Java Platform, Standard Edition
Security Developer’s Guide

Release 9
E68624-04
October 2017

ORACLE"

Java Platform, Standard Edition Security Developer’'s Guide, Release 9
E68624-04
Copyright © 1993, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XVi
Documentation Accessibility XVi
Related Documents XVi
Conventions XVi

1 General Security

Java Security Overview 1-1
Introduction to Java Security 1-1
Java Language Security and Bytecode Verification 1-2
Basic Security Architecture 1-3
Security Providers 1-3
File Locations 1-5
Java Cryptography 1-6
Public Key Infrastructure 1-7
Key and Certificate Storage 1-7
Public Key Infrastructure Tools 1-8
Authentication 1-9
Secure Communication 1-10
SSL, TLS, and DTLS Protocols 1-11
Simple Authentication and Security Layer (SASL) 1-11
Generic Security Service APl and Kerberos 1-12
Access Control 1-12
Permissions 1-12
Security Policy 1-13
Access Control Enforcement 1-14
XML Signature 1-15
Additional Information about Java Security 1-16
Java Security Classes Summary 1-16
Deprecated Security APIs Marked for Removal 1-18
Security Tools Summary 1-19
Built-In Providers 1-20

ORACLE

Security Architecture 1-20

Standard Algorithm Names 1-20
Permissions in the Java Development Kit (JDK) 1-21
Permission Descriptions and Risks 1-22
NIO-Related Targets 1-23
Methods and the Required Permissions 1-23
java.lang.SecurityManager Method Permission Checks 1-48

Default Policy Implementation and Policy File Syntax 1-50
Default Policy Implementation 1-51

Default Policy File Locations 1-51
Modifying the Policy Implementation 1-52

Policy File Syntax 1-53

Policy File Examples 1-58
Property Expansion in Policy Files 1-60
Windows Systems, File Paths, and Property Expansion 1-62
Path-Name Canonicalization 1-63
General Expansion in Policy Files 1-65

API for Privileged Blocks 1-66
Using the doPrivileged API 1-66

What It Means to Have Privileged Code 1-71
Reflection 1-73
Troubleshooting Security 1-73

2 Java Cryptography Architecture (JCA) Reference Guide

Introduction to Java Cryptography Architecture 2-1
JCA Design Principles 2-2
Provider Architecture 2-3

Cryptographic Service Providers 2-3
How Providers Are Actually Implemented 2-5
Keystores 2-7
Engine Classes and Algorithms 2-7

Core Classes and Interfaces 2-8

The Provider Class 2-9
How Provider Implementations Are Requested and Supplied 2-10
Installing Providers 2-12
Provider Class Methods 2-12

The Security Class 2-13
Managing Providers 2-14
Security Properties 2-15

The SecureRandom Class 2-15

ORACLE iv

Creating a SecureRandom Object 2-16

Seeding or Re-Seeding the SecureRandom Object 2-16
Using a SecureRandom Object 2-17
Generating Seed Bytes 2-17
The MessageDigest Class 2-17
Creating a MessageDigest Object 2-17
Updating a Message Digest Object 2-18
Computing the Digest 2-18
The Signature Class 2-18
Signature Object States 2-19
Creating a Signature Object 2-19
Initializing a Signature Object 2-20
Signing with a Signature Object 2-20
Verifying with a Signature Object 2-21
The Cipher Class 2-21
Other Cipher-based Classes 2-29
The Cipher Stream Classes 2-30
The SealedObject Class 2-32
The Mac Class 2-34
Key Interfaces 2-35
The KeyPair Class 2-37
Key Specification Interfaces and Classes 2-37
The KeySpec Interface 2-37
The KeySpec Subinterfaces 2-37
The EncodedKeySpec Class 2-38
Generators and Factories 2-39
The KeyFactory Class 2-39
The SecretKeyFactory Class 2-40
The KeyPairGenerator Class 2-42
The KeyGenerator Class 2-44
The KeyAgreement Class 2-45
Key Management 2-47
The KeyStore Class 2-48
Algorithm Parameters Classes 2-52
The AlgorithmParameterSpec Interface 2-52
The AlgorithmParameters Class 2-53
The AlgorithmParameterGenerator Class 2-54
The CertificateFactory Class 2-55
How the JCA Might Be Used in a SSL/TLS Implementation 2-56
Cryptographic Strength Configuration 2-58
Jurisdiction Policy File Format 2-61

ORACLE Y

How to Make Applications Exempt from Cryptographic Restrictions 2-63

Standard Names 2-67

Packaging Your Application 2-67

Additional JCA Code Samples 2-68
Computing a MessageDigest Object 2-68
Generating a Pair of Keys 2-69
Generating and Verifying a Signature Using Generated Keys 2-71
Generating/Verifying Signatures Using Key Specifications and KeyFactory 2-71
Generating Random Numbers 2-73
Determining If Two Keys Are Equal 2-74
Reading Base64-Encoded Certificates 2-74
Parsing a Certificate Reply 2-75
Using Encryption 2-75
Using Password-Based Encryption 2-76

Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-

SHA256 2-77
Diffie-Hellman Key Exchange between 2 Parties 2-78
Diffie-Hellman Key Exchange between 3 Parties 2-81
AES/GCM Example 2-83
HMAC-SHA256 Example 2-85

3 How to Implement a Provider in the Java Cryptography Architecture

Who Should Read This Document 3-1

Notes on Terminology 3-1

Introduction to Implementing Providers 3-1

Engine Classes and Corresponding Service Provider Interface Classes 3-2

Steps to Implement and Integrate a Provider 3-5
Step 1: Write your Service Implementation Code 3-5

Step 1.1: Consider Additional JCA Provider Requirements and

Recommendations for Encryption Implementations 3-6
Step 2: Give your Provider a Name 3-7
Step 3: Write Your Master Class, a Subclass of Provider 3-7

Step 3.1: Create a Provider That Uses String Objects to Register Its

Services 3-8

Step 3.2: Create a Provider That Uses Provider.Service 3-10

Step 3.3: Specify Additional Information for Cipher Implementations 3-12
Step 4: Create a Module Declaration for Your Provider 3-14
Step 5: Compile Your Code 3-15
Step 6: Place Your Provider in a JAR File 3-15
Step 7: Sign Your JAR File, If Necessary 3-16

Step 7.1: Get a Code-Signing Certificate 3-16

ORACLE vi

Step 7.2: Sign Your Provider 3-18

Step 8: Prepare for Testing 3-18
Step 8.1: Configure the Provider 3-18
Step 8.2: Set Provider Permissions 3-20

Step 9: Write and Compile Your Test Programs 3-21

Step 10: Run Your Test Programs 3-21

Step 11: Apply for U.S. Government Export Approval If Required 3-23

Step 12: Document Your Provider and Its Supported Services 3-24
Step 12.1: Indicate Whether Your Implementation is Cloneable for Message
Digests and MACs 3-24

Step 13: Make Your Class Files and Documentation Available to Clients 3-26

Further Implementation Details and Requirements 3-26

Alias Names 3-26

Service Interdependencies 3-27

Default Initialization 3-29

Default Key Pair Generator Parameter Requirements 3-29

The Provider.Service Class 3-30

Signature Formats 3-31

DSA Interfaces and their Required Implementations 3-32

RSA Interfaces and their Required Implementations 3-34

Diffie-Hellman Interfaces and their Required Implementations 3-36

Interfaces for Other Algorithm Types 3-37

Algorithm Parameter Specification Interfaces and Classes 3-38

Key Specification Interfaces and Classes Required by Key Factories 3-41

Secret-Key Generation 3-46

Adding New Object Identifiers 3-46

Ensuring Exportability 3-47

Sample Code for MyProvider 3-48

4 JDK Providers Documentation

Introduction to JDK Providers 4-2
Import Limits on Cryptographic Algorithms 4-3
Cipher Transformations 4-3
SecureRandom Implementations 4-3
The SunPKCS11 Provider 4-4
The SUN Provider 4-5
The SunRsaSign Provider 4-7
The SunJSSE Provider 4-8
The SunJCE Provider 4-15
The SunJGSS Provider 4-21
The SunSASL Provider 4-21

ORACLE vii

The XMLDSIg Provider 4-21
The SunPCSC Provider 4-22
The SunMSCAPI Provider 4-23
The SunEC Provider 4-24
The OracleUcrypto Provider 4-25
The Apple Provider 4-26
The JAKLDAP Provider 4-27
The JAKSASL Provider 4-27
5 PKCS#11 Reference Guide
SunPKCS11 Provider 5-1
SunPKCS11 Requirements 5-2
SunPKCS11 Configuration 5-2
Accessing Network Security Services (NSS) 5-7
Troubleshooting PKCS#11 5-10
Disabling PKCS#11 Providers and/or Individual PKCS#11 Mechanisms 5-10
Application Developers 5-11
Token Login 5-11
Token Keys 5-12
Delayed Provider Selection 5-13
JAAS KeyStoreLoginModule 5-14
Tokens as JSSE Keystore and Trust Stores 5-15
Using keytool and jarsigner with PKCS#11 Tokens 5-15
Policy Tool 5-16
Provider Developers 5-17
Provider Services 5-17
Parameter Support 5-18
SunPKCS11 Provider Supported Algorithms 5-18
SunPKCS11 Provider KeyStore Requirements 5-20
Example Provider 5-22
6 Java Authentication and Authorization Service (JAAS)
JAAS Reference Guide 6-1
JAAS Tutorials 6-1
Java Authentication and Authorization Service (JAAS): LoginModule Developer's
Guide 6-1
Introduction to LoginModule 6-2
Steps to Implement a LoginModule 6-4
Step 1: Understand the Authentication Technology 6-4
Step 2: Name the LoginModule Implementation 6-4

ORACLE

viii

Step 3: Implement the Abstract LoginModule Methods 6-4

Step 4: Choose or Write a Sample Application 6-8

Step 5: Compile the LoginModule and Application 6-9

Step 6: Prepare for Testing 6-9

Step 7: Test Use of the LoginModule 6-10

Step 8: Document Your LoginModule Implementation 6-11

Step 9: Make LoginModule JAR File and Documents Available 6-12

7 Java Generic Security Services (Java GSS-API)
Java GSS-API and JAAS Tutorials for Use with Kerberos 7-1
Single Sign-on Using Kerberos in Java 7-1
Java GSS Advanced Security Programming 7-1
The Kerberos 5 GSS-API Mechanism 7-1
8 Java Secure Socket Extension (JSSE) Reference Guide

Introduction to JSSE 8-1
JSSE Features and Benefits 8-2
JSSE Standard API 8-3
SunJSSE Provider 8-4
JSSE Related Documentation 8-4
Terms and Definitions 8-5
Secure Sockets Layer (SSL) Protocol Overview 8-8
Why Use SSL? 8-9
How SSL Works 8-10
Cryptographic Processes 8-10
Secret-Key Cryptography 8-11
Public-Key Cryptography 8-11
Comparison Between Secret-Key and Public-Key Cryptography 8-12

Public Key Certificates 8-12
Cryptographic Hash Functions 8-13
Message Authentication Code 8-13

Digital Signatures 8-13

The SSL Handshake 8-13
The SSL Protocol 8-14
Handshaking Again (Renegotiation) 8-16

Cipher Suite Choice and Remote Entity Verification 8-17
Client-Driven OCSP and OCSP Stapling 8-17
Client-Driven OCSP and Certificate Revocation 8-18
Setting up a Java Client to use Client-Driven OCSP 8-19

ORACLE

OCSP Stapling and Certificate Revocation

Setting Up a Java Client to Use OCSP Stapling
Setting Up a Java Server to Use OCSP Stapling

OCSP Stapling Configuration Properties

JSSE Classes and Interfaces

JSSE Core Classes and Interfaces

SocketFactory and ServerSocketFactory Classes

SSLSocketFactory and SSLServerSocketFactory Classes

Obtaining an SSLSocketFactory

SSLSocket and SSLServerSocket Classes

Obtaining an SSLSocket

SSLEngine Class

Creating an SSLEngine Object

Generating and Processing SSL/TLS Data
Datagram Transport Layer Security (DTLS) Protocol
Creating an SSLEngine Object for DTLS
Generating and Processing DTLS Data
Understanding SSLENngine Operation Statuses
Dealing With Blocking Tasks

Shutting Down a SSL/TLS/DTLS Connection

SSLSession and ExtendedSSLSession
HttpsURLConnection Class

Setting the Assigned SSLSocketFactory
Setting the Assigned HostnameVerifier

Support Classes and Interfaces

The SSLContext Class

The TrustManager Interface

The TrustManagerFactory Class

The X509TrustManager Interface
X509ExtendedTrustManager Class

The KeyManager Interface

The KeyManagerFactory Class

The X509KeyManager Interface

The X509ExtendedKeyManager Class

Relationship Between a TrustManager and a KeyManager

Secondary Support Classes and Interfaces

ORACLE

The SSLParameters Class

The SSLSessionContext Interface

The SSLSessionBindingListener Interface
The SSLSessionBindingEvent Class

The HandShakeCompletedListener Interface

8-20
8-22
8-22
8-22
8-25
8-25
8-26
8-26
8-26
8-27
8-27
8-27
8-29
8-30
8-33
8-42
8-43
8-45
8-49
8-50
8-51
8-52
8-52
8-52
8-53
8-54
8-56
8-56
8-58
8-61
8-64
8-64
8-65
8-66
8-67
8-67
8-67
8-68
8-68
8-68
8-69

The HandShakeCompletedEvent Class 8-69

The HostnameVerifier Interface 8-69
The X509Certificate Class 8-69
The AlgorithmConstraints Interface 8-70
The StandardConstants Class 8-70
The SNIServerName Class 8-70
The SNIMatcher Class 8-70
The SNIHostName Class 8-71
Customizing JSSE 8-72
How to Specify a java.lang.System Property 8-78
How to Specify a java.security.Security Property 8-78
Customizing the X509Certificate Implementation 8-79
Specifying an Alternative HTTPS Protocol Implementation 8-79
Customizing the Provider Implementation 8-80
Registering the Cryptographic Provider Statically 8-80
Registering the Cryptographic Service Provider Dynamically 8-80
Provider Configuration 8-81
Configuring the Preferred Provider for Specific Algorithms 8-81
Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords 8-82
Customizing the Default Key Managers and Trust Managers 8-84
Disabled and Restricted Cryptographic Algorithms 8-85
Customizing the Encryption Algorithm Providers 8-86
Customizing Size of Ephemeral Diffie-Hellman Keys 8-86
Customizing Maximum Fragment Length Negotiation (MFLN) Extension 8-87
Configuring the Maximum and Minimum Packet Size 8-88
Transport Layer Security (TLS) Renegotiation Issue 8-88
Phased Approach to Fixing This Issue 8-88
Description of the Phase 2 Fix 8-89
Workarounds and Alternatives to SSL/TLS Renegotiation 8-91
TLS Implementation Details 8-92
Description of the Phase 1 Fix 8-92
Allow Unsafe Server Certificate Change in SSL/TLS Renegotiations 8-93
Hardware Acceleration and Smartcard Support 8-93
Configuring JSSE to Use Smartcards as Keystores and Truststores 8-94
Multiple and Dynamic Keystores 8-94
Kerberos Cipher Suites 8-95
Kerberos Requirements 8-96
Peer Identity Information 8-97
Security Manager 8-97
Additional Keystore Formats (PKCS12) 8-98

ORACLE Xi

Server Name Indication (SNI) Extension 8-98
TLS Application Layer Protocol Negotiation 8-100
Setting up ALPN on the Client 8-101
Setting up Default ALPN on the Server 8-102
Setting up Custom ALPN on the Server 8-103
Determining Negotiated ALPN Value during Handshaking 8-105
ALPN Related Classes and Methods 8-107
Troubleshooting JSSE 8-108
Configuration Problems 8-108
CertificateException While Handshaking 8-108
Runtime Exception: SSL Service Not Available 8-109
Runtime Exception: "No available certificate corresponding to the SSL
cipher suites which are enabled" 8-109
Runtime Exception: No Cipher Suites in Common 8-110
Socket Disconnected After Sending ClientHello Message 8-110
SunJSSE Cannot Find a JCA Provider That Supports a Required Algorithm
and Causes a NoSuchAlgorithmException 8-112
FailedDownloadException Thrown When Trying to Obtain Application
Resources from Web Server over SSL 8-112
lllegalArgumentException When RC4 Cipher Suites are Configured for
DTLS 8-113
Debugging Utilities 8-113
Debugging SSL/TLS Connections 8-115
Code Examples 8-131
Converting an Unsecure Socket to a Secure Socket 8-131
Running the JSSE Sample Code 8-134
Creating a Keystore to Use with JSSE 8-140
Using the Server Name Indication (SNI) Extension 8-144
Typical Client-Side Usage Examples 8-144
Typical Server-Side Usage Examples 8-145
Working with Virtual Infrastructures 8-145
Standard Names 8-150
Provider Pluggability 8-150
JSSE Cipher Suite Parameters 8-150
O Java PKI Programmers Guide
PKI Programmers Guide Overview 9-1
Introduction to Public Key Certificates 9-2
X.509 Certificates and Certificate Revocation Lists (CRLS) 9-3
Core Classes and Interfaces 9-7
Basic Certification Path Classes 9-8

ORACLE

Xii

The CertPath Class 9-8

The CertificateFactory Class 9-9

The CertPathParameters Interface 9-11
Certification Path Validation Classes 9-11
The CertPathValidator Class 9-11

The CertPathValidatorResult Interface 9-12
Certification Path Building Classes 9-13
The CertPathBuilder Class 9-13

The CertPathBuilderResult Interface 9-14
Certificate/CRL Storage Classes 9-15
The CertStore Class 9-15

The CertStoreParameters Interface 9-16

The CertSelector and CRLSelector Interfaces 9-17

PKIX Classes 9-22
The TrustAnchor Class 9-22

The PKIXParameters Class 9-23

The PKIXCertPathValidatorResult Class 9-25

The PolicyNode Interface and PolicyQualifierinfo Class 9-26

The PKIXBuilderParameters Class 9-27

The PKIXCertPathBuilderResult Class 9-28

The PKIXCertPathChecker Class 9-29

Using PKIXCertPathChecker in Certificate Path Validation 9-34
Implementing a Service Provider 9-38
Steps to Implement and Integrate a Provider 9-39
Service Interdependencies 9-41
Certification Path Parameter Specification Interfaces 9-41
Certification Path Result Specification Interfaces 9-42
Certification Path Exception Classes 9-42
Appendix A: Standard Names 9-42
Appendix B: CertPath Implementation in SUN Provider 9-43
Appendix C: OCSP Support 9-46
Appendix D: CertPath Implementation in JAKLDAP Provider 9-48
Appendix E: Disabling Cryptographic Algorithms 9-49

10 Java SASL API Programming and Deployment Guide

Java SASL API Overview 10-2
Creating the Mechanisms 10-3
Passing Input to the Mechanisms 10-3
Using the Mechanisms 10-4
Using the Negotiated Security Layer 10-5

ORACLE Xiii

How SASL Mechanisms are Installed and Selected 10-6

The SunSASL Provider 10-7
The SunSASL Provider Client Mechanisms 10-7
The SunSASL Provider Server Mechanisms 10-9
Debugging and Monitoring 10-10

The JdkSASL Provider 10-11
The JdkSASL Provider Client Mechanism 10-11
The JAKSASL Provider Server Mechanism 10-13

Implementing a SASL Security Provider 10-14

11 XML Digital Signature

Java XML Digital Signature API Specification 11-1
Acknowledgements 11-1
Requirements 11-2
API Dependencies 11-3
Non-Goals 11-3
Package Overview 11-3
Service Providers 11-4
DOM Mechanism Requirements 11-5
Open API Issues 11-6
Programming Examples 11-6

XML Digital Signature AP Overview and Tutorial 11-15
Package Hierarchy 11-16
Service Providers 11-17
Introduction to XML Signatures 11-18
Example of an XML Signature 11-18
XML Digital Signature APl Examples 11-20

Validate Example 11-20
GenEnveloped Example 11-26

12 Security API Specification

13 Deprecated Security APIs Marked for Removal

ORACLE Xiv

14 Security Tools

15 Security Tutorials

ORACLE"

XV

Preface

Preface

Audience

This guide provides information about the Java security technology, tools, and
implementations of commonly used security algorithms, mechanisms, and protocols
on the Java Platform, Standard Edition (Java SE).

This document is intended for experienced developers who build applications using
the comprehensive Java security framework. It is also intended for the user or
administrator with a a set of tools to securely manage applications.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

See Oracle JDK 9 Documentation for other JDK 9 guides.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=homepage

General Security

Java Security Overview introduces you to cryptography, public key infrastructure,
authentication, secure communication, access control, and XML signatures.

Security Architecture in the JDK 8 documentation provides an overview of the
motivation of major security features, an introduction to security classes and their
usage, a discussion of the impact of the security architecture on code, and thoughts on
writing security-sensitive code.

Java Security Standard Algorithm Names Specification describes the set of standard
names for algorithms, certificate and keystore types that Java SE requires and uses.

Permissions in the Java Development Kit (JDK) describes the built-in JDK permission
types and discusses the risks of granting each permission.

Troubleshooting Security lists options for the j ava. securi ty. debug system
property that enable you to monitor security access.

Java Security Overview

Java security includes a large set of APIs, tools, and implementations of commonly-
used security algorithms, mechanisms, and protocols. The Java security APIs span a
wide range of areas, including cryptography, public key infrastructure, secure
communication, authentication, and access control. Java security technology provides
the developer with a comprehensive security framework for writing applications, and
also provides the user or administrator with a set of tools to securely manage
applications.

Introduction to Java Security

ORACLE

The JDK is designed with a strong emphasis on security. At its core, the Java
language itself is type-safe and provides automatic garbage collection, enhancing the
robustness of application code. A secure class loading and verification mechanism
ensures that only legitimate Java code is executed. The Java security architecture
includes a large set of application programming interfaces (APIs), tools, and
implementations of commonly-used security algorithms, mechanisms, and protocols.

The Java security APIs span a wide range of areas. Cryptographic and public key
infrastructure (PKI) interfaces provide the underlying basis for developing secure
applications. Interfaces for performing authentication and access control enable
applications to guard against unauthorized access to protected resources.

The APIs allow for multiple interoperable implementations of algorithms and other
security services. Services are implemented in providers, which are plugged into the
JDK through a standard interface that makes it easy for applications to obtain security
services without having to know anything about their implementations. This allows
developers to focus on how to integrate security into their applications, rather than on
how to actually implement complex security mechanisms.

1-1

https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html

Chapter 1
Java Security Overview

The JDK includes a number of providers that implement a core set of security
services. It also allows for additional custom providers to be installed. This enables
developers to extend the platform with new security mechanisms.

The JDK is divided into modules. Modules that contain security APIs include the
following:

Table 1-1 Modules That Contain Security APIs

]
Module Description

j ava. base Defines the foundational APIs of Java SE.
Contained packages include
java.security,javax. crypto,

j avax. net . ssl, and
j avax. security. aut h.

java.security.jgss Defines the Java binding of the IETF Generic
Security Services APl (GSS-API). This module
also contains GSS-API mechanisms including
Kerberos v5 and SPNEGO.

java. security. sasl Defines Java support for the IETF Simple
Authentication and Security Layer (SASL).
This module also contains SASL mechanisms
including DIGEST-MD5, CRAM-MD5, and

NTLM.
java.smartcardio Defines the Java Smart Card 1/0 API.
java.xm . crypto Defines the API for XML cryptography.
jdk.security.auth Provides implementations of the

j avax. security. aut h. * interfaces and
various authentication modules.

jdk.security.jgss Defines Java extensions to the GSS-API and
an implementation of the SASL GSS-API
mechanism.

Java Language Security and Bytecode Verification

ORACLE

The Java language is designed to be type-safe and easy to use. It provides automatic
memory management, garbage collection, and range-checking on arrays. This
reduces the overall programming burden placed on developers, leading to fewer subtle
programming errors and to safer, more robust code.

A compiler translates Java programs into a machine-independent bytecode
representation. A bytecode verifier is invoked to ensure that only legitimate bytecodes
are executed in the Java runtime. It checks that the bytecodes conform to the Java
Language Specification and do not violate Java language rules or namespace
restrictions. The verifier also checks for memory management violations, stack
underflows or overflows, and illegal data typecasts. Once bytecodes have been
verified, the Java runtime prepares them for execution.

In addition, the Java language defines different access modifiers that can be assigned
to Java classes, methods, and fields, enabling developers to restrict access to their
class implementations as appropriate. The language defines four distinct access
levels:

e private: Most restrictive modifier; access is not allowed outside the particular class
in which the private member (a method, for example) is defined.

1-2

https://docs.oracle.com/javase/9/docs/api/java.base-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java.security.jgss-summary.html
https://docs.oracle.com/javase/9/docs/api/java.security.sasl-summary.html
https://docs.oracle.com/javase/9/docs/api/java.smartcardio-summary.html
https://docs.oracle.com/javase/9/docs/api/java.xml.crypto-summary.html
https://docs.oracle.com/javase/9/docs/api/jdk.security.auth-summary.html
https://docs.oracle.com/javase/9/docs/api/jdk.security.jgss-summary.html

Chapter 1
Java Security Overview

* protected: Allows access to any subclass or to other classes within the same
package.

» Package-private: If not specified, then this is the default access level; allows
access to classes within the same package.

e public: No longer guarantees that the element is accessible everywhere;
accessibility depends upon whether the package containing that element is
exported by its defining module and whether that module is readable by the
module containing the code that is attempting to access it.

Basic Security Architecture

The JDK defines a set of APIs spanning major security areas, including cryptography,
public key infrastructure, authentication, secure communication, and access control.
The APIs allow developers to easily integrate security into their application code.

The APIs are designed around the following principles:

Implementation independence

Applications do not need to implement security themselves. Rather, they can request
security services from the JDK. Security services are implemented in providers (see
the section Security Providers), which are plugged into the JDK via a standard
interface. An application may rely on multiple independent providers for security
functionality.

Implementation interoperability
Providers are interoperable across applications. Specifically, an application is not
bound to a specific provider if it does not rely on default values from the provider.

Algorithm extensibility

The JDK includes a number of built-in providers that implement a basic set of security
services that are widely used today. However, some applications may rely on
emerging standards not yet implemented, or on proprietary services. The JDK
supports the installation of custom providers that implement such services.

Security Providers

ORACLE

The j ava. security. Provi der class encapsulates the notion of a security provider in the
Java platform. It specifies the provider's name and lists the security services it
implements. Multiple providers may be configured at the same time and are listed in
order of preference. When a security service is requested, the highest priority provider
that implements that service is selected.

Applications rely on the relevant get | nst ance method to request a security service from
an underlying provider.

For example, message digest creation represents one type of service available from
providers. To request an implementation of a specific message digest algorithm, call
the method j ava. security. MessageDi gest . get | nst ance. The following
statement requests a SHA-256 message digest implementation without specifying a
provider name:

MessageDi gest nmd = MessageDi gest. get I nstance(" SHA- 256") ;

The following figure illustrates how this statement obtains a SHA-256 message digest
implementation. The providers are searched in preference order, and the

1-3

ORACLE

Chapter 1
Java Security Overview

implementation from the first provider supplying that particular algorithm, Provi der B, is
returned.

Figure 1-1 Request SHA-256 Message Digest Implementation Without
Specifying Provider

Application

| A
MessageDigest.getinstance SHA-256 MessageDigest
("SHA-256") from ProviderB

Provider Framework

: _. 1
: — o
: (:
1. ProviderA 2. ProviderB 3. ProviderC
MessageDigest MessageDigest MessageDigest
SHA-384 SHA-256 SHA-256
SHA-512 SHA-384 SHA-512

You can optionally request an implementation from a specific provider by specifying
the provider's name. The following statement requests a SHA-256 message digest
implementation from a specific provider, Provi der C:

MessageDi gest md = MessageDi gest. get | nstance(" SHA- 256", "ProviderC');
The following figure illustrates how this statement requests a SHA-256 message digest
implementation from a specific provider, Provi der C. In this case, the implementation

from that provider is returned, even though a provider with a higher preference order,
Provi der B, also supplies a SHA-256 implementation.

1-4

Chapter 1
Java Security Overview

Figure 1-2 Request SHA-256 Message Digest Implementation from Specific
Provider

Application
| A
MessageDigest.getinstance SHA-256 MessageDigest
("SHA-256", “ProviderC”) from ProviderC

' Provider Framework

: _: ® -
1. ProviderA 2. ProviderB 3. ProviderC
MessageDigest MessageDigest MessageDigest
SHA-384 SHA-256 SHA-256
SHA-512 SHA-384 SHA-512

For more information about cryptographic services, such as message digest
algorithms, see the section Java Cryptography.

Oracle's implementation of the Java platform includes a number of built-in default
providers that implement a basic set of security services that can be used by
applications. Note that other vendor implementations of the Java platform may include
different sets of providers that encapsulate vendor-specific sets of security services.
The term built-in default providers refers to the providers available in Oracle's
implementation.

File Locations

ORACLE

The following table lists locations of some security-related files and tools.

1-5

Table 1-2 Java security files and tools

Chapter 1
Java Security Overview

File Name or Tool Name Location

Description

j ava. security <j ava- hone>/ conf/security

Certain aspects of Java
security, such as configuring
the providers, may be
customized by setting Security
Properties. You may set
Security Properties statically in
the j ava. securi ty file.
Security Properties may also
be set dynamically by calling
appropriate methods of the
Security class (in the

j ava. security package).

j ava. policy <j ava- hone>/ conf/security

This is the default system
policy file; see Security Policy.

Cryptographic policy directory <j ava- home>/ conf/security/
policy

This directory contains sets of
jurisdiction policy files; see
Cryptographic Strength
Configuration.

cacerts <j ava-home>/1i b/ security

The cacert s file represents
a system-wide keystore with
Certificate Authority (CA) and
other trusted certificates. For
information about configuring
and managing this file, see
keytool in Java Platform,
Standard Edition Tools
Reference.

keyt ool , j ar si gner, <j ava- hone>/ bin
pol i cyt ool

Windows only: ki ni t, klist,

kt ab

For more information about
security-related tools, see
Security Tools and
Commands in Java Platform,
Standard Edition Tools
Reference.

Java Cryptography

The Java cryptography architecture is a framework for accessing and developing

ORACLE

cryptographic functionality for the Java platform.

It includes APIs for a large variety of cryptographic services, including the following:

* Message digest algorithms

» Digital signature algorithms

e Symmetric bulk and stream encryption
* Asymmetric encryption

» Password-based encryption (PBE)

» Elliptic Curve Cryptography (ECC)

* Key agreement algorithms

1-6

Chapter 1
Java Security Overview

* Key generators
* Message Authentication Codes (MACs)
» Secure Random Number Generators

For historical (export control) reasons, the cryptography APIs are organized into two
distinct packages:

 Thejava.security andjava.security.* packages contains classes that are not
subject to export controls (like Si gnat ure and MessageDi gest)

e Thejavax. crypt o package contains classes that are subject to export controls (like
Gi pher and KeyAgr eenent)

The cryptographic interfaces are provider-based, allowing for multiple and
interoperable cryptography implementations. Some providers may perform
cryptographic operations in software; others may perform the operations on a
hardware token (for example, on a smart card device or on a hardware cryptographic
accelerator). Providers that implement export-controlled services must be digitally
signed by a certificate issued by the Oracle JCE Certificate Authority.

The Java platform includes built-in providers for many of the most commonly used
cryptographic algorithms, including the RSA, DSA, and ECDSA signature algorithms,
the AES encryption algorithm, the SHA-2 message digest algorithms, and the Diffie-
Hellman (DH) and Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithms.
Most of the built-in providers implement cryptographic algorithms in Java code.

The Java platform also includes a built-in provider that acts as a bridge to a native
PKCS#11 (v2.x) token. This provider, named SunPKCS11, allows Java applications to
seamlessly access cryptographic services located on PKCS#11-compliant tokens.

On Windows, the Java platform includes a built-in provider that acts as a bridge to the
native Microsoft CryptoAPI. This provider, named SunMsCAPI , allows Java applications
to seamlessly access cryptographic services on Windows through the CryptoAPI.

Public Key Infrastructure

Public Key Infrastructure (PKI) is a term used for a framework that enables secure
exchange of information based on public key cryptography. It allows identities (of
people, organizations, etc.) to be bound to digital certificates and provides a means of
verifying the authenticity of certificates. PKI encompasses keys, certificates, public key
encryption, and trusted Certification Authorities (CAs) who generate and digitally sign
certificates.

The Java platform includes APIs and provider support for X.509 digital certificates and
Certificate Revocation Lists (CRLs), as well as PKIX-compliant certification path
building and validation. The classes related to PKI are located in the j ava. security and
java.security.cert packages.

Key and Certificate Storage

ORACLE

The Java platform provides for long-term persistent storage of cryptographic keys and
certificates via key and certificate stores. Specifically, the j ava. security. KeySt ore class
represents a key store, a secure repository of cryptographic keys and/or trusted
certificates (to be used, for example, during certification path validation), and the
java.security.cert. Cert Store class represents a certificate store, a public and

1-7

Chapter 1
Java Security Overview

potentially vast repository of unrelated and typically untrusted certificates. A Cert Store
may also store CRLs.

KeySt ore and Cert St or e implementations are distinguished by types. The Java platform
includes the standard PKCS11 and PKCS12 key store types (whose implementations
are compliant with the corresponding PKCS specifications from RSA Security). It also
contains a proprietary file-based key store type called JKS (which stands for Java Key
Store), and a type called DKS (Domain Key Store) which is a collection of keystores
that are presented as a single logical keystore.

The Java platform includes a special built-in key store, cacert s, that contains a
number of certificates for well-known, trusted CAs. The keytool utility is able to list the
certificates included in cacer t s. See keytool in Java Platform, Standard Edition Tools
Reference.

The SunPKCS11 provider mentioned in the section Java Cryptography includes a
PKCS11 KeySt or e implementation. This means that keys and certificates residing in
secure hardware (such as a smart card) can be accessed and used by Java
applications via the KeySt ore API. Note that smart card keys may not be permitted to
leave the device. In such cases, the j ava. securi ty. Key object returned by the KeyStore
API may simply be a reference to the key (that is, it would not contain the actual key
material). Such a Key object can only be used to perform cryptographic operations on
the device where the actual key resides.

The Java platform also includes an LDAP certificate store type (for accessing
certificates stored in an LDAP directory), as well as an in-memory Collection certificate
store type (for accessing certificates managed in ajava. util. Col | ecti on object).

Public Key Infrastructure Tools

There are two built-in tools for working with keys, certificates, and key stores:

e keytool creates and manages key stores. Use it to perform the following tasks:
— Create public/private key pairs
— Display, import, and export X.509 v1, v2, and v3 certificates stored as files
— Create X.509 certificates
— Issue certificate (PKCS#10) requests to be sent to CAs
— Create certificates based on certificate requests
— Import certificate replies (obtained from the CAs sent certificate requests)
— Designate public key certificates as trusted
— Accept a password and store it securely as a secret key

» jarsigner signs JAR files and verifies signatures on signed JAR files. The Java
ARchive (JAR) file format enables the bundling of multiple files into a single file.
Typically, a JAR file contains the class files and auxiliary resources associated
with applets and applications.

To digitally sign code, perform the following:

1. Use keyt ool to generate or import appropriate keys and certificates into your key
store (if they are not there already).

2. Use thejar tool to package the code in a JAR file.

ORACLE 1-8

Chapter 1
Java Security Overview

3. Use thejarsigner tool to sign the JAR file. The j arsi gner tool accesses a key
store to find any keys and certificates needed to sign a JAR file or to verify the
signature of a signed JAR file.

Note:

jarsi gner can optionally generate signatures that include a timestamp.
Systems (such as Java Plug-in) that verify JAR file signatures can check the
timestamp and accept a JAR file that was signed while the signing certificate
was valid rather than requiring the certificate to be current. (Certificates
typically expire annually, and it is not reasonable to expect JAR file creators to
re-sign deployed JAR files annually.)

See keytool and jarsigner in Java Platform, Standard Edition Tools Reference.

Authentication

ORACLE

Authentication is the process of determining the identity of a user. In the context of the
Java runtime environment, it is the process of identifying the user of an executing Java
program. In certain cases, this process may rely on the services described in the
section Java Cryptography.

The Java platform provides APIs that enable an application to perform user
authentication via pluggable login modules. Applications call into the Logi nCont ext
class (in the j avax. security. aut h. | ogi n package), which in turn references a
configuration. The configuration specifies which login module (an implementation of

the javax. securi ty. aut h. spi . Logi nMbdul e interface) is to be used to perform the actual
authentication.

Since applications solely talk to the standard Logi nCont ext API, they can remain
independent from the underlying plug-in modules. New or updated modules can be
plugged in for an application without having to modify the application itself. The
following figure illustrates the independence between applications and underlying login
modules:

1-9

Chapter 1
Java Security Overview

Figure 1-3 Authentication Login Modules Plugging into the Authentication
Framework

Application

Authentication Framework

(Configuration

Smartcard Kerberos Username/
Password

It is important to note that although login modules are pluggable components that can
be configured into the Java platform, they are not plugged in via security providers.
Therefore, they do not follow the provider searching model as described in the section
Security Providers. Instead, as is shown in Figure 1-3, login modules are administered
by their own unique configuration.

The Java platform provides the following built-in login modules, all in the
com sun. security. aut h. nodul e package:

* Krb5Logi nvodul e for authentication using Kerberos protocols

* Jndi Logi nModul e for username/password authentication using LDAP or NIS
databases

* KeyStoreLogi nMdul e for logging into any type of key store, including a PKCS#11
token key store

Authentication can also be achieved during the process of establishing a secure
communication channel between two peers. The Java platform provides
implementations of a number of standard communication protocols, which are
discussed in the section Secure Communication.

Secure Communication

ORACLE

The data that travels across a network can be accessed by someone who is not the
intended recipient. When the data includes private information, such as passwords
and credit card numbers, steps must be taken to make the data unintelligible to
unauthorized parties. It is also important to ensure that you are sending the data to the
appropriate party, and that the data has not been modified, either intentionally or
unintentionally, during transport.

Cryptography forms the basis required for secure communication; see the section
Java Cryptography. The Java platform also provides API support and provider
implementations for a number of standard secure communication protocols.

1-10

Chapter 1
Java Security Overview

SSL, TLS, and DTLS Protocols

The JDK provides APIs and an implementation of the SSL, TLS, and DTLS protocols
that includes functionality for data encryption, message integrity, and server and client
authentication. Applications can use SSL/TLS/DTLS to provide for the secure passage
of data between two peers over any application protocol, such as HTTP on top of
TCP/IP.

The j avax. net. ssl. SSLSocket class represents a network socket that encapsulates
SSL/TLS support on top of a normal stream socket (j ava. net . Socket). Some
applications might want to use alternate data transport abstractions (for example,
New-1/O); the j avax. net. ssl . SSLEngi ne class is available to produce and consume
SSL/TLS/DTLS packets.

The JDK also includes APlIs that support the notion of pluggable (provider-based) key
managers and trust managers. A key manager is encapsulated by the

javax. net.ssl . KeyManager class, and manages the keys used to perform authentication.
A trust manager is encapsulated by the Trust Manager class (in the same package), and
makes decisions about who to trust based on certificates in the key store it manages.

The JDK includes a built-in provider that implements the SSL/TLS/DTLS protocols:

e SSLv3

e TLSv1

e TLSvl1l

e TLSv1.2

e DTLSv1.0
e DTLSv1.2

Simple Authentication and Security Layer (SASL)

ORACLE

Simple Authentication and Security Layer (SASL) is an Internet standard that specifies
a protocol for authentication and optional establishment of a security layer between
client and server applications. SASL defines how authentication data is to be
exchanged, but does not itself specify the contents of that data. It is a framework into
which specific authentication mechanisms that specify the contents and semantics of
the authentication data can fit. There are a number of standard SASL mechanisms
defined by the Internet community for various security levels and deployment
scenarios.

The Java SASL API, which is in the j ava. securi ty. sasl module, defines classes
and interfaces for applications that use SASL mechanisms. It is defined to be
mechanism-neutral; an application that uses the API need not be hardwired into using
any particular SASL mechanism. Applications can select the mechanism to use based
on desired security features. The API supports both client and server applications. The
javax.security.sasl. Sasl class is used to create Sasl G i ent and Sasl Server objects.

SASL mechanism implementations are supplied in provider packages. Each provider
may support one or more SASL mechanisms and is registered and invoked via the
standard provider architecture.

The Java platform includes a built-in provider that implements the following SASL
mechanisms:

1-11

https://docs.oracle.com/javase/9/docs/api/java.security.sasl-summary.html

Chapter 1
Java Security Overview

« CRAM-MDS5, DIGEST-MD5, EXTERNAL, GSSAPI, NTLM, and PLAIN client
mechanisms

e CRAM-MD5, DIGEST-MD5, GSSAPI, and NTLM server mechanisms

Generic Security Service APl and Kerberos

The Java platform contains an API with the Java language bindings for the Generic
Security Service Application Programming Interface (GSS-API), which is in the
java.security.jgss module. GSS-API offers application programmers uniform access to
security services atop a variety of underlying security mechanisms. The Java GSS-API
currently requires use of a Kerberos v5 mechanism, and the Java platform includes a
built-in implementation of this mechanism. At this time, it is not possible to plug in
additional mechanisms.

Note:

The Krb5Logi nMdul e mentioned in the section Authentication can be used in
conjunction with the GSS Kerberos mechanism.

The Java platform also includes a built-in implementation of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGQO) GSS-API mechanism.

Before two applications can use GSS-API to securely exchange messages between
them, they must establish a joint security context. The context encapsulates shared
state information that might include, for example, cryptographic keys. Both applications
create and use anorg.ietf.jgss. GSSCont ext object to establish and maintain the
shared information that makes up the security context. Once a security context has
been established, it can be used to prepare secure messages for exchange.

The Java GSS APIs are inthe org.ietf.jgss package. The Java platform also defines
basic Kerberos classes, like Ker ber osPri nci pal , Ker ber osTi cket , Ker ber osKey, and
KeyTab, which are located in the j avax. securi ty. aut h. ker ber os package.

Access Control

Permissions

ORACLE

The access control architecture in the Java platform protects access to sensitive
resources (for example, local files) or sensitive application code (for example, methods
in a class). All access control decisions are mediated by a security manager,
represented by the j ava. | ang. Securit yManager class. A SecurityManager must be
installed into the Java runtime in order to activate the access control checks.

Java applets and Java Web Start applications are automatically run with a
SecurityManager installed. However, local applications executed via the j ava command
are by default not run with a Securi t yManager installed. In order to run local applications
with a Securi t yManager, either the application itself must programmatically set one via
the set Securi t yManager method (in the j ava. | ang. Syst emclass), or j ava must be
invoked with a - Dj ava. securi ty. manager argument on the command line.

A permission represents access to a system resource. In order for a resource access
to be allowed for an applet (or an application running with a security manager), the

1-12

https://docs.oracle.com/javase/9/docs/api/java.security.jgss-summary.html

Chapter 1
Java Security Overview

corresponding permission must be explicitly granted to the code attempting the
access.

When Java code is loaded by a class loader into the Java runtime, the class loader
automatically associates the following information with that code:

* Where the code was loaded from
e Who signed the code (if anyone)
e Default permissions granted to the code

This information is associated with the code regardless of whether the code is
downloaded over an untrusted network (e.g., an applet) or loaded from the filesystem
(e.g., a local application). The location from which the code was loaded is represented
by a URL, the code signer is represented by the signer's certificate chain, and default
permissions are represented by j ava. security. Perni ssi on objects.

The default permissions automatically granted to downloaded code include the ability
to make network connections back to the host from which it originated. The default
permissions automatically granted to code loaded from the local filesystem include the
ability to read files from the directory it came from, and also from subdirectories of that
directory.

Note that the identity of the user executing the code is not available at class loading
time. It is the responsibility of application code to authenticate the end user if
necessary (see the section Authentication). Once the user has been authenticated, the
application can dynamically associate that user with executing code by invoking the
doAs method in the j avax. security. aut h. Subj ect class.

Security Policy

A limited set of default permissions are granted to code by class loaders.
Administrators have the ability to flexibly manage additional code permissions via a
security policy.

Java SE encapsulates the notion of a security policy in the j ava. security. Policy class.
There is only one Pol i cy object installed into the Java runtime at any given time. The
basic responsibility of the Pol i cy object is to determine whether access to a protected
resource is permitted to code (characterized by where it was loaded from, who signed
it, and who is executing it). How a Pol i cy object makes this determination is
implementation-dependent. For example, it may consult a database containing
authorization data, or it may contact another service.

Java SE includes a default Pol i cy implementation that reads its authorization data
from one or more ASCII (UTF-8) files configured in the security properties file. These
policy files contain the exact sets of permissions granted to code: specifically, the
exact sets of permissions granted to code loaded from particular locations, signed by
particular entities, and executing as particular users. The policy entries in each file
must conform to a documented proprietary syntax, and may be composed via a simple
text editor or the graphical pol i cyt ool utility.

Note:

The pol i cyt ool is deprecated and marked for removal in the next major JDK
release.

ORACLE 1-13

Chapter 1
Java Security Overview

Access Control Enforcement

The Java runtime keeps track of the sequence of Java calls that are made as a
program executes. When access to a protected resource is requested, the entire call
stack, by default, is evaluated to determine whether the requested access is permitted.

As mentioned previously, resources are protected by the Securi t yManager . Security-
sensitive code in the JDK and in applications protects access to resources via code
like the following:

Securi tyManager sm = System get SecurityManager();
if (sm!=null) {

sm checkPer mi ssi on(perm;
}

The Per ni ssi on object per mcorresponds to the requested access. For example, if an
attempt is made to read the file / t np/ abc, the permission may be constructed as
follows:

Perni ssion perm = new java.io.FilePernission("/tnmp/abc", "read");

The default implementation of SecurityManager delegates its decision to the
java.security. AccessControl | er implementation. The AccessControl | er traverses the
call stack, passing to the installed security Pol i cy each code element in the stack,
along with the requested permission (for example, the Fi | ePer ni ssi on in the previous
example). The Pol i cy determines whether the requested access is granted, based on
the permissions configured by the administrator. If access is not granted, the
AccessControl | er throws a j ava. | ang. SecurityExcepti on.

Figure 1-4 illustrates access control enforcement. In this particular example, there are
initially two elements on the call stack, O assA and d assB. O assA invokes a method in
C assB, which then attempts to access the file / t np/ abc by creating an instance of
java.io. FilelnputStream The Fil el nput St reamconstructor creates a Fi | ePer ni ssi on,
per m as shown above, and then passes per mto the Securi t yManager class's

checkPer ni ssi on method. In this particular case, only the permissions for d assA and

O assB need to be checked, because all classes in the j ava. base module, including

Fi | el nput Stream SecurityManager, and AccessControl | er, automatically receives all
permissions.

In this example, C assA and d assB have different code characteristics — they come
from different locations and have different signers. Each may have been granted a
different set of permissions. The AccessControl | er only grants access to the requested
file if the Pol i cy indicates that both classes have been granted the required

Fi | ePerm ssi on.

ORACLE 1-14

Chapter 1
Java Security Overview

Figure 1-4 Controlling Access to Resources

< “;at_rlthorizatid.;l_n”

e 0212

' access granted
or denied

XML Signature

The Java XML Digital Signature APl is a standard Java API for generating and
validating XML Signatures.

XML Signatures can be applied to data of any type, XML or binary (see XML Signature
Syntax and Processing). The resulting signature is represented in XML. An XML
Signature can be used to secure your data and provide data integrity, message
authentication, and signer authentication.

The APl is designed to support all of the required or recommended features of the
W3C Recommendation for XML-Signature Syntax and Processing. The API is
extensible and pluggable and is based on the Java Cryptography Service Provider
Architecture.

The Java XML Digital Signature API, which is in the j ava. xml . cr ypt o module,
consists of six packages:

° javax.xn .crypto
* javax.xnl.crypto.dsig

° javax.xnl.crypto.dsig.keyinfo

ORACLE"

1-15

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
https://docs.oracle.com/javase/9/docs/api/java.xml.crypto-summary.html

e javax.xm.crypto.dsig.spec

° javax.xm.crypto.dom

* javax.xnl.crypto.dsig.dom

Additional Information about Java Security

Find additional Java security documentation at Java SE Security.

Note:

Historically, as new types of security services were added to Java SE

Chapter 1

Java Security Overview

(sometimes initially as extensions), various acronyms were used to refer to
them. Since these acronyms are still in use in the Java security
documentation, here is an explanation of what they represent:

e JSSE (Java Secure Socket Extension) refers to the SSL-related services
as described in the section SSL, TLS, and DTLS Protocols

« JCE (Java Cryptography Extension) refers to cryptographic services as
described in the section Java Cryptography

* JAAS (Java Authentication and Authorization Service) refers to the

authentication and user-based access control services as described in the
sections Authentication and Access Control, respectively

Java Security Classes Summary

The following table describes some of the names, packages, and usage of the Java
security classes and interfaces..

ORACLE

Table 1-3 Java security packages and classes

Package Classl/Interface Usage Module
Name

java.l ang Securi t yException Indicates a security j ava. base
violation

java.lang Securi t yManager Mediates all access j ava. base
control decisions

java.l ang System Installs the j ava. base
SecurityManager

java.security AccessControl | er Called by default j ava. base
implementation of
SecurityManager to
make access control
decisions

java.security Domai nLoadSt or ePara Stores parameters for j ava. base

met er the Domain keystore

(DKS)

java.security Key Represents a j ava. base

cryptographic key

1-16

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Table 1-3 (Cont.) Java security packages and classes

Chapter 1
Java Security Overview

Package

Classlinterface

Name

Usage

Module

java.

security

KeySt ore

Represents a
repository of keys and
trusted certificates

j ava. base

java.

security

MessageDi gest

Represents a
message digest

j ava. base

j ava.

security

Per m ssi on

Represents access to
a particular resource

j ava. base

j ava.

security

PKCS12Attribute

Supports attributes in
PKCS12 keystores

j ava. base

j ava.

security

Pol i cy

Encapsulates the
security policy

j ava. base

j ava.

security

Provi der

Encapsulates security
service
implementations

j ava. base

java.

security

Security

Manages security
providers and Security
Properties

j ava. base

j ava.

security

Signature

Creates and verifies
digital signatures

j ava. base

java.

security.cert

Certificate

Represents a public
key certificate

j ava. base

j ava.

security.cert

CertStore

Represents a
repository of unrelated
and typically untrusted
certificates

j ava. base

j ava.

security.cert

CRL

Represents a CRL

j ava. base

j avax.

crypto

Ci pher

Performs encryption
and decryption

j ava. base

j avax.

crypto

KeyAgr eenent

Performs a key
exchange

j ava. base

j avax.

net. ssl

KeyManager

Manages keys used to
perform SSL/TLS
authentication

j ava. base

j avax.

net. ssl

SSLEngi ne

Produces/consumes
SSL/TLS packets,
allowing the
application freedom to
choose a transport
mechanism

j ava. base

j avax.

net . ssl

SSLSocket

Represents a network
socket that
encapsulates
SSL/TLS support on
top of a normal stream
socket

j ava. base

ORACLE

1-17

Chapter 1
Java Security Overview

Table 1-3 (Cont.) Java security packages and classes
|

Package Classl/Interface Usage Module
Name
javax. net . ssl Trust Manager Makes decisions j ava. base

about who to trust in
SSL/TLS interactions
(for example, based
on trusted certificates
in key stores)

javax.security.auth Subject Represents a user j ava. base

javax.security.auth KerberosPrincipal Represents a j ava. base

. ker beros Kerberos principal

javax.security.auth KerberosTicket Represents a j ava. base

. ker beros Kerberos ticket

javax.security.auth KerberosKey Represents a j ava. base

. ker ber os Kerberos key

javax.security.auth KerberosTab Represents a j ava. base

. kerberos Kerberos keytab file

javax. security.auth Logi nContext Supports pluggable j ava. base

.login authentication

javax.security.auth Logi nModul e Implements a specific j ava. base

.spi authentication
mechanism

javax. security.sasl Sasl Creates SaslClient java. security. sasl
and SaslServer
objects

javax.security.sasl SaslCient Performs SASL java. security. sasl
authentication as a
client

javax. security.sasl Sasl Server Performs SASL java. security. sasl
authentication as a
server

org.ietf.jgss GSSCont ext Encapsulates a GSS- java. security.jgss

API security context
and provides the
security services
available via the

context
com sun. security.au Jndi Logi nModul e Performs username/ j dk. security.auth
t h. modul e password

authentication using

LDAP or NIS
comsun. security.au KeyStorelLogi nModul e Performs jdk.security.auth
th. modul e authentication based

on key store login
com sun. security.au Krb5Logi nMbdul e Performs jdk.security.auth
t h. nodul e authentication using

Kerberos protocols

Deprecated Security APIs Marked for Removal

The following APls are deprecated and eligible to be removed in a future release.

ORACLE 1-18

Chapter 1
Java Security Overview

You can check the APl dependencies using the j depr scan tool. See jdeprscan in Java
Platform, Standard Edition Tools Reference.

The following classes are deprecated and marked for removal:

com sun. security.
com sun. security.
com sun. security.
com sun. security.
com sun. security.
com sun. security.

com sun. security.

aut h.
aut h.
aut h.
aut h.
aut h.
aut h.

aut h.

PolicyFile

Sol ari sNuneri cG oupPri nci pal
Sol ari sNurmer i cUser Pri nci pal
Sol ari sPri nci pal

X500Pr i nci pal

nodul e. Sol ari sLogi nvbdul e

nodul e. Sol ari sSystem

The following methods are deprecated and marked for removal:

j ava. |l ang. Securit yManager . get | nCheck

java. |l ang. SecurityManager. checkMenber Access

j ava. | ang. Securi tyManager. cl assDept h

java. |l ang. SecurityManager. current C assLoader

j ava. | ang. SecurityManager. current LoadedC ass

java. |l ang. SecurityManager.ind ass

java. |l ang. SecurityManager.i nCl assLoader

j ava. |l ang. SecurityManager . checkAwm Event QueueAccess

java. |l ang. SecurityManager. checkTopLevel W ndow

j ava. | ang. SecurityManager . checkSyst entl i pboar dAccess

The following field is deprecated and marked for removal:

java.l ang. SecurityManager.i ncheck

Security Tools Summary

The following tables describe Java security and Kerberos-related tools.

See Security Tools and Commands in Java Platform, Standard Edition Tools
Reference.

Table 1-4 Java Security Tools

Tool Usage

jar Creates Java Archive (JAR) files

j arsigner Signs and verifies signatures on JAR files

keyt ool Creates and manages key stores

ORACLE 1-19

Chapter 1
Security Architecture

Table 1-4 (Cont.) Java Security Tools

Tool Usage
pol i cyt ool Creates and edits policy files for use with default Policy
implementation
Note:

pol i cyt ool is deprecated and marked for removal.

There are also three Kerberos-related tools that are shipped with the JDK for
Windows. Equivalent functionality is provided in tools of the same name that are
automatically part of the Solaris and Linux operating environments.

Table 1-5 Kerberos-related Tools

Tool Usage

kinit Obtains and caches Kerberos ticket-granting tickets

klist Lists entries in the local Kerberos credentials cache and
key table

kt ab Manages the names and service keys stored in the local

Kerberos key table

Built-In Providers

The Java SE implementation from Oracle includes a number of built-in provider
packages. See JDK Providers Documentation.

Security Architecture

See Security Architecture in the JDK 8 documentation for an overview of the
motivation of major security features, an introduction to security classes and their
usage, a discussion of the impact of the security architecture on code, and thoughts on
writing security-sensitive code.

Standard Algorithm Names

See Java Security Standard Algorithm Names Specification for information about the
set of standard names for algorithms, certificate and keystore types that Java SE
requires and uses.

ORACLE 1-20

https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

Chapter 1
Permissions in the Java Development Kit (JDK)

Permissions in the Java Development Kit (JDK)

ORACLE

Information about the built-in JDK permission types and associated risks of granting
each permission. Information about methods that require permissions to be in effect in
order to be successful, and for each method lists the required permission.

A permission represents access to a system resource. In order for a resource access
to be allowed for an applet (or an application running with a security manager), the
corresponding permission must be explicitly granted to the code attempting the
access.

A permission typically has a name (often referred to as a "target name") and, in some
cases, a comma-separated list of one or more actions.

For example, the following code creates a Fi | ePer i ssi on object representing read
access to the file named abc in the / t np directory:

perm = new java.io.FilePermssion("/tnmp/abc", "read");

Here, the target name is "/ t np/ abc" and the action string is "read".

© Important:

The above statement creates a permission object. A permission object
represents, but does not grant access to, a system resource. Permission
objects are constructed and assigned ("granted") to code based on the policy
in effect. When a permission object is assigned to some code, that code is
granted the permission to access the system resource specified in the
permission object, in the specified manner. A permission object may also be
constructed by the current security manager when making access decisions.
In this case, the (target) permission object is created based on the requested
access, and checked against the permission objects granted to and held by
the code making the request.

The policy for a Java application environment is represented by a Policy object. In the
" JavaPol i cy" Policy implementation, the policy can be specified within one or more
policy configuration files. The policy file(s) specify what permissions are allowed for
code from specified code sources. A sample policy file entry that grants code from
the / hone/ sysadni n directory read access to the file / t np/ abc is

grant codeBase "file:/hone/sysadmin/" {
pernission java.io.FilePermssion "/tnp/abc", "read";

b

To know more about policy file locations and granting permissions in policy files, see
Default Policy Implementation and Policy File Syntax.

Using the policy tool saves typing and eliminates the need for you to know the required
syntax of policy files. To know more about using the policy tool to specify the
permissions, see Policy Tool. Using the policy tool saves typing and eliminates the
need for you to know the required syntax of policy files.

Technically, whenever a resource access is attempted, all code traversed by the
execution thread up to that point must have permission for that resource access,

1-21

Permission

ORACLE

unless some code on the thread has been marked as "privileged." See API for

Privileged Blocks.

Descriptions and Risks

List of built-in JIDK permission types and the risks of granting each permission.

AWTPer mi ssi on

Fi | ePermi ssion

Seri al i zabl ePerni ssi on
Managenent Per ni ssi on
Ref | ect Per mi ssi on

Runt i mePer ni ssi on

— NIO-Related Targets
Net Per mi ssi on

Socket Per ni ssi on

Li nkPer mi ssi on

URLPer mi ssi on

Al'l Perni ssion

Securi tyPerni ssion

Unr esol vedPer ni ssi on
SQLPer mi ssi on

Loggi ngPer mi ssi on
PropertyPer n ssion
MBeanPer imi ssi on
MBeanSer ver Per mi ssi on
MBeanTr ust Per ni ssi on
Subj ect Del egat i onPer mi ssi on
SSLPer mi ssi on

Aut hPer ni ssi on

Del egat i onPer ni ssi on
Servi cePer mi ssi on
PrivateCredential Perm ssion
Audi oPer mi ssi on

JAXBPer m ssi on

WebSer vi cePer ni ssi on

Methods and the Required Permissions

java.lang.SecurityManager Method Permission Checks

Chapter 1
Permissions in the Java Development Kit (JDK)

1-22

https://docs.oracle.com/javase/9/docs/api/java/awt/AWTPermission.html
https://docs.oracle.com/javase/9/docs/api/java/io/FilePermission.html
https://docs.oracle.com/javase/9/docs/api/java/io/SerializablePermission.html
https://docs.oracle.com/javase/9/docs/api/java/lang/management/ManagementPermission.html#ManagementPermission-java.lang.String-java.lang.String-
https://docs.oracle.com/javase/9/docs/api/java/lang/reflect/ReflectPermission.html
https://docs.oracle.com/javase/9/docs/api/java/lang/RuntimePermission.html
https://docs.oracle.com/javase/9/docs/api/java/net/NetPermission.html
https://docs.oracle.com/javase/9/docs/api/java/net/SocketPermission.html
https://docs.oracle.com/javase/9/docs/api/java/nio/file/LinkPermission.html
https://docs.oracle.com/javase/9/docs/api/java/net/URLPermission.html
https://docs.oracle.com/javase/9/docs/api/java/security/AllPermission.html
https://docs.oracle.com/javase/9/docs/api/java/security/SecurityPermission.html
https://docs.oracle.com/javase/9/docs/api/java/security/UnresolvedPermission.html
https://docs.oracle.com/javase/9/docs/api/java/sql/SQLPermission.html
https://docs.oracle.com/javase/9/docs/api/java/util/logging/LoggingPermission.html
https://docs.oracle.com/javase/9/docs/api/java/util/PropertyPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/management/MBeanPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/management/MBeanServerPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/management/MBeanTrustPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/management/remote/SubjectDelegationPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/AuthPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/kerberos/DelegationPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/kerberos/ServicePermission.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/PrivateCredentialPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/sound/sampled/AudioPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/bind/JAXBPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/ws/WebServicePermission.html

Chapter 1
Permissions in the Java Development Kit (JDK)

NIO-Related Targets

NIO-related related target names.

Two NIO-related Runt i mePer ni ssi on targets were added in the 1.4 release of the
JavaSE JDK:

sel ect or Provi der
char set Provi der

These Runt i mePer ni ssi ons are required to be granted to classes which subclass
and implement j ava. ni 0. channel . spi . Sel ect or Pr ovi der or

java. ni o. charset. spi . Charset Provi der. The permission is checked during
invocation of the abstract base class constructor. These permissions ensure trust in
classes which implement these security-sensitive provider mechanisms. For more
information, see

j ava. ni 0. channel s. spi . Sel ect or Provi derj ava. ni 0. channel s. spi . Char set Provi der

Methods and the Required Permissions

ORACLE

List of all the methods that require permissions, and for each method the
corresponding Securi t yManager method it calls.

Note:

The list of all the methods discussed in this document is not complete and
does not include several methods that require permissions. See API
Docunent at i on for additional information on methods that throw

Securit yException and the permissions that are required.

In the default Securi t yvanager method implementations, a call to a method in the
Method column can only be successful if the permission specified in the
corresponding entry in the SecurityManager Method column is allowed by the policy
currently in effect.

Example 1-1 SecurityManager checkPermission Method

get Syst enEvent Queuej ava. awt . Tool ki t checkPer mi ssi on

j ava. awt . AWPer mi ssi on "accessEvent Queue";

Method SecurityManager Method Permission

checkPer ni ssi on j ava. awt . AWPer mi ssi on

java. awt . Tool ki t "accessEvent Queue";

get Syst enEvent Queue();

The following convention means the runtime value of f oo replaces the string {f oo} in
the permission name:

1-23

https://docs.oracle.com/javase/9/docs/api/java/nio/channels/spi/SelectorProvider.html
https://docs.oracle.com/javase/9/docs/api/java/nio/charset/spi/CharsetProvider.html
https://docs.oracle.com/javase/9/docs/api/
https://docs.oracle.com/javase/9/docs/api/

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

Method SecurityManager Method Permission

checkXXX SomePer mi ssion "{foo}";

sone. package. cl ass
public static void
soneMet hod(String foo);

Example 1-2 SecurityManager checkRead Method

Fi | el nput Streanj ava.io. Fi | el nput St ream checkRead

Method SecurityManager Method Permission
checkRead(String) java.io.FilePerm ssion
java.io. Filel nput Stream "{name}", "read";
Fil el nput Stream(String
nane)

If the Fi I el nput St reammethod (in this case, a constructor) is called with "/ t est /
MyTest Fi | e" as the name argument, as in

Fil el nputStrean("/test/MWTestFile");

then in order for the call to succeed, the following permission must be set in the
current policy, allowing read access to the file "/t est / MyTest Fi | e":

java.io.FilePernmission "/test/MTestFile", "read";

More specifically, the permission must either be explicitly set, as above, or implied by
another permission, such as the following:

java.io.FilePernission "/test/*", "read";
which allows read access to any files in the "/ test" directory.
Example 1-3 SecurityManager checkAccept Method

In some cases, a term in braces is not exactly the same as the name of a specific
method argument but is meant to represent the relevant value:

Method SecurityManager Method Permission
checkAccept ({host}, j ava. net. Socket Permi ssi on
j ava. net . Dat agr amSocket {port}) "{host}:{port}", "accept”;

public synchronized void

recei ve(Dat agranPacket p);

Here, the appropriate host and port values are calculated by the recei ve method and
passed to checkAccept .

In most cases, just the name of the SecurityManager method called is listed. Where
the method is one of multiple methods of the same name, the argument types are also

1-24

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

listed, for example for checkRead(String) and checkRead(Fil eDescriptor). In other
cases where arguments may be relevant, they are also listed.

Methods and the Permissions

The following table is ordered by package name, the methods in classes in the
java. amt package are listed first, followed by methods in classes in the java.io

package, and so on:

Table 1-6 Methods and the Permissions

Method SecurityManager Method

Permission

checkPermission

j ava. awt . Graphi cs2d
public abstract void
set Conposi t e(Conposite
conp)

java.awt. AWTPermission
"readDisplayPixels" if this
Graphics2D context is drawing
to a Component on the display
screen and the Composite is a
custom object rather than an
instance of the
AlphaComposite class. Note:
The setComposite method is
actually abstract and thus
can't invoke security checks.
Each actual implementation of
the method should call the
java.lang.SecurityManager
checkPermission method with
a

java.awt. AWTPermission("rea
dDisplayPixels") permission
under the conditions noted.

checkPermission

j ava. amt . Robot
public Robot ()
public

Robot (Graphi csDevi ce

screen)

java.awt. AWTPermission
"createRobot"

checkPermission

java. awt . Tool ki t
public void
addAWTEvent Li st ener (
AWTEvent Li st ener
l'istener,
| ong event Mask)
public void
removeAWrEvent Li st ener (
AWrEvent Li st ener
l'i stener)

java.awt. AWTPermission
"listenToAIIAWTEvents"

1-25

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

___|
Method SecurityManager Method Permission

checkPrintJobAccess java.lang.RuntimePermission

ORACLE

java. awt . Tool ki t
public abstract PrintJob
get Print Job(
Frame frane,
String jobtitle,
Properties
pr ops)

"queuePrintJob"

Note: The getPrintJob method
is actually abstract and thus
can't invoke security checks.
Each actual implementation of
the method should call the
java.lang.SecurityManager
checkPrintJobAccess method,
which is successful only if the
java.lang.RuntimePermission
"queuePrintJob" permission is
currently allowed.

checkPermission

java. awt . Tool ki t
public abstract i pboard

get Syst en i pboar d()

java.awt. AWTPermission
"accessClipboard"

Note: The
getSystemClipboard method is
actually abstract and thus
can't invoke security checks.
Each actual implementation of
the method should call the
checkPermission method,
which is successful only if the
java.awt. AWTPermission
"accessClipboard" permission
is currently allowed.

checkPermission

java. awt . Tool ki t
public final EventQueue

get Syst emEvent Queue()

java.awt. AWTPermission
"accessEventQueue"

checkPermission

j ava. awt . W ndow
W ndow()

If java.awt. AWTPermission
"showWindowWithoutWarning
Banner" is set, the window will
be displayed without a banner
warning that the window was
created by an applet. It it's not
set, such a banner will be
displayed.

1-26

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method

Permission

checkPropertiesAccess

j ava. beans. Beans
public static void
set Desi gnTi me(
bool ean
i sDesi gnTi ne)
public static void
set Qui Avai | abl e(
bool ean
i sQui Avai | abl e)

j ava. beans. | ntrospect or
public static
synchroni zed voi d

set Beanl nf oSear chPat h(Strin
g path[])

j ava. beans. Propert yEdi t or Ma
nager
public static void
regi sterEditor(
C ass
target Type
C ass
editord ass)
public static
synchroni zed voi d

set Edi t or Sear chPat h(String
path[])

java.util.PropertyPermission
" "read,write"

checkDelete(String)

java.io.File
public bool ean del ete()
public void

del et eOnExi t ()

java.io.FilePermission
"{name}", "delete"

checkRead(FileDescriptor)
java.io.FilelnputStream

Fi | el nput St rean(Fi | eDescrip
tor fdQhj)

java.lang.RuntimePermission
"readFileDescriptor"

1-27

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

___|
Method SecurityManager Method Permission

checkRead(String) java.io.FilePermission

java.io.FilelnputStream {name}", "read

Fil el nputStream(String

nane)
FilelnputStreamFile

file)

java.io.File

public bool ean exists()
public bool ean canRead()
public bool ean isFile()
public bool ean
isDirectory()
public bool ean i sH dden()
public long
| ast Modi fi ed()
public long Iength()
public String[] list()
public String[] list(
Fi | enaneFi | ter
filter)
public File[] listFiles()
public File[] listFiles(
Fi | enaneFi | ter

filter)
public File[] listFiles(
FileFilter
filter)

java.io. RandomAccessFil e
RandomAccessFil e(String
nane, String node)
RandomAccessFil e(File
file, String node)
(where node is "r"
in both of these)

checkWrite(FileDescriptor) java.lang.RuntimePermission

java.io.FileCutputStream writeFileDescriptor

Fi | eQut put Strean(Fi | eDescri
ptor fdOhj)

ORACLE 1-28

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

___|
Method SecurityManager Method Permission

checkWrite(String) java.io.FilePermission

java.io.FileCutputStream {name}", "write

Fil eQutput Strean(File

file)

Fi | eQut put Strean(String
nane)

Fi | eQut put Strean(String
nane,

bool ean

append)
java.io.File

public bool ean canWite()
public bool ean
creat eNewFi | ()
public static File
creat eTempFi | e(
String prefix,
String suffix)
public static File
creat eTempFil e(
String prefix,
String suffix
File directory)
public bool ean nkdir ()
public bool ean nkdirs()
public bool ean
renameTo(Fil e dest)
public bool ean
set Last Modi fi ed(l ong tine)
public bool ean
set ReadOnl y()

checkPermission java.io.SerializablePermission

java.io.bjectlnputStream enableSubstitution

protected final bool ean

enabl eResol vehj ect (bool ean
enabl e);

java.io. bject Qut put Stream
protected final bool ean

enabl eRepl acehj ect (bool ean
enabl e)

1-29

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions
|

Method SecurityManager Method Permission
checkPermission java.io.SerializablePermission
"enableSubclassimplementati

java.io.bjectlnputStream

protected on
bj ect I nput St ream()
java.io. Qbject Qut put Stream
protected
hj ect Qut put Stream()
checkRead(String) and java.io.FilePermission
j ava. i 0. RandomAccessFi | e checkWrite(String) "{name}", "read,write"
RandomAccessFil e(String
nane, String node)
(where node is "rw')
checkPermission If | oader is null, and the
java. | ang. d ass caller's class loader is not null,
public static dass Fhen .
f or Nae(java.l ang. Runti nePer
String name, bool ean m ssion("getd assLoa
initialize, der™)
Cl assLoader | oader)
checkPermission If the caller's class loader is

null, or is the same as or an
ancestor of the class loader
for the class whose class
loader is being requested, no
permission is needed.
Otherwise,

java.lang. Runti mePerm ssio
n "get d assLoader" is
required.

java.lang. d ass
public O assLoader
get 0 asslLoader ()

1-30

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method

SecurityManager Method

Permission

checkMemberAccess(this,
Member.DECLARED) and, if

java.lang. d ass
public O ass[]

get Decl aredCl asses()
public Field[]

get Decl ar edFi el ds()
public Method[]

get Decl ar edMet hods()
public Constructor[]

this class is in a package,

me})

get Decl aredConst ruct ors()
public Field
get Decl ar edFi el d(

String nane)
public Method

get Decl ar edMet hod(.. . .)
public Constructor

get Decl aredConstructor(...)

Default checkMemberAccess
does not require any
permissions if "this" class's

checkPackageAccess({pkgNa classloader is the same as

that of the caller. Otherwise, it
requires
java.lang.RuntimePermission
"accessDeclaredMembers". If
this class is in a package,
java.lang.RuntimePermission
"accessClassInPackage.
{pkgName}" is also required.

checkMemberAccess(this,
Member.PUBLIC) and, if class does not require any

java.lang. d ass
public O ass[]
get d asses()
public Field[]
getFiel ds()
public Method[]
get Met hods()
public Constructor[]
get Constructors()
public Field
getFiel d(String nane)
public Method
get Method(...)
public Constructor
get Constructor(...)

is in a package,

me})

Default checkMemberAccess

permissions when the access

checkPackageAccess({pkgNa type is Member.PUBLIC. If

this class is in a package,
java.lang.RuntimePermission
"accessClassIinPackage.
{pkgName}" is required.

checkPermission

java.lang.d ass
public ProtectionDomain

get Prot ecti onDomai n()

java.lang.RuntimePermission
"getProtectionDomain”

checkCreateClassLoader

java.lang. d assLoader

C assLoader ()

C assLoader (O assLoader
parent)

java.lang.RuntimePermission
"createClassLoader"

1-31

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method

Permission

checkPermission

java.l ang. O assLoader
public static O assLoader

get Syst enCl assLoader ()
public O assLoader
get Parent ()

If the caller's class loader is
null, or is the same as or an
ancestor of the class loader
for the class whose class
loader is being requested, no
permission is needed.
Otherwise,

java. |l ang. Runti mePer ni ssi o
n "get d assLoader" is
required.

checkExec

java.lang. Runtime
public Process

exec(String conmand)
public Process

exec(String conmand,

String envp[])
public Process
exec(String crndarray[])
public Process
exec(String cndarray[],

String envp[])

java.io. FilePerm ssi
on "{conmand}",
"execute"

checkExit(status) where status j ava. | ang. Runti mePer ni ssi o

java.lang. Runtime
public void exit(int
status)
public static void

runFinal i zer sOnExi t (bool ean
val ue)
java.lang. System
public static void
exit(int status)
public static void

runFinal i zer sOnExi t (bool ean
val ue)

is 0 for runFinalizersOnExit

n "exitVM {status}"

checkPermission

java.lang. Runtine

public void
addshut downHook(Thr ead
hook)

public bool ean
r emoveShut downHook(Thr ead
hook)

java.lang. Runti mePerm ssio
n "shut downHooks"

1-32

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method

Permission

checkLink({libName}) where
{libName} is the lib, filename

java. | ang. Runti me .
: g or libname argument

public void |oad(String
l'ib)

public void
| oadLi brary(String Iib)
java.lang. System

public static void
load(String filenane)

public static void
| oadLi brary(

String libname)

j ava. |l ang. Runti mePer ni ssi o
n "l oadLibrary.{libNanme}"

checkPermission

java. | ang. Securi t yManager

See
java.lang.SecurityManager
Method Permission Checks.

net hods
checkPropertiesAccess java.util.PropertyPernissi
"gn n H "
java. | ang. System on . "read, wite
public static Properties
get Properties()
public static void
set Properties(Properties
props)
checkPropertyAccess java.util.PropertyPernissi

java.lang. System
public static String
get Property(String
key)
public static String
get Property(String
key, String def)

on "{key}", "read"

checkPermission

java.lang. System
public static void
setIn(InputStreamin)
public static void
set Qut (Print Stream out)
public static void
setErr(PrintStreamerr)

java.lang. Runti mePerm ssio
n "setlO

checkPermission

java.lang. System
public static String
set Property(String
key, String val ue)

java.util.PropertyPernissi
on "{key}", "wite"

1-33

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method

Permission

checkPermission

java.lang. System
public static
synchroni zed voi d

set Securi t yManager (Security
Manager s)

j ava. |l ang. Runti mePer ni ssi o
n "set SecurityManager"

checkPermission

java. | ang. Thread
public O assLoader
get Cont ext O assLoader ()

If the caller's class loader is
null, or is the same as or an
ancestor of the context class
loader for the thread whose
context class loader is being
requested, no permission is
needed. Otherwise,
java.lang. Runti mePerm ssio
n "get d assLoader" is
required.

checkPermission

java.lang. Thread
public void
set Cont ext O assLoader

(O assLoader cl)

java.lang. Runti mePerm ssio
n "set Cont ext assLoader"

checkAccess(this)

java.lang. Thread

public final void
checkAccess()

public void interrupt()

public final void
suspend()

public final void
resume()

public final void
setPriority

(int

newPriority)

public final void
set Nane(String nane)

public final void
set Daenon(bool ean on)

java.lang. Runti mePerm ssio
n "nodi fyThread"

checkAccess({threadGroup})

java.lang. Thread
public static int
enurer at e(Thr ead
tarray[])

java.lang. Runti mePerm ssio
n "nodi f yThreadG oup”

1-34

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method

SecurityManager Method

Permission

java.lang. Thread
public final void stop()

checkAccess(this). Also
checkPermission if the current
thread is trying to stop a
thread other than itself.

j ava. |l ang. Runti mePer ni ssi o
n "modi fyThread".

Also

java.l ang. Runti mePerm ssi o
n "stopThread" if the current
thread is trying to stop a
thread other than itself.

java.lang. Thread
public final
synchroni zed voi d

st op(Throwabl e obj)

checkAccess(this). Also
checkPermission if the current
thread is trying to stop a
thread other than itself or obj
is not an instance of
ThreadDeath.

java.lang. Runti mePerm ssio
n "nodi fyThread".

Also

java.lang. Runti mePerm ssio
n "stopThread" if the current
thread is trying to stop a
thread other than itself or obj
is not an instance of
ThreadDeath.

java.lang. Thread
Thread()
Thread(Runnabl e target)
Thread(String nane)
Thread(Runnabl e target,
String nane)

java.l ang. ThreadG oup
ThreadG oup(String name)
Thr eadG oup(Thr eadG oup
parent,
String name)

checkAccess({parentThreadGr j ava. | ang. Runti nePer ni ssi o

oup})

n "nodi f yThreadG oup”

1-35

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

___|
Method SecurityManager Method Permission

checkAccess(this) for j ava. |l ang. Runti mePer ni ssi o
ThreadGroup methods, or n "nodi f yThreadG oup"
checkAccess(group) for

Thread methods

java.l ang. Thread
Thr ead(Thr eadG oup

group, ...)

java. | ang. ThreadG oup
public final void
checkAccess()
public int
enunerate(Thread list[])
public int
enunerate(Thread list[],
bool ean recurse)
public int
enuner at e(Thr eadG oup
list[])
public int
enuner at e(Thr eadG oup
list[],
bool ean recurse)
public final ThreadG oup
get Parent ()
public final void
set Daenon(bool ean
daenon)
public final void
set MaxPriority(int pri)
public final void
suspend()
public final void
resune()
public final void
destroy()

checkAccess(this) Requires
java.lang. Runti mePerm ssio
n "nmodi f yThr eadG oup" . Also
requires
java.l ang. Runti mePerm ssi o
n "nodi f yThread", since the
java.lang.Thread interrupt()
method is called for each
thread in the thread group and
in all of its subgroups. See the
Thread interrupt() method.

java. |l ang. ThreadG oup
public final void
interrupt()

1-36

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

___|
Method SecurityManager Method Permission

checkAccess(this) Requires
java. |l ang. Runti mePer ni ssi o
n "nodi f yThr eadG oup" . Also
requires
java.l ang. Runti mePerm ssi o
n "nodi fyThread" and
possibly
java.l ang. Runti mePerm ssio
n "stopThread", since the
java.lang.Thread stop()
method is called for each
thread in the thread group and
in all of its subgroups. See the
Thread stop() method.

java. | ang. ThreadG oup
public final void stop()

checkPermission java.lang.reflect.ReflectP
java.lang.reflect.Accessi bl ‘(‘arm Ss| onA Checks”
eCbj ect suppr essAccessChecks
public static void
set Accessible(...)
public void
set Accessible(...)
checkPermission j ava. net. Net Permi ssion
j ava. net . Aut hent i cat or reqltljest Passwor dAut henti ca
public static tion
Passwor dAut hent i cati on
request Passwor dAut hent i cat i
on(
I net Addr ess
addr,
int port,
String
protocol ,
String pronpt,
String schene)
checkPermission j ava. net. Net Permi ssion

j ava. net . Aut hent i cat or "set Def aul t Aut henticator"

public static void

set Def aul t (Aut henticator a)

1-37

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions
|

Method

SecurityManager Method

Permission

java. net. Ml ticast Socket
public void

j 0i nGroup(| net Addr ess
ncast addr)
public void

| eaveG oup(| net Addr ess
ncast addr)

checkMulticast(InetAddress)

j ava. net . Socket Per mi ssi on(
nmcast addr . get Host Addr ess()
, "accept, connect")

j ava. net . Dat agr anSocket
public void
send(Dat agr anPacket p)

checkMulticast(p.getAddress()
) or

checkConnect(p.getAddress()
.getHostAddress(),

p.getPort())

if

(p. get Address().isMilticast
Address())

{ java.net. Socket Permissio
n((p.get Address()). get Host
Address()

"accept, connect") }

el se {port = p.getPort()
host =

p. get Address() . get Host Addre
ss();

if (port == -1)

j ava. net. Socket Per mi ssi on
"{host}", "resol ve"

el se

j ava. net. Socket Per m ssi on
"{host}:{port}", "connect"”

java. net. Ml ticast Socket
public synchronized void
send(Dat agr anPacket
p, byte ttl)

checkMulticast(p.getAddress()
, ttl) or

checkConnect(p.getAddress()
.getHostAddress(),

p.getPort())

i f

(p.get Address().isMilticast
Address())

{ java.net. Socket Permissio
n((p.getAddress()). get Host
Address(),

"accept, connect") } else

{ port = p.getPort(); host

p. get Address() . get Host Addr e
ss(); if (port == -1)

j ava. net. Socket Per m ssi on
"{host}", "resol ve"; else

j ava. net. Socket Per m ssi on
"{host}:{port}", "connect" }

1-38

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method

Permission

checkConnect({host}, -1)

java. net. I net Addr ess
public String

get Host Nane()
public static

| net Addr ess[]

get Al | ByNane(String host)
public static
| net Address get Local Host ()

j ava. net . Dat agr anSocket
public InetAddress
get Local Address()

j ava. net . Socket Per mi ssi on
“{host}", "resolve"

checkListen({port})
j ava. net. Server Socket
Server Socket (...)

j ava. net . Dat agr anSocket
Dat agr anSocket (. . .)

java. net. Ml ticast Socket
Mil ti cast Socket(...)

j ava. net. Socket Per i ssi on
"l ocal host :
{port}","listen";

checkAccept({host}, {port})

j ava. net . Server Socket
public Socket accept()
protected final void

i mpl Accept (Socket s)

j ava. net. Socket Permi ssi on
“{host}: {port}", "accept"

1-39

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

___|
Method SecurityManager Method Permission

checkSetFactory j ava. |l ang. Runti mePer ni ssi o

j ava. net. Server Socket n "set Factory

public static
synchroni zed voi d
set Socket Factory(...)

j ava. net. Socket
public static
synchroni zed voi d

set Socket | npl Factory(...)

java. net. URL
public static
synchroni zed voi d

set URLSt r eanHand| er Fact or y(
)

java. net. URLConnecti on
public static
synchroni zed voi d

set Cont ent Handl er Fact ory(. .
2)

public static void

set Fi | eNaneMap(Fi | eNaneMap
map)

java. net. Ht t pURLConnecti on
public static void

set Fol | owRedi rect s(bool ean
set)

java.rm . activation. Activat
i onG oup

public static
synchroni zed

ActivationG oup

createGoup(...)

public static
synchroni zed voi d

set Systen(Acti vati onSystem
system

java.rm . server.RM Socket Fa
ctory
public synchronized
static void
set Socket Factory(...)

ORACLE 1-40

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method

SecurityManager Method

Permission

j ava. net. Socket
Socket (...)

checkConnect({host}, {port})

j ava. net . Socket Per mi ssi on
“{host}:{port}", "connect"

j ava. net . Dat agr anSocket
public synchronized void

recei ve(Dat agr anPacket p)

checkAccept({host}, {port})

j ava. net. Socket Per i ssi on
“{host}:{port}", "accept"”

java. net. URL
URL(...)

checkPermission

j ava. net. Net Permi ssion
"speci fyStreanHand! er"

java.net.URLC assLoader
URLC assLoader(...)

checkCreateClassLoader

java.lang. Runti mePerm ssio
n "created assLoader"

java.security. AccessControl
Cont ext

public
AccessCont rol Cont ext (Access
Control Cont ext acc,

Domai nConbi ner
conbi ner)
publ i ¢ Domai nConbi ner
get Domai nConbi ner ()

checkPermission

java.security. SecurityPerm
i ssion

"creat eAccessCont rol Cont ex
£

java.security.ldentity
public void
addCertificate(...)

checkSecurityAccess("addlde
ntityCertificate")

java.security. SecurityPerm
i ssion
"addl dentityCertificate"

java.security.ldentity
public void
removeCertificate(...)

checkSecurityAccess("remov
eldentityCertificate")

java.security. SecurityPerm
i ssion
"renmovel dentityCertificate

java.security.ldentity
public void
setInfo(String info)

checkSecurityAccess("setlde
ntityInfo")

java.security. SecurityPerm
ission "setldentitylnfo"

1-41

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method

SecurityManager Method

Permission

java.security.ldentity
public void
set Publ i cKey(PublicKey key)

checkSecurityAccess("setlde

ntityPublicKey")

java. security. SecurityPerm
i ssion
"setldentityPublicKey"

java.security.ldentity
public String
toString(...)

checkSecurityAccess("printld

entity")

java.security. SecurityPerm
ission "printldentity"

java.security.ldentityScope
protected static void
set Syst enScope()

checkSecurityAccess("setSys

temScope")

java.security. SecurityPerm
i ssion "set SystenScope”

java. security. Pernission
public void
checkGuar d(bj ect object)

checkPermission(this)

this Permission object is the
permission checked

java.security. Policy
public static Policy
get Policy()

checkPermission

java.security. SecurityPerm
i ssion "getPolicy"

java.security. Policy
public static void
set Pol i cy(Policy

policy)

checkPermission

java.security. SecurityPerm
i ssion "setPolicy"

java.security. Policy
public static Policy

getlnstance(String
type, SpiParaneter parans)

getlnstance(String
type, SpiParaneter parans,
String provider)

getlnstance(String
type, SpiParaneter parans,
Provi der provider)

checkPermission

java.security. SecurityPerm
i ssion "createPolicy.

{type}”

java.security. Provider
public synchronized void
clear()

checkSecurityAccess("clearPr java. security. SecurityPerm

oviderProperties."+{name})

i ssion

“cl ear Provi der Properties.
{nane}" where name is the
provider name.

1-42

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method

SecurityManager Method

Permission

java.security. Provider
public synchronized
hj ect
put (Qbj ect key,
bj ect val ue)

checkSecurityAccess("putPro
viderProperty."+{name})

java. security. SecurityPerm
i ssion

"put Provi der Property.
{name}" where name is the
provider name.

java.security. Provider
public synchronized
hj ect
renove(Chj ect key)

checkSecurityAccess("remov
eProviderProperty."+{name})

java.security. SecurityPerm
i ssion

"renoveProvi der Property.
{nane}" where name is the
provider name.

java.security. Secured assLo
ader
Secured assLoader (.. .)

checkCreateClassLoader

java.lang. Runti mePerm ssio
n "created assLoader"

java.security. Security
public static void
get Property(String key)

checkPermission

java.security. SecurityPerm
i ssion "getProperty.{key}"

java.security. Security
public static int
addPr ovi der (Provi der
provi der)
public static int

i nsert Provi der At (Provi der
provi der,

int
position);

checkSecurityAccess("insertP
rovider."+provider.getName())

java.security. SecurityPerm
i ssion "insertProvider.
{nane}"

java.security. Security
public static void

removeProvi der (String nane)

checkSecurityAccess("remov
eProvider."+name)

java.security. SecurityPerm
i ssion "renoveProvider.
{nane}"

java.security. Security
public static void
set Property(String
key, String datum

checkSecurityAccess("setPro
perty."+key)

java.security. SecurityPerm
i ssion "setProperty.{key}"

1-43

ORACLE

Chapter 1

Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions
|

Method

SecurityManager Method

Permission

java.security. Signer
public PrivateKey
get Privat eKey()

checkSecurityAccess("getSig
nerPrivateKey")

java. security. SecurityPerm
i ssion
"get Si gner Pri vat eKey"

java. security. Si gner
public final void
set KeyPai r (KeyPai r
pair)

checkSecurityAccess("setSig
nerKeypair")

java.security. SecurityPerm
i ssion "setSignerKeypair"

java.sql.Driver Manager
public static
synchroni zed voi d

set LogWiter(PrintWiter
out)

checkPermission

java. sql . SQLPer mi ssi on
"setLog"

java.sqgl . Driver Manager
public static
synchroni zed voi d

setLogStrean(PrintWiter
out)

checkPermission

java. sql . SQLPer mi ssi on
"set Log"

java.util.Local e
public static
synchroni zed voi d

set Defaul t (Local e
newLocal e)

checkPermission

java.util.PropertyPernissi
on "user. | anguage","wite"

java.util.zip.ZipFile
ZipFile(String name)

checkRead

java.io.FilePerm ssion
" { naI'T'E} " , n r ead"

javax. security. auth. Subj ect
public static Subject

get Subj ect (fi nal

AccessControl Cont ext acc)

checkPermission

javax. security.auth. Aut hPe
rmssion "get Subject”

javax. security. auth. Subj ect
public void
set ReadOnl y()

checkPermission

j avax. security. auth. Aut hPe
rmssion "set ReadOnl y"

1-44

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

___|
Method SecurityManager Method Permission

checkPermission j avax. security. aut h. Aut hPe

j avax. security. aut h. Subj ect rmi ssion "doAs

public static Object
doAs(final Subject subject,

final
PrivilegedAction action)

checkPermission j avax. security.auth. Aut hPe

j avax. security. aut h. Subj ect rmi ssion "doAs

public static Object
doAs(final Subject subject,

final
Privil egedExcepti onAction
action)
t hr ows
java.security. PrivilegedAct
i onException

checkPermission j avax. security.auth. Aut hPe

j avax. security. aut h. Subj ect rmission "doAsPrivil eged”

public static Object
doAsPrivil eged(final
Subj ect subj ect,

final
PrivilegedAction action,

final
AccessControl Cont ext acc)

checkPermission javax. security. auth. Aut hPe

javax. security. auth. Subj ect rmission “doAsPrivil eged

public static Object
doAsPrivil eged(final
Subj ect subj ect,

final
Privil egedExceptionAction
action,

final
AccessCont rol Cont ext acc)
t hrows
java.security. Privil egedAct
i onException

ORACLE 1-45

ORACLE

Table 1-6 (Cont.) Methods and the Permissions

Chapter 1

Permissions in the Java Development Kit (JDK)

Method

SecurityManager Method

Permission

j avax. security. aut h. Subj ect
Domai nConbi ner

public Subject
get Subj ect ()

checkPermission

j avax. security. aut h. Aut hPe
rm ssion

"get Subj ect Fr omDomai nConbi
ner"

j avax. security. aut h. Subj ect
Dormai nConbi ner

public Subject
get Subj ect ()

checkPermission

j avax. security.auth. Aut hPe
rni ssion

" get Subj ect Fr omDomai nConbi
ner"

javax.security.auth.login.L
ogi nCont ext
public
Logi nCont ext (String nane)
t hr ows
Logi nExcepti on

checkPermission

j avax. security.auth. Aut hPe
rmssion

"createLogi nCont ext .
{nane}"

javax.security.auth.login.L
ogi nCont ext

public
Logi nCont ext (String nane,

Subj ect subj ect)
t hrows
Logi nExcepti on

checkPermission

javax. security.auth. Aut hPe
rm ssion

"createLogi nCont ext .
{nane}"

javax.security.auth.login.L
ogi nCont ext

public
Logi nCont ext (String narme,

Cal | backHandl er

cal I backHandl er)
t hr ows

Logi nExcepti on

checkPermission

javax. security. auth. Aut hPe
rm ssion

"creat eLogi nCont ext .
{nane}"

1-46

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission
checkPermission j avax. security. aut h. Aut hPe
javax.security.auth.login.L £n153|on .
ogi nCont ext creat eLogi nCont ext .
publ i ¢ {name}
Logi nCont ext (String name,
Subj ect subj ect,
Cal | backHandl er
cal I backHandl er)
t hr ows
Logi nException
checkPermission j avax. security.auth. Aut hPe
rni ssion

javax.security.auth.login.C
onfiguration

public static
Configuration
get Configuration()

"get Logi nConfi gurati on"

checkPermission j avax. security.auth. Aut hPe
rmssion

javax.security.auth.login.C " . . S
set Logi nConfi guration

onfiguration

public static void
set Confi guration(Confi gurat
ion configuration)

checkPermission javax. security.auth. Aut hPe
rm ssion
"refreshLogi nConfiguration

javax.security.auth.login. C
onfiguration

public static void
refresh()

checkPermission javax. security.auth. Aut hPe

javax.security.auth.login.C [”155|0n _ _ _
onfiguration creathoglannflguratlon
public static {type}
Configuration
get I nstance(String
type, SpiParaneter parans)
get I nstance(String
type, SpiParaneter parans,
String provider)
get I nstance(String
type, SpiParaneter parans,
Provider provider)

1-47

Chapter 1
Permissions in the Java Development Kit (JDK)

java.lang.SecurityManager Method Permission Checks

ORACLE

List of permissions that are checked for by the default implementations of the

java.lang. SecurityManager methods.

Each of the specified check methods calls the Securi t yManager checkPer ni ssi on method
with the specified permission, except for the checkConnect and checkRead methods that
take a context argument. Those methods expect the context to be an

AccessCont rol Cont ext and they call the context's checkPer ni ssi on method with the

specified permission.

Table 1-7

java.lang.SecurityManager Methods and Permissions

Method

Permission

public void checkAccept(String host, int port);

java.net.SocketPermission "{host}:{port}",
"accept”;

public void checkAccess(Thread t);

java.lang.RuntimePermission "modifyThread";

public void checkAccess(ThreadGroup g);

java.lang.RuntimePermission
"modifyThreadGroup";

public void checkAwtEventQueueAccess();

Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

java.awt. AWTPermission
"accessEventQueue";

public void checkConnect(String host, int
port);

if (port == -1) java.net.SocketPermission
"{host}","resolve"; else
java.net.SocketPermission "{host}:
{port}","connect";

public void checkConnect(String host, int port,
Object context);

if (port == -1) java.net.SocketPermission
"{host}","resolve"; else
java.net.SocketPermission "{host}:
{port}","connect";

public void checkCreateClassLoader();

java.lang.RuntimePermission
"createClassLoader";

public void checkDelete(String file);

java.io.FilePermission "{file}", "delete";

public void checkExec(String cmd);

if cmd is an absolute path:
java.io.FilePermission "{cmd}", "execute"; else
java.io.FilePermission "<<ALL_FILES>>",
"execute";

public void checkExit(int status);

java.lang.RuntimePermission "exitVM.
{status}";

public void checkLink(String lib);

java.lang.RuntimePermission "loadLibrary.

{lib}";

public void checkListen(int port);

java.net.SocketPermission "localhost:
{port}","listen";

1-48

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-7 (Cont.) java.lang.SecurityManager Methods and Permissions

Method

Permission

public void checkMemberAccess(Class clazz,
int which);

Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

if (which != Menber.PUBLIC) {
if (currentd assLoader() !'=
clazz. get 0 assLoader()) {
checkPer m ssi on(
new
java. | ang. Runti mePer ni ssi on("accessDecl ar
edMerbers"));

}
}

public void checkMulticast(InetAddress
maddr);

java.net.SocketPermission(maddr.getHostAdd
ress(),"accept,connect");

public void checkMulticast(InetAddress maddr,
byte ttl);

Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

java.net.SocketPermission(maddr.getHostAdd
ress(),"accept,connect");

public void checkPackageAccess(String pkg);

java.lang.RuntimePermission
"accessClassInPackage.{pkg}";

public void checkPackageDefinition(String
pkg);

java.lang.RuntimePermission
"defineClassInPackage.{pkg}";

public void checkPrintJobAccess();

java.lang.RuntimePermission "queuePrintJob";

public void checkPropertiesAccess();

java.util.PropertyPermission "*", "read,write";

public void checkPropertyAccess(String key);

java.util.PropertyPermission "{key}",
"read,write";

public void checkRead(FileDescriptor fd);

java.lang.RuntimePermission

public void checkRead(String file);

"readFileDescriptor";

java.io.FilePermission "{file}", "read";

public void checkRead(String file, Object
context);

java.io.FilePermission "{file}", "read";

public void checkSecurityAccess(String
target);

java.security.SecurityPermission "{target}";

public void checkSetFactory();

java.lang.RuntimePermission "setFactory";

1-49

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-7 (Cont.) java.lang.SecurityManager Methods and Permissions

Method Permission
public void checkSystemClipboardAccess(); java.awt. AWTPermission "accessClipboard";
Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

public boolean checkTopLevelWindow(Object | java.awt. AWTPermission
window); "showWindowWithoutWarningBanner";

Note:

This method is deprecated; use instead
public void checkPermission(Permission

perm);

public void checkWrite(FileDescriptor fd); java.lang.RuntimePermission
"writeFileDescriptor";

public void checkWrite(String file); java.io.FilePermission "{file}", "write";

public SecurityManager(); java.lang.RuntimePermission
"createSecurityManager";

Default Policy Implementation and Policy File Syntax

ORACLE

The policy for a Java programming language application environment (specifying
which permissions are available for code from various sources, and executing as
various principals) is represented by a Policy object. More specifically, it is represented
by a Pol i cy subclass providing an implementation of the abstract methods in the

Pol i cy class (which is in the java. security package).

The source location for the policy information utilized by the Policy object is up to the
Policy implementation. The Policy reference implementation obtains its information
from static policy configuration files.

The rest of this document pertains to the Policy reference implementation and the
syntax that must be used in policy files it reads:

e Default Policy Implementation

e Default Policy File Locations

e Modifying the Policy Implementation
e Policy File Syntax

e Policy File Examples

1-50

Chapter 1
Permissions in the Java Development Kit (JDK)

* Property Expansion in Policy Files
* Windows Systems, File Paths, and Property Expansion

* General Expansion in Policy Files

Default Policy Implementation

Compose a policy file with any text editor.

In the Policy reference implementation, the policy can be specified within one or more
policy configuration files. The configuration file(s) specify what permissions are
allowed for code from a specified code source, and executed by a specified principal.
Each configuration file must be encoded in UTF-8.

There is by default a single system-wide policy file, and a single (optional) user policy
file. By default, permissions required by JDK modules that are loaded by the platform
class loader or its ancestors are always granted.

The Policy reference implementation is initialized the first time its get Per m ssi ons
method is called, or whenever its r ef r esh method is called. Initialization involves
parsing the policy configuration file(s) (see Policy File Syntax), and then populating the
Pol i cy object.

Default Policy File Locations

ORACLE

There is by default a single system-wide policy file, and a single (optional) user policy
file. When the Policy is initialized, the system policy is loaded in first, and then the user
policy is added to it. If neither policy is present, a built-in policy is used. This built-in
policy is the same as the j ava. pol i cy file installed with the JRE.

System Policy File Locations
By default, the system policy file is <j ava- hone>/ conf/ security/j ava. policy.

The system policy file is meant to grant system-wide code permissions. The

j ava. pol i cy file installed with the JDK allows anyone to listen on dynamic ports, and
allows any code to read certain "standard" properties that are not security-sensitive,
such as the os. name and fi | e. separat or properties.

User Policy File Location

By default, the user policy file is <user - hone>/ . j ava. pol i cy.

Configure Policy File Location and Format

Policy file locations are specified in the security properties file <j ava- home>/ conf /
security/java. security.

The policy file locations are specified as the values of properties whose names are of
the form

policy.url.n

Here, n is a number. You specify each such property value in a line of the following
form:

policy.url.n=URL

1-51

Chapter 1
Permissions in the Java Development Kit (JDK)

Here, URL is a URL specification. For example, the default system and user policy files
are defined in the security properties file as:

policy.url.1=file: ${java. home}/conf/security/java.policy
policy.url.2=file:${user. hone}/.java.policy

(See Property Expansion for information about specifying property values via a special
syntax, such as specifying the j ava. hone property value via ${j ava. hore}.)

You can actually specify a number of URLs (including ones of the form "http://"), and
all the designated policy files will get loaded. You can also comment out or change the
second one to disable reading the default user policy file.

The algorithm starts at pol i cy. url . 1, and keeps incrementing until it does not find a
URL. Thus if you have policy.url.1 and policy.url.3, and policy.url.3 will never be
read.

Example 1-4 Specifying an Additional Policy File at Runtime

It is also possible to specify an additional or a different policy file when invoking
execution of an application. This can be done via the - j ava. security. pol i cy
command line argument, which sets the value of the j ava. security. pol i cy property.
For example, if you use following command, where soneURL is a URL specifying the
location of a policy file, then the specified policy file will be loaded in addition to all the
policy files that are specified in the security properties file.

java -Dava. security. mnager -Djava.security.policy=soneURL SomeApp

The URL can be any regular URL or simply the name of a policy file in the current
directory, as in:

java -Djava.security. mnager -Djava.security.policy=mypolicy SomeApp

The -Dj ava. security. manager option ensures that the default security manager is
installed, and thus the application is subject to policy checks. It is not required if the
application SoneApp installs a security manager.

If you use the following command (note the double equals) then just the specified
policy file will be used; all the ones indicated in the security properties file will be
ignored.

java -Djava. security. mnager -Djava.security.policy==sonmeURL SoneApp

Note:

The policy file value of the - Dj ava. securi ty. pol i cy option is ignored if the
policy. al | owSyst enProper t yproperty in the security properties file is set to
false. The default is true.

Modifying the Policy Implementation

ORACLE

The Policy reference implementation can be modified by editing the security properties
file, which is the j ava. securi ty file in the conf / securi ty directory of the JDK.

An alternative policy class can be given to replace the Policy reference implementation
class, as long as the former is a subclass of the abstract Policy class and implements
the get Per ni ssi ons method (and other methods as necessary).

1-52

Chapter 1
Permissions in the Java Development Kit (JDK)

One of the types of properties you can set in j ava. security is of the following form:

pol i cy. provi der=Pol i cyd assName

PolicyClassName must specify the fully qualified name of the desired Pol i cy
implementation class.

The default security properties file entry for this property is the following:

policy. provi der=sun. security. provider.PolicyFile

To customize, you can change the property value to specify another class, as in

policy. provi der=com mycom MyPol i cy

Policy File Syntax

Keystore Entry

ORACLE

The policy configuration file(s) for a JDK installation specifies what permissions (which
types of system resource accesses) are granted to code from a specified code source,
and executed as a specified principal.

For an applet (or an application running under a security manager) to be allowed to
perform secured actions (such as reading or writing a file), the applet (or application)
must be granted permission for that particular action. In the Policy reference
implementation, that permission must be granted by a grant entry in a policy
configuration file. See below and the Java Security Architecture Specification for more
information. (The only exception is that code always automatically has permission to
read files from its same (URL) location, and subdirectories of that location; it does not
need explicit permission to do so.)

A policy configuration file essentially contains a list of entries. It may contain a
"keystore" entry, and contains zero or more "grant" entries.

The keytool utility is used to create and administer keystores.

A keystore is a database of private keys and their associated digital certificates such
as X.509 certificate chains authenticating the corresponding public keys. The keytool
utility is used to create and administer keystores. The keystore specified in a policy
configuration file is used to look up the public keys of the signers specified in the grant
entries of the file. A keystore entry must appear in a policy configuration file if any
grant entries specify signer aliases, or if any grant entries specify principal aliases.

At this time, there can be only one keyst or e/keyst or ePasswor dURL entry in the policy file
(other entries following the first one are ignored). This entry can appear anywhere
outside the file's grant entries. It has the following syntax:

keystore "some_keystore_url", "keystore_type", "keystore_provider";
keyst or ePasswor dURL "sonme_password_url";

Here,

1-53

https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html

Grant Entries

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

some_keystore_url
Specify the URL location of the keystore.

some_password_url
Specify the URL location of the keystore password.

keystore_type
Specify the keystore type.

keystore_provider
Specify the keystore provider.

Note:
e The input stream from sone_keyst ore_url is passed to the
KeySt or e. | oad method.

e If NONE is specified as the URL, then a null stream is passed to the
KeySt or e. | oad method. NONE should be specified in the URL if the
KeyStore is not file-based. For example, if it resides on a hardware token
device.

e The URL is relative to the policy file location. If the policy file is specified in
the security properties file as:

policy.url.1=http://foo. exanpl e. conm fum sone. policy

and that policy file has an entry:

keystore ".keystore";

then the keystore will be loaded from:

http://foo. exanpl e. com fun . keystore

» The URL can also be absolute.

A keystore type defines the storage and data format of the keystore information, and
the algorithms used to protect private keys in the keystore and the integrity of the
keystore itself. The default type is a proprietary keystore type named "PKCS12". Thus,
if the keystore type is "PKCS12", it does not need to be specified in the keystore entry.

Grant entry is used to specify which code you want to grant permissions.

Code being executed is always considered to come from a particular "code source"
(represented by an object of type CodeSour ce). The code source includes not only the
location (URL) where the code originated from, but also a reference to the certificate(s)
containing the public key(s) corresponding to the private key(s) used to sign the code.
Certificates in a code source are referenced by symbolic alias names from the user's
keystore. Code is also considered to be executed as a particular principal (represented
by an object of type Pri nci pal), or group of principals.

1-54

Chapter 1
Permissions in the Java Development Kit (JDK)

Each grant entry includes one or more "permission entries" preceded by optional
codeBase, si gnedBy, and principal name/value pairs that specify which code you want to
grant the permissions. The basic format of a grant entry is the following:

grant signedBy "signer_names", codeBase "URL",
principal principal_class_name "principal _name",
principal principal_class_name "principal _name",

pernission perm ssion_class_nane “target_name", "action",
si gnedBy "signer_names";

perni ssion perm ssion_class_nanme “target_name", "action",
si gnedBy "signer_names";

All non-italicized items above must appear as is (although case doesn't matter and
some are optional, as noted below). Italicized items represent variable values.

A grant entry must begin with the word grant .

The SignedBy, Principal, and CodeBase Fields

The si gnedBy, codeBase, and pri nci pal values are optional, and the order of these fields
does not matter.

A si gnedBy value indicates the alias for a certificate stored in the keystore. The public
key within that certificate is used to verify the digital signhature on the code; you grant
the permission(s) to code signed by the private key corresponding to the public key in
the keystore entry specified by the alias.

The si gnedBy value can be a comma-separated list of multiple aliases. An example is
"Adam,Eve,Charles", which means "signed by Adam and Eve and Charles"; the
relationship is AND, not OR. To be more exact, a statement like "Code signed by
Adam" means "Code in a class file contained in a JAR which is signed using the
private key corresponding to the public key certificate in the keystore whose entry is
aliased by Adam".

The si gnedBy field is optional in that, if it is omitted, it signifies "any signer". It doesn't
matter whether the code is signed or not or by whom.

A principal value specifies a cl ass_nane/pri nci pal _nanme pair which must be present
within the executing thread's principal set. The principal set is associated with the
executing code by way of a Subject.

The princi pal _cl ass_nanme may be set to the wildcard value, *, which allows it to match
any Princi pal class. In addition, the pri nci pal _name may also be set to the wildcard
value, *, allowing it to match any Princi pal hame. When setting the

princi pal _cl ass_nane or princi pal _name to *, do not surround the * with quotes. Also, if
you specify a wildcard principal class, you must also specify a wildcard principal name.

The principal field is optional in that, if it is omitted, it signifies "any principals".

KeyStore Alias Replacement

The principal cl ass_nane/ princi pal _nane pair is specified as a single quoted string, it is
treated as a keystore alias.

ORACLE 1-55

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

The keystore is consulted and queried (via the alias) for an X509 Certificate. If one is
found, the principal class_name is automatically treated as

javax. security. aut h. x500. X500Pr i nci pal , and the pri nci pal _nane is automatically
treated as the subject distinguished name from the certificate. If an X509 Certificate
mapping is not found, the entire grant entry is ignored.

A codeBase value indicates the code source location; you grant the permission(s) to
code from that location. An empty codeBase entry signifies "any code"; it doesn't matter
where the code originates from.

Note:

AcodeBase value is a URL and thus should always utilize slashes (never
backslashes) as the directory separator, even when the code source is
actually on a Windows system. Thus, if the source location for code on a
Windows system is actually C: \ somepat h\ api \ , then the policy codeBase
entry should look like:

grant codeBase "file:/C:/sonepath/api/" {

Ik

The exact meaning of a codeBase value depends on the characters at the end. A
codeBase with a trailing "/ " matches all class files (not JAR files) in the specified
directory. A codeBase with a trailing "/ *" matches all files (both class and JAR files)
contained in that directory. A codeBase with a trailing "/-" matches all files (both class
and JAR files) in the directory and recursively all files in subdirectories contained in
that directory. The following table illustrates the different cases:

Table 1-8 KeyStore Alias
|

Codebase URL of Codebase URL in Policy Match?
Downloaded Code

www.example.com/people/ www.example.com/people/ Yes
gong/ gong

www.example.com/people/ www.example.com/people/ Yes
gong/ gong/

www.example.com/people/ www.example.com/people/ Yes
gong/ gong/*

www.example.com/people/ www.example.com/people/ Yes
gong/ gong/-

www.example.com/people/ www.example.com/people/ No
gong/appl.jar gong/

www.example.com/people/ www.example.com/people/ Yes
gong/appl.jar gong/-

www.example.com/people/ www.example.com/people/ Yes
gong/appl.jar gong/*

www.example.com/people/ www.example.com/people/- Yes

gong/appl.jar

1-56

Chapter 1
Permissions in the Java Development Kit (JDK)

Table 1-8 (Cont.) KeyStore Alias

Codebase URL of Codebase URL in Policy Match?
Downloaded Code

www.example.com/people/ www.example.com/people/* No
gong/appl.jar

www.example.com/people/ www.example.com/people/- Yes
gong/

www.example.com/people/ www.example.com/people/* No
gong/

The Permission Entries

A permission entry is specified in the order (per i ssi on, permission_class_name,

"target_name", "action", and si gnedBy "signer_names

A permission entry must begin with the word per ni ssi on. The word
permi ssi on_cl ass_nane in the template above would actually be a specific permission
type, such as java.io. Fi | ePerni ssion Or j ava. | ang. Runti nePer ni ssi on.

The "action" is required for many permission types, such as j ava.io. Fi | ePerni ssi on
(where it specifies what type of file access is permitted). It is not required for
categories such as j ava. | ang. Runt i nePer i ssi on where it is not necessary, you either
have the permission specified by the "t ar get _nane" value following the
permission_class_name or you don't.

The si gnedBy name/value pair for a permission entry is optional. If present, it indicates
a signed permission. That is, the permission class itself must be signed by the given
alias(es) in order for the permission to be granted. For example, suppose you have the
following grant entry:

grant {
permission Foo "foobar", signedBy "FooSoft";

b

Then this permission of type Foo is granted if the Foo. cl ass permission was placed in a
JAR file and the JAR file was signed by the private key corresponding to the public key
in the certificate specified by the "FooSoft" alias, or if Foo. cl ass is a system class,
since system classes are not subject to policy restrictions.

Items that appear in a permission entry must appear in the specified order (per ni ssi on,
permission_class_name, "target_name", "action", and si gnedBy "signer_names"). An
entry is terminated with a semicolon.

Case is unimportant for the identifiers (per ni ssi on, si gnedBy, codeBase, etc.) but is
significant for the permission_class_name or for any string that is passed in as a
value.

File Path Specifications on Windows Systems

The file path specifications on Windows systems should include two backslashes for
each actual single backslash.

ORACLE 1-57

Chapter 1
Permissions in the Java Development Kit (JDK)

Note:

When you are specifying a j ava. i o. Fi | ePer ni ssi on, the "target _name" is a file
path. On Windows systems, whenever you directly specify a file path in a
string (but not in a codeBase URL), you need to include two backslashes for
each actual single backslash in the path, as in

grant {
permission java.io.FilePernmssion "C\\users\\cathy\\foo.bat", "read";

b

The reason this is necessary is because the strings are processed by a tokenizer
(java.io. StreanfTokeni zer), which allows “\" to be used as an escape string (for
example, "\n” to indicate a new line) and which thus requires two backslashes to
indicate a single backslash. After the tokenizer has processed the above file path
string, converting double backslashes to single backslashes, the end result is

"C:\users\cathy\foo. bat"

Policy File Examples

ORACLE

Examples of policy configuration files, with different configuration of the codeBase and
si gnedBy values. Examples of grant statements with different principal based entry and
KeyStore values.

Example 1-5 Sample Policy Configuration File

An example of two entries in a policy configuration file is as follows:

/1 1f the code is signed by "Duke", grant it read/wite access to all
Il files in /tnp:
grant signedBy "Duke" {
permission java.io.FilePermission "/tnp/*", "read,wite";
b

I/ Grant everyone the follow ng permssion:
grant {

permssion java.util.PropertyPerm ssion "java.vendor", "read";
b

Example 1-6 Sample Policy Configuration File

The following code specifies that only code that satisfies the following conditions can
call methods in the Security class to add or remove providers or to set Security
Properties:

* The code was loaded from a signed JAR file that is in the "/ hone/ sysadni n/ "
directory on the local file system.

* The signature can be verified using the public key referenced by the alias name
"sysadni n" in the keystore.

1-58

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

grant signedBy "sysadmin", codeBase "file:/hone/sysadnin/*" {
permission java.security. SecurityPerm ssion "Security.insertProvider.*";
permission java.security. SecurityPerm ssion "Security.renmoveProvider.*";
permission java.security. SecurityPerm ssion "Security.setProperty.*";

b
Example 1-7 Sample Where codeBase is Missing

Either component of the code source (or both) may be missing. An example where
codeBase is missing :

grant signedBy "sysadmin" {
perm ssion java.security. SecurityPerm ssion "Security.insertProvider.*";
perm ssion java.security. SecurityPerm ssion "Security.renmoveProvider.*";

b

If this policy is in effect, code that comes in a JAR File signed by "sysadni n" can add/
remove providers, regardless of where the JAR File originated from.

Example 1-8 Sample Without sighedBy

grant codeBase "file:/hone/sysadmin/-" {
perm ssion java.security.SecurityPerm ssion "Security.insertProvider.*";
perm ssion java.security.SecurityPerm ssion "Security.removeProvider.*";

1

In this case, code that comes from anywhere beneath the "/ home/ sysadni n/ " directory
on the local filesystem can add/remove providers. The code does not need to be
signed.

Example 1-9 Sample Without codeBase or sighedBy

grant {
perm ssion java.security.SecurityPernission "Security.insertProvider.*";
perm ssion java.security.SecurityPernission "Security.removeProvider.*";

b

Here, with both code source components missing, any code (regardless of where it
originated from, or whether or not it is signed, or who signed it) can add/remove
providers.

Example 1-10 Sample Executing As X500Principal

grant principal javax.security.auth.x500.X500Principal "cn=Alice" {
permission java.io.FilePermssion "/home/Alice", "read, wite";

b

This permits any code executing as the X500Principal, "cn=Al i ce", permission to read
and write to "/ home/ Ali ce”.

Example 1-11 Sample Executing As X500Principal Without a Distinguished
Name

grant principal javax.security.auth.x500.X500Principal * {
permission java.io.FilePermssion "/tnp", "read, wite";

b

1-59

Chapter 1
Permissions in the Java Development Kit (JDK)

This permits any code executing as an X500Principal (regardless of the distinguished
name), permission to read and write to "/ t np”.

Example 1-12 Grant Statement With CodeBase and X500Principal Information

grant codebase "http://ww. games. exanpl e. cont',
si gnedBy "Duke",
principal javax.security.auth.x500. X500Principal "cn=Alice" {
permission java.io.FilePermssion "/tnp/ganes", "read, wite";

b

This allows code downloaded from "wwv. ganes. exanpl e. conl’, signed by "Duke", and
executed by "cn=Al i ce", permission to read and write into the "/ t np/ ganes" directory.

Example 1-13 Grant Statement With KeyStore Alias

keystore "http://foo.exanpl e. com bl ah/. keystore";
grant principal "alice" {
perm ssion java.io.FilePermssion "/tnp/ganes", "read, wite";

h

"al i ce” will be replaced by

javax. security. aut h. x500. X500Pri nci pal "cn=Alice"

assuming the X.509 certificate associated with the keystore alias, al i ce , has a subject
distinguished name of "cn=Al i ce". This allows code executed by the X500Principal
"cn=Al i ce" permission to read and write into the "/ t np/ ganes" directory.

Property Expansion in Policy Files

Property expansion is possible in policy files and in the security properties file.
Property expansion is similar to expanding variables in a shell. That is, when a string
like

${sone. property}

appears in a policy file, or in the security properties file, it will be expanded to the value
of the system property. For example,

permission java.io.FilePermssion "${user.hone}", "read";

will expand "${ user . hone} " to use the value of the "user.home" system property. If that
property's value is "/ hone/ cat hy", then the above is equivalent to

permssion java.io.FilePermssion "/hone/cathy", "read";

In order to assist in platform-independent policy files, you can also use the special
notation of "${/}", which is a shortcut for ${fi | e. separat or}". This allows things like

pernission java.io.FilePermssion "${user.home}${/}*", "read";

ORACLE 1-60

ORACLE

Chapter 1
Permissions in the Java Development Kit (JDK)

If the value of the "user. home " property is / home/ cat hy, and you are on Solaris, Linux,
or macOS, the above gets converted to:

permission java.io.FilePermssion "/hone/cathy/*", "read";

If on the other hand the "user. hone" value is C:\ user s\ cat hy and you are on a Windows
system, the above gets converted to:

permssion java.io.FilePermssion "C\users\cathy*", "read";

Also, as a special case, if you expand a property in a codebase, such as

grant codeBase "file:${java. hone}/lib/ext/"

then any file.separator characters will be automatically converted to / 's. Thus on a
Windows system, the above would get converted to

grant codeBase "file:C/jdk1.4/1ib/ext/"

even if "j ava. hone" is set to C:\j dk1. 4\ Thus you don't need to use ${/} in codebase
strings (and you shouldn't). Property expansion takes place anywhere a double quoted
string is allowed in the policy file. This includes the "signer_names"”, "URL",
"target_name", and "action” fields. Whether or not property expansion is allowed is
controlled by the value of the "pol i cy. expandPr operti es" property in the security
properties file. If the value of this property is true (the default), expansion is allowed.

Note:

You can't use nested properties; they will not work. For example,

"${user. ${foo}}"

doesn't work, even if the "f 00" property is set to "hone". The reason is the
property parser doesn't recognize nested properties; it simply looks for the first
"${", and then keeps looking until it finds the first "} " and tries to interpret the
result (in this case, "${user. $f oo} ") as a property, but fails if there is no such

property.

1-61

Chapter 1
Permissions in the Java Development Kit (JDK)

Note:

If a property can't be expanded in a grant entry, permission entry, or keystore
entry, that entry is ignored. For example, if the system property "f 00" is not
defined and you have:

grant codeBase "${foo}" {
permssion ...;
permssion ...;

Ik

then all the permissions in this grant entry are ignored. If you have

grant {
perni ssion Foo "${foo}";
permi ssion Bar "barTarget";

it

then only the "perni ssi on Foo. .. " entry is ignored. And finally, if you have

keystore "${foo}";

then the keystore entry is ignored.

Windows Systems, File Paths, and Property Expansion

The file path specifications on Windows systems should include two backslashes for
each actual single backslash.

In Windows systems, when you directly specify a file path in a string (but not in a
codeBase URL), you need to include two backslashes for each actual single backslash
in the path, as in

grant {
permission java.io.FilePermssion "C\\users\\cathy\\foo.bat", "read";
¥

This is because the strings are processed by a tokenizer (j ava. i 0. St reanifokeni zer),
which allows "\ " to be used as an escape string (e.g., "\ n" to indicate a new line) and
which thus requires two backslashes to indicate a single backslash. After the tokenizer
has processed the above file path string, converting double backslashes to single
backslashes, the end result is

"C:\users\cathy\foo. bat"

Expansion of a property in a string takes place after the tokenizer has processed the
string. Thus if you have the string

"${user. home}\\foo. bat"

ORACLE 1-62

Chapter 1
Permissions in the Java Development Kit (JDK)

then first the tokenizer processes the string, converting the double backslashes to a
single backslash, and the result is

"${user. home}\f oo. bat "

Then the ${user. hone} property is expanded and the end result is

"C:\users\cathy\foo. bat"

assuming the "user . hone" value is C:\ user s\ cat hy. Of course, for platform
independence, it would be better if the string was initially specified without any explicit
slashes, i.e., using the ${/} property instead, as in

"${user. home} ${/}f 0o. bat "

Path-Name Canonicalization

ORACLE

A canonical path is a path that doesn’t contain any links or shortcuts. Performing
pathname canonicalization in Fi | ePer ni ssi on object can negatively affect performance.

Before JDK 9, path names were canonicalized when two Fi | ePer ni ssi on objects were
compared. This allowed a program to access a file using a different name than the
name that was granted to a Fi | ePer i ssi on object in a policy file, as long as the object
pointed to the same file. Because the canonicalization had to access the underlying
file system, it could be quite slow.

In JDK 9, path-name canonicalization is disabled by default. This means two

Fi | ePer i ssi on objects aren’t equal to each other if one uses an absolute path and the
other uses a relative path, or one uses a symbolic link and the other uses a target, or
one uses a Windows long name and the other uses a DOS-style 8.3 name. This is true
even if they all point to the same file in the file system.

Therefore, if a pathname is granted to a Fi | ePer ni ssi on object in a policy file, then the
program should also access that file using the same path-name style. For example, if
the path name in the policy file is using a symbolic link, then the program should also
use that symbolic link. Accessing the file with the target path name will fail the
permission check.

Compatibility Layer

A compatibility layer has been added to ensure that granting a Fi | ePer i ssi on object
for a relative path will permit applications to access the file with an absolute path (and
conversly). This works for the default Policy provider and the Limited doPri vi | eged
calls.

For example, a Fi | ePer ni ssi on object on a file with a relative path name of "a" no
longer implies a Fi | ePer ni ssi on object on the same file with an absolute path name as
"/ pwd/ a" ("pwd" is the current working directory). Granting code a Fi | ePer ni ssi on
object to read "a" allows that code to also read "/ pwd/ a* when a Security Manager is
enabled.

The compatibility layer doesn’t cover translations between symbolic links and targets,
or Windows long names and DOS-style 8.3 names, or any other different name forms
that can be canonicalized to the same name.

1-63

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-

ORACLE

Customizing Path-Name Canonicalization

Chapter 1

Permissions in the Java Development Kit (JDK)

The system properties in Table 1-9 can be used to customize the Fi | ePer ni ssi on path-
name canonicalization. See How to Specify a java.lang.System Property.

Table 1-9 System Properties to Customize Pathname Canonicalization

System Property Default Value

Description

j dk.io0.perm ssionsUseCanon false
i cal Path

The system property can be
used to enable or disable
pathname canonicalization in
the Fi | ePer ni ssi on object.

e To disable
Fi | ePer mi ssi on path-
name canonicalization,
set
j dk.io.perm ssionsUseC
anoni cal Pat h=f al se.

e Toenable
Fi | ePer m ssi on path-
name canonicalization,
set
j dk.io. perm ssionsUseC
anoni cal Pat h=t r ue.

jdk.security.filePernConmpa false
t

The system property can be
used to extend the
compatibility layer to support
third-party Policy
implementations.

* Todisable the system
property, set
jdk.security.filePernC
onpat =f al se.

The Fi | ePerni ssi on for a
relative path will permit
applications to access the
file with an absolute path
for the default Policy
provider and the Limited
doPri vi | eged method.

e Toextend the
compatibility layer to
support third-party Policy
implementations, set
jdk.security.filePernC
onpat =t r ue.

The Fi | ePer ni ssi on for a
relative path will permit
applications to access the
file with an absolute path
for the default Policy
provider, the Limited

doPri vi | eged method,
and for third-party Policy
implementations.

1-64

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-

Chapter 1
Permissions in the Java Development Kit (JDK)

General Expansion in Policy Files

ORACLE

The policy files can be expanded using two protocols sel f and al i as forms of
expansion in the policy files.

${{protocol : protocol _data}}

If such a string occurs in a permission name, then the value in protocol determines the
exact type of expansion that should occur, and protocol_data may be empty, in which
case the above string should simply take the form:

${{protocol }}

There are two protocols supported in the default policy file implementation:

1.

${{sel f}}

The protocol, sel f, denotes a replacement of the entire string, ${{sel f}}, with one
or more principal class/name pairs. The exact replacement performed depends
upon the contents of the grant clause to which the permission belongs.

If the grant clause does not contain any principal information, the permission will
be ignored (permissions containing ${{sel f}} in their target names are only valid in
the context of a principal-based grant clause). For example, Bar Per ni ssi on will
always be ignored in the following grant clause:

grant codebase "wwv. exanpl e. conf, signedby "duke" {
permssion BarPermssion "... ${{self}} ...";

b

If the grant clause contains principal information, ${{sel f}} will be replaced with
that same principal information. For example, ${{sel f}} in Bar Per ni ssi on will be

replaced with j avax. security. auth. x500. X500Pri nci pal "cn=Duke" in the following
grant clause:

grant principal javax.security.auth.x500.X500Principal "cn=Duke" {
permssion BarPermssion "... ${{self}} ...";

b

If there is a comma-separated list of principals in the grant clause, then ${{sel f}}
will be replaced by the same comma-separated list or principals. In the case where
both the principal class and name are wildcarded in the grant clause, ${{sel f}} is
replaced with all the principals associated with the Subj ect in the current
AccessCont r ol Cont ext .

The following example describes a scenario involving both sel f and KeyStore
Alias Replacement together:

keystore "http://foo.exanpl e. con bl ah/. keyst ore";
grant principal "duke" {

permssion BarPermssion "... ${{self}} ...";

b

1-65

Chapter 1
Permissions in the Java Development Kit (JDK)

In the above example, "duke" will first be expanded into

javax. security. aut h. x500. X500Pri nci pal "cn=Duke" assuming the X.509 certificate
associated with the KeySt or e alias, "duke", has a subject distinguished name of
"cn=Duke". Next, ${{sel f}} will be replaced with the same principal information that
was just expanded in the grant clause: j avax. security. aut h. x500. X500Pr i nci pal
"cn=Duke".

2. ${{alias:alias_nane}}
The protocol, al i as, denotes a java.security.KeyStore alias substitution. The
KeySt or e used is the one specified in the Keystore Entry. alias_name represents
an alias into the KeyStore. ${{al i as: al i as_nane}} is replaced with
javax. security. aut h. x500. X500Pri nci pal "DN', where DN represents the subject
distinguished name of the certificate belonging to alias_name. For example:

keystore "http://foo.exanpl e.con bl ah/. keystore";

grant codebase "wwv. exanpl e. cont {
perm ssion BarPermission "... ${{alias:duke}} ...";

b

In the above example the X.509 certificate associated with the alias, duke, is
retrieved from the KeySt or e, foo.example.com/blah/.keystore. Assuming duke's
certificate specifies "o=dukeOrg, cn=duke" as the subject distinguished name, then $
{{alias: duke}} is replaced with j avax. security. aut h. x500. X500Pr i nci pal
"0=dukeCrg, cn=duke".

The permission entry is ignored under the following error conditions:

* The keystore entry is unspecified
* The alias_name is not provided
e The certificate for alias_name can not be retrieved

e The certificate retrieved is not an X.509 certificate

API for Privileged Blocks

Background information about what privileged code is and what it is used for, followed
by illustrations of the use of the API. It covers the following topics:

Using the doPrivileged API
What It Means to Have Privileged Code

Reflection

Using the doPrivileged API

ORACLE

Description of the doPrivileged APl and the use of the privileged feature.
No Return Value, No Exception Thrown

Accessing Local Variables

Handling Exceptions

Asserting a Subset of Privileges

Least Privilege

1-66

Chapter 1
Permissions in the Java Development Kit (JDK)

More Privilege

No Return Value, No Exception Thrown

ORACLE

If you do not need to return a value from within the privileged block, your call to
doPrivi | eged can look like Example 1-14.

Note that the invocation of doPri vi | eged with a lambda expression explicitly casts the
lambda expression as of type Pri vi | egedAct i on<Voi d>. Another version of the method
doPrivi | eged exists that takes an object of type Pri vi | egedExcepti onActi on; see
Handling Exceptions.

Privil egedAction is a functional interface with a single abstract method, named run,
that returns a value of type specified by its type parameter.

Note that this example ignores the return value of the run method. Also, depending on
what privileged code actually consists of, you might have to make some changes due
to the way inner classes work. For example, if privileged code throws an exception or
attempts to access local variables, then you will have to make some changes, which is
described later.

Be very careful in your use of the privileged construct, and always remember to make
the privileged code section as small as possible. That is, try to limit the code within the
run method to only what needs to be run with privileges, and do more general things
outside the run method. Also note that the call to doPri vi | eged should be made in the
code that wants to enable its privileges. Do not be tempted to write a utility class that
itself calls doPri vi | eged as that could lead to security holes. You can write utility
classes for Pri vi | egedActi on classes though, as shown in the preceding example. See
Guideline 9-3: Safely invoke j ava. security. AccessControl | er. doPrivil eged in Secure
Coding Guidelines for the Java Programming Language.

Example 1-14 Sample Code for Privileged Block

* In aclass that implements the interface Pri vi | egedActi on.
* In an anonymous class.

* In alambda expression.

inport java.security.*;

public class NoReturnNoException {

class MyAction inplements PrivilegedAction<Void> {
public Void run() {
/1 Privileged code goes here, for exanple:
System | oadLi brary("awt");
return null; // nothing to return

}
public void somenethod() {
MyAction mya = new MyAction();

/1 Becone privil eged:
AccessControl | er. doPrivil eged(nya);

/1 Anonynmous cl ass
AccessControl | er. doPrivileged(new Privil egedActi on<Voi d>() {

1-67

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedAction-
https://docs.oracle.com/javase/9/docs/api/java/security/PrivilegedExceptionAction.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#9
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://docs.oracle.com/javase/9/docs/api/java/security/PrivilegedAction.html

Chapter 1
Permissions in the Java Development Kit (JDK)

public Void run() {
[l Privileged code goes here, for exanple:
System | oadLi brary("awt");
return null; // nothing to return

}
1

/1 Lanbda expression
AccessControl | er. doPrivileged((PrivilegedAction<Voi d>)
() ->{
/1 Privileged code goes here, for exanple:
System | oadLi brary("awt");
return null; // nothing to return

}

public static void main(String... args) {
NoRet ur nNoExcepti on nyApplication = new NoRet urnNoException();
myAppl i cati on. sonenet hod() ;

}

Returning Values

Sample code to return a value.
If you need to return a value, then you can do something like the following:

System out. println(
AccessControl | er. doPrivileged((PrivilegedAction<String>)
() -> System getProperty("user.nanme")

)
)s

Accessing Local Variables

If you are using a lambda expression or anonymous inner class, then any local
variables you access must be final or effectively final.

For example:

String lib = "awmt";
AccessControl | er. doPrivileged((PrivilegedAction<Voi d>)
() ->{
System | oadLi brary(lib);
return null; // nothing to return
}
)

AccessControl | er. doPrivileged(new PrivilegedAction<Voi d>() {
public Object run() {
System | oadLi brary(lib);
return null; // nothing to return

}
1

The variable i b is effectively final because its value has not been modified. For
example, suppose you add the following assignment statement after the declaration of
the variable l'i b:

ORACLE 1-68

Chapter 1
Permissions in the Java Development Kit (JDK)

lib = "swng";

The compiler generates the following errors when it encounters the invocation
System | oadLi brary both in the lambda expression and the anonymous class:

e error: local variables referenced froma |anbda expression nust be final or
effectively final

e error: local variables referenced froman inner class nmust be final or
effectively final

See Accessing Members of an Enclosing Class in Local Classes for more information.

If there are cases where you cannot make an existing variable effectively final
(because it gets set multiple times), then you can create a new final variable right
before invoking the doPri vi | eged method, and set that variable equal to the other
variable. For example:

String lib;

/1 The lib variable gets set nmultiple times so you can't make it
Il effectively final.

/] Create a final String that you can use inside of the run nethod
final String fLib = lib;

AccessControl I er. doPrivileged((PrivilegedAction<Voi d>)

0 ->{
System | oadLi brary(fLib);
return null; // nothing to return

K

Handling Exceptions

ORACLE

If the action performed in your run method could throw a checked exception (one that
must be listed in the t hrows clause of a method), then you need to use the
Privil egedExcepti onActi on interface instead of the Privi | egedActi on interface.

Example 1-15 Sample for Handling Exceptions

If a checked exception is thrown during execution of the run method, then it is placed
in a Privil egedAct i onExcepti on wrapper exception that is then thrown and should be
caught by your code, as illustrated in the following example:

public void processSomefile() throws |OException {

try {
Path path = Fil eSystens. get Defaul t().getPath("sonmefile");

Buf f eredReader br = AccessController.doPrivileged(
(PrivilegedExceptionAction<Buff er edReader >)
() -> Files.newBufferedReader (pat h)
)
/1 ... read fromfile and do sonethi ng
} catch (PrivilegedActionException e) {

/1 e.getException() should be an instance of |COException
/1 as only checked exceptions will be wapped in a

/1 PrivilegedActionException.

throw (1 OException) e.getException();

1-69

http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html#accessing-members-of-an-enclosing-class
http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html

Chapter 1
Permissions in the Java Development Kit (JDK)

}

Asserting a Subset of Privileges

Least Privilege

ORACLE

Variant of the doPri vi | eged has three parameters, one of which you use to specify the
subset of privileges.

As of JDK 8, a variant of doPri vi | eged is available that enables code to assert a subset
of its privileges, without preventing the full traversal of the stack to check for other
permissions. This variant of the doPri vi | eged variant has three parameters, one of
which you use to specify this subset of privileges. For example, the following excerpt
asserts a privilege to retrieve system properties:

/'l Returns the value of the specified property. Al code
/1l is allowed to read the app.version and app.vendor
/'l properties.

public String getProperty(final String prop) {
return AccessControl | er. doPrivileged(
(PrivilegedAction<String>) () -> System getProperty(prop),
null,
new java. util.PropertyPerm ssion("app.version", "read"),
new java. util.PropertyPerm ssion("app.vendor", "read")

)
}

The first parameter of this version of doPri vi | eged is of type

java.security. Privil egedAction. In this example, the first parameter is a lambda
expression that implements the functional interface Pri vi | egedAct i on whose run
method returns the value of the system property specified by the parameter prop.

The second parameter of this version of doPri vi | eged is of type AccessCont rol Cont ext .
Sometimes you need to perform an additional security check within a different context,
such as a worker thread. You can obtain an AccessCont rol Cont ext instance from a
particular calling context with the method AccessCont r ol Cont ext . get Cont ext . If you
specify nul | for this parameter (as in this example), then the invocation of doPri vi | eged
does not perform any additional security checks.

The third parameter of this version of doPri vi | eged is of type Perni ssion. .., which is a
varargs parameter. This means that you can specify one or more Per i ssi on
parameters or an array of Perni ssi on objects, as in Perni ssion[] . In this example, the
invocation of doPri vi | eged can retrieve the properties app. ver si on and app. vendor .

You can use this three parameter variant of doPri vi | eged in a mode of least privilege or
a mode of more privilege.

The typical use case of the doPri vi | eged method is to enable the method that invokes
it to perform one or more actions that require permission checks without requiring the
callers of the current method to have all the necessary permissions.

For example, the current method might need to open a file or make a network request
for its own internal implementation purposes.

Before JDK 8, calls to doPri vi | eged methods had only two parameters. They worked
by granting temporary privileges to the calling method and stopping the normal full
traversal of the stack for access checking when it reached that class, rather than

1-70

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedAction-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessControlContext.html
https://download.java.net/java/jdk9/docs/api/java/security/Permission.html

More Privilege

Chapter 1
Permissions in the Java Development Kit (JDK)

continuing up the call stack where it might reach a method whose defining class does
not have the required permission. Typically, the class that is calling doPri vi | eged might
have additional permissions that are not required in that code path and which might
also be missing from some caller classes.

Normally, these extra permissions are not exercised at runtime. Not elevating them
through use of doPri vi | eged helps to block exploitation of any incorrect code that could
perform unintended actions. This is especially true when the Pri vi | egedActi on is more
complex than usual, or when it calls code outside the class or package boundary that
might evolve independently over time.

The three-parameter variant of doPri vi | eged is generally safer to use because it avoids
unnecessarily elevating permissions that are not intended to be required. However, it
executes less efficiently so simple or performance-critical code paths might choose not
to use it.

When coding the current method, you want to temporarily extend the permission of the
calling method to perform an action.

For example, a framework I/O API might have a general purpose method for opening
files of a particular data format. This API would take a normal file path parameter and
use it to open an underlying Fi | el nput St r eamusing the calling code's permissions.
However, this might also allow any caller to open the data files in a special directory
that contains some standard demonstration samples.

The callers of this API could be directly granted a Fi | ePer ni ssi on for read access.
However, it might not be convenient or possible for the security policy of the calling
code to be updated. For example, the calling code could be a sandboxed applet.

One way to implement this is for the code to check the incoming path and determine if
it refers to a file in the special directory. If it does, then it would call doPri vi | eged,
enabling all permissions, then open the file inside the Pri vi | egedActi on. If the file was
not in the special directory, the code would open the file without using doPri vi | eged.

This technique requires the implementation to carefully handle the requested file path
to determine if it refers to the special shared directory. The file path must be
canonicalized before calling doPri vi | eged so that any relative path will be processed
(and permission to read the user. di r system property will be checked) prior to
determining if the path refers to a file in the special directory. It must also prevent
malicious "../" path elements meant to escape out of the special directory.

A simpler and better implementation would use the variant of doPri vi | eged with the
third parameter. It would pass a Fi | ePer ni ssi on with read access to the special
directory as the third parameter. Then any manipulation of the file would be inside the
Privi |l egedActi on. This implementation is simpler and much less prone to contain a
security flaw.

What It Means to Have Privileged Code

ORACLE

Marking code as privileged enables a piece of trusted code to temporarily enable
access to more resources than are available directly to the code that called it.

The policy for a JDK installation specifies what permissions which types of system
resource accesses — are allowed for code from specified code sources. A code
source (of type CodeSour ce) essentially consists of the code location (URL) and a

1-71

https://docs.oracle.com/javase/9/docs/api/java/security/CodeSource.html

Chapter 1
Permissions in the Java Development Kit (JDK)

reference to the certificates containing the public keys corresponding to the private
keys used to sign the code (if it was signed).

The policy is represented by a Pol i cy object. More specifically, it is represented by a
Pol i cy subclass providing an implementation of the abstract methods in the Pol i cy
class (which is in the j ava. security package).

The source location for the policy information used by the Pol i cy object depends on
the Pol i cy implementation. The Pol i cy reference implementation obtains its
information from policy configuration files. See Default Policy Implementation and
Policy File Syntax for information about the Pol i cy reference implementation and the
syntax that must be used in policy files it reads. For information about using the Policy
Tool to create a policy file (without needing to know the required syntax), see Policy
Tool .

A protection domain encompasses a CodeSour ce instance and the permissions granted
to code from that CodeSour ce, as determined by the security policy currently in effect.
Thus, classes signed by the same keys and from the same URL are typically placed in
the same domain, and a class belongs to one and only one protection domain.
(However, classes signed by the same keys and from the same URL but loaded by
separate class loader instances are typically placed in separate domains.) Classes
that have the same permissions but are from different code sources belong to different
domains.

Currently, all classes shipped with the JDK are loaded with all permissions (this may
change in future releases). Most of these classes are placed in a unique system
domain. In addition, the extension class loader loads code from JAR files contained in
the <j ava_home>/jre/lib/ext directory into separate domains (because the code in
these JAR files have unique URLS), but these domains are separate from the unique
system domain reserved for classes shipped with the JDK.

Each applet or application runs in its appropriate domain, determined by its code
source. For an applet (or an application running under a security manager) to be
allowed to perform a secured action (such as reading or writing a file), the applet or
application must be granted permission for that particular action.

More specifically, whenever a resource access is attempted, all code traversed by the
execution thread up to that point must have permission for that resource access,
unless some code on the thread has been marked as privileged. That is, suppose
that access control checking occurs in a thread of execution that has a chain of
multiple callers. (Think of this as multiple method calls that potentially cross the
protection domain boundaries.) When the AccessControl | er.checkPer ni ssi on method is
invoked by the most recent caller, the basic algorithm for deciding whether to allow or
deny the requested access is as follows: If the code for any caller in the call chain
does not have the requested permission, then an AccessCont rol Excepti on is thrown,
unless the following is true: a caller whose code is granted the said permission has
been marked as privileged, and all parties subsequently called by this caller (directly or
indirectly) have the said permission.

ORACLE 1-72

https://docs.oracle.com/javase/9/docs/api/java/security/Policy.html
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#checkPermission-java.security.Permission-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessControlException.html

Reflection

Chapter 1
Troubleshooting Security

Note:

The method AccessControl | er. checkPer ni ssi on is normally invoked indirectly
through invocations of specific Securi t yManager methods that begin with the
word check such as checkConnect or through the method

Securi t yManager . checkPer ni ssi on. Normally, these checks only occur if a
Securit yManager has been installed; code checked by the

AccessControl | er. checkPer ni ssi on method first checks if the method

Syst em get Securi t yManager returns null.

Marking code as privileged enables a piece of trusted code to temporarily enable
access to more resources than are available directly to the code that called it. This is
necessary in some situations. For example, an application might not be allowed direct
access to files that contain fonts, but the system utility to display a document must
obtain those fonts, on behalf of the user. The system utility must become privileged in
order to obtain the fonts.

doPrivi | eged method can be invoked reflectively using
java.lang.reflect. Method. i nvoke.

One subtlety that must be considered is the interaction of this API with reflection. The
doPrivi | eged method can be invoked reflectively using

java.lang.reflect. Method. i nvoke. In this case, the privileges granted in privileged
mode are not those of Met hod. i nvoke but of the non-reflective code that invoked it.
Otherwise, system privileges could erroneously (or maliciously) be conferred on user
code. Note that similar requirements exist when using reflection in the existing API.

Troubleshooting Security

ORACLE

To monitor security access, you can set the j ava. securi ty. debug system property,
which determines what trace messages are printed during execution.

To see a list of all debugging options, use the hel p setting:

java -Dava. security. debug=hel p

Note:
To use more than one option, separate options with a comma.

JSSE also provides dynamic debug tracing support for SSL/TLS/DTLS
troubleshooting. See Debugging Utilities.

The following table lists j ava. securi ty. debug options and links to further information
about each option:

1-73

https://docs.oracle.com/javase/9/docs/api/java/lang/reflect/Method.html#invoke-java.lang.Object-java.lang.Object...-

Table 1-10

java. security. debug Options

Chapter 1
Troubleshooting Security

Option

Description

Further Information

all

Turn on all the debugging options

None

access

Print all results from the
AccessControl | er. checkPerm ssio
n method.

You can use the following options
with the access option:

1. stack: Include stack trace

2. domai n: Dump all domains in
context

3. failure: Before throwing

exception, dump stack and
domain that do not have
permission

You can use the following options
with the st ack and donai n options:

1. pernission=<cl assnane>: Only
dump output if specified
permission is being checked

2. codebase=<URL>: Only dump

output if specified codebase is
being checked

Permissions in the Java
Development Kit (JDK)

certpath

Turns on debugging for the PKIX
Cert Pat hVal i dat or and

Cer t Pat hBui | der implementations.
Use the ocsp option with the

cert pat h option for OCSP protocol
tracing. A hexadecimal dump of the
OCSP request and response bytes is
displayed.

PKI Programmers Guide Overview

conbi ner

Subj ect Donmai nConbi ner debugging

Permissions in the Java
Development Kit (JDK)

configfile

JAAS (Java Authentication and
Authorization Service) configuration
file loading

Java Authentication and
Authorization Service (JAAS)
Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

confi gpar ser

JAAS configuration file parsing

Java Authentication and
Authorization Service (JAAS)
Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

ORACLE

1-74

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#checkPermission-java.security.Permission-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#checkPermission-java.security.Permission-
https://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPathValidator.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPathBuilder.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/SubjectDomainCombiner.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html

ORACLE

Table 1-10 (Cont.) j ava. security. debug Options

Chapter 1
Troubleshooting Security

Option

Description

Further Information

gssl oginconfig

Java GSS (Generic Security
Services) login configuration file
debugging

Java Generic Security Services:
(Java GSS) and Kerberos

JAAS and Java GSS-API Tutorial

javax. security.auth.login. Confi
gurati on: A Configuration object is
responsible for specifying which

j avax. net. ssl . SSLEngi ne should be
used for a particular application, and
in what order the Logi nMbdul es
should be invoked.

JAAS Login Configuration File

Advanced Security Programming in
Java SE Authentication, Secure
Communication and Single Sign-On

jar

JAR file verification

Verifying Signed JAR Files from The
Java Tutorials

jca JCA engine class debugging Engine Classes and Algorithms
keystore Keystore debugging Keystores
KeySt ore

| ogi ncont ext

Logi nCont ext results

Java Authentication and
Authorization Service (JAAS)
Reference Guide

Use of JAAS Login Utility and Java

GSS-API for Secure Message
Exchanges

pkcs1l PKCS11 session manager PKCS#11 Reference Guide
debugging

pkcsllkeystore PKCS11 KeyStore debugging PKCS#11 Reference Guide

pkcs12 PKCS12 KeyStore debugging None

pol i cy Loading and granting permissions Set up the Policy File to Grant the

with policy file

Required Permissions (Controlling
Applications) from The Java Tutorials

Default Policy Implementation and
Policy File Syntax

1-75

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/Configuration.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/Configuration.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
http://docs.oracle.com/javase/tutorial/deployment/jar/verify.html
https://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/LoginContext.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html

ORACLE

Table 1-10 (Cont.) j ava. security. debug Options
|

Option

Description

Chapter 1
Troubleshooting Security

Further Information

provi der

Security provider debugging

The following options can be used
with the provider option:

engi ne=<engi nes> : The output is
displayed only for a specified list of
JCA engines.

The supported values for <engines>
are:

e Cipher

e KeyAgreement

« KeyGenerator

* KeyPairGenerator

* KeyStore

e Mac

* MessageDigest

e SecureRandom

e Signature

Java Cryptography Architecture
(JCA) Reference Guide

scl

Permissions that Secur eCl assLoader
assigns

Permissions in the Java
Development Kit (JDK)

secur er andom

SecureRandom debugging

The SecureRandom Class

sunpkcs11

SunPKCS11 provider debugging

PKCS#11 Reference Guide

ts

Timestamping debugging

None

1-76

https://docs.oracle.com/javase/9/docs/api/java/security/SecureClassLoader.html

Java Cryptography Architecture (JCA)
Reference Guide

The Java Cryptography Architecture (JCA) is a major piece of the platform, and
contains a "provider" architecture and a set of APIs for digital signatures, message
digests (hashes), certificates and certificate validation, encryption (symmetric/
asymmetric block/stream ciphers), key generation and management, and secure
random number generation, to name a few.

Introduction to Java Cryptography Architecture

ORACLE

The Java platform strongly emphasizes security, including language safety,
cryptography, public key infrastructure, authentication, secure communication, and
access control.

The JCA is a major piece of the platform, and contains a "provider" architecture and a
set of APIs for digital signatures, message digests (hashes), certificates and certificate
validation, encryption (symmetric/asymmetric block/stream ciphers), key generation
and management, and secure random number generation, to name a few. These APIs
allow developers to easily integrate security into their application code. The
architecture was designed around the following principles:

* Implementation independence: Applications do not need to implement security
algorithms. Rather, they can request security services from the Java platform.
Security services are implemented in providers (see Cryptographic Service
Providers), which are plugged into the Java platform via a standard interface. An
application may rely on multiple independent providers for security functionality.

* Implementation interoperability: Providers are interoperable across applications.
Specifically, an application is not bound to a specific provider, and a provider is not
bound to a specific application.

* Algorithm extensibility: The Java platform includes a number of built-in providers
that implement a basic set of security services that are widely used today.
However, some applications may rely on emerging standards not yet
implemented, or on proprietary services. The Java platform supports the
installation of custom providers that implement such services.

Other cryptographic communication libraries available in the JDK use the JCA provider
architecture, but are described elsewhere. The JSSE components provides access to
Secure Socket Layer (SSL), Transport Layer Security (TLS), and Datagram Transport
Layer Security (DTLS) implementations; see Java Secure Socket Extension (JSSE)
Reference Guide. You can use Java Generic Security Services (JGSS) (via Kerberos)
APIs, and Simple Authentication and Security Layer (SASL) to securely exchange
messages between communicating applications; see Java GSS-API and JAAS
Tutorials for Use with Kerberos and Java SASL APl Programming and Deployment
Guide.

2-1

Chapter 2
Introduction to Java Cryptography Architecture

Notes on Terminology

* Prior to JDK 1.4, the JCE was an unbundled product, and as such, the JCA and
JCE were regularly referred to as separate, distinct components. As JCE is now
bundled in the JDK, the distinction is becoming less apparent. Since the JCE uses
the same architecture as the JCA, the JCE should be more properly thought of as
a part of the JCA.

e The JCA within the JDK includes two software components:

— The framework that defines and supports cryptographic services for which
providers supply implementations. This framework includes packages such as
java.security, javax.crypto, j avax. crypto. spec, and j avax. crypto. i nterf aces.

— The actual providers such as Sun, SunRsaSi gn, SunJCE, which contain the actual
cryptographic implementations.

Whenever a specific JCA provider is mentioned, it will be referred to explicitly by
the provider's name.

WARNING:

The JCA makes it easy to incorporate security features into your application.
However, this document does not cover the theory of security/cryptography
beyond an elementary introduction to concepts necessary to discuss the APIs.
This document also does not cover the strengths/weaknesses of specific
algorithms, not does it cover protocol design. Cryptography is an advanced
topic and one should consult a solid, preferably recent, reference in order to
make best use of these tools.

You should always understand what you are doing and why: DO NOT simply
copy random code and expect it to fully solve your usage scenario. Many
applications have been deployed that contain significant security or
performance problems because the wrong tool or algorithm was selected.

JCA Design Principles

ORACLE

The JCA was designed around these principles:

* Implementation independence and interoperability
* Algorithm independence and extensibility

Implementation independence and algorithm independence are complementary; you
can use cryptographic services, such as digital signatures and message digests,
without worrying about the implementation details or even the algorithms that form the
basis for these concepts. While complete algorithm-independence is not possible, the
JCA provides standardized, algorithm-specific APIs. When implementation-
independence is not desirable, the JCA lets developers indicate a specific
implementation.

Algorithm independence is achieved by defining types of cryptographic "engines"
(services), and defining classes that provide the functionality of these cryptographic
engines. These classes are called engine classes, and examples are the
MessageDi gest, Si gnat ur e, KeyFact ory, KeyPai r Gener at or, and Ci pher
classes.

2-2

https://docs.oracle.com/javase/9/docs/api/java/security/MessageDigest.html
https://docs.oracle.com/javase/9/docs/api/java/security/Signature.html
https://docs.oracle.com/javase/9/docs/api/java/security/KeyFactory.html
https://docs.oracle.com/javase/9/docs/api/java/security/KeyPairGenerator.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/Cipher.html

Chapter 2
Introduction to Java Cryptography Architecture

Implementation independence is achieved using a "provider"-based architecture. The
term Cryptographic Service Provider (CSP), which is used interchangeably with the
term "provider," (see Cryptographic Service Providers) refers to a package or set of
packages that implement one or more cryptographic services, such as digital signature
algorithms, message digest algorithms, and key conversion services. A program may
simply request a particular type of object (such as a Si gnat ur e object) implementing a
particular service (such as the DSA signature algorithm) and get an implementation
from one of the installed providers. If desired, a program may instead request an
implementation from a specific provider. Providers may be updated transparently to
the application, for example when faster or more secure versions are available.

Implementation interoperability means that various implementations can work with
each other, use each other's keys, or verify each other's signatures. This would mean,
for example, that for the same algorithms, a key generated by one provider would be
usable by another, and a signature generated by one provider would be verifiable by
another.

Algorithm extensibility means that new algorithms that fit in one of the supported
engine classes can be added easily.

Provider Architecture

Providers contain a package (or a set of packages) that supply concrete
implementations for the advertised cryptographic algorithms.

Cryptographic Service Providers

ORACLE

java. security. Provider is the base class for all security providers. Each CSP contains
an instance of this class which contains the provider's name and lists all of the security
services/algorithms it implements. When an instance of a particular algorithm is
needed, the JCA framework consults the provider's database, and if a suitable match
is found, the instance is created.

Providers contain a package (or a set of packages) that supply concrete
implementations for the advertised cryptographic algorithms. Each JDK installation has
one or more providers installed and configured by default. Additional providers may be
added statically or dynamically. Clients may configure their runtime environment to
specify the provider preference order. The preference order is the order in which
providers are searched for requested services when no specific provider is requested.

To use the JCA, an application simply requests a particular type of object (such as a
MessageDi gest) and a particular algorithm or service (such as the "SHA-256" algorithm),
and gets an implementation from one of the installed providers. For example, the
following statement requests a SHA-256 message digest from an installed provider:

mi = MessageDi gest. get | nstance(" SHA- 256") ;

Alternatively, the program can request the objects from a specific provider. Each
provider has a name used to refer to it. For example, the following statement requests
a SHA-256 message digest from the provider named ProviderC:

md = MessageDi gest. get | nst ance(" SHA- 256", "ProviderC');
The following figures illustrates requesting an SHA-256 message digest
implementation. They show three different providers that implement various message

digest algorithms (SHA-256, SHA-384, and SHA-512). The providers are ordered by
preference from left to right (1-3). In Figure 2-1, an application requests a SHA-256

2-3

ORACLE

Chapter 2
Introduction to Java Cryptography Architecture

algorithm implementation without specifying a provider name. The providers are
searched in preference order and the implementation from the first provider supplying
that particular algorithm, ProviderB, is returned. In Figure 2-2, the application requests
the SHA-256 algorithm implementation from a specific provider, ProviderC. This
time, the implementation from ProviderC is returned, even though a provider with a
higher preference order, ProviderB, also supplies an MD5 implementation.

Figure 2-1 Request SHA-256 Message Digest Implementation Without
Specifying Provider

Application

| A
MessageDigest.getinstance SHA-256 MessageDigest
("SHA-256") from ProviderB

Provider Framework

: _: ®
1. ProviderA 2. ProviderB 3. ProviderC
MessageDigest MessageDigest MessageDigest
SHA-384 SHA-256 SHA-256
SHA-512 SHA-384 SHA-512

2-4

Chapter 2
Introduction to Java Cryptography Architecture

Figure 2-2 Request SHA-256 Message Digest with ProviderC

Application
| A
MessageDigest.getinstance SHA-256 MessageDigest
("SHA-256", “ProviderC”) from ProviderC

E Provider Framework

: —
. @
& :
1. ProviderA 2. ProviderB 3. ProviderC
MessageDigest MessageDigest MessageDigest
SHA-384 SHA-256 SHA-256
SHA-512 SHA-384 SHA-512

Cryptographic implementations in the JDK are distributed via several different
providers (Sun, SunJSSE, SunJCE, SunRsaSi gn) primarily for historical reasons, but to a
lesser extent by the type of functionality and algorithms they provide. Other Java
runtime environments may not necessarily contain these providers, so applications
should not request a provider-specific implementation unless it is known that a
particular provider will be available.

The JCA offers a set of APIs that allow users to query which providers are installed
and what services they support.

This architecture also makes it easy for end-users to add additional providers. Many
third party provider implementations are already available. See The Provider Class for
more information on how providers are written, installed, and registered.

How Providers Are Actually Implemented

ORACLE

Algorithm independence is achieved by defining a generic high-level Application
Programming Interface (API) that all applications use to access a service type.
Implementation independence is achieved by having all provider implementations
conform to well-defined interfaces. Instances of engine classes are thus "backed" by
implementation classes which have the same method signatures. Application calls are
routed through the engine class and are delivered to the underlying backing
implementation. The implementation handles the request and return the proper results.

The application API methods in each engine class are routed to the provider's
implementations through classes that implement the corresponding Service Provider
Interface (SPI). That is, for each engine class, there is a corresponding abstract SPI
class which defines the methods that each cryptographic service provider's algorithm
must implement. The name of each SPI class is the same as that of the corresponding
engine class, followed by Spi . For example, the Si gnat ure engine class provides

2-5

ORACLE

Chapter 2
Introduction to Java Cryptography Architecture

access to the functionality of a digital signature algorithm. The actual provider
implementation is supplied in a subclass of Si gnat ur eSpi . Applications call the engine
class' API methods, which in turn call the SPI methods in the actual implementation.

Each SPI class is abstract. To supply the implementation of a particular type of service
for a specific algorithm, a provider must subclass the corresponding SPI class and
provide implementations for all the abstract methods.

For each engine class in the API, implementation instances are requested and
instantiated by calling the get | nst ance() factory method in the engine class. A
factory method is a static method that returns an instance of a class. The engine
classes use the framework provider selection mechanism described above to obtain
the actual backing implementation (SPI), and then creates the actual engine object.
Each instance of the engine class encapsulates (as a private field) the instance of the
corresponding SPI class, known as the SPI object. All APl methods of an API object
are declared final and their implementations invoke the corresponding SPI methods of
the encapsulated SPI object.

To make this clearer, review Example 2-1 and Figure 2-3:

Example 2-1 Sample Code for Getting an Instance of an Engine Class

import javax.crypto.*;

Ci pher ¢ = Gipher.getlnstance("AES");
c.init(ENCRYPT_MXDE, key);

Figure 2-3 Application Retrieves “AES” Cipher Instance

Application

c:Cipher.gatinstance"AES™);

v

JCALICE
Signature Cipher
Messace Digest Hey Agreement
Ky Seript Ganerator Ky Generalor

Ky Factory Secret key Factory
.ﬂ.lgurilhm Parametbers A

Provider.class
“Ciphar. AES" —"com foo. AESCipher

h 4
CEP2 CsP3

com foo A ESCipher.class

peckege com. foo:
class AESCipher extendes CipharSpi

3

Here an application wants an "AES" j avax. crypt o. G pher instance, and doesn't care
which provider is used. The application calls the get | nst ance() factory methods of the
Gi pher engine class, which in turn asks the JCA framework to find the first provider

2-6

Keystores

Chapter 2
Introduction to Java Cryptography Architecture

instance that supports "AES". The framework consults each installed provider, and
obtains the provider's instance of the Provi der class. (Recall that the Provi der class is
a database of available algorithms.) The framework searches each provider, finally
finding a suitable entry in CSP3. This database entry points to the implementation
class com f oo. AESCi pher which extends Ci pher Spi , and is thus suitable for use by the
G pher engine class. An instance of com f 0o. AESCi pher is created, and is encapsulated
in a newly-created instance of j avax. crypt o. G pher, which is returned to the
application. When the application now does the i ni t () operation on the G pher
instance, the G pher engine class routes the request into the corresponding

engi nel ni t () backing method in the com f 0oo. AESG pher class.

Java Security Standard Algorithm Names Specification lists the Standard Names
defined for the Java environment. Other third-party providers may define their own
implementations of these services, or even additional services.

A database called a "keystore" can be used to manage a repository of keys and
certificates. Keystores are available to applications that need data for authentication,
encryption, or signing purposes.

Applications can access a keystore via an implementation of the KeySt or e class, which
is in the j ava. security package. As of JDK 9, the default and recommended keystore
type (format) is "pkcs12", which is based on the RSA PKCS12 Personal Information
Exchange Syntax Standard. Previously, the default keystore type was "jks", which is a
proprietary format. Other keystore formats are available, such as "jceks", which is an
alternate proprietary keystore format, and "pkcs11", which is based on the RSA
PKCS11 Standard and supports access to cryptographic tokens such as hardware
security modules and smartcards.

Applications can choose different keystore implementations from different providers,
using the same provider mechanism described previously. See Key Management.

Engine Classes and Algorithms

ORACLE

An engine class provides the interface to a specific type of cryptographic service,
independent of a particular cryptographic algorithm or provider.

The engines provides one of the following:

e cryptographic operations (encryption, digital signatures, message digests, etc.),

e generators or converters of cryptographic material (keys and algorithm
parameters), or

e objects (keystores or certificates) that encapsulate the cryptographic data and can
be used at higher layers of abstraction.

The following engine classes are available:
e SecureRandont used to generate random or pseudo-random numbers.
e MessageDi gest: used to calculate the message digest (hash) of specified data.

* Signature: initialized with keys, these are used to sign data and verify digital
signatures.

2-7

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

Chapter 2
Core Classes and Interfaces

Gi pher : initialized with keys, these used for encrypting/decrypting data. There are
various types of algorithms: symmetric bulk encryption (e.g. AES), asymmetric
encryption (e.g. RSA), and password-based encryption (e.g. PBE).

Message Authentication Codes (MAC): like MessageDi gest s, these also generate
hash values, but are first initialized with keys to protect the integrity of messages.

KeyFact ory: used to convert existing opaque cryptographic keys of type Key into
key specifications (transparent representations of the underlying key material), and
vice versa.

Secr et KeyFact ory: used to convert existing opaque cryptographic keys of type

Secr et Key into key specifications (transparent representations of the underlying key
material), and vice versa. Secr et KeyFact orys are specialized KeyFact orys that
create secret (symmetric) keys only.

KeyPai r Gener at or : used to generate a hew pair of public and private keys suitable
for use with a specified algorithm.

KeyGener at or : used to generate new secret keys for use with a specified algorithm.

KeyAgr eement : used by two or more parties to agree upon and establish a specific
key to use for a particular cryptographic operation.

Al gorithnParanet ers: used to store the parameters for a particular algorithm,
including parameter encoding and decoding.

Al gorit hnPar anet er Gener at or : used to generate a set of AlgorithmParameters
suitable for a specified algorithm.

KeySt or e: used to create and manage a keystore. A keystore is a database of keys.
Private keys in a keystore have a certificate chain associated with them, which
authenticates the corresponding public key. A keystore also contains certificates
from trusted entities.

CertificateFactory: used to create public key certificates and Certificate
Revocation Lists (CRLS).

Cert Pat hBui | der : used to build certificate chains (also known as certification paths).
Cert Pat hval i dat or : used to validate certificate chains.

Cert Store: used to retrieve Certificates and CRLs from a repository.

Note:

A generator creates objects with brand-new contents, whereas a factory
creates objects from existing material (for example, an encoding).

Core Classes and Interfaces

The following are the core classes and interfaces provided in the JCA.

ORACLE

Provi der and Security

Secur eRandom MessageDi gest, Si gnat ure, C pher, Mac, KeyFact ory, Secret KeyFactory,
KeyPai r Gener at or , KeyGener at or , KeyAgr eenent , Al gori t hnPar anet er,
Al gorit hnPar anet er Generat or, KeyStore, Certificat eFactory, and engine

Key Interface, KeyPair

2-8

Chapter 2
Core Classes and Interfaces

e A gorithnParaneterSpec Interface, Al