fixed in the latest update release. Working with the latest
Java version helps avoid some known and common issues.

2. Set up the Java environment to debug: Consider the following scenarios while
setting up a bigger Java application, starting an application with a launcher script,
or running distributed Java on several machines.

a. Make it easy to change the Java version: Using the latest Java version
helps avoid many runtime issues. If your application starts by running a script,
ensure that you have to update the Java path in only one place. If you run in a
distributed system, then think about easy ways to change the Java versions
across all of the machines.

b. Make it easy to change the Java command-line options: Sometimes, while
troubleshooting, you may want to change Java options; for example, to add a
verbose output, to turn off a feature, or to tune Java for better performance.
Prepare the systems for these changes.

In a Java application that is running remotely, for example in a testing
framework or a cloud solution, ensure that you can still change the Java flags
easily. Sometimes, the application takes command-line parameters, or you
may want to try a flag quickly to reproduce a problem. Prepare the systems to
make these changes easy.

Enable Options and Flags for JVM Troubleshooting
Set up JVM options and flags to enable gathering relevant data for troubleshooting.

The data you gather depends on the system and what data you would use in case you
run into problems. Consider gathering the following data.

1-1

1. Enable core files: If Java crashes, for example due to a segmentation fault, the
OS saves to disk a core file (complete dump of the memory). On Linux and
Solaris, core files are sometimes disabled by default. To enable core files on
Linux/Solaris, it is usually enough to run the ulimit -c unlimited before starting
the application command. Some systems may have different ways to handle these
limits.

Note:

The core files take up a lot of disk space, especially when run with a large
Java heap.

To decide whether to enable core files, consider what you would do if you had a
crash in your system. Would you want to see a core file? Many Java users won't
have much use for a core file. However, if you would want to debug a possible
crash either in a native debugger such as gdb or by using the Serviceability Agent,
then ensure that you enable core files before the starting the application.

Many times, crashes are hard to reproduce; therefore, enable core files before the
starting the application.

2. Add -XX:+HeapDumpOnOutOfMemoryError to the JVM flags: The -XX:
+HeapDumpOnOutOfMemoryError flag saves a Java Heap dump to disk if the
applications runs into an OutOfMemoryError.

Like core files, heap dumps can be very large, especially when run with a big Java
heap.

Again, think about what you would do if the application runs into an
OutOfMemoryError. Would you want to inspect the heap at the time of the error? In
that case, turn flag by default so that you get this data if the application runs into
an unexpected OutOfMemoryError.

3. Run a continuous Java flight recording: The Java Flight Recorder (JFR) is a
commercial feature. You can use it for free on developer desktops and laptops,
and for evaluation purposes in test, development, and production environments.
However, to enable JFR on a production server, you must have a
commercial license.

Set up Java to run with a continuous flight recording. Continuous flight recordings
are a circular buffer of JFR events. If the application runs into an issue, you can
dump the data from the last hour of the run. The JFR events can be helpful to
debug a wide range of issues from memory leaks to network errors, high CPU
usage, thread blocks, and so on.

The overhead of running with a continuous flight recording is very low. See How to
Produce a Flight Recording for producing a continuous Java Flight Recording.

4. Add -verbosegc to the JVM command-line: The flag -verbosegc logs basic
information about Java Garbage Collector. This log helps you find the following:

• Does garbage collection run for a long time?

• Does the free memory decrease over time?

The garbage collector log helps diagnose issues when the application throws an
OutOFMemoryError or the application runs into performance issues; therefore,
turning on the -verbosegc flag by default helps troubleshoot issues.

Chapter 1
Enable Options and Flags for JVM Troubleshooting

1-2

Note:

Use log rotation so that an application restart doesn't delete the previous logs.
Since JDK7, the flags UseGClogFileRotation and NumberOfGCLogFiles can be
used to set up for log rotation. For a description of these flags, see Debugging
Options for Java HotSpot VM.

5. Print Java version and JVM flags: Before filing a bug on Java or seeking help
from a forum, have the basic information handy in the log files. For example, it's
helpful to print the Java version and the JVM flags used.

If your application starts with a script, run java -version to print the Java version
and print the command line before executing it. Another alternative is to add -XX
+PrintCommandLineFlags and -showversion to the JVM arguments.

6. Set up JMC JMX for remote monitoring: JMX can be used to connect to a Java
application remotely using tools such as Mission Control or Visual VM. Unless you
can run these tools on the same machine that is running your application, setting
this up can be helpful later on to monitor the application, send diagnostic
commands, manage flight recordings, and so on. There is no performance
overhead if you enable JMX.

Another alternative, is to enable JMX after a Java application has started is to use
the diagnostic command ManagementAgent.start. Run jcmd <pid> help
ManagementAgent.start for a list of flags that can be sent with the command.

See The jcmd Utility.

Gather Relevant Data
If your application runs into a problem and you want to debug the problem further,
ensure that you collect any relevant data before restarting the system, especially if
restarting will remove previous files.

• It is important to gather the following files:

– Core files for crash issues.

– hs_err printed text file for Java crashes.

– Log files: Java and application logs.

– Java heap dumps for -XX:+HeapDumpOnOutOfMemoryError.

– Java flight recordings (if enabled). If the problem didn't terminate the
application, dump the continuous recordings.

• If the application stopped responding, then gather the following files:

– Stack traces: Take several stack traces using jcmd <pid> Thread.print before
restarting the system.

– Dump flight recordings (if enabled).

– Force a core file: If the application can't be closed properly, then stop the
application, and force a core file using kill -6 <pid> on Linux or Solaris
systems.

Chapter 1
Gather Relevant Data

1-3

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Make a Java Application Easier to Debug
Using a logging framework is a good way to enable future debugging.

If you run into problems in a specific module, you should be able to enable logging in
that module. It is also good to specify different levels of logging, for example info,
debug, and trace.

Chapter 1
Gather Relevant Data

1-4

2
Diagnostic Tools

This chapter introduces diagnostic and other monitoring tools that can be used with
the Java Development Kit (JDK). Then, it describes in detail the diagnostic tools in
JDK 9 and troubleshooting tools specific to various operating systems. Finally, this
chapter explains how to develop custom diagnostic tools using the application
programing interfaces (APIs) provided by JDK.
This chapter contains the following sections:

• Diagnostic Tools Overview

• What Are Java Flight Recordings

• How to Produce a Flight Recording

• Inspect a Flight Recording

• The jcmd Utility

• Native Memory Tracking

• JConsole

• The jdb Utility

• The jinfo Utility

• The jmap Utility

• The jps Utility

• The jrunscript Utility

• The jstack Utility

• The jstat Utility

• The visualgc Tool

• Control+Break Handler

• Native Operating System Tools

• Custom Diagnostic Tools

• The jsadebugd Daemon

• The jstatd Daemon

Diagnostic Tools Overview
Most of the command-line utilities described in this section are either included in the
JDK or native operating system tools and utilities.

Although the JDK command-line utilities are included in the JDK download, it is
important to consider that they can be used to diagnose issues and monitor
applications that are deployed with the Java Runtime Environment (JRE).

2-1

In general, the diagnostic tools and options use various mechanisms to get the
information they report. The mechanisms are specific to the virtual machine (VM)
implementation, operating systems, and release. Frequently, only a subset of the tools
is applicable to a given issue at a particular time. Command-line options that are
prefixed with -XX are specific to Java HotSpot VM. See Java HotSpot VM Command-
Line Options.

Note:

The -XX options are not part of the Java API and can vary from one release to
the next.

The tools and options are divided into several categories, depending on the type of
problem that you are troubleshooting. Certain tools and options might fall into more
than one category.

• Postmortem diagnostics These tools and options can be used to diagnose a
problem after an application crashes. See Postmortem Diagnostic Tools.

• Hung processes These tools can be used to investigate a hung or deadlocked
process. See Hung Processes Tools.

• Monitoring These tools can be used to monitor a running application. See
Monitoring Tools.

• Other These tools and options can be used to help diagnose other issues. See
Other Tools, Options, Variables, and Properties.

Note:

Some command-line utilities described in this section are experimental. The
jstack, jinfo, and jmap utilities are examples of utilities that are experimental.
It is suggested to use the latest diagnostic utility, jcmd instead of the earlier
jstack, jinfo, and jmap utilities.

Java Mission Control
The Java Mission Control (JMC) is a new JDK profiling and diagnostics tools platform
for HotSpot JVM.

It is a tool suite for basic monitoring, managing, and production-time profiling, and
diagnostics with high performance. Java Mission Control minimizes the performance
overhead that's usually an issue with profiling tools. This tool is a commercial feature
built into the JVM and available at runtime.

The Java Flight Recorder (JFR) is a commercial feature. You can use it for free on
developer desktops and laptops, and for evaluation purposes in test, development,
and production environments. However, to enable JFR on a production server, you
must have a commercial license. Using JMC UI for other purposes on the JDK does
not require a commercial license.

Chapter 2
Java Mission Control

2-2

The Java Mission Control (JMC) consists of Java Management Console (JMX), Java
Flight Recorder (JFR), and several other plug-ins downloadable from the tool. The
JMX is a tool for monitoring and managing Java applications, and the JFR is a profiling
tool. Java Mission Control is also available as a set of plug-ins for the Eclipse IDE.

The following topic describes how to troubleshoot with Java Mission Control.

• Troubleshoot with Java Mission Control

Troubleshoot with Java Mission Control
Troubleshooting activities that you can perform with Java Mission Control.

Java Mission Control allows you to perform the following troubleshooting activities:

• Java Management console (JMX) connects to a running JVM, and collects and
displays key characteristics in real time.

• Triggers user-provided custom actions and rules for JVM.

• Experimental plug-ins like - WLS, DTrace, JOverflow, and others from the JMC tool
provide troubleshooting activities.

– DTrace plug-in is an extended DScript language to produce self-describing
events. It provides visualization similar to Java Flight Recorder.

– JOverflow is another plug-in tool for analyzing heap waste (empty/sparse
collections). It is recommended to use JDK 8 release and later for optimal use
of the JOverflow plug-in.

• The Java Flight Recording (JFR) in Java Mission Control is available to analyze
events. The preconfigured tabs enable you to easily to drill down in various areas
of common interest, such as, code, memory and gc, threads, and I/O. The General
Events tab and Operative Events tab together allow drilling down further and
rapidly honing in on a set of events with certain properties. The Events tab usually
has check boxes to only show events in the Operative set.

– JFR, when used as a plug-in for the JMC client, presents diagnostic
information in logically grouped tables, charts, and dials. It enables you to
select the range of time and level of detail necessary to focus on the problem.
See Java Flight Recorder.

• The Java Mission Control plug-ins connect to JVM using the Java Management
Extensions (JMX) agent. The JMX is a standard API for the management and
monitoring of resources such as applications, devices, services, and the Java
Virtual Machine.

To know more about JMC, see JMC documentation.

What Are Java Flight Recordings
The Java Flight Recorder (JFR) is a commercial feature. You can use it for free on
developer desktops and laptops, and for evaluation purposes in test, development,
and production environments.

However, to enable JFR on a production server, you must have a commercial
license. Using the JMC UI for other purposes on the JDK does not require a
commercial license.

Chapter 2
What Are Java Flight Recordings

2-3

http://docs.oracle.com/javacomponents/jmc.htm
http://docs.oracle.com/javacomponents/jmc.htm

To know more about JFR commercial features and availability, see the product
documentation.

To know more about JFR commercial license, see the license agreement.

The Java Flight Recorder records detailed information about the java runtime and the
Java application running in the java runtime. The recording process is done with little
overhead. The data is recorded as time stamped data points called events. Typical
events can be threads waiting for locks, garbage collections, periodic CPU usage data,
etc.

When creating a flight recording, you select which events should be saved. This is
called a recording template. Some templates only save very basic events and have
virtually no impact on performance. Other templates may come with slight
performance overhead, and may also trigger GCs in order to gather additional
information. In general, it is rare to see more than a few percentage of overhead.

Flight Recordings can be used to debug a wide range of issues from performance
problems to memory leaks or heavy lock contention.

The following topic describes types of recording to produce a Java flight recording.

• Types of Recordings

Types of Recordings
The two types of flight recordings are continuous recordings and profiling recordings.

• Continuous recordings: A continuous recording is a recording that is always on
and saves, for example, the last 6 hours of data. If your application runs into any
issues, then you can dump the data from, for example, the last hour and see what
happened at the time of the problem.

The default setting for a continuous recordings is to use a recording profile with
low overhead. This profile will not get heap statistics or allocation profiling, but will
still gather a lot of useful data.

A continuous recording is great to always have running, and is very helpful when
debugging issues that happen rarely. The recording can be dumped manually
using either jcmd or JMC. You can also set a trigger in JMC to dump the flight
recording when specific criteria is fulfilled.

• Profiling recordings: A profiling recording is a recording that is turned on, runs
for a set amount of time, and then stops. Usually, a profiling recording has more
events enabled and may have a slightly bigger performance effect. The events
that are turned on can be modified depending on your use of profiling recording.

Typical use cases for profiling recordings are as follows:

– Profile which methods are run the most and where most objects are created.

– Look for classes that use more and more heap, which indicates a memory
leak.

– Look for bottlenecks due to synchronization and many more such use cases.

A profiling recording will give a lot of information even though you are not
troubleshooting a specific issue. A profiling recording will give you a good view of
the application and can help you find any bottlenecks or areas that need
improvement.

Chapter 2
What Are Java Flight Recordings

2-4

http://www.oracle.com/technetwork/java/javase/terms/products/index.html
http://www.oracle.com/technetwork/java/javase/terms/products/index.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html

Note:

The typical overhead is around 2%, so you can run a profiling recording on
your production environment (which is one of the main use cases for JFR),
unless you are extremely sensitive for performance or latencies.

How to Produce a Flight Recording
The following sections describe three ways to produce a flight recording.

• Use Java Mission Control to Produce a Flight Recording

• Use Startup Flags at the Command Line to Produce a Flight Recording

• Use Triggers for Automatic Recordings

Use Java Mission Control to Produce a Flight Recording
Use Java Mission Control (JMC) to easily manage flight recordings.

Prerequisites:
To start, find your server in the JVM Browser in the leftmost frame, as shown in
Figure 2-1.

Figure 2-1 Java Mission Control - Find Server

By default, any local running JVMs will be listed. Remote JVMs (running as the same
effective user as the user running JMC) must be set up to use a remote JMX agent.
Then, click the New JVM Connection button, and enter the network details.

Before the JDK 8u40 release, the JVM must have been started with the flag: -XX:
+UnlockCommercialFeatures -XX:FlightRecorder.

Chapter 2
How to Produce a Flight Recording

2-5

Since the JDK 8u40 release, the Java Flight Recorder can be enabled during runtime.

The following are three ways to use Java Mission Control to produce a flight recording:

1. Inspect running recordings: Expand the node in the JVM Browser to the
recordings that are running. Figure 2-2 shows both a running continuous recording
(with the infinity sign) and a timed profiling recording.

Figure 2-2 Java Mission Control - Running Recordings

Right-click any of the recordings to dump, edit, or stop the recording. Stopping a
profiling recording will still produce a recording file and closing a profiling recording
will discard the recording.

2. Dump continuous recordings: Right-click a continuous recording in the JVM
Browser and then select to dump it to a file. In the dialog box that comes up, select
to dump all available data or only the last part of the recording, as shown in
Figure 2-3.

Chapter 2
How to Produce a Flight Recording

2-6

Figure 2-3 Java Mission Control - Dump Continuous Recordings

3. Start a new recording: To start a new recording, right click the JVM you want to
record on and select Start Flight Recording. Then, a window displays, as shown
in Figure 2-4.

Figure 2-4 Java Mission Control - Start Flight Recordings

Chapter 2
How to Produce a Flight Recording

2-7

Select either Time fixed recording (profiling recording), or Continuous
recording as shown in Figure 2-4. For continuous recordings, you also specify the
maximum size or age of events you want to save.

You can also select Event settings. There is an option to create your own
templates, but for 99 percent of all use cases you want to select either the
Continuous template (for very low overhead recordings) or the Profiling template
(for more data and slightly more overhead). Note: The typical overhead for a
profiling recording is about 2 percent.

When done, click Next. The next screen, as shown in Figure 2-5, gives you a
chance to modify the template for different use cases.

Figure 2-5 Java Mission Control - Event Options for Profiling

The default settings give a good balance between data and performance. In some
cases, you may want to add extra events. For example, if you are investigating a
memory leak or want to see the objects that take up the most Java heap, enable
Heap Statistics. This will trigger two Old Collections at the start and end of the
recording, so this will give some extra latency. You can also select to show all
exceptions being thrown, even the ones that are caught. For some applications,
this will generate a lot of events.

The Threshold value is the length of event recording. For example, by default,
synchronization events above 10 ms are gathered. This means, if a thread waits
for a lock for more than 10 ms, an event is saved. You can lower this value to get
more detailed data for short contentions.

Chapter 2
How to Produce a Flight Recording

2-8

The Thread Dump setting gives you an option to do periodic thread dumps. These
will be normal textual thread dumps, like the ones you would get using the
diagnostic command Thread.print, or by using the jstack tool. The thread dumps
complement the events.

Use Startup Flags at the Command Line to Produce a Flight
Recording

Use startup flags at the command line to produce profiling recording, continuous
recording, and using diagnostic commands.

For a complete description of JFR flags, see Advanced Runtime Options in the Java
Platform, Standard Edition Tools Reference.

The following are three ways to startup flags at the command line to produce a flight
recording.

1. Start a profiling recording: You can configure a time fixed recording at the start
of the application using the -XX:StartFlightRecording option. Because the
JFR is a commercial feature, you must specify the -XX:
+UnlockCommercialFeatures option. The following example illustrates how to
run the MyApp application and start a 60-second recording 20 seconds after starting
the JVM, which will be saved to a file named myrecording.jfr:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder -

XX:StartFlightRecording=delay=20s,duration=60s,name=myrecording,filename=C:

\TEMP\myrecording.jfr,settings=profile MyApp

The settings parameter takes either the path to or the name of a template. Default
templates are located in the jre/lib/jfr folder. The two standard profiles are:
default - a low overhead setting made primarily for continuous recordings and
profile - gathers more data and is primarily for profiling recordings.

2. Start a continuous recording: You can also start a continuous recording from
the command line using -XX:FlightRecorderOptions. These flags will start a
continuous recording that can later be dumped if needed. The following example
illustrates a continuous recording. The temporary data will be saved to disk, to
the /tmp folder, and 6 hours of data will be stored.

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder -

XX:FlightRecorderOptions=defaultrecording=true,disk=true,repository=/

tmp,maxage=6h,settings=default MyApp

Note:

When you actually dump the recording, you specify a new location for the
dumped file, so the files in the repository are only temporary.

To know more about configuring and managing Java Flight Recordings, see Java
Flight Recorder Runtime Guide.

3. Use diagnostic commands:

You can also control recordings by using Java command-line diagnostic
commands. The simplest way to execute a diagnostic command is to use the jcmd

Chapter 2
How to Produce a Flight Recording

2-9

http://www.oracle.com/pls/topic/lookup?ctx=javacomponents&id=JFRRT164
http://www.oracle.com/pls/topic/lookup?ctx=javacomponents&id=JFRRT164

tool located in the Java installation directory. For more details see, The jcmd
Utility.

Use Triggers for Automatic Recordings
You can set up Java Mission Control to automatically start or dump a flight recording if
a condition is met. This is done from the JMX console. To start the JMX console, find
your application in the JVM Browser, right-click it, and select Start JMX Browser.

Select the Triggers tab at the bottom of the screen, as shown in Figure 2-6.

Figure 2-6 Java Mission Control - Automatic Recordings

You can choose to create a trigger on any MBean in the application. There are several
default triggers set up for common conditions such as high CPU usage, deadlocked
threads, or too large of a live set. Select Add to choose any MBean in the application,
including your own application-specific ones. When you select your trigger, you can
also select the conditions that must be met. For more information, click the question
mark in the top right corner to see the built-in help.

Click the boxes next to the triggers to have several triggers running.

Once you have selected your condition, click the Action tab. Then, select what to do
when the condition is met. Finally, choose to either dump a continuous recording or to
start a time-limited flight recording as shown in Figure 2-7.

Chapter 2
How to Produce a Flight Recording

2-10

Figure 2-7 Java Mission Control - Use Triggers

Inspect a Flight Recording
Information about how to get a sample JFR to inspect a flight recording and various
tabs in Java Mission Control for you to analyze the flight recordings.

The following sections are described:

• How to Get a Sample JFR to Inspect

• Range Navigator

• General Tab

• Memory Tab

• Code Tab

• Threads Tab

• I/O Tab

• System Tab

• Events Tab

How to Get a Sample JFR to Inspect
Create a Flight Recording, you can open it in Mission Control.

After you create a Flight Recording, you can open it in Mission Control. An easy way to
look at a flight recording is:

• Open Mission Control and select the JVM Browser tab.

• Select The JVM Running Mission Control option to create a short recording.

Open a flight recording to see several main tabs such as General, Memory,
Code, Threads, I/O, System, and Events. You can also have other main tabs if

Chapter 2
Inspect a Flight Recording

2-11

any plug-ins are installed. Each of these main tabs have sub tabs. Click the
question mark to view the built-in help section for the main tabs and subtabs.

Range Navigator
Inspect the flight recordings using the range navigator.

Each tab has a range navigator at the top view.

Figure 2-8 Inspect Flight Recordings - Range Navigator

The vertical bars in Figure 2-8 represent the events in the recording. The higher the
bar, the more events there are at that time. You can drag the edges of the selected
time to zoom in or out in the recording. Double click the range navigator to zoom out
and view the entire recording. Click the Synchronize Selection check box for all the
subtabs to use the same zoom level.

See Using the Range Navigator in the built-in help for more information. The events
are named as per the tab name.

General Tab
Inspect flight recordings in the General tab.

The General Tab contains a few subtabs that describe the general application. The
first subtab is Overview, which shows some basic information such as the maximum
heap usage, total CPU usage, and GC pause time, as shown in Figure 2-9.

Chapter 2
Inspect a Flight Recording

2-12

Figure 2-9 Inspect Flight Recordings - General Tab

Also, look at the CPU Usage over time and both the Application Usage and Machine
Total. This tab is good to look at when something that goes wrong immediately in the
application. For example, watch for CPU usage spiking near 100 percent or the CPU
usage is too low or too long garbage collection pauses.

Note: A profiling recording started with Heap Statistics gets two old collections, at the
start and the end of the recording that may be longer than the rest.

The other subtab - JVM Information shows the JVM information. The start
parameters subtabs - System Properties shows all system properties set, and
Recording shows information about the specific recording such as, the events that are
turned on. Click the question marks for built-in detailed information about all tabs and
subtabs.

Memory Tab
Inspect the flight recordings in the Memory tab.

The Memory tab contains information about Garbage Collections, Allocation patterns
and Object Statistics. This tab is specifically helpful to debug memory leaks as well as
for tuning the GC.

The Overview tab shows some general information about the memory usage and
some statistics over garbage collections. Note: The graph scale in the Overview tab
goes up to the available physical memory in the machine; therefore, in some cases the
Java heap may take up only a small section at the bottom.

The following three subtabs are described from the Memory tab.

• Garbage Collection tab: The Garbage Collection tab shows memory usage
over time and information about all garbage collections.

Chapter 2
Inspect a Flight Recording

2-13

Figure 2-10 Inspect Flight Recordings - Garbage Collections

As shown in Figure 2-10, the spiky pattern of the heap usage is perfectly normal.
In most applications, temporary objects are allocated all the time. Once a condition
is met, a Garbage Collection (GC) is triggered and all the objects no longer used
are removed. Therefore, the heap usage increases steadily until a GC is triggered,
then it drops suddenly.

Most GCs in Java have some kind of smaller garbage collections. The old GC
goes through the entire Java heap, while the other GC might look at part of the
heap. The heap usage after an old collection is the memory the application is
using, which is called the live set.

The flight recording generated with Heap Statistics enabled will start and end with
an old GC. Select that old GC in the list of GCs, and then choose the General tab
to see the GC Reason as - Heap Inspection Initiated GC. These GCs usually
take slightly longer than other GCs.

For a better way to address memory leaks, look at the Heap After GC value in the
first and last old GC. There could a memory leak when this value is increasing
over time.

The GC Times tab has information about the time spent doing GCs and time when
the application is completely paused due to GCs. The GC Configuration tab has
GC configuration information. For more details about these tabs, click the question
mark in the top right corner to see the built-in help.

• Allocations tab: Figure 2-11 shows a selection of all memory allocations made.
Small objects in Java are allocated in a TLAB (Thread Local Area Buffer). TLAB is
a small memory area where new objects are allocated. Once a TLAB is full, the
thread gets a new one. Logging all memory allocations gives an overhead;
therefore, all allocations that triggered a new TLAB are logged. Larger objects are
allocated outside TLAB, which are also logged.

Chapter 2
Inspect a Flight Recording

2-14

Figure 2-11 Inspect Flight Recordings - Allocations Tab

To estimate the memory allocation for each class, select the Allocation in new
TLAB tab and then select Allocations tab. These allocations are object
allocations that happen to trigger the new TLABs. The char arrays trigger the most
new TLABs. How much memory is allocated as char arrays is not known. The size
of the TLABs is a good estimate for memory allocated by char arrays.

Figure 2-11 is an example for char arrays allocating the most memory. Click one of
the classes to see the Stack Trace of these allocations. The example recording
shows that 44% of all allocation pressure comes from char arrays and 27 percent
comes from Array.copyOfRange, which is called from StringBuilder.toString. The
StringBuilder.toString is in turn usually called by Throwable.printStackTrace and
StackTraceElement.toString. Expand further to see how these methods are called.

Note: The more temporary objects the application allocates, the more the
application must garbage collect. The Allocations tab helps you find the most
allocations and reduce the GC pressure in your application. Look at Allocation
outside TLAB tab to see large memory allocations, which usually have less
memory pressure than the allocations in New TLAB tab.

• Object Statistics tab: The Object Statistics tab shows the classes that have the
most live set. Read the Garbage Collection subtab from the Memory Tab to
understand a live set. Figure 2-12 shows heap statistics for a flight recording.
Enable Heap Statistics for a flight recording to show the data. The Top Growers
tab at the bottom shows how each object type increased in size during a flight
recording. A specific object type increased a lot in size indicates a memory leak;
however, a small variance is normal. Especially, investigate the top growers of
non-standard Java classes.

Chapter 2
Inspect a Flight Recording

2-15

Figure 2-12 Inspect Flight Recordings - Object Statistics Tab

Code Tab
Inspect flight recordings in the Code tab.

The Code tab contains information about where the application spends most of its
time. The Overview subtab shows the packages and classes that spent the most
execution time. This data comes from sampling. JFR takes samples of threads running
at intervals. Only the threads running actual code are sampled; the threads that are
sleeping, waiting for locks or I/O are not shown.

To see more details about the application time for running the actual code, look at the
Hot Methods subtab.

Chapter 2
Inspect a Flight Recording

2-16

Figure 2-13 Inspect Flight Recordings - Code Tab

Figure 2-13 shows the methods that are sampled the most. Expand the samples to
see from where they are called. If a HashMap.getEntry is called a lot, then expand this
node until you find the method that called the most. This is the best tab to use to find
bottlenecks in the application.

The Call Tree subtab shows the same events, but starts from the bottom; for example,
from Thread.run.

The Exceptions sub tab shows any exceptions thrown. By default, only Errors are
logged, but change this setting to include All Exceptions when starting a new
recording.

The Compilations sub tab shows the methods compiled over time as the application
was running.

The Class Loading sub tab shows the number of loaded classes, actual loaded
classes and unloaded classes over time. This sub tab shows information only when
Class Loading events were enabled at the start of the recording.

For more details about these tabs, click the question mark in the top right corner to see
the built-in help.

Threads Tab
Inspect flight recordings in the Threads tab.

The Threads tab contains information about threads, lock contention and other
latencies.

The Overview subtab shows CPU usage and the number of threads over time.

Chapter 2
Inspect a Flight Recording

2-17

The Hot Threads sub tab shows the threads that do most of the code execution. This
information is based on the same sampling data as the Hot Methods subtab in the
Code tab.

The Contention tab is useful for finding bottle necks due to lock contention.

Figure 2-14 Inspect Flight Recordings - Contention Tab

Figure 2-14 shows objects that are the most waited for due to synchronization. Select
a Class to see the Stack Trace of the wait time for each object. These pauses are
generally caused by synchronized methods, where another thread holds the lock.

Note:

By default, only synchronization events longer than 10 ms will be recorded, but
you can lower this threshold when starting a recording.

The Latencies subtab shows other sources of latencies; for example, calling sleep or
wait, reading from sockets, or waiting for file I/O.

The Thread Dumps subtab shows the periodic thread dumps that can be triggered in
the recording.

The Lock Instances subtab shows the exact instances of objects that are waited upon
the most due to synchronization.

For more details about these tabs, click the question mark in the top right corner to see
the built-in help.

Chapter 2
Inspect a Flight Recording

2-18

I/O Tab
The I/O tab shows information on file reads, file writes, socket reads, and socket
writes.

This tab is helpful depending on the application; especially, when any I/O operation
takes a long time.

Note:

By default, only events longer than 10 ms are shown. The thresholds can be
modified when creating a new recording.

System Tab
The System tab gives detailed information about the CPU, Memory and OS of the
machine running the application.

It also shows environment variables and any other processes running at the same time
as the JVM.

Events Tab
The Events tab shows all the events in the recording.

This is an advanced tab that can be used in many different ways. For more details
about these tabs, click the question mark in the top right corner to see the built-in help.

The jcmd Utility
The jcmd utility is used to send diagnostic command requests to the JVM, where these
requests are useful for controlling Java Flight Recordings, troubleshoot, and diagnose
JVM and Java applications.

jcmd must be used on the same machine where the JVM is running, and have the
same effective user and group identifiers that were used to launch the JVM.

A special command jcmd <process id/main class> PerfCounter.print prints all
performance counters in the process.

The command jcmd <process id/main class> <command> [options] sends the command
to the JVM.

The following example shows diagnostic command requests to the JVM using jcmd
utility.

> jcmd
5485 sun.tools.jcmd.JCmd
2125 MyProgram

> jcmd MyProgram help (or "jcmd 2125 help")
2125:
The following commands are available:

Chapter 2
The jcmd Utility

2-19

JFR.configure
JFR.stop
JFR.start
JFR.dump
JFR.check
VM.log
VM.native_memory
VM.check_commercial_features
VM.unlock_commercial_features
ManagementAgent.status
ManagementAgent.stop
ManagementAgent.start_local
ManagementAgent.start
Compiler.directives_clear
Compiler.directives_remove
Compiler.directives_add
Compiler.directives_print
VM.print_touched_methods
Compiler.codecache
Compiler.codelist
Compiler.queue
VM.classloader_stats
Thread.print
JVMTI.data_dump
JVMTI.agent_load
VM.stringtable
VM.symboltable
VM.class_hierarchy
GC.class_stats
GC.class_histogram
GC.heap_dump
GC.finalizer_info
GC.heap_info
GC.run_finalization
GC.run
VM.info
VM.uptime
VM.dynlibs
VM.set_flag
VM.flags
VM.system_properties
VM.command_line
VM.version
help
For more information about a specific command use 'help <command>'.

> jcmd MyProgram help Thread.print
2125:
Thread.print
Print all threads with stacktraces.

Impact: Medium: Depends on the number of threads.

Permission: java.lang.management.ManagementPermission(monitor)

Syntax : Thread.print [options]

Options: (options must be specified using the <key> or <key>=<value> syntax)
 -l : [optional] print java.util.concurrent locks (BOOLEAN, false)

> jcmd MyProgram Thread.print

Chapter 2
The jcmd Utility

2-20

2125:
2014-07-04 15:58:56
Full thread dump Java HotSpot(TM) 64-Bit Server VM (25.0-b69 mixed mode):
...

The following sections describe some useful commands and troubleshooting
techniques with the jcmd utility:

• Useful Commands for the jcmd Utility

• Troubleshoot with the jcmd Utility

Useful Commands for the jcmd Utility
The available diagnostic command may be different in different versions of HotSpot
VM; therefore, using jcmd <process id/main class> help is the best way to see all
available options.

The following are some of the most useful commands in the jcmd tool. Remember you
can always use jcmd <process id/main class> help <command> to get any additional
options to these commands:

• Print full HotSpot and JDK version ID.

jcmd <process id/main class> VM.version

• Print all the system properties set for a VM.

There can be several hundred lines of information displayed.

jcmd <process id/main class> VM.system_properties

• Print all the flags used for a VM.

Even if you have provided no flags, some of the default values will be printed, for
example initial and maximum heap size.

jcmd <process id/main class> VM.flags

• Print the uptime in seconds.

jcmd <process id/main class> VM.uptime

• Create a class histogram.

The results can be rather verbose, so you can redirect the output to a file. Both
internal and application-specific classes are included in the list. Classes taking the
most memory are listed at the top, and classes are listed in a descending order.

jcmd <process id/main class> GC.class_histogram

• Create a heap dump.

jcmd GC.heap_dump filename=Myheapdump

This is the same as using jmap -dump:file=<file> <pid>, but jcmd is the
recommended tool to use.

• Create a heap histogram.

jcmd <process id/main class> GC.class_histogram filename=Myheaphistogram

This is the same as using jmap -histo <pid>, but jcmd is the recommended tool to
use.

Chapter 2
The jcmd Utility

2-21

• Print all threads with stack traces.

jcmd <process id/main class> Thread.print

Troubleshoot with the jcmd Utility
Use the jcmd utility to troubleshoot.

The jcmd utility provides the following troubleshooting options:

• Start a recording.

For example, to start a 2-minute recording on the running Java process with the
identifier 7060 and save it to myrecording.jfr in the current directory, use the
following:

jcmd 7060 JFR.start name=MyRecording settings=profile delay=20s duration=2m

filename=C:\TEMP\myrecording.jfr

• Check a recording.

The JFR.check diagnostic command checks a running recording. For example:

jcmd 7060 JFR.check

• Stop a recording.

The JFR.stop diagnostic command stops a running recording and has the option to
discard the recording data. For example:

jcmd 7060 JFR.stop

• Dump a recording.

The JFR.dump diagnostic command stops a running recording and has the option to
dump recordings to a file. For example:

jcmd 7060 JFR.dump name=MyRecording filename=C:\TEMP\myrecording.jfr

• Create a heap dump.

The preferred way to create a heap dump is

jcmd <pid> GC.heap_dump filename=Myheapdump

• Create a heap histogram.

The preferred way to create a heap histogram is

jcmd <pid> GC.class_histogram filename=Myheaphistogram

Native Memory Tracking
The Native Memory Tracking (NMT) is a Java HotSpot VM feature that tracks internal
memory usage for a Java HotSpot VM.

Since NMT doesn't track memory allocations by non-JVM code, you may have to use
tools supported by the operating system to detect memory leaks in native code.

The following sections describe how to monitor VM internal memory allocations and
diagnose VM memory leaks.

• Use NMT to Detect a Memory Leak

• How to Monitor VM Internal Memory

Chapter 2
Native Memory Tracking

2-22

• NMT Memory Categories

Use NMT to Detect a Memory Leak
Procedure to use Native Memory Tracking to detect memory leaks.

Follow these steps to detect a memory leak:

1. Start the JVM with summary or detail tracking using the command line option: -
XX:NativeMemoryTracking=summary or -XX:NativeMemoryTracking=detail.

2. Establish an early baseline. Use NMT baseline feature to get a baseline to
compare during development and maintenance by running: jcmd <pid>
VM.native_memory baseline.

3. Monitor memory changes using: jcmd <pid> VM.native_memory detail.diff.

4. If the application leaks a small amount of memory, then it may take a while to
show up.

How to Monitor VM Internal Memory
Native Memory Tracking can be set up to monitor memory and ensure that an
application does not start to use increasing amounts of memory during development or
maintenance.

See Table 2-1 for details about NMT memory categories.

The following sections describe how to get summary or detail data for NMT and
describes how to interpret the sample output.

• Interpret sample output: From the following sample output, you will see
reserved and committed memory. Note that only committed memory is actually
used. For example, if you run with -Xms100m -Xmx1000m, then the JVM will reserve
1000 MB for the Java heap. Because the initial heap size is only 100 MB, only 100
MB will be committed to begin with. For a 64-bit machine where address space is
almost unlimited, there is no problem if a JVM reserves a lot of memory. The
problem arises if more and more memory gets committed, which may lead to
swapping or native out of memory (OOM) situations.

An arena is a chunk of memory allocated using malloc. Memory is freed from
these chunks in bulk, when exiting a scope or leaving an area of code. These
chunks can be reused in other subsystems to hold temporary memory, for
example, pre-thread allocations. An arena malloc policy ensures no memory
leakage. So arena is tracked as a whole and not individual objects. Some initial
memory cannot be tracked.

Enabling NMT will result in a 5-10 percent JVM performance drop, and memory
usage for NMT adds 2 machine words to all malloc memory as a malloc header.
NMT memory usage is also tracked by NMT.

Total: reserved=664192KB,
committed=253120KB <--- total memory
tracked by Native Memory Tracking

- Java Heap (reserved=516096KB,
committed=204800KB) <--- Java Heap
 (mmap: reserved=516096KB, committed=204800KB)

- Class (reserved=6568KB,

Chapter 2
Native Memory Tracking

2-23

committed=4140KB) <--- class metadata
 (classes
#665) <--- number of loaded classes
 (malloc=424KB,
#1000) <--- malloc'd memory, #number of
malloc
 (mmap: reserved=6144KB, committed=3716KB)

- Thread (reserved=6868KB, committed=6868KB)
 (thread
#15) <--- number of threads
 (stack: reserved=6780KB,
committed=6780KB) <--- memory used by thread stacks
 (malloc=27KB, #66)
 (arena=61KB,
#30) <--- resource and handle areas

- Code (reserved=102414KB, committed=6314KB)
 (malloc=2574KB, #74316)
 (mmap: reserved=99840KB, committed=3740KB)

- GC (reserved=26154KB, committed=24938KB)
 (malloc=486KB, #110)
 (mmap: reserved=25668KB, committed=24452KB)

- Compiler (reserved=106KB, committed=106KB)
 (malloc=7KB, #90)
 (arena=99KB, #3)

- Internal (reserved=586KB, committed=554KB)
 (malloc=554KB, #1677)
 (mmap: reserved=32KB, committed=0KB)

- Symbol (reserved=906KB, committed=906KB)
 (malloc=514KB, #2736)
 (arena=392KB, #1)

- Memory Tracking (reserved=3184KB, committed=3184KB)
 (malloc=3184KB, #300)

- Pooled Free Chunks (reserved=1276KB, committed=1276KB)
 (malloc=1276KB)

- Unknown (reserved=33KB, committed=33KB)
 (arena=33KB, #1)

• Get detail data: To get a more detailed view of native memory usage, start the
JVM with command line option: -XX:NativeMemoryTracking=detail. This will track
exactly what methods allocate the most memory. Enabling NMT will result in 5-10
percent JVM performance drop and memory usage for NMT adds 2 words to all
malloc memory as malloc header. NMT memory usage is also tracked by NMT.

The following example shows a sample output for virtual memory for track level set
to detail. One way to get this sample output is to run: jcmd <pid> VM.native_memory
detail.

Virtual memory map:

[0x8f1c1000 - 0x8f467000] reserved 2712KB for Thread Stack
 from [Thread::record_stack_base_and_size()+0xca]
 [0x8f1c1000 - 0x8f467000] committed 2712KB from

Chapter 2
Native Memory Tracking

2-24

[Thread::record_stack_base_and_size()+0xca]

[0x8f585000 - 0x8f729000] reserved 1680KB for Thread Stack
 from [Thread::record_stack_base_and_size()+0xca]
 [0x8f585000 - 0x8f729000] committed 1680KB from
[Thread::record_stack_base_and_size()+0xca]

[0x8f930000 - 0x90100000] reserved 8000KB for GC
 from [ReservedSpace::initialize(unsigned int, unsigned int, bool, char*,
unsigned int, bool)+0x555]
 [0x8f930000 - 0x90100000] committed 8000KB from
[PSVirtualSpace::expand_by(unsigned int)+0x95]

[0x902dd000 - 0x9127d000] reserved 16000KB for GC
 from [ReservedSpace::initialize(unsigned int, unsigned int, bool, char*,
unsigned int, bool)+0x555]
 [0x902dd000 - 0x9127d000] committed 16000KB from
[os::pd_commit_memory(char*, unsigned int, unsigned int, bool)+0x36]

[0x9127d000 - 0x91400000] reserved 1548KB for Thread Stack
 from [Thread::record_stack_base_and_size()+0xca]
 [0x9127d000 - 0x91400000] committed 1548KB from
[Thread::record_stack_base_and_size()+0xca]

[0x91400000 - 0xb0c00000] reserved 516096KB for Java
Heap
<--- reserved memory range
 from [ReservedSpace::initialize(unsigned int, unsigned int, bool, char*,
unsigned int, bool)+0x190] <--- callsite that reserves the
memory
 [0x91400000 - 0x93400000] committed 32768KB from
[VirtualSpace::initialize(ReservedSpace, unsigned int)+0x3e8] <---
committed memory range and its callsite
 [0xa6400000 - 0xb0c00000] committed 172032KB from
[PSVirtualSpace::expand_by(unsigned int)+0x95] <---
committed memory range and its callsite

[0xb0c61000 - 0xb0ce2000] reserved 516KB for Thread Stack
 from [Thread::record_stack_base_and_size()+0xca]
 [0xb0c61000 - 0xb0ce2000] committed 516KB from
[Thread::record_stack_base_and_size()+0xca]

[0xb0ce2000 - 0xb0e83000] reserved 1668KB for GC
 from [ReservedSpace::initialize(unsigned int, unsigned int, bool, char*,
unsigned int, bool)+0x555]
 [0xb0ce2000 - 0xb0cf0000] committed 56KB from
[PSVirtualSpace::expand_by(unsigned int)+0x95]
 [0xb0d88000 - 0xb0d96000] committed 56KB from
[CardTableModRefBS::resize_covered_region(MemRegion)+0xebf]
 [0xb0e2e000 - 0xb0e83000] committed 340KB from
[CardTableModRefBS::resize_covered_region(MemRegion)+0xebf]

[0xb0e83000 - 0xb7003000] reserved 99840KB for Code
 from [ReservedSpace::initialize(unsigned int, unsigned int, bool, char*,
unsigned int, bool)+0x555]
 [0xb0e83000 - 0xb0e92000] committed 60KB from
[VirtualSpace::initialize(ReservedSpace, unsigned int)+0x3e8]
 [0xb1003000 - 0xb139b000] committed 3680KB from
[VirtualSpace::initialize(ReservedSpace, unsigned int)+0x37a]

[0xb7003000 - 0xb7603000] reserved 6144KB for Class

Chapter 2
Native Memory Tracking

2-25

 from [ReservedSpace::initialize(unsigned int, unsigned int, bool, char*,
unsigned int, bool)+0x555]
 [0xb7003000 - 0xb73a4000] committed 3716KB from
[VirtualSpace::initialize(ReservedSpace, unsigned int)+0x37a]

[0xb7603000 - 0xb760b000] reserved 32KB for Internal
 from [PerfMemory::create_memory_region(unsigned int)+0x8ba]

[0xb770b000 - 0xb775c000] reserved 324KB for Thread Stack
 from [Thread::record_stack_base_and_size()+0xca]
 [0xb770b000 - 0xb775c000] committed 324KB from
[Thread::record_stack_base_and_size()+0xca]

• Get diff from NMT baseline: For both summary and detail level tracking, you can
set a baseline after the application is up and running. Do this by running jcmd
<pid> VM.native_memory baseline after the application warms up. Then, you can
runjcmd <pid> VM.native_memory summary.diff or jcmd <pid> VM.native_memory
detail.diff.

The following example shows sample output for the summary difference in native
memory usage since the baseline was set and is a great way to find memory
leaks.

Total: reserved=664624KB -20610KB, committed=254344KB
-20610KB <--- total memory changes vs. earlier baseline.
'+'=increase '-'=decrease

- Java Heap (reserved=516096KB, committed=204800KB)
 (mmap: reserved=516096KB, committed=204800KB)

- Class (reserved=6578KB +3KB, committed=4530KB +3KB)
 (classes #668
+3) <--- 3 more classes loaded
 (malloc=434KB +3KB, #930
-7) <--- malloc'd memory increased by 3KB, but
number of malloc count decreased by 7
 (mmap: reserved=6144KB, committed=4096KB)

- Thread (reserved=60KB -1129KB, committed=60KB -1129KB)
 (thread #16
+1) <--- one more thread
 (stack: reserved=7104KB +324KB, committed=7104KB
+324KB)
 (malloc=29KB +2KB, #70 +4)
 (arena=31KB -1131KB, #32
+2) <--- 2 more arenas (one more resource area
and one more handle area)

- Code (reserved=102328KB +133KB, committed=6640KB +133KB)
 (malloc=2488KB +133KB, #72694 +4287)
 (mmap: reserved=99840KB, committed=4152KB)

- GC (reserved=26154KB, committed=24938KB)
 (malloc=486KB, #110)
 (mmap: reserved=25668KB, committed=24452KB)

- Compiler (reserved=106KB, committed=106KB)
 (malloc=7KB, #93)
 (arena=99KB, #3)

- Internal (reserved=590KB +35KB, committed=558KB +35KB)

Chapter 2
Native Memory Tracking

2-26

 (malloc=558KB +35KB, #1699 +20)
 (mmap: reserved=32KB, committed=0KB)

- Symbol (reserved=911KB +5KB, committed=911KB +5KB)
 (malloc=519KB +5KB, #2921 +180)
 (arena=392KB, #1)

- Memory Tracking (reserved=2073KB -887KB, committed=2073KB -887KB)
 (malloc=2073KB -887KB, #84 -210)

- Pooled Free Chunks (reserved=2624KB -15876KB, committed=2624KB -15876KB)
 (malloc=2624KB -15876KB)

The following example is a sample output that shows the detail difference in
native memory usage since the baseline and is a great way to find memory leaks.

Details:

[0x01195652] ChunkPool::allocate(unsigned int)+0xe2
 (malloc=482KB -481KB, #8 -8)

[0x01195652] ChunkPool::allocate(unsigned int)+0xe2
 (malloc=2786KB -19742KB, #134 -618)

[0x013bd432] CodeBlob::set_oop_maps(OopMapSet*)+0xa2
 (malloc=591KB +6KB, #681 +37)

[0x013c12b1] CodeBuffer::block_comment(int, char const*)+0x21
<--- [callsite address] method name + offset
 (malloc=562KB +33KB, #35940 +2125)
<--- malloc'd amount, increased by 33KB #malloc count, increased by 2125

[0x0145f172] ConstantPool::ConstantPool(Array<unsigned char>*)+0x62
 (malloc=69KB +2KB, #610 +15)

...

[0x01aa3ee2] Thread::allocate(unsigned int, bool, unsigned short)+0x122
 (malloc=21KB +2KB, #13 +1)

[0x01aa73ca] Thread::record_stack_base_and_size()+0xca
 (mmap: reserved=7104KB +324KB, committed=7104KB
+324KB)

JConsole
Another useful tool included in the JDK download is the JConsole monitoring tool. This
tool is compliant with JMX. The tool uses the built-in JMX instrumentation in the JVM
to provide information about the performance and resource consumption of running
applications.

Although the tool is included in the JDK download, it can also be used to monitor and
manage applications deployed with the JRE.

The JConsole tool can attach to any Java application in order to display useful
information such as thread usage, memory consumption, and details about class
loading, runtime compilation, and the operating system.

Chapter 2
JConsole

2-27

This output helps with the high-level diagnosis of problems such as memory leaks,
excessive class loading, and running threads. It can also be useful for tuning and heap
sizing.

In addition to monitoring, JConsole can be used to dynamically change several
parameters in the running system. For example, the setting of the -verbose:gc option
can be changed so that the garbage collection trace output can be dynamically
enabled or disabled for a running application.

The following sections describe troubleshooting techniques with the JConsole tool.

• Troubleshoot with the JConsole Tool

• Monitor Local and Remote Applications with JConsole

Troubleshoot with the JConsole Tool
Use the JConsole tool to monitor data.

The following list provides an idea of the data that can be monitored using the JConsole
tool. Each heading corresponds to a tab pane in the tool.

• Overview

This pane displays graphs that shows the heap memory usage, number of
threads, number of classes, and CPU usage over time. This overview allows you
to visualize the activity of several resources at once.

• Memory

– For a selected memory area (heap, non-heap, various memory pools):

* Graph showing memory usage over time

* Current memory size

* Amount of committed memory

* Maximum memory size

– Garbage collector information, including the number of collections performed,
and the total time spent performing garbage collection

– Graph showing the percentage of heap and non-heap memory currently used

In addition, on this pane you can request garbage collection to be performed.

• Threads

– Graph showing thread usage over time.

– Live threads: Current number of live threads.

– Peak: Highest number of live threads since the JVM started.

– For a selected thread, the name, state, and stack trace, as well as, for a
blocked thread, the synchronizer that the thread is waiting to acquire, and the
thread that ownsthe lock.

– The Deadlock Detection button sends a request to the target application to
perform deadlock detection and displays each deadlock cycle in a separate
tab.

• Classes

– Graph showing the number of loaded classes over time

Chapter 2
JConsole

2-28

– Number of classes currently loaded into memory

– Total number of classes loaded into memory since the JVM started, including
those subsequently unloaded

– Total number of classes unloaded from memory since the JVM started

• VM Summary

– General information, such as the JConsole connection data, uptime for the
JVM, CPU time consumed by the JVM, complier name, total compile time, and
so on.

– Thread and class summary information

– Memory and garbage collection information, including number of objects
pending finalization, and so on

– Information about the operating system, including physical characteristics, the
amount of virtual memory for the running process, and swap space

– Information about the JVM itself, such as the arguments and class path

• MBeans

This pane displays a tree structure that shows all platform and application MBeans
that are registered in the connected JMX agent. When you select an MBean in the
tree, its attributes, operations, notifications, and other information are displayed.

– You can invoke operations, if any. For example, the operation dumpHeap for the
HotSpotDiagnostic MBean, which is in the com.sun.management domain,
performs a heap dump. The input parameter for this operation is the path
name of the heap dump file on the machine where the target VM is running.

– You can set the value of writable attributes. For example, you can set, unset,
or change the value of certain VM flags by invoking the setVMOption operation
of the HotSpotDiagnostic MBean. The flags are indicated by the list of values of
the DiagnosticOptions attribute.

– You can subscribe to notifications, if any, by using the Subscribe and
Unsubscribe buttons.

Monitor Local and Remote Applications with JConsole
JConsole can monitor both local applications and remote applications. If you start the
tool with an argument specifying a JMX agent to connect to, then the tool will
automatically start monitoring the specified application.

To monitor a local application, execute the command jconsolepid , where pid is the
process ID of the application.

To monitor a remote application, execute the command jconsolehostname: portnumber,
where hostname is the name of the host running the application, and portnumber is the
port number you specified when you enabled the JMX agent.

If you execute the jconsole command without arguments, the tool will start by
displaying the New Connection window, where you specify the local or remote
process to be monitored. You can connect to a different host at any time by using the
Connection menu.

With the latest JDK releases, no option is necessary when you start the application to
be monitored.

Chapter 2
JConsole

2-29

As an example of the output of the monitoring tool, Figure 2-15 shows a chart of the
heap memory usage.

Figure 2-15 Sample Output from JConsole

The jdb Utility
The jdb utility is included in the JDK as an example command-line debugger. The jdb
utility uses the Java Debug Interface (JDI) to launch or connect to the target JVM.

The source code for jdb is included in $JAVA_HOME/demo/jpda/examples.jar.

The JDI is a high-level Java API that provides information useful for debuggers and
similar systems that need access to the running state of a (usually remote) virtual
machine. JDI is a component of the Java Platform Debugger Architecture (JPDA). See
Java Platform Debugger Architecture.

The following sections provide troubleshooting techniques for jdb utility.

Chapter 2
The jdb Utility

2-30

• Troubleshoot with the jdb Utility

• Attach a Process

• Attach to a Core File on the Same Machine

• Attach to a Core File or a Hung Process from a Different Machine

Troubleshoot with the jdb Utility
The jdb utility is used to monitor the debugger connectors used for remote debugging.

In JDI, a connector is the way that the debugger connects to the target JVM. The JDK
traditionally ships with connectors that launch and establish a debugging session with
a target JVM, as well as connectors that are used for remote debugging (using TCP/IP
or shared memory transports).

The JDK also ships with several Serviceability Agent (SA) connectors that allow a
Java language debugger to attach to a crash dump or hung process. This can be
useful in determining what the application was doing at the time of the crash or hang.

These connectors are SACoreAttachingConnector, SADebugServerAttachingConnector, and
SAPIDAttachingConnector.

These connectors are generally used with enterprise debuggers, such as the
NetBeans integrated development environment (IDE) or commercial IDEs. The
following sections demonstrate how these connectors can be used with the jdb
command-line debugger.

The command jdb -listconnectors prints a list of the available connectors. The
command jdb -help prints the command usage help.

See jdb Utility in the Java Platform, Standard Edition Tools Reference

Attach a Process

The following example uses the SA PID Attaching Connector to attach to a process.
The target process is not started with any special options; that is, the -agentlib:jdwp
option is not required. When this connector attaches to a process, it does so in read-
only mode: the debugger can examine threads and the running application, but it
cannot change anything. The process is frozen while the debugger is attached.

The command in the following example instructs jdb to use a connector named
sun.jvm.hotspot.jdi.SAPIDAttachingConnector. This is a connector name rather than a
class name. The connector takes one argument named pid, whose value is the
process ID of the target process (9302).

$ jdb -connect sun.jvm.hotspot.jdi.SAPIDAttachingConnector:pid=9302

Initializing jdb ...
> threads
Group system:
 (java.lang.ref.Reference$ReferenceHandler)0xa Reference Handler unknown
 (java.lang.ref.Finalizer$FinalizerThread)0x9 Finalizer unknown
 (java.lang.Thread)0x8 Signal Dispatcher running
 (java.lang.Thread)0x7 Java2D Disposer unknown
 (java.lang.Thread)0x2 TimerQueue unknown
Group main:
 (java.lang.Thread)0x6 AWT-XAWT running

Chapter 2
The jdb Utility

2-31

 (java.lang.Thread)0x5 AWT-Shutdown unknown
 (java.awt.EventDispatchThread)0x4 AWT-EventQueue-0 unknown
 (java.lang.Thread)0x3 DestroyJavaVM running
 (sun.awt.image.ImageFetcher)0x1 Image Animator 0 sleeping
 (java.lang.Thread)0x0 Intro running
> thread 0x7
Java2D Disposer[1] where
 [1] java.lang.Object.wait (native method)
 [2] java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:116)
 [3] java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:132)
 [4] sun.java2d.Disposer.run (Disposer.java:125)
 [5] java.lang.Thread.run (Thread.java:619)
Java2D Disposer[1] up 1
Java2D Disposer[2] where
 [2] java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:116)
 [3] java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:132)
 [4] sun.java2d.Disposer.run (Disposer.java:125)
 [5] java.lang.Thread.run (Thread.java:619)

In this example, the threads command is used to get a list of all threads. Then, a
specific thread is selected with the thread 0x7 command, and the where command is
used to get a thread dump. Next, the up 1 command is used to move up one frame in
the stack, and the where command is used again to get a thread dump.

Attach to a Core File on the Same Machine
The SA Core Attaching Connector is used to attach the debugger to a core file.

The core file might have been created after a crash. See Troubleshoot System
Crashes. The core file can also be obtained by using the gcore command on the
Oracle Solaris operating system or the gcore command in gdb on Linux. Because the
core file is a snapshot of the process at the time the core file was created, the
connector attaches in read-only mode: the debugger can examine threads and the
running application at the time of the crash.

The command in the following example instructs jdb to use a connector named
sun.jvm.hotspot.jdi.SACoreAttachingConnector. The connector takes two arguments:
javaExecutable and core. The javaExecutable argument indicates the name of the Java
binary. The core argument is the core file name (the core from the process with PID
20441, as shown in the following example).

$ jdb -connect
sun.jvm.hotspot.jdi.SACoreAttachingConnector:javaExecutable=$JAVA_HOME/bin/
java,core=core.20441

Attach to a Core File or a Hung Process from a Different Machine
On the machine where the debugger is installed, you can use the SA Debug Server
Attaching Connector to connect to the debug server.

To debug a core file that was transported from another machine, the operating system
versions and libraries must match. In this case, you can first run a proxy server called
the SA Debug Server. Then, on the machine where the debugger is installed, you can
use the SA Debug Server Attaching Connector to connect to the debug server.

For example, there are two machines: machine1 and machine2. A core file is available
on machine1, and the debugger is available on machine2. The SA Debug Server is
started on machine1, as shown in the following example.

Chapter 2
The jdb Utility

2-32

$ jsadebugd $JAVA_HOME/bin/java core.20441

The jsadebugd command takes two arguments. The first argument is the name of the
executable file. Usually, this is java, but it can be another name (in embedded VMs, for
example). The second argument is the name of the core file. In this example, the core
file was obtained for a process with PID 20441 using the gcore utility.

On machine2, the debugger connects to the remote SA Debug Server using the SA
Debug Server Attaching Connector, as shown in the following example.

$ jdb -connect
sun.jvm.hotspot.jdi.SADebugServerAttachingConnector:debugServerName=machine1

The command in the example instructs jdb to use a connector named
sun.jvm.hotspot.jdi.SADebugServerAttachingConnector. The connector has one
argument, debugServerName, which is the host name or IP address of the machine
where the SA Debug Server is running.

Note:

The SA Debug Server can also be used to remotely debug a hung process. In
that case, it takes a single argument, which is the PID of the process. In
addition, if it is required to run multiple debug servers on the same machine,
each one must be provided with a unique ID. With the SA Debug Server
Attaching Connector, this ID is provided as an additional connector argument.

The jinfo Utility
The jinfo command-line utility gets configuration information from a running Java
process or crash dump, and prints the system properties or the command-line flags
that were used to start the JVM.

Java Mission Control, Java Flight Recorder, and jcmd utility can be used for diagnosing
problems with JVM and Java applications. Use the latest utility, jcmd, instead of the
previous jinfo utility for enhanced diagnostics and reduced performance overhead.

The jinfo utility can also use the jsadebugd daemon to query a process or core file on
a remote machine.

Note:

The output takes longer to print in this case.

With the -flag option, the jinfo utility can dynamically set, unset, or change the value
of certain JVM flags for the specified Java process. See Java HotSpot VM Command-
Line Options.

The output for the jinfo utility for a Java process with PID number 29620 is shown in
the following example.

$ jinfo 29620
Attaching to process ID 29620, please wait...

Chapter 2
The jinfo Utility

2-33

Debugger attached successfully.
Client compiler detected.
JVM version is 1.6.0-rc-b100
Java System Properties:

java.runtime.name = Java(TM) SE Runtime Environment
sun.boot.library.path = /usr/jdk/instances/jdk1.6.0/jre/lib/sparc
java.vm.version = 1.6.0-rc-b100
java.vm.vendor = Sun Microsystems Inc.
java.vendor.url = http://java.sun.com/
path.separator = :
java.vm.name = Java HotSpot(TM) Client VM
file.encoding.pkg = sun.io
sun.java.launcher = SUN_STANDARD
sun.os.patch.level = unknown
java.vm.specification.name = Java Virtual Machine Specification
user.dir = /home/js159705
java.runtime.version = 1.6.0-rc-b100
java.awt.graphicsenv = sun.awt.X11GraphicsEnvironment
java.endorsed.dirs = /usr/jdk/instances/jdk1.6.0/jre/lib/endorsed
os.arch = sparc
java.io.tmpdir = /var/tmp/
line.separator =

java.vm.specification.vendor = Sun Microsystems Inc.
os.name = SunOS
sun.jnu.encoding = ISO646-US
java.library.path = /usr/jdk/instances/jdk1.6.0/jre/lib/sparc/client:/usr/jdk/
instances/jdk1.6.0/jre/lib/sparc:
/usr/jdk/instances/jdk1.6.0/jre/../lib/sparc:/net/gtee.sfbay/usr/sge/sge6/lib/sol-
sparc64:
/usr/jdk/packages/lib/sparc:/lib:/usr/lib
java.specification.name = Java Platform API Specification
java.class.version = 50.0
sun.management.compiler = HotSpot Client Compiler
os.version = 5.10
user.home = /home/js159705
user.timezone = US/Pacific
java.awt.printerjob = sun.print.PSPrinterJob
file.encoding = ISO646-US
java.specification.version = 1.6
java.class.path = /usr/jdk/jdk1.6.0/demo/jfc/Java2D/Java2Demo.jar
user.name = js159705
java.vm.specification.version = 1.0
java.home = /usr/jdk/instances/jdk1.6.0/jre
sun.arch.data.model = 32
user.language = en
java.specification.vendor = Sun Microsystems Inc.
java.vm.info = mixed mode, sharing
java.version = 1.6.0-rc
java.ext.dirs = /usr/jdk/instances/jdk1.6.0/jre/lib/ext:/usr/jdk/packages/lib/ext
sun.boot.class.path = /usr/jdk/instances/jdk1.6.0/jre/lib/resources.jar:
/usr/jdk/instances/jdk1.6.0/jre/lib/rt.jar:/usr/jdk/instances/jdk1.6.0/jre/lib/
sunrsasign.jar:
/usr/jdk/instances/jdk1.6.0/jre/lib/jsse.jar:
/usr/jdk/instances/jdk1.6.0/jre/lib/jce.jar:/usr/jdk/instances/jdk1.6.0/jre/lib/
charsets.jar:
/usr/jdk/instances/jdk1.6.0/jre/classes
java.vendor = Sun Microsystems Inc.
file.separator = /
java.vendor.url.bug = http://java.sun.com/cgi-bin/bugreport.cgi

Chapter 2
The jinfo Utility

2-34

sun.io.unicode.encoding = UnicodeBig
sun.cpu.endian = big
sun.cpu.isalist =

VM Flags:

The following topic describes the troubleshooting technique with jinfo utility.

• Troubleshooting with the jinfo Utility

Troubleshooting with the jinfo Utility
The output from jinfo provides the settings for java.class.path and
sun.boot.class.path.

If you start the target JVM with the -classpath and -Xbootclasspath arguments, then
the output from jinfo provides the settings for java.class.path and
sun.boot.class.path. This information might be needed when investigating class loader
issues.

In addition to getting information from a process, the jinfo tool can use a core file as
input. On the Oracle Solaris operating system, for example, the gcore utility can be
used to get a core file of the process in the preceding example. The core file will be
named core.29620 and will be generated in the working directory of the process. The
path to the Java executable file and the core file must be specified as arguments to the
jinfo utility, as shown in the following example.

$ jinfo $JAVA_HOME/bin/java core.29620

Sometimes, the binary name will not be java. This happens when the VM is created
using the JNI invocation API. The jinfo tool requires the binary from which the core file
was generated.

The jmap Utility
The jmap command-line utility prints memory-related statistics for a running VM or core
file.

The utility can also use the jsadebugd daemon to query a process or core file on a
remote machine. The output takes longer to print in this case.

Java Mission Control, Java Flight Recorder, and jcmd utility can be used for diagnosing
problems with JVM and Java applications. It is suggested to use the latest utility, jcmd
instead of the previous jmap utility for enhanced diagnostics and reduced performance
overhead.

If jmap is used with a process or core file without any command-line options, then it
prints the list of shared objects loaded (the output is similar to the pmap utility on Oracle
Solaris operating system). For more specific information, you can use the options -
heap, -histo, or -permstat. These options are described in the subsections that follow.

In addition, the JDK 7 release introduced the -dump:format=b,file=filename option,
which causes jmap to dump the Java heap in binary format to a specified file.

If the jmappid command does not respond because of a hung process, then the -F
option can be used (on Oracle Solaris and Linux operating systems only) to force the
use of the Serviceability Agent.

Chapter 2
The jmap Utility

2-35

The following sections describe the jmap command usage and troubleshooting
techniques with examples that print memory-related statistics for a running VM or a
core file.

• Heap Configuration and Usage

• Heap Histogram

• Permanent Generation Statistics

Heap Configuration and Usage
Use the jmap -heap command to get the Java heap information.

The -heap option is used to get the following Java heap information:

• Information specific to the garbage collection (GC) algorithm, including the name
of the GC algorithm (for example, parallel GC) and algorithm-specific details (such
as the number of threads for parallel GC).

• Heap configuration that might have been specified as command-line options or
selected by the VM based on the machine configuration.

• Heap usage summary: For each generation (area of the heap), the tool prints the
total heap capacity, in-use memory, and available free memory. If a generation is
organized as a collection of spaces (for example, the new generation), then a
space-specific memory size summary is included.

The following example shows output from the jmap -heap command.

$ jmap -heap 29620
Attaching to process ID 29620, please wait...
Debugger attached successfully.
Client compiler detected.
JVM version is 1.6.0-rc-b100

using thread-local object allocation.
Mark Sweep Compact GC

Heap Configuration:
 MinHeapFreeRatio = 40
 MaxHeapFreeRatio = 70
 MaxHeapSize = 67108864 (64.0MB)
 NewSize = 2228224 (2.125MB)
 MaxNewSize = 4294901760 (4095.9375MB)
 OldSize = 4194304 (4.0MB)
 NewRatio = 8
 SurvivorRatio = 8
 PermSize = 12582912 (12.0MB)
 MaxPermSize = 67108864 (64.0MB)

Heap Usage:
New Generation (Eden + 1 Survivor Space):
 capacity = 2031616 (1.9375MB)
 used = 70984 (0.06769561767578125MB)
 free = 1960632 (1.8698043823242188MB)
 3.4939673639112905% used
Eden Space:
 capacity = 1835008 (1.75MB)
 used = 36152 (0.03447723388671875MB)
 free = 1798856 (1.7155227661132812MB)
 1.9701276506696428% used

Chapter 2
The jmap Utility

2-36

From Space:
 capacity = 196608 (0.1875MB)
 used = 34832 (0.0332183837890625MB)
 free = 161776 (0.1542816162109375MB)
 17.716471354166668% used
To Space:
 capacity = 196608 (0.1875MB)
 used = 0 (0.0MB)
 free = 196608 (0.1875MB)
 0.0% used
tenured generation:
 capacity = 15966208 (15.2265625MB)
 used = 9577760 (9.134063720703125MB)
 free = 6388448 (6.092498779296875MB)
 59.98769400974859% used
Perm Generation:
 capacity = 12582912 (12.0MB)
 used = 1469408 (1.401336669921875MB)
 free = 11113504 (10.598663330078125MB)
 11.677805582682291% used

Heap Histogram
The jmap command with the -histo option can be used to get a class-specific
histogram of the heap.

Depending on the parameter specified, the jmap -histo command can print the heap
histogram for a running process or a core file.

When the command is executed on a running process, the tool prints the number of
objects, memory size in bytes, and fully qualified class name for each class. Internal
classes in the Java HotSpot VM are enclosed within angle brackets. The histogram is
useful to understand how the heap is used. To get the size of an object, you must
divide the total size by the count of that object type.

The following example shows output from the jmap -histo command when it is
executed on a process with PID number 29620.

$ jmap -histo 29620
num #instances #bytes class name

 1: 1414 6013016 [I
 2: 793 482888 [B
 3: 2502 334928 <constMethodKlass>
 4: 280 274976 <instanceKlassKlass>
 5: 324 227152 [D
 6: 2502 200896 <methodKlass>
 7: 2094 187496 [C
 8: 280 172248 <constantPoolKlass>
 9: 3767 139000 [Ljava.lang.Object;
 10: 260 122416 <constantPoolCacheKlass>
 11: 3304 112864 <symbolKlass>
 12: 160 72960 java2d.Tools$3
 13: 192 61440 <objArrayKlassKlass>
 14: 219 55640 [F
 15: 2114 50736 java.lang.String
 16: 2079 49896 java.util.HashMap$Entry
 17: 528 48344 [S
 18: 1940 46560 java.util.Hashtable$Entry
 19: 481 46176 java.lang.Class

Chapter 2
The jmap Utility

2-37

 20: 92 43424 javax.swing.plaf.metal.MetalScrollButton
... more lines removed here to reduce output...
1118: 1 8 java.util.Hashtable$EmptyIterator
1119: 1 8 sun.java2d.pipe.SolidTextRenderer
Total 61297 10152040

When the jmap -histo command is executed on a core file, the tool prints the size,
count, and class name for each class. Internal classes in the Java HotSpot VM are
prefixed with an asterisk (*).

shows output of the jmap -histo command when it is executed on a core file.

& jmap -histo /net/koori.sfbay/onestop/jdk/6.0/promoted/all/b100/binaries/solaris-
sparcv9/bin/java core
Attaching to core core from executable /net/koori.sfbay/onestop/jdk/6.0/
promoted/all/b100/binaries/solaris-sparcv9/bin/java, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 1.6.0-rc-b100
Iterating over heap. This may take a while...
Heap traversal took 8.902 seconds.

Object Histogram:

Size Count Class description

4151816 2941 int[]
2997816 26403 * ConstMethodKlass
2118728 26403 * MethodKlass
1613184 39750 * SymbolKlass
1268896 2011 * ConstantPoolKlass
1097040 2011 * InstanceKlassKlass
882048 1906 * ConstantPoolCacheKlass
758424 7572 char[]
733776 2518 byte[]
252240 3260 short[]
214944 2239 java.lang.Class
177448 3341 * System ObjArray
176832 7368 java.lang.String
137792 3756 java.lang.Object[]
121744 74 long[]
72960 160 java2d.Tools$3
63680 199 * ObjArrayKlassKlass
53264 158 float[]
... more lines removed here to reduce output...

Permanent Generation Statistics
The permanent generation is the area of the heap that holds all the reflective data of
the virtual machine itself, such as class and method objects.

This area is also called method area in The Java Virtual Machine Specification.

Configuring the size of the permanent generation can be important for applications that
dynamically generate and load a very large number of classes (for example, Java
Server Pages or web containers). If an application loads too many classes, then it is
possible it will terminate with the following error:

Exception in thread thread_name java.lang.OutOfMemoryError: PermGen space

Chapter 2
The jmap Utility

2-38

See Understand the OutOfMemoryError Exception.

To get further information about the permanent generation, you can use the -permstat
option of the jmap command to print statistics for the objects in the permanent
generation.

The following example shows the output from the jmap -permstat command executed
on a process with PID number 29620.

$ jmap -permstat 29620
Attaching to process ID 29620, please wait...
Debugger attached successfully.
Client compiler detected.
JVM version is 1.6.0-rc-b100
12674 intern Strings occupying 1082616 bytes.
finding class loader instances ..Unknown oop at 0xd0400900
Oop's klass is 0xd0bf8408
Unknown oop at 0xd0401100
Oop's klass is null
done.
computing per loader stat ..done.
please wait.. computing liveness...done.
class_loader classes bytes parent_loader alive? type

<bootstrap> 1846 5321080 null live <internal>
0xd0bf3828 0 0 null live sun/misc/
Launcher$ExtClassLoader@0xd8c98c78
0xd0d2f370 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0c99280 1 1440 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0b71d90 0 0 0xd0b5b9c0 live java/util/
ResourceBundle$RBClassLoader@0xd8d042e8
0xd0d2f4c0 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0b5bf98 1 920 0xd0b5bf38 dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0c99248 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0d2f488 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0b5bf38 6 11832 0xd0b5b9c0 dead sun/reflect/misc/MethodUtil@0xd8e8e560
0xd0d2f338 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0d2f418 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0d2f3a8 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0b5b9c0 317 1397448 0xd0bf3828 live sun/misc/
Launcher$AppClassLoader@0xd8cb83d8
0xd0d2f300 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0d2f3e0 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0ec3968 1 1440 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0e0a248 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0c99210 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0d2f450 1 904 null dead sun/reflect/

Chapter 2
The jmap Utility

2-39

DelegatingClassLoader@0xd8c22f50
0xd0d2f4f8 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50
0xd0e0a280 1 904 null dead sun/reflect/
DelegatingClassLoader@0xd8c22f50

total = 22 2186 6746816 N/A alive=4, dead=18 N/A

For each class loader object, the following details are printed:

• The address of the class loader object at the snapshot when the utility was run

• The number of classes loaded

• The approximate number of bytes consumed by metadata for all classes loaded by
this class loader

• The address of the parent class loader (if any)

• A live or dead indication of whether the loader object will be garbage collected in
the future

• The class name of this class loader

The jps Utility
The jps utility lists every instrumented Java HotSpot VM for the current user on the
target system.

The utility is very useful in environments where the VM is embedded, that is, where it
is started using the JNI Invocation API rather than the java launcher. In these
environments, it is not always easy to recognize the Java processes in the process list.

The following example shows the use of the jps utility.

$ jps
16217 MyApplication
16342 jps

The jps utility lists the virtual machines for which the user has access rights. This is
determined by access-control mechanisms specific to the operating system. On the
Oracle Solaris operating system, for example, if a non-root user executes the jps
utility, then the output is a list of the virtual machines that were started with that user's
UID.

In addition to listing the PID, the utility provides options to output the arguments
passed to the application's main method, the complete list of VM arguments, and the
full package name of the application's main class. The jps utility can also list processes
on a remote system if the remote system is running the jstatd daemon.

If you are running several Java Web Start applications on a system, then they tend to
look the same, as shown in the following example.

$ jps
1271 jps
 1269 Main
 1190 Main

In this case, use jps -m to distinguish them, as shown in the following example.

Chapter 2
The jps Utility

2-40

$ jps -m
1271 jps -m
 1269 Main http://bugster.central.sun.com/bugster.jnlp
 1190 Main http://webbugs.sfbay/IncidentManager/incident.jnlp

The jstack Utility
Use the jcmd utility, instead of jcmd utility to diagnose problems with JVM and Java
applications.

Java Mission Control, Java Flight Recorder, and jcmd utility can be used to diagnose
problems with JVM and Java applications. It is suggested to use the latest utility, jcmd,
instead of the previous jstack utility for enhanced diagnostics and reduced
performance overhead.

The following sections describe troubleshooting techniques with the jstack utility.

• Troubleshoot with the jstack Utility

• Stack Trace from a Core Dump

• Mixed Stack

Troubleshoot with the jstack Utility
The jstack command-line utility attaches to the specified process or core file, and
prints the stack traces of all threads that are attached to the virtual machine, including
Java threads and VM internal threads, and optionally native stack frames. The utility
also performs deadlock detection.

The utility can also use the jsadebugd daemon to query a process or core file on a
remote machine. The output takes longer to print in this case.

A stack trace of all threads can be useful in diagnosing a number of issues, such as
deadlocks or hangs.

The -l option instructs the utility to look for ownable synchronizers in the heap and
print information about java.util.concurrent.locks. Without this option, the thread
dump includes information only on monitors.

The output from the jstack pid option is the same as that obtained by pressing Ctrl+\
at the application console (standard input) or by sending the process a quit signal. See
Control+Break Handler for an example of the output.

Thread dumps can also be obtained programmatically using the
Thread.getAllStackTraces method, or in the debugger using the debugger option to
print all thread stacks (the where command in the case of the jdb sample debugger).

Stack Trace from a Core Dump
Use the jstack command to obtain stack traces from a core dump.

To get stack traces from a core dump, execute the jstack command on a core file, as
shown in the following example.

$ jstack $JAVA_HOME/bin/java core

Chapter 2
The jstack Utility

2-41

Mixed Stack
The jstack utility can also be used to print a mixed stack; that is, it can print native
stack frames in addition to the Java stack. Native frames are the C/C++ frames
associated with VM code and JNI/native code.

To print a mixed stack, use the -m option, as shown in the following example.

$ jstack -m 21177
Attaching to process ID 21177, please wait...
Debugger attached successfully.
Client compiler detected.
JVM version is 1.6.0-rc-b100
Deadlock Detection:

Found one Java-level deadlock:
=============================

"Thread1":
 waiting to lock Monitor@0x0005c750 (Object@0xd4405938, a java/lang/String),
 which is held by "Thread2"
"Thread2":
 waiting to lock Monitor@0x0005c6e8 (Object@0xd4405900, a java/lang/String),
 which is held by "Thread1"

Found a total of 1 deadlock.

----------------- t@1 -----------------
0xff2c0fbc __lwp_wait + 0x4
0xff2bc9bc _thrp_join + 0x34
0xff2bcb28 thr_join + 0x10
0x00018a04 ContinueInNewThread + 0x30
0x00012480 main + 0xeb0
0x000111a0 _start + 0x108
----------------- t@2 -----------------
0xff2c1070 ___lwp_cond_wait + 0x4
0xfec03638 bool Monitor::wait(bool,long) + 0x420
0xfec9e2c8 bool Threads::destroy_vm() + 0xa4
0xfe93ad5c jni_DestroyJavaVM + 0x1bc
0x00013ac0 JavaMain + 0x1600
0xff2bfd9c _lwp_start
----------------- t@3 -----------------
0xff2c1070 ___lwp_cond_wait + 0x4
0xff2ac104 _lwp_cond_timedwait + 0x1c
0xfec034f4 bool Monitor::wait(bool,long) + 0x2dc
0xfece60bc void VMThread::loop() + 0x1b8
0xfe8b66a4 void VMThread::run() + 0x98
0xfec139f4 java_start + 0x118
0xff2bfd9c _lwp_start
----------------- t@4 -----------------
0xff2c1070 ___lwp_cond_wait + 0x4
0xfec195e8 void os::PlatformEvent::park() + 0xf0
0xfec88464 void ObjectMonitor::wait(long long,bool,Thread*) + 0x548
0xfe8cb974 void ObjectSynchronizer::wait(Handle,long long,Thread*) + 0x148
0xfe8cb508 JVM_MonitorWait + 0x29c
0xfc40e548 * java.lang.Object.wait(long) bci:0 (Interpreted frame)
0xfc40e4f4 * java.lang.Object.wait(long) bci:0 (Interpreted frame)
0xfc405a10 * java.lang.Object.wait() bci:2 line:485 (Interpreted frame)
... more lines removed here to reduce output...

Chapter 2
The jstack Utility

2-42

----------------- t@12 -----------------
0xff2bfe3c __lwp_park + 0x10
0xfe9925e4 AttachOperation*AttachListener::dequeue() + 0x148
0xfe99115c void attach_listener_thread_entry(JavaThread*,Thread*) + 0x1fc
0xfec99ad8 void JavaThread::thread_main_inner() + 0x48
0xfec139f4 java_start + 0x118
0xff2bfd9c _lwp_start
----------------- t@13 -----------------
0xff2c1500 _door_return + 0xc
----------------- t@14 -----------------
0xff2c1500 _door_return + 0xc

Frames that are prefixed with an asterisk (*) are Java frames, whereas frames that are
not prefixed with an asterisk are native C/C++ frames.

The output of the utility can be piped through c++filt to demangle C++ mangled
symbol names. Because the Java HotSpot VM is developed in the C++ language, the
jstack utility prints C++ mangled symbol names for the Java HotSpot internal
functions.

The c++filt utility is delivered with the native C++ compiler suite: SUNWspro on the
Oracle Solaris operating system and gnu on Linux.

The jstat Utility
The jstat utility uses the built-in instrumentation in the Java HotSpot VM to provide
information about performance and resource consumption of running applications.

The tool can be used when diagnosing performance issues, and in particular issues
related to heap sizing and garbage collection. The jstat utility does not require the VM
to be started with any special options. The built-in instrumentation in the Java HotSpot
VM is enabled by default. This utility is included in the JDK download for all operating
system platforms supported by Oracle.

Note:

The instrumentation is not accessible on a FAT32 file system.

See jstat in the Java Platform, Standard Edition Tools Reference.

The jstat utility uses the virtual machine identifier (VMID) to identify the target
process. The documentation describes the syntax of the VMID, but its only required
component is the local virtual machine identifier (LVMID). The LVMID is typically (but
not always) the operating system's PID for the target JVM process.

The jstat utility provides data similar to the data provided by the vmstat and iostat on
Oracle Solaris and Linux operating systems.

For a graphical representation of the data, you can use the visualgc tool. See The
visualgc Tool.

The following example illustrates the use of the -gcutil option, where the jstat utility
attaches to LVMID number 2834 and takes 7 samples at 250-millisecond intervals.

$ jstat -gcutil 2834 250 7
 S0 S1 E O M YGC YGCT FGC FGCT GCT

Chapter 2
The jstat Utility

2-43

 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124

The output of this example shows you that a young generation collection occurred
between the third and fourth samples. The collection took 0.017 seconds and
promoted objects from the eden space (E) to the old space (O), resulting in an
increase of old space utilization from 46.56% to 54.60%.

The following example illustrates the use of the -gcnew option where the jstat utility
attaches to LVMID number 2834, takes samples at 250-millisecond intervals, and
displays the output. In addition, it uses the -h3 option to display the column headers
after every 3 lines of data.

$ jstat -gcnew -h3 2834 250
S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT
 192.0 192.0 0.0 0.0 15 15 96.0 1984.0 942.0 218 1.999
 192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1024.8 218 1.999
 192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1068.1 218 1.999
 S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT
 192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1109.0 218 1.999
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 0.0 219 2.019
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 71.6 219 2.019
 S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 73.7 219 2.019
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 78.0 219 2.019
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 116.1 219 2.019

In addition to showing the repeating header string, this example shows that between
the fourth and fifth samples, a young generation collection occurred, whose duration
was 0.02 seconds. The collection found enough live data that the survivor space 1
utilization (S1U) would have exceeded the desired survivor size (DSS). As a result,
objects were promoted to the old generation (not visible in this output), and the
tenuring threshold (TT) was lowered from 15 to 1.

The following example illustrates the use of the -gcoldcapacity option, where the jstat
utility attaches to LVMID number 21891 and takes 3 samples at 250-millisecond
intervals. The -t option is used to generate a time stamp for each sample in the first
column.

$ jstat -gcoldcapacity -t 21891 250 3
Timestamp OGCMN OGCMX OGC OC YGC FGC FGCT GCT
 150.1 1408.0 60544.0 11696.0 11696.0 194 80 2.874 3.799
 150.4 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863
 150.7 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863

The Timestamp column reports the elapsed time in seconds since the start of the
target JVM. In addition, the -gcoldcapacity output shows the old generation capacity
(OGC) and the old space capacity (OC) increasing as the heap expands to meet the
allocation or promotion demands. The OGC has grown from 11696 KB to 13820 KB
after the 81st full generation capacity (FGC). The maximum capacity of the generation
(and space) is 60544 KB (OGCMX), so it still has room to expand.

Chapter 2
The jstat Utility

2-44

The visualgc Tool
The visualgc tool provides a graphical view of the garbage collection (GC) system.

The visualgc tool is related to the jstat tool. See The jstat Utility. The visualgc tool
provides a graphical view of the garbage collection (GC) system. As with jstat, it uses
the built-in instrumentation of the Java HotSpot VM.

The visualgc tool is not included in the JDK release, but is available as a separate
download from the jvmstat technology page.

Figure 2-16 shows how the GC and heap are visualized.

Figure 2-16 Sample Output from visualgc

Control+Break Handler
The result of pressing the Control key and the backslash (\) key at the application
console on operating systems such as Oracle Solaris or Linux, or Windows.

Chapter 2
The visualgc Tool

2-45

http://www.oracle.com/technetwork/java/jvmstat-142257.html

On Oracle Solaris or Linux operating systems, the combination of pressing the Control
key and the backslash (\) key at the application console (standard input) causes the
Java HotSpot VM to print a thread dump to the application's standard output. On
Windows, the equivalent key sequence is the Control and Break keys. The general
term for these key combinations is the Control+Break handler.

On Oracle Solaris and Linux operating systems, a thread dump is printed if the Java
process receives a quit signal. Therefore, the kill -QUIT pid command causes the
process with the ID pid to print a thread dump to standard output.

The following sections describe the data traced by the Control+Break handler:

• Thread Dump

• Detect Deadlocks

• Heap Summary

Thread Dump
The thread dump consists of the thread stack, including the thread state, for all Java
threads in the virtual machine.

The thread dump does not terminate the application: it continues after the thread
information is printed.

The following example illustrates a thread dump.

Full thread dump Java HotSpot(TM) Client VM (1.6.0-rc-b100 mixed mode):

"DestroyJavaVM" prio=10 tid=0x00030400 nid=0x2 waiting on condition
[0x00000000..0xfe77fbf0]
 java.lang.Thread.State: RUNNABLE

"Thread2" prio=10 tid=0x000d7c00 nid=0xb waiting for monitor entry
[0xf36ff000..0xf36ff8c0]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)
 - waiting to lock <0xf819a938> (a java.lang.String)
 - locked <0xf819a970> (a java.lang.String)

"Thread1" prio=10 tid=0x000d6c00 nid=0xa waiting for monitor entry
[0xf37ff000..0xf37ffbc0]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)
 - waiting to lock <0xf819a970> (a java.lang.String)
 - locked <0xf819a938> (a java.lang.String)

"Low Memory Detector" daemon prio=10 tid=0x000c7800 nid=0x8 runnable
[0x00000000..0x00000000]
 java.lang.Thread.State: RUNNABLE

"CompilerThread0" daemon prio=10 tid=0x000c5400 nid=0x7 waiting on condition
[0x00000000..0x00000000]
 java.lang.Thread.State: RUNNABLE

"Signal Dispatcher" daemon prio=10 tid=0x000c4400 nid=0x6 waiting on condition
[0x00000000..0x00000000]
 java.lang.Thread.State: RUNNABLE

"Finalizer" daemon prio=10 tid=0x000b2800 nid=0x5 in Object.wait()

Chapter 2
Control+Break Handler

2-46

[0xf3f7f000..0xf3f7f9c0]
 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)
 - waiting on <0xf4000b40> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:116)
 - locked <0xf4000b40> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:132)
 at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159)

"Reference Handler" daemon prio=10 tid=0x000ae000 nid=0x4 in Object.wait()
[0xfe57f000..0xfe57f940]
 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)
 - waiting on <0xf4000a40> (a java.lang.ref.Reference$Lock)
 at java.lang.Object.wait(Object.java:485)
 at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116)
 - locked <0xf4000a40> (a java.lang.ref.Reference$Lock)

"VM Thread" prio=10 tid=0x000ab000 nid=0x3 runnable

"VM Periodic Task Thread" prio=10 tid=0x000c8c00 nid=0x9 waiting on condition

The output consists of a number of thread entries separated by an empty line. The
Java Threads (threads that are capable of executing Java language code) are printed
first, and these are followed by information about VM internal threads. Each thread
entry consists of a header line followed by the thread stack trace.

The header line contains the following information about the thread:

• Thread name.

• Indication if the thread is a daemon thread.

• Thread priority (prio).

• Thread ID (tid), which is the address of a thread structure in memory.

• ID of the native thread (nid).

• Thread state, which indicates what the thread was doing at the time of the thread
dump. See Table 2-6 for more details.

• Address range, which gives an estimate of the valid stack region for the thread.

Detect Deadlocks
The Control+Break handler can be used to detect deadlocks in threads.

In addition to the thread stacks, the Control+Break handler executes a deadlock
detection algorithm. If any deadlocks are detected, then the Control+Break handler, as
shown in the following example, prints additional information after the thread dump
about each deadlocked thread.

Found one Java-level deadlock:
=============================
"Thread2":
 waiting to lock monitor 0x000af330 (object 0xf819a938, a java.lang.String),
 which is held by "Thread1"
"Thread1":
 waiting to lock monitor 0x000af398 (object 0xf819a970, a java.lang.String),
 which is held by "Thread2"

Chapter 2
Control+Break Handler

2-47

Java stack information for the threads listed above:
===
"Thread2":
 at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)
 - waiting to lock <0xf819a938> (a java.lang.String)
 - locked <0xf819a970> (a java.lang.String)
"Thread1":
 at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)
 - waiting to lock <0xf819a970> (a java.lang.String)
 - locked <0xf819a938> (a java.lang.String)

Found 1 deadlock.

If the JVM flag -XX:+PrintConcurrentLocks is set, then the Control+Break handler will
also print the list of concurrent locks owned by each thread.

Heap Summary
The Control+Break handler can be used to print a heap summary.

The following example shows the different generations (areas of the heap), with the
size, the amount used, and the address range. The address range is especially useful
if you are also examining the process with tools such as pmap.

Heap
 def new generation total 1152K, used 435K [0x22960000, 0x22a90000, 0x22e40000
)
 eden space 1088K, 40% used [0x22960000, 0x229ccd40, 0x22a70000)
 from space 64K, 0% used [0x22a70000, 0x22a70000, 0x22a80000)
 to space 64K, 0% used [0x22a80000, 0x22a80000, 0x22a90000)
 tenured generation total 13728K, used 6971K [0x22e40000, 0x23ba8000, 0x269600
00)
 the space 13728K, 50% used [0x22e40000, 0x2350ecb0, 0x2350ee00, 0x23ba8000)
 compacting perm gen total 12288K, used 1417K [0x26960000, 0x27560000, 0x2a9600
00)
 the space 12288K, 11% used [0x26960000, 0x26ac24f8, 0x26ac2600, 0x27560000)
 ro space 8192K, 62% used [0x2a960000, 0x2ae5ba98, 0x2ae5bc00, 0x2b160000)
 rw space 12288K, 52% used [0x2b160000, 0x2b79e410, 0x2b79e600, 0x2bd60000)

If the JVM flag -XX:+PrintClassHistogram is set, then the Control+Break handler
will produce a heap histogram.

Native Operating System Tools
List of native tools available on Windows, Linux, and Oracle Solaris operating systems
that are useful for troubleshooting or monitoring purposes.

A brief description is provided for each tool. For further details, see the operating
system documentation (or man pages for the Oracle Solaris and Linux operating
systems).

The format of log files and output from command-line utilities depends on the release.
For example, if you develop a script that relies on the format of the fatal error log, then
the same script may not work if the format of the log file changes in a future release.

You can also search for Windows-specific debug support on the MSDN developer
network.

Chapter 2
Native Operating System Tools

2-48

http://msdn.microsoft.com
http://msdn.microsoft.com

The following sections describe troubleshooting techniques and improvements to a
few native operating system tools.

• Troubleshooting Tools Based on the Operating System

• DTrace Tool

• Probe Providers in Java HotSpot VM

• Improvements to the pmap Utility

• Improvements to the pstack Utility

DTrace Tool
The Oracle Solaris 10 operating system includes the DTrace tool, which allows
dynamic tracing of the operating system kernel and user-level programs.

This tool supports scripting at system-call entry and exit, at user-mode function entry
and exit, and at many other probe points. The scripts are written in the D
programming language, which is a C-like language with safe pointer semantics.
These scripts can help you to troubleshoot problems or solve performance issues.

The dtrace command is a generic front end to the DTrace tool. This command
provides a simple interface to invoke the D language, to retrieve buffered trace data,
and to access a set of basic routines to format and print traced data.

You can write your own customized DTrace scripts, using the D language, or
download and use one or more of the many scripts that are already available on
various sites.

The probes are delivered and instrumented by kernel modules called providers. The
types of tracing offered by the probe providers include user instruction tracing, function
boundary tracing, kernel lock instrumentation, profile interrupt, system call tracing, and
many more. If you write your own scripts, you use the D language to enable the
probes; this language also allows conditional tracing and output formatting.

You can use the dtrace -l command to explore the set of providers and probes that
are available on your Oracle Solaris operating system.

The DTraceToolkit is a collection of useful documented scripts developed by the Open
Oracle Solaris DTrace community. See DTraceToolkit.

See Solaris Dynamic Tracing Guide.

Probe Providers in Java HotSpot VM
The Java HotSpot VM contains two built-in probe providers hotspot and hotspot_jni.

These providers deliver probes that can be used to monitor the internal state and
activities of the VM, as well as the Java application that is running.

The JVM probe providers can be categorized as follows:

• VM lifecycle: VM initialization begin and end, and VM shutdown

• Thread lifecycle: thread start and stop, thread name, thread ID, and so on

• Class-loading: Java class loading and unloading

Chapter 2
Native Operating System Tools

2-49

http://www.brendangregg.com/dtracetoolkit.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-intro/

• Garbage collection: Start and stop of garbage collection, systemwide or by
memory pool

• Method compilation: Method compilation begin and end, and method loading and
unloading

• Monitor probes: Wait events, notification events, contended monitor entry and exit

• Application tracking: Method entry and return, allocation of a Java object

In order to call from native code to Java code, the native code must make a call
through the JNI interface. The hotspot_jni provider manages DTrace probes at the
entry point and return point for each of the methods that the JNI interface provides for
invoking Java code and examining the state of the VM.

At probe points, you can print the stack trace of the current thread using the ustack
built-in function. This function prints Java method names in addition to C/C++ native
function names. The following example is a simple D script that prints a full stack trace
whenever a thread calls the read system call.

#!/usr/sbin/dtrace -s
syscall::read:entry
/pid == $1 && tid == 1/ {
 ustack(50, 0x2000);
}

The script in the previous example is stored in a file named read.d and is run by
specifying the PID of the Java process that is traced as shown in the following
example.

read.d pid

If your Java application generated a lot of I/O or had some unexpected latency, then
the DTrace tool and its ustack() action can help you to diagnose the problem.

Improvements to the pmap Utility
Improvements to the pmap utility in Oracle Solaris 10 operating system.

The pmap utility was improved in Oracle Solaris 10 operating system to print stack
segments with the text [stack]. This text helps you to locate the stack easily.

The following example shows the stack trace with improved pmap utility.

19846: /net/myserver/export1/user/j2sdk6/bin/java -Djava.endorsed.d
00010000 72K r-x-- /export/disk09/jdk/6/rc/b63/binaries/solsparc/bin/java
00030000 16K rwx-- /export/disk09/jdk/6/rc/b63/binaries/solsparc/bin/java
00034000 32544K rwx-- [heap]
D1378000 32K rwx-R [stack tid=44]
D1478000 32K rwx-R [stack tid=43]
D1578000 32K rwx-R [stack tid=42]
D1678000 32K rwx-R [stack tid=41]
D1778000 32K rwx-R [stack tid=40]
D1878000 32K rwx-R [stack tid=39]
D1974000 48K rwx-R [stack tid=38]
D1A78000 32K rwx-R [stack tid=37]
D1B78000 32K rwx-R [stack tid=36]
[.. more lines removed here to reduce output ..]
FF370000 8K r-x-- /usr/lib/libsched.so.1
FF380000 8K r-x-- /platform/sun4u-us3/lib/libc_psr.so.1
FF390000 16K r-x-- /lib/libthread.so.1

Chapter 2
Native Operating System Tools

2-50

FF3A4000 8K rwx-- /lib/libthread.so.1
FF3B0000 8K r-x-- /lib/libdl.so.1
FF3C0000 168K r-x-- /lib/ld.so.1
FF3F8000 8K rwx-- /lib/ld.so.1
FF3FA000 8K rwx-- /lib/ld.so.1
FFB80000 24K ----- [anon]
FFBF0000 64K rwx-- [stack]
 total 167224K

Improvements to the pstack Utility
Improvements to the pstack utility in Oracle Solaris 10 operating system.

Before Oracle Solaris 10 operating system, the pstack utility did not support Java. It
printed hexadecimal addresses for both interpreted and compiled Java methods.

Starting with Oracle Solaris 10 operating system, the pstack command-line tool prints
mixed-mode stack traces (Java and C/C++ frames) from a core file or a live process.
The utility prints Java method names for interpreted, compiled, and inlined Java
methods.

Custom Diagnostic Tools
The JDK has extensive APIs to develop custom tools to observe, monitor, profile,
debug, and diagnose issues in applications that are deployed in the JRE.

The development of new tools is beyond the scope of this document. Instead, this
section provides a brief overview of the APIs available.

All the packages mentioned in this section are described in the Java SE API
specification.

See the example and demonstration code that is included in the JDK download.

The following sections describe packages, interface classes, and the Java debugger
that can be used as custom diagnostic tools for troubleshooting.

• The java.lang.management Package

• The java.lang.instrument Package

• The java.lang.Thread Class

• JVM Tool Interface

• Java Platform Debugger Architecture

Java Platform Debugger Architecture
The Java Platform Debugger Architecture (JPDA) is the architecture designed for use
by debuggers and debugger-like tools.

JPDA consists of two programming interfaces and a wire protocol:

• The Java Virtual Machine Tool Interface (JVM TI) is the interface to the virtual
machine. See JVM Tool Interface.

• The Java Debug Interface (JDI) defines information and requests at the user code
level. It is a pure Java programming language interface for debugging Java
programming language applications. In JPDA, the JDI is a remote view in the

Chapter 2
Custom Diagnostic Tools

2-51

https://docs.oracle.com/javase/9/docs/api/
https://docs.oracle.com/javase/9/docs/api/

debugger process of a virtual machine in the process being debugged. It is
implemented by the front end, where as a debugger-like application (for example,
IDE, debugger, tracer, or monitoring tool) is the client.

• The Java Debug Wire Protocol (JDWP) defines the format of information and
requests transferred between the process being debugged and the debugger front
end, which implements the JDI.

The jdb utility is included in the JDK as an example command-line debugger. The jdb
utility uses the JDI to launch or connect to the target VM. See The jdb Utility.

In addition to traditional debugger-type tools, the JDI can also be used to develop tools
that help in postmortem diagnostics and scenarios where the tool needs to attach to a
process in a noncooperative manner (for example, a hung process).

NMT Memory Categories
List of native memory tracking memory categories used by NMT.

Table 2-1 describes native memory categories used by NMT. These categories may
change with a release.

Table 2-1 Native Memory Tracking Memory Categories

Category Description

Java Heap The heap where your objects live

Class Class meta data

Code Generated code

GC Data use by the GC, such as card table

Compiler Memory tracking used by the compiler when generating code

Symbol Symbols

Memory Tracking Memory used by NMT.

Pooled Free Chunks Memory used by chunks in the arena chunk pool

Shared space for classes Memory mapped to class data sharing archive

Thread Memory used by threads, including thread data structure,
resource area, handle area, and so on.

Thread stack Thread stack. It is marked as committed memory, but it might
not be completely committed by the OS.

Internal Memory that does not fit the previous categories, such as the
memory used by the command line parser, JVMTI, properties,
and so on.

Unknown When the memory category cannot be determined.

Arena: When the arena is used as a stack or value object

Virtual Memory: When the type information has not yet arrived

Postmortem Diagnostic Tools
List of tools and options available for post-mortem diagnostics of problems between
the application and the Java HotSpot VM.

Chapter 2
NMT Memory Categories

2-52

Table 2-2 summarizes the options and tools that are designed for postmortem
diagnostics. If an application crashes, then these options and tools can be used to get
additional information, either at the time of the crash or later using information from the
crash dump.

Table 2-2 Postmortem Diagnostics Tools

Tool or Option Description and Usage

Fatal Error Log When an irrecoverable (fatal) error occurs, an error log is
created. This file contains information obtained at the time of the
fatal error. In many cases, it is the first item to examine when a
crash occurs. See Fatal Error Log.

-XX:
+HeapDumpOnOutOfMemoryEr
ror option

This command-line option specifies the generation of a heap
dump when the VM detects a native out-of-memory error. See
The -XX:HeapDumpOnOutOfMemoryError Option.

-XX:OnError option This command-line option specifies a sequence of user-supplied
scripts or commands to be executed when a fatal error occurs.
For example, on Windows, this option can execute a command
to force a crash dump. This option is very useful on systems
where a postmortem debugger is not configured. See The -
XX:OnError Option.

-XX:
+ShowMessageBoxOnError
option

This command-line option suspends a process when a fatal error
occurs. Depending on the user response, the option can launch
the native debugger (for example, dbx, gdb, msdev) to attach to
the VM. See The -XX:ShowMessageBoxOnError Option.

Other -XX options Several other -XX command-line options can be useful in
troubleshooting. See Other -XX Options.

jdb utility Debugger support includes an AttachingConnector, which
allows jdb and other Java language debuggers to attach to a
core file. This can be useful when trying to understand what
each thread was doing at the time of a crash. See The jdb Utility.

jinfo utility

(postmortem use on Oracle
Solaris and Linux operating
systems only)

This utility can get configuration information from a core file
obtained from a crash or from a core file obtained using the
gcore utility. See The jinfo Utility.

jmap utility

(postmortem use on Oracle
Solaris and Linux operating
systems only)

This utility can get memory map information, including a heap
histogram, from a core file obtained from a crash or from a core
file obtained using the gcore utility. See The jmap Utility.

jsadebugd daemon

(Oracle Solaris and Linux
operating systems only)

The Serviceability Agent Debug Daemon (jsadebugd) attaches
to a Java process or to a core file and acts as a debug server.
See The jsadebugd Daemon.

jstack utility This utility can get Java and native stack information from a Java
process. On the Oracle Solaris and Linux operating systems, the
utility can also get the information from a core file or a remote
debug server. See The jstack Utility.

Native tools Each operating system has native tools and utilities that can be
used for postmortem diagnosis. See Native Operating System
Tools.

Chapter 2
Postmortem Diagnostic Tools

2-53

Hung Processes Tools
List of tools and options for diagnosing problems between the application and the Java
HotSpot VM in a hung process.

Table 2-3 summarizes the options and tools that can help in scenarios involving a
hung or deadlocked process. These tools do not require any special options to start
the application.

Java Mission Control, Java Flight Recorder, and the jcmd utility can be used to
diagnose problems with JVM and Java applications. It is suggested to use the latest
utility, jcmd, instead of the previous jstack, jinfo, and jmap utilities for enhanced
diagnostics and reduced performance overhead.

Table 2-3 Hung ProcessTools

Tool or Option Description and Usage

Ctrl+Break handler

(Control+\ or kill -QUIT
pid on the Oracle Solaris
and Linux operating
systems, and Control+Break
on Windows)

This key combination performs a thread dump and deadlock
detection. The Ctrl+Break handler can optionally print a list of
concurrent locks and their owners, as well as a heap histogram.
See Control+Break Handler.

jcmd utility This utility is used to send diagnostic command requests to the
JVM, where these requests are useful for controlling Java Flight
Recordings (JFRs). The JFRs are used to troubleshoot and
diagnose flight recording events. See The jcmd Utility.

jdb utility Debugger support includes attaching connectors, which allow
jdb and other Java language debuggers to attach to a process.
This can help show what each thread is doing at the time of a
hang or deadlock. See The jdb Utility.

jinfo utility This utility can get configuration information from a Java
process. See The jinfo Utility.

jmap utility This utility can get memory map information, including a heap
histogram, from a Java process. On the Oracle Solaris and Linux
operating systems, the -F option can be used if the process is
hung. See The jmap Utility.

jsadebugd daemon

(Oracle Solaris and Linux
operating systems only)

The Serviceability Agent Debug Daemon (jsadebugd) attaches
to a Java process or to a core file and acts as a debug server.
See The jsadebugd Daemon.

jstack utility This utility can obtain Java and native stack information from a
Java process. See The jstack Utility.

Native tools Each operating system has native tools and utilities that can be
useful in hang or deadlock situations. See Native Operating
System Tools.

Monitoring Tools
List of tools and options for monitoring running applications and detecting problems.

Chapter 2
Hung Processes Tools

2-54

The tools listed in the Table 2-4 are designed for monitoring applications that are
running.

Java Mission Control, Java Flight Recorder, and the jcmd utility can be used to
diagnose problems with JVM and Java applications. It is suggested to use the latest
utility, jcmd, instead of the previous jstack, jinfo, and jmap utilities for enhanced
diagnostics and reduced performance overhead.

Table 2-4 Monitoring Tools

Tool or Option Description and Usage

Java Mission Control Java Mission Control (JMC) is a new JDK profiling and diagnostic tool platform
for HotSpot JVM. It is a tool suite for basic monitoring, managing, and
production time profiling and diagnostics with high performance. Java Mission
Control minimizes the performance overhead that's usually an issue with
profiling tools.

jcmd utility This utility is used to send diagnostic command requests to the JVM, where
these requests are useful for controlling Java Flight Recordings. The JFRs are
used to troubleshoot and diagnose JVM and Java applications with flight
recording events. See The jcmd Utility.

JConsole utility This utility is a monitoring tool that is based on Java Management Extensions
(JMX). The tool uses the built-in JMX instrumentation in the Java Virtual
Machine to provide information about the performance and resource
consumption of running applications. See JConsole.

jmap utility This utility can get memory map information, including a heap histogram, from
a Java process, a core file, or a remote debug server. See The jmap Utility.

jps utility This utility lists the instrumented Java HotSpot VMs on the target system. The
utility is very useful in environments where the VM is embedded, that is, it is
started using the JNI Invocation API rather than the java launcher. See The
jps Utility.

jstack utility This utility can get Java and native stack information from a Java process. On
the Oracle Solaris and Linux operating systems, the utility can also get the
information from a core file or a remote debug server. See The jstack Utility.

jstat utility This utility uses the built-in instrumentation in Java to provide information
about performance and resource consumption of running applications. The
tool can be used when diagnosing performance issues, especially those
related to heap sizing and garbage collection. See The jstat Utility.

jstatd daemon This tool is a Remote Method Invocation (RMI) server application that
monitors the creation and termination of instrumented Java Virtual Machines
and provides an interface to allow remote monitoring tools to attach to VMs
running on the local host. See The jstatd Daemon.

visualgc utility This utility provides a graphical view of the garbage collection system. As with
jstat, it uses the built-in instrumentation of Java HotSpot VM. See The
visualgc Tool.

Native tools Each operating system has native tools and utilities that can be useful for
monitoring purposes. For example, the dynamic tracing (DTrace) capability
introduced in Oracle Solaris 10 operating system performs advanced
monitoring. See Native Operating System Tools.

Other Tools, Options, Variables, and Properties
List of general troubleshooting tools, options, variables, and properties that can help to
diagnose issues.

Chapter 2
Other Tools, Options, Variables, and Properties

2-55

In addition to the tools that are designed for specific types of problems, the tools,
options, variables, and properties listed in Table 2-5 can help in diagnosing other
issues.

Java Mission Control, Java Flight Recorder, and the jcmd utility can be used for
diagnosing problems with JVM and Java applications. It is suggested to use the latest
utility, jcmd, instead of the previous jstack, jinfo, and jmap utilities for enhanced
diagnostics and reduced performance overhead.

Table 2-5 General Troubleshooting Tools and Options

Tool or Option Description and Usage

Java Mission Control Java Mission Control (JMC) is a new JDK profiling and
diagnostic tool platform for HotSpot JVM. It is a tool suite for
basic monitoring, managing, and production time profiling and
diagnostics with high performance. Java Mission Control
minimizes the performance overhead that's usually an issue with
profiling tools. See Java Mission Control.

jcmd utility This utility is used to send diagnostic command requests to the
JVM, where these requests are useful for controlling Java Flight
Recordings (JFRs). The JFRs are used to troubleshoot and
diagnose JVM and Java applications with flight recording events.

jinfo utility This utility can dynamically set, unset, and change the values of
certain JVM flags for a specified Java process. On Oracle
Solaris and Linux operating systems, it can also print
configuration information.

jrunscript utility This utility is a command-line script shell, which supports both
interactive and batch-mode script execution.

Oracle Solaris Studio dbx
debugger

This is an interactive, command-line debugging tool, which
allows you to have complete control of the dynamic execution of
a program, including stopping the program and inspecting its
state. For details, see the latest dbx documentation located at
Oracle Solaris Studio Program Debugging.

Oracle Solaris Studio
Performance Analyzer

This tool can help you assess the performance of your code,
identify potential performance problems, and locate the part of
the code where the problems occur. The Performance Analyzer
can be used from the command line or from a graphical user
interface. For details, see the Oracle Solaris Studio Performance
Analyzer.

Sun's Dataspace Profiling:
DProfile

This tool provides insight into the flow of data within Sun
computing systems, helping you identify bottlenecks in both
software and hardware. DProfile is supported in the Sun Studio
11 compiler suite through the Performance Analyzer GUI. See
DTrace or Dynamic Tracing diagnostic tool.

-Xcheck:jni option This option is useful in diagnosing problems with applications
that use the Java Native Interface (JNI) or that employ third-
party libraries (some JDBC drivers, for example). See The -
Xcheck:jni Option.

-verbose:class option This option enables logging of class loading and unloading. See
The -verbose:class Option.

-verbose:gc option This option enables logging of garbage collection information.
See The -verbose:gc Option.

-verbose:jni option This option enables logging of JNI. See The -verbose:jni Option.

Chapter 2
Other Tools, Options, Variables, and Properties

2-56

https://docs.oracle.com/javacomponents/index.html
http://docs.oracle.com/cd/E24457_01/html/E21993/blabb.html#scrolltoc
http://docs.oracle.com/cd/E18659_01/html/821-1379/afabb.html#scrolltoc
http://docs.oracle.com/cd/E18659_01/html/821-1379/afabb.html#scrolltoc
http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html

Table 2-5 (Cont.) General Troubleshooting Tools and Options

Tool or Option Description and Usage

JAVA_TOOL_OPTIONS
environment variable

This environment variable allows you to specify the initialization
of tools, specifically the launching of native or Java programming
language agents using the -agentlib or -javaagent options.
See Environment Variables and System Properties.

java.security.debug
system property

This system property controls whether the security checks in the
JRE of the Java print trace messages during execution. See The
java.security.debug System Property.

The java.lang.management Package
The java.lang.management package provides the management interface for the
monitoring and management of the JVM and the operating system.

Specifically, it covers interfaces for the following systems:

• Class loading

• Compilation

• Garbage collection

• Memory manager

• Runtime

• Threads

The JDK includes example code that demonstrates the usage of the
java.lang.management package. These examples can be found in the $JAVA_HOME/
demo/management directory. Some of the example code is as follows:

• MemoryMonitor demonstrates the use of the java.lang.management API to observe
the memory usage of all memory pools consumed by the application.

• FullThreadDump demonstrates the use of the java.lang.management API to get a full
thread dump and detect deadlocks programmatically.

• VerboseGC demonstrates the use of the java.lang.management API to print the
garbage collection statistics and memory usage of an application.

In addition to the java.lang.management package, the JDK release includes platform
extensions in the com.sun.management package. The platform extensions include a
management interface to get detailed statistics from garbage collectors that perform
collections in cycles. These extensions also include a management interface to get
additional memory statistics from the operating system.

The java.lang.instrument Package
The java.lang.instrument package provides services that allow the Java programming
language agents to instrument programs running on the JVM.

Instrumentation is used by tools such as profilers, tools for tracing method calls, and
many others. The package facilitates both load-time and dynamic instrumentation. It

Chapter 2
The java.lang.management Package

2-57

also includes methods to get information about the loaded classes and information
about the amount of storage consumed by a given object.

The java.lang.Thread Class
The java.lang.Thread class has a static method called getAllStackTraces, which
returns a map of stack traces for all live threads.

The Thread class also has a method called getState, which returns the thread state;
states are defined by the java.lang.Thread.State enumeration. These methods can be
useful when you add diagnostic or monitoring capabilities to an application.

JVM Tool Interface
The JVM Tool Interface (JVM TI) is a native (C/C++) programming interface that can
be used by a wide range of development and monitoring tools.

JVM TI provides an interface for the full breadth of tools that need access to the VM
state, including but not limited to profiling, debugging, monitoring, thread analysis, and
coverage analysis tools.

Some examples of agents that rely on JVM TI are the following:

• Java Debug Wire Protocol (JDWP)

• The java.lang.instrument package

The specification for JVM TI can be found in the JVM Tool Interface documentation.

The JDK includes example code that demonstrates the usage of JVM TI. These
examples can be found in the $JAVA_HOME/demo/jvmti directory. Some of the example
code is as follows:

• mtrace is an agent library that tracks method call and return counts. It uses
bytecode instrumentation to instrument all classes loaded into the virtual machine
and prints a sorted list of the frequently used methods.

• heapTracker is an agent library that tracks object allocation. It uses bytecode
instrumentation to instrument constructor methods.

• heapViewer is an agent library that prints heap statistics when the Control+Break
handler is invoked. See Control+Break Handler. For each loaded class it prints an
instance count of that class, and the space used.

The jrunscript Utility
The jrunscript utility is a command-line script shell.

It supports script execution in both interactive mode and in batch mode. By default, the
shell uses JavaScript, but you can specify any other scripting language for which you
supply the path to the script engine JAR file of .class files.

Thanks to the communication between the Java language and the scripting language,
the jrunscript utility supports an exploratory programming style.

Chapter 2
The java.lang.Thread Class

2-58

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html#SpecificationIntro

The jsadebugd Daemon
The Java Serviceability Agent Debug Daemon (jsadebugd) attaches to a Java process
or to a core file and acts as a debug server.

This utility is currently available only on the Oracle Solaris and Linux operating
systems. Remote clients such as jstack, jmap, and jinfo can attach to the server using
Java Remote Method Invocation (RMI).

The jstatd Daemon
The jstatd daemon is an RMI server application that monitors the creation and
termination of each instrumented Java HotSpot, and provides an interface to allow
remote monitoring tools to attach to JVMs running on the local host.

For example, this daemon allows the jps utility to list processes on a remote system.

Note:

The instrumentation is not accessible on FAT32 file system.

Thread States for a Thread Dump
List of possible thread states for a thread dump.

Table 2-6 lists the possible thread states for a thread dump using the Control+Break
Handler.

Table 2-6 Thread States for a Thread Dump

Thread State Description

NEW The thread has not yet started.

RUNNABLE The thread is executing in the JVM.

BLOCKED The thread is blocked, waiting for a monitor lock.

WAITING The thread is waiting indefinitely for another thread to perform a
particular action.

TIMED_WAITING The thread is waiting for another thread to perform an action for
up to a specified waiting time.

TERMINATED The thread has exited.

Troubleshooting Tools Based on the Operating System
List of native Windows tools that can be used for troubleshooting problems.

Table 2-7 lists the troubleshooting tools available on the Windows operating system.

Chapter 2
The jsadebugd Daemon

2-59

Table 2-7 Native Troubleshooting Tools on Windows

Tool Description

dumpchk Command-line utility to verify that a memory dump file was
created correctly. This tool is included in the Debugging Tools
for Windows download available from the Microsoft website. See
Collect Crash Dumps on Windows.

msdev debugger Command-line utility that can be used to launch Visual C++ and
the Win32 debugger

userdump The User Mode Process Dumper is included in the OEM Support
Tools download available from the Microsoft website. See
Collect Crash Dumps on Windows.

windbg Windows debugger can be used to debug Windows applications
or crash dumps. This tool is included in the Debugging Tools for
Windows download available from the Microsoft website. See
Collect Crash Dumps on Windows.

/Md and /Mdd compiler
options

Compiler options that automatically include extra support for
tracking memory allocations

Table 2-8 describes some troubleshooting tools introduced or improved in the Linux
operating system version 10.

Table 2-8 Native Troubleshooting Tools on Linux

Tool Description

c++filt Demangle C++ mangled symbol names. This utility is delivered
with the native C++ compiler suite: gcc on Linux.

gdb GNU debugger

libnjamd Memory allocation tracking

lsstack Print thread stack (similar to pstack in the Oracle Solaris
operating system)

Not all distributions provide this tool by default; therefore, you
might have to download it from Open Source downloads.

ltrace Library call tracer (equivalent to truss -u in the Oracle Solaris
operating system)

Not all distributions provide this tool by default; therefore, you
might have to download it from Open Source downloads.

mtrace and muntrace GNU malloc tracer

proc tools such as pmap and
pstack

Some, but not all, of the proc tools on the Oracle Solaris
operating system have equivalent tools on Linux. Core file
support is not as good for Linux as for Oracle Solaris operating
system; for example, pstack does not work for core dumps

strace System call tracer (equivalent to truss -t in the Oracle Solaris
operating system)

top Display most CPU-intensive processes.

vmstat Report information about processes, memory, paging, block I/O,
traps, and CPU activity.

Table 2-9 lists troubleshooting tools available on Oracle Solaris operating system.

Chapter 2
Troubleshooting Tools Based on the Operating System

2-60

http://sourceforge.net
http://sourceforge.net

Table 2-9 Native Troubleshooting Tools on Oracle Solaris Operating System

Tool Description

coreadm Specify name and location of core files produced by the JVM.

cpustat Monitor system behavior using CPU performance counters.

cputrack Monitor process and LWP behavior using CPU performance
counters.

c++filt Demangle C++ mangled symbol names. This utility is delivered
with the native C++ compiler suite: SUNWspro on the Oracle
Solaris operating system.

dtrace Introduced in Oracle Solaris 10 operating system, DTrace is a
dynamic tracing compiler and tracing utility. It can perform
dynamic tracing of kernel functions, system calls, and user
functions. This tool allows arbitrary, safe scripting to be executed
at entry, exit, and other probe points. The script is written in the
C-like, but safe, pointer semantics language called the D
programming language. See also DTrace Tool.

gcore Force a core dump of a process. The process continues after the
core dump is written.

intrstat Report statistics on the CPU consumed by interrupt threads.

iostat Report I/O statistics.

libumem Introduced in the Oracle Solaris 9 operating system update 3,
this library provides fast, scalable object-caching memory
allocation and extensive debugging support. The tool can be
used to find and fix memory management bugs. See Find Leaks
with the libumem Tool.

mdb Modular debugger for kernel and user applications and crash
dumps

netstat Display the contents of various network-related data structures.

pargs Print process arguments, environment variables, or the auxiliary
vector. Long output is not truncated as it would be by other
commands, such as ps.

pfiles Print information on process file descriptors. Starting with the
Oracle Solaris 10 operating system, the tool prints the file name
also.

pldd Print shared objects loaded by a process.

pmap Print memory layout of a process or core file, including heap,
data, and text sections. Starting with Oracle Solaris 10, stack
segments are clearly identified with the text [stack] along with
the thread ID. See Improvements to the pmap Utility.

prstat Report statistics for active Oracle Solaris operating system
processes. (Similar to top)

prun Set the process to running mode (reverse of pstop).

ps List all processes.

psig List the signal handlers of a process.

pstack Print stack of threads of a given process or core file. Starting
with the Oracle Solaris 10 operating system, Java method
names can be printed for Java frames. See Improvements to the
pstack Utility.

Chapter 2
Troubleshooting Tools Based on the Operating System

2-61

Table 2-9 (Cont.) Native Troubleshooting Tools on Oracle Solaris Operating
System

Tool Description

pstop Stop the process (suspend).

ptree Print the process tree that contains the given PID.

sar System activity reporter

sdtprocess Display most CPU-intensive processes. (similar to top).

sdtperfmeter Display graphs that show the system performance (for example,
CPU, disks, and network).

top Display most CPU-intensive processes. This tool is available as
freeware for the Oracle Solaris operating system, but is not
installed by default.

trapstat Display runtime trap statistics (SPARC only).

truss Trace entry and exit events for system calls, user-mode
functions, and signals; optionally stop the process at one of
these events. This tool also prints the arguments of system calls
and user functions.

vmstat Report system virtual memory statistics.

watchmalloc Track memory allocations.

Chapter 2
Troubleshooting Tools Based on the Operating System

2-62

3
Troubleshoot Memory Leaks

This chapter provides some suggestions for diagnosing problems involving possible
memory leaks.
If your application's execution time becomes longer and longer, or if the operating
system seems to be performing slower and slower, this could be an indication of a
memory leak. In other words, virtual memory is being allocated but is not being
returned when it is no longer needed. Eventually the application or the system runs out
of memory, and the application terminates abnormally.

This chapter contains the following sections:

• Debug a Memory Leak Using Java Flight Recorder

• Understand the OutOfMemoryError Exception

• Troubleshoot a Crash Instead of OutOfMemoryError

• Diagnose Leaks in Java Language Code

• Diagnose Leaks in Native Code

Debug a Memory Leak Using Java Flight Recorder
The Java Flight Recorder (JFR) is a commercial feature. You can use it for free on
developer desktops or laptops, and for evaluation purposes in test, development, and
production environments.

However, to enable JFR on a production server, you must have a commercial
license. Using the Java Mission Control (JMC) for other purposes on the JDK does
not require a commercial license.

To know more about the JFR commercial features and availability, see the product
documentation.

To know more about the JFR commercial license, see the license agreement.

The following sections show figures and describe how to debug a memory leak using
Java Flight Recorder.

• Detect a Memory Leak

• Find the Leaking Class

• Find the Leak

Detect a Memory Leak
Detect memory leaks early and prevent OutOfmemoryErrors using Java Flight
Recordings.

Detecting a slow memory leak can be hard. A typical symptom is that the application
becomes slower after running for a long time due to frequent garbage collections.

3-1

http://www.oracle.com/technetwork/java/javase/terms/products/index.html
http://www.oracle.com/technetwork/java/javase/terms/products/index.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html

Eventually, OutOfmemoryErrors may be seen. However, memory leaks can be detected
early, even before a problem occurs using Java Flight Recordings.

Watch if the live set of your application is increasing over time. The live set is the
amount of Java heap that is used after an old collection (all objects that are not live
have been garbage collected). The live set can be inspected in many ways: run with
the -verbosegc option, or connect to the JVM using the JMC JMX Console and look
at com.sun.management.GarbageCollectorAggregator MBean. However, another easy
approach is to take a flight recording.

Enable Heap Statistics when you start your recording, which triggers an old collection
at the start and at the end of the recording. This may cause a slight latency in the
application. However, Heap Statistics generates accurate live set information. If you
suspect a rather quick memory leak, then take a profiling recording that runs over, for
example, an hour. Click the Memory tab and select the Garbage Collections tab to
inspect the first and the last old collections, as shown in Figure 3-1.

Figure 3-1 Debug Memory Leaks - Garbage Collection Tab

Select the first old collection, as shown in Figure 3-1, to look at the heap data and
heap usage after GC. In this recording, it is 34.10 MB. Now, look at the same data
from the last old collection in the list, and see if the live set has grown. Before taking
the recording, you must allow the application to start and reach a stable state.

If the leak is slow, you can take a shorter 5-minute recording. Then, take another
recording, for example 24 hours later (depending on how fast you suspect the memory
leak to be). Obviously, your live set may go up and down, but if you see a steady
increase over time, then you could have a memory leak.

Find the Leaking Class
Use the Java Flight Recordings to identify the memory leak.

After your recording showing the leak, you can look at the Object Statistics. Look at
one long recording, then look at which classes grew the most in heap usage over the
recording. If you took several recordings at intervals, then compare the heap contents
section, and see which object types have increased the most between the recordings,
as shown in Figure 3-2.

Chapter 3
Debug a Memory Leak Using Java Flight Recorder

3-2

Figure 3-2 Debug Memory Leaks - Find Leaking Class

Especially, watch the classes that are not part of the standard library. For example,
you will often see Char arrays as one of the top growers. This is due to many Strings
being allocated; therefore, watch out for objects that keep these Strings alive. If you
have a class that has 10 Strings as members, then the object itself will not use too
much heap. The heap will be used by the Strings, which mostly contains pointers to
the Char arrays. Therefore, it is good to sort on the number of instances and not the
size of the objects. If one of your application class has many instances, then it may be
those objects that keep other objects alive.

Find the Leak
Tips to identify the memory leak using the additional information using the Java Flight
Recordings.

Some additional information can be found using Java Flight Recordings.

Look at the Allocations sub tab, as shown in Figure 3-3, for some samples of where
objects were allocated.

Chapter 3
Debug a Memory Leak Using Java Flight Recorder

3-3

Figure 3-3 Debug Memory Leaks - Allocations tab

If you except a specific class leak, look at the Allocation in new TLAB tab. Check the
class samples being allocated. If the leak is slow, there may be a few allocations of
this object and may be no samples. Also, it may be that only a specific allocation site is
leading to a leak. To summarize, this is not guaranteed to lead you to the right
allocation stack trace for the leak, but it may give vital clues.

Understand the OutOfMemoryError Exception
java.lang.OutOfMemoryError error is thrown when there is insufficient space to allocate
an object in the Java heap.

One common indication of a memory leak is the java.lang.OutOfMemoryError exception.
In this case, The garbage collector cannot make space available to accommodate a
new object, and the heap cannot be expanded further. Also, this error may be thrown
when there is insufficient native memory to support the loading of a Java class. In a
rare instance, a java.lang.OutOfMemoryError can be thrown when an excessive amount
of time is being spent doing garbage collection, and little memory is being freed.

When a java.lang.OutOfMemoryError exception is thrown, a stack trace is also printed.

The java.lang.OutOfMemoryError exception can also be thrown by native library code
when a native allocation cannot be satisfied (for example, if swap space is low).

An early step to diagnose an OutOfMemoryError exception is to determine the cause of
the exception. Was it thrown because the Java heap is full, or because the native heap
is full? To help you find the cause, the text of the exception includes a detail message
at the end, as shown in the following exceptions.

Chapter 3
Understand the OutOfMemoryError Exception

3-4

Exception in thread thread_name: java.lang.OutOfMemoryError: Java heap
space
Cause: The detailed message Java heap space indicates that an object could not be
allocated in the Java heap. This error does not necessarily imply a memory leak. The
problem can be as simple as a configuration issue, where the specified heap size (or
the default size, if it is not specified) is insufficient for the application.
In other cases, and in particular for a long-lived application, the message might be an
indication that the application is unintentionally holding references to objects, and this
prevents the objects from being garbage collected. This is the Java language
equivalent of a memory leak. Note: The APIs that are called by an application could
also be unintentionally holding object references.
One other potential source of this error arises with applications that make excessive
use of finalizers. If a class has a finalize method, then objects of that type do not
have their space reclaimed at garbage collection time. Instead, after garbage
collection, the objects are queued for finalization, which occurs at a later time. In the
Oracle Sun implementation, finalizers are executed by a daemon thread that services
the finalization queue. If the finalizer thread cannot keep up with the finalization
queue, then the Java heap could fill up, and this type of OutOfMemoryError exception
would be thrown. One scenario that can cause this situation is when an application
creates high-priority threads that cause the finalization queue to increase at a rate that
is faster than the rate at which the finalizer thread is servicing that queue.

Action: To know more about how to monitor objects for which finalization is pending
Monitor the Objects Pending Finalization.

Exception in thread thread_name: java.lang.OutOfMemoryError: GC Overhead
limit exceeded
Cause: The detail message "GC overhead limit exceeded" indicates that the garbage
collector is running all the time, and the Java program is making very slow progress.
After a garbage collection, if the Java process is spending more than approximately
98% of its time doing garbage collection and if it is recovering less than 2% of the
heap and has been doing so for the last 5 (compile time constant) consecutive
garbage collections, then a java.lang.OutOfMemoryError is thrown. This exception is
typically thrown because the amount of live data barely fits into the Java heap having
little free space for new allocations.

Action: Increase the heap size. The java.lang.OutOfMemoryError exception for GC
Overhead limit exceeded can be turned off with the command-line flag -XX:-
UseGCOverheadLimit.

Exception in thread thread_name: java.lang.OutOfMemoryError: Requested
array size exceeds VM limit
Cause: The detail message "Requested array size exceeds VM limit" indicates that
the application (or APIs used by that application) attempted to allocate an array that is
larger than the heap size. For example, if an application attempts to allocate an array
of 512 MB, but the maximum heap size is 256 MB, then OutOfMemoryError will be
thrown with the reason “Requested array size exceeds VM limit."

Action: Usually the problem is either a configuration issue (heap size too small) or a
bug that results in an application attempting to create a huge array (for example,
when the number of elements in the array is computed using an algorithm that
computes an incorrect size).

Chapter 3
Understand the OutOfMemoryError Exception

3-5

Exception in thread thread_name: java.lang.OutOfMemoryError: Metaspace
Cause: Java class metadata (the virtual machines internal presentation of Java class)
is allocated in native memory (referred to here as metaspace). If metaspace for class
metadata is exhausted, a java.lang.OutOfMemoryError exception with a detail
MetaSpace is thrown. The amount of metaspace that can be used for class metadata is
limited by the parameter MaxMetaSpaceSize, which is specified on the command line.
When the amount of native memory needed for a class metadata exceeds
MaxMetaSpaceSize, a java.lang.OutOfMemoryError exception with a detail MetaSpace is
thrown.

Action: If MaxMetaSpaceSize, has been set on the command-line, increase its value.
MetaSpace is allocated from the same address spaces as the Java heap. Reducing the
size of the Java heap will make more space available for MetaSpace. This is only a
correct trade-off if there is an excess of free space in the Java heap. See the following
action for Out of swap space detailed message.

Exception in thread thread_name: java.lang.OutOfMemoryError: request size
bytes for reason. Out of swap space?
Cause: The detail message "request size bytes for reason. Out of swap space?"
appears to be an OutOfMemoryError exception. However, the Java HotSpot VM code
reports this apparent exception when an allocation from the native heap failed and the
native heap might be close to exhaustion. The message indicates the size (in bytes)
of the request that failed and the reason for the memory request. Usually the reason
is the name of the source module reporting the allocation failure, although sometimes
it is the actual reason.

Action: When this error message is thrown, the VM invokes the fatal error handling
mechanism (that is, it generates a fatal error log file, which contains useful information
about the thread, process, and system at the time of the crash). In the case of native
heap exhaustion, the heap memory and memory map information in the log can be
useful. See Fatal Error Log.
If this type of the OutOfMemoryError exception is thrown, you might need to use
troubleshooting utilities on the operating system to diagnose the issue further. See
Native Operating System Tools.

Exception in thread thread_name: java.lang.OutOfMemoryError: Compressed
class space
Cause: On 64-bit platforms, a pointer to class metadata can be represented by 32-bit
offset (with UseCompressedOops). This is controlled by the command line flag
UseCompressedClassPointers (on by default). If the UseCompressedClassPointers is used,
the amount of space available for class metadata is fixed at the amount
CompressedClassSpaceSize. If the space needed for UseCompressedClassPointers
exceeds CompressedClassSpaceSize, a java.lang.OutOfMemoryError with detail
Compressed class space is thrown.

Action: Increase CompressedClassSpaceSize to turn off UseCompressedClassPointers.
Note: There are bounds on the acceptable size of CompressedClassSpaceSize. For
example -XX: CompressedClassSpaceSize=4g, exceeds acceptable bounds will result in
a message such as
CompressedClassSpaceSize of 4294967296 is invalid; must be between 1048576 and
3221225472.

Chapter 3
Understand the OutOfMemoryError Exception

3-6

Note:

There is more than one kind of class metadata, –klass metadata, and other
metadata. Only klass metadata is stored in the space bounded by
CompressedClassSpaceSize. The other metadata is stored in Metaspace.

Exception in thread thread_name: java.lang.OutOfMemoryError: reason
stack_trace_with_native_method
Cause: If the detail part of the error message is "reason
stack_trace_with_native_method, and a stack trace is printed in which the top frame
is a native method, then this is an indication that a native method, has encountered an
allocation failure. The difference between this and the previous message is that the
allocation failure was detected in a Java Native Interface (JNI) or native method rather
than in the JVM code.

Action: If this type of the OutOfMemoryError exception is thrown, you might need to use
native utilities of the OS to further diagnose the issue. See Native Operating System
Tools.

Troubleshoot a Crash Instead of OutOfMemoryError
Use the information in the fatal error log or the crash dump to troubleshoot a crash.

Sometimes an application crashes soon after an allocation from the native heap fails.
This occurs with native code that does not check for errors returned by the memory
allocation functions.

For example, the malloc system call returns null if there is no memory available. If the
return from malloc is not checked, then the application might crash when it attempts to
access an invalid memory location. Depending on the circumstances, this type of issue
can be difficult to locate.

However, sometimes the information from the fatal error log or the crash dump is
sufficient to diagnose this issue. The fatal error log is covered in detail in Fatal Error
Log. If the cause of the crash is an allocation failure, then determine the reason for the
allocation failure. As with any other native heap issue, the system might be configured
with the insufficient amount of swap space, another process on the system might be
consuming all memory resources, or there might be a leak in the application (or in the
APIs that it calls) that causes the system to run out of memory.

Diagnose Leaks in Java Language Code
Use the NetBeans profiler to diagnose leaks in the Java language code.

Diagnosing leaks in the Java language code can be difficult. Usually, it requires very
detailed knowledge of the application. In addition, the process is often iterative and
lengthy. This section provides information about the tools that you can use to diagnose
memory leaks in the Java language code.

Chapter 3
Troubleshoot a Crash Instead of OutOfMemoryError

3-7

Note:

Beside the tools mentioned in this section, a large number of third-party
memory debugger tools are available. The Eclipse Memory Analyzer Tool
(MAT), and YourKit (www.yourkit.com) are two examples of commercial tools
with memory debugging capabilities. There are many others, and no specific
product is recommended.

The following utilities used to diagnose leaks in the Java language code.

1. The NetBeans Profiler: The NetBeans Profiler can locate memory leaks very
quickly. Commercial memory leak debugging tools can take a long time to locate a
leak in a large application. The NetBeans Profiler, however, uses the pattern of
memory allocations and reclamations that such objects typically demonstrate. This
process includes also the lack of memory reclamations. The profiler can check
where these objects were allocated, which often is sufficient to identify the root
cause of the leak.

See NetBeans Profiler.

The following sections describe the other ways to diagnose leaks in the Java language
code.

• Get a Heap Histogram

• Monitor the Objects Pending Finalization

Get a Heap Histogram
Different commands and options available to get a heap histogram to identify memory
leaks.

You can try to quickly narrow down a memory leak by examining the heap histogram.
You can get a heap histogram in several ways:

• If the Java process is started with the -XX:+PrintClassHistogram command-
line option, then the Control+Break handler will produce a heap histogram.

• You can use the jmap utility to get a heap histogram from a running process:

It is recommended to use the latest utility, jcmd, instead of jmap utility for enhanced
diagnostics and reduced performance overhead. See Useful Commands for the
jcmd Utility.The command in the following example creates a heap histogram for a
running process using jcmd and results similar to the following jmap command.

jcmd <process id/main class> GC.class_histogram filename=Myheaphistogram

jmap -histo pid

The output shows the total size and instance count for each class type in the heap.
If a sequence of histograms is obtained (for example, every 2 minutes), then you
might be able to see a trend that can lead to further analysis.

• You can use the jmap utility to get a heap histogram from a core file, as shown in
the following example.

jmap -histo core_file

Chapter 3
Diagnose Leaks in Java Language Code

3-8

http://profiler.netbeans.org

For example, if you specify the -XX:+HeapDumpOnOutOfMemoryError
command-line option while running your application, then when an
OutOfMemoryError exception is thrown, the JVM will generate a heap dump. You
can then execute jmap on the core file to get a histogram, as shown in the following
example.

$ jmap -histo \ /java/re/javase/6/latest/binaries/solaris-sparc/bin/java core.
27421

Attaching to core core.27421 from executable
/java/re/javase/6/latest/binaries/solaris-sparc/bin/java, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 1.6.0-beta-b63
Iterating over heap. This may take a while...
Heap traversal took 8.902 seconds.

Object Histogram:

Size Count Class description

86683872 3611828 java.lang.String
20979136 204 java.lang.Object[]
403728 4225 * ConstMethodKlass
306608 4225 * MethodKlass
220032 6094 * SymbolKlass
152960 294 * ConstantPoolKlass
108512 277 * ConstantPoolCacheKlass
104928 294 * InstanceKlassKlass
68024 362 byte[]
65600 559 char[]
31592 359 java.lang.Class
27176 462 java.lang.Object[]
25384 423 short[]
17192 307 int[]
:

The above example shows that the OutOfMemoryError exception was caused by the
number of java.lang.String objects (3,611,828 instances in the heap). Without
further analysis it is not clear where the strings are allocated. However, the
information is still useful.

Monitor the Objects Pending Finalization
Different commands and options available to monitor the objects pending finalization.

When the OutOfMemoryError exception is thrown with the "Java heap space" detail
message, the cause can be excessive use of finalizers. To diagnose this, you have
several options for monitoring the number of objects that are pending finalization:

• The JConsole management tool can be used to monitor the number of objects that
are pending finalization. This tool reports the pending finalization count in the
memory statistics on the Summary tab pane. The count is approximate, but it can
be used to characterize an application and understand if it relies a lot on
finalization.

• On Oracle Solaris and Linux operating systems, the jmap utility can be used with
the -finalizerinfo option to print information about objects awaiting finalization.

Chapter 3
Diagnose Leaks in Java Language Code

3-9

• An application can report the approximate number of objects pending finalization
using the getObjectPendingFinalizationCount method of the
java.lang.management.MemoryMXBean class. Links to the API documentation and
example code can be found in Custom Diagnostic Tools. The example code can
easily be extended to include the reporting of the pending finalization count.

Diagnose Leaks in Native Code
Several techniques can be used to find and isolate native code memory leaks. In
general, there is no ideal solution for all platforms.

The following are some techniques to diagnose leaks in native code.

• Track All Memory Allocation and Free Calls

• Track All Memory Allocations in the JNI Library

• Track Memory Allocation with Operating System Support

• Find Leaks with the dbx Debugger

• Find Leaks with the libumem Tool

Track All Memory Allocation and Free Calls
Tools available to track all memory allocation and use of that memory.

A very common practice is to track all allocation and free calls of the native allocations.
This can be a fairly simple process or a very sophisticated one. Many products over
the years have been built up around the tracking of native heap allocations and the
use of that memory.

Tools like IBM Rational Purify and the runtime checking functionality of Sun Studio dbx
debugger can be used to find these leaks in normal native code situations and also
find any access to native heap memory that represents assignments to un-initialized
memory or accesses to freed memory. See Find Leaks with the dbx Debugger.

Not all these types of tools will work with Java applications that use native code, and
usually these tools are platform-specific. Because the virtual machine dynamically
creates code at runtime, these tools can incorrectly interpret the code and fail to run at
all, or give false information. Check with your tool vendor to ensure that the version of
the tool works with the version of the virtual machine you are using.

See sourceforge for many simple and portable native memory leak detecting
examples. Most libraries and tools assume that you can recompile or edit the source of
the application and place wrapper functions over the allocation functions. The more
powerful of these tools allow you to run your application unchanged by interposing
over these allocation functions dynamically. This is the case with the library libumem.so
first introduced in the Oracle Solaris 9 operating system update 3; see Find Leaks with
the libumem Tool.

Track All Memory Allocations in the JNI Library
If you write a JNI library, then consider creating a localized way to ensure that your
library does not leak memory, by using a simple wrapper approach.

The procedure in the following example is an easy localized allocation tracking
approach for a JNI library. First, define the following lines in all source files.

Chapter 3
Diagnose Leaks in Native Code

3-10

http://sourceforge.net/

#include <stdlib.h>
#define malloc(n) debug_malloc(n, __FILE__, __LINE__)
#define free(p) debug_free(p, __FILE__, __LINE__)

Then, you can use the functions in the following example to watch for leaks.

/* Total bytes allocated */
static int total_allocated;
/* Memory alignment is important */
typedef union { double d; struct {size_t n; char *file; int line;} s; } Site;
void *
debug_malloc(size_t n, char *file, int line)
{
 char *rp;
 rp = (char*)malloc(sizeof(Site)+n);
 total_allocated += n;
 ((Site*)rp)->s.n = n;
 ((Site*)rp)->s.file = file;
 ((Site*)rp)->s.line = line;
 return (void*)(rp + sizeof(Site));
}
void
debug_free(void *p, char *file, int line)
{
 char *rp;
 rp = ((char*)p) - sizeof(Site);
 total_allocated -= ((Site*)rp)->s.n;
 free(rp);
}

The JNI library would then need to periodically (or at shutdown) check the value of the
total_allocated variable to verify that it made sense. The preceding code could also
be expanded to save in a linked list the allocations that remained, and report where
the leaked memory was allocated. This is a localized and portable way to track
memory allocations in a single set of sources. You would need to ensure that
debug_free() was called only with the pointer that came from debug_malloc(),
and you would also need to create similar functions for realloc(), calloc(),
strdup(), and so forth, if they were used.

A more global way to look for native heap memory leaks involves interposition of the
library calls for the entire process.

Track Memory Allocation with Operating System Support
Tools available for tracking memory allocation in an operating system.

Most operating systems include some form of global allocation tracking support.

• On Windows, search the MSDN library for debug support. The Microsoft C++
compiler has the /Md and /Mdd compiler options that will automatically include extra
support for tracking memory allocation.

• Linux systems have tools such as mtrace and libnjamd to help in dealing with
allocation tracking.

• The Oracle Solaris operating system provides the watchmalloc tool. Oracle Solaris
9 operating system update 3 also introduced the libumem tool. See Find Leaks with
the libumem Tool.

Chapter 3
Diagnose Leaks in Native Code

3-11

http://msdn.microsoft.com/library

Find Leaks with the dbx Debugger
The dbx debugger includes the Runtime Checking (RTC) functionality, which can find
leaks. The dbx debugger is part of Oracle Solaris Studio and also available for Linux.

The following example shows a sample dbx session.

$ dbx ${java_home}/bin/java
Reading java
Reading ld.so.1
Reading libthread.so.1
Reading libdl.so.1
Reading libc.so.1
(dbx) dbxenv rtc_inherit on
(dbx) check -leaks
leaks checking - ON
(dbx) run HelloWorld
Running: java HelloWorld
(process id 15426)
Reading rtcapihook.so
Reading rtcaudit.so
Reading libmapmalloc.so.1
Reading libgen.so.1
Reading libm.so.2
Reading rtcboot.so
Reading librtc.so
RTC: Enabling Error Checking...
RTC: Running program...
dbx: process 15426 about to exec("/net/bonsai.sfbay/export/home2/user/ws/j2se/build/
solaris-i586/bin/java")
dbx: program "/net/bonsai.sfbay/export/home2/user/ws/j2se/build/solaris-i586/bin/
java"
just exec'ed
dbx: to go back to the original program use "debug $oprog"
RTC: Enabling Error Checking...
RTC: Running program...
t@1 (l@1) stopped in main at 0x0805136d
0x0805136d: main : pushl %ebp
(dbx) when dlopen libjvm { suppress all in libjvm.so; }
(2) when dlopen libjvm { suppress all in libjvm.so; }
(dbx) when dlopen libjava { suppress all in libjava.so; }
(3) when dlopen libjava { suppress all in libjava.so; }
(dbx) cont
Reading libjvm.so
Reading libsocket.so.1
Reading libsched.so.1
Reading libCrun.so.1
Reading libm.so.1
Reading libnsl.so.1
Reading libmd5.so.1
Reading libmp.so.2
Reading libhpi.so
Reading libverify.so
Reading libjava.so
Reading libzip.so
Reading en_US.ISO8859-1.so.3
hello world
hello world
Checking for memory leaks...

Chapter 3
Diagnose Leaks in Native Code

3-12

Actual leaks report (actual leaks: 27 total size: 46851 bytes)

 Total Num of Leaked Allocation call stack
 Size Blocks Block
 Address
========== ====== =========== =======================================
 44376 4 - calloc < zcalloc
 1072 1 0x8151c70 _nss_XbyY_buf_alloc < get_pwbuf < _getpwuid <
 GetJavaProperties <
Java_java_lang_System_initProperties <
 0xa740a89a< 0xa7402a14< 0xa74001fc
 814 1 0x8072518 MemAlloc < CreateExecutionEnvironment < main
 280 10 - operator new < Thread::Thread
 102 1 0x8072498 _strdup < CreateExecutionEnvironment < main
 56 1 0x81697f0 calloc < Java_java_util_zip_Inflater_init <
0xa740a89a<
 0xa7402a6a< 0xa7402aeb< 0xa7402a14< 0xa7402a14<
0xa7402a14
 41 1 0x8072bd8 main
 30 1 0x8072c58 SetJavaCommandLineProp < main
 16 1 0x806f180 _setlocale < GetJavaProperties <
 Java_java_lang_System_initProperties < 0xa740a89a<
0xa7402a14<
 0xa74001fc< JavaCalls::call_helper <
os::os_exception_wrapper
 12 1 0x806f2e8 operator new < instanceKlass::add_dependent_nmethod <
 nmethod::new_nmethod < ciEnv::register_method <
 Compile::Compile #Nvariant 1 <
C2Compiler::compile_method <
 CompileBroker::invoke_compiler_on_method <
 CompileBroker::compiler_thread_loop
 12 1 0x806ee60 CheckJvmType < CreateExecutionEnvironment < main
 12 1 0x806ede8 MemAlloc < CreateExecutionEnvironment < main
 12 1 0x806edc0 main
 8 1 0x8071cb8 _strdup < ReadKnownVMs < CreateExecutionEnvironment <
main
 8 1 0x8071cf8 _strdup < ReadKnownVMs < CreateExecutionEnvironment <
main

The output shows that the dbx debugger reports memory leaks if memory is not freed
at the time the process is about to exit. However, memory that is allocated at
initialization time and needed for the life of the process is often never freed in native
code. Therefore, in such cases, the dbx debugger can report memory leaks that are
not really leaks.

Note:

The previous example used two suppress commands to suppress the leaks
reported in the virtual machine: libjvm.so and the Java support library,
libjava.so.

Chapter 3
Diagnose Leaks in Native Code

3-13

Find Leaks with the libumem Tool
First introduced in the Oracle Solaris 9 operating system update 3, the libumem.so
library, and the modular debugger mdb can be used to debug memory leaks.

Before using libumem, you must preload the libumem library and set an environment
variable, as shown in the following example.

$ LD_PRELOAD=libumem.so
$ export LD_PRELOAD
$ UMEM_DEBUG=default
$ export UMEM_DEBUG

Now, run the Java application, but stop it before it exits. The following example uses
truss to stop the process when it calls the _exit system call.

$ truss -f -T _exit java MainClass arguments

At this point you can attach the mdb debugger, as shown in the following example.

$ mdb -p pid
>::findleaks

The ::findleaks command is the mdb command to find memory leaks. If a leak is
found, then this command prints the address of the allocation call, buffer address, and
nearest symbol.

It is also possible to get the stack trace for the allocation that resulted in the memory
leak by dumping the bufctl structure. The address of this structure can be obtained
from the output of the ::findleaks command.

See analyzing memory leaks using libumem for troubleshooting the cause for a memory
leak.

Chapter 3
Diagnose Leaks in Native Code

3-14

http://docs.oracle.com/docs/cd/E19424-01/820-4814/geogv/

4
Troubleshoot Performance Issues Using
JFR

This chapter identifies performance issues with a Java application and debugs these
issues using the Java Flight Recorder.
The Java Flight Recorder (JFR) is a commercial feature. You can use it for free on
developer desktops or laptops, and for evaluation purposes in test, development, and
production environments. However, to enable JFR on a production server, you must
have a commercial license. Using the JMC UI for other purposes on the JDK does
not require a commercial license.

To know more about the JFR commercial license, see the license agreement. To know
more about creating a flight recording, see How to Produce a Flight Recording.

The Java Flight Recorder is a great tool to investigate performance issues. No other
tool gives as much profiling data without skewing the results with its own performance
overhead. This chapter gives examples of performance issues that you can identify
and debug issues using the Java Flight Recorder.

This chapter contains the following sections:

• JFR Overhead

• Find Bottlenecks

• Garbage Collection Performance

• Synchronization Performance

• I/O Performance

• Code Execution Performance

JFR Overhead
When you measure performance, it is important to consider any performance
overhead added by the flight recorder itself. The overhead differs depending on the
application. In case you have any performance tests set up, you can measure if there
is any noticeable overhead on your specific application.

That said, the overhead for recording a standard profiling recording using the default
settings is less than 2 percent for most applications. Running with a standard
continuous recording generally has no measurable performance effect.

One major contributor to the overhead is the Heap Statistics events, which is disabled
by default. Enabling Heap Statistics triggers an old garbage collection at the beginning
and the at end of the test run. These old GCs give some extra pause times to the
application, so if you are measuring latency or if your environment is sensitive to
pause times, don't run with Heap Statistics enabled. Heap Statistics are great when
debugging memory leaks or when investigating the live set of the application. See
Debug a Memory Leak Using Java Flight Recorder.

4-1

http://www.oracle.com/technetwork/java/javase/terms/license/index.html

Note:

For performance profiling use cases, this information may not be necessary.

Find Bottlenecks
Different applications have different bottlenecks. For some applications, a bottleneck
may be waiting for I/O or networking, it may be synchronization between threads, or it
may be actual CPU usage. For others, a bottleneck may be garbage collection times.
It is possible that an application has more than one bottleneck.

One way to find out the application bottlenecks is to look at the Events tab. This is an
advanced tab, and there are a few things to do. First, click the Events tab, which
opens the Event Types tab on the left side of the JFR window. This is where you
select the events that you are interested in looking at. For now, select all Java
Application events except for Statistics and Allocation, as shown in Figure 4-1.

Figure 4-1 Find Bottlenecks - Java Application Events

Now, in all the Events tabs, you will only see these events. Next, from the Graph tab,
look at the main threads for the Java application, as shown in Figure 4-2.

Chapter 4
Find Bottlenecks

4-2

Figure 4-2 Find Bottlenecks - Main Threads from the Graph Tab

The Graph tab may be hard to grasp at first. Each row is a thread, and each thread
can have several lines. In Figure 4-2, each thread has a line, which represents the
Java Application events that were enabled in the Event Types tab for this recording.
The selected Java Application events all have the important property that they are all
thread-stalling events. Thread stalling indicates that the thread was not running your
application during the event, and they are all duration events. The duration event
measures the duration the application was not running.

From the Event Types tab, look at the color of each event. For example, yellow
represents Java Monitor Wait events. The yellow part is when threads are waiting for
an object. This often means that the thread is idle, perhaps waiting for a task. Red
represents the Java Monitor Blocked events or synchronization events. If your Java
application's important threads spend a lot of time being blocked, then that means that
a critical section of the application is single threaded, which is a bottleneck. Blue
represents the Socket Reads and Socket Writes events. Again, if the Java
application spends a lot of time waiting for sockets, then the main bottleneck may be in
the network or with the other machines that the application communicates.

From Figure 4-2, green represents parts that don't have any events. The green part
means that the thread is not sleeping, waiting, reading to or from a socket, or not being
blocked. In general, this is where the application code is run. If your Java application's
important threads are spending a lot of time without generating any application events,
then the bottleneck in the application is the time spent executing code or the CPU
itself.

Chapter 4
Find Bottlenecks

4-3

Note:

For most Java Application event types, only events longer than 20 ms are
recorded. (This threshold can be modified when starting the flight recording.)
To summarize, the areas may not have recorded events because the
application is doing a lot of short tasks, such as writing to a file (a small part at
a time) or spending time in synchronization for very short amounts of time.

Each of the previous bottlenecks can be further investigated within the flight recording.

The Event tab does not show garbage collections and whether garbage collections
may be a bottleneck. See the next topic about garbage collection performance.

Garbage Collection Performance
Java application issues with garbage collections can be diagnosed using JFR.

Tuning the HotSpot Garbage Collector can have a big effect on performance. See
Garbage Collection Tuning Guidefor general information.

First, take a profiling flight recording of your application when it is up and running. Do
not include the heap statistics, because that will trigger extra old collections. To get a
good sample, take a longer recording, for example 1 hour.

Select the Memory tab, and then select the GC Times subtab. GC Times is a good
tab to investigate the overall performance impact of the GC. From the top-right corner,
see the All Collections Pause Time section, and look at the Average Sum of Pauses,
Maximum Sum of Pauses, and Total Pause Time from the recording. The Sum of
Pauses is the total amount of time that the application was paused during a GC. Many
GCs do most of their work in the background. In those cases, the length of the GC
does not matter and what matters is how long the application actually had to stop.
Therefore, the Sum of Pauses is a good measure for the GC effect.

Figure 4-3 shows a flight recording for 5 minutes (as seen from the time select bar).
During this time, the average sum of pauses was 16 ms, the maximum sum of pauses
was 49 ms, and the total pause time was 2s 86 ms.

Chapter 4
Garbage Collection Performance

4-4

Figure 4-3 Garbage Collection Performance - GC Pauses

The main performance problems with garbage collections are usually either that
individual GCs take too long, or that too much time is spent in paused GCs (total GC
pauses).

When an individual GC takes too long, you may need to change the GC strategy.
Different GCs have different trade-offs when it comes to pause times verses
throughput performance. See Behavior-Based Tuning..

For example, you may also need to fix your application so that it makes less use of
finalizers or semireferences.

When the application spends too much time paused, there are different ways to work
around that.

One way is to increase the Java heap size. Look at the Garbage Collection subtab to
estimate the heap size used by the application, and change Xms and Xmx to a higher
value. The bigger the Java heap, the longer time it is between GCs. Watch out for any
memory leaks in the Java application, because that may cause more and more
frequent GCs until an OutOfMemoryError is thrown. For more information, see Debug a
Memory Leak Using Java Flight Recorder.

Another way to reduce the number for GCs is to allocate fewer temporary objects.
Under the Allocations tab, look at how much memory is allocated over the course of
the recording. Small objects are allocated inside TLABs, and large objects are
allocated outside TLABs. Often, the majority of allocations happen inside TLABs.

Last, to reduce the need of GCs, decrease the allocation rate. Select the Allocation in
new TLAB tab and then choose Allocations tab to look at the allocation sites and
stack traces that have the most memory pressure. You can either view it per class, or
select the Allocation by Thread to see which threads consume the most allocation.

For general details about the JFR Allocation tab, see Inspect a Flight Recording.

Chapter 4
Garbage Collection Performance

4-5

Some other settings may also increase GC performance of the Java application. See
Garbage Collection Tuning Guide in the Java Platform, Standard Edition HotSpot
Virtual Machine Garbage Collection Tuning Guide to discuss GC performance.

Synchronization Performance
To debug Java Application synchronization issues, or in other words where the
application threads spend a lot of time waiting to enter a monitor, look at the
Contention tab in the Threads tab group.

Take a look at the locks that are contended the most and the stack trace of the threads
waiting to acquire the lock, as shown in Figure 4-4.

Figure 4-4 Synchronization Performance - Contention Tab

From Figure 4-4, the range selector at the top lets you see where the events took
place. Zoom in on the range selector for the contention events in the selected time
range.

Typically, look for contention that you did not think would be an issue. Logging is a
common area that can be an unexpected bottleneck in some applications.

When you see performance degradation after a program update or at any specific
times in the Java application, take a flight recording when things are good, and take
another one when things are bad to look for a synchronization site that increases a lot.

Chapter 4
Synchronization Performance

4-6

Note:

The events shown in the range selector are not all synchronization events. By
default, contention events with a duration longer than 20 ms are recorded.
(This threshold can be modified when starting the flight recording.) Shorter
thresholds give more events and also potentially more overhead. If you believe
contention is an issue, then you could take a shorter recording with a very low
threshold (only a few milliseconds). When this is done on a live application,
make sure to start with a very short recording, and monitor the performance
overhead.

I/O Performance
You can diagnose I/O issues in an application by monitoring the Socket Read tab
under the I/O group.

When a Java application spends a lot of time either in Socket Read, Socket Write,
File Read, or File Write, then I/O or networking may be the bottleneck. To diagnose
I/O issues in applications, look at the Socket Read tab under the I/O group, as shown
in Figure 4-5.

Figure 4-5 I/O Performance Issues - Socket Read Tab

Figure 4-5 shows that the application had 100 reads from the remote address
198.51.100.0. The total number of bytes read is 356 bytes, and the total time spent
waiting is 1 min 57 s. Select the By Event tab at the top-left corner, and look at each
event to analyze the time spent and data read.

Chapter 4
I/O Performance

4-7

File or networking I/O issues are diagnosed in a similar fashion. Look at the files read
to or written to the most, then see each file read/write and the time spent on I/O.

All the tabs in I/O, by default list events with a duration longer than 20 ms. When
starting a flight recording, you can lower the File I/O Threshold or the Socket I/O
Threshold to gather more data, potentially with a higher performance effect.

Code Execution Performance
The code execution performance can be monitored using the Java Mission Control,
Call Tree tab.

When there are not a lot of Java Application events, it could be that the main
bottleneck of your application is the running code. First, look at the Threads tab, and
select the Overview tab. See CPU Usage Over Time. This shows the CPU usage of
the JVM being recorded and the total CPU usage on the machine. In case the JVM
CPU usage is low, but the CPU usage of the machine is high, which means some
other application is taking a lot of CPU. Then, look at the other applications running on
the system in the Processes tab from the System tab group. However, you may not
see their CPU usage, so it is usually easier to use OS tools such as Top or the task
manager to find out which processes are using a lot of CPU.

Select the Code tab group and look at the Hot Threads tab in case your application is
using a lot of CPU time. This tab shows the threads that use the most CPU time.
However, this information is based on method sampling, so it may not be 100%
accurate if the sample count is low. When a JFR is running, the JVM samples the
threads. By default, a continuous recording does only some method sampling, while a
profiling recording does as much as possible. The method sampling gathers data from
only those threads running code. The threads waiting for I/O, sleeping, waiting for
locks, and so on are not sampled. Therefore, threads with a lot of method samples are
the ones using the most CPU time; however, how much CPU is used by each thread is
not known.

The Hot Methods tab in the Code tab group helps find out where your application
spends most of the execution time. This tab shows all the samples grouped by top
method in the stack. Use the Call Tree tab to start with the lowest method in the stack
traces and then move upward. Figure 4-6 starts with Thread.run, and then looks at the
calls that have been most sampled.

Chapter 4
Code Execution Performance

4-8

Figure 4-6 Code Execution Performance - Call Tree Tab

Chapter 4
Code Execution Performance

4-9

Part II
Debug JVM Issues

Various debugging techniques to debug JVM issues.

This part describes causes and various debugging techniques for the following topics.

• Troubleshoot System Crashes

Provides guidance about specific procedures for troubleshooting system crashes.

• Troubleshoot Process Hangs and Loops

Provides guidance about specific procedures for troubleshooting hanging or
looping processes.

• Handle Signals and Exceptions

Provides guidance about signal and exception handling by Java HotSpot Server
VM.

5
Troubleshoot System Crashes

Information and guidance about some specific procedures for troubleshooting system
crashes.

A crash, or fatal error, causes a process to terminate abnormally. There are various
possible reasons for a crash. For example, a crash can occur due to a bug in the Java
HotSpot VM, in a system library, in a Java SE library or an API, in application native
code, or even in the operating system (OS). External factors, such as resource
exhaustion in the OS can also cause a crash.

Crashes caused by bugs in the Java HotSpot VM or in the Java SE library code are
rare. This chapter provides suggestions about how to examine a crash and work
around some of the issues (if possible) until the cause of the bug is diagnosed and
fixed.

In general, the first step with any crash is to locate the fatal error log. This is a text file
that the Java HotSpot VM generates in the event of a crash. See Fatal Error Log for an
explanation of how to locate this file, as well as a detailed description of the file.

This chapter contains the following sections:

• Determine Where the Crash Occurred

• Find a Workaround

• Microsoft Visual C++ Version Considerations

Determine Where the Crash Occurred
Examples that demonstrate how the error log can be used to find the cause of the
crash, and suggests some tips for troubleshooting the problem depending on the
cause.

The error log header indicates the type of error and the problematic frame, while the
thread stack indicates the current thread and stack trace. See Header Format.

The following are possible causes for the crash.

• Crash the Native Code

• Crash in the Compiled Code

• Crash in the HotSpot Compiler Thread

• Crash in the VM Thread

• Crash Due to Stack Overflow

5-1

Crash the Native Code
Analyze the crash dump file or core file to identify if the crash occurred in the native
code or the Java Native Interface (JNI) library code.

If the fatal error log indicates the problematic frame to be a native library, then there
might be a bug in the native code or the Java Native Interface (JNI) library code. The
crash could be caused by something else, but analysis of the library and any core file
or crash dump is a good starting place. Consider the extract in the following example
from the header of a fatal error log.

An unexpected error has been detected by HotSpot Virtual Machine:
#
SIGSEGV (0xb) at pc=0x417789d7, pid=21139, tid=1024
#
Java VM: Java HotSpot(TM) Server VM (6-beta2-b63 mixed mode)
Problematic frame:
C [libApplication.so+0x9d7]

In this case a SIGSEGV occurred with a thread executing in the library libApplication.so.

In some cases a bug in a native library manifests itself as a crash in Java VM code.
Consider the crash in the following example where a JavaThread fails while in the
_thread_in_vm state (meaning that it is executing in Java VM code).

An unexpected error has been detected by HotSpot Virtual Machine:
#
EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x08083d77, pid=3700, tid=2896
#
Java VM: Java HotSpot(TM) Client VM (1.5-internal mixed mode)
Problematic frame:
V [jvm.dll+0x83d77]

--------------- T H R E A D ---------------

Current thread (0x00036960): JavaThread "main" [_thread_in_vm, id=2896]
 :
Stack: [0x00040000,0x00080000), sp=0x0007f9f8, free space=254k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)
V [jvm.dll+0x83d77]
C [App.dll+0x1047] <========= C/native frame
j Test.foo()V+0
j Test.main([Ljava/lang/String;)V+0
v ~StubRoutines::call_stub
V [jvm.dll+0x80f13]
V [jvm.dll+0xd3842]
V [jvm.dll+0x80de4]
V [jvm.dll+0x87cd2]
C [java.exe+0x14c0]
C [java.exe+0x64cd]
C [kernel32.dll+0x214c7]
 :

In this case, although the problematic frame is a VM frame, the thread stack shows
that a native routine in App.dll has called into the VM (probably with JNI).

The first step to solving a crash in a native library is to investigate the source of the
native library where the crash occurred.

Chapter 5
Determine Where the Crash Occurred

5-2

• If the native library is provided by your application, then investigate the source
code of your native library. A significant number of issues with JNI code can be
identified by running the application with the -Xcheck:jni option added to the
command line. See The -Xcheck:jni Option.

• If the native library has been provided by another vendor and is used by your
application, then file a bug report against this third-party application and provide
the fatal error log information.

• If the native library where the crash occurred is part of the Java Runtime
Environment (JRE) (for example awt.dll, net.dll, and so forth), then it is possible
that you encountered a library or API bug. If so, gather as much data as possible,
and submit a bug or report, indicating the library name. You can find JRE libraries
in the jre/lib or jre/bin directories of the JRE distribution. See Submit a Bug
Report.

You can troubleshoot a crash in a native application library by attaching the native
debugger to the core file or crash dump, if it is available. Depending on the OS, the
native debugger is dbx, gdb, or windbg. See Native Operating System Tools.

Crash in the Compiled Code
Analyze the fatal error log to identify if the crash occurred in the compiled code.

If the fatal error log indicates that the crash occurred in compiled code, then it is
possible that you encountered a compiler bug that resulted in incorrect code
generation. You can recognize a crash in compiled code if the type of the problematic
frame is J (meaning a compiled Java frame). The following example shows such a
crash.

An unexpected error has been detected by HotSpot Virtual Machine:
#
SIGSEGV (0xb) at pc=0x0000002a99eb0c10, pid=6106, tid=278546
#
Java VM: Java HotSpot(TM) 64-Bit Server VM (1.6.0-beta-b51 mixed mode)
Problematic frame:
J org.foobar.Scanner.body()V
#
:
Stack: [0x0000002aea560000,0x0000002aea660000), sp=0x0000002aea65ddf0,
 free space=1015k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)
J org.foobar.Scanner.body()V

[error occurred during error reporting, step 120, id 0xb]

Note:

A complete thread stack is not available. The output line "error occurred during
error reporting" means that a problem arose trying to get the stack trace (this
might indicate stack corruption).

It might be possible to temporarily work around the issue by switching the compiler or
by excluding from compilation the method that provoked the crash.

See Working Around Crashes in the HotSpot Compiler Thread or Compiled Code.

Chapter 5
Determine Where the Crash Occurred

5-3

Crash in the HotSpot Compiler Thread
Analyze the fatal error log to identify if the crash occurred in the HotSpot compiler
thread.

If the fatal error log output shows that the current thread is a JavaThread named
CompilerThread0, CompilerThread1, or AdapterCompiler, then it is possible that you
encountered a compiler bug. In this case, it might be necessary to temporarily work
around the issue by switching the compiler (for example, by using the HotSpot Client
VM instead of the HotSpot Server VM, or vice versa), or by excluding from compilation
the method that provoked the crash.

See Working Around Crashes in the HotSpot Compiler Thread or Compiled Code.

Crash in the VM Thread
Analyze the fatal error log to identify if the crash occurred in the VMThread.

If the fatal error log output shows that the current thread is a VMThread, then look for the
line containing VM_Operation in the THREAD section. A VMThread is a special thread in the
HotSpot VM. It performs special tasks in the VM such as garbage collection (GC). If
the VM_Operation suggests that the operation is a GC, then it is possible that you
encountered an issue such as heap corruption.

Beside a GC issue, it could be something else (such as a compiler or runtime bug) that
leaves object references in the heap in an inconsistent or incorrect state. In this case,
collect as much information as possible about the environment and try possible
workarounds. If the issue is related to GC, then you might be able to temporarily work
around the issue by changing the GC configuration.

See Working Around Crashes During Garbage Collection.

Crash Due to Stack Overflow
A stack overflow in the Java language code will normally result in the offending thread
throwing the java.lang.StackOverflowError exception.

On the other hand, C and C++ write beyond the end of the stack and cause a stack
overflow. This is a fatal error that causes the process to terminate.

In the HotSpot implementation, Java methods share stack frames with C/C++ native
code, namely user native code and the virtual machine itself. Java methods generate
code that checks whether the stack space is available at a fixed distance towards the
end of the stack so that the native code can be called without exceeding the stack
space. The distance toward the end of the stack is called shadow pages. The size of
the shadow pages is between 3 and 20 pages, depending on the platform. This
distance is tunable, so that applications with native code needing more than the
default distance can increase the shadow page size. The option to increase shadow
pages is -XX:StackShadowPages=n, where n is greater than the default stack
shadow pages for the platform.

If your application gets a segmentation fault without a core file or fatal error log file,
see Fatal Error Log. Or if you application gets a STACK_OVERFLOW_ERROR on Windows or
the message "An irrecoverable stack overflow has occurred," then this indicates that
the value of StackShadowPages was exceeded, and more space is needed.

Chapter 5
Determine Where the Crash Occurred

5-4

If you increase the value of StackShadowPages, you might also need to increase the
default thread stack size using the -Xss parameter. Increasing the default thread stack
size might decrease the number of threads that can be created, so be careful in
choosing a value for the thread stack size. The thread stack size varies by platform
from 256 KB to 1024 KB.

An unexpected error has been detected by HotSpot Virtual Machine:
#
EXCEPTION_STACK_OVERFLOW (0xc00000fd) at pc=0x10001011, pid=296, tid=2940
#
Java VM: Java HotSpot(TM) Client VM (1.6-internal mixed mode, sharing)
Problematic frame:
C [App.dll+0x1011]
#

--------------- T H R E A D ---------------

Current thread (0x000367c0): JavaThread "main" [_thread_in_native, id=2940]
:
Stack: [0x00040000,0x00080000), sp=0x00041000, free space=4k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)
C [App.dll+0x1011]
C [App.dll+0x1020]
C [App.dll+0x1020]
:
C [App.dll+0x1020]
C [App.dll+0x1020]
...<more frames>...

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j Test.foo()V+0
j Test.main([Ljava/lang/String;)V+0
v ~StubRoutines::call_stub

You can interpret the following information from the above example.

• The exception is EXCEPTION_STACK_OVERFLOW.

• The thread state is _thread_in_native, which means that the thread is executing
native or JNI code.

• In the stack information, the free space is only 4 KB (a single page on a Windows
system). In addition, the stack pointer (sp) is at 0x00041000, which is close to the
end of the stack at 0x00040000.

• The printout of the native frames shows that a recursive native function is the
issue in this case. The output notation ...<more frames>... indicates that
additional frames exist but were not printed. The output is limited to 100 frames.

Find a Workaround
Possible workarounds if a crash occurs with a critical application.

If a crash occurs with a critical application, and the crash appears to be caused by a
bug in the HotSpot VM, then it might be desirable to quickly find a temporary
workaround. If the crash occurs with an application that is deployed with the most
recent release of the JDK, then the crash should be reported to Oracle.

Chapter 5
Find a Workaround

5-5

Important:

Even if a workaround in this section successfully eliminates a crash, the
workaround is not a fix for the problem, but merely a temporary solution. Place
a support call or file a bug report with the original configuration that
demonstrated the issue.

The following are three scenarios to find workarounds for system crashes.

• Working Around Crashes in the HotSpot Compiler Thread or Compiled Code

• Working Around Crashes During Garbage Collection

• Working Around Crashes Caused by Class Data Sharing

Working Around Crashes in the HotSpot Compiler Thread or Compiled
Code

Possible workarounds if the crash occurred in the hotspot compiler thread.

If the fatal error log indicates that the crash occurred in a compiler thread, then it is
possible (but not always the case) that you encountered a compiler bug. Similarly, if
the crash is in compiled code, then it is possible that the compiler generated incorrect
code.

In the case of the HotSpot Client VM (-client option), the compiler thread appears in
the error log as CompilerThread0. With the HotSpot Server VM, there are multiple
compiler threads, and these appear in the error log file as CompilerThread0,
CompilerThread1, and AdapterThread.

Since the JDK 7u5 release, the HotSpot compiler is ignored by default. A command-
line option is available to simulate the old behavior, which is useful when multiple
methods were excluded. See notable bug fixes in JDK 7u5.

To exclude methods from being compiled by using a JVM flag instead of
the .hotspot_compile file, see -XX:CompileCommand in Advanced JIT Compiler
Options in the Java Platform, Standard Edition Tools Reference.

The following example shows a fragment of an error log for a compiler bug that was
encountered and fixed during development. The log file shows that the HotSpot Server
VM is used, and the crash occurred in CompilerThread1. In addition, the log file shows
that the current CompileTask was the compilation of the java.lang.Thread.setPriority
method.

An unexpected error has been detected by HotSpot Virtual Machine:
#
:
Java VM: Java HotSpot(TM) Server VM (1.5-internal-debug mixed mode)
:
--------------- T H R E A D ---------------

Current thread (0x001e9350): JavaThread "CompilerThread1" daemon [_thread_in_vm,
id=20]

Stack: [0xb2500000,0xb2580000), sp=0xb257e500, free space=505k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

Chapter 5
Find a Workaround

5-6

http://www.oracle.com/technetwork/java/javase/7u5-relnotes-1653274.html

V [libjvm.so+0xc3b13c]
:

Current CompileTask:
opto: 11 java.lang.Thread.setPriority(I)V (53 bytes)

--------------- P R O C E S S ---------------

Java Threads: (=> current thread)
 0x00229930 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=21]
=>0x001e9350 JavaThread "CompilerThread1" daemon [_thread_in_vm, id=20]
 :

In this case, there are two potential workarounds:

• The brute force approach: Change the configuration so that the application is run
with the -client option to specify the HotSpot Client VM.

• The subtle approach: Assume that the bug only occurs during the compilation of
the java.lang.Thread.setPriority method, and exclude this method from
compilation.

The first approach (to use the -client option) might be trivial to configure in some
environments. In others, it might be more difficult if the configuration is complex or if
the command line to configure the VM is not readily accessible. In general, switching
from the HotSpot Server VM to the HotSpot Client VM also reduces the peak
performance of an application. Depending on the environment, this might be
acceptable until the issue is diagnosed and fixed.

The second approach (exclude the method from compilation) requires creating the
file .hotspot_compiler in the working directory of the application. The following example
shows this approach.

exclude java/lang/Thread setPriority

In general, the format of this file is excludeclassmethod, where class is the class (fully
qualified with the package name) and method is the name of the method. Constructor
methods are specified as <init> and static initializers are specified as <clinit>.

Note:

The.hotspot_compiler file is an unsupported interface. It is documented here
solely for the purposes of troubleshooting and finding a temporary
workaround.

After the application is restarted, the compiler will not attempt to compile any of the
methods excluded in the .hotspot_compiler file. In some cases this can provide
temporary relief until the root cause of the crash is diagnosed and the bug is fixed.

In order to verify that the HotSpot VM correctly located and processed
the .hotspot_compiler file that is shown in the previous example from the second
approach, look for the log information at runtime.

Chapter 5
Find a Workaround

5-7

Note:

The file name separator is a dot, not a slash.

Working Around Crashes During Garbage Collection
Possible workaround if the crash occurs during garbage collection.

If a crash occurs during garbage collection (GC), then the fatal error log reports that a
VM_Operation is in progress. For the purpose of this discussion, assume that the mostly
concurrent GC (-XX:+UseConcMarkSweep) is not in use. The VM_Operation is shown
in the THREAD section of the log and indicates one of the following situations:

• Generation collection for allocation

• Full generation collection

• Parallel GC failed allocation

• Parallel GC failed permanent allocation

• Parallel GC system GC

Most likely, the current thread reported in the log is the VMThread. This is the special
thread used to execute special tasks in the HotSpot VM. The following example is a
fragment of the fatal error log from a crash in the serial garbage collector.

--------------- T H R E A D ---------------

Current thread (0x002cb720): VMThread [id=3252]

siginfo: ExceptionCode=0xc0000005, reading address 0x00000000

Registers:
EAX=0x0000000a, EBX=0x00000001, ECX=0x00289530, EDX=0x00000000
ESP=0x02aefc2c, EBP=0x02aefc44, ESI=0x00289530, EDI=0x00289530
EIP=0x0806d17a, EFLAGS=0x00010246

Top of Stack: (sp=0x02aefc2c)
0x02aefc2c: 00289530 081641e8 00000001 0806e4b8
0x02aefc3c: 00000001 00000000 02aefc9c 0806e4c5
0x02aefc4c: 081641e8 081641c8 00000001 00289530
0x02aefc5c: 00000000 00000000 00000001 00000001
0x02aefc6c: 00000000 00000000 00000000 08072a9e
0x02aefc7c: 00000000 00000000 00000000 00035378
0x02aefc8c: 00035378 00280d88 00280d88 147fee00
0x02aefc9c: 02aefce8 0806e0f5 00000001 00289530
Instructions: (pc=0x0806d17a)
0x0806d16a: 15 08 83 3d c0 be 15 08 05 53 56 57 8b f1 75 0f
0x0806d17a: 0f be 05 00 00 00 00 83 c0 05 a3 c0 be 15 08 8b

Stack: [0x02ab0000,0x02af0000), sp=0x02aefc2c, free space=255k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)
V [jvm.dll+0x6d17a]
V [jvm.dll+0x6e4c5]
V [jvm.dll+0x6e0f5]
V [jvm.dll+0x71771]
V [jvm.dll+0xfd1d3]
V [jvm.dll+0x6cd99]

Chapter 5
Find a Workaround

5-8

V [jvm.dll+0x504bf]
V [jvm.dll+0x6cf4b]
V [jvm.dll+0x1175d5]
V [jvm.dll+0x1170a0]
V [jvm.dll+0x11728f]
V [jvm.dll+0x116fd5]
C [MSVCRT.dll+0x27fb8]
C [kernel32.dll+0x1d33b]

VM_Operation (0x0373f71c): generation collection for allocation, mode:
 safepoint, requested by thread 0x02db7108

Note:

A crash during garbage collection does not suggest a bug in the garbage
collection implementation. It could also indicate a compiler or runtime bug, or
some other issue.

You can try the following workarounds if you repeatedly get a crash during garbage
collection:

• Switch GC configuration. For example, if you are using the serial collector, then try
the throughput collector, or vice versa.

• If you are using the HotSpot Server VM, then try the HotSpot Client VM.

If you are not sure which garbage collector is in use, then you can use the jmap utility
on the Oracle Solaris and Linux operating systems. See The jmap Utility to get the
heap information from the core file, if the core file is available. In general, if the GC
configuration is not specified on the command line, then the serial collector will be
used on Windows. On the Oracle Solaris and Linux operating systems, it depends on
the machine configuration. If the machine has at least 2 GB of memory and has at
least 2 CPUs, then the throughput collector (Parallel GC) will be used. For smaller
machines, the serial collector is the default. The option to select the serial collector is -
XX:+UseSerialGC and the option to select the throughput collector is -XX:
+UseParallelGC. If, as a workaround, you switch from the throughput collector to
the serial collector, then you might experience some performance degradation on
multiprocessor systems. This might be acceptable until the root issue is diagnosed and
fixed.

Working Around Crashes Caused by Class Data Sharing

When the JRE is installed, the installer loads a set of classes from the system JAR file
into a private internal representation and dumps that representation to a file called a
shared archive. When the JVM starts, the shared archive is memory-mapped to allow
sharing of read-only JVM metadata for these classes among multiple JVM processes.
The startup time is reduced thus saving the cost because restoring the shared archive
is faster than loading the classes. Class data sharing is supported with the Java
HotSpot VM. The G1, serial, parallel, and parallelOldGC garbage collectors are
supported. The shared string feature (part of class data sharing) supports only the G1
garbage collector on non-Windows platforms.

The fatal error log prints the version string in the header of the log. If sharing is
enabled, it is indicated by the text "sharing," as shown in the following example.

Chapter 5
Find a Workaround

5-9

An unexpected error has been detected by HotSpot Virtual Machine:
#
EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x08083d77, pid=3572, tid=784
#
Java VM: Java HotSpot(TM) Client VM (1.5-internal mixed mode, sharing)
Problematic frame:
V [jvm.dll+0x83d77]

CDS can be disabled by providing the -Xshare:off option on the command line. If
the crash only occurs with sharing enabled, then it is possible that you encountered a
bug in this feature. In that case, gather as much information as possible and submit a
bug report.

Microsoft Visual C++ Version Considerations
The JDK software is built on Windows using Microsoft Visual Studio 2013.

If you experience a crash with a Java application and if you have native or JNI libraries
that are compiled with a different release of the compiler, then you must consider
compatibility issues between the runtimes. Specifically, your environment is supported
only if you follow the Microsoft guidelines when dealing with multiple runtimes. For
example, if you allocate memory using one runtime, then you must release it using the
same runtime. Unpredictable behavior or crashes can happen if you release a
resource using a different library than the one that allocated the resource.

Chapter 5
Microsoft Visual C++ Version Considerations

5-10

6
Troubleshoot Process Hangs and Loops

This chapter provides information and guidance about some specific procedures for
troubleshooting hanging or looping processes.
Problems can occur that involve hanging or looping processes. A hang can occur for
many reasons, but often stems from a deadlock in an application code, API code, or
library code. A hang can be due to a bug in the Java HotSpot VM.

Sometimes an apparent hang turns out to be, in fact, a loop. For example, a bug in a
VM process that causes one or more threads to go into an infinite loop can consume
all available CPU cycles.

The initial step when you diagnose a hang is to find out if the VM process is idle or
consuming all available CPU cycles. You can do this using a native operating system
(OS) utility. If the process appears to be busy and is consuming all available CPU
cycles, then it is likely that the issue is a looping thread rather than a deadlock. On the
Oracle Solaris operating system, for example, the command prstat -L -p pid can be
used to report the statistics for all lightweight processes (LWPs) in the target process
and therefore will identify the threads that are consuming a lot of CPU cycles.

This chapter contains the following sections:

• Diagnose a Loop Process

• Diagnose a Hung Process

• Oracle Solaris 8 Thread Library

Diagnose a Loop Process
If a VM process appears to be looping, the first step is to try to get a thread dump. If a
thread dump can be obtained, it will often be clear which thread is looping. If the
looping thread can be identified, then the trace stack in the thread dump can provide
the direction on where (and maybe why) the thread is looping.

If the application console (standard input/output) is available, then press the Control+\
key combination (on Oracle Solaris or Linux) or the Control+Break key combination
(on Windows) to cause the HotSpot VM to print a thread dump, including thread state.
On Oracle Solaris and Linux operating systems the thread dump can also be obtained
by sending a SIGQUIT to the process (command kill -QUIT pid). In this case, the
thread dump is printed to the standard output of the target process. The output might
be directed to a file, depending on how the process was started.

If the Java process is started with the -XX:+PrintClassHistogram command-line
option, then the Control+Break handler will produce a heap histogram.

If a thread dump can be obtained, then a good place to start is the thread stacks of the
threads that are in the RUNNABLE state. See Thread Dump, for more information about
the format of the thread dump, as well as a table of the possible thread states in the
thread dump. In some cases, it might be necessary to get a sequence of thread dumps
in order to determine which threads appear to be continuously busy.

6-1

If the application console is not available (for example, the process is running in the
background, or the VM output is directed to an unknown location), then the jstack
utility can be used to get the stack thread. See The jstack Utility for more about the
output of this utility. The jstack utility should also be used if the thread dump does not
provide any evidence that a Java thread is looping.

When reviewing the output of the jstack utility, focus initially on the threads that are in
the RUNNABLE state. This is the most likely state for threads that are busy and possibly
looping. It might be necessary to execute jstack a number of times to get a better idea
of which threads are looping. If a thread appears to be always in the RUNNABLE state,
then the -m option can be used to print the native frames and provide a further hint
about what the thread is doing. If a thread appears to be looping continuously while in
the RUNNABLE state, then this situation can indicate a potential HotSpot VM bug that
needs further investigation.

If the VM does not respond to Control+\, then this could indicate a VM bug rather than
an issue with the application or library code. In this case, use jstack with the -m option
to get a thread stack for all threads. The output will include the thread stacks for VM
internal threads. In this stack trace, identify threads that do not appear to be waiting.
For example, on the Oracle Solaris operating system, you identify the threads that are
not in functions such as __lwp_cond_wait, __lwp_park, ___pollsys, or other blocking
functions. If it appears that the looping is caused by a VM bug, then collect as much
data as possible and submit a bug report. See Submit a Bug Report for more about
data collection.

Diagnose a Hung Process
Use the thread dump to diagnose a hung process.

If the application appears to be hung and the process appears to be idle, then the first
step is to try to get a thread dump. If the application console is available, then press
Control+\ (on Oracle Solaris or Linux), or Control+Break (on Windows) to cause the
HotSpot VM to print a thread dump. On the Oracle Solaris and Linux operating
systems, the thread dump can also be obtained by sending a SIGQUIT to the process
(command kill -QUIT pid). If the hung process can generate a thread dump, then the
output is printed to the standard output of the target process.

After printing the thread dump, the HotSpot VM executes a deadlock detection
algorithm.

The following sections describe various situations for a hung process.

• Deadlock Detected

• Deadlock Not Detected

• No Thread Dump

Deadlock Detected
If a deadlock is detected, then it will be printed along with the stack trace of the
threads involved in the deadlock.

The following example shows the stack trace for this situation.

Found one Java-level deadlock:
=============================
"AWT-EventQueue-0":

Chapter 6
Diagnose a Hung Process

6-2

 waiting to lock monitor 0x000ffbf8 (object 0xf0c30560, a
java.awt.Component$AWTTreeLock),
 which is held by "main"
"main":
 waiting to lock monitor 0x000ffe38 (object 0xf0c41ec8, a java.util.Vector),
 which is held by "AWT-EventQueue-0"

Java stack information for the threads listed above:
===
"AWT-EventQueue-0":
 at java.awt.Container.removeNotify(Container.java:2503)
 - waiting to lock <0xf0c30560> (a java.awt.Component$AWTTreeLock)
 at java.awt.Window$1DisposeAction.run(Window.java:604)
 at java.awt.Window.doDispose(Window.java:617)
 at java.awt.Dialog.doDispose(Dialog.java:625)
 at java.awt.Window.dispose(Window.java:574)
 at java.awt.Window.disposeImpl(Window.java:584)
 at java.awt.Window$1DisposeAction.run(Window.java:598)
 - locked <0xf0c41ec8> (a java.util.Vector)
 at java.awt.Window.doDispose(Window.java:617)
 at java.awt.Window.dispose(Window.java:574)
 at javax.swing.SwingUtilities$SharedOwnerFrame.dispose(SwingUtilities.java:
1743)
 at
javax.swing.SwingUtilities$SharedOwnerFrame.windowClosed(SwingUtilities.java:1722)
 at java.awt.Window.processWindowEvent(Window.java:1173)
 at javax.swing.JDialog.processWindowEvent(JDialog.java:407)
 at java.awt.Window.processEvent(Window.java:1128)
 at java.awt.Component.dispatchEventImpl(Component.java:3922)
 at java.awt.Container.dispatchEventImpl(Container.java:2009)
 at java.awt.Window.dispatchEventImpl(Window.java:1746)
 at java.awt.Component.dispatchEvent(Component.java:3770)
 at java.awt.EventQueue.dispatchEvent(EventQueue.java:463)
 at
java.awt.EventDispatchThread.pumpOneEventForHierarchy(EventDispatchThread.java:214)
 at
java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:163)
 at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:157)
 at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:149)
 at java.awt.EventDispatchThread.run(EventDispatchThread.java:110)
"main":
 at java.awt.Window.getOwnedWindows(Window.java:844)
 - waiting to lock <0xf0c41ec8> (a java.util.Vector)
 at
javax.swing.SwingUtilities$SharedOwnerFrame.installListeners(SwingUtilities.java:
1697)
 at javax.swing.SwingUtilities$SharedOwnerFrame.addNotify(SwingUtilities.java:
1690)
 at java.awt.Dialog.addNotify(Dialog.java:370)
 - locked <0xf0c30560> (a java.awt.Component$AWTTreeLock)
 at java.awt.Dialog.conditionalShow(Dialog.java:441)
 - locked <0xf0c30560> (a java.awt.Component$AWTTreeLock)
 at java.awt.Dialog.show(Dialog.java:499)
 at java.awt.Component.show(Component.java:1287)
 at java.awt.Component.setVisible(Component.java:1242)
 at test01.main(test01.java:10)

Found 1 deadlock.

The default deadlock detection works with locks that are obtained using the
synchronized keyword, as well as with locks that are obtained using the

Chapter 6
Diagnose a Hung Process

6-3

java.util.concurrent package. If the Java VM flag -XX:+PrintConcurrentLocks
is set, then the stack trace also shows a list of lock owners.

If a deadlock is detected, then you must examine the output in more detail in order to
understand the deadlock. In the previous example, the thread main is locking object
0xf0c30560 and is waiting to enter 0xf0c41ec8, which is locked by thread AWT-
EventQueue-0. However, thread AWT-EventQueue-0 is waiting to enter 0xf0c30560, which is
locked by main.

The detail in the stack traces provides information to help you find the deadlock.

Deadlock Not Detected
If the thread dump is printed and no deadlocks are found, then the issue might be a
bug in which a thread is waiting for a monitor that is never notified. This could be a
timing issue or a general logic bug.

To find out more about the issue, examine each of the threads in the thread dump and
each thread that is blocked in Object.wait(). The caller frame in the stack trace
indicates the class and method that is invoking the wait() method. If the code was
compiled with line number information (the default), then this provides a direction as to
the code to examine. In most cases, you must have some knowledge of the
application logic or library in order to diagnose this issue further. In general, you must
understand how the synchronization works in the application and the details and
conditions for when and where the monitors are notified.

No Thread Dump
If the VM is deadlocked or hung, use the jstack command.

If the VM does not respond to Control+\ or Control+Break, then it is possible that the
VM is deadlocked or hung for some other reason. In that case, use The jstack Utility to
get a thread dump. This also applies in the case when the application is not
accessible, or the output is directed to an unknown location.

In the jstack output, examine each of the threads in the BLOCKED state. The top frame
can sometimes indicate why the thread is blocked (for example, Object.wait or
Thread.sleep). The rest of the stack will give an indication of what the thread is doing.
This is particularly true when the source is compiled with line number information (the
default), and you can cross-reference the source code.

If a thread is in the BLOCKED state and the reason is not clear, then use the -m option to
get a mixed stack. With the mixed stack output, it should be possible to identify why
the thread is blocked. If a thread is blocked trying to enter a synchronized method or
block, then you will see frames such as ObjectMonitor::enter near the top of the stack.
The following example shows a sample, mixed-stack output.

----------------- t@13 -----------------
0xff31e8b8 ___lwp_cond_wait + 0x4
0xfea8c810 void ObjectMonitor::EnterI(Thread*) + 0x2b8
0xfeac86b8 void ObjectMonitor::enter2(Thread*) + 0x250
:

Threads in the RUNNABLE state might also be blocked. The top frames in the mixed stack
should indicate what the thread is doing.

Chapter 6
Diagnose a Hung Process

6-4

One specific thread to check is VMThread. This is the special thread used to execute
operations like garbage collection (GC). It can be identified as the thread that is
executing VMThread::run() in its initial frames. On the Oracle Solaris, it is typically t@4.
On Linux, it should be identifiable using the C++ mangled name _ZN8VMThread4loopEv.

In general, the VM thread is in one of three states: waiting to execute a VM operation,
synchronizing all threads in preparation for a VM operation, or executing a VM
operation. If you suspect that a hang is a HotSpot VM bug rather than an application or
class library deadlock, then pay special attention to the VM thread.

If the VM thread appears to be stuck in SafepointSynchronize::begin, then this could
indicate an issue bringing the VM to a safepoint. A safepoint indicates that all threads
executing in the VM are blocked and waiting for a special operation, such as GC, to
complete.

If the VM thread appears to be stuck in function, where function ends in doit, then
this could also indicate a VM problem.

In general, if you can execute the application from the command line, and you get to a
state where the VM does not respond to Control+\ or Control+Break, it is more likely
that you have uncovered a VM bug, a thread library issue, or a bug in another library.
When this occurs, get a crash dump. See Collect Core Dumps for instructions about
gathering as much information as possible, and submit a bug report or call support.

One other tool to mention in the context of hung processes is the pstack utility on the
Oracle Solaris operating system. On the Oracle Solaris 8 and 9 operating systems,
this utility prints the thread stacks for LWPs in the target process. On the Oracle
Solaris 10 operating system and starting with the JDK 5.0 release, the output of pstack
is similar, though not identical, to the output from jstack -m. As with jstack, the Oracle
Solaris 10 operating system implementation of pstack prints the fully qualified class
name, method name, and bytecode index (BCI). It will also print line numbers for
cases where the source was compiled with line number information (the default). This
is useful for developers and administrators who are familiar with the other utilities on
the Oracle Solaris operating system that exercise features of the /proc file system.

The equivalent tool of pstack on Linux is lsstack. This utility is included in some
distributions and otherwise obtained from sourceforge. At the time of this writing,
lsstack reported native frames only.

Oracle Solaris 8 Thread Library
The default thread library on the Oracle Solaris 8 operating system is often referred to
as the T1 library. This thread library implemented the m:n threading model, where m
user threads are mapped to n kernel-level threads (LWPs). The Oracle Solaris 8
operating system also shipped with an alternative and newer thread library
in /usr/lib/lwp. The alternative thread library is often referred to as the T2 library,
and it became the default thread library in the Oracle Solaris 9 and 10 operating
systems. In older releases of J2SE (pre-1.4.0 in particular), there were a number of
issues with the default thread library (for example, bugs in the thread library, LWP
synchronization problems, or LWP starvation). LWP starvation is a scenario in which
there are user threads in the RUNNABLE state, but there are no kernel level threads
available.

Although the issues cited are historical, it should be noted that when the JDK software
is deployed on the Oracle Solaris 8 operating system, it still uses the T1 library by
default. LWP starvation type issues do not happen because the JDK release uses

Chapter 6
Oracle Solaris 8 Thread Library

6-5

http://sourceforge.net

"bound threads" so that each user thread is bound to a kernel thread. However, in the
event that you encounter an issue, such as a hang, that you believe is a thread library
issue, then you can instruct the HotSpot VM to use the T2 library by adding /usr/lib/lwp
to the LD_LIBRARY_PATH. To check if the T2 library is in use, issue the command pldd
pid to list the libraries loaded by the specified process.

Chapter 6
Oracle Solaris 8 Thread Library

6-6

7
Handle Signals and Exceptions

This chapter provides information about how signals and exceptions are handled by
the Java HotSpot Virtual Machine. It also describes the signal chaining facility,
available on the Oracle Solaris, Linux, and macOS operating systems, which facilitates
writing applications that must install their own signal handlers.
This chapter contains the following sections:

• Handle Signals on Oracle Solaris, Linux, and macOS

• Handle Exceptions on Windows

• Signal Chaining

• Handle Exceptions Using the Java HotSpot VM

• Console Handlers

• Signals Used in Oracle Solaris, Linux, and macOS

Handle Signals on Oracle Solaris, Linux, and macOS
The Java HotSpot VM installs signal handlers to implement various features and to
handle fatal error conditions.

For example, in an optimization to avoid explicit null checks in cases where
java.lang.NullPointerException will be thrown rarely, the SIGSEGV signal is caught and
handled, and the NullPointerException is thrown.

In general, there are two categories where signal/traps happen:

• When signals are expected and handled, like implicit null-handling. Another
example is the safepoint polling mechanism, which protects a page in memory
when a safepoint is required. Any thread that accesses that page causes a
SIGSEGV, which results in the execution of a stub that brings the thread to a
safepoint.

• Unexpected signals. This includes a SIGSEGV when executing in VM code, Java
Native Interface (JNI) code, or native code. In these cases, the signal is
unexpected, so fatal error handling is invoked to create the error log and terminate
the process.

Table 7-2 lists the signals that are currently used on the Oracle Solaris, Linux, and
macOS operating systems.

Handle Exceptions on Windows
On Windows, an exception is an event that occurs during the execution of a program.

There are two kinds of exceptions: hardware exceptions and software exceptions.
Hardware exceptions are comparable to signals such as SIGSEGV and SIGKILL on the
Oracle Solaris and Linux operating systems. Software exceptions are initiated explicitly
by applications or the operating system using the RaiseException() API.

7-1

On Windows, the mechanism for handling both hardware and software exceptions is
called structured exception handling (SEH). This is stack frame-based exception
handling similar to the C++ and Java exception handling mechanism. In C++, the __try
and __except keywords are used to guard a section of code that might result in an
exception, as shown in the following example.

__try {
 // guarded body of code
 } __except (filter-expression) {
 // exception-handler block
 }

The __except block is filtered by a filter expression that uses the integer exception
code returned by the GetExceptionCode() API, exception information returned by
the GetExceptionInformation() API, or both.

The filter expression should evaluate to one of the following values:

• EXCEPTION_CONTINUE_EXECUTION = -1

The filter expression repaired the situation, and execution continues where the
exception occurred. Unlike some exception schemes, SEH supports the
resumption model as well. This is much like the UNIX signal handling in the
sense that after the signal handler finishes, the execution continues where the
program was interrupted. The difference is that the handler in this case is just the
filter expression itself and not the __except block. However, the filter expression
might also involve a function call.

• EXCEPTION_CONTINUE_SEARCH = 0

The current handler cannot handle this exception. Continue the handler search for
the next handler. This is similar to the catch block not matching an exception type
in C++ and Java.

• EXCEPTION_EXECUTE_HANDLER = 1

The current handler matches and can handle the exception. The __except block is
executed.

The __try and __finally keywords are used to construct a termination handler, as
shown in the following example.

__try {
 // guarded body of code
} __finally {
 // __finally block
}

When control leaves the __try block (after an exception or without an exception), the
__finally block is executed. Inside the __finally block, the
AbnormalTermination() API can be called to test whether control continued after
the exception or not.

Windows programs can also install a top-level unhandled exception filter function to
catch exceptions that are not handled in the __try/__except block. This function is
installed on a process-wide basis using the SetUnhandledExceptionFilter()
API. If there is no handler for an exception, then UnhandledExceptionFilter() is
called, and this will call the top-level unhandled exception filter function, if any, to catch
that exception. This function also shows a message box to notify the user about the
unhandled exception.

Chapter 7
Handle Exceptions on Windows

7-2

Windows exceptions are comparable to Unix synchronous signals that are attributable
to the current execution stream. In Windows, asynchronous events such as console
events (for example, the user pressing Control+C at the console) are handled by the
console control handler registered using the SetConsoleCtlHandler() API.

If an application uses the signal() API on Windows, then the C runtime library
(CRT) maps both Windows exceptions and console events to appropriate signals or C
runtime errors. For example, CRT maps Control+C to SIGINT and all other console
events to SIGBREAK. Similarly, if you register the SIGSEGV handler, CRT translates the
corresponding exception to a signal. CRT startup code implements a __try/__except
block around the main() function. The CRT's exception filter function (named
_XcptFilter) maps the Win32 exceptions to signals and dispatches signals to their
appropriate handlers. If a signal's handler is set to SIG_DFL (default handling), then
_XcptFilter calls UnhandledExceptionFilter.

The vectored exception handling mechanism can also be used. Vectored handlers
are not frame-based handlers. A program can register zero or more vectored
exception handlers using the AddVectoredExceptionHandler API. Vectored
handlers are invoked before structured exception handlers, if any, are invoked,
regardless of where the exception occurred.

vectored exception handler returns one of the following values:

• EXCEPTION_CONTINUE_EXECUTION: Skip the next vectored and SEH handlers.

• EXCEPTION_CONTINUE_SEARCH: Continue to the next vectored or SEH handler.

See the Microsoft website to know more on Windows exception handling.

Signal Chaining
Signal chaining enables you to write applications that need to install their own signal
handlers. This facility is available on Solaris, Linux, and macOS.

The signal chaining facility has the following features:

• Support for preinstalled signal handlers when you create Oracle’s HotSpot Virtual
Machine.

When the HotSpot VM is created, the signal handlers for signals that are used by
the HotSpot VM are saved. During execution, when any of these signals are raised
and are not to be targeted at the HotSpot VM, the preinstalled handlers are
invoked. In other words, preinstalled signal handlers are chained behind the
HotSpot VM handlers for these signals.

• Support for the signal handlers that are installed after you create the HotSpot VM,
either inside the Java Native Interface code or from another native thread.

Your application can link and load the libjsig.so shared library before the libc/
libthread/libpthread library. This library ensures that calls such as signal(),
sigset(), and sigaction() are intercepted and don’t replace the signal handlers
that are used by the HotSpot VM, if the handlers conflict with the signal handlers
that are already installed by HotSpot VM. Instead, these calls save the new signal
handlers. The new signal handlers are chained behind the HotSpot VM signal
handlers for the signals. During execution, when any of these signals are raised
and are not targeted at the HotSpot VM, the preinstalled handlers are invoked.

If support for signal handler installation after the creation of the VM is not required,
then the libjsig.so shared library is not needed.

Chapter 7
Signal Chaining

7-3

http://www.microsoft.com

To enable signal chaining, perform one of the following procedures to use the
libjsig.so shared library:

– Link the libjsig.so shared library with the application that creates or embeds
the HotSpot VM:

cc -L libjvm.so-directory -ljsig -ljvm java_application.c

– Use the LD_PRELOAD environment variable:

* Korn shell (ksh):

export LD_PRELOAD=libjvm.so-directory/libjsig.so; java_application

* C shell (csh):

setenv LD_PRELOAD libjvm.so-directory/libjsig.so; java_application

The interposed signal() , sigset() , and sigaction() calls return the saved signal
handlers, not the signal handlers installed by the HotSpot VM and are seen by the
operating system.

Note:

The SIGQUIT, SIGTERM, SIGINT, and SIGHUP signals cannot be chained. If the
application must handle these signals, then consider using the —Xrs option.

Enable Signal Chaining in macOS

To enable signal chaining in macOS, set the following environment variables:

• DYLD_INSERT_LIBRARIES: Preloads the specified libraries instead of the LD_PRELOAD
environment variable available on Solaris and Linux.

• DYLD_FORCE_FLAT_NAMESPACE: Enables functions in the libjsig library and replaces
the OS implementations, because of macOS’s two-level namespace (a symbol's
fully qualified name includes its library). To enable this feature, set this
environment variable to any value.

The following command enables signal chaining by preloading the libjsig library:

$ DYLD_FORCE_FLAT_NAMESPACE=0 DYLD_INSERT_LIBRARIES="JAVA_HOME/lib/libjsig.dylib"

java MySpiffyJavaApp

Note:

The library file name on macOS is libjsig.dylib not libjsig.so as it is on
Solaris or Linux.

Handle Exceptions Using the Java HotSpot VM
The HotSpot VM installs a top-level exception handler during initialization using the
AddVectoredExceptionHandlerAPI for 64-bit systems.

It also installs the Win32 SEH using a __try /__except block in C++ around the thread
(internal) start function call for each thread created.

Chapter 7
Handle Exceptions Using the Java HotSpot VM

7-4

Finally, it installs an exception handler around JNI functions.

If an application must handle structured exceptions in JNI code, then it can use __try /
__except statements in C++. However, if it must use the vectored exception handler in
JNI code, then the handler must return EXCEPTION_CONTINUE_SEARCH to continue to the
VM's exception handler.

In general, there are two categories in which exceptions happen:

• When exceptions are expected and handled. Examples include the implicit null
handling cited, previously where accessing a null causes an
EXCEPTION_ACCESS_VIOLATION, which is handled.

• Unexpected exceptions. An example is an EXCEPTION_ACCESS_VIOLATION when
executing in VM code, in JNI code, or in native code. In these cases, the signal is
unexpected, and fatal error handling is invoked to create the error log and
terminate the process.

Console Handlers
This topic describes a list of console events that are registered with the Java HotSpot
VM.

The Java HotSpot VM registers console events, as shown in Table 7-1.

Table 7-1 Console Events

Console Event Signal Usage

CTRL_C_EVENT SIGINT This event and signal is used to terminate a
process. (Optional)

CTRL_CLOSE_EVENTCTRL_LOG
OFF_EVENTCTRL_SHUTDOWN_E
VENT

SIGTERM This event and signal is used by the shutdown
hook mechanism when the VM is terminated
abnormally. (Optional)

CTRL_BREAK_EVENT SIGBREAK This event and signal is used to dump Java stack
traces at the standard error stream. (Optional)

If an application must register its own console handler, then the -Xrs option can be
used. With this option, shutdown hooks are not run on SIGTERM (with the previously
shown mapping of events), and thread dump support is not available on SIGBREAK (with
the above mapping of the Control+Break event).

Signals Used in Oracle Solaris, Linux, and macOS
This topic describes a list of signals that are used on Solaris OS, Linux, and macOS

Table 7-2 Signals Used on Oracle Solaris, Linux, and macOS

Signal Description

SIGSEGV, SIGBUS, SIGFPE,
SIGPIPE, SIGILL

These signals are used in the implementation for implicit null
check, and so forth.

SIGQUIT This signal is used to dump Java stack traces to the standard
error stream. (Optional)

Chapter 7
Console Handlers

7-5

Table 7-2 (Cont.) Signals Used on Oracle Solaris, Linux, and macOS

Signal Description

SIGTERM, SIGINT, SIGHUP These signals are used to support the shutdown hook
mechanism (java.lang.Runtime.addShutdownHook) when the
VM is terminated abnormally. (Optional)

SIGJVM1 , SIGJVM2 These signals are reserved for use by the Java Virtual Machine.
(Solaris only)

SIGUSR2 This signal is used internally on Linux and macOS. It is not used
by the VM on Solaris.

SIGABRT The HotSpot VM does not handle this signal. Instead, it calls the
abort function after fatal error handling. If an application uses
this signal, then it should terminate the process to preserve the
expected semantics.

Signals tagged as "optional" are not used when the -Xrs option is specified to reduce
signal usage. With this option, fewer signals are used, although the VM installs its own
signal handler for essential signals such as SIGSEGV. Specifying this option means that
the shutdown hook mechanism will not execute if the process receives a SIGQUIT,
SIGTERM, SIGINT, or SIGHUP. Shutdown hooks will execute, as expected, if the VM
terminates normally (that is, when the last non-daemon thread completes or the
System.exit method is invoked).

SIGUSR2 is used to implement, suspend, and resume on Linux and macOS. However, it
is possible to specify an alternative signal to be used instead of SIGUSR2. This is done
by specifying the _JAVA_SR_SIGNUM environment variable. If this environment variable is
set, then it must be set to a value larger than the maximum of SIGSEGV and SIGBUS.

Chapter 7
Signals Used in Oracle Solaris, Linux, and macOS

7-6

Part III
Debug Core Library Issues

This part describes issues and troubleshooting techniques that arise with time zone
settings and contains the following topic.

• Time Zone Settings in the JRE

Describes some issues that arise with time zone settings with Java Runtime
Environment (JRE) and troubleshooting techniques to resolve these issues.

8
Time Zone Settings in the JRE

This chapter describes some issues that can arise with time zone settings with the
Java Runtime Environment (JRE) on the Windows operating system. It further
describes troubleshooting techniques and workarounds to solve these issues.
This chapter contains the following sections:

• Native Time Zone Information and the JRE

• Determine the Default Time Zone on Windows

Native Time Zone Information and the JRE
The JRE reads the native time zone information to determine your default time zone.

For example, on Windows, the JRE queries the registry to determine the default time
zone.

However, the JRE also maintains its own time zone database. This provides cross-
platform support because the different operating system APIs are not sufficient to
support the Java APIs. The Java time zone database supports time zone IDs and
determines daylight saving time rules for all the time zones that the JRE supports. The
tzupdater tool is available for download from the Java SE Download Page.

Modifications to the JRE for each specific operating system are necessary so that the
operating system can deliver the system time to the JRE. Then, if a Java application
requests the system date by calling date and time related constructors, the system
time is returned.

Examples of such constructors are:

java.util.Date()

java.util.GregorianCalendar()

Constructors related to date and time include:

System.currentTimeMillis()

System.nanoTime()

Operating system-specific patches might be required to ensure that the correct system
time is delivered to the JRE.

The following sections describe troubleshooting techniques for time zone settings.

• Determine the Time Zone Data Version in Use

• Troubleshoot Problems with TZupdater

8-1

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Determine the Time Zone Data Version in Use
The time zone database version that ships in any JRE from Oracle is documented in
the release notes. However, the actual version can be different from the version
mentioned there if the JRE was patched using the tzupdater tool.

To determine the current time zone data version of your JRE, either run the tzupdater
tool with the Version option, or examine the header of the ZoneInfoMappings file.

Follow these two steps to determine the time zone data:

• Determine the Time Zone with TZupdater: The Java time zone updater tool is
called tzupdater. To determine the time zone database version of your JRE, run
this tool as follows:

java -jar tzupdater.jar -V

Here is a typical output from running the tzupdater tool.

tzupdater version 2.1.0-b04
JRE tzdata version: tzdata2016f

You can download the tzupdater tool from this web page: Timezone Updater Tool.

• Examine the ZoneInfoMappings File: Even without the tzupdater tool, you can
quickly check the version by examining the header of the file <java-home>/lib/zi/
ZoneInfoMappings. This data is stored in a binary format that is specific to Java. On
the Oracle Solaris, Linux and Mac macOS operating systems, you can use the
octal dump command to see the header of this file.

The following example shows the octal dump command format.

/usr/bin/od -c -j 11 -N 11 <java-home>/lib/zi/ZoneInfoMappings

The following example shows the typical result of the dump command.

/usr/bin/od -c -j 11 -N 11 /farfaraway/jdks/jdk1.6.0_21/jre/lib/zi/
ZoneInfoMappings0000000 t z d a t a 2 0 1 0 i0000013

The following example shows the time zone data version that is embedded in that
JRE is tzdata2010i.

On Microsoft Windows, you can use the findstr command to examine the
ZoneInfoMappings file. Here is an example.

findstr tzdata <java-home>\lib\zi\ZoneInfoMappings

Troubleshoot Problems with TZupdater
Sometimes, when you run tzupdater, it quits with the message: “There's no tzdata
available for this Java runtime." The following are two examples.

$ java -jar tzupdater.jar -V
tzupdater version 2.1.1-b01
JRE tzdata version: tzdata2017b
There's no tzdata available for this Java runtime.

The likely cause is that you are using a JRE that is not from Oracle. Oracle provides
the JRE for Oracle Solaris (x86, x64, SPARC), Linux (x86, x64, ARM), Microsoft

Chapter 8
Native Time Zone Information and the JRE

8-2

http://www.oracle.com/technetwork/java/javase/tzupdater-readme-136440.html

Windows (x86, x64), and macOS (x64). The java.vendor property value for these is
Sun Microsystems Inc., Oracle Corporation or BEA Systems, Inc. Oracle does not
provide the JRE for other platforms.

The output of running the java -version command does not provide enough
information to determine the actual vendor of a JRE. However, running tzupdater in
update mode with the -v option does print out the java.vendor property. The following
example shows the result of running tzupdater when the environment is HP_UX from
Hewlett Packard.

root@my_server:/opt/java6/bin> uname -a
HP-UX my_server B.11.23 U ia64 1114591084 unlimited-user license
root@my_server:/opt/java6/bin> ./java -version
java version "1.6.0.05"
Java(TM) SE Runtime Environment (build 1.6.0.05-jinteg_14_oct_2009_01_44-b00)
Java HotSpot(TM) Server VM (build 14.2-b01-jre1.6.0.05-rc5, mixed mode)
root@my_server:/opt/java6/bin> ./java -jar tzupdater.jar -v -l
java.home: /opt/java6/jre
java.vendor: Hewlett-Packard Co.
java.version: 1.6.0.05
JRE tzdata version: tzdata2009i
There's no tzdata available for this Java runtime.

In the previous example, java.vendor is set to “Hewlett-Packard Co." The JRE that you
are trying to update using tzupdater is not supported by Oracle.

A possible solution is to visit the website of your JRE vendor and determine whether a
time zone updater tool is available. For example, see the Hewlett-Packard version of
the tzupdater tool.

Determine the Default Time Zone on Windows
This section clarifies how the JRE determines the default time zone on the Windows
Vista and Windows 7 operating systems. If Java doesn't report the expected time
zone, then use the troubleshooting techniques provided in the following sections:

• Check the Default Time Zone JRE Reports

• Determine the Setting in the Control Panel

• Check for Automatic Daylight Saving Time Adjustment

• Set the Default Time Zone in the Control Panel

• Check -Duser.timezone System Property

• Special Tools in Windows 7

• JRE Internal Representation of Time Zone Mappings

Check the Default Time Zone JRE Reports
You can write a simple program to determine which time zone the JRE reports as the
default time zone-based on a check with the native operating system.

The Java program in the following example returns the default time zone:

public class DefaultTimeZone {
 public static void main(String[] args) {

Chapter 8
Determine the Default Time Zone on Windows

8-3

http://h18012.www1.hp.com/java/DST/ivms/README.html
http://h18012.www1.hp.com/java/DST/ivms/README.html

 System.out.println(java.util.TimeZone.getDefault().getID());
 }
}

You can save the code snippet in the previous example to a file named
DefaultTimeZone.java and compile it using the javac command. Then, you can run the
compiled DefaultTimeZone class, as shown in the following example.

c:\tztest> javac DefaultTimeZone.java
c:\tztest> java DefaultTimeZone
Europe/Berlin

In the previous example, the default time zone is Europe/Berlin. Running the program
should display your local time zone. If the output is not the expected time zone, then
continue with the following troubleshooting steps.

Determine the Setting in the Control Panel
You can change or examine the system's default time zone using the Windows Control
Panel. For example, you can select this time zone setting in Windows 7:

(UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

The corresponding value for the Registry key TimeZoneKeyName is “W. Europe Standard
Time."

Check for Automatic Daylight Saving Time Adjustment
You can check whether the automatic adjustment of daylight saving time is enabled
through the graphical user interface (GUI) or through the Windows registry.

• GUI Method: To use the Control Panel to check whether automatic adjustment of
daylight saving time is enabled:.

1. Click the Windows Start button and then click Control Panel.

2. Click Date and Time.

3. Click the Change Time Zone button.

4. There is a check box labeled “Automatically adjust time for Daylight Savings
Time. “See if this check box is selected, and change the setting if you want.

5. Click OK. This returns you to the Date and Time dialog box.

• Windows Registry Method: You can run Windows Registry Editor to check
whether automatic adjustment of daylight saving time is enabled.

Note:

It is a good practice to back up the Windows registry before reviewing or
editing it. If you make a mistake, you can damage the Windows registry.

To enable the automatic adjustment of daylight saving time from the Windows
registry:

Chapter 8
Determine the Default Time Zone on Windows

8-4

1. Click the Windows Start button.

2. In the Search programs and files field, enterregedit and then press Enter to
open the Registry Editor.

3. In the Registry Editor, search for the key DynamicDaylightTimeDisabled and
look at the setting.

If the registry setting is 1, then dynamic daylight time is disabled.

If the registry setting is 0, then dynamic daylight time is enabled.

If you prefer, you can access the Windows registry from the Windows command
window.

In the following example, the registry setting is 1. With this setting, the clock is not
automatically adjusted for daylight saving time.

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation]
"DynamicDaylightTimeDisabled"=dword:00000001

If you disable the DynamicDaylightTimeDisabled option, then Java returns a GMT
(Greenwich Mean Time) offset and not a time zone ID that is compatible with the
uniform naming convention (such as “Europe/Berlin"). For example, the offset will be
expressed as GMT+01 and not “Europe/Berlin."

Set the Default Time Zone in the Control Panel
You can change or review the system's default time zone by using the Windows
Control Panel.

To set the system's default time zone from the Control Panel:

1. Click the Windows Start button and then click Control Panel.

2. Click Date and Time.

3. Click the Change Time Zone button.

4. From the Time Zone menu, select your preferred time zone.

5. Click OK. This returns you to the Date and Time dialog box.

6. Click OK to close the Date and Time dialog box.

For example, you can select this time zone in Windows 7:

(UTC)+1:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna.

The corresponding value for the Registry key TimeZoneKeyName is “W. Europe Standard
Time."

Check -Duser.timezone System Property
You can explicitly set a default time zone on the command line by using the Java
system property called user.timezone. This bypasses the settings in the Windows
operating system and can be a workaround. For instance, this setting is useful if you
want daylight saving time (DST) only for a single Java program running on the system.

The following example shows the system property -Duser.timezone by running a Java
program called DefaultTimeTestZone from the Windows Command Prompt window.

Chapter 8
Determine the Default Time Zone on Windows

8-5

c:\tztest> java -Duser.timezone=America/New_York DefaultTimeZone America/New_York

If setting a default time zone explicitly by specifying -Duser.timezone works for the
DefaultTimeTestZone program, but does not work for your program, you should check
whether your code overwrites the default Java time zone during runtime with a method
call such as this:

TimeZone.setDefault(TimeZone zone)

Special Tools in Windows 7
With Windows 7, a tool called tzutil.exe is available. With this tool, you can request
the current time zone ID abbreviation without manually reading the registry.

Here is an example of running tzutil.exe. The first line is the command that you enter
in the Windows Command Prompt window. The second line is the system response.

tzutil /g

W. Europe Standard Time

JRE Internal Representation of Time Zone Mappings
On Windows, the JRE uses a file <java-home>\lib\tzmappings to represent the mapping
between Windows and Java time zones. Each line in the file has four tokens. The first
token is the Windows time zone registry key called TimeZoneKeyName. See Determine
the Setting in the Control Panel.

The second token is a time zone map ID. (This is not used in Windows Vista and
Windows 7.) The third token is the locale. The fourth token represents the Java time
zone ID. The important tokens are token number one, number three (which can be
empty), and number four. (Note: This file is not a public interface.)

If you select the time zone called “(UTC+01:00) Amsterdam, Berlin, Bern, Rome,
Stockholm, Vienna" in the Windows Control Panel, then the relevant line in the file
tzmappings is:

W. Europe Standard Time:2,3::Europe/Berlin:

In this example, the JRE recognizes your default time zone (token number four) as
“Europe/Berlin."

If there is no appropriate mapping entry in the tzmappings file, then it is possible that
Microsoft introduced a new time zone in a Windows update and that the new time
zone is not available to the JRE. In this situation, you can file a bug report for the JRE,
and request a new entry in the tzmappings file from Oracle Java bugs website.

A similar disconnect between the operating system and the JRE is possible if you ran
the tool tzedit.exe. This tool is posted by Microsoft on the internet, and allows users to
add new time zones. The JRE is unlikely to have a time zone introduced into the
system by this tool. Again, the solution is to file a bug to request that a new entry be
added to the tzmappings file.

Chapter 8
Determine the Default Time Zone on Windows

8-6

http://bugs.java.com

Part IV
Debug Client Issues

This part describes Java client issues, troubleshooting techniques, and debugging tips
for client issues. The following topics are included.

• Introduction to Client Issues

Provides an overview of Java client technologies, describes Java client issues,
and troubleshooting tips.

• AWT

Provides guidance on specific procedures for debugging issues that occur with
Java SE Abstract Windows Toolkit (AWT).

• Java 2D

Provides guidance about troubleshooting some common issues found in Java 2D
API.

• Swing

Provides guidance about troubleshooting some common issues found in Java SE
Swing API.

• Internationalization

Provides guidance about troubleshooting some issues found in Java
Internationalization.

• Java Sound

Describes some issues and causes that happen with Java Sound technology and
suggests workarounds.

• Applets and Java Web Start Applications

Describes problems, troubleshooting tips, and solutions in deploying Java
Applications and Applets.

9
Introduction to Client Issues

This chapter explains how the different Java SE Desktop technologies interact with
each other. In addition, the chapter helps you to pinpoint the technology from which
you might start troubleshooting your problem and provides general troubleshooting
tips.
This chapter contains the following sections:

• Java SE Desktop Technologies

• General Steps to Troubleshoot an Issue

• Identify the Type of Issue

• Basic Tools

• Java Debug Wire Protocol

Java SE Desktop Technologies
Java SE Desktop consists of several technologies used to create rich client
applications and applets.

The desktop tools and libraries provide an interface between the Java application and
the core tools and libraries of the platform, as shown in Figure 9-1.

Figure 9-1 Overview of the Java SE Desktop

To know more about the desktop technologies available in Java SE, visit the Java SE
Desktop Overview documentation.

9-1

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-142216.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-142216.html

This topic describes troubleshooting techniques for the following Java SE dsktop
technologies:

• Abstract Window Toolkit (AWT) provides a set of application programming
interfaces (APIs) for constructing graphical user interface (GUI) components such
as menus, buttons, text fields, dialog boxes, checkboxes, and for handling user
input through those components. In addition, AWT allows for rendering of simple
shapes such as ovals and polygons and enables developers to control the
interface layout and fonts used by their applications. It also includes data transfer
classes (including drag and drop) that allow cut and paste through the native
platform clipboard.

The classes of this API are at the bottom of the software stack (closest to the
underlying operating and desktop system).

AWT also provides a set of heavyweight components.

Purely AWT applications are usually not related to Swing. If an AWT application
does custom rendering, it uses Java 2D.

• Java 2D is a set of classes for advanced 2D graphics and imaging. It
encompasses line art, text, and images in a single comprehensive model. The API
provides extensive support for image compositing and alpha channel images, a
set of classes to provide accurate color space definition and conversion, and a rich
set of display-oriented imaging operators. These classes are provided as additions
to the java.awt and java.awt.image packages.

Like AWT, Java 2D is also at the bottom of the software stack (closest to the
underlying operating and desktop system).

• Swing provides a comprehensive set of GUI components and services which
enables the development of commercial-quality desktop and Internet/Intranet
applications.

Swing is built on top of many of the other Java SE Desktop technologies, including
AWT, Java2D and Internationalization. In most cases the Swing high-level
components are recommended instead of those in AWT. However, there are many
APIs in AWT that are important to understand when programming in Swing.

Since Swing is a lightweight toolkit, it has very little interaction with the native
platform. Swing uses Java 2D for rendering, and AWT provides creation and
manipulation of top-level components, such as Windows, Frames, and Dialogs.

• Internationalization is the process of designing software so that it can be adapted
(localized) to various languages and regions easily, cost-effectively, and in
particular without engineering changes to the software. Localization is performed
by simply adding locale-specific components, such as translated text, data
describing locale-specific behavior, fonts, and input methods.

In Java SE, internationalization support is fully integrated into the classes and
packages that provide language-dependent or culture-dependent functionality.

To know more about internationalization APIs and features of Java SE, see
Internationalization documentation.

• Java Sound provides low-level support for audio operations such as audio
playback and capture (recording), mixing, musical instrument digital interface
(MIDI) sequencing, and MIDI synthesis in an extensible, flexible framework. This
API is supported by an efficient sound engine which guarantees high-quality audio
mixing and MIDI synthesis capabilities for the platform.

Chapter 9
Java SE Desktop Technologies

9-2

• Java Plug-in extends the functionality of popular web browsers by connecting
them to the Java platform. This connection enables Java applets on websites to be
run within the web browser on the desktop.

The better you understand the relationships between these technologies, the more
quickly you can pinpoint the area your problem falls into.

General Steps to Troubleshoot an Issue
General steps to troubleshoot problems in your application.

When you experience problems running your application, follow the steps below for
troubleshooting the issue.

1. Identify the symptom:

• Identify the Type of Issue.

• Find the problem area.

• Note the vant configuration information.

2. Eliminate non-issues:

• Ensure that the correct patches, drivers, and operating systems are installed.

• Try earlier releases (back-tracing).

• Minimize the test. Restrict the test to as few issues at a time as possible.

• Minimize the hardware and software configuration. Determine if the problem is
reproducible on a single system and on multiple systems. Determine if the
problem changes with the browser version.

• Determine if the problem depends on whether multiple VMs are installed.

3. Find the cause:

• Check for typical causes in the area.

• Use flags to change defaults.

• Use tracing.

• In exceptional cases, use system properties to temporarily change the
behavior of the painting system.

4. Find the fix:

• Find a possible workaround.

• File a bug.

For guidance about how to submit a bug report and suggestions about what
data to collect for the report, see Submit a Bug Report.

• Fix the setup.

• Fix the application.

Identify the Type of Issue
Guidance about identifying the problem you are experiencing, and finding the cause
and solution.

Chapter 9
General Steps to Troubleshoot an Issue

9-3

First of all, take a moment to categorize the problem you are experiencing. This will
help you to identify the specific area of the problem, find the cause, and ultimately
determine a solution or a workaround.

The following subsections below provide information about common issue types:

• Java Client Crashes

• Performance Problems

• Behavior Problems

Some of these might seem obvious, but it is always helpful to consider every
possibility and to eliminate what is not an issue.

Java Client Crashes
An error log is created that contains information and the state obtained at the time of
the fatal error, when the Java client crashes.

The default name of the error log file is hs_err_pid.log where pid is the process
identifier (PID) of the process that crashed. For a standalone Java application that this
file is created in the current directory, while for Java Applets it is created in the browser
binaries directory or user client folder.

To know more about the fatal error log, see Fatal Error Log.

A line near the top of the header section indicates the library where the error occurred.
The following example shows that the crash was related to the AWT library.

...
Java VM: Java HotSpot(TM) Client VM (1.6.0-beta2-b76 mixed mode, sharing)
Problematic frame:
C [awt.dll+0x123456]
...

If the crash occurred in the Java Native Interface (JNI), it was likely to have been
caused by the desktop libraries. A crash in a native library typically means a problem
in Java 2D or AWT, because Swing does not have much native code. The small
amount of native code in Swing is then concerned with the native look and feel, and if
your application is using native look and feel, then the crash may be related to this
area.

The error log usually shows the exact library where the crash occurred, and this can
give you a good idea of the cause. Crashes in libraries which are not part of the Java
Development Kit (JDK) usually indicate problems with the environment, for example,
bad video drivers or desktop managers.

Performance Problems
Performance problems are harder to diagnose because you generally do not have as
much information.

First, you must determine which technology has the problem. For example, rendering
performance problems are probably in Java 2D, and responsiveness issues can be
Swing-related.

Performance-related problems can be divided into the following categories:

• Startup

Chapter 9
Identify the Type of Issue

9-4

How long does the application take to start up and become useful to the user?

• Footprint

How much memory does the application take? This can be measured by tools
such as Task Manager on Windows or top and prstat on the Oracle Solaris and
Linux operating systems.

• Runtime

How fast does the application complete the task it is designed to perform? For
example, if the application computes something, how long does it take to finish the
computations? In the case of a game, is the frame rate acceptable, and does the
animation look smooth?

Note: This is not the same as responsiveness, which is the next topic.

• Responsiveness

How fast does the application respond to user interaction? If the user clicks a
menu, how long does it take for the menu to appear? Can a long-running task be
interrupted? Does the application repaint fast enough so that it does not appear to
be slow?

Behavior Problems
Guidance about dealing with various problems in the application.

In addition to crashes, various behavior-related problems can occur. Some of these
problems are listed below. Their descriptions can guide you to the Java SE Desktop
technology to troubleshoot.

• Hangs occur when the application stops responding to user input. See
Troubleshoot Process Hangs and Loops .

• Exceptions in Java code are visibly thrown to the console or the application log
files. An examination of this output will guide you to the problem area.

• Rendering and repainting issues indicate a problem in Java 2D or in Swing. For
example, the application’s appearance is incorrect after a repaint that was caused
by another application being dragged over it. Other examples are incorrect font,
wrong colors, scrolling, damaging the application's frame by dragging another
window over it, and updating a damaged area.

A quick test is the following: If the problem is reproducible on a different platform
(for example, the problem was originally seen on Windows, and it is also present
on Oracle Solaris or Linux), it is very likely to be a Swing PaintManager problem.

For the ways to change the Java 2D rendering pipelines with some flags, see Java
2D. This can also help determine if the problem is related to Java 2D or to Swing.

Multiscreen-related repainting issues belong to Java 2D (for example, repainting
problems when moving a window from one screen to another, or other unusual
behavior caused by the interaction with a non-default screen device).

• Issues related to desktop interaction indicate a problem in AWT. Some
examples of such issues occur when moving, resizing, minimizing and maximizing
windows, handling focus, enumerating multiple screens, using modality, interacting
with the notification area (system tray), and viewing splash screens.

• Drag-and-drop problems are related to AWT.

Chapter 9
Identify the Type of Issue

9-5

• Printing problems could be related either to Java 2D or AWT depending on the
API that is used.

• Text-rendering issues in AWT applications might be a problem in font properties
or in internationalization.

However, if your application is purely AWT, text rendering problems might also be
caused by Java 2D. On Oracle Solaris or Linux, text rendering is performed by
Java 2D.

Text rendering in Swing is performed by Java 2D. Therefore, if your application
uses Swing and you have text rendering problems (such as missing glyphs,
incorrect rendering of glyphs, incorrect spacing between lines or characters, bad
quality of font rendering), then the problem is likely to be in Java 2D.

• Painting problems are most likely a Swing issue.

• Full-screen issues are related to the Java 2D API.

• Encoding and locales issues (for example, no locale-specific characters
displayed) indicate internalization problems.

Basic Tools
List of basic tools that can help troubleshoot certain types of issues.

This section lists a few tools that can help you troubleshoot certain types of issues.

• Performance: Benchmarks, profilers, DTrace, Java probe.

• FootPrint: jmap, profilers

• Crashes: Native debuggers

• Hangs: JConsole, jstack, Control+Break

• Font-rendering: Font2DTest (delivered with the JDK in demo/jfc/Font2DTest)

Java Debug Wire Protocol
The Java Debug Wire Protocol (JDWP) is very useful for debugging applications as
well as applets.

To debug an application using JDWP:

1. Open the command line, and set the PATH environment variable to jdk/bin
where jdk is the installation directory of the JDK.

2. Use the following command to run the application (called Test in this example) that
you want to debug:

• On Windows:

java -Xdebug -Xrunjdwp:transport=dt_shmem,address=debug,server=y,suspend=y
Test

• On Oracle Solaris and Linux operating systems:

java -Xdebug -Xrunjdwp:transport=dt_socket,address=8888,server=y,suspend=y
Test

Chapter 9
Basic Tools

9-6

The Test class will start in the debugging mode and wait for a debugger to attach
to it at address debug (on Windows) or 8888 (on Oracle Solaris and Linux operating
systems).

3. Open another command line, and use the following command to run jdb and
attach it to the running debug server:

• On Windows:

jdb -attach 'debug'

• On Oracle Solaris and Linux operating systems:

jdb -attach 8888

After jdb initializes and attaches to Test, you can perform Java-level debugging.

4. Set your breakpoints and run the application. For example, to set the breakpoint at
the beginning of the main method in Test, run the following command:

stop in Test.main run

When the jdb utility hits the breakpoint, you will be able to inspect the environment
in which the application is running and see if it is functioning as expected.

5. (Optional) To perform native-level debugging along with Java-level debugging, use
native debuggers to attach to the Java process running with JDWP.

• On Oracle Solaris, you can use the dbx utility and on Linux, you can use the
gdb utility.

• On Windows, you can use Visual Studio for native-level debugging as follows:

a. Open Visual Studio.

b. On the Debug menu, select Attach to Process. Select the Java process
that is running with JDWP.

c. On the Project menu, select Settings, and open the Debug tab. In the
Category drop-down list, select Additional DLLs and add the native DLL
that you want to debug (for example, Test.dll).

d. Open the source file (one or more) of Test.dll and set your breakpoints.

e. Enter cont in the jdb window. The process will hit the breakpoint in Visual
Studio.

To debug an applet using JDWP:

1. Launch the Java Control Panel, open the Java tab, and click View. On the Java
Runtime Environment Settings window, specify the following in the Runtime
Parameters field for the necessary platform:

• On Windows:

Djavaplugin.trace=true -Xdebug -
Xrunjdwp:transport=dt_shmem,address=debug,server=y,suspend=y

• On Oracle Solaris and Linux operating systems:

Djavaplugin.trace=true -Xdebug -
Xrunjdwp:transport=dt_shmem,address=8888,server=y,suspend=y

When you launch a web browser and load an applet, the Java Plug-in will start in
the debugging mode and wait for a debugger to attach to it at the address debug
(on Windows) or 8888 (on Oracle Solaris and Linux operating systems).

Chapter 9
Java Debug Wire Protocol

9-7

2. Open the command line, and use the following command to run jdb and attach it to
the running debug server.

• On Windows:

jdb -attach 'debug'

• On Oracle Solaris and Linux operating systems:

jdb -attach 8888

After jdb initializes and attaches to Test, you can perform Java-level debugging.

3. Set your breakpoints and run the applet. For example, to set the breakpoint at the
beginning of the func1 method in MyApplet, run the following command:

stop in MyApplet.func1 run

When the jdb utility hits the breakpoint, you will be able to inspect the environment
in which the application is running and see if it is functioning as expected.

Chapter 9
Java Debug Wire Protocol

9-8

10
AWT

This chapter provides information and guidance about some specific procedures for
troubleshooting common issues that might occur in the Java SE Abstract Window
Toolkit (AWT).
This chapter contains the following sections:

• Debug Tips for AWT

• Layout Manager Issues

• Key Events

• Modality Issues

• AWT Crashes

• Focus Events

• Data Transfer

• Other Issues

• Heavyweight or Lightweight Components Mix

Debug Tips for AWT
Helpful tips to debug issues related to AWT.

To dump the AWT component hierarchy, press Control+Shift+F1.

If the application hangs, get a stack trace by pressing Control+Break on Windows
(which sends the SIGBREAK signal) or Control+\ on the Oracle Solaris and Linux
operating systems (which sends the SIGQUIT signal).

To trace X11 errors on the Oracle Solaris and Linux operating systems, set the
sun.awt.noisyerrorhandler system property to true. In Java SE 6 and earlier releases,
the NOISY_AWT environment variable was used for this purpose.

Before Java SE 8, exceptions thrown in the AWT Event Dispatch Thread (EDT) could
be caught by setting the system property sun.awt.exception.handler to the name of the
class that implements the public void handle(Throwable) method. This mechanism
was updated in Java SE 8 to use the standard Thread.UncaughtExceptionHandler
interface.

Loggers can produce helpful output when debugging AWT problems. See
java.util.logging package description.

The following loggers are available:

java.awt

java.awt.focus

java.awt.event

java.awt.mixing

sun.awt

10-1

http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html

sun.awt.windows

sun.awt.X11

Layout Manager Issues
Possible problems with layout managers and provides workarounds when available.

The following problems occur with layout managers and workarounds:

1. Call to invalidate() and validate() increases component size

Cause: Due to some specifics of the GridBagLayout layout manager, if ipadx or
ipady is set, and invalidate() and validate() are called, then the size of the
component increases to the value of ipadx or ipady. This happens because the
GridBagLayout layout manager iteratively calculates the amount of space needed to
store the component within the container.

Workaround: The JDK does not provide a reliable and simple way to detect if the
layout manager should rearrange components or not in such a case, but there is a
simple workaround. Use components with the overridden method
getPreferredSize(), which returns the current size needed, as shown in the
following example.

public Dimension getPreferredSize(){
 return new Dimension(size+xpad*2+1, size+ypad*2+1);
}

2. Infinite recursion with validate() from any Container.doLayout() method

Cause: Invoking validate() from any Container.doLayout() method can
lead to infinite recursion because AWT itself invokes doLayout() from
validate().

Key Events
Issues related to handling key events that do not have a solution in the current
release.

The following keyboard issues are currently unresolved:

• On some non-English keyboards, certain accented keys are engraved on the key
and therefore are primary layer characters. Nevertheless, they cannot be used for
mnemonics because there is no corresponding Java keycode.

• Changing the default locale at runtime does not change the text that is displayed
for the menu accelerator keys.

• On a standard 109-key Japanese keyboard, the yen key and the backslash key
both generate a backslash, because they have the same character code for the
WM_CHAR message. AWT should distinguish them.

The following keyboard issues concern the Oracle Solaris 10 and Linux x86
systems.

• Keyboard input in these systems is usually based on the X keyboard extension
(XKB) of the X Window System. Users can configure one keyboard layout (for
instance, Danish: dk) or several layouts to switch between (for example, us and
dk).

Chapter 10
Layout Manager Issues

10-2

• With some keyboard layouts, for instance sk, hu, and cz, pressing the decimal
separator on the numeric keypad not only enters a delimiter but also deletes the
previous character. This is due to a native bug. A workaround is to use two
layouts, for example, us and sk. In this case, the numeric keypad works correctly in
both layouts.

• On UNIX systems that support dynamic keyboard changes, a running Java
application does not recognize such a change. For instance, changing the
keyboard from US to German does not change the keyboard mapping. Although
the X server detects the change and sends out a MappingNotify event to interested
clients AWT does not refresh its notion of the keycode-keysym mapping.

Modality Issues
Information about issues related to using modality.

With the Java SE 6 release, many problems were fixed and many improvements were
implemented in the area of AWT modality. If you see a modality problem with Java SE
1.5 or an earlier release, first upgrade to the latest Java SE release to see if the
problem was already fixed.

Some of the problems that were fixed in Java SE 6 are the following:

• A modal dialog box goes behind a blocked frame.

• Two modal dialog boxes with the same parent window opened at the same time.

The section addresses the following issues.

• UNIX window managers:

Many of the modality improvements are unavailable in some Oracle Solaris or
Linux environments, for example, when using Common Desktop Environment
(CDE) window managers. With Java SE 6 and later releases, to see if a modality
type or modal exclusion type is supported in a particular configuration, use the
following methods:

– Toolkit.isModalityTypeSupported()

– Toolkit.isModalExclusionTypeSupported()

When a modal dialog box appears on the screen, the window manager might hide
some of the Java top-level windows in the same application from the taskbar. This
can confuse end users, but it does not affect their work much, because all the
hidden windows are modal blocked and cannot be operated.

• Applets:

When your application runs as an applet in a browser and shows a modal dialog
box, the browser window might become blocked. The implementation of this
blocking varies in different browsers and operating systems. For example, on
Windows, both Internet Explorer and Mozilla Firefox work correctly, and on the
Oracle Solaris and Linux operating systems, Mozilla Firefox windows are not
blocked.

• Other modality problems:

For more information about modality-related features and how to use them, see
the AWT Modality specification.

One of the sections in that specification describes some AWT features that might
be related to or affected by modal dialog boxes: always-on-top property, focus

Chapter 10
Modality Issues

10-3

https://docs.oracle.com/javase/8/docs/api/java/awt/doc-files/Modality.html

handling, window states, and so on. Application behavior in such cases is usually
unspecified or depends on the platform; therefore, do not rely on any particular
behavior.

AWT Crashes
Identify and troubleshoot crashes related to AWT.

• Distinguish an AWT crash:

When a crash occurs, an error log is created with information and the state
obtained at the time of the crash. See Fatal Error Log.

A line near the top of the file indicates the library where the error occurred. The
following example shows part of the error log file in the case when the crash was
related to the AWT library.

...
Java VM: Java HotSpot(TM) Client VM (1.6.0-beta2-b76 mixed mode, sharing)
Problematic frame:
C [awt.dll+0x123456]
...

However, the crash can happen somewhere deep in the system libraries, although
still caused by AWT. In such cases, the indication awt.dll does not appear as a
problematic frame, and you need to look further in the file, in the section Stack:
Native frames: Java frames as shown in the following example.

Stack: [0x0aeb0000,0x0aef0000), sp=0x0aeefa44, free space=254k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)
C 0x00abc751
C [USER32.dll+0x3a5f]
C [USER32.dll+0x3b2e]
C [USER32.dll+0x5874]
C [USER32.dll+0x58a4]
C [ntdll.dll+0x108f]
C [USER32.dll+0x5e7e]
C [awt.dll+0xec889]
C [awt.dll+0xf877d]
j sun.awt.windows.WToolkit.eventLoop()V+0
j sun.awt.windows.WToolkit.run()V+69
j java.lang.Thread.run()V+11
v ~StubRoutines::call_stub
V [jvm.dll+0x83c86]
V [jvm.dll+0xd870f]
V [jvm.dll+0x83b48]
V [jvm.dll+0x838a5]
V [jvm.dll+0x9ebc8]
V [jvm.dll+0x108ba1]
V [jvm.dll+0x108b6f]
C [MSVCRT.dll+0x27fb8]
C [kernel32.dll+0x202ed]

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j sun.awt.windows.WToolkit.eventLoop()V+0
j sun.awt.windows.WToolkit.run()V+69
j java.lang.Thread.run()V+11
v ~StubRoutines::call_stub

Chapter 10
AWT Crashes

10-4

If the text awt.dll appears somewhere in the native frames, then the crash might
be related to AWT.

• Troubleshoot an AWT crash:

Most of the AWT crashes occur on the Windows platform and are caused by
thread traces. Many of these problems were fixed in Java SE 6, so if your crash
occurred in an earlier release, then first try to determine if the problem is already
fixed in the latest release.

One of the possible causes of crashes is that many AWT operations are
asynchronous. For example, if you show a frame with a call to
frame.setVisible(true), then you cannot be sure that it will be the active
window after the return from this call.

Another example concerns native file dialogs. It takes some time for the operating
system to initialize and show these dialogs, and if you dispose of them
immediately after the call to setVisible(true), then a crash might occur.
Therefore, if your application contains some AWT calls running simultaneously or
immediately one after another, it is a good idea to insert some delays between
them or add some synchronization.

Focus Events
Troubleshooting issues related to focus events.

The following sections discuss the troubleshooting issues related to focus events:

• How to Trace Focus Events

• Native Focus System

• Focus System in Java Plug-in

• Focus Models Supported by X Window Managers

• Miscellaneous Problems with Focus

How to Trace Focus Events
Troubleshoot problems with focus.

You can trace focus events by adding a focus listener to the toolkit, as shown in the
following example.

Toolkit.getDefaultToolkit().addAWTEventListener(new AWTEventListener(
 public void eventDispatched(AWTEvent e) {
 System.err.println(e);
 }
), FocusEvent.FOCUS_EVENT_MASK | WindowEvent.WINDOW_FOCUS_EVENT_MASK |
 WindowEvent.WINDOW_EVENT_MASK);

The System.err stream is used here because it does not buffer the output.

Chapter 10
Focus Events

10-5

NOT_SUPPORTED:

The correct order of focus events is the following:

• FOCUS_LOST on component losing focus

• WINDOW_LOST_FOCUS on top-level losing focus

• WINDOW_DEACTIVATED on top-level losing activation

• WINDOW_ACTIVATED on top-level becoming active widow

• WINDOW_GAINED_FOCUS on top-level becoming focused window

• FOCUS_GAINED on component gaining focus

When focus is transferred between components inside the focused window,
only FOCUS_LOST and FOCUS_GAINED events should be generated. When focus is
transferred between owned windows of the same owner or between an owned
window and its owner, then the following events should be generated:

• FOCUS_LOST

• WINDOW_LOST_FOCUS

• WINDOW_GAINED_FOCUS

• FOCUS_GAINED

Note:

The events losing focus or activation should come first.

Native Focus System
Sometimes, a problem can be caused by the native platform. To check this,
investigate the native events that are related to focus.

Ensure that the window you want to be focused gets activated and that the component
you want to focus receives the native focus event.

On the Windows platform, the native focus events are the following:

• WM_ACTIVATE for a top-level. WPARAM is WA_ACTIVE when activating and WA_INACTIVE
when deactivating.

• WM_SETFOCUS and WM_KILLFOCUS for a component.

On the Windows platform, a concept of synthetic focuswas implemented. It means
that a focus owner component only emulates its focusable state, whereas real native
focus is set to a focus proxy component. This component receives key and input
method native messages and dispatches them to a focus owner. Before JDK7, a focus
proxy component was a dedicated hidden child component inside a frame or dialog
box. In the latest JDK releases a frame or dialog box serves as a focus proxy. Now, it
proxies focus not only for components in an owned window but for all child
components as well. A simple window never receives native focus and relies on the
focus proxy of its owner. This mechanism is transparent for a user but should be taken
into account when debugging.

Chapter 10
Focus Events

10-6

On Oracle Solaris and Linux operating systems, XToolkit uses a focus model that
allows AWT to manage focus itself. With this model the window manager does not
directly set input focus on a top-level window, but instead it sends only the
WM_TAKE_FOCUS client message to indicate that focus should be set. AWT then explicitly
sets focus on the top-level window if it is allowed.

Note:

The X server and some window managers may send focus events to a
window. However, these events are discarded by AWT.

AWT does not generate the hierarchical chains of focus events when a component
inside a top-level gains focus. Moreover, the native window mapped to the component
does not get a native focus event. On the Oracle Solaris and Linux platforms, as well
as on the Windows platform, AWT uses the focus proxy mechanism. Therefore, focus
on the component is set by synthesizing a focus event, whereas the invisible focus
proxy has native focus.

A native window that is mapped to a Window object (not a Frame or Dialog object) has
the override-redirect flag set. Thus, the window manager does not notify the window
about the focus change. Focus is requested on the window only in response to a
mouse click. This window will not receive native focus events at all. Therefore, you can
trace only FocusIn or FocusOut events on a frame or dialog box. Because the major
processing of focus occurs at the Java level, debugging focus with XToolkit is simpler
than with WToolkit.

Focus System in Java Plug-in
An applet is embedded in a browser as a child (though not a direct child) of an
EmbeddedFrame.

This is a special Frame that has the ability to communicate with the plugin. From the
applet's perspective, the EmbeddedFrame is a full top-level Frame.

Managing focus for an EmbeddedFrame requires special actions. When an applet first
starts, the EmbeddedFrame does not get activated by default by the native system. The
activation is performed by the plugin that triggers a special API provided by the
EmbeddedFrame. When focus leaves the applet, the EmbeddedFrame is also deactivated in a
synthesized manner.

Focus Models Supported by X Window Managers
List of focus models supported by X window managers.

The following focus models are supported by X window managers:

• Click-to-focus is a commonly used focus model. (For example, Microsoft
Windows uses this model.)

• Focus-follows-mouse is a focus model in which focus goes to the window that
the mouse hovers over.

The focus-follows-mouse model is not detected in XAWT in Java SE 7, and this
causes problems for simple windows (objects of java.awt.Window class). Such windows
have the override-redirect property, which means that they can be focused only when

Chapter 10
Focus Events

10-7

the mouse button is pressed, and not by hovering over the window. As a workaround,
set MouseListener on the window, and request focus on it when mouse crosses the
window borders.

Miscellaneous Problems with Focus
Issues related to focus in AWT that can occur and suggested solutions.

1. Linux + KDE, XToolkit cannot be switched between two frames when a
frame's title is clicked.

Clicking a component inside a frame causes the focus to change.

Solution: Check the version of your window manager and upgrade it to 3.0 or
greater.

2. You want to manage focus using KeyListener to transfer the focus in
response to Tab/Shift+Tab, but the key event doesn’t appear.

Solution: To catch traversal key events, you must enable them by calling
Component.setFocusTraversalKeysEnabled(true).

3. A window is set to modal excluded with
Window.setModalExclusionType(ModalExclusionType).

The frame, its owner, is modal blocked. In this case, the window will also remain
modal blocked.

Solution: A window cannot become the focused window when its owner is not
allowed to get focus. The solution is to exclude the owner from modality.

4. On Windows, a component requests focus and is concurrently removed
from its container.

Sometimes java.lang.NullPointerException: null pData is thrown.

Solution: The easiest way to avoid throwing the exception is to do the removal
along with requesting focus on EDT. Another, more complicated approach is to
synchronize the requesting focus and removal if you need to perform these actions
on different threads.

5. When focus is requested on a component and the focus owner is
immediately removed, focus goes to the component after the removed
component.

For example, Component A is the focus owner. Focus is requested on Component
B, and immediately after this Component A is removed from its container.
Eventually, focus goes to Component C, which is located after Component A in the
container, but not to Component B.

Solution: In this case, ensure that the requesting focus is executed after
Component A is removed, not before.

6. On Windows, when a window is set to alwaysOnTop in an inactive frame, the
window cannot receive key events.

For example, a frame is displayed with a window that it owns. The frame is
inactive, so the window is not focused. Then, the window is set to alwaysOnTop. The
window gains focus, but its owner remains inactive. Therefore, the window cannot
receive key events.

Solution: Bring the frame to the front (the Frame.toFront() method) before
setting the window to alwaysOnTop.

Chapter 10
Focus Events

10-8

7. When a splash screen is shown and a frame is shown after the splash
screen window closes, the frame does not get activated.

Solution: Bring the frame to the front (the Frame.toFront() method) after
showing it (the Frame.setVisible(true) method).

8. The WindowFocusListener.windowGainedFocus(WindowEvent) method
does not return the frame's most-recent focus owner.

For example, a frame is the focused window, and one of its components is the
focus owner. Another window is clicked, and then the frame is clicked again.
WINDOW_GAINED_FOCUS comes to the frame and the
WindowFocusListener.windowGainedFocus(WindowEvent) method is
called. However, inside of this callback, you cannot determine the frame's most-
recent focus owner, because Frame.getMostRecentFocusOwner() returns
null.

Solution: You can get the frame's most recent focus owner inside the
WindowListener.windowActivated(WindowEvent) callback. However, by
this time, the frame will have become the focused window only if it does not have
owned windows.

Note:

This approach does not work for the window, only for the frame or dialog box.

9. An Applet steals focus when it starts.

Solution: This behavior is the default with JDK. However, you might need to
prevent the applet from getting focus on startup, for example, if your applet is
invisible and does not require focus. In this case, you can set the special
parameter initial_focus to false in the HTML tag, as shown in the following
example.

<applet code="MyApplet" width=50 height=50>
<param name=initial_focus value="false">
</applet>

10. A window is disabled with Component.setEnabled(false), but is not get
completely unfocusable.

Solution: Do not assume that the condition set by calling
Component.setEnabled(false) or Component.setFocusable(false)
will be maintained unfocusable along with all its content. Instead, use the
Window.setFocusableWindowState(boolean) method.

Data Transfer
Possible problems with data transfer features, which allows you to add drag-and-drop
(DnD) and cut, copy, and paste (CCP) operations to the application.

The following sections discuss possible problems with data transfer features:

• Debug Drag-and-Drop Applications

• Frequent Issues with Data Transfer

Chapter 10
Data Transfer

10-9

Debug Drag-and-Drop Applications
Methods that can be used to troubleshoot issues with drag-and-drop (DnD)
applications.

It is difficult to use a debugger to troubleshoot DnD features, because during the drag-
and-drop operation all input is grabbed. Therefore, if you place a breakpoint during
DnD, you might need to restart your X server. Try to use remote debugging instead.

Two simple methods can be used to troubleshoot most issues with DnD:

• Printing all DataFlavor instances

• Printing received data

An alternative to remote debugging is the System.err.println() function,
which prints output without delay.

Frequent Issues with Data Transfer
Issues that frequently happen with data transfer operations in AWT and suggested
troubleshooting solutions.

1. Pasting a large amount of data from the clipboard takes too much time.

Using the Clipboard.getContents() function for a paste operation
sometimes causes the application to hang for a while, especially if a rich
application provides the data to paste.

The Clipboard.getContents() function fetches clipboard data in all available
types (for example, some text and image types), and this can be expensive and
unnecessary.

Solution: Use the Clipboard.getData() method to get only specific data from
the clipboard. If data in only one or a few types are needed, then use one of the
following Clipboard methods instead of getContents():

• DataFlavor[] getAvailableDataFlavors()

• boolean isDataFlavorAvailable(DataFlavor flavor)

• Object getData(DataFlavor flavor)

2. When a Java application uses Transferable.getTransferData() for DnD
operations, the drag seems to take a long time.

In order to initialize transferred data only if it is needed, the initialization code was
put in Transferable.getTransferData().

Transferable data is expensive to generate, and during a DnD operation
Transferable.getTransferData() is invoked more than once, causing a
slowdown.

Solution: Cache the Transferable data so that it is generated only once.

3. Files cannot be transferred between a Java application and the GNOME/KDE
desktop and file browser.

On Windows and some window managers, transferred file lists can be represented
as the DataFlavor.javaFileListFlavor data tyoe. But, not all window managers

Chapter 10
Data Transfer

10-10

represent lists of files in this format. For example, the GNOME window manager
represents a file list as a list of URIs.

Workaround: To get files, request data of type String, and then translate the
string to a list of files according to thetext/uri-list format described in RFC 2483. To
enable dropping files from a Java application to GNOME/KDE desktop and file
browser, export data in the text/uri-list format. For an example, see the Work
Around section from the RFE.

Solution: Move a window with an image rendered on it as the mouse cursor
moves during a DnD operation. See the code example in the Work Around section
from the RFE.

4. An image is passed to one of the startDrag() methods of DragGestureEvent
or DragSource, but the image is not displayed during the subsequent DnD
operation.

5. There is no way to transfer an array using DnD.

The DataFlavor class has no constructor that handles arrays. The mime type for an
array contains characters that escapes. The code in the following example throws
an IllegalArgumentException.

new DataFlavor(DataFlavor.javaJVMLocalObjectMimeType +
"; class=" +
(new String[0]).getClass().getName())

Solution: “Quote” the value of the representation class parameter, as shown in
the following example, where the quotation marks escape:

new DataFlavor(DataFlavor.javaJVMLocalObjectMimeType +
"; class=" +
"\"" +
(new String[0]).getClass().getName() +
"\"")

See bug report.

6. There are problems using AWT DnD support with Swing components.

Various problems can happen, for example, odd events are fired during a DnD
operation, multiple items cannot be dragged and dropped, an
InvalidDnDOperationException is thrown.

Solution: Use Swing's DnD support with Swing components. Although the Swing
DnD implementation is based on the AWT DnD implementation, you cannot mix
Swing and AWT DnD. See DnD section of the Swing Tutorial documentation.

7. There is no way to change the state of the source to depend on the target.

In order to change the state of the source to depend on the target, you must have
references to the source and target components in the same area of code, but this
is not currently implemented in the DnD API.

Workaround: One workaround is to add flags to the transferable object that allow
you to determine the context of the event.

For the transfer of data within one Java VM, the following workaround is proposed:

• Implement your target component as DragSourceListener.

• In DragGestureRecognizer.dragGestureRecognized(), add the
target at the drag source listener, as shown in the following example.

Chapter 10
Data Transfer

10-11

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4276926
http://docs.oracle.com/javase/tutorial/uiswing/dnd/

public void dragGestureRecognized(DragGestureEvent dge) {
 dge.startDrag(null, new StringSelection("SomeTransferedText"));
 dge.getDragSource().addDragSourceListener(target);
 }

• Now you can get the target and the source in the dragEnter(),
dragOver(), dropActionChanged(), and dragDropEnd() methods of
DragSourceListener().

8. Transferring objects in an application takes a long time.

The transferring of a big bundle of data or the creation of transferred objects takes
too long. The user must wait a long time for the data transfer to complete.

This expensive operation makes transferring too long because you must wait until
Transferable.getTransferData() finishes.

Solution: This solution is valid only for transferring data within one Java VM.
Create or get expensive resources before the drag operation. For example, get the
file content when you create a transferable data, so that
Transferable.getTransferData() will not be too long.

Other Issues
Troubleshoot other issues such as splash screen issues, pop-up menu issues, and
background color inheritance with AWT and provide information for troubleshooting
them.

The following subsections discuss troubleshooting tips for other issues:

• Splash Screen Issues

• Tray Icon Issues

• Pop-up Menu Issues

• Background or Foreground Color Inheritance

• AWT Panel Size Restriction

• Hangs During Debugging of Pop-up Menus and Similar Components on X11

• Window.toFront()/toBack() Behavior on X11

Splash Screen Issues
Issues that can happen with splash screen AWT and solutions.

This section describes some issues that can happen with the splash screen in AWT:

1. The user specified a JAR file with an appropriate MANIFEST.MF in -classpath,
but the splash screen does not work.

Solution: See the solution for the next issue.

2. It is not clear which of several JAR files in an application should contain the
splash screen image.

Solution: The splash screen image will be picked from a JAR file only if the file is
used with the -jar command-line option. This JAR file should contain both the
"SplashScreen-Image" manifest option and the image file. JAR files in -classpath

Chapter 10
Other Issues

10-12

will never be checked for splash screens in MANIFEST.MF. If you do not use -jar,
you can still use -splash to specify the splash screen image in the command line.

3. Translucent PNG splash screens do not work on the Oracle Solaris and
Linux operating systems.

Solution: This is a native limitation of X11. On the Oracle Solaris and Linux
operating systems, the alpha channel of a translucent image will be compared with
the 50% threshold. Alpha values above 0.5 will make opaque pixels, and pixels
with alpha values below 0.5 will be completely transparent.

Tray Icon Issues
Issues that can occur with the tray icon.

With the Java SE 6 release on Windows 98, the method
TrayIcon.displayMessage() is not supported because the native service to
display a balloon is not supported on Windows 98.

If a SecurityManager is installed, then the value of AWTPermission must be set to
accessSystemTray in order to create a TrayIcon object.

Pop-up Menu Issues
Issues that can occur in the popup menu.

In the JPopupMenu.setInvoker() method, the invoker is the component in which
the pop-up menu is to be displayed. If this property is set to null, then the pop-up
menu does not function correctly.

The solution is to set the pop-up's invoker to itself.

Background or Foreground Color Inheritance
To ensure the consistency of your application on every platform, use explicit color
assignment (both foreground and background) for every component or container.

Many AWT components use their own defaults for background and foreground colors
instead of using parent colors.

This behavior is platform-dependent; the same component can behave differently on
different platforms. In addition, some components use the default value for one of the
background or foreground colors, but take the value from the parent for another color.

AWT Panel Size Restriction
The AWT container has a size limitation. On most platforms, this limit is 32,767 pixels.

This means that, for example, if the canvas objects are 25 pixels high, then a Java
AWT panel cannot display more than 1310 objects.

Unfortunately, there is no way to change this limit, neither with Java code nor with
native code. The limit depends on what data type the operating system uses to store
the widget size. For example, the Windows 2000/XP operating system and the Linux X
operating system use the integer type, and are therefore limited to the maximum size
of an integer. Other operating systems might use different types, such as long, and in
this case, the limit could be higher.

Chapter 10
Other Issues

10-13

See the documentation for your platform.

The following are examples of workarounds for this limit that might be helpful:

• Display components, page by page.

• Use tabs to display a few components at a time.

Hangs During Debugging of Pop-up Menus and Similar Components
on X11

Set the -Dsun.awt.disablegrab=true system property during the debugging of certain
graphical user interface (GUI) components.

Certain graphical user interface (GUI) actions require grabbing all the input events in
order to determine when the action should terminate (for example, navigating pop-up
menus). While the grab is active, no other applications receive input events. If a Java
application is being debugged, and a breakpoint is reached while the grab is active,
then the operating system appears to hang. This happens because the Java
application holding the grab is stopped by the debugger and cannot process any input
events, and other applications do not receive the events due to the installed grab. In
order to allow debugging such applications, the following system property should be
set when running the application from the debugger:

-Dsun.awt.disablegrab=true

This property effectively turns off setting the grab, and does not hang the system.
However, with this option set, in some cases, this can lead to the inability to terminate
a GUI actions that would normally be terminated. For example, pop-up menus may not
be dismissed when clicking a window's title bar.

Window.toFront()/toBack() Behavior on X11
Due to restrictions enforced by third-party software (in particular, by window managers
such as the Metacity), the toFront()/toBack() methods may not work as expected
and cause the window to not change its stacking order in relation to other top-level
windows.

More details are available in the CR 6472274.

If an application wants to bring a window to the top, it can try to workaround the issue
by calling Window.setAlwaysOnTop(true) to temporarily make the window always
stay on top and then calling setAlwaysOnTop(false) to reset the "always on top"
state.

Chapter 10
Other Issues

10-14

Note:

This workaround is not guaranteed to work because window managers can
enforce more restrictions. Also, setting a window to "always on top" is
available to trusted applications only. An unsigned applet or an unsigned Web
Start application running in a sandbox cannot use this API, and thus you
cannot work around the issue.

However, native applications experience similar issues, and this peculiarity
makes Java applications behave similar to native applications.

Heavyweight or Lightweight Components Mix
Issues with the heavyweight or lightweight (HW/LW) component mixing feature.

The following issues are addressed in the heavyweight or lightweight (HW/LW)
component mixing feature:

• Validate the component hierarchy:

Changing any layout-related properties of a component, such as its size, location,
or font, invalidates the component as well as its ancestors. In order for the HW/LW
Mixing feature to function correctly, the component hierarchy must be validated
after making such changes. By default, invalidation stops on the top-most
container of the hierarchy (for example, a Frame object). Therefore, to restore the
validity of the hierarchy, the application should call the Frame.validate() method.
For example:

component.setFont(myFont);
frame.validate();

frame refers to a frame that contains component.

Note:

Swing applications and the Swing library often use the following pattern:

component.setFont(myFont);
component.revalidate();

The revalidate() call is not sufficient because it validates the hierarchy
starting from the nearest validate root of the component only, thus leaving the
upper containers invalid. In that case, the HW/LW feature may not calculate
correct shapes for the HW components, and visual artifacts may be seen on
the screen.

To verify the validity of the whole component hierarchy, a user can use the key
combination Control+Shift+F1, as described in Debug Tips for AWT. A
component marked 'invalid' may indicate a missing validate() call
somewhere.

• Validate roots:

Chapter 10
Heavyweight or Lightweight Components Mix

10-15

The concept of validate roots mentioned in Validate the component hierarchy
was introduced in Swing in order to speed up the process of validating component
hierarchies because it may take a significant amount of time. While such
optimization leaves upper parts of hierarchies invalid, this did not create any
issues because the layout of components inside a validate root does not affect the
layout of the outside component hierarchy (that is, the siblings of the validate root).
However, when HW and LW components are mixed together in a hierarchy, this
statement is no longer true. That is why the feature requires the whole component
hierarchy to be valid.

Calling frame.validate() may be inefficient, and AWT supports an alternative,
optimized way of handling invalidation/validation of component hierarchies. This
feature is enabled with a system property:

-Djava.awt.smartInvalidate=true

Once this property is specified, the invalidate() method will stop invalidation
of the hierarchy when it reaches the nearest validate root of a component on which
the invalidate() method has been invoked. Afterwards, to restore the validity
of the component hierarchy, the application should simply call:

component.revalidate();

Note:

In this case, calling frame.validate() would be effectively a no-op (a
statement that does nothing) because frame is still valid. Since some
applications rely on calling validate() directly on a component upper than
the validate root of the hierarchy (for example, a frame), this new optimized
behavior may cause incompatibility issues, and hence it is available only when
specifying the system property.

If an application experiences any difficulties running in this new optimized mode, a
user can use the key combination Control+Shift+F1 as described in Debug Tips for
AWT to investigate what parts of the component hierarchy are left invalid, and thus
possibly cause the problems.

• Swing painting optimization:

By default, the Swing library assumes that there are no HW components in the
component hierarchy, and therefore uses optimized drawing techniques to boost
performance of the Swing GUI. If a component hierarchy contains HW
components, the optimizations must be turned off. This is relevant for Swing
JScrollPanes in the first place. You can change the scrolling mode by using the
JViewPort.setScrollMode(int) method.

• Non-opaque LW components:

Non-opaque LW components are not supported by the HW/LW mixing feature
implementation by default. In order to enable mixing non-rectangular LW
components with HW components, the application must use the
com.sun.awt.AWTUtilities.setComponentMixingCutoutShape() non-
public API.

Chapter 10
Heavyweight or Lightweight Components Mix

10-16

Note:

The non-rectangular LW components should still paint themselves using either
opaque (alpha = 1.0) or transparent (alpha = 0.0) colors. Using translucent
colors (with 0.0 < alpha < 1.0) is not supported.

• Disable the default HW/LW mix feature:

In the past, some developers have implemented their own support for cases when
HW and LW components must be mixed together. The built-in implementation of
the feature available since JDK 6 and JDK 7 may cause problems with custom
workarounds. In order to disable the built-in feature the application must be started
with the following system property:

-Dsun.awt.disableMixing=true

Chapter 10
Heavyweight or Lightweight Components Mix

10-17

11
Java 2D Pipeline Rendering and Properties

This chapter provides information and guidance for troubleshooting some of the most
common issues that might be found in the Java 2D API when changing pipeline
rendering and properties.
For a summary of Java 2D properties, see Java 2D Properties.

By choosing a different pipeline, or manipulating the properties of a pipeline, you might
be able to determine the cause of the problem, and often find a workaround.

In general, you can troubleshoot Java 2D pipeline issues by determining the default
pipeline used in your configuration. Then, either change the pipeline to another one, or
modify the properties of the default pipeline.

If the problem disappears, then you found a workaround. If the problem persists, then
try changing another property or pipeline.

Java 2D uses a set of pipelines, which can be roughly defined as different ways of
rendering the primitives. These pipelines are as follows:

• Oracle Solaris and Linux: X11 Pipelineis the default for the Oracle Solaris and
Linux operating systems.

• Windows OS - DirectDraw/GDI Pipeline is the default on Windows

• Windows OS - Direct3D Pipeline in Full-Screen Mode is an alternative on
Windows.

• OpenGL Pipeline in Oracle Solaris, Linux, and Windowsis an alternative on the
Oracle Solaris and Linux operating systems, as well as Windows.

Oracle Solaris and Linux: X11 Pipeline
On UNIX platforms, the default pipeline is the X11 pipeline. This pipeline uses the X
protocol for rendering to the screen or to certain types of offscreen images, such as
VolatileImages, or "compatible" images (images that are created with the
GraphicsConfiguration.createCompatibleImage() method).

These types of images can be put into X11 pixmaps for improved performance,
especially in the case of the Remote X server.

In addition, in certain cases, Java 2D uses X server extensions, for example, the MIT
X shared memory extension, or Direct Graphics Access extension, Double-buffer
extension for double-buffering when using the BufferStrategy API.

An additional pipeline, the OpenGL pipeline, might offer greater performance in some
configurations.

The following are X11 pipeline properties to troubleshoot.

• X11 Pipeline Pixmaps Properties

• X11 Pipeline MIT Shared Memory Extension

11-1

• Oracle Solaris on SPARC: DGA Support

• Oracle Solaris on SPARC - Change Java 2D Default Visual

X11 Pipeline Pixmaps Properties
Java 2D by default uses X11 pixmaps for storing or caching certain types of offscreen
images.

Only the following types of images can be stored in pixmaps:

• Opaque images, in which case ColorModel.getTransparency() returns
Transparency.OPAQUE

• 1-bit transparent images (also known as sprites, Transparency.BITMASK)

The advantage of using pixmaps for storing images is that they can be put into the
framebuffer's video memory at the driver's discretion, which improves the speed at
which these pixmaps can be copied to the screen or another pixmap.

The use of pixmaps typically results in better performance. However, in certain cases,
the opposite is true. These cases typically involve the use of operations that cannot be
performed using the X protocol, such as antialiasing, alpha compositing, and
transforms that are more complex than simple translation transforms.

For these operations, the X11 pipeline must do the rendering using the built-in
software renderer. In most cases, this includes reading the contents of the pixmap to
system memory (over the network in the case of remote X server), performing the
rendering, and then sending the pixels back to the pixmap. These operations could
result in extremely poor performance, especially if the X server is remote.

The following are two cases to disable the use of X11 pipeline:

• Disable X11 pipeline pixmaps:

To disable the use of pixmaps by Java2D, pass the following property to the Java
VM: -Dsun.java2d.pmoffscreen=false.

• Disable X11 pipeline shared memory pixmaps:

To minimize the effect of operations that require reading pixels from a pixmap on
overall performance, the X11 pipeline uses shared memory pixmaps for storing
images that are often read from.

Note:

The shared memory pixmaps can only be used in the case of a local X server.

The advantage of using shared memory pixmaps is that the pipeline can get direct
access to the pixels in the pipeline bypassing the X11 protocol, which results in
better performance.

By default, an image is stored in a normal X server pixmap, but it can be later
moved to a shared memory pixmap if the pipeline detects excessive reading from
such an image. The image can be moved back to a server pixmap if it is copied
from often enough.

The pipeline allows two ways of controlling the use of shared memory pixmaps:
either disabling them or forcing all images to be stored in shared memory pixmaps.

Chapter 11
Oracle Solaris and Linux: X11 Pipeline

11-2

First, try forcing the shared memory pixmaps because it often improves
performance. However, with certain video board/driver configurations, it may be
necessary to disable the shared memory pixmaps to avoid rendering artifacts or
crashes.

– To disable shared memory pixmaps, set the J2D_PIXMAPS environment variable
to server. This is the default in remote X server case.

– To force all pixmaps to be created in shared memory, set J2D_PIXMAPS to
shared.

X11 Pipeline MIT Shared Memory Extension
The Java 2D X11 pipeline uses the MIT Shared Memory Extension (MIT SHM), which
allows a faster exchange of data between the client and the X server. This can
significantly improve the performance of Java applications.

The following are two ways to improve the performance of the Java application.

• Increase X Server and Java 2D shared memory:

On the Oracle Solaris operating system releases 8 and earlier, it was sometimes
necessary to increase the amount of shared memory available to the system (and
to X server in particular) because the default was too low, resulting in poor
rendering performance. Increasing the amount of shared memory and shared
memory segments can result in better performance.

To change the default settings on the Oracle Solaris operating system, edit the /
etc/ system file and change the shmsys:shminfo_* settings, as shown in the
following example. Note that this is not needed on Oracle Solaris 9 and later.

set shmsys:shminfo_shmmax=10000000
set shmsys:shminfo_shmni=200
set shmsys:shminfo_shminfo=150

On Linux, this setting can be configured by editing the /proc/sys/kernel/
shm* files.

• Disable X11 pipeline shared memory extension:

In case of problems (such as crashes, or rendering artifacts) with older X servers
and the Shared Memory Extension, it is useful to be able to disable the extension.
To disable the use of MIT SHM, set the J2D_USE_MITSHM environment variable to
false.

Oracle Solaris on SPARC: DGA Support
On SPARC hardware, if the framebuffer supports Sun's Direct Graphics Access (DGA)
X server extension, and Java 2D has a corresponding module for accessing the
framebuffer, then DGA will be used for rendering to the screen.

All offscreen images will reside in Java heap memory, and Java 2D's software-only
rendering pipeline is used for rendering to them. This is different from a typical UNIX
configuration, where X11 pixmaps are used for offscreen images.

The following are use cases that describe how to detect DGA extension support and
disable or enable DGA:

• DGA extension for rending

Chapter 11
Oracle Solaris and Linux: X11 Pipeline

11-3

To detect if the DGA extension is used for rendering to the screen, run any Java
application that does some rendering or displays a GUI, and check if a /tmp/wg*
file was created when the application started. Exit the application and verify that
the file was deleted. If this is the case, then on this system, Java 2D is using DGA.

• Typical DGA Issues:

Because DGA allows direct access to the framebuffer's video memory, the typical
problems include corruption outside of window bounds, complete system, and X
server lock-ups.

• Enable or Disable DGA:

If you determine that DGA is being used, the first thing to try is to disable it. This
can be done by setting the NO_J2D_DGA environment variable to true. This forces the
default UNIX path to use only X11 for rendering to the screen, and pixmaps for
accelerating offscreen images.

Sometimes, it could be beneficial to enable the use of pixmaps, while also using
DGA for rendering to the screen. To force the use of pixmaps for accelerating
offscreen images, set the following property when starting the application: -
Dsun.java2d.pmoffscreen=true.

Oracle Solaris on SPARC - Change Java 2D Default Visual
On certain video boards on the SPARC platform, more than one visual can be
available from the X server.

By default, Java 2D tries to select the best visual, where "best" is typically a higher-bit
depth visual. For example, on some Oracle Solaris operating system releases, the
default X11 visual is 8-bit PseudoColor, although 24-bit visual is also available. In
these cases, Java 2D selects a 24-bit TrueColor visual as the default for Java
windows.

While it is possible to create a Java top-level window with a GraphicsConfiguration
object corresponding to a different visual, in some cases, it is necessary to make Java
use a different default visual instead. This can be done by setting the FORCEDEFVIS
environment variable. It can be set to true to force the use of the default X server
visual (even if it is not the best one), or it can be set to a hexadecimal number
corresponding to the visual ID as reported by tools like xdpyinfo.

To determine your X server default visual, execute the xdpyinfo command and look at
the default visual id field.

Windows OS - DirectDraw/GDI Pipeline
The default pipeline on the Windows platform is a mixture of the DirectDraw pipeline
and the GDI pipeline, where some operations are performed with the DirectDraw
pipeline and others with the GDI pipeline. DirectDraw and GDI APIs are used for
rendering to accelerated offscreen and onscreen surfaces.

Starting with the Java SE 6 release, when the application enters full-screen mode, the
new Direct3D pipeline can be used, if the drivers satisfy the requirements. The
possible issues with the Direct3D pipeline include rendering artifacts, crashes, and
performance related problems.

An additional pipeline, the OpenGL pipeline, might offer greater performance in some
configurations.

Chapter 11
Windows OS - DirectDraw/GDI Pipeline

11-4

The following are three cases to troubleshoot issues with the Direct3D pipeline such
as rendering artifacts, crashes, and performance related problems:

• Disable the DirectDraw pipeline:

When DirectDraw is disabled, all operations are performed with GDI. Provide the
following flag to disable the use of DirectDraw: -Dsun.java2d.noddraw=true.
In this case, all offscreen images will be created in the Java heap, and rendered
with the default software pipeline. All onscreen rendering, as well as copies of
offscreen images to the screen, will be performed using GDI.

• Enable the DirectDraw pipeline:

If the pipeline was disabled by default for some reason, then it can be enabled by
providing the -Dsun.java2d.noddraw=false flag to the VM.

However, typically there was a reason why it was disabled in the first place, so it is
better not to force it.

• Disable the built-in punting mechanism:

In general, the DirectDraw pipeline attempts to place the offscreen surfaces in the
framebuffer's video memory, which provides the fast copies from these surfaces to
the screen or other accelerated surfaces, as well as hardware accelerated
rendering of certain graphics operations.

To limit the effect of unaccelerated rendering to VRAM-based surfaces, there
exists a punting mechanism, which moves the surface that is detected to be often
read from to the system memory. If the surface is found to be copied from often
enough, it may be promoted back to video memory.

However, if the pipeline cannot perform an operation using the DirectDraw API
(operations using, for example, alpha compositing, or transforms, or antialiasing),
then endering is performed using the software pipeline. In some cases, his means
that the pixels of the destination surface, which resides in VRAM, must be read
into system memory, which is a very expensive operation.

On certain video boards/drivers combinations, the system-memory-based
DirectDraw surfaces are known to cause rendering artifacts and other issues. The
DirectDraw pipeline provides a way to disable the punting mechanism so that the
system memory surfaces are not used.

To defeat the built-in surface punting mechanism, provide the following flag to the
Java VM: -Dsun.java2d.ddforcevram=true.

Note:

This mechanism can result in performance degradation because the software
loops may be reading pixels from VRAM on each operation. In this case,
consider disabling the DirectDraw pipeline.

• Disable the DirectDraw BILT operations:

In a Bit Block Transfer (BILT) operation, two bitmap patterns are combined. This
operation corresponds to a call to the Graphics.drawImage() API.

In some cases, it is possible to avoid rendering problems by disabling the
DirectDraw BLIT operations. GDI BLITs will be used instead.

Chapter 11
Windows OS - DirectDraw/GDI Pipeline

11-5

Note:

This operation might result in bad performance. Consider disabling the
DirectDraw pipeline instead.

To disable the use of DirectDraw BLIT operations, pass the parameter -
Dsun.java2d.ddblit=false to the Java VM.

Windows OS - Direct3D Pipeline in Full-Screen Mode
Starting with the Java SE 6 release, the Direct3D pipeline uses the Direct3D API for
rendering. This pipeline is enabled in full-screen mode by default, if the drivers support
the required features and the level of rendering quality.

It is possible to enable the Direct3D pipeline or to force its use, as described in the
following sections:

Consider enabling the Direct3D pipeline for your application if it heavily uses rendering
operations such as alpha compositing, antialiasing, and transforms.

However, use caution when deciding to enable this pipeline in your application. For
example, some built-in video chipsets (which are used in most notebooks) do not
perform well using Direct3D, even if they satisfy the quality requirements for Java 2D
pipelines.

The following are three cases to troubleshoot problems with Direct3D API.

1. Disable the Direct3D pipeline:

Some older video boards/drivers combinations are known to cause issues (both
rendering and performance) with the Direct3D pipeline. To disable the pipeline in
these cases, with Java SE 5 and later releases, pass the parameter -
Dsun.java2d.d3d=false to the Java VM, or set the J2D_D3D environment
variable to false.

2. Enable the Direct3D pipeline:

With Java SE 5 and later releases, to enable the Direct3D pipeline in both
windowed and full-screen mode, use the parameter -Dsun.java2d.d3d=true,
or set the J2D_D3D environment variable to true.

Note:

The pipeline is enabled only if the drivers support the minimum required
features.

3. Diagnose the Direct3D pipeline rendering problems:

With the Java SE 8 release, some rendering issues (like missing pixels, garbled
rendering) can be diagnosed by forcing different Direct3D rasterizers. Set the
J2D_D3D_RASTERIZER environment variable to one of the following: ref, rgb, hal, or
tnl.

See the Direct3D documentation for a description of these rasterizers. By default,
the best rasterizer is chosen based on its advertised capabilities. In particular, the

Chapter 11
Windows OS - Direct3D Pipeline in Full-Screen Mode

11-6

ref rasterizer forces the use of the reference Direct3D rasterizer from Microsoft. If
a rendering problem is not reproducible with this rasterizer, then it is likely to be a
video driver bug.

The rgb rasterizer is available only if the Direct3D SDK is installed. This SDK can
be obtained from Microsoft Game Technologies Center.

For performance or quality problems with text rendering with the Direct3D pipeline,
you can force the use of the ARGB texture instead of the default Alpha texture for
the Direct3D pipeline's glyph cache. To do this, set the J2D_D3D_NOALPHATEXTURE
environment variable to true.

OpenGL Pipeline in Oracle Solaris, Linux, and Windows
The OpenGL pipeline is available on Oracle Solaris, Linux, and Windows.

This alternate pipeline uses the hardware-accelerated, cross-platform OpenGL API
when rendering to VolatileImages, to backbuffers created with BufferStrategy API, and
to the screen.

This pipeline can offer great performance advantages over the default (X11 or GDI/
DirectDraw) pipelines for certain applications. Consider enabling the pipeline for your
application if it heavily uses of rendering operations like alpha compositing,
antialiasing, and transforms.

The following are use cases for troubleshooting problems in OpenGL pipeline

• Enable OpenGL Pipeline

• Minimum Requirements

• Diagnose Startup Issues

• Diagnose Rendering and Performance Issues

• Latest OpenGL Drivers

Enable OpenGL Pipeline
The OpenGL pipeline is disabled by default.

To attempt to enable the OpenGL pipeline, provide the following option to the JVM:

-Dsun.java2d.opengl=true

To receive verbose console output about whether the OpenGL pipeline is initialized
successfully for a particular screen, set the option to True (note the uppercase T).

Minimum Requirements
The OpenGL pipeline will not be enabled if the hardware or drivers do not meet the
minimum requirements.

If one of the following requirements is not met, Java 2D will fall back and use the
default pipeline (X11 on Oracle Solaris/Linux or GDI/DirectDraw on Windows), which
means your application will continue to work correctly, but without the OpenGL
acceleration.

Chapter 11
OpenGL Pipeline in Oracle Solaris, Linux, and Windows

11-7

http://msdn.microsoft.com/directx/

The minimum requirements for the Oracle Solaris and Linux operating systems are the
following:

• Hardware accelerated OpenGL/GLX libraries installed and configured properly

• OpenGL version 1.2 or higher

• GLX version 1.3 or higher

• At least one TrueColor visual with an available depth buffer

The minimum requirements for Windows OS are the following:

• Hardware accelerated drivers supporting the extensions WGL_ARB_pbuffer,
WGL_ARB_render_texture, and WGL_ARB_pixel_format

• OpenGL version 1.2 or higher

• At least one pixel format with an available depth buffer

Diagnose Startup Issues
You can get detailed information about the startup procedures of the OpenGL-based
Java 2D pipeline by using the J2D_TRACE_LEVEL environment variable.

As previously mentioned, the OpenGL pipeline might not be enabled on certain
machines for various reasons. For example, the drivers might not be properly installed
and might report an insufficient version number. Alternatively, your machine might
have an older graphics card that does not support the appropriate OpenGL version or
extensions.

In the Java SE 6 and later releases, you can get detailed information about the startup
procedures of the OpenGL-based Java 2D pipeline by using the J2D_TRACE_LEVEL
environment variable, as shown in the following examples.

Set the J2D_TRACE_LEVEL environment variable on Windows.

set J2D_TRACE_LEVEL=4
java -Dsun.java2d.opengl=True YourApp

Set the J2D_TRACE_LEVEL environment variable on Solaris and Linux.

export J2D_TRACE_LEVEL=4
java -Dsun.java2d.opengl=True YourApp

The output will be different depending on your platform and the installed graphics
hardware, but it can give you some insight into the reasons why the OpenGL pipeline
is not being successfully enabled for your configuration.

Note:

This output is especially useful when filing bug reports intended for the Java
2D team at Sun.

Chapter 11
OpenGL Pipeline in Oracle Solaris, Linux, and Windows

11-8

Diagnose Rendering and Performance Issues
Diagnose if rendering or performance issues are being caused by Java 2D or by the
OpenGL drivers.

Because the OpenGL pipeline relies so heavily on the underlying graphics hardware
and drivers, it might sometimes be difficult to determine whether rendering or
performance issues are being caused by Java 2D or by the OpenGL drivers.

One feature new to the OpenGL pipeline in the Java SE 6 release is the use of the
GL_EXT_framebuffer_object extension, which provides better performance for rendering
and reduced VRAM consumption when using VolatileImages. This "FBO" codepath is
enabled by default when the OpenGL pipeline is enabled, but only if your graphics
hardware and driver support this OpenGL extension. This extension is generally
available on Nvidia GeForce/Quadro FX series and later, and on ATI Radeon 9500
and later. If you suspect that the "FBO" codepath is causing problems in your
application, then you can disable it by setting the following system property:

-Dsun.java2d.opengl.fbobject=false

Setting this property will cause Java 2D to fall back on the older pbuffer-based
codepath.

If you find that a certain Java 2D operation causes different visual results with the
OpenGL pipeline enabled than without, then it probably indicates a graphics driver
bug. Similarly, if the performance of Java 2D rendering is significantly worse with the
OpenGL pipeline enabled than without, then it is most likely caused by a driver or
hardware problem.

In either case, file a detailed bug report through the normal bug reporting channels.
See Submit a Bug Report. When filing bug reports, be as detailed as possible, and
include the following information:

• Operating system (for example, Ubuntu Linux 6.06, Windows XP SP2)

• Name of graphics hardware manufacturer and device (for example, Nvidia
GeForce 2 MX 440)

• Exact driver version (for example, ATI Catalyst 6.8, Nvidia 91.33)

• Output when J2D_TRACE_LEVEL=4 is specified on the command line (as described in
the previous section)

• The output of the glxinfo command if you are on Oracle Solaris or Linux

Latest OpenGL Drivers
List of graphics card manufacturers with their corresponding websites, supported
platforms, and some examples of cards.

Because the OpenGL pipeline relies heavily on the OpenGL API and the underlying
graphics hardware and drivers, it is very important to ensure that you have the latest
graphics drivers installed on your machine. Drivers can be downloaded from your
graphics card manufacturer's web site, as shown in the following table.

Chapter 11
Latest OpenGL Drivers

11-9

Manufacturer Platforms Cards Known to Work

ATI Linux, Windows Radeon 8500 and later, FireGL
series

Nvidia Oracle Solaris on x64, Linux,
Windows

GeForce 2 series and later, Quadro
FX series and later

Oracle Oracle Solaris on SPARC Expert3D series, XVR-500,
XVR-600, XVR-1200, XVR-2500

Xi Graphics Oracle Solaris on x86, Linux Various (check with Xi Graphics)

Chapter 11
Latest OpenGL Drivers

11-10

http://ati.com
http://nvidia.com
http://oracle.com/us/sun/index.htm
http://xig.com

12
Java 2D

Information and guidance for troubleshooting some of the most common issues that
might be found in the Java 2D API.

This chapter contains the following sections:

• Generic Performance Issues

• Text-Related Issues

• Java 2D Printing

For a summary of Java 2D properties, see Java 2D Properties.

Generic Performance Issues
Generic performance issues related to Java 2D hardware-accelerated rendering
primitives, and how to detect primitive tracing and avoid non-accelerated rendering.

There could be many causes for poor rendering performance. The following topics
identify the cause for your applications poor rendering performance and suggests
some approaches to improve performance of software-only rendering.

This topic contains the following subsections:

• Hardware-Accelerated Rendering Primitives

• Primitive Tracing to Detect and Avoid Non-Accelerated Rendering

• Causes of Poor Rendering Performance

• Improve Performance of Software-only Rendering

Hardware-Accelerated Rendering Primitives
In order to better understand what could be causing performance problems, take a
look at what hardware acceleration means.

In general, hardware-accelerated rendering could be divided into two categories.

• Hardware-accelerated rendering to an "accelerated" destination. Examples of
rendering destinations that can be hardware-accelerated are VolatileImage,
screen and BufferStrategy. If a destination is accelerated, then rendering goes to
a surface may be performed by video hardware. So, if you issue a drawRect call,
Java 2D redirects this call to the underlying native API (such as GDI, DirectDraw,
Direct3D or OpenGL, or X11), which performs the operation using hardware.

• Caching images in accelerated memory (video memory or pixmaps) so that they
can be copied very fast to another accelerated surface. These images are known
as managed images.

Ideally, all operations performed on an accelerated surface are hardware-accelerated.
In this case, the application takes full advantage of what is offered by the platform.

12-1

Unfortunately in many cases the default pipelines are not able to use the hardware for
rendering. This can happen due to the pipeline limitations, or the underlying native
API. For example, most X servers do not support rendering antialiased primitives, or
alpha compositing.

One cause of performance issues is when operations performed are not hardware-
accelerated. Even in cases when a destination surface is accelerated, some primitives
may not be.

It is important to know how to detect the cases when hardware acceleration is not
being used. Knowing this may help in improving performance.

Primitive Tracing to Detect and Avoid Non-Accelerated Rendering
To detect a non-accelerated rendering, you can use Java 2D primitive tracing.

Java 2D has built-in primitive tracing.

Run your application with -Dsun.java2d.trace=count. When the application exits, a list
of primitives and their counts is printed to the console.

Any time you see a MaskBlit or any of the General* primitives, it typically means that
some of your rendering is going through software loops. Here is the output from
performing drawImage on a translucent BufferedImage to a VolatileImage on Linux:

sun.java2d.loops.Blit$GeneralMaskBlit::Blit(IntArgb, SrcOverNoEa, "Integer BGR
Pixmap")sun.java2d.loops.MaskBlit::MaskBlit(IntArgb, SrcOver, IntBgr)

Here are some of the common non-accelerated primitives in the default pipelines, and
their signatures in the tracing output.

Note:

Most of this tracing was taken on Linux; you may see some differences
depending on your platform and configuration.

• Translucent images (images with ColorModel.getTranslucency()
returnTranslucency.TRANSLUCENT), or images with AlphaCompositing. Sample
primitive tracing output:

sun.java2d.loops.Blit$GeneralMaskBlit::Blit(IntArgb,SrcOverNoEa, "Integer BGR
Pixmap")sun.java2d.loops.MaskBlit::MaskBlit(IntArgb, SrcOver, IntBgr)

• Use of antialiasing (by setting the antialiasing hint). Sample primitive tracing
output:

sun.java2d.loops.MaskFill::MaskFill(AnyColor, Src, IntBgr)

• Rendering antialiased text (setting the text antialising hint). Sample output can be
one of the following:

– sun.java2d.loops.DrawGlyphListAA::DrawGlyphListAA(OpaqueColor, SrcNoEa,
AnyInt)

– sun.java2d.loops.DrawGlyphListLCD::DrawGlyphListLCD(AnyColor, SrcNoEa,
IntBgr)

Chapter 12
Generic Performance Issues

12-2

• Alpha compositing, either by rendering with translucent color (a color with an alpha
value that is not 0xff) or by setting a non-default AlphaCompositing mode with
Graphics2D.setComposite():

sun.java2d.loops.Blit$GeneralMaskBlit::Blit(IntArgb, SrcOver,
IntRgb)sun.java2d.loops.MaskBlit::MaskBlit(IntArgb, SrcOver, IntRgb)
]

• Non-trivial transforms (if the transform is more than only translation). Rendering a
transformed opaque image to a VolatileImage:

sun.java2d.loops.TransformHelper::TransformHelper(IntBgr, SrcNoEa, IntArgbPre)

• Rendering a rotated line:

sun.java2d.loops.DrawPath::DrawPath(AnyColor, SrcNoEa, AnyInt)

Run your application with tracing and ensure that you do not use unaccelerated
primitives unless they are needed.

Causes of Poor Rendering Performance
List of causes of poor rendering performance and possible alternatives.

Some of the possible causes of poor rendering performance and possible alternatives
are described as follows:

• Mixing accelerated and non-accelerated rendering:

A situation when only part of the primitives rendered by an application could be
accelerated by the particular pipeline when rendering to an accelerated surface
can cause thrashing, because the pipelines will be constantly trying to adjust for
better rendering performance but with possibly little success.

If it is known beforehand that most of the rendering primitives will not be
accelerated, then it could be better to either render to a BufferedImage and then
copy it to the back buffer or the screen, or switch to a non-hardware accelerated
pipeline using one of the flags discussed.

Note:

This approach may limit your application's ability to take advantage of future
improvements in Java 2D's use of hardware acceleration.

For example, if your application is often used in remote X server cases, but it
heavily uses antialiasing, alpha compositing, and so forth, then the performance
can be severely degraded. To avoid this, disable the use of pixmaps by setting the
-Dsun.java2d.pmoffscreen=false property either by passing it to the Java
runtime, or by setting it programmatically using the System.setProperty()
API.

Note:

This property must be set before any GUI-related operations because it is read
only once.

Chapter 12
Generic Performance Issues

12-3

• Non-optimal rendering primitives:

It is preferable to use the simplest primitive possible to achieve the desired visual
effect.

For example, use Graphics.drawLine() instead of new Line2D().draw().
The result looks the same. However, the second operation is much more
computationally intensive because it is rendered as a generic shape, which is
typically much more expensive to render. Shapes show up in different ways in the
primitive tracing, depending on antialiasing settings and the specific pipeline, but
most likely they will show up as many *FillSpans or DrawPath primitives.

Another example of complicated attributes is GradientPaint. Although it may be
hardware accelerated by some of the non-default pipelines (such as OpenGL), it is
not hardware accelerated by the default pipelines. Therefore, you can restrict the
use of GradientPaint if it causes performance problems.

• Heap-based destination surface BufferedImage:

Rendering to a BufferedImage almost always uses software loops.

An exception on some SPARC systems is that the VIS instruction set can be used
for accelerating certain imaging operations. See VIS Instruction Set.

To ensure that the rendering has the opportunity of being hardware accelerated,
choose a BufferStrategy or a VolatileImage object as the rendering destination.

• Defeat built-in acceleration mechanism:

Java 2D attempts to accelerate certain types of images. The contents of images
can be cached in video memory for faster copying to accelerated destinations
such as VolatileImages. These mechanisms can be unknowingly defeated by the
application.

• Get direct access to pixels with getDataBuffer():

If an application gets access to BufferedImage pixels by using the
getRaster().getDataBuffer() API, then Java 2D will not be able to
guarantee that the data in the cache is up to date, so it will disable any
acceleration attempts of this type of image.

To avoid this, do not call getDataBuffer(). Instead, work with WriteableRaster,
which can be obtained with the BufferedImage.getRaster() method.

If you need to modify the pixels directly, then you can manually cache your image
in video memory by maintaining the cached copy of your image in a VolatileImage,
and updating the cached data when the original image is touched.

• Render to a sprite before every copy:

If an application renders to an image before copying it to an accelerated surface
(VolatileImage, BufferStrategy), then the image cannot take advantage of being
cached in accelerated memory. This is because the cached copy must be updated
every time the original image is updated, and therefore only the default system-
memory-based surface is used, and this means no acceleration.

• Exhausted accelerated memory resources:

If the application uses many images, then it can exhaust the available accelerated
memory. If this is the cause of performance issues for your application, then you
might need to handle the resources.

The following API can be used to request the amount of available accelerated
memory: GraphicsDevice.getAvailableAcceleratedMemory().

Chapter 12
Generic Performance Issues

12-4

http://docs.oracle.com/cd/E19120-01/open.solaris/816-1681/sparcv9-tbl-26/

In addition, the following API can be used to determine if your image is being
accelerated: Image.getCapabilities().

If you determined that your application is exhausting the resources, you can
handle the problem by not holding images you no longer need. For example, if
your game advanced to the next level, release all images from the previous levels.
You can also release accelerated resources associated with an image by using
the Image.flush() API.

You can also use the acceleration priority API
Image.getAccelerationPriority() and setAccelerationPriority()
to specify the acceleration priority for your images. It is a good idea to make sure
that at least your back-buffer is accelerated, so create it first, and with acceleration
priority of 1 (default). You can also prohibit certain images from being accelerated
if needed by setting the acceleration priority to 0.0.

Improve Performance of Software-only Rendering
Methods to improve performance of software-only rendering.

If your application relies on software-only rendering (by only rendering to a
BufferedImage, or changing the default pipeline to an unaccelerated one), or even if it
does mixed rendering, then the following are certain approaches to improving
performance:

1. Image types or operations with optimized support:

Due to overall platform size constraints, Java 2D has a limited number of
optimized routines for converting from one image format to another. In situations
where an optimized direct loop can not be found, Java 2D will do the conversion
through an intermediate image format (IntArgb). This results in performance
degradation.

Java 2D primitive tracing can be used for detecting such situations.

For each drawImage call there will be two primitives: the first one converting the
image from the source format to an intermediate IntArgb format and the second
one converting from intermediate IntArgb to the destination format.

Here are two ways to avoid such situations:

• Use a different image format if possible.

• Convert your image to an intermediate image of one of the better-supported
formats, such as INT_RGB or INT_ARGB. In this way the conversion from the
custom image format will happen only once instead of on every copy.

2. Transparency vs translucency:

Consider using 1-bit transparent (BITMASK) images for your sprites as opposed to
images with full translucency (such as INT_ARGB) if possible.

Processing images with full alpha is more CPU-intensive.

You can get a 1-bit transparent image using a call to
GraphicsConfiguration.createCompatibleImage(w,h,
Transparency.BITMASK).

Chapter 12
Generic Performance Issues

12-5

Text-Related Issues
Possible issues and crashes that are related to text rendering and describes tips to
overcome such issues.

This section contains the following subsections:

• Application Crash During Text Rendering

• Differences in Text Appearance

• Metrics

Application Crash During Text Rendering
If an application crashes during text rendering, first check the fatal error log file.

See Fatal Error Log for detailed information about this error log file. If the crash
occurred in fontmanager.dll or if fontmanager is present in the stack, then the crash
occurred in the font processing code. The following example shows typical native
stack frames (excerpt from the full log file).

Stack: [0x008a0000,0x008f0000), sp=0x008ef52c, free space=317k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)
C [ntdll.dll+0x1888f]
C [ntdll.dll+0x18238]
C [ntdll.dll+0x11c76]
C [MSVCR71.dll+0x16b3]
C [MSVCR71.dll+0x16db]
C [fontmanager.dll+0x21f9a]
C [fontmanager.dll+0x22876]
C [fontmanager.dll+0x1de40]
C [fontmanager.dll+0x1da94]
C [fontmanager.dll+0x48abb]
j sun.font.FileFont.getGlyphImage(JI)J+0
j sun.font.FileFontStrike.getGlyphImagePtrs([I[JI)V+92
j sun.font.GlyphList.mapChars(Lsun/java2d/loops/FontInfo;I)Z+37
j sun.font.GlyphList.setFromString(Lsun/java2d/loops/FontInfo;Ljava/lang/String;FF)Z
+71
j sun.java2d.pipe.GlyphListPipe.drawString(Lsun/java2d/SunGraphics2D;Ljava/lang/
String;DD)V+148
j sun.java2d.SunGraphics2D.drawString(Ljava/lang/String;II)V+60
j FontCrasher.tryFont(Ljava/lang/String;)V+138
j FontCrasher.main([Ljava/lang/String;)V+20
v ~StubRoutines::call_stub

In this case, a particular font is probably the problem. If so, then removing this font
from the system will likely resolve the problem.

To identify the font file, execute the application with -
Dsun.java2d.debugfonts=true. The font that is mentioned last is usually the one
that is causing problems, as shown in the following example.

INFO: Registered file C:\WINDOWS\Fonts\WINGDING.TTF as font ** TrueType Font:
Family=Wingdings
 Name=Wingdings style=0 fileName=C:\WINDOWS\Fonts\WINGDING.TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file SYMBOL.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager addToFontList

Chapter 12
Text-Related Issues

12-6

INFO: Add to Family Symbol, Font Symbol rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager registerFontFile
INFO: Registered file C:\WINDOWS\Fonts\SYMBOL.TTF as font ** TrueType Font:
Family=Symbol
 Name=Symbol style=0 fileName=C:\WINDOWS\Fonts\SYMBOL.TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager findFont2D
INFO: Search for font: Dialog
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file ARIALBD.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager addToFontList
INFO: Add to Family Arial, Font Arial Bold rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager registerFontFile
INFO: Registered file C:\WINDOWS\Fonts\ARIALBD.TTF as font ** TrueType Font:
Family=Arial
 Name=Arial Bold style=1 fileName=C:\WINDOWS\Fonts\ARIALBD.TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file WINGDING.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file SYMBOL.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager findFont2D
INFO: Search for font: Dialog
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file ARIAL.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager addToFontList
INFO: Add to Family Arial, Font Arial rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager registerFontFile
INFO: Registered file C:\WINDOWS\Fonts\ARIAL.TTF as font ** TrueType Font:
Family=Arial
 Name=Arial style=0 fileName=C:\WINDOWS\Fonts\ARIAL.TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file WINGDING.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file SYMBOL.TTF

Note:

In some cases, the font that is last mentioned might not be the problem. Font
names are printed when they are first used and subsequent uses are not
shown.

To verify that this particular font is causing the problem, you can temporarily remove it
from your system. You can easily find the file name associated with this particular
family name from the output.

Another verification approach is to use the Font2DTest tool (demo/jfc/
Font2DTest) to test fonts that you suspect. You can specify a particular font size,
style, and rasterization mode. If the process of viewing a particular font with
Font2DTest causes the JDK to crash, then it is very likely that it is the font that is
causing the problems.

If you found a font causing the JDK to crash, it is very important to report this problem,
including the particular font and the operating system in the Bugs Database. See
Submit a Bug Report.

Chapter 12
Text-Related Issues

12-7

http://bugs.java.com

Differences in Text Appearance
Java has its own font rasterizer, and you can expect some small differences between
the appearance of text in a Java application and in a native application.

One of the typical sources of these differences is that the antialiasing settings can be
different. In particular, a Swing application sometimes ignores the Linux desktop font
antialiasing settings.

There are several likely reasons for this behavior:

• Over the remote X11 antialiasing is not enabled by default for performance
reasons. See Font and Test questions in the Java 2D FAQ.

• CJK fonts that use embedded bitmaps may render using the bitmaps instead of
subpixel text.

• Some variants of unsupported desktops do not report their font smoothing settings
properly. For example, KDE is unsupported but should generally work; however,
some problem seems to prevent JDK from picking up the setting.

The best way to ensure that the configuration is what you expect is to run Font2DTest,
explicitly select the font used by the native application, and set other parameters as
appropriate. Figure 12-1 is a sample screen from the Font2DTest tool.

Figure 12-1 Sample Screen from Font2DTest Tool

Tip:

You can input your own string by choosing User Text in the drop-down list
labeled Text to use.

The size of the font in the Java language is always expressed with 72 dpi. A native OS
can use a different screen dpi, and therefore an adjustment must be made. Matching
Java font size can be calculated as Toolkit.getScreenResolution() divided by 72
multiplied by the size of the native font.

Chapter 12
Text-Related Issues

12-8

http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions

In all native Swing look and feel, such as the Windows look and feel or the GTK look
and feel (for Oracle Solaris and Linux operating systems), Swing components perform
this adjustment automatically, but if you are running Font2DTest, the text display area
will always use 72 dpi.

On operating systems other than Windows, the general recommendation is to use
TrueType fonts instead of Type1 fonts. The easiest way to figure out the type of font is
to look at the file extension: extensions pfa and pfb indicate Type1 fonts, and ttf, ttc,
and tte represent TrueType fonts.

Metrics
If you find that text bounds are different from what you expect, then ensure that you
are using the appropriate way to calculate them. For example, the height obtained
from a FontMetrics is not specific to a particular piece of text, and the stringWidth
indicates logical advance, which is not the same thing as wide. For more details, see
the Font and Text questions in the Java 2D FAQ.

Java 2D Printing
List of issues that can happen with Java 2D printing.

This section describes some issues that can happen with Java 2D printing and
suggests causes and solutions.

Also, see the Printing questions in the Java 2D FAQ.

1. JRE crashes during printing on Windows.

Cause: The JRE uses Windows printer drivers, and they might have problems.

Solution: Upgrade the Windows printer driver for the printer that is being used.

2. The printing seems to be successful, but the job does not print on Windows.

Cause: Some jobs fail to properly spool to the printer.

Solution: In the printer driver properties, disable Advanced Printing Options.

3. The print dialog box takes a long time to appear on Windows.

Cause: Applications might cause the JRE to probe all printers, including those that
are disconnected.

Solution: Look for disconnected or unreachable network printers and remove
them from the list of printers.

4. PrintJob.printDialog() shows no service found error on Oracle Solaris and
Linux.

Cause: The cause is one of the following:

• The lpc utility is not in the /usr/sbin directory.

• The lpstat utility is not in the /usr/sbin directory.

Solution: Install lpc and lpstat in the standard location, as previously mentioned.

Chapter 12
Java 2D Printing

12-9

http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions
http://www.oracle.com/technetwork/java/index-137037.html#Printing_questions

13
Swing

This chapter provides information and guidance on some specific procedures for
troubleshooting some of the most common issues that might be found in the Java SE
Swing API.

This chapter contains the following sections:

• General Debug Tips for Swing

• Specific Debug Tips for Swing

General Debug Tips for Swing
Swing's painting infrastructure changed quite extensively in Java SE 6. If you notice
painting artifacts specific in Java SE 6 or later releases, you can try turning off the new
functionality. This can be done with the property swing.bufferPerWindow.

When you are debugging the Swing code which is executed while any menu is popped
up, it is recommended to use the debugger remotely. Otherwise, the debugging
process and the application execution block each other, and this prevents further work
with the system. If that happens, the only action that can be taken is to kill the X server
for Oracle Solaris and Linux. See Bug Database.

The following are some common Swing problems:

• Painting.

• Renderers.

• Updating models from wrong thread.

• Hangs.

• Responsiveness.

• Repainting issues.

• isOpaque usage.

• Startup: could be caused by small heap, loading unnecessary classes.

The following are some things to consider:

• Buffer-per-window feature.

• Native look-and-feel fidelity: Gnome vs Windows

• Footprint of Swing applications.

• JTable, JTree, and JList all use renderers.

• Make sure that custom renderers do as little as possible.

• Update models only from event dispatch thread. Otherwise the display will not
reflect the state of the model.

The following identify bad renderers:

13-1

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6517045

• Sluggish application, especially when scrolling.

• Use an optimizer to watch painting calls, look for calls to
getTableCellTRendererComponent.

Specific Debug Tips for Swing
Specific debugging tips for Swing and provides examples for possible issues and
workarounds.

The following topics describe problems in Swing and troubleshooting techniques:

• Incorrect Threading

• JComponent Children Overlap

• Display Update

• Model Change

• Add or Remove Components

• Opaque Override

• Permanent Changes to Graphics

• Custom Painting and Double Buffering

• Opaque Content Pane

• Renderer Call for Each Cell Performance

• Possible Leaks

• Mix Heavyweight and Lightweight Components

• Use Synth

• Track Activity on Event Dispatch Thread

• Specify Default Layout Manager

• Listener Object Dispatched to Incorrect Component

• Add a Component to Content Pane

• Drag and Drop Support

• One Parent for a Component

• JFileChooser Issues with Windows Shortcuts

Incorrect Threading
Random exceptions and painting problems are usually the result of incorrect threading
usage by Swing.

All access to Swing components, unless specifically noted in the javadoc, must be
done on the event dispatch thread. This includes any models (TableModel, ListModel,
and others) that are attached to Swing components.

The best way to check for bad usage of Swing is by using instrumented
RepaintManager, as illustrated in the following example.

public class CheckThreadViolationRepaintManager extends RepaintManager {
 // it is recommended to pass the complete check

Chapter 13
Specific Debug Tips for Swing

13-2

 private boolean completeCheck = true;

 public boolean isCompleteCheck() {
 return completeCheck;
 }

 public void setCompleteCheck(boolean completeCheck) {
 this.completeCheck = completeCheck;
 }

 public synchronized void addInvalidComponent(JComponent component) {
 checkThreadViolations(component);
 super.addInvalidComponent(component);
 }

 public void addDirtyRegion(JComponent component, int x, int y, int w, int
h) {
 checkThreadViolations(component);
 super.addDirtyRegion(component, x, y, w, h);
 }

 private void checkThreadViolations(JComponent c) {
 if (!SwingUtilities.isEventDispatchThread() && (completeCheck ||
c.isShowing())) {
 Exception exception = new Exception();
 boolean repaint = false;
 boolean fromSwing = false;
 StackTraceElement[] stackTrace = exception.getStackTrace();
 for (StackTraceElement st : stackTrace) {
 if (repaint && st.getClassName().startsWith("javax.swing.")) {
 fromSwing = true;
 }
 if ("repaint".equals(st.getMethodName())) {
 repaint = true;
 }
 }
 if (repaint && !fromSwing) {
 //no problems here, since repaint() is thread safe
 return;
 }
 exception.printStackTrace();
 }
 }
}

JComponent Children Overlap
Another possible source of painting problems can occur if you allow children of a
JComponent to overlap.

In this case, the parent must override isOptimizedDrawingEnabled to return false. If you
do not override isOptimizedDrawingEnabled, then components can randomly appear on
top of others, depending upon which component repaint was invoked on.

Display Update
Another source of painting problems can occur if you do not invoke repaint correctly
when you need to update the display.

Chapter 13
Specific Debug Tips for Swing

13-3

Changing a visible property of a Swing component, such as the font, will trigger a
repaint or revalidate. If you are writing a custom component, then you must invoke
repaint and possibly revalidate whenever the display or sizing information is updated.
If you do not, the display will only update the next time someone triggers a repaint.

A good way to diagnose this is to resize the window. If the content appears after a
resize, then that implies that the component did not invoke repaint or revalidate
correctly.

Model Change
Invoke repaint when you change a visible property of a Swing component, you also
need not invoke repaint when your model changes.

If your model sends out the correct change notification, the JComponent will invoke
repaint or revalidate as appropriate.

However, if you change your model but do not send out a notification, then a repaint
event may not even work. In particular this will not work with JTree. The correct thing to
do is to send the appropriate model notification. This can usually be diagnosed by
resizing the window and noticing that the display did not update correctly.

Add or Remove Components
When you add or remove components, you must manually invoke repaint or revalidate
Swing and AWT.

Opaque Override
Another possible area of painting problems is if a component does not override
opaque.

Further, if you do not invoke implementation you must honor the opaque property, that
is, if this component is opaque, you must completely fill in the background with a non-
opaque color. If you do not honor the opaque property, then you will likely see visual
artifacts.

The only way to check for this is to look for consistent visual artifacts when the
component invokes repaint.

Permanent Changes to Graphics
Do not make any permanent changes to a Graphics passed to paint, paintComponent, or
paintChildren.

Note:

If you override the graphics in a a subclass, then you should not make
permanent changes to the paint, paintComponent, or paintChildren passed in
Graphics. For example, you should not alter the clip Rectangle or modify the
transform. If you need to do these operations you may find it easier to create a
new Graphics from the passed in Graphics and manipulate it.

Chapter 13
Specific Debug Tips for Swing

13-4

If you ignore this restriction, then the result will be clipping or other weird visual
artifacts.

Custom Painting and Double Buffering
Although you can override paint and do custom painting in the override, you should
instead override paintComponent.

The JComponent.paint method ensures that painting happens to the double buffer. If
you override paint directly, then you may lose double buffering.

Opaque Content Pane
Swing's painting architecture requires an opaque content pane.

The painting architecture of Swing requires an opaque JComponent to exist in the
containment hierarchy above all other components. This is typically provided by using
the content pane. If you replace the content pane, it is recommended that you make
the content pane opaque by using setOpaque(true). Additionally, if the content
pane overrides paintComponent, then it will need to completely fill in the background in
an opaque color in paintComponent.

Renderer Call for Each Cell Performance
Renderers are painted for each cell, so ensure that the renderer does as little as
possible.

Any slowdown in the renderer is magnified across all cells. For example, if you repaint
the visible region of a table with 50x20 visible cells, then there will be 1000 calls to the
renderer.

Possible Leaks
If the life cycle of your model is longer than that of a window with a component using
the model, you must explicitly set the model of the Swing component to null.

If you do not set the model to null, your model will retain a reference to the Component,
which will keep all components in the window from being garbage-collected. Take a
look at the following example.

TableModel myModel = ...;
JFrame frame = new JFrame();
frame.setContentPane(new JScrollPane(new JTable(myModel)));
frame.dispose();

If your application still holds a reference to myModel, then frame and all its children will
still be reachable by way of the listener JTable installations on myModel. The solution is
to invoke table.setModel(new DefaultTableModel()).

Chapter 13
Specific Debug Tips for Swing

13-5

Mix Heavyweight and Lightweight Components
Mixing heavyweight and lightweight components can work in certain scenarios, as long
as the heavyweight component does not overlap with any existing Swing components.

For example, a heavyweight will not work in an internal frame, because when the user
drags around the internal frame it will overlap with other internal frames. If you use
heavyweights, then invoke the following methods:

• JPopupMenu.setDefaultLightWeightPopupEnabled(false)

• ToolTipManager.sharedInstance().setLightWeightPopupEnabled(fa
lse)

Use Synth
Synth is an empty canvas.

To use Synth, you must either provide a complete XML file that configures the look and
feel, or extend SynthLookAndFeel and provide your own SynthStyleFactory.

Track Activity on Event Dispatch Thread
If a Swing application tries to do too much on the event dispatch thread, then the
application will appear sluggish and unresponsive.

One way to detect this situation is to push a new EventQueue that can output logging
information if an event takes too long to process. This approach is not perfect in that it
has problems with focus events and modality, but it is good for ad-hoc testing.

Specify Default Layout Manager
Problems can be caused by differing default layout manager classes on a Swing
component.

For example, the default for the JPanel class is FlowLayout, but the default for the
JFrame class is BorderLayout. This situation is easily fixed by specifying a LayoutManager.

Listener Object Dispatched to Incorrect Component
MouseListener objects are dispatched to the deepest component that has MouseListener
objects (or has enabled MouseEvent objects).

A ramification of this is that if you attach a MouseListener to a component whose
descendants have MouseListener objects, your MouseListener object will never get
called.

This is easily reproduced with a composite component, like an editable JComboBox.
Because a JComboBox has child components that have a MouseListener, a MouseListener
attached to an editable JComboBox will never get notified.

If your MouseListener suddenly stops getting events, then it could be the result of a
change in the application whereby a descendant component now has a MouseListener.
A good way to check for this is to iterate over the descendants asking if they have any
mouse listeners.

Chapter 13
Specific Debug Tips for Swing

13-6

A similar scenario occurs with the KeyListener class. A KeyListener object is
dispatched only to the focused component.

The JComboBox case is another example of this situation. In the editable JComboBox case
the editor gets focus, not the JComboBox. As a result, a KeyListener attached to an
editable JComboBox will never get notified.

Add a Component to Content Pane
You must add a JFrame, JWindow, JDialog or JApplet component to the content pane.

Before J2SE 1.5, you could not add a component to a JFrame, JWindow, JDialog or
JApplet. Instead, you needed to add the component to the content pane. As of J2SE
1.5 it is still the case that a component added to a top-level Swing component must go
to the content pane, but the add method (and a couple of other methods) on these
classes redirect to the content pane. In other words,
frame.getContentPane().add(component) is the same as
frame.add(component).

The following methods redirect to the content pane for you: add (and its variants),
remove (and its variants), and setLayout.

This is purely a convenience, but can cause confusion. In particular, getChildren,
getLayout, and various others do not redirect to the content pane.

This change affects LayoutManagers that only work with one component, such as
GroupLayout and BoxLayout. For example, new GroupLayout(frame) will not work;
instead, you must use GroupLayout(frame.getContentPane()).

Drag and Drop Support
When using Swing you should use Swing's drag-and-drop support as provided by
TransferHandler.

One Parent for a Component
Remember that a component can only exist in one parent at a time.

Problems occur when you share menu items between menus. For example, JMenuItem
is a component, and therefore can exist in only one menu at a time.

JFileChooser Issues with Windows Shortcuts
The JFileChooser class does not support shortcuts on Windows OS (.lnk files).

Unlike the standard Windows file choosers, JFileChooser does not allow the user to
follow Windows shortcuts when browsing the file system, because it does not show the
correct path to the file.

To reproduce the problem, follow these steps:

1. Create a text file on the Desktop called, for example, MyFile.txt. Open the text
file and type some text, for example: This is the contents of MyFile.txt.

Chapter 13
Specific Debug Tips for Swing

13-7

2. Create a shortcut to the new text file in the following way: Drag the file with the
right mouse button to another location on the Desktop and choose Create
Shortcut(s) here.

3. Run the JfileChooser test application, browse the Desktop, select Shortcut to
MyFile.txt and click Open.

4. The result file is PathToDesktop\Shortcut to MyFile.txt.lnk, but it should
be PathToDesktop\MyFile.txt.

5. In addition, the contents of the result file in the text area shows the contents of the
file shortcut to MyFile.txt.lnk, but the contents should be This is the
contents of MyFile.txt, which was typed in step 1.

Chapter 13
Specific Debug Tips for Swing

13-8

14
Internationalization

Information and guidance about troubleshooting issues that might be found in the area
of internationalization support.

For detailed information, visit the Java Internationalization site.

This chapter describes troubleshooting techniques for internationalization and
localization.

• Troubleshoot Internationalization and Localization

Troubleshoot Internationalization and Localization
Troubleshooting the difference between internationalization and localization.

Before troubleshooting, ensure that you understand the difference between
internationalization and localization:

• Internationalization is the process of designing software so that it can be adapted
(localized) to various languages and regions easily, in a cost-effective way, and
without changes to the software. This process generally involves isolating the
parts of a program that are dependent on language and culture. For example, the
text of error messages are kept separate from the program source code because
the messages must be translated during localization.

• Localization is the process of adapting a program for use in a specific locale. A
locale is a geographic or political region that shares the same language and
customs. Localization includes the translation of text such as user interface labels,
error messages, and online help. It also includes the culture-specific formatting of
data items such as monetary values, times, dates, and numbers.

The user interface libraries in the Java SE platform enable the development of rich
interactive applications. The internationalization aspects include text input, text display,
and user interface layout. The following descriptions show the relationship between
internationalization and the functionality provided by the AWT, Java 2D, and Swing
APIs:

• Text input is the process of entering new text into a document, whether by typing
on a keyboard or through front-end software such as input methods, handwriting
recognition, or speech input.

• Text display is a multistep process that includes selecting a font, arranging text
into paragraphs and lines, selecting glyphs for characters or character sequences,
and rendering these glyphs. Some writing systems require bidirectional text layout
or complex character-to-glyph mappings. Text display is handled by the Java 2D
graphics system and the Swing toolkit for lightweight user interface components
and by AWT for peered user interface components.

• User interface layout needs to accommodate text expansion or shrinkage caused
by localization, and match the direction of the user's writing system.

14-1

http://www.oracle.com/technetwork/java/javase/tech/intl-139810.html

15
Java Sound

This chapter describes some issues that can arise with the Java sound technology and
suggests causes and workarounds.

The following topic describes scenarios to troubleshoot Java sound problems.

• Troubleshoot Java Sound Issues

Troubleshoot Java Sound Issues
Troubleshoot Java sound issues such as system sound configuration, audio file
format, audio format, and overrun and underrun conditions.

• System sound configuration:

Ensure that your audio system is correctly configured (sound card driver/
DirectSound for Windows, ALSA for Linux, Audio Mixer for Oracle Solaris). In
addition, ensure that your speakers are connected and that your sound card
volume and mute state are adjusted to the appropriate value. To test your sound
configuration, run any native sound application and play some sound through it.

On the Oracle Solaris and Linux operating systems, you might be unable to play
sounds because an application (or sound daemon, such as esd or artsd) opens the
audio device exclusively, thereby denying Java Sound access to the device.

• Audio file formats:

Java Sound supports a set of audio file formats, for example AU, AIF, and WAV.
Most of the file formats are only containers and can contain audio data in various
compressed audio formats. Java Sound file readers support some formats
(uncompressed PCM, a-law, mu-law), but do not support ADPCM, MP3, and
others.

Java Sound also supports plug-ins for file readers and writers through the service
provider interface (SPI). You can use Sun, third-party, or your own plug-ins to read
various audio files. In any case, you must handle the presence of the plug-in, for
example, by distributing the required plug-ins with your application or by requiring
plug-ins to be installed in the client Java environment.

• Audio formats:

Java Sound supports various audio formats, but their availability depends on the
operating system. To use some audio format for recording or playing, the format
must be supported by your system (sound card drivers). Use supported formats as
much as possible: PCM; 8 or 16 bits; 8000, 11025, 22050, 44100 Hz. The formats
are supported by most sound cards. Most sound cards support only PCM formats,
and even if the driver supports mu-law, then it requires some modification to the
software. If you need to play or record mu-law data, then the preferred way is to
convert it to PCM format through a format converter.

See AudioSystem.getAudioInputStream documentation for details about format
conversion.

15-1

https://docs.oracle.com/javase/9/docs/api/javax/sound/sampled/AudioSystem.html

• Overrun and underrun conditions:

Recorded data is kept in a DataLine buffer. If you did not read from the line for a
long time, then an overrun condition will occur, and older data will be replaced with
new data. This will produce artifacts in the recorded audio data.

A similar situation occurs with playing. If all data from the buffer has been played
and no new data is written to the line, then an underrun condition will occur, and
silence will be played until you write a new portion of audio data to the line.

The preferred way to record is to read data in a separate thread to prevent the
possible influence of other tasks (for example, UI handling). If you use
SourceDataLine for playing, then a separate thread for writing data into the line is
also the preferred method to use. If you use Clip for playing, then the Clip
implementation creates this type of thread itself.

Chapter 15
Troubleshoot Java Sound Issues

15-2

16
Applets and Java Web Start Applications

Descriptions of some problems and solutions related to deploying Java applets and
Java Web Start applications.

This chapter contains the following sections:

• Configuration Problems

• Troubleshoot Applets

• Avoid Security Dialog Boxes

• Development Tips

Configuration Problems
Troubleshooting techniques to solve configuration problems in applets and a Java
Web Start application.

This following sections describes a number of problems concerning various
configuration parameters and settings, and suggests troubleshooting techniques for
configuring applets and Java Web Start applications.

• Validation

• Common Configuration Problems

• Manage Java Runtime

• Pass Parameters to the JRE

• Java Deployment Home

• Deployment Tracing

• Deployment Cache

• Network Configuration

Validation
Validation techniques when your application does not run.

If your application does not run, perform the following checks:

1. Verify that the Java Plugin is working.

• Go to Verify Java and Find Versions.

• Click Verify Java version.

• If you see that the expected Java technology version is reported, then the
plugin is enabled and found.

2. Check that your browser knows about the Java plugin.

• Chrome: Enter about: plugins in the address bar.

16-1

http://java.com/en/download/installed.jsp

• Firefox: On the Tools menu, select Addons and click Plugins.

• Internet Explorer: On the Tools menu, select Manage Addons.

3. Make sure the Java runtime environment is installed.

On Windows, check the list of installed programs in the Control Panel.

Common Configuration Problems
Troubleshooting techniques to solve common configuration problems.

The following are troubleshooting techniques for common configuration problems:

• Install Java runtime:

It is not sufficient to install the Java Developer Kit. A JRE is required to be able to
run an applet or a Java Start application.

Note:

The JRE requires a 64-bit browser.

• Use the latest matching plugin/webstart:

There could be just one plugin registered in the browser, and the JRE always
registers the plugin from the latest JRE on the system as active. The only way to
ensure the use of an older plugin is to uninstall newer JREs.

• Restart the browser for any change in the Java runtime configuration:

Java is not enabled or there are multiple places where Java could be disabled.
Check the Java Control Panel and your browser plug-ins/addons list.

• Ensure that the new generation plugin is enabled:

Unless you need to run in the legacy mode, ensure that the New generation
plugin is enabled in the Java Control Panel.

• Enable JavaScript:

If JavaScript is disabled, then an attempt to launch a Java applet may fail at a very
early stage.

• Disable last-time usage time tracking:

The JRE keeps track of the last time it was used. It records, in a file, the last time it
was used for an applet or a Java Web Start application, or invoked from the
command line or through any other method.
By default, last-usage time tracking is enabled. To disable last-usage time
tracking, set the Java Usage Tracker property
com.oracle.usagetracker.track.last.usage to false in the Java Usage Tracker
properties file. See Java Usage Tracker Properties in Java Platform, Standard
Edition Usage Tracker Guide for more information.

If last-usage time tracking is enabled, then it creates a file in one of the following
directories, depending on your operating system:

– Windows: %ProgramData%\Oracle\Java\.oracle_jre-usage\

– All other operating systems: ${user.home}/.oracle_jre_usage/

Chapter 16
Configuration Problems

16-2

Note:

Java Usage Tracker, which is a commercial feature, and last-usage time
tracking, which is not a commercial feature, are enabled separately; disabling
one does not disable the other.

• Java control panel fails to make changes in the Java config:

On Windows 7 or Windows Vista systems with UAC on, the Java Control Panel
may fail to update the global registry settings. To work around this, ensure that you
launch Java Control Panel as Administrator if you need to alter these settings.

Manage Java Runtime
You can use the Java Control Panel tool to manage the list of installed Java Runtime
Environments and their behavior.

The Java Control Panel can be launched from the bin directory of the JRE installation
folder. On Windows operating systems, you can also access it from Control Panel >
Java.

Use the Java Control Panel if you need to:

• See which versions of the JRE are installed and active

• Temporarily enable or disable the use of a particular version of the JRE

• Set "global" parameters to be passed to the JVM when an applet or Web Start
application is launched

• Enable or disable the use of the Java Plugin in a particular browser

• Tune behavior of the Plugin or Web Start application by specifying configuration
parameters such as the location of cache of temporary files or enable tracing, as
shown in Figure 16-1.

Chapter 16
Configuration Problems

16-3

Figure 16-1 The Java Runtime Environment Settings Window

Pass Parameters to the JRE
Troubleshooting, debugging, profiling, and other development activities may require
launching the JVM with a special set of parameters. One way to accomplish this is to
use the Java Control Panel.

Open the Java Control Panel, and click View on the Java tab. Select the Runtime
Parameters cell for the JRE that you want to change, and enter parameters into this
cell.

Note:

These changes are global, meaning that any Java Web Start application or
applet that runs using this version of JRE will have these parameters set (in
addition to what the applet tag or JNLP file may specify).

To pass parameters to a specific JVM used with Java Web Start or an applet, use one
of the following techniques:

• Set the environment variable before launching javaws or the browser process.

– JAVAWS_VM_ARGS for Java Web Start applications. For example:

JAVAWS_VM_ARGS = -Dsome.property=true

– _JPI_VM_OPTIONS for applets. For example:

_JPI_VM_OPTIONS = -Dsome.property=true

Chapter 16
Configuration Problems

16-4

Note:

You must restart your browser after you set the environment variable. If you
are setting this environment variable in the command shell, then you must use
the same command shell to launch the browser so that the browser inherits
the value of the environment variable.

• Use the -J option for the javaws command. For example:

javaws -J-Dsome.property=true http://example.com/my.jnlp

Java Deployment Home
This is the place where the main configuration files are kept. The location is specific to
your operating system:

• Windows XP: %HOME%\Application Data\Sun\Java\Deployment

• Windows 7/Vista: %APPDATA%\..\LocalLow\Sun\Java\Deployment

• Oracle Solaris/Linux: %HOME%/.java/deployment

Deployment Tracing
Both Java Plug-in and Java Web Start can print trace information into trace files. This
includes log information from the JRE itself as well as everything your application may
be printing to System.out or System.err.

To get access to trace information:

1. Open the Java Control Panel (jre_home_dir/bin/ControlPanel).

2. Select the Advanced tab.

3. In the Debugging category, select the Enable tracing check box.

4. (Optional) In the Java console category, select the Show console option to see
the trace information in the console window. The full trace file still will be saved to
a file.

The trace file is saved into the log directory in the Java deployment home folder. See
Java Deployment Home. The file name has the prefix javaws or plugin, depending on
what you are running. One trace file is produced per process, but one application can
be launched using several processes.

To get the maximum level of detail in the trace file, edit the
deployment.properties file (which is located in the Java deployment home
directory) and add the following line:

deployment.trace.level=all

By default, a maximum of five trace files are created. The oldest trace files are
automatically deleted. To change the limit of the maximum number of trace files, add
the following line to the deployment.properties file:

deployment.max.output.files=max_number_of_trace_files

Chapter 16
Configuration Problems

16-5

You can use the Java console to view the trace log at runtime. By default, the Java
console is hidden. Enable it in the Java Control Panel.

Deployment Cache
Application jars and resources are cached on the disk to avoid loading them the next
time they are needed.

The default location of the cache depends on the operating system and can be
overridden in the Java Control Panel.

Settings and controls for the cache are available in the General tab of the Java
Control Panel, in the Temporary Internet Files section. Click Settings to change the
location and size of the cache. Click View to see what files are in the cache.

You can clean the cache by running javaws -uninstall, or open the Java Control
Panel's General tab, click View, and delete the files manually. You can also use the
Java Control Panel to uninstall individual applications and extensions.

Network Configuration
In general, Java Web Start applications use the system network configuration by
default, and applets use the browser network settings. You can set network proxies
explicitly using the Java Control Panel.

In particular, the Java technology networking layer automatically detects which
networking stack to use. However, sometimes autodetection does not work, and you
may see Permission Denied exceptions trying to open a socket to download your
application or applet, even while the same URL is accessible using the same proxy
settings with other tools. This problem was seen on some Windows 7 systems when
VPN software was used. This can be resolved by explicitly passing a parameter to the
JVM:

-Djava.net.preferIPv4Stack=true

See Pass Parameters to the JRE.

Troubleshoot Applets
For modern browsers that support tabs, each tab might be a separate browser
process. If a Java applet is embedded in a browser page and the next generation
plugin is being used, then usually the process associated with the browser tab creates
a JVM within the process (browser VM). The browser VM will create another JVM
process (client VM) which will run the applet and manage the applet's life cycle. The
client VM is a Java process (java.exe on Windows and java on Oracle Solaris/Linux
platforms).

The following are some problems with applets and troubleshooting techniques.

• Plugin Cheat Sheet for Applet Start

• Browser or Java Process Crash

• Unresponsive Web page

Chapter 16
Troubleshoot Applets

16-6

Plugin Cheat Sheet for Applet Start
If your applet does not start, ensure that you enable tracing and the Java console as
explained previously. Then, use the following hints to find the reason why the applet
does not work.

Do you get a trace file generated or see the Java console?

• – No, I don't get a trace file.

Check if the Java technology is detected. See Validation.

* Yes

Look at the JVM browser issues from Browser or Java Process Crash.

* No

It is likely to be a configuration issue. See Common Configuration
Problems, and if it does not help, look at the JVM browser issues from
Browser or Java Process Crash.

– Yes, I have a trace file.

It is unlikely to be a configuration issue (unless you have the new generation
plugin disabled). The problem is likely to be specific to this applet. Try to
launch some other applets to confirm. Look at JVM client issues from Browser
or Java Process Crash.

Browser or Java Process Crash
A crash could be caused by a platform or application issue.

Typically, if a crash happens in the JVM, then there should be an hs_err_*log file
created in the current working directory. On Windows, it is often placed on the
desktop. It is the same crash report file as for standalone applications. See Fatal Error
Log.

If you can see native libraries loaded from the deployment cache directory, especially
if you see code from these libraries in the crash stack, then it is very likely to be a bug
in the application.

Otherwise, it is a JRE bug and needs to be reported to Bug Database.

The following are two scenarios to consider for a crash by platform or application
issue.

• JVM browser issues: Get more details about a JVM running in the browser
process. Set the following two environment variables before starting the browser:

JPI_PLUGIN2_DEBUG=1
JPI_PLUGIN2_VERBOSE=1

On Windows, there should be a command window associated with the browser
process. All browser VM debug output goes into the command window. Check to
see if any exceptions are visible there. A Java thread dump can be obtained by
using the Control+Break key sequence on the command window.

On the Oracle Solaris or Linux platforms, after setting these variables, start the
browser from the same session. All browser VM debug output goes into the

Chapter 16
Troubleshoot Applets

16-7

http://bugs.java.com

terminal window. To get a Java thread dump, on a separate terminal, use kill -3
pid or kill -SIGQUIT pid, where pid is the process ID of the browser process.

There are heartbeat messages sent between the client VM and browser VM. The
heartbeat messages can be turned off by setting the JPI_PLUGIN2_NO_HEARTBEAT
environment variable to 1. This will help isolate whether the problem is related to
the heartbeat.

If the log is not opening and environment variables are set in the browser process,
then it is likely that the JRE is not installed correctly or Java is disabled. Check for
configuration errors, and try to reinstall the JRE if nothing else helps.

• JVM client issues: Check the latest trace file for ideas.

Note: The same client JVM may be shared between multiple applets. Sometimes
intermittent failures happen because the shared JVM does not have enough
resources available (for example, heap size). In that case, a page reload often
helps to resolve the problem.

If an application fails with an Out of memory error, then the heap size needs to be
increased. This can be done in the application deployment descriptor (JNLP file) or
in the Java Control Panel using runtime parameters for JRE in use.

If an application is signed and the user declined a security dialog box, then this
may cause the application fail. The decision made by the user is remembered until
the JVM is restarted. To see the security dialog box again, the user may need to
restart the browser.

Unresponsive Web page
The following are scenarios that could cause an unresponsive web page.

• Frozen applet at applet start or during runtime:

The cause for a frozen applet at applet start or during runtime could be
Liveconnect calls.

On startup, an attempt to access the Java applet from JavaScript may block the
JavaScript engine until the applet initialization is complete. It is recommended to
postpone JavaScript access until the applet is ready, and use the
enableStatusEvents parameter to unlock non-blocking access to applet status
checks.

To use Liveconnect in runtime, it is recommended to make JavaScript calls return
quickly to avoid blocking the single-threaded JavaScript engine.

• Applet or browser hangs:

The best source of information in this case is the stack state for both client and
browser JVMs.

Use jstack to collect the JVM stack status for the browser JVM (by running jstack
browser-pid) and client JVM. Note: The jstack may highlight a deadlock if it
happens in context of one of these VMs, but it cannot do this if the deadlock
involves both processes. In this case, the thread stacks need to be examined
manually. See The jstack Utility.

See Troubleshoot Process Hangs and Loops .

Chapter 16
Troubleshoot Applets

16-8

Avoid Security Dialog Boxes
The Java Runtime will automatically warn the user about possible security sensitive
issues. If you are confident that applications you use are safe, then it is possible to
bypass security dialog boxes to simplify the user experience.

The following are two scenarios to avoid security dialog boxes.

• Signed Applications

• Mixed-Code Issues

Signed Applications
If a Java applet or Web Start application is signed, a certificate security warning dialog
box will pop up and the user must click Run to give all permissions to the code of the
application.

To avoid seeing this dialog box, you can do one of the following:

• User accepts the certificate used to sign the application and selects the Always
trust content from this publisher check box. Then, next time permissions will be
granted to this application automatically (until the certificate expires or is removed
from the trusted key store).

• The certificate can be manually imported into the JRE trusted certificate store. To
import the certificate using the Java Control Panel, on the Security tab, click
Certificates and then Trusted Certificates. To import a certificate into the
certificate store from the command line, use the keytool utility (in the JRE's bin
folder).

• Grant AllPermissions in the Java policy file located at $
{user.home}/.java.policy, or point to any Java policy file which has
AllPermissions in the $(JRE_HOME)/lib/security/java.security file.
Permissions can be granted to all applications or restricted to a particular URL.
See Default Policy Implementation and Policy File Syntax for more details
on .java.policy.

Note:

If automatic granting of permissions is not desired, then use the Java Control
Panel to remove certificates from trusted certificate keystore. This will result in
the security dialog box popping up.

Mixed-Code Issues
Signed Java Web Start applications and applets that contain signed and unsigned
components could potentially be unsafe unless the mixed-code was intended by the
application vendor. The latest versions of the Java runtime raise a mixed-code warning
dialog when a program contains both signed and unsigned components and
suspicious use is detected.

Chapter 16
Avoid Security Dialog Boxes

16-9

Bypassing this dialog box generally requires making changes to application
implementation or repackaging the application. It is also possible to completely disable
the software from checking for mixed trusted and untrusted code, but that is not
recommended because this allows the user to run potentially unsafe code with no
warning and without additional protections.

Development Tips
For Java Web Start applications and applets, you can use most of techniques
available to debug and profile standalone applications, except that you will need to use
the attach mechanism instead of direct launch.

Note:

Both the plugin and Java Web Start will spawn additional java or javaw
processes that will actually run the JVM executing the application or applet.
You must attach to those processes to be able to collect information about
your applet. For example, if you want to get a memory dump of your applet,
then you must first figure out the process ID for the java process executing the
PluginMain class. For example, use the The jps Utility from the JDK and then
use The jmap Utility to get a memory dump.

The following are development tips for debugging applets:

• Debug Java applets and Web Start applications:

Just as with standalone Java applications, any JPDA-based debugger can be
used to debug your applet or Web Start application; for example, see The jdb
Utility or the NetBeans debugger.

You will need to enable the JDWP agent for the JVM running your application and
specify the port number. After the JVM is started, you can use your favorite IDE or
tools to attach to it.

For details about how to pass arguments to the JVM running applet or Java Web
Start application, see Pass Parameters to the JRE. The following example shows
how you can pass details to the Java Web Start application from the command
line.

bash$ javaws -J-
agentlib:jdwp=transport=dt_socket,address=4000,server=y,suspend=y http://
acme.com/my/webstart.jnlp

This code instructs the agent to suspend after the JVM is initialized and wait for a
debugger to connect on port 4000.

• Profile Java applets and Java Web Start applications:

When you profile a standalone Java application, your favorite IDE is likely to be
using the JVMTI agent to collect details on program execution. You can do the
same for applets and Java Web Start applications but you may need to configure
the JVMTI agent explicitly by passing the -agentpath option to the JVM, as shown
in the following example. To know more about how to pass options to the JVM,
see Pass Parameters to the JRE.

Chapter 16
Development Tips

16-10

set _JPI_VM_OPTIONS="-agentpath:C:\Tools\NetBeans\profiler\lib\deployed
\jdk16\windows\profilerinterface.dll=C:\Tools\NetBeans\profiler\lib,5140"

Now, launch your browser. The NetBeans profile agent is enabled for any applet
you will be running in this browser session. You can use the NetBeans IDE to
attach to the java process. Consult your profiler documentation for exact details
about which agent to use and how to configure it.

• Debug memory leaks:

See Troubleshoot Memory Leaks for the techniques available for standalone
applications on the process running your applet or application. For example, use
jmap to obtain a heap dump, jconsole to observe threads, or pass -XX:
+HeapDumpOnOutOfMemoryError to the JVM (see Pass Parameters to the
JRE) to get a memory dump if an error occurs. Use the jps utility to find the
process ID for the process running your application.

Chapter 16
Development Tips

16-11

Part V
Submit Bug Reports

Recommendation on testing with the latest update release to see if the problem
persists. Guidance about submitting a bug report, and suggests ways to collect data
for a bug report.

• Submit a Bug Report

17
Submit a Bug Report

Guidance about how to submit a bug report. It includes suggestions about what to try
before submitting a report and which data to collect for the report.

This chapter contains the following sections:

• Check for Fixes in Update Releases

• Prepare to Submit a Bug Report

• Collect Data for a Bug Report

• Collect Core Dumps

Check for Fixes in Update Releases
The current platform is Java SE 9. Regularly scheduled updates to this release contain
fixes for a set of critical bugs identified since the initial release of the platform.

When an update release becomes available, it becomes the default download at the
Java SE Downloads site.

The download site includes release notes that list the bug fixes in the release. Each
bug in the list is linked to the bug description in the bug database. The release notes
also includes the list of fixes in previous update releases. If you encounter an issue, or
suspect a bug, then, as an early step in the diagnosis, check the list of fixes that are
available in the most-recent update release.

Sometimes, it is not obvious if an issue is a duplicate of a bug was already fixed. It is
always recommended to test with the available latest update release to see if the
issue persists.

Prepare to Submit a Bug Report
Recommended procedure to submit a bug report.

Before submitting a bug report, consider the following recommendations:

• First, test with the latest update release to see if the issue persists.
Frequently, if a bug report is submitted for an older release, then test with
the available latest available update release or even a latest available early
access (EA) release. The EA release may contain new features and bug
fixes.

• Collect as much relevant data as possible. For example, generate a thread dump
in the case of a deadlock, or locate the core file (where applicable) and hs_err file
in the case of a crash. In every case, it is important to document the environment
and the actions performed just before the problem happened.

• Where applicable, try to restore the original state and reproduce the problem using
the documented steps. This helps to determine if the problem is reproducible or an
intermittent issue.

17-1

http://www.oracle.com/technetwork/java/javase/downloads/index.html

• If the issue is reproducible, try to narrow down the problem. In some cases, a bug
can be demonstrated with a small standalone test case. Bugs that are
demonstrated by small test cases will typically be easy to diagnose as compared
to test cases that consist of a large complex application.

• Search the bug database to see if this bug or a similar bug was reported. If the
bug has already been reported, then the bug report might have further information,
such as the following:

– If the bug was already fixed, then the release in which it was fixed is given.

– A workaround for the problem.

– Comments in the evaluation that explain, in further detail, the circumstances
that cause the bug to happen.

• If you conclude that the bug was already reported, then submit a new bug.

Before submitting a bug, verify that the environment where the problem happens is a
supported configuration. See the Supported System Configurations.

In addition to the system configurations, check the list of supported locales. See the
Supported Locales web page.

In the case of Oracle Solaris, check the recommended patch cluster for the operating
system release to ensure that the recommended patches are installed.

Collect Data for a Bug Report
In general, it is recommended to test with the latest update release or even a latest
available early access (EA) release to see if the issue persists , and then collect
as much relevant data as possible when you create a bug report or submit a support
call.

The following sections suggest the data to collect and, where applicable, it provides
recommendations for the commands or a general procedure for getting the data.

• Hardware Details

• Operating System Details

• Java SE Version

• Command-Line Options

• Environment Variables

• Fatal Error Log

• Core and Crash Dump

• Detailed Description of the Problem

• Logs and Traces

• Results from Troubleshooting Steps

Hardware Details
The hardware details are stored in the error logs when a fatal error occurs.

Sometimes, a bug happens or can be reproduced only on certain hardware
configurations. If a fatal error occurs, then the error log might contain the hardware

Chapter 17
Collect Data for a Bug Report

17-2

http://bugs.java.com/bugdatabase/index.jsp
http://www.oracle.com/technetwork/java/javase/certconfig-2095354.html
http://www.oracle.com/technetwork/java/javase/java8locales-2095355.html

details. If an error log is not available, then document in the bug report the number and
the type of processors in the machine, the clock speed, and, where applicable and if
known, some details on the features of that processor. For example, in the case of
Intel processors, it might be relevant that hyper-threading is available.

Operating System Details
The commands that you can use to get the operating system details.

On the Oracle Solaris operating system, the showrev -a command prints the operating
system version and patch information.

On Linux, it is important to know which distribution and version is used. Sometimes
the /etc/*release file indicates the release information, but because components
and packages can be upgraded independently, it is not always a reliable indication of
the configuration. Therefore, in addition to the information from the *release file,
collect the following information:

• The kernel version. This can be obtained using the uname -a command.

• The glibc version. The rpm -q glibc command indicates the patch level of glibc.

• The thread library. There are two thread libraries for Linux, namely LinuxThreads
and NPTL. The LinuxThreads library is used on 2.4, and earlier kernels and has fixed
stack and floating stack variants. The Native POSIX Thread Library (NPTL) is used
on the 2.6 kernel. Some Linux releases (such as RHEL3) include backports of NPTL
to the 2.4 kernel. Use the command getconf GNU_LIBPTHREAD_VERSION to determine
which thread library is used. If the getconf command returns an error to say that
the variable does not exist, then it is likely that you are using an old kernel with the
LinuxThreads library.

Java SE Version
The Java SE version string can be obtained using the java -version command.

Multiple versions of Java SE may be installed on the same machine. Therefore,
ensure that you use the appropriate version of the java command by verifying that the
installation bin directory appears in your PATH environment variable before other
installations.

Command-Line Options
If the bug report does not include a fatal error log then, it is important to document the
full command line and all its options. This includes any options that specify heap
settings (for example, the -mxoption) or any -XX options that specify HotSpot specific
options.

One of the features in Java SE is garbage collector ergonomics. On server-class
machines, the java command launches the HotSpot Server VM and a parallel garbage
collector. A machine is considered to be a server machine if it has at least two
processors and 2GB or more of memory.

The -XX:+PrintCommandLineFlags option can be used to verify the command-line
options. This option prints all command-line flags to the VM. The command-line
options can also be obtained for a running VM or core file using the jmap utility.

Chapter 17
Collect Data for a Bug Report

17-3

Environment Variables
Sometimes problems arise due to environment variable settings. When creating the
bug report, indicate the values of the following Java environment variables (if set).

• JAVA_HOME

• JRE_HOME

• JAVA_TOOL_OPTIONS

• _JAVA_OPTIONS

• CLASSPATH

• JAVA_COMPILER

• PATH

• USERNAME

In addition, collect the following operating-system-specific environment variables.

• On Oracle Solaris and Linux operating systems, collect the values of the following
environment variables.

– LD_LIBRARY_PATH

– LD_PRELOAD

– SHELL

– DISPLAY

– HOSTTYPE

– OSTYPE

– ARCH

– MACHTYPE

• On Linux, also collect the values of the following environment variables.

– LD_ASSUME_KERNEL

– _JAVA_SR_SIGNUM

• On Windows, collect the values of the following environment variables.

– OS

– PROCESSOR_IDENTIFIER

– _ALT_JAVA_HOME_DIR

Fatal Error Log
The fatal error log is created when a fatal error occurs.

It is recommended to test with the latest update release to see if the problem
persists.

When a fatal error occurs, an error log is created. See Fatal Error Log.

Chapter 17
Collect Data for a Bug Report

17-4

The error log contains information obtained at the time of the fatal error, such as
version and environment information, details about the threads that provoked the
crash, and so forth.

If the fatal error log is generated, then be sure to include it in the bug report or report it
during a support call.

Core and Crash Dump
Core and crash dumps can be very useful when trying to diagnose a system crash or
hung process.

The procedure for generating a dump is described in Collect Core Dumps.

Detailed Description of the Problem
When creating a problem description, try to include as much relevant information as
possible.

Describe the application, the environment, and most important the events leading up
to the time when the problem happened.

Sometimes, the problem can be reproduced only in a complex application
environment. In this case, the description, coupled with logs, core file, and other
relevant information, might be the only way to diagnose the issue. In these situations,
the description should indicate if the submitter is willing to run further diagnosis or run
test binaries on the system where the issue occurs.

• If the problem is reproducible, then list the steps that are required to demonstrate
the problem.

• If the problem can be demonstrated with a small test case, then include the test
case and the commands to compile and execute the test case.

• If the test case or problem requires third-party code (for example, a commercial or
open source library or package), then provide then details about where and how to
obtain the library.

Logs and Traces
Log or trace output can help to quickly determine the cause of a problem.

For example, in the case of a performance issue, the output of the -verbose:gc
option can help in diagnosing the problem. (This is the option to enable output from the
garbage collector.)

In other cases, the output from the jstat command can be used to capture statistical
information over the time period leading up to the problem.

In the case of a deadlock or a hung VM (for example, due to a loop), the thread stacks
can help diagnose the problem. The thread stacks are obtained by pressing Control
+\ on Oracle Solaris and Linux, and Control+Break on Windows.

In general, provide all relevant logs, traces, and other output in the bug report or
during the support call.

Chapter 17
Collect Data for a Bug Report

17-5

Results from Troubleshooting Steps
Report all troubleshooting steps and results that have already occurred

Prerequisites: Before submitting the bug report, be sure to document any
troubleshooting steps that were performed.

For example, if the problem is a crash and the application has native libraries, then
you might have already run the application with the -Xcheck:jni option to reduce
the likelihood that the bug is in the native code. Another case could be a crash that
occurs with the HotSpot Server VM (-server option). If you have also tested with the
HotSpot Client VM (-client option) and the problem does not occur, then this is an
indication that the bug might be specific to the HotSpot Server VM.

In general, include in the bug report all troubleshooting steps and results that have
already occurred. This type of information can often reduce the time that is required to
diagnose an issue.

Collect Core Dumps
Procedure to generate and collect core dumps (also known as crash dumps). A core
dump or a crash dump is a memory snapshot of a running process.

A core dump can be automatically created by the operating system when a fatal or
unhandled error (for example, signal or system exception) occurs. Alternatively, a core
dump can be forced by using system-provided command-line utilities. Sometimes, a
core dump is useful when diagnosing a process that appears to be hung; the core
dump may reveal information about the cause of the hang.

When collecting a core dump, be sure to gather other information about the
environment so that the core file can be analyzed (for example, OS version, patch
information, and the fatal error log).

Core dumps do not usually contain all the memory pages of the crashed or hung
process. With each of the operating systems discussed here, the text (or code) pages
of the process are not included in core dumps. But, to be useful, a core dump must
consist of pages of heap and stack at as a minimum. Collecting non-truncated good
core dump files is essential for postmortem analysis of the crash.

The following sections describe scenarios for collecting core dumps.

• Collect Core Dumps on Oracle Solaris

• Collect Core Dumps on Linux

• Reasons for Not Getting a Core File

• Collect Crash Dumps on Windows

Collect Core Dumps on Oracle Solaris
In the Oracle Solaris operating system, unhandled signals such as a segmentation
violation, illegal instruction, and so forth, result in a core dump.

By default, the core dump is created in the current working directory of the process
and the name of the core dump file is core. The user can configure the location and

Chapter 17
Collect Core Dumps

17-6

name of the core dump using the core file administration utility, coreadm. This
procedure is fully described in the man page for the coreadm utility.

The ulimit utility is used to get or set the limitations on the system resources available
to the current shell and its descendants. Use the ulimit -c command to check or set
the core file size limit. Ensure that the limit is set to unlimited; otherwise, the core file
could be truncated.

Note:

ulimit is a Bash shell built-in command; on a C shell, use the limit command.

Ensure that any scripts that are used to launch the VM or your application do not
disable core dump creation.

The gcore utility can be used to get a core image of running processes. This utility
accepts a process ID (pid) of the process for which you want to force a core dump.

To get the list of Java processes running on the machine, you can use any of the
following commands:

• ps -ef | grep java

• pgrep java

• jps

Note:

The jps command-line utility does not perform name matching (that is, looking
for "java" in the process command name) and so it can list Java VM
embedded processes as well as the Java processes.

The following are two methods to collect core dumps on Oracle Solaris.

• ShowMessageBoxOnError option on Oracle Solaris:

A Java process can be started with the -XX:+ShowMessageBoxOnError
command-line option. When a fatal error occurs, the process prints a message to
standard error and waits for a yes or no response from standard input. The
following example shows the output when an unexpected signal occurs.

===
Unexpected Error

SIGSEGV (0xb) at pc=0xfeba31ac, pid=8677, tid=2
Do you want to debug the problem?
To debug, run 'dbx - 8677'; then switch to thread 2
Enter 'yes' to launch dbx automatically (PATH must include dbx)
Otherwise, press RETURN to abort...
===

Before answering yes or pressing Return (Enter), use the gcore utility to force a
core dump. Then, you can enter yes to launch the dbx debugger.

Chapter 17
Collect Core Dumps

17-7

• Suspend a process with the truss utility:

In situations where it is not possible to specify the -XX:
+ShowMessageBoxOnError option, you might be able to use the truss utility.
This Oracle Solaris operating system utility is used to trace system calls and
signals. You can use this utility to suspend the process when it reaches a specific
function or system call.

The command in the following example shows how to use the truss utility to
suspend a process when the exit system call is executed (in other words, the
process is about to exit).

$ truss -t \!all -s \!all -T exit -p pid

When the process calls exit, it will be suspended. At this point, you can attach the
debugger to the process or call gcore to force a core dump.

Collect Core Dumps on Linux
On the Linux operating system, unhandled signals such as segmentation violation,
illegal instruction, and so forth, result in a core dump.

By default, the core dump is created in the current working directory of the process
and the name of the core dump file is core.pid, where pid is the process ID of the
crashed Java process.

The ulimit utility is used to get or set the limitations on the system resources available
to the current shell and its descendants. Use the ulimit -c command to check or set
the core file size limit. Ensure that the limit is set to unlimited; otherwise, the core file
could be truncated.

Note:

ulimit is a Bash shell built-in command; on a C shell, use the limit command.

Ensure that any scripts that are used to launch the VM or your application do not
disable core dump creation.

You can use the gcore command in the gdb (GNU debugger) interface to get a core
image of a running process. This utility accepts the pid of the process for which you
want to force the core dump.

To get the list of Java processes running on the machine, you can use any of the
following commands:

• ps -ef | grep java

• pgrep java

• jps

Chapter 17
Collect Core Dumps

17-8

Note:

The jps command-line utility does not perform name matching (that is, looking
for "java" in the process command name) and so it can list Java VM
embedded processes as well as the Java processes.

The following is one option to collect core dumps on Linux.

• ShowMessageBoxOnError option in Linux:

A Java process can be started with the -XX:+ShowMessageBoxOnError
command-line option. When a fatal error occurs, the process prints a message to
standard error and waits for a yes or no response from standard input. The
following example shows the output when an unexpected signal occurs.

===
Unexpected Error

SIGSEGV (0xb) at pc=0x06232e5f, pid=11185, tid=8194
Do you want to debug the problem?
To debug, run 'gdb /proc/11185/exe 11185'; then switch to thread 8194
Enter 'yes' to launch gdb automatically (PATH must include gdb)
Otherwise, press RETURN to abort...
===

Enter yes to launch the gdb (GNU Debugger) interface, as suggested by the error
report shown. In the gdb prompt, you can give the gcore command. This command
creates a core dump of the debugged process with the name core.pid, where pid
is the process ID of the crashed process. Ensure that the gdb gcore command is
supported in your versions of gdb. Look for help gcore in the gdb command prompt.

Reasons for Not Getting a Core File
List of reasons that a core file might not be generated.

This list pertains to both Oracle Solaris and Linux operating systems, unless specified
otherwise.

• The user does not have permission to write in the current working directory of the
process.

• The user has write permission on the current working directory, but there is
already a file named core that has read-only permission.

• The current directory does not have enough space or there is no space left.

• The current directory has a subdirectory named core.

• The current working directory is remote. It might be mapped by a Network File
System (NFS), and NFS failed at the time the core dump was about to be created.

• Oracle Solaris operating system only: The coreadm tool has been used to configure
the directory and name of the core file, but one or more of the previous reasons
apply to the configured directory.

• The core file size limit is too low. Check your core file size limit using the ulimit -c
command (Bash shell) or the limit -c command (C shell). If the output from this
command is not unlimited, then the core dump file size might not be large enough.
If this is the case, then you will get truncated core dumps or no core dump at all. In

Chapter 17
Collect Core Dumps

17-9

addition, ensure that any scripts that are used to launch the VM or your application
do not disable core dump creation.

• The process is running a setuid program, and therefore the operating system will
not dump the core unless it is configured explicitly.

• Java specific: If the process received SIGSEGV or SIGILL but no core dump, it is
possible that the process handled it. For example, HotSpot VM uses the SIGSEGV
signal for legitimate purposes, such as throwing NullPointerException,
deoptimization, and so forth. The signal is unhandled by the Java VM only if the
current instruction (PC) falls outside the Java VM generated code. These are the
only cases in which HotSpot dumps the core.

• Java specific: The JNI Invocation API was used to create the VM. The standard
Java launcher was not used. The custom Java launcher program handled the
signal by consuming it and produced the log entry silently. This situation has
occurred with certain application servers and web servers. These Java VM
embedding programs transparently attempt to restart (fail over) the system after an
abnormal termination. In this case, the fact that a core dump is not produced is a
feature and not a bug.

Collect Crash Dumps on Windows
In the Windows operating system there are three types of crash dumps: Dr. Watson
log file, user minidump, and Dr. Watson full dump.

• Dr. Watson log file, which is a text error log file that includes faulting stack trace
and a few other details.

• User minidump, which is considered a partial core dump. It is not a complete core
dump, because it does not contain all the useful memory pages of the process.

• Dr. Watson full dump, which is equivalent to a UNIX core dump. This dump
contains most memory pages of the process (except for code pages).

When an unexpected exception occurs on Windows, the action taken depends on two
values in the following registry key:

\\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\AeDebug

The two values are named Debugger and Auto. The Auto value indicates if the debugger
specified in the value of the Debugger entry starts automatically when an application
error occurs.

• A value of 0 for Auto means that the system displays a message box notifying the
user when an application error occurs.

• A value of 1 for Auto means that the debugger starts automatically.

The value of Debugger is the debugger command that is to be used to debug program
errors.

When a program error occurs, Windows examines the Auto value, and if the value is 0
then it executes the command in the Debugger value. If the value for Debugger is a valid
command, then a message box is created with two buttons: OK and Cancel. If the
user clicks OK, then the program is terminated. If the user clicks Cancel, then the
specified debugger is started. If the value for the Auto entry is set to 1 and the value for
the Debugger entry specifies the command for a valid debugger, then the system
automatically starts the debugger and does not generate a message box.

Chapter 17
Collect Core Dumps

17-10

The following are two ways to collect crash dump on Windows.

• Configure Dr.Watson:

The Dr. Watson debugger is used to create crash dump files. By default, the Dr.
Watson debugger (drwtsn32.exe) is installed in the Windows system folder
(%SystemRoot%\System32).

To install Dr. Watson as the postmortem debugger, run the following command:

drwtsn32 -i

To configure the name and location of crash dump files, run drwtsn32 without any
options.

In the Dr. Watson GUI window, ensure that the Create Crash Dump File check
box is selected and that the crash dump file path and log file path are configured in
their respective text fields.

Dr. Watson can be configured to create a full dump using the registry. The registry
key is shown in the following example.

System Key: [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DrWatson]
Entry Name: CreateCrashDump
Value: (0 = disabled, 1 = enabled)

Note:

If the application handles the exception, then the registry-configured debugger
is not invoked. In that case, it might be appropriate to use the -XX:
+ShowMessageBoxOnError command-line option to force the process to
wait for user intervention on fatal error conditions.

• Force a crash dump:

On the Windows operating system, the userdump command-line utility can be used
to force a Dr. Watson dump of a running process. The userdump utility does not
ship with Windows. It is released as a component of the OEM Support Tools
package.

An alternative way to force a crash dump is to use the windbg debugger. The main
advantage of using windbg is that it can attach to a process in a non-invasive
manner (that is, read-only). Usually, Windows terminates a process after a crash
dump is obtained, but with the noninvasive attach, it is possible to obtain a crash
dump and let the process continue. To attach the debugger check box requires
selecting the Attach to Process option and the Noninvasive checkbox.

When the debugger is attached, a crash dump can be obtained using the
command shown in the following example.

.dump /f crash.dmp

The windbg debugger is included in the Debugging Tools for Windows download.

An additional utility in this download is the dumpchk.exe utility, which can verify that
a memory dump file was created correctly.

Both userdump.exe and windbg require the pid of the process. The userdump -p
command lists the process and program for all processes. This is useful if you
know that the application is started with the java.exe launcher. However, if a

Chapter 17
Collect Core Dumps

17-11

custom launcher is used (embedded VM), then it might be difficult to recognize the
process. In that case, you can use the jps command-line utility because it lists the
PIDS of the Java processes only.

As with Oracle Solaris and Linux operating systems, you can also use the -XX:
+ShowMessageBoxOnError command-line option on Windows. When a fatal
error occurs, the process shows a message box and waits for a yes or no response
from the user.

Before clicking Yes or No, you can use the userdump.exe utility to generate the Dr.
Watson dump for the Java process. This utility can also be used in cases when the
process appears to be hung.

Chapter 17
Collect Core Dumps

17-12

Part VI
Appendices

This part contains the following topics.

• Fatal Error Log

Describes fatal error log contents and location

• Java 2D Properties

Describes properties that are useful in troubleshooting issues with Java 2D

• Environment Variables and System Properties

Describes environment variables and system properties that are useful when
troubleshooting issues with Java HotSpot Server VM

• Command-Line Options

Describes command-line options that are useful when diagnosing issues with Java
HotSpot Server VM

• Summary of Tools in This Release

Provides a summary of the tools available in the current and previous releases of
the JDK.

A
Fatal Error Log

Describes the fatal error log, its location, and contents.

The fatal error log is created when a fatal error occurs. It contains information and the
state obtained at the time of the fatal error.

Note:

The format of this file can change slightly in update releases.

This appendix contains the following sections:

• Location of Fatal Error Log

• Description of Fatal Error Log

• Header Format

• Thread Section Format

• Process Section Format

• System Section Format

Location of Fatal Error Log
To specify where the log file will be created, use the product flag -
XX:ErrorFile=file, where file represents the full path for the log file location.

The substring %% in the file variable is converted to %, and the substring %p is converted
to the PID of the process.

In the following example, the error log file will be written to the directory /var/log/
java and will be named java_errorpid.log:

java -XX:ErrorFile=/var/log/java/java_error%p.log

If the -XX:ErrorFile=file flag is not specified, then the default log file name is
hs_err_pid.log, where pid is the PID of the process.

In addition, if the -XX:ErrorFile=file flag is not specified, the system attempts to
create the file in the working directory of the process. In the event that the file cannot
be created in the working directory (insufficient space, permission problem, or other
issue), the file is created in the temporary directory for the operating system. On the
Oracle Solaris and Linux operating systems, the temporary directory is /tmp. On the
Windows, the temporary directory is specified by the value of the TMP environment
variable. If that environment variable is not defined, then the value of the TEMP
environment variable is used.

A-1

Description of Fatal Error Log
Description of the fatal error log file and the sections that contain information obtained
at the time of the fatal error.

The error log contains information obtained at the time of the fatal error, including the
following information, where possible:

• The operating exception or signal that provoked the fatal error

• Version and configuration information

• Details about the thread that provoked the fatal error and the thread's stack trace

• List of running threads and their states

• Summary information about the heap

• List of native libraries loaded

• Command-line arguments

• Environment variables

• Details about the operating system and CPU

Note:

In some cases only a subset of this information is output to the error log. This
can happen when a fatal error is of such severity that the error handler is
unable to recover and report all the details.

The error log is a text file consisting of the following sections:

• A header that provides a brief description of the crash. See Header Format.

• A section with thread information. See Thread Section Format.

• A section with process information. See Process Section Format.

• A section with system information. See System Section Format.

Note:

The format of the fatal error log described here is based on Java SE 6. The
format might be different with other releases.

Header Format
The header section at the beginning of every fatal error log file contains a brief
description of the problem.

The header is also printed to standard output and may show up in the application's
output log.

Appendix A
Description of Fatal Error Log

A-2

The header includes a link to the HotSpot Virtual Machine Error Reporting Page,
where the user can submit a bug report.

#
A fatal error has been detected by the Java Runtime Environment:
#
SIGSEGV (0xb) at pc=0x00007f0f159f857d, pid=18240, tid=18245
#
JRE version: Java(TM) SE Runtime Environment (9.0+167) (build 9-ea+167)
Java VM: Java HotSpot(TM) 64-Bit Server VM (9-ea+167, mixed mode, tiered,
compressed oops, g1 gc, linux-amd64)
Problematic frame:
C [libMyApp.so+0x57d] Java_MyApp_readData+0x11
#
Core dump will be written. Default location: /cores/core.18240)
#
If you would like to submit a bug report, please visit:
http://bugreport.java.com/bugreport/crash.jsp
The crash happened outside the Java Virtual Machine in native code.
See problematic frame for where to report the bug.
#

The example shows that the VM crashed on an unexpected signal.

The next line describes the signal type, program counter (pc) that caused the signal,
process ID, and thread ID, as shown in the following example.

SIGSEGV (0xb) at pc=0x00007f0f159f857d, pid=18240, tid=18245
 | | | | +--- thread id
 | | | +------------- process id
 | | +--------------------------- program counter
 | | (instruction pointer)
 | +--------------------------------------- signal number
 +-- signal name

The next line contains the VM version (client VM or server VM), an indication of
whether the application was run in mixed or interpreted mode, and an indication of
whether class file sharing was enabled, as shown in the following line.

Java VM: Java HotSpot(TM) 64-Bit Server VM (9-ea+167, mixed mode, tiered,
compressed oops, g1 gc, linux-amd64)

The next information is the function frame that caused the crash, as shown in the
following example.

Problematic frame:
C [libMyApp.so+0x57d] Java_MyApp_readData+0x11
 | +-- Same as pc, but represented as library name and offset.
 | For position-independent libraries (JVM and most shared
 | libraries), it is possible to inspect the instructions
 | that caused the crash without a debugger or core file
 | by using a disassembler to dump instructions near the
 | offset.
 +----------------- Frame type

In this example, the "C" frame type indicates a native C frame. Table A-1 shows the
possible frame types.

Appendix A
Header Format

A-3

Table A-1 Frame Types

Frame Type Description

C Native C frame

j Interpreted Java frame

V VM frame

v VM-generated stub frame

J Other frame types, including compiled Java frames

Internal errors will cause the VM error handler to generate a similar error dump.
However, the header format is different. Examples of internal errors are guarantee()
failure, assertion failure, ShouldNotReachHere(), and so forth. The following example
shows the header format for an internal error.

#
An unexpected error has been detected by HotSpot Virtual Machine:
#
Internal Error (4F533F4C494E55583F491418160E43505000F5), pid=10226, tid=16384
#
Java VM: Java HotSpot(TM) Client VM (1.6.0-rc-b63 mixed mode)

In the above header, there is no signal name or signal number. Instead the second line
now contains Internal Error and a long hexadecimal string. This hexadecimal string
encodes the source module and line number where the error was detected. In general
this "error string" is useful only to engineers working on the HotSpot Virtual Machine.

The error string encodes a line number and therefore it changes with each code
change and release. A crash with a given error string in one release (for example,
1.6.0) might not correspond to the same crash in an update release (for example,
1.6.0_01), even if the strings match.

Note:

Do not assume that a workaround or solution that worked in one situation
associated with a given error string will work in another situation associated
with that same error string. Note the following facts:

• Errors with the same root cause might have different error strings.

• Errors with the same error string might have completely different root
causes.

Therefore, the error string should not be used as the sole criterion when
troubleshooting bugs.

Thread Section Format
Information about the thread that crashed.

If multiple threads crash at the same time, then only one thread is printed.

Appendix A
Thread Section Format

A-4

Thread Information

The first part of the thread section shows the thread that caused the fatal error, as
shown in the following example.

Current thread (0x00007f102c013000): JavaThread "main" [_thread_in_native,
id=18245, stack(0x00007f10345c0000,0x00007f10346c0000)]
 | | | |
| + stack
 | | | |
+------------------ ID
 | | |
+------------------------------- state
 | |
+-- name
 |
+-- type

+---
pointer

The thread pointer is the pointer to the Java VM internal thread structure. It is
generally of no interest unless you are debugging a live Java VM or core file.

The following list shows possible thread types.

• JavaThread

• VMThread

• CompilerThread

• GCTaskThread

• WatcherThread

• ConcurrentMarkSweepThread

Table A-2 shows the important thread states.

Table A-2 Thread States

Thread State Description

_thread_uninitialized Thread is not created. This occurs only in the case of memory
corruption.

_thread_new Thread was created, but it has not yet started.

_thread_in_native Thread is running native code. The error is probably a bug in the
native code.

_thread_in_vm Thread is running VM code.

_thread_in_Java Thread is running either interpreted or compiled Java code.

_thread_blocked Thread is blocked.

..._trans If any of the previous states is followed by the string _trans, then
that means that the thread is changing to a different state.

The thread ID in the output is the native thread identifier.

Appendix A
Thread Section Format

A-5

If a Java thread is a daemon thread, then the string daemon is printed before the
thread state.

Signal Information

The next information in the error log describes the unexpected signal that caused the
VM to terminate. On a Windows system the output appears as shown in the following
example.

siginfo: ExceptionCode=0xc0000005, reading address 0xd8ffecf1

In the above example, the exception code is 0xc0000005 (ACCESS_VIOLATION), and the
exception occurred when the thread attempted to read address 0xd8ffecf1.

On Oracle Solaris and Linux operating systems the signal number (si_signo) and
signal code (si_code) are used to identify the exception, as follows:

siginfo: si_signo: 11 (SIGSEGV), si_code: 1 (SEGV_MAPERR), si_addr:
0x0000000000000000

Register Context

The next information in the error log shows the register context at the time of the fatal
error. The exact format of this output is processor-dependent. The following example
shows output for the Intel(R) Xeon(R) processor.

Registers:
RAX=0x0000000000000000, RBX=0x00007f0f17aff3b0, RCX=0x0000000000000001,
RDX=0x00007f1033880358
RSP=0x00007f10346be930, RBP=0x00007f10346be930, RSI=0x00007f10346be9a0,
RDI=0x00007f102c013218
R8 =0x00007f0f17aff3b0, R9 =0x0000000000000008, R10=0x00007f1011bb1de9,
R11=0x0000000101cfc5e0
R12=0x0000000000000000, R13=0x00007f0f17aff3b0, R14=0x00007f10346be9a8,
R15=0x00007f102c013000
RIP=0x00007f0f159f857d, EFLAGS=0x0000000000010283, CSGSFS=0x0000000000000033,
ERR=0x0000000000000004

The register values might be useful when combined with instructions, as described
below.

Machine Instructions

After the register values, the following example shows the error log that contains the
top of stack followed by 32 bytes of instructions (opcodes) near the program counter
(PC) when the system crashed. These opcodes can be decoded with a disassembler
to produce the instructions around the location of the crash. Note: IA32 and AMD64
instructions are variable in length, and so it is not always possible to reliably decode
instructions before the crash PC.

Top of Stack: (sp=0x00007f10346be930)
0x00007f10346be930: 00007f10346be990 00007f1011bb1e15
0x00007f10346be940: 00007f1011bb1b33 00007f10346be948
0x00007f10346be950: 00007f0f17aff3b0 00007f10346be9a8
0x00007f10346be960: 00007f0f17aff5a0 0000000000000000

Instructions: (pc=0x00007f0f159f857d)
0x00007f0f159f855d: 3d e6 08 20 00 ff e0 0f 1f 40 00 5d c3 90 90 55
0x00007f0f159f856d: 48 89 e5 48 89 7d f8 48 89 75 f0 b8 00 00 00 00

Appendix A
Thread Section Format

A-6

0x00007f0f159f857d: 8b 00 5d c3 90 90 90 90 90 90 90 90 90 90 90 90
0x00007f0f159f858d: 90 90 90 55 48 89 e5 53 48 83 ec 08 48 8b 05 88

Thread Stack

Where possible, the next output in the error log is the thread stack, as shown in the
following example. This includes the addresses of the base and the top of the stack,
the current stack pointer, and the amount of unused stack available to the thread. This
is followed, where possible, by the stack frames, and up to 100 frames are printed. For
C/C++ frames, the library name may also be printed. Note: In some fatal error
conditions, the stack may be corrupt, and this detail may not be available.

Stack: [0x00007f10345c0000,0x00007f10346c0000], sp=0x00007f10346be930, free
space=1018k
Native frames: (J=compiled Java code, A=aot compiled Java code, j=interpreted, Vv=VM
code, C=native code)
C [libMyApp.so+0x57d] Java_MyApp_readData+0x11
j MyApp.readData()I+0
j MyApp.main([Ljava/lang/String;)V+15
v ~StubRoutines::call_stub
V [libjvm.so+0x839eea] JavaCalls::call_helper(JavaValue*, methodHandle const&,
JavaCallArguments*, Thread*)+0x47a
V [libjvm.so+0x896fcf] jni_invoke_static(JNIEnv_*, JavaValue*, _jobject*,
JNICallType, _jmethodID*, JNI_ArgumentPusher*, Thread*) [clone .isra.90]+0x21f
V [libjvm.so+0x8a7f1e] jni_CallStaticVoidMethod+0x14e
C [libjli.so+0x4142] JavaMain+0x812
C [libpthread.so.0+0x7e9a] start_thread+0xda

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j MyApp.readData()I+0
j MyApp.main([Ljava/lang/String;)V+15
v ~StubRoutines::call_stub

The log contains two thread stacks.

• The first thread stack is Native frames, which prints the native thread showing all
function calls. However, this thread stack does not take into account the Java
methods that are inlined by the runtime compiler; if methods are inlined, then they
appear to be part of the parent's stack frame.

The information in the thread stack for native frames provides important
information about the cause of the crash. By analyzing the libraries in the list from
the top down, you can generally determine which library might have caused the
problem and report it to the appropriate organization responsible for that library.

• The second thread stack is Java frames, which prints the Java frames including the
inlined methods, skipping the native frames. Depending on the crash, it might not
be possible to print the native thread stack, but it might be possible to print the
Java frames.

Further Details

If the error occurred in the VM thread or in a compiler thread, then further details may
be seen from the following example. For example, in the case of the VM thread, the
VM operation is printed if the VM thread is executing a VM operation at the time of the
fatal error. In the following output example, the compiler thread caused the fatal error.
The task is a compiler task, and the HotSpot Client VM is the compiling method
hs101t004Thread.ackermann.

Appendix A
Thread Section Format

A-7

Current CompileTask:
HotSpot Client Compiler:754 b
nsk.jvmti.scenarios.hotswap.HS101.hs101t004Thread.ackermann(IJ)J (42 bytes)

For the HotSpot Server VM, the output for the compiler task is slightly different but will
also include the full class name and method.

Process Section Format
The process section is printed after the thread section.

It contains information about the whole process, including the thread list and memory
usage of the process.

Thread List

The thread list includes the threads that the VM is aware of, as shown in the following
example.

=>0x0805ac88 JavaThread "main" [_thread_in_native, id=21139,
stack(0x00007f10345c0000,0x00007f10346c0000)]
| | | | |
| + stack
| | | | |
+-- ID
| | | |
+-- state
| | |
| (JavaThread only)
| | |
+-- name
| |
+--- type
|
+--
--- pointer
+--
---------- "=>" current thread

This includes all Java threads and some VM internal threads, but does not include any
native threads created by the user application that have not attached to the VM, as
shown in the following example.

Java Threads: (=> current thread)
 0x00007f102c469800 JavaThread "C2 CompilerThread0" daemon [_thread_blocked,
id=18302, stack(0x00007f0f16f31000,0x00007f0f17032000)]
 0x00007f102c468000 JavaThread "Signal Dispatcher" daemon [_thread_blocked,
id=18301, stack(0x00007f0f17032000,0x00007f0f17133000)]
 0x00007f102c450800 JavaThread "Finalizer" daemon [_thread_blocked, id=18298,
stack(0x00007f0f173fc000,0x00007f0f174fd000)]
 0x00007f102c448800 JavaThread "Reference Handler" daemon [_thread_blocked,
id=18297, stack(0x00007f0f174fd000,0x00007f0f175fe000)]
=>0x00007f102c013000 JavaThread "main" [_thread_in_native, id=18245,
stack(0x00007f10345c0000,0x00007f10346c0000)]

Other Threads:
 0x00007f102c43f000 VMThread "VM Thread" [stack:
0x00007f0f175ff000,0x00007f0f176ff000] [id=18296]

Appendix A
Process Section Format

A-8

 0x00007f102c54b000 WatcherThread [stack: 0x00007f0f15bfb000,0x00007f0f15cfb000]
[id=18338]

The thread type and thread state are described in Thread Section Format.

VM State

The next information is the VM state, which indicates the overall state of the virtual
machine. Table A-3 describes the general states.

Table A-3 VM States

General VM State Description

not at a safepoint Normal execution.

at safepoint All threads are blocked in the VM waiting for a special VM operation to
complete.

synchronizing A special VM operation is required, and the VM is waiting for all
threads in the VM to block.

The VM state output is a single line in the error log, as follows:

VM state:not at safepoint (normal execution)

Mutexes and Monitors

The next information in the error log is a list of mutexes and monitors that are currently
owned by a thread, as shown in the following example. These mutexes are VM
internal locks rather than monitors associated with Java objects. The following is an
example to show how the output might look when a crash happens when VM locks are
held. For each lock, the log contains the name of the lock, its owner, and the
addresses of a VM internal mutex structure and its OS lock. In general, this
information is useful only to those who are very familiar with the HotSpot VM. The
owner thread can be cross-referenced to the thread list.

VM Mutex/Monitor currently owned by a thread:
([mutex/lock_event])[0x007357b0/0x0000031c] Threads_lock - owner thread: 0x00996318
[0x00735978/0x000002e0] Heap_lock - owner thread: 0x00736218

Heap Summary

The next information is a summary of the heap, as shown in the following example.
The output depends on the garbage collection (GC) configuration. In this example, the
serial collector is used, class data sharing is disabled, and the tenured generation is
empty. This probably indicates that the fatal error occurred early or during startup, and
a GC has not yet promoted any objects into the tenured generation.

Heap
def new generation total 576K, used 161K [0x46570000, 0x46610000, 0x46a50000)
 eden space 512K, 31% used [0x46570000, 0x46598768, 0x465f0000)
 from space 64K, 0% used [0x465f0000, 0x465f0000, 0x46600000)
 to space 64K, 0% used [0x46600000, 0x46600000, 0x46610000)
 tenured generation total 1408K, used 0K [0x46a50000, 0x46bb0000, 0x4a570000)
 the space 1408K, 0% used [0x46a50000, 0x46a50000, 0x46a50200, 0x46bb0000)
 compacting perm gen total 8192K, used 1319K [0x4a570000, 0x4ad70000, 0x4e570000)
 the space 8192K, 16% used [0x4a570000, 0x4a6b9d48, 0x4a6b9e00, 0x4ad70000)
No shared spaces configured.

Appendix A
Process Section Format

A-9

Memory Map

The next information in the log is a list of virtual memory regions at the time of the
crash. This list can be long if the application is large. The memory map can be very
useful when debugging some crashes, because it can tell you which libraries are
actually being used, their location in memory, as well as the location of the heap,
stack, and guard pages.

The format of the memory map is operating system-specific. On the Oracle Solaris
operating system, the base address and library name are printed. On the Linux
system, the process memory map (/proc/pid/maps) is printed. On the Windows
system, the base and end addresses of each library are printed. The following
example shows the output generated on Linux/x86.

Note:

Most of the lines were omitted from the example for the sake of brevity.

Dynamic libraries:
00400000-00401000 r-xp 00000000 00:47 1374716350 /export/
java_re/jdk/9/ea/167/binaries/linux-x64/bin/java
00601000-00602000 rw-p 00001000 00:47 1374716350 /export/
java_re/jdk/9/ea/167/binaries/linux-x64/bin/java
016c6000-016e7000 rw-p 00000000 00:00 0 [heap]
82000000-102000000 rw-p 00000000 00:00 0
102000000-800000000 ---p 00000000 00:00 0
40014000-40015000 r--p 00000000 00:00 0
Lines omitted.
7f0f159f8000-7f0f159f9000 r-xp 00000000 08:11 116808980 /export/
users/dh198349/tests/hs-err/libMyApp.so
7f0f159f9000-7f0f15bf8000 ---p 00001000 08:11 116808980 /export/
users/dh198349/tests/hs-err/libMyApp.so
7f0f15bf8000-7f0f15bf9000 r--p 00000000 08:11 116808980 /export/
users/dh198349/tests/hs-err/libMyApp.so
7f0f15bf9000-7f0f15bfa000 rw-p 00001000 08:11 116808980 /export/
users/dh198349/tests/hs-err/libMyApp.so
Lines omitted.
7f0f15dfc000-7f0f15e00000 ---p 00000000 00:00 0
7f0f15e00000-7f0f15efd000 rw-p 00000000 00:00 0
7f0f15efd000-7f0f15f13000 r-xp 00000000 00:47 1374714565 /export/
java_re/jdk/9/ea/167/binaries/linux-x64/lib/libnet.so
7f0f15f13000-7f0f16113000 ---p 00016000 00:47 1374714565 /export/
java_re/jdk/9/ea/167/binaries/linux-x64/lib/libnet.so
7f0f16113000-7f0f16114000 rw-p 00016000 00:47 1374714565 /export/
java_re/jdk/9/ea/167/binaries/linux-x64/lib/libnet.so
7f0f16114000-7f0f16124000 r-xp 00000000 00:47 1374714619 /export/
java_re/jdk/9/ea/167/binaries/linux-x64/lib/libnio.so
Lines omitted.
7f0f17032000-7f0f17036000 ---p 00000000 00:00 0
7f0f17036000-7f0f17133000 rw-p 00000000 00:00 0
7f0f17133000-7f0f173fc000 r--p 00000000 08:02 2102853 /usr/lib/
locale/locale-archive
7f0f173fc000-7f0f17400000 ---p 00000000 00:00 0
Lines omtted.

The following is a format of memory map in the error log.

Appendix A
Process Section Format

A-10

40049000-4035c000 r-xp 00000000 03:05 824473 /jdk1.5/jre/lib/i386/client/libjvm.so
|<------------->| ^ ^ ^ ^ |<--------------------------------->|
 Memory region | | | | |
 | | | | |
 Permission --- + | | | |
 r: read | | | |
 w: write | | | |
 x: execute | | | |
 p: private | | | |
 s: share | | | |
 | | | |
 File offset ----------+ | | |
 | | |
 Major ID and minor ID of -------+ | |
 the device where the file | |
 is located (i.e. /dev/hda5) | |
 | |
 inode number ------------------------+ |
 |
 File name --+

The example shows the memory map output and each library has two virtual memory
regions: one for code and one for data. The permission for the code segment is
marked with r-xp (readable, executable, private), and the permission for the data
segment is rw-p (readable, writable, private).

The Java heap is already included in the heap summary earlier in the output, but it can
be useful to verify that the actual memory regions reserved for the heap match the
values in the heap summary and that the attributes are set to rwxp.

Thread stacks usually show up in the memory map as two back-to-back regions, one
with permission ---p (guard page) and one with permission rwxp (actual stack space).
In addition, it is useful to know the guard page size or stack size. For example, in this
memory map, the stack is located from 4127b000 to 412fb000.

On a Windows system, the memory map output is the load and end address of each
loaded module, as shown in the following example.

Dynamic libraries:
0x00400000 - 0x0040c000 c:\jdk6\bin\java.exe
0x77f50000 - 0x77ff7000 C:\WINDOWS\System32\ntdll.dll
0x77e60000 - 0x77f46000 C:\WINDOWS\system32\kernel32.dll
0x77dd0000 - 0x77e5d000 C:\WINDOWS\system32\ADVAPI32.dll
0x78000000 - 0x78087000 C:\WINDOWS\system32\RPCRT4.dll
0x77c10000 - 0x77c63000 C:\WINDOWS\system32\MSVCRT.dll
0x08000000 - 0x08183000 c:\jdk6\jre\bin\client\jvm.dll
0x77d40000 - 0x77dcc000 C:\WINDOWS\system32\USER32.dll
0x7e090000 - 0x7e0d1000 C:\WINDOWS\system32\GDI32.dll
0x76b40000 - 0x76b6c000 C:\WINDOWS\System32\WINMM.dll
0x6d2f0000 - 0x6d2f8000 c:\jdk6\jre\bin\hpi.dll
0x76bf0000 - 0x76bfb000 C:\WINDOWS\System32\PSAPI.DLL
0x6d680000 - 0x6d68c000 c:\jdk6\jre\bin\verify.dll
0x6d370000 - 0x6d38d000 c:\jdk6\jre\bin\java.dll
0x6d6a0000 - 0x6d6af000 c:\jdk6\jre\bin\zip.dll
0x10000000 - 0x10032000 C:\bugs\crash2\App.dll

VM Arguments and Environment Variables

The next information in the error log is a list of VM arguments, followed by a list of
environment variables, as shown in the following example.

Appendix A
Process Section Format

A-11

VM Arguments:
jvm_args:
java_command: MyApp
java_class_path (initial): .
Launcher Type: SUN_STANDARD

Logging:
Log output configuration:
#0: stdout all=warning uptime,level,tags
#1: stderr all=off uptime,level,tags

Environment Variables:
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
SHELL=/bin/bash
DISPLAY=localhost:10.0
ARCH=i386

Note:

The list of environment variables is not the full list but rather a subset of the
environment variables that are applicable to the Java VM.

Signal Handlers

On the Oracle Solaris and Linux operating systems, the next information in the error
log is the list of signal handlers, as shown in the following example.

Signal Handlers:
SIGSEGV: [libjvm.so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGBUS: [libjvm.so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGFPE: [libjvm.so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGPIPE: [libjvm.so+0xb60080], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGXFSZ: [libjvm.so+0xb60080], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGILL: [libjvm.so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGUSR2: [libjvm.so+0xb5ff40], sa_mask[0]=00000000000000000000000000000000,
sa_flags=SA_RESTART|SA_SIGINFO
SIGHUP: [libjvm.so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGINT: [libjvm.so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGTERM: [libjvm.so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGQUIT: [libjvm.so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO

Appendix A
Process Section Format

A-12

System Section Format
The final section in the error log is the system information. The output is operating-
system-specific but in general includes the operating system version, CPU information,
and summary information about the memory configuration.

The following example shows output on a Linux operating system.

--------------- S Y S T E M ---------------

OS:DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=12.04
DISTRIB_CODENAME=precise
DISTRIB_DESCRIPTION="Ubuntu 12.04 LTS"
uname:Linux 3.2.0-24-generic #39-Ubuntu SMP Mon May 21 16:52:17 UTC 2012 x86_64
libc:glibc 2.15 NPTL 2.15
rlimit: STACK 8192k, CORE infinity, NPROC 1160369, NOFILE 4096, AS infinity
load average:0.46 0.33 0.27

/proc/meminfo:
MemTotal: 148545440 kB
MemFree: 1020964 kB
Buffers: 29600728 kB
Cached: 86607768 kB
SwapCached: 16112 kB
Active: 52272944 kB
Inactive: 64862992 kB
Active(anon): 314080 kB
Inactive(anon): 616296 kB
Active(file): 51958864 kB
Inactive(file): 64246696 kB
Unevictable: 16 kB
Mlocked: 16 kB
SwapTotal: 1051644 kB
SwapFree: 976092 kB
Dirty: 40 kB
Writeback: 0 kB
AnonPages: 912404 kB
Mapped: 95804 kB
Shmem: 2936 kB
Slab: 28625980 kB
SReclaimable: 28337400 kB
SUnreclaim: 288580 kB
KernelStack: 6040 kB
PageTables: 42524 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 75324364 kB
Committed_AS: 6172612 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 681668 kB
VmallocChunk: 34282379392 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0

Appendix A
System Section Format

A-13

Hugepagesize: 2048 kB
DirectMap4k: 171520 kB
DirectMap2M: 8208384 kB
DirectMap1G: 142606336 kB

CPU:total 24 (initial active 24) (6 cores per cpu, 2 threads per core) family 6
model 44 stepping 2, cmov, cx8, fxsr, mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2,
popcnt, aes, clmul, ht, tsc, tscinvbit, tscinv
CPU Model and flags from /proc/cpuinfo:
model name : Intel(R) Xeon(R) CPU X5675 @ 3.07GHz
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf
pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid dca
sse4_1 sse4_2 popcnt aes lahf_lm ida arat epb dts tpr_shadow vnmi flexpriority ept
vpid

Memory: 4k page, physical 148545440k(1020964k free), swap 1051644k(976092k free)

vm_info: Java HotSpot(TM) 64-Bit Server VM (9-ea+167) for linux-amd64 JRE (9-ea
+167), built on Apr 27 2017 00:28:45 by "javare" with gcc 4.9.2

On the Oracle Solaris and Linux, the operating system, information is in the file /etc/
*release. This file describes the kind of system the application is running on, and in
some cases, the information string might include the patch level. Some system
upgrades are not reflected in the /etc/*release file. This is especially true on the
Linux system, where the user can rebuild any part of the system.

On Oracle Solaris operating system the uname system call is used to get the name for
the kernel. The thread library (T1 or T2) is also printed.

On the Linux system, the uname system call is also used to get the kernel name. The
libc version and the thread library type are also printed, as shown in the following
example.

uname:Linux 3.2.0-24-generic #39-Ubuntu SMP Mon May 21 16:52:17 UTC 2012 x86_64
libc:glibc 2.15 NPTL 2.15
 |<- glibc version ->|<-- pthread type -->|

On Linux, there are three possible thread types, namely linuxthreads (fixed stack),
linuxthreads (floating stack), and NPTL. They are normally installed in /lib, /lib/
i686, and /lib/tls.

It is useful to know the thread type. For example, if the crash appears to be related to
pthread, then you might be able to work around the issue by selecting a different
pthread library. A different pthread library (and libc) can be selected by setting
LD_LIBRARY_PATH or LD_ASSUME_KERNEL.

The glibc version usually does not include the patch level. The command rpm -q glibc
might provide more detailed version information.

On the Oracle Solaris and Linux operating systems, the next information is the rlimit
information.

Appendix A
System Section Format

A-14

Note:

The default stack size of the VM is usually smaller than the system limit, as
shown in the following example.

rlimit: STACK 8192k, CORE infinity, NPROC 1160369, NOFILE 4096, AS infinity
 | | | | virtual
memory (-v)
 | | | +--- max open files
(ulimit -n)
 | | +----------- max user processes
(ulimit -u)
 | +------------------------------ core dump size
(ulimit -c)
 +--- stack size (ulimit -
s)
load average:0.04 0.05 0.02

rlimit: STACK 8192k, CORE 0k, NPROC 4092, NOFILE 1024, AS infinity
 | | | | virtual memory (-v)
 | | | +--- max open files (ulimit -n)
 | | +----------- max user processes (ulimit -u)
 | +------------------------- core dump size (ulimit -c)
 +-- stack size (ulimit -s)
load average:0.04 0.05 0.02

The next information specifies the CPU architecture and capabilities identified by the
VM at startup, as shown in the following example.

CPU:total 24 (initial active 24) (6 cores per cpu, 2 threads per core) family 6
model 44 stepping 2, cmov, cx8, fxsr, mmx
 |
| | |<----- CPU features ---->|
 | |
 | +---
processor family (IA32 only):
 | 3 -
i386
 | 4 -
i486
 | 5 -
Pentium
 | 6 -
PentiumPro, PII, PIII
 | 15 -
Pentium 4
 +------------ Total number of CPUs

Table A-4 shows the possible CPU features on a SPARC system.

Table A-4 SPARC Features

SPARC Feature Description

has_v8 Supports v8 instructions.

has_v9 Supports v9 instructions.

Appendix A
System Section Format

A-15

Table A-4 (Cont.) SPARC Features

SPARC Feature Description

has_vis1 Supports visualization instructions.

has_vis2 Supports visualization instructions.

is_ultra3 UltraSparc III.

no-muldiv No hardware integer multiply and divide.

no-fsmuld No multiply-add and multiply-subtract instructions.

Table A-5 shows the possible CPU features on an Intel/IA32 system.

Table A-5 Intel/IA32 Features

Intel/IA32 Feature Description

cmov Supports cmov instruction.

cx8 Supports cmpxchg8b instruction.

fxsr Supports fxsave and fxrstor.

mmx Supports MMX.

sse Supports SSE extensions.

sse2 Supports SSE2 extensions.

ht Supports Hyper-Threading Technology.

Table A-6 shows the possible CPU features on an AMD64/EM64T system.

Table A-6 AMD64/EM64T Features

AMD64/EM64T Feature Description

amd64 AMD Opteron, Athlon64, and so forth.

em64t Intel EM64T processor.

3dnow Supports 3DNow extension.

ht Supports Hyper-Threading Technology.

The next information in the error log is memory information, as shown in the following
example.

 unused swap space
 total amount of swap space |
 unused physical memory | |
total amount of physical memory | | |
 page size | | | |
 v v v v v
Memory: 4k page, physical 513604k(11228k free), swap 530104k(497504k free)

Some systems require swap space to be at lease twice the size of real physical
memory, whereas other systems do not have any requirements. As a general rule, if
both physical memory and swap space are almost full, then there is good reason to
suspect that the crash was due to insufficient memory.

Appendix A
System Section Format

A-16

On Linux system, the kernel may convert most of unused physical memory to file
cache. When there is a need for more memory, the Linux kernel will give the cache
memory back to the application. This is handled transparently by the kernel, but it
means that the amount of unused physical memory reported by the fatal error handler
could be close to zero when there is still sufficient physical memory available.

The final information in the SYSTEM section of the error log is vm_info, which is a
version string embedded in libjvm.so/jvm.dll. Every Java VM has its own unique
vm_info string. If you are in doubt about whether the fatal error log was generated by a
particular Java VM, check the version string.

Appendix A
System Section Format

A-17

B
Java 2D Properties

This appendix presents properties that can be useful in troubleshooting Java 2D.

This appendix contains the following sections:

• Properties on Oracle Solaris and Linux

• Properties on Windows

Properties on Oracle Solaris and Linux
List of Java 2D properties on Oracle Solaris and Linux.

Table B-1 describes the default values of some useful properties on Oracle Solaris
and Linux platforms.

Table B-1 Default Java 2D Properties on Oracle Solaris and Linux

Setup DGA SHM Pixmaps OnScreen OffScreen

Oracle Solaris SPARC with
DGA support

On On Off DGA/Software Software

Oracle Solaris SPARC with no
DGA, Oracle Solaris x86,
Linux, SunRay, VNC

Off On On X11/MITSHM Shared/Server
Pixmaps

J2SE 1.4 or greater: Remote X
server, ssh

Off Off On X11 Server Pixmaps

J2SE 1.3.1 or less: Remote X
server, ssh

Off Off Off X11 Software

The following list explains how to change the defaults.

• The X11 pipeline is the default pipeline for Oracle Solaris and Linux. Change this
default as follows:

– -Dsun.java2d.opengl=true — Attempt to enable the OpenGL pipeline.

• The use of DGA is controlled as follows:

– NO_J2D_DGA unset — Use DGA, if available.

– NO_J2D_DGA set — Disable the use of DGA.

• MIT Shared Memory Extension (SHM) is controlled as follows:

– To use SHM, if available, specify either one of the following properties:

NO_J2D_MITSHM unset

J2D_USE_MITSHM=true

– To not use SHM, specify either one of the following properties:

NO_J2D_MITSHM set

B-1

J2D_USE_MITSHM=false

• The general use of pixmaps is controlled as follows:

– -Dsun.java2d.pmoffscreen unset — Use pixmaps if DGA is not available.

– -Dsun.java2d.pmoffscreen=true — Force the use of pixmaps.

– -Dsun.java2d.pmoffscreen=false — Disable the use of pixmaps.

• The use of Shared and Server pixmaps is controlled as follows:

– J2D_PIXMAPS unset — Use both types.

– J2D_PIXMAPS=shared — Use only shared memory pixmaps.

– J2D_PIXMAPS=sserver — Use only server-side pixmaps.

• The choice of default visual is controlled as follows:

– FORCEDEFVIS unset (default) — Use the best visual available.

– FORCEDEFVIS set to a hexadecimal value — Use the visual whose ID is the
hexadecimal value.

– FORCEDEFVIS set to any other value — Use the default visual.

Properties on Windows
List of useful properties on Windows.

The following list describes some useful properties on Windows platforms.

• The DirectDraw/GDI pipeline is the default pipeline for Windows. Change this
default as follows:

– -Dsun.java2d.noddraw=true — Disable the use of the DirectDraw pipeline. GDI
will be used instead.

– -Dsun.java2d.noddraw=false — Enable the use of the DirectDraw pipeline.

– -Dsun.java2d.d3d=false — Disable the use of the Direct3D pipeline.

– J2D_D3D=false — Disable the use of the Direct3D pipeline.

– -Dsun.java2d.d3d=true — Enable the use of the Direct3D pipeline.

– J2D_D3D=true — Enable the use of the Direct3D pipeline.

• Control the use of the built-in surface punting mechanism as follows:

– -Dsun.java2d.ddforcedram=true — Keep volatile images in VRAM.

• Control the use of DirectDraw blit operations as follows:

– -Dsun.java2d.ddblit=false — Disable the use of DirectDraw blit operations.
GDI blits will be used instead.

Appendix B
Properties on Windows

B-2

C
Environment Variables and System
Properties

This appendix describes environment variables and system properties that can be
useful for troubleshooting problems with the Java HotSpot VM.

Submit a Bug Report contains information on collecting environment variables in
Environment Variables.

This appendix contains the following sections:

• The JAVA_HOME Environment Variable

• The JAVA_TOOL_OPTIONS Environment Variable

• The java.security.debug System Property

The JAVA_HOME Environment Variable
This variable shows the directory where the Java Development Kit (JDK) software is
installed.

The JAVA_TOOL_OPTIONS Environment Variable
In many environments, the command line is not readily accessible to start the
application with the necessary command-line options.

This often happens with applications that use embedded VMs (meaning they use the
Java Native Interface (JNI) Invocation API to start the VM), or where the startup is
deeply nested in scripts. In these environments the JAVA_TOOL_OPTIONS environment
variable can be useful to augment a command line.

When this environment variable is set, the JNI_CreateJavaVM function (in the JNI
Invocation API), the JNI_CreateJavaVM function adds the value of the environment
variable to the options supplied in its JavaVMInitArgs argument.

Note:

In some cases, this option is disabled for security reasons. For example, on
the Oracle Solaris operating system, this option is disabled when the effective
user or group ID differs from the real ID.

This environment variable allows you to specify the initialization of tools, specifically
the launching of native or Java programming language agents using the -agentlib or -
javaagent options.

C-1

This variable can also be used to augment the command line with other options for
diagnostic purposes. For example, you can supply the -XX:OnError option to specify a
script or command to be executed when a fatal error occurs.

Because this environment variable is examined at the time, that the JNI_CreateJavaVM
function is called, it cannot be used to augment the command line with options that
would normally be handled by the launcher, for example, VM selection using the -
client option or the -server option.

The java.security.debug System Property
This system property controls whether the security system of the Java Runtime
Environment (JRE) prints trace messages during execution.

This option can be useful when diagnosing an issue involving a security manager
when a SecurityException is thrown.

The java.security.debug property can have the following values:

• access

Print all checkPermission results.

The following additional options can be specified with the access option:

– stack

Include stack trace.

– domain

Dump all domains in context.

– failure

Before throwing an exception, dump the stack and domain that did not have
permission.

• jar

Print the JAR verification information.

• policy

Print the permissions that SecureClassLoader assigns.

• scl

For example, to print all checkPermission results and trace all domains in context,
set the java.security.debug property to access,stack. To trace access failures, set
the property to access,failure.

The following example shows the output of a checkPermission failure.

$ java -Djava.security.debug="access,failure" MyApp
access denied (java.net.SocketPermission server.foobar.com resolve
)
java.lang.Exception: Stack trace
 at java.lang.Thread.dumpStack(Thread.java:1158)
 at java.security.AccessControlContext.checkPermission
 (AccessControlContext.java:253)
 at java.security.AccessController.checkPermission(AccessController.java:427)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:532)
 at java.lang.SecurityManager.checkConnect(SecurityManager.java:1031)

Appendix C
The java.security.debug System Property

C-2

 at java.net.InetAddress.getAllByName0(InetAddress.java:1117)
 at java.net.InetAddress.getAllByName0(InetAddress.java:1098)
 at java.net.InetAddress.getAllByName(InetAddress.java:1061)
 at java.net.InetAddress.getByName(InetAddress.java:958)
 at java.net.InetSocketAddress.<init>(InetSocketAddress.java:124)
 at java.net.Socket.<init>(Socket.java:178)
 at MyApp.main(MyApp.java:7)

To know more about the java.security.debug system property, see the
Troubleshooting Security in the Java Platform, Standard Edition Security
Developer's Guide.

Appendix C
The java.security.debug System Property

C-3

D
Command-Line Options

This appendix describes some command-line options that can be useful when
diagnosing problems with the Java HotSpot VM.

This appendix contains the following sections:

• Java HotSpot VM Command-Line Options

• Other Command-Line Options

Java HotSpot VM Command-Line Options
Command-line options that are prefixed with -XX are specific to the Java HotSpot
Virtual Machine. Many of these options are important for performance tuning and
diagnostic purposes, and are therefore described in this appendix.

To know more about all possible -XX options, see the Java HotSpot VM Options.

You can dynamically set, unset, or change the value of certain Java VM flags for a
specified Java process using the jinfo -flag command. See The jinfo Utility and the
JConsole utility.

For a complete list of these flags, use the MBeans tab of the JConsole utility. See the
list of values for the DiagnosticOptions attribute of the HotSpotDiagnostic MBean, which
is in the com.sun.management domain. The following are the flags:

• HeapDumpOnOutOfMemoryError

• HeapDumpPath

• PrintGC

• PrintGCDetails

• PrintGCTimeStamps

• PrintClassHistogram

• PrintConcurrentLocks

The -XX:HeapDumpOnOutOfMemoryError Option

This option tells the Java HotSpot VM to generate a heap dump when an allocation
from the Java heap or the permanent generation cannot be satisfied. There is no
overhead in running with this option, so it can be useful for production systems where
the OutOfMemoryError exception takes a long time to appear.

You can also specify this option at runtime with the MBeans tab in the JConsole utility.

The following example shows the result of running out of memory with this flag set.

$ java -XX:+HeapDumpOnOutOfMemoryError -mn256m -mx512m ConsumeHeap
java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid2262.hprof ...
Heap dump file created [531535128 bytes in 14.691 secs]

D-1

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
 at ConsumeHeap$BigObject.(ConsumeHeap.java:22)
 at ConsumeHeap.main(ConsumeHeap.java:32)

The ConsumeHeap fills the Java heap and runs out of memory. When the
java.lang.OutOfMemoryError exception is thrown, a heap dump file is created. In this
case the file is 507 MB and is created with the name java_pid2262.hprof in the current
directory.

By default, the heap dump is created in a file called java_pidpid.hprof in the working
directory of the VM, as in the example above. You can specify an alternative file name
or directory with the -XX:HeapDumpPath= option. For example -XX:HeapDumpPath=/disk2/
dumps will cause the heap dump to be generated in the /disk2/dumps directory.

The -XX:OnError Option

When a fatal error occurs, the Java HotSpot VM can optionally execute a user-
supplied script or command. The script or command is specified using the -
XX:OnError=string command-line option, where string is a single command, or a list of
commands separated by semicolons. Within this string, all occurrences of %p are
replaced with the current PID, and all occurrences of %% are replaced by a single %. The
following examples demonstrate how this option can be used when launching a Java
application named MyApp with the java launcher.

• java -XX:OnError="pmap %p" MyApp

On the Oracle Solaris operating system the pmap command displays information
about the address space of a process. In the example, if a fatal error occurs, then
the pmap command is executed and displays the address space of the current
process.

• java -XX:OnError="cat hs_err_pid%p.log | mail support@acme.com" MyApp

In the example above, the contents of the fatal error log file are mailed to a support
alias when a fatal error occurs.

• java -XX:OnError="gcore %p; dbx - %p" MyApp

On the Oracle Solaris operating system the gcore command creates a core image
of the specified process, and the dbx command launches the debugger. In the
example above, the gcore command is executed to create the core image of the
current process, and the debugger is started to attach to the process when an
unexpected error occurs.

• java -XX:OnError="gdb - %p" MyApp

On Linux, the gdb command launches the debugger. In the example above, the gdb
debugger is launched and attached to the current process when an unexpected
error is encountered.

• java -XX:OnError="userdump.exe %p" MyApp

On Windows, the userdump.exe utility creates a crash dump of the specified
process. The utility does not ship with Windows and should be downloaded from
the Microsoft website as a part of the Microsoft OEM Support Tools package.

In the example, the userdump.exe utility is executed to create a core dump of the
current process in case of a fatal error.

Appendix D
Java HotSpot VM Command-Line Options

D-2

Note:

The example assumes that the path to the userdump.exe utility is defined in the
PATH variable.

To know more about creating crash dumps on Windows, see Collect Crash Dumps on
Windows.

The -XX:ShowMessageBoxOnError Option

When this option is set and a fatal error occurs, the HotSpot VM will display
information about the fatal error and prompt the user to specify whether the native
debugger is to be launched. In the case of the Oracle Solaris and Linux operating
systems, the output and prompt are sent to the application console (standard input and
standard output). In the case of Windows, a Windows message box pops up.

The following example shows a fatal error on a Linux system.

==
Unexpected Error
--
SIGSEGV (0xb) at pc=0x2000000001164db1, pid=10791, tid=1026

Do you want to debug the problem?

To debug, run 'gdb /proc/10791/exe 10791'; then switch to thread 1026
Enter 'yes' to launch gdb automatically (PATH must include gdb)
Otherwise, press RETURN to abort...
==

In this case, a SIGSEGV error occurred, and the user is prompted to specify whether the
gdb debugger is to be launched to attach to the process. If the user enters y or yes,
thengdb will be launched (assuming it is set in the PATH variable).

On the Oracle Solaris operating system, the message is similar to the Linux example,
except that the user is prompted to start the dbx debugger.

On Windows a message box is displayed. If the user clicks Yes, the VM will attempt to
start the default debugger. This debugger is configured by a registry setting which is
described in Collect Crash Dumps on Windows. If Microsoft Visual Studio is installed,
the default debugger is typically configured to be msdev.exe.

In the above example, the output includes the PID (pid=10791) and also the thread ID
(tid=1026). If the debugger is launched, one of the initial steps in the debugger might
be to select the thread and get its stack trace.

When the process is waiting for a response, it is possible to use other tools to get a
crash dump or query the state of the process. On the Oracle Solaris operating system,
for example, a core dump can be obtained using the gcore utility.

On Windows, a Dr. Watson crash dump can be obtained using the userdump or windbg
programs. The windbg utility is included in Microsoft's Debugging Tools for Windows
and is described in Collect Crash Dumps on Windows. In windbg, select the Attach to
a Process menu option, which displays the list of processes and prompts for the PID.
The HotSpot VM displays a message box, which includes the PID. After you selected
the PID, the .dump /f command can be used to force a crash dump. Figure D-1 is an
example crash dump created in a file named crash.dump.

Appendix D
Java HotSpot VM Command-Line Options

D-3

Figure D-1 Example of a Crash Dump Created by windbg

In general, the -XX:+ShowMessageBoxOnError option is more useful in a development
environment where the debugger tools are available. The -XX:OnError option is more
suitable for production environments where a fixed sequence of commands or scripts
are executed when a fatal error occurs.

Other -XX Options

Several other -XX command-line options can be useful when troubleshooting:

• -XX:OnOutOfMemoryError=string

This option can be used to specify a command or script to execute when an
OutOfMemoryError exception is thrown.

• -XX:ErrorFile=filename

This option can be used to specify a location for the fatal error log file. See
Location of Fatal Error Log.

• -xx:HeapDumpPath=path

This option can be used to specify a location for the heap dump. See The -
XX:HeapDumpOnOutOfMemoryError Option.

• -XX:MaxPermSize=size

This option can be used to specify the size of the permanent generation memory.
See Understand the OutOfMemoryError Exception.

• -XX:+PrintCommandLineFlags

This option can be used to print all the VM command-line flags. See Collect Data
for a Bug Report.

Appendix D
Java HotSpot VM Command-Line Options

D-4

• -XX:+PrintConcurrentLocks

This option can be used to cause the Control+Break handler to print a list of
concurrent locks owned by each thread.

• -XX:+PrintClassHistogram

This option can be used to cause the Control+Break handler to print a heap
histogram.

• -XX:+PrintGCDetails and-XX:+PrintGCTimeStamps

These options can be used to print detailed information about garbage collection.
See The -verbose:gc Option.

• -XX:+UseAltSigs

On Oracle Solaris 8 and 9 operating system, this option can be used to instruct the
HotSpot VM to use alternate signals to SIGUSR1 and SIGUSR2. See Handle Signals
on Oracle Solaris, Linux, and macOS.

• -XX:+UseConcMarkSweepGC , -XX:+UseSerialGC and -XX:+UseParallelGC

These options can be used to specify the garbage collection policy to be used.
See Working Around Crashes During Garbage Collection.

Other Command-Line Options
In addition to the -XX options, many other command-line options can provide
troubleshooting information.

This section describes a few of these options.

The -Xcheck:jni Option

This option is useful when diagnosing problems with applications that use the Java
Native Interface (JNI). Sometimes, bugs in the native code can cause the HotSpot VM
to crash or behave incorrectly.

The -Xcheck:jni option is added to the command line that starts the application, as in
the following example:

java -Xcheck:jni MyApp

The -Xcheck:jni option causes the VM to do additional validation on the arguments
passed to JNI functions.

Note:

The option is not guaranteed to find all invalid arguments or diagnose logic
bugs in the application code, but it can help diagnose a large number of such
problems.

When an invalid argument is detected, the VM prints a message to the application
console or to standard output, prints the stack trace of the offending thread, and stops
the VM.

The following example shows a null value was incorrectly passed to a JNI function
that does not allow a null value.

Appendix D
Other Command-Line Options

D-5

FATAL ERROR in native method: Null object passed to JNI
 at java.net.PlainSocketImpl.socketAccept(Native Method)
 at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:343)
 - locked <0x450b9f70> (a java.net.PlainSocketImpl)
 at java.net.ServerSocket.implAccept(ServerSocket.java:439)
 at java.net.ServerSocket.accept(ServerSocket.java:410)
 at org.apache.tomcat.service.PoolTcpEndpoint.acceptSocket
 (PoolTcpEndpoint.java:286)
 at org.apache.tomcat.service.TcpWorkerThread.runIt
 (PoolTcpEndpoint.java:402)
 at org.apache.tomcat.util.ThreadPool$ControlRunnable.run
 (ThreadPool.java:498)
 at java.lang.Thread.run(Thread.java:536)

The following example shows an incorrect argument that was provided to a JNI
function that expects a jfieldID argument.

FATAL ERROR in native method: Instance field not found in JNI get/set
 field operations
 at java.net.PlainSocketImpl.socketBind(Native Method)
 at java.net.PlainSocketImpl.bind(PlainSocketImpl.java:359)
 - locked <0xf082f290> (a java.net.PlainSocketImpl)
 at java.net.ServerSocket.bind(ServerSocket.java:318)
 at java.net.ServerSocket.<init>(ServerSocket.java:185)
 at jvm003a.<init>(jvm003.java:190)
 at jvm003a.<init>(jvm003.java:151)
 at jvm003.run(jvm003.java:51)
 at jvm003.main(jvm003.java:30)

The following are examples of other problems that the -Xcheck:jni option can help
diagnose:

• Cases where the JNI environment for the wrong thread is used

• Cases where an invalid JNI reference is used

• Cases where a reference to a non-array type is provided to a function that requires
an array type

• Cases where a non-static field ID is provided to a function that expects a static
field ID

• Cases where a JNI call is made with an exception pending

In general, all errors detected by the -Xcheck:jni option are fatal errors (that is, the
error is printed and the VM is stopped). There is one exception to this behavior, when
a JNI call is made within a JNI critical region. In this case, the following non-fatal
warning message is printed, as shown in the following example.

Warning: Calling other JNI functions in the scope of
Get/ReleasePrimitiveArrayCritical or Get/ReleaseStringCritical

A JNI critical region is created when native code uses the JNI functions
GetPrimitiveArrayCritical or GetStringCritical to obtain a reference to an array or
string in the Java heap. The reference is held until the native code calls the
corresponding release function. The code between the get and release is called a JNI
critical section, and during that time, the HotSpot VM cannot bring the VM to a state
that allows garbage collection to occur. The general recommendation is not to use
other JNI functions within a JNI critical section, and in particular any JNI function that
could potentially cause a deadlock. The warning printed above by the -Xcheck:jni

Appendix D
Other Command-Line Options

D-6

option is thus an indication of a potential issue; it does not always indicate an
application bug.

The -verbose:class Option

This option enables logging of class loading and unloading.

The -verbose:gc Option

This option enables logging of garbage collection (GC) information. It can be combined
with other HotSpot VM-specific options such as -XX:+PrintGCDetails and -XX:
+PrintGCTimeStamps to get further information about GC. The information output
includes the size of the generations before and after each GC, total size of the heap,
the size of objects promoted, and the time taken.

More information about these options, along with detailed information about GC
analysis and tuning are described in the GC Portal article.

The -verbose:gc option can be dynamically enabled at runtime using the
management API or JVM TI. See Custom Diagnostic Tools.

The JConsole monitoring and management tool can also enable or disable the option
when the tool is attached to a management VM. See JConsole.

The -verbose:jni Option

This option enables the logging of JNI. When a JNI or native method is resolved, the
HotSpot VM prints a trace message to the application console (standard output). It
also prints a trace message when a native method is registered using the JNI
RegisterNative function. The -verbose:jni option can be useful when diagnosing
issues with applications that use native libraries.

Appendix D
Other Command-Line Options

D-7

http://www.oracle.com/technetwork/articles/javase/gcportal-136937.html

E
Summary of Tools in This Release

This appendix prvoides a summary of tools available in the current release of the JDK,
as well as the changes since the previous release.

All the JDK troubleshooting tools that are described in this document are available in
JDK 9 on both Oracle Solaris and Linux.

The following JDK troubleshooting tools are also available in JDK 9 on Windows:

• Java Mission Control

• Java Flight Recordings

• How to Produce a Flight Recording

• Inspect a Flight Recording

• jcmd

• JConsole

• Java Virtual Machine

• jdb

• jinfo

• jmap

• jps (not currently available on Windows 98 or Windows ME)

• jrunscript

• jstack

• jstat (not currently available on Windows 98 or Windows ME)

• jstatd (not currently available on Windows 98 or Windows ME)

• visualgc (not currently available on Windows 98 or Windows ME)

E-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I General Java Troubleshooting
	1 Prepare Java for Troubleshooting
	Set Up Java for Troubleshooting
	Enable Options and Flags for JVM Troubleshooting
	Gather Relevant Data
	Make a Java Application Easier to Debug

	2 Diagnostic Tools
	Diagnostic Tools Overview
	Java Mission Control
	Troubleshoot with Java Mission Control

	What Are Java Flight Recordings
	Types of Recordings

	How to Produce a Flight Recording
	Use Java Mission Control to Produce a Flight Recording
	Use Startup Flags at the Command Line to Produce a Flight Recording
	Use Triggers for Automatic Recordings

	Inspect a Flight Recording
	How to Get a Sample JFR to Inspect
	Range Navigator
	General Tab
	Memory Tab
	Code Tab
	Threads Tab
	I/O Tab
	System Tab
	Events Tab

	The jcmd Utility
	Useful Commands for the jcmd Utility
	Troubleshoot with the jcmd Utility

	Native Memory Tracking
	Use NMT to Detect a Memory Leak
	How to Monitor VM Internal Memory

	JConsole
	Troubleshoot with the JConsole Tool
	Monitor Local and Remote Applications with JConsole

	The jdb Utility
	Troubleshoot with the jdb Utility
	Attach a Process
	Attach to a Core File on the Same Machine
	Attach to a Core File or a Hung Process from a Different Machine

	The jinfo Utility
	Troubleshooting with the jinfo Utility

	The jmap Utility
	Heap Configuration and Usage
	Heap Histogram
	Permanent Generation Statistics

	The jps Utility
	The jstack Utility
	Troubleshoot with the jstack Utility
	Stack Trace from a Core Dump
	Mixed Stack

	The jstat Utility
	The visualgc Tool
	Control+Break Handler
	Thread Dump
	Detect Deadlocks
	Heap Summary

	Native Operating System Tools
	DTrace Tool
	Probe Providers in Java HotSpot VM
	Improvements to the pmap Utility
	Improvements to the pstack Utility

	Custom Diagnostic Tools
	Java Platform Debugger Architecture

	NMT Memory Categories
	Postmortem Diagnostic Tools
	Hung Processes Tools
	Monitoring Tools
	Other Tools, Options, Variables, and Properties
	The java.lang.management Package
	The java.lang.instrument Package
	The java.lang.Thread Class
	JVM Tool Interface
	The jrunscript Utility
	The jsadebugd Daemon
	The jstatd Daemon
	Thread States for a Thread Dump
	Troubleshooting Tools Based on the Operating System

	3 Troubleshoot Memory Leaks
	Debug a Memory Leak Using Java Flight Recorder
	Detect a Memory Leak
	Find the Leaking Class
	Find the Leak

	Understand the OutOfMemoryError Exception
	Troubleshoot a Crash Instead of OutOfMemoryError
	Diagnose Leaks in Java Language Code
	Get a Heap Histogram
	Monitor the Objects Pending Finalization

	Diagnose Leaks in Native Code
	Track All Memory Allocation and Free Calls
	Track All Memory Allocations in the JNI Library
	Track Memory Allocation with Operating System Support
	Find Leaks with the dbx Debugger
	Find Leaks with the libumem Tool

	4 Troubleshoot Performance Issues Using JFR
	JFR Overhead
	Find Bottlenecks
	Garbage Collection Performance
	Synchronization Performance
	I/O Performance
	Code Execution Performance

	Part II Debug JVM Issues
	5 Troubleshoot System Crashes
	Determine Where the Crash Occurred
	Crash the Native Code
	Crash in the Compiled Code
	Crash in the HotSpot Compiler Thread
	Crash in the VM Thread
	Crash Due to Stack Overflow

	Find a Workaround
	Working Around Crashes in the HotSpot Compiler Thread or Compiled Code
	Working Around Crashes During Garbage Collection
	Working Around Crashes Caused by Class Data Sharing

	Microsoft Visual C++ Version Considerations

	6 Troubleshoot Process Hangs and Loops
	Diagnose a Loop Process
	Diagnose a Hung Process
	Deadlock Detected
	Deadlock Not Detected
	No Thread Dump

	Oracle Solaris 8 Thread Library

	7 Handle Signals and Exceptions
	Handle Signals on Oracle Solaris, Linux, and macOS
	Handle Exceptions on Windows
	Signal Chaining
	Handle Exceptions Using the Java HotSpot VM
	Console Handlers
	Signals Used in Oracle Solaris, Linux, and macOS

	Part III Debug Core Library Issues
	8 Time Zone Settings in the JRE
	Native Time Zone Information and the JRE
	Determine the Time Zone Data Version in Use
	Troubleshoot Problems with TZupdater

	Determine the Default Time Zone on Windows
	Check the Default Time Zone JRE Reports
	Determine the Setting in the Control Panel
	Check for Automatic Daylight Saving Time Adjustment
	Set the Default Time Zone in the Control Panel
	Check -Duser.timezone System Property
	Special Tools in Windows 7
	JRE Internal Representation of Time Zone Mappings

	Part IV Debug Client Issues
	9 Introduction to Client Issues
	Java SE Desktop Technologies
	General Steps to Troubleshoot an Issue
	Identify the Type of Issue
	Java Client Crashes
	Performance Problems
	Behavior Problems

	Basic Tools
	Java Debug Wire Protocol

	10 AWT
	Debug Tips for AWT
	Layout Manager Issues
	Key Events
	Modality Issues
	AWT Crashes
	Focus Events
	How to Trace Focus Events
	Native Focus System
	Focus System in Java Plug-in
	Focus Models Supported by X Window Managers
	Miscellaneous Problems with Focus

	Data Transfer
	Debug Drag-and-Drop Applications
	Frequent Issues with Data Transfer

	Other Issues
	Splash Screen Issues
	Tray Icon Issues
	Pop-up Menu Issues
	Background or Foreground Color Inheritance
	AWT Panel Size Restriction
	Hangs During Debugging of Pop-up Menus and Similar Components on X11
	Window.toFront()/toBack() Behavior on X11

	Heavyweight or Lightweight Components Mix

	11 Java 2D Pipeline Rendering and Properties
	Oracle Solaris and Linux: X11 Pipeline
	X11 Pipeline Pixmaps Properties
	X11 Pipeline MIT Shared Memory Extension
	Oracle Solaris on SPARC: DGA Support
	Oracle Solaris on SPARC - Change Java 2D Default Visual

	Windows OS - DirectDraw/GDI Pipeline
	Windows OS - Direct3D Pipeline in Full-Screen Mode
	OpenGL Pipeline in Oracle Solaris, Linux, and Windows
	Enable OpenGL Pipeline
	Minimum Requirements
	Diagnose Startup Issues
	Diagnose Rendering and Performance Issues

	Latest OpenGL Drivers

	12 Java 2D
	Generic Performance Issues
	Hardware-Accelerated Rendering Primitives
	Primitive Tracing to Detect and Avoid Non-Accelerated Rendering
	Causes of Poor Rendering Performance
	Improve Performance of Software-only Rendering

	Text-Related Issues
	Application Crash During Text Rendering
	Differences in Text Appearance
	Metrics

	Java 2D Printing

	13 Swing
	General Debug Tips for Swing
	Specific Debug Tips for Swing
	Incorrect Threading
	JComponent Children Overlap
	Display Update
	Model Change
	Add or Remove Components
	Opaque Override
	Permanent Changes to Graphics
	Custom Painting and Double Buffering
	Opaque Content Pane
	Renderer Call for Each Cell Performance
	Possible Leaks
	Mix Heavyweight and Lightweight Components
	Use Synth
	Track Activity on Event Dispatch Thread
	Specify Default Layout Manager
	Listener Object Dispatched to Incorrect Component
	Add a Component to Content Pane
	Drag and Drop Support
	One Parent for a Component
	JFileChooser Issues with Windows Shortcuts

	14 Internationalization
	Troubleshoot Internationalization and Localization

	15 Java Sound
	Troubleshoot Java Sound Issues

	16 Applets and Java Web Start Applications
	Configuration Problems
	Validation
	Common Configuration Problems
	Manage Java Runtime
	Pass Parameters to the JRE
	Java Deployment Home
	Deployment Tracing
	Deployment Cache
	Network Configuration

	Troubleshoot Applets
	Plugin Cheat Sheet for Applet Start
	Browser or Java Process Crash
	Unresponsive Web page

	Avoid Security Dialog Boxes
	Signed Applications
	Mixed-Code Issues

	Development Tips

	Part V Submit Bug Reports
	17 Submit a Bug Report
	Check for Fixes in Update Releases
	Prepare to Submit a Bug Report
	Collect Data for a Bug Report
	Hardware Details
	Operating System Details
	Java SE Version
	Command-Line Options
	Environment Variables
	Fatal Error Log
	Core and Crash Dump
	Detailed Description of the Problem
	Logs and Traces
	Results from Troubleshooting Steps

	Collect Core Dumps
	Collect Core Dumps on Oracle Solaris
	Collect Core Dumps on Linux
	Reasons for Not Getting a Core File
	Collect Crash Dumps on Windows

	Part VI Appendices
	A Fatal Error Log
	Location of Fatal Error Log
	Description of Fatal Error Log
	Header Format
	Thread Section Format
	Process Section Format
	System Section Format

	B Java 2D Properties
	Properties on Oracle Solaris and Linux
	Properties on Windows

	C Environment Variables and System Properties
	The JAVA_HOME Environment Variable
	The JAVA_TOOL_OPTIONS Environment Variable
	The java.security.debug System Property

	D Command-Line Options
	Java HotSpot VM Command-Line Options
	Other Command-Line Options

	E Summary of Tools in This Release

