
Java Platform, Standard Edition
Security Developer’s Guide

Release 9
E68624-04
October 2017

Java Platform, Standard Edition Security Developer’s Guide, Release 9

E68624-04

Copyright © 1993, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xvi

Documentation Accessibility xvi

Related Documents xvi

Conventions xvi

1 General Security

Java Security Overview 1-1

Introduction to Java Security 1-1

Java Language Security and Bytecode Verification 1-2

Basic Security Architecture 1-3

Security Providers 1-3

File Locations 1-5

Java Cryptography 1-6

Public Key Infrastructure 1-7

Key and Certificate Storage 1-7

Public Key Infrastructure Tools 1-8

Authentication 1-9

Secure Communication 1-10

SSL, TLS, and DTLS Protocols 1-11

Simple Authentication and Security Layer (SASL) 1-11

Generic Security Service API and Kerberos 1-12

Access Control 1-12

Permissions 1-12

Security Policy 1-13

Access Control Enforcement 1-14

XML Signature 1-15

Additional Information about Java Security 1-16

Java Security Classes Summary 1-16

Deprecated Security APIs Marked for Removal 1-18

Security Tools Summary 1-19

Built-In Providers 1-20

iii

Security Architecture 1-20

Standard Algorithm Names 1-20

Permissions in the Java Development Kit (JDK) 1-21

Permission Descriptions and Risks 1-22

NIO-Related Targets 1-23

Methods and the Required Permissions 1-23

java.lang.SecurityManager Method Permission Checks 1-48

Default Policy Implementation and Policy File Syntax 1-50

Default Policy Implementation 1-51

Default Policy File Locations 1-51

Modifying the Policy Implementation 1-52

Policy File Syntax 1-53

Policy File Examples 1-58

Property Expansion in Policy Files 1-60

Windows Systems, File Paths, and Property Expansion 1-62

Path-Name Canonicalization 1-63

General Expansion in Policy Files 1-65

API for Privileged Blocks 1-66

Using the doPrivileged API 1-66

What It Means to Have Privileged Code 1-71

Reflection 1-73

Troubleshooting Security 1-73

2 Java Cryptography Architecture (JCA) Reference Guide

Introduction to Java Cryptography Architecture 2-1

JCA Design Principles 2-2

Provider Architecture 2-3

Cryptographic Service Providers 2-3

How Providers Are Actually Implemented 2-5

Keystores 2-7

Engine Classes and Algorithms 2-7

Core Classes and Interfaces 2-8

The Provider Class 2-9

How Provider Implementations Are Requested and Supplied 2-10

Installing Providers 2-12

Provider Class Methods 2-12

The Security Class 2-13

Managing Providers 2-14

Security Properties 2-15

The SecureRandom Class 2-15

iv

Creating a SecureRandom Object 2-16

Seeding or Re-Seeding the SecureRandom Object 2-16

Using a SecureRandom Object 2-17

Generating Seed Bytes 2-17

The MessageDigest Class 2-17

Creating a MessageDigest Object 2-17

Updating a Message Digest Object 2-18

Computing the Digest 2-18

The Signature Class 2-18

Signature Object States 2-19

Creating a Signature Object 2-19

Initializing a Signature Object 2-20

Signing with a Signature Object 2-20

Verifying with a Signature Object 2-21

The Cipher Class 2-21

Other Cipher-based Classes 2-29

The Cipher Stream Classes 2-30

The SealedObject Class 2-32

The Mac Class 2-34

Key Interfaces 2-35

The KeyPair Class 2-37

Key Specification Interfaces and Classes 2-37

The KeySpec Interface 2-37

The KeySpec Subinterfaces 2-37

The EncodedKeySpec Class 2-38

Generators and Factories 2-39

The KeyFactory Class 2-39

The SecretKeyFactory Class 2-40

The KeyPairGenerator Class 2-42

The KeyGenerator Class 2-44

The KeyAgreement Class 2-45

Key Management 2-47

The KeyStore Class 2-48

Algorithm Parameters Classes 2-52

The AlgorithmParameterSpec Interface 2-52

The AlgorithmParameters Class 2-53

The AlgorithmParameterGenerator Class 2-54

The CertificateFactory Class 2-55

How the JCA Might Be Used in a SSL/TLS Implementation 2-56

Cryptographic Strength Configuration 2-58

Jurisdiction Policy File Format 2-61

v

How to Make Applications Exempt from Cryptographic Restrictions 2-63

Standard Names 2-67

Packaging Your Application 2-67

Additional JCA Code Samples 2-68

Computing a MessageDigest Object 2-68

Generating a Pair of Keys 2-69

Generating and Verifying a Signature Using Generated Keys 2-71

Generating/Verifying Signatures Using Key Specifications and KeyFactory 2-71

Generating Random Numbers 2-73

Determining If Two Keys Are Equal 2-74

Reading Base64-Encoded Certificates 2-74

Parsing a Certificate Reply 2-75

Using Encryption 2-75

Using Password-Based Encryption 2-76

Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-
SHA256 2-77

Diffie-Hellman Key Exchange between 2 Parties 2-78

Diffie-Hellman Key Exchange between 3 Parties 2-81

AES/GCM Example 2-83

HMAC-SHA256 Example 2-85

3 How to Implement a Provider in the Java Cryptography Architecture

Who Should Read This Document 3-1

Notes on Terminology 3-1

Introduction to Implementing Providers 3-1

Engine Classes and Corresponding Service Provider Interface Classes 3-2

Steps to Implement and Integrate a Provider 3-5

Step 1: Write your Service Implementation Code 3-5

Step 1.1: Consider Additional JCA Provider Requirements and
Recommendations for Encryption Implementations 3-6

Step 2: Give your Provider a Name 3-7

Step 3: Write Your Master Class, a Subclass of Provider 3-7

Step 3.1: Create a Provider That Uses String Objects to Register Its
Services 3-8

Step 3.2: Create a Provider That Uses Provider.Service 3-10

Step 3.3: Specify Additional Information for Cipher Implementations 3-12

Step 4: Create a Module Declaration for Your Provider 3-14

Step 5: Compile Your Code 3-15

Step 6: Place Your Provider in a JAR File 3-15

Step 7: Sign Your JAR File, If Necessary 3-16

Step 7.1: Get a Code-Signing Certificate 3-16

vi

Step 7.2: Sign Your Provider 3-18

Step 8: Prepare for Testing 3-18

Step 8.1: Configure the Provider 3-18

Step 8.2: Set Provider Permissions 3-20

Step 9: Write and Compile Your Test Programs 3-21

Step 10: Run Your Test Programs 3-21

Step 11: Apply for U.S. Government Export Approval If Required 3-23

Step 12: Document Your Provider and Its Supported Services 3-24

Step 12.1: Indicate Whether Your Implementation is Cloneable for Message
Digests and MACs 3-24

Step 13: Make Your Class Files and Documentation Available to Clients 3-26

Further Implementation Details and Requirements 3-26

Alias Names 3-26

Service Interdependencies 3-27

Default Initialization 3-29

Default Key Pair Generator Parameter Requirements 3-29

The Provider.Service Class 3-30

Signature Formats 3-31

DSA Interfaces and their Required Implementations 3-32

RSA Interfaces and their Required Implementations 3-34

Diffie-Hellman Interfaces and their Required Implementations 3-36

Interfaces for Other Algorithm Types 3-37

Algorithm Parameter Specification Interfaces and Classes 3-38

Key Specification Interfaces and Classes Required by Key Factories 3-41

Secret-Key Generation 3-46

Adding New Object Identifiers 3-46

Ensuring Exportability 3-47

Sample Code for MyProvider 3-48

4 JDK Providers Documentation

Introduction to JDK Providers 4-2

Import Limits on Cryptographic Algorithms 4-3

Cipher Transformations 4-3

SecureRandom Implementations 4-3

The SunPKCS11 Provider 4-4

The SUN Provider 4-5

The SunRsaSign Provider 4-7

The SunJSSE Provider 4-8

The SunJCE Provider 4-15

The SunJGSS Provider 4-21

The SunSASL Provider 4-21

vii

The XMLDSig Provider 4-21

The SunPCSC Provider 4-22

The SunMSCAPI Provider 4-23

The SunEC Provider 4-24

The OracleUcrypto Provider 4-25

The Apple Provider 4-26

The JdkLDAP Provider 4-27

The JdkSASL Provider 4-27

5 PKCS#11 Reference Guide

SunPKCS11 Provider 5-1

SunPKCS11 Requirements 5-2

SunPKCS11 Configuration 5-2

Accessing Network Security Services (NSS) 5-7

Troubleshooting PKCS#11 5-10

Disabling PKCS#11 Providers and/or Individual PKCS#11 Mechanisms 5-10

Application Developers 5-11

Token Login 5-11

Token Keys 5-12

Delayed Provider Selection 5-13

JAAS KeyStoreLoginModule 5-14

Tokens as JSSE Keystore and Trust Stores 5-15

Using keytool and jarsigner with PKCS#11 Tokens 5-15

Policy Tool 5-16

Provider Developers 5-17

Provider Services 5-17

Parameter Support 5-18

SunPKCS11 Provider Supported Algorithms 5-18

SunPKCS11 Provider KeyStore Requirements 5-20

Example Provider 5-22

6 Java Authentication and Authorization Service (JAAS)

JAAS Reference Guide 6-1

JAAS Tutorials 6-1

Java Authentication and Authorization Service (JAAS): LoginModule Developer's
Guide 6-1

Introduction to LoginModule 6-2

Steps to Implement a LoginModule 6-4

Step 1: Understand the Authentication Technology 6-4

Step 2: Name the LoginModule Implementation 6-4

viii

Step 3: Implement the Abstract LoginModule Methods 6-4

Step 4: Choose or Write a Sample Application 6-8

Step 5: Compile the LoginModule and Application 6-9

Step 6: Prepare for Testing 6-9

Step 7: Test Use of the LoginModule 6-10

Step 8: Document Your LoginModule Implementation 6-11

Step 9: Make LoginModule JAR File and Documents Available 6-12

7 Java Generic Security Services (Java GSS-API)

Java GSS-API and JAAS Tutorials for Use with Kerberos 7-1

Single Sign-on Using Kerberos in Java 7-1

Java GSS Advanced Security Programming 7-1

The Kerberos 5 GSS-API Mechanism 7-1

8 Java Secure Socket Extension (JSSE) Reference Guide

Introduction to JSSE 8-1

JSSE Features and Benefits 8-2

JSSE Standard API 8-3

SunJSSE Provider 8-4

JSSE Related Documentation 8-4

Terms and Definitions 8-5

Secure Sockets Layer (SSL) Protocol Overview 8-8

Why Use SSL? 8-9

How SSL Works 8-10

Cryptographic Processes 8-10

Secret-Key Cryptography 8-11

Public-Key Cryptography 8-11

Comparison Between Secret-Key and Public-Key Cryptography 8-12

Public Key Certificates 8-12

Cryptographic Hash Functions 8-13

Message Authentication Code 8-13

Digital Signatures 8-13

The SSL Handshake 8-13

The SSL Protocol 8-14

Handshaking Again (Renegotiation) 8-16

Cipher Suite Choice and Remote Entity Verification 8-17

Client-Driven OCSP and OCSP Stapling 8-17

Client-Driven OCSP and Certificate Revocation 8-18

Setting up a Java Client to use Client-Driven OCSP 8-19

ix

OCSP Stapling and Certificate Revocation 8-20

Setting Up a Java Client to Use OCSP Stapling 8-22

Setting Up a Java Server to Use OCSP Stapling 8-22

OCSP Stapling Configuration Properties 8-22

JSSE Classes and Interfaces 8-25

JSSE Core Classes and Interfaces 8-25

SocketFactory and ServerSocketFactory Classes 8-26

SSLSocketFactory and SSLServerSocketFactory Classes 8-26

Obtaining an SSLSocketFactory 8-26

SSLSocket and SSLServerSocket Classes 8-27

Obtaining an SSLSocket 8-27

SSLEngine Class 8-27

Creating an SSLEngine Object 8-29

Generating and Processing SSL/TLS Data 8-30

Datagram Transport Layer Security (DTLS) Protocol 8-33

Creating an SSLEngine Object for DTLS 8-42

Generating and Processing DTLS Data 8-43

Understanding SSLEngine Operation Statuses 8-45

Dealing With Blocking Tasks 8-49

Shutting Down a SSL/TLS/DTLS Connection 8-50

SSLSession and ExtendedSSLSession 8-51

HttpsURLConnection Class 8-52

Setting the Assigned SSLSocketFactory 8-52

Setting the Assigned HostnameVerifier 8-52

Support Classes and Interfaces 8-53

The SSLContext Class 8-54

The TrustManager Interface 8-56

The TrustManagerFactory Class 8-56

The X509TrustManager Interface 8-58

X509ExtendedTrustManager Class 8-61

The KeyManager Interface 8-64

The KeyManagerFactory Class 8-64

The X509KeyManager Interface 8-65

The X509ExtendedKeyManager Class 8-66

Relationship Between a TrustManager and a KeyManager 8-67

Secondary Support Classes and Interfaces 8-67

The SSLParameters Class 8-67

The SSLSessionContext Interface 8-68

The SSLSessionBindingListener Interface 8-68

The SSLSessionBindingEvent Class 8-68

The HandShakeCompletedListener Interface 8-69

x

The HandShakeCompletedEvent Class 8-69

The HostnameVerifier Interface 8-69

The X509Certificate Class 8-69

The AlgorithmConstraints Interface 8-70

The StandardConstants Class 8-70

The SNIServerName Class 8-70

The SNIMatcher Class 8-70

The SNIHostName Class 8-71

Customizing JSSE 8-72

How to Specify a java.lang.System Property 8-78

How to Specify a java.security.Security Property 8-78

Customizing the X509Certificate Implementation 8-79

Specifying an Alternative HTTPS Protocol Implementation 8-79

Customizing the Provider Implementation 8-80

Registering the Cryptographic Provider Statically 8-80

Registering the Cryptographic Service Provider Dynamically 8-80

Provider Configuration 8-81

Configuring the Preferred Provider for Specific Algorithms 8-81

Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords 8-82

Customizing the Default Key Managers and Trust Managers 8-84

Disabled and Restricted Cryptographic Algorithms 8-85

Customizing the Encryption Algorithm Providers 8-86

Customizing Size of Ephemeral Diffie-Hellman Keys 8-86

Customizing Maximum Fragment Length Negotiation (MFLN) Extension 8-87

Configuring the Maximum and Minimum Packet Size 8-88

Transport Layer Security (TLS) Renegotiation Issue 8-88

Phased Approach to Fixing This Issue 8-88

Description of the Phase 2 Fix 8-89

Workarounds and Alternatives to SSL/TLS Renegotiation 8-91

TLS Implementation Details 8-92

Description of the Phase 1 Fix 8-92

Allow Unsafe Server Certificate Change in SSL/TLS Renegotiations 8-93

Hardware Acceleration and Smartcard Support 8-93

Configuring JSSE to Use Smartcards as Keystores and Truststores 8-94

Multiple and Dynamic Keystores 8-94

Kerberos Cipher Suites 8-95

Kerberos Requirements 8-96

Peer Identity Information 8-97

Security Manager 8-97

Additional Keystore Formats (PKCS12) 8-98

xi

Server Name Indication (SNI) Extension 8-98

TLS Application Layer Protocol Negotiation 8-100

Setting up ALPN on the Client 8-101

Setting up Default ALPN on the Server 8-102

Setting up Custom ALPN on the Server 8-103

Determining Negotiated ALPN Value during Handshaking 8-105

ALPN Related Classes and Methods 8-107

Troubleshooting JSSE 8-108

Configuration Problems 8-108

CertificateException While Handshaking 8-108

Runtime Exception: SSL Service Not Available 8-109

Runtime Exception: "No available certificate corresponding to the SSL
cipher suites which are enabled" 8-109

Runtime Exception: No Cipher Suites in Common 8-110

Socket Disconnected After Sending ClientHello Message 8-110

SunJSSE Cannot Find a JCA Provider That Supports a Required Algorithm
and Causes a NoSuchAlgorithmException 8-112

FailedDownloadException Thrown When Trying to Obtain Application
Resources from Web Server over SSL 8-112

IllegalArgumentException When RC4 Cipher Suites are Configured for
DTLS 8-113

Debugging Utilities 8-113

Debugging SSL/TLS Connections 8-115

Code Examples 8-131

Converting an Unsecure Socket to a Secure Socket 8-131

Running the JSSE Sample Code 8-134

Creating a Keystore to Use with JSSE 8-140

Using the Server Name Indication (SNI) Extension 8-144

Typical Client-Side Usage Examples 8-144

Typical Server-Side Usage Examples 8-145

Working with Virtual Infrastructures 8-145

Standard Names 8-150

Provider Pluggability 8-150

JSSE Cipher Suite Parameters 8-150

9 Java PKI Programmers Guide

PKI Programmers Guide Overview 9-1

Introduction to Public Key Certificates 9-2

X.509 Certificates and Certificate Revocation Lists (CRLs) 9-3

Core Classes and Interfaces 9-7

Basic Certification Path Classes 9-8

xii

The CertPath Class 9-8

The CertificateFactory Class 9-9

The CertPathParameters Interface 9-11

Certification Path Validation Classes 9-11

The CertPathValidator Class 9-11

The CertPathValidatorResult Interface 9-12

Certification Path Building Classes 9-13

The CertPathBuilder Class 9-13

The CertPathBuilderResult Interface 9-14

Certificate/CRL Storage Classes 9-15

The CertStore Class 9-15

The CertStoreParameters Interface 9-16

The CertSelector and CRLSelector Interfaces 9-17

PKIX Classes 9-22

The TrustAnchor Class 9-22

The PKIXParameters Class 9-23

The PKIXCertPathValidatorResult Class 9-25

The PolicyNode Interface and PolicyQualifierInfo Class 9-26

The PKIXBuilderParameters Class 9-27

The PKIXCertPathBuilderResult Class 9-28

The PKIXCertPathChecker Class 9-29

Using PKIXCertPathChecker in Certificate Path Validation 9-34

Implementing a Service Provider 9-38

Steps to Implement and Integrate a Provider 9-39

Service Interdependencies 9-41

Certification Path Parameter Specification Interfaces 9-41

Certification Path Result Specification Interfaces 9-42

Certification Path Exception Classes 9-42

Appendix A: Standard Names 9-42

Appendix B: CertPath Implementation in SUN Provider 9-43

Appendix C: OCSP Support 9-46

Appendix D: CertPath Implementation in JdkLDAP Provider 9-48

Appendix E: Disabling Cryptographic Algorithms 9-49

10

Java SASL API Programming and Deployment Guide

Java SASL API Overview 10-2

Creating the Mechanisms 10-3

Passing Input to the Mechanisms 10-3

Using the Mechanisms 10-4

Using the Negotiated Security Layer 10-5

xiii

How SASL Mechanisms are Installed and Selected 10-6

The SunSASL Provider 10-7

The SunSASL Provider Client Mechanisms 10-7

The SunSASL Provider Server Mechanisms 10-9

Debugging and Monitoring 10-10

The JdkSASL Provider 10-11

The JdkSASL Provider Client Mechanism 10-11

The JdkSASL Provider Server Mechanism 10-13

Implementing a SASL Security Provider 10-14

11

XML Digital Signature

Java XML Digital Signature API Specification 11-1

Acknowledgements 11-1

Requirements 11-2

API Dependencies 11-3

Non-Goals 11-3

Package Overview 11-3

Service Providers 11-4

DOM Mechanism Requirements 11-5

Open API Issues 11-6

Programming Examples 11-6

XML Digital Signature API Overview and Tutorial 11-15

Package Hierarchy 11-16

Service Providers 11-17

Introduction to XML Signatures 11-18

Example of an XML Signature 11-18

XML Digital Signature API Examples 11-20

Validate Example 11-20

GenEnveloped Example 11-26

12

Security API Specification

13

Deprecated Security APIs Marked for Removal

xiv

14

Security Tools

15

Security Tutorials

xv

Preface

This guide provides information about the Java security technology, tools, and
implementations of commonly used security algorithms, mechanisms, and protocols
on the Java Platform, Standard Edition (Java SE).

Audience
This document is intended for experienced developers who build applications using
the comprehensive Java security framework. It is also intended for the user or
administrator with a a set of tools to securely manage applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See Oracle JDK 9 Documentation for other JDK 9 guides.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=homepage

1
General Security

Java Security Overview introduces you to cryptography, public key infrastructure,
authentication, secure communication, access control, and XML signatures.

Security Architecture in the JDK 8 documentation provides an overview of the
motivation of major security features, an introduction to security classes and their
usage, a discussion of the impact of the security architecture on code, and thoughts on
writing security-sensitive code.

Java Security Standard Algorithm Names Specification describes the set of standard
names for algorithms, certificate and keystore types that Java SE requires and uses.

Permissions in the Java Development Kit (JDK) describes the built-in JDK permission
types and discusses the risks of granting each permission.

Troubleshooting Security lists options for the java.security.debug system
property that enable you to monitor security access.

Java Security Overview
Java security includes a large set of APIs, tools, and implementations of commonly-
used security algorithms, mechanisms, and protocols. The Java security APIs span a
wide range of areas, including cryptography, public key infrastructure, secure
communication, authentication, and access control. Java security technology provides
the developer with a comprehensive security framework for writing applications, and
also provides the user or administrator with a set of tools to securely manage
applications.

Introduction to Java Security
The JDK is designed with a strong emphasis on security. At its core, the Java
language itself is type-safe and provides automatic garbage collection, enhancing the
robustness of application code. A secure class loading and verification mechanism
ensures that only legitimate Java code is executed. The Java security architecture
includes a large set of application programming interfaces (APIs), tools, and
implementations of commonly-used security algorithms, mechanisms, and protocols.

The Java security APIs span a wide range of areas. Cryptographic and public key
infrastructure (PKI) interfaces provide the underlying basis for developing secure
applications. Interfaces for performing authentication and access control enable
applications to guard against unauthorized access to protected resources.

The APIs allow for multiple interoperable implementations of algorithms and other
security services. Services are implemented in providers, which are plugged into the
JDK through a standard interface that makes it easy for applications to obtain security
services without having to know anything about their implementations. This allows
developers to focus on how to integrate security into their applications, rather than on
how to actually implement complex security mechanisms.

1-1

https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html

The JDK includes a number of providers that implement a core set of security
services. It also allows for additional custom providers to be installed. This enables
developers to extend the platform with new security mechanisms.

The JDK is divided into modules. Modules that contain security APIs include the
following:

Table 1-1 Modules That Contain Security APIs

Module Description

java.base Defines the foundational APIs of Java SE.
Contained packages include
java.security, javax.crypto,
javax.net.ssl, and
javax.security.auth.

java.security.jgss Defines the Java binding of the IETF Generic
Security Services API (GSS-API). This module
also contains GSS-API mechanisms including
Kerberos v5 and SPNEGO.

java.security.sasl Defines Java support for the IETF Simple
Authentication and Security Layer (SASL).
This module also contains SASL mechanisms
including DIGEST-MD5, CRAM-MD5, and
NTLM.

java.smartcardio Defines the Java Smart Card I/O API.

java.xml.crypto Defines the API for XML cryptography.

jdk.security.auth Provides implementations of the
javax.security.auth.* interfaces and
various authentication modules.

jdk.security.jgss Defines Java extensions to the GSS-API and
an implementation of the SASL GSS-API
mechanism.

Java Language Security and Bytecode Verification
The Java language is designed to be type-safe and easy to use. It provides automatic
memory management, garbage collection, and range-checking on arrays. This
reduces the overall programming burden placed on developers, leading to fewer subtle
programming errors and to safer, more robust code.

A compiler translates Java programs into a machine-independent bytecode
representation. A bytecode verifier is invoked to ensure that only legitimate bytecodes
are executed in the Java runtime. It checks that the bytecodes conform to the Java
Language Specification and do not violate Java language rules or namespace
restrictions. The verifier also checks for memory management violations, stack
underflows or overflows, and illegal data typecasts. Once bytecodes have been
verified, the Java runtime prepares them for execution.

In addition, the Java language defines different access modifiers that can be assigned
to Java classes, methods, and fields, enabling developers to restrict access to their
class implementations as appropriate. The language defines four distinct access
levels:

• private: Most restrictive modifier; access is not allowed outside the particular class
in which the private member (a method, for example) is defined.

Chapter 1
Java Security Overview

1-2

https://docs.oracle.com/javase/9/docs/api/java.base-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java.security.jgss-summary.html
https://docs.oracle.com/javase/9/docs/api/java.security.sasl-summary.html
https://docs.oracle.com/javase/9/docs/api/java.smartcardio-summary.html
https://docs.oracle.com/javase/9/docs/api/java.xml.crypto-summary.html
https://docs.oracle.com/javase/9/docs/api/jdk.security.auth-summary.html
https://docs.oracle.com/javase/9/docs/api/jdk.security.jgss-summary.html

• protected: Allows access to any subclass or to other classes within the same
package.

• Package-private: If not specified, then this is the default access level; allows
access to classes within the same package.

• public: No longer guarantees that the element is accessible everywhere;
accessibility depends upon whether the package containing that element is
exported by its defining module and whether that module is readable by the
module containing the code that is attempting to access it.

Basic Security Architecture
The JDK defines a set of APIs spanning major security areas, including cryptography,
public key infrastructure, authentication, secure communication, and access control.
The APIs allow developers to easily integrate security into their application code.

The APIs are designed around the following principles:

Implementation independence
Applications do not need to implement security themselves. Rather, they can request
security services from the JDK. Security services are implemented in providers (see
the section Security Providers), which are plugged into the JDK via a standard
interface. An application may rely on multiple independent providers for security
functionality.

Implementation interoperability
Providers are interoperable across applications. Specifically, an application is not
bound to a specific provider if it does not rely on default values from the provider.

Algorithm extensibility
The JDK includes a number of built-in providers that implement a basic set of security
services that are widely used today. However, some applications may rely on
emerging standards not yet implemented, or on proprietary services. The JDK
supports the installation of custom providers that implement such services.

Security Providers
The java.security.Provider class encapsulates the notion of a security provider in the
Java platform. It specifies the provider's name and lists the security services it
implements. Multiple providers may be configured at the same time and are listed in
order of preference. When a security service is requested, the highest priority provider
that implements that service is selected.

Applications rely on the relevant getInstance method to request a security service from
an underlying provider.

For example, message digest creation represents one type of service available from
providers. To request an implementation of a specific message digest algorithm, call
the method java.security.MessageDigest.getInstance. The following
statement requests a SHA-256 message digest implementation without specifying a
provider name:

 MessageDigest md = MessageDigest.getInstance("SHA-256");

The following figure illustrates how this statement obtains a SHA-256 message digest
implementation. The providers are searched in preference order, and the

Chapter 1
Java Security Overview

1-3

implementation from the first provider supplying that particular algorithm, ProviderB, is
returned.

Figure 1-1 Request SHA-256 Message Digest Implementation Without
Specifying Provider

Application

1. ProviderA
 MessageDigest
 SHA-384
 SHA-512

2. ProviderB
 MessageDigest
 SHA-256
 SHA-384

3. ProviderC
 MessageDigest
 SHA-256
 SHA-512

Provider Framework

MessageDigest.getInstance
(”SHA-256”)

SHA-256 MessageDigest
from ProviderB

You can optionally request an implementation from a specific provider by specifying
the provider's name. The following statement requests a SHA-256 message digest
implementation from a specific provider, ProviderC:

 MessageDigest md = MessageDigest.getInstance("SHA-256", "ProviderC");

The following figure illustrates how this statement requests a SHA-256 message digest
implementation from a specific provider, ProviderC. In this case, the implementation
from that provider is returned, even though a provider with a higher preference order,
ProviderB, also supplies a SHA-256 implementation.

Chapter 1
Java Security Overview

1-4

Figure 1-2 Request SHA-256 Message Digest Implementation from Specific
Provider

Application

1. ProviderA
 MessageDigest
 SHA-384
 SHA-512

2. ProviderB
 MessageDigest
 SHA-256
 SHA-384

3. ProviderC
 MessageDigest
 SHA-256
 SHA-512

Provider Framework

MessageDigest.getInstance
(”SHA-256”, “ProviderC”)

SHA-256 MessageDigest
from ProviderC

For more information about cryptographic services, such as message digest
algorithms, see the section Java Cryptography.

Oracle's implementation of the Java platform includes a number of built-in default
providers that implement a basic set of security services that can be used by
applications. Note that other vendor implementations of the Java platform may include
different sets of providers that encapsulate vendor-specific sets of security services.
The term built-in default providers refers to the providers available in Oracle's
implementation.

File Locations
The following table lists locations of some security-related files and tools.

Chapter 1
Java Security Overview

1-5

Table 1-2 Java security files and tools

File Name or Tool Name Location Description

java.security <java-home>/conf/security Certain aspects of Java
security, such as configuring
the providers, may be
customized by setting Security
Properties. You may set
Security Properties statically in
the java.security file.
Security Properties may also
be set dynamically by calling
appropriate methods of the
Security class (in the
java.security package).

java.policy <java-home>/conf/security This is the default system
policy file; see Security Policy.

Cryptographic policy directory <java-home>/conf/security/
policy

This directory contains sets of
jurisdiction policy files; see
Cryptographic Strength
Configuration.

cacerts <java-home>/lib/security The cacerts file represents
a system-wide keystore with
Certificate Authority (CA) and
other trusted certificates. For
information about configuring
and managing this file, see
keytool in Java Platform,
Standard Edition Tools
Reference.

keytool, jarsigner,
policytool

Windows only: kinit, klist,
ktab

<java-home>/bin For more information about
security-related tools, see
Security Tools and
Commands in Java Platform,
Standard Edition Tools
Reference.

Java Cryptography
The Java cryptography architecture is a framework for accessing and developing
cryptographic functionality for the Java platform.

It includes APIs for a large variety of cryptographic services, including the following:

• Message digest algorithms

• Digital signature algorithms

• Symmetric bulk and stream encryption

• Asymmetric encryption

• Password-based encryption (PBE)

• Elliptic Curve Cryptography (ECC)

• Key agreement algorithms

Chapter 1
Java Security Overview

1-6

• Key generators

• Message Authentication Codes (MACs)

• Secure Random Number Generators

For historical (export control) reasons, the cryptography APIs are organized into two
distinct packages:

• The java.security and java.security.* packages contains classes that are not
subject to export controls (like Signature and MessageDigest)

• The javax.crypto package contains classes that are subject to export controls (like
Cipher and KeyAgreement)

The cryptographic interfaces are provider-based, allowing for multiple and
interoperable cryptography implementations. Some providers may perform
cryptographic operations in software; others may perform the operations on a
hardware token (for example, on a smart card device or on a hardware cryptographic
accelerator). Providers that implement export-controlled services must be digitally
signed by a certificate issued by the Oracle JCE Certificate Authority.

The Java platform includes built-in providers for many of the most commonly used
cryptographic algorithms, including the RSA, DSA, and ECDSA signature algorithms,
the AES encryption algorithm, the SHA-2 message digest algorithms, and the Diffie-
Hellman (DH) and Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithms.
Most of the built-in providers implement cryptographic algorithms in Java code.

The Java platform also includes a built-in provider that acts as a bridge to a native
PKCS#11 (v2.x) token. This provider, named SunPKCS11, allows Java applications to
seamlessly access cryptographic services located on PKCS#11-compliant tokens.

On Windows, the Java platform includes a built-in provider that acts as a bridge to the
native Microsoft CryptoAPI. This provider, named SunMSCAPI, allows Java applications
to seamlessly access cryptographic services on Windows through the CryptoAPI.

Public Key Infrastructure
Public Key Infrastructure (PKI) is a term used for a framework that enables secure
exchange of information based on public key cryptography. It allows identities (of
people, organizations, etc.) to be bound to digital certificates and provides a means of
verifying the authenticity of certificates. PKI encompasses keys, certificates, public key
encryption, and trusted Certification Authorities (CAs) who generate and digitally sign
certificates.

The Java platform includes APIs and provider support for X.509 digital certificates and
Certificate Revocation Lists (CRLs), as well as PKIX-compliant certification path
building and validation. The classes related to PKI are located in the java.security and
java.security.cert packages.

Key and Certificate Storage
The Java platform provides for long-term persistent storage of cryptographic keys and
certificates via key and certificate stores. Specifically, the java.security.KeyStore class
represents a key store, a secure repository of cryptographic keys and/or trusted
certificates (to be used, for example, during certification path validation), and the
java.security.cert.CertStore class represents a certificate store, a public and

Chapter 1
Java Security Overview

1-7

potentially vast repository of unrelated and typically untrusted certificates. A CertStore
may also store CRLs.

KeyStore and CertStore implementations are distinguished by types. The Java platform
includes the standard PKCS11 and PKCS12 key store types (whose implementations
are compliant with the corresponding PKCS specifications from RSA Security). It also
contains a proprietary file-based key store type called JKS (which stands for Java Key
Store), and a type called DKS (Domain Key Store) which is a collection of keystores
that are presented as a single logical keystore.

The Java platform includes a special built-in key store, cacerts, that contains a
number of certificates for well-known, trusted CAs. The keytool utility is able to list the
certificates included in cacerts. See keytool in Java Platform, Standard Edition Tools
Reference.

The SunPKCS11 provider mentioned in the section Java Cryptography includes a
PKCS11 KeyStore implementation. This means that keys and certificates residing in
secure hardware (such as a smart card) can be accessed and used by Java
applications via the KeyStore API. Note that smart card keys may not be permitted to
leave the device. In such cases, the java.security.Key object returned by the KeyStore
API may simply be a reference to the key (that is, it would not contain the actual key
material). Such a Key object can only be used to perform cryptographic operations on
the device where the actual key resides.

The Java platform also includes an LDAP certificate store type (for accessing
certificates stored in an LDAP directory), as well as an in-memory Collection certificate
store type (for accessing certificates managed in a java.util.Collection object).

Public Key Infrastructure Tools
There are two built-in tools for working with keys, certificates, and key stores:

• keytool creates and manages key stores. Use it to perform the following tasks:

– Create public/private key pairs

– Display, import, and export X.509 v1, v2, and v3 certificates stored as files

– Create X.509 certificates

– Issue certificate (PKCS#10) requests to be sent to CAs

– Create certificates based on certificate requests

– Import certificate replies (obtained from the CAs sent certificate requests)

– Designate public key certificates as trusted

– Accept a password and store it securely as a secret key

• jarsigner signs JAR files and verifies signatures on signed JAR files. The Java
ARchive (JAR) file format enables the bundling of multiple files into a single file.
Typically, a JAR file contains the class files and auxiliary resources associated
with applets and applications.

To digitally sign code, perform the following:

1. Use keytool to generate or import appropriate keys and certificates into your key
store (if they are not there already).

2. Use the jar tool to package the code in a JAR file.

Chapter 1
Java Security Overview

1-8

3. Use the jarsigner tool to sign the JAR file. The jarsigner tool accesses a key
store to find any keys and certificates needed to sign a JAR file or to verify the
signature of a signed JAR file.

Note:

jarsigner can optionally generate signatures that include a timestamp.
Systems (such as Java Plug-in) that verify JAR file signatures can check the
timestamp and accept a JAR file that was signed while the signing certificate
was valid rather than requiring the certificate to be current. (Certificates
typically expire annually, and it is not reasonable to expect JAR file creators to
re-sign deployed JAR files annually.)

See keytool and jarsigner in Java Platform, Standard Edition Tools Reference.

Authentication

Authentication is the process of determining the identity of a user. In the context of the
Java runtime environment, it is the process of identifying the user of an executing Java
program. In certain cases, this process may rely on the services described in the
section Java Cryptography.

The Java platform provides APIs that enable an application to perform user
authentication via pluggable login modules. Applications call into the LoginContext
class (in the javax.security.auth.login package), which in turn references a
configuration. The configuration specifies which login module (an implementation of
the javax.security.auth.spi.LoginModule interface) is to be used to perform the actual
authentication.

Since applications solely talk to the standard LoginContext API, they can remain
independent from the underlying plug-in modules. New or updated modules can be
plugged in for an application without having to modify the application itself. The
following figure illustrates the independence between applications and underlying login
modules:

Chapter 1
Java Security Overview

1-9

Figure 1-3 Authentication Login Modules Plugging into the Authentication
Framework

Application

Smartcard Kerberos Username/
Password

Authentication Framework

Configuration

It is important to note that although login modules are pluggable components that can
be configured into the Java platform, they are not plugged in via security providers.
Therefore, they do not follow the provider searching model as described in the section
Security Providers. Instead, as is shown in Figure 1-3, login modules are administered
by their own unique configuration.

The Java platform provides the following built-in login modules, all in the
com.sun.security.auth.module package:

• Krb5LoginModule for authentication using Kerberos protocols

• JndiLoginModule for username/password authentication using LDAP or NIS
databases

• KeyStoreLoginModule for logging into any type of key store, including a PKCS#11
token key store

Authentication can also be achieved during the process of establishing a secure
communication channel between two peers. The Java platform provides
implementations of a number of standard communication protocols, which are
discussed in the section Secure Communication.

Secure Communication
The data that travels across a network can be accessed by someone who is not the
intended recipient. When the data includes private information, such as passwords
and credit card numbers, steps must be taken to make the data unintelligible to
unauthorized parties. It is also important to ensure that you are sending the data to the
appropriate party, and that the data has not been modified, either intentionally or
unintentionally, during transport.

Cryptography forms the basis required for secure communication; see the section
Java Cryptography. The Java platform also provides API support and provider
implementations for a number of standard secure communication protocols.

Chapter 1
Java Security Overview

1-10

SSL, TLS, and DTLS Protocols
The JDK provides APIs and an implementation of the SSL, TLS, and DTLS protocols
that includes functionality for data encryption, message integrity, and server and client
authentication. Applications can use SSL/TLS/DTLS to provide for the secure passage
of data between two peers over any application protocol, such as HTTP on top of
TCP/IP.

The javax.net.ssl.SSLSocket class represents a network socket that encapsulates
SSL/TLS support on top of a normal stream socket (java.net.Socket). Some
applications might want to use alternate data transport abstractions (for example,
New-I/O); the javax.net.ssl.SSLEngine class is available to produce and consume
SSL/TLS/DTLS packets.

The JDK also includes APIs that support the notion of pluggable (provider-based) key
managers and trust managers. A key manager is encapsulated by the
javax.net.ssl.KeyManager class, and manages the keys used to perform authentication.
A trust manager is encapsulated by the TrustManager class (in the same package), and
makes decisions about who to trust based on certificates in the key store it manages.

The JDK includes a built-in provider that implements the SSL/TLS/DTLS protocols:

• SSLv3

• TLSv1

• TLSv1.1

• TLSv1.2

• DTLSv1.0

• DTLSv1.2

Simple Authentication and Security Layer (SASL)
Simple Authentication and Security Layer (SASL) is an Internet standard that specifies
a protocol for authentication and optional establishment of a security layer between
client and server applications. SASL defines how authentication data is to be
exchanged, but does not itself specify the contents of that data. It is a framework into
which specific authentication mechanisms that specify the contents and semantics of
the authentication data can fit. There are a number of standard SASL mechanisms
defined by the Internet community for various security levels and deployment
scenarios.

The Java SASL API, which is in the java.security.sasl module, defines classes
and interfaces for applications that use SASL mechanisms. It is defined to be
mechanism-neutral; an application that uses the API need not be hardwired into using
any particular SASL mechanism. Applications can select the mechanism to use based
on desired security features. The API supports both client and server applications. The
javax.security.sasl.Sasl class is used to create SaslClient and SaslServer objects.

SASL mechanism implementations are supplied in provider packages. Each provider
may support one or more SASL mechanisms and is registered and invoked via the
standard provider architecture.

The Java platform includes a built-in provider that implements the following SASL
mechanisms:

Chapter 1
Java Security Overview

1-11

https://docs.oracle.com/javase/9/docs/api/java.security.sasl-summary.html

• CRAM-MD5, DIGEST-MD5, EXTERNAL, GSSAPI, NTLM, and PLAIN client
mechanisms

• CRAM-MD5, DIGEST-MD5, GSSAPI, and NTLM server mechanisms

Generic Security Service API and Kerberos

The Java platform contains an API with the Java language bindings for the Generic
Security Service Application Programming Interface (GSS-API), which is in the
java.security.jgss module. GSS-API offers application programmers uniform access to
security services atop a variety of underlying security mechanisms. The Java GSS-API
currently requires use of a Kerberos v5 mechanism, and the Java platform includes a
built-in implementation of this mechanism. At this time, it is not possible to plug in
additional mechanisms.

Note:

The Krb5LoginModule mentioned in the section Authentication can be used in
conjunction with the GSS Kerberos mechanism.

The Java platform also includes a built-in implementation of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) GSS-API mechanism.

Before two applications can use GSS-API to securely exchange messages between
them, they must establish a joint security context. The context encapsulates shared
state information that might include, for example, cryptographic keys. Both applications
create and use an org.ietf.jgss.GSSContext object to establish and maintain the
shared information that makes up the security context. Once a security context has
been established, it can be used to prepare secure messages for exchange.

The Java GSS APIs are in the org.ietf.jgss package. The Java platform also defines
basic Kerberos classes, like KerberosPrincipal, KerberosTicket, KerberosKey, and
KeyTab, which are located in the javax.security.auth.kerberos package.

Access Control
The access control architecture in the Java platform protects access to sensitive
resources (for example, local files) or sensitive application code (for example, methods
in a class). All access control decisions are mediated by a security manager,
represented by the java.lang.SecurityManager class. A SecurityManager must be
installed into the Java runtime in order to activate the access control checks.

Java applets and Java Web Start applications are automatically run with a
SecurityManager installed. However, local applications executed via the java command
are by default not run with a SecurityManager installed. In order to run local applications
with a SecurityManager, either the application itself must programmatically set one via
the setSecurityManager method (in the java.lang.System class), or java must be
invoked with a -Djava.security.manager argument on the command line.

Permissions
A permission represents access to a system resource. In order for a resource access
to be allowed for an applet (or an application running with a security manager), the

Chapter 1
Java Security Overview

1-12

https://docs.oracle.com/javase/9/docs/api/java.security.jgss-summary.html

corresponding permission must be explicitly granted to the code attempting the
access.

When Java code is loaded by a class loader into the Java runtime, the class loader
automatically associates the following information with that code:

• Where the code was loaded from

• Who signed the code (if anyone)

• Default permissions granted to the code

This information is associated with the code regardless of whether the code is
downloaded over an untrusted network (e.g., an applet) or loaded from the filesystem
(e.g., a local application). The location from which the code was loaded is represented
by a URL, the code signer is represented by the signer's certificate chain, and default
permissions are represented by java.security.Permission objects.

The default permissions automatically granted to downloaded code include the ability
to make network connections back to the host from which it originated. The default
permissions automatically granted to code loaded from the local filesystem include the
ability to read files from the directory it came from, and also from subdirectories of that
directory.

Note that the identity of the user executing the code is not available at class loading
time. It is the responsibility of application code to authenticate the end user if
necessary (see the section Authentication). Once the user has been authenticated, the
application can dynamically associate that user with executing code by invoking the
doAs method in the javax.security.auth.Subject class.

Security Policy
A limited set of default permissions are granted to code by class loaders.
Administrators have the ability to flexibly manage additional code permissions via a
security policy.

Java SE encapsulates the notion of a security policy in the java.security.Policy class.
There is only one Policy object installed into the Java runtime at any given time. The
basic responsibility of the Policy object is to determine whether access to a protected
resource is permitted to code (characterized by where it was loaded from, who signed
it, and who is executing it). How a Policy object makes this determination is
implementation-dependent. For example, it may consult a database containing
authorization data, or it may contact another service.

Java SE includes a default Policy implementation that reads its authorization data
from one or more ASCII (UTF-8) files configured in the security properties file. These
policy files contain the exact sets of permissions granted to code: specifically, the
exact sets of permissions granted to code loaded from particular locations, signed by
particular entities, and executing as particular users. The policy entries in each file
must conform to a documented proprietary syntax, and may be composed via a simple
text editor or the graphical policytool utility.

Note:

The policytool is deprecated and marked for removal in the next major JDK
release.

Chapter 1
Java Security Overview

1-13

Access Control Enforcement
The Java runtime keeps track of the sequence of Java calls that are made as a
program executes. When access to a protected resource is requested, the entire call
stack, by default, is evaluated to determine whether the requested access is permitted.

As mentioned previously, resources are protected by the SecurityManager. Security-
sensitive code in the JDK and in applications protects access to resources via code
like the following:

SecurityManager sm = System.getSecurityManager();
if (sm != null) {
 sm.checkPermission(perm);
}

The Permission object perm corresponds to the requested access. For example, if an
attempt is made to read the file /tmp/abc, the permission may be constructed as
follows:

Permission perm = new java.io.FilePermission("/tmp/abc", "read");

The default implementation of SecurityManager delegates its decision to the
java.security.AccessController implementation. The AccessController traverses the
call stack, passing to the installed security Policy each code element in the stack,
along with the requested permission (for example, the FilePermission in the previous
example). The Policy determines whether the requested access is granted, based on
the permissions configured by the administrator. If access is not granted, the
AccessController throws a java.lang.SecurityException.

Figure 1-4 illustrates access control enforcement. In this particular example, there are
initially two elements on the call stack, ClassA and ClassB. ClassA invokes a method in
ClassB, which then attempts to access the file /tmp/abc by creating an instance of
java.io.FileInputStream. The FileInputStream constructor creates a FilePermission,
perm, as shown above, and then passes perm to the SecurityManager class's
checkPermission method. In this particular case, only the permissions for ClassA and
ClassB need to be checked, because all classes in the java.base module, including
FileInputStream, SecurityManager, and AccessController, automatically receives all
permissions.

In this example, ClassA and ClassB have different code characteristics – they come
from different locations and have different signers. Each may have been granted a
different set of permissions. The AccessController only grants access to the requested
file if the Policy indicates that both classes have been granted the required
FilePermission.

Chapter 1
Java Security Overview

1-14

Figure 1-4 Controlling Access to Resources

XML Signature
The Java XML Digital Signature API is a standard Java API for generating and
validating XML Signatures.

XML Signatures can be applied to data of any type, XML or binary (see XML Signature
Syntax and Processing). The resulting signature is represented in XML. An XML
Signature can be used to secure your data and provide data integrity, message
authentication, and signer authentication.

The API is designed to support all of the required or recommended features of the
W3C Recommendation for XML-Signature Syntax and Processing. The API is
extensible and pluggable and is based on the Java Cryptography Service Provider
Architecture.

The Java XML Digital Signature API, which is in the java.xml.crypto module,
consists of six packages:

• javax.xml.crypto

• javax.xml.crypto.dsig

• javax.xml.crypto.dsig.keyinfo

Chapter 1
Java Security Overview

1-15

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
https://docs.oracle.com/javase/9/docs/api/java.xml.crypto-summary.html

• javax.xml.crypto.dsig.spec

• javax.xml.crypto.dom

• javax.xml.crypto.dsig.dom

Additional Information about Java Security

Find additional Java security documentation at Java SE Security.

Note:

Historically, as new types of security services were added to Java SE
(sometimes initially as extensions), various acronyms were used to refer to
them. Since these acronyms are still in use in the Java security
documentation, here is an explanation of what they represent:

• JSSE (Java Secure Socket Extension) refers to the SSL-related services
as described in the section SSL, TLS, and DTLS Protocols

• JCE (Java Cryptography Extension) refers to cryptographic services as
described in the section Java Cryptography

• JAAS (Java Authentication and Authorization Service) refers to the
authentication and user-based access control services as described in the
sections Authentication and Access Control, respectively

Java Security Classes Summary
The following table describes some of the names, packages, and usage of the Java
security classes and interfaces..

Table 1-3 Java security packages and classes

Package Class/Interface
Name

Usage Module

java.lang SecurityException Indicates a security
violation

java.base

java.lang SecurityManager Mediates all access
control decisions

java.base

java.lang System Installs the
SecurityManager

java.base

java.security AccessController Called by default
implementation of
SecurityManager to
make access control
decisions

java.base

java.security DomainLoadStorePara
meter

Stores parameters for
the Domain keystore
(DKS)

java.base

java.security Key Represents a
cryptographic key

java.base

Chapter 1
Java Security Overview

1-16

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Table 1-3 (Cont.) Java security packages and classes

Package Class/Interface
Name

Usage Module

java.security KeyStore Represents a
repository of keys and
trusted certificates

java.base

java.security MessageDigest Represents a
message digest

java.base

java.security Permission Represents access to
a particular resource

java.base

java.security PKCS12Attribute Supports attributes in
PKCS12 keystores

java.base

java.security Policy Encapsulates the
security policy

java.base

java.security Provider Encapsulates security
service
implementations

java.base

java.security Security Manages security
providers and Security
Properties

java.base

java.security Signature Creates and verifies
digital signatures

java.base

java.security.cert Certificate Represents a public
key certificate

java.base

java.security.cert CertStore Represents a
repository of unrelated
and typically untrusted
certificates

java.base

java.security.cert CRL Represents a CRL java.base

javax.crypto Cipher Performs encryption
and decryption

java.base

javax.crypto KeyAgreement Performs a key
exchange

java.base

javax.net.ssl KeyManager Manages keys used to
perform SSL/TLS
authentication

java.base

javax.net.ssl SSLEngine Produces/consumes
SSL/TLS packets,
allowing the
application freedom to
choose a transport
mechanism

java.base

javax.net.ssl SSLSocket Represents a network
socket that
encapsulates
SSL/TLS support on
top of a normal stream
socket

java.base

Chapter 1
Java Security Overview

1-17

Table 1-3 (Cont.) Java security packages and classes

Package Class/Interface
Name

Usage Module

javax.net.ssl TrustManager Makes decisions
about who to trust in
SSL/TLS interactions
(for example, based
on trusted certificates
in key stores)

java.base

javax.security.auth Subject Represents a user java.base

javax.security.auth
.kerberos

KerberosPrincipal Represents a
Kerberos principal

java.base

javax.security.auth
.kerberos

KerberosTicket Represents a
Kerberos ticket

java.base

javax.security.auth
.kerberos

KerberosKey Represents a
Kerberos key

java.base

javax.security.auth
.kerberos

KerberosTab Represents a
Kerberos keytab file

java.base

javax.security.auth
.login

LoginContext Supports pluggable
authentication

java.base

javax.security.auth
.spi

LoginModule Implements a specific
authentication
mechanism

java.base

javax.security.sasl Sasl Creates SaslClient
and SaslServer
objects

java.security.sasl

javax.security.sasl SaslClient Performs SASL
authentication as a
client

java.security.sasl

javax.security.sasl SaslServer Performs SASL
authentication as a
server

java.security.sasl

org.ietf.jgss GSSContext Encapsulates a GSS-
API security context
and provides the
security services
available via the
context

java.security.jgss

com.sun.security.au
th.module

JndiLoginModule Performs username/
password
authentication using
LDAP or NIS

jdk.security.auth

com.sun.security.au
th.module

KeyStoreLoginModule Performs
authentication based
on key store login

jdk.security.auth

com.sun.security.au
th.module

Krb5LoginModule Performs
authentication using
Kerberos protocols

jdk.security.auth

Deprecated Security APIs Marked for Removal
The following APIs are deprecated and eligible to be removed in a future release.

Chapter 1
Java Security Overview

1-18

You can check the API dependencies using the jdeprscan tool. See jdeprscan in Java
Platform, Standard Edition Tools Reference.

The following classes are deprecated and marked for removal:

• com.sun.security.auth.PolicyFile

• com.sun.security.auth.SolarisNumericGroupPrincipal

• com.sun.security.auth.SolarisNumericUserPrincipal

• com.sun.security.auth.SolarisPrincipal

• com.sun.security.auth.X500Principal

• com.sun.security.auth.module.SolarisLoginModule

• com.sun.security.auth.module.SolarisSystem

The following methods are deprecated and marked for removal:

• java.lang.SecurityManager.getInCheck

• java.lang.SecurityManager.checkMemberAccess

• java.lang.SecurityManager.classDepth

• java.lang.SecurityManager.currentClassLoader

• java.lang.SecurityManager.currentLoadedClass

• java.lang.SecurityManager.inClass

• java.lang.SecurityManager.inClassLoader

• java.lang.SecurityManager.checkAwtEventQueueAccess

• java.lang.SecurityManager.checkTopLevelWindow

• java.lang.SecurityManager.checkSystemClipboardAccess

The following field is deprecated and marked for removal:

• java.lang.SecurityManager.incheck

Security Tools Summary
The following tables describe Java security and Kerberos-related tools.

See Security Tools and Commands in Java Platform, Standard Edition Tools
Reference.

Table 1-4 Java Security Tools

Tool Usage

jar Creates Java Archive (JAR) files

jarsigner Signs and verifies signatures on JAR files

keytool Creates and manages key stores

Chapter 1
Java Security Overview

1-19

Table 1-4 (Cont.) Java Security Tools

Tool Usage

policytool Creates and edits policy files for use with default Policy
implementation

Note:

policytool is deprecated and marked for removal.

There are also three Kerberos-related tools that are shipped with the JDK for
Windows. Equivalent functionality is provided in tools of the same name that are
automatically part of the Solaris and Linux operating environments.

Table 1-5 Kerberos-related Tools

Tool Usage

kinit Obtains and caches Kerberos ticket-granting tickets

klist Lists entries in the local Kerberos credentials cache and
key table

ktab Manages the names and service keys stored in the local
Kerberos key table

Built-In Providers
The Java SE implementation from Oracle includes a number of built-in provider
packages. See JDK Providers Documentation.

Security Architecture
See Security Architecture in the JDK 8 documentation for an overview of the
motivation of major security features, an introduction to security classes and their
usage, a discussion of the impact of the security architecture on code, and thoughts on
writing security-sensitive code.

Standard Algorithm Names
See Java Security Standard Algorithm Names Specification for information about the
set of standard names for algorithms, certificate and keystore types that Java SE
requires and uses.

Chapter 1
Security Architecture

1-20

https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

Permissions in the Java Development Kit (JDK)
Information about the built-in JDK permission types and associated risks of granting
each permission. Information about methods that require permissions to be in effect in
order to be successful, and for each method lists the required permission.

A permission represents access to a system resource. In order for a resource access
to be allowed for an applet (or an application running with a security manager), the
corresponding permission must be explicitly granted to the code attempting the
access.

A permission typically has a name (often referred to as a "target name") and, in some
cases, a comma-separated list of one or more actions.

For example, the following code creates a FilePermission object representing read
access to the file named abc in the /tmp directory:

perm = new java.io.FilePermission("/tmp/abc", "read");

Here, the target name is "/tmp/abc" and the action string is "read".

Important:

The above statement creates a permission object. A permission object
represents, but does not grant access to, a system resource. Permission
objects are constructed and assigned ("granted") to code based on the policy
in effect. When a permission object is assigned to some code, that code is
granted the permission to access the system resource specified in the
permission object, in the specified manner. A permission object may also be
constructed by the current security manager when making access decisions.
In this case, the (target) permission object is created based on the requested
access, and checked against the permission objects granted to and held by
the code making the request.

The policy for a Java application environment is represented by a Policy object. In the
"JavaPolicy" Policy implementation, the policy can be specified within one or more
policy configuration files. The policy file(s) specify what permissions are allowed for
code from specified code sources. A sample policy file entry that grants code from
the /home/sysadmin directory read access to the file /tmp/abc is

grant codeBase "file:/home/sysadmin/" {
 permission java.io.FilePermission "/tmp/abc", "read";
};

To know more about policy file locations and granting permissions in policy files, see
Default Policy Implementation and Policy File Syntax.
Using the policy tool saves typing and eliminates the need for you to know the required
syntax of policy files. To know more about using the policy tool to specify the
permissions, see Policy Tool. Using the policy tool saves typing and eliminates the
need for you to know the required syntax of policy files.
Technically, whenever a resource access is attempted, all code traversed by the
execution thread up to that point must have permission for that resource access,

Chapter 1
Permissions in the Java Development Kit (JDK)

1-21

unless some code on the thread has been marked as "privileged." See API for
Privileged Blocks.

Permission Descriptions and Risks
List of built-in JDK permission types and the risks of granting each permission.

• AWTPermission

• FilePermission

• SerializablePermission

• ManagementPermission

• ReflectPermission

• RuntimePermission

– NIO-Related Targets

• NetPermission

• SocketPermission

• LinkPermission

• URLPermission

• AllPermission

• SecurityPermission

• UnresolvedPermission

• SQLPermission

• LoggingPermission

• PropertyPermission

• MBeanPermission

• MBeanServerPermission

• MBeanTrustPermission

• SubjectDelegationPermission

• SSLPermission

• AuthPermission

• DelegationPermission

• ServicePermission

• PrivateCredentialPermission

• AudioPermission

• JAXBPermission

• WebServicePermission

• Methods and the Required Permissions

• java.lang.SecurityManager Method Permission Checks

Chapter 1
Permissions in the Java Development Kit (JDK)

1-22

https://docs.oracle.com/javase/9/docs/api/java/awt/AWTPermission.html
https://docs.oracle.com/javase/9/docs/api/java/io/FilePermission.html
https://docs.oracle.com/javase/9/docs/api/java/io/SerializablePermission.html
https://docs.oracle.com/javase/9/docs/api/java/lang/management/ManagementPermission.html#ManagementPermission-java.lang.String-java.lang.String-
https://docs.oracle.com/javase/9/docs/api/java/lang/reflect/ReflectPermission.html
https://docs.oracle.com/javase/9/docs/api/java/lang/RuntimePermission.html
https://docs.oracle.com/javase/9/docs/api/java/net/NetPermission.html
https://docs.oracle.com/javase/9/docs/api/java/net/SocketPermission.html
https://docs.oracle.com/javase/9/docs/api/java/nio/file/LinkPermission.html
https://docs.oracle.com/javase/9/docs/api/java/net/URLPermission.html
https://docs.oracle.com/javase/9/docs/api/java/security/AllPermission.html
https://docs.oracle.com/javase/9/docs/api/java/security/SecurityPermission.html
https://docs.oracle.com/javase/9/docs/api/java/security/UnresolvedPermission.html
https://docs.oracle.com/javase/9/docs/api/java/sql/SQLPermission.html
https://docs.oracle.com/javase/9/docs/api/java/util/logging/LoggingPermission.html
https://docs.oracle.com/javase/9/docs/api/java/util/PropertyPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/management/MBeanPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/management/MBeanServerPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/management/MBeanTrustPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/management/remote/SubjectDelegationPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/AuthPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/kerberos/DelegationPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/kerberos/ServicePermission.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/PrivateCredentialPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/sound/sampled/AudioPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/bind/JAXBPermission.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/ws/WebServicePermission.html

NIO-Related Targets
NIO-related related target names.

Two NIO-related RuntimePermission targets were added in the 1.4 release of the
JavaSE JDK:

selectorProvider
charsetProvider

These RuntimePermissions are required to be granted to classes which subclass
and implement java.nio.channel.spi.SelectorProvider or
java.nio.charset.spi.CharsetProvider. The permission is checked during
invocation of the abstract base class constructor. These permissions ensure trust in
classes which implement these security-sensitive provider mechanisms. For more
information, see
java.nio.channels.spi.SelectorProviderjava.nio.channels.spi.CharsetProvider

Methods and the Required Permissions
List of all the methods that require permissions, and for each method the
corresponding SecurityManager method it calls.

Note:

The list of all the methods discussed in this document is not complete and
does not include several methods that require permissions. See API
Documentation for additional information on methods that throw
SecurityException and the permissions that are required.

In the default SecurityManager method implementations, a call to a method in the
Method column can only be successful if the permission specified in the
corresponding entry in the SecurityManager Method column is allowed by the policy
currently in effect.

Example 1-1 SecurityManager checkPermission Method

getSystemEventQueuejava.awt.ToolkitcheckPermission

 java.awt.AWTPermission "accessEventQueue";

Method SecurityManager Method Permission

java.awt.Toolkit
 getSystemEventQueue();

checkPermission java.awt.AWTPermission

"accessEventQueue";

The following convention means the runtime value of foo replaces the string {foo} in
the permission name:

Chapter 1
Permissions in the Java Development Kit (JDK)

1-23

https://docs.oracle.com/javase/9/docs/api/java/nio/channels/spi/SelectorProvider.html
https://docs.oracle.com/javase/9/docs/api/java/nio/charset/spi/CharsetProvider.html
https://docs.oracle.com/javase/9/docs/api/
https://docs.oracle.com/javase/9/docs/api/

Method SecurityManager Method Permission

 some.package.class
 public static void
someMethod(String foo);

checkXXX SomePermission "{foo}";

Example 1-2 SecurityManager checkRead Method

FileInputStreamjava.io.FileInputStream checkRead

Method SecurityManager Method Permission

java.io.FileInputStream
 FileInputStream(String
name)

checkRead(String) java.io.FilePermission

"{name}", "read";

If the FileInputStream method (in this case, a constructor) is called with "/test/
MyTestFile" as the name argument, as in

FileInputStream("/test/MyTestFile");

then in order for the call to succeed, the following permission must be set in the
current policy, allowing read access to the file "/test/MyTestFile":

java.io.FilePermission "/test/MyTestFile", "read";

More specifically, the permission must either be explicitly set, as above, or implied by
another permission, such as the following:

java.io.FilePermission "/test/*", "read";

which allows read access to any files in the "/test" directory.

Example 1-3 SecurityManager checkAccept Method

In some cases, a term in braces is not exactly the same as the name of a specific
method argument but is meant to represent the relevant value:

Method SecurityManager Method Permission

java.net.DatagramSocket
 public synchronized void

receive(DatagramPacket p);

checkAccept({host},

{port})

java.net.SocketPermission

"{host}:{port}", "accept";

Here, the appropriate host and port values are calculated by the receive method and
passed to checkAccept.

In most cases, just the name of the SecurityManager method called is listed. Where
the method is one of multiple methods of the same name, the argument types are also

Chapter 1
Permissions in the Java Development Kit (JDK)

1-24

listed, for example for checkRead(String) and checkRead(FileDescriptor). In other
cases where arguments may be relevant, they are also listed.

Methods and the Permissions

The following table is ordered by package name, the methods in classes in the
java.awt package are listed first, followed by methods in classes in the java.io
package, and so on:

Table 1-6 Methods and the Permissions

Method SecurityManager Method Permission

java.awt.Graphics2d
 public abstract void
 setComposite(Composite
comp)

checkPermission java.awt.AWTPermission
"readDisplayPixels" if this
Graphics2D context is drawing
to a Component on the display
screen and the Composite is a
custom object rather than an
instance of the
AlphaComposite class. Note:
The setComposite method is
actually abstract and thus
can't invoke security checks.
Each actual implementation of
the method should call the
java.lang.SecurityManager
checkPermission method with
a
java.awt.AWTPermission("rea
dDisplayPixels") permission
under the conditions noted.

java.awt.Robot
 public Robot()
 public
Robot(GraphicsDevice
screen)

checkPermission java.awt.AWTPermission
"createRobot"

java.awt.Toolkit
 public void
addAWTEventListener(
 AWTEventListener
listener,
 long eventMask)
 public void
removeAWTEventListener(
 AWTEventListener
listener)

checkPermission java.awt.AWTPermission
"listenToAllAWTEvents"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-25

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.awt.Toolkit
 public abstract PrintJob
getPrintJob(
 Frame frame,
String jobtitle,
 Properties
props)

checkPrintJobAccess java.lang.RuntimePermission
"queuePrintJob"

Note: The getPrintJob method
is actually abstract and thus
can't invoke security checks.
Each actual implementation of
the method should call the
java.lang.SecurityManager
checkPrintJobAccess method,
which is successful only if the
java.lang.RuntimePermission
"queuePrintJob" permission is
currently allowed.

java.awt.Toolkit
 public abstract Clipboard

getSystemClipboard()

checkPermission java.awt.AWTPermission
"accessClipboard"

Note: The
getSystemClipboard method is
actually abstract and thus
can't invoke security checks.
Each actual implementation of
the method should call the
checkPermission method,
which is successful only if the
java.awt.AWTPermission
"accessClipboard" permission
is currently allowed.

java.awt.Toolkit
 public final EventQueue

getSystemEventQueue()

checkPermission java.awt.AWTPermission
"accessEventQueue"

java.awt.Window
 Window()

checkPermission If java.awt.AWTPermission
"showWindowWithoutWarning
Banner" is set, the window will
be displayed without a banner
warning that the window was
created by an applet. It it's not
set, such a banner will be
displayed.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-26

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.beans.Beans
 public static void
setDesignTime(
 boolean
isDesignTime)
 public static void
setGuiAvailable(
 boolean
isGuiAvailable)

java.beans.Introspector
 public static
synchronized void

setBeanInfoSearchPath(Strin
g path[])

java.beans.PropertyEditorMa
nager
 public static void
registerEditor(
 Class
targetType,
 Class
editorClass)
 public static
synchronized void

setEditorSearchPath(String
path[])

checkPropertiesAccess java.util.PropertyPermission
"*", "read,write"

java.io.File
 public boolean delete()
 public void
deleteOnExit()

checkDelete(String) java.io.FilePermission
"{name}", "delete"

java.io.FileInputStream

FileInputStream(FileDescrip
tor fdObj)

checkRead(FileDescriptor) java.lang.RuntimePermission
"readFileDescriptor"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-27

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.io.FileInputStream
 FileInputStream(String
name)
 FileInputStream(File
file)

java.io.File
 public boolean exists()
 public boolean canRead()
 public boolean isFile()
 public boolean
isDirectory()
 public boolean isHidden()
 public long
lastModified()
 public long length()
 public String[] list()
 public String[] list(
 FilenameFilter
filter)
 public File[] listFiles()
 public File[] listFiles(
 FilenameFilter
filter)
 public File[] listFiles(
 FileFilter
filter)

java.io.RandomAccessFile
 RandomAccessFile(String
name, String mode)
 RandomAccessFile(File
file, String mode)
 (where mode is "r"
in both of these)

checkRead(String) java.io.FilePermission
"{name}", "read"

java.io.FileOutputStream

FileOutputStream(FileDescri
ptor fdObj)

checkWrite(FileDescriptor) java.lang.RuntimePermission
"writeFileDescriptor"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-28

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.io.FileOutputStream
 FileOutputStream(File
file)
 FileOutputStream(String
name)
 FileOutputStream(String
name,
 boolean
append)

java.io.File
 public boolean canWrite()
 public boolean
createNewFile()
 public static File
createTempFile(
 String prefix,
String suffix)
 public static File
createTempFile(
 String prefix,
String suffix,
 File directory)
 public boolean mkdir()
 public boolean mkdirs()
 public boolean
renameTo(File dest)
 public boolean
setLastModified(long time)
 public boolean
setReadOnly()

checkWrite(String) java.io.FilePermission
"{name}", "write"

java.io.ObjectInputStream
 protected final boolean

enableResolveObject(boolean
 enable);

java.io.ObjectOutputStream
 protected final boolean

enableReplaceObject(boolean
 enable)

checkPermission java.io.SerializablePermission
"enableSubstitution"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-29

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.io.ObjectInputStream
 protected
ObjectInputStream()

java.io.ObjectOutputStream
 protected
ObjectOutputStream()

checkPermission java.io.SerializablePermission
"enableSubclassImplementati
on"

java.io.RandomAccessFile
 RandomAccessFile(String
name, String mode)
 (where mode is "rw")

checkRead(String) and
checkWrite(String)

java.io.FilePermission
"{name}", "read,write"

java.lang.Class
 public static Class
forName(
 String name, boolean
initialize,
 ClassLoader loader)

checkPermission If loader is null, and the
caller's class loader is not null,
then
java.lang.RuntimePer
mission("getClassLoa
der")

java.lang.Class
 public ClassLoader
getClassLoader()

checkPermission If the caller's class loader is
null, or is the same as or an
ancestor of the class loader
for the class whose class
loader is being requested, no
permission is needed.
Otherwise,
java.lang.RuntimePermissio
n "getClassLoader" is
required.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-30

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.Class
 public Class[]
getDeclaredClasses()
 public Field[]
getDeclaredFields()
 public Method[]
getDeclaredMethods()
 public Constructor[]

getDeclaredConstructors()
 public Field
getDeclaredField(

String name)
 public Method
getDeclaredMethod(...)
 public Constructor

getDeclaredConstructor(...)

checkMemberAccess(this,
Member.DECLARED) and, if
this class is in a package,
checkPackageAccess({pkgNa
me})

Default checkMemberAccess
does not require any
permissions if "this" class's
classloader is the same as
that of the caller. Otherwise, it
requires
java.lang.RuntimePermission
"accessDeclaredMembers". If
this class is in a package,
java.lang.RuntimePermission
"accessClassInPackage.
{pkgName}" is also required.

java.lang.Class
 public Class[]
getClasses()
 public Field[]
getFields()
 public Method[]
getMethods()
 public Constructor[]
getConstructors()
 public Field
getField(String name)
 public Method
getMethod(...)
 public Constructor
getConstructor(...)

checkMemberAccess(this,
Member.PUBLIC) and, if class
is in a package,
checkPackageAccess({pkgNa
me})

Default checkMemberAccess
does not require any
permissions when the access
type is Member.PUBLIC. If
this class is in a package,
java.lang.RuntimePermission
"accessClassInPackage.
{pkgName}" is required.

java.lang.Class
 public ProtectionDomain

getProtectionDomain()

checkPermission java.lang.RuntimePermission
"getProtectionDomain"

java.lang.ClassLoader
 ClassLoader()
 ClassLoader(ClassLoader
parent)

checkCreateClassLoader java.lang.RuntimePermission
"createClassLoader"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-31

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.ClassLoader
 public static ClassLoader

getSystemClassLoader()
 public ClassLoader
getParent()

checkPermission If the caller's class loader is
null, or is the same as or an
ancestor of the class loader
for the class whose class
loader is being requested, no
permission is needed.
Otherwise,
java.lang.RuntimePermissio
n "getClassLoader" is
required.

java.lang.Runtime
 public Process
exec(String command)
 public Process
exec(String command,

String envp[])
 public Process
exec(String cmdarray[])
 public Process
exec(String cmdarray[],

String envp[])

checkExec java.io.FilePermissi
on "{command}",
"execute"

java.lang.Runtime
 public void exit(int
status)
 public static void

runFinalizersOnExit(boolean
 value)
java.lang.System
 public static void
exit(int status)
 public static void

runFinalizersOnExit(boolean
 value)

checkExit(status) where status
is 0 for runFinalizersOnExit

java.lang.RuntimePermissio
n "exitVM.{status}"

java.lang.Runtime
 public void
addShutdownHook(Thread
hook)
 public boolean
removeShutdownHook(Thread
hook)

checkPermission java.lang.RuntimePermissio
n "shutdownHooks"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-32

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.Runtime
 public void load(String
lib)
 public void
loadLibrary(String lib)
java.lang.System
 public static void
load(String filename)
 public static void
loadLibrary(

String libname)

checkLink({libName}) where
{libName} is the lib, filename
or libname argument

java.lang.RuntimePermissio
n "loadLibrary.{libName}"

java.lang.SecurityManager
methods

checkPermission See
java.lang.SecurityManager
Method Permission Checks.

java.lang.System
 public static Properties
 getProperties()
 public static void

setProperties(Properties
props)

checkPropertiesAccess java.util.PropertyPermissi
on "*", "read,write"

java.lang.System
 public static String
 getProperty(String
key)
 public static String
 getProperty(String
key, String def)

checkPropertyAccess java.util.PropertyPermissi
on "{key}", "read"

java.lang.System
 public static void
setIn(InputStream in)
 public static void
setOut(PrintStream out)
 public static void
setErr(PrintStream err)

checkPermission java.lang.RuntimePermissio
n "setIO"

java.lang.System
 public static String
 setProperty(String
key, String value)

checkPermission java.util.PropertyPermissi
on "{key}", "write"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-33

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.System
 public static
synchronized void

setSecurityManager(Security
Manager s)

checkPermission java.lang.RuntimePermissio
n "setSecurityManager"

java.lang.Thread
 public ClassLoader
getContextClassLoader()

checkPermission If the caller's class loader is
null, or is the same as or an
ancestor of the context class
loader for the thread whose
context class loader is being
requested, no permission is
needed. Otherwise,
java.lang.RuntimePermissio
n "getClassLoader" is
required.

java.lang.Thread
 public void
setContextClassLoader

(ClassLoader cl)

checkPermission java.lang.RuntimePermissio
n "setContextClassLoader"

java.lang.Thread
 public final void
checkAccess()
 public void interrupt()
 public final void
suspend()
 public final void
resume()
 public final void
setPriority
 (int
newPriority)
 public final void
setName(String name)
 public final void
setDaemon(boolean on)

checkAccess(this) java.lang.RuntimePermissio
n "modifyThread"

java.lang.Thread
 public static int
 enumerate(Thread
tarray[])

checkAccess({threadGroup}) java.lang.RuntimePermissio
n "modifyThreadGroup"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-34

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.Thread
 public final void stop()

checkAccess(this). Also
checkPermission if the current
thread is trying to stop a
thread other than itself.

java.lang.RuntimePermissio
n "modifyThread". .
Also
java.lang.RuntimePermissio
n "stopThread" if the current
thread is trying to stop a
thread other than itself.

java.lang.Thread
 public final
synchronized void

stop(Throwable obj)

checkAccess(this). Also
checkPermission if the current
thread is trying to stop a
thread other than itself or obj
is not an instance of
ThreadDeath.

java.lang.RuntimePermissio
n "modifyThread".
Also
java.lang.RuntimePermissio
n "stopThread" if the current
thread is trying to stop a
thread other than itself or obj
is not an instance of
ThreadDeath.

java.lang.Thread
 Thread()
 Thread(Runnable target)
 Thread(String name)
 Thread(Runnable target,
String name)

java.lang.ThreadGroup
 ThreadGroup(String name)
 ThreadGroup(ThreadGroup
parent,
 String name)

checkAccess({parentThreadGr
oup})

java.lang.RuntimePermissio
n "modifyThreadGroup"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-35

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.Thread
 Thread(ThreadGroup
group, ...)

java.lang.ThreadGroup
 public final void
checkAccess()
 public int
enumerate(Thread list[])
 public int
enumerate(Thread list[],
 boolean recurse)
 public int
enumerate(ThreadGroup
list[])
 public int
enumerate(ThreadGroup
list[],
 boolean recurse)
 public final ThreadGroup
getParent()
 public final void
 setDaemon(boolean
daemon)
 public final void
setMaxPriority(int pri)
 public final void
suspend()
 public final void
resume()
 public final void
destroy()

checkAccess(this) for
ThreadGroup methods, or
checkAccess(group) for
Thread methods

java.lang.RuntimePermissio
n "modifyThreadGroup"

java.lang.ThreadGroup
 public final void
interrupt()

checkAccess(this) Requires
java.lang.RuntimePermissio
n "modifyThreadGroup". Also
requires
java.lang.RuntimePermissio
n "modifyThread", since the
java.lang.Thread interrupt()
method is called for each
thread in the thread group and
in all of its subgroups. See the
Thread interrupt() method.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-36

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.ThreadGroup
 public final void stop()

checkAccess(this) Requires
java.lang.RuntimePermissio
n "modifyThreadGroup". Also
requires
java.lang.RuntimePermissio
n "modifyThread" and
possibly
java.lang.RuntimePermissio
n "stopThread", since the
java.lang.Thread stop()
method is called for each
thread in the thread group and
in all of its subgroups. See the
Thread stop() method.

java.lang.reflect.Accessibl
eObject
 public static void
setAccessible(...)
 public void
setAccessible(...)

checkPermission java.lang.reflect.ReflectP
ermission
"suppressAccessChecks"

java.net.Authenticator
 public static
PasswordAuthentication

requestPasswordAuthenticati
on(
 InetAddress
addr,
 int port,
 String
protocol,
 String prompt,
 String scheme)

checkPermission java.net.NetPermission
"requestPasswordAuthentica
tion"

java.net.Authenticator
 public static void

setDefault(Authenticator a)

checkPermission java.net.NetPermission
"setDefaultAuthenticator"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-37

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.net.MulticastSocket
 public void

joinGroup(InetAddress
mcastaddr)
 public void

leaveGroup(InetAddress
mcastaddr)

checkMulticast(InetAddress) java.net.SocketPermission(
mcastaddr.getHostAddress()
, "accept,connect")

java.net.DatagramSocket
 public void
send(DatagramPacket p)

checkMulticast(p.getAddress()
) or
checkConnect(p.getAddress()
.getHostAddress(),
p.getPort())

if
(p.getAddress().isMulticast
Address())
{ java.net.SocketPermissio
n((p.getAddress()).getHost
Address(),
"accept,connect") }
else {port = p.getPort();
host =
p.getAddress().getHostAddre
ss();
if (port == -1)
 java.net.SocketPermission
"{host}","resolve";
else
java.net.SocketPermission
"{host}:{port}","connect"

java.net.MulticastSocket
 public synchronized void
 send(DatagramPacket
p, byte ttl)

checkMulticast(p.getAddress()
, ttl) or
checkConnect(p.getAddress()
.getHostAddress(),
p.getPort())

if
(p.getAddress().isMulticast
Address())
{ java.net.SocketPermissio
n((p.getAddress()).getHost
Address(),
"accept,connect") } else
{ port = p.getPort(); host
=
p.getAddress().getHostAddre
ss(); if (port == -1)
java.net.SocketPermission
"{host}","resolve"; else
java.net.SocketPermission
"{host}:{port}","connect" }

Chapter 1
Permissions in the Java Development Kit (JDK)

1-38

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.net.InetAddress
 public String
getHostName()
 public static
InetAddress[]

getAllByName(String host)
 public static
InetAddress getLocalHost()

java.net.DatagramSocket
 public InetAddress
getLocalAddress()

checkConnect({host}, -1) java.net.SocketPermission
"{host}", "resolve"

java.net.ServerSocket
 ServerSocket(...)

java.net.DatagramSocket
 DatagramSocket(...)

java.net.MulticastSocket
 MulticastSocket(...)

checkListen({port}) java.net.SocketPermission
"localhost:
{port}","listen";

java.net.ServerSocket
 public Socket accept()
 protected final void
implAccept(Socket s)

checkAccept({host}, {port}) java.net.SocketPermission
"{host}:{port}", "accept"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-39

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.net.ServerSocket
 public static
synchronized void
 setSocketFactory(...)

java.net.Socket
 public static
synchronized void

setSocketImplFactory(...)

java.net.URL
 public static
synchronized void

setURLStreamHandlerFactory(
...)

 java.net.URLConnection
 public static
synchronized void

setContentHandlerFactory(..
.)
 public static void

setFileNameMap(FileNameMap
map)

java.net.HttpURLConnection
 public static void

setFollowRedirects(boolean
set)

java.rmi.activation.Activat
ionGroup
 public static
synchronized
 ActivationGroup
createGroup(...)
 public static
synchronized void

setSystem(ActivationSystem
system)

java.rmi.server.RMISocketFa
ctory
 public synchronized
static void
 setSocketFactory(...)

checkSetFactory java.lang.RuntimePermissio
n "setFactory"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-40

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.net.Socket
 Socket(...)

checkConnect({host}, {port}) java.net.SocketPermission
"{host}:{port}", "connect"

java.net.DatagramSocket
 public synchronized void

receive(DatagramPacket p)

checkAccept({host}, {port}) java.net.SocketPermission
"{host}:{port}", "accept"

java.net.URL
 URL(...)

checkPermission java.net.NetPermission
"specifyStreamHandler"

java.net.URLClassLoader
 URLClassLoader(...)

checkCreateClassLoader java.lang.RuntimePermissio
n "createClassLoader"

java.security.AccessControl
Context
 public
AccessControlContext(Access
ControlContext acc,

 DomainCombiner
combiner)
 public DomainCombiner
getDomainCombiner()

checkPermission java.security.SecurityPerm
ission
"createAccessControlContex
t"

java.security.Identity
 public void
addCertificate(...)

checkSecurityAccess("addIde
ntityCertificate")

java.security.SecurityPerm
ission
"addIdentityCertificate"

java.security.Identity
 public void
removeCertificate(...)

checkSecurityAccess("remov
eIdentityCertificate")

java.security.SecurityPerm
ission
"removeIdentityCertificate
"

java.security.Identity
 public void
setInfo(String info)

checkSecurityAccess("setIde
ntityInfo")

java.security.SecurityPerm
ission "setIdentityInfo"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-41

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.security.Identity
 public void
setPublicKey(PublicKey key)

checkSecurityAccess("setIde
ntityPublicKey")

java.security.SecurityPerm
ission
"setIdentityPublicKey"

java.security.Identity
 public String
toString(...)

checkSecurityAccess("printId
entity")

java.security.SecurityPerm
ission "printIdentity"

java.security.IdentityScope
 protected static void
setSystemScope()

checkSecurityAccess("setSys
temScope")

java.security.SecurityPerm
ission "setSystemScope"

java.security.Permission
 public void
checkGuard(Object object)

checkPermission(this) this Permission object is the
permission checked

java.security.Policy
 public static Policy
getPolicy()

checkPermission java.security.SecurityPerm
ission "getPolicy"

java.security.Policy
 public static void
 setPolicy(Policy
policy)

checkPermission java.security.SecurityPerm
ission "setPolicy"

java.security.Policy
 public static Policy
 getInstance(String
type, SpiParameter params)
 getInstance(String
type, SpiParameter params,
String provider)
 getInstance(String
type, SpiParameter params,
Provider provider)

checkPermission java.security.SecurityPerm
ission "createPolicy.
{type}"

java.security.Provider
 public synchronized void
clear()

checkSecurityAccess("clearPr
oviderProperties."+{name})

java.security.SecurityPerm
ission
"clearProviderProperties.
{name}" where name is the
provider name.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-42

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.security.Provider
 public synchronized
Object
 put(Object key,
Object value)

checkSecurityAccess("putPro
viderProperty."+{name})

java.security.SecurityPerm
ission
"putProviderProperty.
{name}" where name is the
provider name.

java.security.Provider
 public synchronized
Object
 remove(Object key)

checkSecurityAccess("remov
eProviderProperty."+{name})

java.security.SecurityPerm
ission
"removeProviderProperty.
{name}" where name is the
provider name.

java.security.SecureClassLo
ader
 SecureClassLoader(...)

checkCreateClassLoader java.lang.RuntimePermissio
n "createClassLoader"

java.security.Security
 public static void
getProperty(String key)

checkPermission java.security.SecurityPerm
ission "getProperty.{key}"

java.security.Security
 public static int
 addProvider(Provider
provider)
 public static int

insertProviderAt(Provider
provider,
 int
position);

checkSecurityAccess("insertP
rovider."+provider.getName())

java.security.SecurityPerm
ission "insertProvider.
{name}"

java.security.Security
 public static void

removeProvider(String name)

checkSecurityAccess("remov
eProvider."+name)

java.security.SecurityPerm
ission "removeProvider.
{name}"

java.security.Security
 public static void
 setProperty(String
key, String datum)

checkSecurityAccess("setPro
perty."+key)

java.security.SecurityPerm
ission "setProperty.{key}"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-43

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.security.Signer
 public PrivateKey
getPrivateKey()

checkSecurityAccess("getSig
nerPrivateKey")

java.security.SecurityPerm
ission
"getSignerPrivateKey"

java.security.Signer
 public final void
 setKeyPair(KeyPair
pair)

checkSecurityAccess("setSig
nerKeypair")

java.security.SecurityPerm
ission "setSignerKeypair"

java.sql.DriverManager
 public static
synchronized void

setLogWriter(PrintWriter
out)

checkPermission java.sql.SQLPermission
"setLog"

java.sql.DriverManager
 public static
synchronized void

setLogStream(PrintWriter
out)

checkPermission java.sql.SQLPermission
"setLog"

java.util.Locale
 public static
synchronized void

setDefault(Locale
newLocale)

checkPermission java.util.PropertyPermissi
on "user.language","write"

java.util.zip.ZipFile
 ZipFile(String name)

checkRead java.io.FilePermission
"{name}","read"

javax.security.auth.Subject
 public static Subject
getSubject(final
AccessControlContext acc)

checkPermission javax.security.auth.AuthPe
rmission "getSubject"

javax.security.auth.Subject
 public void
setReadOnly()

checkPermission javax.security.auth.AuthPe
rmission "setReadOnly"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-44

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

javax.security.auth.Subject
 public static Object
doAs(final Subject subject,

 final
PrivilegedAction action)

checkPermission javax.security.auth.AuthPe
rmission "doAs"

javax.security.auth.Subject
 public static Object
doAs(final Subject subject,

 final
PrivilegedExceptionAction
action)
 throws
java.security.PrivilegedAct
ionException

checkPermission javax.security.auth.AuthPe
rmission "doAs"

javax.security.auth.Subject
 public static Object
doAsPrivileged(final
Subject subject,

 final
PrivilegedAction action,

 final
AccessControlContext acc)

checkPermission javax.security.auth.AuthPe
rmission "doAsPrivileged"

javax.security.auth.Subject
 public static Object
doAsPrivileged(final
Subject subject,

 final
PrivilegedExceptionAction
action,

 final
AccessControlContext acc)
 throws
java.security.PrivilegedAct
ionException

checkPermission javax.security.auth.AuthPe
rmission "doAsPrivileged"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-45

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

javax.security.auth.Subject
DomainCombiner
 public Subject
getSubject()

checkPermission javax.security.auth.AuthPe
rmission
"getSubjectFromDomainCombi
ner"

javax.security.auth.Subject
DomainCombiner
 public Subject
getSubject()

checkPermission javax.security.auth.AuthPe
rmission
"getSubjectFromDomainCombi
ner"

javax.security.auth.login.L
oginContext
 public
LoginContext(String name)
 throws
LoginException

checkPermission javax.security.auth.AuthPe
rmission
"createLoginContext.
{name}"

javax.security.auth.login.L
oginContext
 public
LoginContext(String name,

Subject subject)
 throws
LoginException

checkPermission javax.security.auth.AuthPe
rmission
"createLoginContext.
{name}"

javax.security.auth.login.L
oginContext
 public
LoginContext(String name,

CallbackHandler
callbackHandler)
 throws
LoginException

checkPermission javax.security.auth.AuthPe
rmission
"createLoginContext.
{name}"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-46

Table 1-6 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

javax.security.auth.login.L
oginContext
 public
LoginContext(String name,

Subject subject,

CallbackHandler
callbackHandler)
 throws
LoginException

checkPermission javax.security.auth.AuthPe
rmission
"createLoginContext.
{name}"

javax.security.auth.login.C
onfiguration
 public static
Configuration
getConfiguration()

checkPermission javax.security.auth.AuthPe
rmission
"getLoginConfiguration"

javax.security.auth.login.C
onfiguration
 public static void
setConfiguration(Configurat
ion configuration)

checkPermission javax.security.auth.AuthPe
rmission
"setLoginConfiguration"

javax.security.auth.login.C
onfiguration
 public static void
refresh()

checkPermission javax.security.auth.AuthPe
rmission
"refreshLoginConfiguration
"

javax.security.auth.login.C
onfiguration
 public static
Configuration
 getInstance(String
type, SpiParameter params)
 getInstance(String
type, SpiParameter params,
String provider)
 getInstance(String
type, SpiParameter params,
Provider provider)

checkPermission javax.security.auth.AuthPe
rmission
"createLoginConfiguration.
{type}"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-47

java.lang.SecurityManager Method Permission Checks
List of permissions that are checked for by the default implementations of the
java.lang.SecurityManager methods.

Each of the specified check methods calls the SecurityManager checkPermission method
with the specified permission, except for the checkConnect and checkRead methods that
take a context argument. Those methods expect the context to be an
AccessControlContext and they call the context's checkPermission method with the
specified permission.

Table 1-7 java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkAccept(String host, int port); java.net.SocketPermission "{host}:{port}",
"accept";

public void checkAccess(Thread t); java.lang.RuntimePermission "modifyThread";

public void checkAccess(ThreadGroup g); java.lang.RuntimePermission
"modifyThreadGroup";

public void checkAwtEventQueueAccess();

Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

java.awt.AWTPermission
"accessEventQueue";

public void checkConnect(String host, int
port);

if (port == -1) java.net.SocketPermission
"{host}","resolve"; else
java.net.SocketPermission "{host}:
{port}","connect";

public void checkConnect(String host, int port,
Object context);

if (port == -1) java.net.SocketPermission
"{host}","resolve"; else
java.net.SocketPermission "{host}:
{port}","connect";

public void checkCreateClassLoader(); java.lang.RuntimePermission
"createClassLoader";

public void checkDelete(String file); java.io.FilePermission "{file}", "delete";

public void checkExec(String cmd); if cmd is an absolute path:
java.io.FilePermission "{cmd}", "execute"; else
java.io.FilePermission "<<ALL_FILES>>",
"execute";

public void checkExit(int status); java.lang.RuntimePermission "exitVM.
{status}";

public void checkLink(String lib); java.lang.RuntimePermission "loadLibrary.
{lib}";

public void checkListen(int port); java.net.SocketPermission "localhost:
{port}","listen";

Chapter 1
Permissions in the Java Development Kit (JDK)

1-48

Table 1-7 (Cont.) java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkMemberAccess(Class clazz,
int which);

Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

if (which != Member.PUBLIC) {
 if (currentClassLoader() !=
clazz.getClassLoader()) {
 checkPermission(
 new
java.lang.RuntimePermission("accessDeclar
edMembers"));
 }
}

public void checkMulticast(InetAddress
maddr);

java.net.SocketPermission(maddr.getHostAdd
ress(),"accept,connect");

public void checkMulticast(InetAddress maddr,
byte ttl);

Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

java.net.SocketPermission(maddr.getHostAdd
ress(),"accept,connect");

public void checkPackageAccess(String pkg); java.lang.RuntimePermission
"accessClassInPackage.{pkg}";

public void checkPackageDefinition(String
pkg);

java.lang.RuntimePermission
"defineClassInPackage.{pkg}";

public void checkPrintJobAccess(); java.lang.RuntimePermission "queuePrintJob";

public void checkPropertiesAccess(); java.util.PropertyPermission "*", "read,write";

public void checkPropertyAccess(String key); java.util.PropertyPermission "{key}",
"read,write";

public void checkRead(FileDescriptor fd); java.lang.RuntimePermission
"readFileDescriptor";

public void checkRead(String file); java.io.FilePermission "{file}", "read";

public void checkRead(String file, Object
context);

java.io.FilePermission "{file}", "read";

public void checkSecurityAccess(String
target);

java.security.SecurityPermission "{target}";

public void checkSetFactory(); java.lang.RuntimePermission "setFactory";

Chapter 1
Permissions in the Java Development Kit (JDK)

1-49

Table 1-7 (Cont.) java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkSystemClipboardAccess();

Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

java.awt.AWTPermission "accessClipboard";

public boolean checkTopLevelWindow(Object
window);

Note:

This method is deprecated; use instead
public void checkPermission(Permission
perm);

java.awt.AWTPermission
"showWindowWithoutWarningBanner";

public void checkWrite(FileDescriptor fd); java.lang.RuntimePermission
"writeFileDescriptor";

public void checkWrite(String file); java.io.FilePermission "{file}", "write";

public SecurityManager(); java.lang.RuntimePermission
"createSecurityManager";

Default Policy Implementation and Policy File Syntax

The policy for a Java programming language application environment (specifying
which permissions are available for code from various sources, and executing as
various principals) is represented by a Policy object. More specifically, it is represented
by a Policy subclass providing an implementation of the abstract methods in the
Policy class (which is in the java.security package).

The source location for the policy information utilized by the Policy object is up to the
Policy implementation. The Policy reference implementation obtains its information
from static policy configuration files.

The rest of this document pertains to the Policy reference implementation and the
syntax that must be used in policy files it reads:

• Default Policy Implementation

• Default Policy File Locations

• Modifying the Policy Implementation

• Policy File Syntax

• Policy File Examples

Chapter 1
Permissions in the Java Development Kit (JDK)

1-50

• Property Expansion in Policy Files

• Windows Systems, File Paths, and Property Expansion

• General Expansion in Policy Files

Default Policy Implementation
Compose a policy file with any text editor.

In the Policy reference implementation, the policy can be specified within one or more
policy configuration files. The configuration file(s) specify what permissions are
allowed for code from a specified code source, and executed by a specified principal.
Each configuration file must be encoded in UTF-8.

There is by default a single system-wide policy file, and a single (optional) user policy
file. By default, permissions required by JDK modules that are loaded by the platform
class loader or its ancestors are always granted.

The Policy reference implementation is initialized the first time its getPermissions
method is called, or whenever its refresh method is called. Initialization involves
parsing the policy configuration file(s) (see Policy File Syntax), and then populating the
Policy object.

Default Policy File Locations
There is by default a single system-wide policy file, and a single (optional) user policy
file. When the Policy is initialized, the system policy is loaded in first, and then the user
policy is added to it. If neither policy is present, a built-in policy is used. This built-in
policy is the same as the java.policy file installed with the JRE.

System Policy File Locations

By default, the system policy file is <java-home>/conf/security/java.policy.

The system policy file is meant to grant system-wide code permissions. The
java.policy file installed with the JDK allows anyone to listen on dynamic ports, and
allows any code to read certain "standard" properties that are not security-sensitive,
such as the os.name and file.separator properties.

User Policy File Location

By default, the user policy file is <user-home>/.java.policy.

Configure Policy File Location and Format

Policy file locations are specified in the security properties file <java-home>/conf/
security/java.security.

The policy file locations are specified as the values of properties whose names are of
the form

policy.url.n

Here, n is a number. You specify each such property value in a line of the following
form:

policy.url.n=URL

Chapter 1
Permissions in the Java Development Kit (JDK)

1-51

Here, URL is a URL specification. For example, the default system and user policy files
are defined in the security properties file as:

policy.url.1=file:${java.home}/conf/security/java.policy
policy.url.2=file:${user.home}/.java.policy

(See Property Expansion for information about specifying property values via a special
syntax, such as specifying the java.home property value via ${java.home}.)

You can actually specify a number of URLs (including ones of the form "http://"), and
all the designated policy files will get loaded. You can also comment out or change the
second one to disable reading the default user policy file.

The algorithm starts at policy.url.1, and keeps incrementing until it does not find a
URL. Thus if you have policy.url.1 and policy.url.3, and policy.url.3 will never be
read.

Example 1-4 Specifying an Additional Policy File at Runtime

It is also possible to specify an additional or a different policy file when invoking
execution of an application. This can be done via the -Djava.security.policy
command line argument, which sets the value of the java.security.policy property.
For example, if you use following command, where someURL is a URL specifying the
location of a policy file, then the specified policy file will be loaded in addition to all the
policy files that are specified in the security properties file.

java -Djava.security.manager -Djava.security.policy=someURL SomeApp

The URL can be any regular URL or simply the name of a policy file in the current
directory, as in:

java -Djava.security.manager -Djava.security.policy=mypolicy SomeApp

The -Djava.security.manager option ensures that the default security manager is
installed, and thus the application is subject to policy checks. It is not required if the
application SomeApp installs a security manager.

If you use the following command (note the double equals) then just the specified
policy file will be used; all the ones indicated in the security properties file will be
ignored.

java -Djava.security.manager -Djava.security.policy==someURL SomeApp

Note:

The policy file value of the -Djava.security.policy option is ignored if the
policy.allowSystemPropertyproperty in the security properties file is set to
false. The default is true.

Modifying the Policy Implementation
The Policy reference implementation can be modified by editing the security properties
file, which is the java.security file in the conf/security directory of the JDK.

An alternative policy class can be given to replace the Policy reference implementation
class, as long as the former is a subclass of the abstract Policy class and implements
the getPermissions method (and other methods as necessary).

Chapter 1
Permissions in the Java Development Kit (JDK)

1-52

One of the types of properties you can set in java.security is of the following form:

 policy.provider=PolicyClassName

PolicyClassName must specify the fully qualified name of the desired Policy
implementation class.

The default security properties file entry for this property is the following:

 policy.provider=sun.security.provider.PolicyFile

To customize, you can change the property value to specify another class, as in

 policy.provider=com.mycom.MyPolicy

Policy File Syntax
The policy configuration file(s) for a JDK installation specifies what permissions (which
types of system resource accesses) are granted to code from a specified code source,
and executed as a specified principal.

For an applet (or an application running under a security manager) to be allowed to
perform secured actions (such as reading or writing a file), the applet (or application)
must be granted permission for that particular action. In the Policy reference
implementation, that permission must be granted by a grant entry in a policy
configuration file. See below and the Java Security Architecture Specification for more
information. (The only exception is that code always automatically has permission to
read files from its same (URL) location, and subdirectories of that location; it does not
need explicit permission to do so.)

A policy configuration file essentially contains a list of entries. It may contain a
"keystore" entry, and contains zero or more "grant" entries.

Keystore Entry
The keytool utility is used to create and administer keystores.

A keystore is a database of private keys and their associated digital certificates such
as X.509 certificate chains authenticating the corresponding public keys. The keytool
utility is used to create and administer keystores. The keystore specified in a policy
configuration file is used to look up the public keys of the signers specified in the grant
entries of the file. A keystore entry must appear in a policy configuration file if any
grant entries specify signer aliases, or if any grant entries specify principal aliases.

At this time, there can be only one keystore/keystorePasswordURL entry in the policy file
(other entries following the first one are ignored). This entry can appear anywhere
outside the file's grant entries. It has the following syntax:

keystore "some_keystore_url", "keystore_type", "keystore_provider";
keystorePasswordURL "some_password_url";

Here,

Chapter 1
Permissions in the Java Development Kit (JDK)

1-53

https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html

some_keystore_url
Specify the URL location of the keystore.

some_password_url
Specify the URL location of the keystore password.

keystore_type
Specify the keystore type.

keystore_provider
Specify the keystore provider.

Note:

• The input stream from some_keystore_url is passed to the
KeyStore.load method.

• If NONE is specified as the URL, then a null stream is passed to the
KeyStore.load method. NONE should be specified in the URL if the
KeyStore is not file-based. For example, if it resides on a hardware token
device.

• The URL is relative to the policy file location. If the policy file is specified in
the security properties file as:

 policy.url.1=http://foo.example.com/fum/some.policy

and that policy file has an entry:

 keystore ".keystore";

then the keystore will be loaded from:

 http://foo.example.com/fum/.keystore

• The URL can also be absolute.

A keystore type defines the storage and data format of the keystore information, and
the algorithms used to protect private keys in the keystore and the integrity of the
keystore itself. The default type is a proprietary keystore type named "PKCS12". Thus,
if the keystore type is "PKCS12", it does not need to be specified in the keystore entry.

Grant Entries
Grant entry is used to specify which code you want to grant permissions.

Code being executed is always considered to come from a particular "code source"
(represented by an object of type CodeSource). The code source includes not only the
location (URL) where the code originated from, but also a reference to the certificate(s)
containing the public key(s) corresponding to the private key(s) used to sign the code.
Certificates in a code source are referenced by symbolic alias names from the user's
keystore. Code is also considered to be executed as a particular principal (represented
by an object of type Principal), or group of principals.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-54

Each grant entry includes one or more "permission entries" preceded by optional
codeBase, signedBy, and principal name/value pairs that specify which code you want to
grant the permissions. The basic format of a grant entry is the following:

 grant signedBy "signer_names", codeBase "URL",
 principal principal_class_name "principal_name",
 principal principal_class_name "principal_name",
 ... {

 permission permission_class_name "target_name", "action",
 signedBy "signer_names";
 permission permission_class_name "target_name", "action",
 signedBy "signer_names";
 ...
 };

All non-italicized items above must appear as is (although case doesn't matter and
some are optional, as noted below). Italicized items represent variable values.

A grant entry must begin with the word grant.

The SignedBy, Principal, and CodeBase Fields
The signedBy, codeBase, and principal values are optional, and the order of these fields
does not matter.

A signedBy value indicates the alias for a certificate stored in the keystore. The public
key within that certificate is used to verify the digital signature on the code; you grant
the permission(s) to code signed by the private key corresponding to the public key in
the keystore entry specified by the alias.

The signedBy value can be a comma-separated list of multiple aliases. An example is
"Adam,Eve,Charles", which means "signed by Adam and Eve and Charles"; the
relationship is AND, not OR. To be more exact, a statement like "Code signed by
Adam" means "Code in a class file contained in a JAR which is signed using the
private key corresponding to the public key certificate in the keystore whose entry is
aliased by Adam".

The signedBy field is optional in that, if it is omitted, it signifies "any signer". It doesn't
matter whether the code is signed or not or by whom.

A principal value specifies a class_name/principal_name pair which must be present
within the executing thread's principal set. The principal set is associated with the
executing code by way of a Subject.

The principal_class_name may be set to the wildcard value, *, which allows it to match
any Principal class. In addition, the principal_name may also be set to the wildcard
value, *, allowing it to match any Principal name. When setting the
principal_class_name or principal_name to *, do not surround the * with quotes. Also, if
you specify a wildcard principal class, you must also specify a wildcard principal name.

The principal field is optional in that, if it is omitted, it signifies "any principals".

KeyStore Alias Replacement
The principal class_name/principal_name pair is specified as a single quoted string, it is
treated as a keystore alias.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-55

The keystore is consulted and queried (via the alias) for an X509 Certificate. If one is
found, the principal class_name is automatically treated as
javax.security.auth.x500.X500Principal, and the principal_name is automatically
treated as the subject distinguished name from the certificate. If an X509 Certificate
mapping is not found, the entire grant entry is ignored.

A codeBase value indicates the code source location; you grant the permission(s) to
code from that location. An empty codeBase entry signifies "any code"; it doesn't matter
where the code originates from.

Note:

AcodeBase value is a URL and thus should always utilize slashes (never
backslashes) as the directory separator, even when the code source is
actually on a Windows system. Thus, if the source location for code on a
Windows system is actually C:\somepath\api\, then the policy codeBase
entry should look like:

 grant codeBase "file:/C:/somepath/api/" {
 ...
 };

The exact meaning of a codeBase value depends on the characters at the end. A
codeBase with a trailing "/" matches all class files (not JAR files) in the specified
directory. A codeBase with a trailing "/*" matches all files (both class and JAR files)
contained in that directory. A codeBase with a trailing "/-" matches all files (both class
and JAR files) in the directory and recursively all files in subdirectories contained in
that directory. The following table illustrates the different cases:

Table 1-8 KeyStore Alias

Codebase URL of
Downloaded Code

Codebase URL in Policy Match?

www.example.com/people/
gong/

www.example.com/people/
gong

Yes

www.example.com/people/
gong/

www.example.com/people/
gong/

Yes

www.example.com/people/
gong/

www.example.com/people/
gong/*

Yes

www.example.com/people/
gong/

www.example.com/people/
gong/-

Yes

www.example.com/people/
gong/appl.jar

www.example.com/people/
gong/

No

www.example.com/people/
gong/appl.jar

www.example.com/people/
gong/-

Yes

www.example.com/people/
gong/appl.jar

www.example.com/people/
gong/*

Yes

www.example.com/people/
gong/appl.jar

www.example.com/people/- Yes

Chapter 1
Permissions in the Java Development Kit (JDK)

1-56

Table 1-8 (Cont.) KeyStore Alias

Codebase URL of
Downloaded Code

Codebase URL in Policy Match?

www.example.com/people/
gong/appl.jar

www.example.com/people/* No

www.example.com/people/
gong/

www.example.com/people/- Yes

www.example.com/people/
gong/

www.example.com/people/* No

The Permission Entries
A permission entry is specified in the order (permission, permission_class_name,
"target_name", "action", and signedBy "signer_names

A permission entry must begin with the word permission. The word
permission_class_name in the template above would actually be a specific permission
type, such as java.io.FilePermission or java.lang.RuntimePermission.

The "action" is required for many permission types, such as java.io.FilePermission
(where it specifies what type of file access is permitted). It is not required for
categories such as java.lang.RuntimePermission where it is not necessary, you either
have the permission specified by the "target_name" value following the
permission_class_name or you don't.

The signedBy name/value pair for a permission entry is optional. If present, it indicates
a signed permission. That is, the permission class itself must be signed by the given
alias(es) in order for the permission to be granted. For example, suppose you have the
following grant entry:

 grant {
 permission Foo "foobar", signedBy "FooSoft";
 };

Then this permission of type Foo is granted if the Foo.class permission was placed in a
JAR file and the JAR file was signed by the private key corresponding to the public key
in the certificate specified by the "FooSoft" alias, or if Foo.class is a system class,
since system classes are not subject to policy restrictions.

Items that appear in a permission entry must appear in the specified order (permission,
permission_class_name, "target_name", "action", and signedBy "signer_names"). An
entry is terminated with a semicolon.

Case is unimportant for the identifiers (permission, signedBy, codeBase, etc.) but is
significant for the permission_class_name or for any string that is passed in as a
value.

File Path Specifications on Windows Systems
The file path specifications on Windows systems should include two backslashes for
each actual single backslash.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-57

Note:

When you are specifying a java.io.FilePermission, the "target_name" is a file
path. On Windows systems, whenever you directly specify a file path in a
string (but not in a codeBase URL), you need to include two backslashes for
each actual single backslash in the path, as in

 grant {
 permission java.io.FilePermission "C:\\users\\cathy\\foo.bat", "read";
 };

The reason this is necessary is because the strings are processed by a tokenizer
(java.io.StreamTokenizer), which allows “\” to be used as an escape string (for
example, "\n” to indicate a new line) and which thus requires two backslashes to
indicate a single backslash. After the tokenizer has processed the above file path
string, converting double backslashes to single backslashes, the end result is

 "C:\users\cathy\foo.bat"

Policy File Examples
Examples of policy configuration files, with different configuration of the codeBase and
signedBy values. Examples of grant statements with different principal based entry and
KeyStore values.

Example 1-5 Sample Policy Configuration File

An example of two entries in a policy configuration file is as follows:

 // If the code is signed by "Duke", grant it read/write access to all
 // files in /tmp:
 grant signedBy "Duke" {
 permission java.io.FilePermission "/tmp/*", "read,write";
 };

 // Grant everyone the following permission:
 grant {
 permission java.util.PropertyPermission "java.vendor", "read";
 };

Example 1-6 Sample Policy Configuration File

The following code specifies that only code that satisfies the following conditions can
call methods in the Security class to add or remove providers or to set Security
Properties:

• The code was loaded from a signed JAR file that is in the "/home/sysadmin/"
directory on the local file system.

• The signature can be verified using the public key referenced by the alias name
"sysadmin" in the keystore.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-58

 grant signedBy "sysadmin", codeBase "file:/home/sysadmin/*" {
 permission java.security.SecurityPermission "Security.insertProvider.*";
 permission java.security.SecurityPermission "Security.removeProvider.*";
 permission java.security.SecurityPermission "Security.setProperty.*";
 };

Example 1-7 Sample Where codeBase is Missing

Either component of the code source (or both) may be missing. An example where
codeBase is missing :

 grant signedBy "sysadmin" {
 permission java.security.SecurityPermission "Security.insertProvider.*";
 permission java.security.SecurityPermission "Security.removeProvider.*";
 };

If this policy is in effect, code that comes in a JAR File signed by "sysadmin" can add/
remove providers, regardless of where the JAR File originated from.

Example 1-8 Sample Without signedBy

 grant codeBase "file:/home/sysadmin/-" {
 permission java.security.SecurityPermission "Security.insertProvider.*";
 permission java.security.SecurityPermission "Security.removeProvider.*";
 };

In this case, code that comes from anywhere beneath the "/home/sysadmin/" directory
on the local filesystem can add/remove providers. The code does not need to be
signed.

Example 1-9 Sample Without codeBase or signedBy

 grant {
 permission java.security.SecurityPermission "Security.insertProvider.*";
 permission java.security.SecurityPermission "Security.removeProvider.*";
 };

Here, with both code source components missing, any code (regardless of where it
originated from, or whether or not it is signed, or who signed it) can add/remove
providers.

Example 1-10 Sample Executing As X500Principal

 grant principal javax.security.auth.x500.X500Principal "cn=Alice" {
 permission java.io.FilePermission "/home/Alice", "read, write";
 };

This permits any code executing as the X500Principal, "cn=Alice", permission to read
and write to "/home/Alice”.

Example 1-11 Sample Executing As X500Principal Without a Distinguished
Name

 grant principal javax.security.auth.x500.X500Principal * {
 permission java.io.FilePermission "/tmp", "read, write";
 };

Chapter 1
Permissions in the Java Development Kit (JDK)

1-59

This permits any code executing as an X500Principal (regardless of the distinguished
name), permission to read and write to "/tmp”.

Example 1-12 Grant Statement With CodeBase and X500Principal Information

 grant codebase "http://www.games.example.com",
 signedBy "Duke",
 principal javax.security.auth.x500.X500Principal "cn=Alice" {
 permission java.io.FilePermission "/tmp/games", "read, write";
 };

This allows code downloaded from "www.games.example.com", signed by "Duke", and
executed by "cn=Alice", permission to read and write into the "/tmp/games" directory.

Example 1-13 Grant Statement With KeyStore Alias

 keystore "http://foo.example.com/blah/.keystore";

 grant principal "alice" {
 permission java.io.FilePermission "/tmp/games", "read, write";
 };

"alice" will be replaced by

 javax.security.auth.x500.X500Principal "cn=Alice"

assuming the X.509 certificate associated with the keystore alias, alice , has a subject
distinguished name of "cn=Alice". This allows code executed by the X500Principal
"cn=Alice" permission to read and write into the "/tmp/games" directory.

Property Expansion in Policy Files
Property expansion is possible in policy files and in the security properties file.

Property expansion is similar to expanding variables in a shell. That is, when a string
like

 ${some.property}

appears in a policy file, or in the security properties file, it will be expanded to the value
of the system property. For example,

 permission java.io.FilePermission "${user.home}", "read";

will expand "${user.home}" to use the value of the "user.home" system property. If that
property's value is "/home/cathy", then the above is equivalent to

 permission java.io.FilePermission "/home/cathy", "read";

In order to assist in platform-independent policy files, you can also use the special
notation of "${/}", which is a shortcut for ${file.separator}". This allows things like

 permission java.io.FilePermission "${user.home}${/}*", "read";

Chapter 1
Permissions in the Java Development Kit (JDK)

1-60

If the value of the "user.home " property is /home/cathy, and you are on Solaris, Linux,
or macOS, the above gets converted to:

 permission java.io.FilePermission "/home/cathy/*", "read";

If on the other hand the "user.home" value is C:\users\cathy and you are on a Windows
system, the above gets converted to:

 permission java.io.FilePermission "C:\users\cathy*", "read";

Also, as a special case, if you expand a property in a codebase, such as

 grant codeBase "file:${java.home}/lib/ext/"

then any file.separator characters will be automatically converted to / 's. Thus on a
Windows system, the above would get converted to

 grant codeBase "file:C:/jdk1.4/lib/ext/"

even if "java.home" is set to C:\jdk1.4\ Thus you don't need to use ${/} in codebase
strings (and you shouldn't). Property expansion takes place anywhere a double quoted
string is allowed in the policy file. This includes the "signer_names", "URL",
"target_name", and "action" fields. Whether or not property expansion is allowed is
controlled by the value of the "policy.expandProperties" property in the security
properties file. If the value of this property is true (the default), expansion is allowed.

Note:

You can't use nested properties; they will not work. For example,

 "${user.${foo}}"

doesn't work, even if the "foo" property is set to "home". The reason is the
property parser doesn't recognize nested properties; it simply looks for the first
"${", and then keeps looking until it finds the first "}" and tries to interpret the
result (in this case, "${user.$foo}") as a property, but fails if there is no such
property.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-61

Note:

If a property can't be expanded in a grant entry, permission entry, or keystore
entry, that entry is ignored. For example, if the system property "foo" is not
defined and you have:

 grant codeBase "${foo}" {
 permission ...;
 permission ...;
 };

then all the permissions in this grant entry are ignored. If you have

 grant {
 permission Foo "${foo}";
 permission Bar "barTarget";
 };

then only the "permission Foo..." entry is ignored. And finally, if you have

 keystore "${foo}";

then the keystore entry is ignored.

Windows Systems, File Paths, and Property Expansion
The file path specifications on Windows systems should include two backslashes for
each actual single backslash.

In Windows systems, when you directly specify a file path in a string (but not in a
codeBase URL), you need to include two backslashes for each actual single backslash
in the path, as in

 grant {
 permission java.io.FilePermission "C:\\users\\cathy\\foo.bat", "read";
 };

This is because the strings are processed by a tokenizer (java.io.StreamTokenizer),
which allows "\" to be used as an escape string (e.g., "\n" to indicate a new line) and
which thus requires two backslashes to indicate a single backslash. After the tokenizer
has processed the above file path string, converting double backslashes to single
backslashes, the end result is

 "C:\users\cathy\foo.bat"

Expansion of a property in a string takes place after the tokenizer has processed the
string. Thus if you have the string

 "${user.home}\\foo.bat"

Chapter 1
Permissions in the Java Development Kit (JDK)

1-62

then first the tokenizer processes the string, converting the double backslashes to a
single backslash, and the result is

 "${user.home}\foo.bat"

Then the ${user.home} property is expanded and the end result is

 "C:\users\cathy\foo.bat"

assuming the "user.home" value is C:\users\cathy. Of course, for platform
independence, it would be better if the string was initially specified without any explicit
slashes, i.e., using the ${/} property instead, as in

 "${user.home}${/}foo.bat"

Path-Name Canonicalization
A canonical path is a path that doesn’t contain any links or shortcuts. Performing
pathname canonicalization in FilePermission object can negatively affect performance.

Before JDK 9, path names were canonicalized when two FilePermission objects were
compared. This allowed a program to access a file using a different name than the
name that was granted to a FilePermission object in a policy file, as long as the object
pointed to the same file. Because the canonicalization had to access the underlying
file system, it could be quite slow.

In JDK 9, path-name canonicalization is disabled by default. This means two
FilePermission objects aren’t equal to each other if one uses an absolute path and the
other uses a relative path, or one uses a symbolic link and the other uses a target, or
one uses a Windows long name and the other uses a DOS-style 8.3 name. This is true
even if they all point to the same file in the file system.

Therefore, if a pathname is granted to a FilePermission object in a policy file, then the
program should also access that file using the same path-name style. For example, if
the path name in the policy file is using a symbolic link, then the program should also
use that symbolic link. Accessing the file with the target path name will fail the
permission check.

Compatibility Layer

A compatibility layer has been added to ensure that granting a FilePermission object
for a relative path will permit applications to access the file with an absolute path (and
conversly). This works for the default Policy provider and the Limited doPrivileged
calls.

For example, a FilePermission object on a file with a relative path name of "a" no
longer implies a FilePermission object on the same file with an absolute path name as
"/pwd/a" ("pwd" is the current working directory). Granting code a FilePermission
object to read "a" allows that code to also read "/pwd/a" when a Security Manager is
enabled.

The compatibility layer doesn’t cover translations between symbolic links and targets,
or Windows long names and DOS-style 8.3 names, or any other different name forms
that can be canonicalized to the same name.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-63

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-

Customizing Path-Name Canonicalization

The system properties in Table 1-9 can be used to customize the FilePermission path-
name canonicalization. See How to Specify a java.lang.System Property.

Table 1-9 System Properties to Customize Pathname Canonicalization

System Property Default Value Description

jdk.io.permissionsUseCanon
icalPath

false The system property can be
used to enable or disable
pathname canonicalization in
the FilePermission object.

• To disable
FilePermission path-
name canonicalization,
set
jdk.io.permissionsUseC
anonicalPath=false.

• To enable
FilePermission path-
name canonicalization,
set
jdk.io.permissionsUseC
anonicalPath=true.

jdk.security.filePermCompa
t

false The system property can be
used to extend the
compatibility layer to support
third-party Policy
implementations.

• To disable the system
property, set
jdk.security.filePermC
ompat=false.

The FilePermission for a
relative path will permit
applications to access the
file with an absolute path
for the default Policy
provider and the Limited
doPrivileged method.

• To extend the
compatibility layer to
support third-party Policy
implementations, set
jdk.security.filePermC
ompat=true.

The FilePermission for a
relative path will permit
applications to access the
file with an absolute path
for the default Policy
provider, the Limited
doPrivileged method,
and for third-party Policy
implementations.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-64

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedExceptionAction-java.security.AccessControlContext-java.security.Permission...-

General Expansion in Policy Files
The policy files can be expanded using two protocols self and alias forms of
expansion in the policy files.

${{protocol:protocol_data}}

If such a string occurs in a permission name, then the value in protocol determines the
exact type of expansion that should occur, and protocol_data may be empty, in which
case the above string should simply take the form:

${{protocol}}

There are two protocols supported in the default policy file implementation:

1. ${{self}}

The protocol, self, denotes a replacement of the entire string, ${{self}}, with one
or more principal class/name pairs. The exact replacement performed depends
upon the contents of the grant clause to which the permission belongs.

If the grant clause does not contain any principal information, the permission will
be ignored (permissions containing ${{self}} in their target names are only valid in
the context of a principal-based grant clause). For example, BarPermission will
always be ignored in the following grant clause:

 grant codebase "www.example.com", signedby "duke" {
 permission BarPermission "... ${{self}} ...";
 };

If the grant clause contains principal information, ${{self}} will be replaced with
that same principal information. For example, ${{self}} in BarPermission will be
replaced with javax.security.auth.x500.X500Principal "cn=Duke" in the following
grant clause:

grant principal javax.security.auth.x500.X500Principal "cn=Duke" {
 permission BarPermission "... ${{self}} ...";
};

If there is a comma-separated list of principals in the grant clause, then ${{self}}
will be replaced by the same comma-separated list or principals. In the case where
both the principal class and name are wildcarded in the grant clause, ${{self}} is
replaced with all the principals associated with the Subject in the current
AccessControlContext.
The following example describes a scenario involving both self and KeyStore
Alias Replacement together:

keystore "http://foo.example.com/blah/.keystore";

grant principal "duke" {
 permission BarPermission "... ${{self}} ...";
};

Chapter 1
Permissions in the Java Development Kit (JDK)

1-65

In the above example, "duke" will first be expanded into
javax.security.auth.x500.X500Principal "cn=Duke" assuming the X.509 certificate
associated with the KeyStore alias, "duke", has a subject distinguished name of
"cn=Duke". Next, ${{self}} will be replaced with the same principal information that
was just expanded in the grant clause: javax.security.auth.x500.X500Principal
"cn=Duke".

2. ${{alias:alias_name}}

The protocol, alias, denotes a java.security.KeyStore alias substitution. The
KeyStore used is the one specified in the Keystore Entry. alias_name represents
an alias into the KeyStore. ${{alias:alias_name}} is replaced with
javax.security.auth.x500.X500Principal "DN", where DN represents the subject
distinguished name of the certificate belonging to alias_name. For example:

keystore "http://foo.example.com/blah/.keystore";

grant codebase "www.example.com" {
 permission BarPermission "... ${{alias:duke}} ...";
};

In the above example the X.509 certificate associated with the alias, duke, is
retrieved from the KeyStore, foo.example.com/blah/.keystore. Assuming duke's
certificate specifies "o=dukeOrg, cn=duke" as the subject distinguished name, then $
{{alias:duke}} is replaced with javax.security.auth.x500.X500Principal
"o=dukeOrg, cn=duke".
The permission entry is ignored under the following error conditions:

• The keystore entry is unspecified

• The alias_name is not provided

• The certificate for alias_name can not be retrieved

• The certificate retrieved is not an X.509 certificate

API for Privileged Blocks
Background information about what privileged code is and what it is used for, followed
by illustrations of the use of the API. It covers the following topics:

Using the doPrivileged API

What It Means to Have Privileged Code

Reflection

Using the doPrivileged API
Description of the doPrivileged API and the use of the privileged feature.

No Return Value, No Exception Thrown

Accessing Local Variables

Handling Exceptions

Asserting a Subset of Privileges

Least Privilege

Chapter 1
Permissions in the Java Development Kit (JDK)

1-66

More Privilege

No Return Value, No Exception Thrown
If you do not need to return a value from within the privileged block, your call to
doPrivileged can look like Example 1-14.

Note that the invocation of doPrivileged with a lambda expression explicitly casts the
lambda expression as of type PrivilegedAction<Void>. Another version of the method
doPrivileged exists that takes an object of type PrivilegedExceptionAction; see
Handling Exceptions.

PrivilegedAction is a functional interface with a single abstract method, named run,
that returns a value of type specified by its type parameter.

Note that this example ignores the return value of the run method. Also, depending on
what privileged code actually consists of, you might have to make some changes due
to the way inner classes work. For example, if privileged code throws an exception or
attempts to access local variables, then you will have to make some changes, which is
described later.

Be very careful in your use of the privileged construct, and always remember to make
the privileged code section as small as possible. That is, try to limit the code within the
run method to only what needs to be run with privileges, and do more general things
outside the run method. Also note that the call to doPrivileged should be made in the
code that wants to enable its privileges. Do not be tempted to write a utility class that
itself calls doPrivileged as that could lead to security holes. You can write utility
classes for PrivilegedAction classes though, as shown in the preceding example. See
Guideline 9-3: Safely invoke java.security.AccessController.doPrivileged in Secure
Coding Guidelines for the Java Programming Language.

Example 1-14 Sample Code for Privileged Block

• In a class that implements the interface PrivilegedAction.

• In an anonymous class.

• In a lambda expression.

import java.security.*;

public class NoReturnNoException {

 class MyAction implements PrivilegedAction<Void> {
 public Void run() {
 // Privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
 }

 public void somemethod() {

 MyAction mya = new MyAction();

 // Become privileged:
 AccessController.doPrivileged(mya);

 // Anonymous class
 AccessController.doPrivileged(new PrivilegedAction<Void>() {

Chapter 1
Permissions in the Java Development Kit (JDK)

1-67

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedAction-
https://docs.oracle.com/javase/9/docs/api/java/security/PrivilegedExceptionAction.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#9
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://docs.oracle.com/javase/9/docs/api/java/security/PrivilegedAction.html

 public Void run() {
 // Privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
 });

 // Lambda expression
 AccessController.doPrivileged((PrivilegedAction<Void>)
 () -> {
 // Privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
);
 }

 public static void main(String... args) {
 NoReturnNoException myApplication = new NoReturnNoException();
 myApplication.somemethod();
 }
}

Returning Values
Sample code to return a value.

If you need to return a value, then you can do something like the following:

System.out.println(
 AccessController.doPrivileged((PrivilegedAction<String>)
 () -> System.getProperty("user.name")
)
);

Accessing Local Variables
If you are using a lambda expression or anonymous inner class, then any local
variables you access must be final or effectively final.

For example:

String lib = "awt";
AccessController.doPrivileged((PrivilegedAction<Void>)
 () -> {
 System.loadLibrary(lib);
 return null; // nothing to return
 }
);

AccessController.doPrivileged(new PrivilegedAction<Void>() {
 public Object run() {
 System.loadLibrary(lib);
 return null; // nothing to return
 }
});

The variable lib is effectively final because its value has not been modified. For
example, suppose you add the following assignment statement after the declaration of
the variable lib:

Chapter 1
Permissions in the Java Development Kit (JDK)

1-68

lib = "swing";

The compiler generates the following errors when it encounters the invocation
System.loadLibrary both in the lambda expression and the anonymous class:

• error: local variables referenced from a lambda expression must be final or

effectively final

• error: local variables referenced from an inner class must be final or

effectively final

See Accessing Members of an Enclosing Class in Local Classes for more information.

If there are cases where you cannot make an existing variable effectively final
(because it gets set multiple times), then you can create a new final variable right
before invoking the doPrivileged method, and set that variable equal to the other
variable. For example:

String lib;

// The lib variable gets set multiple times so you can't make it
// effectively final.

// Create a final String that you can use inside of the run method
final String fLib = lib;

AccessController.doPrivileged((PrivilegedAction<Void>)
 () -> {
 System.loadLibrary(fLib);
 return null; // nothing to return
 }
);

Handling Exceptions
If the action performed in your run method could throw a checked exception (one that
must be listed in the throws clause of a method), then you need to use the
PrivilegedExceptionAction interface instead of the PrivilegedAction interface.

Example 1-15 Sample for Handling Exceptions

If a checked exception is thrown during execution of the run method, then it is placed
in a PrivilegedActionException wrapper exception that is then thrown and should be
caught by your code, as illustrated in the following example:

public void processSomefile() throws IOException {

 try {
 Path path = FileSystems.getDefault().getPath("somefile");
 BufferedReader br = AccessController.doPrivileged(
 (PrivilegedExceptionAction<BufferedReader>)
 () -> Files.newBufferedReader(path)
);
 // ... read from file and do something
 } catch (PrivilegedActionException e) {

 // e.getException() should be an instance of IOException
 // as only checked exceptions will be wrapped in a
 // PrivilegedActionException.
 throw (IOException) e.getException();

Chapter 1
Permissions in the Java Development Kit (JDK)

1-69

http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html#accessing-members-of-an-enclosing-class
http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html

 }
}

Asserting a Subset of Privileges
Variant of the doPrivileged has three parameters, one of which you use to specify the
subset of privileges.

As of JDK 8, a variant of doPrivileged is available that enables code to assert a subset
of its privileges, without preventing the full traversal of the stack to check for other
permissions. This variant of the doPrivileged variant has three parameters, one of
which you use to specify this subset of privileges. For example, the following excerpt
asserts a privilege to retrieve system properties:

// Returns the value of the specified property. All code
// is allowed to read the app.version and app.vendor
// properties.

public String getProperty(final String prop) {
 return AccessController.doPrivileged(
 (PrivilegedAction<String>) () -> System.getProperty(prop),
 null,
 new java.util.PropertyPermission("app.version", "read"),
 new java.util.PropertyPermission("app.vendor", "read")
);
}

The first parameter of this version of doPrivileged is of type
java.security.PrivilegedAction. In this example, the first parameter is a lambda
expression that implements the functional interface PrivilegedAction whose run
method returns the value of the system property specified by the parameter prop.

The second parameter of this version of doPrivileged is of type AccessControlContext.
Sometimes you need to perform an additional security check within a different context,
such as a worker thread. You can obtain an AccessControlContext instance from a
particular calling context with the method AccessControlContext.getContext. If you
specify null for this parameter (as in this example), then the invocation of doPrivileged
does not perform any additional security checks.

The third parameter of this version of doPrivileged is of type Permission..., which is a
varargs parameter. This means that you can specify one or more Permission
parameters or an array of Permission objects, as in Permission[]. In this example, the
invocation of doPrivileged can retrieve the properties app.version and app.vendor.

You can use this three parameter variant of doPrivileged in a mode of least privilege or
a mode of more privilege.

Least Privilege
The typical use case of the doPrivileged method is to enable the method that invokes
it to perform one or more actions that require permission checks without requiring the
callers of the current method to have all the necessary permissions.

For example, the current method might need to open a file or make a network request
for its own internal implementation purposes.

Before JDK 8, calls to doPrivileged methods had only two parameters. They worked
by granting temporary privileges to the calling method and stopping the normal full
traversal of the stack for access checking when it reached that class, rather than

Chapter 1
Permissions in the Java Development Kit (JDK)

1-70

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#doPrivileged-java.security.PrivilegedAction-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessControlContext.html
https://download.java.net/java/jdk9/docs/api/java/security/Permission.html

continuing up the call stack where it might reach a method whose defining class does
not have the required permission. Typically, the class that is calling doPrivileged might
have additional permissions that are not required in that code path and which might
also be missing from some caller classes.

Normally, these extra permissions are not exercised at runtime. Not elevating them
through use of doPrivileged helps to block exploitation of any incorrect code that could
perform unintended actions. This is especially true when the PrivilegedAction is more
complex than usual, or when it calls code outside the class or package boundary that
might evolve independently over time.

The three-parameter variant of doPrivileged is generally safer to use because it avoids
unnecessarily elevating permissions that are not intended to be required. However, it
executes less efficiently so simple or performance-critical code paths might choose not
to use it.

More Privilege
When coding the current method, you want to temporarily extend the permission of the
calling method to perform an action.

For example, a framework I/O API might have a general purpose method for opening
files of a particular data format. This API would take a normal file path parameter and
use it to open an underlying FileInputStream using the calling code's permissions.
However, this might also allow any caller to open the data files in a special directory
that contains some standard demonstration samples.

The callers of this API could be directly granted a FilePermission for read access.
However, it might not be convenient or possible for the security policy of the calling
code to be updated. For example, the calling code could be a sandboxed applet.

One way to implement this is for the code to check the incoming path and determine if
it refers to a file in the special directory. If it does, then it would call doPrivileged,
enabling all permissions, then open the file inside the PrivilegedAction. If the file was
not in the special directory, the code would open the file without using doPrivileged.

This technique requires the implementation to carefully handle the requested file path
to determine if it refers to the special shared directory. The file path must be
canonicalized before calling doPrivileged so that any relative path will be processed
(and permission to read the user.dir system property will be checked) prior to
determining if the path refers to a file in the special directory. It must also prevent
malicious "../" path elements meant to escape out of the special directory.

A simpler and better implementation would use the variant of doPrivileged with the
third parameter. It would pass a FilePermission with read access to the special
directory as the third parameter. Then any manipulation of the file would be inside the
PrivilegedAction. This implementation is simpler and much less prone to contain a
security flaw.

What It Means to Have Privileged Code
Marking code as privileged enables a piece of trusted code to temporarily enable
access to more resources than are available directly to the code that called it.

The policy for a JDK installation specifies what permissions which types of system
resource accesses — are allowed for code from specified code sources. A code
source (of type CodeSource) essentially consists of the code location (URL) and a

Chapter 1
Permissions in the Java Development Kit (JDK)

1-71

https://docs.oracle.com/javase/9/docs/api/java/security/CodeSource.html

reference to the certificates containing the public keys corresponding to the private
keys used to sign the code (if it was signed).

The policy is represented by a Policy object. More specifically, it is represented by a
Policy subclass providing an implementation of the abstract methods in the Policy
class (which is in the java.security package).

The source location for the policy information used by the Policy object depends on
the Policy implementation. The Policy reference implementation obtains its
information from policy configuration files. See Default Policy Implementation and
Policy File Syntax for information about the Policy reference implementation and the
syntax that must be used in policy files it reads. For information about using the Policy
Tool to create a policy file (without needing to know the required syntax), see Policy
Tool .

A protection domain encompasses a CodeSource instance and the permissions granted
to code from that CodeSource, as determined by the security policy currently in effect.
Thus, classes signed by the same keys and from the same URL are typically placed in
the same domain, and a class belongs to one and only one protection domain.
(However, classes signed by the same keys and from the same URL but loaded by
separate class loader instances are typically placed in separate domains.) Classes
that have the same permissions but are from different code sources belong to different
domains.

Currently, all classes shipped with the JDK are loaded with all permissions (this may
change in future releases). Most of these classes are placed in a unique system
domain. In addition, the extension class loader loads code from JAR files contained in
the <java_home>/jre/lib/ext directory into separate domains (because the code in
these JAR files have unique URLs), but these domains are separate from the unique
system domain reserved for classes shipped with the JDK.

Each applet or application runs in its appropriate domain, determined by its code
source. For an applet (or an application running under a security manager) to be
allowed to perform a secured action (such as reading or writing a file), the applet or
application must be granted permission for that particular action.

More specifically, whenever a resource access is attempted, all code traversed by the
execution thread up to that point must have permission for that resource access,
unless some code on the thread has been marked as privileged. That is, suppose
that access control checking occurs in a thread of execution that has a chain of
multiple callers. (Think of this as multiple method calls that potentially cross the
protection domain boundaries.) When the AccessController.checkPermission method is
invoked by the most recent caller, the basic algorithm for deciding whether to allow or
deny the requested access is as follows: If the code for any caller in the call chain
does not have the requested permission, then an AccessControlException is thrown,
unless the following is true: a caller whose code is granted the said permission has
been marked as privileged, and all parties subsequently called by this caller (directly or
indirectly) have the said permission.

Chapter 1
Permissions in the Java Development Kit (JDK)

1-72

https://docs.oracle.com/javase/9/docs/api/java/security/Policy.html
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#checkPermission-java.security.Permission-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessControlException.html

Note:

The method AccessController.checkPermission is normally invoked indirectly
through invocations of specific SecurityManager methods that begin with the
word check such as checkConnect or through the method
SecurityManager.checkPermission. Normally, these checks only occur if a
SecurityManager has been installed; code checked by the
AccessController.checkPermission method first checks if the method
System.getSecurityManager returns null.

Marking code as privileged enables a piece of trusted code to temporarily enable
access to more resources than are available directly to the code that called it. This is
necessary in some situations. For example, an application might not be allowed direct
access to files that contain fonts, but the system utility to display a document must
obtain those fonts, on behalf of the user. The system utility must become privileged in
order to obtain the fonts.

Reflection
doPrivileged method can be invoked reflectively using
java.lang.reflect.Method.invoke.

One subtlety that must be considered is the interaction of this API with reflection. The
doPrivileged method can be invoked reflectively using
java.lang.reflect.Method.invoke. In this case, the privileges granted in privileged
mode are not those of Method.invoke but of the non-reflective code that invoked it.
Otherwise, system privileges could erroneously (or maliciously) be conferred on user
code. Note that similar requirements exist when using reflection in the existing API.

Troubleshooting Security
To monitor security access, you can set the java.security.debug system property,
which determines what trace messages are printed during execution.

To see a list of all debugging options, use the help setting:

java -Djava.security.debug=help

Note:

To use more than one option, separate options with a comma.

JSSE also provides dynamic debug tracing support for SSL/TLS/DTLS
troubleshooting. See Debugging Utilities.

The following table lists java.security.debug options and links to further information
about each option:

Chapter 1
Troubleshooting Security

1-73

https://docs.oracle.com/javase/9/docs/api/java/lang/reflect/Method.html#invoke-java.lang.Object-java.lang.Object...-

Table 1-10 java.security.debug Options

Option Description Further Information

all Turn on all the debugging options None

access Print all results from the
AccessController.checkPermissio
n method.

You can use the following options
with the access option:

1. stack: Include stack trace

2. domain: Dump all domains in
context

3. failure: Before throwing
exception, dump stack and
domain that do not have
permission

You can use the following options
with the stack and domain options:

1. permission=<classname>: Only
dump output if specified
permission is being checked

2. codebase=<URL>: Only dump
output if specified codebase is
being checked

Permissions in the Java
Development Kit (JDK)

certpath Turns on debugging for the PKIX
CertPathValidator and
CertPathBuilder implementations.
Use the ocsp option with the
certpath option for OCSP protocol
tracing. A hexadecimal dump of the
OCSP request and response bytes is
displayed.

PKI Programmers Guide Overview

combiner SubjectDomainCombiner debugging Permissions in the Java
Development Kit (JDK)

configfile JAAS (Java Authentication and
Authorization Service) configuration
file loading

Java Authentication and
Authorization Service (JAAS)
Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

configparser JAAS configuration file parsing Java Authentication and
Authorization Service (JAAS)
Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

Chapter 1
Troubleshooting Security

1-74

https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#checkPermission-java.security.Permission-
https://docs.oracle.com/javase/9/docs/api/java/security/AccessController.html#checkPermission-java.security.Permission-
https://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPathValidator.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPathBuilder.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/SubjectDomainCombiner.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html

Table 1-10 (Cont.) java.security.debug Options

Option Description Further Information

gssloginconfig Java GSS (Generic Security
Services) login configuration file
debugging

Java Generic Security Services:
(Java GSS) and Kerberos

JAAS and Java GSS-API Tutorial

javax.security.auth.login.Confi
guration: A Configuration object is
responsible for specifying which
javax.net.ssl.SSLEngine should be
used for a particular application, and
in what order the LoginModules
should be invoked.

JAAS Login Configuration File

Advanced Security Programming in
Java SE Authentication, Secure
Communication and Single Sign-On

jar JAR file verification Verifying Signed JAR Files from The
Java Tutorials

jca JCA engine class debugging Engine Classes and Algorithms

keystore Keystore debugging Keystores

KeyStore

logincontext LoginContext results Java Authentication and
Authorization Service (JAAS)
Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

pkcs11 PKCS11 session manager
debugging

PKCS#11 Reference Guide

pkcs11keystore PKCS11 KeyStore debugging PKCS#11 Reference Guide

pkcs12 PKCS12 KeyStore debugging None

policy Loading and granting permissions
with policy file

Set up the Policy File to Grant the
Required Permissions (Controlling
Applications) from The Java Tutorials

Default Policy Implementation and
Policy File Syntax

Chapter 1
Troubleshooting Security

1-75

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/Configuration.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/Configuration.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
http://docs.oracle.com/javase/tutorial/deployment/jar/verify.html
https://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/LoginContext.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html

Table 1-10 (Cont.) java.security.debug Options

Option Description Further Information

provider Security provider debugging
The following options can be used
with the provider option:

engine=<engines> : The output is
displayed only for a specified list of
JCA engines.

The supported values for <engines>
are:
• Cipher
• KeyAgreement
• KeyGenerator
• KeyPairGenerator
• KeyStore
• Mac
• MessageDigest
• SecureRandom
• Signature

Java Cryptography Architecture
(JCA) Reference Guide

scl Permissions that SecureClassLoader
assigns

Permissions in the Java
Development Kit (JDK)

securerandom SecureRandom debugging The SecureRandom Class

sunpkcs11 SunPKCS11 provider debugging PKCS#11 Reference Guide

ts Timestamping debugging None

Chapter 1
Troubleshooting Security

1-76

https://docs.oracle.com/javase/9/docs/api/java/security/SecureClassLoader.html

2
Java Cryptography Architecture (JCA)
Reference Guide

The Java Cryptography Architecture (JCA) is a major piece of the platform, and
contains a "provider" architecture and a set of APIs for digital signatures, message
digests (hashes), certificates and certificate validation, encryption (symmetric/
asymmetric block/stream ciphers), key generation and management, and secure
random number generation, to name a few.

Introduction to Java Cryptography Architecture
The Java platform strongly emphasizes security, including language safety,
cryptography, public key infrastructure, authentication, secure communication, and
access control.

The JCA is a major piece of the platform, and contains a "provider" architecture and a
set of APIs for digital signatures, message digests (hashes), certificates and certificate
validation, encryption (symmetric/asymmetric block/stream ciphers), key generation
and management, and secure random number generation, to name a few. These APIs
allow developers to easily integrate security into their application code. The
architecture was designed around the following principles:

• Implementation independence: Applications do not need to implement security
algorithms. Rather, they can request security services from the Java platform.
Security services are implemented in providers (see Cryptographic Service
Providers), which are plugged into the Java platform via a standard interface. An
application may rely on multiple independent providers for security functionality.

• Implementation interoperability: Providers are interoperable across applications.
Specifically, an application is not bound to a specific provider, and a provider is not
bound to a specific application.

• Algorithm extensibility: The Java platform includes a number of built-in providers
that implement a basic set of security services that are widely used today.
However, some applications may rely on emerging standards not yet
implemented, or on proprietary services. The Java platform supports the
installation of custom providers that implement such services.

Other cryptographic communication libraries available in the JDK use the JCA provider
architecture, but are described elsewhere. The JSSE components provides access to
Secure Socket Layer (SSL), Transport Layer Security (TLS), and Datagram Transport
Layer Security (DTLS) implementations; see Java Secure Socket Extension (JSSE)
Reference Guide. You can use Java Generic Security Services (JGSS) (via Kerberos)
APIs, and Simple Authentication and Security Layer (SASL) to securely exchange
messages between communicating applications; see Java GSS-API and JAAS
Tutorials for Use with Kerberos and Java SASL API Programming and Deployment
Guide.

2-1

Notes on Terminology

• Prior to JDK 1.4, the JCE was an unbundled product, and as such, the JCA and
JCE were regularly referred to as separate, distinct components. As JCE is now
bundled in the JDK, the distinction is becoming less apparent. Since the JCE uses
the same architecture as the JCA, the JCE should be more properly thought of as
a part of the JCA.

• The JCA within the JDK includes two software components:

– The framework that defines and supports cryptographic services for which
providers supply implementations. This framework includes packages such as
java.security, javax.crypto, javax.crypto.spec, and javax.crypto.interfaces.

– The actual providers such as Sun, SunRsaSign, SunJCE, which contain the actual
cryptographic implementations.

Whenever a specific JCA provider is mentioned, it will be referred to explicitly by
the provider's name.

WARNING:

The JCA makes it easy to incorporate security features into your application.
However, this document does not cover the theory of security/cryptography
beyond an elementary introduction to concepts necessary to discuss the APIs.
This document also does not cover the strengths/weaknesses of specific
algorithms, not does it cover protocol design. Cryptography is an advanced
topic and one should consult a solid, preferably recent, reference in order to
make best use of these tools.
You should always understand what you are doing and why: DO NOT simply
copy random code and expect it to fully solve your usage scenario. Many
applications have been deployed that contain significant security or
performance problems because the wrong tool or algorithm was selected.

JCA Design Principles
The JCA was designed around these principles:

• Implementation independence and interoperability

• Algorithm independence and extensibility

Implementation independence and algorithm independence are complementary; you
can use cryptographic services, such as digital signatures and message digests,
without worrying about the implementation details or even the algorithms that form the
basis for these concepts. While complete algorithm-independence is not possible, the
JCA provides standardized, algorithm-specific APIs. When implementation-
independence is not desirable, the JCA lets developers indicate a specific
implementation.

Algorithm independence is achieved by defining types of cryptographic "engines"
(services), and defining classes that provide the functionality of these cryptographic
engines. These classes are called engine classes, and examples are the
MessageDigest, Signature, KeyFactory, KeyPairGenerator, and Cipher
classes.

Chapter 2
Introduction to Java Cryptography Architecture

2-2

https://docs.oracle.com/javase/9/docs/api/java/security/MessageDigest.html
https://docs.oracle.com/javase/9/docs/api/java/security/Signature.html
https://docs.oracle.com/javase/9/docs/api/java/security/KeyFactory.html
https://docs.oracle.com/javase/9/docs/api/java/security/KeyPairGenerator.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/Cipher.html

Implementation independence is achieved using a "provider"-based architecture. The
term Cryptographic Service Provider (CSP), which is used interchangeably with the
term "provider," (see Cryptographic Service Providers) refers to a package or set of
packages that implement one or more cryptographic services, such as digital signature
algorithms, message digest algorithms, and key conversion services. A program may
simply request a particular type of object (such as a Signature object) implementing a
particular service (such as the DSA signature algorithm) and get an implementation
from one of the installed providers. If desired, a program may instead request an
implementation from a specific provider. Providers may be updated transparently to
the application, for example when faster or more secure versions are available.

Implementation interoperability means that various implementations can work with
each other, use each other's keys, or verify each other's signatures. This would mean,
for example, that for the same algorithms, a key generated by one provider would be
usable by another, and a signature generated by one provider would be verifiable by
another.

Algorithm extensibility means that new algorithms that fit in one of the supported
engine classes can be added easily.

Provider Architecture
Providers contain a package (or a set of packages) that supply concrete
implementations for the advertised cryptographic algorithms.

Cryptographic Service Providers
java.security.Provider is the base class for all security providers. Each CSP contains
an instance of this class which contains the provider's name and lists all of the security
services/algorithms it implements. When an instance of a particular algorithm is
needed, the JCA framework consults the provider's database, and if a suitable match
is found, the instance is created.

Providers contain a package (or a set of packages) that supply concrete
implementations for the advertised cryptographic algorithms. Each JDK installation has
one or more providers installed and configured by default. Additional providers may be
added statically or dynamically. Clients may configure their runtime environment to
specify the provider preference order. The preference order is the order in which
providers are searched for requested services when no specific provider is requested.

To use the JCA, an application simply requests a particular type of object (such as a
MessageDigest) and a particular algorithm or service (such as the "SHA-256" algorithm),
and gets an implementation from one of the installed providers. For example, the
following statement requests a SHA-256 message digest from an installed provider:

 md = MessageDigest.getInstance("SHA-256");

Alternatively, the program can request the objects from a specific provider. Each
provider has a name used to refer to it. For example, the following statement requests
a SHA-256 message digest from the provider named ProviderC:

 md = MessageDigest.getInstance("SHA-256", "ProviderC");

The following figures illustrates requesting an SHA-256 message digest
implementation. They show three different providers that implement various message
digest algorithms (SHA-256, SHA-384, and SHA-512). The providers are ordered by
preference from left to right (1-3). In Figure 2-1, an application requests a SHA-256

Chapter 2
Introduction to Java Cryptography Architecture

2-3

algorithm implementation without specifying a provider name. The providers are
searched in preference order and the implementation from the first provider supplying
that particular algorithm, ProviderB, is returned. In Figure 2-2, the application requests
the SHA-256 algorithm implementation from a specific provider, ProviderC. This
time, the implementation from ProviderC is returned, even though a provider with a
higher preference order, ProviderB, also supplies an MD5 implementation.

Figure 2-1 Request SHA-256 Message Digest Implementation Without
Specifying Provider

Application

1. ProviderA
 MessageDigest
 SHA-384
 SHA-512

2. ProviderB
 MessageDigest
 SHA-256
 SHA-384

3. ProviderC
 MessageDigest
 SHA-256
 SHA-512

Provider Framework

MessageDigest.getInstance
(”SHA-256”)

SHA-256 MessageDigest
from ProviderB

Chapter 2
Introduction to Java Cryptography Architecture

2-4

Figure 2-2 Request SHA-256 Message Digest with ProviderC

Application

1. ProviderA
 MessageDigest
 SHA-384
 SHA-512

2. ProviderB
 MessageDigest
 SHA-256
 SHA-384

3. ProviderC
 MessageDigest
 SHA-256
 SHA-512

Provider Framework

MessageDigest.getInstance
(”SHA-256”, “ProviderC”)

SHA-256 MessageDigest
from ProviderC

Cryptographic implementations in the JDK are distributed via several different
providers (Sun, SunJSSE, SunJCE, SunRsaSign) primarily for historical reasons, but to a
lesser extent by the type of functionality and algorithms they provide. Other Java
runtime environments may not necessarily contain these providers, so applications
should not request a provider-specific implementation unless it is known that a
particular provider will be available.

The JCA offers a set of APIs that allow users to query which providers are installed
and what services they support.

This architecture also makes it easy for end-users to add additional providers. Many
third party provider implementations are already available. See The Provider Class for
more information on how providers are written, installed, and registered.

How Providers Are Actually Implemented
Algorithm independence is achieved by defining a generic high-level Application
Programming Interface (API) that all applications use to access a service type.
Implementation independence is achieved by having all provider implementations
conform to well-defined interfaces. Instances of engine classes are thus "backed" by
implementation classes which have the same method signatures. Application calls are
routed through the engine class and are delivered to the underlying backing
implementation. The implementation handles the request and return the proper results.

The application API methods in each engine class are routed to the provider's
implementations through classes that implement the corresponding Service Provider
Interface (SPI). That is, for each engine class, there is a corresponding abstract SPI
class which defines the methods that each cryptographic service provider's algorithm
must implement. The name of each SPI class is the same as that of the corresponding
engine class, followed by Spi. For example, the Signature engine class provides

Chapter 2
Introduction to Java Cryptography Architecture

2-5

access to the functionality of a digital signature algorithm. The actual provider
implementation is supplied in a subclass of SignatureSpi. Applications call the engine
class' API methods, which in turn call the SPI methods in the actual implementation.

Each SPI class is abstract. To supply the implementation of a particular type of service
for a specific algorithm, a provider must subclass the corresponding SPI class and
provide implementations for all the abstract methods.

For each engine class in the API, implementation instances are requested and
instantiated by calling the getInstance() factory method in the engine class. A
factory method is a static method that returns an instance of a class. The engine
classes use the framework provider selection mechanism described above to obtain
the actual backing implementation (SPI), and then creates the actual engine object.
Each instance of the engine class encapsulates (as a private field) the instance of the
corresponding SPI class, known as the SPI object. All API methods of an API object
are declared final and their implementations invoke the corresponding SPI methods of
the encapsulated SPI object.

To make this clearer, review Example 2-1 and Figure 2-3:

Example 2-1 Sample Code for Getting an Instance of an Engine Class

 import javax.crypto.*;

 Cipher c = Cipher.getInstance("AES");
 c.init(ENCRYPT_MODE, key);

Figure 2-3 Application Retrieves “AES” Cipher Instance

Here an application wants an "AES" javax.crypto.Cipher instance, and doesn't care
which provider is used. The application calls the getInstance() factory methods of the
Cipher engine class, which in turn asks the JCA framework to find the first provider

Chapter 2
Introduction to Java Cryptography Architecture

2-6

instance that supports "AES". The framework consults each installed provider, and
obtains the provider's instance of the Provider class. (Recall that the Provider class is
a database of available algorithms.) The framework searches each provider, finally
finding a suitable entry in CSP3. This database entry points to the implementation
class com.foo.AESCipher which extends CipherSpi, and is thus suitable for use by the
Cipher engine class. An instance of com.foo.AESCipher is created, and is encapsulated
in a newly-created instance of javax.crypto.Cipher, which is returned to the
application. When the application now does the init() operation on the Cipher
instance, the Cipher engine class routes the request into the corresponding
engineInit() backing method in the com.foo.AESCipher class.

Java Security Standard Algorithm Names Specification lists the Standard Names
defined for the Java environment. Other third-party providers may define their own
implementations of these services, or even additional services.

Keystores
A database called a "keystore" can be used to manage a repository of keys and
certificates. Keystores are available to applications that need data for authentication,
encryption, or signing purposes.

Applications can access a keystore via an implementation of the KeyStore class, which
is in the java.security package. As of JDK 9, the default and recommended keystore
type (format) is "pkcs12", which is based on the RSA PKCS12 Personal Information
Exchange Syntax Standard. Previously, the default keystore type was "jks", which is a
proprietary format. Other keystore formats are available, such as "jceks", which is an
alternate proprietary keystore format, and "pkcs11", which is based on the RSA
PKCS11 Standard and supports access to cryptographic tokens such as hardware
security modules and smartcards.

Applications can choose different keystore implementations from different providers,
using the same provider mechanism described previously. See Key Management.

Engine Classes and Algorithms
An engine class provides the interface to a specific type of cryptographic service,
independent of a particular cryptographic algorithm or provider.

The engines provides one of the following:

• cryptographic operations (encryption, digital signatures, message digests, etc.),

• generators or converters of cryptographic material (keys and algorithm
parameters), or

• objects (keystores or certificates) that encapsulate the cryptographic data and can
be used at higher layers of abstraction.

The following engine classes are available:

• SecureRandom: used to generate random or pseudo-random numbers.

• MessageDigest: used to calculate the message digest (hash) of specified data.

• Signature: initialized with keys, these are used to sign data and verify digital
signatures.

Chapter 2
Introduction to Java Cryptography Architecture

2-7

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

• Cipher: initialized with keys, these used for encrypting/decrypting data. There are
various types of algorithms: symmetric bulk encryption (e.g. AES), asymmetric
encryption (e.g. RSA), and password-based encryption (e.g. PBE).

• Message Authentication Codes (MAC): like MessageDigests, these also generate
hash values, but are first initialized with keys to protect the integrity of messages.

• KeyFactory: used to convert existing opaque cryptographic keys of type Key into
key specifications (transparent representations of the underlying key material), and
vice versa.

• SecretKeyFactory: used to convert existing opaque cryptographic keys of type
SecretKey into key specifications (transparent representations of the underlying key
material), and vice versa. SecretKeyFactorys are specialized KeyFactorys that
create secret (symmetric) keys only.

• KeyPairGenerator: used to generate a new pair of public and private keys suitable
for use with a specified algorithm.

• KeyGenerator: used to generate new secret keys for use with a specified algorithm.

• KeyAgreement: used by two or more parties to agree upon and establish a specific
key to use for a particular cryptographic operation.

• AlgorithmParameters: used to store the parameters for a particular algorithm,
including parameter encoding and decoding.

• AlgorithmParameterGenerator : used to generate a set of AlgorithmParameters
suitable for a specified algorithm.

• KeyStore: used to create and manage a keystore. A keystore is a database of keys.
Private keys in a keystore have a certificate chain associated with them, which
authenticates the corresponding public key. A keystore also contains certificates
from trusted entities.

• CertificateFactory: used to create public key certificates and Certificate
Revocation Lists (CRLs).

• CertPathBuilder: used to build certificate chains (also known as certification paths).

• CertPathValidator: used to validate certificate chains.

• CertStore: used to retrieve Certificates and CRLs from a repository.

Note:

A generator creates objects with brand-new contents, whereas a factory
creates objects from existing material (for example, an encoding).

Core Classes and Interfaces
The following are the core classes and interfaces provided in the JCA.

• Provider and Security

• SecureRandom, MessageDigest, Signature, Cipher, Mac, KeyFactory, SecretKeyFactory,
KeyPairGenerator, KeyGenerator, KeyAgreement, AlgorithmParameter,
AlgorithmParameterGenerator, KeyStore, CertificateFactory, and engine

• Key Interface, KeyPair

Chapter 2
Core Classes and Interfaces

2-8

• AlgorithmParameterSpec Interface, AlgorithmParameters,
AlgorithmParameterGenerator, and algorithm parameter specification interfaces and
classes in the java.security.spec and javax.crypto.spec packages.

• KeySpec Interface, EncodedKeySpec, PKCS8EncodedKeySpec, and X509EncodedKeySpec.

• SecretKeyFactory, KeyFactory, KeyPairGenerator, KeyGenerator, KeyAgreement, and
KeyStore.

Note:

See CertPathBuilder, CertPathValidator, and CertStoreengine classes in the
Java PKI Programmers Guide.

The guide will cover the most useful high-level classes first (Provider, Security,
SecureRandom, MessageDigest, Signature, Cipher, and Mac), then delve into the
various support classes. For now, it is sufficient to simply say that Keys (public,
private, and secret) are generated and represented by the various JCA classes, and
are used by the high-level classes as part of their operation.

This section shows the signatures of the main methods in each class and interface.
Examples for some of these classes (MessageDigest, Signature, KeyPairGenerator,
SecureRandom, KeyFactory, and key specification classes) are supplied in the
corresponding Code Examples sections.

The complete reference documentation for the relevant Security API packages can be
found in the package summaries:

• java.security

• javax.crypto

• java.security.cert

• java.security.spec

• javax.crypto.spec

• java.security.interfaces

• javax.crypto.interfaces

The Provider Class
The term "Cryptographic Service Provider" (used interchangeably with "provider" in
this document) refers to a package or set of packages that supply a concrete
implementation of a subset of the JDK Security API cryptography features. The
Provider class is the interface to such a package or set of packages. It has methods
for accessing the provider name, version number, and other information. Please note
that in addition to registering implementations of cryptographic services, the Provider
class can also be used to register implementations of other security services that
might get defined as part of the JDK Security API or one of its extensions.

To supply implementations of cryptographic services, an entity (e.g., a development
group) writes the implementation code and creates a subclass of the Provider class.
The constructor of the Provider subclass sets the values of various properties; the JDK
Security API uses these values to look up the services that the provider implements. In

Chapter 2
Core Classes and Interfaces

2-9

https://docs.oracle.com/javase/9/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/package-summary.html

other words, the subclass specifies the names of the classes implementing the
services.

Figure 2-4 Provider Class

ProviderC

provider.java

public class fooJCA extends Provider {

 .

 .

 put(”MessageDigest.SHA-256”.“com.foo.SHA256”);

 .

}

com.foo.SHA256.java

package com.foo;

public class SHA256 extends MessageDigestSpi {

 .

 .

}

There are several types of services that can be implemented by provider packages;
See Engine Classes and Algorithms.

The different implementations may have different characteristics. Some may be
software-based, while others may be hardware-based. Some may be platform-
independent, while others may be platform-specific. Some provider source code may
be available for review and evaluation, while some may not. The JCA lets both end-
users and developers decide what their needs are.

You can find information about how end-users install the cryptography
implementations that fit their needs, and how developers request the implementations
that fit theirs.

Note:

To implement a provider, see Steps to Implement and Integrate a Provider.

How Provider Implementations Are Requested and Supplied
For each engine class (see Engine Classes and Algorithms) in the API, a
implementation instance is requested and instantiated by calling one of the
getInstance methods on the engine class, specifying the name of the desired
algorithm and, optionally, the name of the provider (or the Provider class) whose
implementation is desired.

static EngineClassName getInstance(String algorithm)
 throws NoSuchAlgorithmException

static EngineClassName getInstance(String algorithm, String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException

Chapter 2
Core Classes and Interfaces

2-10

static EngineClassName getInstance(String algorithm, Provider provider)
 throws NoSuchAlgorithmException

where

EngineClassName

is the desired engine type (MessageDigest/Cipher/etc). For example:

 MessageDigest md = MessageDigest.getInstance("SHA-256");
 KeyAgreement ka = KeyAgreement.getInstance("DH", "SunJCE");

return an instance of the "SHA-256" MessageDigest and "DH" KeyAgreement objects,
respectively.

Java Security Standard Algorithm Names contains the list of names that have been
standardized for use with the Java environment. Some providers may choose to also
include alias names that also refer to the same algorithm. For example, the "SHA256"
algorithm might be referred to as "SHA-256". Applications should use standard names
instead of an alias, as not all providers may alias algorithm names in the same way.

Note:

The algorithm name is not case-sensitive. For example, all the following calls
are equivalent:

MessageDigest.getInstance("SHA256")
MessageDigest.getInstance("sha256")
MessageDigest.getInstance("sHa256")

If no provider is specified, getInstance searches the registered providers for an
implementation of the requested cryptographic service associated with the named
algorithm. In any given Java Virtual Machine (JVM), providers are installed in a given
preference order, the order in which the provider list is searched if a specific provider
is not requested. (See Installing Providers.) For example, suppose there are two
providers installed in a JVM, PROVIDER_1 and PROVIDER_2. Assume that:

• PROVIDER_1 implements SHA-256 and DESede. PROVIDER_1 has preference order 1
(the highest priority).

• PROVIDER_2 implements SHA256withDSA, SHA-256, RC5, and RSA. PROVIDER_2
has preference order 2.

Now let's look at three scenarios:

1. If we are looking for an SHA-256 implementation. Both providers supply such an
implementation. The PROVIDER_1 implementation is returned since PROVIDER_1 has
the highest priority and is searched first.

2. If we are looking for an SHA256withDSA signature algorithm, PROVIDER_1 is first
searched for it. No implementation is found, so PROVIDER_2 is searched. Since an
implementation is found, it is returned.

3. Suppose we are looking for a SHA256withRSA signature algorithm. Since no
installed provider implements it, a NoSuchAlgorithmException is thrown.

Chapter 2
Core Classes and Interfaces

2-11

https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html

The getInstance methods that include a provider argument are for developers who
want to specify which provider they want an algorithm from. A federal agency, for
example, will want to use a provider implementation that has received federal
certification. Let's assume that the SHA256withDSA implementation from PROVIDER_1
has not received such certification, while the DSA implementation of PROVIDER_2 has
received it.

A federal agency program would then have the following call, specifying PROVIDER_2
since it has the certified implementation:

Signature dsa = Signature.getInstance("SHA256withDSA", "PROVIDER_2");

In this case, if PROVIDER_2 was not installed, a NoSuchProviderException would be
thrown, even if another installed provider implements the algorithm requested.

A program also has the option of getting a list of all the installed providers (using the
getProviders method in The Security Class class) and choosing one from the list.

Note:

General purpose applications SHOULD NOT request cryptographic services
from specific providers. Otherwise, applications are tied to specific providers
which may not be available on other Java implementations. They also might
not be able to take advantage of available optimized providers (for example
hardware accelerators via PKCS11 or native OS implementations such as
Microsoft's MSCAPI) that have a higher preference order than the specific
requested provider.

Installing Providers
In order to be used, a cryptographic provider must first be installed, then registered
either statically or dynamically. There are a variety of Sun providers shipped with this
release (SUN, SunJCE, SunJSSE, SunRsaSign, etc.) that are already installed and registered.
The following sections describe how to install and register additional providers.

All JDK providers are already installed and registered. However, if you require any
third-party providers, see Step 8: Prepare for Testing from Steps to Implement and
Integrate a Provider for information about how to add providers to the class or module
path, register providers (statically or dynamically), and add any required permissions.

Provider Class Methods
Each Provider class instance has a (currently case-sensitive) name, a version number,
and a string description of the provider and its services.

You can query the Provider instance for this information by calling the following
methods:

public String getName()
public double getVersion()
public String getInfo()

Chapter 2
Core Classes and Interfaces

2-12

The Security Class
The Security class manages installed providers and security-wide properties. It only
contains static methods and is never instantiated. The methods for adding or removing
providers, and for setting Security properties, can only be executed by a trusted
program. Currently, a "trusted program" is either

• A local application not running under a security manager, or

• An applet or application with permission to execute the specified method (see
below).

The determination that code is considered trusted to perform an attempted action
(such as adding a provider) requires that the applet is granted the proper
permission(s) for that particular action. The policy configuration file(s) for a JDK
installation specify what permissions (which types of system resource accesses) are
allowed by code from specified code sources. (See below and the Default Policy
Implementation and Policy File Syntax and Java Security Architecture Specification
files.)

Code being executed is always considered to come from a particular "code source".
The code source includes not only the location (URL) where the code originated from,
but also a reference to any public key(s) corresponding to the private key(s) that may
have been used to sign the code. Public keys in a code source are referenced by
(symbolic) alias names from the user's .

In a policy configuration file, a code source is represented by two components: a code
base (URL), and an alias name (preceded by signedBy), where the alias name
identifies the keystore entry containing the public key that must be used to verify the
code's signature.

Each "grant" statement in such a file grants a specified code source a set of
permissions, specifying which actions are allowed.

Here is a sample policy configuration file:

grant codeBase "file:/home/sysadmin/", signedBy "sysadmin" {
 permission java.security.SecurityPermission "insertProvider";
 permission java.security.SecurityPermission "removeProvider";
 permission java.security.SecurityPermission "putProviderProperty.*";
};

This configuration file specifies that code loaded from a signed JAR file in the /home/
sysadmin/ directory on the local file system can add or remove providers or set provider
properties. (Note that the signature of the JAR file can be verified using the public key
referenced by the alias name sysadmin in the user's keystore.).

Either component of the code source (or both) may be missing. Here's an example of
a configuration file where the codeBase is omitted:

grant signedBy "sysadmin" {
 permission java.security.SecurityPermission "insertProvider.*";
 permission java.security.SecurityPermission "removeProvider.*";
};

Chapter 2
Core Classes and Interfaces

2-13

https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html

If this policy is in effect, code that comes in a JAR File signed by /home/sysadmin/
directory on the local filesystem can add or remove providers. The code does not need
to be signed.

An example where neither codeBase nor signedBy is included is:

grant {
 permission java.security.SecurityPermission "insertProvider.*";
 permission java.security.SecurityPermission "removeProvider.*";
};

Here, with both code source components missing, any code (regardless of where it
originates, or whether or not it is signed, or who signed it) can add/remove providers.
Obviously, this is definitely not recommended, as this grant could open a security hole.
Untrusted code could install a Provider, thus affecting later code that is depending on
a properly functioning implementation. (For example, a rogue Cipher object might
capture and store the sensitive information it receives.)

Managing Providers
The following tables summarize the methods in the Security class you can use to
query which Providers are installed, as well as to install or remove providers at
runtime.

Querying Providers

Method Description

static Provider[] getProviders() Returns an array containing all the installed
providers (technically, the Provider subclass
for each package provider). The order of the
Providers in the array is their preference
order.

static Provider getProvider (String
providerName)

Returns the Provider named providerName. It
returns null if the Provider is not found.

Adding Providers

Method Description

static int addProvider(Provider
provider)

Adds a Provider to the end of the list of
installed Providers. It returns the preference
position in which the Provider was added, or
-1 if the Provider was not added because it
was already installed.

static int insertProviderAt (Provider
provider, int position)

Adds a new Provider at a specified position. If
the given provider is installed at the requested
position, the provider formerly at that position
and all providers with a position greater than
position are shifted up one position (towards
the end of the list). This method returns the
preference position in which the Provider was
added, or -1 if the Provider was not added
because it was already installed.

Chapter 2
Core Classes and Interfaces

2-14

Removing Providers

Method Description

static void removeProvider(String name) Removes the Provider with the specified
name. It returns silently if the provider is not
installed. When the specified provider is
removed, all providers located at a position
greater than where the specified provider was
are shifted down one position (towards the
head of the list of installed providers).

Note:

If you want to change the preference position of a provider, you must first
remove it, and then insert it back in at the new preference position.

Security Properties
The Security class maintains a list of system-wide Security Properties. These
properties are similar to the System properties, but are security-related. These
properties can be set statically (through the <java-home>/conf/security/
java.security file) or dynamically (using an API). See Step 8.1: Configure the
Provider from Steps to Implement and Integrate a Provider. for an example of
registering a provider statically with the security.provider.n Security Property. If you
want to set properties dynamically, trusted programs can use the following methods:

static String getProperty(String key)
static void setProperty(String key, String datum)

Note:

The list of security providers is established during VM startup; therefore, the
methods described above must be used to alter the provider list.

The SecureRandom Class
The SecureRandom class is an engine class (see Engine Classes and Algorithms)
that provides cryptographically strong random numbers, either by accessing a pseudo-
random number generator (PRNG), a deterministic algorithm that produces a pseudo-
random sequence from an initial seed value, or by reading a native source of
randomness (for example, /dev/random or a true random number generator). One
example of a PRNG is the Deterministic Random Bits Generator (DRBG) as specified
in NIST SP 800-90Ar1. Other implementations may produce true random numbers,
and yet others may use a combination of both techniques. A cryptographically strong
random number minimally complies with the statistical random number generator tests
specified in FIPS 140-2, Security Requirements for Cryptographic Modules, section
4.9.1.

All Java SE implementations must indicate the strongest (most random)
implementation of SecureRandom that they provide in the

Chapter 2
Core Classes and Interfaces

2-15

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

securerandom.strongAlgorithms property of the java.security.Security class. This
implementation can be used when a particularly strong random value is required.

The securerandom.drbg.config property is used to specify the DRBG SecureRandom
configuration and implementations in the SUN provider. The securerandom.drbg.config
is a property of the java.security.Security class. Other DRBG implementations can
also use the securerandom.drbg.config property.

Figure 2-5 SecureRandom class

Seed
(optional)

Data

SecureRandom

(DRGB)
setseed()

nextInt()
nextBytes()

Creating a SecureRandom Object
There are several ways to obtain an instance of SecureRandom:

• All Java SE implementations provide a default SecureRandom using the no-argument
constructor: new SecureRandom(). This constructor traverses the list of registered
security providers, starting with the most preferred provider, then returns a new
SecureRandom object from the first provider that supports a SecureRandom random
number generator (RNG) algorithm. If none of the providers support a RNG
algorithm, then it returns a SecureRandom object that uses SHA1PRNG from the
SUN provider.

• To get a specific implementation of SecureRandom, use one of the How Provider
Implementations Are Requested and Supplied.

• Use the getInstanceStrong() method to obtain a strong SecureRandom
implementation as defined by the securerandom.strongAlgorithms property of the
java.security.Security class. This property lists platform implementations that are
suitable for generating important values.

Seeding or Re-Seeding the SecureRandom Object
The SecureRandom object is initialized with a random seed unless the call to
getInstance() is followed by a call to one of the following setSeed methods.

 void setSeed(byte[] seed)
 void setSeed(long seed)

You must call setSeed before the first nextBytes call to prevent any environmental
randomness.

The randomness of the bits produced by the SecureRandom object depends on the
randomness of the seed bits

At any time a SecureRandom object may be re-seeded using one of the setSeed or reseed
methods. The given seed for setSeed supplements, rather than replaces, the existing
seed; therefore, repeated calls are guaranteed never to reduce randomness.

Chapter 2
Core Classes and Interfaces

2-16

Using a SecureRandom Object
To get random bytes, a caller simply passes an array of any length, which is then filled
with random bytes:

 void nextBytes(byte[] bytes)

Generating Seed Bytes
If desired, it is possible to invoke the generateSeed method to generate a given
number of seed bytes (to seed other random number generators, for example):

byte[] generateSeed(int numBytes)

The MessageDigest Class
The MessageDigest class is an engine class (see Engine Classes and Algorithms)
designed to provide the functionality of cryptographically secure message digests such
as SHA-256 or SHA-512. A cryptographically secure message digest takes arbitrary-
sized input (a byte array), and generates a fixed-size output, called a digest or hash.

Figure 2-6 MessageDigest Class

Data Digest/Hash

Message Digest

(SHA-256)
update() digest()

For example, the SHA-256 algorithm produces a 32-byte digest, and SHA-512's is 64
bytes.

A digest has two properties:

• It should be computationally infeasible to find two messages that hash to the same
value.

• The digest should not reveal anything about the input that was used to generate it.

Message digests are used to produce unique and reliable identifiers of data. They are
sometimes called "checksums" or the "digital fingerprints" of the data. Changes to just
one bit of the message should produce a different digest value.

Message digests have many uses and can determine when data has been modified,
intentionally or not. Recently, there has been considerable effort to determine if there
are any weaknesses in popular algorithms, with mixed results. When selecting a digest
algorithm, one should always consult a recent reference to determine its status and
appropriateness for the task at hand.

Creating a MessageDigest Object
Procedure to create a MessageDigest object.

Chapter 2
Core Classes and Interfaces

2-17

• To compute a digest, create a message digest instance. The MessageDigest objects
are obtained by using one of the getInstance() methods in the MessageDigest
class. See How Provider Implementations Are Requested and Supplied.

The factory method returns an initialized message digest object. It thus does not
need further initialization.

Updating a Message Digest Object
Procedure to update the Message Digest object.

• To calculate the digest of some data, you have to supply the data to the initialized
message digest object. It can be provided all at once, or in chunks. Pieces can be
fed to the message digest by calling one of the update methods:

void update(byte input)
void update(byte[] input)
void update(byte[] input, int offset, int len)

Computing the Digest
Procedure to compute the digest using different types of digest() methods.

The data chunks have to be supplied by calls to update method. See Updating a
Message Digest Object.

• The digest is computed using a call to one of the digest methods:

byte[] digest()
byte[] digest(byte[] input)
int digest(byte[] buf, int offset, int len)

1. The byte[] digest() method return the computed digest.

2. The byte[] digest(byte[] input) method does a final update(input) with the
input byte array before calling digest(), which returns the digest byte array.

3. The int digest(byte[] buf, int offset, int len) method stores the
computed digest in the provided buffer buf, starting at offset. len is the
number of bytes in buf allotted for the digest, the method returns the number
of bytes actually stored in buf. If there is not enough room in the buffer, the
method will throw an exception.

See Computing a MessageDigest Object.

The Signature Class
The Signature class is an engine class (see Engine Classes and Algorithms(designed
to provide the functionality of a cryptographic digital signature algorithm such as
SHA256withDSA or SHA512withRSA. A cryptographically secure signature algorithm
takes arbitrary-sized input and a private key and generates a relatively short (often
fixed-size) string of bytes, called the signature, with the following properties:

• Only the owner of a private/public key pair is able to create a signature. It should
be computationally infeasible for anyone having only the public key and a number
of signatures to recover the private key.

Chapter 2
Core Classes and Interfaces

2-18

• Given the public key corresponding to the private key used to generate the
signature, it should be possible to verify the authenticity and integrity of the input.

Figure 2-7 Signature Class

Signature
Bytes

Signature
(SHA256withRSA)

Sign

Signature
(SHA256withRSA)

Verify

Data update() sign() verify()

update()

Generated by a Key Pair Generator

Private Key / Public Key

Yes/No

A Signature object is initialized for signing with a Private Key and is given the data
to be signed. The resulting signature bytes are typically kept with the signed data.
When verification is needed, another Signature object is created and initialized for
verification and given the corresponding Public Key. The data and the signature bytes
are fed to the signature object, and if the data and signature match, the Signature
object reports success.

Even though a signature seems similar to a message digest, they have very different
purposes in the type of protection they provide. In fact, algorithms such as
"SHA256WithRSA" use the message digest "SHA256" to initially "compress" the large
data sets into a more manageable form, then sign the resulting 32 byte message
digest with the "RSA" algorithm.

For an example for signing and verifying data, see Generating and Verifying a
Signature Using Generated Keys.

Signature Object States
Signature objects are modal objects. This means that a Signature object is always in a
given state, where it may only do one type of operation.

States are represented as final integer constants defined in their respective classes.

The three states a Signature object may have are:

• UNINITIALIZED

• SIGN

• VERIFY

When it is first created, a Signature object is in the UNINITIALIZED state. The Signature
class defines two initialization methods, initSign and initVerify, which change the
state to SIGN and VERIFY , respectively.

Creating a Signature Object
The first step for signing or verifying a signature is to create a Signature instance.

Signature objects are obtained by using one of the Signature getInstance() static
factory methods. See How Provider Implementations Are Requested and Supplied.

Chapter 2
Core Classes and Interfaces

2-19

Initializing a Signature Object
A Signature object must be initialized before it is used. The initialization method
depends on whether the object is going to be used for signing or for verification.

If it is going to be used for signing, the object must first be initialized with the private
key of the entity whose signature is going to be generated. This initialization is done by
calling the method:

final void initSign(PrivateKey privateKey)

This method puts the Signature object in the SIGN state. If instead the Signature object
is going to be used for verification, it must first be initialized with the public key of the
entity whose signature is going to be verified. This initialization is done by calling either
of these methods:

 final void initVerify(PublicKey publicKey)

 final void initVerify(Certificate certificate)

This method puts the Signature object in the VERIFY state.

Signing with a Signature Object
If the Signature object has been initialized for signing (if it is in the SIGN state), the data
to be signed can then be supplied to the object. This is done by making one or more
calls to one of the update methods:

final void update(byte b)
final void update(byte[] data)
final void update(byte[] data, int off, int len)

Calls to the update method(s) should be made until all the data to be signed has been
supplied to the Signature object.

To generate the signature, simply call one of the sign methods:

final byte[] sign()
final int sign(byte[] outbuf, int offset, int len)

The first method returns the signature result in a byte array. The second stores the
signature result in the provided buffer outbuf, starting at offset. len is the number of
bytes in outbuf allotted for the signature. The method returns the number of bytes
actually stored.

Signature encoding is algorithm specific. See Java Security Standard Algorithm
Names Specification to know more about the use of ASN.1 encoding in the Java
Cryptography Architecture.

A call to a sign method resets the signature object to the state it was in when
previously initialized for signing via a call to initSign. That is, the object is reset and
available to generate another signature with the same private key, if desired, via new
calls to update and sign.

Chapter 2
Core Classes and Interfaces

2-20

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

Alternatively, a new call can be made to initSign specifying a different private key, or
to initVerify (to initialize the Signature object to verify a signature).

Verifying with a Signature Object
If the Signature object has been initialized for verification (if it is in the VERIFY state), it
can then verify if an alleged signature is in fact the authentic signature of the data
associated with it. To start the process, the data to be verified (as opposed to the
signature itself) is supplied to the object. The data is passed to the object by calling
one of the update methods:

final void update(byte b)
final void update(byte[] data)
final void update(byte[] data, int off, int len)

Calls to the update method(s) should be made until all the data to be verified has been
supplied to the Signature object. The signature can now be verified by calling one of
the verify methods:

final boolean verify(byte[] signature)

final boolean verify(byte[] signature, int offset, int length)

The argument must be a byte array containing the signature. This byte array would
hold the signature bytes which were returned by a previous call to one of the sign
methods.

The verify method returns a boolean indicating whether or not the encoded signature
is the authentic signature of the data supplied to the update method(s).

A call to the verify method resets the signature object to its state when it was
initialized for verification via a call to initVerify. That is, the object is reset and
available to verify another signature from the identity whose public key was specified
in the call to initVerify.

Alternatively, a new call can be made to initVerify specifying a different public key (to
initialize the Signature object for verifying a signature from a different entity), or to
initSign (to initialize the Signature object for generating a signature).

The Cipher Class
The Cipher class provides the functionality of a cryptographic cipher used for
encryption and decryption. Encryption is the process of taking data (called cleartext)
and a key, and producing data (ciphertext) meaningless to a third-party who does not
know the key. Decryption is the inverse process: that of taking ciphertext and a key
and producing cleartext.

Chapter 2
Core Classes and Interfaces

2-21

Figure 2-8 The Cipher Class

Symmetric vs. Asymmetric Cryptography

There are two major types of encryption: symmetric (also known as secret key), and
asymmetric (or public key cryptography). In symmetric cryptography, the same secret
key to both encrypt and decrypt the data. Keeping the key private is critical to keeping
the data confidential. On the other hand, asymmetric cryptography uses a public/
private key pair to encrypt data. Data encrypted with one key is decrypted with the
other. A user first generates a public/private key pair, and then publishes the public
key in a trusted database that anyone can access. A user who wishes to communicate
securely with that user encrypts the data using the retrieved public key. Only the
holder of the private key will be able to decrypt. Keeping the private key confidential is
critical to this scheme.

Asymmetric algorithms (such as RSA) are generally much slower than symmetric
ones. These algorithms are not designed for efficiently protecting large amounts of
data. In practice, asymmetric algorithms are used to exchange smaller secret keys
which are used to initialize symmetric algorithms.

Stream vs. Block Ciphers

There are two major types of ciphers: block and stream. Block ciphers process entire
blocks at a time, usually many bytes in length. If there is not enough data to make a
complete input block, the data must be padded: that is, before encryption, dummy
bytes must be added to make a multiple of the cipher's block size. These bytes are
then stripped off during the decryption phase. The padding can either be done by the
application, or by initializing a cipher to use a padding type such as
"PKCS5PADDING". In contrast, stream ciphers process incoming data one small unit
(typically a byte or even a bit) at a time. This allows for ciphers to process an arbitrary
amount of data without padding.

Modes Of Operation

When encrypting using a simple block cipher, two identical blocks of plaintext will
always produce an identical block of cipher text. Cryptanalysts trying to break the
ciphertext will have an easier job if they note blocks of repeating text. A cipher mode of
operation makes the ciphertext less predictable with output block alterations based on
block position or the values of other ciphertext blocks. The first block will need an initial
value, and this value is called the initialization vector (IV). Since the IV simply alters
the data before any encryption, the IV should be random but does not necessarily
need to be kept secret. There are a variety of modes, such as CBC (Cipher Block
Chaining), CFB (Cipher Feedback Mode), and OFB (Output Feedback Mode). ECB
(Electronic Codebook Mode) is a mode in which there is no influence from block
position or other ciphertext blocks. Because ECB ciphertexts are the same if they use

Chapter 2
Core Classes and Interfaces

2-22

the same plaintext/key, this mode is not typically suitable for cryptographic applications
and should not be used.

Some algorithms such as AES and RSA allow for keys of different lengths, but others
are fixed, such as 3DES. Encryption using a longer key generally implies a stronger
resistance to message recovery. As usual, there is a trade off between security and
time, so choose the key length appropriately.

Most algorithms use binary keys. Most humans do not have the ability to remember
long sequences of binary numbers, even when represented in hexadecimal. Character
passwords are much easier to recall. Because character passwords are generally
chosen from a small number of characters (for example, [a-zA-Z0-9]), protocols such
as "Password-Based Encryption" (PBE) have been defined which take character
passwords and generate strong binary keys. In order to make the task of getting from
password to key very time-consuming for an attacker (via so-called "rainbow table
attacks" or "precomputed dictionary attacks" where common dictionary word->value
mappings are precomputed), most PBE implementations will mix in a random number,
known as a salt, to reduce the usefulness of precomputed tables.

Newer cipher modes such as Authenticated Encryption with Associated Data (AEAD)
(for example, Galois/Counter Mode (GCM)) encrypt data and authenticate the resulting
message simultaneously. Additional Associated Data (AAD) can be used during the
calculation of the resulting AEAD tag (MAC), but this AAD data is not output as
ciphertext. (For example, some data might not need to be kept confidential, but should
figure into the tag calculation to detect modifications.) The Cipher.updateAAD()
methods can be used to include AAD in the tag calculations.

Using an AES Cipher with GCM Mode

AES Cipher with GCM is an AEAD Cipher which has different usage patterns than the
non-AEAD ciphers. Apart from the regular data, it also takes AAD which is optional for
encryption/decryption but AAD must be supplied before data for encryption/decryption.
In addition, in order to use GCM securely, callers should not re-use key and IV
combinations for encryption. This means that the cipher object should be explicitly re-
initialized with a different set of parameters every time for each encryption operation.

Example 2-2 Sample Code for Using an AES Cipher with GCM Mode

 SecretKey myKey = ...
 byte[] myAAD = ...
 byte[] plainText = ...
 int myTLen = ...
 byte[] myIv = ...

 GCMParameterSpec myParams = new GCMParameterSpec(myTLen, myIv);
 Cipher c = Cipher.getInstance("AES/GCM/NoPadding");
 c.init(Cipher.ENCRYPT_MODE, myKey, myParams);

 // AAD is optional, if present, it must be supplied before any update/doFinal
calls.
 c.updateAAD(myAAD); // if AAD is non-null
 byte[] cipherText = new byte[c.getOutputSize(plainText.length)];
 // conclusion of encryption operation
 int actualOutputLen = c.doFinal(plainText, 0, plainText.length, cipherText);

 // To decrypt, same AAD and GCM parameters must be supplied
 c.init(Cipher.DECRYPT_MODE, myKey, myParams);
 c.updateAAD(myAAD);

Chapter 2
Core Classes and Interfaces

2-23

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

 byte[] recoveredText = c.doFinal(cipherText, 0, actualOutputLen);

 // MUST CHANGE IV VALUE if the same key were to be used again for encryption
 byte[] newIv = ...;
 myParams = new GCMParameterSpec(myTLen, newIv);

Creating a Cipher Object

Cipher objects are obtained by using one of the Cipher getInstance() static factory
methods. See How Provider Implementations Are Requested and Supplied. Here, the
algorithm name is slightly different than with other engine classes, in that it specifies
not just an algorithm name, but a "transformation". A transformation is a string that
describes the operation (or set of operations) to be performed on the given input to
produce some output. A transformation always includes the name of a cryptographic
algorithm (e.g., AES), and may be followed by a mode and padding scheme.

A transformation is of the form:

• "algorithm/mode/padding" or

• "algorithm"

For example, the following are valid transformations:

 "AES/CBC/PKCS5Padding"

 "AES"

If just a transformation name is specified, the system will determine if there is an
implementation of the requested transformation available in the environment, and if
there is more than one, returns there is a preferred one.

If both a transformation name and a package provider are specified, the system will
determine if there is an implementation of the requested transformation in the package
requested, and throw an exception if there is not.

It is recommended to use a transformation that fully specifies the algorithm, mode, and
padding. By not doing so, the provider will use a default. For example, the SunJCE
and SunPKCS11 providers use ECB as the default mode, and PKCS5Padding as the
default padding for many symmetric ciphers.

This means that in the case of the SunJCE provider:

 Cipher c1 = Cipher.getInstance("AES/ECB/PKCS5Padding");

and

 Cipher c1 = Cipher.getInstance("AES");

are equivalent statements.

Note:

ECB mode is the easiest block cipher mode to use and is the default in the
JDK and JRE. ECB works for single blocks of data when using different keys,
but it absolutely should not be used for multiple data blocks. Other cipher
modes such as Cipher Block Chaining (CBC) or Galois/Counter Mode (GCM)
are more appropriate.

Chapter 2
Core Classes and Interfaces

2-24

Using modes such as CFB and OFB, block ciphers can encrypt data in units smaller
than the cipher's actual block size. When requesting such a mode, you may optionally
specify the number of bits to be processed at a time by appending this number to the
mode name as shown in the "AES/CFB8/NoPadding" and "AES/OFB32/
PKCS5Padding" transformations. If no such number is specified, a provider-specific
default is used. (For example, the SunJCE provider uses a default of 128 bits for AES.)
Thus, block ciphers can be turned into byte-oriented stream ciphers by using an 8 bit
mode such as CFB8 or OFB8.

Java Security Standard Algorithm Names contains a list of standard names that can
be used to specify the algorithm name, mode, and padding scheme components of a
transformation.

The objects returned by factory methods are uninitialized, and must be initialized
before they become usable.

Initializing a Cipher Object

A Cipher object obtained via getInstance must be initialized for one of four modes,
which are defined as final integer constants in the Cipher class. The modes can be
referenced by their symbolic names, which are shown below along with a description
of the purpose of each mode:

ENCRYPT_MODE
Encryption of data.

DECRYPT_MODE
Decryption of data.

WRAP_MODE
Wrapping a java.security.Key into bytes so that the key can be securely transported.

UNWRAP_MODE
Unwrapping of a previously wrapped key into a java.security.Key object.

Each of the Cipher initialization methods takes an operational mode parameter
(opmode), and initializes the Cipher object for that mode. Other parameters include the
key (key) or certificate containing the key (certificate), algorithm parameters (params),
and a source of randomness (random).

To initialize a Cipher object, call one of the following init methods:

 public void init(int opmode, Key key);

 public void init(int opmode, Certificate certificate);

 public void init(int opmode, Key key, SecureRandom random);

 public void init(int opmode, Certificate certificate,
 SecureRandom random);

 public void init(int opmode, Key key,
 AlgorithmParameterSpec params);

 public void init(int opmode, Key key,
 AlgorithmParameterSpec params, SecureRandom random);

 public void init(int opmode, Key key,

Chapter 2
Core Classes and Interfaces

2-25

https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html

 AlgorithmParameters params);

 public void init(int opmode, Key key,
 AlgorithmParameters params, SecureRandom random);

If a Cipher object that requires parameters (e.g., an initialization vector) is initialized for
encryption, and no parameters are supplied to the init method, the underlying cipher
implementation is supposed to supply the required parameters itself, either by
generating random parameters or by using a default, provider-specific set of
parameters.

However, if a Cipher object that requires parameters is initialized for decryption, and
no parameters are supplied to the init method, an InvalidKeyException or
InvalidAlgorithmParameterException exception will be raised, depending on the init
method that has been used.

See Managing Algorithm Parameters.

The same parameters that were used for encryption must be used for decryption.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In
other words, initializing a Cipher is equivalent to creating a new instance of that
Cipher, and initializing it. For example, if a Cipher is first initialized for decryption with a
given key, and then initialized for encryption, it will lose any state acquired while in
decryption mode.

Encrypting and Decrypting Data

Data can be encrypted or decrypted in one step (single-part operation) or in multiple
steps (multiple-part operation). A multiple-part operation is useful if you do not know in
advance how long the data is going to be, or if the data is too long to be stored in
memory all at once.

To encrypt or decrypt data in a single step, call one of the doFinal methods:

 public byte[] doFinal(byte[] input);

 public byte[] doFinal(byte[] input, int inputOffset, int inputLen);

 public int doFinal(byte[] input, int inputOffset,
 int inputLen, byte[] output);

 public int doFinal(byte[] input, int inputOffset,
 int inputLen, byte[] output, int outputOffset)

To encrypt or decrypt data in multiple steps, call one of the update methods:

 public byte[] update(byte[] input);

 public byte[] update(byte[] input, int inputOffset, int inputLen);

 public int update(byte[] input, int inputOffset, int inputLen,
 byte[] output);

 public int update(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset)

Chapter 2
Core Classes and Interfaces

2-26

A multiple-part operation must be terminated by one of the above doFinal methods (if
there is still some input data left for the last step), or by one of the following doFinal
methods (if there is no input data left for the last step):

 public byte[] doFinal();

 public int doFinal(byte[] output, int outputOffset);

All the doFinal methods take care of any necessary padding (or unpadding), if padding
(or unpadding) has been requested as part of the specified transformation.

A call to doFinal resets the Cipher object to the state it was in when initialized via a call
to init. That is, the Cipher object is reset and available to encrypt or decrypt
(depending on the operation mode that was specified in the call to init) more data.

Wrapping and Unwrapping Keys

Wrapping a key enables secure transfer of the key from one place to another.

The wrap/unwrap API makes it more convenient to write code since it works with key
objects directly. These methods also enable the possibility of secure transfer of
hardware-based keys.

To wrap a Key, first initialize the Cipher object for WRAP_MODE, and then call the
following:

 public final byte[] wrap(Key key);

If you are supplying the wrapped key bytes (the result of calling wrap) to someone else
who will unwrap them, be sure to also send additional information the recipient will
need in order to do the unwrap:

• The name of the key algorithm.

• The type of the wrapped key (one of Cipher.SECRET_KEY, Cipher.PRIVATE_KEY, or
Cipher.PUBLIC_KEY).

The key algorithm name can be determined by calling the getAlgorithm method from
the Key interface:

 public String getAlgorithm();

To unwrap the bytes returned by a previous call to wrap, first initialize a Cipher object
for UNWRAP_MODE, then call the following:

 public final Key unwrap(byte[] wrappedKey,
 String wrappedKeyAlgorithm,
 int wrappedKeyType));

Here, wrappedKey is the bytes returned from the previous call to wrap,
wrappedKeyAlgorithm is the algorithm associated with the wrapped key, and
wrappedKeyType is the type of the wrapped key. This must be one of Cipher.SECRET_KEY,
Cipher.PRIVATE_KEY, or Cipher.PUBLIC_KEY.

Chapter 2
Core Classes and Interfaces

2-27

Managing Algorithm Parameters

The parameters being used by the underlying Cipher implementation, which were
either explicitly passed to the init method by the application or generated by the
underlying implementation itself, can be retrieved from the Cipher object by calling its
getParameters method, which returns the parameters as a
java.security.AlgorithmParameters object (or null if no parameters are being used). If
the parameter is an initialization vector (IV), it can also be retrieved by calling the getIV
method.

In the following example, a Cipher object implementing password-based encryption
(PBE) is initialized with just a key and no parameters. However, the selected algorithm
for password-based encryption requires two parameters - a salt and an iteration count.
Those will be generated by the underlying algorithm implementation itself. The
application can retrieve the generated parameters from the Cipher object, see
Example 2-3.

The same parameters that were used for encryption must be used for decryption. They
can be instantiated from their encoding and used to initialize the corresponding Cipher
object for decryption, see Example 2-4.

If you did not specify any parameters when you initialized a Cipher object, and you are
not sure whether or not the underlying implementation uses any parameters, you can
find out by simply calling the getParameters method of your Cipher object and checking
the value returned. A return value of null indicates that no parameters were used.

The following cipher algorithms implemented by the SunJCE provider use parameters:

• AES, DES-EDE, and Blowfish, when used in feedback (i.e., CBC, CFB, OFB, or
PCBC) mode, use an initialization vector (IV). The
javax.crypto.spec.IvParameterSpec class can be used to initialize a Cipher object
with a given IV. In addition, CTR and GCM modes require an IV.

• PBE Cipher algorithms use a set of parameters, comprising a salt and an
iteration count. The javax.crypto.spec.PBEParameterSpec class can be used to
initialize a Cipher object implementing a PBE algorithm (for example:
PBEWithHmacSHA256AndAES_256) with a given salt and iteration count.

Note that you do not have to worry about storing or transferring any algorithm
parameters for use by the decryption operation if you use the The SealedObject Class
class. This class attaches the parameters used for sealing (encryption) to the
encrypted object contents, and uses the same parameters for unsealing (decryption).

Example 2-3 Sample Code for Retrieving Parameters from the Cipher Object

The application can retrieve the generated parameters for encryption from the Cipher
object as follows:

 import javax.crypto.*;
 import java.security.AlgorithmParameters;

 // get cipher object for password-based encryption
 Cipher c = Cipher.getInstance("PBEWithHmacSHA256AndAES_256");

 // initialize cipher for encryption, without supplying
 // any parameters. Here, "myKey" is assumed to refer
 // to an already-generated key.
 c.init(Cipher.ENCRYPT_MODE, myKey);

Chapter 2
Core Classes and Interfaces

2-28

 // encrypt some data and store away ciphertext
 // for later decryption
 byte[] cipherText = c.doFinal("This is just an example".getBytes());

 // retrieve parameters generated by underlying cipher
 // implementation
 AlgorithmParameters algParams = c.getParameters();

 // get parameter encoding and store it away
 byte[] encodedAlgParams = algParams.getEncoded();

Example 2-4 Sample Code for Initializing the Cipher Object for Decryption

The same parameters that were used for encryption must be used for decryption. They
can be instantiated from their encoding and used to initialize the corresponding Cipher
object for decryption as follows:

 import javax.crypto.*;
 import java.security.AlgorithmParameters;

 // get parameter object for password-based encryption
 AlgorithmParameters algParams;
 algParams = AlgorithmParameters.getInstance("PBEWithHmacSHA256AndAES_256");

 // initialize with parameter encoding from above
 algParams.init(encodedAlgParams);

 // get cipher object for password-based encryption
 Cipher c = Cipher.getInstance("PBEWithHmacSHA256AndAES_256");

 // initialize cipher for decryption, using one of the
 // init() methods that takes an AlgorithmParameters
 // object, and pass it the algParams object from above
 c.init(Cipher.DECRYPT_MODE, myKey, algParams);

Cipher Output Considerations

Some of the update and doFinal methods of Cipher allow the caller to specify the
output buffer into which to encrypt or decrypt the data. In these cases, it is important to
pass a buffer that is large enough to hold the result of the encryption or decryption
operation.

The following method in Cipher can be used to determine how big the output buffer
should be:

 public int getOutputSize(int inputLen)

Other Cipher-based Classes
There are some helper classes which internally use Ciphers to provide easy access to
common cipher uses.

Topics

The Cipher Stream Classes

The SealedObject Class

Chapter 2
Core Classes and Interfaces

2-29

The Cipher Stream Classes
The CipherInputStream and CipherOutputStream classes are Cipher stream classes.

The CipherInputStream Class

This class is a FilterInputStream that encrypts or decrypts the data passing through it.
It is composed of an InputStream. CipherInputStream represents a secure input
stream into which a Cipher object has been interposed. The read methods of
CipherInputStream return data that are read from the underlying InputStream
but have additionally been processed by the embedded Cipher object. The Cipher
object must be fully initialized before being used by a CipherInputStream.

For example, if the embedded Cipher has been initialized for decryption, the
CipherInputStream will attempt to decrypt the data it reads from the underlying
InputStream before returning them to the application.

This class adheres strictly to the semantics, especially the failure semantics, of its
ancestor classes java.io.FilterInputStream and java.io.InputStream. This class has
exactly those methods specified in its ancestor classes, and overrides them all, so that
the data are additionally processed by the embedded cipher. Moreover, this class
catches all exceptions that are not thrown by its ancestor classes. In particular, the
skip(long) method skips only data that has been processed by the Cipher.

It is crucial for a programmer using this class not to use methods that are not defined
or overridden in this class (such as a new method or constructor that is later added to
one of the super classes), because the design and implementation of those methods
are unlikely to have considered security impact with regard to CipherInputStream.
See Example 2-5 for its usage, suppose cipher1 has been initialized for encryption.
The program reads and encrypts the content from the file /tmp/a.txt and then stores
the result (the encrypted bytes) in /tmp/b.txt.

Example 2-6 demonstrates how to easily connect several instances of
CipherInputStream and FileInputStream. In this example, assume that cipher1 and
cipher2 have been initialized for encryption and decryption (with corresponding keys),
respectively. The program copies the content from file /tmp/a.txt to /tmp/b.txt, except
that the content is first encrypted and then decrypted back when it is read from /tmp/
a.txt. Of course since this program simply encrypts text and decrypts it back right
away, it's actually not very useful except as a simple way of illustrating chaining of
CipherInputStreams.

Note that the read methods of the CipherInputStream will block until data is returned
from the underlying cipher. If a block cipher is used, a full block of cipher text will have
to be obtained from the underlying InputStream.

Example 2-5 Sample Code for Using CipherInputStream and FileInputStream

The code below demonstrates how to use a CipherInputStream containing that cipher
and a FileInputStream in order to encrypt input stream data:

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
CipherInputStream cis = new CipherInputStream(fis, cipher1);
FileOutputStream fos = new FileOutputStream("/tmp/b.txt")) {
 byte[] b = new byte[8];
 int i = cis.read(b);
 while (i != -1) {
 fos.write(b, 0, i);

Chapter 2
Core Classes and Interfaces

2-30

 i = cis.read(b);
 }
}

Example 2-6 Sample Code for Connecting CipherInputStream and
FileInputStream

The following example demonstrates how to easily connect several instances of
CipherInputStream and FileInputStream. In this example, assume that cipher1
and cipher2 have been initialized for encryption and decryption (with corresponding
keys), respectively:

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
 CipherInputStream cis1 = new CipherInputStream(fis, cipher1);
 CipherInputStream cis2 = new CipherInputStream(cis1, cipher2);
 FileOutputStream fos = new FileOutputStream("/tmp/b.txt")) {
 byte[] b = new byte[8];
 int i = cis2.read(b);
 while (i != -1) {
 fos.write(b, 0, i);
 i = cis2.read(b);
 }
}

The CipherOutputStream Class

This class is a FilterOutputStream that encrypts or decrypts the data passing through
it. It is composed of an OutputStream, or one of its subclasses, and a Cipher.
CipherOutputStream represents a secure output stream into which a Cipher
object has been interposed. The write methods of CipherOutputStream first
process the data with the embedded Cipher object before writing them out to the
underlying OutputStream. The Cipher object must be fully initialized before being
used by a CipherOutputStream.

For example, if the embedded Cipher has been initialized for encryption, the
CipherOutputStream will encrypt its data, before writing them out to the underlying
output stream.

This class adheres strictly to the semantics, especially the failure semantics, of its
ancestor classes java.io.OutputStream and java.io.FilterOutputStream. This class has
exactly those methods specified in its ancestor classes, and overrides them all, so that
all data are additionally processed by the embedded cipher. Moreover, this class
catches all exceptions that are not thrown by its ancestor classes.

It is crucial for a programmer using this class not to use methods that are not defined
or overridden in this class (such as a new method or constructor that is later added to
one of the super classes), because the design and implementation of those methods
are unlikely to have considered security impact with regard to CipherOutputStream.

See Example 2-7 , for its usage, suppose cipher1 has been initialized for encryption.
The program reads the content from the file /tmp/a.txt, then encrypts and stores the
result (the encrypted bytes) in /tmp/b.txt.

Example 2-7 demonstrates how to easily connect several instances of
CipherOutputStream and FileOutputStream. In this example, assume that cipher1 and
cipher2 have been initialized for decryption and encryption (with corresponding keys),
respectively. The program copies the content from file /tmp/a.txt to /tmp/b.txt, except
that the content is first encrypted and then decrypted back before it is written to /tmp/
b.txt.

Chapter 2
Core Classes and Interfaces

2-31

One thing to keep in mind when using block cipher algorithms is that a full block of
plaintext data must be given to the CipherOutputStream before the data will be
encrypted and sent to the underlying output stream.

There is one other important difference between the flush and close methods of this
class, which becomes even more relevant if the encapsulated Cipher object
implements a block cipher algorithm with padding turned on:

• flush flushes the underlying OutputStream by forcing any buffered output bytes
that have already been processed by the encapsulated Cipher object to be written
out. Any bytes buffered by the encapsulated Cipher object and waiting to be
processed by it will not be written out.

• close closes the underlying OutputStream and releases any system resources
associated with it. It invokes the doFinal method of the encapsulated Cipher
object, causing any bytes buffered by it to be processed and written out to the
underlying stream by calling its flush method.

Example 2-7 Sample Code for Using CipherOutputStream and
FileOutputStream

CipherOutputStreamFileOutputStream

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
 FileOutputStream fos = new FileOutputStream("/tmp/b.txt");
 CipherOutputStream cos = new CipherOutputStream(fos, cipher1)) {
 byte[] b = new byte[8];
 int i = fis.read(b);
 while (i != -1) {
 cos.write(b, 0, i);
 i = fis.read(b);
 }
 cos.flush();
}

Example 2-8 Sample Code for Connecting CipherOutputStream and
FileOutputStream

CipherOutputStreamFileOutputStreamcipher1cipher2

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
 FileOutputStream fos = new FileOutputStream("/tmp/b.txt");
 CipherOutputStream cos1 = new CipherOutputStream(fos, cipher1);
 CipherOutputStream cos2 = new CipherOutputStream(cos1, cipher2)) {
 byte[] b = new byte[8];
 int i = fis.read(b);
 while (i != -1) {
 cos2.write(b, 0, i);
 i = fis.read(b);
 }
 cos2.flush();
}

The SealedObject Class
This class enables a programmer to create an object and protect its confidentiality with
a cryptographic algorithm.

Given any object that implements the java.io.Serializable interface, one can create a
SealedObject that encapsulates the original object, in serialized format (i.e., a "deep

Chapter 2
Core Classes and Interfaces

2-32

copy"), and seals (encrypts) its serialized contents, using a cryptographic algorithm
such as AES, to protect its confidentiality. The encrypted content can later be
decrypted (with the corresponding algorithm using the correct decryption key) and de-
serialized, yielding the original object.

A typical usage is illustrated in the following code segment: In order to seal an object,
you create a SealedObject from the object to be sealed and a fully initialized Cipher
object that will encrypt the serialized object contents. In this example, the String "This
is a secret" is sealed using the AES algorithm. Note that any algorithm parameters that
may be used in the sealing operation are stored inside of SealedObject:

 // create Cipher object
 // NOTE: sKey is assumed to refer to an already-generated
 // secret AES key.
 Cipher c = Cipher.getInstance("AES");
 c.init(Cipher.ENCRYPT_MODE, sKey);

 // do the sealing
 SealedObject so = new SealedObject("This is a secret", c);

The original object that was sealed can be recovered in two different ways:

• by using a Cipher object that has been initialized with the exact same algorithm,
key, padding scheme, etc., that were used to seal the object:

 c.init(Cipher.DECRYPT_MODE, sKey);
 try {
 String s = (String)so.getObject(c);
 } catch (Exception e) {
 // do something
 };

This approach has the advantage that the party who unseals the sealed object
does not require knowledge of the decryption key. For example, after one party
has initialized the cipher object with the required decryption key, it could hand over
the cipher object to another party who then unseals the sealed object.

• by using the appropriate decryption key (since AES is a symmetric encryption
algorithm, we use the same key for sealing and unsealing):

 try {
 String s = (String)so.getObject(sKey);
 } catch (Exception e) {
 // do something
 };

In this approach, the getObject method creates a cipher object for the appropriate
decryption algorithm and initializes it with the given decryption key and the
algorithm parameters (if any) that were stored in the sealed object. This approach
has the advantage that the party who unseals the object does not need to keep
track of the parameters (e.g., the IV) that were used to seal the object.

Chapter 2
Core Classes and Interfaces

2-33

The Mac Class
Similar to a MessageDigest, a Message Authentication Code (MAC) provides a way to
check the integrity of information transmitted over or stored in an unreliable medium,
but includes a secret key in the calculation.

Only someone with the proper key will be able to verify the received message.
Typically, message authentication codes are used between two parties that share a
secret key in order to validate information transmitted between these parties.

Figure 2-9 The Mac Class

Data
update()

doFinal()

MAC
(HmacSHA256)

Shared Secret
Key

If data was the
same, hash is
the same

Signed
Digest Hash

Data
update()

doFinal()

MAC
(HmacSHA256)

Signed
Digest Hash

A MAC mechanism that is based on cryptographic hash functions is referred to as
HMAC. HMAC can be used with any cryptographic hash function, e.g., SHA-256, in
combination with a secret shared key.

The Mac class provides the functionality of a Message Authentication Code (MAC). See
HMAC-SHA256 Example.

Creating a Mac Object

Mac objects are obtained by using one of the Mac getInstance() static factory
methods. See How Provider Implementations Are Requested and Supplied.

Initializing a Mac Object

A Mac object is always initialized with a (secret) key and may optionally be initialized
with a set of parameters, depending on the underlying MAC algorithm.

To initialize a Mac object, call one of its init methods:

 public void init(Key key);

 public void init(Key key, AlgorithmParameterSpec params);

You can initialize your Mac object with any (secret-)key object that implements the
javax.crypto.SecretKey interface. This could be an object returned by
javax.crypto.KeyGenerator.generateKey(), or one that is the result of a key
agreement protocol, as returned by
javax.crypto.KeyAgreement.generateSecret(), or an instance of
javax.crypto.spec.SecretKeySpec.

With some MAC algorithms, the (secret-)key algorithm associated with the (secret-)key
object used to initialize the Mac object does not matter (this is the case with the
HMAC-MD5 and HMAC-SHA1 implementations of the SunJCE provider). With others,

Chapter 2
Core Classes and Interfaces

2-34

however, the (secret-)key algorithm does matter, and an InvalidKeyException is thrown
if a (secret-)key object with an inappropriate (secret-)key algorithm is used.

Computing a MAC

A MAC can be computed in one step (single-part operation) or in multiple steps
(multiple-part operation). A multiple-part operation is useful if you do not know in
advance how long the data is going to be, or if the data is too long to be stored in
memory all at once.

To compute the MAC of some data in a single step, call the following doFinal
method:

 public byte[] doFinal(byte[] input);

To compute the MAC of some data in multiple steps, call one of the update methods:

 public void update(byte input);

 public void update(byte[] input);

 public void update(byte[] input, int inputOffset, int inputLen);

A multiple-part operation must be terminated by the above doFinal method (if there is
still some input data left for the last step), or by one of the following doFinal methods (if
there is no input data left for the last step):

 public byte[] doFinal();

 public void doFinal(byte[] output, int outOffset);

Key Interfaces
The java.security.Key interface is the top-level interface for all opaque keys. It defines
the functionality shared by all opaque key objects.

To this point, we have focused the high-level uses of the JCA without getting lost in the
details of what keys are and how they are generated/represented. It is now time to turn
our attention to keys.

An opaque key representation is one in which you have no direct access to the key
material that constitutes a key. In other words: "opaque" gives you limited access to
the key--just the three methods defined by the Key interface (see below): getAlgorithm,
getFormat, and getEncoded.

This is in contrast to a transparent representation, in which you can access each key
material value individually, through one of the get methods defined in the
corresponding KeySpec interface (see The KeySpec Interface).

All opaque keys have three characteristics:

An Algorithm
The key algorithm for that key. The key algorithm is usually an encryption or
asymmetric operation algorithm (such as AES, DSA or RSA), which will work with those

Chapter 2
Core Classes and Interfaces

2-35

algorithms and with related algorithms (such as SHA256withRSA). The name of the
algorithm of a key is obtained using this method:

String getAlgorithm()

An Encoded Form
The external encoded form for the key used when a standard representation of the
key is needed outside the Java Virtual Machine, as when transmitting the key to some
other party. The key is encoded according to a standard format (such as X.509 or
PKCS8), and is returned using the method:

byte[] getEncoded()

A Format
The name of the format of the encoded key. It is returned by the method:

String getFormat()

Keys are generally obtained through key generators such as the KeyGenerator class
and the KeyPairGenerator class, certificates, key specifications (see the The
KeySpec Interface) using a KeyFactory, or a Keystore implementation accessing a
keystore database used to manage keys. It is possible to parse encoded keys, in an
algorithm-dependent manner, using a KeyFactory.

It is also possible to parse certificates, using a CertificateFactory.

Here is a list of interfaces which extend the Key interface in the
java.security.interfaces and javax.crypto.interfaces packages:

• SecretKey

– PBEKey

• PrivateKey

– DHPrivateKey

– DSAPrivateKey

– ECPrivateKey

– RSAMultiPrimePrivateCrtKey

– RSAPrivateCrtKey

– RSAPrivateKey

• PublicKey

– DHPublicKey

– DSAPublicKey

– ECPublicKey

– RSAPublicKey

The PublicKey and PrivateKey Interfaces

The PublicKey and PrivateKey interfaces (which both extend the Key interface) are
methodless interfaces, used for type-safety and type-identification.

Chapter 2
Core Classes and Interfaces

2-36

https://docs.oracle.com/javase/9/docs/api/javax/crypto/SecretKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/PBEKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/PrivateKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/ECPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAMultiPrimePrivateCrtKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPrivateCrtKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/PublicKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHPublicKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAPublicKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/ECPublicKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPublicKey.html

The KeyPair Class
The KeyPair class is a simple holder for a key pair (a public key and a private key).

It has two public methods, one for returning the private key, and the other for returning
the public key:

PrivateKey getPrivate()
PublicKey getPublic()

Key Specification Interfaces and Classes
Key objects and key specifications (KeySpecs) are two different representations of key
data. Ciphers use Key objects to initialize their encryption algorithms, but keys may
need to be converted into a more portable format for transmission or storage.

A transparent representation of keys means that you can access each key material
value individually, through one of the get methods defined in the corresponding
specification class. For example, DSAPrivateKeySpec defines getX, getP, getQ, and getG
methods, to access the private key x, and the DSA algorithm parameters used to
calculate the key: the prime p, the sub-prime q, and the base g. If the key is stored on a
hardware device, its specification may contain information that helps identify the key
on the device.

This representation is contrasted with an opaque representation, as defined by the
Key Interfaces interface, in which you have no direct access to the key material fields.
In other words, an "opaque" representation gives you limited access to the key--just
the three methods defined by the Key interface: getAlgorithm, getFormat, and
getEncoded.

A key may be specified in an algorithm-specific way, or in an algorithm-independent
encoding format (such as ASN.1). For example, a DSA private key may be specified
by its components x, p, q, and g (see DSAPrivateKeySpec), or it may be specified using
its DER encoding (see PKCS8EncodedKeySpec).

The The KeyFactory Class and The SecretKeyFactory Class classes can be used to
convert between opaque and transparent key representations (that is, between Keys
and KeySpecs, assuming that the operation is possible. (For example, private keys on
smart cards might not be able leave the card. Such Keys are not convertible.)

In the following sections, we discuss the key specification interfaces and classes in the
java.security.spec package.

The KeySpec Interface
This interface contains no methods or constants. Its only purpose is to group and
provide type safety for all key specifications. All key specifications must implement this
interface.

The KeySpec Subinterfaces
Like the Key interface, there are a similar set of KeySpec interfaces.

• SecretKeySpec

Chapter 2
Core Classes and Interfaces

2-37

https://docs.oracle.com/javase/9/docs/api/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/PKCS8EncodedKeySpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/SecretKeySpec.html

• EncodedKeySpec

– PKCS8EncodedKeySpec

– X509EncodedKeySpec

• DESKeySpec

• DESedeKeySpec

• PBEKeySpec

• DHPrivateKeySpec

• DSAPrivateKeySpec

• ECPrivateKeySpec

• RSAPrivateKeySpec

– RSAMultiPrimePrivateCrtKeySpec

– RSAPrivateCrtKeySpec

• DHPublicKeySpec

• DSAPublicKeySpec

• ECPublicKeySpec

• RSAPublicKeySpec

The EncodedKeySpec Class
This abstract class (which implements the The KeySpec Interface interface)
represents a public or private key in encoded format. Its getEncoded method returns
the encoded key:

abstract byte[] getEncoded();

and its getFormat method returns the name of the encoding format:

abstract String getFormat();

See the next sections for the concrete implementations PKCS8EncodedKeySpec and
X509EncodedKeySpec.

The PKCS8EncodedKeySpec Class
This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a
private key, according to the format specified in the PKCS8 standard.

Its getEncoded method returns the key bytes, encoded according to the PKCS8
standard. Its getFormat method returns the string "PKCS#8".

The X509EncodedKeySpec Class
This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a
public key, according to the format specified in the X.509 standard.

Its getEncoded method returns the key bytes, encoded according to the X.509 standard.
Its getFormat method returns the string "X.509".

Chapter 2
Core Classes and Interfaces

2-38

https://docs.oracle.com/javase/9/docs/api/java/security/spec/EncodedKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/PKCS8EncodedKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/X509EncodedKeySpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/DESKeySpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/DESedeKeySpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/PBEKeySpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/DHPrivateKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/ECPrivateKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/RSAPrivateKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/RSAMultiPrimePrivateCrtKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/RSAPrivateCrtKeySpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/DHPublicKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/DSAPublicKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/ECPublicKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/RSAPublicKeySpec.html

Generators and Factories
Newcomers to Java and the JCA APIs in particular sometimes do not grasp the
distinction between generators and factories.

Figure 2-10 Generators and Factories

Generators are used to generate brand new objects. Generators can be initialized in
either an algorithm-dependent or algorithm-independent way. For example, to create a
Diffie-Hellman (DH) keypair, an application could specify the necessary P and G
values, or the generator could simply be initialized with the appropriate key length, and
the generator will select appropriate P and G values. In both cases, the generator will
produce brand new keys based on the parameters.

On the other hand, factories are used to convert data from one existing object type
to another. For example, an application might have available the components of a DH
private key and can package them as a The KeySpec Interface, but needs to convert
them into a PrivateKey object that can be used by a KeyAgreement object, or vice-versa.
Or they might have the byte array of a certificate, but need to use a CertificateFactory
to convert it into a X509Certificate object. Applications use factory objects to do the
conversion.

The KeyFactory Class
The KeyFactory class is an Engine Classes and Algorithms designed to perform
conversions between opaque cryptographic Key Interfaces and Key Specification
Interfaces and Classes (transparent representations of the underlying key material).

Figure 2-11 KeyFactory Class

Chapter 2
Core Classes and Interfaces

2-39

Key factories are bi-directional. They allow you to build an opaque key object from a
given key specification (key material), or to retrieve the underlying key material of a
key object in a suitable format.

Multiple compatible key specifications can exist for the same key. For example, a DSA
public key may be specified by its components y, p, q, and g (see
java.security.spec.DSAPublicKeySpec), or it may be specified using its DER encoding
according to the X.509 standard (see The X509EncodedKeySpec Class).

A key factory can be used to translate between compatible key specifications. Key
parsing can be achieved through translation between compatible key specifications,
e.g., when you translate from X509EncodedKeySpec to DSAPublicKeySpec, you basically
parse the encoded key into its components. For an example, see the end of the
Generating/Verifying Signatures Using Key Specifications and KeyFactory section.

Creating a KeyFactory Object

KeyFactory objects are obtained by using one of the KeyFactorygetInstance() static
factory methods. See How Provider Implementations Are Requested and Supplied.

Converting Between a Key Specification and a Key Object

If you have a key specification for a public key, you can obtain an opaque PublicKey
object from the specification by using the generatePublic method:

PublicKey generatePublic(KeySpec keySpec)

Similarly, if you have a key specification for a private key, you can obtain an opaque
PrivateKey object from the specification by using the generatePrivate method:

PrivateKey generatePrivate(KeySpec keySpec)

Converting Between a Key Object and a Key Specification

If you have a Key object, you can get a corresponding key specification object by
calling the getKeySpec method:

KeySpec getKeySpec(Key key, Class keySpec)

keySpec identifies the specification class in which the key material should be returned.
It could, for example, be DSAPublicKeySpec.class , to indicate that the key material
should be returned in an instance of the DSAPublicKeySpec class. See Generating/
Verifying Signatures Using Key Specifications and KeyFactory.

The SecretKeyFactory Class
The SecretKeyFactory class represents a factory for secret keys. Unlike the
KeyFactory class (see The KeyFactory Class), a javax.crypto.SecretKeyFactory
object operates only on secret (symmetric) keys, whereas a java.security.KeyFactory
object processes the public and private key components of a key pair.

Chapter 2
Core Classes and Interfaces

2-40

Figure 2-12 SecretKeyFactory Class

Key Spec Secret Key

Secret Key Factory
(AES)

generateSecret()

Secret Key Key Spec

Secret Key Factory
(AES)

getKeySpec()

Key factories are used to convert Key Interfaces (opaque cryptographic keys of type
java.security.Key) into Key Specification Interfaces and Classes (transparent
representations of the underlying key material in a suitable format), and vice versa.

Objects of type java.security.Key, of which java.security.PublicKey,
java.security.PrivateKey, and javax.crypto.SecretKey are subclasses, are opaque key
objects, because you cannot tell how they are implemented. The underlying
implementation is provider-dependent, and may be software or hardware based. Key
factories allow providers to supply their own implementations of cryptographic keys.

For example, if you have a key specification for a Diffie-Hellman public key, consisting
of the public value y, the prime modulus p, and the base g, and you feed the same
specification to Diffie-Hellman key factories from different providers, the resulting
PublicKey objects will most likely have different underlying implementations.

A provider should document the key specifications supported by its secret key factory.
For example, the SecretKeyFactory for DES keys supplied by the SunJCE provider
supports DESKeySpec as a transparent representation of DES keys, the SecretKeyFactory
for DES-EDE keys supports DESedeKeySpec as a transparent representation of DES-
EDE keys, and the SecretKeyFactory for PBE supports PBEKeySpec as a transparent
representation of the underlying password.

The following is an example of how to use a SecretKeyFactory to convert secret key
data into a SecretKey object, which can be used for a subsequent Cipher operation:

 // Note the following bytes are not realistic secret key data
 // bytes but are simply supplied as an illustration of using data
 // bytes (key material) you already have to build a DESedeKeySpec.

 byte[] desEdeKeyData = getKeyData();
 DESedeKeySpec desEdeKeySpec = new DESedeKeySpec(desEdeKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DESede");
 SecretKey secretKey = keyFactory.generateSecret(desEdeKeySpec);

In this case, the underlying implementation of SecretKey is based on the provider of
KeyFactory.

An alternative, provider-independent way of creating a functionally equivalent
SecretKey object from the same key material is to use the
javax.crypto.spec.SecretKeySpec class, which implements the javax.crypto.SecretKey
interface:

 byte[] aesKeyData = getKeyData();
 SecretKeySpec secretKey = new SecretKeySpec(aesKeyData, "AES");

Chapter 2
Core Classes and Interfaces

2-41

Creating a SecretKeyFactory Object

SecretKeyFactory objects are obtained by using one of the SecretKeyFactory
getInstance() static factory methods. See How Provider Implementations Are
Requested and Supplied.

Converting Between a Key Specification and a Secret Key Object

If you have a key specification for a secret key, you can obtain an opaque SecretKey
object from the specification by using the generateSecret method:

SecretKey generateSecret(KeySpec keySpec)

Converting Between a Secret Key Object and a Key Specification

If you have a SecretKey object, you can get a corresponding key specification object
by calling the getKeySpec method:

KeySpec getKeySpec(Key key, Class keySpec)

keySpec identifies the specification class in which the key material should be
returned. It could, for example, be DESKeySpec.class, to indicate that the key material
should be returned in an instance of the DESKeySpec class.

The KeyPairGenerator Class
The KeyPairGenerator class is an engine class (see Engine Classes and Algorithms)
used to generate pairs of public and private keys.

Figure 2-13 KeyPairGenerator Class

There are two ways to generate a key pair: in an algorithm-independent manner, and
in an algorithm-specific manner. The only difference between the two is the
initialization of the object.

See Generating a Pair of Keys for examples of calls to the methods documented
below.

Creating a KeyPairGenerator

All key pair generation starts with a KeyPairGenerator. KeyPairGenerator objects are
obtained by using one of the KeyPairGenerator getInstance() static factory
methods. See How Provider Implementations Are Requested and Supplied.

Chapter 2
Core Classes and Interfaces

2-42

Initializing a KeyPairGenerator

A key pair generator for a particular algorithm creates a public/private key pair that can
be used with this algorithm. It also associates algorithm-specific parameters with each
of the generated keys.

A key pair generator needs to be initialized before it can generate keys. In most cases,
algorithm-independent initialization is sufficient. But in other cases, algorithm-specific
initialization can be used.

Algorithm-Independent Initialization

All key pair generators share the concepts of a keysize and a source of randomness.
The keysize is interpreted differently for different algorithms. For example, in the case
of the DSA algorithm, the keysize corresponds to the length of the modulus. (See Java
Security Standard Algorithm Names Specification for information about the keysizes
for specific algorithms.)

An initialize method takes two universally shared types of arguments:

void initialize(int keysize, SecureRandom random)

Another initialize method takes only a keysize argument; it uses a system-provided
source of randomness:

void initialize(int keysize)

Since no other parameters are specified when you call the above algorithm-
independent initialize methods, it is up to the provider what to do about the
algorithm-specific parameters (if any) to be associated with each of the keys.

If the algorithm is a "DSA" algorithm, and the modulus size (keysize) is 512, 768, 1024,
2048, or 3072, then the SUN provider uses a set of precomputed values for the p, q, and
g parameters. If the modulus size is not one of the above values, the SUN provider
creates a new set of parameters. Other providers might have precomputed parameter
sets for more than just the three modulus sizes mentioned above. Still others might not
have a list of precomputed parameters at all and instead always create new parameter
sets.

Algorithm-Specific Initialization

For situations where a set of algorithm-specific parameters already exists (such as
"community parameters" in DSA), there are two initialize methods that have an The
AlgorithmParameterSpec Interface argument. One also has a SecureRandom argument,
while the source of randomness is system-provided for the other:

void initialize(AlgorithmParameterSpec params,
 SecureRandom random)

void initialize(AlgorithmParameterSpec params)

See Generating a Pair of Keys.

Generating a Key Pair

The procedure for generating a key pair is always the same, regardless of initialization
(and of the algorithm). You always call the following method from KeyPairGenerator:

KeyPair generateKeyPair()

Chapter 2
Core Classes and Interfaces

2-43

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

Multiple calls to generateKeyPair will yield different key pairs.

The KeyGenerator Class
A key generator is used to generate secret keys for symmetric algorithms.

Figure 2-14 The KeyGenerator Class

Creating a KeyGenerator

KeyGenerator objects are obtained by using one of the KeyGenerator getInstance()
static factory methods. See How Provider Implementations Are Requested and
Supplied.

Initializing a KeyGenerator Object

A key generator for a particular symmetric-key algorithm creates a symmetric key that
can be used with that algorithm. It also associates algorithm-specific parameters (if
any) with the generated key.

There are two ways to generate a key: in an algorithm-independent manner, and in an
algorithm-specific manner. The only difference between the two is the initialization of
the object:

• Algorithm-Independent Initialization
All key generators share the concepts of a keysize and a source of randomness.
There is an init method that takes these two universally shared types of
arguments. There is also one that takes just a keysize argument, and uses a
system-provided source of randomness, and one that takes just a source of
randomness:

 public void init(SecureRandom random);

 public void init(int keysize);

 public void init(int keysize, SecureRandom random);

Since no other parameters are specified when you call the above algorithm-
independent init methods, it is up to the provider what to do about the algorithm-
specific parameters (if any) to be associated with the generated key.

• Algorithm-Specific Initialization
For situations where a set of algorithm-specific parameters already exists, there
are two init methods that have an AlgorithmParameterSpec argument. One also
has a SecureRandom argument, while the source of randomness is system-provided
for the other:

 public void init(AlgorithmParameterSpec params);

Chapter 2
Core Classes and Interfaces

2-44

 public void init(AlgorithmParameterSpec params, SecureRandom random);

In case the client does not explicitly initialize the KeyGenerator (via a call to an init
method), each provider must supply (and document) a default initialization.

Creating a Key

The following method generates a secret key:

 public SecretKey generateKey();

The KeyAgreement Class
Key agreement is a protocol by which 2 or more parties can establish the same
cryptographic keys, without having to exchange any secret information.

Figure 2-15 The KeyAgreement Class

Each party initializes their key agreement object with their private key, and then enters
the public keys for each party that will participate in the communication. In most cases,
there are just two parties, but algorithms such as Diffie-Hellman allow for multiple
parties (3 or more) to participate. When all the public keys have been entered, each
KeyAgreement object will generate (agree upon) the same key.

The KeyAgreement class provides the functionality of a key agreement protocol. The
keys involved in establishing a shared secret are created by one of the key generators
(KeyPairGenerator or KeyGenerator), a KeyFactory, or as a result from an intermediate
phase of the key agreement protocol.

Creating a KeyAgreement Object

Each party involved in the key agreement has to create a KeyAgreement object.
KeyAgreement objects are obtained by using one of the KeyAgreement getInstance()
static factory methods. See How Provider Implementations Are Requested and
Supplied.

Initializing a KeyAgreement Object

You initialize a KeyAgreement object with your private information. In the case of
Diffie-Hellman, you initialize it with your Diffie-Hellman private key. Additional
initialization information may contain a source of randomness and/or a set of algorithm

Chapter 2
Core Classes and Interfaces

2-45

parameters. Note that if the requested key agreement algorithm requires the
specification of algorithm parameters, and only a key, but no parameters are provided
to initialize the KeyAgreement object, the key must contain the required algorithm
parameters. (For example, the Diffie-Hellman algorithm uses a prime modulus p and a
base generator g as its parameters.)

To initialize a KeyAgreement object, call one of its init methods:

 public void init(Key key);

 public void init(Key key, SecureRandom random);

 public void init(Key key, AlgorithmParameterSpec params);

 public void init(Key key, AlgorithmParameterSpec params,
 SecureRandom random);

Executing a KeyAgreement Phase

Every key agreement protocol consists of a number of phases that need to be
executed by each party involved in the key agreement.

To execute the next phase in the key agreement, call the doPhase method:

 public Key doPhase(Key key, boolean lastPhase);

The key parameter contains the key to be processed by that phase. In most cases, this
is the public key of one of the other parties involved in the key agreement, or an
intermediate key that was generated by a previous phase. doPhase may return an
intermediate key that you may have to send to the other parties of this key agreement,
so they can process it in a subsequent phase.

The lastPhase parameter specifies whether or not the phase to be executed is the last
one in the key agreement: A value of FALSE indicates that this is not the last phase of
the key agreement (there are more phases to follow), and a value of TRUE indicates that
this is the last phase of the key agreement and the key agreement is completed, i.e.,
generateSecret can be called next.

In the example of Diffie-Hellman Key Exchange between 2 Parties , you call doPhase
once, with lastPhase set to TRUE. In the example of Diffie-Hellman between three
parties, you call doPhase twice: the first time with lastPhase set to FALSE, the 2nd time
with lastPhase set to TRUE.

Generating the Shared Secret

After each party has executed all the required key agreement phases, it can compute
the shared secret by calling one of the generateSecret methods:

 public byte[] generateSecret();

 public int generateSecret(byte[] sharedSecret, int offset);

 public SecretKey generateSecret(String algorithm);

Chapter 2
Core Classes and Interfaces

2-46

Key Management
A database called a "keystore" can be used to manage a repository of keys and
certificates. (A certificate is a digitally signed statement from one entity, saying that the
public key of some other entity has a particular value.)

Keystore Location

The user keystore is by default stored in a file named .keystore in the user's home
directory, as determined by the user.home system property whose default value
depends on the operating system:

• Solaris, Linux, and MacOS: /home/username/

• Windows: C:\Users\username\

Of course, keystore files can be located as desired. In some environments, it may
make sense for multiple keystores to exist. For example, one keystore might hold a
user's private keys, and another might hold certificates used to establish trust
relationships.

In addition to the user's keystore, the JDK also maintains a system-wide keystore
which is used to store trusted certificates from a variety of Certificate Authorities
(CA's). These CA certificates can be used to help make trust decisions. For example,
in SSL/TLS/DTLS when the SunJSSE provider is presented with certificates from a
remote peer, the default trustmanager will consult one of the following files to
determine if the connection is to be trusted:

• Solaris, Linux, and MacOS: <java-home>/lib/security/cacerts

• Windows: <java-home>\lib\security\cacerts

Instead of using the system-wide cacerts keystore, applications can set up and use
their own keystores, or even use the user keystore described above.

Keystore Implementation

The KeyStore class supplies well-defined interfaces to access and modify the
information in a keystore. It is possible for there to be multiple different concrete
implementations, where each implementation is that for a particular type of keystore.

Currently, there are two command-line tools that make use of KeyStore: keytool and
jarsigner, and also a GUI-based tool named policytool. It is also used by the Policy
reference implementation when it processes policy files specifying the permissions
(allowed accesses to system resources) to be granted to code from various sources.
Since KeyStore is publicly available, JDK users can write additional security
applications that use it.

Applications can choose different types of keystore implementations from different
providers, using the getInstance factory method in the KeyStore class. A keystore type
defines the storage and data format of the keystore information, and the algorithms
used to protect private keys in the keystore and the integrity of the keystore itself.
Keystore implementations of different types are not compatible.

The default keystore implementation is "pkcs12". This is a cross-platform keystore
based on the RSA PKCS12 Personal Information Exchange Syntax Standard. This
standard is primarily meant for storing or transporting a user's private keys,

Chapter 2
Core Classes and Interfaces

2-47

certificates, and miscellaneous secrets. Arbitrary attributes can be associated with
individual entries in a PKCS12 keystore.

 keystore.type=pkcs12

To have tools and other applications use a different default keystore implementation,
you can change that line to specify a different type.

Some applications, such as keytool, also let you override the default keystore type (via
the -storetype command-line parameter).

Note:

Keystore type designations are case-insensitive. For example, "jks" would be
considered the same as "JKS".

PKCS12 is the default and recommened keystore type. However, there are three other
types of keystores that come with the JDK implementation.

1. "jceks" is an alternate proprietary keystore format to "jks" that uses Password-
Based Encryption with Triple-DES.
The "jceks" implementation can parse and convert a "jks" keystore file to the
"jceks" format. You may upgrade your keystore of type "jks" to a keystore of type
"jceks" by changing the password of a private-key entry in your keystore and
specifying "-storetype jceks" as the keystore type. To apply the cryptographically
strong(er) key protection supplied to a private key named "signkey" in your default
keystore, use the following command, which will prompt you for the old and new
key passwords:

 keytool -keypass -alias signkey -storetype jceks

See keytool in Java Platform, Standard Edition Tools Reference .

2. "jks" is another option. It implements the keystore as a file, utilizing a proprietary
keystore type (format). It protects each private key with its own individual
password, and also protects the integrity of the entire keystore with a (possibly
different) password.

3. "dks" is a domain keystore. It is a collection of keystores presented as a single
logical keystore. The keystores that comprise a given domain are specified by
configuration data whose syntax is described in DomainLoadStoreParameter.

Keystore implementations are provider-based. If you want to write your own KeyStore
implementations, see How to Implement a Provider in the Java Cryptography
Architecture.

The KeyStore Class
The KeyStore class supplies well-defined interfaces to access and modify the
information in a keystore.

The KeyStore class is an Engine Classes and Algorithms.

Chapter 2
Core Classes and Interfaces

2-48

https://docs.oracle.com/javase/9/docs/api/java/security/DomainLoadStoreParameter.html

Figure 2-16 KeyStore Class

PKCS12

Alias Type Data

Brad Private Key/Certificate ...

Deb Secret Key ...

Milton Trusted Certificate ...

Duke Trusted Certificate ...

File

store()

load()

This class represents an in-memory collection of keys and certificates. KeyStore
manages two types of entries:

• Key Entry: This type of keystore entry holds very sensitive cryptographic key
information, which must be protected from unauthorized access. Typically, a key
stored in this type of entry is a secret key, or a private key accompanied by the
certificate chain authenticating the corresponding public key.

Private keys and certificate chains are used by a given entity for self-
authentication using digital signatures. For example, software distribution
organizations digitally sign JAR files as part of releasing and/or licensing software.

• Trusted Certificate Entry: This type of entry contains a single public key
certificate belonging to another party. It is called a trusted certificate because the
keystore owner trusts that the public key in the certificate indeed belongs to the
identity identified by the subject (owner) of the certificate.

This type of entry can be used to authenticate other parties.

Each entry in a keystore is identified by an "alias" string. In the case of private keys
and their associated certificate chains, these strings distinguish among the different
ways in which the entity may authenticate itself. For example, the entity may
authenticate itself using different certificate authorities, or using different public key
algorithms.

Whether keystores are persistent, and the mechanisms used by the keystore if it is
persistent, are not specified here. This convention allows use of a variety of
techniques for protecting sensitive (e.g., private or secret) keys. Smart cards or other
integrated cryptographic engines (SafeKeyper) are one option, and simpler
mechanisms such as files may also be used (in a variety of formats).

The main KeyStore methods are described below.

Creating a KeyStore Object

KeyStore objects are obtained by using one of the KeyStore getInstance() method.
See How Provider Implementations Are Requested and Supplied.

Chapter 2
Core Classes and Interfaces

2-49

Loading a Particular Keystore into Memory

Before a KeyStore object can be used, the actual keystore data must be loaded into
memory via the load method:

final void load(InputStream stream, char[] password)

The optional password is used to check the integrity of the keystore data. If no
password is supplied, no integrity check is performed.

To create an empty keystore, you pass null as the InputStream argument to the load
method.

A DKS keystore is loaded by passing a DomainLoadStoreParameter to the alternative
load method:

final void load(KeyStore.LoadStoreParameter param)

Getting a List of the Keystore Aliases

All keystore entries are accessed via unique aliases. The aliases method returns an
enumeration of the alias names in the keystore:

final Enumeration aliases()

Determining Keystore Entry Types

As stated in the KeyStore class, there are two different types of entries in a keystore.
The following methods determine whether the entry specified by the given alias is a
key/certificate or a trusted certificate entry, respectively:

final boolean isKeyEntry(String alias)
final boolean isCertificateEntry(String alias)

Adding/Setting/Deleting Keystore Entries

The setCertificateEntry method assigns a certificate to a specified alias:

final void setCertificateEntry(String alias, Certificate cert)

If alias doesn't exist, a trusted certificate entry with that alias is created. If alias exists
and identifies a trusted certificate entry, the certificate associated with it is replaced by
cert.

The setKeyEntry methods add (if alias doesn't yet exist) or set key entries:

final void setKeyEntry(String alias,
 Key key,
 char[] password,
 Certificate[] chain)

final void setKeyEntry(String alias,
 byte[] key,
 Certificate[] chain)

Chapter 2
Core Classes and Interfaces

2-50

https://docs.oracle.com/javase/9/docs/api/java/security/DomainLoadStoreParameter.html

In the method with key as a byte array, it is the bytes for a key in protected format. For
example, in the keystore implementation supplied by the SUN provider, the key byte
array is expected to contain a protected private key, encoded as an
EncryptedPrivateKeyInfo as defined in the PKCS8 standard. In the other method, the
password is the password used to protect the key.

The deleteEntry method deletes an entry:

final void deleteEntry(String alias)

PKCS #12 keystores support entries containing arbitrary attributes. Use the
PKCS12Attribute class to create the attributes. When creating the new keystore entry
use a constructor method that accepts attributes. Finally, use the following method to
add the entry to the keystore:

final void setEntry(String alias, Entry entry,
 ProtectionParameter protParam)

Getting Information from the Keystore

The getKey method returns the key associated with the given alias. The key is
recovered using the given password:

final Key getKey(String alias, char[] password)

The following methods return the certificate, or certificate chain, respectively,
associated with the given alias:

final Certificate getCertificate(String alias)
final Certificate[] getCertificateChain(String alias)

You can determine the name (alias) of the first entry whose certificate matches a
given certificate via the following:

final String getCertificateAlias(Certificate cert)

PKCS #12 keystores support entries containing arbitrary attributes. Use the following
method to retrieve an entry that may contain attributes:

final Entry getEntry(String alias, ProtectionParameter protParam)

and then use the KeyStore.Entry.getAttributes method to extract such attributes and
use the methods of the KeyStore.Entry.Attribute interface to examine them.

Saving the KeyStore

The in-memory keystore can be saved via the store method:

final void store(OutputStream stream, char[] password)

The password is used to calculate an integrity checksum of the keystore data, which is
appended to the keystore data.

Chapter 2
Core Classes and Interfaces

2-51

https://docs.oracle.com/javase/9/docs/api/java/security/PKCS12Attribute.html
https://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.Entry.html#getAttributes--
https://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.Entry.Attribute.html

A DKS keystore is stored by passing a DomainLoadStoreParameter to the alternative
store method:

final void store(KeyStore.LoadStoreParameter param)

Algorithm Parameters Classes
Like Keys and Keyspecs, an algorithm's initialization parameters are represented by
either AlgorithmParameters or AlgorithmParameterSpecs.

Depending on the use situation, algorithms can use the parameters directly, or the
parameters might need to be converted into a more portable format for transmission or
storage.

A transparent representation of a set of parameters (via AlgorithmParameterSpec)
means that you can access each parameter value in the set individually. You can
access these values through one of the get methods defined in the corresponding
specification class (e.g., DSAParameterSpec defines getP, getQ, and getG methods, to
access p, q, and g, respectively).

In contrast, the The AlgorithmParameters Class class supplies an opaque
representation, in which you have no direct access to the parameter fields. You can
only get the name of the algorithm associated with the parameter set (via
getAlgorithm) and some kind of encoding for the parameter set (via getEncoded).

The AlgorithmParameterSpec Interface
AlgorithmParameterSpec is an interface to a transparent specification of cryptographic
parameters. This interface contains no methods or constants. Its only purpose is to
group (and provide type safety for) all parameter specifications. All parameter
specifications must implement this interface.

The following are the algorithm parameter specification interfaces and classes in the
java.security.spec and javax.crypto.spec packages:

• DHParameterSpec

• DHGenParameterSpec

• DSAParameterSpec

• ECGenParameterSpec

• ECParameterSpec

• GCMParameterSpec

• IvParameterSpec

• MGF1ParameterSpec

• OAEPParameterSpec

• PBEParameterSpec

• PSSParameterSpec

• RC2ParameterSpec

• RC5ParameterSpec

• RSAKeyGenParameterSpec

Chapter 2
Core Classes and Interfaces

2-52

https://docs.oracle.com/javase/9/docs/api/java/security/DomainLoadStoreParameter.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/DHParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/DHGenParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/DSAParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/ECGenParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/ECParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/GCMParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/IvParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/MGF1ParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/OAEPParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/PBEParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/PSSParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/RC2ParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/RC5ParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/RSAKeyGenParameterSpec.html

The following algorithm parameter specs are used specifically for XML digital
signatures.

• Interface C14NMethodParameterSpec

• Interface DigestMethodParameterSpec

• Interface SignatureMethodParameterSpec

• Interface TransformParameterSpec

• Interface ExcC14NParameterSpec

• Interface HMACParameterSpec

• Interface XPathFilter2ParameterSpec

• Interface XPathFilterParameterSpec

• XSLTTransformParameterSpec

The AlgorithmParameters Class
The AlgorithmParameters class provides an opaque representation of cryptographic
parameters.

The AlgorithmParameters Class

The AlgorithmParameters class is an Engine Classes and Algorithms .You can initialize
the AlgorithmParameters class using a specific AlgorithmParameterSpec object, or by
encoding the parameters in a recognized format. You can retrieve the resulting
specification with the getParameterSpec method (see the following section).

Creating an AlgorithmParameters Object

AlgorithmParameters objects are obtained by using one of the AlgorithmParameters
getInstance() static factory methods. For more information, see How Provider
Implementations Are Requested and Supplied.

Initializing an AlgorithmParameters Object

Once an AlgorithmParameters object is instantiated, it must be initialized via a call to
init, using an appropriate parameter specification or parameter encoding:

void init(AlgorithmParameterSpec paramSpec)
void init(byte[] params)
void init(byte[] params, String format)

In these init methods, params is an array containing the encoded parameters, and
format is the name of the decoding format. In the init method with a params argument
but no format argument, the primary decoding format for parameters is used. The
primary decoding format is ASN.1, if an ASN.1 specification for the parameters exists.

Obtaining the Encoded Parameters

A byte encoding of the parameters represented in an AlgorithmParameters object may
be obtained via a call to getEncoded:

byte[] getEncoded()

Chapter 2
Core Classes and Interfaces

2-53

https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/C14NMethodParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/DigestMethodParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/SignatureMethodParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/TransformParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/ExcC14NParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/HMACParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/XPathFilter2ParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/XPathFilterParameterSpec.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/XSLTTransformParameterSpec.html

This method returns the parameters in their primary encoding format. The primary
encoding format for parameters is ASN.1, if an ASN.1 specification for this type of
parameters exists.

If you want the parameters returned in a specified encoding format, use

byte[] getEncoded(String format)

If format is null, the primary encoding format for parameters is used, as in the other
getEncoded method.

Converting an AlgorithmParameters Object to a Transparent Specification

A transparent parameter specification for the algorithm parameters may be obtained
from an AlgorithmParameters object via a call to getParameterSpec:

AlgorithmParameterSpec getParameterSpec(Class paramSpec)

paramSpec identifies the specification class in which the parameters should be returned.
The specification class could be, for example, DSAParameterSpec.class to indicate that
the parameters should be returned in an instance of the DSAParameterSpec class. (This
class is in the java.security.spec package.)

The AlgorithmParameterGenerator Class
The AlgorithmParameterGenerator class is an Engine Classes and Algorithms used to
generate a set of brand-new parameters suitable for a certain algorithm (the algorithm
is specified when an AlgorithmParameterGenerator instance is created). This object is
used when you do not have an existing set of algorithm parameters, and want to
generate one from scratch.

Creating an AlgorithmParameterGenerator Object

AlgorithmParameterGenerator objects are obtained by using one of the
AlgorithmParameterGenerator getInstance() static factory methods. See How Provider
Implementations Are Requested and Supplied.

Initializing an AlgorithmParameterGenerator Object

The AlgorithmParameterGenerator object can be initialized in two different ways: an
algorithm-independent manner or an algorithm-specific manner.

The algorithm-independent approach uses the fact that all parameter generators share
the concept of a "size" and a source of randomness. The measure of size is
universally shared by all algorithm parameters, though it is interpreted differently for
different algorithms. For example, in the case of parameters for the DSA algorithm,
"size" corresponds to the size of the prime modulus, in bits. (See Java Security
Standard Algorithm Names Specification to know more about the sizes for specific
algorithms.) When using this approach, algorithm-specific parameter generation
values--if any--default to some standard values. One init method that takes these two
universally shared types of arguments:

void init(int size, SecureRandom random);

Chapter 2
Core Classes and Interfaces

2-54

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

Another init method takes only a size argument and uses a system-provided source
of randomness:

void init(int size)

A third approach initializes a parameter generator object using algorithm-specific
semantics, which are represented by a set of algorithm-specific parameter generation
values supplied in an AlgorithmParameterSpec object:

void init(AlgorithmParameterSpec genParamSpec,
 SecureRandom random)

void init(AlgorithmParameterSpec genParamSpec)

To generate Diffie-Hellman system parameters, for example, the parameter generation
values usually consist of the size of the prime modulus and the size of the random
exponent, both specified in number of bits.

Generating Algorithm Parameters

Once you have created and initialized an AlgorithmParameterGenerator object, you
can use the generateParameters method to generate the algorithm parameters:

AlgorithmParameters generateParameters()

The CertificateFactory Class
The CertificateFactory class defines the functionality of a certificate factory, which is
used to generate certificate and certificate revocation list (CRL) objects from their
encoding.

The CertificateFactory class is an Engine Classes and Algorithms.

A certificate factory for X.509 must return certificates that are an instance of
java.security.cert.X509Certificate, and CRLs that are an instance of
java.security.cert.X509CRL.

Creating a CertificateFactory Object

CertificateFactory objects are obtained by using one of the getInstance() static
factory methods. For more information, see How Provider Implementations Are
Requested and Supplied.

Generating Certificate Objects

To generate a certificate object and initialize it with the data read from an input stream,
use the generateCertificate method:

final Certificate generateCertificate(InputStream inStream)

To return a (possibly empty) collection view of the certificates read from a given input
stream, use the generateCertificates method:

final Collection generateCertificates(InputStream inStream)

Chapter 2
Core Classes and Interfaces

2-55

Generating CRL Objects

To generate a certificate revocation list (CRL) object and initialize it with the data read
from an input stream, use the generateCRL method:

final CRL generateCRL(InputStream inStream)

To return a (possibly empty) collection view of the CRLs read from a given input
stream, use the generateCRLs method:

final Collection generateCRLs(InputStream inStream)

Generating CertPath Objects

The certificate path builder and validator for PKIX is defined by the Internet X.509
Public Key Infrastructure Certificate and CRL Profile, RFC 5280.

A certificate store implementation for retrieving certificates and CRLs from Collection
and LDAP directories, using the PKIX LDAP V2 Schema is also available from the
IETF as RFC 2587.

To generate a CertPath object and initialize it with data read from an input stream, use
one of the following generateCertPath methods (with or without specifying the encoding
to be used for the data):

final CertPath generateCertPath(InputStream inStream)

final CertPath generateCertPath(InputStream inStream,
 String encoding)

To generate a CertPath object and initialize it with a list of certificates, use the following
method:

final CertPath generateCertPath(List certificates)

To retrieve a list of the CertPath encoding supported by this certificate factory, you can
call the getCertPathEncodings method:

final Iterator getCertPathEncodings()

The default encoding will be listed first.

How the JCA Might Be Used in a SSL/TLS Implementation
With an understanding of the JCA classes, consider how these classes might be
combined to implement an advanced network protocol like SSL/TLS.

The SSL/TLS Overview section in the SSL, TLS, and DTLS Protocols describes at a
high level how the protocols work. As asymmetric (public key) cipher operations are
much slower than symmetric operations (secret key), public key cryptography is used
to establish secret keys which are then used to protect the actual application data.
Vastly simplified, the SSL/TLS handshake involves exchanging initialization data,

Chapter 2
How the JCA Might Be Used in a SSL/TLS Implementation

2-56

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc2587.txt

performing some public key operations to arrive at a secret key, and then using that
key to encrypt further traffic.

Note:

The details presented here simply show how some of the above classes might
be employed. This section will not present sufficient information for building a
SSL/TLS implementation. For more information, see Java Secure Socket
Extension (JSSE) Reference Guide and RFC 5246: The Transport Layer
Security (TLS) Protocol, Version 1.2.

Assume that this SSL/TLS implementation will be made available as a JSSE provider.
A concrete implementation of the Provider class is first written that will eventually be
registered in the Security class' list of providers. This provider mainly provides a
mapping from algorithm names to actual implementation classes. (that is:
"SSLContext.TLS"->"com.foo.TLSImpl") When an application requests an "TLS"
instance (via SSLContext.getInstance("TLS")), the provider's list is consulted for the
requested algorithm, and an appropriate instance is created.

Before discussing details of the actual handshake, a quick review of some of the
JSSE's architecture is needed. The heart of the JSSE architecture is the SSLContext.
The context eventually creates end objects (SSLSocket and SSLEngine) which actually
implement the SSL/TLS protocol. SSLContexts are initialized with two callback classes,
KeyManager and TrustManager, which allow applications to first select authentication
material to send and second to verify credentials sent by a peer.

A JSSE KeyManager is responsible for choosing which credentials to present to a peer.
Many algorithms are possible, but a common strategy is to maintain a RSA or DSA
public/private key pair along with a X509Certificate in a KeyStore backed by a disk file.
When a KeyStore object is initialized and loaded from the file, the file's raw bytes are
converted into PublicKey and PrivateKey objects using a KeyFactory, and a certificate
chain's bytes are converted using a CertificateFactory. When a credential is needed,
the KeyManager simply consults this KeyStore object and determines which credentials to
present.

A KeyStore's contents might have originally been created using a utility such as
keytool. keytool creates a RSA or DSA KeyPairGenerator and initializes it with an
appropriate keysize. This generator is then used to create a KeyPair which keytool
would store along with the newly-created certificate in the KeyStore, which is eventually
written to disk.

A JSSE TrustManager is responsible for verifying the credentials received from a peer.
There are many ways to verify credentials: one of them is to create a CertPath object,
and let the JDK's built-in Public Key Infrastructure (PKI) framework handle the
validation. Internally, the CertPath implementation might create a Signature object, and
use that to verify that the each of the signatures in the certificate chain.

With this basic understanding of the architecture, we can look at some of the steps in
the SSL/TLS handshake. The client begins by sending a ClientHello message to the
server. The server selects a ciphersuite to use, and sends that back in a ServerHello
message, and begins creating JCA objects based on the suite selection. We'll use
server-only authentication in the following examples.

Chapter 2
How the JCA Might Be Used in a SSL/TLS Implementation

2-57

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

Figure 2-17 SSL/TLS Messages

SSL
Server

ClientHello

Certificate (Optional)
ClientKeyExchange
CertificateVerify (Optional)
ChangeCipherSpec
Finished

ServerHello

Certificate (Optional)

ServerKeyExchange (Optional)

CertificateRequest (Optional)

ServerHelloDone

ChangeCipherSpec

Finished

Encrypted Data

SSL
Client

Close Messages

Server-only authentication is described in the following examples. The examples are
vastly simplified, but gives an idea of how the JSSE classes might be combined to
create a higher level protocol:

Example 2-9 SSL/TLS Server Uses a RSA-based ciphersuite Such as
TLS_RSA_WITH_AES_128_CBC_SHA

KeyManagerTrustManagerSecureRandomCipherPublicKeyPrivateKeyCipher

Example 2-10 Choose an Ephemeral Diffie-Hellman Key Agreement Algorithm
Along with the DSA Signature Algorithm such as
TLS_DHE_DSS_WITH_AES_128_CBC_SHA

KeyPairGeneratorKeyFactoryDHPublicKeySpecKeyAgreementPrivateKeyServerKeyExchangeKe

yFactoryKeyAgreement

Once the actual encryption keys have been established, the secret key is used to
initialize a symmetric Cipher object, and this cipher is used to protect all data in transit.
To help determine if the data has been modified, a MessageDigest is created and
receives a copy of the data destined for the network. When the packet is complete, the
digest (hash) is appended to data, and the entire packet is encrypted by the Cipher. If
a block cipher such as AES is used, the data must be padded to make a complete
block. On the remote side, the steps are simply reversed.

Cryptographic Strength Configuration
You can configure the cryptographic strength of the Java Cryptography Extension
(JCE) architecture using jurisdiction policy files (see Jurisdiction Policy File Format)
and the security properties file.

Prior to Oracle Java JDK 9, the default cryptographic strength allowed by Oracle
implementations was “strong but limited” (for example AES keys limited to 128 bits).
To remove this restriction, administrators could download and install a separate

Chapter 2
Cryptographic Strength Configuration

2-58

“unlimited strength” Jurisdiction Policy Files bundle. The Jurisdiction Policy File
mechanism was reworked for JDK 9. It now allows for much more flexible
configuration. The Oracle JDK now ships with a default value of “unlimited” rather than
“limited”. As always, administrators and users must still continue to follow all import/
export guidelines for their geographical locations. The active cryptographic strength is
now determined using a Security Property (typically set in the java.security properties
file), in combination with the jurisdiction policy files found in the configuration directory.

All the necessary JCE policy files to provide either unlimited cryptographic strength or
strong but limited cryptographic strength are bundled with the JDK.

Cryptographic Strength Settings

Each directory under <java_home>/conf/security/policy represents a set of policy
configurations defined by the jurisdiction policy files that they contain. You activate a
particular cryptographic strength setting represented by the policy files in a directory by
setting the crypto.policy Security Property (configured in the file <java_home>/conf/
security/java.security) to point to that directory.

The JDK comes bundled with two such directories, limited and unlimited, each
containing a number of policy files. By default, the crypto.policy Security Property is
set to:

crypto.policy = unlimited

The overall value is the intersection of the files contained within the directory. These
policy files settings are VM-wide, and affect all applciations running on this VM. If you
want to override cryptographic strength at the application level, see How to Make
Applications Exempt from Cryptographic Restrictions.

Unlimited Directory Contents

The unlimited directory contains the following policy files:

• <java_home>/conf/security/unlimited/default_US_export.policy

// Default US Export policy file.
grant {
// There is no restriction to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

Note:

As there are no current restrictions on export of cryptography from the United
States, the default_US_export.policy file is set with no restrictions.

• <java_home>/conf/security/unlimited/default_local.policy

// Country specific policy file for countries with no limits on crypto
strength.
grant {
// There is no restriction to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

Chapter 2
Cryptographic Strength Configuration

2-59

Note:

Depending on the country, there may be local restrictions, but as this policy file
is located in the unlimited directory, there are no restrictions listed here.

To select unlimited cryptographic strength as defined in these two files set
crypto.policy = unlimited in the file <java_home>/conf/security/java.security.

Limited Directory Contents

The limited directory currently contains the following policy files:

• <java_home>/conf/security/limited/default_US_export.policy

// Default US Export policy file.
grant {
// There is no restriction to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

Note:

Even though this is in the limited directory, as there are no current restrictions
on export of cryptography from the United States, the
default_US_export.policy file is set with no restrictions.

• <java_home>/conf/security/limited/default_local.policy

// Some countries have import limits on crypto strength. This policy file
// is worldwide importable.

grant {
 permission javax.crypto.CryptoPermission "DES", 64;
 permission javax.crypto.CryptoPermission "DESede", *;
 permission javax.crypto.CryptoPermission "RC2", 128,
 "javax.crypto.spec.RC2ParameterSpec", 128;
 permission javax.crypto.CryptoPermission "RC4", 128;
 permission javax.crypto.CryptoPermission "RC5", 128,
 "javax.crypto.spec.RC5ParameterSpec", *, 12, *;
 permission javax.crypto.CryptoPermission "RSA", *;
 permission javax.crypto.CryptoPermission *, 128;
};

Note:

This local policy file shows the default restrictions. It should be allowed by any
country, including those that have import restrictions, but please obtain legal
guidance.

• <java_home>/conf/security/limited/exempt_local.policy

// Some countries have import limits on crypto strength, but may allow for
// these exemptions if the exemption mechanism is used.

grant {

Chapter 2
Cryptographic Strength Configuration

2-60

 // There is no restriction to any algorithms if KeyRecovery is enforced.
 permission javax.crypto.CryptoPermission *, "KeyRecovery";

 // There is no restriction to any algorithms if KeyEscrow is enforced.
 permission javax.crypto.CryptoPermission *, "KeyEscrow";

 // There is no restriction to any algorithms if KeyWeakening is enforced.
 permission javax.crypto.CryptoPermission *, "KeyWeakening";
};

Note:

Countries that have import restrictions should use “limited”, but these
restrictions could be relaxed if the exemption mechanism can be employed.
See How to Make Applications Exempt from Cryptographic Restrictions.
Please obtain legal guidance for your situation.

Custom Cryptographic Strength Settings

To set up restrictions to cryptographic strength that are different than the settings in
the policy files in the limited or unlimited directory, you can create a new directory,
parallel with limited and unlimited, and place your policy files there. For example, you
may create a directory called custom. In this custom directory you include the files
default_*export.policy and/or exempt_*local.policy.

To select cryptographic strength as defined in the files in the custom directory, set
crypto.policy = custom in the file <java_home>/conf/security/java.security.

Jurisdiction Policy File Format
JCA represents its jurisdiction policy files as Java-style policy files with corresponding
permission statements. As described in Cryptographic Strength Configuration, a Java
policy file specifies what permissions are allowed for code from specified code
sources. A permission represents access to a system resource. In the case of JCA,
the "resources" are cryptography algorithms, and code sources do not need to be
specified, because the cryptographic restrictions apply to all code.

A jurisdiction policy file consists of a very basic "grant entry" containing one or more
"permission entries."

grant {
 <permission entries>;
};

The format of a permission entry in a jurisdiction policy file is:

permission <crypto permission class name>
 [<alg_name>
 [
 [, <exemption mechanism name>]
 [, <maxKeySize>
 [, <AlgorithmParameterSpec class name>,
 <parameters for constructing an AlgorithmParameterSpec object>
]
]

Chapter 2
Jurisdiction Policy File Format

2-61

]
];

A sample jurisdiction policy file that includes restricting the AES algorithm to maximum
key sizes of 128 bits is:

 grant {
 permission javax.crypto.CryptoPermission "AES", 128;
 // ...
 };

A permission entry must begin with the word permission. Items that appear in a
permission entry must appear in the specified order. An entry is terminated with a
semicolon. Case is unimportant for the identifiers (grant, permission) but is significant
for the <crypto permission class name> or for any string that is passed in as a value. An
asterisk (*) can be used as a wildcard for any permission entry option. For example,
an asterisk for an <alg_name> option means "all algorithms."

The following table describes a permission entry's options:

Table 2-1 Permission Entry Options

Option Description

<crypto permission class name> Specific permission class name, such as
javax.crypto.CryptoPermission. Required.

A crypto permission class reflects the ability of
an application to use certain algorithms with
certain key sizes in certain environments.
There are two crypto permission classes:
CryptoPermission and CryptoAllPermission.
The special CryptoAllPermission class
implies all cryptography-related permissions,
that is, it specifies that there are no
cryptography-related restrictions.

<alg_name> Quoted string specifying the standard name of
a cryptography algorithm, such as "AES" or
"RSA". Optional.

<exemption mechanism name> Quoted string indicating an exemption
mechanism which, if enforced, enables a
reduction in cryptographic restrictions.
Optional.

Exemption mechanism names that can be
used include "KeyRecovery" "KeyEscrow", and
"KeyWeakening".

<maxKeySize> Integer specifying the maximum key size (in
bits) allowed for the specified algorithm.
Optional.

Chapter 2
Jurisdiction Policy File Format

2-62

Table 2-1 (Cont.) Permission Entry Options

Option Description

<AlgorithmParameterSpec class name> Class name that specifies the strength of the
algorithm. Optional.

For some algorithms, it may not be sufficient to
specify the algorithm strength in terms of just a
key size. For example, in the case of the
"RC5" algorithm, the number of rounds must
also be considered. For algorithms whose
strength needs to be expressed as more than
a key size, use this option to specify the
AlgorithmParameterSpec class name that
does this (such as
javax.crypto.spec.RC5ParameterSpec for the
"RC5" algorithm).

<parameters for constructing an
AlgorithmParameterSpec object>

List of parameters for constructing the
specified AlgorithmParameterSpec object.
Required if <AlgorithmParameterSpec class
name> has been specified and requires
parameters.

How to Make Applications Exempt from Cryptographic
Restrictions

NOT_SUPPORTED:

This section should be ignored by most application developers. It is only for
people whose applications may be exported to those few countries whose
governments mandate cryptographic restrictions, if it is desired that such
applications have fewer cryptographic restrictions than those mandated.

By default, an application can use cryptographic algorithms of any strength. However,
due to import control restrictions by the governments of a few countries, you may have
to limit those algorithms' strength. The JCA framework includes an ability to enforce
restrictions regarding the maximum strengths of cryptographic algorithms available to
applications in different jurisdiction contexts (locations). You specify these restrictions
in jurisdiction policy files. For more information about jurisdiction policy files and how to
create and configure them, see Cryptographic Strength Configuration.

It is possible that the governments of some or all such countries may allow certain
applications to become exempt from some or all cryptographic restrictions. For
example, they may consider certain types of applications as "special" and thus
exempt. Or they may exempt any application that utilizes an "exemption mechanism,"
such as key recovery. Applications deemed to be exempt could get access to stronger
cryptography than that allowed for non-exempt applications in such countries.

In order for an application to be recognized as "exempt" at runtime, it must meet the
following conditions:

Chapter 2
How to Make Applications Exempt from Cryptographic Restrictions

2-63

• It must have a permission policy file bundled with it in a JAR file. The permission
policy file specifies what cryptography-related permissions the application has, and
under what conditions (if any).

• The JAR file containing the application and the permission policy file must have
been signed using a code-signing certificate issued after the application was
accepted as exempt.

Below are sample steps required in order to make an application exempt from some
cryptographic restrictions. This is a basic outline that includes information about what
is required by JCA in order to recognize and treat applications as being exempt. You
will need to know the exemption requirements of the particular country or countries in
which you would like your application to be able to be run but whose governments
require cryptographic restrictions. You will also need to know the requirements of a
JCA framework vendor that has a process in place for handling exempt applications.
Consult such a vendor for further information.

Note:

The SunJCE provider does not supply an implementation of the
ExemptionMechanismSpi class

1. Write and Compile Your Application Code

2. Create a Permission Policy File Granting Appropriate Cryptographic Permissions

3. Prepare for Testing

a. Apply for Government Approval From the Government Mandating Restrictions.

b. Get a Code-Signing Certificate

c. Bundle the Application and Permission Policy File into a JAR file

d. Step 7.1: Get a Code-Signing Certificate

e. Set Up Your Environment Like That of a User in a Restricted Country

f. (only for applications using exemption mechanisms) Install a Provider
Implementing the Exemption Mechanism Specified by the entry in the
Permission Policy File

4. Test Your Application

5. Apply for U.S. Government Export Approval If Required

6. Deploy Your Application

Special Code Requirements for Applications that Use Exemption Mechanisms

When an application has a permission policy file associated with it (in the same JAR
file) and that permission policy file specifies an exemption mechanism, then when the
Cipher getInstance method is called to instantiate a Cipher, the JCA code searches
the installed providers for one that implements the specified exemption mechanism. If
it finds such a provider, JCA instantiates an ExemptionMechanism API object associated
with the provider's implementation, and then associates the ExemptionMechanism object
with the Cipher returned by getInstance.

After instantiating a Cipher, and prior to initializing it (via a call to the Cipher init
method), your code must call the following Cipher method:

Chapter 2
How to Make Applications Exempt from Cryptographic Restrictions

2-64

 public ExemptionMechanism getExemptionMechanism()

This call returns the ExemptionMechanism object associated with the Cipher. You must
then initialize the exemption mechanism implementation by calling the following
method on the returned ExemptionMechanism:

 public final void init(Key key)

The argument you supply should be the same as the argument of the same types that
you will subsequently supply to a Cipher init method.

Once you have initialized the ExemptionMechanism, you can proceed as usual to initialize
and use the Cipher.

Permission Policy Files

In order for an application to be recognized at runtime as being "exempt" from some or
all cryptographic restrictions, it must have a permission policy file bundled with it in a
JAR file. The permission policy file specifies what cryptography-related permissions
the application has, and under what conditions (if any).

The format of a permission entry in a permission policy file that accompanies an
exempt application is the same as the format for a jurisdiction policy file downloaded
with the JDK, which is:

permission <crypto permission class name>
 [<alg_name>
 [
 [, <exemption mechanism name>]
 [, <maxKeySize>
 [, <AlgorithmParameterSpec class name>,
 <parameters for constructing an AlgorithmParameterSpec object>
]
]
]
];

See Jurisdiction Policy File Format.

Permission Policy Files for Exempt Applications

Some applications may be allowed to be completely unrestricted. Thus, the permission
policy file that accompanies such an application usually just needs to contain the
following:

grant {
 // There are no restrictions to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

If an application just uses a single algorithm (or several specific algorithms), then the
permission policy file could simply mention that algorithm (or algorithms) explicitly,
rather than granting CryptoAllPermission.

For example, if an application just uses the Blowfish algorithm, the permission policy
file doesn't have to grant CryptoAllPermission to all algorithms. It could just
specify that there is no cryptographic restriction if the Blowfish algorithm is used. In
order to do this, the permission policy file would look like the following:

Chapter 2
How to Make Applications Exempt from Cryptographic Restrictions

2-65

grant {
 permission javax.crypto.CryptoPermission "Blowfish";
};

Permission Policy Files for Applications Exempt Due to Exemption Mechanisms

If an application is considered "exempt" if an exemption mechanism is enforced, then
the permission policy file that accompanies the application must specify one or more
exemption mechanisms. At run time, the application will be considered exempt if any
of those exemption mechanisms is enforced. Each exemption mechanism must be
specified in a permission entry that looks like the following:

 // No algorithm restrictions if specified
 // exemption mechanism is enforced.
 permission javax.crypto.CryptoPermission *,
 "<ExemptionMechanismName>";

where <ExemptionMechanismName> specifies the name of an exemption mechanism. The
list of possible exemption mechanism names includes:

• KeyRecovery

• KeyEscrow

• KeyWeakening

As an example, suppose your application is exempt if either key recovery or key
escrow is enforced. Then your permission policy file should contain the following:

grant {
 // No algorithm restrictions if KeyRecovery is enforced.
 permission javax.crypto.CryptoPermission *, "KeyRecovery";

 // No algorithm restrictions if KeyEscrow is enforced.
 permission javax.crypto.CryptoPermission *, "KeyEscrow";
};

Note:

Permission entries that specify exemption mechanisms should not also specify
maximum key sizes. The allowed key sizes are actually determined from the
installed exempt jurisdiction policy files, as described in the next section.

How Bundled Permission Policy Files Affect Cryptographic Permissions

At runtime, when an application instantiates a Cipher (via a call to its getInstance
method) and that application has an associated permission policy file, JCA checks to
see whether the permission policy file has an entry that applies to the algorithm
specified in the getInstance call. If it does, and the entry grants
CryptoAllPermission or does not specify that an exemption mechanism must be
enforced, it means there is no cryptographic restriction for this particular algorithm.

If the permission policy file has an entry that applies to the algorithm specified in the
getInstance call and the entry does specify that an exemption mechanism must be
enforced, then the exempt jurisdiction policy file(s) are examined. If the exempt
permissions include an entry for the relevant algorithm and exemption mechanism,
and that entry is implied by the permissions in the permission policy file bundled with
the application, and if there is an implementation of the specified exemption

Chapter 2
How to Make Applications Exempt from Cryptographic Restrictions

2-66

mechanism available from one of the registered providers, then the maximum key size
and algorithm parameter values for the Cipher are determined from the exempt
permission entry.

If there is no exempt permission entry implied by the relevant entry in the permission
policy file bundled with the application, or if there is no implementation of the specified
exemption mechanism available from any of the registered providers, then the
application is only allowed the standard default cryptographic permissions.

Standard Names
The Standard Names document contains information about the algorithm
specifications.

Java Security Standard Algorithm Names describes the standard names for
algorithms, certificate and keystore types that the JDK Security API requires and uses.
It also contains more information about the algorithm specifications. Specific provider
information can be found in the JDK Providers.

Cryptographic implementations in the JDK are distributed through several different
providers primarily for historical reasons (Sun, SunJSSE, SunJCE, SunRsaSign). Note these
providers may not be available on all JDK implementations, and therefore, truly
portable applications should call getInstance() without specifying specific
providers. Applications specifying a particular provider may not be able to take
advantage of native providers tuned for an underlying operating environment (such as
PKCS or Microsoft's CAPI).

The SunPKCS11 provider itself does not contain any cryptographic algorithms, but
instead, directs requests into an underlying PKCS11 implementation. Consult
PKCS#11 Reference Guide and the underlying PKCS11 implementation to determine
if a desired algorithm will be available through the PKCS11 provider. Likewise, on
Windows systems, the SunMSCAPI provider does not provide any cryptographic
functionality, but instead routes requests to the underlying Operating System for
handling.

Packaging Your Application
You can package an application in three different kinds of modules:

• Named or explicit module: A module that appears on the module path and
contains module configuration information in the module-info.class file.

• Automatic module: A module that appears on the module path, but does not
contain module configuration information in a module-info.class file
(essentially a "regular" JAR file).

• Unnamed module: A module that appears on the class path. It may or may not
have a module-info.class file; this file is ignored.

It is recommended that you package your applications in named modules as they
provide better performance, stronger encapsulation, and simpler configuration. They
also offer greater flexibility; you can use them with non-modular JDKs or even as
unnamed modules by specifying them in a modular JDK's class path.

For more information about modules, see The State of the Module System and JEP
261: Module System

Chapter 2
Standard Names

2-67

https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html
http://openjdk.java.net/projects/jigsaw/spec/sotms/
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261

Additional JCA Code Samples
These examples illustrate use of several JCA mechanisms. See also Sample
Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

Topics

Computing a MessageDigest Object

Generating a Pair of Keys

Generating and Verifying a Signature Using Generated Keys

Generating/Verifying Signatures Using Key Specifications and KeyFactory

Determining If Two Keys Are Equal

Reading Base64-Encoded Certificates

Parsing a Certificate Reply

Using Encryption

Using Password-Based Encryption

Computing a MessageDigest Object
An example describing the procedure to compute a MessageDigest object.

1. Create the MessageDigest object, as in the following example:

 MessageDigest sha = MessageDigest.getInstance("SHA-256");

This call assigns a properly initialized message digest object to the sha variable.
The implementation implements the Secure Hash Algorithm (SHA-256), as defined
in the National Institute for Standards and Technology's (NIST) FIPS 180-2
document.

2. Suppose we have three byte arrays, i1, i2 and i3, which form the total input
whose message digest we want to compute. This digest (or "hash") could be
calculated via the following calls:

 sha.update(i1);
 sha.update(i2);
 sha.update(i3);
 byte[] hash = sha.digest();

3. Optional: An equivalent alternative series of calls would be:

 sha.update(i1);
 sha.update(i2);
 byte[] hash = sha.digest(i3);

After the message digest has been calculated, the message digest object is
automatically reset and ready to receive new data and calculate its digest. All
former state (i.e., the data supplied to update calls) is lost.

Chapter 2
Additional JCA Code Samples

2-68

http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html

Example 2-11 Hash Implementations Through Cloning

Some hash implementations may support intermediate hashes through cloning.
Suppose we want to calculate separate hashes for:

• i1

• i1 and i2

• i1, i2, and i3

The following is one way to calculate these hashes; however, this code works only if
the SHA-256 implementation is cloneable:

/* compute the hash for i1 */
sha.update(i1);
byte[] i1Hash = sha.clone().digest();

/* compute the hash for i1 and i2 */
sha.update(i2);
byte[] i12Hash = sha.clone().digest();

/* compute the hash for i1, i2 and i3 */
sha.update(i3);
byte[] i123hash = sha.digest();

Example 2-12 Determine if the Hash Implementation is Cloneable or not
Cloneable

MessageDigest

try {
 // try and clone it
 /* compute the hash for i1 */
 sha.update(i1);
 byte[] i1Hash = sha.clone().digest();
 // ...
 byte[] i123hash = sha.digest();
} catch (CloneNotSupportedException cnse) {
 // do something else, such as the code shown below
}

Example 2-13 Compute Intermediate Digests if the Hash Implementation is not
Cloneable

 MessageDigest md1 = MessageDigest.getInstance("SHA-256");
 MessageDigest md2 = MessageDigest.getInstance("SHA-256");
 MessageDigest md3 = MessageDigest.getInstance("SHA-256");

 byte[] i1Hash = md1.digest(i1);

 md2.update(i1);
 byte[] i12Hash = md2.digest(i2);

 md3.update(i1);
 md3.update(i2);
 byte[] i123Hash = md3.digest(i3);

Generating a Pair of Keys
In this example we will generate a public-private key pair for the algorithm named
"DSA" (Digital Signature Algorithm), and use this keypair in future examples. We will

Chapter 2
Additional JCA Code Samples

2-69

generate keys with a 2048-bit modulus. We don't care which provider supplies the
algorithm implementation.

Creating the Key Pair Generator

The first step is to get a key pair generator object for generating keys for the DSA
algorithm:

 KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");

Initializing the Key Pair Generator

The next step is to initialize the key pair generator. In most cases, algorithm-
independent initialization is sufficient, but in some cases, algorithm-specific
initialization is used.

Algorithm-Independent Initialization

All key pair generators share the concepts of a keysize and a source of randomness.
The KeyPairGenerator class initialization methods at a minimum needs a keysize. If the
source of randomness is not explicitly provided, a SecureRandom implementation of the
highest-priority installed provider will be used. Thus to generate keys with a keysize of
2048, simply call:

 keyGen.initialize(2048);

The following code illustrates how to use a specific, additionally seeded SecureRandom
object:

 SecureRandom random = SecureRandom.getInstance("DRBG", "SUN");
 random.setSeed(userSeed);
 keyGen.initialize(2048, random);

Since no other parameters are specified when you call the above algorithm-
independent initialize method, it is up to the provider what to do about the
algorithm-specific parameters (if any) to be associated with each of the keys. The
provider may use precomputed parameter values or may generate new values.

Algorithm-Specific Initialization

For situations where a set of algorithm-specific parameters already exists (such as
"community parameters" in DSA), there are two initialize methods that have an
AlgorithmParameterSpec argument. Suppose your key pair generator is for the "DSA"
algorithm, and you have a set of DSA-specific parameters, p, q, and g, that you would
like to use to generate your key pair. You could execute the following code to initialize
your key pair generator (recall that DSAParameterSpec is an AlgorithmParameterSpec):

 DSAParameterSpec dsaSpec = new DSAParameterSpec(p, q, g);
 keyGen.initialize(dsaSpec);

Generating the Pair of Keys

The final step is actually generating the key pair. No matter which type of initialization
was used (algorithm-independent or algorithm-specific), the same code is used to
generate the KeyPair:

 KeyPair pair = keyGen.generateKeyPair();

Chapter 2
Additional JCA Code Samples

2-70

Generating and Verifying a Signature Using Generated Keys
Examples of generating and verifying a signature using generated keys.

The following signature generation and verification examples use the KeyPair
generated in the Generating a Pair of Keys .

Generating a Signature

We first create a Signature Class object:

 Signature dsa = Signature.getInstance("SHA256withDSA");

Next, using the key pair generated in the key pair example, we initialize the object with
the private key, then sign a byte array called data.

 /* Initializing the object with a private key */
 PrivateKey priv = pair.getPrivate();
 dsa.initSign(priv);

 /* Update and sign the data */
 dsa.update(data);
 byte[] sig = dsa.sign();

Verifying a Signature

Verifying the signature is straightforward. (Note that here we also use the key pair
generated in the key pair example.)

 /* Initializing the object with the public key */
 PublicKey pub = pair.getPublic();
 dsa.initVerify(pub);

 /* Update and verify the data */
 dsa.update(data);
 boolean verifies = dsa.verify(sig);
 System.out.println("signature verifies: " + verifies);

Generating/Verifying Signatures Using Key Specifications and
KeyFactory

Sample code that is used to generate and verify signatures using key specifications
and KeyFactory.

Suppose that, rather than having a public/private key pair (as, for example, was
generated in the Generating a Pair of Keys above), you simply have the components
of your DSA private key: x (the private key), p (the prime), q (the sub-prime), and g (the
base).

Further suppose you want to use your private key to digitally sign some data, which is
in a byte array named someData. You would do the following steps, which also illustrate
creating a key specification and using a key factory to obtain a PrivateKey from the key
specification (initSign requires a PrivateKey):

Chapter 2
Additional JCA Code Samples

2-71

 DSAPrivateKeySpec dsaPrivKeySpec = new DSAPrivateKeySpec(x, p, q, g);

 KeyFactory keyFactory = KeyFactory.getInstance("DSA");
 PrivateKey privKey = keyFactory.generatePrivate(dsaPrivKeySpec);

 Signature sig = Signature.getInstance("SHA256withDSA");
 sig.initSign(privKey);
 sig.update(someData);
 byte[] signature = sig.sign();

Suppose Alice wants to use the data you signed. In order for her to do so, and to verify
your signature, you need to send her three things:

1. The data

2. The signature

3. The public key corresponding to the private key you used to sign the data

You can store the someData bytes in one file, and the signature bytes in another, and
send those to Alice.

For the public key, assume, as in the signing example above, you have the
components of the DSA public key corresponding to the DSA private key used to sign
the data. Then you can create a DSAPublicKeySpec from those components:

 DSAPublicKeySpec dsaPubKeySpec = new DSAPublicKeySpec(y, p, q, g);

You still need to extract the key bytes so that you can put them in a file. To do so, you
can first call the generatePublic method on the DSA key factory already created in the
example above:

 PublicKey pubKey = keyFactory.generatePublic(dsaPubKeySpec);

Then you can extract the (encoded) key bytes via the following:

 byte[] encKey = pubKey.getEncoded();

You can now store these bytes in a file, and send it to Alice along with the files
containing the data and the signature.

Now, assume Alice has received these files, and she copied the data bytes from the
data file to a byte array named data, the signature bytes from the signature file to a
byte array named signature, and the encoded public key bytes from the public key file
to a byte array named encodedPubKey.

Alice can now execute the following code to verify the signature. The code also
illustrates how to use a key factory in order to instantiate a DSA public key from its
encoding (initVerify requires a PublicKey).

 X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(encodedPubKey);

 KeyFactory keyFactory = KeyFactory.getInstance("DSA");
 PublicKey pubKey = keyFactory.generatePublic(pubKeySpec);

 Signature sig = Signature.getInstance("SHA256withDSA");
 sig.initVerify(pubKey);

Chapter 2
Additional JCA Code Samples

2-72

 sig.update(data);
 sig.verify(signature);

Note:

In the above, Alice needed to generate a PublicKey from the encoded key bits,
since initVerify requires a PublicKey . Once she has a PublicKey, she could
also use the KeyFactorygetKeySpec method to convert it to a DSAPublicKeySpec
so that she can access the components, if desired, as in:

 DSAPublicKeySpec dsaPubKeySpec =
 (DSAPublicKeySpec)keyFactory.getKeySpec(pubKey, DSAPublicKeySpec.class);

Now she can access the DSA public key components y, p, q, and g through the
corresponding "get" methods on the DSAPublicKeySpec class (getY, getP, getQ, and
getG).

Generating Random Numbers
The following code sample illustrates generating random numbers configured with
different security strengths using a DRBG implementation of the SecureRandom
class:

 SecureRandom drbg;
 byte[] buffer = new byte[32];

 // Any DRBG can be provided
 drbg = SecureRandom.getInstance("DRBG");
 drbg.nextBytes(buffer);

 SecureRandomParameters params = drbg.getParameters();
 if (params instanceof DrbgParameters.Instantiation) {
 DrbgParameters.Instantiation ins = (DrbgParameters.Instantiation) params;
 if (ins.getCapability().supportsReseeding()) {
 drbg.reseed();
 }
 }

 // The following call requests a weak DRBG instance. It is only
 // guaranteed to support 112 bits of security strength.
 drbg = SecureRandom.getInstance("DRBG",
 DrbgParameters.instantiation(112, NONE, null));

 // Both the next two calls will likely fail, because drbg could be
 // instantiated with a smaller strength with no prediction resistance
 // support.
 drbg.nextBytes(buffer,
 DrbgParameters.nextBytes(256, false, "more".getBytes()));
 drbg.nextBytes(buffer,
 DrbgParameters.nextBytes(112, true, "more".getBytes()));

 // The following call requests a strong DRBG instance, with a
 // personalization string. If it successfully returns an instance,
 // that instance is guaranteed to support 256 bits of security strength
 // with prediction resistance available.
 drbg = SecureRandom.getInstance("DRBG", DrbgParameters.instantiation(

Chapter 2
Additional JCA Code Samples

2-73

 256, PR_AND_RESEED, "hello".getBytes()));

 // Prediction resistance is not requested in this single call,
 // but an additional input is used.
 drbg.nextBytes(buffer,
 DrbgParameters.nextBytes(-1, false, "more".getBytes()));

 // Same for this call.
 drbg.reseed(DrbgParameters.reseed(false, "extra".getBytes()));

Determining If Two Keys Are Equal
Example code for determining if two keys are equal.

In many cases you would like to know if two keys are equal; however, the default
method java.lang.Object.equals may not give the desired result. The most provider-
independent approach is to compare the encoded keys. If this comparison isn't
appropriate (for example, when comparing an RSAPrivateKey and an RSAPrivateCrtKey),
you should compare each component.

The following code demonstrates this idea:

 static boolean keysEqual(Key key1, Key key2) {
 if (key1.equals(key2)) {
 return true;
 }

 if (Arrays.equals(key1.getEncoded(), key2.getEncoded())) {
 return true;
 }

 // More code for different types of keys here.
 // For example, the following code can check if
 // an RSAPrivateKey and an RSAPrivateCrtKey are equal:
 // if ((key1 instanceof RSAPrivateKey) &&
 // (key2 instanceof RSAPrivateKey)) {
 // if ((key1.getModulus().equals(key2.getModulus())) &&
 // (key1.getPrivateExponent().equals(
 // key2.getPrivateExponent()))) {
 // return true;
 // }
 // }

 return false;
 }

Reading Base64-Encoded Certificates
The following example reads a file with Base64-encoded certificates, which are each
bounded at the beginning by

-----BEGIN CERTIFICATE-----

and at the end by

-----END CERTIFICATE-----

Chapter 2
Additional JCA Code Samples

2-74

We convert the FileInputStream (which does not support mark and reset) to a
ByteArrayInputStream (which supports those methods), so that each call to
generateCertificate consumes only one certificate, and the read position of the input
stream is positioned to the next certificate in the file:

 try (FileInputStream fis = new FileInputStream(filename);
 BufferedInputStream bis = new BufferedInputStream(fis)) {
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 while (bis.available() > 0) {
 Certificate cert = cf.generateCertificate(bis);
 System.out.println(cert.toString());
 }
 }

Parsing a Certificate Reply
The following example parses a PKCS7-formatted certificate reply stored in a file and
extracts all the certificates from it:

 try (FileInputStream fis = new FileInputStream(filename)) {
 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 Collection<? extends Certificate> c = cf.generateCertificates(fis);
 for (Certificate cert : c) {
 System.out.println(cert);
 }

 // Or use the aggregate operations below for the above for-loop
 // c.stream().forEach(e -> System.out.println(e));
 }

Using Encryption
This section takes the user through the process of generating a key, creating and
initializing a cipher object, encrypting a file, and then decrypting it. Throughout this
example, we use the Advanced Encryption Standard (AES).

Generating a Key

To create an AES key, we have to instantiate a KeyGenerator for AES. We do not
specify a provider, because we do not care about a particular AES key generation
implementation. Since we do not initialize the KeyGenerator, a system-provided
source of randomness and a default keysize will be used to create the AES key:

 KeyGenerator keygen = KeyGenerator.getInstance("AES");
 keygen.init(128);
 SecretKey aesKey = keygen.generateKey();

After the key has been generated, the same KeyGenerator object can be re-used to
create further keys.

Creating a Cipher

The next step is to create a Cipher instance. To do this, we use one of the
getInstance factory methods of the Cipher class. We must specify the name of the

Chapter 2
Additional JCA Code Samples

2-75

requested transformation, which includes the following components, separated by
slashes (/):

• the algorithm name

• the mode (optional)

• the padding scheme (optional)

In this example, we create an AES cipher in Cipher Block Chaining mode, with
PKCS5-style padding. We do not specify a provider, because we do not care about a
particular implementation of the requested transformation.

The standard algorithm name for AES is "AES", the standard name for the Cipher
Block Chaining mode is "CBC", and the standard name for PKCS5-style padding is
"PKCS5Padding":

 Cipher aesCipher;

 // Create the cipher
 aesCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

We use the generated aesKey from above to initialize the Cipher object for encryption:

 // Initialize the cipher for encryption
 aesCipher.init(Cipher.ENCRYPT_MODE, aesKey);

 // Our cleartext
 byte[] cleartext = "This is just an example".getBytes();

 // Encrypt the cleartext
 byte[] ciphertext = aesCipher.doFinal(cleartext);

 // Retrieve the parameters used during encryption to properly
 // initialize the cipher for decryption
 AlgorithmParameters params = aesCipher.getParameters();

 // Initialize the same cipher for decryption
 aesCipher.init(Cipher.DECRYPT_MODE, aesKey, params);

 // Decrypt the ciphertext
 byte[] cleartext1 = aesCipher.doFinal(ciphertext);

cleartext and cleartext1 are identical.

Using Password-Based Encryption
In this example, we prompt the user for a password from which we derive an
encryption key.

It would seem logical to collect and store the password in an object of type
java.lang.String. However, here's the caveat: Objects of type String are immutable,
i.e., there are no methods defined that allow you to change (overwrite) or zero out the
contents of a String after usage. This feature makes String objects unsuitable for
storing security sensitive information such as user passwords. You should always
collect and store security sensitive information in a char array instead. For that reason,
the javax.crypto.spec.PBEKeySpec class takes (and returns) a password as a char
array.

Chapter 2
Additional JCA Code Samples

2-76

In order to use Password-Based Encryption (PBE) as defined in PKCS5, we have to
specify a salt and an iteration count. The same salt and iteration count that are used
for encryption must be used for decryption. Newer PBE algorithms use an iteration
count of at least 1000.

 PBEKeySpec pbeKeySpec;
 PBEParameterSpec pbeParamSpec;
 SecretKeyFactory keyFac;

 // Salt
 byte[] salt = new SecureRandom().nextBytes(salt);

 // Iteration count
 int count = 1000;

 // Create PBE parameter set
 pbeParamSpec = new PBEParameterSpec(salt, count);

 // Prompt user for encryption password.
 // Collect user password as char array, and convert
 // it into a SecretKey object, using a PBE key
 // factory.
 char[] password = System.console.readPassword("Enter encryption password: ");
 pbeKeySpec = new PBEKeySpec(password);
 keyFac = SecretKeyFactory.getInstance("PBEWithHmacSHA256AndAES_256");
 SecretKey pbeKey = keyFac.generateSecret(pbeKeySpec);

 // Create PBE Cipher
 Cipher pbeCipher = Cipher.getInstance("PBEWithHmacSHA256AndAES_256");

 // Initialize PBE Cipher with key and parameters
 pbeCipher.init(Cipher.ENCRYPT_MODE, pbeKey, pbeParamSpec);

 // Our cleartext
 byte[] cleartext = "This is another example".getBytes();

 // Encrypt the cleartext
 byte[] ciphertext = pbeCipher.doFinal(cleartext);

Sample Programs for Diffie-Hellman Key Exchange, AES/
GCM, and HMAC-SHA256

The following are sample programs for Diffie-Hellman key exchange, AES/GCM, and
HMAC-SHA256.

Topics

Diffie-Hellman Key Exchange between 2 Parties

Diffie-Hellman Key Exchange between 3 Parties

AES/GCM Example

HMAC-SHA256 Example

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-77

Diffie-Hellman Key Exchange between 2 Parties
The program runs the Diffie-Hellman key agreement protocol between 2 parties.

/*
 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
import java.io.*;
import java.math.BigInteger;
import java.security.*;
import java.security.spec.*;
import java.security.interfaces.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import javax.crypto.interfaces.*;
import com.sun.crypto.provider.SunJCE;

public class DHKeyAgreement2 {
 private DHKeyAgreement2() {}
 public static void main(String argv[]) throws Exception {

 /*
 * Alice creates her own DH key pair with 2048-bit key size
 */
 System.out.println("ALICE: Generate DH keypair ...");
 KeyPairGenerator aliceKpairGen = KeyPairGenerator.getInstance("DH");
 aliceKpairGen.initialize(2048);
 KeyPair aliceKpair = aliceKpairGen.generateKeyPair();

 // Alice creates and initializes her DH KeyAgreement object
 System.out.println("ALICE: Initialization ...");
 KeyAgreement aliceKeyAgree = KeyAgreement.getInstance("DH");

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-78

 aliceKeyAgree.init(aliceKpair.getPrivate());

 // Alice encodes her public key, and sends it over to Bob.
 byte[] alicePubKeyEnc = aliceKpair.getPublic().getEncoded();

 /*
 * Let's turn over to Bob. Bob has received Alice's public key
 * in encoded format.
 * He instantiates a DH public key from the encoded key material.
 */
 KeyFactory bobKeyFac = KeyFactory.getInstance("DH");
 X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(alicePubKeyEnc);

 PublicKey alicePubKey = bobKeyFac.generatePublic(x509KeySpec);

 /*
 * Bob gets the DH parameters associated with Alice's public key.
 * He must use the same parameters when he generates his own key
 * pair.
 */
 DHParameterSpec dhParamFromAlicePubKey =
((DHPublicKey)alicePubKey).getParams();

 // Bob creates his own DH key pair
 System.out.println("BOB: Generate DH keypair ...");
 KeyPairGenerator bobKpairGen = KeyPairGenerator.getInstance("DH");
 bobKpairGen.initialize(dhParamFromAlicePubKey);
 KeyPair bobKpair = bobKpairGen.generateKeyPair();

 // Bob creates and initializes his DH KeyAgreement object
 System.out.println("BOB: Initialization ...");
 KeyAgreement bobKeyAgree = KeyAgreement.getInstance("DH");
 bobKeyAgree.init(bobKpair.getPrivate());

 // Bob encodes his public key, and sends it over to Alice.
 byte[] bobPubKeyEnc = bobKpair.getPublic().getEncoded();

 /*
 * Alice uses Bob's public key for the first (and only) phase
 * of her version of the DH
 * protocol.
 * Before she can do so, she has to instantiate a DH public key
 * from Bob's encoded key material.
 */
 KeyFactory aliceKeyFac = KeyFactory.getInstance("DH");
 x509KeySpec = new X509EncodedKeySpec(bobPubKeyEnc);
 PublicKey bobPubKey = aliceKeyFac.generatePublic(x509KeySpec);
 System.out.println("ALICE: Execute PHASE1 ...");
 aliceKeyAgree.doPhase(bobPubKey, true);

 /*
 * Bob uses Alice's public key for the first (and only) phase
 * of his version of the DH
 * protocol.
 */
 System.out.println("BOB: Execute PHASE1 ...");
 bobKeyAgree.doPhase(alicePubKey, true);

 /*
 * At this stage, both Alice and Bob have completed the DH key
 * agreement protocol.

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-79

 * Both generate the (same) shared secret.
 */
 try {
 byte[] aliceSharedSecret = aliceKeyAgree.generateSecret();
 int aliceLen = aliceSharedSecret.length;
 byte[] bobSharedSecret = new byte[aliceLen];
 int bobLen;
 } catch (ShortBufferException e) {
 System.out.println(e.getMessage());
 } // provide output buffer of required size
 bobLen = bobKeyAgree.generateSecret(bobSharedSecret, 0);
 System.out.println("Alice secret: " +
 toHexString(aliceSharedSecret));
 System.out.println("Bob secret: " +
 toHexString(bobSharedSecret));
 if (!java.util.Arrays.equals(aliceSharedSecret, bobSharedSecret))
 throw new Exception("Shared secrets differ");
 System.out.println("Shared secrets are the same");

 /*
 * Now let's create a SecretKey object using the shared secret
 * and use it for encryption. First, we generate SecretKeys for the
 * "AES" algorithm (based on the raw shared secret data) and
 * Then we use AES in CBC mode, which requires an initialization
 * vector (IV) parameter. Note that you have to use the same IV
 * for encryption and decryption: If you use a different IV for
 * decryption than you used for encryption, decryption will fail.
 *
 * If you do not specify an IV when you initialize the Cipher
 * object for encryption, the underlying implementation will generate
 * a random one, which you have to retrieve using the
 * javax.crypto.Cipher.getParameters() method, which returns an
 * instance of java.security.AlgorithmParameters. You need to transfer
 * the contents of that object (e.g., in encoded format, obtained via
 * the AlgorithmParameters.getEncoded() method) to the party who will
 * do the decryption. When initializing the Cipher for decryption,
 * the (reinstantiated) AlgorithmParameters object must be explicitly
 * passed to the Cipher.init() method.
 */
 System.out.println("Use shared secret as SecretKey object ...");
 SecretKeySpec bobAesKey = new SecretKeySpec(bobSharedSecret, 0, 16, "AES");
 SecretKeySpec aliceAesKey = new SecretKeySpec(aliceSharedSecret, 0, 16,
"AES");

 /*
 * Bob encrypts, using AES in CBC mode
 */
 Cipher bobCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
 bobCipher.init(Cipher.ENCRYPT_MODE, bobAesKey);
 byte[] cleartext = "This is just an example".getBytes();
 byte[] ciphertext = bobCipher.doFinal(cleartext);

 // Retrieve the parameter that was used, and transfer it to Alice in
 // encoded format
 byte[] encodedParams = bobCipher.getParameters().getEncoded();

 /*
 * Alice decrypts, using AES in CBC mode
 */

 // Instantiate AlgorithmParameters object from parameter encoding

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-80

 // obtained from Bob
 AlgorithmParameters aesParams = AlgorithmParameters.getInstance("AES");
 aesParams.init(encodedParams);
 Cipher aliceCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
 aliceCipher.init(Cipher.DECRYPT_MODE, aliceAesKey, aesParams);
 byte[] recovered = aliceCipher.doFinal(ciphertext);
 if (!java.util.Arrays.equals(cleartext, recovered))
 throw new Exception("AES in CBC mode recovered text is " +
 "different from cleartext");
 System.out.println("AES in CBC mode recovered text is "
 "same as cleartext");
 }

 /*
 * Converts a byte to hex digit and writes to the supplied buffer
 */
 private static void byte2hex(byte b, StringBuffer buf) {
 char[] hexChars = { '0', '1', '2', '3', '4', '5', '6', '7', '8',
 '9', 'A', 'B', 'C', 'D', 'E', 'F' };
 int high = ((b & 0xf0) >> 4);
 int low = (b & 0x0f);
 buf.append(hexChars[high]);
 buf.append(hexChars[low]);
 }

 /*
 * Converts a byte array to hex string
 */
 private static String toHexString(byte[] block) {
 StringBuffer buf = new StringBuffer();
 int len = block.length;
 for (int i = 0; i < len; i++) {
 byte2hex(block[i], buf);
 if (i < len-1) {
 buf.append(":");
 }
 }
 return buf.toString();
 }
}

Diffie-Hellman Key Exchange between 3 Parties
The program runs the Diffie-Hellman key agreement protocol between 3 parties.

/*
 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-81

 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import javax.crypto.interfaces.*;
 /*
 * This program executes the Diffie-Hellman key agreement protocol between
 * 3 parties: Alice, Bob, and Carol using a shared 2048-bit DH parameter.
 */
 public class DHKeyAgreement3 {
 private DHKeyAgreement3() {}
 public static void main(String argv[]) throws Exception {
 // Alice creates her own DH key pair with 2048-bit key size
 System.out.println("ALICE: Generate DH keypair ...");
 KeyPairGenerator aliceKpairGen = KeyPairGenerator.getInstance("DH");
 aliceKpairGen.initialize(2048);
 KeyPair aliceKpair = aliceKpairGen.generateKeyPair();
 // This DH parameters can also be constructed by creating a
 // DHParameterSpec object using agreed-upon values
 DHParameterSpec dhParamShared =
((DHPublicKey)aliceKpair.getPublic()).getParams();
 // Bob creates his own DH key pair using the same params
 System.out.println("BOB: Generate DH keypair ...");
 KeyPairGenerator bobKpairGen = KeyPairGenerator.getInstance("DH");
 bobKpairGen.initialize(dhParamShared);
 KeyPair bobKpair = bobKpairGen.generateKeyPair();
 // Carol creates her own DH key pair using the same params
 System.out.println("CAROL: Generate DH keypair ...");
 KeyPairGenerator carolKpairGen = KeyPairGenerator.getInstance("DH");
 carolKpairGen.initialize(dhParamShared);
 KeyPair carolKpair = carolKpairGen.generateKeyPair();
 // Alice initialize
 System.out.println("ALICE: Initialize ...");
 KeyAgreement aliceKeyAgree = KeyAgreement.getInstance("DH");
 aliceKeyAgree.init(aliceKpair.getPrivate());
 // Bob initialize
 System.out.println("BOB: Initialize ...");
 KeyAgreement bobKeyAgree = KeyAgreement.getInstance("DH");
 bobKeyAgree.init(bobKpair.getPrivate());
 // Carol initialize
 System.out.println("CAROL: Initialize ...");
 KeyAgreement carolKeyAgree = KeyAgreement.getInstance("DH");
 carolKeyAgree.init(carolKpair.getPrivate());
 // Alice uses Carol's public key
 Key ac = aliceKeyAgree.doPhase(carolKpair.getPublic(), false);

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-82

 // Bob uses Alice's public key
 Key ba = bobKeyAgree.doPhase(aliceKpair.getPublic(), false);
 // Carol uses Bob's public key
 Key cb = carolKeyAgree.doPhase(bobKpair.getPublic(), false);
 // Alice uses Carol's result from above
 aliceKeyAgree.doPhase(cb, true);
 // Bob uses Alice's result from above
 bobKeyAgree.doPhase(ac, true);
 // Carol uses Bob's result from above
 carolKeyAgree.doPhase(ba, true);
 // Alice, Bob and Carol compute their secrets
 byte[] aliceSharedSecret = aliceKeyAgree.generateSecret();
 System.out.println("Alice secret: " + toHexString(aliceSharedSecret));
 byte[] bobSharedSecret = bobKeyAgree.generateSecret();
 System.out.println("Bob secret: " + toHexString(bobSharedSecret));
 byte[] carolSharedSecret = carolKeyAgree.generateSecret();
 System.out.println("Carol secret: " + toHexString(carolSharedSecret));
 // Compare Alice and Bob
 if (!java.util.Arrays.equals(aliceSharedSecret, bobSharedSecret))
 throw new Exception("Alice and Bob differ");
 System.out.println("Alice and Bob are the same");
 // Compare Bob and Carol
 if (!java.util.Arrays.equals(bobSharedSecret, carolSharedSecret))
 throw new Exception("Bob and Carol differ");
 System.out.println("Bob and Carol are the same");
 }
 /*
 * Converts a byte to hex digit and writes to the supplied buffer
 */
 private static void byte2hex(byte b, StringBuffer buf) {
 char[] hexChars = { '0', '1', '2', '3', '4', '5', '6', '7', '8',
 '9', 'A', 'B', 'C', 'D', 'E', 'F' };
 int high = ((b & 0xf0) >> 4);
 int low = (b & 0x0f);
 buf.append(hexChars[high]);
 buf.append(hexChars[low]);
 }
 /*
 * Converts a byte array to hex string
 */
 private static String toHexString(byte[] block) {
 StringBuffer buf = new StringBuffer();
 int len = block.length;
 for (int i = 0; i < len; i++) {
 byte2hex(block[i], buf);
 if (i < len-1) {
 buf.append(":");
 }
 }
 return buf.toString();
 }
 }

AES/GCM Example
The following is a sample program to demonstrate AES/GCM usage to encrypt/decrypt
data.

/*
 * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-83

 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

import java.security.AlgorithmParameters;
import java.util.Arrays;
import javax.crypto.*;

public class AESGCMTest {

 public static void main(String[] args) throws Exception {
 // Slightly longer than 1 AES block (128 bits) to show PADDING
 // is "handled" by GCM.
 byte[] data = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 0x10};

 // Create a 128-bit AES key.
 KeyGenerator kg = KeyGenerator.getInstance("AES");
 kg.init(128);
 SecretKey key = kg.generateKey();

 // Obtain a AES/GCM cipher to do the enciphering. Must obtain
 // and use the Parameters for successful decryption.
 Cipher encCipher = Cipher.getInstance("AES/GCM/NOPADDING");
 encCipher.init(Cipher.ENCRYPT_MODE, key);
 byte[] enc = encCipher.doFinal(data);
 AlgorithmParameters ap = encCipher.getParameters();

 // Obtain a similar cipher, and use the parameters.
 Cipher decCipher = Cipher.getInstance("AES/GCM/NOPADDING");
 decCipher.init(Cipher.DECRYPT_MODE, key, ap);
 byte[] dec = decCipher.doFinal(enc);

 if (Arrays.compare(data, dec) != 0) {

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-84

 throw new Exception("Original data != decrypted data");
 }
 }
}

HMAC-SHA256 Example
The following is a sample program that demonstrates how to generate a secret-key
object for HMAC-SHA256, and initialize a HMAC-SHA256 object with it.

Example 2-14 Generate a Secret-key Object for HMAC-SHA256

/*
 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

import java.security.*;
import javax.crypto.*;

 /**
 * This program demonstrates how to generate a secret-key object for
 * HMACSHA256, and initialize an HMACSHA256 object with it.
 */

 public class initMac {

 public static void main(String[] args) throws Exception {

 // Generate secret key for HmacSHA256
 KeyGenerator kg = KeyGenerator.getInstance("HmacSHA256");
 SecretKey sk = kg.generateKey();

 // Get instance of Mac object implementing HmacSHA256, and
 // initialize it with the above secret key

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-85

 Mac mac = Mac.getInstance("HmacSHA256");
 mac.init(sk);
 byte[] result = mac.doFinal("Hi There".getBytes());
 }
 }

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-86

3
How to Implement a Provider in the Java
Cryptography Architecture

This document describes what you need to do in order to integrate your provider into
Java SE so that algorithms and other services can be found when Java Security API
clients request them.

Who Should Read This Document
Programmers that only need to use the Java Security APIs (see Core Classes and
Interfaces in Java Cryptography Architecture (JCA) Reference Guide) to access
existing cryptography algorithms and other services do not need to read this
document.

This document is intended for experienced programmers wishing to create their own
provider packages supplying cryptographic service implementations. It documents
what you need to do in order to integrate your provider into Java so that your
algorithms and other services can be found when Java Security API clients request
them.

Notes on Terminology
Throughout this document, the terms JCA by itself refers to the JCA framework.
Whenever this document notes a specific JCA provider, it will be referred to explicitly
by the provider name.

• Prior to JDK 1.4, the JCE was an unbundled product, and as such, the JCA and
JCE were regularly referred to as separate, distinct components. As JCE is now
bundled in JDK, the distinction is becoming less apparent. Since the JCE uses the
same architecture as the JCA, the JCE should be more properly thought of as a
subset of the JCA.

• The JCA within the JDK includes two software components:

– the framework that defines and supports cryptographic services for which
providers supply implementations. This framework includes packages such as
java.security, javax.crypto, javax.crypto.spec, and javax.crypto.interfaces.

– the actual providers such as Sun, SunRsaSign, SunJCE, which contain the
actual cryptographic implementations.

Introduction to Implementing Providers
The Java platform defines a set of APIs spanning major security areas, including
cryptography, public key infrastructure, authentication, secure communication, and
access control. These APIs allow developers to easily integrate security into their
application code. They were designed around the following principles:

3-1

• Implementation independence: Applications do not need to implement security
themselves. Rather, they can request security services from the Java platform.
Security services are implemented in providers (see below), which are plugged
into the Java platform via a standard interface. An application may rely on multiple
independent providers for security functionality.

• Implementation interoperability: Providers are interoperable across applications.
Specifically, an application is not bound to a specific provider, and a provider is not
bound to a specific application.

• Algorithm extensibility: The Java platform includes a number of built-in providers
that implement a basic set of security services that are widely used today.
However, some applications may rely on emerging standards not yet
implemented, or on proprietary services. The Java platform supports the
installation of custom providers that implement such services.

A Cryptographic Service Provider (provider) refers to a package (or a set of packages)
that supply a concrete implementation of a subset of the cryptography aspects of the
JDK Security API.

The java.security.Provider class encapsulates the notion of a security provider
in the Java platform. It specifies the provider's name and lists the security services it
implements. Multiple providers may be configured at the same time, and are listed in
order of preference. When a security service is requested, the highest priority provider
that implements that service is selected. See Security Providers, which illustrates how
a provider selects a requested security service.

Engine Classes and Corresponding Service Provider
Interface Classes

An engine class defines a cryptographic service in an abstract fashion (without a
concrete implementation). A cryptographic service is always associated with a
particular algorithm or type.

A cryptographic service either provides cryptographic operations (like those for digital
signatures or message digests, ciphers or key agreement protocols); generates or
supplies the cryptographic material (keys or parameters) required for cryptographic
operations; or generates data objects (keystores or certificates) that encapsulate
cryptographic keys (which can be used in a cryptographic operation) in a secure
fashion.

For example, here are four engine classes:

• Signature class provides access to the functionality of a digital signature algorithm.

• A DSA KeyFactory class supplies a DSA private or public key (from its encoding or
transparent specification) in a format usable by the initSign or initVerify methods,
respectively, of a DSA Signature object.

• Cipher class provides access to the functionality of an encryption algorithm (such
as AES)

• KeyAgreement class provides access to the functionality of a key agreement protocol
(such as Diffie-Hellman)

The Java Cryptography Architecture encompasses the classes comprising the
Security package that relate to cryptography, including the engine classes. Users of

Chapter 3
Engine Classes and Corresponding Service Provider Interface Classes

3-2

the API request and utilize instances of the engine classes to carry out corresponding
operations. The JDK defines the following engine classes:

• MessageDigest - used to calculate the message digest (hash) of specified data.

• Signature - used to sign data and verify digital signatures.

• KeyPairGenerator - used to generate a pair of public and private keys suitable for a
specified algorithm.

• KeyFactory - used to convert opaque cryptographic keys of type Key into key
specifications (transparent representations of the underlying key material), and
vice versa.

• KeyStore - used to create and manage a keystore. A keystore is a database of
keys. Private keys in a keystore have a certificate chain associated with them,
which authenticates the corresponding public key. A keystore also contains
certificates from trusted entities.

• CertificateFactory - used to create public key certificates and Certificate
Revocation Lists (CRLs).

• AlgorithmParameters - used to manage the parameters for a particular algorithm,
including parameter encoding and decoding.

• AlgorithmParameterGenerator - used to generate a set of parameters suitable for a
specified algorithm.

• SecureRandom - used to generate random or pseudo-random numbers.

• Cipher - used to encrypt or decrypt some specified data.

• KeyAgreement - used to execute a key agreement (key exchange) protocol between
2 or more parties.

• KeyGenerator - used to generate a secret (symmetric) key suitable for a specified
algorithm.

• Mac: used to compute the message authentication code of some specified data.

• SecretKeyFactory - used to convert opaque cryptographic keys of type SecretKey
into key specifications (transparent representations of the underlying key material),
and vice versa.

• CertPathBuilder - used to create public key certificates and Certificate Revocation
Lists (CRLs).

• CertPathValidator - used to validate certificate chains.

• CertStore - used to retrieve Certificates and CRLs from a repository.

• ExemptionMechanism - used to provide the functionality of an exemption mechanism
such as key recovery, key weakening, key escrow, or any other (custom)
exemption mechanism. Applications or applets that use an exemption mechanism
may be granted stronger encryption capabilities than those which don't. However,
please note that cryptographic restrictions are no longer required for most
countries, and thus exemption mechanisms may only be useful in those few
countries whose governments mandate restrictions.

Chapter 3
Engine Classes and Corresponding Service Provider Interface Classes

3-3

Note:

A generator creates objects with brand-new contents, whereas a factory
creates objects from existing material (for example, an encoding).

An engine class provides the interface to the functionality of a specific type of
cryptographic service (independent of a particular cryptographic algorithm). It defines
Application Programming Interface (API) methods that allow applications to access the
specific type of cryptographic service it provides. The actual implementations (from
one or more providers) are those for specific algorithms. For example, the Signature
engine class provides access to the functionality of a digital signature algorithm. The
actual implementation supplied in a SignatureSpi subclass (see next paragraph) would
be that for a specific kind of signature algorithm, such as SHA256withDSA or
SHA512withRSA.

The application interfaces supplied by an engine class are implemented in terms of a
Service Provider Interface (SPI). That is, for each engine class, there is a
corresponding abstract SPI class, which defines the Service Provider Interface
methods that cryptographic service providers must implement.

Figure 3-1 Engine Classes

An instance of an engine class, the "API object", encapsulates (as a private field) an
instance of the corresponding SPI class, the "SPI object". All API methods of an API
object are declared "final", and their implementations invoke the corresponding SPI
methods of the encapsulated SPI object. An instance of an engine class (and of its
corresponding SPI class) is created by a call to the getInstance factory method of
the engine class.

Chapter 3
Engine Classes and Corresponding Service Provider Interface Classes

3-4

The name of each SPI class is the same as that of the corresponding engine class,
followed by "Spi". For example, the SPI class corresponding to the Signature engine
class is the SignatureSpi class.

Each SPI class is abstract. To supply the implementation of a particular type of service
and for a specific algorithm, a provider must subclass the corresponding SPI class and
provide implementations for all the abstract methods.

Another example of an engine class is the MessageDigest class, which provides access
to a message digest algorithm. Its implementations, in MessageDigestSpi subclasses,
may be those of various message digest algorithms such as SHA256 or SHA384.

As a final example, the KeyFactory engine class supports the conversion from opaque
keys to transparent key specifications, and vice versa. See Key Specification
Interfaces and Classes Required by Key Factories. The actual implementation
supplied in a KeyFactorySpi subclass would be that for a specific type of keys, e.g.,
DSA public and private keys.

Steps to Implement and Integrate a Provider
Follow these steps to implement a provider and integrate it into the JCA framework:

• Step 1: Write your Service Implementation Code

• Step 2: Give your Provider a Name

• Step 3: Write Your Master Class, a Subclass of Provider

• Step 4: Create a Module Declaration for Your Provider

• Step 5: Compile Your Code

• Step 6: Place Your Provider in a JAR File

• Step 7: Sign Your JAR File, If Necessary

• Step 8: Prepare for Testing

• Step 9: Write and Compile Your Test Programs

• Step 10: Run Your Test Programs

• Step 11: Apply for U.S. Government Export Approval If Required

• Step 12: Document Your Provider and Its Supported Services

• Step 13: Make Your Class Files and Documentation Available to Clients

Step 1: Write your Service Implementation Code
The first thing you need to do is to write the code that provides algorithm-specific
implementations of the cryptographic services you want to support. Your provider may
supply implementations of cryptographic services already available in one or more of
the security components of the JDK.

For cryptographic services not defined in JCA (for example, signatures and message
digests), see Engine Classes and Algorithms.

For each cryptographic service you wish to implement, create a subclass of the
appropriate SPI class. JCA defines the following engine classes:

• SignatureSpi

Chapter 3
Steps to Implement and Integrate a Provider

3-5

• MessageDigestSpi

• KeyPairGeneratorSpi

• SecureRandomSpi

• AlgorithmParameterGeneratorSpi

• AlgorithmParametersSpi

• KeyFactorySpi

• CertificateFactorySpi

• KeyStoreSpi

• CipherSpi

• KeyAgreementSpi

• KeyGeneratorSpi

• MacSpi

• SecretKeyFactorySpi

• ExemptionMechanismSpi

To know more about the JCA and other cryptographic classes, see Engine Classes
and Corresponding Service Provider Interface Classes.

In the subclass, you need to:

1. Supply implementations for the abstract methods, whose names usually begin with
engine. See Further Implementation Details and Requirements.

2. Depending on how you write your provider and register its algorithms (using either
String objects or the Provider.Service class), the provider either:

• Ensure that there is a public constructor without any arguments. Here's why:
When one of your services is requested, Java Security looks up the subclass
implementing that service, as specified by a property in your "master class"
(see Step 3: Write Your Master Class, a Subclass of Provider). Java Security
then creates the Class object associated with your subclass, and creates an
instance of your subclass by calling the newInstance method on that Class
object. newInstance requires your subclass to have a public constructor without
any parameters. (A default constructor without arguments will automatically be
generated if your subclass doesn't have any constructors. But if your subclass
defines any constructors, you must explicitly define a public constructor
without arguments.)

• Override the newInstance() method in the registered Provider.Service.
This is the preferred mechanism in JDK 9 and later.

Step 1.1: Consider Additional JCA Provider Requirements and
Recommendations for Encryption Implementations

When instantiating a provider's implementation (class) of a Cipher, KeyAgreement,
KeyGenerator, MAC, or SecretKey factory, the framework will determine the provider's
codebase (JAR file) and verify its signature. In this way, JCA authenticates the
provider and ensures that only providers signed by a trusted entity can be plugged into

Chapter 3
Steps to Implement and Integrate a Provider

3-6

the JCA. Thus, one requirement for encryption providers is that they must be signed,
as described in later steps.

In order for provider classes to become unusable if instantiated by an application
directly, bypassing JCA, providers should implement the following:

• All SPI implementation classes in a provider package should be declared final (so
that they cannot be subclassed), and their (SPI) implementation methods should
be declared protected.

• All crypto-related helper classes in a provider package should have package-
private scope, so that they cannot be accessed from outside the provider package.

For providers that may be exported outside the U.S., CipherSpi implementations must
include an implementation of the engineGetKeySize method which, given a Key, returns
the key size. If there are restrictions on available cryptographic strength specified in
jurisdiction policy files, each Cipher initialization method calls engineGetKeySize and
then compares the result with the maximum allowable key size for the particular
location and circumstances of the applet or application being run. If the key size is too
large, the initialization method throws an exception.

Additional optional features that providers may implement are:

• Optional: The engineWrap and engineUnwrap methods of CipherSpi. Wrapping a key
enables secure transfer of the key from one place to another. Information about
wrapping and unwrapping keys is provided in the wrap.

• Optional: One or more exemption mechanisms. An exemption mechanism is
something such as key recovery, key escrow, or key weakening which, if
implemented and enforced, may enable reduced cryptographic restrictions for an
application (or applet) that uses it. To know more about the requirements for apps
that utilize exemption mechanisms, see How to Make Applications Exempt from
Cryptographic Restrictions.

Step 2: Give your Provider a Name
Decide on a unique name for your provider. This is the name to be used by client
applications to refer to your provider, and it must not conflict with any other provider
names.

Step 3: Write Your Master Class, a Subclass of Provider
Create a subclass of the java.security.Provider class. This is essentially a lookup
table that advertises the algorithms that your provider implements.

You can use the following coding styles to subclass the Provider class:

• Create a provider that registers its services with String objects to store algorithm
names and their associated implementation class name. These are stored in the
Hashtable<Object,Object> superclass of java.security.Provider.

• Create a provider that uses the Provider.Service class, which uses a different
method to store algorithm names and create new objects. The
Provider.Service class enables you customize how the JCE framework
requests services from your provider, such as how the framework creates new
instances of your provider's services. This coding style is recommended,
especially when using modules.

Chapter 3
Steps to Implement and Integrate a Provider

3-7

https://docs.oracle.com/javase/9/docs/api/javax/crypto/Cipher.html#wrap-java.security.Key-

A provider can use either style, or even use both styles at the same time. Regardless
of which style you choose, your subclass should be final.

Step 3.1: Create a Provider That Uses String Objects to Register Its Services

The following is an example of a provider that uses String objects to store
implemented algorithm names:

package p;
public final class MyProvider extends Provider {
 public MyProvider() {
 super("MyProvider", "1.0",
 "Some info about my provider and which algorithms it supports");
 // com.my.crypto.provider.MyCipher extends CipherSPI
 put("Cipher.MyCipher", "com.my.crypto.provider.MyCipher");
 }
}

To create a provider with this coding style, do the following:

• Call super, specifying the provider name (see Step 2: Give your Provider a Name)
version number, and a string of information about the provider and algorithms it
supports.

 super("MyProvider", "1.0",
 "Some info about my provider and which algorithms it supports");

• Set the values of various properties that are required for the Java Security API to
look up the cryptographic services implemented by the provider.

For each service implemented by the provider, there must be a property whose
name is the type of service followed by a period and the name of the algorithm to
which the service applies. The property value must specify the fully qualified name
of the class implementing the service.

For example, this following statement sets a property named Cipher.MyCypher
whose value is com.my.crypto.provider.MyCipher, a class that extends CipherSPI:

 put("Cipher.MyCipher", "com.my.crypto.provider.MyCipher");

The following list shows the various types of JCA services, where the actual
algorithm name is substituted for algName:

– Signature.algName

– MessageDigest.algName

– KeyPairGenerator.algName

– SecureRandom.algName

– AlgorithmParameterGenerator.algName

– AlgorithmParameters.algName

– KeyFactory.algName

– CertificateFactory.algName

– KeyStore.algName

Chapter 3
Steps to Implement and Integrate a Provider

3-8

– Cipher.algName: algName may actually represent a transformation, and may be
composed of an algorithm name, a particular mode, and a padding scheme.
See Java Security Standard Algorithm Names Specification

– KeyAgreement.algName

– KeyGenerator.algName

– Mac.algName

– SecretKeyFactory.algName

– ExemptionMechanism.algName: algName refers to the name of the exemption
mechanism, which can be one of the following: KeyRecovery, KeyEscrow, or
KeyWeakening. Case does not matter.

In all of these except ExemptionMechanism and Cipher, algName is the "standard"
name of the algorithm, certificate type, or keystore type. See Java Security
Standard Algorithm Names Specification for the standard names that should be
used.

The value of each property must be the fully qualified name of the class
implementing the specified algorithm, certificate type, or keystore type. That is, it
must be the package name followed by the class name, where the two are
separated by a period.

As an example, the default provider named SUN implements the Digital Signature
Algorithm (whose standard name is SHA256withDSA) in a class named DSA in the
sun.security.provider package. Its subclass of Provider (which is the Sun class in
the sun.security.provider package) sets the Signature.SHA256withDSA property to
have the value sun.security.provider.DSA via the following:

put("Signature.SHA256withDSA", "sun.security.provider.DSA")

The list below shows more properties that can be defined for the various types of
services, where the actual algorithm name is substituted for algName, certificate
type for certType, keystore type for storeType, and attribute name for attrName:

– Signature.algName [one or more spaces] attrName

– MessageDigest.algName [one or more spaces] attrName

– KeyPairGenerator.algName [one or more spaces] attrName

– SecureRandom.algName [one or more spaces] attrName

– KeyFactory.algName [one or more spaces] attrName

– CertificateFactory.certType [one or more spaces] attrName

– KeyStore.storeType [one or more spaces] attrName

– AlgorithmParameterGenerator.algName [one or more spaces] attrName

– AlgorithmParameters.algName [one or more spaces] attrName

– Cipher.algName [one or more spaces] attrName

– KeyAgreement.algName [one or more spaces] attrName

– KeyGenerator.algName [one or more spaces] attrName

– Mac.algName [one or more spaces] attrName

– SecretKeyFactory.algName [one or more spaces] attrName

– ExemptionMechanism.algName [one or more spaces] attrName

Chapter 3
Steps to Implement and Integrate a Provider

3-9

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

In each of these, attrName is the "standard" name of the algorithm, certificate type,
keystore type, or attribute. (See Java Security Standard Algorithm Names
Specification for the standard names that should be used.)

For a property in the above format, the value of the property must be the value for
the corresponding attribute. (See Java Security Standard Algorithm Names
Specification for the definition of each standard attribute.)

For further master class property setting examples, see the JDK 9 source code for
the sun.security.provider.Sun and
com.sun.crypto.provider.SunJCE classes. They show how the Sun and
SunJCE providers set properties.

As an example, the default provider named SUN implements the SHA256withDSA
Digital Signature Algorithm in software. The class
sun.security.provider.Sun calls the method SunEntries.putEntries,
which sets the properties for the SUN provider, including setting the property
Signature.SHA256withDSA ImplementedIn to have the value Software:

 put("Signature.SHA256withDSA ImplementedIn", "Software");

Note:

For examples of this coding style, see the source code for
sun.security.provider.Sun and
sun.security.provider.SunEntries classes.

Step 3.2: Create a Provider That Uses Provider.Service

The following is an example of a provider that uses a Provider.Service class:

package p;

public final class MyProvider extends Provider {

 public MyProvider() {
 super("MyProvider", "1.0",
 "Some info about my provider and which algorithms it supports");
 putService(new ProviderService(this, "Cipher", "MyCipher", "p.MyCipher"));
 }

 private static final class ProviderService extends Provider.Service {
 ProviderService(Provider p, String type, String algo, String cn) {
 super(p, type, algo, cn, null, null);
 }

 @Override
 public Object newInstance(Object ctrParamObj)
 throws NoSuchAlgorithmException {
 String type = getType();
 String algo = getAlgorithm();
 try {
 if (type.equals("Cipher")) {
 if (algo.equals("MyCipher")) {
 return new MyCipher();
 }
 }

Chapter 3
Steps to Implement and Integrate a Provider

3-10

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/65464a307408/src/java.base/share/classes/sun/security/provider/Sun.java
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/65464a307408/src/java.base/share/classes/com/sun/crypto/provider/SunJCE.java

 } catch (Exception ex) {
 throw new NoSuchAlgorithmException(
 "Error constructing " + type + " for "
 + algo + " using SunMSCAPI", ex);
 }
 throw new ProviderException("No impl for " + algo + " " + type);
 }
 }
}

To create a provider with this coding style, do the following:

• For each algorithm your provider supports, call putService with an instance of
Provider.Service; the arguments of the Provider.Service constructor
represent a supported algorithm.

The following statement adds a service named MyCipher of type Cipher; the name
of the class implementing this service is p.MyCipher. The argument of putService is
a subclass of Provider.Service:

 putService(new ProviderService(this, "Cipher", "MyCipher",
"p.MyCipher"));

This example uses a subclass of Provider.Service named ProviderService
(rather than Provider.Service itself) as it customizes how the JCE framework
instantiates services. If you don't need to customize the behavior of
Provider.Service, then you can call the Provider.Service constructor
directly:

public final class MyProvider extends Provider {
 public MyProvider() {
 super("MyProvider", "1.0",
 "Some info about my provider and which algorithms it supports");
 putService(new Provider.Service(
 this, "Cipher", "MyCipher", "p.MyCipher", null, null));
 }
}

Note that this example is essentially the same as the example described in Step
3.1: Create a Provider That Uses String Objects to Register Its Services.

• Override any method in Provider.Service, such as newInstance, to
customize how the JCE framework handles the services in your provider.

The example at the beginning of this section overrides the method
Provider.Service.newInstance. The method returns an instance of MyCipher
only if the requested service is MyCipher. If not, it throws a
NoSuchAlgorithmException and a ProviderException.

For more information about other methods you can override, see The
Provider.Service Class.

Note:

For examples of this coding style, see the JDK 9 source code contained in the
sun.security.mscapi package.

Chapter 3
Steps to Implement and Integrate a Provider

3-11

http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/65464a307408/src/jdk.crypto.mscapi/windows/classes/sun/security/mscapi

Step 3.3: Specify Additional Information for Cipher Implementations
As mentioned above, in the case of a Cipher property, algName may actually represent
a transformation. A transformation is a string that describes the operation (or set of
operations) to be performed by a Cipher object on some given input. A transformation
always includes the name of a cryptographic algorithm (e.g., AES), and may be
followed by a mode and a padding scheme.

A transformation is of the form:

• algorithm/mode/padding, or

• algorithm

(In the latter case, provider-specific default values for the mode and padding scheme
are used). For example, the following is a valid transformation:

 Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");

When requesting a block cipher in stream cipher mode (for example; AES in CFB or OFB
mode), a client may optionally specify the number of bits to be processed at a time, by
appending this number to the mode name as shown in the following sample
transformations:

 Cipher c1 = Cipher.getInstance("AES/CFB8/NoPadding");
 Cipher c2 = Cipher.getInstance("AES/OFB32/PKCS5Padding");

If a number does not follow a stream cipher mode, a provider-specific default is used.
(For example, the SunJCE provider uses a default of 128 bits.)

A provider may supply a separate class for each combination of algorithm/mode/
padding. Alternatively, a provider may decide to provide more generic classes
representing sub-transformations corresponding to algorithm or algorithm/mode or
algorithm//padding (note the double slashes); in this case the requested mode and/or
padding are set automatically by the getInstance methods of Cipher, which invoke the
engineSetMode and engineSetPadding methods of the provider's subclass of CipherSpi.

That is, a Cipher property in a provider master class may have one of the formats
shown in the table below.

Table 3-1 Cipher Property Format

Cipher Property Format Description

Cipher.algName A provider's subclass of CipherSpi implements
algName with pluggable mode and padding

Cipher.algName/mode A provider's subclass of CipherSpi implements
algName in the specified mode, with pluggable padding

Cipher.algName//padding A provider's subclass of CipherSpi implements
algName with the specified padding, with pluggable
mode

Cipher.algName/mode/padding A provider's subclass of CipherSpi implements
algName with the specified mode and padding

(See Java Security Standard Algorithm Names Specification for the standard algorithm
names, modes, and padding schemes that should be used.)

Chapter 3
Steps to Implement and Integrate a Provider

3-12

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

For example, a provider may supply a subclass of CipherSpi that implements
AES/ECB/PKCS5Padding, one that implements AES/CBC/PKCS5Padding, one that
implements AES/CFB/PKCS5Padding, and yet another one that implements
AES/OFB/PKCS5Padding. That provider would have the following Cipher properties in
its master class:

• Cipher.AES/ECB/PKCS5Padding

• Cipher.AES/CBC/PKCS5Padding

• Cipher.AES/CFB/PKCS5Padding

• Cipher.AES/OFB/PKCS5Padding

Another provider may implement a class for each of the above modes (i.e., one class
for ECB, one for CBC, one for CFB, and one for OFB), one class for PKCS5Padding,
and a generic AES class that subclasses from CipherSpi. That provider would have the
following Cipher properties in its master class:

• Cipher.AES

• Cipher.AES SupportedModes

– Example: "ECB|CBC|CFB|OFB"

• Cipher.AES SupportedPaddings

– Example: "NOPADDING|PKCS5Padding"

The getInstance factory method of the Cipher engine class follows these rules in order
to instantiate a provider's implementation of CipherSpi for a transformation of the form
"algorithm":

1. Check if the provider has registered a subclass of CipherSpi for the specified
"algorithm".

• If the answer is YES, instantiate this class, for whose mode and padding
scheme default values (as supplied by the provider) are used.

• If the answer is NO, throw a NoSuchAlgorithmException exception.

2. The getInstance factory method of the Cipher engine class follows these rules in
order to instantiate a provider's implementation of CipherSpi for a transformation of
the form "algorithm/mode/padding":

a. Check if the provider has registered a subclass of CipherSpi for the specified
"algorithm/mode/padding" transformation.

• If the answer is YES, instantiate it.

• If the answer is NO, go to the next step.

b. Check if the provider has registered a subclass of CipherSpi for the sub-
transformation "algorithm/mode".

• If the answer is YES, instantiate it, and call engineSetPadding(padding) on
the new instance.

• If the answer is NO, go to the next step.

c. Check if the provider has registered a subclass of CipherSpi for the sub-
transformation "algorithm//padding" (note the double slashes)

• If the answer is YES, instantiate it, and call engineSetMode(mode) on the
new instance.

Chapter 3
Steps to Implement and Integrate a Provider

3-13

• If the answer is NO, go to the next step.

d. Check if the provider has registered a subclass of CipherSpi for the sub-
transformation "algorithm".

• If the answer is YES, instantiate it, and call engineSetMode(mode) and
engineSetPadding(padding) on the new instance.

• If the answer is NO, throw a NoSuchAlgorithmException exception.

Step 4: Create a Module Declaration for Your Provider
This step is optional but recommended; it enables you to package your provider in a
named module. A modular JDK can then locate your provider in the module path as
opposed to the class path. The module system can more thoroughly check for
dependencies in modules in the module path. Note that you can use named modules
in a non-modular JDK; the module declaration will be ignored. Also, you can still
package your providers in unnamed or automatic modules.

Create a module declaration for your provider and save it in a file named module-
info.java. This module declaration includes the following:

• The name of your module.

• Any module upon which your provider depends.

• A provides directive if your module provides a service implementation.

The following example module declaration defines a module named
com.foo.MyProvider. p.MyProvider is the fully qualified class name of a service
implementation. Suppose that, in this example, p.MyProvider uses API in the package
javax.security.auth.kerberos, which is in the module
java.security.jgss. Thus, the directive requires java.security.jgss appears in
the module declaration.

module com.foo.MyProvider {
 provides java.security.Provider with p.MyProvider;
 requires java.security.jgss;
}

You can package a provider in three different kinds of modules:

• Named or explicit module: A module that appears on the module path and
contains module configuration information in the module-info.class file.

The JCE framework can use the ServiceLoader class (which simplifies provider
configuration) to search for providers in explicit modules without any additional
changes to the module. See Step 8.1: Configure the Provider and Step 10: Run
Your Test Programs.

• Automatic module: A module that appears on the module path, but does not
contain module configuration information in a module-info.class file
(essentially a "regular" JAR file).

• Unnamed module: A module that appears on the class path. It may or may not
have a module-info.class file; this file is ignored.

It is recommended that you package your providers in named modules as they provide
better performance, stronger encapsulation, simpler configuration and greater
flexibility.

Chapter 3
Steps to Implement and Integrate a Provider

3-14

https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html

You have a lot of flexibility when it comes to packaging and configuring your providers.
However, this impacts how you start applications that use them. For example, you
might have to specify additional --add-exports or --add-modules options. Named
modules, in general, require fewer of these additional options. In addition named
modules offer more flexibility. You can use them with non-modular JDKs or even as
unnamed modules by specifying them in a modular JDK's class path. For more
information about modules, see The State of the Module System and JEP 261: Module
System.

Step 5: Compile Your Code
After you have created your implementation code (Step 1: Write your Service
Implementation Code), given your provider a name (Step 2: Give your Provider a
Name), created the master class (Step 3: Write Your Master Class, a Subclass of
Provider), and created a module declaration (Step 4: Create a Module Declaration for
Your Provider), use the Java compiler to compile your files.

Step 6: Place Your Provider in a JAR File

Add the File java.security.Provider to Use the ServiceLoader Class to Search for
Providers

If your provider is packaged in an automatic or unnamed module (you did not create a
module declaration as described in Step 4: Create a Module Declaration for Your
Provider) and you want the use the java.util.ServiceLoader to search for your
providers, then add the file META-INF/services/java.security.Provider to
the JAR file and ensure that the file contains the fully qualified class name of your
provider implementation.

The security provider loading mechanism uses the ServiceLoader class to search
for providers before consulting the class path.

For example, if the fully qualified class name of your provider is p.Provider and all the
compiled code of your provider is in the directory classes, then create a file named
classes/META-INF/services/java.security.Provider that contains the
following line:

p.MyProvider

Run the jar Command to Create a JAR File

The following command creates a JAR file named MyProvider.jar. All the compiled
code for the module JAR file is in the directory classes. In addition, the module
descriptor, module-info.class, is in the directory classes:

jar --create --file MyProvider.jar --module-version 1.0 -C classes

Note:

The module-info.class file and the --module-version option are optional.
However, the module-info.class file is required if you want to create a
modular JAR file. (A modular JAR file is a regular JAR file that has a module-
info.class file in its top-level directory.)

Chapter 3
Steps to Implement and Integrate a Provider

3-15

http://openjdk.java.net/projects/jigsaw/spec/sotms/
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html

See jar in Java Platform, Standard Edition Tools Reference.

Step 7: Sign Your JAR File, If Necessary

If your provider is supplying encryption algorithms through the Cipher,
KeyAgreement, KeyGenerator, Mac, or SecretKeyFactory classes, you must
sign your JAR file so that the JCA can authenticate the code at run time; see Step 1.1:
Consider Additional JCA Provider Requirements and Recommendations for Encryption
Implementations. If you are not providing an implementation of this type, then you can
skip this step.

Step 7.1: Get a Code-Signing Certificate
The next step is to request a code-signing certificate so that you can use it to sign your
provider prior to testing. The certificate will be good for both testing and production. It
will be valid for 5 years.

Below are the steps you should use to get a code-signing certificate. See keytool in
the Java Platform, Standard Edition Tools Reference.

1. Use keytool to generate a RSA keypair, using RSA algorithm as an example:

keytool -genkeypair -alias <alias> \
 -keyalg RSA -keysize 2048 \
 -dname "cn=<Company Name>, \
 ou=Java Software Code Signing, \
 o=Oracle Corporation" \
 -keystore <keystore file name> \
 -storepass <keystore password>

This will generate a DSA keypair (a public key and an associated private key) and
store it in an entry in the specified keystore. The public key is stored in a self-
signed certificate. The keystore entry can subsequently be accessed using the
specified alias.

The option values in angle brackets ("<" and ">") represent the actual values that
must be supplied. For example, <alias> must be replaced with whatever alias
name you wish to be used to refer to the newly-generated keystore entry in the
future, and <keystore file name> must be replaced with the name of the keystore
to be used.

Tip:

Do not surround actual values with angle brackets. For example, if you want
your alias to be myTestAlias, specify the -alias option as follows:

 -alias myTestAlias

If you specify a keystore that doesn't yet exist, it will be created.

Chapter 3
Steps to Implement and Integrate a Provider

3-16

Note:

If command lines you type are not allowed to be as long as the keytool -
genkeypair command you want to execute (for example, if you are typing to a
Microsoft Windows DOS prompt), you can create and execute a plain-text
batch file containing the command. That is, create a new text file that contains
nothing but the full keytool -genkeypair command. (Remember to type it all on
one line.) Save the file with a .bat extension. Then in your DOS window, type
the file name (with its path, if necessary). This will cause the command in the
batch file to be executed.

2. Use keytool to generate a certificate signing request.

 keytool -certreq -alias <alias> \
 -file <csr file name> \
 -keystore <keystore file name> \
 -storepass <keystore password>

Here, <alias> is the alias for the DSA keypair entry created in the previous step.
This command generates a Certificate Signing Request (CSR), using the
PKCS#10 format. It stores the CSR in the file whose name is specified in <csr
file name>.

3. Send the CSR, contact information, and other required documentation to the JCA
Code Signing Certification Authority. See JCA Code Signing Certification Authority
for contact information.

4. After the JCA Code Signing Certification Authority has received your email
message, they will send you a request number via email. Once you receive this
request number, you should print, fill out and send the Certification Form for CSPs.
See Sending Certification Form for CSPs for contact information.

5. Use keytool to import the certificates received from the CA.

Once you have received the two certificates from the JCA Code Signing
Certification Authority, you can use keytool to import them into your keystore. First
import the CA's certificate as a "trusted certificate":

 keytool -import -alias <alias for the CA cert> \
 -file <CA cert file name> \
 -keystore <keystore file name> \
 -storepass <keystore password>

Then import the code-signing certificate:

 keytool -import -alias <alias> \
 -file <code-signing cert file name> \
 -keystore <keystore file name> \
 -storepass <keystore password>

<alias> is the same alias as that which you created in Step 1 where you generated
a DSA keypair. This command replaces the self-signed certificate in the keystore
entry specified by <alias> with the one signed by the JCA Code Signing
Certification Authority.

Now that you have in your keystore a certificate from an entity trusted by JCA (the JCA
Code Signing Certification Authority), you can place your provider code in a JAR file

Chapter 3
Steps to Implement and Integrate a Provider

3-17

http://www.oracle.com/technetwork/java/javase/tech/getcodesigningcertificate-361306.html#jcacodesigning
http://www.oracle.com/technetwork/java/javase/tech/getcodesigningcertificate-361306.html#sendingcertificationform

(Step 6: Place Your Provider in a JAR File) and then use that certificate to sign the
JAR file (Step 7.2: Sign Your Provider).

Step 7.2: Sign Your Provider
Sign the JAR file created in Step 6: Place Your Provider in a JAR File with the code-
signing certificate obtained in Step 7.1: Get a Code-Signing Certificate. See jarsigner
in Java Platform, Standard Edition Tools Reference.

 jarsigner -keystore <keystore file name> \
 -storepass <keystore password> \
 <JAR file name> <alias>

Here, <alias> is the alias into the keystore for the entry containing the code-signing
certificate received from the JCA Code Signing Certification Authority (the same alias
as that specified in the commands in Step 7.1: Get a Code-Signing Certificate).

You can test verification of the signature via the following:

 jarsigner -verify <JAR file name>

The text "jar verified" will be displayed if the verification was successful.

Note:

• If you bundle a signed JCE provider as part of an RIA (applet or webstart
application), for the best user experience, you should apply a second
signature to the JCE provider JAR with the same certificate/key that you
used to sign the applet or webstart application. See Deployment
Configuration File and Properties to know about deploying RIAs, and
jarsigner in Java Platform, Standard Edition Tools Reference for applying
multiple signatures to a JAR file.

• You cannot package signed providers in JMOD files.

• Providers don't need to be signed.

• You can link a provider in a custom runtime image with the jlink
command as long as it doesn't have a Cipher, KeyAgreement, or MAC
implementation.

Step 8: Prepare for Testing
The next steps describe how to install and configure your new provider so that it is
available via the JCA.

Step 8.1: Configure the Provider
Register your provider so that the JCE framework can find your provider, either with
the ServiceLoader class or in the class path or module path.

1. Open the java.security file in an editor:

• Solaris, Linux, or macOS: <java-home>/conf/security/java.security

Chapter 3
Steps to Implement and Integrate a Provider

3-18

• Windows: <java-home>\conf\security\java.security

2. In the java.security file, find the section where standard providers such as
SUN, SunRsaSign, and SunJCE are configured as static providers; it looks like the
following:

security.provider.1=SUN
security.provider.2=SunRsaSign
security.provider.3=SunEC
security.provider.4=SunJSSE
security.provider.5=SunJCE
security.provider.6=SunJGSS
security.provider.7=SunSASL
security.provider.8=XMLDSig
security.provider.9=SunPCSC
security.provider.10=JdkLDAP
security.provider.11=JdkSASL
security.provider.12=SunMSCAPI
security.provider.13=SunPKCS11

Each line in this section has the following form:

security.provider.n=provName|className

This declares a provider, and specifies its preference order n. The preference
order is the order in which providers are searched for requested algorithms when
no specific provider is requested. The order is 1-based; 1 is the most preferred,
followed by 2, and so on.

provName is the provider's name and className is the fully qualified class name of
the provider. You can use either of these two names.

3. Register your provider by adding to the java.security file a line with the form
security.provider.n=provName|className.

If you configured your provider so that the ServiceLoader class can search for it
(because you packaged the provider in a named module as described in Step 4:
Create a Module Declaration for Your Provider or added a
java.security.Provider file as described in Add the File
java.security.Provider to Use the ServiceLoader Class to Search for Providers),
then specify just the provider's name.

If you have not configured your provider so that ServiceLoader class can
search for it, which means that the JCE framework will search for it in the class
path or module path, then specify the fully qualified class name of your provider.

For example, the highlighted line registers the provider MyProvider (whose fully
qualified class name is p.MyProvider and has been configured so that the
ServiceLoader class can search for it) as the 14th preferred provider:

...
security.provider.11=JdkSASL
security.provider.12=SunMSCAPI
security.provider.13=SunPKCS11
security.provider.14=MyProvider

If you are not sure if the ServiceLoader mechanism will be used, or if you'll be
deploying on a non-modular system, then you can also register the provider again,
this time using the full class name:

security.provider.15=p.MyProvider

Chapter 3
Steps to Implement and Integrate a Provider

3-19

https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html

Alternatively, you can register providers dynamically. To do so, a program (such as
your test program, to be written in Step 9: Write and Compile Your Test Programs) call
either the addProvider or insertProviderAt method in the Security class:

ServiceLoader<Provider> sl = ServiceLoader.load(java.security.Provider.class);
for (Provider p : sl) {
 System.out.println(p);
 if (p.getName().equals("MyProvider")) {
 Security.addProvider(p);
 }
}

This type of registration is not persistent and can only be done by code which is
granted the following permission:

java.security.SecurityPermission "insertProvider.<provider name>"

For example, if the provider name is MyJCE, and if the provider's code is in the
myjce_provider.jar file in the /localWork directory, then the following is a sample policy
file that contains a grant statement that grants that permission:

 grant codeBase "file:/localWork/myjce_provider.jar" {
 permission java.security.SecurityPermission
 "insertProvider.MyJCE";
 };

Step 8.2: Set Provider Permissions

Permissions must be granted for when applications are run while a security manager
is installed. A security manager may be installed for an application either through code
in the application itself or through a command-line argument.

1. Your provider may need the following permissions granted to it in the client
environment:

• java.lang.RuntimePermission to get class protection domains. The provider
may need to get its own protection domain in the process of doing self-integrity
checking.

• java.security.SecurityPermission to set provider properties.

2. To ensure your provider works when a security manager is installed, you need to
test such an installation and execution environment. In addition, prior to testing
your need to grant appropriate permissions to your provider and to any other
providers it uses.

For example, a sample statement granting permissions to a provider whose name
is MyJCE and whose code is in myjce_provider.jar appears below. Such a
statement could appear in a policy file. In this example, the myjce_provider.jar file
is assumed to be in the /localWork directory.

 grant codeBase "file:/localWork/myjce_provider.jar" {
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission java.security.SecurityPermission
 "putProviderProperty.MyJCE";
 };

Chapter 3
Steps to Implement and Integrate a Provider

3-20

Step 9: Write and Compile Your Test Programs
Write and compile one or more test programs that test your provider's incorporation
into the Security API as well as the correctness of its algorithm(s). Create any
supporting files needed, such as those for test data to be encrypted.

1. The first tests your program should perform are ones to ensure that your provider
is found, and that its name, version number, and additional information is as
expected.

To do so, you could write code like the following, substituting your provider name
for MyPro:

 import java.security.*;

 Provider p = Security.getProvider("MyPro");

 System.out.println("MyPro provider name is " + p.getName());
 System.out.println("MyPro provider version # is " + p.getVersion());
 System.out.println("MyPro provider info is " + p.getInfo());

2. You should ensure that your services are found.

For instance, if you implemented the AES encryption algorithm, you could check to
ensure it's found when requested by using the following code (again substituting
your provider name for "MyPro"):

 Cipher c = Cipher.getInstance("AES", "MyPro");

 System.out.println("My Cipher algorithm name is " + c.getAlgorithm());

3. Optional: If you don't specify a provider name in the call to getInstance, all
registered providers will be searched, in preference order (see Step 8.1: Configure
the Provider), until one implementing the algorithm is found.

4. Optional: If your provider implements an exemption mechanism, you should write
a test applet or application that uses the exemption mechanism. Such an applet/
application also needs to be signed, and needs to have a "permission policy file"
bundled with it.

See How to Make Applications Exempt from Cryptographic Restrictions for
complete information on creating and testing such an application.

Step 10: Run Your Test Programs
When you run your test applications, the required java command options will vary
depending on factors such as whether you packaged your provider as a named,
automatic, or unnamed module and if you configured it so that the ServiceLoader
class can search for it.

If you packaged your provider as a named module and have configured it so that the
ServiceLoader class can search for it (by registering it with its name in the
java.security as described in Step 8.1: Configure the Provider), then run your test
program with the following command:

java --module-path "jars" <other java options>

The directory jars contains your provider.

Chapter 3
Steps to Implement and Integrate a Provider

3-21

You may require more options depending on your provider code style (see Step 3.1:
Create a Provider That Uses String Objects to Register Its Services and Step 3.2:
Create a Provider That Uses Provider.Service), if you packaged your provider in a
different kind of module, or if you have not configured it for the ServiceLoader class.
The following table describes these options.

For the java commands, the name of the provider is MyProvider, its fully qualified class
name is p.MyProvider, and it is packaged in the file com.foo.MyProvider.jar,
which is in the directory jars.

Table 3-2 Expected Java Runtime Options for Various Provider Implementation
Styles

Modu
le
Type

Provider Code
Style

Configur
ed for
ServiceL
oader
Class?

Provider
Name Used
in
java.securit
y File

java Command

Unna
med

String objects
or
Provider.Se
rvice

No Fully
qualified
class name

java -cp "jars/
com.foo.MyProvider.jar" <other java
options>

Unna
med

String objects
or
Provider.Se
rvice

Yes Fully
qualified
class name
or provider
name

java -cp "jars/
com.foo.MyProvider.jar" <other java
options>

Auto
matic

String objects
or
Provider.Se
rvice

No Fully
qualified
class name

java --module–path "jars/
com.foo.MyProvider.jar" --add–
modules=com.foo.MyProvider <other
java options>

Auto
matic

String objects
or
Provider.Se
rvice

Yes Fully
qualified
class name
or provider
name

java --module–path "jars/
com.foo.MyProvider.jar" <other java
options>

Name
d

String objects
or
Provider.Se
rvice

No Fully
qualified
class name

java --module–path "jars" --add–
modules=com.foo.MyProvider --add–
exports=com.foo.MyProvider/
p=java.base <other java options>
You can remove the --add-exports
option if you add exports p in the module
declaration.

Name
d

String objects Yes Fully
qualified
class name

java --module–path "jars" --add–
exports=com.foo.MyProvider/
p=java.base <other java options>
You can remove the --add-exports
option if you add exports p in the module
declaration.

Name
d

String objects Yes Provider
name

java --module–path "jars" --add–
exports=com.foo.MyProvider/
p=java.base <other java options>
You can remove the --add-exports
option if you add exports p in the module
declaration.

Chapter 3
Steps to Implement and Integrate a Provider

3-22

Table 3-2 (Cont.) Expected Java Runtime Options for Various Provider
Implementation Styles

Modu
le
Type

Provider Code
Style

Configur
ed for
ServiceL
oader
Class?

Provider
Name Used
in
java.securit
y File

java Command

Name
d

Provider.Se
rvice

Yes Fully
qualified
class name

java --module–path "jars" --add–
exports=com.foo.MyProvider/
p=java.base<other java options>
You can remove the --add-exports
option if you add exports p in the module
declaration.

Name
d

Provider.Se
rvice

Yes Provider
name

java --module–path "jars" <other
java options>

Once you have determined the proper java options for your test programs, run them.
Debug your code and continue testing as needed. If the Java runtime cannot seem to
find one of your algorithms, review the previous steps and ensure that they are all
completed.

Be sure to include testing of your programs using different installation options (for
example, configured to use the ServiceLoader class or to be found in the class path
or module path) and execution environments (with or without a security manager
running).

1. Optional: If you find during testing that your code needs modification, make the
changes and recompile Step 5: Compile Your Code.

2. Place the updated provider code in a JAR file (Step 6: Place Your Provider in a
JAR File).

3. Sign the JAR file (Step 7: Sign Your JAR File, If Necessary).

4. Re-configure the provider (Step 8.1: Configure the Provider).

5. Optional: If needed, fix or add to the permissions (Step 8.2: Set Provider
Permissions).

6. Run your programs.

7. Optional: If required, repeat steps 1 to 6.

Step 11: Apply for U.S. Government Export Approval If Required
All U.S. vendors whose providers may be exported outside the U.S. should apply to
the Bureau of Industry and Security in the U.S. Department of Commerce for export
approval.

Please consult your export counsel for more information.

Chapter 3
Steps to Implement and Integrate a Provider

3-23

Note:

If your provider calls Cipher.getInstance() and the returned Cipher object
needs to perform strong cryptography regardless of what cryptographic
strength is allowed by the user's downloaded jurisdiction policy files, you
should include a copy of the cryptoPerms permission policy file which you
intend to bundle in the JAR file for your provider and which specifies an
appropriate permission for the required cryptographic strength. The necessity
for this file is just like the requirement that applets and applications "exempt"
from cryptographic restrictions must include a cryptoPerms permission policy
file in their JAR file. See How to Make Applications Exempt from
Cryptographic Restrictions.

Here are two URLs that may be useful:

• US Department of Commerce

• Bureau of Industry and Security

Step 12: Document Your Provider and Its Supported Services

The next step is to write documentation for your clients. At the minimum, you need to
specify:

• The name programs should use to refer to your provider.

Note:

As of this writing, provider name searches are case-sensitive. That is, if your
master class specifies your provider name as "CryptoX" but a user requests
"CRYPTOx", your provider will not be found. This behavior may change in the
future, but for now be sure to warn your clients to use the exact case you
specify.

• The types of algorithms and other services implemented by your provider.

• Instructions for installing the provider, similar to those provided in Step 8.1:
Configure the Provider, except that the information and examples should be
specific to your provider.

• The permissions your provider will require if it is not installed as an installed
extension and if a security manager is run, as described in Step 8.2: Set Provider
Permissions.

In addition, your documentation should specify anything else of interest to clients, such
as any default algorithm parameters.

Step 12.1: Indicate Whether Your Implementation is Cloneable for Message
Digests and MACs

For each Message Digest and MAC algorithm, indicate whether or not your
implementation is cloneable. This is not technically necessary, but it may save clients

Chapter 3
Steps to Implement and Integrate a Provider

3-24

http://www.commerce.gov
http://www.bis.doc.gov

some time and coding by telling them whether or not intermediate Message Digests or
MACs may be possible through cloning.

Clients who do not know whether or not a MessageDigest or Mac implementation is
cloneable can find out by attempting to clone the object and catching the potential
exception, as illustrated by the following example:

 try {
 // try and clone it
 /* compute the MAC for i1 */
 mac.update(i1);
 byte[] i1Mac = mac.clone().doFinal();

 /* compute the MAC for i1 and i2 */
 mac.update(i2);
 byte[] i12Mac = mac.clone().doFinal();

 /* compute the MAC for i1, i2 and i3 */
 mac.update(i3);
 byte[] i123Mac = mac.doFinal();
 } catch (CloneNotSupportedException cnse) {
 // have to use an approach not involving cloning
 }

Where,

mac

Indicates the MAC object they received when they requested one via a call to
Mac.getInstance

i1, i2 and i3
Indicates input byte arrays, and they want to calculate separate hashes for:

• i1

• i1 and i2

• i1, i2, and i3

Key Pair Generators

For a key pair generator algorithm, in case the client does not explicitly initialize the
key pair generator (via a call to an initialize method), each provider must supply and
document a default initialization.

For example, the Diffie-Hellman key pair generator supplied by the SunJCE provider
uses a default prime modulus size (keysize) of 2048 bits.

Key Factories

A provider should document all the key specifications supported by its (secret-)key
factory.

Algorithm Parameter Generators

In case the client does not explicitly initialize the algorithm parameter generator (via a
call to an init method in the AlgorithmParameterGenerator engine class), each provider
must supply and document a default initialization.

Chapter 3
Steps to Implement and Integrate a Provider

3-25

For example, the SunJCE provider uses a default prime modulus size (keysize) of
2048 bits for the generation of Diffie-Hellman parameters, the Sun provider a default
modulus prime size of 2048 bits for the generation of DSA parameters.

Signature Algorithms

If you implement a signature algorithm, you should document the format in which the
signature (generated by one of the sign methods) is encoded.

For example, the SHA256withDSA signature algorithm supplied by the "SUN" provider
encodes the signature as a standard ASN.1 SEQUENCE of two integers, r and s.

Random Number Generation (SecureRandom) Algorithms

For a random number generation algorithm, provide information regarding how
"random" the numbers generated are, and the quality of the seed when the random
number generator is self-seeding. Also note what happens when a SecureRandom object
(and its encapsulated SecureRandomSpi implementation object) is deserialized: If
subsequent calls to the nextBytes method (which invokes the engineNextBytes method
of the encapsulated SecureRandomSpi object) of the restored object yield the exact same
(random) bytes as the original object would, then let users know that if this behavior is
undesirable, they should seed the restored random object by calling its setSeed
method.

Certificate Factories

A provider should document what types of certificates (and their version numbers, if
relevant), can be created by the factory.

Keystores

A provider should document any relevant information regarding the keystore
implementation, such as its underlying data format.

Step 13: Make Your Class Files and Documentation Available to
Clients

After writing, configuring, testing, installing and documenting your provider software,
make documentation available to your customers.

Further Implementation Details and Requirements
This section provides additional information about alias names, service
interdependencies, algorithm parameter generators and algorithm parameters.

Alias Names
In the JDK, the aliasing scheme enables clients to use aliases when referring to
algorithms or types, rather than the standard names.

For many cryptographic algorithms and types, there is a single official "standard name"
defined in the Java Security Standard Algorithm Names.

Chapter 3
Further Implementation Details and Requirements

3-26

https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html

For example, "SHA-256" is the standard name for the SHA-256 Message Digest
algorithm defined in RFC 1321. DiffieHellman is the standard for the Diffie-Hellman
key agreement algorithm defined in PKCS3.

In the JDK, there is an aliasing scheme that enables clients to use aliases when
referring to algorithms or types, rather than their standard names.

For example, the "SUN" provider's master class (Sun.java) defines the alias "SHA1/DSA"
for the algorithm whose standard name is "SHA1withDSA". Thus, the following
statements are equivalent:

 Signature sig = Signature.getInstance("SHA1withDSA", "SUN");

 Signature sig = Signature.getInstance("SHA1/DSA", "SUN");

Aliases can be defined in your "master class" (see Step 3: Write Your Master Class, a
Subclass of Provider). To define an alias, create a property named

 Alg.Alias.engineClassName.aliasName

where engineClassName is the name of an engine class (e.g., Signature), and
aliasName is your alias name. The value of the property must be the standard
algorithm (or type) name for the algorithm (or type) being aliased.

As an example, the "SUN" provider defines the alias "SHA1/DSA" for the signature
algorithm whose standard name is "SHA1withDSA" by setting a property named
Alg.Alias.Signature.SHA1/DSA to have the value SHA1withDSA via the following:

 put("Alg.Alias.Signature.SHA1/DSA", "SHA1withDSA");

Note:

The aliases defined by one provider are available only to that provider and not
to any other providers. Thus, aliases defined by the SunJCE provider are
available only to the SunJCE provider.

Service Interdependencies
Some algorithms require the use of other types of algorithms. For example, a PBE
algorithm usually needs to use a message digest algorithm in order to transform a
password into a key.

If you are implementing one type of algorithm that requires another, you can do one of
the following:

• Provide your own implementations for both.

• Let your implementation of one algorithm use an instance of the other type of
algorithm, as supplied by the default Sun provider that is included with every Java
SE Platform installation. For example, if you are implementing a PBE algorithm
that requires a message digest algorithm, you can obtain an instance of a class
implementing the SHA256 message digest algorithm by calling:

 MessageDigest.getInstance("SHA256", "SUN")

Chapter 3
Further Implementation Details and Requirements

3-27

• Let your implementation of one algorithm use an instance of the other type of
algorithm, as supplied by another specific provider. This is only appropriate if you
are sure that all clients who will use your provider will also have the other provider
installed.

• Let your implementation of one algorithm use an instance of the other type of
algorithm, as supplied by another (unspecified) provider. That is, you can request
an algorithm by name, but without specifying any particular provider, as in:

 MessageDigest.getInstance("SHA256")

This is only appropriate if you are sure that there will be at least one
implementation of the requested algorithm (in this case, SHA256) installed on
each Java platform where your provider will be used.

Here are some common types of algorithm interdependencies:

Signature and Message Digest Algorithms

A signature algorithm often requires use of a message digest algorithm. For example,
the SHA256withDSA signature algorithm requires the SHA256 message digest
algorithm.

Signature and (Pseudo-)Random Number Generation Algorithms

A signature algorithm often requires use of a (pseudo-)random number generation
algorithm. For example, such an algorithm is required in order to generate a DSA
signature.

Key Pair Generation and Message Digest Algorithms

A key pair generation algorithm often requires use of a message digest algorithm. For
example, DSA keys are generated using the SHA-256 message digest algorithm.

Algorithm Parameter Generation and Message Digest Algorithms

An algorithm parameter generator often requires use of a message digest algorithm.
For example, DSA parameters are generated using the SHA-256 message digest
algorithm.

Keystores and Message Digest Algorithms

A keystore implementation will often utilize a message digest algorithm to compute
keyed hashes (where the key is a user-provided password) to check the integrity of a
keystore and make sure that the keystore has not been tampered with.

Key Pair Generation Algorithms and Algorithm Parameter Generators

A key pair generation algorithm sometimes needs to generate a new set of algorithm
parameters. It can either generate the parameters directly, or use an algorithm
parameter generator.

Key Pair Generation, Algorithm Parameter Generation, and (Pseudo-)Random
Number Generation Algorithms

A key pair generation algorithm may require a source of randomness in order to
generate a new key pair and possibly a new set of parameters associated with the
keys. That source of randomness is represented by a SecureRandom object. The
implementation of the key pair generation algorithm may generate the key parameters

Chapter 3
Further Implementation Details and Requirements

3-28

itself, or may use an algorithm parameter generator to generate them, in which case it
may or may not initialize the algorithm parameter generator with a source of
randomness.

Algorithm Parameter Generators and Algorithm Parameters

An algorithm parameter generator's engineGenerateParameters method must
return an AlgorithmParameters instance.

Signature and Key Pair Generation Algorithms or Key Factories

If you are implementing a signature algorithm, your implementation's
engineInitSign and engineInitVerify methods will require passed-in keys that
are valid for the underlying algorithm (e.g., DSA keys for the DSS algorithm). You can
do one of the following:

• Also create your own classes implementing appropriate interfaces (e.g. classes
implementing the DSAPrivateKey and DSAPublicKey interfaces from the
package java.security.interfaces), and create your own key pair
generator and/or key factory returning keys of those types. Require the keys
passed to engineInitSign and engineInitVerify to be the types of keys
you have implemented, that is, keys generated from your key pair generator or key
factory. Or you can,

• Accept keys from other key pair generators or other key factories, as long as they
are instances of appropriate interfaces that enable your signature implementation
to obtain the information it needs (such as the private and public keys and the key
parameters). For example, the engineInitSign method for a DSS Signature
class could accept any private keys that are instances of
java.security.interfaces.DSAPrivateKey.

Keystores and Key and Certificate Factories

A keystore implementation will often utilize a key factory to parse the keys stored in
the keystore, and a certificate factory to parse the certificates stored in the keystore.

Default Initialization
In case the client does not explicitly initialize a key pair generator or an algorithm
parameter generator, each provider of such a service must supply (and document) a
default initialization.

Sun

Default Key Pair Generator Parameter Requirements
If you implement a key pair generator, your implementation should supply default
parameters that are used when clients don't specify parameters.

The documentation you supply (Step 12: Document Your Provider and Its Supported
Services) should state what the default parameters are.

For example, the DSA key pair generator in the Sun provider supplies a set of pre-
computed p, q, and g default values for the generation of 512, 768, 1024, and 2048-bit
key pairs. The following p, q, and g values are used as the default values for the
generation of 1024-bit DSA key pairs:

Chapter 3
Further Implementation Details and Requirements

3-29

p = fd7f5381 1d751229 52df4a9c 2eece4e7 f611b752 3cef4400 c31e3f80
 b6512669 455d4022 51fb593d 8d58fabf c5f5ba30 f6cb9b55 6cd7813b
 801d346f f26660b7 6b9950a5 a49f9fe8 047b1022 c24fbba9 d7feb7c6
 1bf83b57 e7c6a8a6 150f04fb 83f6d3c5 1ec30235 54135a16 9132f675
 f3ae2b61 d72aeff2 2203199d d14801c7

q = 9760508f 15230bcc b292b982 a2eb840b f0581cf5

g = f7e1a085 d69b3dde cbbcab5c 36b857b9 7994afbb fa3aea82 f9574c0b
 3d078267 5159578e bad4594f e6710710 8180b449 167123e8 4c281613
 b7cf0932 8cc8a6e1 3c167a8b 547c8d28 e0a3ae1e 2bb3a675 916ea37f
 0bfa2135 62f1fb62 7a01243b cca4f1be a8519089 a883dfe1 5ae59f06
 928b665e 807b5525 64014c3b fecf492a

(The p and q values given here were generated by the prime generation standard,
using the 160-bit

SEED: 8d515589 4229d5e6 89ee01e6 018a237e 2cae64cd

With this seed, the algorithm found p and q when the counter was at 92.)

The Provider.Service Class
Provider.Service class offers an alternative way for providers to advertise their
services and supports additional features.

Since its introduction, security providers have published their service information via
appropriately formatted key-value String pairs they put in their Hashtable entries.
While this mechanism is simple and convenient, it limits the amount customization
possible. As a result, JDK 5.0 introduced a second option, the Provider.Service class.
It offers an alternative way for providers to advertise their services and supports
additional features as described below. Note that this addition is fully compatible with
the older method of using String valued Hashtable entries. A provider on JDK 5.0 can
choose either method as it prefers, or even use both at the same time.

A Provider.Service object encapsulates all information about a service. This is the
provider that offers the service, its type (e.g. MessageDigest or Signature), the algorithm
name, and the name of the class that implements the service. Optionally, it also
includes a list of alternate algorithm names for this service (aliases) and attributes,
which are a map of (name, value) String pairs. In addition, it defines the methods
newInstance() and supportsParameter(). They have default implementations, but can be
overridden by providers if needed, as may be the case with providers that interface
with hardware security tokens.

The newInstance() method is used by the security framework when it needs to
construct new implementation instances. The default implementation uses reflection to
invoke the standard constructor for the respective type of service. For all standard
services except CertStore, this is the no-args constructor. The constructorParameter to
newInstance() must be null in theses cases. For services of type CertStore, the
constructor that takes a CertStoreParameters object is invoked, and
constructorParameter must be a non-null instance of CertStoreParameters. A security
provider can override the newInstance() method to implement instantiation as
appropriate for that implementation. It could use direct invocation or call a constructor
that passes additional information specific to the Provider instance or token. For
example, if multiple Smartcard readers are present on the system, it might pass
information about which reader the newly created service is to be associated with.

Chapter 3
Further Implementation Details and Requirements

3-30

However, despite customization all implementations must follow the conventions about
constructorParameter described above.

The supportsParameter() tests whether the Service can use the specified
parameter. It returns false if this service cannot use the parameter. It returns true if this
service can use the parameter, if a fast test is infeasible, or if the status is unknown. It
is used by the security framework with some types of services to quickly exclude non-
matching implementations from consideration. It is currently only defined for the
following standard services: Signature, Cipher, Mac, and KeyAgreement. The parameter
must be an instance of Key in these cases. For example, for Signature services, the
framework tests whether the service can use the supplied Key before instantiating the
service. The default implementation examines the attributes SupportedKeyFormats and
SupportedKeyClasses as described below. Again, a provider may override this methods
to implement additional tests.

The SupportedKeyFormats attribute is a list of the supported formats for encoded keys
(as returned by key.getFormat()) separated by the "|" (pipe) character. For example, X.
509|PKCS#8. The SupportedKeyClasses attribute is a list of the names of classes of
interfaces separated by the "|" character. A key object is considered to be acceptable if
it is assignable to at least one of those classes or interfaces named. In other words, if
the class of the key object is a subclass of one of the listed classes (or the class itself)
or if it implements the listed interface. An example value is
"java.security.interfaces.RSAPrivateKey|java.security.interfaces.RSAPublicKey" .

Four methods have been added to the Provider class for adding and looking up
Services. As mentioned earlier, the implementation of those methods and also of the
existing Properties methods have been specifically designed to ensure compatibility
with existing Provider subclasses. This is achieved as follows:

If legacy Properties methods are used to add entries, the Provider class makes sure
that the property strings are parsed into equivalent Service objects prior to lookup via
getService(). Similarly, if the putService() method is used, equivalent property
strings are placed into the provider's hashtable at the same time. If a provider
implementation overrides any of the methods in the Provider class, it has to ensure
that its implementation does not interfere with this conversion. To avoid problems, we
recommend that implementations do not override any of the methods in the Provider
class.

Signature Formats
The signature algorithm should specify the format in which the signature is encoded.

If you implement a signature algorithm, the documentation you supply (Step 12:
Document Your Provider and Its Supported Services) should specify the format in
which the signature (generated by one of the sign methods) is encoded.

For example, the SHA1withDSA signature algorithm supplied by the Sun provider
encodes the signature as a standard ASN.1 sequence of two ASN.1 INTEGER values: r
and s, in that order:

SEQUENCE ::= {
 r INTEGER,
 s INTEGER }

Chapter 3
Further Implementation Details and Requirements

3-31

DSA Interfaces and their Required Implementations
The Java Security API contains interfaces (in the java.security.interfaces package)
for the convenience of programmers implementing DSA services.

The Java Security API contains the following interfaces:

• Interface DSAKey

• Interface DSAKeyPairGenerator

• Interface DSAParams

• Interface DSAPrivateKey

• Interface DSAPublicKey

The following sections discuss requirements for implementations of these interfaces.

DSAKeyPairGenerator

The interface Interface DSAKeyPairGenerator is obsolete. It used to be needed to
enable clients to provide DSA-specific parameters to be used rather than the default
parameters your implementation supplies. However, in Java it is no longer necessary;
a new KeyPairGenerator initialize method that takes an AlgorithmParameterSpec
parameter enables clients to indicate algorithm-specific parameters.

DSAParams Implementation

If you are implementing a DSA key pair generator, you need a class implementing
Interface DSAParams for holding and returning the p, q, and g parameters.

A DSAParams implementation is also required if you implement the DSAPrivateKey and
DSAPublicKey interfaces. DSAPublicKey and DSAPrivateKey both extend the DSAKey
interface, which contains a getParams method that must return a DSAParams object.

Note:

There is a DSAParams implementation built into the JDK: the
java.security.spec.DSAParameterSpec class.

DSAPrivateKey and DSAPublicKey Implementations

If you implement a DSA key pair generator or key factory, you need to create classes
implementing the Interface DSAPrivateKey and Interface DSAPublicKey interfaces.

If you implement a DSA key pair generator, your generateKeyPair method (in your
KeyPairGeneratorSpi subclass) will return instances of your implementations of those
interfaces.

If you implement a DSA key factory, your engineGeneratePrivate method (in your
KeyFactorySpi subclass) will return an instance of your DSAPrivateKey implementation,
and your engineGeneratePublic method will return an instance of your DSAPublicKey
implementation.

Also, your engineGetKeySpec and engineTranslateKey methods will expect the passed-in
key to be an instance of a DSAPrivateKey or DSAPublicKey implementation. The

Chapter 3
Further Implementation Details and Requirements

3-32

https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAKeyPairGenerator.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAParams.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAPublicKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAKeyPairGenerator.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAParams.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAPublicKey.html

getParams method provided by the interface implementations is useful for obtaining and
extracting the parameters from the keys and then using the parameters, for example
as parameters to the DSAParameterSpec constructor called to create a parameter
specification from parameter values that could be used to initialize a KeyPairGenerator
object for DSA.

If you implement a DSA signature algorithm, your engineInitSign method (in your
SignatureSpi subclass) will expect to be passed a DSAPrivateKey and your
engineInitVerify method will expect to be passed a DSAPublicKey.

Please note: The DSAPublicKey and DSAPrivateKey interfaces define a very generic,
provider-independent interface to DSA public and private keys, respectively. The
engineGetKeySpec and engineTranslateKey methods (in your KeyFactorySpi subclass)
could additionally check if the passed-in key is actually an instance of their provider's
own implementation of DSAPrivateKey or DSAPublicKey, e.g., to take advantage of
provider-specific implementation details. The same is true for the DSA signature
algorithm engineInitSign and engineInitVerify methods (in your SignatureSpi
subclass).

To see what methods need to be implemented by classes that implement the
DSAPublicKey and DSAPrivateKey interfaces, first note the following interface signatures:

In the java.security.interfaces package:

 public interface DSAPrivateKey extends DSAKey,
 java.security.PrivateKey

 public interface DSAPublicKey extends DSAKey,
 java.security.PublicKey

 public interface DSAKey

In the java.security package:

 public interface PrivateKey extends Key

 public interface PublicKey extends Key

 public interface Key extends java.io.Serializable

In order to implement the DSAPrivateKey and DSAPublicKey interfaces, you must
implement the methods they define as well as those defined by interfaces they extend,
directly or indirectly.

Thus, for private keys, you need to supply a class that implements

• The getX method from the Interface DSAPrivateKey interface.

• The getParams method from the Interface DSAKey interface, since DSAPrivateKey
extends DSAKey. Note: The getParams method returns a DSAParams object, so you
must also have a DSAParams implementation.

• The getAlgorithm, getEncoded, and getFormat methods from the Interface Key
interface, since DSAPrivateKey extends java.security.PrivateKey, and PrivateKey
extends Key.
Similarly, for public DSA keys, you need to supply a class that implements:

– The getY method from the Interface DSAPublicKey interface.

Chapter 3
Further Implementation Details and Requirements

3-33

https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/Key.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAPublicKey.html

– The getParams method from the Interface DSAKey interface, since DSAPublicKey
extends DSAKey.

Note:

The getParams method returns a DSAParams object, so you must also have a
DSAParams Implementation.

– The getAlgorithm, getEncoded, and getFormat methods from the Interface Key,
since DSAPublicKey extends java.security.PublicKey, and PublicKey extends
Key.

RSA Interfaces and their Required Implementations
The Java Security API contains the interfaces (in the java.security.interfaces
package) for the convenience of programmers implementing RSA services.

• Interface RSAPrivateKey

• Interface RSAPrivateCrtKey

• Interface RSAPublicKey

The following sections discuss requirements for implementations of these interfaces.

RSAPrivateKey, RSAPrivateCrtKey, and RSAPublicKey Implementations

If you implement an RSA key pair generator or key factory, you need to create classes
implementing the Interface RSAPublicKey (and/or Interface RSAPrivateCrtKey) and
Interface RSAPublicKey interfaces. (RSAPrivateCrtKey is the interface to an RSA private
key, using the Chinese Remainder Theorem (CRT) representation.)

If you implement an RSA key pair generator, your generateKeyPair method (in your
KeyPairGeneratorSpi subclass) will return instances of your implementations of those
interfaces.

If you implement an RSA key factory, your engineGeneratePrivate method (in your
KeyFactorySpi subclass) will return an instance of your RSAPrivateKey (or
RSAPrivateCrtKey) implementation, and your engineGeneratePublic method will return an
instance of your RSAPublicKey implementation.

Also, your engineGetKeySpec and engineTranslateKey methods will expect the passed-in
key to be an instance of an RSAPrivateKey, RSAPrivateCrtKey, or RSAPublicKey
implementation.

If you implement an RSA signature algorithm, your engineInitSign method (in your
SignatureSpi subclass) will expect to be passed either an RSAPrivateKey or an
RSAPrivateCrtKey, and your engineInitVerify method will expect to be passed an
RSAPublicKey.

Please note: The RSAPublicKey, RSAPrivateKey, and RSAPrivateCrtKey interfaces define a
very generic, provider-independent interface to RSA public and private keys. The
engineGetKeySpec and engineTranslateKey methods (in your KeyFactorySpi subclass)
could additionally check if the passed-in key is actually an instance of their provider's
own implementation of RSAPrivateKey, RSAPrivateCrtKey, or RSAPublicKey, e.g., to take
advantage of provider-specific implementation details. The same is true for the RSA

Chapter 3
Further Implementation Details and Requirements

3-34

https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/DSAKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/Key.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPrivateCrtKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPublicKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPublicKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPrivateCrtKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPublicKey.html

signature algorithm engineInitSign and engineInitVerify methods (in your
SignatureSpi subclass).

To see what methods need to be implemented by classes that implement the
RSAPublicKey, RSAPrivateKey, and RSAPrivateCrtKey interfaces, first note the following
interface signatures:

In the java.security.interfaces package:

 public interface RSAPrivateKey extends java.security.PrivateKey

 public interface RSAPrivateCrtKey extends RSAPrivateKey

 public interface RSAPublicKey extends java.security.PublicKey

In the java.security package:

 public interface PrivateKey extends Key

 public interface PublicKey extends Key

 public interface Key extends java.io.Serializable

In order to implement the RSAPrivateKey, RSAPrivateCrtKey, and RSAPublicKey interfaces,
you must implement the methods they define as well as those defined by interfaces
they extend, directly or indirectly.

Thus, for RSA private keys, you need to supply a class that implements:

• The getModulus and getPrivateExponent methods from the Interface RSAPrivateKey
interface.

• The getAlgorithm, getEncoded, and getFormat methods from the Interface Key
interface, since RSAPrivateKey extends java.security.PrivateKey, and PrivateKey
extends Key.

Similarly, for RSA private keys using the Chinese Remainder Theorem (CRT)
representation, you need to supply a class that implements:

• All the methods listed above for RSA private keys, since RSAPrivateCrtKey extends
java.security.interfaces.RSAPrivateKey.

• The getPublicExponent, getPrimeP, getPrimeQ, getPrimeExponentP, getPrimeExponentQ,
and getCrtCoefficient methods from the Interface RSAPrivateKey interface.

For public RSA keys, you need to supply a class that implements:

• The getModulus and getPublicExponent methods from the Interface RSAPublicKey
interface.

• The getAlgorithm, getEncoded, and getFormat methods from the Interface Key
interface, since RSAPublicKey extends java.security.PublicKey, and PublicKey
extends Key.

JCA contains a number of AlgorithmParameterSpec implementations for the most
frequently used cipher and key agreement algorithm parameters. If you are operating
on algorithm parameters that should be for a different type of algorithm not provided by
JCA, you will need to supply your own AlgorithmParameterSpec implementation
appropriate for that type of algorithm.

Chapter 3
Further Implementation Details and Requirements

3-35

https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/Key.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/RSAPublicKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/Key.html

Diffie-Hellman Interfaces and their Required Implementations
JCA contains interfaces (in the javax.crypto.interfaces package) for the convenience
of programmers implementing Diffie-Hellman services.

• Interface DHPublicKey

• Interface DHKey

• Interface DHPrivateKey

The following sections discuss requirements for implementations of these interfaces.

DHPrivateKey and DHPublicKey Implementations

If you implement a Diffie-Hellman key pair generator or key factory, you need to create
classes implementing the Interface DHPrivateKey and Interface DHPublicKey
interfaces.

If you implement a Diffie-Hellman key pair generator, your generateKeyPair method (in
your KeyPairGeneratorSpi subclass) will return instances of your implementations of
those interfaces.

If you implement a Diffie-Hellman key factory, your engineGeneratePrivate method (in
your KeyFactorySpi subclass) will return an instance of your DHPrivateKey
implementation, and your engineGeneratePublic method will return an instance of your
DHPublicKey implementation.

Also, your engineGetKeySpec and engineTranslateKey methods will expect the passed-in
key to be an instance of a DHPrivateKey or DHPublicKey implementation. The getParams
method provided by the interface implementations is useful for obtaining and
extracting the parameters from the keys. You can then use the parameters, for
example, as parameters to the DHParameterSpec constructor called to create a
parameter specification from parameter values used to initialize a KeyPairGenerator
object for Diffie-Hellman.

If you implement the Diffie-Hellman key agreement algorithm, your engineInit method
(in your KeyAgreementSpi subclass) will expect to be passed a DHPrivateKey and your
engineDoPhase method will expect to be passed a DHPublicKey.

Note:

The DHPublicKey and DHPrivateKey interfaces define a very generic, provider-
independent interface to Diffie-Hellman public and private keys, respectively.
The engineGetKeySpec and engineTranslateKey methods (in your
KeyFactorySpi subclass) could additionally check if the passed-in key is
actually an instance of their provider's own implementation of DHPrivateKey or
DHPublicKey, e.g., to take advantage of provider-specific implementation
details. The same is true for the Diffie-Hellman algorithm engineInit and
engineDoPhase methods (in your KeyAgreementSpi subclass).

To see what methods need to be implemented by classes that implement the
DHPublicKey and DHPrivateKey interfaces, first note the following interface signatures:

In the javax.crypto.interfaces package:

Chapter 3
Further Implementation Details and Requirements

3-36

https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHPublicKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHPublicKey.html

 public interface DHPrivateKey extends DHKey, java.security.PrivateKey

 public interface DHPublicKey extends DHKey, java.security.PublicKey

 public interface DHKey

In the java.security package:

 public interface PrivateKey extends Key

 public interface PublicKey extends Key

 public interface Key extends java.io.Serializable

To implement the DHPrivateKey and DHPublicKey interfaces, you must implement the
methods they define as well as those defined by interfaces they extend, directly or
indirectly.

Thus, for private keys, you need to supply a class that implements:

• The getX method from the Interface DHPrivateKey interface.

• The getParams method from the Interface DHKey interface, since DHPrivateKey
extends DHKey.

• The getAlgorithm, getEncoded, and getFormat methods from the Interface Key
interface, since DHPrivateKey extends java.security.PrivateKey, and PrivateKey
extends Key.

Similarly, for public Diffie-Hellman keys, you need to supply a class that implements:

• The getY method from the Interface DHPublicKey interface.

• The getParams method from the Interface DHKey interface, since DHPublicKey
extends DHKey.

• The getAlgorithm, getEncoded, and getFormat methods from the Interface Key
interface, since DHPublicKey extends java.security.PublicKey, and PublicKey
extends Key.

Interfaces for Other Algorithm Types
As noted above, the Java Security API contains interfaces for the convenience of
programmers implementing services like DSA, RSA and ECC. If there are services
without API support, you need to define your own APIs.

If you are implementing a key pair generator for a different algorithm, you should
create an interface with one or more initialize methods that clients can call when
they want to provide algorithm-specific parameters to be used rather than the default
parameters your implementation supplies. Your subclass of KeyPairGeneratorSpi
should implement this interface.

For algorithms without direct API support, it is recommended that you create similar
interfaces and provide implementation classes. Your public key interface should
extend the Interface PublicKey interface. Similarly, your private key interface should
extend the Interface PrivateKey interface.

Chapter 3
Further Implementation Details and Requirements

3-37

https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHPrivateKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/Key.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHPublicKey.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/DHKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/Key.html
https://docs.oracle.com/javase/9/docs/api/java/security/PublicKey.html
https://docs.oracle.com/javase/9/docs/api/java/security/PrivateKey.html

Algorithm Parameter Specification Interfaces and Classes
An algorithm parameter specification is a transparent representation of the sets of
parameters used with an algorithm.

A transparent representation of parameters means that you can access each value
individually, through one of the get methods defined in the corresponding specification
class (e.g., DSAParameterSpec defines getP, getQ, and getG methods, to access the p, q,
and g parameters, respectively).

This is contrasted with an opaque representation, as supplied by the
AlgorithmParameters engine class, in which you have no direct access to the key
material values; you can only get the name of the algorithm associated with the
parameter set (via getAlgorithm) and some kind of encoding for the parameter set (via
getEncoded).

If you supply an AlgorithmParametersSpi, AlgorithmParameterGeneratorSpi, or
KeyPairGeneratorSpi implementation, you must utilize the AlgorithmParameterSpec
interface, since each of those classes contain methods that take an
AlgorithmParameterSpec parameter. Such methods need to determine which actual
implementation of that interface has been passed in, and act accordingly.

JCA contains a number of AlgorithmParameterSpec implementations for the most
frequently used signature, cipher and key agreement algorithm parameters. If you are
operating on algorithm parameters that should be for a different type of algorithm not
provided by JCA, you will need to supply your own AlgorithmParameterSpec
implementation appropriate for that type of algorithm.

Java defines the following algorithm parameter specification interfaces and classes in
the java.security.spec and javax.crypto.spec packages:

The AlgorithmParameterSpec Interface

AlgorithmParameterSpec is an interface to a transparent specification of cryptographic
parameters.

This interface contains no methods or constants. Its only purpose is to group (and
provide type safety for) all parameter specifications. All parameter specifications must
implement this interface.

The DSAParameterSpec Class

This class (which implements the AlgorithmParameterSpec and DSAParams interfaces)
specifies the set of parameters used with the DSA algorithm. It has the following
methods:

 public BigInteger getP()

 public BigInteger getQ()

 public BigInteger getG()

These methods return the DSA algorithm parameters: the prime p, the sub-prime q,
and the base g.

Chapter 3
Further Implementation Details and Requirements

3-38

Many types of DSA services will find this class useful - for example, it is utilized by the
DSA signature, key pair generator, algorithm parameter generator, and algorithm
parameters classes implemented by the Sun provider. As a specific example, an
algorithm parameters implementation must include an implementation for the
getParameterSpec method, which returns an AlgorithmParameterSpec. The DSA
algorithm parameters implementation supplied by Sun returns an instance of the
DSAParameterSpec class.

The IvParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the
initialization vector (IV) used with a cipher in feedback mode.

Table 3-3 Method in IvParameterSpec

Method Description

byte[] getIV() Returns the initialization vector (IV).

The OAEPParameterSpec Class

This class specifies the set of parameters used with OAEP Padding, as defined in the
PKCS #1 standard.

Table 3-4 Methods in OAEPParameterSpec

Method Description

String getDigestAlgorithm() Returns the message digest algorithm name.

String getMGFAlgorithm() Returns the mask generation function
algorithm name.

AlgorithmParameterSpec
getMGFParameters()

Returns the parameters for the mask
generation function.

PSource getPSource() Returns the source of encoding input P.

The PBEParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the set of
parameters used with a password-based encryption (PBE) algorithm.

Table 3-5 Methods in PBEParameterSpec

Method Description

int getIterationCount() Returns the iteration count.

byte[] getSalt() Returns the salt.

The RC2ParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the set of
parameters used with the RC2 algorithm.

Chapter 3
Further Implementation Details and Requirements

3-39

Table 3-6 Methods in RC2ParameterSpec

Method Description

boolean equals(Object obj) Tests for equality between the specified object
and this object.

int getEffectiveKeyBits() Returns the effective key size in bits.

byte[] getIV() Returns the IV or null if this parameter set
does not contain an IV.

int hashCode() Calculates a hash code value for the object.

The RC5ParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the set of
parameters used with the RC5 algorithm.

Table 3-7 Methods in RC5ParameterSpec

Method Description

boolean equals(Object obj) Tests for equality between the specified object
and this object.

byte[] getIV() Returns the IV or null if this parameter set
does not contain an IV.

int getRounds() Returns the number of rounds.

int getVersion() Returns the version.

int getWordSize() Returns the word size in bits.

int hashCode() Calculates a hash code value for the object.

The DHParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the set of
parameters used with the Diffie-Hellman algorithm.

Table 3-8 Methods in DHParameterSpec

Method Description

BigInteger getG() Returns the base generator g.

int getL() Returns the size in bits, l, of the random
exponent (private value).

BigInteger getP() Returns the prime modulus p.

Many types of Diffie-Hellman services will find this class useful; for example, it is used
by the Diffie-Hellman key agreement, key pair generator, algorithm parameter
generator, and algorithm parameters classes implemented by the "SunJCE" provider.
As a specific example, an algorithm parameters implementation must include an
implementation for the getParameterSpec method, which returns an
AlgorithmParameterSpec. The Diffie-Hellman algorithm parameters implementation
supplied by "SunJCE" returns an instance of the DHParameterSpec class.

Chapter 3
Further Implementation Details and Requirements

3-40

Key Specification Interfaces and Classes Required by Key Factories
A key factory provides bi-directional conversions between opaque keys (of type Key)
and key specifications. If you implement a key factory, you thus need to understand
and utilize key specifications. In some cases, you also need to implement your own
key specifications.

Key specifications are transparent representations of the key material that constitutes
a key. If the key is stored on a hardware device, its specification may contain
information that helps identify the key on the device.

A transparent representation of keys means that you can access each key material
value individually, through one of the get methods defined in the corresponding
specification class. For example, java.security.spec.DSAPrivateKeySpec defines getX,
getP, getQ, and getG methods, to access the private key x, and the DSA algorithm
parameters used to calculate the key: the prime p, the sub-prime q, and the base g.

This is contrasted with an opaque representation, as defined by the Key interface, in
which you have no direct access to the parameter fields. In other words, an "opaque"
representation gives you limited access to the key - just the three methods defined by
the Key interface: getAlgorithm, getFormat, and getEncoded.

A key may be specified in an algorithm-specific way, or in an algorithm-independent
encoding format (such as ASN.1). For example, a DSA private key may be specified
by its components x, p, q, and g (see DSAPrivateKeySpec), or it may be specified using
its DER encoding (see PKCS8EncodedKeySpec).

Java defines the following key specification interfaces and classes in the
java.security.spec and javax.crypto.spec packages:

The KeySpec Interface

This interface contains no methods or constants. Its only purpose is to group (and
provide type safety for) all key specifications. All key specifications must implement
this interface.

Java supplies several classes implementing the KeySpec interface:

• DSAPrivateKeySpec

• DSAPublicKeySpec

• RSAPrivateKeySpec

• RSAPublicKeySpec

• EncodedKeySpec

• PKCS8EncodedKeySpec

• X509EncodedKeySpec

If your provider uses key types (e.g., Your_PublicKey_type and Your_PrivateKey_type)
for which the JDK does not already provide corresponding KeySpec classes, there are
two possible scenarios, one of which requires that you implement your own key
specifications:

1. If your users will never have to access specific key material values of your key
type, you will not have to provide any KeySpec classes for your key type.

Chapter 3
Further Implementation Details and Requirements

3-41

https://docs.oracle.com/javase/9/docs/api/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/PKCS8EncodedKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/DSAPublicKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/RSAPrivateKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/RSAPublicKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/EncodedKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/PKCS8EncodedKeySpec.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/X509EncodedKeySpec.html

In this scenario, your users will always create Your_PublicKey_type and
Your_PrivateKey_type keys through the appropriate KeyPairGenerator supplied by
your provider for that key type. If they want to store the generated keys for later
usage, they retrieve the keys' encodings (using the getEncoded method of the Key
interface). When they want to create an Your_PublicKey_type or
Your_PrivateKey_type key from the encoding (e.g., in order to initialize a Signature
object for signing or verification), they create an instance of X509EncodedKeySpec or
PKCS8EncodedKeySpec from the encoding, and feed it to the appropriate KeyFactory
supplied by your provider for that algorithm, whose generatePublic and
generatePrivate methods will return the requested PublicKey (an instance of
Your_PublicKey_type) or PrivateKey (an instance of Your_PrivateKey_type) object,
respectively.

2. If you anticipate a need for users to access specific key material values of your
key type, or to construct a key of your key type from key material and associated
parameter values, rather than from its encoding (as in the above case), you have
to specify new KeySpec classes (classes that implement the KeySpec interface) with
the appropriate constructor methods and get methods for returning key material
fields and associated parameter values for your key type. You will specify those
classes in a similar manner as is done by the DSAPrivateKeySpec and
DSAPublicKeySpec classes. You need to ship those classes along with your provider
classes, for example, as part of your provider JAR file.

The DSAPrivateKeySpec Class

This class (which implements the KeySpec Interface) specifies a DSA private key with
its associated parameters. It has the following methods:

Table 3-9 Methods in DSAPrivateKeySpec

Method in DSAPrivateKeySpec Description

public BigInteger getX() Returns the private key x.

public BigInteger getP() Returns the prime p.

public BigInteger getQ() Returns the sub-prime q.

public BigInteger getG() Returns the base g.

These methods return the private key x, and the DSA algorithm parameters used to
calculate the key: the prime p, the sub-prime q, and the base g.

The DSAPublicKeySpec Class

This class (which implements the KeySpec Interface) specifies a DSA public key with its
associated parameters. It has the following methods:

Table 3-10 Methods in DSAPublicKeySpec

Method in DSAPublicKeySpec Description

public BigInteger getY() returns the public key y.

public BigInteger getP() Returns the prime p.

public BigInteger getQ() Returns the sub-prime q.

public BigInteger getG() Returns the base g.

Chapter 3
Further Implementation Details and Requirements

3-42

The RSAPrivateKeySpec Class

This class (which implements the KeySpec Interface) specifies an RSA private key. It
has the following methods:

Table 3-11 Methods in RSAPrivateKeySpec

Method in RSAPrivateKeySpec Description

public BigInteger getModulus() Returns the modulus.

public BigInteger getPrivateExponent() Returns the private exponent.

These methods return the RSA modulus n and private exponent d values that
constitute the RSA private key.

The RSAPrivateCrtKeySpec Class

This class (which extends the RSAPrivateKeySpec class) specifies an RSA private key,
as defined in the PKCS#1 standard, using the Chinese Remainder Theorem (CRT)
information values. It has the following methods (in addition to the methods inherited
from its superclass RSAPrivateKeySpec):

Table 3-12 Methods in RSAPrivateCrtKeySpec

Method in RSAPrivateCrtKeySpec Description

public BigInteger getPublicExponent() Returns the public exponent.

public BigInteger getPrimeP() Returns the prime P.

public BigInteger getPrimeQ() Returns the prime Q.

public BigInteger getPrimeExponentP() Returns the primeExponentP.

public BigInteger getPrimeExponentQ() Returns the primeExponentQ.

public BigInteger getCrtCoefficient() Returns the crtCoefficient.

These methods return the public exponent e and the CRT information integers: the
prime factor p of the modulus n, the prime factor q of n, the exponent d mod (p-1), the
exponent d mod (q-1), and the Chinese Remainder Theorem coefficient (inverse of q)
mod p.

An RSA private key logically consists of only the modulus and the private exponent.
The presence of the CRT values is intended for efficiency.

The RSAPublicKeySpec Class

This class (which implements the KeySpec Interface) specifies an RSA public key. It has
the following methods:

Table 3-13 Methods in RSAPublicKeySpec

Method in RSAPublicKeySpec Description

public BigInteger getModulus() Returns the modulus.

public BigInteger getPublicExponent() Returns the public exponent.

Chapter 3
Further Implementation Details and Requirements

3-43

The EncodedKeySpec Class

This abstract class (which implements the KeySpec Interface) represents a public or
private key in encoded format.

Table 3-14 Methods in EncodedKeySpec

Method in EncodedKeySpec Description

public abstract byte[] getEncoded() Returns the encoded key.

public abstract String getFormat() Returns the name of the encoding format.

The JDK supplies two classes implementing the EncodedKeySpec interface:
PKCS8EncodedKeySpec and X509EncodedKeySpec. If desired, you can supply your own
EncodedKeySpec implementations for those or other types of key encodings.

The PKCS8EncodedKeySpec Class

This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a
private key, according to the format specified in the PKCS #8 standard.

Its getEncoded method returns the key bytes, encoded according to the PKCS #8
standard. Its getFormat method returns the string "PKCS#8".

The X509EncodedKeySpec Class

This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a
public or private key, according to the format specified in the X.509 standard.

Its getEncoded method returns the key bytes, encoded according to the X.509 standard.
Its getFormat method returns the string "X.509".DHPrivateKeySpec, DHPublicKeySpec,
DESKeySpec, DESedeKeySpec, PBEKeySpec, and SecretKeySpec.

The DHPrivateKeySpec Class

This class (which implements the KeySpec interface) specifies a Diffie-Hellman private
key with its associated parameters.

Table 3-15 Methods in DHPrviateKeySpec

Method in DHPrivateKeySpec Description

BigInteger getG() Returns the base generator g.

BigInteger getP() Returns the prime modulus p.

BigInteger getX() Returns the private value x.

The DHPublicKeySpec Class

Table 3-16 Methods in DHPublicKeySpec

Method in DHPublicKeySpec Description

BigInteger getG() Returns the base generator g.

BigInteger getP() Returns the prime modulus p.

BigInteger getY() Returns the public value y.

Chapter 3
Further Implementation Details and Requirements

3-44

The DESKeySpec Class

This class (which implements the KeySpec interface) specifies a DES key.

Table 3-17 Methods in DESKeySpec

Method in DESKeySpec Description

byte[] getKey() Returns the DES key bytes.

static boolean isParityAdjusted(byte[]
key, int offset)

Checks if the given DES key material is parity-
adjusted.

static boolean isWeak(byte[] key, int
offset)

Checks if the given DES key material is weak
or semi-weak.

The DESedeKeySpec Class

This class (which implements the KeySpec interface) specifies a DES-EDE (Triple DES)
key.

Table 3-18 Methods in DESedeKeySpec

Method in DESedeKeySpec Description

byte[] getKey() Returns the DES-EDE key.

static boolean isParityAdjusted(byte[]
key, int offset)

Checks if the given DES-EDE key is parity-
adjusted.

The PBEKeySpec Class

This class implements the KeySpec interface. A user-chosen password can be used
with password-based encryption (PBE); the password can be viewed as a type of raw
key material. An encryption mechanism that uses this class can derive a cryptographic
key from the raw key material.

Table 3-19 Methods in PBEKeySpec

Method in PBEKeySpec Description

void clearPassword Clears the internal copy of the password.

int getIterationCount Returns the iteration count or 0 if not specified.

int getKeyLength Returns the to-be-derived key length or 0 if not
specified.

char[] getPassword Returns a copy of the password.

byte[] getSalt Returns a copy of the salt or null if not
specified.

The SecretKeySpec Class

This class implements the KeySpec interface. Since it also implements the SecretKey
interface, it can be used to construct a SecretKey object in a provider-independent
fashion, i.e., without having to go through a provider-based SecretKeyFactory.

Chapter 3
Further Implementation Details and Requirements

3-45

Table 3-20 Methods in SecretKeySpec

Method in SecretKeySpec Description

boolean equals (Object obj) Indicates whether some other object is "equal
to" this one.

String getAlgorithm() Returns the name of the algorithm associated
with this secret key.

byte[] getEncoded() Returns the key material of this secret key.

String getFormat() Returns the name of the encoding format for
this secret key.

int hashCode() Calculates a hash code value for the object.

Secret-Key Generation
If you provide a secret-key generator (subclass of javax.crypto.KeyGeneratorSpi) for a
particular secret-key algorithm, you may return the generated secret-key object.

The generated secret-key object (which must be an instance of
javax.crypto.SecretKey, see engineGenerateKey) can be returned in one of the
following ways:

• You implement a class whose instances represent secret-keys of the algorithm
associated with your key generator. Your key generator implementation returns
instances of that class. This approach is useful if the keys generated by your key
generator have provider-specific properties.

• Your key generator returns an instance of SecretKeySpec, which already
implements the javax.crypto.SecretKey interface. You pass the (raw) key bytes
and the name of the secret-key algorithm associated with your key generator to
the SecretKeySpec constructor. This approach is useful if the underlying (raw) key
bytes can be represented as a byte array and have no key-parameters associated
with them.

Adding New Object Identifiers
The following information applies to providers who supply an algorithm that is not listed
as one of the standard algorithms in Java Security Standard Algorithm Names
Specification.

Mapping from OID to Name

Sometimes the JCA needs to instantiate a cryptographic algorithm implementation
from an algorithm identifier (for example, as encoded in a certificate), which by
definition includes the object identifier (OID) of the algorithm. For example, in order to
verify the signature on an X.509 certificate, the JCA determines the signature
algorithm from the signature algorithm identifier that is encoded in the certificate,
instantiates a Signature object for that algorithm, and initializes the Signature object for
verification.

For the JCA to find your algorithm, you must provide the object identifier of your
algorithm as an alias entry for your algorithm in the provider master file.

Chapter 3
Further Implementation Details and Requirements

3-46

https://docs.oracle.com/javase/9/docs/api/javax/crypto/KeyGeneratorSpi.html#engineGenerateKey--
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/SecretKeySpec.html
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

 put("Alg.Alias.<engine_type>.1.2.3.4.5.6.7.8",
 "<algorithm_alias_name>");

Note that if your algorithm is known under more than one object identifier, you need to
create an alias entry for each object identifier under which it is known.

An example of where the JCA needs to perform this type of mapping is when your
algorithm ("Foo") is a signature algorithm and users run the keytool command and
specify your (signature) algorithm alias.

 % keytool -genkeypair -sigalg 1.2.3.4.5.6.7.8

In this case, your provider master file should contain the following entries:

 put("Signature.Foo", "com.xyz.MyFooSignatureImpl");
 put("Alg.Alias.Signature.1.2.3.4.5.6.7.8", "Foo");

Other examples of where this type of mapping is performed are (1) when your
algorithm is a keytype algorithm and your program parses a certificate (using the X.
509 implementation of the SUN provider) and extracts the public key from the
certificate in order to initialize a Signature object for verification, and (2) when keytool
users try to access a private key of your keytype (for example, to perform a digital
signature) after having generated the corresponding keypair. In these cases, your
provider master file should contain the following entries:

 put("KeyFactory.Foo", "com.xyz.MyFooKeyFactoryImpl");
 put("Alg.Alias.KeyFactory.1.2.3.4.5.6.7.8", "Foo");

Mapping from Name to OID

If the JCA needs to perform the inverse mapping (that is, from your algorithm name to
its associated OID), you need to provide an alias entry of the following form for one of
the OIDs under which your algorithm should be known:

 put("Alg.Alias.Signature.OID.1.2.3.4.5.6.7.8", "MySigAlg");

If your algorithm is known under more than one object identifier, prefix the preferred
one with "OID."

An example of where the JCA needs to perform this kind of mapping is when users run
keytool in any mode that takes a -sigalg option. For example, when the -genkeypair
and -certreq commands are invoked, the user can specify your (signature) algorithm
with the -sigalg option.

Ensuring Exportability
A key feature of JCA is the exportability of the JCA framework and of the provider
cryptography implementations if certain conditions are met.

By default, an application can use cryptographic algorithms of any strength. However,
due to import regulations in some countries, you may have to limit those algorithms'
strength. You do this with jurisdiction policy files; see Cryptographic Strength
Configuration. The JCA framework will enforce the restrictions specified in the installed
jurisdiction policy files.

Chapter 3
Further Implementation Details and Requirements

3-47

As noted elsewhere, you can write just one version of your provider software,
implementing cryptography of maximum strength. It is up to JCA, not your provider, to
enforce any jurisdiction policy file-mandated restrictions regarding the cryptographic
algorithms and maximum cryptographic strengths available to applets/applications in
different locations.

The conditions that must be met by your provider in order to enable it to be plugged
into JCA are the following:

• The provider code should be written in such a way that provider classes become
unusable if instantiated by an application directly, bypassing JCA. See Step 1:
Write your Service Implementation Code in Steps to Implement and Integrate a
Provider.

• The provider package must be signed by an entity trusted by the JCA framework.
(See Step 7.1: Get a Code-Signing Certificate through Step 7.2: Sign Your
Provider.) U.S. vendors whose providers may be exported outside the U.S. first
need to apply for U.S. government export approval. (See Step 11: Apply for U.S.
Government Export Approval If Required.)

Sample Code for MyProvider
The following is the complete source code for an example provider, MyProvider. It's a
portable provider; you can specify it in a class or module path. It consists of two
modules:

• com.example.MyProvider: Contains an example provider that demonstrate how to
write a provider with the Provider.Service mechanism. You must compile,
package, and sign the provider, then specify it in your class or module path as
described in Steps to Implement and Integrate a Provider.

• com.example.MyApp: Contains a sample application that uses the MyProvider
provider. It finds and loads this provider with the ServiceLoader mechanism,
and then registers it dynamically with the Security.addProvider() method.

This example consists of the following files:

• src/com.example.MyProvider/module-info.java

• src/com.example.MyProvider/com/example/MyProvider/MyProvider.java

• src/com.example.MyProvider/com/example/MyProvider/MyCipher.java

• src/com.example.MyProvider/META-INF/services/java.security.Provider

• src/com.example.MyApp/module-info.java

• src/com.example.MyApp/com/example/MyApp/MyApp.java

• RunTest.sh

src/com.example.MyProvider/module-info.java

See Step 4: Create a Module Declaration for Your Provider for information about the
module declaration, which is specified in module-info.java.

module com.example.MyProvider {
 provides java.security.Provider with com.example.MyProvider.MyProvider;
}

Chapter 3
Sample Code for MyProvider

3-48

src/com.example.MyProvider/com/example/MyProvider/MyProvider.java

The MyProvider class is an example of a provider that uses the
Provider.Service class. See Step 3.2: Create a Provider That Uses
Provider.Service.

package com.example.MyProvider;

import java.security.*;
import java.util.*;

/**
 * Test JCE provider.
 *
 * Registers services using Provider.Service and overrides newInstance().
 */
public final class MyProvider extends Provider {

 public MyProvider() {
 super("MyProvider", "1.0", "My JCE provider");

 final Provider p = this;

 AccessController.doPrivileged((PrivilegedAction<Void>) () -> {
 putService(new ProviderService(p, "Cipher",
 "MyCipher", "com.example.MyProvider.MyCipher"));
 return null;
 });
 }

 private static final class ProviderService extends Provider.Service {

 ProviderService(Provider p, String type, String algo, String cn) {
 super(p, type, algo, cn, null, null);
 }

 ProviderService(Provider p, String type, String algo, String cn,
 String[] aliases, HashMap<String, String> attrs) {
 super(p, type, algo, cn,
 (aliases == null ? null : Arrays.asList(aliases)), attrs);
 }

 @Override
 public Object newInstance(Object ctrParamObj)
 throws NoSuchAlgorithmException {

 String type = getType();
 if (ctrParamObj != null) {
 throw new InvalidParameterException(
 "constructorParameter not used with " + type
 + " engines");
 }
 String algo = getAlgorithm();
 try {
 if (type.equals("Cipher")) {
 if (algo.equals("MyCipher")) {
 return new MyCipher();
 }
 }
 } catch (Exception ex) {

Chapter 3
Sample Code for MyProvider

3-49

 throw new NoSuchAlgorithmException(
 "Error constructing " + type + " for "
 + algo + " using SunMSCAPI", ex);
 }
 throw new ProviderException("No impl for " + algo
 + " " + type);
 }
 }

 @Override
 public String toString() {
 return "MyProvider [getName()=" + getName()
 + ", getVersionStr()=" + getVersionStr() + ", getInfo()="
 + getInfo() + "]";
 }
}

src/com.example.MyProvider/com/example/MyProvider/MyCipher.java

The MyCipher class extends the CipherSPI, which is a Server Provider Interface
(SPI). Each cryptographic service that a provider implements has a subclass of the
appropriate SPI. See Step 1: Write your Service Implementation Code.

Note:

This code is only a stub provider that demonstrates how to write a provider; it's
missing the actual cryptographic algorithm implementation. The MyCipher class
would contain an actual cryptographic algorithm implementation if MyProvider
were a real security provider.

package com.example.MyProvider;

import java.security.*;
import java.security.spec.*;
import javax.crypto.*;

/**
 * Implementation represents a test Cipher.
 *
 * All are stubs.
 */
public class MyCipher extends CipherSpi {

 @Override
 protected byte[] engineDoFinal(byte[] input, int inputOffset, int inputLen)
 throws IllegalBlockSizeException, BadPaddingException {
 return null;
 }

 @Override
 protected int engineDoFinal(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset) throws ShortBufferException,
 IllegalBlockSizeException, BadPaddingException {
 return 0;
 }

 @Override
 protected int engineGetBlockSize() {

Chapter 3
Sample Code for MyProvider

3-50

 return 0;
 }

 @Override
 protected byte[] engineGetIV() {
 return null;
 }

 @Override
 protected int engineGetOutputSize(int inputLen) {
 return 0;
 }

 @Override
 protected AlgorithmParameters engineGetParameters() {
 return null;
 }

 @Override
 protected void engineInit(int opmode, Key key, SecureRandom random)
 throws InvalidKeyException {
 }

 @Override
 protected void engineInit(int opmode, Key key,
 AlgorithmParameterSpec params, SecureRandom random)
 throws InvalidKeyException, InvalidAlgorithmParameterException {
 }

 @Override
 protected void engineInit(int opmode, Key key, AlgorithmParameters params,
 SecureRandom random) throws InvalidKeyException,
 InvalidAlgorithmParameterException {
 }

 @Override
 protected void engineSetMode(String mode) throws NoSuchAlgorithmException {
 }

 @Override
 protected void engineSetPadding(String padding)
 throws NoSuchPaddingException {
 }

 @Override
 protected int engineGetKeySize(Key key)
 throws InvalidKeyException {
 return 0;
 }

 @Override
 protected byte[] engineUpdate(byte[] input, int inputOffset, int inputLen) {
 return null;
 }

 @Override
 protected int engineUpdate(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset) throws ShortBufferException {
 return 0;
 }
}

Chapter 3
Sample Code for MyProvider

3-51

src/com.example.MyProvider/META-INF/services/java.security.Provider

The java.security.Provider file enables automatic or unnamed modules to use
the ServiceLoader class to search for your providers. See Step 6: Place Your
Provider in a JAR File.

com.example.MyProvider.MyProvider

src/com.example.MyApp/module-info.java

This file contains a uses directive, which specifies a service that the module requires.
This directive helps the module system locate providers and ensure that they run
reliably. This is the complement to the provides directive in the MyProvider module
definition.

module com.example.MyApp {
 uses java.security.Provider;
}

src/com.example.MyApp/com/example/MyApp/MyApp.java

package com.example.MyApp;

import java.util.*;
import java.security.*;
import javax.crypto.*;

/**
 * A simple JCE test client to access a simple test Provider/Cipher
 * implementation in a signed modular jar.
 */
public class MyApp {

 private static final String PROVIDER = "MyProvider";
 private static final String CIPHER = "MyCipher";

 public static void main(String[] args) throws Exception {

 /*
 * Registers MyProvider dynamically.
 *
 * Could do statically by editing the java.security file.
 * Use the first form if using ServiceLoader ("uses" or
 * META-INF/service), the second if using the traditional class
 * lookup method. Both if provider could be deployed to either.
 *
 * security.provider.14=MyProvider
 * security.provider.15=com.example.MyProvider.MyProvider
 */
 ServiceLoader<Provider> sl =
 ServiceLoader.load(java.security.Provider.class);
 for (Provider p : sl) {
 if (p.getName().equals(PROVIDER)) {
 System.out.println("Registering the Provider");
 Security.addProvider(p);
 }
 }

 /*
 * Get a MyCipher from MyProvider and initialize it.

Chapter 3
Sample Code for MyProvider

3-52

 */
 Cipher cipher = Cipher.getInstance(CIPHER, PROVIDER);
 cipher.init(Cipher.ENCRYPT_MODE, (Key) null);

 /*
 * What Provider did we get?
 */
 Provider p = cipher.getProvider();
 Class c = p.getClass();
 Module m = c.getModule();
 System.out.println(p.getName() + ": version "
 + p.getVersionStr() + "\n"
 + p.getInfo() + "\n "
 + ((m.getName() == null) ? "<UNNAMED>" : m.getName())
 + "/" + c.getName());
 }
}

RunTest.sh

#!/bin/sh

#
A simple example to show how a JCE provider could be developed in a
modular JDK, for deployment as either Named/Unnamed modules.
#

#
Edit as appropriate
#
JDK_DIR=d:/java/jdk9
KEYSTORE=YourKeyStore
STOREPASS=YourStorePass
SIGNER=YourAlias

echo "-----------"
echo "Clean/Init"
echo "-----------"
rm -rf mods jars
mkdir mods jars

echo "--------------------"
echo "Compiling MyProvider"
echo "--------------------"
${JDK_DIR}/bin/javac.exe \
 --module-source-path src \
 -d mods \
 $(find src/com.example.MyProvider -name '*.java' -print)

echo "------------------------------------"
echo "Packaging com.example.MyProvider.jar"
echo "------------------------------------"
${JDK_DIR}/bin/jar.exe --create \
 --file jars/com.example.MyProvider.jar \
 --verbose \
 --module-version=1.0 \
 -C mods/com.example.MyProvider . \
 -C src/com.example.MyProvider META-INF/services

echo "----------------------------------"
echo "Signing com.example.MyProvider.jar"

Chapter 3
Sample Code for MyProvider

3-53

echo "----------------------------------"
${JDK_DIR}/bin/jarsigner.exe \
 -keystore ${KEYSTORE} \
 -storepass ${STOREPASS} \
 jars/com.example.MyProvider.jar ${SIGNER}

echo "---------------"
echo "Compiling MyApp"
echo "---------------"
${JDK_DIR}/bin/javac.exe \
 --module-source-path src \
 -d mods \
 $(find src/com.example.MyApp -name '*.java' -print)

echo "-------------------------------"
echo "Packaging com.example.MyApp.jar"
echo "-------------------------------"
${JDK_DIR}/bin/jar.exe --create \
 --file jars/com.example.MyApp.jar \
 --verbose \
 --module-version=1.0 \
 -C mods/com.example.MyApp .

echo "------------------------"
echo "Test1 "
echo "Named Provider/Named App"
echo "------------------------"
${JDK_DIR}/bin/java.exe \
 --module-path 'jars' \
 -m com.example.MyApp/com.example.MyApp.MyApp

echo "--------------------------"
echo "Test2 "
echo "Named Provider/Unnamed App"
echo "--------------------------"
${JDK_DIR}/bin/java.exe \
 --module-path 'jars/com.example.MyProvider.jar' \
 --class-path 'jars/com.example.MyApp.jar' \
 com.example.MyApp.MyApp

echo "--------------------------"
echo "Test3 "
echo "Unnamed Provider/Named App"
echo "--------------------------"
${JDK_DIR}/bin/java.exe \
 --module-path 'jars/com.example.MyApp.jar' \
 --class-path 'jars/com.example.MyProvider.jar' \
 -m com.example.MyApp/com.example.MyApp.MyApp

echo "----------------------------"
echo "Test4 "
echo "Unnamed Provider/Unnamed App"
echo "----------------------------"
${JDK_DIR}/bin/java.exe \
 --class-path \
 'jars/com.example.MyProvider.jar;jars/com.example.MyApp.jar' \
 com.example.MyApp.MyApp

Chapter 3
Sample Code for MyProvider

3-54

4
JDK Providers Documentation

This document contains the technical details of the providers that are included in the
JDK. It is assumed that readers have a strong understanding of the Java Cryptography
Architecture and Provider Architecture.

Note:

The Java Security Standard Algorithm Names Specification contains more
information about the standard names used in this document.

Topics

Introduction to JDK Providers

Import Limits on Cryptographic Algorithms

Cipher Transformations

SecureRandom Implementations

The SunPKCS11 Provider

The SUN Provider

The SunRsaSign Provider

The SunJSSE Provider

The SunJCE Provider

The SunJGSS Provider

The SunSASL Provider

The XMLDSig Provider

The SunPCSC Provider

The SunMSCAPI Provider

The SunEC Provider

The OracleUcrypto Provider

The Apple Provider

The JdkLDAP Provider

The JdkSASL Provider

4-1

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

Introduction to JDK Providers
The Java platform defines a set of APIs spanning major security areas, including
cryptography, public key infrastructure, authentication, secure communication, and
access control. These APIs enable developers to easily integrate security mechanisms
into their application code.

The Java Cryptography Architecture (JCA) and its Provider Architecture are core
concepts of the Java Development Kit (JDK). It is assumed that readers have a solid
understanding of this architecture.

Reminder: Cryptographic implementations in the JDK are distributed through several
different providers ("SUN", "SunJSSE", "SunJCE", "SunRsaSign") for both historical
reasons and by the types of services provided. General purpose applications
SHOULD NOT request cryptographic services from specific providers. That is:

getInstance("...", "SunJCE"); // not recommended

versus

getInstance("..."); // recommended

Otherwise, applications are tied to specific providers that may not be available on
other Java implementations. They also might not be able to take advantage of
available optimized providers (for example, hardware accelerators via PKCS11 or
native OS implementations such as Microsoft's MSCAPI) that have a higher
preference order than the specific requested provider.

The following table lists the modules and the supported Java Cryptographic Service
Providers:

Table 4-1 Modules and the Java Cryptographic Service Providers

Module Provider(s)

java.base SUN, SunRsaSign, SunJSSE, SunJCE [1],
Apple

java.naming JdkLDAP

java.security.jgss SunJGSS

java.security.sasl SunSASL

java.smartcardio SunPCSC

java.xml.crypto XMLDSig

jdk.crypto.cryptoki SunPKCS11 [1]

jdk.crypto.ec SunEC [1]

jdk.crypto.mscapi SunMSCAPI [1]

jdk.crypto.ucrypto OracleUcrypto [1]

jdk.security.jgss JdkSASL

Footnote 1: Indicates JCE crypto providers previously distributed as signed JAR files
(JCE providers contain Cipher/KeyAgreement/KeyGenerator/Mac/SecretKeyFactory
implementations).

Chapter 4
Introduction to JDK Providers

4-2

Import Limits on Cryptographic Algorithms
By default, an application can use cryptographic algorithms of any strength. However,
due to import regulations in some locations, you may have to limit the strength of those
algorithms. The JDK provides two different sets of jurisdiction policy files in the
directory <java_home>/conf/security/policy that determine the strength of
cryptographic algorithms. Information about jurisdiction policy files and how to activate
them is available in Cryptographic Strength Configuration.

Consult your export/import control counsel or attorney to determine the exact
requirements for your location.

For the "limited" configuration, the following table lists the maximum key sizes allowed
by the "limited" set of jurisdiction policy files:

Table 4-2 Maximum Keysize of Cryptographic Algorithms

Algorithm Maximum Keysize

DES 64

DESede *

RC2 128

RC4 128

RC5 128

RSA *

all others 128

Cipher Transformations
The javax.crypto.Cipher.getInstance(String transformation) factory method
generates Cipher objects using transformations of the form algorithm/mode/padding.
If the mode/padding are omitted, the SunJCE and SunPKCS11 providers use ECB as
the default mode and PKCS5Padding as the default padding for many symmetric
ciphers.

It is recommended to use transformations that fully specify the algorithm, mode, and
padding instead of relying on the defaults. The defaults are provider specific and can
vary among providers.

Note:

ECB works well for single blocks of data and can be parallelized, but
absolutely should not be used for multiple blocks of data.

SecureRandom Implementations
The following table lists the default preference order of the available SecureRandom
implementations.

Chapter 4
Import Limits on Cryptographic Algorithms

4-3

Table 4-3 Default SecureRandom Implementations

OS Algorithm Name Provider Name

Solaris 1. PKCS11 [1] [4] SunPKCS11

2. NativePRNG [2] SUN

3. DRBG SUN

4. SHA1PRNG [2] SUN

5. NativePRNGBlocking SUN

6. NativePRNGNonBlocking SUN

Linux 1. NativePRNG [2] SUN

2. DRGB SUN

3. SHA1PRNG [2] SUN

4. NativePRNGBlocking SUN

5. NativePRNGNonBlocking SUN

macOS 1. NativePRNG [2] SUN

2. DRGB SUN

3. SHA1PRNG [2] SUN

4. NativePRNGBlocking SUN

5. NativePRNGNonBlocking SUN

Windows 1. DRGB SUN

2. SHA1PRNG SUN

3. Windows-PRNG [3] SunMSCAPI

Footnote 1: The SunPKCS11 provider is available on all platforms, but is only enabled
by default on Solaris as it is the only OS with a native PKCS11 implementation
automatically installed and configured. On other platforms, applications or deployers
must specifically install and configure a native PKCS11 library, and then configure and
enable the SunPKCS11 provider to use it.

Footnote 2: On Solaris, Linux, and OS X, if the entropy gathering device in
java.security is set to file:/dev/urandom or file:/dev/random, then NativePRNG is
preferred to SHA1PRNG. Otherwise, SHA1PRNG is preferred.

Footnote 3: There is currently no NativePRNG on Windows. Access to the equivalent
functionality is via the SunMSCAPI provider.

Footnote 4: The PKCS11 SecureRandom implementation for Solaris has been disabled
due to the performance overhead of small-sized requests. Edit sunpkcs11-
solaris.cfg to reenable.

If no SecureRandom implementations are registered in the JCA framework,
java.security.SecureRandom uses the hardcoded SHA1PRNG.

The SunPKCS11 Provider
The Cryptographic Token Interface Standard (PKCS#11) provides native programming
interfaces to cryptographic mechanisms, such as hardware cryptographic accelerators
and Smart Cards. When properly configured, the SunPKCS11 provider enables
applications to use the standard JCA/JCE APIs to access native PKCS#11 libraries.
The SunPKCS11 provider itself does not contain cryptographic functionality, it is

Chapter 4
The SunPKCS11 Provider

4-4

http://india.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

simply a conduit between the Java environment and the native PKCS11 providers.
The Java PKCS#11 Reference Guide has a much more detailed treatment of this
provider.

The SUN Provider
JDK 1.1 introduced the Provider architecture. The first JDK provider was named SUN,
and contained two types of cryptographic services (MessageDigestand Signature). In
later releases, other mechanisms were added (SecureRandom, KeyPairGenerator,
KeyFactory, and so on).

United States export regulations in effect at the time placed significant restrictions on
the type of cryptographic functionality that could be made available internationally in
the JDK. For this reason, the SUN provider has historically contained cryptographic
engines that did not directly encrypt or decrypt data.

The following algorithms are available in the SUN provider:

Table 4-4 Algorithms in SUN provider

Engine Algorithm Names

AlgorithmParameterGenerator DSA

AlgorithmParameters DSA

CertificateFactory X.509

CertPathBuilder PKIX

CertPathValidator PKIX

CertStore Collection

Configuration JavaLoginConfig

KeyFactory DSA

KeyPairGenerator DSA

KeyStore PKCS12

JKS

DKS

CaseExactJKS

MessageDigest MD2

MD5

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

SHA-512/224

SHA-512/256

SHA3-224

SHA3-256

SHA3-384

SHA3-512

Policy JavaPolicy

Chapter 4
The SUN Provider

4-5

Table 4-4 (Cont.) Algorithms in SUN provider

Engine Algorithm Names

SecureRandom DRBG

(The following mechanisms and algorithms are
supported: Hash_DRBG and HMAC_DRBG
with SHA-224, SHA-512/224, SHA-256,
SHA-512/256, SHA-384 and SHA-512.
CTR_DRBG (both use derivation function and
not use) with AES-128, AES-192 and
AES-256. Prediction resistance and reseeding
supported for each combination, and security
strength can be requested from 112 up to the
highest strength one supports.)

SHA1PRNG

(Initial seeding is currently done via a
combination of system attributes and the
java.security entropy gathering device.)

NativePRNG

(nextBytes() uses /dev/urandom,
generateSeed() uses /dev/random)

NativePRNGBlocking

(nextBytes() and generateSeed() use /dev/
random)

NativePRNGNonBlocking

(nextBytes() and generateSeed() use /dev/
urandom)

Signature NONEwithDSA

SHA1withDSA

SHA224withDSA

SHA256withDSA

NONEwithDSAinP1363Format

SHA1withDSAinP1363Format

SHA224withDSAinP1363Format

SHA256withDSAinP1363Format

The following table lists OIDs associated with SHA Message Digests:

Table 4-5 OIDs associated with SHA Message Digests

SHA Message Digest OID

SHA-224 2.16.840.1.101.3.4.2.4

SHA-256 2.16.840.1.101.3.4.2.1

SHA-384 2.16.840.1.101.3.4.2.2

SHA-512 2.16.840.1.101.3.4.2.3

SHA-512/224 2.16.840.1.101.3.4.2.5

SHA-512/256 2.16.840.1.101.3.4.2.6

SHA3-224 2.16.840.1.101.3.4.2.7

SHA3-256 2.16.840.1.101.3.4.2.8

Chapter 4
The SUN Provider

4-6

Table 4-5 (Cont.) OIDs associated with SHA Message Digests

SHA Message Digest OID

SHA3-384 2.16.840.1.101.3.4.2.9

SHA3-512 2.16.840.1.101.3.4.2.10

The following table lists OIDs associated with DSA Signatures:

Table 4-6 OIDs associated with DSA Signatures

DSA Signature OID

SHA1withDSA 1.2.840.10040.4.3

1.3.14.3.2.13

1.3.14.3.2.27

SHA224withDSA 2.16.840.1.101.3.4.3.1

SHA256withDSA 2.16.840.1.101.3.4.3.2

Keysize Restrictions

The SUN provider uses the following default keysizes (in bits) and enforces the following
restrictions:

KeyPairGenerator

Alg. Name Default Keysize Restrictions/Comments

DSA 1024 Keysize must be a multiple of
64, ranging from 512 to 1024,
plus 2048 and 3072.

AlgorithmParameterGenerator

Alg. Name Default Keysize Restrictions/Comments

DSA 1024 Keysize must be a multiple of
64, ranging from 512 to 1024,
plus 2048 and 3072.

CertificateFactory/CertPathBuilder/CertPathValidator/CertStore Implementations

Additional details on the SUN provider implementations for CertificateFactory,
CertPathBuilder, CertPathValidator and CertStore are documented in Appendix B:
CertPath Implementation in SUN Provider of the PKI Programmer's Guide.

The SunRsaSign Provider
The SunRsaSign provider was introduced in JDK 1.3 as an enhanced replacement for
the RSA signature in the SunJSSE provider.

The following algorithms are available in the SunRsaSign provider:

Chapter 4
The SunRsaSign Provider

4-7

Table 4-7 The SunRsaSign Provider Algorithm Names for Engine Classes

Engine Algorithm Names

KeyFactory RSA

KeyPairGenerator RSA

Signature MD2withRSA

MD5withRSA

SHA1withRSA

SHA224withRSA

SHA256withRSA

SHA384withRSA

SHA512withRSA

Keysize Restrictions

The SunRsaSign provider uses the following default keysize (in bits) and enforces the
following restriction:

KeyPairGenerator

Table 4-8 The SunRsaSign Provider Keysize Restrictions

Alg. Name Default Keysize Restrictions/Comments

RSA 2048 Keysize must range between
512 and 65536 bits

The SunJSSE Provider
The Java Secure Socket Extension (JSSE) was originally released as a separate
"Optional Package" (also briefly known as a "Standard Extension"), and was available
for JDK 1.2.n and 1.3.n. The SunJSSE provider was introduced as part of this release.

In earlier JDK releases, there were no RSA signature providers available in the JDK,
therefore SunJSSE had to provide its own RSA implementation in order to use
commonly available RSA-based certificates. JDK 5 introduced the SunRsaSign provider,
which provides all the functionality (and more) of the SunJSSE provider. Applications
targeted at JDK 5.0 and later should request instances of the SunRsaSign provider
instead. For backward compatibility, the RSA algorithms are still available through this
provider, but are actually implemented in the SunRsaSign provider.

Algorithms

The following algorithms are available in the SunJSSE provider:

Engine Algorithm Name(s)

KeyFactory RSA

Note: The SunJSSE provider is for backwards
compatibility with older releases, and should
no longer be used for KeyFactory.

Chapter 4
The SunJSSE Provider

4-8

Engine Algorithm Name(s)

KeyManagerFactory PKIX: A factory for X509ExtendedKeyManager
instances that manage X.509 certificate-based
key pairs for local side authentication
according to the rules defined by the IETF
PKIX working group in RFC 5280. This
KeyManagerFactory currently supports
initialization using a KeyStore object or
javax.net.ssl.KeyStoreBuilderParameters.

SunX509: A factory for
X509ExtendedKeyManager instances that
manage X.509 certificate-based key pairs for
local side authentication, but with less strict
checking of certificate usage/validity and chain
verification. This KeyManagerFactory supports
initialization using a Keystore object, but does
not currently support initialization using the
class
javax.net.ssl.ManagerFactoryParameters.

Note: The SunX509 factory is for backwards
compatibility with older releases, and should
no longer be used.

KeyPairGenerator RSA

Note: The SunJSSE provider is for backwards
compatibility with older releases, and should
no longer be used for KeyPairGenerator.

KeyStore PKCS12

Note: The SunJSSE provider is for backwards
compatibility with older releases, and should
no longer be used for KeyStore.

Signature MD2withRSA

MD5withRSA

SHA1withRSA

Note: The SunJSSE provider is for backwards
compatibility with older releases, and should
no longer be used for Signature.

SSLContext SSLv3

TLSv1

TLSv1.1

TLSv1.2

DTLSv1.0

DTLSv1.2

Chapter 4
The SunJSSE Provider

4-9

http://www.ietf.org/rfc/rfc5280.txt

Engine Algorithm Name(s)

TrustManagerFactory PKIX: A factory for
X509ExtendedTrustManager instances that
validate certificate chains according to the
rules defined by the IETF PKIX working group
in RFC 5280. This TrustManagerFactory
currently supports initialization using a
KeyStore object or
javax.net.ssl.CertPathTrustManagerParame
ters.

SunX509: A factory for
X509ExtendedTrustManager instances that
validate certificate chains, but with less strict
checking of certificate usage/validity and chain
verification. This TrustManagerFactory
supports initialization using a Keystore object,
but does not currently support initialization
using the class
javax.net.ssl.ManagerFactoryParameters.

Note: The SunX509 factory is for backwards
compatibility with older releases, and should
no longer be used.

SunJSSE Provider Protocol Parameters

The SunJSSE provider supports the following protocol parameters:

Table 4-9 SunJSSE Provider Protocol Parameters

Protocol Enabled by Default for
Client

Enabled by Default for
Server

SSLv3 No (Unavailable [3]) No (Unavailable [3])

TLSv1 Yes Yes

TLSv1.1 Yes Yes

TLSv1.2 Yes Yes

SSLv2Hello [1] No Yes

DTLSv1.0 Yes Yes

DTLSv1.2 [2] Yes Yes

Footnote 1: The SSLv3, TLSv1, TLSv1.1 and TLSv1.2 protocols allow you to send
SSLv3, TLSv1, TLSv1.1 and TLSv1.2 ClientHellos encapsulated in an SSLv2 format
hello by using the SSLv2Hello psuedo-protocol.

Footnote 2: Both DTLSv1.0 and DTLSv1.2 are enabled.

Footnote 3: SSLv3 is enabled:

• Starting with JDK 8u31, the SSLv3 protocol (Secure Socket Layer) has been
deactivated and is not available by default. See the java.security.Security
property jdk.tls.disabledAlgorithms in the <java_home>/conf/security/
java.security file.

Chapter 4
The SunJSSE Provider

4-10

http://www.ietf.org/rfc/rfc5280.txt

• If SSLv3 is absolutely required, the protocol can be reactivated by removing
"SSLv3" from the jdk.tls.disabledAlgorithms property in the java.security file
or by dynamically setting this Security Property before JSSE is initialized.

• To enable SSLv3 protocol at deploy level, after following the above steps, edit the
deployment.properties file and add the following :
deployment.security.SSLv3=true

The following table illustrates which connection combinations are possible when using
SSLv2Hellos:

Table 4-10 Connections Possible Using SSLv2Hellos

Client Server Connection Possible?

Enabled Enabled Yes

Not enabled Enabled Yes (most interoperable:
SunJSSE default)

Enabled Not enabled No

Not enabled Not enabled Yes

Cipher Suites

SunJSSE supports a large number of cipher suites. The tables Table 4-11 and
Table 4-12 show the cipher suites supported by SunJSSE in preference order and the
release in which they were introduced.

Table 4-11 lists the cipher suites that are enabled by default. Table 4-12 shows cipher
suites that are supported by SunJSSE but not enabled by default.

Note:

According to DTLS Version 1.0 and DTLS Version 1.2, RC4 cipher suites must
not be used with DTLS connections.

Cipher Suites That Are Enabled by Default

Table 4-11 Enabled Cipher Suites

Cipher Suite JDK 6 JDK 7 JDK 8 JDK 9

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
384

 X [1] X X

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA38
4

 X [1] X X

TLS_RSA_WITH_AES_256_CBC_SHA256 X [1] X X

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA3
84

 X [1] X X

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 X [1] X X

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 X [1] X X

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA X X X X

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA X X X X

Chapter 4
The SunJSSE Provider

4-11

http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc6347

Table 4-11 (Cont.) Enabled Cipher Suites

Cipher Suite JDK 6 JDK 7 JDK 8 JDK 9

TLS_RSA_WITH_AES_256_CBC_SHA X X X X

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA X X X X

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA X X X X

TLS_DHE_RSA_WITH_AES_256_CBC_SHA X X X X

TLS_DHE_DSS_WITH_AES_256_CBC_SHA X X X X

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
256

 X [1] X X

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA25
6

 X [1] X X

TLS_RSA_WITH_AES_128_CBC_SHA256 X [1] X X

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA2
56

 X [1] X X

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 X [1] X X

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 X [1] X X

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 X [1] X X

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA X X X X

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA X X X X

TLS_RSA_WITH_AES_128_CBC_SHA X X X X

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA X X X X

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA X X X X

TLS_DHE_RSA_WITH_AES_128_CBC_SHA X X X X

TLS_DHE_DSS_WITH_AES_128_CBC_SHA X X X X

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA X X X

TLS_ECDHE_RSA_WITH_RC4_128_SHA X X X X

SSL_RSA_WITH_RC4_128_SHA X X X

TLS_ECDH_ECDSA_WITH_RC4_128_SHA X X X X

TLS_ECDH_RSA_WITH_RC4_128_SHA X X X

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA
384

 X X

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA
256

 X X

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA38
4

 X

TLS_RSA_WITH_AES_256_GCM_SHA384 X X

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA3
84

 X X

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 X X

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 X X

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 X X

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA25
6

 X X

TLS_RSA_WITH_AES_128_GCM_SHA256 X X

Chapter 4
The SunJSSE Provider

4-12

Table 4-11 (Cont.) Enabled Cipher Suites

Cipher Suite JDK 6 JDK 7 JDK 8 JDK 9

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA2
56

 X X

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 X X

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 X X

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 X X

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SH
A

X X X X

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA X X X X

SSL_RSA_WITH_3DES_EDE_CBC_SHA X X X X

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA X X X X

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA X X X X

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA X X X X

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA X X X X

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
384

X

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 X

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 X

SSL_RSA_WITH_RC4_128_MD5 X X X

TLS_EMPTY_RENEGOTIATION_INFO_SCSV[2] u22+ X X

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
384

X

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 X

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 X

Footnote 1: Cipher suites with SHA384 and SHA256 are available only for TLS 1.2 or
later.

Footnote 2: TLS_EMPTY_RENEGOTIATION_INFO_SCSV is a new pseudo-cipher suite to support
RFC 5746. See Transport Layer Security (TLS) Renegotiation Issue in Java Secure
Socket Extension (JSSE) Reference Guide.

Cipher Suites That Are Not Enabled by Default

Table 4-12 Not Enabled Cipher Suites

Cipher Suite JDK 6 JDK 7 JDK 8 JDK 9

TLS_DH_anon_WITH_AES_256_GCM_SHA384 X X

TLS_DH_anon_WITH_AES_128_GCM_SHA256 X X

TLS_DH_anon_WITH_AES_256_CBC_SHA256 X X X

TLS_ECDH_anon_WITH_AES_256_CBC_SHA X X X X

TLS_DH_anon_WITH_AES_256_CBC_SHA X X X X

TLS_DH_anon_WITH_AES_128_CBC_SHA256 X X X

TLS_ECDH_anon_WITH_AES_128_CBC_SHA X X X X

TLS_DH_anon_WITH_AES_128_CBC_SHA X X X X

Chapter 4
The SunJSSE Provider

4-13

Table 4-12 (Cont.) Not Enabled Cipher Suites

Cipher Suite JDK 6 JDK 7 JDK 8 JDK 9

TLS_ECDH_anon_WITH_RC4_128_SHA X X X X

SSL_DH_anon_WITH_RC4_128_MD5 X X X X

TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA X X X X

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA X X X X

TLS_RSA_WITH_NULL_SHA256 X X X

TLS_ECDHE_ECDSA_WITH_NULL_SHA X X X X

TLS_ECDHE_RSA_WITH_NULL_SHA X X X X

SSL_RSA_WITH_NULL_SHA X X X X

TLS_ECDH_ECDSA_WITH_NULL_SHA X X X X

TLS_ECDH_RSA_WITH_NULL_SHA X X X X

TLS_ECDH_anon_WITH_NULL_SHA X X X X

SSL_RSA_WITH_NULL_MD5 X X X X

SSL_RSA_WITH_DES_CBC_SHA X X [1] X X

SSL_DHE_RSA_WITH_DES_CBC_SHA X X [1] X X

SSL_DHE_DSS_WITH_DES_CBC_SHA X X [1] X X

SSL_DH_anon_WITH_DES_CBC_SHA X X [1] X X

SSL_RSA_EXPORT_WITH_RC4_40_MD5 X X [2] X X

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 X X [2] X X

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA X X [2] X X

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA X X [2] X X

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA X X [2] X X

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA X X [2] X X

TLS_KRB5_WITH_RC4_128_SHA X X X X

TLS_KRB5_WITH_RC4_128_MD5 X X X X

TLS_KRB5_WITH_3DES_EDE_CBC_SHA X X X X

TLS_KRB5_WITH_3DES_EDE_CBC_MD5 X X X X

TLS_KRB5_WITH_DES_CBC_SHA X X [1] X X

TLS_KRB5_WITH_DES_CBC_MD5 X X [1] X X

TLS_KRB5_EXPORT_WITH_RC4_40_SHA X X [2] X X

TLS_KRB5_EXPORT_WITH_RC4_40_MD5 X X [2] X X

TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA X X [2] X X

TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5 X X [2] X X

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA X

TLS_ECDHE_RSA_WITH_RC4_128_SHA X

SSL_RSA_WITH_RC4_128_MD5 X

Footnote 1: RFC 5246 TLS 1.2 forbids the use of these suites. These can be used in
the SSLv3/TLS1.0/TLS1.1 protocols, but cannot be used in TLS 1.2 and later.

Footnote 2: RFC 4346 TLS 1.1 forbids the use of these suites. These can be used in
the SSLv3/TLS1.0 protocols, but cannot be used in TLS 1.1 and later.

Chapter 4
The SunJSSE Provider

4-14

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc4346.txt

Cipher suites that use AES_256 require the appropriate Java Cryptography Extension
(JCE) unlimited strength jurisdiction policy file set, which is included in the JDK. By
default, the active cryptography policy is unlimited. See Import Limits on Cryptographic
Algorithms.

Cipher suites that use Elliptic Curve Cryptography (ECDSA, ECDH, ECDHE,
ECDH_anon) require a JCE cryptographic provider that meets the following
requirements:

• The provider must implement ECC as defined by the classes and interfaces in the
packages java.security.spec and java.security.interfaces. The getAlgorithm()
method of elliptic curve key objects must return the string "EC".

• The provider must support the Signature algorithms SHA1withECDSA and
NONEwithECDSA, the KeyAgreement algorithm ECDH, and a KeyPairGenerator and
a KeyFactory for algorithm EC. If one of these algorithms is missing, SunJSSE
does not allow EC cipher suites to be used.

• The provider must support all the SECG curves referenced in RFC 4492
specification, section 5.1.1 (see also appendix A). In certificates, points should be
encoded using the uncompressed form and curves should be encoded using the
namedCurve choice, that is, using an object identifier.

If these requirements are not met, EC cipher suites may not be negotiated correctly.

Tighter Checking of EncryptedPreMasterSecret Version Numbers

Prior to the JDK 7 release, the SSL/TLS implementation did not check the version
number in PreMasterSecret, and the SSL/TLS client did not send the correct version
number by default. Unless the system property com.sun.net.ssl.rsaPreMasterSecretFix
is set to true, the TLS client sends the active negotiated version, but not the expected
maximum version supported by the client.

For compatibility, this behavior is preserved for SSL version 3.0 and TLS version 1.0.
However, for TLS version 1.1 or later, the implementation tightens checking the
PreMasterSecret version numbers as required by RFC 5246. Clients always send the
correct version number, and servers check the version number strictly. The system
property, com.sun.net.ssl.rsaPreMasterSecretFix, is not used in TLS 1.1 or later.

The SunJCE Provider
As described briefly in The SUN Provider, US export regulations at the time restricted
the type of cryptographic functionality that could be available in the JDK. A separate
API and reference implementation was developed that allowed applications to encrypt/
decrypt date. The Java Cryptographic Extension (JCE) was released as a
separate ”Optional Package” (also briefly known as a “Standard Extension”), and was
available for JDK 1.2x and 1.3x. During the development of JDK 1.4, regulations were
relaxed enough that JCE (and SunJSSE) could be bundled as part of the JDK.

The following algorithms are available in the SunJCE provider:

Table 4-13 The SunJCE Provider Algorithm Names for Engine Classes

Engine Algorithm Names

AlgorithmParameterGenerator DiffieHellman

Chapter 4
The SunJCE Provider

4-15

http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc5246.txt

Table 4-13 (Cont.) The SunJCE Provider Algorithm Names for Engine Classes

Engine Algorithm Names

AlgorithmParameters AES

Blowfish

DES

DESede

DiffieHellman

GCM

OAEP

PBE

PBES2

PBEWithHmacSHA1AndAES_128

PBEWithHmacSHA224AndAES_128

PBEWithHmacSHA256AndAES_128

PBEWithHmacSHA384AndAES_128

PBEWithHmacSHA512AndAES_128

PBEWithHmacSHA1AndAES_256

PBEWithHmacSHA224AndAES_256

PBEWithHmacSHA256AndAES_256

PBEWithHmacSHA384AndAES_256

PBEWithHmacSHA512AndAES_256

PBEWithMD5AndDES

PBEWithMD5AndTripleDES

PBEWithSHA1AndDESede

PBEWithSHA1AndRC2_40

PBEWithSHA1AndRC2_128

PBEWithSHA1AndRC4_40

PBEWithSHA1AndPC4_128

RC2

Cipher See Table 4-14

KeyAgreement DiffieHellman

KeyFactory DiffieHellman

KeyGenerator AES

ARCFOUR

Blowfish

DES

DESede

HmacMD5

HmacSHA1

HmacSHA224

HmacSHA256

HmacSHA384

HmacSHA512

RC2

KeyPairGenerator DiffieHellman

Chapter 4
The SunJCE Provider

4-16

Table 4-13 (Cont.) The SunJCE Provider Algorithm Names for Engine Classes

Engine Algorithm Names

KeyStore JCEKS

Mac HmacMD5

HmacSHA1

HmacSHA224

HmacSHA384

HmacSHA512

HmacSHA256

HmacSHA512/224

HmacSHA512/256

HmacPBESHA1

PBEWithHmacSHA1

PBEWithHmacSHA224

PBEWithHmacSHA256

PBEWithHmacSHA384

PBEWithHmacSHA512

SecretKeyFactory DES

DESede

PBEWithMD5AndDES

PBEWithMD5AndTripleDES

PBEWithSHA1AndDESede

PBEWithSHA1AndRC2_40

PBEWithSHA1AndRC2_128

PBEWithSHA1AndRC4_40

PBEWithSHA1AndRC4_128

PBKDF2WithHmacSHA1

PBKDF2WithHmacSHA224

PBKDF2WithHmacSHA256

PBKDF2WithHmacSHA384

PBKDF2WithHmacSHA512

PBEWithHmacSHA1AndAES_128

PBEWithHmacSHA224AndAES_128

PBEWithHmacSHA256AndAES_128

PBEWithHmacSHA384AndAES_128

PBEWithHmacSHA512AndAES_128

PBEWithHmacSHA1AndAES_256

PBEWithHmacSHA224AndAES_256

PBEWithHmacSHA256AndAES_256

PBEWithHmacSHA384AndAES_256

PBEWithHmacSHA512AndAES_256

The following table lists cipher transformations available in the SunJCE provider.

Chapter 4
The SunJCE Provider

4-17

Table 4-14 The SunJCE Provider Cipher Transformations

Algorithm Names Modes Paddings

AES ECB, CBC, PCBC, CTR, CTS,
CFB[1], CFB8..CFB128,
OFB[1], OFB8..OFB128

NoPadding, PKCS5Padding,
ISO10126Padding

AES GCM NoPadding

AESWrap ECB NoPadding

AESWrap_128 ECB NoPadding

AESWrap_192 ECB NoPadding

AESWrap_256 ECB NoPadding

ARCFOUR ECB NoPadding

Blowfish, DES, DESede, RC2 ECB, CBC, PCBC, CTR, CTS,
CFB[1], CFB8..CFB64,
OFB[1], OFB8..OFB64

NoPadding, PKCS5Padding,
ISO10126Padding

DESedeWrap CBC NoPadding

PBEWithMD5AndDES,

PBEWithMD5AndTripleDES
[2],

PBEWithSHA1AndDESede,

PBEWithSHA1AndRC2_40,

PBEWithSHA1AndRC2_128,

PBEWithSHA1AndRC4_40,

PBEWithSHA1AndRC4_128,

PBEWithHmacSHA1AndAES_
128,

PBEWithHmacSHA224AndAE
S_128,

PBEWithHmacSHA256AndAE
S_128,

PBEWithHmacSHA384AndAE
S_128,

PBEWithHmacSHA512AndAE
S_128,

PBEWithHmacSHA1AndAES_
256,

PBEWithHmacSHA224AndAE
S_256,

PBEWithHmacSHA256AndAE
S_256,

PBEWithHmacSHA384AndAE
S_256,

PBEWithHmacSHA512AndAE
S_256

CBC PKCS5Padding

Chapter 4
The SunJCE Provider

4-18

Table 4-14 (Cont.) The SunJCE Provider Cipher Transformations

Algorithm Names Modes Paddings

RSA ECB NoPadding,

PKCS1Padding,

OAEPPadding

OAEPWithMD5AndMGF1Pad
ding,

OAEPWithSHA1AndMGF1Pa
dding,

OAEPWithSHA-1AndMGF1Pa
dding,

OAEPWithSHA-224AndMGF1
Padding,

OAEPWithSHA-256AndMGF1
Padding,

OAEPWithSHA-384AndMGF1
Padding,

OAEPWithSHA-512AndMGF1
Padding

Footnote 1: CFB/OFB with no specified value defaults to the block size of the
algorithm. (i.e. AES is 128; Blowfish, DES, DESede, and RC2 are 64.)

Footnote 2: PBEWithMD5AndTripleDES is a proprietary algorithm that has not been
standardized.

Keysize Restrictions

The SunJCE provider uses the following default key sizes (in bits) and enforces the
following restrictions:

KeyGenerator

Table 4-15 The SunJCE Provider Key Size Restrictions

Algorithm Name Default Key size Restrictions/Comments

AES 128 Key size must be equal to
128, 192, or 256.

ARCFOUR (RC4) 128 Key size must range between
40 and 1024 (inclusive).

Blowfish 128 Key size must be a multiple of
8, ranging from 32 to 448
(inclusive).

DES 56 Key size must be equal to 56.

Chapter 4
The SunJCE Provider

4-19

Table 4-15 (Cont.) The SunJCE Provider Key Size Restrictions

Algorithm Name Default Key size Restrictions/Comments

DESede (Triple DES) 168 Key size must be equal to 112
or 168.

A key size of 112 will generate
a Triple DES key with 2
intermediate keys, and a key
size of 168 will generate a
Triple DES key with 3
intermediate keys.

Due to the "Meet-In-The-
Middle" problem, even though
112 or 168 bits of key material
are used, the effective key
size is 80 or 112 bits
respectively.

HmacMD5 512 No key size restriction.

HmacSHA1 512 No key size restriction.

HmacSHA224 224 No key size restriction.

HmacSHA256 256 No key size restriction.

HmacSHA384 384 No key size restriction.

HmacSHA512 512 No key size restriction.

RC2 128 Key size must range between
40 and 1024 (inclusive).

Note:

The various Password-Based Encryption (PBE) algorithms use various
algorithms to generate key data, and ultimately depends on the targeted
Cipher algorithm. For example,
”PBEWithMD5AndDES” will always generate 56–bit keys.

Table 4-16 KeyPairGenerator

Algorithm Name Default Key size Restrictions/Comments

Diffie-Hellman (DH) 2048 Key size must be a multiple of
64, ranging from 512 to 1024,
plus 1536, 2048, 3072, 4096,
6144, 8192.

Chapter 4
The SunJCE Provider

4-20

Table 4-17 AlgorithmParameterGenerator

Algorithm Name Default Key size Restrictions/Comments

Diffie-Hellman (DH) 2048 Key size must be a multiple of
64, ranging from 512 to 1024,
plus 2048 and 3072.

The SunJGSS Provider
The following algorithms are available in the SunJGSS provider:

Table 4-18 The SunJGSS Provider

OID Name

1.2.840.113554.1.2.2 Kerberos v5

1.3.6.1.5.5.2 SPNEGO

The SunSASL Provider
The following algorithms are available in the SunSASL provider:

Table 4-19 The SunSASL Provider Algorithm Names for Engine Classes

Engine Algorithm Names

SaslClient CRAM-MD5

DIGEST-MD5

EXTERNAL

NTLM

PLAIN

SaslServer CRAM-MD5

DIGEST-MD5

NTLM

The XMLDSig Provider
The following algorithms are available in the XMLDSig provider:

Table 4-20 The XMLDSig Provider Algorithm Names for Engine Classes

Engine Algorithm Names

KeyInfoFactory DOM

Chapter 4
The SunJGSS Provider

4-21

Table 4-20 (Cont.) The XMLDSig Provider Algorithm Names for Engine Classes

Engine Algorithm Names

TransformService http://www.w3.org/TR/2001/REC-xml-c14n-20010315 -
(CanonicalizationMethod.INCLUSIVE)
http://www.w3.org/TR/2001/REC-xml-
c14n-20010315#WithComments -
(CanonicalizationMethod.INCLUSIVE_WITH_COMMEN
TS)
http://www.w3.org/2001/10/xml-exc-c14n# -
(CanonicalizationMethod.EXCLUSIVE)
http://www.w3.org/2001/10/xml-exc-
c14n#WithComments -
(CanonicalizationMethod.EXCLUSIVE_WITH_COMME
NTS)
http://www.w3.org/2000/09/xmldsig#base64 -
(Transform.BASE64)
http://www.w3.org/2000/09/xmldsig#enveloped-
signature - (Transform.ENVELOPED)
http://www.w3.org/TR/1999/REC-xpath-19991116 -
(Transform.XPATH)
http://www.w3.org/2002/06/xmldsig-filter2 -
(Transform.XPATH2)
http://www.w3.org/TR/1999/REC-xslt-19991116 -
(Transform.XSLT)

XMLSignatureFactory DOM

The SunPCSC Provider
The SunPCSC provider enables applications to use the Java Smart Card I/O API to
interact with the PC/SC Smart Card stack of the underlying operating system. Consult
your operating system documentation for details.

On Solaris and Linux platforms, SunPCSC accesses the PC/SC stack via the
libpcsclite.so library. It looks for this library in the directories /usr/$LIBISA and /usr/
local/$LIBISA, where $LIBISA is expanded to lib/64 on 64-bit Solaris platforms and
lib64 on 64-bit Linux platforms. The system property sun.security.smartcardio.library
may also be set to the full filename of an alternate libpcsclite.so implementation. On
Windows platforms, SunPCSC always calls into winscard.dll and no Java-level
configuration is necessary or possible.

If PC/SC is available on the host platform, the SunPCSC implementation can be
obtained via TerminalFactory.getDefault() and TerminalFactory.getInstance("PC/SC").
If PC/SC is not available or not correctly configured, a getInstance() call will fail with a
NoSuchAlgorithmException and getDefault() will return a JRE built-in implementation
that does not support any terminals.

The following algorithms are available in the SunPCSC provider:

Chapter 4
The SunPCSC Provider

4-22

http://docs.oracle.com/javase/8/docs/jre/api/security/smartcardio/spec/

Table 4-21 The SunPCSC Provider Algorithm Names for Engine Classes

Engine Algorithm Names

TerminalFactory PC/SC

The SunMSCAPI Provider
The SunMSCAPI provider enables applications to use the standard JCA/JCE APIs to
access the native cryptographic libraries, certificates stores and key containers on the
Microsoft Windows platform. The SunMSCAPI provider itself does not contain
cryptographic functionality, it is simply a conduit between the Java environment and
the native cryptographic services on Windows.

The following algorithms are available in the SunMSCAPI provider:

Table 4-22 The SunMSCAPI Algorithm Names for Engine Classes

Engine Algorithm Names

Cipher RSA RSA/ECB/PKCS1Padding only
KeyPairGenerator RSA

KeyStore Windows-MY : The keystore type that
identifies the native Microsoft Windows MY
keystore. It contains the user's personal
certificates and associated private keys.

Windows-ROOT: The keystore type that
identifies the native Microsoft Windows ROOT
keystore. It contains the certificates of Root
certificate authorities and other self-signed
trusted certificates.

SecureRandom Windows-PRNG : The name of the native
pseudo-random number generation (PRNG)
algorithm.

Signature MD5withRSA

MD2withRSA

NONEwithRSA

SHA1withRSA

SHA256withRSA

SHA384withRSA

SHA512withRSA

Keysize Restrictions

The SunMSCAPI provider uses the following default keysizes (in bits) and enforce the
following restrictions:

KeyGenerator

Chapter 4
The SunMSCAPI Provider

4-23

Table 4-23 The SunMSCAPI Provider Keysize Restrictions

Alg. Name Default Keysize Restrictions/Comments

RSA 2048 Keysize ranges from 512 bits
to 16,384 bits (depending on
the underlying Microsoft
Windows cryptographic
service provider).

The SunEC Provider
The SunEC provider implements Elliptical Curve Cryptography (ECC). Compared to
traditional cryptosystems such as RSA, ECC offers equivalent security with smaller
key sizes, which results in faster computations, lower power consumption, and
memory and bandwidth savings.

Applications can now use the standard JCA/JCE APIs to access ECC functionality
without the dependency on external ECC libraries (via SunPKCS11), as was the case
in the JDK 6 release.

The following algorithms are available in the SunEC provider:

Table 4-24 The SunEC Provider Names for Engine Classes

Engine Algorithm Name(s)

AlgorithmParameters EC

KeyAgreement ECDH

KeyFactory EC

KeyPairGenerator EC

Signature NONEwithECDSA

SHA1withECDSA

SHA224withECDSA

SHA256withECDSA

SHA384withECDSA

SHA512withECDSA

NONEwithECDSAinP1363Format

SHA1withECDSAinP1363Format

SHA224withECDSAinP1363Format

SHA256withECDSAinP1363Format

SHA384withECDSAinP1363Format

SHA512withECDSAinP1363Format

Keysize Restrictions

The SunEC provider uses the following default keysizes (in bits) and enforces the
following restrictions:

KeyPairGenerator

Chapter 4
The SunEC Provider

4-24

Table 4-25 The SunEC Provider Keysize Restrictions

Alg. Name Default Keysize Restrictions/Comments

EC 256 Keysize must range from 112
to 571 (inclusive).

The OracleUcrypto Provider
The Solaris-only security provider OracleUcrypto leverages the Solaris Ucrypto library
to offload and delegate cryptographic operations supported by the Oracle SPARC T4
based on-core cryptographic instructions. The OracleUcrypto provider itself does not
contain cryptographic functionality; it is simply a conduit between the Java
environment and the Solaris Ucrypto library.

If the underlying Solaris Ucrypto library does not support a particular algorithm, then
the OracleUcrypto provider will not support it either. Consequently, at runtime, the
supported algorithms consists of the intersection of those that the Solaris Ucrypto
library supports and those that the OracleUcrypto provider recognizes.

The following algorithms are available in the OracleUcrypto provider:

Table 4-26 The OracleUcrypto Provider Algorithm Names for Engine Classes

Engine Algorithm Name(s)

Cipher AES

RSA

AES/ECB/NoPadding

AES/ECB/PKCS5Padding

AES/CBC/NoPadding

AES/CBC/PKCS5Padding

AES/CTR/NoPadding

AES/GCM/NoPadding

AES/CFB128/NoPadding

AES/CFB128/PKCS5Padding

AES_128/ECB/NoPadding

AES_192/ECB/NoPadding

AES_256/ECB/NoPadding

AES_128/CBC/NoPadding

AES_192/CBC/NoPadding

AES_256/CBC/NoPadding

AES_128/GCM/NoPadding

AES_192/GCM/NoPadding

AES_256/GCM/NoPadding

RSA/ECB/PKCS1Padding

RSA/ECB/NoPadding

Chapter 4
The OracleUcrypto Provider

4-25

Table 4-26 (Cont.) The OracleUcrypto Provider Algorithm Names for Engine
Classes

Engine Algorithm Name(s)

Signature MD5withRSA

SHA1withRSA

SHA256withRSA

SHA384withRSA

SHA512withRSA

MessageDigest MD5

SHA

SHA-224

SHA-256

SHA-384

SHA-512

SHA3–224

SHA3–256

SHA3–384

SHA3–512

Keysize Restrictions

The OracleUcrypto provider does not specify any default keysizes or keysize
restrictions; these are specified by the underlying Solaris Ucrypto library.

OracleUcrypto Provider Configuration File

The OracleUcrypto provider has a configuration file named ucrypto-solaris.cfg that
resides in the $JAVA_HOME/conf/security directory. Modify this configuration file to
specify which algorithms to disable by default. For example, the following configuration
file disables AES with CFB128 mode by default:

#
Configuration file for the OracleUcrypto provider
#
disabledServices = {
 Cipher.AES/CFB128/PKCS5Padding
 Cipher.AES/CFB128/NoPadding
}

The Apple Provider
The Apple provider implements a java.security.KeyStore that provides access to the
macOS Keychain.

The following algorithms are available in the Apple provider:

Chapter 4
The Apple Provider

4-26

Table 4-27 The Apple Provider Algorithm Name for Engine Classes

Engine Algorithm Name(s)

KeyStore KeychainStore

The JdkLDAP Provider
The JdkLDAP provider was introduced in JDK 9 as a replacement for the LDAP
CertStore implementation in the SUN provider.

The following algorithms are available in the JdkLDAP provider:

Table 4-28 The JdkLDAP Provider Algorithm Names for Engine Classes

Engine Algorithm Names

CertStore LDAP

The JdkSASL Provider
The following algorithms are available in the JdkSASL provider:

Table 4-29 The JdkSASL Provider Algorithm Names for Engine Classes

Engine Algorithm Names

SaslClient GSSAPI

SaslServer GSSAPI

Chapter 4
The JdkLDAP Provider

4-27

5
PKCS#11 Reference Guide

The Java platform defines a set of programming interfaces for performing
cryptographic operations. These interfaces are collectively known as the Java
Cryptography Architecture (JCA) and the Java Cryptography Extension (JCE). See
Java Cryptography Architecture (JCA) Reference Guide.

The cryptographic interfaces are provider-based. Specifically, applications talk to
Application Programming Interfaces (APIs), and the actual cryptographic operations
are performed in configured providers which adhere to a set of Service Provider
Interfaces (SPIs). This architecture supports different provider implementations. Some
providers may perform cryptographic operations in software; others may perform the
operations on a hardware token (for example, on a smartcard device or on a hardware
cryptographic accelerator).

The Cryptographic Token Interface Standard, PKCS#11, is produced by RSA Security
and defines native programming interfaces to cryptographic tokens, such as hardware
cryptographic accelerators and smartcards. Existing applications that use the JCA and
JCE APIs can access native PKCS#11 tokens with the PKCS#11 provider. No
modifications to the application are required. The only requirement is to properly
configure the provider.

Although an application can make use of most PKCS#11 features using existing APIs,
some applications might need more flexibility and capabilities. For example, an
application might want to deal with smartcards being removed and inserted
dynamically more easily. Or, a PKCS#11 token might require authentication for some
non-key-related operations and therefore, the application must be able to log into the
token without using keystore. The JCA gives applications greater flexibility in dealing
with different providers.

This document describes how native PKCS#11 tokens can be configured into the Java
platform for use by Java applications. It also describes how the JCA makes it easier
for applications to deal with different types of providers, including PKCS#11 providers.

SunPKCS11 Provider
The SunPKCS11 provider, in contrast to most other providers, does not implement
cryptographic algorithms itself. Instead, it acts as a bridge between the Java JCA and
JCE APIs and the native PKCS#11 cryptographic API, translating the calls and
conventions between the two.

This means that Java applications calling standard JCA and JCE APIs can, without
modification, take advantage of algorithms offered by the underlying PKCS#11
implementations, such as, for example,

• Cryptographic smartcards,

• Hardware cryptographic accelerators, and

• High performance software implementations.

5-1

Note:

Java SE only facilitates accessing native PKCS#11 implementations, it does
not itself include a native PKCS#11 implementation. However, cryptographic
devices such as Smartcards and hardware accelerators often come with
software that includes a PKCS#11 implementation, which you need to install
and configure according to manufacturer's instructions.

SunPKCS11 Requirements
The SunPKCS11 provider requires an implementation of PKCS#11 v2.0 or later to be
installed on the system. This implementation must take the form of a shared-object
library (.so on Solaris and Linux) or dynamic-link library (.dll on Windows). Please
consult your vendor documentation to find out if your cryptographic device includes
such a PKCS#11 implementation, how to configure it, and what the name of the library
file is.

The SunPKCS11 provider supports a number of algorithms, provided that the
underlying PKCS#11 implementation offers them. The algorithms and their
corresponding PKCS#11 mechanisms are listed in the table in SunPKCS11 Provider
Supported Algorithms.

SunPKCS11 Configuration
The SunPKCS11 provider is in the module jdk.crypto.cryptoki. To use the
provider, you must first install it statically or programmatically.

To install the provider statically, add the provider to the Java security properties file
(java-home/conf/security/java.security).

For example, here's a fragment of the java.security file that installs the SunPKCS11
provider with the configuration file /opt/bar/cfg/pkcs11.cfg.

configuration for security providers 1-12 ommitted
security.provider.13=SunPKCS11 /opt/bar/cfg/pkcs11.cfg

To install the provider dynamically, create an instance of the provider with the
appropriate configuration filename and then install it. Here is an example.

String configName = "/opt/bar/cfg/pkcs11.cfg";
Provider p = Security.getProvider("SunPKCS11");
p = p.configure(configName);
Security.addProvider(p);

To use more than one slot per PKCS#11 implementation, or to use more than one
PKCS#11 implementation, simply repeat the installation for each with the appropriate
configuration file. This will result in a SunPKCS11 provider instance for each slot of
each PKCS#11 implementation.

The configuration file is a text file that contains entries in the following format:

attribute=value

The valid values for attribute and value are described in the table in this section:

The two mandatory attributes are name and library.

Chapter 5
SunPKCS11 Requirements

5-2

Here is a sample configuration file:

name = FooAccelerator
library = /opt/foo/lib/libpkcs11.so

Comments are denoted by lines starting with the # (number) symbol.

Table 5-1 Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

library pathname of PKCS#11
implementation

This is the full pathname
(including extension) of the
PKCS#11 implementation; the
format of the pathname is
platform dependent. For
example, /opt/foo/lib/
libpkcs11.so might be the
pathname of a PKCS#11
implementation on Solaris and
Linux while C:\foo
\mypkcs11.dll might be the
pathname on Windows.

name name suffix of this provider
instance

This string is concatenated
with the prefix SunPKCS11- to
produce this provider
instance's name (that is, the
string returned by its
Provider.getName() method).
For example, if the name
attribute is "FooAccelerator",
then the provider instance's
name will be "SunPKCS11-
FooAccelerator".

description description of this provider
instance

This string will be returned by
the provider instance's
Provider.getInfo() method.
If none is specified, a default
description will be returned.

slot slot id This is the id of the slot that
this provider instance is to be
associated with. For example,
you would use 1 for the slot
with the id 1 under PKCS#11.
At most one of slot or
slotListIndex may be
specified. If neither is
specified, the default is a
slotListIndex of 0.

Chapter 5
SunPKCS11 Configuration

5-3

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

slotListIndex slot index This is the slot index that this
provider instance is to be
associated with. It is the index
into the list of all slots returned
by the PKCS#11 function
C_GetSlotList. For example,
0 indicates the first slot in the
list. At most one of slot or
slotListIndex may be
specified. If neither is
specified, the default is a
slotListIndex of 0.

enabledMechanisms brace enclosed, whitespace-
separated list of PKCS#11
mechanisms to enable

This is the list PKCS#11
mechanisms that this provider
instance should use, provided
that they are supported by
both the SunPKCS11 provider
and PKCS#11 token. All other
mechanisms will be ignored.
Each entry in the list is the
name of a PKCS#11
mechanism. Here is an
example that lists two
PKCS#11 mechanisms.

enabledMechanisms = {
 CKM_RSA_PKCS
 CKM_RSA_PKCS_KEY_PAIR_GEN
}

At most one of
enabledMechanisms or
disabledMechanisms may be
specified. If neither is
specified, the mechanisms
enabled are those that are
supported by both the
SunPKCS11 provider (see
SunPKCS11 Provider
Supported Algorithms) and the
PKCS#11 token.

Chapter 5
SunPKCS11 Configuration

5-4

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

disabledMechanisms brace enclosed, whitespace-
separated list of PKCS#11
mechanisms to disable

This is the list of PKCS#11
mechanisms that this provider
instance should ignore. Any
mechanism listed will be
ignored by the provider, even
if they are supported by the
token and the SunPKCS11
provider. The strings
SecureRandom and KeyStore
may be specified to disable
those services.
At most one of
enabledMechanisms or
disabledMechanisms may be
specified. If neither is
specified, the mechanisms
enabled are those that are
supported by both the
SunPKCS11 provider (see
SunPKCS11 Provider
Supported Algorithms) and the
PKCS#11 token.

attributes see below The attributes option can be
used to specify additional
PKCS#11 that should be set
when creating PKCS#11 key
objects. This makes it possible
to accomodate tokens that
require particular attributes.
For details, see the section
below.

Attributes Configuration

The attributes option allows you to specify additional PKCS#11 attributes that should
be set when creating PKCS#11 key objects. By default, the SunPKCS11 provider only
specifies mandatory PKCS#11 attributes when creating objects. For example, for RSA
public keys it specifies the key type and algorithm (CKA_CLASS and
CKA_KEY_TYPE) and the key values for RSA public keys (CKA_MODULUS and
CKA_PUBLIC_EXPONENT). The PKCS#11 library you are using will assign
implementation specific default values to the other attributes of an RSA public key, for
example that the key can be used to encrypt and verify messages (CKA_ENCRYPT
and CKA_VERIFY = true).

The attributes option can be used if you do not like the default values your PKCS#11
implementation assigns or if your PKCS#11 implementation does not support defaults
and requires a value to be specified explicitly. Note that specifying attributes that your
PKCS#11 implementation does not support or that are invalid for the type of key in
question may cause the operation to fail at runtime.

The option can be specified zero or more times, the options are processed in the order
specified in the configuration file as described below. The attributes option has the
format:

Chapter 5
SunPKCS11 Configuration

5-5

attributes(operation, keytype, keyalgorithm) = {
 name1 = value1
 [...]
}

Valid values for operation are:

• generate, for keys generated via a KeyPairGenerator or KeyGenerator

• import, for keys created via a KeyFactory or SecretKeyFactory. This also applies
to Java software keys automatically converted to PKCS#11 key objects when they
are passed to the initialization method of a cryptographic operation, for example
Signature.initSign().

• *, for keys created using either a generate or a create operation.

Valid values for keytype are CKO_PUBLIC_KEY, CKO_PRIVATE_KEY, and CKO_SECRET_KEY, for
public, private, and secret keys, respectively, and * to match any type of key.

Valid values for keyalgorithm are one of the CKK_xxx constants from the PKCS#11
specification, or * to match keys of any algorithm. The algorithms currently supported
by the SunPKCS11 provider are CKK_RSA, CKK_DSA, CKK_DH, CKK_AES,
CKK_DES, CKK_DES3, CKK_RC4, CKK_BLOWFISH, and CKK_GENERIC.

The attribute names and values are specified as a list of one or more name-value
pairs. name must be a CKA_xxx constant from the PKCS#11 specification, for example
CKA_SENSITIVE. value can be one of the following:

• A boolean value, true or false

• An integer, in decimal form (default) or in hexadecimal form if it begins with 0x.

• null, indicating that this attribute should not be specified when creating objects.

If the attributes option is specified multiple times, the entries are processed in the
order specified with the attributes aggregated and later attributes overriding earlier
ones. For example, consider the following configuration file excerpt:

attributes(*,CKO_PRIVATE_KEY,*) = {
 CKA_SIGN = true
}

attributes(*,CKO_PRIVATE_KEY,CKK_DH) = {
 CKA_SIGN = null
}

attributes(*,CKO_PRIVATE_KEY,CKK_RSA) = {
 CKA_DECRYPT = true
}

The first entry says to specify CKA_SIGN = true for all private keys. The second option
overrides that with null for Diffie-Hellman private keys, so the CKA_SIGN attribute will not
specified for them at all. Finally, the third option says to also specify CKA_DECRYPT =
true for RSA private keys. That means RSA private keys will have both CKA_SIGN =
true and CKA_DECRYPT = true set.

There is also a special form of the attributes option. You can write attributes =
compatibility in the configuration file. That is a shortcut for a whole set of attribute
statements. They are designed to provider maximum compatibility with existing Java
applications, which may expect, for example, all key components to be accessible and
secret keys to be useable for both encryption and decryption. The compatibility

Chapter 5
SunPKCS11 Configuration

5-6

attributes line can be used together with other attributes lines, in which case the
same aggregation and overriding rules apply as described earlier.

Accessing Network Security Services (NSS)
Network Security Services (NSS) is a set of open source security libraries whose
crypto APIs are based on PKCS#11 but it includes special features that are outside of
the PKCS#11 standard. The SunPKCS11 provider includes code to interact with these
NSS specific features, including several NSS specific configuration directives, which
are described below.

For best results, we recommend that you use the latest version of NSS available. It
should be at least version 3.12.

The SunPKCS11 provider uses NSS specific code when any of the nss configuration
directives described below are used. In that case, the regular configuration commands
library, slot, and slotListIndex cannot be used.

Table 5-2 NSS Attributes and Values

Attribute Value Description

nssLibraryDirectory directory containing the NSS
and NSPR libraries

This is the full pathname of the
directory containing the NSS
and NSPR libraries. It must be
specified unless NSS has
already been loaded and
initialized by another
component running in the
same process as the Java
VM.
Depending on your platform,
you may have to set
LD_LIBRARY_PATH or PATH (on
Windows) to include this
directory in order to allow the
operating system to locate the
dependent libraries.

nssSecmodDirectory directory containing the NSS
DB files

The full pathname of the
directory containing the NSS
configuration and key
information (secmod.db,
key3.db, and cert8.db). This
directive must be specified
unless NSS has already been
initialized by another
component (see above) or
NSS is used without database
files as described below.

Chapter 5
Accessing Network Security Services (NSS)

5-7

http://www.mozilla.org/projects/security/pki/nss/
http://www.mozilla.org/projects/nspr/

Table 5-2 (Cont.) NSS Attributes and Values

Attribute Value Description

nssDbMode one of readWrite, readOnly,
and noDb

This directives determines
how the NSS database is
accessed. In read-write mode,
full access is possible but only
one process at a time should
be accessing the databases.
Read-only mode disallows
modifications to the files.
The noDb mode allows NSS
to be used without database
files purely as a cryptographic
provider. It is not possible to
create persistent keys using
the PKCS11 KeyStore. This
mode is useful because NSS
includes highly optimized
implementations and
algorithms not currently
available in Oracle's bundled
Java-based crypto providers,
for example Elliptic Curve
Cryptography (ECC).

Chapter 5
Accessing Network Security Services (NSS)

5-8

Table 5-2 (Cont.) NSS Attributes and Values

Attribute Value Description

nssModule one of keystore, crypto,
fips, and trustanchors

NSS makes its functionality
available using several
different libraries and slots.
This directive determines
which of these modules is
accessed by this instance of
SunPKCS11.
The crypto module is the
default in noDb mode. It
supports crypto operations
without login but no persistent
keys.

The fips module is the default
if the NSS secmod.db has
been set to FIPS-140
compliant mode. In this mode,
NSS restricts the available
algorithms and the PKCS#11
attributes with which keys can
be created.

The keystore module is the
default in other configurations.
It supports persistent keys
using the PKCS11 KeyStore,
which are stored in the NSS
DB files. This module requires
login.

The trustanchors module
enables access to NSS trust
anchor certificates via the
PKCS11 KeyStore, if
secmod.db has been
configured to include the trust
anchor library.

Example 5-1 SunPKCS11 Configuration Files for NSS

NSS as a pure cryptography provider

name = NSScrypto
nssLibraryDirectory = /opt/tests/nss/lib
nssDbMode = noDb
attributes = compatibility

NSS as a FIPS 140 compliant crypto token

name = NSSfips
nssLibraryDirectory = /opt/tests/nss/lib
nssSecmodDirectory = /opt/tests/nss/fipsdb
nssModule = fips

Chapter 5
Accessing Network Security Services (NSS)

5-9

Troubleshooting PKCS#11
There could be issues with PKCS#11 which requires debugging. To show debug info
about Library, Slots, Token and Mechanism, add showInfo=true in <java-home>/
conf/security/sunpkcs11-solaris.cfg file.

For additional debugging info, users can start or restart the Java processes with one of
the following options:

• For general SunPKCS11 provider debugging info:

-Djava.security.debug=sunpkcs11

• For PKCS#11 keystore specific debugging info:

-Djava.security.debug=pkcs11keystore

Disabling PKCS#11 Providers and/or Individual PKCS#11
Mechanisms

As part of the troubleshooting process, it could be helpful to temporarily disable a
PKCS#11 provider or the specific mechanism of a given provider.

Please note that disabling a PKCS#11 provider, is only a temporary measure. By
disabling the PKCS#11 provider, the provider is no longer available which can cause
applications to break or have a performance impact. Once the issue has been
identified, only that specific mechanism should remain disabled.

Disabling PKCS#11 Providers

A PKCS#11 provider can be disabled by using one of the following methods:

1. Disable PKCS#11 for a single Java process. Start or restart the Java process with
the following Java command line flag:

-Dsun.security.pkcs11.enable-solaris=false

Note:

This step is only applicable to the SunPKCS11 provider when backed by the
default Solaris PKCS#11 provider files (sun.security.pkcs11.SunPKCS11, /conf/
security/sunpkcs11-solaris.cfg, and /conf/security/sunpkcs11-solaris.cfg).

2. Disable PKCS#11 for all Java processes run with a particular Java installation:
This can be done dynamically by using the API (not shown in this section) or
statically by editing the <java_home>/conf/security/java.security file and
commenting out the SunPKCS11 security provider (do not forget to re-number the
order of providers, if necessary) as shown below.

#
List of providers and their preference orders (see above):
#
security.provider.1=SUN
security.provider.2=SunRsaSign
security.provider.3=SunEC

Chapter 5
Troubleshooting PKCS#11

5-10

security.provider.4=SunJSSE
security.provider.5=SunJCE
security.provider.6=SunJGSS
security.provider.7=SunSASL
security.provider.8=XMLDSig
security.provider.9=SunPCSC
security.provider.10=JdkLDAP
security.provider.11=JdkSASL
security.provider.12=SunMSCAPI
#security.provider.13=SunPKCS11

Start or restart the Java processes being run on this installation of Java.

Disabling Specific Mechanisms

When an issue occurs in one of the mechanisms of PKCS#11, it can be resolved by
disabling only that particular mechanism, rather than the entire PKCS#11 provider (do
not forget to re-enable the PKCS#11 provider if it was disabled earlier).

For example, to disable the SecureRandom mechanism only, you can add
SecureRandom to the list of disabled mechanisms in the <java-home>/conf/
security/sunpkcs11-solaris.cfg file:

name = Solaris

description = SunPKCS11 accessing Solaris Cryptographic Framework

library = /usr/lib/$ISA/libpkcs11.so

handleStartupErrors = ignoreAll

Use the X9.63 encoding for EC points (do not wrap in an ASN.1 OctetString).
useEcX963Encoding = true

attributes = compatibility

disabledMechanisms = {
 CKM_DSA_KEY_PAIR_GEN
 SecureRandom
}

Application Developers
Java applications can use the existing JCA and JCE APIs to access PKCS#11 tokens
through the SunPKCS11 provider.

Token Login
You can login to the keystore using a Personal Identification Number and perform
PKCS#11 operations.

Certain PKCS#11 operations, such as accessing private keys, require a login using a
Personal Identification Number, or PIN, before the operations can proceed. The most
common type of operations that require login are those that deal with keys on the
token. In a Java application, such operations often involve first loading the keystore.
When accessing the PKCS#11 token as a keystore via the java.security.KeyStore
class, you can supply the PIN in the password input parameter to the load method.

Chapter 5
Application Developers

5-11

https://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.html#load-java.io.InputStream-char:A-

The PIN will then be used by the SunPKCS11 provider for logging into the token. Here
is an example.

char[] pin = ...;
KeyStore ks = KeyStore.getInstance("PKCS11");
ks.load(null, pin);

This is fine for an application that treats PKCS#11 tokens as static keystores. For an
application that wants to accommodate PKCS#11 tokens more dynamically, such as
smartcards being inserted and removed, you can use the new KeyStore.Builder class.
Here is an example of how to initialize the builder for a PKCS#11 keystore with a
callback handler.

KeyStore.CallbackHandlerProtection chp =
 new KeyStore.CallbackHandlerProtection(new MyGuiCallbackHandler());
KeyStore.Builder builder =
 KeyStore.Builder.newInstance("PKCS11", null, chp);

For the SunPKCS11 provider, the callback handler must be able to satisfy a
PasswordCallback, which is used to prompt the user for the PIN. Whenever the
application needs access to the keystore, it uses the builder as follows.

KeyStore ks = builder.getKeyStore();
Key key = ks.getKey(alias, null);

The builder will prompt for a password as needed using the previously configured
callback handler. The builder will prompt for a password only for the initial access. If
the user of the application continues using the same Smartcard, the user will not be
prompted again. If the user removes and inserts a different smartcard, the builder will
prompt for a password for the new card.

Depending on the PKCS#11 token, there may be non-key-related operations that also
require token login. Applications that use such operations can use the
java.security.AuthProvider class. The AuthProvider class extends from
java.security.Provider and defines methods to perform login and logout operations on
a provider, as well as to set a callback handler for the provider to use.

For the SunPKCS11 provider, the callback handler must be able to satisfy a
PasswordCallback, which is used to prompt the user for the PIN.

Here is an example of how an application might use an AuthProvider to log into the
token.

AuthProvider aprov = (AuthProvider)Security.getProvider("SunPKCS11");
aprov.login(subject, new MyGuiCallbackHandler());

Token Keys
Java Key objects may or may not contain actual key material.

• A software Key object does contain the actual key material and allows access to
that material.

• An unextractable key on a secure token (such as a smartcard) is represented by a
Java Key object that does not contain the actual key material. The Key object only
contains a reference to the actual key.

Applications and providers must use the correct interfaces to represent these different
types of Key objects. Software Key objects (or any Key object that has access to the

Chapter 5
Application Developers

5-12

https://docs.oracle.com/javase/9/docs/api/java/security/AuthProvider.html

actual key material) should implement the interfaces in the
java.security.interfaces and javax.crypto.interfaces packages (such
as DSAPrivateKey). Key objects representing unextractable token keys should only
implement the relevant generic interfaces in the java.security and
javax.crypto packages (PrivateKey, PublicKey, or SecretKey). Identification of the
algorithm of a key should be performed using the Key.getAlgorithm() method.

Note that a Key object for an unextractable token key can only be used by the provider
associated with that token.

Delayed Provider Selection
Java cryptography getInstance() methods, such as Cipher.getInstance("AES"), return
the implementation from the first provider that implemented the requested algorithm.
However, the JDK delays the selection of the provider until the relevant initialization
method is called. The initialization method accepts a Key object and can determine at
that point which provider can accept the specified Key object. This ensures that the
selected provider can use the specified Key object. (If an application attempts to use a
Key object for an unextractable token key with a provider that only accepts software
key objects, then the provider throws an InvalidKeyException. This is an issue for the
Cipher, KeyAgreement, Mac, and Signature classes.) The following represents the
affected initialization methods.

• Cipher.init(..., Key key, ...)

• KeyAgreement.init(Key key, ...)

• Mac.init(Key key, ...)

• Signature.initSign(PrivateKey privateKey)

Furthermore, if an application calls the initialization method multiple times (each time
with a different key, for example), the proper provider for the given key is selected
each time. In other words, a different provider may be selected for each initialization
call.

Although this delayed provider selection is hidden from the application, it does affect
the behavior of the getProvider() method for Cipher, KeyAgreement, Mac, and Signature.
If getProvider() is called before the initialization operation has occurred (and therefore
before provider selection has occurred), then the first provider that supports the
requested algorithm is returned. This may not be the same provider as the one
selected after the initialization method is called. If getProvider() is called after the
initialization operation has occurred, then the actual selected provider is returned. It is
recommended that applications only call getProvider() after they have called the
relevant initialization method.

In addition to getProvider(), the following additional methods are similarly affected.

• Cipher.getBlockSize

• Cipher.getExcemptionMechanism

• Cipher.getIV

• Cipher.getOutputSize

• Cipher.getParameters

• Mac.getMacLength

• Signature.getParameters

Chapter 5
Application Developers

5-13

https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/Cipher.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/KeyAgreement.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/Mac.html
https://docs.oracle.com/javase/9/docs/api/java/security/Signature.html

• Signature.setParameter

JAAS KeyStoreLoginModule

The JDK comes with a JAAS keystore login module, KeyStoreLoginModule, that
allows an application to authenticate using its identity in a specified keystore. After
authentication, the application would acquire its principal and credentials information
(certificate and private key) from the keystore. By using this login module and
configuring it to use a PKCS#11 token as a keystore, the application can acquire this
information from a PKCS#11 token.

Use the following options to configure the KeyStoreLoginModule to use a PKCS#11
token as the keystore.

• keyStoreURL="NONE"

• keyStoreType="PKCS11"

• keyStorePasswordURL=some_pin_url

where

some_pin_url
The location of the PIN. If the keyStorePasswordURL option is omitted, then the login
module will get the PIN via the application's callback handler, supplying it with a
PasswordCallback . Here is an example of a configuration file that uses a PKCS#11
token as a keystore.

other {
 com.sun.security.auth.module.KeyStoreLoginModule required
 keyStoreURL="NONE"
 keyStoreType="PKCS11"
 keyStorePasswordURL="file:/home/joe/scpin";
};

If more than one SunPKCS11 provider has been configured dynamically or in the
java.security security properties file, you can use the keyStoreProvider option to target
a specific provider instance. The argument to this option is the name of the provider.
For the SunPKCS11 provider, the provider name is of the form SunPKCS11-TokenName,
where TokenName is the name suffix that the provider instance has been configured
with, as detailed in the Table 5-1. For example, the following configuration file names
the PKCS#11 provider instance with name suffix SmartCard.

other {
 com.sun.security.auth.module.KeyStoreLoginModule required
 keyStoreURL="NONE"
 keyStoreType="PKCS11"
 keyStorePasswordURL="file:/home/joe/scpin"
 keyStoreProvider="SunPKCS11-SmartCard";
};

Some PKCS#11 tokens support login via a protected authentication path. For
example, a smartcard may have a dedicated PIN-pad to enter the pin. Biometric
devices will also have their own means to obtain authentication information. If the
PKCS#11 token has a protected authentication path, then use the protected=true
option and omit the keyStorePasswordURL option. Here is an example of a configuration
file for such a token.

Chapter 5
Application Developers

5-14

https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/KeyStoreLoginModule.html

other {
 com.sun.security.auth.module.KeyStoreLoginModule required
 keyStoreURL="NONE"
 keyStoreType="PKCS11"
 protected=true;
};

Tokens as JSSE Keystore and Trust Stores

To use PKCS#11 tokens as JSSE keystores or trust stores, the JSSE application can
use the APIs described in Token Login to instantiate a KeyStore that is backed by a
PKCS#11 token and pass it to its key manager and trust manager. The JSSE
application will then have access to the keys on the token.

JSSE also supports configuring the use of keystores and trust stores via system
properties, as described in the Java Secure Socket Extension (JSSE) Reference
Guide. To use a PKCS#11 token as a keystore or trust store, set the
javax.net.ssl.keyStoreType and javax.net.ssl.trustStoreType system properties,
respectively, to "PKCS11", and set the javax.net.ssl.keyStore and
javax.net.ssl.trustStore system properties, respectively, to NONE. To specify the use
of a specific provider instance, use the javax.net.ssl.keyStoreProvider and
javax.net.ssl.trustStoreProvider system properties (for example, "SunPKCS11-
SmartCard").

Using keytool and jarsigner with PKCS#11 Tokens
If the SunPKCS11 provider has been configured in the java.security security
properties file (located in the $JAVA_HOME/conf/security directory of the Java runtime),
then keytool and jarsigner can be used to operate on the PKCS#11 token by
specifying the following options.

• -keystore NONE

• -storetype PKCS11

Here an example of a command to list the contents of the configured PKCS#11 token.

keytool -keystore NONE -storetype PKCS11 -list

The PIN can be specified using the -storepass option. If none has been specified, then
keytool and jarsigner will prompt for the token PIN. If the token has a protected
authentication path (such as a dedicated PIN-pad or a biometric reader), then the -
protected option must be specified, and no password options can be specified.

If more than one SunPKCS11 provider has been configured in the java.security
security properties file, you can use the -providerName option to target a specific
provider instance. The argument to this option is the name of the provider.

• -providerName providerName

For the SunPKCS11 provider, providerName is of the form SunPKCS11-TokenName where:

TokenName
The name suffix that the provider instance has been configured with, as detailed in
Table 5-1. For example, the following command lists the contents of the PKCS#11
keystore provider instance with name suffix SmartCard.

Chapter 5
Using keytool and jarsigner with PKCS#11 Tokens

5-15

keytool -keystore NONE -storetype PKCS11 \
 -providerName SunPKCS11-SmartCard \
 -list

If the SunPKCS11 provider has not been configured in the java.security security
properties file, you can use the following options to instruct keytool and jarsigner to
install the provider dynamically.

• -providerClass sun.security.pkcs11.SunPKCS11

• -providerArg ConfigFilePath

ConfigFilePath
The path to the token configuration file. Here is an example of a command to list a
PKCS#11 keystore when the SunPKCS11 provider has not been configured in the
java.security file.

keytool -keystore NONE -storetype PKCS11 \
 -providerClass sun.security.pkcs11.SunPKCS11 \
 -providerArg /foo/bar/token.config \
 -list

Policy Tool

Note:

The Policy Tool is deprecated in JDK 9.

The keystore entry in the default policy implementation has the following syntax, which
accommodates a PIN and multiple PKCS#11 provider instances:

keystore "some_keystore_url", "keystore_type", "keystore_provider";
keystorePasswordURL "some_password_url";

Where

keystore_provider
The keystore provider name (for example, "SunPKCS11-SmartCard").

some_password_url
A URL pointing to the location of the token PIN. Both keystore_provider and the
keystorePasswordURL line are optional. If keystore_provider has not been specified,
then the first configured provider that supports the specified keystore type is used. If
the keystorePasswordURL line has not been specified, then no password is used.

Example 5-2 Keystore Policy Entry for a PKCS#11 Token

The following is an example keystore policy entry for a PKCS#11 token:

keystore "NONE", "PKCS11", "SunPKCS11-SmartCard";
keystorePasswordURL "file:/foo/bar/passwordFile";

Chapter 5
Policy Tool

5-16

Provider Developers
The java.security.Provider class enables provider developers to more easily support
PKCS#11 tokens and cryptographic services through provider services and parameter
support.

See Example Provider for an example of a simple provider designed to demonstrate
provider services and parameter support.

Provider Services
For each service implemented by the provider, there must be a property whose name
is the type of service (Cipher, Signature, etc), followed by a period and the name of the
algorithm to which the service applies. The property value must specify the fully
qualified name of the class implementing the service. Here is an example of a provider
setting KeyAgreement.DiffieHellman property to have the value
com.sun.crypto.provider.DHKeyAgreement.

put("KeyAgreement.DiffieHellman", "com.sun.crypto.provider.DHKeyAgreement")

The public static nested class Provider.Service encapsulates the properties of a
provider service (including its type, attributes, algorithm name, and algorithm aliases).
Providers can instantiate Provider.Service objects and register them by calling the
Provider.putService() method. This is equivalent to creating a Property entry and
calling the Provider.put() method. Note that legacy Property entries registered via
Provider.put are still supported.

Here is an example of a provider creating a Service object with the KeyAgreement type,
for the DiffieHellman algorithm, implemented by the class
com.sun.crypto.provider.DHKeyAgreement.

Service s = new Service(this, "KeyAgreement", "DiffieHellman",
 "com.sun.crypto.provider.DHKeyAgreement", null, null);
putService(s);

Using Provider.Servicee objects instead of legacy Property entries has a couple of
major benefits. One benefit is that it allows the provider to have greater flexibility when
Instantiating Engine Classes. Another benefit is that it allows the provider to test
Parameter Support. These features are discussed in detail next.

Instantiating Engine Classes

By default, the Java Cryptography framework looks up the provider property for a
particular service and directly instantiates the engine class registered for that property.
A provider can to override this behavior and instantiate the engine class for the
requested service itself.

To override the default behavior, the provider overrides the
Provider.Service.newInstance() method to add its custom behavior. For example, the
provider might call a custom constructor, or might perform initialization using
information not accessible outside the provider (or that are only known by the
provider).

Chapter 5
Provider Developers

5-17

https://docs.oracle.com/javase/9/docs/api/java/security/Provider.Service.html

Parameter Support
The Java Cryptography framework may attempt a fast check to determine whether a
provider's service implementation can use an application-specified parameter. To
perform this fast check, the framework calls Provider.Service.supportsParameter().

The framework relies on this fast test during delayed provider selection (see Delayed
Provider Selection). When an application invokes an initialization method and passes it
a Key object, the framework asks an underlying provider whether it supports the object
by calling its Service.supportsParameter() method. If supportsParameter() returns false,
the framework can immediately remove that provider from consideration. If
supportsParameter() returns true, the framework passes the Key object to that
provider's initialization engine class implementation. A provider that requires software
Key objects should override this method to return false when it is passed non-software
keys. Likewise, a provider for a PKCS#11 token that contains unextractable keys
should only return true for Key objects that it created, and which therefore correspond
to the keys on its respective token.

Note:

The default implementation of supportsParameter() returns true. This allows
existing providers to work without modification. However, because of this
lenient default implementation, the framework must be prepared to catch
exceptions thrown by providers that reject the Key object inside their
initialization engine class implementations. The framework treats these cases
the same as when supportsParameter() returns false.

SunPKCS11 Provider Supported Algorithms
Table 5-3 lists the Java algorithms supported by the SunPKCS11 provider and
corresponding PKCS#11 mechanisms needed to support them. When multiple
mechanisms are listed, they are given in the order of preference and any one of them
is sufficient.

Note:

SunPKCS11 can be instructed to ignore mechanisms by using the
disabledMechanisms and enabledMechanisms configuration directives (see
SunPKCS11 Configuration).

For Elliptic Curve mechanisms, the SunPKCS11 provider will only use keys that use
the namedCurve choice as encoding for the parameters and only allow the
uncompressed point format. The SunPKCS11 provider assumes that a token supports
all standard named domain parameters.

Chapter 5
SunPKCS11 Provider Supported Algorithms

5-18

Table 5-3 Java Agorithms Supported by the SunPKCS11 Provider

Java Algorithm PKCS#11 Mechanisms

Signature.MD2withRSA CKM_MD2_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.MD5withRSA CKM_MD5_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA1withRSA CKM_SHA1_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA224withRSA CKM_SHA224_RSA_PKCS,
CKM_RSA_PKCS, CKM_RSA_X_509

Signature.SHA256withRSA CKM_SHA256_RSA_PKCS,
CKM_RSA_PKCS, CKM_RSA_X_509

Signature.SHA384withRSA CKM_SHA384_RSA_PKCS,
CKM_RSA_PKCS, CKM_RSA_X_509

Signature.SHA512withRSA CKM_SHA512_RSA_PKCS,
CKM_RSA_PKCS, CKM_RSA_X_509

Signature.SHA1withDSA CKM_DSA_SHA1, CKM_DSA

Signature.NONEwithDSA CKM_DSA

Signature.SHA1withECDSA CKM_ECDSA_SHA1, CKM_ECDSA

Signature.SHA224withECDSA CKM_ECDSA

Signature.SHA256withECDSA CKM_ECDSA

Signature.SHA384withECDSA CKM_ECDSA

Signature.SHA512withECDSA CKM_ECDSA

Signature.NONEwithECDSA CKM_ECDSA

Cipher.RSA/ECB/PKCS1Padding CKM_RSA_PKCS

Cipher.ARCFOUR CKM_RC4

Cipher.DES/CBC/NoPadding CKM_DES_CBC

Cipher.DESede/CBC/NoPadding CKM_DES3_CBC

Cipher.AES/CBC/NoPadding CKM_AES_CBC

Cipher.Blowfish/CBC/NoPadding CKM_BLOWFISH_CBC

Cipher.RSA/ECB/NoPadding CKM_RSA_X_509

Cipher.AES/CTR/NoPadding CKM_AES_CTR

KeyAgreement.ECDH CKM_ECDH1_DERIVE

KeyAgreement.DiffieHellman CKM_DH_PKCS_DERIVE

KeyPairGenerator.RSA CKM_RSA_PKCS_KEY_PAIR_GEN

KeyPairGenerator.DSA CKM_DSA_KEY_PAIR_GEN

KeyPairGenerator.EC CKM_EC_KEY_PAIR_GEN

KeyPairGenerator.DiffieHellman CKM_DH_PKCS_KEY_PAIR_GEN

KeyGenerator.ARCFOUR CKM_RC4_KEY_GEN

KeyGenerator.DES CKM_DES_KEY_GEN

KeyGenerator.DESede CKM_DES3_KEY_GEN

KeyGenerator.AES CKM_AES_KEY_GEN

KeyGenerator.Blowfish CKM_BLOWFISH_KEY_GEN

Mac.HmacMD5 CKM_MD5_HMAC

Mac.HmacSHA1 CKM_SHA_1_HMAC

Mac.HmacSHA224 CKM_SHA224_HMAC

Chapter 5
SunPKCS11 Provider Supported Algorithms

5-19

Table 5-3 (Cont.) Java Agorithms Supported by the SunPKCS11 Provider

Java Algorithm PKCS#11 Mechanisms

Mac.HmacSHA256 CKM_SHA256_HMAC

Mac.HmacSHA384 CKM_SHA384_HMAC

Mac.HmacSHA512 CKM_SHA512_HMAC

MessageDigest.MD2 CKM_MD2

MessageDigest.MD5 CKM_MD5

MessageDigest.SHA1 CKM_SHA_1

MessageDigest.SHA-224 CKM_SHA224

MessageDigest.SHA-256 CKM_SHA256

MessageDigest.SHA-384 CKM_SHA384

MessageDigest.SHA-512 CKM_SHA512

KeyFactory.RSA Any supported RSA mechanism

KeyFactory.DSA Any supported DSA mechanism

KeyFactory.EC Any supported EC mechanism

KeyFactory.DiffieHellman Any supported Diffie-Hellman mechanism

SecretKeyFactory.ARCFOUR CKM_RC4

SecretKeyFactory.DES CKM_DES_CBC

SecretKeyFactory.DESede CKM_DES3_CBC

SecretKeyFactory.AES CKM_AES_CBC

SecretKeyFactory.Blowfish CKM_BLOWFISH_CBC

SecureRandom.PKCS11 CK_TOKEN_INFO has the CKF_RNG bit set

KeyStore.PKCS11 Always available

SunPKCS11 Provider KeyStore Requirements
The following describes the requirements placed by the SunPKCS11 provider's
KeyStore implementation on the underlying native PKCS#11 library.

Note:

Changes may be made in future releases to maximize interoperability with as
many existing PKCS#11 libraries as possible.

Read-Only Access

To map existing objects stored on a PKCS#11 token to KeyStore entries, the
SunPKCS11 provider's KeyStore implementation performs the following operations.

1. A search for all private key objects on the token is performed by calling
C_FindObjects[Init|Final]. The search template includes the following attributes:

• CKA_TOKEN = true

• CKA_CLASS = CKO_PRIVATE_KEY

Chapter 5
SunPKCS11 Provider KeyStore Requirements

5-20

2. A search for all certificate objects on the token is performed by calling
C_FindObjects[Init|Final]. The search template includes the following attributes:

• CKA_TOKEN = true

• CKA_CLASS = CKO_CERTIFICATE

3. Each private key object is matched with its corresponding certificate by retrieving
their respective CKA_ID attributes. A matching pair must share the same unique
CKA_ID.
For each matching pair, the certificate chain is built by following the issuer-
>subject path. From the end entity certificate, a call for C_FindObjects[Init|Final]
is made with a search template that includes the following attributes:

• CKA_TOKEN = true

• CKA_CLASS = CKO_CERTIFICATE

• CKA_SUBJECT = [DN of certificate issuer]

This search is continued until either no certificate for the issuer is found, or until a
self-signed certificate is found. If more than one certificate is found the first one is
used.

Once a private key and certificate have been matched (and its certificate chain
built), the information is stored in a private key entry with the CKA_LABEL value
from end entity certificate as the KeyStore alias.

If the end entity certificate has no CKA_LABEL, then the alias is derived from the
CKA_ID. If the CKA_ID can be determined to consist exclusively of printable
characters, then a String alias is created by decoding the CKA_ID bytes using the
UTF-8 charset. Otherwise, a hex String alias is created from the CKA_ID bytes
("0xFFFF...", for example).

If multiple certificates share the same CKA_LABEL, then the alias is derived from
the CKA_LABEL plus the end entity certificate issuer and serial number
("MyCert/CN=foobar/1234", for example).

4. Each certificate not part of a private key entry (as the end entity certificate) is
checked whether it is trusted. If the CKA_TRUSTED attribute is true, then a
KeyStore trusted certificate entry is created with the CKA_LABEL value as the
KeyStore alias. If the certificate has no CKA_LABEL, or if multiple certificates
share the same CKA_LABEL, then the alias is derived as described above.
If the CKA_TRUSTED attribute is not supported then no trusted certificate entries
are created.

5. Any private key or certificate object not part of a private key entry or trusted
certificate entry is ignored.

6. A search for all secret key objects on the token is performed by calling
C_FindObjects[Init|Final]. The search template includes the following attributes:

• CKA_TOKEN = true

• CKA_CLASS = CKO_SECRET_KEY

A KeyStore secret key entry is created for each secret key object, with the
CKA_LABEL value as the KeyStore alias. Each secret key object must have a
unique CKA_LABEL.

Chapter 5
SunPKCS11 Provider KeyStore Requirements

5-21

Write Access

To create new KeyStore entries on a PKCS#11 token to KeyStore entries, the
SunPKCS11 provider's KeyStore implementation performs the following operations.

1. When creating a KeyStore entry (during KeyStore.setEntry, for example),
C_CreateObject is called with CKA_TOKEN=true to create token objects for the
respective entry contents.
Private key objects are stored with CKA_PRIVATE=true. The KeyStore alias (UTF8-
encoded) is set as the CKA_ID for both the private key and the corresponding end
entity certificate. The KeyStore alias is also set as the CKA_LABEL for the end
entity certificate object.

Each certificate in a private key entry's chain is also stored. The CKA_LABEL is
not set for CA certificates. If a CA certificate is already in the token, a duplicate is
not stored.

Secret key objects are stored with CKA_PRIVATE=true. The KeyStore alias is set as
the CKA_LABEL.

2. If an attempt is made to convert a session object to a token object (for example, if
KeyStore.setEntry is called and the private key object in the specified entry is a
session ojbect), then C_CopyObject is called with CKA_TOKEN=true.

3. If multiple certificates in the token are found to share the same CKA_LABEL, then
the write capabilities to the token are disabled.

4. Since the PKCS#11 specification does not allow regular applications to set
CKA_TRUSTED=true (only token initialization applications may do so), trusted
certificate entries can not be created.

Miscellaneous

In addition to the searches listed above, the following searches may be used by the
SunPKCS11 provider's KeyStore implementation to perform internal functions.
Specifically, C_FindObjects[Init|Final] may be called with any of the following
attribute templates:

• CKA_TOKEN true
 CKA_CLASS CKO_CERTIFICATE
 CKA_SUBJECT [subject DN]

• CKA_TOKEN true
 CKA_CLASS CKO_SECRET_KEY
 CKA_LABEL [label]

• CKA_TOKEN true
 CKA_CLASS CKO_CERTIFICATE or CKO_PRIVATE_KEY
 CKA_ID [cka_id]

Example Provider
The following is an example of a simple provider that demonstrates features of the
Provider class.

package com.foo;

import java.io.*;
import java.lang.reflect.*;

Chapter 5
Example Provider

5-22

import java.security.*;
import javax.crypto.*;

/**
 * Example provider that demonstrates some Provider class features.
 *
 * . implement multiple different algorithms in a single class.
 * Previously each algorithm needed to be implemented in a separate class
 * (e.g. one for SHA-256, one for SHA-384, etc.)
 *
 * . multiple concurrent instances of the provider frontend class each
 * associated with a different backend.
 *
 * . it uses "unextractable" keys and lets the framework know which key
 * objects it can and cannot support
 *
 * Note that this is only a simple example provider designed to demonstrate
 * several of the new features. It is not explicitly designed for efficiency.
 */
public final class ExampleProvider extends Provider {

 // reference to the crypto backend that implements all the algorithms
 final CryptoBackend cryptoBackend;

 public ExampleProvider(String name, CryptoBackend cryptoBackend) {
 super(name, 1.0, "JCA/JCE provider for " + name);
 this.cryptoBackend = cryptoBackend;
 // register the algorithms we support (SHA-256, SHA-384, DESede, and AES)
 putService(new MyService
 (this, "MessageDigest", "SHA-256",
"com.foo.ExampleProvider$MyMessageDigest"));
 putService(new MyService
 (this, "MessageDigest", "SHA-384",
"com.foo.ExampleProvider$MyMessageDigest"));
 putService(new MyCipherService
 (this, "Cipher", "DES", "com.foo.ExampleProvider$MyCipher"));
 putService(new MyCipherService
 (this, "Cipher", "AES", "com.foo.ExampleProvider$MyCipher"));
 }

 // the API of our fictitious crypto backend
 static abstract class CryptoBackend {
 abstract byte[] digest(String algorithm, byte[] data);
 abstract byte[] encrypt(String algorithm, KeyHandle key, byte[] data);
 abstract byte[] decrypt(String algorithm, KeyHandle key, byte[] data);
 abstract KeyHandle createKey(String algorithm, byte[] keyData);
 }

 // the shell of the representation the crypto backend uses for keys
 private static final class KeyHandle {
 // fill in code
 }

 // we have our own ServiceDescription implementation that overrides newInstance()
 // that calls the (Provider, String) constructor instead of the no-args
constructor
 private static class MyService extends Service {

 private static final Class[] paramTypes = {Provider.class, String.class};

 MyService(Provider provider, String type, String algorithm,

Chapter 5
Example Provider

5-23

 String className) {
 super(provider, type, algorithm, className, null, null);
 }

 public Object newInstance(Object param) throws NoSuchAlgorithmException {
 try {
 // get the Class object for the implementation class
 Class clazz;
 Provider provider = getProvider();
 ClassLoader loader = provider.getClass().getClassLoader();
 if (loader == null) {
 clazz = Class.forName(getClassName());
 } else {
 clazz = loader.loadClass(getClassName());
 }
 // fetch the (Provider, String) constructor
 Constructor cons = clazz.getConstructor(paramTypes);
 // invoke constructor and return the SPI object
 Object obj = cons.newInstance(new Object[] {provider,
getAlgorithm()});
 return obj;
 } catch (Exception e) {
 throw new NoSuchAlgorithmException("Could not instantiate service",
e);
 }
 }
 }

 // custom ServiceDescription class for Cipher objects. See supportsParameter()
below
 private static class MyCipherService extends MyService {
 MyCipherService(Provider provider, String type, String algorithm,
 String className) {
 super(provider, type, algorithm, className);
 }
 // we override supportsParameter() to let the framework know which
 // keys we can support. We support instances of MySecretKey, if they
 // are stored in our provider backend, plus SecretKeys with a RAW encoding.
 public boolean supportsParameter(Object obj) {
 if (obj instanceof SecretKey == false) {
 return false;
 }
 SecretKey key = (SecretKey)obj;
 if (key.getAlgorithm().equals(getAlgorithm()) == false) {
 return false;
 }
 if (key instanceof MySecretKey) {
 MySecretKey myKey = (MySecretKey)key;
 return myKey.provider == getProvider();
 } else {
 return "RAW".equals(key.getFormat());
 }
 }
 }

 // our generic MessageDigest implementation. It implements all digest
 // algorithms in a single class. We only implement the bare minimum
 // of MessageDigestSpi methods
 private static final class MyMessageDigest extends MessageDigestSpi {
 private final ExampleProvider provider;
 private final String algorithm;

Chapter 5
Example Provider

5-24

 private ByteArrayOutputStream buffer;
 MyMessageDigest(Provider provider, String algorithm) {
 super();
 this.provider = (ExampleProvider)provider;
 this.algorithm = algorithm;
 engineReset();
 }
 protected void engineReset() {
 buffer = new ByteArrayOutputStream();
 }
 protected void engineUpdate(byte b) {
 buffer.write(b);
 }
 protected void engineUpdate(byte[] b, int ofs, int len) {
 buffer.write(b, ofs, len);
 }
 protected byte[] engineDigest() {
 byte[] data = buffer.toByteArray();
 byte[] digest = provider.cryptoBackend.digest(algorithm, data);
 engineReset();
 return digest;
 }
 }

 // our generic Cipher implementation, only partially complete. It implements
 // all cipher algorithms in a single class. We implement only as many of the
 // CipherSpi methods as required to show how it could work
 private static abstract class MyCipher extends CipherSpi {
 private final ExampleProvider provider;
 private final String algorithm;
 private int opmode;
 private MySecretKey myKey;
 private ByteArrayOutputStream buffer;
 MyCipher(Provider provider, String algorithm) {
 super();
 this.provider = (ExampleProvider)provider;
 this.algorithm = algorithm;
 }
 protected void engineInit(int opmode, Key key, SecureRandom random)
 throws InvalidKeyException {
 this.opmode = opmode;
 myKey = MySecretKey.getKey(provider, algorithm, key);
 if (myKey == null) {
 throw new InvalidKeyException();
 }
 buffer = new ByteArrayOutputStream();
 }
 protected byte[] engineUpdate(byte[] b, int ofs, int len) {
 buffer.write(b, ofs, len);
 return new byte[0];
 }
 protected int engineUpdate(byte[] b, int ofs, int len, byte[] out, int
outOfs) {
 buffer.write(b, ofs, len);
 return 0;
 }
 protected byte[] engineDoFinal(byte[] b, int ofs, int len) {
 buffer.write(b, ofs, len);
 byte[] in = buffer.toByteArray();
 byte[] out;
 if (opmode == Cipher.ENCRYPT_MODE) {

Chapter 5
Example Provider

5-25

 out = provider.cryptoBackend.encrypt(algorithm, myKey.handle, in);
 } else {
 out = provider.cryptoBackend.decrypt(algorithm, myKey.handle, in);
 }
 buffer = new ByteArrayOutputStream();
 return out;
 }
 // code for remaining CipherSpi methods goes here
 }

 // our SecretKey implementation. All our keys are stored in our crypto
 // backend, we only have an opaque handle available. There is no
 // encoded form of these keys.
 private static final class MySecretKey implements SecretKey {

 final String algorithm;
 final Provider provider;
 final KeyHandle handle;

 MySecretKey(Provider provider, String algorithm, KeyHandle handle) {
 super();
 this.provider = provider;
 this.algorithm = algorithm;
 this.handle = handle;
 }
 public String getAlgorithm() {
 return algorithm;
 }
 public String getFormat() {
 return null; // this key has no encoded form
 }
 public byte[] getEncoded() {
 return null; // this key has no encoded form
 }
 // Convert the given key to a key of the specified provider, if possible
 static MySecretKey getKey(ExampleProvider provider, String algorithm, Key
key) {
 if (key instanceof SecretKey == false) {
 return null;
 }
 // algorithm name must match
 if (!key.getAlgorithm().equals(algorithm)) {
 return null;
 }
 // if key is already an instance of MySecretKey and is stored
 // on this provider, return it right away
 if (key instanceof MySecretKey) {
 MySecretKey myKey = (MySecretKey)key;
 if (myKey.provider == provider) {
 return myKey;
 }
 }
 // otherwise, if the input key has a RAW encoding, convert it
 if (!"RAW".equals(key.getFormat())) {
 return null;
 }
 byte[] encoded = key.getEncoded();
 KeyHandle handle = provider.cryptoBackend.createKey(algorithm, encoded);
 return new MySecretKey(provider, algorithm, handle);
 }

Chapter 5
Example Provider

5-26

 }
}

Chapter 5
Example Provider

5-27

6
Java Authentication and Authorization
Service (JAAS)

JAAS Reference Guide in the JDK 8 documentation describes Java Authentication
and Authorization Service (JAAS), which enables you to authenticate users and
securely determine who is currently executing Java code, and authorize users to
ensure that they have the access control rights, or permissions, required to do the
actions performed.

JAAS Tutorials in the JDK 8 documentation provides tutorials about Java
Authentication and Authorization Service (JAAS) authentication and authorization.

Java Authentication and Authorization Service (JAAS): LoginModule Developer's
Guide shows you how to implement the LoginModule interface, which you plug into
an application to provide a particular type of authentication.

JAAS Reference Guide
See JAAS Reference Guide in the JDK 8 documentation for information about Java
Authentication and Authorization Service (JAAS), which enables you to do the
following:

• Authenticate users and securely determine who is currently executing Java code,
regardless of whether the code is running as an application, an applet, a bean, or
a servlet.

• Authorize users to ensure that they have the access control rights (permissions)
required to do the actions performed.

JAAS Tutorials
See JAAS Tutorials in the JDK 8 documentation for tutorials about Java Authentication
and Authorization Service (JAAS) authentication and authorization.

Java Authentication and Authorization Service (JAAS):
LoginModule Developer's Guide

The Java Authentication and Authorization Service (JAAS) was introduced as an
optional package to the Java 2 SDK, Standard Edition (J2SDK), v 1.3. JAAS was
integrated into the Java Standard Edition Development Kit starting with J2SDK 1.4.

JAAS provides subject-based authorization on authenticated identities. This document
focuses on the authentication aspect of JAAS, specifically the Interface LoginModule .

6-1

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/tutorials/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/tutorials/
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/spi/LoginModule.html

Who Should Read This Document

This document is intended for experienced programmers who require the ability to
write a Interface LoginModule implementing an authentication technology.

Related Documentation

This document assumes you have already read the following:

• Java Authentication and Authorization Service (JAAS) Reference Guide

It also discusses various classes and interfaces in the JAAS API. See the Javadoc API
documentation for the JAAS API specification for more detailed information:

• javax.security.auth

• com.sun.security.auth.callback

• javax.security.auth.kerberos

• com.sun.security.auth.login

• javax.security.auth.spi

• javax.security.auth.x500

• com.sun.security.auth

• com.sun.security.auth.callback

• com.sun.security.auth.login

• com.sun.security.auth.module

The following tutorials for JAAS authentication and authorization can be run by
everyone:

• JAAS Authentication Tutorial

• JAAS Authorization Tutorial

Similar tutorials for JAAS authentication and authorization, but which demonstrate the
use of a Kerberos LoginModule and thus which require a Kerberos installation, can be
found at

• JAAS Authentication

• JAAS Authorization

These two tutorials are a part of the JAAS and Java GSS-API Tutorial that utilize
Kerberos as the underlying technology for authentication and secure communication.

Introduction to LoginModule
LoginModules are plugged in under applications to provide a particular type of
authentication.

The Interface LoginModule documentation describes the interface that must be
implemented by authentication technology providers.

While applications write to the LoginContext Application Programming Interface (API),
authentication technology providers implement the LoginModule interface. A
Configuration specifies the LoginModule(s) to be used with a particular login application.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-2

https://docs.oracle.com/javase/9/docs/api/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/package-summary.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/callback/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/kerberos/package-summary.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/login/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/spi/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/x500/package-summary.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/package-summary.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/callback/package-summary.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/login/package-summary.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/package-summary.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/tutorials/GeneralAcnOnly.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/tutorials/GeneralAcnAndAzn.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/AcnOnly.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/AcnAndAzn.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/LoginContext.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/Configuration.html

Different LoginModules can be plugged in under the application without requiring any
modifications to the application itself.

The LoginContext is responsible for reading the Configuration and instantiating the
specified LoginModules. Each LoginModule is initialized with a Subject, a Interface
CallbackHandler, shared LoginModule state, and LoginModule-specific options.

The Subject represents the user or service currently being authenticated and is
updated by a LoginModule with relevant Interface Principal and credentials if
authentication succeeds. LoginModules use the CallbackHandler to communicate with
users (to prompt for user names and passwords, for example), as described in the
login method description. Note that the CallbackHandler may be null. A LoginModule that
requires a CallbackHandler to authenticate the Subject may throw a LoginException if it
was initialized with a null CallbackHandler. LoginModules optionally use the shared
state to share information or data among themselves.

The LoginModule-specific options represent the options configured for this LoginModule
in the login Configuration. The options are defined by the LoginModule itself and control
the behavior within it. For example, a LoginModule may define options to support
debugging/testing capabilities. Options are defined using a key-value syntax, such as
debug=true. The LoginModule stores the options as a Map so that the values may be
retrieved using the key. Note that there is no limit to the number of options a
LoginModule chooses to define.

The calling application sees the authentication process as a single operation invoked
via a call to the LoginContext's login method. However, the authentication process
within each LoginModule proceeds in two distinct phases. In the first phase of
authentication, the LoginContext's login method invokes the login method of each
LoginModule specified in the Configuration. The login method for a LoginModule
performs the actual authentication (prompting for and verifying a password for
example) and saves its authentication status as private state information. Once
finished, the LoginModule's login method returns true (if it succeeded) or false (if it
should be ignored), or it throws a LoginException to specify a failure. In the failure
case, the LoginModule must not retry the authentication or introduce delays. The
responsibility of such tasks belongs to the application. If the application attempts to
retry the authentication, each LoginModule's login method will be called again.

In the second phase, if the LoginContext's overall authentication succeeded (calls to
the relevant required, requisite, sufficient and optional LoginModules' login methods
succeeded), then the commit method for each LoginModule gets invoked. (For an
explanation of the LoginModule flags required, requisite, sufficient and optional, please
consult the Configuration documentation and Appendix B: Example Login
Configurations in the JAAS Reference Guide.) The commit method for a LoginModule
checks its privately saved state to see if its own authentication succeeded. If the
overall LoginContext authentication succeeded and the LoginModule's own
authentication succeeded, then the commit method associates the relevant Principals
(authenticated identities) and credentials (authentication data such as cryptographic
keys) with the Subject.

If the LoginContext's overall authentication failed (the relevant REQUIRED,
REQUISITE, SUFFICIENT and OPTIONAL LoginModules' login methods did not
succeed), then the abort method for each LoginModule gets invoked. In this case, the
LoginModule removes/destroys any authentication state originally saved.

Logging out a Subject involves only one phase. The LoginContext invokes the
LoginModule's logout method. The logout method for the LoginModule then performs the

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-3

https://docs.oracle.com/javase/9/docs/api/javax/security/auth/Subject.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/javase/9/docs/api/java/security/Principal.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/LoginException.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/Configuration.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixB
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixB

logout procedures, such as removing Principals or credentials from the Subject, or
logging session information.

Steps to Implement a LoginModule
The steps required in order to implement and test a LoginModule:

Step 1: Understand the Authentication Technology
The first thing you need to do is understand the authentication technology to be
implemented by your new LoginModule provider, and determine its requirements.

1. Determine whether or not your LoginModule will require some form of user
interaction (retrieving a user name and password, for example). If so, you will need
to become familiar with the Interface CallbackHandler and the
javax.security.auth.callback.

In that package you will find several possible Callback implementations to use.
(Alternatively, you can create your own Callback implementations.) The
LoginModule will invoke the CallbackHandler specified by the application itself and
passed to the LoginModule's initialize method. The LoginModule passes the
CallbackHandler an array of appropriate Callbacks. See the login method in Step 3.

Note:

It is possible for LoginModule implementations not to have any end-user
interactions. Such LoginModules would not need to access the callback
package.

2. Determine what configuration options you want to make available to the user, who
specifies configuration information in whatever form the current Configuration
implementation expects (for example, in files). For each option, decide the option
name and possible values.

For example, if a LoginModule may be configured to consult a particular
authentication server host, decide on the option's key name ("auth_server", for
example), as well as the possible server hostnames valid for that option
("server_one.example.com" and "server_two.example.com", for example).

Step 2: Name the LoginModule Implementation
Decide on the proper package and class name for your LoginModule.

For example, a LoginModule developed by IBM might be called com.ibm.auth.Module
where com.ibm.auth is the package name and Module is the name of the LoginModule
class implementation.

Step 3: Implement the Abstract LoginModule Methods
The LoginModule interface specifies five abstract methods that require implementations.

LoginModule.initialize Method

public void initialize (

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-4

https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/package-summary.html

 Subject subject,
 CallbackHandler handler,
 Map<java.lang.String, ?> sharedState,
 Map<java.lang.String, ?> options) { ... }

The initialize method is called to initialize the LoginModule with the relevant
authentication and state information.

This method is called by a LoginContext immediately after this LoginModule has been
instantiated, and prior to any calls to its other public methods. The method
implementation should store away the provided arguments for future use.

The initialize method may additionally peruse the provided sharedState to determine
what additional authentication state it was provided by other LoginModules, and may
also traverse through the provided options to determine what configuration options
were specified to affect the LoginModule's behavior. It may save option values in
variables for future use.

Note: JAAS LoginModules may use the options defined in PAM (use_first_pass,
try_first_pass, use_mapped_pass, and try_mapped_pass) to achieve single-sign on. See
Making Login Services Independent from Authentication Technologies for further
information.

Below is a list of options commonly supported by LoginModules. Note that the
following is simply a guideline. Modules are free to support a subset (or none) of the
following options.

• try_first_pass - If true, the first LoginModule in the stack saves the password
entered, and subsequent LoginModules also try to use it. If authentication fails, the
LoginModules prompt for a new password and retry the authentication.

• use_first_pass - If true, the first LoginModule in the stack saves the password
entered, and subsequent LoginModules also try to use it. LoginModules do not
prompt for a new password if authentication fails (authentication simply fails).

• try_mapped_pass - If true, the first LoginModule in the stack saves the password
entered, and subsequent LoginModules attempt to map it into their service-specific
password. If authentication fails, the LoginModules prompt for a new password
and retry the authentication.

• use_mapped_pass - If true, the first LoginModule in the stack saves the password
entered, and subsequent LoginModules attempt to map it into their service-specific
password. LoginModules do not prompt for a new password if authentication fails
(authentication simply fails).

• moduleBanner - If true, then when invoking the CallbackHandler, the LoginModule
provides a TextOutputCallback as the first Callback, which describes the
LoginModule performing the authentication.

• debug - If true, instructs a LoginModule to output debugging information.

The initialize method may freely ignore state or options it does not understand,
although it would be wise to log such an event if it does occur.

Note that the LoginContext invoking this LoginModule (and the other configured
LoginModules, as well), all share the same references to the provided Subject and
sharedState. Modifications to the Subject and sharedState will, therefore, be seen by all.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-5

http://www.oracle.com/us/sun/index.htm

LoginModule.login Method

boolean login() throws LoginException;

The login method is called to authenticate a Subject. This is phase 1 of authentication.

This method implementation should perform the actual authentication. For example, it
may cause prompting for a user name and password, and then attempt to verify the
password against a password database. Another example implementation may inform
the user to insert their finger into a fingerprint reader, and then match the input
fingerprint against a fingerprint database.

If your LoginModule requires some form of user interaction (retrieving a user name and
password, for example), it should not do so directly. That is because there are various
ways of communicating with a user, and it is desirable for LoginModules to remain
independent of the different types of user interaction. Rather, the LoginModule's login
method should invoke the handle method of the Interface CallbackHandler passed to
the initialize method to perform the user interaction and set appropriate results, such
as the user name and password. The LoginModule passes the CallbackHandler an array
of appropriate Callbacks, for example a NameCallbackfor the user name and a
PasswordCallbackfor the password, and the CallbackHandler performs the requested
user interaction and sets appropriate values in the Callbacks. For example, to process
a NameCallback, the CallbackHandler may prompt for a name, retrieve the value from the
user, and call the NameCallback's setName method to store the name.

The authentication process may also involve communication over a network. For
example, if this method implementation performs the equivalent of a kinit in Kerberos,
then it would need to contact the KDC. If a password database entry itself resides in a
remote naming service, then that naming service needs to be contacted, perhaps via
the Java Naming and Directory Interface (JNDI). Implementations might also interact
with an underlying operating system. For example, if a user has already logged into an
operating system like Solaris, Linux, macOS, or Windows NT, this method might
simply import the underlying operating system's identity information.

The login method should

1. Determine whether or not this LoginModule should be ignored. One example of
when it should be ignored is when a user attempts to authenticate under an
identity irrelevant to this LoginModule (if a user attempts to authenticate as root
using NIS, for example). If this LoginModule should be ignored, login should return
false. Otherwise, it should do the following:

2. Call the CallbackHandler handle method if user interaction is required.

3. Perform the authentication.

4. Store the authentication result (success or failure).

5. If authentication succeeded, save any relevant state information that may be
needed by the commit method.

6. Return true if authentication succeeds, or throw a LoginException such as
FailedLoginException if authentication fails.

Note that the login method implementation should not associate any new Principal or
credential information with the saved Subject object. This method merely performs the
authentication, and then stores away the authentication result and corresponding
authentication state. This result and state will later be accessed by the commit or abort

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-6

https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/LoginException.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/FailedLoginException.html

method. Note that the result and state should typically not be saved in the sharedState
Map, as they are not intended to be shared with other LoginModules.

An example of where this method might find it useful to store state information in the
sharedState Map is when LoginModules are configured to share passwords. In this case,
the entered password would be saved as shared state. By sharing passwords, the
user only enters the password once, and can still be authenticated to multiple
LoginModules. The standard conventions for saving and retrieving names and
passwords from the sharedState Map are the following:

• javax.security.auth.login.name - Use this as the shared state map key for saving/
retrieving a name.

• javax.security.auth.login.password - Use this as the shared state map key for
saving/retrieving a password.

If authentication fails, the login method should not retry the authentication. This is the
responsibility of the application. Multiple LoginContext login method calls by an
application are preferred over multiple login attempts from within LoginModule.login().

LoginModule.commit Method

boolean commit() throws LoginException;

The commit method is called to commit the authentication process. This is phase 2 of
authentication when phase 1 succeeds. It is called if the LoginContext's overall
authentication succeeded (that is, if the relevant REQUIRED, REQUISITE,
SUFFICIENT and OPTIONAL LoginModules succeeded.)

This method should access the authentication result and corresponding authentication
state saved by the login method.

If the authentication result denotes that the login method failed, then this commit
method should remove/destroy any corresponding state that was originally saved.

If the saved result instead denotes that this LoginModule's login method succeeded,
then the corresponding state information should be accessed to build any relevant
Principal and credential information. Such Principals and credentials should then be
added to the Subject stored away by the initialize method.

After adding Principals and credentials, dispensable state fields should be destroyed
expeditiously. Likely fields to destroy would be user names and passwords stored
during the authentication process.

The commit method should save private state indicating whether the commit succeeded
or failed.

The following chart depicts what a LoginModule's commit method should return. The
different boxes represent the different situations that may occur. For example, the top-
left corner box depicts what the commit method should return if both the previous call to
login succeeded and the commit method itself succeeded.

Table 6-1 LoginModule.commit method return values

 Login Status COMMIT: SUCCESS COMMIT: FAILURE

LOGIN: SUCCESS return TRUE throw EXCEPTION

LOGIN: FAILURE return FALSE return FALSE

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-7

LoginModule.abort Method

boolean abort() throws LoginException;

The abort method is called to abort the authentication process. This is phase 2 of
authentication when phase 1 fails. It is called if the LoginContext's overall
authentication failed.

This method first accesses this LoginModule's authentication result and corresponding
authentication state saved by the login (and possibly commit) methods, and then clears
out and destroys the information. Sample state to destroy would be user names and
passwords.

If this LoginModule's authentication attempt failed, then there shouldn't be any private
state to clean up.

The following charts depict what a LoginModule's abort method should return. This first
chart assumes that the previous call to login succeeded. For instance, the top-left
corner box depicts what the abort method should return if both the previous call to
login and commit succeeded, and the abort method itself also succeeded.

Table 6-2 LoginModule.abort method return values; login succeeded

 Login Status ABORT: SUCCESS ABORT: FAILURE

COMMIT: SUCCESS return TRUE throw EXCEPTION

COMMIT: FAILURE return TRUE throw EXCEPTION

LoginModule.logout Method

boolean logout() throws LoginException;

The logout method is called to log out a Subject.

This method removes Principals, and removes/destroys credentials associated with
the Subject during the commit operation. This method should not touch those
Principals or credentials previously existing in the Subject, or those added by other
LoginModules.

If the Subject has been marked read-only (the Subject's isReadOnly method returns
true), then this method should only destroy credentials associated with the Subject
during the commit operation (removing the credentials is not possible). If the Subject
has been marked as read-only and the credentials associated with the Subject during
the commit operation are not destroyable (they do not implement the Destroyable
interface), then this method may throw a LoginException.

The logout method should return true if logout succeeds, or otherwise throw a
LoginException.

Step 4: Choose or Write a Sample Application
Either choose an existing sample application for your testing, or write a new one.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-8

See Java Authentication and Authorization Service (JAAS) Reference Guide for
information about application requirements and a sample application you can use for
your testing.

Step 5: Compile the LoginModule and Application
Compile your new LoginModule and the application you will use for testing.

Step 6: Prepare for Testing
Prepare for testing the LoginModule.

Step 6a: Place Your LoginModule and Application Code in JAR Files

Place your LoginModule and application code in separate JAR files, in preparation for
referencing the JAR files in the policy in Step 6c: Set LoginModule and Application JAR
File Permissions. Here is a sample command for creating a JAR file:

jar cvf <JAR file name> <list of classes, separated by spaces>

This command creates a JAR file with the specified name containing the specified
classes.

For more information on the jar tool, see jar.

Step 6b: Decide Where to Store the JAR Files

The application can be stored essentially anywhere you like.

Your LoginModule can also be placed anywhere you (and other clients) like. If the
LoginModule is fully trusted, it can be placed in the JRE's lib/ext (standard extension)
directory.

You will need to test the LoginModule being located both in the lib/ext directory and
elsewhere because in one situation your LoginModule will need to explicitly be granted
Permissions in the Java Development Kit (JDK) required for any security-sensitive
operations it does, while in the other case such permissions are not needed.

If your LoginModule is placed in the JRE's lib/ext directory, it will be treated as an
installed extension and no permissions need to be granted, since the default system
Policy File Syntax grants all permissions to installed extensions.

If your LoginModule is placed anywhere else, the permissions need to be granted, for
example by grant statements in a policy file.

Decide where you will store the LoginModule JAR file for testing the case where it is not
an installed extension. In the next step, you grant permissions to the JAR file, in the
specified location.

Step 6c: Set LoginModule and Application JAR File Permissions

If your LoginModule and/or application performs security-sensitive tasks that will trigger
security checks (making network connections, reading or writing files on a local disk,
etc), it will need to be granted the required Permissions in the Java Development Kit
(JDK) if it is not an installed extension (see Step 6b: Decide Where to Store the JAR
Files) and it is run while a security manager is installed.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-9

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

Since LoginModules usually associate Principals and credentials with an authenticated
Subject, some types of permissions a LoginModule will typically require are
AuthPermissions with target names "modifyPrincipals", "modifyPublicCredentials", and
"modifyPrivateCredentials".

A sample statement granting permissions to a LoginModule whose code is in MyLM.jar
appears below. Such a statement could appear in a policy file. In this example, the
MyLM.jar file is assumed to be in the /localWork directory.

grant codeBase "file:/localWork/MyLM.jar" {
 permission javax.security.auth.AuthPermission "modifyPrincipals";
 permission javax.security.auth.AuthPermission "modifyPublicCredentials";
 permission javax.security.auth.AuthPermission "modifyPrivateCredentials";
};

Note:

Since a LoginModule is always invoked within an AccessController.doPrivileged
call, it should not have to call doPrivileged itself. If it does, it may inadvertently
open up a security hole. For example, a LoginModule that invokes the
application-provided CallbackHandler inside a doPrivileged call opens up a
security hole by permitting the application's CallbackHandler to gain access to
resources it would otherwise not have been able to access.

Step 6d: Create a Configuration Referencing the LoginModule

Because JAAS supports a pluggable authentication architecture, your new LoginModule
can be used without requiring modifications to existing applications. Only the login
Configuration needs to be updated in order to indicate use of a new LoginModule.

The default Configuration implementation from Oracle reads configuration information
from configuration files, as described in ConfigFile.

Create a configuration file to be used for testing. For example, to configure the
previously-mentioned hypothetical IBM LoginModule for an application, the
configuration file might look like this:

 AppName {
 com.ibm.auth.Module REQUIRED debug=true;
 };

where AppName should be whatever name the application uses to refer to this entry in
the login configuration file. The application specifies this name as the first argument to
the LoginContext constructor.

Step 7: Test Use of the LoginModule
Test your application and its use of the LoginModule. When you run the application,
specify the login configuration file to be used. For example, suppose your application
is named MyApp, it is located in MyApp.jar, and your configuration file is test.conf.

You could run the application and specify the configuration file via the following:

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-10

https://docs.oracle.com/javase/9/docs/api/javax/security/auth/AuthPermission.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/login/ConfigFile.html

java -classpath MyApp.jar
 -Djava.security.auth.login.config=test.conf MyApp

Type all that on one line. Multiple lines are used here for legibility.

To specify a policy file named my.policy and run the application with a security
manager installed, do the following:

java -classpath MyApp.jar -Djava.security.manager
 -Djava.security.policy=my.policy
 -Djava.security.auth.login.config=test.conf MyApp

Again, type all that on one line.

You may want to configure the LoginModule with a debug option to help ensure that it is
working correctly.

Debug your code and continue testing as needed. If you have problems, review the
steps above and ensure they are all completed.

Be sure to vary user input and the LoginModule options specified in the configuration
file.

Be sure to also include testing using different installation options (e.g., making the
LoginModule an installed extension or placing it on the class path) and execution
environments (with or without a security manager running). Installation options are
discussed in Step 6b: Decide Where to Store the JAR Files. In particular, in order to
ensure your LoginModule works when a security manager is installed and the
LoginModule and applications are not installed extensions, you need to test such an
installation and execution environment, after granting required permissions, as
described in Step 6c: Set LoginModule and Application JAR File Permissions.

1. If you find during testing that your LoginModule or application needs modifications,
make the modifications, recompile (Step 5: Compile the LoginModule and
Application).

2. Place the updated code in a JAR file (Step 6a: Place Your LoginModule and
Application Code in JAR Files).

3. Re-install the JAR file (Step 6b: Decide Where to Store the JAR Files).

4. If needed fix or add to the permissions (Step 6c: Set LoginModule and Application
JAR File Permissions).

5. If needed modify the login configuration file (Step 6d: Create a Configuration
Referencing the LoginModule).

6. Re-run the application and repeat these steps as needed.

Step 8: Document Your LoginModule Implementation
Write documentation for clients of your LoginModule.

Example documentation you may want to include is:

• A README or User Guide describing

1. The authentication process employed by your LoginModule implementation.

2. Information on how to install the LoginModule.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-11

3. Configuration options accepted by the LoginModule. For each option, specify
the option name and possible values (or types of values), as well as the
behavior the option controls.

4. The permissions required by your LoginModule when it is run with a security
manager (and it is not an installed extension).

• An example Configuration file that references your new LoginModule.

• An example policy file granting your LoginModule the required permissions.

• API documentation. Putting javadoc comments into your source code as you
write it will make the API javadocs easy to generate.

Step 9: Make LoginModule JAR File and Documents Available
Make your LoginModule JAR file and documentation available to clients.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-12

7
Java Generic Security Services (Java
GSS-API)

Java Generic Security Services (Java GSS-API) is used for securely exchanging
messages between communicating applications.

Java GSS-API and JAAS Tutorials for Use with Kerberos
See Java GSS-API and JAAS Tutorials for Use with Kerberos in the JDK 8
documentation for a series of tutorials demonstrating various aspects of Java
Authentication and Authorization Service (JAAS) and Java Generic Security Services
Application Program Interface (GSS-API).

Single Sign-on Using Kerberos in Java
See Single Sign-on Using Kerberos in Java in the JDK 8 documentation for more
information about how to use single sign-on based on the Kerberos V5 protocol.

Java GSS Advanced Security Programming
See Java GSS Advanced Security Programming in the JDK 8 documentation for
exercises that show you to use the Java GSS-API to build applications that
authenticate users, communicate securely with other applications and services, and
configure applications in a Kerberos environment to achieve Single Sign-On. In
addition, these exercises show you how to use stronger encryption algorithms in a
Kerberos environment and Java GSS mechanisms, such as SPNEGO, to secure the
association.

The Kerberos 5 GSS-API Mechanism
See The Kerberos 5 GSS-API Mechanism in the JDK 8 documentation for information
about Java Generic Security Services (Java GSS) for Kerberos 5.

7-1

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/single-signon.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-api-mechanism.html

8
Java Secure Socket Extension (JSSE)
Reference Guide

The Java Secure Socket Extension (JSSE) enables secure Internet communications. It
provides a framework and an implementation for a Java version of the SSL, TLS, and
DTLS protocols and includes functionality for data encryption, server authentication,
message integrity, and optional client authentication.

Introduction to JSSE
Data that travels across a network can easily be accessed by someone who is not the
intended recipient. When the data includes private information, such as passwords
and credit card numbers, steps must be taken to make the data unintelligible to
unauthorized parties. It is also important to ensure that the data has not been
modified, either intentionally or unintentionally, during transport. The Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) protocols were designed to help
protect the privacy and integrity of data while it is being transferred across a network.

The Java Secure Socket Extension (JSSE) enables secure Internet communications. It
provides a framework and an implementation for a Java version of the SSL and TLS
protocols and includes functionality for data encryption, server authentication,
message integrity, and optional client authentication. Using JSSE, developers can
provide for the secure passage of data between a client and a server running any
application protocol (such as HTTP, Telnet, or FTP) over TCP/IP. For an introduction
to SSL, see Secure Sockets Layer (SSL) Protocol Overview.

By abstracting the complex underlying security algorithms and handshaking
mechanisms, JSSE minimizes the risk of creating subtle but dangerous security
vulnerabilities. Furthermore, it simplifies application development by serving as a
building block that developers can integrate directly into their applications.

JSSE provides both an application programming interface (API) framework and an
implementation of that API. The JSSE API supplements the core network and
cryptographic services defined by the java.security and java.net packages by
providing extended networking socket classes, trust managers, key managers, SSL
contexts, and a socket factory framework for encapsulating socket creation behavior.
Because the SSLSocket class is based on a blocking I/O model, the Java Development
Kit (JDK) includes a nonblocking SSLEngine class to enable implementations to choose
their own I/O methods.

The JSSE API supports the following security protocols:

• SSL: version 3.0

• TLS: version 1.0, 1.1, and 1.2

• DTLS: versions 1.0 and 1.2

These security protocols encapsulate a normal bidirectional stream socket, and the
JSSE API adds transparent support for authentication, encryption, and integrity

8-1

protection.sions. Note that the JSSE implementation that is shipped with the JDK does
not implement SSL 2.0.

JSSE is a security component of the Java SE platform, and is based on the same
design principles found elsewhere in the Java Cryptography Architecture (JCA)
Reference Guide framework. This framework for cryptography-related security
components allows them to have implementation independence and, whenever
possible, algorithm independence. JSSE uses the Cryptographic Service Providers
defined by the JCA framework.

Other security components in the Java SE platform include the Java Authentication
and Authorization Service (JAAS) Reference Guide and the Java Security Tools. JSSE
encompasses many of the same concepts and algorithms as those in JCA but
automatically applies them underneath a simple stream socket API.

The JSSE API was designed to allow other SSL/TLS/DTLS protocol and Public Key
Infrastructure (PKI) implementations to be plugged in seamlessly. Developers can also
provide alternative logic to determine if remote hosts should be trusted or what
authentication key material should be sent to a remote host.

JSSE Features and Benefits
JSSE includes the following important benefits and features:

• Included as a standard component of the JDK

• Extensible, provider-based architecture

• Implemented in 100% pure Java

• Provides API support for SSL/TLS/DTLS

• Provides implementations of SSL 3.0, TLS (versions 1.0, 1.1, and 1.2), and DTLS
(versions 1.0 and 1.2)

• Includes classes that can be instantiated to create secure channels (SSLSocket,
SSLServerSocket, and SSLEngine)

• Provides support for cipher suite negotiation, which is part of the SSL/TLS/DTLS
handshaking used to initiate or verify secure communications

• Provides support for client and server authentication, which is part of the normal
SSL/TLS/DTLS handshaking

• Provides support for HTTP encapsulated in the SSL/TLS protocol, which allows
access to data such as web pages using HTTPS

• Provides server session management APIs to manage memory-resident SSL
sessions

• Provides support for server name indication extension, which facilitates secure
connections to virtual servers.

• Provides support for certificate status request extension (OCSP stapling), which
saves client certificate validation round-trips and resources.

• Provides support for Server Name Indication (SNI) Extension, which extends the
SSL/TLS/DTLS protocols to indicate what server name the client is attempting to
connect to during handshaking.

• Provides support for endpoint identification during handshaking, which prevents
man-in-the-middle attacks.

Chapter 8
Introduction to JSSE

8-2

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

• Provides support for cryptographic algorithm constraints, which provides fine-
grained control over algorithms negotiated by JSSE.

JSSE uses the following cryptographic algorithms:

Table 8-1 Cryptographic Algorithms Used by JSSE

Cryptographic Functionality Cryptographic Algorithm1 Key Lengths (Bits)2

Bulk encryption Advanced Encryption
Standard (AES)

2563

128

Bulk encryption Data Encryption Standard
(DES)

64 (56 effective)
64 (40 effective)

Bulk encryption Rivest Cipher 4 (RC4) 128
128 (40 effective)

Bulk encryption Triple DES (3DES) 192 (112 effective)

Hash algorithm Message Digest Algorithm
(MD5)

128

Hash algorithm Secure Hash Algorithm 1
(SHA1)

160

Hash algorithm Secure Hash Algorithm 224
(SHA224)

224

Hash algorithm Secure Hash Algorithm 256
(SHA256)

256

Hash algorithm Secure Hash Algorithm 384
(SHA384)

384

Hash algorithm Secure Hash Algorithm 512
(SHA512)

512

Authentication Digital Signature Algorithm
(DSA)

1024, 2048, 3072

Authentication Elliptic Curve Digital Signature
Algorithm (ECDSA)

160 through 512

Authentication and key
exchange

Rivest-Shamir-Adleman (RSA) 512 and larger

Key exchange Static Elliptic Curve Diffie-
Hellman (ECDH)

160 through 512

Key exchange Ephemeral Elliptic Curve
Diffie-Hellman (ECDHE)

160 through 512

Key agreement Diffie-Hellman (DH) 512, 768, 1024, 2048, 3072,
4096, 6144, 8192

1 The SunJSSE implementation uses the Java Cryptography Architecture (JCA) for all its cryptographic
algorithms.

2 A JSSE provider may disable or deactivate weak algorithms and weak keys.
3 Cipher suites that use AES_256 require the appropriate Java Cryptography Extension (JCE) unlimited

strength jurisdiction policy file set, which is included in the JDK. By default, the active cryptography policy
is unlimited. See Cryptographic Strength Configuration.

JSSE Standard API
The JSSE standard API, available in the javax.net and javax.net.ssl packages,
provides:

• Secure sockets tailored to client and server-side applications.

Chapter 8
Introduction to JSSE

8-3

• A non-blocking engine for producing and consuming streams of SSL/TLS/DTLS
data (SSLEngine).

• Factories for creating sockets, server sockets, SSL sockets, and SSL server
sockets. By using socket factories, you can encapsulate socket creation and
configuration behavior.

• A class representing a secure socket context that acts as a factory for secure
socket factories and engines.

• Key and trust manager interfaces (including X.509-specific key and trust
managers), and factories that can be used for creating them.

• A class for secure HTTP URL connections (HTTPS).

SunJSSE Provider
Oracle's implementation of Java SE includes a JSSE provider named SunJSSE, which
comes preinstalled and preregistered with the JCA. This provider supplies the
following cryptographic services:

• An implementation of the SSL 3.0, TLS (versions 1.0, 1.1, and 1.2), and DTLS
(versions 1.0 and 1.2) security protocols.

• An implementation of the most common SSL, TLS, and DTLS cipher suites. This
implementation encompasses a combination of authentication, key agreement,
encryption, and integrity protection.

• An implementation of an X.509-based key manager that chooses appropriate
authentication keys from a standard JCA keystore.

• An implementation of an X.509-based trust manager that implements rules for
certificate chain path validation.

See The SunJSSE Provider.

JSSE Related Documentation
The following list contains links to online documentation and names of books about
related subjects:

JSSE API Documentation

• javax.net package

• javax.net.ssl package

Java SE Security

• The Java SE Security home page

• The Security Features in Java SE trail of the Java Tutorial

• Java PKI Programmers Guide

• Inside Java 2 Platform Security, Second Edition: Architecture, API Design and
Implementation

Chapter 8
Introduction to JSSE

8-4

https://docs.oracle.com/javase/9/docs/api/javax/net/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/package-summary.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://docs.oracle.com/javase/tutorial/security/
http://www.oracle.com/technetwork/java/javaee/gong-135902.html
http://www.oracle.com/technetwork/java/javaee/gong-135902.html

Cryptography

• The Cryptography and Security page by Dr. Ronald L. Rivest (no longer
maintained)

• Applied Cryptography, Second Edition by Bruce Schneier. John Wiley and Sons,
Inc., 1996.

• Cryptography Theory and Practice by Doug Stinson. CRC Press, Inc., 1995. Third
edition published in 2005.

• Cryptography & Network Security: Principles & Practice by William Stallings.
Prentice Hall, 1998. Fifth edition published in 2010.

Secure Sockets Layer (SSL)

• The Secure Sockets Layer (SSL) Protocol Version 3.0 RFC

• The TLS Protocol Version 1.0 RFC

• HTTP Over TLS RFC

• SSL and TLS: Designing and Building Secure Systems by Eric Rescorla. Addison
Wesley Professional, 2000.

• SSL and TLS Essentials: Securing the Web by Stephen Thomas. John Wiley and
Sons, Inc., 2000.

• Java 2 Network Security, Second Edition, by Marco Pistoia, Duane F Reller,
Deepak Gupta, Milind Nagnur, and Ashok K Ramani. Prentice Hall, 1999.

Transport Layer Security (TLS)

• The TLS Protocol Version 1.0 RFC

• The TLS Protocol Version 1.1 RFC

• The TLS Protocol Version 1.2 RFC

• Transport Layer Security (TLS) Extensions

• HTTP Over TLS RFC

Datagram Transport Layer Security (DTLS)

• The DTLS Protocol Version 1.0 RFC

• The DTLS Protocol Version 1.2 RFC

U.S. Encryption Policies

• U.S. Department of Commerce

• Technology CEO Council

• Current export policies: Encryption and Export Administration Regulations (EAR)

• NIST Computer Security Publications

Terms and Definitions
The following are commonly used cryptography terms and their definitions.

Chapter 8
Terms and Definitions

8-5

http://people.csail.mit.edu/rivest/crypto-security.html
https://www.rfc-editor.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2246.txt
https://www.ietf.org/rfc/rfc4346.txt
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc6066.txt
http://www.ietf.org/rfc/rfc2818.txt
https://tools.ietf.org/html/rfc4347.txt
https://tools.ietf.org/html/rfc6347.txt
http://www.commerce.gov/
http://www.techceocouncil.org
https://www.bis.doc.gov/index.php/policy-guidance/encryption
http://csrc.nist.gov/publications/index.html

authentication
The process of confirming the identity of a party with whom one is communicating.

certificate
A digitally signed statement vouching for the identity and public key of an entity
(person, company, and so on). Certificates can either be self-signed or issued by a
Certificate Authority (CA) an entity that is trusted to issue valid certificates for other
entities. Well-known CAs include Comodo, Entrust, and GoDaddy. X509 is a common
certificate format that can be managed by the JDK's keytool.

cipher suite
A combination of cryptographic parameters that define the security algorithms and key
sizes used for authentication, key agreement, encryption, and integrity protection.

cryptographic hash function
An algorithm that is used to produce a relatively small fixed-size string of bits (called a
hash) from an arbitrary block of data. A cryptographic hash function is similar to a
checksum and has three primary characteristics: it’s a one-way function, meaning that
it is not possible to produce the original data from the hash; a small change in the
original data produces a large change in the resulting hash; and it doesn’t require a
cryptographic key.

Cryptographic Service Provider (CSP)
Sometimes referred to simply as providers for short, the Java Cryptography
Architecture (JCA) defines it as a package (or set of packages) that implements one
or more engine classes for specific cryptographic algorithms. An engine class defines
a cryptographic service in an abstract fashion without a concrete implementation.

Datagram Transport Layer Security (DTLS) Protocol
A protocol that manages client and server authentication, data integrity, and
encrypted communication between the client and server based on an unreliable
transport channel such as UDP.

decryption
See encryption/decryption.

digital signature
A digital equivalent of a handwritten signature. It is used to ensure that data
transmitted over a network was sent by whoever claims to have sent it and that the
data has not been modified in transit. For example, an RSA-based digital signature is
calculated by first computing a cryptographic hash of the data and then encrypting the
hash with the sender's private key.

encryption/decryption
Encryption is the process of using a complex algorithm to convert an original message
(cleartext) to an encoded message (ciphertext) that is unintelligible unless it is
decrypted. Decryption is the inverse process of producing cleartext from ciphertext.
The algorithms used to encrypt and decrypt data typically come in two categories:
secret key (symmetric) cryptography and public key (asymmetric) cryptography.

endpoint identification
An IPv4 or IPv6 address used to identify an endpoint on the network.
Endpoint identification procedures are handled during SSL/TLS handshake.

Chapter 8
Terms and Definitions

8-6

handshake protocol
The negotiation phase during which the two socket peers agree to use a new or
existing session. The handshake protocol is a series of messages exchanged over
the record protocol. At the end of the handshake, new connection-specific encryption
and integrity protection keys are generated based on the key agreement secrets in
the session.

java-home
Variable placeholder used throughout this document to refer to the directory where
the Java Development Kit (JDK) is installed.

key agreement
A method by which two parties cooperate to establish a common key. Each side
generates some data, which is exchanged. These two pieces of data are then
combined to generate a key. Only those holding the proper private initialization data
can obtain the final key. Diffie-Hellman (DH) is the most common example of a key
agreement algorithm.

key exchange
A method by which keys are exchanged. One side generates a private key and
encrypts it using the peer's public key (typically RSA). The data is transmitted to the
peer, who decrypts the key using the corresponding private key.

key manager/trust manager
Key managers and trust managers use keystores for their key material. A key
manager manages a keystore and supplies public keys to others as needed (for
example, for use in authenticating the user to others). A trust manager decides who to
trust based on information in the truststore it manages.

keystore/truststore
A keystore is a database of key material. Key material is used for a variety of
purposes, including authentication and data integrity. Various types of keystores are
available, including PKCS12 and Oracle's JKS.
Generally speaking, keystore information can be grouped into two categories: key
entries and trusted certificate entries. A key entry consists of an entity's identity and its
private key, and can be used for a variety of cryptographic purposes. In contrast, a
trusted certificate entry contains only a public key in addition to the entity's identity.
Thus, a trusted certificate entry can’t be used where a private key is required, such as
in a javax.net.ssl.KeyManager. In the JDK implementation of JKS, a keystore may
contain both key entries and trusted certificate entries.
A truststore is a keystore that is used when making decisions about what to trust. If
you receive data from an entity that you already trust, and if you can verify that the
entity is the one that it claims to be, then you can assume that the data really came
from that entity.
An entry should only be added to a truststore if the user trusts that entity. By either
generating a key pair or by importing a certificate, the user gives trust to that entry.
Any entry in the truststore is considered a trusted entry.
It may be useful to have two different keystore files: one containing just your key
entries, and the other containing your trusted certificate entries, including CA
certificates. The former contains private information, whereas the latter does not.
Using two files instead of a single keystore file provides a cleaner separation of the
logical distinction between your own certificates (and corresponding private keys) and
others' certificates. To provide more protection for your private keys, store them in a
keystore with restricted access, and provide the trusted certificates in a more publicly
accessible keystore if needed.

Chapter 8
Terms and Definitions

8-7

message authentication code (MAC)
Provides a way to check the integrity of information transmitted over or stored in an
unreliable medium, based on a secret key. Typically, MACs are used between two
parties that share a secret key in order to validate information transmitted between
these parties.
A MAC mechanism that is based on cryptographic hash functions is referred to as
HMAC. HMAC can be used with any cryptographic hash function, such as Message
Digest 5 (MD5) and the Secure Hash Algorithm (SHA-256), in combination with a
secret shared key. HMAC is specified in RFC 2104.

public-key cryptography
A cryptographic system that uses an encryption algorithm in which two keys are
produced. One key is made public, whereas the other is kept private. The public key
and the private key are cryptographic inverses; what one key encrypts only the other
key can decrypt. Public-key cryptography is also called asymmetric cryptography.

Record Protocol
A protocol that packages all data (whether application-level or as part of the
handshake process) into discrete records of data much like a TCP stream socket
converts an application byte stream into network packets. The individual records are
then protected by the current encryption and integrity protection keys.

secret-key cryptography
A cryptographic system that uses an encryption algorithm in which the same key is
used both to encrypt and decrypt the data. Secret-key cryptography is also called
symmetric cryptography.

Secure Sockets Layer (SSL) Protocol
A protocol that manages client and server authentication, data integrity, and
encrypted communication between the client and server.

session
A named collection of state information including authenticated peer identity, cipher
suite, and key agreement secrets that are negotiated through a secure socket
handshake and that can be shared among multiple secure socket instances.

Transport Layer Security (TLS) Protocol
A protocol that manages client and server authentication, data integrity, and
encrypted communication between the client and server based on a reliable transport
channel such as TCP.
TLS 1 is the successor of the SSL 3.0 protocol.

trust manager
See key manager/trust manager.

truststore
See keystore/truststore.

Secure Sockets Layer (SSL) Protocol Overview
Secure Sockets Layer (SSL) is the most widely used protocol for implementing
cryptography on the web. SSL uses a combination of cryptographic processes to
provide secure communication over a network. This section provides an introduction to
SSL and the cryptographic processes it uses.

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-8

SSL provides a secure enhancement to the standard TCP/IP sockets protocol used for
Internet communications. As shown in Table 8-2, the secure sockets layer is added
between the transport layer and the application layer in the standard TCP/IP protocol
stack. The application most commonly used with SSL is Hypertext Transfer Protocol
(HTTP), the protocol for Internet web pages. Other applications, such as Net News
Transfer Protocol (NNTP), Telnet, Lightweight Directory Access Protocol (LDAP),
Interactive Message Access Protocol (IMAP), and File Transfer Protocol (FTP), can be
used with SSL as well.

Table 8-2 TCP/IP Protocol Stack with SSL

TCP/IP Layer Protocol

Application Layer HTTP, NNTP, Telnet, FTP, and so on

Secure Sockets Layer SSL

Transport Layer TCP

Internet Layer IP

SSL was developed by Netscape in 1994, and with input from the Internet community,
has evolved to become a standard. It is now under the control of the international
standards organization, the Internet Engineering Task Force (IETF). The IETF
renamed SSL to Transport Layer Security (TLS), and released the first specification,
version 1.0, in January 1999. TLS 1.0 is a modest upgrade to the most recent version
of SSL, version 3.0. This upgrade corrected defects in previous versions and
prohibited the use of known weak algorithms. TLS 1.1 was released in April 2006, and
TLS 1.2 in August 2008.

Why Use SSL?

Transferring sensitive information over a network can be risky due to the following
issues:

• You can’t always be sure that the entity with whom you are communicating is
really who you think it is.

• Network data can be intercepted, so it’s possible that it can be read by an
unauthorized third party, sometimes known as an attacker.

• An attacker who intercepts data may be able to modify it before sending it on to
the receiver.

SSL addresses each of these issues. It addresses the first issue by optionally allowing
each of two communicating parties to ensure the identity of the other party in a
process called authentication. After the parties are authenticated, SSL provides an
encrypted connection between the two parties for secure message transmission.
Encrypting the communication between the two parties provides privacy and therefore
addresses the second issue. The encryption algorithms used with SSL include a
secure hash function, which is similar to a checksum. This ensures that data isn’t
modified in transit. The secure hash function addresses the third issue of data
integrity.

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-9

Note:

Both authentication and encryption are optional and depend on the negotiated
cipher suites between the two entities.

An e-commerce transaction is an obvious example of when to use SSL. In an e-
commerce transaction, it would be foolish to assume that you can guarantee the
identity of the server with whom you are communicating. It would be easy enough for
someone to create a phony website promising great services if only you enter your
credit card number. SSL allows you, the client, to authenticate the identity of the
server. It also allows the server to authenticate the identity of the client, although in
Internet transactions, this is seldom done.

After the client and the server are comfortable with each other's identity, SSL provides
privacy and data integrity through the encryption algorithms that it uses. This allows
sensitive information, such as credit card numbers, to be transmitted securely over the
Internet.

Although SSL provides authentication, privacy, and data integrity, it doesn’t provide
nonrepudiation services. Nonrepudiation means that an entity that sends a message
can’t later deny sending it. When the digital equivalent of a signature is associated with
a message, the communication can later be proved. SSL alone does not provide
nonrepudiation.

How SSL Works
One of the reasons that SSL is effective is that it uses several different cryptographic
processes. SSL uses public-key cryptography to provide authentication, and secret-
key cryptography with hash functions to provide for privacy and data integrity. Before
you can understand SSL, it’s helpful to understand these cryptographic processes.

Cryptographic Processes
The primary purpose of cryptography is to make it difficult for an unauthorized third
party to access and understand private communication between two parties. It is not
always possible to restrict all unauthorized access to data, but private data can be
made unintelligible to unauthorized parties through the process of encryption.
Encryption uses complex algorithms to convert the original message (cleartext) to an
encoded message (ciphertext). The algorithms used to encrypt and decrypt data that
is transferred over a network typically come in two categories: secret-key cryptography
and public-key cryptography.

Both secret-key cryptography and public-key cryptography depend on the use of an
agreed-upon cryptographic key or pair of keys. A key is a string of bits that is used by
the cryptographic algorithm or algorithms during the process of encrypting and
decrypting the data. A cryptographic key is like a key for a lock; only with the right key
can you open the lock.

Safely transmitting a key between two communicating parties is not a trivial matter. A
public key certificate enables a party to safely transmit its public key, while providing
assurance to the receiver of the authenticity of the public key. See Public Key
Certificates.

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-10

The descriptions of the cryptographic processes in secret-key cryptography and
public-key cryptography follow conventions widely used by the security community: the
two communicating parties are labeled with the names Alice and Bob. The
unauthorized third party, also known as the attacker, is named Charlie.

Secret-Key Cryptography
With secret-key cryptography, both communicating parties, Alice and Bob, use the
same key to encrypt and decrypt the messages. Before any encrypted data can be
sent over the network, both Alice and Bob must have the key and must agree on the
cryptographic algorithm that they will use for encryption and decryption

One of the major problems with secret-key cryptography is the logistical issue of how
to get the key from one party to the other without allowing access to an attacker. If
Alice and Bob are securing their data with secret-key cryptography, and if Charlie
gains access to their key, then Charlie can understand any secret messages he
intercepts between Alice and Bob. Not only can Charlie decrypt Alice's and Bob's
messages, but he can also pretend that he is Alice and send encrypted data to Bob.
Bob won’t know that the message came from Charlie, not Alice.

After the problem of secret key distribution is solved, secret-key cryptography can be a
valuable tool. The algorithms provide excellent security and encrypt data relatively
quickly. The majority of the sensitive data sent in an SSL session is sent using secret-
key cryptography.

Secret-key cryptography is also called symmetric cryptography because the same key
is used to both encrypt and decrypt the data. Well-known secret-key cryptographic
algorithms include Advanced Encryption Standard (AES), Triple Data Encryption
Standard (3DES), and Rivest Cipher 4 (RC4).

Public-Key Cryptography
Public-key cryptography solves the logistical problem of key distribution by using both
a public key and a private key. The public key can be sent openly through the network
while the private key is kept private by one of the communicating parties. The public
and the private keys are cryptographic inverses of each other; what one key encrypts,
the other key will decrypt.

Assume that Bob wants to send a secret message to Alice using public-key
cryptography. Alice has both a public key and a private key, so she keeps her private
key in a safe place and sends her public key to Bob. Bob encrypts the secret message
to Alice using Alice's public key. Alice can later decrypt the message with her private
key.

If Alice encrypts a message using her private key and sends the encrypted message
to Bob, then Bob can be sure that the data he receives comes from Alice; if Bob can
decrypt the data with Alice's public key, the message must have been encrypted by
Alice with her private key, and only Alice has Alice's private key. The problem is that
anybody else can read the message as well because Alice's public key is public.
Although this scenario does not allow for secure data communication, it does provide
the basis for digital signatures. A digital signature is one of the components of a public
key certificate, and is used in SSL to authenticate a client or a server. See Public Key
Certificates and Digital Signatures.

Public-key cryptography is also called asymmetric cryptography because different
keys are used to encrypt and decrypt the data. A well-known public key cryptographic
algorithm often used with SSL is the Rivest Shamir Adleman (RSA) algorithm. Another

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-11

public key algorithm used with SSL that is designed specifically for secret key
exchange is the Diffie-Hellman (DH) algorithm. Public-key cryptography requires
extensive computations, making it very slow. It is therefore typically used only for
encrypting small pieces of data, such as secret keys, rather than for the bulk of
encrypted data communications.

Comparison Between Secret-Key and Public-Key Cryptography
Both secret-key cryptography and public-key cryptography have strengths and
weaknesses. With secret-key cryptography, data can be encrypted and decrypted
quickly, but because both communicating parties must share the same secret key
information, the logistics of exchanging the key can be a problem. With public-key
cryptography, key exchange is not a problem because the public key does not need to
be kept secret, but the algorithms used to encrypt and decrypt data require extensive
computations, and are therefore very slow

Public Key Certificates

A public key certificate provides a safe way for an entity to pass on its public key to be
used in asymmetric cryptography. The public key certificate avoids the following
situation: if Charlie creates his own public key and private key, he can claim that he is
Alice and send his public key to Bob. Bob will be able to communicate with Charlie, but
Bob will think that he is sending his data to Alice.

A public key certificate can be thought of as the digital equivalent of a passport. It is
issued by a trusted organization and provides identification for the bearer. A trusted
organization that issues public key certificates is known as a Certificate Authority (CA).
The CA can be likened to a notary public. To obtain a certificate from a CA, one must
provide proof of identity. Once the CA is confident that the applicant represents the
organization it says it represents, the CA signs the certificate attesting to the validity of
the information contained within the certificate.

A public key certificate contains the following fields:

Issuer
The CA that issued the certificate. If a user trusts the CA that issued the certificate,
and if the certificate is valid, then the user can trust the certificate.

Period of validity
A certificate has an expiration date. This date should be checked when verifying the
validity of a certificate.

Subject
Includes information about the entity that the certificate represents.

Subject's public key
The primary piece of information that the certificate provides is the subject's public
key. All the other fields are provided to ensure the validity of this key.

Signature
The certificate is digitally signed by the CA that issued the certificate. The signature is
created using the CA's private key and ensures the validity of the certificate. Because
only the certificate is signed, not the data sent in the SSL transaction, SSL does not
provide for nonrepudiation.

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-12

If Bob only accepts Alice's public key as valid when she sends it in a public key
certificate, then Bob won’t be fooled into sending secret information to Charlie when
Charlie masquerades as Alice.

Multiple certificates may be linked in a certificate chain. When a certificate chain is
used, the first certificate is always that of the sender. The next is the certificate of the
entity that issued the sender's certificate. If more certificates are in the chain, then
each is that of the authority that issued the previous certificate. The final certificate in
the chain is the certificate for a root CA. A root CA is a public Certificate Authority that
is widely trusted. Information for several root CAs is typically stored in the client's
Internet browser. This information includes the CA's public key. Well-known CAs
include VeriSign, Entrust, and GTE CyberTrust.

Cryptographic Hash Functions
When sending encrypted data, SSL typically uses a cryptographic hash function to
ensure data integrity. The hash function prevents Charlie from tampering with data that
Alice sends to Bob.

A cryptographic hash function is similar to a checksum. The main difference is that
whereas a checksum is designed to detect accidental alterations in data, a
cryptographic hash function is designed to detect deliberate alterations. When data is
processed by a cryptographic hash function, a small string of bits, known as a hash, is
generated. The slightest change to the message typically makes a large change in the
resulting hash. A cryptographic hash function does not require a cryptographic key. A
hash function often used with SSL is Secure Hash Algorithm (SHA). SHA was
proposed by the U.S. National Institute of Standards and Technology (NIST).

Message Authentication Code
A message authentication code (MAC) is similar to a cryptographic hash, except that it
is based on a secret key. When secret key information is included with the data that is
processed by a cryptographic hash function, then the resulting hash is known as an
HMAC.

If Alice wants to be sure that Charlie does not tamper with her message to Bob, then
she can calculate an HMAC for her message and append the HMAC to her original
message. She can then encrypt the message plus the HMAC using a secret key that
she shares with Bob. When Bob decrypts the message and calculates the HMAC, he
will be able to tell if the message was modified in transit. With SSL, an HMAC is used
with the transmission of secure data.

Digital Signatures
Once a cryptographic hash is created for a message, the hash is encrypted with the
sender's private key. This encrypted hash is called a digital signature.

The SSL Handshake

Communication using SSL begins with an exchange of information between the client
and the server. This exchange of information is called the SSL handshake. The SSL
handshake includes the following stages:

1. Negotiating the cipher suite

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-13

http://www.nist.gov/index.html

The SSL session begins with a negotiation between the client and the server as to
which cipher suite they will use. A cipher suite is a set of cryptographic algorithms
and key sizes that a computer can use to encrypt data. The cipher suite includes
information about the public key exchange algorithms or key agreement
algorithms, and cryptographic hash functions. The client tells the server which
cipher suites it has available, and the server chooses the best mutually acceptable
cipher suite.

2. Authenticating the server's identity (optional)
In SSL, the authentication step is optional, but in the example of an e-commerce
transaction over the web, the client will generally want to authenticate the server.
Authenticating the server allows the client to be sure that the server represents the
entity that the client believes the server represents.

To prove that a server belongs to the organization that it claims to represent, the
server presents its public key certificate to the client. If this certificate is valid, then
the client can be sure of the identity of the server.

The client and server exchange information that allows them to agree on the same
secret key. For example, with RSA, the client uses the server's public key,
obtained from the public key certificate, to encrypt the secret key information. The
client sends the encrypted secret key information to the server. Only the server
can decrypt this message because the server's private key is required for this
decryption.

3. Agreeing on encryption mechanisms
Both the client and the server now have access to the same secret key. With each
message, they use the cryptographic hash function, chosen in the first step of the
handshake, and shared secret information, to compute an HMAC that they append
to the message. They then use the secret key and the secret key algorithm
negotiated in the first step of the handshake to encrypt the secure data and the
HMAC. The client and server can now communicate securely using their
encrypted and hashed data.

The SSL Protocol

The SSL Handshake provides a high-level description of the SSL handshake, which is
the exchange of information between the client and the server prior to sending the
encrypted message. Figure 8-1 provides more detail. It shows the sequence of
messages that are exchanged in the SSL handshake. Messages that are sent only in
certain situations are noted as optional. Each of the SSL messages is described in
detail afterward.

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-14

Figure 8-1 The SSL/TLS Handshake

SSL
Server

ClientHello

Certificate (Optional)
ClientKeyExchange
CertificateVerify (Optional)
ChangeCipherSpec
Finished

ServerHello

Certificate (Optional)

ServerKeyExchange (Optional)

CertificateRequest (Optional)

ServerHelloDone

ChangeCipherSpec

Finished

Encrypted Data

SSL
Client

Close Messages

The SSL messages are sent in the following order:

1. Client hello: The client sends the server information including the highest version
of SSL that it supports and a list of the cipher suites that it supports (TLS 1.0 is
indicated as SSL 3.1). The cipher suite information includes cryptographic
algorithms and key sizes.

2. Server hello: The server chooses the highest version of SSL and the best cipher
suite that both the client and server support and sends this information to the
client.

3. (Optional) Certificate: The server sends the client a certificate or a certificate
chain. A certificate chain typically begins with the server's public key certificate and
ends with the certificate authority's root certificate. This message is optional, but is
used whenever server authentication is required.

4. (Optional) Certificate request: If the server must authenticate the client, then it
sends the client a certificate request. In Internet applications, this message is
rarely sent.

5. (Optional) Server key exchange: The server sends the client a server key
exchange message if the public key information from the Certificate is not
sufficient for key exchange. For example, in cipher suites based on Diffie-Hellman
(DH), this message contains the server's DH public key.

6. Server hello done: The server tells the client that it is finished with its initial
negotiation messages.

7. (Optional) Certificate: If the server Certificate request from the client, the client
sends its certificate chain, just as the server did previously.

Note:

Only a few Internet server applications ask for a certificate from the client.

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-15

8. Client key exchange: The client generates information used to create a key to
use for symmetric encryption. For RSA, the client then encrypts this key
information with the server's public key and sends it to the server. For cipher suites
based on DH, this message contains the client's DH public key.

9. (Optional) Certificate verify: This message is sent by the client when the client
presents a certificate as previously explained. Its purpose is to allow the server to
complete the process of authenticating the client. When this message is used, the
client sends information that it digitally signs using a cryptographic hash function.
When the server decrypts this information with the client's public key, the server is
able to authenticate the client.

10. Change cipher spec: The client sends a message telling the server to change to
encrypted mode.

11. Finished The client tells the server that it is ready for secure data communication
to begin.

12. Change cipher spec: The server sends a message telling the client to change to
encrypted mode.

13. Finished: The server tells the client that it is ready for secure data communication
to begin. This is the end of the SSL handshake.

14. Encrypted data: The client and the server communicate using the symmetric
encryption algorithm and the cryptographic hash function negotiated during the
client hello and server hello, and using the secret key that the client sent to the
server during the client key exchange. The handshake can be renegotiated at this
time. See Handshaking Again (Renegotiation).

15. Close Messages:At the end of the connection, each side sends a close_notify
alert to inform the peer that the connection is closed.

If the parameters generated during an SSL session are saved, then these parameters
can sometimes be reused for future SSL sessions. Saving SSL session parameters
allows encrypted communication to begin much more quickly.

Handshaking Again (Renegotiation)
Once the initial handshake is finished and application data is flowing, either side is free
to initiate a new handshake at any time. An application might like to use a stronger
cipher suite for especially critical operations, or a server application might want to
require client authentication.

Regardless of the reason, the new handshake takes place over the existing encrypted
session, and application data and handshake messages are interleaved until a new
session is established.

Your application can initiate a new handshake by using one of the following methods:

• SSLSocket.startHandshake()

• SSLEngine.beginHandshake()

Chapter 8
Secure Sockets Layer (SSL) Protocol Overview

8-16

Note:

a protocol flaw related to renegotiation was found in 2009. The protocol and
the Java SE implementation have both been fixed. See Transport Layer
Security (TLS) Renegotiation Issue.

Cipher Suite Choice and Remote Entity Verification

The SSL/TLS protocols define a specific series of steps to ensure a protected
connection. However, the choice of cipher suite directly affects the type of security that
the connection enjoys. For example, if an anonymous cipher suite is selected, then the
application has no way to verify the remote peer's identity. If a suite with no encryption
is selected, then the privacy of the data cannot be protected. Additionally, the SSL/TLS
protocols do not specify that the credentials received must match those that peer
might be expected to send. If the connection were somehow redirected to a rogue
peer, but the rogue's credentials were acceptable based on the current trust material,
then the connection would be considered valid.

When using raw SSLSocket and SSLEngine classes, you should always check the peer's
credentials before sending any data. The SSLSocket and SSLEngine classes do not
automatically verify that the host name in a URL matches the host name in the peer's
credentials. An application could be exploited with URL spoofing if the host name is
not verified. Since JDK 7, endpoint identification/verification procedures can be
handled during SSL/TLS handshaking. See the
SSLParameters.getEndpointIdentificationAlgorithm method.

Protocols such as HTTPS (HTTP Over TLS) do require host name verification. Since
JDK 7, the HTTPS endpoint identification is enforced during handshaking for
HttpsURLConnection by default. See the
SSLParameters.getEndpointIdentificationAlgorithm method.
Alternatively, applications can use the HostnameVerifier interface to override the
default HTTPS host name rules. See The HostnameVerifier Interface and
HttpsURLConnection Class.

Client-Driven OCSP and OCSP Stapling
Use the Online Certificate Status Protocol (OCSP) to determine the X.509 certificate
revocation status during the Transport Layer Security (TLS) handshake.

X.509 certificates used in TLS can be revoked by the issuing Certificate Authority (CA)
if there is reason to believe that a certificate is compromised. You can check the
revocation status of certificates during the TLS handshake by using one of the
following approaches.

• Certificate Revocation List (CRL)
A CRL is a simple list of revoked certificates. The application receiving a certificate
gets the CRL from a CRL server and checks if the certificate received is on the list.
There are two disadvantages to using CRLs that mean a certificate could be
revoked, but the revoked certificate is not listed in the CRL:

– CRLs can become very large so there can be a substantial increase in
network traffic.

Chapter 8
Client-Driven OCSP and OCSP Stapling

8-17

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLParameters.html#getEndpointIdentificationAlgorithm--
http://www.ietf.org/rfc/rfc2818.txt
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLParameters.html#getEndpointIdentificationAlgorithm--

– Many CRLs are created with longer validity periods, which increases the
possibility of a certificate being revoked within that validity period and not
showing up until the next CRL refresh.

See Certificate/CRL Storage Classes topic of the Java PKI Programmer's Guide.

• Client-driven OCSP
In client-driven OCSP, the client uses OCSP to contact an OCSP responder to
check the certificate’s revocation status. The amount of data required is small, and
the OCSP responder is likely to be more up-to-date with the revocation status than
a CRL. Each client connecting to a server requires an OCSP response for each
certificate being checked. If the server is a popular one, and many of the clients
are using client-driven OCSP, these OCSP requests can have a negative effect on
the performance of the OCSP responder.

• OCSP stapling
OCSP stapling enables the server, rather than the client, to make the request to
the OCSP responder. The server staples the OCSP response to the certificate and
returns it to the client during the TLS handshake. This approach enables the
presenter of the certificate, rather than the issuing CA, to bear the resource cost of
providing OCSP responses. It also enables the server to cache the OCSP
responses and supply them to all clients. This significantly reduces the load on the
OCSP responder because the response can be cached and periodically refreshed
by the server rather than by each client.

Client-Driven OCSP and Certificate Revocation
Client-driven Online Certificate Status Protocol (OCSP) enables the client to check the
certificate revocation status by connecting to an OCSP responder during the Transport
Layer Security (TLS) handshake.

The client-driven OCSP request occurs during the TLS handshake just after the client
receives the certificate from the server and validates it. See SSL Handshake.

TLS Handshake with Client-Driven OCSP

Client-driven OCSP is used during the TLS handshake between the client and the
server to check the server certificate revocation status. After the client receives the
certificate it performs certificate validation. If the validation is successful, then the client
verifies that the certificate was not revoked by the issuer. This is done by sending an
OCSP request to an OCSP responder. After receiving the OCSP response, the client
checks this response before to completing the TLS handshake.

Chapter 8
Client-Driven OCSP and OCSP Stapling

8-18

Figure 8-2 TLS Handshake with Client-Driven OCSP

Usually the client finds the OCSP responder's URL by looking in the Authority
Information Access (AIA) extension of the certificate, but it can be set to a static URL
through the use of a system property.

Setting up a Java Client to use Client-Driven OCSP
Client-driven OCSP is enabled by enabling revocation checking and enabling OCSP.

To configure a Java client to use client-driven OCSP, the Java client must already be
set up to connect to a server using TLS.

1. Enable revocation checking. You can do this in two different ways.

• Set the system property com.sun.net.ssl.checkRevocation to true.

• Use the setRevocationEnabled method on PKIXParameters. See The
PKIXParameters Class.

2. Enable client-driven OCSP:

Set the Security Property ocsp.enable to true.

Both steps are necessary. The ocsp.enable setting has no effect unless revocation
checking is enabled.

Chapter 8
Client-Driven OCSP and OCSP Stapling

8-19

OCSP Stapling and Certificate Revocation
Online Certificate Status Protocol (OCSP) stapling enables the presenter of a
certificate, rather than the issuing Certificate Authority (CA), to bear the resource cost
of providing the OCSP responses that contain the certificate’s revocation status.

TLS Handshake with OCSP Stapling

OCSP stapling is used during the Transport Layer Security (TLS) handshake between
the client and the server to check the server certificate revocation status. The server
makes the OCSP request to the OCSP responder and staples the OCSP responses to
the certificates returned to the client. By having the server make the request to the
OCSP responder, the responses can be cached, and then used multiple times for
many clients.

The TLS handshake begins with the TLS ClientHello message. When OCSP stapling
is used, this message is sent to the server with the status_request extension that
indicates that the server should perform an OCSP request. After processing the
ClientHello message, the server sends an OCSP request to the appropriate OCSP
responder for each certificate. When the server receives the OCSP responses from
the OCSP responders, it sends a ServerHello message with its status_request
extension, indicating that OCSP responses will be provided in the TLS handshake.
The server will then present the server certificate chain, followed by a message that
consists of one or more OCSP responses for those certificates. The client receiving
the certificates with stapled OCSP responses validates each certificate, and then
checks the OCSP responses before continuing with the handshake.

If, from the client’s perspective, the stapled OCSP response from the server for a
certificate is missing, the client will attempt to use client-driven OCSP or CRLs to get
revocation information, if either of these are enabled and revocation checking is set to
true.

Chapter 8
Client-Driven OCSP and OCSP Stapling

8-20

Figure 8-3 TLS Handshake with OCSP Stapling

ClientHello
with status_request extension

Process ClientHello

 ServerHello with
status_request extension

TLS
Server

OCSP
Responder

 OCSP Request Message

 OCSP Response Message

 CertificateStatus message

Remaining SH
messages and ServerHelloDone

TLS
Client

 Certificate message

Complete Handshake
(multiple messages)

Validate Server
Certificate and OCSP Response

For more information about TLS handshake messages, see The SSL Handshake.

Status Request Versus Multiple Status Request

The OCSP stapling feature implements the TLS Certificate Status Request extension
(section 8 of RFC 6066) and the Multiple Certificate Status Request Extension (RFC
6961).

The TLS Certificate Status Request extension requests revocation information for only
the server certificate in the certificate chain while the Multiple Certificate Status
Request Extension requests revocation information for all certificates in the certificate
chain. In the case where only the server certificate's revocation information is sent to
the client, other certificates in the chain may be verified using using the Certificate
Revocation Lists (CRLs) or client-driven OCSP (but the client will need to be set up to
do this).

Although TLS allows the server to also request the client’s certificate, there is no
provision in OCSP stapling that enables the client to contact the appropriate OCSP
responder and staple the response to the certificate sent to the server.

The OCSP Request and Response

OCSP request and response messages are usually sent over unencrypted HTTP. The
response is signed by the CA.

If necessary, the stapled responses can be obtained in the client code by calling the
getStatusResponses method on the ExtendedSSLSession object. The method signature is:

public List<byte[]> getStatusResponses();

Chapter 8
Client-Driven OCSP and OCSP Stapling

8-21

http://tools.ietf.org/html/rfc6066
http://tools.ietf.org/html/rfc6961
http://tools.ietf.org/html/rfc6961

The OCSP response is encoded using the Distinguished Encoding Rules (DER) in a
format described by the ASN.1 found in RFC 6960.

Setting Up a Java Client to Use OCSP Stapling
Online Certificate Status Protocol (OCSP) stapling is enabled on the client side by
setting the system property jdk.tls.client.enableStatusRequestExtension to true (its
default value).

To configure a Java client to make use of the OCSP response stapled to the certificate
returned by a server, the Java client must already be set up to connect to a server
using TLS, and the server must be set up to staple an OCSP response to the
certificate it returns part of the TLS handshake.

1. Enable OCSP stapling on the client:

If necessary, set the system property jdk.tls.client.enableStatusRequestExtension
to true.

2. Enable revocation checking. You can do this in two different ways.

• Set the system property com.sun.net.ssl.checkRevocation to true. You can do
this from the command line or in the code.

• Use the setRevocationEnabled method on the PKIXParameters class. See The
PKIXParameters Class.

For the client to include the stapled responses received from the server in the
certificate validation, revocation checking must be set to true. If revocation
checking is not set to true, then the connection will be allowed to proceed
regardless of the presence or status of the revocation information

Setting Up a Java Server to Use OCSP Stapling
Online Certificate Status Protocol (OCSP) stapling is enabled on the server by setting
the system property jdk.tls.server.enableStatusRequestExtension to true. (It is set to
false by default.)

The following steps can be used to configure a Java server to connect to an OCSP
responder and staple the OCSP response to the certificate to be returned to the client.
The Java server must already be set up to respond to clients using TLS.

1. Enable OCSP stapling on the server:

Set the system property jdk.tls.server.enableStatusRequestExtension to true.

2. Optional: Set other properties as required. See OCSP Stapling Configuration
Properties for a list of the valid properties.

OCSP Stapling Configuration Properties
This topic lists the effects of setting various properties when using the Online
Certificate Status Protocol (OCSP). It shows the properties used in both client-driven
OCSP and OCSP stapling.

Server-side Properties

Most of the properties are read at SSLContext instantiation time. This means that if you
set a property, you must obtain a new SSLContext object so that an SSLSocket or

Chapter 8
Client-Driven OCSP and OCSP Stapling

8-22

http://tools.ietf.org/html/rfc6960

SSLEngine object you obtain from that SSLContext object will reflect the property setting.
The one exception is the jdk.tls.stapling.responseTimeout property. That property is
evaluated when the ServerHandshaker object is created (essentially at the same time
that an SSLSocket or SSLEngine object gets created).

Table 8-3 Server-Side OCSP stapling Properties

Property Description Default
Value

jdk.tls.server.enableStatusRequestEx
tension

Enables the server-side support for
OCSP stapling.

False

jdk.tls.stapling.responseTimeout Controls the maximum amount of
time the server will use to obtain
OCSP responses, whether from the
cache or by contacting an OCSP
responder.

The responses that are already
received will be sent in a
CertificateStatus message, if
applicable based on the type of
stapling being done.

5000
(integer
value in
milliseconds)

jdk.tls.stapling.cacheSize Controls the maximum cache size in
entries.

If the cache is full and a new
response needs to be cached, then
the least recently used cache entry
will be replaced with the new one. A
value of zero or less for this property
means that the cache will have no
upper bound on the number of
responses it can contain.

256 objects

jdk.tls.stapling.cacheLifetime Controls the maximum life of a
cached response.

It is possible for responses to have
shorter lifetimes than the value set
with this property if the response has
a nextUpdate field that expires
sooner than the cache lifetime. A
value of zero or less for this property
disables the cache lifetime. If an
object has no nextUpdate value and
cache lifetimes are disabled, then the
response will not be cached.

3600
seconds (1
hour)

jdk.tls.stapling.responderURI Enables the administrator to set a
default URI in the event that
certificates used for TLS do not have
the Authority Info Access (AIA)
extension.

It will not override the Authority Info
Access extension value unless the
jdk.tls.stapling.responderOverr
ide property is set.

Not set

Chapter 8
Client-Driven OCSP and OCSP Stapling

8-23

Table 8-3 (Cont.) Server-Side OCSP stapling Properties

Property Description Default
Value

jdk.tls.stapling.responderOverride Enables a URI provided through the
jdk.tls.stapling.responderURI
property to override any AIA
extension value.

False

jdk.tls.stapling.ignoreExtensions Disables the forwarding of OCSP
extensions specified in
the status_request or status_requ
est_v2 TLS extensions.

False

Client-Side Settings

Table 8-4 Client-Side Settings Used in OCSP Stapling

PKIXBuilderParamet
ers

checkRevocation
Property

PKIXRevocationChe
cker

Result

Default Default Default Revocation checking
is disabled.

Default True Default Revocation checking
is enabled.[1]

Instantiated Default Default Revocation checking
is enabled.[1]

Instantiated Default Instantiated, added to
PKIXBuilderParamete
rs object.

Revocation checking
is enabled and[1]will
behave according to
the
PKIXRevocationCheck
er settings.

Footnote 1 Note that client-side OCSP fallback will occur only if the ocsp.enable
Security Property is set to true.

Developers have some flexibility in how to handle the responses provided through
OCSP stapling. OCSP stapling makes no changes to the current methodologies
involved in certificate path checking and revocation checking. This means that it is
possible to have both client and server assert the status_request extensions, obtain
OCSP responses through the CertificateStatus message, and provide user flexibility
in how to react to revocation information, or the lack thereof.

If no PKIXBuilderParameters is provided by the caller, then revocation checking is
disabled. If the caller creates a PKIXBuilderParameters object and uses
the setRevocationEnabled method to enable revocation checking, then stapled OCSP
responses will be evaluated. This is also the case if
the com.sun.net.ssl.checkRevocation property is set to true.

Chapter 8
Client-Driven OCSP and OCSP Stapling

8-24

JSSE Classes and Interfaces
To communicate securely, both sides of the connection must be SSL-enabled. In the
JSSE API, the endpoint classes of the connection are SSLSocket and SSLEngine. In
Figure 8-4, the major classes used to create SSLSocket and SSLEngine are laid out in a
logical ordering.

Figure 8-4 JSSE Classes Used to Create SSLSocket and SSLEngine

Key Material

KeyManager

KeyManagerFactory MyKM

Key Material

TrustManager SecureRandom

TrustManagerFactory

SSLContext

SSLServerSocketFactory SSLSocketFactory

MyTM

SSLEngine

SSLServerSocket

SSLSocket SSLSocket

SSLSession

I/O I/O

SSLParameters

-accept()

An SSLSocket is created either by an SSLSocketFactory or by an SSLServerSocket
accepting an inbound connection. In turn, an SSLServerSocket is created by an
SSLServerSocketFactory. Both SSLSocketFactory and SSLServerSocketFactory objects are
created by an SSLContext. An SSLEngine is created directly by an SSLContext, and relies
on the application to handle all I/O.

Note:

When using raw SSLSocket or SSLEngine classes, you should always check the
peer's credentials before sending any data. Since JDK 7, endpoint
identification/verification procedures can be handled during SSL/TLS
handshaking. See the method
SSLParameters.setEndpointIdentificationAlgorithm.
For example, the host name in a URL matches the host name in the peer's
credentials. An application could be exploited with URL spoofing if the host
name is not verified.

JSSE Core Classes and Interfaces

Chapter 8
JSSE Classes and Interfaces

8-25

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLParameters.html#getEndpointIdentificationAlgorithm--

The core JSSE classes are part of the javax.net and javax.net.ssl packages.

SocketFactory and ServerSocketFactory Classes

The abstract javax.net.SocketFactory class is used to create sockets. Subclasses of
this class are factories that create particular subclasses of sockets and thus provide a
general framework for the addition of public socket-level functionality. For example,
see SSLSocketFactory and SSLServerSocketFactory Classes.

The abstract javax.net.ServerSocketFactory class is analogous to the SocketFactory
class, but is used specifically for creating server sockets.

Socket factories are a simple way to capture a variety of policies related to the sockets
being constructed, producing such sockets in a way that does not require special
configuration of the code that asks for the sockets:

• Due to polymorphism of both factories and sockets, different kinds of sockets can
be used by the same application code just by passing different kinds of factories.

• Factories can themselves be customized with parameters used in socket
construction. For example, factories could be customized to return sockets with
different networking timeouts or security parameters already configured.

• The sockets returned to the application can be subclasses of java.net.Socket (or
javax.net.ssl.SSLSocket), so that they can directly expose new APIs for features
such as compression, security, record marking, statistics collection, or firewall
tunneling.

SSLSocketFactory and SSLServerSocketFactory Classes

The javax.net.ssl.SSLSocketFactory class acts as a factory for creating secure
sockets. This class is an abstract subclass of javax.net.SocketFactory.

Secure socket factories encapsulate the details of creating and initially configuring
secure sockets. This includes authentication keys, peer certificate validation, enabled
cipher suites, and the like.

The javax.net.ssl.SSLServerSocketFactory class is analogous to the SSLSocketFactory
class, but is used specifically for creating server sockets.

Obtaining an SSLSocketFactory
The following ways can be used to obtain an SSLSocketFactory:

• Get the default factory by calling the SSLSocketFactory.getDefault() static method.

• Receive a factory as an API parameter. That is, code that must create sockets but
does not care about the details of how the sockets are configured can include a
method with an SSLSocketFactory parameter that can be called by clients to specify
which SSLSocketFactory to use when creating sockets (for example,
javax.net.ssl.HttpsURLConnection).

• Construct a new factory with specifically configured behavior.

The default factory is typically configured to support server authentication only so that
sockets created by the default factory do not leak any more information about the
client than a normal TCP socket would.

Chapter 8
JSSE Classes and Interfaces

8-26

http://download.java.net/java/jdk9/docs/api/javax/net/package-summary.html
http://download.java.net/java/jdk9/docs/api/javax/net/ssl/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/net/SocketFactory.html

Many classes that create and use sockets do not need to know the details of socket
creation behavior. Creating sockets through a socket factory passed in as a parameter
is a good way of isolating the details of socket configuration, and increases the
reusability of classes that create and use sockets.

You can create new socket factory instances either by implementing your own socket
factory subclass or by using another class which acts as a factory for socket factories.
One example of such a class is SSLContext, which is provided with the JSSE
implementation as a provider-based configuration class.

SSLSocket and SSLServerSocket Classes

The javax.net.ssl.SSLSocket class is a subclass of the standard Java java.net.Socket
class. It supports all of the standard socket methods and adds methods specific to
secure sockets. It supports all of the standard socket methods and adds methods
specific to secure sockets. Instances of this class encapsulate the SSLContext under
which they were created. See The SSLContext Class. There are APIs to control the
creation of secure socket sessions for a socket instance, but trust and key
management are not directly exposed.

The javax.net.ssl.SSLServerSocket class is analogous to the SSLSocket class, but is
used specifically for creating server sockets.

To prevent peer spoofing, you should always verify the credentials presented to an
SSLSocket. See Cipher Suite Choice and Remote Entity Verification.

Note:

Due to the complexity of the SSL and TLS protocols, it is difficult to predict
whether incoming bytes on a connection are handshake or application data,
and how that data might affect the current connection state (even causing the
process to block). In the Oracle JSSE implementation, the available() method
on the object obtained by SSLSocket.getInputStream() returns a count of the
number of application data bytes successfully decrypted from the SSL
connection but not yet read by the application.

Obtaining an SSLSocket
Instances of SSLSocket can be obtained in one of the following ways:

• An SSLSocket can be created by an instance of SSLSocketFactory via one of
the several createSocket methods of that class.

• An SSLSocket can be created through the accept method of the
SSLServerSocket class.

SSLEngine Class

SSL/TLS/DTLS is becoming increasingly popular. It is being used in a wide variety of
applications across a wide range of computing platforms and devices. Along with this
popularity come demands to use SSL/TLS/DTLS with different I/O and threading
models to satisfy the applications' performance, scalability, footprint, and other

Chapter 8
JSSE Classes and Interfaces

8-27

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocketFactory.html

requirements. There are demands to use SSL/TLS/DTLS with blocking and
nonblocking I/O channels, asynchronous I/O, arbitrary input and output streams, and
byte buffers. There are demands to use it in highly scalable, performance-critical
environments, requiring management of thousands of network connections.

Abstraction of the I/O transport mechanism using the SSLEngine class in Java SE
allows applications to use the SSL/TLS/DTLS protocols in a transport-independent
way, and thus frees application developers to choose transport and computing models
that best meet their needs. Not only does this abstraction allow applications to use
nonblocking I/O channels and other I/O models, it also accommodates different
threading models. This effectively leaves the I/O and threading decisions up to the
application developer. Because of this flexibility, the application developer must
manage I/O and threading (complex topics in and of themselves), as well as have
some understanding of the SSL/TLS/DTLS protocols. The abstraction is therefore an
advanced API: beginners should use SSLSocket.

Users of other Java programming language APIs such as the Java Generic Security
Services (Java GSS-API) and the Java Simple Authentication Security Layer (Java
SASL) will notice similarities in that the application is also responsible for transporting
data.

The core class is javax.net.ssl.SSLEngine. It encapsulates an SSL/TLS/DTLS state
machine and operates on inbound and outbound byte buffers supplied by the user of
the SSLEngine class. Figure 8-5 illustrates the flow of data from the application, through
SSLEngine, to the transport mechanism, and back.

Figure 8-5 Flow of Data Through SSLEngine

Application

Application buffers

SSL Engine

Privacy
and
Integrity
Protection

Transport

Network buffers

Handshake data

Handshake data

Application buffers Network buffers

dshdshdshdshdshakeakeakeakeakeakeake data

dshdshdshakeakeakeakeakeake data

 Engine

The application, shown on the left, supplies application (plaintext) data in an
application buffer and passes it to SSLEngine. The SSLEngine object processes the
data contained in the buffer, or any handshaking data, to produce SSL/TLS/DTLS
encoded data and places it to the network buffer supplied by the application. The
application is then responsible for using an appropriate transport (shown on the right)
to send the contents of the network buffer to its peer. Upon receiving SSL/TLS/DTLS
encoded data from its peer (via the transport), the application places the data into a
network buffer and passes it to SSLEngine. The SSLEngine object processes the
network buffer's contents to produce handshaking data or application data.

An instance of the SSLEngine class can be in one of the following states:

Chapter 8
JSSE Classes and Interfaces

8-28

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html

Creation
The SSLEngine has been created and initialized, but has not yet been used. During this
phase, an application may set any SSLEngine-specific settings (enabled cipher suites,
whether the SSLEngine should handshake in client or server mode, and so on). Once
handshaking has begun, though, any new settings (except client/server mode) will be
used for the next handshake.

Initial handshaking
The initial handshake is a procedure by which the two peers exchange
communication parameters until an SSLSession is established. Application data can’t
be sent during this phase.

Application data
After the communication parameters have been established and the handshake is
complete, application data can flow through the SSLEngine. Outbound application
messages are encrypted and integrity protected, and inbound messages reverse the
process.

Rehandshaking
Either side can request a renegotiation of the session at any time during the
Application Data phase. New handshaking data can be intermixed among the
application data. Before starting the rehandshake phase, the application may reset
the SSL/TLS/DTLS communication parameters such as the list of enabled
ciphersuites and whether to use client authentication, but can not change between
client/server modes. As before, after handshaking has begun, any new SSLEngine
configuration settings won’t be used until the next handshake.

Closure
When the connection is no longer needed, the application should close the SSLEngine
and should send/receive any remaining messages to the peer before closing the
underlying transport mechanism. Once an engine is closed, it is not reusable: a new
SSLEngine must be created.

Creating an SSLEngine Object
Use the SSLContext.createSSLEngine() method to create an SSLEngine object.

Before you create an SSLEngine object, you must configure the engine to act as a client
or a server, and set other configuration parameters, such as which cipher suites to use
and whether client authentication is required. The SSLContext.createSSLEngine method
creates an javax.net.ssl.SSLEngine object.

Note:

The server name and port number are not used for communicating with the
server (all transport is the responsibility of the application). They are hints to
the JSSE provider to use for SSL session caching, and for Kerberos-based
cipher suite implementations to determine which server credentials should be
obtained.

Chapter 8
JSSE Classes and Interfaces

8-29

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLContext.html#createSSLEngine--
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html

Example 8-1 Sample Code for Creating an SSLEngine Client for TLS with JKS
as Keystore

The following sample code creates an SSLEngine client for TLS that uses JKS as
keystore:

 import javax.net.ssl.*;
 import java.security.*;

 // Create and initialize the SSLContext with key material
 char[] passphrase = "passphrase".toCharArray();

 // First initialize the key and trust material
 KeyStore ksKeys = KeyStore.getInstance("JKS");
 ksKeys.load(new FileInputStream("testKeys"), passphrase);
 KeyStore ksTrust = KeyStore.getInstance("JKS");
 ksTrust.load(new FileInputStream("testTrust"), passphrase);

 // KeyManagers decide which key material to use
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("PKIX");
 kmf.init(ksKeys, passphrase);

 // TrustManagers decide whether to allow connections
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ksTrust);

 // Get an instance of SSLContext for SSL/TLS protocols
 sslContext = SSLContext.getInstance("TLS");
 sslContext.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 // Create the engine
 SSLEngine engine = sslContext.createSSLengine(hostname, port);

 // Use as client
 engine.setUseClientMode(true);

Generating and Processing SSL/TLS Data
The two main SSLEngine methods are wrap() and unwrap(). They are responsible for
generating and consuming network data respectively. Depending on the state of the
SSLEngine object, this data might be handshake or application data.

Each SSLEngine object has several phases during its lifetime. Before application data
can be sent or received, the SSL/TLS protocol requires a handshake to establish
cryptographic parameters. This handshake requires a series of back-and-forth steps
by the SSLEngine object. For more details about the handshake itself, see The SSL
Handshake.

During the initial handshaking, the wrap() and unwrap() methods generate and
consume handshake data, and the application is responsible for transporting the data.
The wrap() and unwrap() method sequence is repeated until the handshake is finished.
Each SSLEngine operation generates an instance of the SSLEngineResult class, in which
the SSLEngineResult.HandshakeStatus field is used to determine what operation must
occur next to move the handshake along.

Table 8-5 shows the sequence of methods called during a typical handshake, with
corresponding messages and statuses.

Chapter 8
JSSE Classes and Interfaces

8-30

Table 8-5 Typical Handshake

Client SSL/TLS Message HandshakeStatus

wrap() ClientHello NEED_UNWRAP

unwrap() ServerHello/Cert/
ServerHelloDone

NEED_WRAP

wrap() ClientKeyExchange NEED_WRAP

wrap() ChangeCipherSpec NEED_WRAP

wrap() Finished NEED_UNWRAP

unwrap() ChangeCipherSpec NEED_UNWRAP

unwrap() Finished FINISHED

Figure 8-6 shows the state machine during a typical SSL/TLS handshake, with
corresponding messages and statuses:

Figure 8-6 State Machine during SSL/TLS Handshake

Determine Handshake Status

wrap()

Wait for Data
from Network

Use Data if
Available

Send Data if
Available

Run
Task

unwrap ()

Create SSL/TLS SSLEngines
Create Buffers
Set Client or Server mode
Begin Handshake

NEED_TASK NEED_WRAP

NEED_UNWRAP FINISHED

Handshake Finished

Network
Data

Network
Data

Application
Data

Chapter 8
JSSE Classes and Interfaces

8-31

When handshaking is complete, further calls to wrap() will attempt to consume
application data and package it for transport. The unwrap() method will attempt the
opposite.

To send data to the peer, the application first supplies the data that it wants to send via
SSLEngine.wrap() to obtain the corresponding SSL/TLS encoded data. The application
then sends the encoded data to the peer using its chosen transport mechanism. When
the application receives the SSL/TLS encoded data from the peer via the transport
mechanism, it supplies this data to the SSLEngine via SSLEngine.unwrap() to obtain the
plaintext data sent by the peer.

Example 8-2 Sample Code for Creating a Nonblocking SocketChannel

The following example is an SSL application that uses a non-blocking SocketChannel to
communicate with its peer. It sends the string "hello" to the peer by encoding it using
the SSLEngine created in Example 8-1 . It uses information from the SSLSession to
determine how large to make the byte buffers.

Note:

The example can be made more robust and scalable by using a Selector with
the nonblocking SocketChannel.

 // Create a nonblocking socket channel
 SocketChannel socketChannel = SocketChannel.open();
 socketChannel.configureBlocking(false);
 socketChannel.connect(new InetSocketAddress(hostname, port));

 // Complete connection
 while (!socketChannel.finishedConnect()) {
 // do something until connect completed
 }

 //Create byte buffers for holding application and encoded data

 SSLSession session = engine.getSession();
 ByteBuffer myAppData = ByteBuffer.allocate(session.getApplicationBufferSize());
 ByteBuffer myNetData = ByteBuffer.allocate(session.getPacketBufferSize());
 ByteBuffer peerAppData = ByteBuffer.allocate(session.getApplicationBufferSize());
 ByteBuffer peerNetData = ByteBuffer.allocate(session.getPacketBufferSize());

 // Do initial handshake
 doHandshake(socketChannel, engine, myNetData, peerNetData);

 myAppData.put("hello".getBytes());
 myAppData.flip();

 while (myAppData.hasRemaining()) {
 // Generate SSL/TLS/DTLS encoded data (handshake or application data)
 SSLEngineResult res = engine.wrap(myAppData, myNetData);

 // Process status of call
 if (res.getStatus() == SSLEngineResult.Status.OK) {
 myAppData.compact();

 // Send SSL/TLS/DTLS encoded data to peer

Chapter 8
JSSE Classes and Interfaces

8-32

 while(myNetData.hasRemaining()) {
 int num = socketChannel.write(myNetData);
 if (num == 0) {
 // no bytes written; try again later
 }
 }
 }

 // Handle other status: BUFFER_OVERFLOW, CLOSED
 ...
 }

Example 8-3 Sample Code for Reading Data From Nonblocking SocketChannel

SocketChannelSSLEngineExample 8-1

 // Read SSL/TLS/DTLS encoded data from peer
 int num = socketChannel.read(peerNetData);
 if (num == -1) {
 // The channel has reached end-of-stream
 } else if (num == 0) {
 // No bytes read; try again ...
 } else {
 // Process incoming data
 peerNetData.flip();
 res = engine.unwrap(peerNetData, peerAppData);

 if (res.getStatus() == SSLEngineResult.Status.OK) {
 peerNetData.compact();

 if (peerAppData.hasRemaining()) {
 // Use peerAppData
 }
 }
 // Handle other status: BUFFER_OVERFLOW, BUFFER_UNDERFLOW, CLOSED
 ...
 }

Datagram Transport Layer Security (DTLS) Protocol
Datagram Transport Layer Security (DTLS) protocol is designed to construct “TLS
over datagram” traffic that doesn't require or provide reliable or in-order delivery of
data. Java Secure Socket Extension (JSSE) API and the SunJSSE security provider
support the DTLS protocol.

Because the TLS requires a transparent reliable transport channel such as TCP it
can’t be used to secure unreliable datagram traffic. DTLS is a datagram-compatible
variant of TLS.

The JSSE API now supports DTLS Version 1.0 and DTLS Version 1.2 along with
Secure Socket Layer (SSL) and Transport Layer Security (TLS) protocols.

The javax.net.ssl.SSLEngine programming model is used by the JSSE API for DTLS.

Chapter 8
JSSE Classes and Interfaces

8-33

http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc6347
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html

The DTLS Handshake
Before application data can be sent or received, the DTLS protocol requires a
handshake to establish cryptographic parameters. This handshake requires a series of
back-and-forth messages between the client and server by the SSLEngine object.

DTLS handshake requires all messages be received properly. Thus, in unreliable
datagram traffic, missing or delayed packets must be retransmitted. Since
javax.net.ssl.SSLEngine is not responsible for I/O operations, it is up to the application
to provide timers and signal the SSLEngine when a retransmission is needed. It is
important that you implement a timer and retransmission strategy for your application.
See Handling Retransmissions in DTLS Connections.

The DTLS handshake includes the following stages:

1. Negotiating the cipher suite
The DTLS session begins with a negotiation between the client and the server as
to which cipher suite they will use. A cipher suite is a set of cryptographic
algorithms and key sizes that a computer can use to encrypt data. The cipher suite
includes information about the public key exchange algorithms or key agreement
algorithms, and cryptographic hash functions. The client tells the server which
cipher suites it has available, and the server chooses the best mutually acceptable
cipher suite.

A cookie is exchanged between the client and server along with the cipher suite in
order to prevent denial of service attacks (DoS).

2. (Optional) Authenticating the server's identity (optional)
The authentication step is optional, but in the example of an e-commerce
transaction over the web, the client chooses to authenticate the server.
Authenticating the server allows the client to be sure that the server represents the
entity that the client believes the server represents.

To prove that a server belongs to the organization that it claims to represent, the
server presents its public key certificate to the client. If this certificate is valid, then
the client can be sure of the identity of the server.

The client and server exchange information that allows them to agree on the same
secret key. For example, with RSA, the client uses the server's public key,
obtained from the public key certificate, to encrypt the secret key information. The
client sends the encrypted secret key information to the server. Only the server
can decrypt this message because the server's private key is required for this
decryption.

3. Agreeing on encryption mechanisms
Both the client and the server now have access to the same secret key. With each
message, they use the cryptographic hash function, chosen in the first step of the
handshake, and shared secret information, to compute an HMAC that they append
to the message. They then use the secret key and the secret key algorithm
negotiated in the first step of the handshake to encrypt the secure data and the
HMAC. The client and server can now communicate securely using their
encrypted and hashed data.

The DTLS Handshake Message Exchange

In a DTLS handshake, series of back-and-forth messages are exchanged between the
client and server by the SSLEngine object.

Chapter 8
JSSE Classes and Interfaces

8-34

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html

Figure 8-7 shows the sequence of messages that are exchanged in the DTLS
handshake. Messages that are sent only in certain situations are noted as optional.
Each message is described following the figure.

To know more about DTLS handshake messages, see DTLS Version 1.0 and DTLS
Version 1.2.

Figure 8-7 DTLS Handshake

DTLS
Server

ClientHello

ClientHello
(with cookie)

HelloVerifyRequest

(contains cookie)

ServerHello

Certificate (Optional)

ServerKeyExchange (Optional)

CertificateRequest (Optional)

ServerHelloDone

Certificate (Optional)

ClientKeyExchange

CertificateVerify (Optional)

ChangeCipherSpec

Finished

DTLS
Client

ChangeCipherSpec

Finished

The following handshake messages are exchanged between the client and server
during DTLS handshake:

1. ClientHello:
The client sends the server information including the highest version of DTLS that
it supports and a list of the cipher suites that it supports. The cipher suite
information includes cryptographic algorithms and key sizes.

2. HelloVerifyRequest:
The server responds to the ClientHello message from the client with a cookie.

3. ClientHello:
The client sends a second ClientHello message to the server with highest version
of DTLS that it supports and a list of the cipher suites that it supports. The cookie
received in the HelloVerifyRequest is sent back to the server.

4. ServerHello:
The server chooses the highest version of DTLS and the best cipher suite that
both the client and server support and sends this information to the client.

5. (Optional) Certificate:
The server sends the client a certificate or a certificate chain. A certificate chain
typically begins with the server's public key certificate and ends with the certificate
authority's root certificate. This message is optional, but is used whenever server
authentication is required

Chapter 8
JSSE Classes and Interfaces

8-35

http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc6347
http://tools.ietf.org/html/rfc6347

6. (Optional) CertificateRequest:
If the server must authenticate the client, then it sends the client a certificate
request. In Internet applications, this message is rarely sent.

7. (Optional) ServerKeyExchange:
The server sends the client a server key exchange message if the public key
information from the Certificate is not sufficient for key exchange. For example, in
cipher suites based on Diffie-Hellman (DH), this message contains the server's DH
public key.

8. ServerHelloDone:
The server tells the client that it is finished with its initial negotiation messages.

9. (Optional) Certificate:
If the server Certificate request from the client, the client sends its certificate chain,
just as the server did previously.

Note:

Only a few Internet server applications ask for a certificate from the client.

10. ClientKeyExchange:
The client generates information used to create a key to use for symmetric
encryption. For RSA, the client then encrypts this key information with the server's
public key and sends it to the server. For cipher suites based on DH, this message
contains the client's DH public key.

11. (Optional) CertificateVerify:
This message is sent by the client when the client presents a certificate as
previously explained. Its purpose is to allow the server to complete the process of
authenticating the client. When this message is used, the client sends information
that it digitally signs using a cryptographic hash function. When the server
decrypts this information with the client's public key, the server is able to
authenticate the client.

12. ChangeCipherSpec:
The client sends a message telling the server that subsequent data will be
protected under the newly negotiated CipherSpec and keys and the data is
encrypted

13. Finished:
The client tells the server that it is ready for secure data communication to begin.

14. ChangeCipherSpec:
The server sends a message telling the client that subsequent data will be
protected under the newly negotiated CipherSpec and keys and the data is
encrypted.

15. Finished:
The server tells the client that it is ready for secure data communication to begin.
This is the end of the DTLS handshake.

Handshaking Again (Renegotiation)

Once the initial handshake is finished and application data is flowing, either side is free
to initiate a new handshake at any time. An application might like to use a stronger

Chapter 8
JSSE Classes and Interfaces

8-36

cipher suite for especially critical operations, or a server application might want to
require client authentication.

Regardless of the reason, the new handshake takes place over the existing encrypted
session, and application data and handshake messages are interleaved until a new
session is established.

Your application can initiate a new handshake by using the SSLEngine.beginHandshake()
method.

Note:

A protocol flaw related to renegotiation was found in 2009. The protocol and
the Java SE implementation have both been fixed. See Transport Layer
Security (TLS) Renegotiation Issue.

Example 8-4 Sample Code for Handling DTLS handshake Status and Overall
Status

void handshake(SSLEngine engine, DatagramSocket socket, SocketAddress peerAddr)
throws Exception {
 boolean endLoops = false;
 // private static int MAX_HANDSHAKE_LOOPS = 60;
 int loops = MAX_HANDSHAKE_LOOPS;
 engine.beginHandshake();
 while (!endLoops && (serverException == null) && (clientException == null)) {
 if (--loops < 0) {
 throw new RuntimeException("Too many loops to produce handshake
packets");
 }
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();
 if (hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP ||
 hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP_AGAIN) {
 ByteBuffer iNet;
 ByteBuffer iApp;
 if (hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP) {
 // Receive ClientHello request and other SSL/TLS/DTLS records
 byte[] buf = new byte[1024];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 try {
 socket.receive(packet);
 } catch (SocketTimeoutException ste) {
 // Retransmit the packet if timeout
 List <Datagrampacket> packets = onReceiveTimeout(engine,
peerAddr);
 for (DatagramPacket p : packets) {
 socket.send(p);
 }
 continue;
 }
 iNet = ByteBuffer.wrap(buf, 0, packet.getLength());
 iApp = ByteBuffer.allocate(1024);
 } else {
 iNet = ByteBuffer.allocate(0);
 iApp = ByteBuffer.allocate(1024);
 }
 SSLEngineResult r = engine.unwrap(iNet, iApp);
 SSLEngineResult.Status rs = r.getStatus();

Chapter 8
JSSE Classes and Interfaces

8-37

 hs = r.getHandshakeStatus();
 if (rs == SSLEngineResult.Status.BUFFER_OVERFLOW) {
 // The client maximum fragment size config does not work?
 throw new Exception("Buffer overflow: " +
 "incorrect client maximum fragment size");
 } else if (rs == SSLEngineResult.Status.BUFFER_UNDERFLOW) {
 // Bad packet, or the client maximum fragment size
 // config does not work?
 if (hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 throw new Exception("Buffer underflow: " +
 "incorrect client maximum fragment size");
 } // Otherwise, ignore this packet
 } else if (rs == SSLEngineResult.Status.CLOSED) {
 endLoops = true;
 } // Otherwise, SSLEngineResult.Status.OK
 if (rs != SSLEngineResult.Status.OK) {
 continue;
 }
 } else if (hs == SSLEngineResult.HandshakeStatus.NEED_WRAP) {
 // Call a function to produce handshake packets
 List <DatagramPacket> packets = produceHandshakePackets(engine,
peerAddr);
 for (DatagramPacket p : packets) {
 socket.send(p);
 }
 } else if (hs == SSLEngineResult.HandshakeStatus.NEED_TASK) {
 runDelegatedTasks(engine);
 } else if (hs == SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 // OK, time to do application data exchange
 endLoops = true;
 } else if (hs == SSLEngineResult.HandshakeStatus.FINISHED) {
 endLoops = true;
 }
 }
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();
 if (hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 throw new Exception("Not ready for application data yet");
 }
}

Handling Retransmissions in DTLS Connections
In SSL/TLS over a reliable connection, data is guaranteed to arrive in the proper order,
and retransmission is unnecessary. However, for DTLS, which often works over
unreliable media, missing or delayed handshake messages must be retransmitted.

The SSLEngine class operates in a completely transport-neutral manner, and the
application layer performs all I/O. Because the SSLEngine class isn’t responsible for I/O,
the application instead is responsible for providing timers and signalling the SSLEngine
class when a retransmission is needed. The application layer must determine the right
timeout value and when to trigger the timeout event. During handshaking, if an
SSLEngine object is in HandshakeStatus.NEED_UNWRAP state, a call to SSLEngine.wrap()
means that the previous packets were lost, and must be retransmitted. For such
cases, the DTLS implementation of the SSLEngine class takes the responsibility to wrap
the previous necessary handshaking messages again if necessary.

Chapter 8
JSSE Classes and Interfaces

8-38

Note:

In a DTLS engine, only handshake messages must be properly exchanged.
Application data can handle packet loss without the need for timers.

Handling Retransmission in an Application

SSLEngine.unwrap() and SSLEngine.wrap() can be used together to handle
retransmission in an application.

Figure 8-8 shows a typical scenario for handling DTLS handshaking retransmission:

Figure 8-8 DTLS Handshake Retransmission State Flow

Determine Handshake Status

wrap()

Wait for Data
from Network

Use Data if
Available

Send Data if
Available

Run
Task

unwrap ()

Create DTLS SSLEngines
Create Buffers
Set Client or Server mode
Begin Handshake
Set Maximum Fragment Size

1

5

NEED_TASK NEED_WRAP

NEED_UNWRAP FINISHED

Handshake Finished

Network
Data

Network
Data

Timeout Application
Data

3

2

NEED_UNWRAP_AGAIN

4

1. Create and initialize an instance of DTLS SSLEngine.

See Creating an SSLEngine Object. The DTLS handshake process begins. See
The DTLS Handshake.

2. If the handshake status is HandshakeStatus.NEED_UNWRAP, wait for data from network.

3. If the timer times out, it indicates that the previous delivered handshake messages
may have been lost.

Chapter 8
JSSE Classes and Interfaces

8-39

Note:

In DTLS handshaking retransmission, the determined handshake status isn’t
necessarily HandshakeStatus.NEED_WRAP for the call to SSLEngine.wrap().

4. Call SSLEngine.wrap().

5. The wrapped packets are delivered.

Handling a Buffered Handshake Message in an Application

Datagram transport doesn’t require or provide reliable or in-order delivery of
data. Handshake messages may be lost or need to be reordered. In the DTLS
implementation, a handshake message may need to be buffered for future handling
before all previous messages have been received.

The DTLS implementation of SSLEngine takes the responsibility to reorder handshake
messages. Handshake message buffering and reordering are transparent to
applications.

However, applications must manage HandshakeStatus.NEED_UNWRAP_AGAIN status. This
status indicates that for the next SSLEngine.unwrap() operation no additional data
from the remote side is required.

Figure 8-9 shows a typical scenario for using the HandshakeStatus.NEED_UNWRAP_AGAIN.

Chapter 8
JSSE Classes and Interfaces

8-40

Figure 8-9 State Machine of DTLS Buffered Handshake with
NEED_UNWRAP_AGAIN

Determine Handshake Status

wrap()

Wait for Data
from Network

Use Data if
Available

Send Data if
Available

Run
Task

unwrap ()

Create DTLS SSLEngines
Create Buffers
Set Client or Server mode
Begin Handshake
Set Maximum Fragment Size

1

NEED_TASK NEED_WRAP

NEED_UNWRAP FINISHED

Handshake Finished

Network
Data

Network
Data

Timeout Application
Data

3

2

NEED_UNWRAP_AGAIN

5 4&6

1. Create and initialize an instance of DTLS SSLEngine.

See Creating an SSLEngine Object. The DTLS handshake process begins, see
The DTLS Handshake.

2. Optional: If the handshake status is HandshakeStatus.NEED_UNWRAP, wait for data
from network.

3. Optional: If you received the network data, call SSLEngine.unwrap().

4. Determine the handshake status for next processing. The handshake status can
be HandshakeStatus.NEED_UNWRAP_AGAIN, HandshakeStatus.NEED_UNWRAP, or
HandshakeStatus.NEED_WRAP.

• If the handshake status is HandshakeStatus.NEED_UNWRAP_AGAIN, call
SSLEngine.unwrap().

Chapter 8
JSSE Classes and Interfaces

8-41

Note:

For HandshakeStatus.NEED_UNWRAP_AGAIN status, no additional data from the
network is required for an SSLEngine.unwrap() operation.

5. Determine the handshake status for further processing. The handshake status can
be HandshakeStatus.NEED_UNWRAP_AGAIN, HandshakeStatus.NEED_UNWRAP, or
HandshakeStatus.NEED_WRAP.

Creating an SSLEngine Object for DTLS
The following examples illustrate how to create an SSLEngine object for DTLS.

Note:

The server name and port number are not used for communicating with the
server (all transport is the responsibility of the application). They are hints to
the JSSE provider to use for DTLS session caching, and for Kerberos-based
cipher suite implementations to determine which server credentials should be
obtained.

Example 8-5 Sample Code for Creating an SSLEngine Client for DTLS with
PKCS12 as Keystore

The following sample code creates an SSLEngine client for DTLS that uses PKCS12
as keystore:

 import javax.net.ssl.*;
 import java.security.*;

 // Create and initialize the SSLContext with key material
 char[] passphrase = "passphrase".toCharArray();

 // First initialize the key and trust material
 KeyStore ksKeys = KeyStore.getInstance("PKCS12");
 ksKeys.load(new FileInputStream("testKeys"), passphrase);
 KeyStore ksTrust = KeyStore.getInstance("PKCS12");
 ksTrust.load(new FileInputStream("testTrust"), passphrase);

 // KeyManagers decide which key material to use
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("PKIX");
 kmf.init(ksKeys, passphrase);

 // TrustManagers decide whether to allow connections
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ksTrust);

 // Get an instance of SSLContext for DTLS protocols
 sslContext = SSLContext.getInstance("DTLS");
 sslContext.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 // Create the engine
 SSLEngine engine = sslContext.createSSLengine(hostname, port);

Chapter 8
JSSE Classes and Interfaces

8-42

 // Use engine as client
 engine.setUseClientMode(true);

Example 8-6 Sample Code for Creating an SSLEngine Server for DTLS with
PKCS12 as Keystore

SSLEngine

 import javax.net.ssl.*;
 import java.security.*;

 // Create and initialize the SSLContext with key material
 char[] passphrase = "passphrase".toCharArray();

 // First initialize the key and trust material
 KeyStore ksKeys = KeyStore.getInstance("PKCS12");
 ksKeys.load(new FileInputStream("testKeys"), passphrase);
 KeyStore ksTrust = KeyStore.getInstance("PKCS12");
 ksTrust.load(new FileInputStream("testTrust"), passphrase);

 // KeyManagers decide which key material to use
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("PKIX");
 kmf.init(ksKeys, passphrase);

 // TrustManagers decide whether to allow connections
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ksTrust);

 // Get an SSLContext for DTLS Protocol without authentication
 sslContext = SSLContext.getInstance("DTLS");
 sslContext.init(null, null, null);

 // Create the engine
 SSLEngine engine = sslContext.createSSLeEngine(hostname, port);

 // Use the engine as server
 engine.setUseClientMode(false);

 // Require client authentication
 engine.setNeedClientAuth(true);

Generating and Processing DTLS Data

A DTLS handshake and a SSL/TLS handshake generate and process data similarly.
(See Generating and Processing SSL/TLS Data.) They both use the
SSLEngine.wrap() and SSLEngine.wrap() methods to generate and consume
network data, respectively.

The following diagram shows the state machine during a typical DTLS handshake,
with corresponding messages and statuses:

Chapter 8
JSSE Classes and Interfaces

8-43

Figure 8-10 State Machine during DTLS Handshake

Determine Handshake Status

wrap()

Wait for Data
from Network

Use Data if
Available

Send Data if
Available

Run
Task

unwrap ()

Create DTLS SSLEngines
Create Buffers
Set Client or Server mode
Begin Handshake
Set Maximum Fragment Size

1

NEED_TASK NEED_WRAP

NEED_UNWRAP FINISHED

Handshake Finished

Network
Data

Network
Data

Timeout Application
Data

NEED_UNWRAP_AGAIN

Difference Between the SSL/TLS and DTLS SSLEngine.wrap() Methods

The SSLEngine.wrap() method for DTLS is different from SSL/TLS as follows:

• In the SSL/TLS implementation of SSLEngine, the output buffer of SSLEngine.wrap()
contains one or more TLS records (due to the TLSv1 BEAST Cipher Block
Chaining vulnerability).

• In the DTLS implementation of SSLEngine, the output buffer of SSLEngine.wrap()
contains at most one record, so that every DTLS record can be marshaled and
delivered to the datagram layer individually.

Note:

Each record produced by SSLEngine.wrap() should comply to the maximum
packet size limitation as specified by SSLParameters.getMaximumPacketSize().

Chapter 8
JSSE Classes and Interfaces

8-44

Understanding SSLEngine Operation Statuses
The status of the SSLEngine is represented by SSLEngineResult.Status.

To indicate the status of the engine and what actions the application should take, the
SSLEngine.wrap() and SSLEngine.unwrap() methods return an SSLEngineResult instance,
as shown in Example 8-2. This SSLEngineResult object contains two pieces of status
information: the overall status of the engine and the handshaking status.

The possible overall statuses are represented by the SSLEngineResult.Status enum.
The following statuses are available:

OK

There was no error.

CLOSED

The operation closed the SSLEngine or the operation could not be completed because
it was already closed.

BUFFER_UNDERFLOW

The input buffer had insufficient data, indicating that the application must obtain more
data from the peer (for example, by reading more data from the network).

BUFFER_OVERFLOW

The output buffer had insufficient space to hold the result, indicating that the
application must clear or enlarge the destination buffer.

Example 8-7 illustrates how to handle the BUFFER_UNDERFLOW and BUFFER_OVERFLOW
statuses of the SSLEngine.unwrap() method. It uses
SSLSession.getApplicationBufferSize() and SSLSession.getPacketBufferSize() to
determine how large to make the byte buffers.

The possible handshaking statuses are represented by the
SSLEngineResult.HandshakeStatus enum. They represent whether handshaking has
completed, whether the caller must obtain more handshaking data from the peer or
send more handshaking data to the peer, and so on. The following handshake
statuses are available:

FINISHED

The SSLEngine has just finished handshaking.

NEED_TASK

The SSLEngine needs the results of one (or more) delegated tasks before handshaking
can continue.

NEED_UNWRAP

The SSLEngine needs to receive data from the remote side before handshaking can
continue.

NEED_UNWRAP_AGAIN

The SSLEngine needs to unwrap before handshaking can continue. This value
indicates that not-yet-interpreted data has been previously received from the remote
side and does not need to be received again; the data has been brought into the
JSSE framework but has not been processed yet.

Chapter 8
JSSE Classes and Interfaces

8-45

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngineResult.html

NEED_WRAP

The SSLEngine must send data to the remote side before handshaking can continue,
so SSLEngine.wrap() should be called.

NOT_HANDSHAKING

The SSLEngine is not currently handshaking.

Having two statuses per result allows the SSLEngine to indicate that the application
must take two actions: one in response to the handshaking and one representing the
overall status of the wrap() and unwrap() methods. For example, the engine might, as
the result of a single SSLEngine.unwrap() call, return SSLEngineResult.Status.OK to
indicate that the input data was processed successfully and
SSLEngineResult.HandshakeStatus.NEED_UNWRAP to indicate that the application should
obtain more SSL/TLS/DTLS encoded data from the peer and supply it to
SSLEngine.unwrap() again so that handshaking can continue. As you can see, the
previous examples were greatly simplified; they would need to be expanded
significantly to properly handle all of these statuses.

Example 8-9 and Example 8-8 illustrate how to process handshaking data by checking
handshaking status and the overall status of the wrap() and unwrap() methods.

Example 8-7 Sample Code for Handling BUFFER_UNDERFLOW and
BUFFER_OVERFLOW

The following code sample illustrates how to handle BUFFER_UNDERFLOW and
BUFFER_OVERFLOW status:

 SSLEngineResult res = engine.unwrap(peerNetData, peerAppData);
 switch (res.getStatus()) {

 case BUFFER_OVERFLOW:
 // Maybe need to enlarge the peer application data buffer.
 if (engine.getSession().getApplicationBufferSize() > peerAppData.capacity())
{
 // enlarge the peer application data buffer
 } else {
 // compact or clear the buffer
 }
 // retry the operation
 break;

 case BUFFER_UNDERFLOW:
 // Maybe need to enlarge the peer network packet buffer
 if (engine.getSession().getPacketBufferSize() > peerNetData.capacity()) {
 // enlarge the peer network packet buffer
 } else {
 // compact or clear the buffer
 }
 // obtain more inbound network data and then retry the operation
 break;

 // Handle other status: CLOSED, OK
 // ...
 }

Example 8-8 Sample Code for Checking and Processing Handshaking Statuses
and Overall Statuses

The following code sample illustrates how to process handshaking data by checking
handshaking status and the overall status of the wrap() and unwrap() methods:

Chapter 8
JSSE Classes and Interfaces

8-46

void doHandshake(SocketChannel socketChannel, SSLEngine engine,
 ByteBuffer myNetData, ByteBuffer peerNetData) throws Exception {

 // Create byte buffers to use for holding application data
 int appBufferSize = engine.getSession().getApplicationBufferSize();
 ByteBuffer myAppData = ByteBuffer.allocate(appBufferSize);
 ByteBuffer peerAppData = ByteBuffer.allocate(appBufferSize);

 // Begin handshake
 engine.beginHandshake();
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();

 // Process handshaking message
 while (hs != SSLEngineResult.HandshakeStatus.FINISHED &&
 hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {

 switch (hs) {

 case NEED_UNWRAP:
 // Receive handshaking data from peer
 if (socketChannel.read(peerNetData) < 0) {
 // The channel has reached end-of-stream
 }

 // Process incoming handshaking data
 peerNetData.flip();
 SSLEngineResult res = engine.unwrap(peerNetData, peerAppData);
 peerNetData.compact();
 hs = res.getHandshakeStatus();

 // Check status
 switch (res.getStatus()) {
 case OK :
 // Handle OK status
 break;

 // Handle other status: BUFFER_UNDERFLOW, BUFFER_OVERFLOW, CLOSED
 // ...
 }
 break;

 case NEED_WRAP :
 // Empty the local network packet buffer.
 myNetData.clear();

 // Generate handshaking data
 res = engine.wrap(myAppData, myNetData);
 hs = res.getHandshakeStatus();

 // Check status
 switch (res.getStatus()) {
 case OK :
 myNetData.flip();

 // Send the handshaking data to peer
 while (myNetData.hasRemaining()) {
 socketChannel.write(myNetData);
 }
 break;

 // Handle other status: BUFFER_OVERFLOW, BUFFER_UNDERFLOW, CLOSED

Chapter 8
JSSE Classes and Interfaces

8-47

 // ...
 }
 break;

 case NEED_TASK :
 // Handle blocking tasks
 break;

 // Handle other status: // FINISHED or NOT_HANDSHAKING
 // ...
 }
 }

 // Processes after handshaking
 // ...
}

Example 8-9 Sample Code for Handling DTLS handshake Status and Overall
Status

The following code sample illustrates how to handle DTLS handshake status:

void handshake(SSLEngine engine, DatagramSocket socket,
 SocketAddress peerAddr) throws Exception {
 boolean endLoops = false;
 // private static int MAX_HANDSHAKE_LOOPS = 60;
 int loops = MAX_HANDSHAKE_LOOPS;
 engine.beginHandshake();
 while (!endLoops && (serverException == null) && (clientException == null)) {
 if (--loops < 0) {
 throw new RuntimeException("Too many loops to produce handshake
packets");
 }
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();
 if (hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP ||
 hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP_AGAIN) {
 ByteBuffer iNet;
 ByteBuffer iApp;
 if (hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP) {
 // receive ClientHello request and other SSL/TLS/DTLS records
 byte[] buf = new byte[1024];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 try {
 socket.receive(packet);
 } catch (SocketTimeoutException ste) {
 // retransmit the packet if timeout
 List <Datagrampacket> packets =
 onReceiveTimeout(engine, peerAddr);
 for (DatagramPacket p : packets) {
 socket.send(p);
 }
 continue;
 }
 iNet = ByteBuffer.wrap(buf, 0, packet.getLength());
 iApp = ByteBuffer.allocate(1024);
 } else {
 iNet = ByteBuffer.allocate(0);
 iApp = ByteBuffer.allocate(1024);
 }
 SSLEngineResult r = engine.unwrap(iNet, iApp);
 SSLEngineResult.Status rs = r.getStatus();

Chapter 8
JSSE Classes and Interfaces

8-48

 hs = r.getHandshakeStatus();
 if (rs == SSLEngineResult.Status.BUFFER_OVERFLOW) {
 // the client maximum fragment size config does not work?
 throw new Exception("Buffer overflow: " +
 "incorrect client maximum fragment size");
 } else if (rs == SSLEngineResult.Status.BUFFER_UNDERFLOW) {
 // bad packet, or the client maximum fragment size
 // config does not work?
 if (hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 throw new Exception("Buffer underflow: " +
 "incorrect client maximum fragment size");
 } // otherwise, ignore this packet
 } else if (rs == SSLEngineResult.Status.CLOSED) {
 endLoops = true;
 } // otherwise, SSLEngineResult.Status.OK:
 if (rs != SSLEngineResult.Status.OK) {
 continue;
 }
 } else if (hs == SSLEngineResult.HandshakeStatus.NEED_WRAP) {
 List <DatagramPacket> packets =
 // Call a function to produce handshake packets
 produceHandshakePackets(engine, peerAddr);
 for (DatagramPacket p : packets) {
 socket.send(p);
 }
 } else if (hs == SSLEngineResult.HandshakeStatus.NEED_TASK) {
 runDelegatedTasks(engine);
 } else if (hs == SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 // OK, time to do application data exchange.
 endLoops = true;
 } else if (hs == SSLEngineResult.HandshakeStatus.FINISHED) {
 endLoops = true;
 }
 }
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();
 if (hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 throw new Exception("Not ready for application data yet");
 }
}

Dealing With Blocking Tasks

During handshaking, an SSLEngine might encounter tasks that can block or take a long
time. For example, a TrustManager may need to connect to a remote certificate
validation service, or a KeyManager might need to prompt a user to determine which
certificate to use as part of client authentication. To preserve the nonblocking nature of
SSLEngine, when the engine encounters such a task, it will return
SSLEngineResult.HandshakeStatus.NEED_TASK. Upon receiving this status, the application
should invoke SSLEngine.getDelegatedTask() to get the task, and then, using the
threading model appropriate for its requirements, process the task. The application
might, for example, obtain threads from a thread pool to process the tasks, while the
main thread handles other I/O.

The following code executes each task in a newly created thread:

if (res.getHandshakeStatus() == SSLEngineResult.HandshakeStatus.NEED_TASK) {
 Runnable task;
 while ((task = engine.getDelegatedTask()) != null) {
 new Thread(task).start();

Chapter 8
JSSE Classes and Interfaces

8-49

 }
}

The SSLEngine will block future wrap() and unwrap() calls until all of the outstanding
tasks are completed.

Shutting Down a SSL/TLS/DTLS Connection
For an orderly shutdown of an SSL/TLS/DTLS connection, the SSL/TLS/DTLS
protocols require transmission of close messages. Therefore, when an application is
done with the SSL/TLS/DTLS connection, it should first obtain the close messages
from the SSLEngine, then transmit them to the peer using its transport mechanism, and
finally shut down the transport mechanism. Example 8-10 illustrates this.

In addition to an application explicitly closing the SSLEngine, the SSLEngine might be
closed by the peer (via receipt of a close message while it is processing handshake
data), or by the SSLEngine encountering an error while processing application or
handshake data, indicated by throwing an SSLException. In such cases, the application
should invoke SSLEngine.wrap() to get the close message and send it to the peer until
SSLEngine.isOutboundDone() returns true (as shown in Example 8-10), or until the
SSLEngineResult.getStatus() returns CLOSED.

In addition to orderly shutdowns, there can also be unexpected shutdowns when the
transport link is severed before close messages are exchanged. In the previous
examples, the application might get -1 or IOException when trying to read from the
nonblocking SocketChannel, or get IOException when trying to write to the non-blocking
SocketChannel. When you get to the end of your input data, you should call
engine.closeInbound(), which will verify with the SSLEngine that the remote peer has
closed cleanly from the SSL/TLS/DTLS perspective. Then the application should still
try to shut down cleanly by using the procedure in Example 8-10. Obviously, unlike
SSLSocket, the application using SSLEngine must deal with more state transitions,
statuses, and programming. See Sample Code Illustrating the Use of an SSLEngine.

Example 8-10 Sample Code for Shutting Down a SSL/TLS/DTLS Connection

The following code sample illustrates how to shut down a SSL/TLS/DTLS connection:

// Indicate that application is done with engine
engine.closeOutbound();

while (!engine.isOutboundDone()) {
 // Get close message
 SSLEngineResult res = engine.wrap(empty, myNetData);

 // Check res statuses

 // Send close message to peer
 while(myNetData.hasRemaining()) {
 int num = socketChannel.write(myNetData);
 if (num == 0) {
 // no bytes written; try again later
 }
 myNetData().compact();
 }
}

// Close transport
socketChannel.close();

Chapter 8
JSSE Classes and Interfaces

8-50

SSLSession and ExtendedSSLSession
The javax.net.ssl.SSLSession interface represents a security context negotiated
between the two peers of an SSLSocket or SSLEngine connection. After a session has
been arranged, it can be shared by future SSLSocket or SSLEngine objects connected
between the same two peers.

In some cases, parameters negotiated during the handshake are needed later in the
handshake to make decisions about trust. For example, the list of valid signature
algorithms might restrict the certificate types that can be used for authentication. The
SSLSession can be retrieved during the handshake by calling getHandshakeSession() on
an SSLSocket or SSLEngine. Implementations of TrustManager or KeyManager can use the
getHandshakeSession() method to get information about session parameters to help
them make decisions.

A fully initialized SSLSession contains the cipher suite that will be used for
communications over a secure socket as well as a nonauthoritative hint as to the
network address of the remote peer, and management information such as the time of
creation and last use. A session also contains a shared master secret negotiated
between the peers that is used to create cryptographic keys for encrypting and
guaranteeing the integrity of the communications over an SSLSocket or SSLEngine
connection. The value of this master secret is known only to the underlying secure
socket implementation and is not exposed through the SSLSession API.

ExtendedSSLSession extends the SSLSession interface to support additional session
attributes. The ExtendedSSLSession class adds methods that describe the signature
algorithms that are supported by the local implementation and the peer. The
getRequestedServerNames() method called on an ExtendedSSLSession instance is used to
obtain a list of SNIServerName objects in the requested Server Name Indication (SNI)
Extension. The server should use the requested server names to guide its selection of
an appropriate authentication certificate, and/or other aspects of the security policy.
The client should use the requested server names to guide its endpoint identification of
the peer's identity, and/or other aspects of the security policy.

Calls to the getPacketBufferSize() and getApplicationBufferSize() methods on
SSLSession are used to determine the appropriate buffer sizes used by SSLEngine.

Note:

The SSL/TLS protocols specify that implementations are to produce packets
containing at most 16 kilobytes (KB) of plain text. However, some
implementations violate the specification and generate large records up to 32
KB. If the SSLEngine.unwrap() code detects large inbound packets, then the
buffer sizes returned by SSLSession will be updated dynamically. Applications
should always check the BUFFER_OVERFLOW and BUFFER_UNDERFLOW
statuses and enlarge the corresponding buffers if necessary. See
Understanding SSLEngine Operation Statuses. SunJSSE will always send
standard compliant 16 KB records and allow incoming 32 KB records. For a
workaround, see the System property jsse.SSLEngine.acceptLargeFragments in
Customizing JSSE.

Chapter 8
JSSE Classes and Interfaces

8-51

HttpsURLConnection Class
The javax.net.ssl.HttpsURLConnection class extends the java.net.HttpURLConnection
class and adds support for HTTPS-specific features.

The HTTPS protocol is similar to HTTP, but HTTPS first establishes a secure channel
via SSL/TLS sockets and then verifies the identity of the peer (see Cipher Suite
Choice and Remote Entity Verification) before requesting or receiving data. The
javax.net.ssl.HttpsURLConnection class extends the java.net.HttpURLConnection class
and adds support for HTTPS-specific features. To know more about how HTTPS
URLs are constructed and used, see thejava.net.URL,
java.net.URLConnection, java.net.HttpURLConnection, and
javax.net.ssl.HttpsURLConnection classes.

Upon obtaining an HttpsURLConnection instance, you can configure a number of HTTP
and HTTPS parameters before actually initiating the network connection via the
URLConnection.connect() method. Of particular interest are:

• Setting the Assigned SSLSocketFactory

• Setting the Assigned HostnameVerifier

Setting the Assigned SSLSocketFactory

In some situations, it is desirable to specify the SSLSocketFactory that an
HttpsURLConnection instance uses. For example, you might want to tunnel through a
proxy type that is not supported by the default implementation. The new
SSLSocketFactory could return sockets that have already performed all necessary
tunneling, thus allowing HttpsURLConnection to use additional proxies.

The HttpsURLConnection class has a default SSLSocketFactory that is assigned when the
class is loaded (this is the factory returned by the SSLSocketFactory.getDefault()
method). Future instances of HttpsURLConnection will inherit the current default
SSLSocketFactory until a new default SSLSocketFactory is assigned to the class via the
static HttpsURLConnection.setDefaultSSLSocketFactory() method. Once an instance of
HttpsURLConnection has been created, the inherited SSLSocketFactory on this instance
can be overridden with a call to the setSSLSocketFactory() method.

Note:

Changing the default static SSLSocketFactory has no effect on existing
instances of HttpsURLConnection. A call to the setSSLSocketFactory() method is
necessary to change the existing instances.

You can obtain the per-instance or per-class SSLSocketFactory by making a call to the
getSSLSocketFactory() or getDefaultSSLSocketFactory() method, respectively.

Setting the Assigned HostnameVerifier

If the host name of the URL does not match the host name in the credentials received
as part of the SSL/TLS handshake, then it is possible that URL spoofing has occurred.

Chapter 8
JSSE Classes and Interfaces

8-52

https://docs.oracle.com/javase/9/docs/api/java/net/URL.html
https://docs.oracle.com/javase/9/docs/api/java/net/URLConnection.html
https://docs.oracle.com/javase/9/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/HttpsURLConnection.html

If the implementation cannot determine a host name match with reasonable certainty,
then the SSL implementation performs a callback to the instance's assigned
HostnameVerifier for further checking. The host name verifier can take whatever
steps are necessary to make the determination, such as performing host name pattern
matching or perhaps opening an interactive dialog box. An unsuccessful verification by
the host name verifier closes the connection. For more information regarding host
name verification, see RFC 2818.

The setHostnameVerifier() and setDefaultHostnameVerifier() methods
operate in a similar manner to the setSSLSocketFactory() and
setDefaultSSLSocketFactory() methods, in that HostnameVerifier objects
are assigned on a per-instance and per-class basis, and the current values can be
obtained by a call to the getHostnameVerifier() or
getDefaultHostnameVerifier() method.

Support Classes and Interfaces

The classes and interfaces in this section are provided to support the creation and
initialization of SSLContext objects, which are used to create SSLSocketFactory,
SSLServerSocketFactory, and SSLEngine objects. The support classes and interfaces are
part of the javax.net.ssl package.

Three of the classes described in this section (The SSLContext Class, The
KeyManagerFactory Class, and The TrustManagerFactory Class) are engine classes.
An engine class is an API class for specific algorithms (or protocols, in the case of
SSLContext), for which implementations may be provided in one or more Cryptographic
Service Provider (provider) packages. See JCA Design Principles and Engine Classes
and Algorithms.

The SunJSSE provider that comes standard with JSSE provides SSLContext,
KeyManagerFactory, and TrustManagerFactory implementations, as well as
implementations for engine classes in the standard java.security API. Table 8-6 lists
implementations supplied by SunJSSE.

Table 8-6 Implementations Supplied by SunJSSE

Engine Class Implemented Algorithm or Protocol

KeyStore PKCS12

KeyManagerFactory PKIX, SunX509

TrustManagerFactory PKIX (X509 or SunPKIX), SunX509

SSLContext SSLv3[1], TLSv1, TLSv1.1, TLSv1.2,
DTLSv1.0, DTLSv1.2

Footnote 1: Starting with JDK 8u31, the SSLv3 protocol (Secure Socket Layer) has
been deactivated and is not available by default. See the java.security.Security
property jdk.tls.disabledAlgorithms in the <java_home>/conf/security/java.security
file. If SSLv3 is absolutely required, the protocol can be reactivated by removing SSLv3
from the jdk.tls.disabledAlgorithms property in the java.security file or by
dynamically setting this Security Property before JSSE is initialized. To enable SSLv3
protocol at deploy level, after following the previous steps, add the line
deployment.security.SSLv3=true to the deployment.properties file.

Chapter 8
JSSE Classes and Interfaces

8-53

http://www.ietf.org/rfc/rfc2818.txt?number=2818

The SSLContext Class
The javax.net.ssl.SSLContext class is an engine class for an implementation of a
secure socket protocol. An instance of this class acts as a factory for SSLSocket,
SSLServerSocket, and SSLEngine. An SSLContext object holds all of the state information
shared across all objects created under that context. For example, session state is
associated with the SSLContext when it is negotiated through the handshake protocol
by sockets created by socket factories provided by the context. These cached
sessions can be reused and shared by other sockets created under the same context.

Each instance is configured through its init method with the keys, certificate chains,
and trusted root CA certificates that it needs to perform authentication. This
configuration is provided in the form of key and trust managers. These managers
provide support for the authentication and key agreement aspects of the cipher suites
supported by the context.

Currently, only X.509-based managers are supported.

Obtaining and Initializing the SSLContext Class
The SSLContext class is used to create the SSLSocketFactory or SSLServerSocketFactory
class.

There are two ways to obtain and initialize an SSLContext:

• The simplest way is to call the static SSLContext.getDefault method on either the
SSLSocketFactory or SSLServerSocketFactory class. This method creates a default
SSLContext with a default KeyManager, TrustManager, and SecureRandom (a secure
random number generator). A default KeyManagerFactory and TrustManagerFactory
are used to create the KeyManager and TrustManager, respectively. The key material
used is found in the default keystore and truststore, as determined by system
properties described in Customizing the Default Keystores and Truststores, Store
Types, and Store Passwords.

• The approach that gives the caller the most control over the behavior of the
created context is to call the static method SSLContext.getDefault on the
SSLContext class, and then initialize the context by calling the instance's proper
init() method. One variant of the init() method takes three arguments: an array
of KeyManager objects, an array of TrustManager objects, and a SecureRandom object.
The KeyManager and TrustManager objects are created by either implementing the
appropriate interfaces or using the KeyManagerFactory and TrustManagerFactory
classes to generate implementations. The KeyManagerFactory and
TrustManagerFactory can then each be initialized with key material contained in the
KeyStore passed as an argument to the init() method of the TrustManagerFactory
or KeyManagerFactory classes. Finally, the getTrustManagers() method (in
TrustManagerFactory) and getKeyManagers() method (in KeyManagerFactory) can be
called to obtain the array of trust managers or key managers, one for each type of
trust or key material.

Once an SSL connection is established, an SSLSession is created which contains
various information, such as identities established and cipher suite used. The
SSLSession is then used to describe an ongoing relationship and state information
between two entities. Each SSL connection involves one session at a time, but that
session may be used on many connections between those entities, simultaneously or
sequentially.

Chapter 8
JSSE Classes and Interfaces

8-54

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLContext.html#getDefault
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLContext.html#getDefault

Creating an SSLContext Object
Like other JCA provider-based engine classes, SSLContext objects are created using
the getInstance() factory methods of the SSLContext class. These static methods each
return an instance that implements at least the requested secure socket protocol. The
returned instance may implement other protocols, too. For example,
getInstance("TLSv1") may return an instance that implements TLSv1, TLSv1.1, and
TLSv1.2. The getSupportedProtocols() method returns a list of supported protocols
when an SSLSocket, SSLServerSocket, or SSLEngine is created from this context. You can
control which protocols are actually enabled for an SSL connection by using the
setEnabledProtocols(String[] protocols) method.

Note:

An SSLContext object is automatically created, initialized, and statically
assigned to the SSLSocketFactory class when you call the
SSLSocketFactory.getDefault() method. Therefore, you do not have to directly
create and initialize an SSLContext object (unless you want to override the
default behavior).

To create an SSLContext object by calling the getInstance() factory method, you must
specify the protocol name. You may also specify which provider you want to supply the
implementation of the requested protocol:

• public static SSLContext getInstance(String protocol);

• public static SSLContext getInstance(String protocol, String provider);

• public static SSLContext getInstance(String protocol, Provider provider);

If just a protocol name is specified, then the system will determine whether an
implementation of the requested protocol is available in the environment. If there is
more than one implementation, then it will determine whether there is a preferred one.

If both a protocol name and a provider are specified, then the system will determine
whether an implementation of the requested protocol is in the provider requested. If
there is no implementation, an exception will be thrown.

A protocol is a string (such as "TLS") that describes the secure socket protocol desired.
Common protocol names for SSLContext objects are defined in Java Security Standard
Algorithm Names Specification.

An SSLContext can be obtained as follows:

SSLContext sc = SSLContext.getInstance("TLS");

A newly created SSLContext should be initialized by calling the init method:

public void init(KeyManager[] km, TrustManager[] tm, SecureRandom random);

If the KeyManager[] parameter is null, then an empty KeyManager will be defined for this
context. If the TrustManager[] parameter is null, then the installed security providers will
be searched for the highest-priority implementation of the TrustManagerFactory
class (see The TrustManagerFactory Class), from which an appropriate TrustManager
will be obtained. Likewise, the SecureRandom parameter may be null, in which case a
default implementation will be used.

Chapter 8
JSSE Classes and Interfaces

8-55

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

If the internal default context is used, (for example, an SSLContext is created by
SSLSocketFactory.getDefault() or SSLServerSocketFactory.getDefault()), then a default
KeyManager and TrustManager are created. The default SecureRandom implementation
is also chosen.

The TrustManager Interface
The primary responsibility of the TrustManager is to determine whether the presented
authentication credentials should be trusted. If the credentials are not trusted, then the
connection will be terminated. To authenticate the remote identity of a secure socket
peer, you must initialize an SSLContext object with one or more TrustManager objects.
You must pass one TrustManager for each authentication mechanism that is supported.
If null is passed into the SSLContext initialization, then a trust manager will be created
for you. Typically, a single trust manager supports authentication based on X.509
public key certificates (for example, X509TrustManager). Some secure socket
implementations may also support authentication based on shared secret keys,
Kerberos, or other mechanisms.

TrustManager objects are created either by a TrustManagerFactory, or by providing a
concrete implementation of the interface.

The TrustManagerFactory Class
The javax.net.ssl.TrustManagerFactory is an engine class for a provider-based service
that acts as a factory for one or more types of TrustManager objects. Because it is
provider-based, additional factories can be implemented and configured to provide
additional or alternative trust managers that provide more sophisticated services or
that implement installation-specific authentication policies.

Creating a TrustManagerFactory
You create an instance of this class in a similar manner to SSLContext, except for
passing an algorithm name string instead of a protocol name to the getInstance()
method:

TrustManagerFactory tmf = TrustManagerFactory.getInstance(String algorithm);
TrustManagerFactory tmf = TrustManagerFactory.getInstance(String algorithm, String
provider);
TrustManagerFactory tmf = TrustManagerFactory.getInstance(String algorithm, Provider
provider);

A sample call is as follows:

TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX", "SunJSSE");

The preceding call creates an instance of the SunJSSE provider's PKIX trust manager
factory. This factory can be used to create trust managers that provide X.509 PKIX-
based certification path validity checking.

When initializing an SSLContext, you can use trust managers created from a trust
manager factory, or you can write your own trust manager, for example, using the
CertPath API. See Java PKI Programmer’s Guide. You do not need to use a trust
manager factory if you implement a trust manager using the X509TrustManager
interface.

A newly created factory should be initialized by calling one of the init() methods:

Chapter 8
JSSE Classes and Interfaces

8-56

https://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPath.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/X509TrustManager.html

public void init(KeyStore ks);
public void init(ManagerFactoryParameters spec);

Call whichever init() method is appropriate for the TrustManagerFactory you are using.
If you are not sure, then ask the provider vendor.

For many factories, such as the SunX509 TrustManagerFactory from the SunJSSE
provider, the KeyStore is the only information required to initialize the
TrustManagerFactory and thus the first init method is the appropriate one to call. The
TrustManagerFactory will query the KeyStore for information about which remote
certificates should be trusted during authorization checks.

Sometimes, initialization parameters other than a KeyStore are needed by a provider.
Users of that provider are expected to pass an implementation of the appropriate
ManagerFactoryParameters as defined by the provider. The provider can then call the
specified methods in the ManagerFactoryParameters implementation to obtain the
needed information.

For example, suppose the TrustManagerFactory provider requires initialization
parameters B, R, and S from any application that wants to use that provider. Like all
providers that require initialization parameters other than a KeyStore, the provider
requires the application to provide an instance of a class that implements a particular
ManagerFactoryParameters subinterface. In the example, suppose that the provider
requires the calling application to implement and create an instance of
MyTrustManagerFactoryParams and pass it to the second init() method. The following
example illustrates what MyTrustManagerFactoryParams can look like:

public interface MyTrustManagerFactoryParams extends ManagerFactoryParameters {
 public boolean getBValue();
 public float getRValue();
 public String getSValue();
}

Some trust managers can make trust decisions without being explicitly initialized with a
KeyStore object or any other parameters. For example, they may access trust material
from a local directory service via LDAP, use a remote online certificate status checking
server, or access default trust material from a standard local location.

PKIX TrustManager Support
The default trust manager algorithm is PKIX. It can be changed by editing the
ssl.TrustManagerFactory.algorithm property in the java.security file.

The PKIX trust manager factory uses the CertPath PKIX implementation (see PKI
Programmers Guide Overview) from an installed security provider. The trust manager
factory can be initialized using the normal init(KeyStores) method, or by passing
CertPath parameters to the PKIX trust manager using the
CertPathTrustManagerParameters class.

Example 8-11 illustrates how to get the trust manager to use a particular LDAP
certificate store and enable revocation checking.

If the TrustManagerFactory.init(KeyStore) method is used, then default PKIX
parameters are used with the exception that revocation checking is disabled. It can be
enabled by setting the com.sun.net.ssl.checkRevocation system property to true. This
setting requires that the CertPath implementation can locate revocation information by
itself. The PKIX implementation in the provider can do this in many cases but requires
that the system property com.sun.security.enableCRLDP be set to true. Note that the

Chapter 8
JSSE Classes and Interfaces

8-57

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/CertPathTrustManagerParameters.html

TrustManagerFactory.init(ManagerFactoryParameters) method has
revocation checking enabled by default.

See PKIX Classes and The CertPath Class.

Example 8-11 Sample Code for Using a LDAP Certificate to Enable Revocation
Checking

The following example illustrates how to get the trust manager to use a particular
LDAP certificate store and enable revocation checking:

 import javax.net.ssl.*;
 import java.security.cert.*;
 import java.security.KeyStore;
 import java.io.FileInputStream;
 ...

 // Obtain Keystore password
 char[] pass = System.console().readPassword("Password: ");

 // Create PKIX parameters
 KeyStore anchors = KeyStore.getInstance("JKS");
 anchors.load(new FileInputStream(anchorsFile, pass));
 PKIXBuilderParameters pkixParams = new PKIXBuilderParameters(anchors, new
X509CertSelector());

 // Specify LDAP certificate store to use
 LDAPCertStoreParameters lcsp = new LDAPCertStoreParameters("ldap.imc.org", 389);
 pkixParams.addCertStore(CertStore.getInstance("LDAP", lcsp));

 // Specify that revocation checking is to be enabled
 pkixParams.setRevocationEnabled(true);

 // Wrap PKIX parameters as trust manager parameters
 ManagerFactoryParameters trustParams = new
CertPathTrustManagerParameters(pkixParams);

 // Create TrustManagerFactory for PKIX-compliant trust managers
 TrustManagerFactory factory = TrustManagerFactory.getInstance("PKIX");

 // Pass parameters to factory to be passed to CertPath implementation
 factory.init(trustParams);

 // Use factory
 SSLContext ctx = SSLContext.getInstance("TLS");
 ctx.init(null, factory.getTrustManagers(), null);

The X509TrustManager Interface
The javax.net.ssl.X509TrustManager interface extends the general TrustManager
interface. It must be implemented by a trust manager when using X.509-based
authentication.

To support X.509 authentication of remote socket peers through JSSE, an instance of
this interface must be passed to the init method of an SSLContext object.

Chapter 8
JSSE Classes and Interfaces

8-58

Creating an X509TrustManager
You can either implement this interface directly yourself or obtain one from a provider-
based TrustManagerFactory (such as that supplied by the SunJSSE provider). You
could also implement your own interface that delegates to a factory-generated trust
manager. For example, you might do this to filter the resulting trust decisions and
query an end-user through a graphical user interface.

If a null KeyStore parameter is passed to the SunJSSE PKIX or SunX509
TrustManagerFactory, then the factory uses the following process to try to find trust
material:

1. If the javax.net.ssl.trustStore property is defined, then the TrustManagerFactory
attempts to find a file using the file name specified by that system property, and
uses that file for the KeyStore parameter. If the javax.net.ssl.trustStorePassword
system property is also defined, then its value is used to check the integrity of the
data in the truststore before opening it.

If the javax.net.ssl.trustStore property is defined but the specified file does not
exist, then a default TrustManager using an empty keystore is created.

2. If the javax.net.ssl.trustStore system property was not specified, then:

• if the file java-home/lib/security/jssecacerts exists, that file is used;

• if the file java-home/lib/security/cacerts exists, that file is used;

• if neither of these files exists, then the SSL cipher suite is anonymous, does
not perform any authentication, and thus does not need a truststore.

To know more about what java-home refers to, see Terms and Definitions.

The factory looks for a file specified via the javax.net.ssl.trustStore Security Property
or for the jssecacerts file before checking for a cacerts file. Therefore, you can
provide a JSSE-specific set of trusted root certificates separate from ones that might
be present in cacerts for code-signing purposes.

Creating Your Own X509TrustManager
If the supplied X509TrustManager behavior is not suitable for your situation, then you can
create your own X509TrustManager by either creating and registering your own
TrustManagerFactory or by implementing the X509TrustManager interface directly.

Example 8-12 illustrates a MyX509TrustManager class that enhances the default
SunJSSE X509TrustManager behavior by providing alternative authentication logic when
the default X509TrustManager fails.

Once you have created such a trust manager, assign it to an SSLContext via the init()
method, as in the following example. Future SocketFactories created from this
SSLContext will use your new TrustManager when making trust decisions.

TrustManager[] myTMs = new TrustManager[] { new MyX509TrustManager() };
SSLContext ctx = SSLContext.getInstance("TLS");
ctx.init(null, myTMs, null);

Chapter 8
JSSE Classes and Interfaces

8-59

Example 8-12 Sample Code for Creating a X509TrustManager

The following code sample illustrates MyX509TrustManager class that enhances the
default SunJSSE X509TrustManager behavior by providing alternative authentication
logic when the default X509TrustManager fails:

class MyX509TrustManager implements X509TrustManager {

 /*
 * The default PKIX X509TrustManager9. Decisions are delegated
 * to it, and a fall back to the logic in this class is performed
 * if the default X509TrustManager does not trust it.
 */
 X509TrustManager pkixTrustManager;

 MyX509TrustManager() throws Exception {
 // create a "default" JSSE X509TrustManager.

 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("trustedCerts"), "passphrase".toCharArray());

 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ks);

 TrustManager tms [] = tmf.getTrustManagers();

 /*
 * Iterate over the returned trust managers, looking
 * for an instance of X509TrustManager. If found,
 * use that as the default trust manager.
 */
 for (int i = 0; i < tms.length; i++) {
 if (tms[i] instanceof X509TrustManager) {
 pkixTrustManager = (X509TrustManager) tms[i];
 return;
 }
 }

 /*
 * Find some other way to initialize, or else the
 * constructor fails.
 */
 throw new Exception("Couldn't initialize");
 }

 /*
 * Delegate to the default trust manager.
 */
 public void checkClientTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {
 try {
 pkixTrustManager.checkClientTrusted(chain, authType);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 /*
 * Delegate to the default trust manager.
 */

Chapter 8
JSSE Classes and Interfaces

8-60

 public void checkServerTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {
 try {
 pkixTrustManager.checkServerTrusted(chain, authType);
 } catch (CertificateException excep) {
 /*
 * Possibly pop up a dialog box asking whether to trust the
 * cert chain.
 */
 }
 }

 /*
 * Merely pass this through.
 */
 public X509Certificate[] getAcceptedIssuers() {
 return pkixTrustManager.getAcceptedIssuers();
 }
}

Updating the Keystore Dynamically
You can enhance MyX509TrustManager to handle dynamic keystore updates. When a
checkClientTrusted or checkServerTrusted test fails and does not establish a trusted
certificate chain, you can add the required trusted certificate to the keystore. You must
create a new pkixTrustManager from the TrustManagerFactory initialized with the
updated keystore. When you establish a new connection (using the previously
initialized SSLContext), the newly added certificate will be used when making trust
decisions.

X509ExtendedTrustManager Class
The X509ExtendedTrustManager class is an abstract implementation of the
X509TrustManager interface. It adds methods for connection-sensitive trust
management. In addition, it enables endpoint verification at the TLS layer.

In TLS 1.2 and later, both client and server can specify which hash and signature
algorithms they will accept. To authenticate the remote side, authentication decisions
must be based on both X509 certificates and the local accepted hash and signature
algorithms. The local accepted hash and signature algorithms can be obtained using
the ExtendedSSLSession.getLocalSupportedSignatureAlgorithms() method.

The ExtendedSSLSession object can be retrieved by calling the
SSLSocket.getHandshakeSession() method or the SSLEngine.getHandshakeSession()
method.

The X509TrustManager interface is not connection-sensitive. It provides no way to
access SSLSocket or SSLEngine session properties.

Besides TLS 1.2 support, the X509ExtendedTrustManager class also supports algorithm
constraints and SSL layer host name verification. For JSSE providers and trust
manager implementations, the X509ExtendedTrustManager class is highly recommended
over the legacy X509TrustManager interface.

Creating an X509ExtendedTrustManager
You can either create an X509ExtendedTrustManager subclass yourself (which is outlined
in the following section) or obtain one from a provider-based TrustManagerFactory (such

Chapter 8
JSSE Classes and Interfaces

8-61

as that supplied by the SunJSSE provider). In Java SE 7, the PKIX or SunX509
TrustManagerFactory returns an X509ExtendedTrustManager instance.

Creating Your Own X509ExtendedTrustManager
This section outlines how to create a subclass of X509ExtendedTrustManager in nearly
the same way as described for X509TrustManager.

Example 8-13 illustrates how to create a class that uses the PKIX TrustManagerFactory
to locate a default X509ExtendedTrustManager that will be used to make decisions about
trust.

Example 8-13 Sample Code for Creating a PKIX TrustManagerFactory

The following code sample illustrates how to create a class that uses the PKIX
TrustManagerFactory to locate a default X509ExtendedTrustManager that will be used to
make decisions about trust. If the default trust manager fails for any reason, then the
subclass can add other behavior. In the sample, these locations are indicated by
comments in the catch clauses.

import java.io.*;
import java.net.*;
import java.security.*;
import java.security.cert.*;
import javax.net.ssl.*;

public class MyX509ExtendedTrustManager extends X509ExtendedTrustManager {

 /*
 * The default PKIX X509ExtendedTrustManager. Decisions are
 * delegated to it, and a fall back to the logic in this class is
 * performed if the default X509ExtendedTrustManager does not
 * trust it.
 */

 X509ExtendedTrustManager pkixTrustManager;

 MyX509ExtendedTrustManager() throws Exception {
 // create a "default" JSSE X509ExtendedTrustManager.

 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("trustedCerts"), "passphrase".toCharArray());

 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ks);

 TrustManager tms [] = tmf.getTrustManagers();

 /*
 * Iterate over the returned trust managers, looking
 * for an instance of X509ExtendedTrustManager. If found,
 * use that as the default trust manager.
 */
 for (int i = 0; i < tms.length; i++) {
 if (tms[i] instanceof X509ExtendedTrustManager) {
 pkixTrustManager = (X509ExtendedTrustManager) tms[i];
 return;
 }
 }

Chapter 8
JSSE Classes and Interfaces

8-62

 /*
 * Find some other way to initialize, or else we have to fail the
 * constructor.
 */
 throw new Exception("Couldn't initialize");
 }

 /*
 * Delegate to the default trust manager.
 */
 public void checkClientTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {
 try {
 pkixTrustManager.checkClientTrusted(chain, authType);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 /*
 * Delegate to the default trust manager.
 */
 public void checkServerTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {
 try {
 pkixTrustManager.checkServerTrusted(chain, authType);
 } catch (CertificateException excep) {
 /*
 * Possibly pop up a dialog box asking whether to trust the
 * cert chain.
 */
 }
 }

 /*
 * Connection-sensitive verification.
 */
 public void checkClientTrusted(X509Certificate[] chain, String authType, Socket
socket)
 throws CertificateException {
 try {
 pkixTrustManager.checkClientTrusted(chain, authType, socket);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 public void checkClientTrusted(X509Certificate[] chain, String authType, SSLEngine
engine)
 throws CertificateException {
 try {
 pkixTrustManager.checkClientTrusted(chain, authType, engine);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 public void checkServerTrusted(X509Certificate[] chain, String authType, Socket
socket)
 throws CertificateException {
 try {

Chapter 8
JSSE Classes and Interfaces

8-63

 pkixTrustManager.checkServerTrusted(chain, authType, socket);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 public void checkServerTrusted(X509Certificate[] chain, String authType, SSLEngine
engine)
 throws CertificateException {
 try {
 pkixTrustManager.checkServerTrusted(chain, authType, engine);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 /*
 * Merely pass this through.
 */
 public X509Certificate[] getAcceptedIssuers() {
 return pkixTrustManager.getAcceptedIssuers();
 }
}

The KeyManager Interface

The primary responsibility of the KeyManager is to select the authentication credentials
that will eventually be sent to the remote host. To authenticate yourself (a local secure
socket peer) to a remote peer, you must initialize an SSLContext object with one or
more KeyManager objects. You must pass one KeyManager for each different
authentication mechanism that will be supported. If null is passed into the SSLContext
initialization, then an empty KeyManager will be created. If the internal default context is
used (for example, an SSLContext created by SSLSocketFactory.getDefault() or
SSLServerSocketFactory.getDefault()), then a default KeyManager is created. See
Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords. Typically, a single key manager supports authentication based on X.509
public key certificates. Some secure socket implementations may also support
authentication based on shared secret keys, Kerberos, or other mechanisms.

KeyManager objects are created either by a KeyManagerFactory, or by providing a
concrete implementation of the interface.

The KeyManagerFactory Class
The javax.net.ssl.KeyManagerFactory class is an engine class for a provider-based
service that acts as a factory for one or more types of KeyManager objects. The
SunJSSE provider implements a factory that can return a basic X.509 key manager.
Because it is provider-based, additional factories can be implemented and configured
to provide additional or alternative key managers.

Chapter 8
JSSE Classes and Interfaces

8-64

Creating a KeyManagerFactory
You create an instance of this class in a similar manner to SSLContext, except for
passing an algorithm name string instead of a protocol name to the getInstance()
method:

KeyManagerFactory kmf = getInstance(String algorithm);
KeyManagerFactory kmf = getInstance(String algorithm, String provider);
KeyManagerFactory kmf = getInstance(String algorithm, Provider provider);

A sample call as follows:

KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509", "SunJSSE");

The preceding call creates an instance of the SunJSSE provider's default key manager
factory, which provides basic X.509-based authentication keys.

A newly created factory should be initialized by calling one of the init methods:

public void init(KeyStore ks, char[] password);
public void init(ManagerFactoryParameters spec);

Call whichever init method is appropriate for the KeyManagerFactory you are using. If
you are not sure, then ask the provider vendor.

For many factories, such as the default SunX509 KeyManagerFactory from the SunJSSE
provider, the KeyStore and password are the only information required to initialize the
KeyManagerFactory and thus the first init method is the appropriate one to call. The
KeyManagerFactory will query the KeyStore for information about which private key and
matching public key certificates should be used for authenticating to a remote socket
peer. The password parameter specifies the password that will be used with the
methods for accessing keys from the KeyStore. All keys in the KeyStore must be
protected by the same password.

Sometimes initialization parameters other than a KeyStore and password are needed
by a provider. Users of that provider are expected to pass an implementation of the
appropriate ManagerFactoryParameters as defined by the provider. The provider can
then call the specified methods in the ManagerFactoryParameters implementation to
obtain the needed information.

Some factories can provide access to authentication material without being initialized
with a KeyStore object or any other parameters. For example, they may access key
material as part of a login mechanism such as one based on JAAS, the Java
Authentication and Authorization Service.

As previously indicated, the SunJSSE provider supports a SunX509 factory that must
be initialized with a KeyStore parameter.

The X509KeyManager Interface
The javax.net.ssl.X509KeyManager interface extends the general KeyManager interface. It
must be implemented by a key manager for X.509-based authentication. To support X.
509 authentication to remote socket peers through JSSE, an instance of this interface
must be passed to the init() method of an SSLContext object.

Chapter 8
JSSE Classes and Interfaces

8-65

Creating an X509KeyManager
You can either implement this interface directly yourself or obtain one from a provider-
based KeyManagerFactory (such as that supplied by the SunJSSE provider). You could
also implement your own interface that delegates to a factory-generated key manager.
For example, you might do this to filter the resulting keys and query an end-user
through a graphical user interface.

Creating Your Own X509KeyManager

If the default X509KeyManager behavior is not suitable for your situation, then you can
create your own X509KeyManager in a way similar to that shown in Creating Your Own
X509TrustManager.

The X509ExtendedKeyManager Class
The X509ExtendedKeyManager abstract class is an implementation of the X509KeyManager
interface that allows for connection-specific key selection. It adds two methods that
select a key alias for client or server based on the key type, allowed issuers, and
current SSLEngine:

• public String chooseEngineClientAlias(String[] keyType, Principal[] issuers,

SSLEngine engine)

• public String chooseEngineServerAlias(String keyType, Principal[] issuers,

SSLEngine engine)

If a key manager is not an instance of the X509ExtendedKeyManager class, then it will not
work with the SSLEngine class.

For JSSE providers and key manager implementations, the X509ExtendedKeyManager
class is highly recommended over the legacy X509KeyManager interface.

In TLS 1.2 and later, both client and server can specify which hash and signature
algorithms they will accept. To pass the authentication required by the remote side,
local key selection decisions must be based on both X509 certificates and the remote
accepted hash and signature algorithms. The remote accepted hash and signature
algorithms can be retrieved using the
ExtendedSSLSession.getPeerSupportedSignatureAlgorithms() method.

You can create your own X509ExtendedKeyManager subclass in a way similar to that
shown in Creating Your Own X509TrustManager.

Support for the Server Name Indication (SNI) Extension on the server side enables the
key manager to check the server name and select the appropriate key accordingly. For
example, suppose there are three key entries with certificates in the keystore:

• cn=www.example.com

• cn=www.example.org

• cn=www.example.net

If the ClientHello message requests to connect to www.example.net in the SNI
extension, then the server should be able to select the certificate with subject
cn=www.example.net.

Chapter 8
JSSE Classes and Interfaces

8-66

Relationship Between a TrustManager and a KeyManager
Historically, there has been confusion regarding the functionality of a TrustManager and
a KeyManager.

A TrustManager determines whether the remote authentication credentials (and thus the
connection) should be trusted.

A KeyManager determines which authentication credentials to send to the remote host.

Secondary Support Classes and Interfaces
These classes are provided as part of the JSSE API to support the creation, use, and
management of secure sockets. They are less likely to be used by secure socket
applications than are the core and support classes. The secondary support classes
and interfaces are part of the javax.net.ssl and javax.security.cert packages.

The SSLParameters Class
The SSLParameters class encapsulates the following parameters that affect a SSL/TLS/
DTLS connection:

• The list of cipher suites to be accepted in an SSL/TLS/DTLS handshake

• The list of protocols to be allowed

• The endpoint identification algorithm during SSL/TLS/DTLS handshaking

• The server names and server name matchers (see Server Name Indication (SNI)
Extension)

• The cipher suite preference to be used in an SSL/TLS/DTLS handshake

• Algorithm during SSL/TLS/DTLS handshaking

• The Server Name Indication (SNI)

• The maximum network packet size

• The algorithm constraints and whether SSL/TLS/DTLS servers should request or
require client authentication

You can retrieve the current SSLParameters for an SSLSocket or SSLEngine by using the
following methods:

• getSSLParameters() in an SSLSocket, SSLServerSocket, and SSLEngine

• getDefaultSSLParameters() and getSupportedSSLParamters() in an SSLContext

You can assign SSLParameters with the setSSLParameters() method in an SSLSocket,
SSLServerSocket and SSLEngine.

You can explicitly set the server name indication with the
SSLParameters.setServerNames() method. The server name indication in client mode
also affects endpoint identification. In the implementation of X509ExtendedTrustManager,
it uses the server name indication retrieved by the
ExtendedSSLSession.getRequestedServerNames() method. See Example 8-14.

Chapter 8
JSSE Classes and Interfaces

8-67

Example 8-14 Sample Code to Set Server Name Indication

This example uses the host name in the server name indication (www.example.com) to
make endpoint identification against the peer's identity presented in the end-entity's X.
509 certificate.

 SSLSocketFactory factory = ...
 SSLSocket sslSocket = factory.createSocket("172.16.10.6", 443);
 // SSLEngine sslEngine = sslContext.createSSLEngine("172.16.10.6", 443);

 SNIHostName serverName = new SNIHostName("www.example.com");
 List<SNIServerName> serverNames = new ArrayList<>(1);
 serverNames.add(serverName);

 SSLParameters params = sslSocket.getSSLParameters();
 params.setServerNames(serverNames);
 sslSocket.setSSLParameters(params);
 // sslEngine.setSSLParameters(params);

Cipher Suite Preference
During TLS handshaking, the client requests to negotiate a cipher suite from a list of
cryptographic options that it supports, starting with its first preference. Then, the server
selects a single cipher suite from the list of cipher suites requested by the client.
Normally, the selection honors the client's preference. However, to mitigate the risks of
using weak cipher suites, the server may select cipher suites based on its own
preference rather than the client's preference, by invoking the method
SSLParameters.setUseCipherSuitesOrder(true).

The SSLSessionContext Interface

The javax.net.ssl.SSLSessionContext interface is a grouping of SSLSession objects
associated with a single entity. For example, it could be associated with a server or
client that participates in many sessions concurrently. The methods in this interface
enable the enumeration of all sessions in a context and allow lookup of specific
sessions via their session IDs.

An SSLSessionContext may optionally be obtained from an SSLSession by calling the
SSLSession getSessionContext() method. The context may be unavailable in some
environments, in which case the getSessionContext() method returns null.

The SSLSessionBindingListener Interface

The javax.net.ssl.SSLSessionBindingListener interface is implemented by objects that
are notified when they are being bound or unbound from an SSLSession.

The SSLSessionBindingEvent Class

The javax.net.ssl.SSLSessionBindingEvent class defines the event communicated to
an SSLSessionBindingListener (see The SSLSessionBindingListener Interface)
when it is bound or unbound from an SSLSession (see SSLSession and
ExtendedSSLSession).

Chapter 8
JSSE Classes and Interfaces

8-68

The HandShakeCompletedListener Interface
The javax.net.ssl.HandShakeCompletedListener interface is an interface implemented
by any class that is notified of the completion of an SSL protocol handshake on a
given SSLSocket connection.

The HandShakeCompletedEvent Class

The javax.net.ssl.HandShakeCompletedEvent class defines the event communicated to a
HandShakeCompletedListener (see The HandShakeCompletedListener Interface)
upon completion of an SSL protocol handshake on a given SSLSocket connection.

The HostnameVerifier Interface

If the SSL/TLS implementation's standard host name verification logic fails, then the
implementation calls the verify() method of the class that implements this interface
and is assigned to this HttpsURLConnection instance. If the callback class can determine
that the host name is acceptable given the parameters, it reports that the connection
should be allowed. An unacceptable response causes the connection to be
terminated. See Example 8-15.

See HttpsURLConnection for more information about how to assign the HostnameVerifier
to the HttpsURLConnection.

Example 8-15 Sample Code for Implementing the HostnameVerifier Interface

The following example illustrates a class that implements HostnameVerifier interface:

 public class MyHostnameVerifier implements HostnameVerifier {

 public boolean verify(String hostname, SSLSession session) {
 // pop up an interactive dialog box
 // or insert additional matching logic
 if (good_address) {
 return true;
 } else {
 return false;
 }
 }
 }

 //...deleted...

 HttpsURLConnection urlc = (HttpsURLConnection)
 (new URL("https://www.example.com/")).openConnection();
 urlc.setHostnameVerifier(new MyHostnameVerifier());

The X509Certificate Class
Many secure socket protocols perform authentication using public key certificates, also
called X.509 certificates. This is the default authentication mechanism for the SSL/TLS
protocols.

The java.security.cert.X509Certificate abstract class provides a standard way to
access the attributes of X.509 certificates.

Chapter 8
JSSE Classes and Interfaces

8-69

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/HttpsURLConnection.html

Note:

The javax.security.cert.X509Certificate class is supported only for backward
compatibility with previous (1.0.x and 1.1.x) versions of JSSE. New
applications should use the java.security.cert.X509Certificate class instead.

The AlgorithmConstraints Interface
The java.security.AlgorithmConstraints interface is used for controlling allowed
cryptographic algorithms. AlgorithmConstraints defines three permits() methods.
These methods tell whether an algorithm name or a key is permitted for certain
cryptographic functions. Cryptographic functions are represented by a set of
CryptoPrimitive, which is an enumeration containing fields like STREAM_CIPHER,
MESSAGE_DIGEST, and SIGNATURE.

Thus, an AlgorithmConstraints implementation can answer questions like: Can I use
this key with this algorithm for the purpose of a cryptographic operation?

An AlgorithmConstraints object can be associated with an SSLParameters object by
using the new setAlgorithmConstraints() method. The current AlgorithmConstraints
object for an SSLParameters object is retrieved using the getAlgorithmConstraints()
method.

The StandardConstants Class
The StandardConstants class is used to represent standard constants definitions in
JSSE.

StandardConstants.SNI_HOST_NAME represents a domain name server (DNS) host name
in a Server Name Indication (SNI) extension, which can be used when instantiating an
SNIServerName or SNIMatcher object.

The SNIServerName Class

An instance of the abstract SNIServerName class represents a server name in the Server
Name Indication (SNI) extension. It is instantiated using the type and encoded value of
the specified server name.

You can use the getType() and getEncoded() methods to return the server name type
and a copy of the encoded server name value, respectively. The equals() method can
be used to check if some other object is "equal" to this server name. The hashCode()
method returns a hash code value for this server name. To get a string representation
of the server name (including the server name type and encoded server name value),
use the toString() method.

The SNIMatcher Class

An instance of the abstract SNIMatcher class performs match operations on an
SNIServerName object. Servers can use information from the Server Name Indication
(SNI) extension to decide if a specific SSLSocket or SSLEngine should accept a
connection. For example, when multiple "virtual" or "name-based" servers are hosted
on a single underlying network address, the server application can use SNI information

Chapter 8
JSSE Classes and Interfaces

8-70

to determine whether this server is the exact server that the client wants to access.
Instances of this class can be used by a server to verify the acceptable server names
of a particular type, such as host names.

The SNIMatcher class is instantiated using the specified server name type on which
match operations will be performed. To match a given SNIServerName, use the matches()
method. To return the server name type of the given SNIMatcher object, use the
getType() method.

The SNIHostName Class

An instance of the SNIHostName class (which extends the SNIServerName class)
represents a server name of type "host_name" (see The StandardConstants Class) in
the Server Name Indication (SNI) Extension. To instantiate an SNIHostName, specify the
fully qualified DNS host name of the server (as understood by the client) as a String
argument. The argument is illegal in the following cases:

• The argument is empty.

• The argument ends with a trailing period.

• The argument is not a valid Internationalized Domain Name (IDN) compliant with
the RFC 3490 specification.

You can also instantiate an SNIHostName by specifying the encoded host name value as
a byte array. This method is typically used to parse the encoded name value in a
requested SNI extension. Otherwise, use the SNIHostName(String hostname)
constructor. The encoded argument is illegal in the following cases:

• The argument is empty.

• The argument ends with a trailing period.

• The argument is not a valid Internationalized Domain Name (IDN) compliant with
the RFC 3490 specification.

• The argument is not encoded in UTF-8 or US-ASCII.

Note:

The encoded byte array passed in as an argument is cloned to protect against
subsequent modification.

To return the host name of an SNIHostName object in US-ASCII encoding, use the
getAsciiName() method. To compare a server name to another object, use the equals()
method (comparison is not case-sensitive). To return a hash code value of an
SNIHostName, use the hashCode() method. To return a string representation of an
SNIHostName, including the DNS host name, use the toString() method.

You can create an SNIMatcher object for an SNIHostName object by passing a regular
expression representing one or more host names to match to the createSNIMatcher()
method.

Chapter 8
JSSE Classes and Interfaces

8-71

Customizing JSSE
JSSE includes a standard implementation that can be customized by plugging in
different implementations or specifying the default keystore, and so on.

Table 8-7 and Table 8-8 summarize which aspects can be customized, what the
defaults are, and which mechanisms are used to provide customization.

Some of the customizations are done by setting system property or Security Property
values. Sections following the table explain how to set such property values.

Note:

Many of the properties shown in this table are currently used by the JSSE
implementation, but there is no guarantee that they will continue to have the
same names and types (system or security) or even that they will exist at all in
future releases. All such properties are flagged with an asterisk (*). They are
documented here for your convenience for use with the JSSE implementation.

Table 8-7 shows items that are customized by setting the java.security.Security
property. See How to Specify a java.security.Security Property

Table 8-7 Security Properties and Customized Items

Security Property Customized Item Default Value Notes

cert.provider.x509v1 Customizing the
X509Certificate
Implementation

X509Certificate
implementation from
Oracle

None

security.provider.n Cryptographic service
provider; see Customizing
the Provider
Implementation and
Customizing the Encryption
Algorithm Providers

The first five providers in
order of priority are:

1. SUN

2. SunRsaSign

3. SunEC

4. SunJSSE

5. SunJCE

Specify the provider in the
security.provider.n= line
in security properties file,
where n is an integer
whose value is equal or
greater than 1.

*ssl.SocketFactory.provi
der

Default SSLSocketFactory
implementation

SSLSocketFactory
implementation from
Oracle

None

*ssl.ServerSocketFactory
.provider

Default
SSLServerSocketFactory
implementation

SSLServerSocketFactory
implementation from
Oracle

None

ssl.KeyManagerFactory.a
lgorithm

Default key manager
factory algorithm name
(see Customizing the
Default Key Managers and
Trust Managers)

SunX509 None

Chapter 8
Customizing JSSE

8-72

Table 8-7 (Cont.) Security Properties and Customized Items

Security Property Customized Item Default Value Notes

*jdk.certpath.disabledAl
gorithms

Disabled certificate
verification cryptographic
algorithm (see Disabled
and Restricted
Cryptographic Algorithms)

MD2, MD5, SHA1 jdkCA &
usage TLSServer, RSA
keySize < 1024, DSA
keySize < 1024, EC
keySize < 2244

None

ssl.TrustManagerFactory
.algorithm

Default trust manager
factory algorithm name
(see Customizing the
Default Key Managers and
Trust Managers)

PKIX None

JCE encryption algorithms
used by the SunJSSE
provider

Give alternative JCE
algorithm providers a
higher preference order
than the SunJCE provider

SunJCE implementations None

*jdk.tls.disabledAlgorit
hms

Disabled and Restricted
Cryptographic Algorithms

SSLv3, RC4,
MD5withRSA, DH keySize
< 1024, EC keySize < 2244

Disables specific
algorithms (protocols
versions, cipher suites, key
exchange mechanisms,
etc.) that will not be
negotiated for SSL/TLS/
DTLS connections, even if
they are enabled explicitly
in an application

jdk.tls.server.defaultD
HEParameters

Diffie-Hellman groups Safe prime Diffie-Hellman
groups in OpenJDK
SSL/TLS/DTLS
implementation

Defines default finite field
Diffie-Hellman ephemeral
(DHE) parameters for
Transport Layer Security
(SSL/TLS/DTLS)
processing

* This property is currently used by the JSSE implementation, but it is not guaranteed
to be examined and used by other implementations. If it is examined by another
implementation, then that implementation should handle it in the same manner as the
JSSE implementation does. There is no guarantee the property will continue to exist or
be of the same type (system or security) in future releases.

1

Table 8-8 shows items that are customized by setting java.lang.System property. See
How to Specify a java.lang.System Property.

Table 8-8 System Properties and Customized Items

System Property Customized Item Default Notes

java.protocol.handl
er.pkgs

Specifying an
Alternative HTTPS
Protocol
Implementation

Implementation from
Oracle

None

1 The list of restricted algorithms specified in these Security Properties may change; see the java.security
file in your JDK installation for the latest values.

Chapter 8
Customizing JSSE

8-73

Table 8-8 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

*javax.net.ssl.keyS
tore

Default keystore (see
Customizing the
Default Keystores and
Truststores, Store
Types, and Store
Passwords)

None The value NONE may
be specified. This
setting is appropriate if
the keystore is not file-
based (for example, it
resides in a hardware
token)

*javax.net.ssl.keyS
torePassword

Default keystore
password (see
Customizing the
Default Keystores and
Truststores, Store
Types, and Store
Passwords)

None It is inadvisable to
specify the password
in a way that exposes
it to discovery by other
users.

For example,
specifying the
password on the
command line. To
keep the password
secure, have the
application prompt for
the password, or
specify the password
in a properly protected
option file

*javax.net.ssl.keyS
toreProvider

Default keystore
provider (see
Customizing the
Default Keystores and
Truststores, Store
Types, and Store
Passwords)

None None

*javax.net.ssl.keyS
toreType

Default keystore type
(see Customizing the
Default Keystores and
Truststores, Store
Types, and Store
Passwords)

KeyStore.getDefault
Type()

None

*javax.net.ssl.trus
tStore

Default truststore (see
Customizing the
Default Keystores and
Truststores, Store
Types, and Store
Passwords)

jssecacerts, if it
exists.
Otherwise, cacerts

None

Chapter 8
Customizing JSSE

8-74

Table 8-8 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

*javax.net.ssl.trus
tStorePassword

Default truststore
password (see
Customizing the
Default Keystores and
Truststores, Store
Types, and Store
Passwords)

None It is inadvisable to
specify the password
in a way that exposes
it to discovery by other
users.

For example,
specifying the
password on the
command line. To
keep the password
secure, have the
application prompt for
the password, or
specify the password
in a properly protected
option file

*javax.net.ssl.trus
tStoreProvider

Default truststore
provider (see
Customizing the
Default Keystores and
Truststores, Store
Types, and Store
Passwords)

None None

*javax.net.ssl.trus
tStoreType

Default truststore type
(see Customizing the
Default Keystores and
Truststores, Store
Types, and Store
Passwords)

KeyStore.getDefault
Type()

The value NONE may
be specified. This
setting is appropriate if
the truststore is not
file-based (for
example, it resides in
a hardware token)

*https.proxyHost Default proxy host None None

*https.proxyPort Default proxy port 80 None

*jsse.enableSNIExte
nsion

Server Name
Indication option

true Server Name
Indication (SNI) is a
TLS extension,
defined in RFC 6066.
It enables TLS
connections to virtual
servers, in which
multiple servers for
different network
names are hosted at a
single underlying
network address.
Some very old
SSL/TLS vendors may
not be able handle
SSL/TLS extensions.
In this case, set this
property to false to
disable the SNI
extension

Chapter 8
Customizing JSSE

8-75

http://www.ietf.org/rfc/rfc6066.txt

Table 8-8 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

*https.cipherSuites Default cipher suites Determined by the
socket factory.

This contains a
comma-separated list
of cipher suite names
specifying which
cipher suites to enable
for use on this
HttpsURLConnection.
See the
SSLSocket.setEnable
dCipherSuites(Strin
g[])

*https.protocols Default handshaking
protocols

Determined by the
socket factory.

This contains a
comma-separated list
of protocol suite
names specifying
which protocol suites
to enable on this
HttpsURLConnection.
See
SSLSocket.setEnable
dProtocols(String[]
)

* Customize via port
field in the HTTPS
URL.

Default HTTPS port 443 None

*jsse.SSLEngine.acc
eptLargeFragments

Default sizing buffers
for large SSL/TLS
packets

None Setting this system
property to true,
SSLSession will size
buffers to handle large
data packets by
default. This may
cause applications to
allocate unnecessarily
large SSLEngine
buffers. Instead,
applications should
dynamically check for
buffer overflow
conditions and resize
buffers as appropriate

*sun.security.ssl.a
llowUnsafeRenegotia
tion

Allow unsafe SSL/TLS
Renegotaions (see
Description of the
Phase 2 Fix)

false Setting this system
property to true
permits full (unsafe)
legacy renegotiation.

This system property
is deprecated and
might be removed in a
future JDK release.

Chapter 8
Customizing JSSE

8-76

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setEnabledProtocols-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setEnabledProtocols-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setEnabledProtocols-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setEnabledCipherSuites-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setEnabledCipherSuites-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setEnabledCipherSuites-java.lang.String:A-

Table 8-8 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

*sun.security.ssl.a
llowLegacyHelloMess
ages

Allow legacy Hello
messages (see
Description of the
Phase 2 Fix)

true Setting this system
property to true allows
the peer to handshake
without requiring the
proper RFC 5746
messages.

This system property
is deprecated and
might be removed in a
future JDK release.

jdk.tls.client.prot
ocols

The SunJSSE
Provider

None To enable specific
SunJSSE protocols on
the client, specify
them in a comma-
separated list within
quotation marks; all
other supported
protocols are not
enabled on the client

For example,
• If

jdk.tls.client.
protocols="TLSv
1,TLSv1.1", then
the default
protocol settings
on the client for
TLSv1 and
TLSv1.1 are
enabled, while
SSLv3, TLSv1.2,
and SSLv2Hello
are not enabled

• If
jdk.tls.client.
protocols="DTLS
v1.2" , then the
protocol setting
on the client for
DTLS1.2 is
enabled, while
DTLS1.0 is not
enabled

jdk.tls.ephemeralDH
KeySize

Customizing Size of
Ephemeral Diffie-
Hellman Keys

1024 bits None

jsse.enableMFLNExte
nsion

Customizing
Maximum Fragment
Length Negotiation
(MFLN) Extension

false None

* This property is currently used by the JSSE implementation, but it is not guaranteed
to be examined and used by other implementations. If it is examined by another

Chapter 8
Customizing JSSE

8-77

implementation, then that implementation should handle it in the same manner as the
JSSE implementation does. There is no guarantee the property will continue to exist or
be of the same type (system or security) in future releases.

How to Specify a java.lang.System Property

You can customize some aspects of JSSE by setting system properties. There are
several ways to set these properties:

• To set a system property statically, use the -D option of the java command. For
example, to run an application named MyApp and set the
javax.net.ssl.trustStore system property to specify a truststore named
MyCacertsFile. See truststore. Enter the following:

 java -Djavax.net.ssl.trustStore=MyCacertsFile MyApp

• To set a system property dynamically, call the java.lang.System.setProperty()
method in your code:

 System.setProperty("propertyName", "propertyValue");

For example, a setProperty() call corresponding to the previous example for
setting the javax.net.ssl.trustStore system property to specify a truststore named
"MyCacertsFile" would be:

 System.setProperty("javax.net.ssl.trustStore", "MyCacertsFile");

• In the Java Deployment environment (Plug-In/Web Start), there are several ways
to set the system properties.

– Use the Java Control Panel to set the Runtime Environment Property on a
local or per-VM basis. This creates a local deployment.properties file.
Deployers can also distribute an enterprise wide deployment.properties file by
using the deployment.config mechanism.

– To set a property for a specific applet, use the HTML subtag <PARAM>
"java_arguments" within the <APPLET> tag.

– To set the property in a specific Java Web Start application or applet using
Plugin2, use the JNLP property sub element of the resources element. See
resources Element in the Java Platform, Standard Edition Deployment Guide.

How to Specify a java.security.Security Property

You can customize some aspects of JSSE by setting Security Properties. You can set
a Security Property either statically or dynamically:

• To set a Security Property statically, add a line to the security properties file. The
security properties file is located at java-home/conf/security/
java.security

Chapter 8
Customizing JSSE

8-78

java-home
See Terms and Definitions

To specify a Security Property value in the security properties file, you add a line
of the following form:

propertyName=propertyValue

For example, suppose that you want to specify a different key manager factory
algorithm name than the default SunX509. You do this by specifying the algorithm
name as the value of a Security Property named ssl.KeyManagerFactory.algorithm.
For example, to set the value to MyX509, add the following line to the security
properties file:

ssl.KeyManagerFactory.algorithm=MyX509

• To set a Security Property dynamically, call the
java.security.Security.setProperty method in your code:

Security.setProperty("propertyName," "propertyValue");

For example, a call to the setProperty() method corresponding to the previous
example for specifying the key manager factory algorithm name would be:

Security.setProperty("ssl.KeyManagerFactory.algorithm", "MyX509");

Customizing the X509Certificate Implementation
The X509Certificate implementation returned by the X509Certificate.getInstance()
method is by default the implementation from the JSSE implementation.

To cause a different implementation to be returned:

Specify the name (and package) of the other implementation's class as the value of a
How to Specify a java.security.Security Property named cert.provider.x509v1.

MyX509CertificateImplcom.cryptox

 cert.provider.x509v1=com.cryptox.MyX509CertificateImpl

Specifying an Alternative HTTPS Protocol Implementation
You can communicate securely with an SSL-enabled web server by using the HTTPS
URL scheme for the java.net.URL class. The JDK provides a default HTTPS URL
implementation.

If you want an alternative HTTPS protocol implementation to be used, set the
java.protocol.handler.pkgs How to Specify a java.lang.System Property to include the
new class name. This action causes the specified classes to be found and loaded
before the JDK default classes. See the URL class for details.

Note:

In past JSSE releases, you had to set the java.protocol.handler.pkgs system
property during JSSE installation. This step is no longer required unless you
want to obtain an instance of com.sun.net.ssl.HttpsURLConnection.

Chapter 8
Customizing JSSE

8-79

https://docs.oracle.com/javase/9/docs/api/java/net/URL.html

Customizing the Provider Implementation
The JDK comes with a JSSE Cryptographic Service Provider, or provider for short,
named SunJSSE. Providers are essentially packages that implement one or more
engine classes for specific cryptographic algorithms.

The JSSE engine classes are SSLContext, KeyManagerFactory, and TrustManagerFactory.
See Java Cryptography Architecture (JCA) Reference Guide to know more about
providers and engine classes.

Before it can be used, a provider must be registered, either statically or dynamically.
You do not need to register the SunJSSE provider because it is preregistered. If you
want to use other providers, read the following sections to see how to register them.

Registering the Cryptographic Provider Statically

Register a provider statically by adding a line of the following form to the security
properties file, <java-home>/conf/security/java.security:

security.provider.n=provName|className

This declares a provider, and specifies its preference order n. The preference order is
the order in which providers are searched for requested algorithms when no specific
provider is requested. The order is 1-based; 1 is the most preferred, followed by 2, and
so on.

provName is the provider's name and className is the fully qualified class name of the
provider.

Standard security providers are automatically registered for you in the java.security
security properties file.

To use another JSSE provider, add a line registering the other provider, giving it
whatever preference order you prefer.

You can have more than one JSSE provider registered at the same time. The
registered providers may include different implementations for different algorithms for
different engine classes, or they may have support for some or all of the same types of
algorithms and engine classes. When a particular engine class implementation for a
particular algorithm is searched for, if no specific provider is specified for the search,
then the providers are searched in preference order and the implementation from the
first provider that supplies an implementation for the specified algorithm is used.

See Step 8.1: Configure the Provider in Steps to Implement and Integrate a Provider.

Registering the Cryptographic Service Provider Dynamically
Instead of registering a provider statically, you can add the provider dynamically at
runtime by calling either the addProvider or insertProviderAt method in the
Security class. Note that this type of registration is not persistent and can only be
done by code which is granted the insertProvider.<provider name> permission.

See Step 8.1: Configure the Provider in Steps to Implement and Integrate a Provider.

Chapter 8
Customizing JSSE

8-80

Provider Configuration

Some providers may require configuration. This is done using the configure method of
the Provider class, prior to calling the addProvider method of the Security class. See
SunPKCS11 Configuration for an example. The Provider.configure() method is new
to Java SE 9.

Configuring the Preferred Provider for Specific Algorithms
Specify the preferred provider for a specific algorithm in the
jdk.security.provider.preferred Security Property. By specifying a preferred provider
you can configure providers that offer performance gains for specific algorithms but
are not the best performing provider for other algorithms. The ordered provider list
specified using the security.provider.n property is not sufficient to order providers that
offer performance gains for specific algorithms but are not the best performing provider
for other algorithms. More flexibility is required for configuring the ordering of provider
list to achieve performance gains.

The jdk.security.provider.preferred Security Property allows specific algorithms, or
service types to be selected from a preferred set of providers before accessing the list
of registered providers. See How to Specify a java.security.Security Property.

The jdk.security.provider.preferred Security Property does not register the
providers. The ordered provider list must be Registering the Cryptographic Provider
Statically using the security.provider.n property. Any provider that is not registered is
ignored.

Specifying the Preferred Provider for an Algorithm

The syntax for specifying the preferred providers string in the
jdk.security.provider.preferred Security Property is a comma-separated list of
ServiceType.Algorithm:Provider

In this syntax:

ServiceType
The name of the service type. (for example: "MessageDigest")ServiceType is optional.
If it isn’t specified, the algorithm applies to all service types.

Algorithm
The standard algorithm name. See Java Security Standard Algorithm Names
Specification. Algorithms can be specified as full standard name, (AES/CBC/
PKCS5Padding) or as partial (AES, AES/CBC, AES//PKCS5Padding).

Provider
The name of the provider. Any provider that isn’t listed in the registered list will be
ignored. See JDK Providers.

Entries containing errors such as parsing errors are ignored. Use the command java -
Djava.security.debug=jca to debug errors.

Chapter 8
Customizing JSSE

8-81

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

Preferred Providers and FIPS

If you add a FIPS provider to the security.provider.n property, and specify the
preferred provider ordering in the jdk.security.provider.preferred property then the
preferred providers specified in jdk.security.provider.preferred are selected first.

Hence, it is recommended that you don’t configure jdk.security.provider.preferred
property for FIPS provider configurations.

jdk.security.provider.preferred Default Values

The jdk.security.provider.preferred property is not set by default and is used only for
application performance tuning.

Example 8-16 Sample jdk.security.provider.preferred Property

The syntax for specifying the jdk.security.provider.preferred property is as follows:

jdk.security.provider.preferred=AES/GCM/NoPadding:SunJCE,

MessageDigest.SHA-256:SUN

In this syntax:

ServiceType
MessageDigest

Algorithm
AES/GCM/NoPadding, SHA-256

Provider
SunJCE, SUN

Customizing the Default Keystores and Truststores, Store Types, and
Store Passwords

Whenever a default SSLSocketFactory or SSLServerSocketFactory is created (via a call to
SSLSocketFactory.getDefault or SSLServerSocketFactory.getDefault), and this default
SSLSocketFactory (or SSLServerSocketFactory) comes from the JSSE reference
implementation, a default SSLContext is associated with the socket factory. (The default
socket factory will come from the JSSE implementation.)

This default SSLContext is initialized with a default KeyManager and a default
TrustManager. If a keystore is specified by the javax.net.ssl.keyStore system property
and an appropriate javax.net.ssl.keyStorePassword system property (see How to
Specify a java.lang.System Property), then the KeyManager created by the default
SSLContext will be a KeyManager implementation for managing the specified keystore.
(The actual implementation will be as specified in Customizing the Default Key
Managers and Trust Managers.) If no such system property is specified, then the
keystore managed by the KeyManager will be a new empty keystore.

Generally, the peer acting as the server in the handshake will need a keystore for its
KeyManager in order to obtain credentials for authentication to the client. However, if
one of the anonymous cipher suites is selected, then the server's KeyManager keystore
is not necessary. And, unless the server requires client authentication, the peer acting

Chapter 8
Customizing JSSE

8-82

as the client does not need a KeyManager keystore. Thus, in these situations it may be
OK if no javax.net.ssl.keyStore system property value is defined.

Similarly, if a truststore is specified by the javax.net.ssl.trustStore system property,
then the TrustManager created by the default SSLContext will be a TrustManager
implementation for managing the specified truststore. In this case, if such a property
exists but the file it specifies does not, then no truststore is used. If no
javax.net.ssl.trustStore property exists, then a default truststore is searched for. If a
truststore named java-home/lib/security/jssecacerts is found, it is used. If
not, then a truststore named java-home/lib/security/cacerts is searched for
and used (if it exists). Finally, if a truststore is still not found, then the truststore
managed by the TrustManager will be a new empty truststore.

Note:

The JDK ships with a limited number of trusted root certificates in the java-
home/lib/security/cacerts file. As documented in keytool in Java
Platform, Standard Edition Tools Reference, it is your responsibility to maintain
(that is, add and remove) the certificates contained in this file if you use this
file as a truststore.

Depending on the certificate configuration of the servers that you contact, you
may need to add additional root certificates. Obtain the needed specific root
certificates from the appropriate vendor.

If the javax.net.ssl.keyStoreType and/or javax.net.ssl.keyStorePassword system
properties are also specified, then they are treated as the default KeyManager keystore
type and password, respectively. If no type is specified, then the default type is that
returned by the KeyStore.getDefaultType() method, which is the value of the
keystore.type Security Property, or "jks" if no such Security Property is specified. If no
keystore password is specified, then it is assumed to be a blank string "".

Similarly, if the javax.net.ssl.trustStoreType and/or javax.net.ssl.trustStorePassword
system properties are also specified, then they are treated as the default truststore
type and password, respectively. If no type is specified, then the default type is that
returned by the KeyStore.getDefaultType() method. If no truststore password is
specified, then it is assumed to be a blank string "".

Note:

This section describes the current JSSE reference implementation behavior.
The system properties described in this section are not guaranteed to continue
to have the same names and types (system or security) or even to exist at all
in future releases. They are also not guaranteed to be examined and used by
any other JSSE implementations. If they are examined by an implementation,
then that implementation should handle them in the same manner as the
JSSE reference implementation does, as described herein.

Chapter 8
Customizing JSSE

8-83

Customizing the Default Key Managers and Trust Managers

As noted in Customizing the Default Keystores and Truststores, Store Types, and
Store Passwords, whenever a default SSLSocketFactory or SSLServerSocketFactory is
created, and this default SSLSocketFactory (or SSLServerSocketFactory) comes from the
JSSE reference implementation, a default SSLContext is associated with the socket
factory.

This default SSLContext is initialized with a KeyManager and a TrustManager. The
KeyManager and/or TrustManager supplied to the default SSLContext will be an
implementation for managing the specified keystore or truststore, as described in the
aforementioned section.

The KeyManager implementation chosen is determined by first examining the
ssl.KeyManagerFactory.algorithm Security Property. If such a property value is
specified, then a KeyManagerFactory implementation for the specified algorithm is
searched for. The implementation from the first provider that supplies an
implementation is used. Its getKeyManagers() method is called to determine the
KeyManager to supply to the default SSLContext. Technically, getKeyManagers() returns an
array of KeyManager objects, one KeyManager for each type of key material. If no such
Security Property value is specified, then the default value of SunX509 is used to
perform the search.

Note:

A KeyManagerFactory implementation for the SunX509 algorithm is supplied by
the SunJSSE provider. The KeyManager that it specifies is a
javax.net.ssl.X509KeyManager implementation.

Similarly, the TrustManager implementation chosen is determined by first examining the
ssl.TrustManagerFactory.algorithm Security Property. If such a property value is
specified, then a TrustManagerFactory implementation for the specified algorithm is
searched for. The implementation from the first provider that supplies an
implementation is used. Its getTrustManagers() method is called to determine the
TrustManager to supply to the default SSLContext. Technically, getTrustManagers()
returns an array of TrustManager objects, one TrustManager for each type of trust
material. If no such Security Property value is specified, then the default value of PKIX
is used to perform the search.

Note:

A TrustManagerFactory implementation for the PKIX algorithm is supplied by
the SunJSSE provider. The TrustManager that it specifies is a
javax.net.ssl.X509TrustManager implementation.

Chapter 8
Customizing JSSE

8-84

Note:

This section describes the current JSSE reference implementation behavior.
The system properties described in this section are not guaranteed to continue
to have the same names and types (system or security) or even to exist at all
in future releases. They are also not guaranteed to be examined and used by
any other JSSE implementations. If they are examined by an implementation,
then that implementation should handle them in the same manner as the
JSSE reference implementation does, as described herein.

Disabled and Restricted Cryptographic Algorithms
In some environments, certain algorithms or key lengths may be undesirable when
using SSL/TLS/DTLS. The Oracle JDK uses the jdk.certpath.disabledAlgorithms and
jdk.tls.disabledAlgorithm Security Properties to disable algorithms during SSL/TLS/
DTLS protocol negotiation, including version negotiation, cipher suites selection, peer
authentication, and key exchange mechanisms. Note that these Security Properties
are not guaranteed to be used by other JDK implementations. See the <java-
home>/conf/security/java.security file for information about the syntax of
these Security Properties and their current active values.

• jdk.certpath.disabledAlgorithms Property: CertPath code uses the
jdk.certpath.disabledAlgorithms Security Property to determine which algorithms
should not be allowed during CertPath checking. For example, when a TLS
Server sends an identifying certificate chain, a client TrustManager that uses a
CertPath implementation to verify the received chain will not allow the stated
conditions. For example, the following line blocks any MD2-based certificate, as
well as SHA1 TLSServer certificates that chain to trust anchors that are pre-
installed in the cacaerts keystore. Likewise, this line blocks any RSA key less
than 1024 bits.

jdk.certpath.disabledAlgorithms=MD2, SHA1 jdkCA & usage TLSServer, RSA keySize <
1024

• jdk.tls.disabledAlgorithms Property: SunJSSE code uses the
jdk.tls.disabledAlgorithms Security Property to disable SSL/TLS/DTLS protocols,
cipher suites, keys, and so on. The syntax is similar to the
jdk.certpath.disabledAlgorithms Security Property. For example, the following line
disables the SSLv3 algorithm and all of the TLS_*_RC4_* cipher suites:

jdk.tls.disabledAlgorithms=SSLv3, RC4

If you require a particular condition, you can reactivate it by either removing the
associated value in the Security Property in the java.security file or dynamically
setting the proper Security Property before JSSE is initialized.

Note that these Security Properties effectively create a third set of cipher suites,
Disabled. The following list describes these three sets:

• Disabled: If a cipher suite contains any components (for example, RC4) on the
disabled list (for example, RC4 is specified in the jdk.tls.disabledAlgorithms
Security Property), then that cipher suite is disabled and will not be considered for
a connection handshake.

• Enabled: A list of specific cipher suites that will be considered for a connection.

Chapter 8
Customizing JSSE

8-85

• Not Enabled: A list of non-disabled cipher suites that will not be considered for a
connection. To re-enable these cipher suites, call the appropriate
setEnabledCipherSuites() or setSSLParameters() methods.

Customizing the Encryption Algorithm Providers
The SunJSSE provider uses the SunJCE implementation for all its cryptographic
needs. Although it is recommended that you leave the provider at its regular position,
you can use implementations from other JCA or JCE providers by registering them
before the SunJCE provider.

The standard JCA mechanism (see How Provider Implementations Are Requested
and Supplied) can be used to configure providers, either statically via the security
properties file <java-home>/conf/security/java.security, or dynamically via the
addProvider() or insertProviderAt() method in the java.security.Security class.

Customizing Size of Ephemeral Diffie-Hellman Keys
In SSL/TLS/DTLS connections, ephemeral Diffie-Hellman (DH) keys may be used
internally during the handshaking. The SunJSSE provider provides a flexible approach
to customize the strength of the ephemeral DH key size during SSL/TLS/DTLS
handshaking.

Diffie-Hellman (DH) keys of sizes less than 1024 bits have been deprecated because
of their insufficient strength. You can customize the ephemeral DH key size with the
system property jdk.tls.ephemeralDHKeySize. This system property does not impact DH
key sizes in ServerKeyExchange messages for exportable cipher suites. It impacts only
the DHE_RSA, DHE_DSS, and DH_anon-based cipher suites in the JSSE Oracle
provider.

You can specify one of the following values for this property:

• Undefined: A DH key of size 1024 bits will be used always for non-exportable
cipher suites. This is the default value for this property.

• legacy: The JSSE Oracle provider preserves the legacy behavior (for example,
using ephemeral DH keys of sizes 512 bits and 768 bits) of JDK 7 and earlier
releases.

• matched: For non-exportable anonymous cipher suites, the DH key size in
ServerKeyExchange messages is 1024 bits. For X.509 certificate based
authentication (of non-exportable cipher suites), the DH key size matching the
corresponding authentication key is used, except that the size must be between
1024 bits and 2048 bits. For example, if the public key size of an authentication
certificate is 2048 bits, then the ephemeral DH key size should be 2048 bits unless
the cipher suite is exportable. This key sizing scheme keeps the cryptographic
strength consistent between authentication keys and key-exchange keys.

• A valid integer between 1024 and 2048, inclusively: A fixed ephemeral DH key
size of the specified value, in bits, will be used for non-exportable cipher suites.

The following table summaries the minimum and maximum acceptable DH key sizes
for each of the possible values for the system property jdk.tls.ephemeralDHKeySize:

Chapter 8
Customizing JSSE

8-86

Table 8-9 DH Key Sizes for the System Property jdk.tls.ephemeralDHKeySize

Value of
jdk.tls.ephemer
alDHKeySize

Undefined legacy matched Integer value
(fixed)

Exportable DH
key size

512 512 512 512

Non-exportable
anonymous
cipher suites

1024 768 1024 The fixed key
size is specified
by a valid integer
property value,
which must be
between 1024
and 2048,
inclusively.

Authentication
certificate

1024 768 The key size is
the same as the
authentication
certificate, but
must be between
1024 bits and
2048 bits,
inclusively.
However, the
only DH key size
that the SunJCE
provider supports
that is larger than
1024 bits is 2048
bits.

Consequently,
you may use the
values 1024 or
2048 only.

The fixed key
size is specified
by a valid integer
property value,
which must be
between 1024
and 2048,
inclusively.

Customizing Maximum Fragment Length Negotiation (MFLN)
Extension

In order to negotiate smaller maximum fragment lengths, clients have an option to
include an extension of type max_fragment_length in the ClientHello message. A
system property jsse.enableMFLNExtension, can be used to enable or disable the MFLN
extension for SSL/TLS/DTLS.

Maximum Fragment Length Negotiation

It may be desirable for constrained SSL/TLS/DTLS clients to negotiate a smaller
maximum fragment length due to memory limitations or bandwidth limitations. In order
to negotiate smaller maximum fragment lengths, clients have an option to include an
extension of type max_fragment_length in the (extended) ClientHello message.
See RFC 6066.

Once a maximum fragment length has been successfully negotiated, the SSL/TLS/
DTLS client and server can immediately begin fragmenting messages (including

Chapter 8
Customizing JSSE

8-87

http://www.rfc-base.org/txt/rfc-6066.txt

handshake messages) to ensure that no fragment larger than the negotiated length is
sent.

System Property jsse.enableMFLNExtension

A system property jsse.enableMFLNExtension is defined to enable or disable the MFLN
extension. The jsse.enableMFLNExtension is disabled by default.

The value of the system property can be set as follows:

Table 8-10 jsse.enableMFLNExtension system property

System Property Description

jsse.enableMFLNExtension=true Enable the MFLN extension. If the returned
value of
SSLParameters.getMaximumPacketSize() is
less than (2^12 + header-size) the maximum
fragment length negotiation extension would
be enabled.

jsse.enableMFLNExtension=false Disable the MFLN extension.

Configuring the Maximum and Minimum Packet Size

Set the maximum expected network packet size in bytes for a SSL/TLS/DTLS record
with the SSLParameters.setMaximumPacketSize method.

It is recommended that the packet size should not be less than 256 bytes so that small
handshake messages, such as HelloVerifyRequests, are not fragmented.

Transport Layer Security (TLS) Renegotiation Issue
In the fall of 2009, a flaw was discovered in the SSL/TLS protocols. A fix to the
protocol was developed by the IETF TLS Working Group, and current versions of the
JDK contain this fix. This section describes the situation in much more detail, along
with interoperability issues when communicating with older implementations that do
not contain this protocol fix.

The vulnerability allowed for man-in-the-middle (MITM) attacks where chosen plain
text could be injected as a prefix to a TLS connection. This vulnerability did not allow
an attacker to decrypt or modify the intercepted network communication once the
client and server have successfully negotiated a session between themselves.

Refer to the following links to know more about the SSL/TLS vulnerability:

• CVE-2009-3555 (posted on Mitre's Common Vulnerabilities and Exposures List,
2009)

• Understanding the TLS Renegotiation Attack (posted on Eric Rescorla's blog,
Educated Guesswork, November 5, 2009).

Phased Approach to Fixing This Issue
The fix for this issue was handled in two phases:

Chapter 8
Transport Layer Security (TLS) Renegotiation Issue

8-88

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLParameters.html#setMaximumPacketSize-int-
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555
http://cve.mitre.org/index.html
http://www.educatedguesswork.org/2009/11/understanding_the_tls_renegoti.html
http://www.educatedguesswork.org/

• Phase 1: Until a protocol fix could be developed, an interim fix that disabled
SSL/TLS renegotiations by default was made available in the March 30, 2010 Java
SE and Java for Business Critical Patch Update.

• Phase 2: The IETF issued RFC 5746, which addresses the renegotiation protocol
flaw. The following table lists the JDK and JRE releases that include the fix which
implements RFC 5746 and supports secure renegotiation.

Table 8-11 JDK and JRE Releases With Fixes to the TLS Renegotiation Issue

JDK Family Vulnerable Releases Phase 1 Fix (Disable
Renegotiations)

Phase 2 Fix (RFC 5746)

JDK and JRE 6 Update 18 and earlier Updates 19 through 21 Update 22

JDK and JRE 5.0 Update 23 and earlier Updates 24 through 25 Update 26

JDK and JRE 1.4.2 Update 25 and earlier Updates 26 through 27 Update 28

Note:

Applications that do not require renegotiations are not affected by the Phase 2
default configuration. However applications that require renegotiations (for
example, web servers that initially allow for anonymous client browsing, but
later require SSL/TLS authenticated clients):

• Are not affected if the peer is also compliant with RFC 5746

• Are affected if the peer has not been upgraded to RFC 5746 (see next
section for details)

Description of the Phase 2 Fix
The SunJSSE implementation reenables renegotiations by default for connections to
peers compliant with RFC 5746. That is, both the client and server must support RFC
5746 in order to securely renegotiate. SunJSSE provides some interoperability modes
for connections with peers that have not been upgraded, but users are strongly
encouraged to update both their client and server implementations as soon as
possible.

With the Phase 2 fix, SunJSSE has three renegotiation interoperability modes. Each
mode fully supports the RFC 5746 secure renegotiation, but has these added
semantics when communicating with a peer that has not been upgraded:

• Strict mode: Requires both client and server be upgraded to RFC 5746 and to
send the proper RFC 5746 messages. If not, the initial (or subsequent)
handshaking will fail and the connection will be terminated.

• Interoperable mode (default): Use of the proper RFC 5746 messages is optional;
however, legacy (original SSL/TLS specifications) renegotiations are disabled if
the proper messages are not used. Initial legacy connections are still allowed, but
legacy renegotiations are disabled. This is the best mix of security and
interoperability, and is the default setting.

• Insecure mode: Permits full legacy renegotiation. Most interoperable with legacy
peers but vulnerable to the original MITM attack.

Chapter 8
Transport Layer Security (TLS) Renegotiation Issue

8-89

http://www.oracle.com/technetwork/topics/security/javacpumar2010-083341.html
http://www.oracle.com/technetwork/topics/security/javacpumar2010-083341.html
http://www.ietf.org/
http://www.ietf.org/rfc/rfc5746.txt

The three mode distinctions only affect a connection with a peer that has not been
upgraded. Ideally, strict (full RFC 5746) mode should be used for all clients and
servers; however, it will take some time for all deployed SSL/TLS implementations to
support RFC 5746, because the interoperable mode is the current default.

The following table contains interoperability information about the modes for various
cases in which the client and/or server are either updated to support RFC 5746 or not.

Table 8-12 Interoperability Information

Client Server Mode

Updated Updated Secure renegotiation in all modes.

Legacy [1] Updated • Strict If clients do not send the
proper RFC 5746 messages, then
initial connections will immediately
be terminated by the server
(SSLHandshakeException or
handshake_failure).

• Interoperable Initial connections
from legacy clients are allowed
(missing RFC 5746 messages), but
renegotiations will not be allowed by
the server. [3] [2]

• Insecure Connections and
renegotiations with legacy clients
are allowed, but are vulnerable to
the original MITM attack.

Updated Legacy [1] • Strict If the server does not
respond with the proper RFC 5746
messages, then the client will
immediately terminate the
connection
(SSLHandshakeException or
handshake_failure).

• Interoperable Initial connections
from legacy servers are allowed
(missing RFC 5746 messages), but
renegotiations will not be allowed by
the server. [2] [3]

• Insecure Connections and
renegotiations with legacy servers
are allowed, but are vulnerable to
the original MITM attack.

Legacy [1] Legacy [1] Existing SSL/TLS behavior, vulnerable
to the MITM attack.

Footnote [1] "Legacy" means the original SSL/TLS specifications (that is, not RFC
5746).

Footnote [2] SunJSSE Phase 1 implementations reject renegotiations unless
specifically reenabled. If renegotiations are reenabled, then they will be treated as
"Legacy" by the peer that is compliant with RFC 5746, because they do not send the
proper RFC 5746 messages.

Footnote [3] In SSL/TLS, renegotiations can be initiated by either side. Like the Phase
1 fix, applications communicating with a peer that has not been upgraded in
Interoperable mode and that attempt to initiate renegotiation (via

Chapter 8
Transport Layer Security (TLS) Renegotiation Issue

8-90

SSLSocket.startHandshake() or SSLEngine.beginHandshake()) will receive an
SSLHandshakeException (IOException) and the connection will be shut down
(handshake_failure). Applications that receive a renegotiation request from a peer that
has not been upgraded will respond according to the type of connection in place:

• TLSv1 A warning alert message of type no_renegotiation(100) will be sent to the
peer and the connection will remain open. Older versions of SunJSSE will shut
down the connection when a no_renegotiation alert is received.

• SSLv3 The application will receive an SSLHandshakeException, and the connection
will be closed (handshake_failure). The no_renegotiation alert is not defined in the
SSLv3 specification.

Set the mode with the the following system properties (see How to Specify a
java.lang.System Property):

• sun.security.ssl.allowUnsafeRenegotiation (introduced in Phase 1) controls
whether legacy (unsafe) renegotiations are permitted.

• sun.security.ssl.allowLegacyHelloMessages (introduced in Phase 2) allows the
peer to perform the handshake process without requiring the proper RFC 5746
messages.

Note:

The system properties sun.security.ssl.allowUnsafeRenegotiation and
sun.security.ssl.allowLegacyHelloMessages are deprecated and might be
removed in a future JDK release.

Table 8-13 Values of the System Properties for Setting the Interoperability Mode

Mode allowLegacyHelloMessages allowUnsafeRenegotiation

Strict false false

Interoperable (default) true false

Insecure true true

Caution:

Do not reenable the insecure SSL/TLS renegotiation, as this would reestablish
the vulnerability.

Workarounds and Alternatives to SSL/TLS Renegotiation
All peers should be updated to RFC 5746-compliant implementation as soon as
possible. Even with this RFC 5746 fix, communications with peers that have not been
upgraded will be affected if a renegotiation is necessary. Here are a few suggested
options:

• Restructure the peer to not require renegotiation.

Chapter 8
Transport Layer Security (TLS) Renegotiation Issue

8-91

Renegotiations are typically used by web servers that initially allow for anonymous
client browsing but later require SSL/TLS authenticated clients, or that may initially
allow weak cipher suites but later need stronger ones. The alternative is to require
client authentication or strong cipher suites during the initial negotiation. There are
a couple of options for doing so:

– If an application has a browse mode until a certain point is reached and a
renegotiation is required, then you can restructure the server to eliminate the
browse mode and require all initial connections be strong.

– Break the server into two entities, with the browse mode occurring on one
entity, and using a second entity for the more secure mode. When the
renegotiation point is reached, transfer any relevant information between the
servers.

Both of these options require a fair amount of work, but will not reopen the original
security flaw.

• Set renegotiation interoperability mode to "insecure" using the system
properties.

See Description of the Phase 2 Fix.

TLS Implementation Details
RFC 5746 defines two new data structures, which are mentioned here for advanced
users

• A pseudo-cipher suite called the Signaling Cipher Suite Value (SCSV),
"TLS_EMPTY_RENEGOTIATION_INFO_SCSV"

• A TLS extension called the Renegotiation Info (RI).

Either of these can be used to signal that an implementation is RFC 5746-compliant
and can perform secure renegotiations. See IETF email discussion from November
2009 to February 2010.

RFC 5746 enables clients to send either an SCSV or RI in the first ClientHello. For
maximum interoperability, SunJSSE uses the SCSV by default, as a few TLS/SSL
servers do not handle unknown extensions correctly. The presence of the SCSV in the
enabled cipher suites (SSLSocket.setEnabledCipherSuites() or
SSLEngine.setEnabledCipherSuites()) determines whether the SCSV is sent in the initial
ClientHello, or if an RI should be sent instead.

SSLv2 does not support SSL/TLS extensions. If the SSLv2Hello protocol is enabled,
then the SCSV is sent in the initial ClientHello.

Description of the Phase 1 Fix
As previously mentioned, the Phase 1 Fix was to disable renegotiations by default until
a fix compliant with RFC 5746 could be developed. Renegotiations could be reenabled
by setting the sun.security.ssl.allowUnsafeRenegotiation system property. The Phase
2 fix uses the same sun.security.ssl.allowUnsafeRenegotiation system property, but
also requires it to use RFC 5746 messages.

All applications should upgrade to the Phase 2 RFC 5746 fix as soon as possible.

Chapter 8
Transport Layer Security (TLS) Renegotiation Issue

8-92

http://www.ietf.org/mail-archive/web/tls/current/maillist.html

Note:

The system properties sun.security.ssl.allowUnsafeRenegotiation and
sun.security.ssl.allowLegacyHelloMessages are deprecated and might be
removed in a future JDK release.

Allow Unsafe Server Certificate Change in SSL/TLS Renegotiations
Server certificate change in an SSL/TLS renegotiation may be unsafe:

1. If endpoint identification is not enabled in an SSL/TLS handshaking; and

2. If the previous handshake is a session-resumption abbreviated initial handshake;
and

3. If the identities represented by both certificates can be regarded as different.

Two certificates can be considered to represent the same identity:

1. If the subject alternative names of IP address are present in both certificates, they
should be identical; otherwise,

2. If the subject alternative names of DNS name are present in both certificates, they
should be identical; otherwise,

3. If the subject fields are present in both certificates, the certificate subjects and
issuers should be identical.

Starting with JDK 8u25, unsafe server certificate change in SSL/TLS renegotiations is
not allowed by default. The new system property
jdk.tls.allowUnsafeServerCertChange, can be used to define whether unsafe server
certificate change in an SSL/TLS renegotiation should be restricted or not.

The default value of this system property is "false".

Caution:

DO NOT set the system property to "true" unless it is really necessary, as this
would re-establish the unsafe server certificate change vulnerability.

Hardware Acceleration and Smartcard Support
The Java Cryptography Architecture (JCA) is a set of packages that provides a
framework and implementations for encryption, key generation and key agreement,
and message authentication code (MAC) algorithms. (See Java Cryptography
Architecture (JCA) Reference Guide.) The SunJSSE provider uses JCA exclusively for
all of its cryptographic operations and can automatically take advantage of JCE
features and enhancements, including JCA's support for RSA PKCS#11. This support
enables the SunJSSE provider to use hardware cryptographic accelerators for
significant performance improvements and to use smartcards as keystores for greater
flexibility in key and trust management. .

Chapter 8
Hardware Acceleration and Smartcard Support

8-93

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Use of hardware cryptographic accelerators is automatic if JCA has been configured to
use the Oracle PKCS#11 provider, which in turn has been configured to use the
underlying accelerator hardware. The provider must be configured before any other
JCA providers in the provider list. For details on how to configure the Oracle PKCS#11
provider, see PKCS#11 Reference Guide.

Configuring JSSE to Use Smartcards as Keystores and Truststores

Support for PKCS#11 in JCA also enables access to smartcards as a keystore. For
details on how to configure the type and location of the keystores to be used by JSSE,
see Customizing JSSE. To use a smartcard as a keystore or truststore, set the
javax.net.ssl.keyStoreType and javax.net.ssl.trustStoreType system properties,
respectively, to pkcs11, and set the javax.net.ssl.keyStore and
javax.net.ssl.trustStore system properties, respectively, to NONE. To specify the use
of a specific provider, use the javax.net.ssl.keyStoreProvider and
javax.net.ssl.trustStoreProvider system properties (for example, set them to
SunPKCS11-joe). By using these properties, you can configure an application that
previously depended on these properties to access a file-based keystore to use a
smartcard keystore with no changes to the application.

Some applications request the use of keystores programmatically. These applications
can continue to use the existing APIs to instantiate a Keystore and pass it to its key
manager and trust manager. If the Keystore instance refers to a PKCS#11 keystore
backed by a Smartcard, then the JSSE application will have access to the keys on the
smartcard.

Multiple and Dynamic Keystores
Smartcards (and other removable tokens) have additional requirements for an
X509KeyManager. Different smartcards can be present in a smartcard reader during the
lifetime of a Java application, and they can be protected using different passwords.

The KeyStore.Builder class abstracts the construction and initialization of a KeyStore
object. It supports the use of CallbackHandler for password prompting, and its
subclasses can be used to support additional features as desired by an application.
For example, it is possible to implement a Builder that allows individual KeyStore
entries to be protected with different passwords. The KeyStoreBuilderParameters class
then can be used to initialize a KeyManagerFactory using one or more of these Builder
objects.

A X509KeyManager implementation in the SunJSSE provider called NewSunX509
supports these parameters. If multiple certificates are available, it attempts to pick a
certificate with the appropriate key usage and prefers valid to expired certificates.

Example 8-17 illustrates how to tell JSSE to use both a PKCS#11 keystore (which
might in turn use a smartcard) and a PKCS#12 file-based keystore.

Example 8-17 Sample Code to Use PKCS#11 and PKCS#12 File-based
Keystore

import javax.net.ssl.*;
import java.security.KeyStore.*;
// ...

// Specify keystore builder parameters for PKCS#11 keystores
Builder scBuilder = Builder.newInstance("PKCS11", null,

Chapter 8
Hardware Acceleration and Smartcard Support

8-94

https://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.Builder.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/KeyStoreBuilderParameters.html

 new CallbackHandlerProtection(myGuiCallbackHandler));

// Specify keystore builder parameters for a specific PKCS#12 keystore
Builder fsBuilder = Builder.newInstance("PKCS12", null,
 new File(pkcsFileName), new PasswordProtection(pkcsKsPassword));

// Wrap them as key manager parameters
ManagerFactoryParameters ksParams = new KeyStoreBuilderParameters(
 Arrays.asList(new Builder[] { scBuilder, fsBuilder }));

// Create KeyManagerFactory
KeyManagerFactory factory = KeyManagerFactory.getInstance("NewSunX509");

// Pass builder parameters to factory
factory.init(ksParams);

// Use factory
SSLContext ctx = SSLContext.getInstance("TLS");
ctx.init(factory.getKeyManagers(), null, null);

Kerberos Cipher Suites
The SunJSSE provider has support for Kerberos cipher suites, as described in RFC
2712. The following cipher suites are supported but not enabled by default:

Note:

According to DTLS Version 1.0 and DTLS Version 1.2, RC4 cipher suites must
not be used with DTLS.

• TLS_KRB5_WITH_RC4_128_SHA

• TLS_KRB5_WITH_RC4_128_MD5

• TLS_KRB5_WITH_3DES_EDE_CBC_SHA

• TLS_KRB5_WITH_3DES_EDE_CBC_MD5

• TLS_KRB5_WITH_DES_CBC_SHA

• TLS_KRB5_WITH_DES_CBC_MD5

• TLS_KRB5_EXPORT_WITH_RC4_40_SHA

• TLS_KRB5_EXPORT_WITH_RC4_40_MD5

• TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA

• TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5

To enable the use of these cipher suites, you must do so explicitly. See the API
documentation for SSLEngine.setEnabledCipherSuites(String[]) and
SSLSocket.setEnabledCipherSuites(String[]) methods. As with all other SSL/TLS/DTLS
cipher suites, if a cipher suite is not supported by the peer, then it will not be selected
during cipher negotiation. Furthermore, if the application and/or server cannot acquire
the necessary Kerberos credentials, then the Kerberos cipher suites also will not be
selected.

Chapter 8
Kerberos Cipher Suites

8-95

http://www.ietf.org/rfc/rfc2712.txt
http://www.ietf.org/rfc/rfc2712.txt
http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc6347
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html#setEnabledCipherSuites-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setEnabledProtocols-java.lang.String:A-

The following is an example of a TLS client that will only use the
TLS_KRB5_WITH_DES_CBC_SHA cipher suite:

// Create socket
SSLSocketFactory sslsf = (SSLSocketFactory) SSLSocketFactory.getDefault();
SSLSocket sslSocket = (SSLSocket) sslsf.createSocket(tlsServer, serverPort);

// Enable only one cipher suite
String enabledSuites[] = { "TLS_KRB5_WITH_DES_CBC_SHA" };
sslSocket.setEnabledCipherSuites(enabledSuites);

Kerberos Requirements

You must have the Kerberos infrastructure set up in your deployment environment
before you can use the Kerberos cipher suites with JSSE. In particular, both the TLS
client and server must have accounts set up with the Kerberos Key Distribution Center
(KDC). At runtime, if one or more of the Kerberos cipher suites have been enabled,
then the TLS client and server will acquire their Kerberos credentials associated with
their respective account from the KDC. For example, a TLS server running on the
machine mach1.imc.org in the Kerberos realm IMC.ORG must have an account with the
name host/mach1.imc.org@IMC.ORG and be configured to use the KDC for IMC.ORG. See
Kerberos Requirements.

An application can acquire its Kerberos credentials by using the Java Authentication
and Authorization Service (JAAS) Reference Guide and a Kerberos login module. The
JDK comes with a Krb5LoginModule. You can use the Kerberos cipher suites with
JSSE with or without JAAS programming, similar to how you can use the JAAS and
Java GSS-API Tutorial with or without JAAS programming.

To use the Kerberos cipher suites with JSSE without JAAS programming, you must
use the index names com.sun.net.ssl.server or other for the TLS server JAAS
configuration entry, and com.sun.net.ssl.client or other for the TLS client, and set the
javax.security.auth.useSubjectCredsOnly system property to false. For example, a TLS
server that is not using JAAS programming might have the following JAAS
configuration file:

com.sun.net.ssl.server {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="host/mach1.imc.org@IMC.ORG"
 useKeyTab=true
 keyTab=mach1.keytab
 storeKey=true;
};

An example of how to use Java GSS and Kerberos without JAAS programming is
described in the tutorial Use of Java GSS-API for Secure Message Exchanges Without
JAAS Programming in the JDK 8 documentation. You can adapt it to use JSSE by
replacing Java GSS calls with JSSE calls.

To use the Kerberos cipher suites with JAAS programming, you can use any index
name because your application is responsible for creating the JAAS LoginContext
using the index name, and then wrapping the JSSE calls inside of a Subject.doAs() or
Subject.doAsPrivileged() call. An example of how to use JAAS with Java GSS and
Kerberos is described in the tutorial Use of JAAS Login Utility and Java GSS-API for
Secure Message Exchange in the JDK 8 documentation. You can adapt it to use JSSE
by replacing Java GSS calls with JSSE calls.

Chapter 8
Kerberos Cipher Suites

8-96

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/KerberosReq.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/Krb5LoginModule.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/ClientServer.html

If you have trouble using or configuring the JSSE application to use Kerberos, see
Troubleshooting in the Java GSS Tutorial in the JDK 8 documentation.

Peer Identity Information
To determine the identity of the peer of an SSL/TLS/DTLS connection, use the
getPeerPrincipal() method in the following classes:

• javax.net.ssl.SSLSession

• javax.net.ssl.HttpsURLConnection

• javax.net.HandshakeCompletedEvent

Similarly, to get the identity that was sent to the peer (to identify the local entity), use
the getLocalPrincipal() method in these classes. For X509-based cipher suites, these
methods will return an instance of javax.security.auth.x500.X500Principal; for
Kerberos cipher suites, these methods will return an instance of
javax.security.auth.kerberos.KerberosPrincipal.

JSSE applications use getPeerCertificates() and similar methods in
javax.net.ssl.SSLSession, javax.net.ssl.HttpsURLConnection, and
javax.net.HandshakeCompletedEvent classes to obtain information about the peer. When
the peer does not have any certificates, SSLPeerUnverifiedException is thrown.

If the application must determine only the identity of the peer or identity sent to the
peer, then it should use the getPeerPrincipal() and getLocalPrincipal() methods,
respectively. It should use getPeerCertificates() and getLocalCertificates() methods
only if it must examine the contents of those certificates. Furthermore, the application
must be prepared to handle the case where an authenticated peer might not have any
certificate.

Security Manager
When the security manager has been enabled, in addition to the SocketPermission
needed to communicate with the peer, a TLS client application that uses the Kerberos
cipher suites also needs the following permission:

javax.security.auth.kerberos.ServicePermission(serverPrincipal, "initiate");

Where,

serverPrincipal
Indicates the Kerberos principal name of the TLS server that the TLS client will be
communicating with (such as host/mach1.imc.org@IMC.ORG).

A TLS server application needs the following permission:

javax.security.auth.kerberos.ServicePermission(serverPrincipal, "accept");

Where,

serverPrincipal
Indicates the Kerberos principal name of the TLS server (such as host/
mach1.imc.org@IMC.ORG).

If the server or client must contact the KDC (for example, if its credentials are not
cached locally), then it also needs the following permission:

Chapter 8
Kerberos Cipher Suites

8-97

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html

javax.security.auth.kerberos.ServicePermission(tgtPrincipal, "initiate");

Where,

tgtPrincipal
Indicates the principal name of the KDC (such as krbtgt/IMC.ORG@IMC.ORG).

Additional Keystore Formats (PKCS12)
The PKCS#12 (Personal Information Exchange Syntax Standard) specifies a portable
format for storage and/or transport of a user's private keys, certificates, miscellaneous
secrets, and other items. The SunJSSE provider supplies a complete implementation
of the PKCS12 java.security.KeyStore format for reading and writing PKCS12 files.
This format is also supported by other toolkits and applications for importing and
exporting keys and certificates, such as Mozilla Firefox, Microsoft Internet Explorer,
and OpenSSL. For example, these implementations can export client certificates and
keys into a file using the .p12 file name extension.

With the SunJSSE provider, you can access PKCS12 keys through the KeyStore API
with a keystore type of PKCS12. In addition, you can list the installed keys and
associated certificates by using the keytool command with the -storetype option set to
pkcs12. See keytool in Java Platform, Standard Edition Tools Reference.

Server Name Indication (SNI) Extension
The SNI extension is a feature that extends the SSL/TLS/DTLS protocols to indicate
what server name the client is attempting to connect to during handshaking. Servers
can use server name indication information to decide if specific SSLSocket or SSLEngine
instances should accept a connection. For example, when multiple virtual or name-
based servers are hosted on a single underlying network address, the server
application can use SNI information to determine whether this server is the exact
server that the client wants to access. Instances of this class can be used by a server
to verify the acceptable server names of a particular type, such as host names. See
section 3 of TLS Extensions (RFC 6066).

Developers of client applications can explicitly set the server name indication using the
SSLParameters.setServerNames(List<SNIServerName> serverNames) method. See
Example 8-18.

Developers of server applications can use the SNIMatcher class to decide how to
recognize server name indication. Example 8-19 and Example 8-20 illustrate this
functionality:

Example 8-18 Sample Code to Set the Server Name Indication

The following code sample illustrates how to set the server name indication using the
method SSLParameters.setServerNames(List<SNIServerName>
serverNames):

SSLSocketFactory factory = ...
SSLSocket sslSocket = factory.createSocket("172.16.10.6", 443);
// SSLEngine sslEngine = sslContext.createSSLEngine("172.16.10.6", 443);

SNIHostName serverName = new SNIHostName("www.example.com");
List<SNIServerName> serverNames = new ArrayList<>(1);

Chapter 8
Additional Keystore Formats (PKCS12)

8-98

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs12-personal-information-exchange-syntax-standard.htm
http://www.ietf.org/rfc/rfc6066.txt

serverNames.add(serverName);

SSLParameters params = sslSocket.getSSLParameters();
params.setServerNames(serverNames);
sslSocket.setSSLParameters(params);
// sslEngine.setSSLParameters(params);

Example 8-19 Sample Code Using SSLSocket Class to Recognize SNI

The following code sample illustrates how the server applications can use the
SNIMatcher class to decide how to recognize server name indication:

SSLSocket sslSocket = sslServerSocket.accept();

SNIMatcher matcher = SNIHostName.createSNIMatcher("www\\.example\\.(com|org)");
Collection<SNIMatcher> matchers = new ArrayList<>(1);
matchers.add(matcher);

SSLParameters params = sslSocket.getSSLParameters();
params.setSNIMatchers(matchers);
sslSocket.setSSLParameters(params);

Example 8-20 Sample Code Using SSLServerSocket Class to Recognize SNI

The following code sample illustrates how the server applications can use the
SNIMatcher class to decide how to recognize server name indication:

SSLServerSocket sslServerSocket = ...;

SNIMatcher matcher = SNIHostName.createSNIMatcher("www\\.example\\.(com|org)");
Collection<SNIMatcher> matchers = new ArrayList<>(1);
matchers.add(matcher);

SSLParameters params = sslServerSocket.getSSLParameters();
params.setSNIMatchers(matchers);
sslServerSocket.setSSLParameters(params);

SSLSocket sslSocket = sslServerSocket.accept();

The following list provides examples for the behavior of the SNIMatcher when receiving
various server name indication requests in the ClientHello message:

• Matcher configured to www\\.example\\.com:

– If the requested host name is www.example.com, then it will be accepted and a
confirmation will be sent in the ServerHello message.

– If the requested host name is www.example.org, then it will be rejected with an
unrecognized_name fatal error.

– If there is no requested host name or it is empty, then the request will be
accepted but no confirmation will be sent in the ServerHello message.

• Matcher configured to www\\.invalid\\.com:

– If the requested host name is www.example.com, then it will be rejected with an
unrecognized_name fatal error.

– If the requested host name is www.example.org, then it will be accepted and a
confirmation will be sent in the ServerHello message.

Chapter 8
Server Name Indication (SNI) Extension

8-99

– If there is no requested host name or it is empty, then the request will be
accepted but no confirmation will be sent in the ServerHello message.

• Matcher is not configured:

Any requested host name will be accepted but no confirmation will be sent in the
ServerHello message.

For descriptions of new classes that implement the SNI extension, see:

• The StandardConstants Class

• The SNIServerName Class

• The SNIMatcher Class

• The SNIHostName Class

For examples, see Using the Server Name Indication (SNI) Extension.

TLS Application Layer Protocol Negotiation
Negotiate an application protocol for a TLS connection with Application Layer Protocol
Negotiation (ALPN).

What is ALPN?

Some applications might want or need to negotiate a shared application level value
before a TLS handshake has completed. For example, HTTP/2 uses the Application
Layer Protocol Negotiation mechanism to help establish which HTTP version ("h2",
"spdy/3", "http/1.1") can or will be used on a particular TCP or UDP port. ALPN (RFC
7301) does this without adding network round-trips between the client and the server.
In the case of HTTP/2 the protocol must be established before the connection is
negotiated, as client and server need to know what version of HTTP to use before they
start communicating. Without ALPN it would not be possible to have application
protocols HTTP/1 and HTTP/2 on the same port.

The client uses the ALPN extension at the beginning of the TLS handshake to send a
list of supported application protocols to the server as part of the ClientHello. The
server reads the list of supported application protocols in the ClientHello, and
determines which of the supported protocols it prefers. It then sends a ServerHello
message back to the client with the negotiation result. The message may contain
either the name of the protocol that has been chosen or that no protocol has been
chosen.

The application protocol negotiation can thus be accomplished within the TLS
handshake, without adding network round-trips, and allows the server to associate a
different certificate with each application protocol, if desired.

Unlike many other TLS extensions, this extension does not establish properties of the
session, only of the connection. That's why you'll find the negotiated values in the
SSLSocket/SSLEngine, not the SSLSession. When session resumption or session tickets
are used (see TLS Session Resumption without Server-Side State), the previously
negotiated values are irrelevant, and only the values in the new handshake messages
are considered.

Chapter 8
TLS Application Layer Protocol Negotiation

8-100

https://www.rfc-editor.org/rfc/rfc7301.txt
https://www.rfc-editor.org/rfc/rfc7301.txt
http://www.rfc-editor.org/rfc/rfc5077.txt

Setting up ALPN on the Client
Set the Application Layer Protocol Negotiation (ALPN) values supported by the client.
During the handshake with the server, the server will read the client’s list of application
protocols and will determine which is most suitable.

For the client, use the SSLParameters.setApplicationProtocols(String[]) method,
followed by the setSSLParameters method of either SSLSocket or SSLEngine to set up the
application protocols to send to the server.

Example 8-21 Sample Code for Setting and Getting ALPN Values in a Java
Client

For example, here are the steps to set ALPN values of "three" and "two", on the client.

To run the code the property javax.net.ssl.trustStore must be set to a valid root
certificate. (This can be done on the command line).

import java.io.*;
import java.util.*;
import javax.net.ssl.*;
public class SSLClient {
 public static void main(String[] args) throws Exception {

 // Code for creating a client side SSLSocket
 SSLSocketFactory sslsf = (SSLSocketFactory) SSLSocketFactory.getDefault();
 SSLSocket sslSocket = (SSLSocket) sslsf.createSocket("localhost", 9999);

 // Get an SSLParameters object from the SSLSocket
 SSLParameters sslp = sslSocket.getSSLParameters();

 // Populate SSLParameters with the ALPN values
 // On the client side the order doesn't matter as
 // when connecting to a JDK server, the server's list takes priority
 String[] clientAPs = {"three", "two"};
 sslp.setApplicationProtocols(clientAPs);

 // Populate the SSLSocket object with the SSLParameters object
 // containing the ALPN values
 sslSocket.setSSLParameters(sslp);

 sslSocket.startHandshake();

 // After the handshake, get the application protocol that has been negotiated
 String ap = sslSocket.getApplicationProtocol();
 System.out.println("Application Protocol client side: \"" + ap + "\"");

 // Do simple write/read
 InputStream sslIS = sslSocket.getInputStream();
 OutputStream sslOS = sslSocket.getOutputStream();
 sslOS.write(280);
 sslOS.flush();
 sslIS.read();
 sslSocket.close();
 }
}

When this code is run and sends a ClientHello to a Java server that has set the ALPN
values one, two, and three, the output will be:

Chapter 8
TLS Application Layer Protocol Negotiation

8-101

Application Protocol client side: two

See The SSL Handshake for further details on handshaking. It is also possible to
check the results of the negotiation during handshaking. See Determining Negotiated
ALPN Value during Handshaking.

Setting up Default ALPN on the Server
Use the default ALPN mechanism to determine a suitable application protocol by
setting ALPN values on the server.

To use the default mechanism for ALPN on the server, populate an SSLParameters
object with the ALPN values you wish to set, and then use this SSLParameters object to
populate either the SSLSocket object or the SSLEngine object with these parameters as
you have done when you set up ALPN on the client (see the section Setting up ALPN
on the Client). The first value of the ALPN values set on the server that matches any of
the ALPN values contained in the ClientHello will be chosen and returned to the client
as part of the ServerHello.

Example 8-22 Sample Code for Default ALPN Value Negotiation on the Server

Here is the code for a Java server that uses the default approach for protocol
negotiation. To run the code the property javax.net.ssl.keyStore must be set to a valid
keystore. (This can be done on the command line, see Creating a Keystore to Use
with JSSE).

import java.util.*;
import javax.net.ssl.*;
public class SSLServer {
 public static void main(String[] args) throws Exception {

 // Code for creating a server side SSLSocket
 SSLServerSocketFactory sslssf =
 (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();
 SSLServerSocket sslServerSocket =
 (SSLServerSocket) sslssf.createServerSocket(9999);
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();

 // Get an SSLParameters object from the SSLSocket
 SSLParameters sslp = sslSocket.getSSLParameters();

 // Populate SSLParameters with the ALPN values
 // As this is server side, put them in order of preference
 String[] serverAPs ={ "one", "two", "three" };
 sslp.setApplicationProtocols(serverAPs);

 // If necessary at any time, get the ALPN values set on the
 // SSLParameters object with:
 // String serverAPs = sslp.setApplicationProtocols();

 // Populate the SSLSocket object with the ALPN values
 sslSocket.setSSLParameters(sslp);

 sslSocket.startHandshake();

 // After the handshake, get the application protocol that
 // has been negotiated

 String ap = sslSocket.getApplicationProtocol();
 System.out.println("Application Protocol server side: \"" + ap + "\"");

Chapter 8
TLS Application Layer Protocol Negotiation

8-102

 // Continue with the work of the server
 InputStream sslIS = sslSocket.getInputStream();
 OutputStream sslOS = sslSocket.getOutputStream();
 sslIS.read();
 sslOS.write(85);
 sslOS.flush();
 sslSocket.close();
 }
}

When this code is run and a Java client sends a ClientHello with ALPN values three
and two, the output is:

Application Protocol server side: two

See The SSL Handshake for further details on handshaking. It is also possible to
check the results of the negotiation during handshaking. See Determining Negotiated
ALPN Value during Handshaking.

Setting up Custom ALPN on the Server
Use the custom ALPN mechanism to determine a suitable application protocol by
setting up a callback method.

If you do not want to use the server’s default negotiation protocol, you can use the
setHandshakeApplicationProtocolSelector method of SSLEngine or SSLSocket to register
a BiFunction (lambda) callback that can examine the handshake state so far, and then
make your selection based on the client’s list of application protocols and any other
relevant information. For example, you may consider using the cipher suite suggested,
or the Server Name Indication (SNI) or any other data you can obtain in making the
choice. If custom negotiation is used, the values set by the setApplicationProtocols
method (default negotiation) will be ignored.

Example 8-23 Sample Code for Custom ALPN Value Negotiation on the Server

Here is the code for a Java server that uses the custom mechanism for protocol
negotiation. To run the code the property javax.net.ssl.keyStore must be set to a valid
certificate. (This can be done on the command line, see Creating a Keystore to Use
with JSSE).

import java.util.*;
import javax.net.ssl.*;
public class SSLServer {
 public static void main(String[] args) throws Exception {

 // Code for creating a server side SSLSocket
 SSLServerSocketFactory sslssf =
 (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();
 SSLServerSocket sslServerSocket =
 (SSLServerSocket) sslssf.createServerSocket(9999);
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();

 // Code to set up a callback function
 // Pass in the current SSLSocket to be inspected and client AP values
 sslSocket.setHandshakeApplicationProtocolSelector(
 (serverSocket, clientProtocols) -> {
 SSLSession handshakeSession = serverSocket.getHandshakeSession();
 // callback function called with current SSLSocket and client AP

Chapter 8
TLS Application Layer Protocol Negotiation

8-103

values
 // plus any other useful information to help determine appropriate
 // application protocol. Here the protocol and ciphersuite are also
 // passed to the callback function.
 return chooseApplicationProtocol(
 serverSocket,
 clientProtocols,
 handshakeSession.getProtocol(),
 handshakeSession.getCipherSuite());
 });

 sslSocket.startHandshake();

 // After the handshake, get the application protocol that has been
 // returned from the callback method.

 String ap = sslSocket.getApplicationProtocol();
 System.out.println("Application Protocol server side: \"" + ap + "\"");

 // Continue with the work of the server
 InputStream sslIS = sslSocket.getInputStream();
 OutputStream sslOS = sslSocket.getOutputStream();
 sslIS.read();
 sslOS.write(85);
 sslOS.flush();
 sslSocket.close();
 }

 // The callback method. Note how the parameters match the call within
 // the setHandshakeApplicationProtocolSelector method above.
 public static String chooseApplicationProtocol(SSLSocket serverSocket,
 List<String> clientProtocols, String protocol, String cipherSuite) {
 // For example, check the cipher suite and return an application protocol
 // value based on that.
 if (cipherSuite.equals("<--a_particular_ciphersuite-->")) {
 return "three";
 } else {
 return "";
 }
 }
}

If the cipher suite matches the one you specify in the condition statement when this
code is run , then the value three will be returned. Otherwise an empty string will be
returned.

Note that the BiFunction object’s return value is a String, which will be the application
protocol name, or null to indicate that none of the advertised names are acceptable. If
the return value is an empty String then application protocol indications will not be
used. If the return value is null (no value chosen) or is a value that was not advertised
by the peer, the underlying protocol will determine what action to take. (For example,
the server code will send a "no_application_protocol" alert and terminate the
connection.)

After handshaking completes on both client and server, you can check the result of the
negotiation by calling the getApplicationProtocol method on either the SSLSocket object
or the SSLEngine object. See The SSL Handshake for further details on handshaking.

Chapter 8
TLS Application Layer Protocol Negotiation

8-104

Determining Negotiated ALPN Value during Handshaking
To determine the ALPN value that has been negotiated during the handshaking,
create a custom KeyManager or TrustManager class, and include in this custom class a
call to the getHandshakeApplicationProtocol method.

There are some use cases where the selected ALPN and SNI values will affect the
choices made by a KeyManager or TrustManager. For example, an application might want
to select different certificate/private key sets depending on the attributes of the server
and the chosen ALPN/SNI/ciphersuite values.

The sample code given illustrates how to call the getHandshakeApplicationProtocol
method from within a custom X509ExtendedKeyManager that you create and register as
the KeyManager object.

Example 8-24 Sample Code for a Custom KeyManager

This example shows the entire code for a custom KeyManager that extends
X509ExtendedKeyManager. Most methods simply return the value returned from the
KeyManager class that is being wrapped by this MyX509ExtendedKeyManager class.
However the chooseServerAlias method calls the getHandshakeApplicationProtocol on
the SSLSocket object and therefore can determine the current negotiated ALPN value.

import java.net.Socket;
import java.security.*;
import javax.net.ssl.*;

public class MyX509ExtendedKeyManager extends X509ExtendedKeyManager {

 // X509ExtendedKeyManager is an abstract class so your new class
 // needs to implement all the abstract methods in this class.
 // The easiest way to do this is to wrap an existing KeyManager
 // and call its methods for each of the methods you need to implement.

 X509ExtendedKeyManager akm;

 public MyX509ExtendedKeyManager(X509ExtendedKeyManager akm) {
 this.akm = akm;
 }

 @Override
 public String[] getClientAliases(String keyType, Principal[] issuers) {
 return akm.getClientAliases(keyType, issuers);
 }

 @Override
 public String chooseClientAlias(String[] keyType, Principal[] issuers,
 Socket socket) {
 return akm.chooseClientAlias(keyType, issuers, socket);
 }

 @Override
 public String chooseServerAlias(String keyType, Principal[] issuers,
 Socket socket) {

 // This method has access to a Socket, so it is possible to call the
 // getHandshakeApplicationProtocol method here. Note the cast from

Chapter 8
TLS Application Layer Protocol Negotiation

8-105

 // a Socket to an SSLSocket
 String ap = ((SSLSocket) socket).getHandshakeApplicationProtocol();
 System.out.println("In chooseServerAlias, ap is: " + ap);
 return akm.chooseServerAlias(keyType, issuers, socket);
 }

 @Override
 public String[] getServerAliases(String keyType, Principal[] issuers) {
 return akm.getServerAliases(keyType, issuers);
 }

 @Override
 public X509Certificate[] getCertificateChain(String alias) {
 return akm.getCertificateChain(alias);
 }

 @Override
 public PrivateKey getPrivateKey(String alias) {
 return akm.getPrivateKey(alias);
 }
}

When this code is registered as the KeyManager for a Java server and a Java client
sends a ClientHello with ALPN values, the output will be:

 In chooseServerAlias, ap is: <negotiated value>

Example 8-25 Sample Code for Using a Custom KeyManager in a Java Server

This example shows a simple Java server that uses the default ALPN negotiation
strategy and the custom KeyManager, MyX509ExtendedKeyManager, shown in the prior code
sample.

import java.io.*;
import java.util.*;
import javax.net.ssl.*;
import java.security.KeyStore;

public class SSLServerHandshake {

 public static void main(String[] args) throws Exception {
 SSLContext ctx = SSLContext.getInstance("TLS");

 // You need to explicitly create a create a custom KeyManager

 // Keystores
 KeyStore keyKS = KeyStore.getInstance("PKCS12");
 keyKS.load(new FileInputStream("serverCert.p12"),
 "password".toCharArray());

 // Generate KeyManager
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("PKIX");
 kmf.init(keyKS, "password".toCharArray());
 KeyManager[] kms = kmf.getKeyManagers();

 // Code to substitute MyX509ExtendedKeyManager
 if (!(kms[0] instanceof X509ExtendedKeyManager)) {
 throw new Exception("kms[0] not X509ExtendedKeyManager");
 }

 // Create a new KeyManager array and set the first index

Chapter 8
TLS Application Layer Protocol Negotiation

8-106

 // of the array to an instance of MyX509ExtendedKeyManager.
 // Notice how creating this object is done by passing in the
 // existing default X509ExtendedKeyManager
 kms = new KeyManager[] {
 new MyX509ExtendedKeyManager((X509ExtendedKeyManager) kms[0])};

 // Initialize SSLContext using the new KeyManager
 ctx.init(kms, null, null);

 // Instead of using SSLServerSocketFactory.getDefault(),
 // get a SSLServerSocketFactory based on the SSLContext
 SSLServerSocketFactory sslssf = ctx.getServerSocketFactory();
 SSLServerSocket sslServerSocket =
 (SSLServerSocket) sslssf.createServerSocket(9999);
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();
 SSLParameters sslp = sslSocket.getSSLParameters();
 String[] serverAPs ={"one","two","three"};
 sslp.setApplicationProtocols(serverAPs);
 sslSocket.setSSLParameters(sslp);
 sslSocket.startHandshake();

 String ap = sslSocket.getApplicationProtocol();
 System.out.println("Application Protocol server side: \"" + ap + "\"");

 InputStream sslIS = sslSocket.getInputStream();
 OutputStream sslOS = sslSocket.getOutputStream();
 sslIS.read();
 sslOS.write(85);
 sslOS.flush();

 sslSocket.close();
 sslServerSocket.close();
 }
}

With the custom X509ExtendedKeyManager in place, when chooseServerAlias is called
during handshaking the KeyManager has the opportunity to examine the negotiated
application protocol value. In the case of the example shown, this value is output to the
console.

For example, when this code is run and a Java client sends a ClientHello with ALPN
values three and two, the output will be:

Application Protocol server side: two

ALPN Related Classes and Methods
These classes and methods are used when working with Application Layer Protocol
Negotiation (ALPN).

Classes and Methods to Use

SSLEngine and SSLSocket contain the same ALPN related methods and they have the
same functionality.

Chapter 8
TLS Application Layer Protocol Negotiation

8-107

Class Method Purpose

SSLParameters public String[]
getApplicationProtocols();

Client-side and server-side: use
the method to return a String array
containing each protocol set.

SSLParameters public void
setApplicationProtocols([] prot
ocols);

Client-side: use the method to set
the protocols that can be chosen by
the server.

Server-side: use the method to set
the protocols that the server can use.
The String array should contain the
protocols in order of preference.

SSLEngine

SSLSocket

public String
getApplicationProtocol();

Client-side and server-side: use
the method after TLS protocol
negotiation has completed to return a
String containing the protocol that
has been chosen for the connection.

SSLEngine

SSLSocket

public String
getHandshakeApplicationProtoco
l();

Client-side and server-side: use
the method during handshaking to
return a String containing the
protocol that has been chosen for the
connection. If this method is called
before or after handshaking, it will
return null. See Determining
Negotiated ALPN Value during
Handshaking for instructions on how
to call this method.

SSLEngine

SSLSocket

public void
setHandshakeApplicationProtocol
Selector(BiFunction,String>
selector)

Server-side: use the method to
register a callback function. The
application protocol value can then
be set in the callback based on any
information available, for example
the protocol or cipher suite. See
Setting up Custom ALPN on the
Server for instructions on how to use
this method.

Troubleshooting JSSE
This section contains information for troubleshooting JSSE. It provides solutions to
common configuration problem.

First, it provides some common Configuration Problems and ways to solve them, and
then it describes helpful Debugging Utilities.

Configuration Problems
Solutions to some common configuration problems.

CertificateException While Handshaking

Problem: When negotiating an SSL/TLS/DTLS connection, the client or server throws
a CertificateException.

Chapter 8
Troubleshooting JSSE

8-108

Cause 1: This is generally caused by the remote side sending a certificate that is
unknown to the local side.

Solution 1: The best way to debug this type of problem is to turn on debugging (see
Debugging Utilities) and watch as certificates are loaded and when certificates are
received via the network connection. Most likely, the received certificate is unknown to
the trust mechanism because the wrong trust file was loaded.

Refer to the following sections:

• JSSE Classes and Interfaces

• The TrustManager Interface

• The KeyManager Interface

Cause 2: The system clock is not set correctly. In this case, the perceived time may
be outside the validity period on one of the certificates, and unless the certificate can
be replaced with a valid one from a truststore, the system must assume that the
certificate is invalid, and therefore throw the exception.

Solution 2: Correct the system clock time.

Runtime Exception: SSL Service Not Available

Problem: When running a program that uses JSSE, an exception occurs indicating
that an SSL service is not available. For example, an exception similar to one of the
following is thrown:

 Exception in thread "main" java.net.SocketException:
 no SSL Server Sockets

 Exception in thread "main":
 SSL implementation not available

Cause: There was a problem with SSLContext initialization, for example, due to an
incorrect password on a keystore or a corrupted keystore (a JDK vendor once shipped
a keystore in an unknown format, and that caused this type of error).

Solution: Check initialization parameters. Ensure that any keystores specified are
valid and that the passwords specified are correct. One way that you can check this is
by trying to use keytool to examine the keystores and the relevant contents. See
keytool in Java Platform, Standard Edition Tools Reference.

Runtime Exception: "No available certificate corresponding to the SSL cipher
suites which are enabled"

Problem: When trying to run a simple SSL server program, the following exception is
thrown:

 Exception in thread "main" javax.net.ssl.SSLException:
 No available certificate corresponding to the SSL cipher suites which are
enabled...

Cause: Various cipher suites require certain types of key material. For example, if an
RSA cipher suite is enabled, then an RSA keyEntry must be available in the keystore.

Chapter 8
Troubleshooting JSSE

8-109

If no such key is available, then this cipher suite cannot be used. This exception is
thrown if there are no available key entries for all of the cipher suites enabled.

Solution: Create key entries for the various cipher suite types, or use an anonymous
suite. Anonymous cipher suites are inherently dangerous because they are vulnerable
to MITM (man-in-the-middle) attacks. See RFC 2246.

Refer to the following sections to learn how to pass the correct keystore and
certificates:

• JSSE Classes and Interfaces

• Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords

• Additional Keystore Formats (PKCS12)

Runtime Exception: No Cipher Suites in Common

Problem 1: When handshaking, the client and/or server throw this exception.

Cause 1: Both sides of an SSL connection must agree on a common cipher suite. If
the intersection of the client's cipher suite set with the server's cipher suite set is
empty, then you will see this exception.

Solution 1: Configure the enabled cipher suites to include common cipher suites, and
be sure to provide an appropriate keyEntry for asymmetric cipher suites. Also see
Runtime Exception: "No available certificate corresponding to the SSL cipher suites
which are enabled" in this section.)

Problem 2: When using Mozilla Firefox or Microsoft Internet Explorer to access files
on a server that only has DSA-based certificates, a runtime exception occurs
indicating that there are no cipher suites in common.

Cause 2: By default, keyEntries created with keytool use DSA public keys. If only DSA
keyEntries exist in the keystore, then only DSA-based cipher suites can be used. By
default, Navigator and Internet Explorer send only RSA-based cipher suites. Because
the intersection of client and server cipher suite sets is empty, this exception is thrown.

Solution 2: To interact with Navigator or Internet Explorer, you should create
certificates that use RSA-based keys. To do this, specify the -keyalg RSA option when
using keytool. For example:

keytool -genkeypair -alias duke -keystore testkeys -keyalg rsa

Socket Disconnected After Sending ClientHello Message

Problem: A socket attempts to connect, sends a ClientHello message, and is
immediately disconnected.

Cause: Some SSL/TLS servers will disconnect if a ClientHello message is received in
a format they do not understand or with a protocol version number that they do not
support.

Solution: Try adjusting the enabled protocols on the client side. This involves
modifying or invoking some of the following system properties and methods:

• System property https.protocols for the HttpsURLConnection class

Chapter 8
Troubleshooting JSSE

8-110

http://www.ietf.org/rfc/rfc2246.txt?number=2246
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/HttpsURLConnection.html

• System property jdk.tls.client.protocols

• SSLContext.getInstance method

• SSLEngine.setEnabledProtocols method

• SSLSocket.setEnabledProtocols method

• SSLParameters.setProtocols and SSLEngine.setSSLParameters methods

• SSLParameters.setProtocols and SSLSocket.setSSLParameters methods

For backwards compatibility, some SSL/TLS implementations (such as SunJSSE) can
send SSL/TLS ClientHello messages encapsulated in the SSLv2 ClientHello format.
The SunJSSE provider supports this feature. If you want to use this feature, add the
"SSLv2Hello" protocol to the enabled protocol list, if necessary. (See Protocols in the
JDK Providers, which lists the protocols that are enabled by default for the SunJSSE
provider.)

The SSL/TLS RFC standards require that implementations negotiate to the latest
version both sides speak, but some non-conforming implementation simply hang up if
presented with a version they don't understand. For example, some older server
implementations that speak only SSLv3 will shutdown if TLSv1.2 is requested. In this
situation, consider using a SSL/TLS version fallback scheme:

1. Fall back from TLSv1.2 to TLSv1.1 if the server does not understand TLSv1.2.

2. Fall back from TLSv1.1 to TLSv1.0 if the previous step does not work.

For example, if the enabled protocol list on the client is TLSv1, TLSv1.1, and TLSv1.2,
a typical SSL/TLS version fallback scheme may look like:

1. Try to connect to server. If server rejects the SSL/TLS connection request
immediately, go to step 2.

2. Try the version fallback scheme by removing the highest protocol version (for
example, TLSv1.2 for the first failure) in the enabled protocol list.

3. Try to connect to the server again. If server rejects the connection, go to step 2
unless there is no version to which the server can fall back.

4. If the connection fails and SSLv2Hello is not on the enabled protocol list, restore
the enable protocol list and enable SSLv2Hello. (For example, the enable protocol
list should be SSLv2Hello, TLSv1, TLSv1.1, and TLSv1.2.) Start again from step 1.

Note:

A fallback to a previous version normally means security strength downgrading
to a weaker protocol. It is not suggested to use a fallback scheme unless it is
really necessary, and you clearly know that the server does not support a
higher protocol version.

Note:

As part of disabling SSLv3, some servers have also disabled SSLv2Hello,
which means communications with SSLv2Hello-active clients (JDK 6u95) will
fail. Starting with JDK 7, SSLv2Hello default to disabled on clients, enabled on
servers.

Chapter 8
Troubleshooting JSSE

8-111

https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLContext.html#getInstance-java.lang.String-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html#setEnabledProtocols-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setEnabledProtocols-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLParameters.html#setProtocols-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLEngine.html#setProtocols-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLParameters.html#setProtocols-java.lang.String:A-
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/SSLSocket.html#setProtocols-java.lang.String:A-

SunJSSE Cannot Find a JCA Provider That Supports a Required Algorithm and
Causes a NoSuchAlgorithmException

Problem: A handshake is attempted and fails when it cannot find a required algorithm.
Examples might include:

Exception in thread ...deleted...
 ...deleted...
 Caused by java.security.NoSuchAlgorithmException: Cannot find any
 provider supporting RSA/ECB/PKCS1Padding

or

Caused by java.security.NoSuchAlgorithmException: Cannot find any
 provider supporting AES/CBC/NoPadding

Cause: SunJSSE uses JCE for all its cryptographic algorithms. If the SunJCE provider
has been deregistered from the Provider mechanism and an alternative
implementation from JCE is not available, then this exception will be thrown.

Solution: Ensure that the SunJCE is available by checking that the provider is
registered with the Provider interface. Try to run the following code in the context of
your SSL connection:

import javax.crypto.*;

System.out.println("=====Where did you get AES=====");
Cipher c = Cipher.getInstance("AES/CBC/NoPadding");
System.out.println(c.getProvider());

FailedDownloadException Thrown When Trying to Obtain Application
Resources from Web Server over SSL

Problem: If you receive a com.sun.deploy.net.FailedDownloadException when trying to
obtain application resources from your web server over SSL, and your web server
uses the virtual host with Server Name Indication (SNI) extension (such as Apache
HTTP Server), then you may have not configured your web server correctly.

Cause: Because Java SE 7 supports the SNI extension in the JSSE client, the
requested host name of the virtual server is included in the first message sent from the
client to the server during the SSL handshake. The server may deny the client's
request for a connection if the requested host name (the server name indication) does
not match the expected server name, which should be specified in the virtual host's
configuration. This triggers an SSL handshake unrecognized name alert, which results
in a FailedDownloadException being thrown.

Solution: To better diagnose the problem, enable tracing through the Java Console.
See Debugging and Java Console in Java Platform, Standard Edition Deployment
Guide. If the cause of the problem is javax.net.ssl.SSLProtocolException: handshake
alert: unrecognized_name, it is likely that the virtual host configuration for SNI is
incorrect. If you are using Apache HTTP Server, see Name-based Virtual Host
Support about configuring virtual hosts. In particular, ensure that the ServerName
directive is configured properly in a <VirtualHost> block.

See the following:

Chapter 8
Troubleshooting JSSE

8-112

https://httpd.apache.org/docs/trunk/vhosts/name-based.html
https://httpd.apache.org/docs/trunk/vhosts/name-based.html

• SSL with Virtual Hosts Using SNI from Apache HTTP Server Wiki

• SSL/TLS Strong Encryption: FAQ from Apache HTTP Server Documentation

• RFC 3546, Transport Layer Security (TLS) Extensions

• Bug 7194590: SSL handshaking error caused by virtual server misconfiguration

IllegalArgumentException When RC4 Cipher Suites are Configured for DTLS

Problem: An IllegalArgumentException exception is thrown when RC4 cipher suite
algorithm is specified in SSLEngine.setEnabledCipherSuites(String[] suites) method
and the SSLEngine is a DTLS engine.

sslContext = SSLContext.getInstance("DTLS");

// Create the engine
SSLEngine engine = sslContext.createSSLengine(hostname, port);

String enabledSuites[] = { "SSL_RSA_WITH_RC4_128_SHA" };
engine.setEnabledCipherSuites(enabledSuites);

Cause: According to DTLS Version 1.0 and DTLS Version 1.2, RC4 cipher suites must
not be used with DTLS.

Solution: Do not use RC4 based cipher suites for DTLS connections. See "JSSE
Cipher Suite Names" in Java Security Standard Algorithm Names.

Debugging Utilities

JSSE provides dynamic debug tracing support. This is similar to the support used for
debugging access control failures in the Java SE platform. The generic Java dynamic
debug tracing support is accessed with the java.security.debug system property,
whereas the JSSE-specific dynamic debug tracing support is accessed with the
javax.net.debug system property.

Note:

The debug utility is not an officially supported feature of JSSE.

To view the options of the JSSE dynamic debug utility, use the following command-line
option on the java command:

-Djavax.net.debug=help

Note:

If you specify the value help with either dynamic debug utility when running a
program that does not use any classes that the utility was designed to debug,
you will not get the debugging options.

Chapter 8
Troubleshooting JSSE

8-113

https://wiki.apache.org/httpd/NameBasedSSLVHostsWithSNI
https://wiki.apache.org/httpd/FrontPage
https://httpd.apache.org/docs/trunk/ssl/ssl_faq.html
https://httpd.apache.org/docs/
https://www.ietf.org/rfc/rfc3546.txt
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=7194590
http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc6347
https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html

The following complete example shows how to get a list of the debug options for an
application named MyApp that uses some of the JSSE classes:

java -Djavax.net.debug=help MyApp

The MyApp application will not run after the debug help information is printed, as the
help code causes the application to exit.

Current options are:

• all: Turn on all debugging

• ssl: Turn on SSL debugging

The following can be used with the ssl option:

• record: Enable per-record tracing

• handshake: Print each handshake message

• keygen: Print key generation data

• session: Print session activity

• defaultctx: Print default SSL initialization

• sslctx: Print SSLContext tracing

• sessioncache: Print session cache tracing

• keymanager: Print key manager tracing

• trustmanager: Print trust manager tracing

Messages generated from the handshake option can be widened with these options:

• data: Hex dump of each handshake message

• verbose: Verbose handshake message printing

Messages generated from the record option can be widened with these options:

• plaintext: Hex dump of record plaintext

• packet: Print raw SSL/TLS packets

The javax.net.debug property value must be either all or ssl, optionally followed by
debug specifiers. You can use one or more options. You do not have to have a
separator between options, although a separator such as a colon (:) or a comma (,)
helps readability. It does not matter what separators you use, and the ordering of the
option keywords is also not important.

For an introduction to reading this debug information, see the guide, Debugging
SSL/TLS Connections.

The following are examples of using the javax.net.debug property:

• To view all debugging messages:

java -Djavax.net.debug=all MyApp

• To view the hexadecimal dumps of each handshake message, enter the following
(the colons are optional):

java -Djavax.net.debug=ssl:handshake:data MyApp

Chapter 8
Troubleshooting JSSE

8-114

• To view the hexadecimal dumps of each handshake message, and to print trust
manager tracing, enter the following (the commas are optional):

java -Djavax.net.debug=SSL,handshake,data,trustmanager MyApp

Debugging SSL/TLS Connections
Understanding SSL/TLS connection problems can sometimes be difficult, especially
when it is not clear what messages are actually being sent and received. The
SunJSSE has a built-in debug facility and is activated by the System property
javax.net.debug.

To know more about javax.net.debug System property, see Debugging Utilities.

What follows is a brief example how to read the debug output. Please be aware that
the output is non-standard, and may change from release to release. We are using the
default SunJSSE X509KeyManager and X509TrustManager which prints debug
information.

This example assumes a basic understanding of the SSL/TLS protocol. To know more
about protocols (handshake messages, etc.), see Secure Sockets Layer (SSL)
Protocol Overview.

In this example, we connect using the SSLSocketClientWithClientAuth sample
application to a simple HTTPS server that requires client authentication, then send a
HTTPS request and receive the reply.

 java -Djavax.net.debug=all \
 -Djavax.net.ssl.trustStore=trustStore
 SSLSocketClientWithClientAuth bongos 2001 /index.html

First, the X509KeyManager is initialized and discovers there is one keyEntry in the
supplied KeyStore for a subject called "duke". If a server requests a client to
authenticate itself, the X509KeyManager will search its list of keyEntries for an
appropriate credential.

found key for : duke
chain [0] = [
[
 Version: V1
 Subject: CN=Duke, OU=Java Software, O="Sun Microsystems, Inc.",
 L=Cupertino, ST=CA, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

 Key: Sun RSA public key, 1024 bits
 modulus: 134968166047563266914058280571444028986498087544923991226919517
 667593269213420979048109900052353578998293280426361122296881234393722020
 704208851688212064483570055963805034839797994154526862998272017486468599
 962268346037652120279791547218281230795146025359480589335682217749874703
 510467348902637769973696151441
 public exponent: 65537
 Validity: [From: Tue May 22 16:46:46 PDT 2001,
 To: Sun May 22 16:46:46 PDT 2011]
 Issuer: CN=Duke, OU=Java Software, O="Sun Microsystems, Inc.",
 L=Cupertino, ST=CA, C=US
 SerialNumber: [3b0afa66]

Chapter 8
Troubleshooting JSSE

8-115

]
 Algorithm: [MD5withRSA]
 Signature:
0000: 5F B5 62 E9 A0 26 1D 8E A2 7E 7C 02 08 36 3A 3E _.b..&.......6:>
0010: C9 C2 45 03 DD F9 BC 06 FC 25 CF 30 92 91 B1 4E ..E......%.0...N
0020: 62 17 08 48 14 68 80 CF DD 89 11 EA 92 7F CE DD b..H.h..........
0030: B4 FD 12 A8 71 C7 9E D7 C3 D0 E3 BD BB DE 20 92 q......... .
0040: C2 3B C8 DE CB 25 23 C0 8B B6 92 B9 0B 64 80 63 .;...%#......d.c
0050: D9 09 25 2D 7A CF 0A 31 B6 E9 CA C1 37 93 BC 0D ..%-z..1....7...
0060: 4E 74 95 4F 58 31 DA AC DF D8 BD 89 BD AF EC C8 Nt.OX1..........
0070: 2D 18 A2 BC B2 15 4F B7 28 6F D3 00 E1 72 9B 6C -.....O.(o...r.l

]

The X509TrustManager is next initialized, and finds a certificate for a Certificate
Authority (CA) named "JSSE Test CA". Any server presenting

valid

credentials signed by this CA will be trusted.

trustStore is: trustkeys
trustStore type is : jks
trustStore provider is :
init truststore
adding as trusted cert:
 Subject: CN=JSSE Test CA, OU=JWS, O=Sun,
 L=Santa Clara, ST=CA, C=US
 Issuer: CN=JSSE Test CA, OU=JWS, O=Sun,
 L=Santa Clara, ST=CA, C=US
 Algorithm: RSA; Serial number: 0x0
 Valid from Mon Jul 19 13:30:15 PDT 2004 until Fri Dec 05 12:30:15 PST 2031

We finish some additional initialization code, and after this, we are now finally ready to
make the connection to the server.

trigger seeding of SecureRandom
done seeding SecureRandom
export control - checking the cipher suites
export control - no cached value available...
export control - storing legal entry into cache...
%% No cached client session

The connection to the server is made, and we see the initial ClientHello message,
which contains:

• random information to initialize the cryptographic routines,

• the SessionID, which if non-null, would be used in reestablishing a previous
session,

• the list of ciphersuites that the client requests,

• and no compression algorithms.

This is followed by the output of various filters, such as encapsulating the TLSv1
header into the SSLv2Hello header format (See setEnabledProtocols()).

*** ClientHello, TLSv1

Chapter 8
Troubleshooting JSSE

8-116

RandomCookie: GMT: 1073239164 bytes = { 10, 80, 71, 86, 124, 135, 104,
151, 72, 153, 70, 28, 97, 232, 160, 217, 146, 178, 87, 255, 122, 147, 83,
197, 60, 187, 227, 76 }
Session ID: {}
Cipher Suites: [SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_RSA_WITH_3DES_EDE_CBC_SHA,
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
SSL_RSA_WITH_DES_CBC_SHA, SSL_DHE_RSA_WITH_DES_CBC_SHA,
SSL_DHE_DSS_WITH_DES_CBC_SHA, SSL_RSA_EXPORT_WITH_RC4_40_MD5,
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA, SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA,
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA]
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 73
0000: 01 00 00 45 03 01 40 F8 54 7C 0A 50 47 56 7C 87 ...E..@.T..PGV..
0010: 68 97 48 99 46 1C 61 E8 A0 D9 92 B2 57 FF 7A 93 h.H.F.a.....W.z.
0020: 53 C5 3C BB E3 4C 00 00 1E 00 04 00 05 00 2F 00 S.<..L......../.
0030: 33 00 32 00 0A 00 16 00 13 00 09 00 15 00 12 00 3.2.............
0040: 03 00 08 00 14 00 11 01 00
main, WRITE: TLSv1 Handshake, length = 73
[write] MD5 and SHA1 hashes: len = 98
0000: 01 03 01 00 39 00 00 00 20 00 00 04 01 00 80 00 9...
0010: 00 05 00 00 2F 00 00 33 00 00 32 00 00 0A 07 00 /..3..2.....
0020: C0 00 00 16 00 00 13 00 00 09 06 00 40 00 00 15 @...
0030: 00 00 12 00 00 03 02 00 80 00 00 08 00 00 14 00
0040: 00 11 40 F8 54 7C 0A 50 47 56 7C 87 68 97 48 99 ..@.T..PGV..h.H.
0050: 46 1C 61 E8 A0 D9 92 B2 57 FF 7A 93 53 C5 3C BB F.a.....W.z.S.<.
0060: E3 4C .L
main, WRITE: SSLv2 client hello message, length = 98

Section labeled "[Raw write]" represent the actual data sent to the raw output object (in
this case, an OutputStream).

[Raw write]: length = 100
0000: 80 62 01 03 01 00 39 00 00 00 20 00 00 04 01 00 .b....9...
0010: 80 00 00 05 00 00 2F 00 00 33 00 00 32 00 00 0A /..3..2...
0020: 07 00 C0 00 00 16 00 00 13 00 00 09 06 00 40 00 @.
0030: 00 15 00 00 12 00 00 03 02 00 80 00 00 08 00 00
0040: 14 00 00 11 40 F8 54 7C 0A 50 47 56 7C 87 68 97 @.T..PGV..h.
0050: 48 99 46 1C 61 E8 A0 D9 92 B2 57 FF 7A 93 53 C5 H.F.a.....W.z.S.
0060: 3C BB E3 4C <..L

After sending the initial ClientHello, we wait for the server's response, a ServerHello.
"[Raw read]" displays the raw data read from the input device (InputStream), before
any processing has been performed.

[Raw read]: length = 5
0000: 16 03 01 06 F0
[Raw read]: length = 1776
0000: 02 00 00 46 03 01 40 FC 31 10 79 AB 17 66 FA 8B ...F..@.1.y..f..
0010: 3F AA FD 5E 48 23 FA 90 31 D8 3C B9 A3 2C 8C F5 ?..^H#..1.<..,..
0020: E9 81 9B A2 63 6C 20 40 FC 31 10 BD 8D A5 91 06 cl @.1......
0030: 8B E1 E6 80 C6 5A 5C D9 8D 0A AE CA 58 4A BA 36 Z\.....XJ.6
0040: B1 3D 04 8D 82 21 B4 00 04 00 0B 00 06 1B 00 06 .=...!..........
0050: 18 00 03 11 30 82 03 0D 30 82 02 76 A0 03 02 01 0...0..v....
0060: 02 02 01 01 30 0D 06 09 2A 86 48 86 F7 0D 01 01 0...*.H.....
0070: 04 05 00 30 63 31 0B 30 09 06 03 55 04 06 13 02 ...0c1.0...U....
0080: 55 53 31 0B 30 09 06 03 55 04 08 13 02 43 41 31 US1.0...U....CA1

Chapter 8
Troubleshooting JSSE

8-117

0090: 14 30 12 06 03 55 04 07 13 0B 53 61 6E 74 61 20 .0...U....Santa
00A0: 43 6C 61 72 61 31 0C 30 0A 06 03 55 04 0A 13 03 Clara1.0...U....
00B0: 53 75 6E 31 0C 30 0A 06 03 55 04 0B 13 03 4A 57 Sun1.0...U....JW
00C0: 53 31 15 30 13 06 03 55 04 03 13 0C 4A 53 53 45 S1.0...U....JSSE
00D0: 20 54 65 73 74 20 43 41 30 1E 17 0D 30 34 30 37 Test CA0...0407
00E0: 31 39 32 30 33 30 35 31 5A 17 0D 33 31 31 32 30 19203051Z..31120
00F0: 35 32 30 33 30 35 31 5A 30 48 31 0B 30 09 06 03 5203051Z0H1.0...
0100: 55 04 06 13 02 55 53 31 0B 30 09 06 03 55 04 08 U....US1.0...U..
0110: 13 02 43 41 31 0C 30 0A 06 03 55 04 0A 13 03 53 ..CA1.0...U....S
0120: 75 6E 31 0D 30 0B 06 03 55 04 0B 13 04 4A 61 76 un1.0...U....Jav
0130: 61 31 0F 30 0D 06 03 55 04 03 13 06 62 6F 6E 67 a1.0...U....bong
0140: 6F 73 30 81 9F 30 0D 06 09 2A 86 48 86 F7 0D 01 os0..0...*.H....
0150: 01 01 05 00 03 81 8D 00 30 81 89 02 81 81 00 CC 0.......
0160: 09 74 CB 43 AB 6D ED F6 35 AA 0E 49 29 D9 E0 F0 .t.C.m..5..I)...
0170: A1 D5 E2 3E 8F 5E C5 CE F4 DE C1 A4 F3 CB 8C 45 ...>.^.........E
0180: 0B 0F 6E 21 E1 00 65 CB 3C D1 5C EF 6A FB 5D 96 ..n!..e.<.\.j.].
0190: 93 F4 71 41 41 45 FF 37 86 4C AB F9 EA 9A 3F A5 ..qAAE.7.L....?.
01A0: 82 60 BF 0A 81 84 C9 3E AC 0F 3D 20 3D AC A0 69 .`.....>..= =..i
01B0: EF CA 4A A7 94 AD C8 A5 CE 37 66 52 D1 25 43 CB ..J......7fR.%C.
01C0: 10 44 07 1E 93 74 D9 68 01 D7 06 48 C9 0D 52 2D .D...t.h...H..R-
01D0: D5 6A 2E A6 48 4C 59 E2 5C C6 C1 5C C8 4C 1B 02 .j..HLY.\..\.L..
01E0: 03 01 00 01 A3 81 EB 30 81 E8 30 09 06 03 55 1D 0..0...U.
01F0: 13 04 02 30 00 30 2C 06 09 60 86 48 01 86 F8 42 ...0.0,..`.H...B
0200: 01 0D 04 1F 16 1D 4F 70 65 6E 53 53 4C 20 47 65 OpenSSL Ge
0210: 6E 65 72 61 74 65 64 20 43 65 72 74 69 66 69 63 nerated Certific
0220: 61 74 65 30 1D 06 03 55 1D 0E 04 16 04 14 58 D7 ate0...U......X.
0230: 3A A9 37 AA 3E 14 27 FC EC CC 45 08 04 8E 2A 8B :.7.>.'...E...*.
0240: 77 28 30 81 8D 06 03 55 1D 23 04 81 85 30 81 82 w(0....U.#...0..
0250: 80 14 08 A3 7E 35 96 15 FA B0 F5 1B 5F CD 4F 54 5......_.OT
0260: EF 31 33 70 E4 A7 A1 67 A4 65 30 63 31 0B 30 09 .13p...g.e0c1.0.
0270: 06 03 55 04 06 13 02 55 53 31 0B 30 09 06 03 55 ..U....US1.0...U
0280: 04 08 13 02 43 41 31 14 30 12 06 03 55 04 07 13 CA1.0...U...
0290: 0B 53 61 6E 74 61 20 43 6C 61 72 61 31 0C 30 0A .Santa Clara1.0.
02A0: 06 03 55 04 0A 13 03 53 75 6E 31 0C 30 0A 06 03 ..U....Sun1.0...
02B0: 55 04 0B 13 03 4A 57 53 31 15 30 13 06 03 55 04 U....JWS1.0...U.
02C0: 03 13 0C 4A 53 53 45 20 54 65 73 74 20 43 41 82 ...JSSE Test CA.
02D0: 01 00 30 0D 06 09 2A 86 48 86 F7 0D 01 01 04 05 ..0...*.H.......
02E0: 00 03 81 81 00 05 3E 17 DA F2 05 CB 4E 9E BF 12 >.....N...
02F0: CE 13 76 FF B2 FB 7F 9C 3D 45 28 43 6C 98 28 E3 ..v.....=E(Cl.(.
0300: 92 17 C2 C6 F1 62 CA 60 C2 B0 EC E6 7E 4C 2F C2 b.`.....L/.
0310: 40 FE 06 CB 34 60 B1 F4 26 1C E8 46 39 24 E1 8A @...4`..&..F9$..
0320: 71 F2 13 90 A4 0A 7B 0B 13 AB 51 68 53 D9 7A 31 q.........QhS.z1
0330: 5A C1 7E 3C 44 2C 49 70 57 25 F9 18 FE 5D A5 42 Z..<D,IpW%...].B
0340: 7F 3E 61 1F 29 A3 31 46 02 C6 D2 8C 27 79 40 76 .>a.).1F....'y@v
0350: 97 B6 25 19 BE 6C 6A 92 DC EF 11 BE E7 4A FF 2A ..%..lj......J.*
0360: E6 D6 AC 39 31 00 03 01 30 82 02 FD 30 82 02 66 ...91...0...0..f
0370: A0 03 02 01 02 02 01 00 30 0D 06 09 2A 86 48 86 0...*.H.
0380: F7 0D 01 01 04 05 00 30 63 31 0B 30 09 06 03 55 0c1.0...U
0390: 04 06 13 02 55 53 31 0B 30 09 06 03 55 04 08 13 US1.0...U...
03A0: 02 43 41 31 14 30 12 06 03 55 04 07 13 0B 53 61 .CA1.0...U....Sa
03B0: 6E 74 61 20 43 6C 61 72 61 31 0C 30 0A 06 03 55 nta Clara1.0...U
03C0: 04 0A 13 03 53 75 6E 31 0C 30 0A 06 03 55 04 0B Sun1.0...U..
03D0: 13 03 4A 57 53 31 15 30 13 06 03 55 04 03 13 0C ..JWS1.0...U....
03E0: 4A 53 53 45 20 54 65 73 74 20 43 41 30 1E 17 0D JSSE Test CA0...
03F0: 30 34 30 37 31 39 32 30 33 30 31 35 5A 17 0D 33 040719203015Z..3
0400: 31 31 32 30 35 32 30 33 30 31 35 5A 30 63 31 0B 11205203015Z0c1.
0410: 30 09 06 03 55 04 06 13 02 55 53 31 0B 30 09 06 0...U....US1.0..
0420: 03 55 04 08 13 02 43 41 31 14 30 12 06 03 55 04 .U....CA1.0...U.
0430: 07 13 0B 53 61 6E 74 61 20 43 6C 61 72 61 31 0C ...Santa Clara1.
0440: 30 0A 06 03 55 04 0A 13 03 53 75 6E 31 0C 30 0A 0...U....Sun1.0.
0450: 06 03 55 04 0B 13 03 4A 57 53 31 15 30 13 06 03 ..U....JWS1.0...

Chapter 8
Troubleshooting JSSE

8-118

0460: 55 04 03 13 0C 4A 53 53 45 20 54 65 73 74 20 43 U....JSSE Test C
0470: 41 30 81 9F 30 0D 06 09 2A 86 48 86 F7 0D 01 01 A0..0...*.H.....
0480: 01 05 00 03 81 8D 00 30 81 89 02 81 81 00 9A 0A 0........
0490: B6 45 66 D5 DE 4A D9 3C 8C AC A6 B5 A5 88 B4 CF .Ef..J.<........
04A0: 14 E1 A6 1B 25 25 4F 44 C9 1F 22 38 32 29 CF A1 %%OD.."82)..
04B0: 7C 18 30 93 DC 2B EC 2B 67 EE 2E 08 66 2D 0F 47 ..0..+.+g...f-.G
04C0: E0 12 3A DC E0 03 E9 65 16 F6 18 C6 16 14 56 24 ..:....e......V$
04D0: 55 7D 32 3E F9 66 A2 DD 55 EB 4D 0A 67 C7 5D 21 U.2>.f..U.M.g.]!
04E0: 9B 29 EA 2E 51 C5 83 A3 55 FF 35 CA A6 99 8F 46 .)..Q...U.5....F
04F0: F8 8E 56 BB A2 B1 39 83 D8 61 42 79 E0 95 78 FA ..V...9..aBy..x.
0500: C6 E3 65 B0 FD 74 2D 64 51 71 04 F2 A1 91 02 03 ..e..t-dQq......
0510: 01 00 01 A3 81 C0 30 81 BD 30 1D 06 03 55 1D 0E 0..0...U..
0520: 04 16 04 14 08 A3 7E 35 96 15 FA B0 F5 1B 5F CD 5......_.
0530: 4F 54 EF 31 33 70 E4 A7 30 81 8D 06 03 55 1D 23 OT.13p..0....U.#
0540: 04 81 85 30 81 82 80 14 08 A3 7E 35 96 15 FA B0 ...0.......5....
0550: F5 1B 5F CD 4F 54 EF 31 33 70 E4 A7 A1 67 A4 65 .._.OT.13p...g.e
0560: 30 63 31 0B 30 09 06 03 55 04 06 13 02 55 53 31 0c1.0...U....US1
0570: 0B 30 09 06 03 55 04 08 13 02 43 41 31 14 30 12 .0...U....CA1.0.
0580: 06 03 55 04 07 13 0B 53 61 6E 74 61 20 43 6C 61 ..U....Santa Cla
0590: 72 61 31 0C 30 0A 06 03 55 04 0A 13 03 53 75 6E ra1.0...U....Sun
05A0: 31 0C 30 0A 06 03 55 04 0B 13 03 4A 57 53 31 15 1.0...U....JWS1.
05B0: 30 13 06 03 55 04 03 13 0C 4A 53 53 45 20 54 65 0...U....JSSE Te
05C0: 73 74 20 43 41 82 01 00 30 0C 06 03 55 1D 13 04 st CA...0...U...
05D0: 05 30 03 01 01 FF 30 0D 06 09 2A 86 48 86 F7 0D .0....0...*.H...
05E0: 01 01 04 05 00 03 81 81 00 73 6A 46 A2 05 E3 D8 sjF....
05F0: 6E 5C F4 18 A2 74 BC CF EB 0C 5B FF 81 1C 28 85 n\...t....[...(.
0600: C7 FA E4 ED 5C 4F 71 22 FB 26 E3 01 3D 0C 10 AA \Oq".&..=...
0610: BB 3E 90 ED 0E 1F 0C 9B B1 8C 49 6A 51 E4 C3 52 .>........IjQ..R
0620: D6 FB 42 6C B4 A9 A9 57 A5 84 00 42 6D 37 37 6D ..Bl...W...Bm77m
0630: C7 6C 23 BC DC 60 D1 9D 6F B3 75 47 3A 15 33 1A .l#..`..o.uG:.3.
0640: EC 90 09 9D F9 EB BD 88 96 E7 1D 41 BC 01 8D CA A....
0650: 88 D9 5B 04 09 8F 3E EA C8 15 A0 AA 4E 85 95 AE ..[...>.....N...
0660: 2F 0E 31 92 AC 3C FB 2F C4 0D 00 00 7F 02 01 02 /.1..<./........
0670: 00 7A 00 78 30 76 31 0B 30 09 06 03 55 04 06 13 .z.x0v1.0...U...
0680: 02 55 53 31 0B 30 09 06 03 55 04 08 13 02 43 41 .US1.0...U....CA
0690: 31 12 30 10 06 03 55 04 07 13 09 43 75 70 65 72 1.0...U....Cuper
06A0: 74 69 6E 6F 31 1F 30 1D 06 03 55 04 0A 13 16 53 tino1.0...U....S
06B0: 75 6E 20 4D 69 63 72 6F 73 79 73 74 65 6D 73 2C un Microsystems,
06C0: 20 49 6E 63 2E 31 16 30 14 06 03 55 04 0B 13 0D Inc.1.0...U....
06D0: 4A 61 76 61 20 53 6F 66 74 77 61 72 65 31 0D 30 Java Software1.0
06E0: 0B 06 03 55 04 03 13 04 44 75 6B 65 0E 00 00 00 ...U....Duke....
main, READ: TLSv1 Handshake, length = 1776

The data is unpackaged, and if the message is in the SSL/TLS format, it is parsed into
a ServerHello. If you connected to a non-SSL/TLS socket (plaintext?), the received
data will not be in SSL/TLS format, and you'll have problems connecting.

The ServerHello specifies several things:

• The server's random data, also used to initialize the cryptographic algorithms,

• the identifier of this session (if the client wants to try to rejoin this session using a
different connection, it can send this ID in its ClientHello. If the client session ID
equals the server session ID, an abbreviated handshake takes place, and the
previously established parameters are used),

• the selected cipher suite,

• and the compression method (none in this case).

Lastly note that the ServerHello has specified that the connection should use "TLSv1",
rather than "SSLv3."

Chapter 8
Troubleshooting JSSE

8-119

*** ServerHello, TLSv1
RandomCookie: GMT: 1073492240 bytes = { 121, 171, 23, 102, 250, 139, 63,
170, 253, 94, 72, 35, 250, 144, 49, 216, 60, 185, 163, 44, 140, 245, 233,
129, 155, 162, 99, 108 }
Session ID: {64, 252, 49, 16, 189, 141, 165, 145, 6, 139, 225, 230, 128,
198, 90, 92, 217, 141, 10, 174, 202, 88, 74, 186, 54, 177, 61, 4, 141, 130,
33, 180}
Cipher Suite: SSL_RSA_WITH_RC4_128_MD5
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_MD5]
** SSL_RSA_WITH_RC4_128_MD5
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 40 FC 31 10 79 AB 17 66 FA 8B ...F..@.1.y..f..
0010: 3F AA FD 5E 48 23 FA 90 31 D8 3C B9 A3 2C 8C F5 ?..^H#..1.<..,..
0020: E9 81 9B A2 63 6C 20 40 FC 31 10 BD 8D A5 91 06 cl @.1......
0030: 8B E1 E6 80 C6 5A 5C D9 8D 0A AE CA 58 4A BA 36 Z\.....XJ.6
0040: B1 3D 04 8D 82 21 B4 00 04 00 .=...!....

The server next identifies itself to the client by passing a Certificate chain. In this
example, we have a certificate for the subject "bongos", signed by the issuer "JSSE
Test CA". We know that "JSSE Test CA" is a trusted CA, so if the certificate chain
verifies correctly by our X509TrustManager, we can accept this connection.

There are many different ways of establishing trust, so if the default
X509TrustManager is not doing the types of trust management you need, you can
supply your own X509TrustManager to the SSLContext.

*** Certificate chain
chain [0] = [
[
 Version: V3
 Subject:
 CN=bongos, OU=Java, O=Sun, ST=CA, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

 Key: Sun RSA public key, 1024 bits
 modulus: 143279610700427050704216702734995283650706638118826657356308087
 682552751165540126665070195006746918193702313900836063802045448392771274
 463088345157808670190122017153821642985630288017629294930800445939721128
 735250668515619736933648548512047941708018130926985936894512063397816602
 623867976474763783110866258971
 public exponent: 65537
 Validity: [From: Mon Jul 19 13:30:51 PDT 2004,
 To: Fri Dec 05 12:30:51 PST 2031]
 Issuer: CN=JSSE Test CA, OU=JWS, O=Sun,
 L=Santa Clara, ST=CA, C=US
 SerialNumber: [01]

Certificate Extensions: 3

[1]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 58 D7 3A A9 37 AA 3E 14 27 FC EC CC 45 08 04 8E X.:.7.>.'...E...
0010: 2A 8B 77 28 *.w(
]
]

Chapter 8
Troubleshooting JSSE

8-120

[2]: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 08 A3 7E 35 96 15 FA B0 F5 1B 5F CD 4F 54 EF 31 ...5......_.OT.1
0010: 33 70 E4 A7 3p..
]

[CN=JSSE Test CA, OU=JWS, O=Sun, L=Santa Clara, ST=CA, C=US]
SerialNumber: [00]
]

[3]: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
CA:false
PathLen: undefined
]

]
 Algorithm: [MD5withRSA]
 Signature:
0000: 05 3E 17 DA F2 05 CB 4E 9E BF 12 CE 13 76 FF B2 .>.....N.....v..
0010: FB 7F 9C 3D 45 28 43 6C 98 28 E3 92 17 C2 C6 F1 ...=E(Cl.(......
0020: 62 CA 60 C2 B0 EC E6 7E 4C 2F C2 40 FE 06 CB 34 b.`.....L/.@...4
0030: 60 B1 F4 26 1C E8 46 39 24 E1 8A 71 F2 13 90 A4 `..&..F9$..q....
0040: 0A 7B 0B 13 AB 51 68 53 D9 7A 31 5A C1 7E 3C 44 QhS.z1Z..<D
0050: 2C 49 70 57 25 F9 18 FE 5D A5 42 7F 3E 61 1F 29 ,IpW%...].B.>a.)
0060: A3 31 46 02 C6 D2 8C 27 79 40 76 97 B6 25 19 BE .1F....'y@v..%..
0070: 6C 6A 92 DC EF 11 BE E7 4A FF 2A E6 D6 AC 39 31 lj......J.*...91

]
chain [1] = [
[
 Version: V3
 Subject: CN=JSSE Test CA, OU=JWS, O=Sun,
 L=Santa Clara, ST=CA, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

 Key: Sun RSA public key, 1024 bits
 modulus: 108171861314934294923646852258201093253619460299818135230481040
 615923025149195168140458238629251726950220398889722590740552079782864577
 976838691751841449679901644183317203824143803940037883199193775839934767
 304560313841716869284745769157293013188246601563271959824290073095150730
 505329011956986145636520993169
 public exponent: 65537
 Validity: [From: Mon Jul 19 13:30:15 PDT 2004,
 To: Fri Dec 05 12:30:15 PST 2031]
 Issuer: CN=JSSE Test CA, OU=JWS, O=Sun,
 L=Santa Clara, ST=CA, C=US
 SerialNumber: [00]

Certificate Extensions: 3
[1]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 08 A3 7E 35 96 15 FA B0 F5 1B 5F CD 4F 54 EF 31 ...5......_.OT.1
0010: 33 70 E4 A7 3p..
]
]

[2]: ObjectId: 2.5.29.35 Criticality=false

Chapter 8
Troubleshooting JSSE

8-121

AuthorityKeyIdentifier [
KeyIdentifier [
0000: 08 A3 7E 35 96 15 FA B0 F5 1B 5F CD 4F 54 EF 31 ...5......_.OT.1
0010: 33 70 E4 A7 3p..
]

[CN=JSSE Test CA, OU=JWS, O=Sun, L=Santa Clara, ST=CA, C=US]
SerialNumber: [00]
]

[3]: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
CA:true
PathLen:2147483647
]

]
 Algorithm: [MD5withRSA]
 Signature:
0000: 73 6A 46 A2 05 E3 D8 6E 5C F4 18 A2 74 BC CF EB sjF....n\...t...
0010: 0C 5B FF 81 1C 28 85 C7 FA E4 ED 5C 4F 71 22 FB .[...(.....\Oq".
0020: 26 E3 01 3D 0C 10 AA BB 3E 90 ED 0E 1F 0C 9B B1 &..=....>.......
0030: 8C 49 6A 51 E4 C3 52 D6 FB 42 6C B4 A9 A9 57 A5 .IjQ..R..Bl...W.
0040: 84 00 42 6D 37 37 6D C7 6C 23 BC DC 60 D1 9D 6F ..Bm77m.l#..`..o
0050: B3 75 47 3A 15 33 1A EC 90 09 9D F9 EB BD 88 96 .uG:.3..........
0060: E7 1D 41 BC 01 8D CA 88 D9 5B 04 09 8F 3E EA C8 ..A......[...>..
0070: 15 A0 AA 4E 85 95 AE 2F 0E 31 92 AC 3C FB 2F C4 ...N.../.1..<./.

]

We recognize this cert! We can trust it, and continue on with the handshake.

Found trusted certificate:
[
[
 Version: V3
 Subject: CN=JSSE Test CA, OU=JWS, O=Sun, L=Santa Clara, ST=CA, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

 Key: Sun RSA public key, 1024 bits
 modulus: 108171861314934294923646852258201093253619460299818135230481040
 615923025149195168140458238629251726950220398889722590740552079782864577
 976838691751841449679901644183317203824143803940037883199193775839934767
 304560313841716869284745769157293013188246601563271959824290073095150730
 505329011956986145636520993169
 public exponent: 65537
 Validity: [From: Mon Jul 19 13:30:15 PDT 2004,
 To: Fri Dec 05 12:30:15 PST 2031]
 Issuer: CN=JSSE Test CA, OU=JWS, O=Sun, L=Santa Clara, ST=CA, C=US
 SerialNumber: [00]

Certificate Extensions: 3
[1]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 08 A3 7E 35 96 15 FA B0 F5 1B 5F CD 4F 54 EF 31 ...5......_.OT.1
0010: 33 70 E4 A7 3p..
]
]

Chapter 8
Troubleshooting JSSE

8-122

[2]: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 08 A3 7E 35 96 15 FA B0 F5 1B 5F CD 4F 54 EF 31 ...5......_.OT.1
0010: 33 70 E4 A7 3p..
]

[CN=JSSE Test CA, OU=JWS, O=Sun, L=Santa Clara, ST=CA, C=US]
SerialNumber: [00]
]

[3]: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
CA:true
PathLen:2147483647
]

]
 Algorithm: [MD5withRSA]
 Signature:
0000: 73 6A 46 A2 05 E3 D8 6E 5C F4 18 A2 74 BC CF EB sjF....n\...t...
0010: 0C 5B FF 81 1C 28 85 C7 FA E4 ED 5C 4F 71 22 FB .[...(.....\Oq".
0020: 26 E3 01 3D 0C 10 AA BB 3E 90 ED 0E 1F 0C 9B B1 &..=....>.......
0030: 8C 49 6A 51 E4 C3 52 D6 FB 42 6C B4 A9 A9 57 A5 .IjQ..R..Bl...W.
0040: 84 00 42 6D 37 37 6D C7 6C 23 BC DC 60 D1 9D 6F ..Bm77m.l#..`..o
0050: B3 75 47 3A 15 33 1A EC 90 09 9D F9 EB BD 88 96 .uG:.3..........
0060: E7 1D 41 BC 01 8D CA 88 D9 5B 04 09 8F 3E EA C8 ..A......[...>..
0070: 15 A0 AA 4E 85 95 AE 2F 0E 31 92 AC 3C FB 2F C4 ...N.../.1..<./.

]

We read the next few bytes of the handshake...

[read] MD5 and SHA1 hashes: len = 1567
0000: 0B 00 06 1B 00 06 18 00 03 11 30 82 03 0D 30 82 0...0.
0010: 02 76 A0 03 02 01 02 02 01 01 30 0D 06 09 2A 86 .v........0...*.
0020: 48 86 F7 0D 01 01 04 05 00 30 63 31 0B 30 09 06 H........0c1.0..
0030: 03 55 04 06 13 02 55 53 31 0B 30 09 06 03 55 04 .U....US1.0...U.
0040: 08 13 02 43 41 31 14 30 12 06 03 55 04 07 13 0B ...CA1.0...U....
0050: 53 61 6E 74 61 20 43 6C 61 72 61 31 0C 30 0A 06 Santa Clara1.0..
0060: 03 55 04 0A 13 03 53 75 6E 31 0C 30 0A 06 03 55 .U....Sun1.0...U
0070: 04 0B 13 03 4A 57 53 31 15 30 13 06 03 55 04 03 JWS1.0...U..
0080: 13 0C 4A 53 53 45 20 54 65 73 74 20 43 41 30 1E ..JSSE Test CA0.
0090: 17 0D 30 34 30 37 31 39 32 30 33 30 35 31 5A 17 ..040719203051Z.
00A0: 0D 33 31 31 32 30 35 32 30 33 30 35 31 5A 30 48 .311205203051Z0H
00B0: 31 0B 30 09 06 03 55 04 06 13 02 55 53 31 0B 30 1.0...U....US1.0
00C0: 09 06 03 55 04 08 13 02 43 41 31 0C 30 0A 06 03 ...U....CA1.0...
00D0: 55 04 0A 13 03 53 75 6E 31 0D 30 0B 06 03 55 04 U....Sun1.0...U.
00E0: 0B 13 04 4A 61 76 61 31 0F 30 0D 06 03 55 04 03 ...Java1.0...U..
00F0: 13 06 62 6F 6E 67 6F 73 30 81 9F 30 0D 06 09 2A ..bongos0..0...*
0100: 86 48 86 F7 0D 01 01 01 05 00 03 81 8D 00 30 81 .H............0.
0110: 89 02 81 81 00 CC 09 74 CB 43 AB 6D ED F6 35 AA t.C.m..5.
0120: 0E 49 29 D9 E0 F0 A1 D5 E2 3E 8F 5E C5 CE F4 DE .I)......>.^....
0130: C1 A4 F3 CB 8C 45 0B 0F 6E 21 E1 00 65 CB 3C D1 E..n!..e.<.
0140: 5C EF 6A FB 5D 96 93 F4 71 41 41 45 FF 37 86 4C \.j.]...qAAE.7.L
0150: AB F9 EA 9A 3F A5 82 60 BF 0A 81 84 C9 3E AC 0F ?..`.....>..
0160: 3D 20 3D AC A0 69 EF CA 4A A7 94 AD C8 A5 CE 37 = =..i..J......7
0170: 66 52 D1 25 43 CB 10 44 07 1E 93 74 D9 68 01 D7 fR.%C..D...t.h..
0180: 06 48 C9 0D 52 2D D5 6A 2E A6 48 4C 59 E2 5C C6 .H..R-.j..HLY.\.

Chapter 8
Troubleshooting JSSE

8-123

0190: C1 5C C8 4C 1B 02 03 01 00 01 A3 81 EB 30 81 E8 .\.L.........0..
01A0: 30 09 06 03 55 1D 13 04 02 30 00 30 2C 06 09 60 0...U....0.0,..`
01B0: 86 48 01 86 F8 42 01 0D 04 1F 16 1D 4F 70 65 6E .H...B......Open
01C0: 53 53 4C 20 47 65 6E 65 72 61 74 65 64 20 43 65 SSL Generated Ce
01D0: 72 74 69 66 69 63 61 74 65 30 1D 06 03 55 1D 0E rtificate0...U..
01E0: 04 16 04 14 58 D7 3A A9 37 AA 3E 14 27 FC EC CC X.:.7.>.'...
01F0: 45 08 04 8E 2A 8B 77 28 30 81 8D 06 03 55 1D 23 E...*.w(0....U.#
0200: 04 81 85 30 81 82 80 14 08 A3 7E 35 96 15 FA B0 ...0.......5....
0210: F5 1B 5F CD 4F 54 EF 31 33 70 E4 A7 A1 67 A4 65 .._.OT.13p...g.e
0220: 30 63 31 0B 30 09 06 03 55 04 06 13 02 55 53 31 0c1.0...U....US1
0230: 0B 30 09 06 03 55 04 08 13 02 43 41 31 14 30 12 .0...U....CA1.0.
0240: 06 03 55 04 07 13 0B 53 61 6E 74 61 20 43 6C 61 ..U....Santa Cla
0250: 72 61 31 0C 30 0A 06 03 55 04 0A 13 03 53 75 6E ra1.0...U....Sun
0260: 31 0C 30 0A 06 03 55 04 0B 13 03 4A 57 53 31 15 1.0...U....JWS1.
0270: 30 13 06 03 55 04 03 13 0C 4A 53 53 45 20 54 65 0...U....JSSE Te
0280: 73 74 20 43 41 82 01 00 30 0D 06 09 2A 86 48 86 st CA...0...*.H.
0290: F7 0D 01 01 04 05 00 03 81 81 00 05 3E 17 DA F2 >...
02A0: 05 CB 4E 9E BF 12 CE 13 76 FF B2 FB 7F 9C 3D 45 ..N.....v.....=E
02B0: 28 43 6C 98 28 E3 92 17 C2 C6 F1 62 CA 60 C2 B0 (Cl.(......b.`..
02C0: EC E6 7E 4C 2F C2 40 FE 06 CB 34 60 B1 F4 26 1C ...L/.@...4`..&.
02D0: E8 46 39 24 E1 8A 71 F2 13 90 A4 0A 7B 0B 13 AB .F9$..q.........
02E0: 51 68 53 D9 7A 31 5A C1 7E 3C 44 2C 49 70 57 25 QhS.z1Z..<D,IpW%
02F0: F9 18 FE 5D A5 42 7F 3E 61 1F 29 A3 31 46 02 C6 ...].B.>a.).1F..
0300: D2 8C 27 79 40 76 97 B6 25 19 BE 6C 6A 92 DC EF ..'y@v..%..lj...
0310: 11 BE E7 4A FF 2A E6 D6 AC 39 31 00 03 01 30 82 ...J.*...91...0.
0320: 02 FD 30 82 02 66 A0 03 02 01 02 02 01 00 30 0D ..0..f........0.
0330: 06 09 2A 86 48 86 F7 0D 01 01 04 05 00 30 63 31 ..*.H........0c1
0340: 0B 30 09 06 03 55 04 06 13 02 55 53 31 0B 30 09 .0...U....US1.0.
0350: 06 03 55 04 08 13 02 43 41 31 14 30 12 06 03 55 ..U....CA1.0...U
0360: 04 07 13 0B 53 61 6E 74 61 20 43 6C 61 72 61 31 Santa Clara1
0370: 0C 30 0A 06 03 55 04 0A 13 03 53 75 6E 31 0C 30 .0...U....Sun1.0
0380: 0A 06 03 55 04 0B 13 03 4A 57 53 31 15 30 13 06 ...U....JWS1.0..
0390: 03 55 04 03 13 0C 4A 53 53 45 20 54 65 73 74 20 .U....JSSE Test
03A0: 43 41 30 1E 17 0D 30 34 30 37 31 39 32 30 33 30 CA0...0407192030
03B0: 31 35 5A 17 0D 33 31 31 32 30 35 32 30 33 30 31 15Z..31120520301
03C0: 35 5A 30 63 31 0B 30 09 06 03 55 04 06 13 02 55 5Z0c1.0...U....U
03D0: 53 31 0B 30 09 06 03 55 04 08 13 02 43 41 31 14 S1.0...U....CA1.
03E0: 30 12 06 03 55 04 07 13 0B 53 61 6E 74 61 20 43 0...U....Santa C
03F0: 6C 61 72 61 31 0C 30 0A 06 03 55 04 0A 13 03 53 lara1.0...U....S
0400: 75 6E 31 0C 30 0A 06 03 55 04 0B 13 03 4A 57 53 un1.0...U....JWS
0410: 31 15 30 13 06 03 55 04 03 13 0C 4A 53 53 45 20 1.0...U....JSSE
0420: 54 65 73 74 20 43 41 30 81 9F 30 0D 06 09 2A 86 Test CA0..0...*.
0430: 48 86 F7 0D 01 01 01 05 00 03 81 8D 00 30 81 89 H............0..
0440: 02 81 81 00 9A 0A B6 45 66 D5 DE 4A D9 3C 8C AC Ef..J.<..
0450: A6 B5 A5 88 B4 CF 14 E1 A6 1B 25 25 4F 44 C9 1F %%OD..
0460: 22 38 32 29 CF A1 7C 18 30 93 DC 2B EC 2B 67 EE "82)....0..+.+g.
0470: 2E 08 66 2D 0F 47 E0 12 3A DC E0 03 E9 65 16 F6 ..f-.G..:....e..
0480: 18 C6 16 14 56 24 55 7D 32 3E F9 66 A2 DD 55 EB V$U.2>.f..U.
0490: 4D 0A 67 C7 5D 21 9B 29 EA 2E 51 C5 83 A3 55 FF M.g.]!.)..Q...U.
04A0: 35 CA A6 99 8F 46 F8 8E 56 BB A2 B1 39 83 D8 61 5....F..V...9..a
04B0: 42 79 E0 95 78 FA C6 E3 65 B0 FD 74 2D 64 51 71 By..x...e..t-dQq
04C0: 04 F2 A1 91 02 03 01 00 01 A3 81 C0 30 81 BD 30 0..0
04D0: 1D 06 03 55 1D 0E 04 16 04 14 08 A3 7E 35 96 15 ...U.........5..
04E0: FA B0 F5 1B 5F CD 4F 54 EF 31 33 70 E4 A7 30 81 _.OT.13p..0.
04F0: 8D 06 03 55 1D 23 04 81 85 30 81 82 80 14 08 A3 ...U.#...0......
0500: 7E 35 96 15 FA B0 F5 1B 5F CD 4F 54 EF 31 33 70 .5......_.OT.13p
0510: E4 A7 A1 67 A4 65 30 63 31 0B 30 09 06 03 55 04 ...g.e0c1.0...U.
0520: 06 13 02 55 53 31 0B 30 09 06 03 55 04 08 13 02 ...US1.0...U....
0530: 43 41 31 14 30 12 06 03 55 04 07 13 0B 53 61 6E CA1.0...U....San
0540: 74 61 20 43 6C 61 72 61 31 0C 30 0A 06 03 55 04 ta Clara1.0...U.
0550: 0A 13 03 53 75 6E 31 0C 30 0A 06 03 55 04 0B 13 ...Sun1.0...U...

Chapter 8
Troubleshooting JSSE

8-124

0560: 03 4A 57 53 31 15 30 13 06 03 55 04 03 13 0C 4A .JWS1.0...U....J
0570: 53 53 45 20 54 65 73 74 20 43 41 82 01 00 30 0C SSE Test CA...0.
0580: 06 03 55 1D 13 04 05 30 03 01 01 FF 30 0D 06 09 ..U....0....0...
0590: 2A 86 48 86 F7 0D 01 01 04 05 00 03 81 81 00 73 *.H............s
05A0: 6A 46 A2 05 E3 D8 6E 5C F4 18 A2 74 BC CF EB 0C jF....n\...t....
05B0: 5B FF 81 1C 28 85 C7 FA E4 ED 5C 4F 71 22 FB 26 [...(.....\Oq".&
05C0: E3 01 3D 0C 10 AA BB 3E 90 ED 0E 1F 0C 9B B1 8C ..=....>........
05D0: 49 6A 51 E4 C3 52 D6 FB 42 6C B4 A9 A9 57 A5 84 IjQ..R..Bl...W..
05E0: 00 42 6D 37 37 6D C7 6C 23 BC DC 60 D1 9D 6F B3 .Bm77m.l#..`..o.
05F0: 75 47 3A 15 33 1A EC 90 09 9D F9 EB BD 88 96 E7 uG:.3...........
0600: 1D 41 BC 01 8D CA 88 D9 5B 04 09 8F 3E EA C8 15 .A......[...>...
0610: A0 AA 4E 85 95 AE 2F 0E 31 92 AC 3C FB 2F C4 ..N.../.1..<./.

...and parse it to find that it's a CertificateRequest message.

The server is asking the client to identify itself with a X509 certificate subject having
the common name (CN=) "Duke". The server's X509TrustManager has the option of
rejecting any credentials provided by the client (or lack thereof). In a real-world
situation, you'd probably use a certificate signed by a CA, and the list of trusted CA's
would be included in this message instead.

*** CertificateRequest
Cert Types: RSA, DSS,
Cert Authorities:
CN=Duke, OU=Java Software, O="Sun Microsystems, Inc.",
L=Cupertino, ST=CA, C=US>
[read] MD5 and SHA1 hashes: len = 131
0000: 0D 00 00 7F 02 01 02 00 7A 00 78 30 76 31 0B 30 z.x0v1.0
0010: 09 06 03 55 04 06 13 02 55 53 31 0B 30 09 06 03 ...U....US1.0...
0020: 55 04 08 13 02 43 41 31 12 30 10 06 03 55 04 07 U....CA1.0...U..
0030: 13 09 43 75 70 65 72 74 69 6E 6F 31 1F 30 1D 06 ..Cupertino1.0..
0040: 03 55 04 0A 13 16 53 75 6E 20 4D 69 63 72 6F 73 .U....Sun Micros
0050: 79 73 74 65 6D 73 2C 20 49 6E 63 2E 31 16 30 14 ystems, Inc.1.0.
0060: 06 03 55 04 0B 13 0D 4A 61 76 61 20 53 6F 66 74 ..U....Java Soft
0070: 77 61 72 65 31 0D 30 0B 06 03 55 04 03 13 04 44 ware1.0...U....D
0080: 75 6B 65 uke
*** ServerHelloDone
[read] MD5 and SHA1 hashes: len = 4
0000: 0E 00 00 00

We need to send client credentials back to the server, so the client's X509KeyManager
is now consulted. We look for a match between the list of accepted issuers (above),
and the certificates we have in our KeyStore. In this case (luckily?), there is a match:
we have credentials for "duke". It's now up to the server's X509TrustManager to
decide whether to accept these credentials.

matching alias: duke
*** Certificate chain
chain [0] = [
[
 Version: V1
 Subject: CN=Duke, OU=Java Software, O="Sun Microsystems, Inc.",
 L=Cupertino, ST=CA, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

 Key: Sun RSA public key, 1024 bits
 modulus: 134968166047563266914058280571444028986498087544923991226919517
 667593269213420979048109900052353578998293280426361122296881234393722020

Chapter 8
Troubleshooting JSSE

8-125

 704208851688212064483570055963805034839797994154526862998272017486468599
 962268346037652120279791547218281230795146025359480589335682217749874703
 510467348902637769973696151441
 public exponent: 65537
 Validity: [From: Tue May 22 16:46:46 PDT 2001,
 To: Sun May 22 16:46:46 PDT 2011]
 Issuer: CN=Duke, OU=Java Software, O="Sun Microsystems, Inc.",
 L=Cupertino, ST=CA, C=US
 SerialNumber: [3b0afa66]

]
 Algorithm: [MD5withRSA]
 Signature:
0000: 5F B5 62 E9 A0 26 1D 8E A2 7E 7C 02 08 36 3A 3E _.b..&.......6:>
0010: C9 C2 45 03 DD F9 BC 06 FC 25 CF 30 92 91 B1 4E ..E......%.0...N
0020: 62 17 08 48 14 68 80 CF DD 89 11 EA 92 7F CE DD b..H.h..........
0030: B4 FD 12 A8 71 C7 9E D7 C3 D0 E3 BD BB DE 20 92 q......... .
0040: C2 3B C8 DE CB 25 23 C0 8B B6 92 B9 0B 64 80 63 .;...%#......d.c
0050: D9 09 25 2D 7A CF 0A 31 B6 E9 CA C1 37 93 BC 0D ..%-z..1....7...
0060: 4E 74 95 4F 58 31 DA AC DF D8 BD 89 BD AF EC C8 Nt.OX1..........
0070: 2D 18 A2 BC B2 15 4F B7 28 6F D3 00 E1 72 9B 6C -.....O.(o...r.l

]

In the case of this particular cipher suite, we must now pass a message called a
ClientKeyExchange, which helps establish a shared secret between the two parties.

All of this data is eventually collected and written to the raw device.

*** ClientKeyExchange, RSA PreMasterSecret, TLSv1
Random Secret: { 3, 1, 132, 84, 245, 214, 235, 245, 168, 8, 186, 250,
122, 34, 97, 45, 117, 220, 64, 232, 152, 249, 14, 178, 135, 128, 184,
26, 143, 104, 37, 184, 81, 208, 84, 69, 97, 138, 80, 201, 187, 14, 57,
83, 69, 120, 190, 121 }
[write] MD5 and SHA1 hashes: len = 754
0000: 0B 00 02 68 00 02 65 00 02 62 30 82 02 5E 30 82 ...h..e..b0..^0.
0010: 01 C7 02 04 3B 0A FA 66 30 0D 06 09 2A 86 48 86 ;..f0...*.H.
0020: F7 0D 01 01 04 05 00 30 76 31 0B 30 09 06 03 55 0v1.0...U
0030: 04 06 13 02 55 53 31 0B 30 09 06 03 55 04 08 13 US1.0...U...
0040: 02 43 41 31 12 30 10 06 03 55 04 07 13 09 43 75 .CA1.0...U....Cu
0050: 70 65 72 74 69 6E 6F 31 1F 30 1D 06 03 55 04 0A pertino1.0...U..
0060: 13 16 53 75 6E 20 4D 69 63 72 6F 73 79 73 74 65 ..Sun Microsyste
0070: 6D 73 2C 20 49 6E 63 2E 31 16 30 14 06 03 55 04 ms, Inc.1.0...U.
0080: 0B 13 0D 4A 61 76 61 20 53 6F 66 74 77 61 72 65 ...Java Software
0090: 31 0D 30 0B 06 03 55 04 03 13 04 44 75 6B 65 30 1.0...U....Duke0
00A0: 1E 17 0D 30 31 30 35 32 32 32 33 34 36 34 36 5A ...010522234646Z
00B0: 17 0D 31 31 30 35 32 32 32 33 34 36 34 36 5A 30 ..110522234646Z0
00C0: 76 31 0B 30 09 06 03 55 04 06 13 02 55 53 31 0B v1.0...U....US1.
00D0: 30 09 06 03 55 04 08 13 02 43 41 31 12 30 10 06 0...U....CA1.0..
00E0: 03 55 04 07 13 09 43 75 70 65 72 74 69 6E 6F 31 .U....Cupertino1
00F0: 1F 30 1D 06 03 55 04 0A 13 16 53 75 6E 20 4D 69 .0...U....Sun Mi
0100: 63 72 6F 73 79 73 74 65 6D 73 2C 20 49 6E 63 2E crosystems, Inc.
0110: 31 16 30 14 06 03 55 04 0B 13 0D 4A 61 76 61 20 1.0...U....Java
0120: 53 6F 66 74 77 61 72 65 31 0D 30 0B 06 03 55 04 Software1.0...U.
0130: 03 13 04 44 75 6B 65 30 81 9F 30 0D 06 09 2A 86 ...Duke0..0...*.
0140: 48 86 F7 0D 01 01 01 05 00 03 81 8D 00 30 81 89 H............0..
0150: 02 81 81 00 C0 33 77 E7 1F D0 CE CE BD 43 2F 8D 3w......C/.
0160: EB C6 D3 07 A9 00 F5 75 4D C8 4B 04 52 42 EE 69 uM.K.RB.i
0170: F3 30 E9 A0 C6 07 B7 C8 55 2D B9 5B 57 7A 4C AD .0......U-.[WzL.

Chapter 8
Troubleshooting JSSE

8-126

0180: 1A 30 63 5C 7D 6D 16 BF ED 54 13 49 8A 1B E6 29 .0c\.m...T.I...)
0190: 26 20 85 F9 5E 2B 2F A7 12 9C 98 2D 83 F6 EE B1 &..^+/....-....
01A0: 85 68 DA B5 8E 4C 1D 2D 8E 21 97 B0 30 C8 3A 57 .h...L.-.!..0.:W
01B0: F4 E1 18 9E F6 98 B2 D5 3D 8E D5 2B 09 E2 E1 A0 =..+....
01C0: 49 C1 A6 43 CE EA 57 7F 3B 5C 3A C9 BA DB B7 F0 I..C..W.;\:.....
01D0: 89 69 BF 91 02 03 01 00 01 30 0D 06 09 2A 86 48 .i.......0...*.H
01E0: 86 F7 0D 01 01 04 05 00 03 81 81 00 5F B5 62 E9 _.b.
01F0: A0 26 1D 8E A2 7E 7C 02 08 36 3A 3E C9 C2 45 03 .&.......6:>..E.
0200: DD F9 BC 06 FC 25 CF 30 92 91 B1 4E 62 17 08 48 %.0...Nb..H
0210: 14 68 80 CF DD 89 11 EA 92 7F CE DD B4 FD 12 A8 .h..............
0220: 71 C7 9E D7 C3 D0 E3 BD BB DE 20 92 C2 3B C8 DE q......... ..;..
0230: CB 25 23 C0 8B B6 92 B9 0B 64 80 63 D9 09 25 2D .%#......d.c..%-
0240: 7A CF 0A 31 B6 E9 CA C1 37 93 BC 0D 4E 74 95 4F z..1....7...Nt.O
0250: 58 31 DA AC DF D8 BD 89 BD AF EC C8 2D 18 A2 BC X1..........-...
0260: B2 15 4F B7 28 6F D3 00 E1 72 9B 6C 10 00 00 82 ..O.(o...r.l....
0270: 00 80 4E DD E7 77 F1 91 6B 31 4E FA D6 61 D9 69 ..N..w..k1N..a.i
0280: 82 BD 22 40 83 FD 76 E6 FF A7 18 95 A0 04 28 0D .."@..v.......(.
0290: 0D F7 44 6F 0C 42 4F 17 77 A0 99 56 2A 13 77 28 ..Do.BO.w..V*.w(
02A0: 0B 09 48 C1 B9 8C 09 ED 9F C6 2E 32 18 DB BD ED ..H........2....
02B0: AF C3 AB E7 AD 8F DF 9E AB 07 43 B4 50 EF 74 98 C.P.t.
02C0: EA FC E8 4D C9 DA FC B0 B2 C7 D4 83 50 B5 84 B8 ...M........P...
02D0: 44 86 7B 5D 8A C2 F8 04 80 06 E6 84 42 33 B2 EE D..]........B3..
02E0: 05 E6 D3 48 0E 23 E5 1F 63 4C 53 98 B8 8C 45 BA ...H.#..cLS...E.
02F0: C8 19 ..
main, WRITE: TLSv1 Handshake, length = 754
[Raw write]: length = 759
0000: 16 03 01 02 F2 0B 00 02 68 00 02 65 00 02 62 30 h..e..b0
0010: 82 02 5E 30 82 01 C7 02 04 3B 0A FA 66 30 0D 06 ..^0.....;..f0..
0020: 09 2A 86 48 86 F7 0D 01 01 04 05 00 30 76 31 0B .*.H........0v1.
0030: 30 09 06 03 55 04 06 13 02 55 53 31 0B 30 09 06 0...U....US1.0..
0040: 03 55 04 08 13 02 43 41 31 12 30 10 06 03 55 04 .U....CA1.0...U.
0050: 07 13 09 43 75 70 65 72 74 69 6E 6F 31 1F 30 1D ...Cupertino1.0.
0060: 06 03 55 04 0A 13 16 53 75 6E 20 4D 69 63 72 6F ..U....Sun Micro
0070: 73 79 73 74 65 6D 73 2C 20 49 6E 63 2E 31 16 30 systems, Inc.1.0
0080: 14 06 03 55 04 0B 13 0D 4A 61 76 61 20 53 6F 66 ...U....Java Sof
0090: 74 77 61 72 65 31 0D 30 0B 06 03 55 04 03 13 04 tware1.0...U....
00A0: 44 75 6B 65 30 1E 17 0D 30 31 30 35 32 32 32 33 Duke0...01052223
00B0: 34 36 34 36 5A 17 0D 31 31 30 35 32 32 32 33 34 4646Z..110522234
00C0: 36 34 36 5A 30 76 31 0B 30 09 06 03 55 04 06 13 646Z0v1.0...U...
00D0: 02 55 53 31 0B 30 09 06 03 55 04 08 13 02 43 41 .US1.0...U....CA
00E0: 31 12 30 10 06 03 55 04 07 13 09 43 75 70 65 72 1.0...U....Cuper
00F0: 74 69 6E 6F 31 1F 30 1D 06 03 55 04 0A 13 16 53 tino1.0...U....S
0100: 75 6E 20 4D 69 63 72 6F 73 79 73 74 65 6D 73 2C un Microsystems,
0110: 20 49 6E 63 2E 31 16 30 14 06 03 55 04 0B 13 0D Inc.1.0...U....
0120: 4A 61 76 61 20 53 6F 66 74 77 61 72 65 31 0D 30 Java Software1.0
0130: 0B 06 03 55 04 03 13 04 44 75 6B 65 30 81 9F 30 ...U....Duke0..0
0140: 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 81 ...*.H..........
0150: 8D 00 30 81 89 02 81 81 00 C0 33 77 E7 1F D0 CE ..0.......3w....
0160: CE BD 43 2F 8D EB C6 D3 07 A9 00 F5 75 4D C8 4B ..C/........uM.K
0170: 04 52 42 EE 69 F3 30 E9 A0 C6 07 B7 C8 55 2D B9 .RB.i.0......U-.
0180: 5B 57 7A 4C AD 1A 30 63 5C 7D 6D 16 BF ED 54 13 [WzL..0c\.m...T.
0190: 49 8A 1B E6 29 26 20 85 F9 5E 2B 2F A7 12 9C 98 I...)& ..^+/....
01A0: 2D 83 F6 EE B1 85 68 DA B5 8E 4C 1D 2D 8E 21 97 -.....h...L.-.!.
01B0: B0 30 C8 3A 57 F4 E1 18 9E F6 98 B2 D5 3D 8E D5 .0.:W........=..
01C0: 2B 09 E2 E1 A0 49 C1 A6 43 CE EA 57 7F 3B 5C 3A +....I..C..W.;\:
01D0: C9 BA DB B7 F0 89 69 BF 91 02 03 01 00 01 30 0D i.......0.
01E0: 06 09 2A 86 48 86 F7 0D 01 01 04 05 00 03 81 81 ..*.H...........
01F0: 00 5F B5 62 E9 A0 26 1D 8E A2 7E 7C 02 08 36 3A ._.b..&.......6:
0200: 3E C9 C2 45 03 DD F9 BC 06 FC 25 CF 30 92 91 B1 >..E......%.0...
0210: 4E 62 17 08 48 14 68 80 CF DD 89 11 EA 92 7F CE Nb..H.h.........
0220: DD B4 FD 12 A8 71 C7 9E D7 C3 D0 E3 BD BB DE 20 q.........

Chapter 8
Troubleshooting JSSE

8-127

0230: 92 C2 3B C8 DE CB 25 23 C0 8B B6 92 B9 0B 64 80 ..;...%#......d.
0240: 63 D9 09 25 2D 7A CF 0A 31 B6 E9 CA C1 37 93 BC c..%-z..1....7..
0250: 0D 4E 74 95 4F 58 31 DA AC DF D8 BD 89 BD AF EC .Nt.OX1.........
0260: C8 2D 18 A2 BC B2 15 4F B7 28 6F D3 00 E1 72 9B .-.....O.(o...r.
0270: 6C 10 00 00 82 00 80 4E DD E7 77 F1 91 6B 31 4E l......N..w..k1N
0280: FA D6 61 D9 69 82 BD 22 40 83 FD 76 E6 FF A7 18 ..a.i.."@..v....
0290: 95 A0 04 28 0D 0D F7 44 6F 0C 42 4F 17 77 A0 99 ...(...Do.BO.w..
02A0: 56 2A 13 77 28 0B 09 48 C1 B9 8C 09 ED 9F C6 2E V*.w(..H........
02B0: 32 18 DB BD ED AF C3 AB E7 AD 8F DF 9E AB 07 43 2..............C
02C0: B4 50 EF 74 98 EA FC E8 4D C9 DA FC B0 B2 C7 D4 .P.t....M.......
02D0: 83 50 B5 84 B8 44 86 7B 5D 8A C2 F8 04 80 06 E6 .P...D..].......
02E0: 84 42 33 B2 EE 05 E6 D3 48 0E 23 E5 1F 63 4C 53 .B3.....H.#..cLS
02F0: 98 B8 8C 45 BA C8 19 ...E...

At this point, we have everything we need to generate the actual secrets.

SESSION KEYGEN:
PreMaster Secret:
0000: 03 01 84 54 F5 D6 EB F5 A8 08 BA FA 7A 22 61 2D ...T........z"a-
0010: 75 DC 40 E8 98 F9 0E B2 87 80 B8 1A 8F 68 25 B8 u.@..........h%.
0020: 51 D0 54 45 61 8A 50 C9 BB 0E 39 53 45 78 BE 79 Q.TEa.P...9SEx.y
CONNECTION KEYGEN:
Client Nonce:
0000: 40 FC 30 AE 2D 63 84 BB C5 4B 27 FD 58 21 CA 90 @.0.-c...K'.X!..
0010: 05 F6 A7 7B 37 BB 72 E1 FC 1D 1B 6A F5 1C C8 9F 7.r....j....
Server Nonce:
0000: 40 FC 31 10 79 AB 17 66 FA 8B 3F AA FD 5E 48 23 @.1.y..f..?..^H#
0010: FA 90 31 D8 3C B9 A3 2C 8C F5 E9 81 9B A2 63 6C ..1.<..,......cl
Master Secret:
0000: B0 00 22 34 59 03 16 B7 7A 6C 56 9B 89 D2 7A CC .."4Y..<.c.
Server MAC write Secret:
0000: 1E 4D D1 D3 0A 78 EE B7 4F EC 15 79 B2 59 18 40 .M...x..O..y.Y.@
Client write key:
0000: 10 D0 D6 C2 D9 B7 62 CB 2C 74 BF 5F 85 3C 6F E7 b.,t._.<o.
Server write key:
0000: 06 65 DF BD 16 4B A5 7D 8C 66 2A 80 C1 45 B4 F3 .e...K...f*..E..
... no IV for cipher
>

Send a quick confirmation to the server verifying that we know the private key
corresponding to the client certificate we just sent.

*** CertificateVerify
[write] MD5 and SHA1 hashes: len = 134
0000: 0F 00 00 82 00 80 45 41 43 4B 47 1D F0 EE D1 14 EACKG.....
0010: AE F9 B3 2C 1F B9 FE 7B 3E 91 50 C5 0F F1 57 4F ...,....>.P...WO
0020: 55 F1 4B C3 79 16 A8 F1 72 6B 10 CA CC 83 02 FC U.K.y...rk......
0030: 97 3D 04 29 44 4C 58 74 84 94 19 63 BB 8A 2C 78 .=.)DLXt...c..,x
0040: 43 A0 DD 5E 54 52 AA 97 15 92 1C 39 6B 10 2E BF C..^TR.....9k...
0050: F2 DA AE 2D 8F FB 50 44 9E E2 1F 7D C9 C5 CB A0 ...-..PD........
0060: 31 A0 F9 AA 93 2D 1B 07 1B FA E0 EE 95 E7 88 D7 1....-..........
0070: AD 4A 3A 40 DC FB DF 9E EB 75 04 14 E2 F2 BB DC .J:@.....u......
0080: 1B 7E 6E D5 8C 62 ..n..b
main, WRITE: TLSv1 Handshake, length = 134
[Raw write]: length = 139
0000: 16 03 01 00 86 0F 00 00 82 00 80 45 41 43 4B 47 EACKG
0010: 1D F0 EE D1 14 AE F9 B3 2C 1F B9 FE 7B 3E 91 50 ,....>.P
0020: C5 0F F1 57 4F 55 F1 4B C3 79 16 A8 F1 72 6B 10 ...WOU.K.y...rk.
0030: CA CC 83 02 FC 97 3D 04 29 44 4C 58 74 84 94 19 =.)DLXt...

Chapter 8
Troubleshooting JSSE

8-128

0040: 63 BB 8A 2C 78 43 A0 DD 5E 54 52 AA 97 15 92 1C c..,xC..^TR.....
0050: 39 6B 10 2E BF F2 DA AE 2D 8F FB 50 44 9E E2 1F 9k......-..PD...
0060: 7D C9 C5 CB A0 31 A0 F9 AA 93 2D 1B 07 1B FA E0 1....-.....
0070: EE 95 E7 88 D7 AD 4A 3A 40 DC FB DF 9E EB 75 04 J:@.....u.
0080: 14 E2 F2 BB DC 1B 7E 6E D5 8C 62 n..b

Almost finished! Tell the server we're changing to the newly established cipher suite.
All further messages will be encrypted using the parameters we just established. We
send an encrypted Finished message to verify everything worked.

main, WRITE: TLSv1 Change Cipher Spec, length = 1
[Raw write]: length = 6
0000: 14 03 01 00 01 01
*** Finished
verify_data: { 242, 98, 66, 170, 124, 124, 204, 231, 73, 15, 237, 172 }

[write] MD5 and SHA1 hashes: len = 16
0000: 14 00 00 0C F2 62 42 AA 7C 7C CC E7 49 0F ED AC bB.....I...
Padded plaintext before ENCRYPTION: len = 32
0000: 14 00 00 0C F2 62 42 AA 7C 7C CC E7 49 0F ED AC bB.....I...
0010: FA 06 3C 9F 8C 41 1D ED 2B 06 D0 5A ED 31 F2 80 ..<..A..+..Z.1..
main, WRITE: TLSv1 Handshake, length = 32

Note next that when the message above is actually written to the raw output device
(following the 5 bytes of header information), the message is now encrypted.

[Raw write]: length = 37
0000: 16 03 01 00 20 15 8C 25 BA 4E 73 F5 27 79 49 B1 %.Ns.'yI.
0010: E9 F5 7E C8 48 A7 D3 A6 9B BD 6F 8E A5 8E 2B B7 H.....o...+.
0020: EE DC BD F4 D7

We now wait for the server to send the same (Change Cipher Spec/Finshed), so we
can know it completed negotiations successfully.

[Raw read]: length = 5
0000: 14 03 01 00 01
[Raw read]: length = 1
0000: 01 .
main, READ: TLSv1 Change Cipher Spec, length = 1
[Raw read]: length = 5
0000: 16 03 01 00 20
[Raw read]: length = 32
0000: 1F F5 FA C8 79 20 CE 91 AA 68 7F 6C F3 5A DB 7B y ...h.l.Z..
0010: A5 1C 31 1F 6F 41 50 C5 C6 25 25 8D 48 50 3F F1 ..1.oAP..%%.HP?.
main, READ: TLSv1 Handshake, length = 32
Padded plaintext after DECRYPTION: len = 32
0000: 14 00 00 0C 07 38 46 5F 62 AD 41 B3 DC 79 30 FD 8F_b.A..y0.
0010: 34 F2 3B 54 1C D4 68 0E 92 0B 9C 7E ED 47 9F 3B 4.;T..h......G.;
*** Finished
verify_data: { 7, 56, 70, 95, 98, 173, 65, 179, 220, 121, 48, 253 }

[read] MD5 and SHA1 hashes: len = 16
0000: 14 00 00 0C 07 38 46 5F 62 AD 41 B3 DC 79 30 FD 8F_b.A..y0.

Everything completed successfully! Let's cache the established session in case we
want to reestablish this session after this connection is dropped.

Chapter 8
Troubleshooting JSSE

8-129

At this point, a SSL/TLS client should examine the credentials of the peer to make
sure that it is communicating with the expected server. A HttpsURLConnection would
check the hostname and call HostnameVerifier if there was a problem, but the raw
SSLSocket doesn't. This verification should be done by hand, but we're ignoring this
for now.

So, after all that, we're finally ready to exchange application data. We send a "GET /
index.html HTTP1.1" command.

%% Cached client session: [Session-1, SSL_RSA_WITH_RC4_128_MD5]
Padded plaintext before ENCRYPTION: len = 42
0000: 47 45 54 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
0010: 48 54 54 50 2F 31 2E 31 0A 0A CA CB D1 10 9D 0E HTTP/1.1........
0020: 13 3C D9 66 6B 9E 36 87 ED 9B .<.fk.6...
main, WRITE: TLSv1 Application Data, length = 42

Note again the data over the wire is encrypted (skipping the 5 header bytes).

[Raw write]: length = 47
0000: 17 03 01 00 2A 8A E9 EC 2C 8D 19 B6 E2 50 C1 E2 *...,....P..
0010: 22 1A C0 97 95 23 99 E1 20 DD F3 2A B4 DC 14 57 "....#.. ..*...W
0020: 32 71 58 98 01 BE 70 11 A3 FC 8E 3A 7C 8D BF 2qX...p....:...

We get the application data back. First the HTTPS header, then the actual data.

[Raw read]: length = 5
0000: 17 03 01 00 50 P
[Raw read]: length = 80
0000: 70 10 0D D6 FA ED 51 FC C2 7E CE 24 2E F1 2F F7 p.....Q....$../.
0010: E7 CD A5 D6 2D 1B 10 FD 48 56 9C 1B B5 EC 8F 1E -...HV......
0020: DB DA F9 83 62 52 15 38 70 4B C1 85 13 EF CA 17 bR.8pK......
0030: 89 37 D3 45 C0 88 BB 92 63 F6 9C DE 69 E6 60 3E .7.E....c...i.`>
0040: 1F F7 4D C1 56 61 79 01 49 55 FB 38 6B 16 81 BC ..M.Vay.IU.8k...
main, READ: TLSv1 Application Data, length = 80
Padded plaintext after DECRYPTION: len = 80
0000: 48 54 54 50 2F 31 2E 30 20 32 30 30 20 4F 4B 0D HTTP/1.0 200 OK.
0010: 0A 43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 68 3A .Content-Length:
0020: 20 35 38 0D 0A 43 6F 6E 74 65 6E 74 2D 54 79 70 58..Content-Typ
0030: 65 3A 20 74 65 78 74 2F 68 74 6D 6C 0D 0A 0D 0A e: text/html....
0040: 40 18 A1 FF 1D 5A D4 55 98 DB E3 95 01 A0 91 AF @....Z.U........
HTTP/1.0 200 OK
Content-Length: 58
Content-Type: text/html
[Raw read]: length = 5
0000: 17 03 01 00 4A J
[Raw read]: length = 74
0000: 75 DA F2 58 C3 5E 58 DE 14 AD FE 71 A3 78 07 58 u..X.^X....q.x.X
0010: EB E9 2B A2 D7 82 5C 6E C9 9C 58 84 D7 A8 C6 F8 ..+...\n..X.....
0020: DE C6 5B BA 10 59 DF CC 11 AE 35 F7 C7 0F F6 C2 ..[..Y....5.....
0030: 3E 67 4E 95 30 AA 91 0B E4 4F 5C C7 BF 50 AC 61 >gN.0....O\..P.a
0040: 87 B7 80 75 F0 81 F1 00 63 C9 ...u....c.
main, READ: TLSv1 Application Data, length = 74
Padded plaintext after DECRYPTION: len = 74
0000: 3C 48 54 4D 4C 3E 0A 3C 48 31 3E 48 65 6C 6C 6F <HTML>.<H1>Hello
0010: 20 57 6F 72 6C 64 3C 2F 48 31 3E 0A 54 68 65 20 World</H1>.The
0020: 74 65 73 74 20 69 73 20 63 6F 6D 70 6C 65 74 65 test is complete
0030: 21 0A 3C 2F 48 54 4D 4C 3E 0A 38 2E 68 72 F1 47 !.</HTML>.8.hr.G
0040: E8 56 D1 EA A6 FC 3C 30 6F F3 .V....<0o.

Chapter 8
Troubleshooting JSSE

8-130

 <HTML>
<H1>Hello World<H1>
The test is complete!
<HTML>

Read from the socket again to see if there is any more data. We get a close_notify
message, which means this connection is shutting down properly. We send our own in
turn, then close the socket.

[Raw read]: length = 5
0000: 15 03 01 00 12
[Raw read]: length = 18
0000: 09 AB 95 00 43 8D C8 7C 83 18 EB C4 8C 99 43 A6 C.........C.
0010: 76 49 vI
main, READ: TLSv1 Alert, length = 18
Padded plaintext after DECRYPTION: len = 18
0000: 01 00 FA 44 D5 57 71 5C CC C7 D9 D0 04 23 10 D8 ...D.Wq\.....#..
0010: 21 7B !.
main, RECV TLSv1 ALERT: warning, close_notify
main, called closeInternal(false)
main, SEND TLSv1 ALERT: warning, description = close_notify
Padded plaintext before ENCRYPTION: len = 18
0000: 01 00 8A 2C A2 36 9C 88 22 50 6E BC 95 3B B2 C4 ...,.6.."Pn..;..
0010: FE F2 ..
main, WRITE: TLSv1 Alert, length = 18
[Raw write]: length = 23
0000: 15 03 01 00 12 19 BE 10 8D FA F1 CA DD AB CC 91
0010: 2E 49 08 71 2B C1 05 .I.q+..
main, called close()
main, called closeInternal(true)
main, called close()
main, called closeInternal(true)
main, called close()
main, called closeInternal(true)

Code Examples
The following code examples are included in this section:

Topics

• Converting an Unsecure Socket to a Secure Socket

• Running the JSSE Sample Code

• Creating a Keystore to Use with JSSE

• Using the Server Name Indication (SNI) Extension

Converting an Unsecure Socket to a Secure Socket
Code examples that illustrate how to use JSSE to convert an unsecure socket
connection to a secure socket connection. The code samples are excerpted from the
book Java SE 6 Network Security by Marco Pistoia, et. al.

Example 8-26 shows sample code that can be used to set up communication between
a client and a server using unsecure sockets. This code is then modified in
Example 8-27 to use JSSE to set up secure socket communication.

Chapter 8
Code Examples

8-131

Example 8-26 Socket Example Without SSL

The following examples demonstrates server-side and client-side code for setting up
an unsecure socket connection.

In a Java program that acts as a server and communicates with a client using sockets,
the socket communication is set up with code similar to the following:

 import java.io.*;
 import java.net.*;

 . . .

 int port = availablePortNumber;

 ServerSocket s;

 try {
 s = new ServerSocket(port);
 Socket c = s.accept();

 OutputStream out = c.getOutputStream();
 InputStream in = c.getInputStream();

 // Send messages to the client through
 // the OutputStream
 // Receive messages from the client
 // through the InputStream
 } catch (IOException e) { }

The client code to set up communication with a server using sockets is similar to the
following:

 import java.io.*;
 import java.net.*;

 . . .

 int port = availablePortNumber;
 String host = "hostname";

 try {
 s = new Socket(host, port);

 OutputStream out = s.getOutputStream();
 InputStream in = s.getInputStream();

 // Send messages to the server through
 // the OutputStream
 // Receive messages from the server
 // through the InputStream
 } catch (IOException e) { }

Example 8-27 Socket Example with SSL

The following examples demonstrate server-side and client-side code for setting up a
secure socket connection.

Chapter 8
Code Examples

8-132

In a Java program that acts as a server and communicates with a client using secure
sockets, the socket communication is set up with code similar to the following.
Differences between this program and the one for communication using unsecure
sockets are highlighted in bold.

 import java.io.*;
 import javax.net.ssl.*;

 . . .

 int port = availablePortNumber;

 SSLServerSocket s;

 try {
 SSLServerSocketFactory sslSrvFact =
 (SSLServerSocketFactory)SSLServerSocketFactory.getDefault();
 s = (SSLServerSocket)sslSrvFact.createServerSocket(port);

 SSLSocket c = (SSLSocket)s.accept();

 OutputStream out = c.getOutputStream();
 InputStream in = c.getInputStream();

 // Send messages to the client through
 // the OutputStream
 // Receive messages from the client
 // through the InputStream
 }

 catch (IOException e) {
 }

The client code to set up communication with a server using secure sockets is similar
to the following, where differences with the unsecure version are highlighted in bold:

 import java.io.*;
 import javax.net.ssl.*;

 . . .

 int port = availablePortNumber;
 String host = "hostname";

 try {
 SSLSocketFactory sslFact =
 (SSLSocketFactory)SSLSocketFactory.getDefault();
 SSLSocket s = (SSLSocket)sslFact.createSocket(host, port);

 OutputStream out = s.getOutputStream();
 InputStream in = s.getInputStream();

 // Send messages to the server through
 // the OutputStream
 // Receive messages from the server
 // through the InputStream
 }

Chapter 8
Code Examples

8-133

 catch (IOException e) {
 }

Running the JSSE Sample Code
The JSSE sample programs illustrate how to use JSSE.

• Sample Code Illustrating a Secure Socket Connection Between a Client and a
Server

• Sample Code Illustrating HTTPS Connections

• Sample Code Illustrating a Secure RMI Connection

• Sample Code Illustrating the Use of an SSLEngine

When you use the sample code, be aware that the sample programs are designed to
illustrate how to use JSSE. They are not designed to be robust applications.

Note:

Setting up secure communications involves complex algorithms. The sample
programs provide no feedback during the setup process. When you run the
programs, be patient: you may not see any output for a while. If you run the
programs with the javax.net.debug system property set to all, you will see
more feedback. For an introduction to reading this debug information, see the
guide, Debugging SSL/TLS Connections.

Where to Find the Sample Code

JSSE Sample Code in the JDK 8 documentation lists all the sample code files and text
files. That page also provides a link to a ZIP file that you can download to obtain all the
sample code files.

The following sections describe the samples. See README.txt in JSSE Sample Code
in the JDK 8 documentation.

Sample Code Illustrating a Secure Socket Connection Between a Client and a
Server

The sample programs in the samples/sockets directory illustrate how to set up a secure
socket connection between a client and a server.

When running the sample client programs, you can communicate with an existing
server, such as a web server, or you can communicate with the sample server
program, ClassFileServer. You can run the sample client and the sample server
programs on different machines connected to the same network, or you can run them
both on one machine but from different terminal windows.

All the sample SSLSocketClient* programs in the samples/sockets/client directory (and
URLReader* programs described in Sample Code Illustrating HTTPS Connections) can
be run with the ClassFileServer sample server program. An example of how to do this
is shown in Running SSLSocketClientWithClientAuth with ClassFileServer. You can
make similar changes to run URLReader, SSLSocketClient, or
SSLSocketClientWithTunneling with ClassFileServer.

Chapter 8
Code Examples

8-134

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

If an authentication error occurs during communication between the client and the
server (whether using a web server or ClassFileServer), it is most likely because the
necessary keys are not in the truststore (trust key database). See Terms and
Definitions. For example, the ClassFileServer uses a keystore called testkeys
containing the private key for localhost as needed during the SSL handshake. The
testkeys keystore is included in the same samples/sockets/server directory as the
ClassFileServer source. If the client cannot find a certificate for the corresponding
public key of localhost in the truststore it consults, then an authentication error will
occur. Be sure to use the samplecacerts truststore (which contains the public key and
certificate of the localhost), as described in the next section.

Configuration Requirements

When running the sample programs that create a secure socket connection between a
client and a server, you will need to make the appropriate certificates file (truststore)
available. For both the client and the server programs, you should use the certificates
file samplecacerts from the samples directory. Using this certificates file will allow the
client to authenticate the server. The file contains all the common Certificate Authority
(CA) certificates shipped with the JDK (in the cacerts file), plus a certificate for
localhost needed by the client to authenticate localhost when communicating with the
sample server ClassFileServer. The ClassFileServer uses a keystore containing the
private key for localhost that corresponds to the public key in samplecacerts.

To make the samplecacerts file available to both the client and the server, you can
either copy it to the file java-home/lib/security/jssecacerts, rename it to
cacerts, and use it to replace the java-home/lib/security/cacerts file, or add
the following option to the command line when running the java command for both the
client and the server:

-Djavax.net.ssl.trustStore=path_to_samplecacerts_file

To know more about java-home, see Terms and Definitions.

The password for the samplecacerts truststore is changeit. You can substitute your own
certificates in the samples by using the keytool utility.

If you use a browser, such as Mozilla Firefox or Microsoft Internet Explorer, to access
the sample SSL server provided in the ClassFileServer example, then a dialog box
may pop up with the message that it does not recognize the certificate. This is normal
because the certificate used with the sample programs is self-signed and is for testing
only. You can accept the certificate for the current session. After testing the SSL
server, you should exit the browser, which deletes the test certificate from the
browser's namespace.

For client authentication, a separate duke certificate is available in the appropriate
directories. The public key and certificate is also stored in the samplecacerts file.

Running SSLSocketClient

The SSLSocketClient.java program in JSSE Sample Code in the JDK 8 documentation
demonstrates how to create a client that uses an SSLSocket to send an HTTP request
and to get a response from an HTTPS server. The output of this program is the HTML
source for https://www.verisign.com/index.html.

You must not be behind a firewall to run this program as provided. If you run it from
behind a firewall, you will get an UnknownHostException because JSSE cannot find a
path through your firewall to www.verisign.com. To create an equivalent client that can

Chapter 8
Code Examples

8-135

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

run from behind a firewall, set up proxy tunneling as illustrated in the sample program
SSLSocketClientWithTunneling.

Running SSLSocketClientWithTunneling

The SSLSocketClientWithTunneling.java program in JSSE Sample Code in the JDK 8
documentation illustrates how to do proxy tunneling to access a secure web server
from behind a firewall. To run this program, you must set the following Java system
properties to the appropriate values:

java -Dhttps.proxyHost=webproxy
-Dhttps.proxyPort=ProxyPortNumber
SSLSocketClientWithTunneling

Note:

Proxy specifications with the -D options are optional. Replace webproxy with
the name of your proxy host and ProxyPortNumber with the appropriate port
number.

The program will return the HTML source file from https://www.verisign.com/
index.html.

Running SSLSocketClientWithClientAuth

The SSLSocketClientWithClientAuth.java program in JSSE Sample Code in
the JDK 8 documentation shows how to set up a key manager to do client
authentication if required by a server. This program also assumes that the client is not
outside a firewall. You can modify the program to connect from inside a firewall by
following the example in SSLSocketClientWithTunneling.

To run this program, you must specify three parameters: host, port, and requested file
path. To mirror the previous examples, you can run this program without client
authentication by setting the host to www.verisign.com, the port to 443, and the
requested file path to https://www.verisign.com/. The output when using these
parameters is the HTML for the website https://www.verisign.com/.

To run SSLSocketClientWithClientAuth to do client authentication, you must access a
server that requests client authentication. You can use the sample program
ClassFileServer as this server. This is described in the following sections.

Running ClassFileServer

The program referred to herein as ClassFileServer is made up of two files:
ClassFileServer.java and ClassServer.java in JSSE Sample Code in the
JDK 8 documentation.

To execute them, run ClassFileServer.class, which requires the following parameters:

• port can be any available unused port number, for example, you can use the
number 2001.

• docroot indicates the directory on the server that contains the file you want to
retrieve. For example, on Solaris, you can use /home/userid/ (where userid refers
to your particular UID), whereas on Microsoft Windows systems, you can use c:\.

• TLS is an optional parameter that indicates that the server is to use SSL or TLS.

Chapter 8
Code Examples

8-136

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

• true is an optional parameter that indicates that client authentication is required.
This parameter is only consulted if the TLS parameter is set.

Note:

The TLS and true parameters are optional. If you omit them, indicating that an
ordinary (not TLS) file server should be used, without authentication, then
nothing happens. This is because one side (the client) is trying to negotiate
with TLS, while the other (the server) is not, so they cannot communicate.

Note:

The server expects GET requests in the form GET /path_to_file.

Running SSLSocketClientWithClientAuth with ClassFileServer

You can use the sample programs SSLSocketClientWithClientAuth.java and
ClassFileServer in JSSE Sample Code in the JDK 8 documentation to set up
authenticated communication, where the client and server are authenticated to each
other. You can run both sample programs on different machines connected to the
same network, or you can run them both on one machine but from different terminal
windows or command prompt windows. To set up both the client and the server, do
the following:

1. Run the program ClassFileServer from one machine or terminal window.
See Running ClassFileServer.

2. Run the program SSLSocketClientWithClientAuth on another machine or terminal
window. SSLSocketClientWithClientAuth requires the following parameters:

• host is the host name of the machine that you are using to run
ClassFileServer.

• port is the same port that you specified for ClassFileServer.

• requestedfilepath indicates the path to the file that you want to retrieve from
the server. You must give this parameter as /filepath. Forward slashes are
required in the file path because it is used as part of a GET statement, which
requires forward slashes regardless of what type of operating system you are
running. The statement is formed as follows:

"GET " + requestedfilepath + " HTTP/1.0"

Note:

You can modify the other SSLClient* applications' GET commands to connect to
a local machine running ClassFileServer.

Sample Code Illustrating HTTPS Connections

There are two primary APIs for accessing secure communications through JSSE. One
way is through a socket-level API that can be used for arbitrary secure
communications, as illustrated by the SSLSocketClient, SSLSocketClientWithTunneling,

Chapter 8
Code Examples

8-137

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

and SSLSocketClientWithClientAuth (with and without ClassFileServer) sample
programs.

A second, and often simpler, way is through the standard Java URL API. You can
communicate securely with an SSL-enabled web server by using the HTTPS URL
protocol or scheme using the java.net.URL class.

Support for HTTPS URL schemes is implemented in many of the common browsers,
which allows access to secured communications without requiring the socket-level API
provided with JSSE.

An example URL is https://www.verisign.com.

The trust and key management for the HTTPS URL implementation is environment-
specific. The JSSE implementation provides an HTTPS URL implementation. To use a
different HTTPS protocol implementation, set the java.protocol.handler.pkgs. See
How to Specify a java.lang.System Property to the package name. See the
java.net.URL class documentation for details.

The samples that you can download with JSSE include two sample programs that
illustrate how to create an HTTPS connection. Both of these sample programs
(URLReader.java and URLReaderWithOptions.java) are in the samples/urls
directory.

Running URLReader

The URLReader.java program in JSSE Sample Code in the JDK 8 documentation
illustrates using the URL class to access a secure site. The output of this program is
the HTML source for https://www.verisign.com/. By default, the HTTPS protocol
implementation included with JSSE is used. To use a different implementation, set the
system property java.protocol.handler.pkgs value to be the name of the package
containing the implementation.

If you are running the sample code behind a firewall, then you must set the
https.proxyHost and https.proxyPort system properties. For example, to use the proxy
host "webproxy" on port 8080, you can use the following options for the java
command:

-Dhttps.proxyHost=webproxy
-Dhttps.proxyPort=8080

Alternatively, you can set the system properties within the source code with the
java.lang.System method setProperty(). For example, instead of using the command-
line options, you can include the following lines in your program:

System.setProperty("java.protocol.handler.pkgs", "com.ABC.myhttpsprotocol");
System.setProperty("https.proxyHost", "webproxy");
System.setProperty("https.proxyPort", "8080");

Running URLReaderWithOptions

The URLReaderWithOptions.java program in JSSE Sample Code in the JDK 8
documentation is essentially the same as the URLReader.java program, except that it
allows you to optionally input any or all of the following system properties as
arguments to the program when you run it:

• java.protocol.handler.pkgs

• https.proxyHost

Chapter 8
Code Examples

8-138

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

• https.proxyPort

• https.cipherSuites

To run URLReaderWithOptions, enter the following command:

java URLReaderWithOptions [-h proxyhost -p proxyport] [-k protocolhandlerpkgs] [-c
ciphersarray]

Note:

Multiple protocol handlers can be included in the protocolhandlerpkgs
argument as a list with items separated by vertical bars. Multiple SSL cipher
suite names can be included in the ciphersarray argument as a list with items
separated by commas. The possible cipher suite names are the same as
those returned by the SSLSocket.getSupportedCipherSuites() method. The suite
names are taken from the SSL and TLS protocol specifications.

You need a protocolhandlerpkgs argument only if you want to use an HTTPS protocol
handler implementation other than the default one provided by Oracle.

If you are running the sample code behind a firewall, then you must include arguments
for the proxy host and the proxy port. Additionally, you can include a list of cipher
suites to enable.

Here is an example of running URLReaderWithOptions and specifying the proxy host
"webproxy" on port 8080:

java URLReaderWithOptions -h webproxy -p 8080

Sample Code Illustrating a Secure RMI Connection

The sample code in the samples/rmi directory illustrates how to create a secure
Java Remote Method Invocation (RMI) connection. The sample code is basically a
"Hello World" example modified to install and use a custom RMI socket factory.

Sample Code Illustrating the Use of an SSLEngine

SSLEngine gives application developers flexibility when choosing I/O and compute
strategies. Rather than tie the SSL/TLS implementation to a specific I/O abstraction
(such as single-threaded SSLSockets), SSLEngine removes the I/O and compute
constraints from the SSL/TLS implementation.

As mentioned earlier, SSLEngine is an advanced API, and is not appropriate for casual
use. Some introductory sample code is provided here that helps illustrate its use. The
first demo removes most of the I/O and threading issues, and focuses on many of the
SSLEngine methods. The second demo is a more realistic example showing how
SSLEngine might be combined with Java NIO to create a rudimentary HTTP/HTTPS
server.

Running SSLEngineSimpleDemo

The SSLEngineSimpleDemo.java program in JSSE Sample Code in the JDK 8
documentation is a very simple application that focuses on the operation of the
SSLEngine while simplifying the I/O and threading issues. This application creates two
SSLEngine objects that exchange SSL/TLS messages via common ByteBuffer objects.
A single loop serially performs all of the engine operations and demonstrates how a

Chapter 8
Code Examples

8-139

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

secure connection is established (handshaking), how application data is transferred,
and how the engine is closed.

The SSLEngineResult provides a great deal of information about the current state of the
SSLEngine. This example does not examine all of the states. It simplifies the I/O and
threading issues to the point that this is not a good example for a production
environment; nonetheless, it is useful to demonstrate the overall function of the
SSLEngine.

Running the NIO-Based Server

To fully exploit the flexibility provided by SSLEngine, you must first understand
complementary APIs, such as I/O and threading models.

An I/O model that large-scale application developers find of use is the NIO
SocketChannel. NIO was introduced in part to solve some of the scaling problem
inherent in the java.net.Socket API. SocketChannel has many different modes of
operation including:

• Blocking

• Nonblocking

• Nonblocking with selectors

Sample code for a basic HTTP server is provided that not only demonstrates many of
the new NIO APIs, but also shows how SSLEngine can be employed to create a secure
HTTPS server. The server is not production quality, but does show many of these new
APIs in action.

Inside the samples directory is a README.txt file that introduces the server, explains
how to build and configure the server, and provides a brief overview of the code
layout. The files of most interest for SSLEngine users are ChannelIO.java and
ChannelIOSecure.java.

Note:

The server example discussed in this section is included in the JDK. You can
find the code bundled in the jdk-home/samples/nio/server directory.

Creating a Keystore to Use with JSSE
The procedure as to how you can use the keytool utility to create a simple PKCS12
keystore suitable for use with JSSE.

First you make a keyEntry (with public and private keys) in the keystore, and then you
make a corresponding trustedCertEntry (public keys only) in a truststore. For client
authentication, you follow a similar process for the client's certificates.

Note:

Storing trust anchors and secret keys in PKCS12 is supported since JDK 8.

Chapter 8
Code Examples

8-140

Note:

It is beyond the scope of this example to explain each step in detail. See
keytool.

User input is shown in bold.

1. Create a new keystore and self-signed certificate with corresponding public and
private keys.

 % keytool -genkeypair -alias duke -keyalg RSA -validity 7 -keystore keystore

 Enter keystore password: <password>
 What is your first and last name?
 [Unknown]: Duke
 What is the name of your organizational unit?
 [Unknown]: Java Software
 What is the name of your organization?
 [Unknown]: Oracle, Inc.
 What is the name of your City or Locality?
 [Unknown]: Palo Alto
 What is the name of your State or Province?
 [Unknown]: CA
 What is the two-letter country code for this unit?
 [Unknown]: US
 Is CN=Duke, OU=Java Software, O="Oracle, Inc.",
 L=Palo Alto, ST=CA, C=US correct?
 [no]: yes

2. Examine the keystore. Notice that the entry type is PrivatekeyEntry, which means
that this entry has a private key associated with it).

 % keytool -list -v -keystore keystore

 Enter keystore password: <password>

 Keystore type: PKCS12
 Keystore provider: SUN

 Your keystore contains 1 entry

 Alias name: duke
 Creation date: Jul 25, 2016
 Entry type: PrivateKeyEntry
 Certificate chain length: 1
 Certificate[1]:
 Owner: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto, ST=CA, C=US
 Issuer: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto, ST=CA, C=US
 Serial number: 210cccfc
 Valid from: Mon Jul 25 10:33:27 IST 2016 until: Mon Aug 01 10:33:27 IST 2016
 Certificate fingerprints:
 SHA1: 80:E5:8A:47:7E:4F:5A:70:83:97:DD:F4:DA:29:3D:15:6B:2A:45:1F
 SHA256: ED:3C:70:68:4E:86:35:9C:63:CC:B9:59:35:58:94:1F:7E:B8:B0:EE:D2:
 4B:9D:80:31:67:8A:D4:B4:7A:B5:12
 Signature algorithm name: SHA256withRSA
 Subject Public Key Algorithm: RSA (2048)
 Version: 3

Chapter 8
Code Examples

8-141

 Extensions:

 #1: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 7F C9 95 48 42 8D 68 91 BA 1E E6 5C 2C 6B FF 75 ...HB.h....\,k.u
 0010: 5F 19 78 43 _.xC
]
]

3. Export and examine the self-signed certificate.

 % keytool -export -alias duke -keystore keystore -rfc -file duke.cer
 Enter keystore password: <password>
 Certificate stored in file <duke.cer>
 % cat duke.cer
 -----BEGIN CERTIFICATE-----
 MIIDdzCCAl+gAwIBAgIEIQzM/DANBgkqhkiG9w0BAQsFADBsMQswCQYDVQQGEwJV
 UzELMAkGA1UECBMCQ0ExEjAQBgNVBAcTCVBhbG8gQWx0bzEVMBMGA1UEChMMT3Jh
 Y2xlLCBJbmMuMRYwFAYDVQQLEw1KYXZhIFNvZnR3YXJlMQ0wCwYDVQQDEwREdWtl
 MB4XDTE2MDcyNTA1MDMyN1oXDTE2MDgwMTA1MDMyN1owbDELMAkGA1UEBhMCVVMx
 CzAJBgNVBAgTAkNBMRIwEAYDVQQHEwlQYWxvIEFsdG8xFTATBgNVBAoTDE9yYWNs
 ZSwgSW5jLjEWMBQGA1UECxMNSmF2YSBTb2Z0d2FyZTENMAsGA1UEAxMERHVrZTCC
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJ7+Yeu6HDZgWwkGlG4iKH9w
 vGKrxXVR57FaFyheMevrgj1ovVnQVFhfdMvjPkjWmpqLg6rfTqU4bKbtoMWV6+Rn
 uQrCw2w9xNC93hX9PxRa20UKrSRDKnUSvi1wjlaxfj0KUKuMwbbY9S8x/naYGeTL
 lwbHiiMvkoFkP2kzhVgeqHjIwSz4HRN8vWHCwgIDFWX/ZlS+LbvB4TSZkS0ZcQUV
 vJWTocOd8RB90W3bkibWkWq166XYGE1Nq1L4WIhrVJwbav6ual69yJsEpVcshVkx
 E1WKzJg7dGb03to4agbReb6+aoCUwb2vNUudNWasSrxoEFArVFGD/ZkPT0esfqEC
 AwEAAaMhMB8wHQYDVR0OBBYEFH/JlUhCjWiRuh7mXCxr/3VfGXhDMA0GCSqGSIb3
 DQEBCwUAA4IBAQAmcTm2ahsIJLayajsvm8yPzQsHA7kIwWfPPHCoHmNbynG67oHB
 fleaNvrgm/raTT3TrqQkg0525qI6Cqaoyy8JA2fAp3i+hmyoGHaIlo14bKazaiPS
 RCCqk0J8vwY3CY9nVal1XlHJMEcYV7X1sxKbuAKFoAJ29E/p6ie0JdHtQe31M7X9
 FNLYzt8EpJYUtWo13B9Oufz/Guuex9PQ7aC93rbO32MxtnnCGMxQHlaHLLPygc/x
 cffGz5Xe5s+NEm78CY7thgN+drI7icBYmv4navsnr2OQaD3AfnJ4WYSQyyUUCPxN
 zuk+B0fbLn7PCCcQspmqfgzIpgbEM9M1/yav
 -----END CERTIFICATE-----

Alternatively, you could generate a Certificate Signing Request (CSR) with -
certreq and send that to a Certificate Authority (CA) for signing, but that is beyond
the scope of this example.

4. Import the certificate into a new truststore.

 % keytool -import -alias dukecert -file duke.cer -keystore truststore
 Enter keystore password: <password>
 Re-enter new password:
 Owner: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto, ST=CA, C=US
 Issuer: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto, ST=CA, C=US
 Serial number: 210cccfc
 Valid from: Mon Jul 25 10:33:27 IST 2016 until: Mon Aug 01 10:33:27 IST 2016
 Certificate fingerprints:
 SHA1: 80:E5:8A:47:7E:4F:5A:70:83:97:DD:F4:DA:29:3D:15:6B:2A:45:1F
 SHA256: ED:3C:70:68:4E:86:35:9C:63:CC:B9:59:35:58:94:1F:7E:B8:B0:EE:D2:
 4B:9D:80:31:67:8A:D4:B4:7A:B5:12
 Signature algorithm name: SHA256withRSA
 Subject Public Key Algorithm: RSA (2048)
 Version: 3

Chapter 8
Code Examples

8-142

 Extensions:

 #1: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 7F C9 95 48 42 8D 68 91 BA 1E E6 5C 2C 6B FF 75 ...HB.h....\,k.u
 0010: 5F 19 78 43 _.xC
]
]

 Trust this certificate? [no]: yes
 Certificate was added to keystore

5. Examine the truststore. Note that the entry type is trustedCertEntry, which means
that a private key is not available for this entry. It also means that this file is not
suitable as a keystore of the KeyManager.

 % keytool -list -v -keystore truststore
 Enter keystore password: <password>

 Keystore type: PKCS12
 Keystore provider: SUN

 Your keystore contains 1 entry

 Alias name: dukecert
 Creation date: Jul 25, 2016
 Entry type: trustedCertEntry

 Owner: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto, ST=CA, C=US
 Issuer: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto, ST=CA, C=US
 Serial number: 210cccfc
 Valid from: Mon Jul 25 10:33:27 IST 2016 until: Mon Aug 01 10:33:27 IST 2016
 Certificate fingerprints:
 SHA1: 80:E5:8A:47:7E:4F:5A:70:83:97:DD:F4:DA:29:3D:15:6B:2A:45:1F
 SHA256: ED:3C:70:68:4E:86:35:9C:63:CC:B9:59:35:58:94:1F:7E:B8:B0:EE:D2:
 4B:9D:80:31:67:8A:D4:B4:7A:B5:12
 Signature algorithm name: SHA256withRSA
 Subject Public Key Algorithm: RSA (2048)
 Version: 3

 Extensions:

 #1: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 7F C9 95 48 42 8D 68 91 BA 1E E6 5C 2C 6B FF 75 ...HB.h....\,k.u
 0010: 5F 19 78 43 _.xC
]
]

6. Now run your applications with the appropriate keystores. Because this example
assumes that the default X509KeyManager and X509TrustManager are used, you select
the keystores using the system properties described in Customizing JSSE.

Chapter 8
Code Examples

8-143

 % java -Djavax.net.ssl.keyStore=keystore -
Djavax.net.ssl.keyStorePassword=password Server

 % java -Djavax.net.ssl.trustStore=truststore -
Djavax.net.ssl.trustStorePassword=trustword Client

Note:

This example authenticated the server only. For client authentication, provide
a similar keystore for the client's keys and an appropriate truststore for the
server.

Using the Server Name Indication (SNI) Extension

These examples illustrate how you can use the Server Name Indication (SNI)
Extension for client-side and server-side applications, and how it can be applied to a
virtual infrastructure.

For all examples in this section, to apply the parameters after you set them, call the
setSSLParameters(SSLParameters) method on the corresponding SSLSocket, SSLEngine, or
SSLServerSocket object.

Typical Client-Side Usage Examples

The following is a list of use cases that require understanding of the SNI extension for
developing a client application:

• Case 1. The client wants to access www.example.com.

Set the host name explicitly:

 SNIHostName serverName = new SNIHostName("www.example.com");
 sslParameters.setServerNames(Collections.singletonList(serverName));

The client should always specify the host name explicitly.

• Case 2. The client does not want to use SNI because the server does not support
it.

Disable SNI with an empty server name list:

 sslParameters.setServerNames(Collections.emptyList());

• Case 3. The client wants to access URL https://www.example.com.

Oracle providers will set the host name in the SNI extension by default, but third-
party providers may not support the default server name indication. To keep your
application provider-independent, always set the host name explicitly.

• Case 4. The client wants to switch a socket from server mode to client mode.

First switch the mode with the following method:
sslSocket.setUseClientMode(true). Then reset the server name indication
parameters on the socket.

Chapter 8
Code Examples

8-144

Typical Server-Side Usage Examples

The following is a list of use cases that require understanding of the SNI extension for
developing a server application:

• Case 1. The server wants to accept all server name indication types.

If you do not have any code dealing with the SNI extension, then the server
ignores all server name indication types.

• Case 2. The server wants to deny all server name indications of type host_name.

Set an invalid server name pattern for host_name:

 SNIMatcher matcher = SNIHostName.createSNIMatcher("");
 Collection<SNIMatcher> matchers = new ArrayList<>(1);
 matchers.add(matcher);
 sslParameters.setSNIMatchers(matchers);

Another way is to create an SNIMatcher subclass with a matches() method that
always returns false:

 class DenialSNIMatcher extends SNIMatcher {
 DenialSNIMatcher() {
 super(StandardConstants.SNI_HOST_NAME);
 }

 @Override
 public boolean matches(SNIServerName serverName) {
 return false;
 }
 }

 SNIMatcher matcher = new DenialSNIMatcher();
 Collection<SNIMatcher> matchers = new ArrayList<>(1);
 matchers.add(matcher);
 sslParameters.setSNIMatchers(matchers);

• Case 3. The server wants to accept connections to any host names in the
example.com domain.

Set the recognizable server name for host_name as a pattern that includes all
*.example.com addresses:

 SNIMatcher matcher = SNIHostName.createSNIMatcher("(.*\\.)*example\\.com");
 Collection<SNIMatcher> matchers = new ArrayList<>(1);
 matchers.add(matcher);
 sslParameters.setSNIMatchers(matchers);

• Case 4. The server wants to switch a socket from client mode to server mode.

First switch the mode with the following method:
sslSocket.setUseClientMode(false). Then reset the server name indication
parameters on the socket.

Working with Virtual Infrastructures
This section describes how to use the Server Name Indication (SNI) extension from
within a virtual infrastructure. It illustrates how to create a parser for ClientHello
messages from a socket, provides examples of virtual server dispatchers using

Chapter 8
Code Examples

8-145

SSLSocket and SSLEngine, describes what happens when the SNI extension is not
available, and demonstrates how to create a failover SSLContext.

Preparing the ClientHello Parser

Applications must implement an API to parse the ClientHello messages from a socket.
The following examples illustrate the SSLCapabilities and SSLExplorer classes that can
perform these functions.

SSLSocketClient.java encapsulates the SSL/TLS/DTLS security capabilities during
handshaking (that is, the list of cipher suites to be accepted in an SSL/TLS/DTLS
handshake, the record version, the hello version, and the server name indication). It
can be retrieved by exploring the network data of an SSL/TLS/DTLS connection via
the SSLExplorer.explore() method.

SSLExplorer.java explores the initial ClientHello message from a TLS client, but it
does not initiate handshaking or consume network data. The SSLExplorer.explore()
method parses the ClientHello message, and retrieves the security parameters into
SSLCapabilities. The method must be called before handshaking occurs on any TLS
connections.

Virtual Server Dispatcher Based on SSLSocket

This section describes the procedure for using a virtual server dispatcher based on
SSLSocket.

1. Register the server name handler.

At this step, the application may create different SSLContext objects for different
server name indications, or link a certain server name indication to a specified
virtual machine or distributed system.

For example, if the server name is www.example.org, then the registered server
name handler may be for a local virtual hosting web service. The local virtual
hosting web service will use the specified SSLContext. If the server name is
www.example.com, then the registered server name handler may be for a virtual
machine hosting on 10.0.0.36. The handler may map this connection to the virtual
machine.

2. Create a ServerSocket and accept the new connection.

ServerSocket serverSocket = new ServerSocket(serverPort);
Socket socket = serverSocket.accept();

3. Read and buffer bytes from the socket input stream, and then explore the
buffered bytes.

InputStream ins = socket.getInputStream();
byte[] buffer = new byte[0xFF];
int position = 0;
SSLCapabilities capabilities = null;

// Read the header of TLS record
while (position < SSLExplorer.RECORD_HEADER_SIZE) {
 int count = SSLExplorer.RECORD_HEADER_SIZE - position;
 int n = ins.read(buffer, position, count);
 if (n < 0) {
 throw new Exception("unexpected end of stream!");
 }
 position += n;
}

Chapter 8
Code Examples

8-146

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/sockets/client/SSLSocketClient.java
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/sni/SSLExplorer.java

// Get the required size to explore the SSL capabilities
int recordLength = SSLExplorer.getRequiredSize(buffer, 0, position);
if (buffer.length < recordLength) {
 buffer = Arrays.copyOf(buffer, recordLength);
}

while (position < recordLength) {
 int count = recordLength - position;
 int n = ins.read(buffer, position, count);
 if (n < 0) {
 throw new Exception("unexpected end of stream!");
 }
 position += n;
}

// Explore
capabilities = SSLExplorer.explore(buffer, 0, recordLength);
if (capabilities != null) {
 System.out.println("Record version: " + capabilities.getRecordVersion());
 System.out.println("Hello version: " + capabilities.getHelloVersion());
}

4. Get the requested server name from the explored capabilities.

List<SNIServerName> serverNames = capabilities.getServerNames();

5. Look for the registered server name handler for this server name indication.

If the service of the host name is resident in a virtual machine or another
distributed system, then the application must forward the connection to the
destination. The application will need to read and write the raw internet data,
rather then the SSL application from the socket stream.

Socket destinationSocket = new Socket(serverName, 443);
// Forward buffered bytes and network data from the current socket to the
destinationSocket.

If the service of the host name is resident in the same process, and the host name
service can use the SSLSocket directly, then the application will need to set the
SSLSocket instance to the server:

// Get service context from registered handler
// or create the context
SSLContext serviceContext = ...

SSLSocketFactory serviceSocketFac = serviceContext.getSSLSocketFactory();

// wrap the buffered bytes
ByteArrayInputStream bais = new ByteArrayInputStream(buffer, 0, position);
SSLSocket serviceSocket = (SSLSocket)serviceSocketFac.createSocket(socket, bais,
true);

// Now the service can use serviceSocket as usual.

Virtual Server Dispatcher Based on SSLEngine

This section describes the procedure for using a virtual server dispatcher based on
SSLEngine.

1. Register the server name handler.

Chapter 8
Code Examples

8-147

At this step, the application may create different SSLContext objects for different
server name indications, or link a certain server name indication to a specified
virtual machine or distributed system.

For example, if the server name is www.example.org, then the registered server
name handler may be for a local virtual hosting web service. The local virtual
hosting web service will use the specified SSLContext. If the server name is
www.example.com, then the registered server name handler may be for a virtual
machine hosting on 10.0.0.36. The handler may map this connection to the virtual
machine.

2. Create a ServerSocket or ServerSocketChannel and accept the new connection.

ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.bind(...);
...
SocketChannel socketChannel = serverSocketChannel.accept();

3. Read and buffer bytes from the socket input stream, and then explore the
buffered bytes.

ByteBuffer buffer = ByteBuffer.allocate(0xFF);
SSLCapabilities capabilities = null;
while (true) {
 // ensure the capacity
 if (buffer.remaining() == 0) {
 ByteBuffer oldBuffer = buffer;
 buffer = ByteBuffer.allocate(buffer.capacity() + 0xFF);
 buffer.put(oldBuffer);
 }

 int n = sc.read(buffer);
 if (n < 0) {
 throw new Exception("unexpected end of stream!");
 }

 int position = buffer.position();
 buffer.flip();
 capabilities = explorer.explore(buffer);
 buffer.rewind();
 buffer.position(position);
 buffer.limit(buffer.capacity());
 if (capabilities != null) {
 System.out.println("Record version: " +
 capabilities.getRecordVersion());
 System.out.println("Hello version: " +
 capabilities.getHelloVersion());
 break;
 }
}

buffer.flip(); // reset the buffer position and limitation

4. Get the requested server name from the explored capabilities.

List<SNIServerName> serverNames = capabilities.getServerNames();

5. Look for the registered server name handler for this server name indication.

If the service of the host name is resident in a virtual machine or another
distributed system, then the application must forward the connection to the
destination. The application will need to read and write the raw internet data,
rather then the SSL application from the socket stream.

Chapter 8
Code Examples

8-148

Socket destinationSocket = new Socket(serverName, 443);
// Forward buffered bytes and network data from the current socket to the
destinationSocket.

If the service of the host name is resident in the same process, and the host name
service can use the SSLEngine directly, then the application will simply feed the net
data to the SSLEngine instance:

// Get service context from registered handler
// or create the context
SSLContext serviceContext = ...

SSLEngine serviceEngine = serviceContext.createSSLEngine();
// Now the service can use the buffered bytes and other byte buffer as usual.

No SNI Extension Available

If there is no server name indication in a ClientHello message, then there is no way to
select the proper service according to SNI. For such cases, the application may need
to specify a default service, so that the connection can be delegated to it if there is no
server name indication.

Failover SSLContext

The SSLExplorer.explore() method does not check the validity of SSL/TLS/DTLS
contents. If the record format does not comply with SSL/TLS/DTLS specification, or
the explore() method is invoked after handshaking has started, then the method may
throw an IOException and be unable to produce network data. In such cases, handle
the exception thrown by SSLExplorer.explore() by using a failover SSLContext, which is
not used to negotiate an SSL/TLS/DTLS connection, but to close the connection with
the proper alert message. The following example illustrates a failover SSLContext. You
can find an example of the DenialSNIMatcher class in Case 2 in Typical Server-Side
Usage Examples.

byte[] buffer = ... // buffered network data
boolean failed = true; // SSLExplorer.explore() throws an exception

SSLContext context = SSLContext.getInstance("TLS");
// the failover SSLContext

context.init(null, null, null);
SSLSocketFactory sslsf = context.getSocketFactory();
ByteArrayInputStream bais = new ByteArrayInputStream(buffer, 0, position);
SSLSocket sslSocket = (SSLSocket)sslsf.createSocket(socket, bais, true);

SNIMatcher matcher = new DenialSNIMatcher();
Collection<SNIMatcher> matchers = new ArrayList<>(1);
matchers.add(matcher);
SSLParameters params = sslSocket.getSSLParameters();
params.setSNIMatchers(matchers); // no recognizable server name
sslSocket.setSSLParameters(params);

try {
 InputStream sslIS = sslSocket.getInputStream();
 sslIS.read();
} catch (Exception e) {
 System.out.println("Server exception " + e);
} finally {
 sslSocket.close();
}

Chapter 8
Code Examples

8-149

Standard Names
The JDK Security API requires and uses a set of standard names for algorithms,
certificates and keystore types. See Java Security Standard Algorithm Names. Find
specific provider information in JDK Providers Documentation.

Provider Pluggability
JSSE is fully pluggable and does not restrict the use of third-party JSSE providers in
any way.

JSSE Cipher Suite Parameters
Table 8-14 contains a list of additional JSSE cipher suite names related parameters.
See Java Security Standard Algorithm Names.

Table 8-14 JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

SSL_NULL_WITH_NULL_NULL

IANA: TLS_NULL_WITH_NULL_NULL

K_NULL B_NULL M_NULL

SSL_RSA_WITH_NULL_MD5

IANA: TLS_RSA_WITH_NULL_MD5

RSA B_NULL MD5

SSL_RSA_WITH_NULL_SHA

IANA: TLS_RSA_WITH_NULL_SHA

RSA B_NULL SHA-1

SSL_RSA_EXPORT_WITH_RC4_40_MD5

IANA:
TLS_RSA_EXPORT_WITH_RC4_40_MD5

RSA_EXPORT RC4_40 MD5

SSL_RSA_WITH_RC4_128_MD5

IANA: TLS_RSA_WITH_RC4_128_MD5

RSA RC4 MD5

SSL_RSA_WITH_RC4_128_SHA

IANA: TLS_RSA_WITH_RC4_128_SHA

RSA RC4 SHA-1

SSL_RSA_EXPORT_WITH_RC2_CBC_40_
MD5

IANA:
TLS_RSA_EXPORT_WITH_RC2_CBC_40_
MD5

RSA_EXPORT RC2_CBC_40 MD5

SSL_RSA_WITH_IDEA_CBC_SHA

IANA: TLS_RSA_WITH_IDEA_CBC_SHA

RSA IDEA_CBC SHA-1

SSL_RSA_EXPORT_WITH_DES40_CBC_S
HA

IANA:
TLS_RSA_EXPORT_WITH_DES40_CBC_S
HA

RSA_EXPORT DES40_CBC SHA-1

Chapter 8
Standard Names

8-150

https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html
https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

SSL_RSA_WITH_DES_CBC_SHA

IANA: TLS_RSA_WITH_DES_CBC_SHA

RSA DES_CBC SHA-1

SSL_RSA_WITH_3DES_EDE_CBC_SHA

IANA:
TLS_RSA_WITH_3DES_EDE_CBC_SHA

RSA 3DES_EDE_CBC SHA-1

SSL_DH_DSS_EXPORT_WITH_DES40_C
BC_SHA

IANA:
TLS_DH_DSS_EXPORT_WITH_DES40_CB
C_SHA

DH_DSS DES40_CBC SHA-1

SSL_DH_DSS_WITH_DES_CBC_SHA

IANA:
TLS_DH_DSS_WITH_DES_CBC_SHA

DH_DSS DES_CBC SHA-1

SSL_DH_DSS_WITH_3DES_EDE_CBC_S
HA

IANA:
TLS_DH_DSS_WITH_3DES_EDE_CBC_S
HA

DH_DSS 3DES_EDE_CBC SHA-1

SSL_DH_RSA_EXPORT_WITH_DES40_C
BC_SHA

IANA:
TLS_DH_RSA_EXPORT_WITH_DES40_CB
C_SHA

DH_RSA_EXPORT DES40_CBC SHA-1

SSL_DH_RSA_WITH_DES_CBC_SHA

IANA:
TLS_DH_RSA_WITH_DES_CBC_SHA

DH_RSA DES_CBC SHA-1

SSL_DH_RSA_WITH_3DES_EDE_CBC_S
HA

IANA:
TLS_DH_RSA_WITH_3DES_EDE_CBC_S
HA

DH_RSA 3DES_EDE_CBC SHA-1

SSL_DHE_DSS_EXPORT_WITH_DES40_
CBC_SHA

IANA:
TLS_DHE_DSS_EXPORT_WITH_DES40_C
BC_SHA

DHE_DSS_EXPORT DES40_CBC SHA-1

SSL_DHE_DSS_WITH_DES_CBC_SHA

IANA:
TLS_DHE_DSS_WITH_DES_CBC_SHA

DHE_DSS DES_CBC SHA-1

SSL_DHE_DSS_WITH_3DES_EDE_CBC_
SHA

IANA:
TLS_DHE_DSS_WITH_3DES_EDE_CBC_S
HA

DHE_DSS 3DES_EDE_CBC SHA-1

Chapter 8
JSSE Cipher Suite Parameters

8-151

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

SSL_DHE_RSA_EXPORT_WITH_DES40_
CBC_SHA

IANA:
TLS_DHE_RSA_EXPORT_WITH_DES40_C
BC_SHA

DHE_RSA_EXPORT DES40_CBC SHA-1

SSL_DHE_RSA_WITH_DES_CBC_SHA

IANA:
TLS_DHE_RSA_WITH_DES_CBC_SHA

DHE_RSA DES_CBC SHA-1

SSL_DHE_RSA_WITH_3DES_EDE_CBC_
SHA

IANA:
TLS_DHE_RSA_WITH_3DES_EDE_CBC_S
HA

DHE_RSA 3DES_EDE_CBC SHA-1

SSL_DH_anon_EXPORT_WITH_RC4_40_
MD5

IANA:
TLS_DH_anon_EXPORT_WITH_RC4_40_
MD5

DH_anon_EXPORT RC4_40 MD5

SSL_DH_anon_WITH_RC4_128_MD5

IANA:
TLS_DH_anon_WITH_RC4_128_MD5

DH_anon RC4 MD5

SSL_DH_anon_EXPORT_WITH_DES40_C
BC_SHA

IANA:
TLS_DH_anon_EXPORT_WITH_DES40_C
BC_SHA

DH_anon DES40_CBC SHA-1

SSL_DH_anon_WITH_DES_CBC_SHA

IANA:
TLS_DH_anon_WITH_DES_CBC_SHA

DH_anon DES_CBC SHA-1

SSL_DH_anon_WITH_3DES_EDE_CBC_S
HA

IANA:
TLS_DH_anon_WITH_3DES_EDE_CBC_S
HA

DH_anon 3DES_EDE_CBC SHA-1

TLS_KRB5_WITH_DES_CBC_SHA KRB5 DES_CBC SHA-1

TLS_KRB5_WITH_3DES_EDE_CBC_SHA KRB5 3DES_EDE_CBC SHA-1

TLS_KRB5_WITH_RC4_128_SHA KRB5 RC4 SHA-1

TLS_KRB5_WITH_IDEA_CBC_SHA KRB5 IDEA_CBC SHA-1

TLS_KRB5_WITH_DES_CBC_MD5 KRB5 DES_CBC MD5

TLS_KRB5_WITH_3DES_EDE_CBC_MD5 KRB5 3DES_EDE_CBC MD5

TLS_KRB5_WITH_RC4_128_MD5 KRB5 RC4 MD5

TLS_KRB5_WITH_IDEA_CBC_MD5 KRB5 IDEA_CBC MD5

Chapter 8
JSSE Cipher Suite Parameters

8-152

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_KRB5_EXPORT_WITH_DES_CBC_40
_SHA

KRB5_EXPORT DES_CBC SHA-1

TLS_KRB5_EXPORT_WITH_RC2_CBC_40
_SHA

KRB5_EXPORT RC2_CBC_40 SHA-1

TLS_KRB5_EXPORT_WITH_RC4_40_SHA KRB5_EXPORT RC4_40 SHA-1

TLS_KRB5_EXPORT_WITH_DES_CBC_40
_MD5

KRB5_EXPORT DES_CBC MD5

TLS_KRB5_EXPORT_WITH_RC2_CBC_40
_MD5

KRB5_EXPORT RC2_CBC_40 MD5

TLS_KRB5_EXPORT_WITH_RC4_40_MD5 KRB5_EXPORT RC4_40 MD5

TLS_PSK_WITH_NULL_SHA PSK B_NULL SHA-1

TLS_DHE_PSK_WITH_NULL_SHA DHE_PSK B_NULL SHA-1

TLS_RSA_PSK_WITH_NULL_SHA RSA_PSK B_NULL SHA-1

TLS_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA-1

TLS_DH_DSS_WITH_AES_128_CBC_SHA DH_DSS AES_128_CBC SHA-1

TLS_DH_RSA_WITH_AES_128_CBC_SHA DH_RSA AES_128_CBC SHA-1

TLS_DHE_DSS_WITH_AES_128_CBC_SH
A

DHE_DSS AES_128_CBC SHA-1

TLS_DHE_RSA_WITH_AES_128_CBC_SH
A

DHE_RSA AES_128_CBC SHA-1

TLS_DH_anon_WITH_AES_128_CBC_SHA DH_anon AES_128_CBC SHA-1

TLS_RSA_WITH_AES_256_CBC_SHA RSA AES_256_CBC SHA-1

TLS_DH_DSS_WITH_AES_256_CBC_SHA DH_DSS AES_256_CBC SHA-1

TLS_DH_RSA_WITH_AES_256_CBC_SHA DH_RSA AES_256_CBC SHA-1

TLS_DHE_DSS_WITH_AES_256_CBC_SH
A

DHE_DSS AES_256_CBC SHA-1

TLS_DHE_RSA_WITH_AES_256_CBC_SH
A

DHE_RSA AES_256_CBC SHA-1

TLS_DH_anon_WITH_AES_256_CBC_SHA DH_anon AES_256_CBC SHA-1

TLS_RSA_WITH_NULL_SHA256 RSA B_NULL SHA-1

TLS_RSA_WITH_AES_128_CBC_SHA256 RSA AES_128_CBC SHA-256

TLS_RSA_WITH_AES_256_CBC_SHA256 RSA AES_256_CBC SHA-256

TLS_DH_DSS_WITH_AES_128_CBC_SHA
256

DH_DSS AES_128_CBC SHA-256

TLS_DH_RSA_WITH_AES_128_CBC_SHA
256

DH_RSA AES_128_CBC SHA-256

TLS_DHE_DSS_WITH_AES_128_CBC_SH
A256

DHE_DSS AES_128_CBC SHA-256

Chapter 8
JSSE Cipher Suite Parameters

8-153

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_RSA_WITH_CAMELLIA_128_CBC_SH
A

RSA CAMELLIA_128_CB
C

SHA-1

TLS_DH_DSS_WITH_CAMELLIA_128_CB
C_SHA

DH_DSS CAMELLIA_128_CB
C

SHA-1

TLS_DH_RSA_WITH_CAMELLIA_128_CB
C_SHA

DH_RSA CAMELLIA_128_CB
C

SHA-1

TLS_DHE_DSS_WITH_CAMELLIA_128_CB
C_SHA

DHE_DSS CAMELLIA_128_CB
C

SHA-1

TLS_DHE_RSA_WITH_CAMELLIA_128_CB
C_SHA

DHE_RSA CAMELLIA_128_CB
C

SHA-1

TLS_DH_anon_WITH_CAMELLIA_128_CB
C_SHA

DH_anon CAMELLIA_128_CB
C

SHA-1

TLS_DHE_RSA_WITH_AES_128_CBC_SH
A256

DHE_RSA AES_128_CBC SHA-256

TLS_DH_DSS_WITH_AES_256_CBC_SHA
256

DH_DSS AES_256_CBC SHA-256

TLS_DH_RSA_WITH_AES_256_CBC_SHA
256

DH_RSA AES_256_CBC SHA-256

TLS_DHE_DSS_WITH_AES_256_CBC_SH
A256

DHE_DSS AES_256_CBC SHA-256

TLS_DHE_RSA_WITH_AES_256_CBC_SH
A256

DHE_RSA AES_256_CBC SHA-256

TLS_DH_anon_WITH_AES_128_CBC_SHA
256

DH_anon AES_128_CBC SHA-256

TLS_DH_anon_WITH_AES_256_CBC_SHA
256

DH_anon AES_256_CBC SHA-256

TLS_RSA_WITH_CAMELLIA_256_CBC_SH
A

RSA CAMELLIA_256_CB
C

SHA-1

TLS_DH_DSS_WITH_CAMELLIA_256_CB
C_SHA

DH_DSS CAMELLIA_256_CB
C

SHA-1

TLS_DH_RSA_WITH_CAMELLIA_256_CB
C_SHA

DH_RSA CAMELLIA_256_CB
C

SHA-1

TLS_DHE_DSS_WITH_CAMELLIA_256_CB
C_SHA

DHE_DSS CAMELLIA_256_CB
C

SHA-1

TLS_DHE_RSA_WITH_CAMELLIA_256_CB
C_SHA

DHE_RSA CAMELLIA_256_CB
C

SHA-1

TLS_DH_anon_WITH_CAMELLIA_256_CB
C_SHA

DH_anon CAMELLIA_256_CB
C

SHA-1

TLS_PSK_WITH_RC4_128_SHA PSK RC4 SHA-1

TLS_PSK_WITH_3DES_EDE_CBC_SHA PSK 3DES_EDE_CBC SHA-1

TLS_PSK_WITH_AES_128_CBC_SHA PSK AES_128_CBC SHA-1

TLS_PSK_WITH_AES_256_CBC_SHA PSK AES_256_CBC SHA-1

Chapter 8
JSSE Cipher Suite Parameters

8-154

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_DHE_PSK_WITH_RC4_128_SHA DHE_PSK RC4 SHA-1

TLS_DHE_PSK_WITH_3DES_EDE_CBC_S
HA

DHE_PSK 3DES_EDE_CBC SHA-1

TLS_DHE_PSK_WITH_AES_128_CBC_SH
A

DHE_PSK AES_128_CBC SHA-1

TLS_DHE_PSK_WITH_AES_256_CBC_SH
A

DHE_PSK AES_256_CBC SHA-1

TLS_RSA_PSK_WITH_RC4_128_SHA RSA_PSK RC4 SHA-1

TLS_RSA_PSK_WITH_3DES_EDE_CBC_S
HA

RSA_PSK 3DES_EDE_CBC SHA-1

TLS_RSA_PSK_WITH_AES_128_CBC_SH
A

RSA_PSK AES_128_CBC SHA-1

TLS_RSA_PSK_WITH_AES_256_CBC_SH
A

RSA_PSK AES_256_CBC SHA-1

TLS_RSA_WITH_SEED_CBC_SHA RSA SEED_CBC SHA-1

TLS_DH_DSS_WITH_SEED_CBC_SHA DH_DSS SEED_CBC SHA-1

TLS_DH_RSA_WITH_SEED_CBC_SHA DH_RSA SEED_CBC SHA-1

TLS_DHE_DSS_WITH_SEED_CBC_SHA DHE_DSS SEED_CBC SHA-1

TLS_DHE_RSA_WITH_SEED_CBC_SHA DHE_RSA SEED_CBC SHA-1

TLS_DH_anon_WITH_SEED_CBC_SHA DH_anon SEED_CBC SHA-1

TLS_RSA_WITH_AES_128_GCM_SHA256 RSA AES_128_GCM SHA-256

TLS_RSA_WITH_AES_256_GCM_SHA384 RSA AES_256_GCM SHA-384

TLS_DHE_RSA_WITH_AES_128_GCM_SH
A256

DHE_RSA AES_128_GCM SHA-256

TLS_DHE_RSA_WITH_AES_256_GCM_SH
A384

DHE_RSA AES_256_GCM SHA-384

TLS_DH_RSA_WITH_AES_128_GCM_SHA
256

DH_RSA AES_128_GCM SHA-256

TLS_DH_RSA_WITH_AES_256_GCM_SHA
384

DH_RSA AES_256_GCM SHA-384

TLS_DHE_DSS_WITH_AES_128_GCM_SH
A256

DHE_DSS AES_128_GCM SHA-256

TLS_DHE_DSS_WITH_AES_256_GCM_SH
A384

DHE_DSS AES_256_GCM SHA-384

TLS_DH_DSS_WITH_AES_128_GCM_SHA
256

DH_DSS AES_128_GCM SHA-256

TLS_DH_DSS_WITH_AES_256_GCM_SHA
384

DH_DSS AES_256_GCM SHA-384

TLS_DH_anon_WITH_AES_128_GCM_SH
A256

DH_anon AES_128_GCM SHA-256

Chapter 8
JSSE Cipher Suite Parameters

8-155

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_DH_anon_WITH_AES_256_GCM_SH
A384

DH_anon AES_256_GCM SHA-384

TLS_PSK_WITH_AES_128_GCM_SHA256 PSK AES_128_GCM SHA-256

TLS_PSK_WITH_AES_256_GCM_SHA384 PSK AES_256_GCM SHA-384

TLS_DHE_PSK_WITH_AES_128_GCM_SH
A256

DHE_PSK AES_128_GCM SHA-256

TLS_DHE_PSK_WITH_AES_256_GCM_SH
A384

DHE_PSK AES_256_GCM SHA-384

TLS_RSA_PSK_WITH_AES_128_GCM_SH
A256

RSA_PSK AES_128_GCM SHA-256

TLS_RSA_PSK_WITH_AES_256_GCM_SH
A384

RSA_PSK AES_256_GCM SHA-384

TLS_PSK_WITH_AES_128_CBC_SHA256 PSK AES_128_CBC SHA-256

TLS_PSK_WITH_AES_256_CBC_SHA384 PSK AES_256_CBC SHA-384

TLS_PSK_WITH_NULL_SHA256 PSK B_NULL SHA-256

TLS_PSK_WITH_NULL_SHA384 PSK B_NULL SHA-384

TLS_DHE_PSK_WITH_AES_128_CBC_SH
A256

DHE_PSK AES_128_CBC SHA-256

TLS_DHE_PSK_WITH_AES_256_CBC_SH
A384

DHE_PSK AES_256_CBC SHA-384

TLS_DHE_PSK_WITH_NULL_SHA256 DHE_PSK B_NULL SHA-256

TLS_DHE_PSK_WITH_NULL_SHA384 DHE_PSK B_NULL SHA-384

TLS_RSA_PSK_WITH_AES_128_CBC_SH
A256

RSA_PSK AES_128_CBC SHA-256

TLS_RSA_PSK_WITH_AES_256_CBC_SH
A384

RSA_PSK AES_256_CBC SHA-384

TLS_RSA_PSK_WITH_NULL_SHA256 RSA_PSK B_NULL SHA-256

TLS_RSA_PSK_WITH_NULL_SHA384 RSA_PSK B_NULL SHA-384

TLS_RSA_WITH_CAMELLIA_128_CBC_SH
A256

RSA CAMELLIA_128_CB
C

SHA-256

TLS_DH_DSS_WITH_CAMELLIA_128_CB
C_SHA256

DH_DSS CAMELLIA_128_CB
C

SHA-256

TLS_DH_RSA_WITH_CAMELLIA_128_CB
C_SHA256

DH_RSA CAMELLIA_128_CB
C

SHA-256

TLS_DHE_DSS_WITH_CAMELLIA_128_CB
C_SHA256

DHE_DSS CAMELLIA_128_CB
C

SHA-256

TLS_DHE_RSA_WITH_CAMELLIA_128_CB
C_SHA256

DHE_RSA CAMELLIA_128_CB
C

SHA-256

TLS_DH_anon_WITH_CAMELLIA_128_CB
C_SHA256

DH_anon CAMELLIA_128_CB
C

SHA-256

Chapter 8
JSSE Cipher Suite Parameters

8-156

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_RSA_WITH_CAMELLIA_256_CBC_SH
A256

RSA CAMELLIA_256_CB
C

SHA-256

TLS_DH_DSS_WITH_CAMELLIA_256_CB
C_SHA256

DH_DSS CAMELLIA_256_CB
C

SHA-256

TLS_DH_RSA_WITH_CAMELLIA_256_CB
C_SHA256

DH_RSA CAMELLIA_256_CB
C

SHA-256

TLS_DHE_DSS_WITH_CAMELLIA_256_CB
C_SHA256

DHE_DSS CAMELLIA_256_CB
C

SHA-256

TLS_DHE_RSA_WITH_CAMELLIA_256_CB
C_SHA256

DHE_RSA CAMELLIA_256_CB
C

SHA-256

TLS_DH_anon_WITH_CAMELLIA_256_CB
C_SHA256

DH_anon CAMELLIA_256_CB
C

SHA-256

TLS_EMPTY_RENEGOTIATION_INFO_SC
SV

Not applicable Not applicable Not applicable

TLS_FALLBACK_SCSV Not applicable Not applicable Not applicable

TLS_ECDH_ECDSA_WITH_NULL_SHA ECDH_ECDSA B_NULL SHA-1

TLS_ECDH_ECDSA_WITH_RC4_128_SHA ECDH_ECDSA RC4 SHA-1

TLS_ECDH_ECDSA_WITH_3DES_EDE_C
BC_SHA

ECDH_ECDSA 3DES_EDE_CBC SHA-1

TLS_ECDH_ECDSA_WITH_AES_128_CBC
_SHA

ECDH_ECDSA AES_128_CBC SHA-1

TLS_ECDH_ECDSA_WITH_AES_256_CBC
_SHA

ECDH_ECDSA AES_256_CBC SHA-1

TLS_ECDHE_ECDSA_WITH_NULL_SHA ECDHE_ECDSA B_NULL SHA-1

TLS_ECDHE_ECDSA_WITH_RC4_128_SH
A

ECDHE_ECDSA RC4 SHA-1

TLS_ECDHE_ECDSA_WITH_3DES_EDE_
CBC_SHA

ECDHE_ECDSA 3DES_EDE_CBC SHA-1

TLS_ECDHE_ECDSA_WITH_AES_128_CB
C_SHA

ECDHE_ECDSA AES_128_CBC SHA-1

TLS_ECDHE_ECDSA_WITH_AES_256_CB
C_SHA

ECDHE_ECDSA AES_256_CBC SHA-1

TLS_ECDH_RSA_WITH_NULL_SHA ECDH_RSA B_NULL SHA-1

TLS_ECDH_RSA_WITH_RC4_128_SHA ECDH_RSA RC4 SHA-1

TLS_ECDH_RSA_WITH_3DES_EDE_CBC
_SHA

ECDH_RSA 3DES_EDE_CBC SHA-1

TLS_ECDH_RSA_WITH_AES_128_CBC_S
HA

ECDH_RSA AES_128_CBC SHA-1

TLS_ECDH_RSA_WITH_AES_256_CBC_S
HA

ECDH_RSA AES_256_CBC SHA-1

TLS_ECDHE_RSA_WITH_NULL_SHA ECDHE_RSA B_NULL SHA-1

Chapter 8
JSSE Cipher Suite Parameters

8-157

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_ECDHE_RSA_WITH_RC4_128_SHA ECDHE_RSA RC4 SHA-1

TLS_ECDHE_RSA_WITH_3DES_EDE_CB
C_SHA

ECDHE_RSA 3DES_EDE_CBC SHA-1

TLS_ECDHE_RSA_WITH_AES_128_CBC_
SHA

ECDHE_RSA AES_128_CBC SHA-1

TLS_ECDHE_RSA_WITH_AES_256_CBC_
SHA

ECDHE_RSA AES_256_CBC SHA-1

TLS_ECDH_anon_WITH_NULL_SHA ECDH_anon B_NULL SHA-1

TLS_ECDH_anon_WITH_RC4_128_SHA ECDH_anon RC4 SHA-1

TLS_ECDH_anon_WITH_3DES_EDE_CBC
_SHA

ECDH_anon 3DES_EDE_CBC SHA-1

TLS_ECDH_anon_WITH_AES_128_CBC_S
HA

ECDH_anon AES_128_CBC SHA-1

TLS_ECDH_anon_WITH_AES_256_CBC_S
HA

ECDH_anon AES_256_CBC SHA-1

TLS_SRP_SHA_WITH_3DES_EDE_CBC_S
HA

SRP_SHA 3DES_EDE_CBC SHA-1

TLS_SRP_SHA_RSA_WITH_3DES_EDE_C
BC_SHA

SRP_SHA 3DES_EDE_CBC SHA-1

TLS_SRP_SHA_DSS_WITH_3DES_EDE_C
BC_SHA

SRP_SHA 3DES_EDE_CBC SHA-1

TLS_SRP_SHA_WITH_AES_128_CBC_SH
A

SRP_SHA AES_128_CBC SHA-1

TLS_SRP_SHA_RSA_WITH_AES_128_CB
C_SHA

SRP_SHA AES_128_CBC SHA-1

TLS_SRP_SHA_DSS_WITH_AES_128_CB
C_SHA

SRP_SHA AES_128_CBC SHA-1

TLS_SRP_SHA_WITH_AES_256_CBC_SH
A

SRP_SHA AES_256_CBC SHA-1

TLS_SRP_SHA_RSA_WITH_AES_256_CB
C_SHA

SRP_SHA AES_256_CBC SHA-1

TLS_SRP_SHA_DSS_WITH_AES_256_CB
C_SHA

SRP_SHA AES_256_CBC SHA-1

TLS_ECDHE_ECDSA_WITH_AES_128_CB
C_SHA256

ECDHE_ECDSA AES_128_CBC SHA-256

TLS_ECDHE_ECDSA_WITH_AES_256_CB
C_SHA384

ECDHE_ECDSA AES_256_CBC SHA-384

TLS_ECDH_ECDSA_WITH_AES_128_CBC
_SHA256

ECDH_ECDSA AES_128_CBC SHA-256

TLS_ECDH_ECDSA_WITH_AES_256_CBC
_SHA384

ECDH_ECDSA AES_256_CBC SHA-384

Chapter 8
JSSE Cipher Suite Parameters

8-158

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_ECDHE_RSA_WITH_AES_128_CBC_
SHA256

ECDHE_RSA AES_128_CBC SHA-256

TLS_ECDHE_RSA_WITH_AES_256_CBC_
SHA384

ECDHE_RSA AES_256_CBC SHA-384

TLS_ECDH_RSA_WITH_AES_128_CBC_S
HA256

ECDH_RSA AES_128_CBC SHA-256

TLS_ECDH_RSA_WITH_AES_256_CBC_S
HA384

ECDH_RSA AES_256_CBC SHA-384

TLS_ECDHE_ECDSA_WITH_AES_128_GC
M_SHA256

ECDHE_ECDSA AES_128_GCM SHA-256

TLS_ECDHE_ECDSA_WITH_AES_256_GC
M_SHA384

ECDHE_ECDSA AES_256_GCM SHA-384

TLS_ECDH_ECDSA_WITH_AES_128_GC
M_SHA256

ECDH_ECDSA AES_128_GCM SHA-256

TLS_ECDH_ECDSA_WITH_AES_256_GC
M_SHA384

ECDH_ECDSA AES_256_GCM SHA-384

TLS_ECDHE_RSA_WITH_AES_128_GCM_
SHA256

ECDHE_RSA AES_128_GCM SHA-256

TLS_ECDHE_RSA_WITH_AES_256_GCM_
SHA384

ECDHE_RSA AES_256_GCM SHA-384

TLS_ECDH_RSA_WITH_AES_128_GCM_S
HA256

ECDH_RSA AES_128_GCM SHA-256

TLS_ECDH_RSA_WITH_AES_256_GCM_S
HA384

ECDH_RSA AES_256_GCM SHA-384

TLS_ECDHE_PSK_WITH_RC4_128_SHA ECDHE_PSK RC4 SHA-1

TLS_ECDHE_PSK_WITH_3DES_EDE_CB
C_SHA

ECDHE_PSK 3DES_EDE_CBC SHA-1

TLS_ECDHE_PSK_WITH_AES_128_CBC_
SHA

ECDHE_PSK AES_128_CBC SHA-1

TLS_ECDHE_PSK_WITH_AES_256_CBC_
SHA

ECDHE_PSK AES_256_CBC SHA-1

TLS_ECDHE_PSK_WITH_AES_128_CBC_
SHA256

ECDHE_PSK AES_128_CBC SHA-256

TLS_ECDHE_PSK_WITH_AES_256_CBC_
SHA384

ECDHE_PSK AES_256_CBC SHA-384

TLS_ECDHE_PSK_WITH_NULL_SHA ECDHE_PSK B_NULL SHA-1

TLS_ECDHE_PSK_WITH_NULL_SHA256 ECDHE_PSK B_NULL SHA-256

TLS_ECDHE_PSK_WITH_NULL_SHA384 ECDHE_PSK B_NULL SHA-384

TLS_RSA_WITH_ARIA_128_CBC_SHA256 RSA ARIA_128_CBC SHA-256

TLS_RSA_WITH_ARIA_256_CBC_SHA384 RSA ARIA_256_CBC SHA-384

Chapter 8
JSSE Cipher Suite Parameters

8-159

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_DH_DSS_WITH_ARIA_128_CBC_SH
A256

DH_DSS ARIA_128_CBC SHA-256

TLS_DH_DSS_WITH_ARIA_256_CBC_SH
A384

DH_DSS ARIA_256_CBC SHA-384

TLS_DH_RSA_WITH_ARIA_128_CBC_SH
A256

DH_RSA ARIA_128_CBC SHA-256

TLS_DH_RSA_WITH_ARIA_256_CBC_SH
A384

DH_RSA ARIA_256_CBC SHA-384

TLS_DHE_DSS_WITH_ARIA_128_CBC_S
HA256

DHE_DSS ARIA_128_CBC SHA-256

TLS_DHE_DSS_WITH_ARIA_256_CBC_S
HA384

DHE_DSS ARIA_256_CBC SHA-384

TLS_DHE_RSA_WITH_ARIA_128_CBC_S
HA256

DHE_RSA ARIA_128_CBC SHA-256

TLS_DHE_RSA_WITH_ARIA_256_CBC_S
HA384

DHE_RSA ARIA_256_CBC SHA-384

TLS_DH_anon_WITH_ARIA_128_CBC_SH
A256

DH_anon ARIA_128_CBC SHA-256

TLS_DH_anon_WITH_ARIA_256_CBC_SH
A384

DH_anon ARIA_256_CBC SHA-384

TLS_ECDHE_ECDSA_WITH_ARIA_128_C
BC_SHA256

ECDHE_ECDSA ARIA_128_CBC SHA-256

TLS_ECDHE_ECDSA_WITH_ARIA_256_C
BC_SHA384

ECDHE_ECDSA ARIA_256_CBC SHA-384

TLS_ECDH_ECDSA_WITH_ARIA_128_CB
C_SHA256

ECDH_ECDSA ARIA_128_CBC SHA-256

TLS_ECDH_ECDSA_WITH_ARIA_256_CB
C_SHA384

ECDH_ECDSA ARIA_256_CBC SHA-384

TLS_ECDHE_RSA_WITH_ARIA_128_CBC
_SHA256

ECDHE_RSA ARIA_128_CBC SHA-256

TLS_ECDHE_RSA_WITH_ARIA_256_CBC
_SHA384

ECDHE_RSA ARIA_256_CBC SHA-384

TLS_ECDH_RSA_WITH_ARIA_128_CBC_
SHA256

ECDH_RSA ARIA_128_CBC SHA-256

TLS_ECDH_RSA_WITH_ARIA_256_CBC_
SHA384

ECDH_RSA ARIA_256_CBC SHA-384

TLS_RSA_WITH_ARIA_128_GCM_SHA256 RSA ARIA_128_GCM SHA-256

TLS_RSA_WITH_ARIA_256_GCM_SHA384 RSA ARIA_256_GCM SHA-384

TLS_DHE_RSA_WITH_ARIA_128_GCM_S
HA256

DHE_RSA ARIA_128_GCM SHA-256

TLS_DHE_RSA_WITH_ARIA_256_GCM_S
HA384

DHE_RSA ARIA_256_GCM SHA-384

Chapter 8
JSSE Cipher Suite Parameters

8-160

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_DH_RSA_WITH_ARIA_128_GCM_SH
A256

DH_RSA ARIA_128_GCM SHA-256

TLS_DH_RSA_WITH_ARIA_256_GCM_SH
A384

DH_RSA ARIA_256_GCM SHA-384

TLS_DHE_DSS_WITH_ARIA_128_GCM_S
HA256

DHE_DSS ARIA_128_GCM SHA-256

TLS_DHE_DSS_WITH_ARIA_256_GCM_S
HA384

DHE_DSS ARIA_256_GCM SHA-384

TLS_DH_DSS_WITH_ARIA_128_GCM_SH
A256

DH_DSS ARIA_128_GCM SHA-256

TLS_DH_DSS_WITH_ARIA_256_GCM_SH
A384

DH_DSS ARIA_256_GCM SHA-384

TLS_DH_anon_WITH_ARIA_128_GCM_SH
A256

DH_anon ARIA_128_GCM SHA-256

TLS_DH_anon_WITH_ARIA_256_GCM_SH
A384

DH_anon ARIA_256_GCM SHA-384

TLS_ECDHE_ECDSA_WITH_ARIA_128_G
CM_SHA256

ECDHE_ECDSA ARIA_128_GCM SHA-256

TLS_ECDHE_ECDSA_WITH_ARIA_256_G
CM_SHA384

ECDHE_ECDSA ARIA_256_GCM SHA-384

TLS_ECDH_ECDSA_WITH_ARIA_128_GC
M_SHA256

ECDH_ECDSA ARIA_128_GCM SHA-256

TLS_ECDH_ECDSA_WITH_ARIA_256_GC
M_SHA384

ECDH_ECDSA ARIA_256_GCM SHA-384

TLS_ECDHE_RSA_WITH_ARIA_128_GCM
_SHA256

ECDHE_RSA ARIA_128_GCM SHA-256

TLS_ECDHE_RSA_WITH_ARIA_256_GCM
_SHA384

ECDHE_RSA ARIA_256_GCM SHA-384

TLS_ECDH_RSA_WITH_ARIA_128_GCM_
SHA256

ECDH_RSA ARIA_128_GCM SHA-256

TLS_ECDH_RSA_WITH_ARIA_256_GCM_
SHA384

ECDH_RSA ARIA_256_GCM SHA-384

TLS_PSK_WITH_ARIA_128_CBC_SHA256 PSK ARIA_128_CBC SHA-256

TLS_PSK_WITH_ARIA_256_CBC_SHA384 PSK ARIA_256_CBC SHA-384

TLS_DHE_PSK_WITH_ARIA_128_CBC_SH
A256

DHE_PSK ARIA_128_CBC SHA-256

TLS_DHE_PSK_WITH_ARIA_256_CBC_SH
A384

DHE_PSK ARIA_256_CBC SHA-384

TLS_RSA_PSK_WITH_ARIA_128_CBC_SH
A256

RSA_PSK ARIA_128_CBC SHA-256

TLS_RSA_PSK_WITH_ARIA_256_CBC_SH
A384

RSA_PSK ARIA_256_CBC SHA-384

Chapter 8
JSSE Cipher Suite Parameters

8-161

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_PSK_WITH_ARIA_128_GCM_SHA256 PSK ARIA_128_GCM SHA-256

TLS_PSK_WITH_ARIA_256_GCM_SHA384 PSK ARIA_256_GCM SHA-384

TLS_DHE_PSK_WITH_ARIA_128_GCM_S
HA256

DHE_PSK ARIA_128_GCM SHA-256

TLS_DHE_PSK_WITH_ARIA_256_GCM_S
HA384

DHE_PSK ARIA_256_GCM SHA-384

TLS_RSA_PSK_WITH_ARIA_128_GCM_S
HA256

RSA_PSK ARIA_128_GCM SHA-256

TLS_RSA_PSK_WITH_ARIA_256_GCM_S
HA384

RSA_PSK ARIA_256_GCM SHA-384

TLS_ECDHE_PSK_WITH_ARIA_128_CBC_
SHA256

ECDHE_PSK ARIA_128_CBC SHA-256

TLS_ECDHE_PSK_WITH_ARIA_256_CBC_
SHA384

ECDHE_PSK ARIA_256_CBC SHA-384

TLS_ECDHE_ECDSA_WITH_CAMELLIA_1
28_CBC_SHA256

ECDHE_ECDSA CAMELLIA_128_CB
C

SHA-256

TLS_ECDHE_ECDSA_WITH_CAMELLIA_2
56_CBC_SHA384

ECDHE_ECDSA CAMELLIA_256_CB
C

SHA-384

TLS_ECDH_ECDSA_WITH_CAMELLIA_12
8_CBC_SHA256

ECDH_ECDSA CAMELLIA_128_CB
C

SHA-256

TLS_ECDH_ECDSA_WITH_CAMELLIA_25
6_CBC_SHA384

ECDH_ECDSA CAMELLIA_256_CB
C

SHA-384

TLS_ECDHE_RSA_WITH_CAMELLIA_128_
CBC_SHA256

ECDHE_RSA CAMELLIA_128_CB
C

SHA-256

TLS_ECDHE_RSA_WITH_CAMELLIA_256_
CBC_SHA384

ECDHE_RSA CAMELLIA_256_CB
C

SHA-384

TLS_ECDH_RSA_WITH_CAMELLIA_128_
CBC_SHA256

ECDH_RSA CAMELLIA_128_CB
C

SHA-256

TLS_ECDH_RSA_WITH_CAMELLIA_256_
CBC_SHA384

ECDH_RSA CAMELLIA_256_CB
C

SHA-384

TLS_RSA_WITH_CAMELLIA_128_GCM_S
HA256

RSA CAMELLIA_128_GC
M

SHA-256

TLS_RSA_WITH_CAMELLIA_256_GCM_S
HA384

RSA CAMELLIA_256_GC
M

SHA-384

TLS_DHE_RSA_WITH_CAMELLIA_128_G
CM_SHA256

DHE_RSA CAMELLIA_128_GC
M

SHA-256

TLS_DHE_RSA_WITH_CAMELLIA_256_G
CM_SHA384

DHE_RSA CAMELLIA_256_GC
M

SHA-384

TLS_DH_RSA_WITH_CAMELLIA_128_GC
M_SHA256

DH_RSA CAMELLIA_128_GC
M

SHA-256

TLS_DH_RSA_WITH_CAMELLIA_256_GC
M_SHA384

DH_RSA CAMELLIA_256_GC
M

SHA-384

Chapter 8
JSSE Cipher Suite Parameters

8-162

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_DHE_DSS_WITH_CAMELLIA_128_G
CM_SHA256

DHE_DSS CAMELLIA_128_GC
M

SHA-256

TLS_DHE_DSS_WITH_CAMELLIA_256_G
CM_SHA384

DHE_DSS CAMELLIA_256_GC
M

SHA-384

TLS_DH_DSS_WITH_CAMELLIA_128_GC
M_SHA256

DH_DSS CAMELLIA_128_GC
M

SHA-256

TLS_DH_DSS_WITH_CAMELLIA_256_GC
M_SHA384

DH_DSS CAMELLIA_256_GC
M

SHA-384

TLS_DH_anon_WITH_CAMELLIA_128_GC
M_SHA256

DH_anon CAMELLIA_128_GC
M

SHA-256

TLS_DH_anon_WITH_CAMELLIA_256_GC
M_SHA384

DH_anon CAMELLIA_256_GC
M

SHA-384

TLS_ECDHE_ECDSA_WITH_CAMELLIA_1
28_GCM_SHA256

ECDHE_ECDSA CAMELLIA_128_GC
M

SHA-256

TLS_ECDHE_ECDSA_WITH_CAMELLIA_2
56_GCM_SHA384

ECDHE_ECDSA CAMELLIA_256_GC
M

SHA-384

TLS_ECDH_ECDSA_WITH_CAMELLIA_12
8_GCM_SHA256

ECDH_ECDSA CAMELLIA_128_GC
M

SHA-256

TLS_ECDH_ECDSA_WITH_CAMELLIA_25
6_GCM_SHA384

ECDH_ECDSA CAMELLIA_256_GC
M

SHA-384

TLS_ECDHE_RSA_WITH_CAMELLIA_128_
GCM_SHA256

ECDHE_RSA CAMELLIA_128_GC
M

SHA-256

TLS_ECDHE_RSA_WITH_CAMELLIA_256_
GCM_SHA384

ECDHE_RSA CAMELLIA_256_GC
M

SHA-384

TLS_ECDH_RSA_WITH_CAMELLIA_128_
GCM_SHA256

ECDH_RSA CAMELLIA_128_GC
M

SHA-256

TLS_ECDH_RSA_WITH_CAMELLIA_256_
GCM_SHA384

ECDH_RSA CAMELLIA_256_GC
M

SHA-384

TLS_PSK_WITH_CAMELLIA_128_GCM_S
HA256

PSK CAMELLIA_128_GC
M

SHA-256

TLS_PSK_WITH_CAMELLIA_256_GCM_S
HA384

PSK CAMELLIA_256_GC
M

SHA-384

TLS_DHE_PSK_WITH_CAMELLIA_128_G
CM_SHA256

DHE_PSK CAMELLIA_128_GC
M

SHA-256

TLS_DHE_PSK_WITH_CAMELLIA_256_G
CM_SHA384

DHE_PSK CAMELLIA_256_GC
M

SHA-384

TLS_RSA_PSK_WITH_CAMELLIA_128_GC
M_SHA256

RSA_PSK CAMELLIA_128_GC
M

SHA-256

TLS_RSA_PSK_WITH_CAMELLIA_256_GC
M_SHA384

RSA_PSK CAMELLIA_256_GC
M

SHA-384

TLS_PSK_WITH_CAMELLIA_128_CBC_SH
A256

PSK CAMELLIA_128_CB
C

SHA-256

Chapter 8
JSSE Cipher Suite Parameters

8-163

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_PSK_WITH_CAMELLIA_256_CBC_SH
A384

PSK CAMELLIA_256_CB
C

SHA-384

TLS_DHE_PSK_WITH_CAMELLIA_128_CB
C_SHA256

DHE_PSK CAMELLIA_128_CB
C

SHA-256

TLS_DHE_PSK_WITH_CAMELLIA_256_CB
C_SHA384

DHE_PSK CAMELLIA_256_CB
C

SHA-384

TLS_RSA_PSK_WITH_CAMELLIA_128_CB
C_SHA256

RSA_PSK CAMELLIA_128_CB
C

SHA-256

TLS_RSA_PSK_WITH_CAMELLIA_256_CB
C_SHA384

RSA_PSK CAMELLIA_256_CB
C

SHA-384

TLS_ECDHE_PSK_WITH_CAMELLIA_128_
CBC_SHA256

ECDHE_PSK CAMELLIA_128_CB
C

SHA-256

TLS_ECDHE_PSK_WITH_CAMELLIA_256_
CBC_SHA384

ECDHE_PSK CAMELLIA_256_CB
C

SHA-384

TLS_RSA_WITH_AES_128_CCM RSA AES_128_CCM CCM

TLS_RSA_WITH_AES_256_CCM RSA AES_256_CCM CCM

TLS_DHE_RSA_WITH_AES_128_CCM DHE_RSA AES_128_CCM CCM

TLS_DHE_RSA_WITH_AES_256_CCM DHE_RSA AES_256_CCM CCM

TLS_RSA_WITH_AES_128_CCM_8 RSA AES_128_CCM CCM_8

TLS_RSA_WITH_AES_256_CCM_8 RSA AES_256_CCM CCM_8

TLS_DHE_RSA_WITH_AES_128_CCM_8 DHE_RSA AES_128_CCM CCM_8

TLS_DHE_RSA_WITH_AES_256_CCM_8 DHE_RSA AES_256_CCM CCM_8

TLS_PSK_WITH_AES_128_CCM PSK AES_128_CCM CCM

TLS_PSK_WITH_AES_256_CCM PSK AES_256_CCM CCM

TLS_DHE_PSK_WITH_AES_128_CCM DHE_PSK AES_128_CCM CCM

TLS_DHE_PSK_WITH_AES_256_CCM DHE_PSK AES_256_CCM CCM

TLS_PSK_WITH_AES_128_CCM_8 PSK AES_128_CCM CCM_8

TLS_PSK_WITH_AES_256_CCM_8 PSK AES_256_CCM CCM_8

TLS_DHE_PSK_WITH_AES_128_CCM_8 DHE_PSK AES_128_CCM CCM_8

TLS_DHE_PSK_WITH_AES_256_CCM_8 DHE_PSK AES_256_CCM CCM_8

TLS_ECDHE_ECDSA_WITH_AES_128_CC
M

ECDHE_ECDSA AES_128_CCM CCM

TLS_ECDHE_ECDSA_WITH_AES_256_CC
M

ECDHE_ECDSA AES_256_CCM CCM

TLS_ECDHE_ECDSA_WITH_AES_128_CC
M_8

ECDHE_ECDSA AES_128_CCM CCM_8

TLS_ECDHE_ECDSA_WITH_AES_256_CC
M_8

ECDHE_ECDSA AES_256_CCM CCM_8

Chapter 8
JSSE Cipher Suite Parameters

8-164

Table 8-14 (Cont.) JSSE Cipher Suite Parameters

Standard Name (IANA name if different) Key Exchange
Algorithm

Bulk Cipher
Algorithm

Message
Authentication
Code Algorithm

TLS_ECDHE_RSA_WITH_CHACHA20_PO
LY1305_SHA256

ECDHE_RSA AEAD_CHACHA20_
POLY1305

SHA-256

TLS_ECDHE_ECDSA_WITH_CHACHA20_
POLY1305_SHA256

ECDHE_ECDSA AEAD_CHACHA20_
POLY1305

SHA-256

TLS_DHE_RSA_WITH_CHACHA20_POLY1
305_SHA256

DHE_RSA AEAD_CHACHA20_
POLY1305

SHA-256

TLS_PSK_WITH_CHACHA20_POLY1305_
SHA256

PSK AEAD_CHACHA20_
POLY1305

SHA-256

TLS_ECDHE_PSK_WITH_CHACHA20_PO
LY1305_SHA256

ECDHE_PSK AEAD_CHACHA20_
POLY1305

SHA-256

TLS_DHE_PSK_WITH_CHACHA20_POLY1
305_SHA256

DHE_PSK AEAD_CHACHA20_
POLY1305

SHA-256

TLS_RSA_PSK_WITH_CHACHA20_POLY1
305_SHA256

RSA_PSK AEAD_CHACHA20_
POLY1305

SHA-256

Chapter 8
JSSE Cipher Suite Parameters

8-165

9
Java PKI Programmers Guide

The Java Certification Path API consists of classes and interfaces for handling
certification paths, which are also called certification chains. If a certification path
meets certain validation rules, it may be used to securely establish the mapping of a
public key to a subject.

Topics

PKI Programmers Guide Overview

Core Classes and Interfaces

Implementing a Service Provider

Appendix A: Standard Names

Appendix B: CertPath Implementation in SUN Provider

Appendix C: OCSP Support

Appendix D: CertPath Implementation in JdkLDAP Provider

Appendix E: Disabling Cryptographic Algorithms

PKI Programmers Guide Overview
The Java Certification Path API defines interfaces and abstract classes for creating,
building, and validating certification paths. Implementations may be plugged in using a
provider-based interface.

This API is based on the Cryptographic Service Providers architecture, described in
the Java Cryptography Architecture Reference Guide, and includes algorithm-specific
classes for building and validating X.509 certification paths according to the PKIX
standards. The PKIX standards were developed by the IETF PKIX working group.

This API was originally specified using the Java Community Process program as Java
Specification Request (JSR) 000055. The API was included in the Java SDK, starting
with Java SE Development Kit (JDK) 1.4. See JSR 55: Certification Path API.

Who Should Read This Document

This document is intended for two types of experienced developers:

1. Those who want to design secure applications that build or validate certification
paths.

2. Those who want to write a service provider implementation for building or
validating certification paths.

This document assumes that you have already read Cryptographic Service Providers.

9-1

http://datatracker.ietf.org/wg/pkix/charter/
http://jcp.org/en/home/index
http://jcp.org/en/jsr/detail?id=55

Introduction to Public Key Certificates
Users of public key applications and systems must be confident that a subject's public
key is genuine, i.e., that the associated private key is owned by the subject. Public key
certificates are used to establish this trust.

A public key (or identity) certificate is a binding of a public key to an identity, which
is digitally signed by the private key of another entity, often called a Certification
Authority (CA). For the remainder of this section, the term CA is used to refer to an
entity that signs a certificate.

If the user does not have a trusted copy of the public key of the CA that signed the
subject's public key certificate, then another public key certificate vouching for the
signing CA is required. This logic can be applied recursively, until a chain of
certificates (or a certification path) is discovered from a trust anchor or a most-
trusted CA to the target subject (commonly referred to as the end-entity). The most-
trusted CA is usually specified by a certificate issued to a CA that the user directly
trusts. In general, a certification path is an ordered list of certificates, usually
comprised of the end-entity's public key certificate and zero or more additional
certificates. A certification path typically has one or more encodings, allowing it to be
safely transmitted across networks and to different operating system architectures.

The following figure illustrates a certification path from a most-trusted CA's public key
(CA 1) to the target subject (Alice). The certification path establishes trust in Alice's
public key through an intermediate CA named CA2.

Figure 9-1 Certification Path from CA's Public Key (CA 1) to the Target Subject

CA1’s Public Key

Default #1
Issuer = CA1

Subject = CA2

CA2’s Public Key

Default #1
Issuer = CA2

Subject = Alice

Alice’s Public Key

A certification path must be validated before it can be relied on to establish trust in a
subject's public key. Validation can consist of various checks on the certificates
contained in the certification path, such as verifying the signatures and checking that
each certificate has not been revoked. The PKIX standards define an algorithm for
validating certification paths consisting of X.509 certificates.

Often a user may not have a certification path from a most-trusted CA to the subject.
Providing services to build or discover certification paths is an important feature of
public key enabled systems. RFC 2587 defines an LDAP (Lightweight Directory
Access Protocol) schema definition that facilitates the discovery of X.509 certification
paths using the LDAP directory service protocol.

Building and validating certification paths is an important part of many standard
security protocols such as SSL/TLS/DTLS, S/MIME, and IPsec. The Java Certification
Path API provides a set of classes and interfaces for developers who need to integrate
this functionality into their applications. This API benefits two types of developers:
those who need to write service provider implementations for a specific certification
path building or validation algorithm; and those who need to access standard

Chapter 9
PKI Programmers Guide Overview

9-2

http://www.ietf.org/rfc/rfc2587.txt

algorithms for creating, building, and validating certification paths in an
implementation-independent manner.

X.509 Certificates and Certificate Revocation Lists (CRLs)
A public-key certificate is a digitally signed statement from one entity saying that the
public key and some other information of another entity has some specific value.

The following table defines some of the key terms:

Public Keys
These are numbers associated with a particular entity, and are intended to be known
to everyone who needs to have trusted interactions with that entity. Public keys are
used to verify signatures.

Digitally Signed
If some data is digitally signed it has been stored with the "identity" of an entity, and a
signature that proves that entity knows about the data. The data is rendered
unforgeable by signing with the entitys' private key.

Identity
A known way of addressing an entity. In some systems the identity is the public key,
in others it can be anything from a UNIX UID to an Email address to an X.509
Distinguished Name.

Signature
A signature is computed over some data using the private key of an entity (the
signer).

Private Keys
These are numbers, each of which is supposed to be known only to the particular
entity whose private key it is (that is, it's supposed to be kept secret). Private and
public keys exist in pairs in all public key cryptography systems (also referred to as
"public key crypto systems"). In a typical public key crypto system, such as DSA, a
private key corresponds to exactly one public key. Private keys are used to compute
signatures.

Entity
An entity is a person, organization, program, computer, business, bank, or something
else you are trusting to some degree.

Basically, public key cryptography requires access to users' public keys. In a large-
scale networked environment it is impossible to guarantee that prior relationships
between communicating entities have been established or that a trusted repository
exists with all used public keys. Certificates were invented as a solution to this public
key distribution problem. Now a Certification Authority (CA) can act as a Trusted Third
Party. CAs are entities (e.g., businesses) that are trusted to sign (issue) certificates for
other entities. It is assumed that CAs will only create valid and reliable certificates as
they are bound by legal agreements. There are many public Certification Authorities,
such as VeriSign, Thawte, Entrust, and so on. You can also run your own Certification
Authority using products such as the Netscape/Microsoft Certificate Servers or the
Entrust CA product for your organization.

Chapter 9
PKI Programmers Guide Overview

9-3

http://www.verisign.com
http://www.thawte.com
http://www.entrust.com

What Applications use Certificates?

Probably the most widely visible application of X.509 certificates today is in web
browsers (such as Mozilla Firefox and Microsoft Internet Explorer) that support the
TLS protocol. TLS (Transport Layer Security) is a security protocol that provides
privacy and authentication for your network traffic. These browsers can only use this
protocol with web servers that support TLS.

Other technologies that rely on X.509 certificates include:

• Various code-signing schemes, such as signed Java ARchives, and Microsoft
Authenticode.

• Various secure E-Mail standards, such as PEM and S/MIME.

How do I Get a Certificate?

There are two basic techniques used to get certificates:

• You can create one yourself (using the right tools, such as keytool).

• You can ask a Certification Authority to issue you one (either directly or using a
tool such as keytool to generate the request).

The main inputs to the certificate creation process are:

• Matched public and private keys, generated using some special tools (such as
keytool), or a browser. Only the public key is ever shown to anyone else. The
private key is used to sign data; if someone knows your private key, they can
masquerade as you ... perhaps forging legal documents attributed to you!

• You need to provide information about the entity being certified (e.g., you). This
normally includes information such as your name and organizational address. If
you ask a CA to issue a certificate for you, you will normally need to provide proof
to show correctness of the information.

If you are asking a CA to issue you a certificate, you provide your public key and some
information about you. You'll use a tool (such as keytool or a browser that supports
Certificate Signing Request generation). to digitally sign this information, and send it to
the CA. The CA will then generate the certificate and return it.

If you're generating the certificate yourself, you'll take that same information, add a
little more (dates during which the certificate is valid, a serial number), and just create
the certificate using some tool (such as keytool). Not everyone will accept self-signed
certificates; one part of the value provided by a CA is to serve as a neutral and trusted
introduction service, based in part on their verification requirements, which are openly
published in their Certification Service Practices (CSP).

What's Inside an X.509 Certificate?

The X.509 standard defines what information can go into a certificate, and describes
how to write it down (the data format). All X.509 certificates have the following data, in
addition to the signature:

Version
This identifies which version of the X.509 standard applies to this certificate, which
affects what information can be specified in it. Thus far, three versions are defined.

Chapter 9
PKI Programmers Guide Overview

9-4

Serial Number
The entity that created the certificate is responsible for assigning it a serial number to
distinguish it from other certificates it issues. This information is used in numerous
ways, for example when a certificate is revoked its serial number is placed in a
Certificate Revocation List (CRL).

Signature Algorithm Identifier
This identifies the algorithm used by the CA to sign the certificate.

Issuer Name
The X.500 name of the entity that signed the certificate. This is normally a CA. Using
this certificate implies trusting the entity that signed this certificate. (Note that in some
cases, such as root or top-level CA certificates, the issuer signs its own certificate.)

Validity Period
Each certificate is valid only for a limited amount of time. This period is described by a
start date and time and an end date and time, and can be as short as a few seconds
or almost as long as a century. The validity period chosen depends on a number of
factors, such as the strength of the private key used to sign the certificate or the
amount one is willing to pay for a certificate. This is the expected period that entities
can rely on the public value, if the associated private key has not been compromised.

Subject Name
The name of the entity whose public key the certificate identifies. This name uses the
X.500 standard, so it is intended to be unique across the Internet. This is the
Distinguished Name (DN) of the entity, for example,

 CN=Java Duke, OU=Java Software Division, O=Sun Microsystems Inc, C=US

(These refer to the subject's Common Name, Organizational Unit, Organization, and
Country.)

Subject Public Key Information
This is the public key of the entity being named, together with an algorithm identifier
which specifies which public key crypto system this key belongs to and any
associated key parameters.

X.509 Version 1 has been available since 1988, is widely deployed, and is the most
generic.

X.509 Version 2 introduced the concept of subject and issuer unique identifiers to
handle the possibility of reuse of subject and/or issuer names over time. Most
certificate profile documents strongly recommend that names not be reused, and that
certificates should not make use of unique identifiers. Version 2 certificates are not
widely used.

X.509 Version 3 is the most recent (1996) and supports the notion of extensions,
whereby anyone can define an extension and include it in the certificate. Some
common extensions in use today are: KeyUsage (limits the use of the keys to
particular purposes such as "signing-only") and AlternativeNames (allows other
identities to also be associated with this public key, e.g. DNS names, Email addresses,
IP addresses). Extensions can be marked critical to indicate that the extension should
be checked and enforced/used. For example, if a certificate has the KeyUsage
extension marked critical and set to "keyCertSign" then if this certificate is presented
during SSL communication, it should be rejected, as the certificate extension indicates

Chapter 9
PKI Programmers Guide Overview

9-5

that the associated private key should only be used for signing certificates and not for
SSL use.

All the data in a certificate is encoded using two related standards called ASN.1/DER.
Abstract Syntax Notation 1 describes data. The Distinguished Encoding Rules
describe a single way to store and transfer that data.

What Java API Can Be Used to Access and Manage Certificates?

The Certificate API, found in the java.security.cert package, includes the following:

• CertificateFactory class defines the functionality of a certificate factory, which is
used to generate certificate, certificate revocation list (CRL), and certification path
objects from their encoding.

• Certificate class is an abstract class for managing a variety of certificates. It is an
abstraction for certificates that have different formats but important common uses.
For example, different types of certificates, such as X.509 and PGP, share general
certificate functionality (like encoding and verifying) and some types of information
like public key.

• CRL class is an abstract class for managing a variety of Certificate Revocation
Lists (CRLs).

• X509Certificate class is an abstract class for X.509 Certificates. It provides a
standard way to access all the attributes of an X.509 certificate.

• X509Extension interface is an interface for an X.509 extension. The extensions
defined for X.509 v3 certificates and v2 CRLs (Certificate Revocation Lists)
provide mechanisms for associating additional attributes with users or public keys,
such as for managing the certification hierarchy, and for managing CRL
distribution.

• X509CRL class is an abstract class for an X.509 Certificate Revocation List (CRL).
A CRL is a time-stamped list identifying revoked certificates. It is signed by a
Certification Authority (CA) and made freely available in a public repository.

• X509CRLEntry class is an abstract class for a CRL entry.

What Java Tool Can Generate, Display, Import, and Export X.509 Certificates?

There is a tool named keytool that can be used to create public/private key pairs and
X.509 v3 certificates, and to manage keystores. Keys and certificates are used to
digitally sign your Java applications and applets (see jarsigner).

A keystore is a protected database that holds keys and certificates. Access to a
keystore is guarded by a password (defined at the time the keystore is created, by the
person who creates the keystore, and changeable only when providing the current
password). In addition, each private key in a keystore can be guarded by its own
password.

Using keytool, it is possible to display, import, and export X.509 v1, v2, and v3
certificates stored as files, and to generate new v3 certificates. For examples, see the
"EXAMPLES" section for keytool in the Java Platform, Standard Edition Tools
Reference.

Chapter 9
PKI Programmers Guide Overview

9-6

https://docs.oracle.com/javase/9/docs/api/java/security/cert/package-summary.html

Core Classes and Interfaces
The core classes of the Java Certification Path API consist of interfaces and classes
that support certification path functionality in an algorithm and implementation-
independent manner.

The API builds on and extends the existing java.security.cert package for handling
certificates. The core classes can be broken up into 4 class categories: Basic,
Validation, Building, and Storage:

• Basic Certification Path Classes

– CertPath, CertificateFactory, and CertPathParameters

• Certification Path Validation Classes

– CertPathValidator, CertPathValidatorResult, and CertPathChecker

• Certification Path Building Classes

– CertPathBuilder, and CertPathBuilderResult

• Certificate/CRL Storage Classes

– CertStore, CertStoreParameters, CertSelector, and CRLSelector

The Java Certification Path API also includes a set of algorithm-specific classes
modeled for use with the PKIX certification path validation algorithm defined in RFC
5280: Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. The PKIX Classes are:

• TrustAnchor

• PKIXParameters

• PKIXCertPathValidatorResult

• PKIXBuilderParameters

• PKIXCertPathBuilderResult

• PKIXCertPathChecker

• PKIXRevocationChecker

The complete reference documentation for the relevant Certification Path API classes
can be found in java.security.cert .

Most of the classes and interfaces in the CertPath API are not thread-safe. However,
there are some exceptions, which will be noted in this guide and in the API
specification. Multiple threads that need to access a single non-thread-safe object
concurrently should synchronize amongst themselves and provide the necessary
locking. Multiple threads each manipulating separate objects need not synchronize.

Topics

Basic Certification Path Classes

Certification Path Validation Classes

Certification Path Building Classes

Certificate/CRL Storage Classes

Chapter 9
Core Classes and Interfaces

9-7

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://docs.oracle.com/javase/9/docs/api/java/security/cert/package-summary.html

PKIX Classes

Basic Certification Path Classes
The basic certification path classes provide fundamental functionality for encoding and
representing certification paths. The key basic class in the Java Certification Path API
is CertPath, which encapsulates the universal aspects shared by all types of
certification paths. An application uses an instance of the CertificateFactory class to
create a CertPath object.

Topics

The CertPath Class

The CertificateFactory Class

The CertPathParameters Interface

The CertPath Class
The CertPath class is an abstract class for certification paths. It defines the functionality
shared by all certification path objects. Various certification path types can be
implemented by subclassing the CertPath class, even though they may have different
contents and ordering schemes.

All CertPath objects are serializable, immutable and thread-safe and share the
following characteristics:

• A type

This corresponds to the type of the certificates in the certification path, for
example: X.509. The type of a CertPath is obtained using the method:

 public String getType()

For standard certificate types, see CertificateFactory Types.

• A list of certificates

The getCertificates method returns the list of certificates in the certification path:

 public abstract List<? extends Certificate> getCertificates()

This method returns a List of zero or more java.security.cert.Certificate
objects. The returned List and the Certificates contained within it are immutable,
in order to protect the contents of the CertPath object. The ordering of the
certificates returned depends on the type. By convention, the certificates in a
CertPath object of type X.509 are ordered starting with the target certificate and
ending with a certificate issued by the trust anchor. That is, the issuer of one
certificate is the subject of the following one. The certificate representing the
TrustAnchor should not be included in the certification path. Unvalidated X.509
CertPaths may not follow this convention. PKIX CertPathValidators will detect any
departure from these conventions that cause the certification path to be invalid and
throw a CertPathValidatorException.

• One or more encodings

Chapter 9
Core Classes and Interfaces

9-8

https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html#certificatefactory-types

Each CertPath object supports one or more encodings. These are external
encoded forms for the certification path, used when a standard representation of
the path is needed outside the Java Virtual Machine (as when transmitting the
path over a network to some other party). Each path can be encoded in a default
format, the bytes of which are returned using the method:

 public abstract byte[] getEncoded()

Alternatively, the getEncoded(String) method returns a specific supported encoding
by specifying the encoding format as a String (ex: "PKCS7"). For standard
encoding formats, see CertPath Encodings.

 public abstract byte[] getEncoded(String encoding)

Also, the getEncodings method returns an iterator over the supported encoding
format Strings (the default encoding format is returned first):

 public abstract Iterator<String> getEncodings()

All CertPath objects are also Serializable. CertPath objects are resolved into an
alternate CertPath.CertPathRep object during serialization. This allows a CertPath object to
be serialized into an equivalent representation regardless of its underlying
implementation.

CertPath objects are generated from an encoded byte array or list of Certificates
using a CertificateFactory. Alternatively, a CertPathBuilder may be used to try to find a
CertPath from a most-trusted CA to a particular subject. Once a CertPath object has
been created, it may be validated by passing it to the validate method of
CertPathValidator. Each of these concepts are explained in more detail in subsequent
sections.

The CertificateFactory Class
The CertificateFactory class is an engine class that defines the functionality of a
certificate factory. It is used to generate Certificate, CRL, and CertPath objects.

A CertificateFactory should not be confused with a CertPathBuilder. A CertPathBuilder
(discussed later) is used to discover or find a certification path when one does not
exist. In contrast, a CertificateFactory is used when a certification path has already
been discovered and the caller needs to instantiate a CertPath object from its contents,
which exist in a different form such as an encoded byte array or an array of
Certificates.

Creating a CertificateFactory Object

See the CertificateFactory section in the Java Cryptography Architecture Reference
Guide for the details of creating a CertificateFactory object.

Generating CertPath Objects

A CertificateFactory instance generates CertPath objects from a List of Certificate
objects or from an InputStream that contains the encoded form of a CertPath. Just like a
CertPath, each CertificateFactory supports a default encoding format for certification
paths (ex: PKCS#7). To generate a CertPath object and initialize it with the data read

Chapter 9
Core Classes and Interfaces

9-9

https://docs.oracle.com/javase/9/docs/specs/security/standard-names.html#certpath-encodings
https://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPath.CertPathRep.html

from an input stream (in the default encoding format), use the generateCertPath
method:

public final CertPath generateCertPath(InputStream inStream)

or from a particular encoding format:

 public final CertPath generateCertPath(InputStream inStream,
 String encoding)

To find out what encoding formats are supported, use the getCertPathEncodings
method (the default encoding is returned first):

public final Iterator<String> getCertPathEncodings()

To generate a certification path object from a List of Certificate objects, use the
following method:

public final CertPath generateCertPath(List<? extends Certificate> certificates)

A CertificateFactory always returns CertPath objects that consist of Certificates that
are of the same type as the factory. For example, a CertificateFactory of type X.509
returns CertPath objects consisting of certificates that are an instance of
java.security.cert.X509Certificate.

The following code sample illustrates generating a certification path from a PKCS#7
encoded certificate reply stored in a file:

 // open an input stream to the file
 FileInputStream fis = new FileInputStream(filename);
 // instantiate a CertificateFactory for X.509
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 // extract the certification path from
 // the PKCS7 SignedData structure
 CertPath cp = cf.generateCertPath(fis, "PKCS7");
 // print each certificate in the path
 List<Certificate> certs = cp.getCertificates();
 for (Certificate cert : certs) {
 System.out.println(cert);
 }

Here's another code sample that fetches a certificate chain from a KeyStore and
converts it to a CertPath using a CertificateFactory:

 // instantiate a KeyStore with type JKS
 KeyStore ks = KeyStore.getInstance("JKS");
 // load the contents of the KeyStore
 ks.load(new FileInputStream("./keystore"),
 "password".toCharArray());
 // fetch certificate chain stored with alias "sean"
 Certificate[] certArray = ks.getCertificateChain("sean");
 // convert chain to a List
 List certList = Arrays.asList(certArray);
 // instantiate a CertificateFactory for X.509
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 // extract the certification path from
 // the List of Certificates
 CertPath cp = cf.generateCertPath(certList);

Note that there is an existing method in CertificateFactory named
generateCertificates that parses a sequence of Certificates. For encodings

Chapter 9
Core Classes and Interfaces

9-10

consisting of multiple certificates, use generateCertificates when you want to parse a
collection of possibly unrelated certificates. Otherwise, use generateCertPath when you
want to generate a CertPath and subsequently validate it with a CertPathValidator
(discussed later).

The CertPathParameters Interface
The CertPathParameters interface is a transparent representation of the set of
parameters used with a particular certification path builder or validation algorithm.

Its main purpose is to group (and provide type safety for) all certification path
parameter specifications. The CertPathParameters interface extends the Cloneable
interface and defines a clone() method that does not throw an exception. All concrete
implementations of this interface should implement and override the Object.clone()
method, if necessary. This allows applications to clone any CertPathParameters object.

Objects implementing the CertPathParameters interface are passed as arguments to
methods of the CertPathValidator and CertPathBuilder classes. Typically, a concrete
implementation of the CertPathParameters interface will hold a set of input parameters
specific to a particular certification path build or validation algorithm. For example, the
PKIXParameters class is an implementation of the CertPathParameters interface that
holds a set of input parameters for the PKIX certification path validation algorithm. One
such parameter is the set of most-trusted CAs that the caller trusts for anchoring the
validation process. This parameter among others is discussed in more detail in the
section discussing the PKIXParameters class.

Certification Path Validation Classes
The Java Certification Path API includes classes and interfaces for validating
certification paths. An application uses an instance of the CertPathValidator class to
validate a CertPath object. If successful, the result of the validation algorithm is
returned in an object implementing the CertPathValidatorResult interface.

Topics

The CertPathValidator Class

The CertPathValidatorResult Interface

The CertPathValidator Class
The CertPathValidator class is an engine class used to validate a certification path.

Creating a CertPathValidator Object

As with all engine classes, the way to get a CertPathValidator object for a particular
validation algorithm is to call one of the getInstance static factory methods on the
CertPathValidator class:

 public static CertPathValidator getInstance(String algorithm)
 public static CertPathValidator getInstance(String algorithm,
 String provider)
 public static CertPathValidator getInstance(String algorithm,
 Provider provider)

Chapter 9
Core Classes and Interfaces

9-11

The algorithm parameter is the name of a certification path validation algorithm (for
example, "PKIX"). Standard CertPathValidator algorithm names are listed in the Java
Security Standard Algorithm Names Specification.

Validating a Certification Path

Once a CertPathValidator object is created, paths can be validated by calling the
validate method, passing it the certification path to be validated and a set of algorithm-
specific parameters:

 public final CertPathValidatorResult
 validate(CertPath certPath, CertPathParameters params)
 throws CertPathValidatorException,
 InvalidAlgorithmParameterException

If the validation algorithm is successful, the result is returned in an object implementing
the CertPathValidatorResult interface. Otherwise, a CertPathValidatorException is thrown.
The CertPathValidatorException contains methods that return the CertPath, and if
relevant, the index of the certificate that caused the algorithm to fail and the root
exception or cause of the failure.

Note that the CertPath and CertPathParameters passed to the validate method must be
of a type that is supported by the validation algorithm. Otherwise, an
InvalidAlgorithmParameterException is thrown. For example, a CertPathValidator
instance that implements the PKIX algorithm validates CertPath objects of type X.509
and CertPathParameters that are an instance of PKIXParameters.

The CertPathValidatorResult Interface
The CertPathValidatorResult interface is a transparent representation of the successful
result or output of a certification path validation algorithm.

The main purpose of this interface is to group and provide type safety for all validation
results. Similar to the CertPathParameters interface, CertPathValidatorResult extends
Cloneable and defines a clone() method that does not throw an exception. This allows
applications to clone any CertPathValidatorResult object.

Objects implementing the CertPathValidatorResult interface are returned by the
validate method of CertPathValidatorResult interface when successful. If not successful, a
CertPathValidatorException is thrown with a description of the failure. Typically, a
concrete implementation of the CertPathValidatorResult interface will hold a set of
output parameters specific to a particular certification path validation algorithm. For
example, the PKIXCertPathValidatorResult class is an implementation of the
CertPathValidatorResult interface, which contains methods to get the output
parameters of the PKIX certification path validation algorithm. One such parameter is
the valid policy tree. This parameter among others is discussed in more detail in the
section discussing the PKIXCertPathValidatorResult class.

The following code sample shows how to create a CertPathValidator and use it to
validate a certification path. The sample assumes that the CertPath and
CertPathParameters objects which are passed to the validate method have been
previously created; a more complete example will be illustrated in the section
describing the PKIX classes.

 // create CertPathValidator that implements the "PKIX" algorithm
 CertPathValidator cpv = null;

Chapter 9
Core Classes and Interfaces

9-12

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

 try {
 cpv = CertPathValidator.getInstance("PKIX");
 } catch (NoSuchAlgorithmException nsae) {
 System.err.println(nsae);
 System.exit(1);
 }
 // validate certification path ("cp") with specified parameters ("params")
 try {
 CertPathValidatorResult cpvResult = cpv.validate(cp, params);
 } catch (InvalidAlgorithmParameterException iape) {
 System.err.println("validation failed: " + iape);
 System.exit(1);
 } catch (CertPathValidatorException cpve) {
 System.err.println("validation failed: " + cpve);
 System.err.println("index of certificate that caused exception: "
 + cpve.getIndex());
 System.exit(1);
 }

Certification Path Building Classes
The Java Certification Path API includes classes for building (or discovering)
certification paths. An application uses an instance of the CertPathBuilder class to
build a CertPath object. If successful, the result of the build is returned in an object
implementing the CertPathBuilderResult interface.

Topics

The CertPathBuilder Class

The CertPathBuilderResult Interface

The CertPathBuilder Class
The CertPathBuilder class is an engine class used to build a certification path.

Creating a CertPathBuilder Object

As with all engine classes, the way to get a CertPathBuilder object for a particular build
algorithm is to call one of the getInstance static factory method on the CertPathBuilder
class:

 public static CertPathBuilder getInstance(String algorithm)
 public static CertPathBuilder getInstance(String algorithm,
 String provider)
 public static CertPathBuilder getInstance(String algorithm,
 Provider provider)

The algorithm parameter is the name of a certification path builder algorithm (for
example, "PKIX"). Standard CertPathBuilder algorithm names are listed in Java
Security Standard Algorithm Names Specification.

Building a Certification Path

Once a CertPathBuilder object is created, paths can be constructed by calling the
build method, passing it an algorithm-specific parameter specification:

Chapter 9
Core Classes and Interfaces

9-13

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

 public final CertPathBuilderResult build(CertPathParameters params)
 throws CertPathBuilderException,
 InvalidAlgorithmParameterException

If the build algorithm is successful, the result is returned in an object implementing the
CertPathBuilderResult interface. Otherwise, a CertPathBuilderException is thrown
containing information about the failure; for example, the underlying exception (if any)
and an error message.

Note that the CertPathParameters passed to the build method must be of a type that is
supported by the build algorithm. Otherwise, an InvalidAlgorithmParameterException is
thrown.

The CertPathBuilderResult Interface
The CertPathBuilderResult interface is a transparent representation of the result or
output of a certification path builder algorithm.

This interface contains a method to return the certification path that has been
successfully built:

 public CertPath getCertPath()

The purpose of the CertPathBuilderResult interface is to group (and provide type
safety for) all build results. Like the CertPathValidatorResult interface,
CertPathBuilderResult extends Cloneable and defines a clone() method that does not
throw an exception. This allows applications to clone any CertPathBuilderResult object.

Objects implementing the CertPathBuilderResult interface are returned by the build
method of CertPathBuilder.

The following code sample shows how to create a CertPathBuilder and use it to build a
certification path. The sample assumes that the CertPathParameters object which is
passed to the build method has been previously created; a more complete example
will be illustrated in the section describing the PKIX classes.

 // create CertPathBuilder that implements the "PKIX" algorithm
 CertPathBuilder cpb = null;
 try {
 cpb = CertPathBuilder.getInstance("PKIX");
 } catch (NoSuchAlgorithmException nsae) {
 System.err.println(nsae);
 System.exit(1);
 }
 // build certification path using specified parameters ("params")
 try {
 CertPathBuilderResult cpbResult = cpb.build(params);
 CertPath cp = cpbResult.getCertPath();
 System.out.println("build passed, path contents: " + cp);
 } catch (InvalidAlgorithmParameterException iape) {
 System.err.println("build failed: " + iape);
 System.exit(1);
 } catch (CertPathBuilderException cpbe) {
 System.err.println("build failed: " + cpbe);
 System.exit(1);
 }

Chapter 9
Core Classes and Interfaces

9-14

Certificate/CRL Storage Classes
The Java Certification Path API includes the CertStore class for retrieving certificates
and CRLs from a repository.

This class enables a caller to specify the repository a CertPathValidator or
CertPathBuilder implementation should use to find certificates and CRLs. See the
addCertStores method of the PKIXParameters class.

A CertPathValidator implementation may use the CertStore object that the caller
specifies as a callback mechanism to fetch CRLs for performing revocation checks.
Similarly, a CertPathBuilder may use the CertStore as a callback mechanism to fetch
certificates and, if performing revocation checks, CRLs.

Topics

The CertStore Class

The CertStoreParameters Interface

The CertSelector and CRLSelector Interfaces

The CertStore Class
The CertStore class is an engine class used to provide the functionality of a certificate
and certificate revocation list (CRL) repository.

This class can be used by CertPathBuilder and CertPathValidator implementations to find
certificates and CRLs, or as a general purpose certificate and CRL retrieval
mechanism.

Unlike the java.security.KeyStore class, which provides access to a cache of private
keys and trusted certificates, a CertStore is designed to provide access to a potentially
vast repository of untrusted certificates and CRLs. For example, an LDAP
implementation of CertStore provides access to certificates and CRLs stored in one or
more directories using the LDAP protocol.

All public methods of CertStore objects are thread-safe. That is, multiple threads may
concurrently invoke these methods on a single CertStore object (or more than one)
with no ill effects. This allows a CertPathBuilder to search for a CRL while
simultaneously searching for further certificates, for instance.

Creating a CertStore Object

As with all engine classes, the way to get a CertStore object for a particular repository
type is to call one of the getInstance static factory methods on the CertStore class:

 public static CertStore getInstance(String type,
 CertStoreParameters params)
 public static CertStore getInstance(String type,
 CertStoreParameters params, String provider)
 public static CertStore getInstance(String type,
 CertStoreParameters params, Provider provider)

Chapter 9
Core Classes and Interfaces

9-15

The type parameter is the name of a certificate repository type (for example, "LDAP").
Standard CertStore types are listed in Java Security Standard Algorithm Names
Specification.

The initialization parameters (params) are specific to the repository type. For example,
the initialization parameters for a server-based repository may include the hostname
and the port of the server. An InvalidAlgorithmParameterException is thrown if the
parameters are invalid for this CertStore type. The getCertStoreParameters method
returns the CertStoreParameters that were used to initialize a CertStore:

 public final CertStoreParameters getCertStoreParameters()

Retrieving Certificates

After you have created a CertStore object, you can retrieve certificates from the
repository using the getCertificates method. This method takes a CertSelector
(discussed in more detail later) object as an argument, which specifies a set of
selection criteria for determining which certificates should be returned:

 public final Collection<? extends Certificate> getCertificates(CertSelector
selector)
 throws CertStoreException

This method returns a Collection of java.security.cert.Certificate objects that
satisfy the selection criteria. An empty Collection is returned if there are no matches.
A CertStoreException is usually thrown if an unexpected error condition is encountered,
such as a communications failure with a remote repository.

For some CertStore implementations, it may not be feasible to search the entire
repository for certificates or CRLs that match the specified selection criteria. In these
instances, the CertStore implementation may use information that is specified in the
selectors to locate certificates and CRLs. For instance, an LDAP CertStore may not
search all entries in the directory. Instead, it may just search entries that are likely to
contain the certificates it is looking for. If the CertSelector provided does not provide
enough information for the LDAP CertStore to determine which entries it should look
in, the LDAP CertStore may throw a CertStoreException.

Retrieving CRLs

You can also retrieve CRLs from the repository using the getCRLs method. This method
takes a CRLSelector (discussed in more detail later) object as an argument, which
specifies a set of selection criteria for determining which CRLs should be returned:

 public final Collection<? extends CRL> getCRLs(CRLSelector selector)
 throws CertStoreException

This method returns a Collection of java.security.cert.CRL objects that satisfy the
selection criteria. An empty Collection is returned if there are no matches.

The CertStoreParameters Interface
The CertStoreParameters interface is a transparent representation of the set of
parameters used with a particular CertStore.

Chapter 9
Core Classes and Interfaces

9-16

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

The main purpose of this interface is to group and provide type safety for all certificate
storage parameter specifications. The CertStoreParameters interface extends the
Cloneable interface and defines a clone method that does not throw an exception.
Implementations of this interface should implement and override the Object.clone()
method, if necessary. This allows applications to clone any CertStoreParameters object.

Objects implementing the CertStoreParameters interface are passed as arguments to
the getInstance method of the CertStore class. Two classes implementing the
CertStoreParameters interface are defined in this API: the LDAPCertStoreParameters class
and the CollectionCertStoreParameters class.

The LDAPCertStoreParameters Class

The LDAPCertStoreParameters class is an implementation of the CertStoreParameters
interface and holds a set of minimal initialization parameters (host and port number of
the directory server) for retrieving certificates and CRLs from a CertStore of type
LDAP.

See LDAPCertStoreParameters.

The CollectionCertStoreParameters Class

The CollectionCertStoreParameters class is an implementation of the
CertStoreParameters interface and holds a set of initialization parameters for retrieving
certificates and CRLs from a CertStore of type Collection.

See CollectionCertStoreParameters.

The CertSelector and CRLSelector Interfaces
The CertSelector and CRLSelector interfaces are a specification of the set of criteria for
selecting certificates and CRLs from a collection or large group of certificates and
CRLs.

The interfaces group and provide type safety for all selector specifications. Each
selector interface extends Cloneable and defines a clone() method that does not throw
an exception. This allows applications to clone any CertSelector or CRLSelector object.

The CertSelector and CRLSelector interfaces each define a method named match. The
match method takes a Certificate or CRL object as an argument and returns true if the
object satisfies the selection criteria. Otherwise, it returns false. The match method for
the CertSelector interface is defined as follows:

 public boolean match(Certificate cert)

and for the CRLSelector interface:

 public boolean match(CRL crl)

Typically, objects implementing these interfaces are passed as parameters to the
getCertificates and getCRLs methods of the CertStore class. These methods return a
Collection of Certificates or CRLs from the CertStore repository that match the
specified selection criteria. CertSelectors may also be used to specify the validation
constraints on a target or end-entity certificate in a certification path (see for example,
the PKIXParameters.setTargetCertConstraints method.)

Chapter 9
Core Classes and Interfaces

9-17

https://docs.oracle.com/javase/9/docs/api/java/security/cert/LDAPCertStoreParameters.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/CollectionCertStoreParameters.html

The X509CertSelector Class
The X509CertSelector class is an implementation of the CertSelector interface that
defines a set of criteria for selecting X.509 certificates.

An X509Certificate object must match all of the specified criteria to be selected by the
match method. The selection criteria are designed to be used by a CertPathBuilder
implementation to discover potential certificates as it builds an X.509 certification path.

For example, the setSubject method of X509CertSelector allows a PKIX
CertPathBuilder to filter out X509Certificates that do not match the issuer name of the
preceding X509Certificate in a partially completed chain. By setting this and other
criteria in an X509CertSelector object, a CertPathBuilder is able to discard irrelevant
certificates and more easily find an X.509 certification path that meets the
requirements specified in the CertPathParameters object.

See RFC 5280 for definitions of the X.509 certificate extensions mentioned in this
section.

Creating an X509CertSelector Object

An X509CertSelector object is created by calling the default constructor:

 public X509CertSelector()

No criteria are initially set (any X509Certificate will match).

Setting Selection Criteria

The selection criteria allow a caller to match on different components of an X.509
certificate. A few of the methods for setting selection criteria are described here. See
X509CertSelector.

The setIssuer methods set the issuer criterion:

 public void setIssuer(X500Principal issuer)
 public void setIssuer(String issuerDN)
 public void setIssuer(byte[] issuerDN)

The specified distinguished name (in X500Principal, RFC 2253 String or ASN.1 DER
encoded form) must match the issuer distinguished name in the certificate. If null, any
issuer distinguished name will do. Note that use of an X500Principal to represent a
distinguished name is preferred because it is more efficient and suitably typed.

Similarly, the setSubject methods set the subject criterion:

 public void setSubject(X500Principal subject)
 public void setSubject(String subjectDN)
 public void setSubject(byte[] subjectDN)

The specified distinguished name (in X500Principal, RFC 2253 String or ASN.1 DER
encoded form) must match the subject distinguished name in the certificate. If null, any
subject distinguished name will do.

The setSerialNumber method sets the serialNumber criterion:

Chapter 9
Core Classes and Interfaces

9-18

http://www.ietf.org/rfc/rfc5280.txt
https://docs.oracle.com/javase/9/docs/api/java/security/cert/X509CertSelector.html
http://www.ietf.org/rfc/rfc2253.txt

 public void setSerialNumber(BigInteger serial)

The specified serial number must match the certificate serial number in the certificate.
If null, any certificate serial number will do.

The setAuthorityKeyIdentifier method sets the authorityKeyIdentifier criterion:

 public void setAuthorityKeyIdentifier(byte[] authorityKeyID)

The certificate must contain an Authority Key Identifier extension matching the
specified value. If null, no check will be done on the authorityKeyIdentifier criterion.

The setCertificateValid method sets the certificateValid criterion:

 public void setCertificateValid(Date certValid)

The specified date must fall within the certificate validity period for the certificate. If
null, any date is valid.

The setKeyUsage method sets the keyUsage criterion:

 public void setKeyUsage(boolean[] keyUsage)

The certificate's Key Usage Extension must allow the specified key usage values
(those which are set to true). If null, no keyUsage check will be done.

Getting Selection Criteria

The current values for each of the selection criteria can be retrieved using an
appropriate get method. See X509CertSelector .

Here is an example of retrieving X.509 certificates from an LDAP CertStore with the
X509CertSelector class.

First, we create the LDAPCertStoreParameters object that we will use to initialize the
CertStore object with the hostname and port of the LDAP server:

 LDAPCertStoreParameters lcsp = new
 LDAPCertStoreParameters("ldap.sun.com", 389);

Next, create the CertStore object, and pass it the LDAPCertStoreParameters object, as in
the following statement:

 CertStore cs = CertStore.getInstance("LDAP", lcsp);

This call creates a CertStore object that retrieves certificates and CRLs from an LDAP
repository using the schema defined in RFC 2587.

The following block of code establishes an X509CertSelector to retrieve all unexpired
(as of the current date and time) end-entity certificates issued to a particular subject
with 1) a key usage that allows digital signatures, and 2) a subject alternative name
with a specific email address:

 X509CertSelector xcs = new X509CertSelector();

Chapter 9
Core Classes and Interfaces

9-19

https://docs.oracle.com/javase/9/docs/api/java/security/cert/X509CertSelector.html

 // select only unexpired certificates
 xcs.setCertificateValid(new Date());

 // select only certificates issued to
 // 'CN=alice, O=xyz, C=us'
 xcs.setSubject(new X500Principal("CN=alice, O=xyz, C=us"));

 // select only end-entity certificates
 xcs.setBasicConstraints(-2);

 // select only certificates with a digitalSignature
 // keyUsage bit set (set the first entry in the
 // boolean array to true)
 boolean[] keyUsage = {true};
 xcs.setKeyUsage(keyUsage);

 // select only certificates with a subjectAltName of
 // 'alice@xyz.example.com' (1 is the integer value of
 // an RFC822Name)
 xcs.addSubjectAlternativeName(1, "alice@xyz.example.com");

Then we pass the selector to the getCertificates method of our CertStore object that
we previously created:

 Collection<Certificate> certs = cs.getCertificates(xcs);

A PKIX CertPathBuilder may use similar code to help discover and sort through
potential certificates by discarding those that do not meet validation constraints or
other criteria.

The X509CRLSelector Class
The X509CRLSelector class is an implementation of the CRLSelector interface that
defines a set of criteria for selecting X.509 CRLs.

An X509CRL object must match all of the specified criteria to be selected by the match
method. The selection criteria are designed to be useful to a CertPathValidator or
CertPathBuilder implementation that must retrieve CRLs from a repository to check the
revocation status of certificates in an X.509 certification path.

For example, the setDateAndTime method of X509CRLSelector allows a PKIX
CertPathValidator to filter out X509CRLs that have been issued after or expire before the
time indicated. By setting this and other criteria in an X509CRLSelector object, it allows
the CertPathValidator to discard irrelevant CRLs and more easily check if a certificate
has been revoked.

Please refer to RFC 5280 for definitions of the X.509 CRL fields and extensions
mentioned in this section.

Creating an X509CRLSelector Object

An X509CRLSelector object is created by calling the default constructor:

 public X509CRLSelector()

No criteria are initially set (any X509CRL will match).

Chapter 9
Core Classes and Interfaces

9-20

http://www.ietf.org/rfc/rfc5280.txt

Setting Selection Criteria

The selection criteria allow a caller to match on different components of an X.509 CRL.
Most of the methods for setting selection criteria are described here. Please refer to
the X509CRLSelector Class API documentation for details on the remaining methods.

The setIssuers and setIssuerNames methods set the issuerNames criterion:

 public void setIssuers(Collection<X500Principal> issuers)
 public void setIssuerNames(Collection<?> names)

The issuer distinguished name in the CRL must match at least one of the specified
distinguished names. The setIssuers method is preferred as the use of X500Principals
to represent distinguished names is more efficient and suitably typed. For the
setIssuerNames method, each entry of the names argument is either a String or a byte
array (representing the name, in RFC 2253 or ASN.1 DER encoded form,
respectively). If null, any issuer distinguished name will do.

The setMinCRLNumber and setMaxCRLNumber methods set the minCRLNumber and
maxCRLNumber criterion:

 public void setMinCRLNumber(BigInteger minCRL)
 public void setMaxCRLNumber(BigInteger maxCRL)

The CRL must have a CRL Number extension whose value is greater than or equal to
the specified value if the setMinCRLNumber method is called, and less than or equal to
the specified value if the setMaxCRLNumber method is called. If the value passed to one
of these methods is null, the corresponding check is not done.

The setDateAndTime method sets the dateAndTime criterion:

 public void setDateAndTime(Date dateAndTime)

The specified date must be equal to or later than the value of the thisUpdate
component of the CRL and earlier than the value of the nextUpdate component. If null,
no dateAndTime check will be done.

The setCertificateChecking method sets the certificate whose revocation status is
being checked:

 public void setCertificateChecking(X509Certificate cert)

This is not a criterion. Rather, it is optional information that may help a CertStore find
CRLs that would be relevant when checking revocation for the specified certificate. If
null is specified, then no such optional information is provided. An application should
always call this method when checking revocation for a particular certificate, as it may
provide the CertStore with more information for finding the correct CRLs and filtering
out irrelevant ones.

Getting Selection Criteria

The current values for each of the selection criteria can be retrieved using an
appropriate get method. Please refer to the X509CRLSelector Class API documentation
for further details on these methods.

Chapter 9
Core Classes and Interfaces

9-21

https://docs.oracle.com/javase/9/docs/api/java/security/cert/X509CRLSelector.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/X509CRLSelector.html

Creating an X509CRLSelector to retrieve CRLs from an LDAP repository is similar to the
X509CertSelector example. Suppose we want to retrieve all current (as of the current
date and time) CRLs issued by a specific CA and with a minimum CRL number. First,
we create an X509CRLSelector object and call the appropriate methods to set the
selection criteria:

 X509CRLSelector xcrls = new X509CRLSelector();
 // select CRLs satisfying current date and time
 xcrls.setDateAndTime(new Date());
 // select CRLs issued by 'O=xyz, C=us'
 xcrls.addIssuerName("O=xyz, C=us");
 // select only CRLs with a CRL number at least '2'
 xcrls.setMinCRLNumber(new BigInteger("2"));

Then we pass the selector to the getCRLs method of our CertStore object (created in
the X509CertSelector example):

 Collection<CRL> crls = cs.getCRLs(xcrls);

PKIX Classes
The Java Certification Path API includes a set of algorithm-specific classes modeled
for use with the PKIX certification path validation algorithm.

The PKIX certification path validation algorithm is defined in RFC 5280: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

Topics

The TrustAnchor Class

The PKIXParameters Class

The CertPathValidatorResult Interface

The PolicyNode Interface and PolicyQualifierInfo Class

The PKIXBuilderParameters Class

The PKIXCertPathBuilderResult Class

The PKIXCertPathChecker Class

Using PKIXCertPathChecker in Certificate Path Validation

The TrustAnchor Class
The TrustAnchor class represents a "most-trusted CA", which is used as a trust anchor
for validating X.509 certification paths.

A TrustAnchor includes the public key of the CA, the CA's name, and any constraints
on the set of paths that can be validated using this key. These parameters can be
specified in the form of a trusted X509Certificate or as individual parameters.

All TrustAnchor objects are immutable and thread-safe. That is, multiple threads may
concurrently invoke the methods defined in this class on a single TrustAnchor object (or
more than one) with no ill effects. Requiring TrustAnchor objects to be immutable and

Chapter 9
Core Classes and Interfaces

9-22

http://www.ietf.org/rfc/rfc5280.txt

thread-safe allows them to be passed around to various pieces of code without
worrying about coordinating access.

Note:

Although this class is described as a PKIX class it may be used with other X.
509 certification path validation algorithms.

Creating a TrustAnchor Object

To instantiate a TrustAnchor object, a caller must specify "the most-trusted CA" as a
trusted X509Certificate or public key and distinguished name pair. The caller may also
optionally specify name constraints that are applied to the trust anchor by the
validation algorithm during initialization. Note that support for name constraints on trust
anchors is not required by the PKIX algorithm, therefore a PKIX CertPathValidator or
CertPathBuilder may choose not to support this parameter and instead throw an
exception. Use one of the following constructors to create a TrustAnchor object:

 public TrustAnchor(X509Certificate trustedCert,
 byte[] nameConstraints)
 public TrustAnchor(X500Principal caPrincipal, PublicKey pubKey,
 byte[] nameConstraints)
 public TrustAnchor(String caName, PublicKey pubKey,
 byte[] nameConstraints)

The nameConstraints parameter is specified as a byte array containing the ASN.1 DER
encoding of a NameConstraints extension. An IllegalArgumentException is thrown if
the name constraints cannot be decoded (are not formatted correctly).

Getting Parameter Values

Each of the parameters can be retrieved using a corresponding get method:

 public final X509Certificate getTrustedCert()
 public final X500Principal getCA()
 public final String getCAName()
 public final PublicKey getCAPublicKey()
 public final byte[] getNameConstraints()

Note:

The getTrustedCert method returns null if the trust anchor was specified as a
public key and name pair. Likewise, the getCA, getCAName and getCAPublicKey
methods return null if the trust anchor was specified as an X509Certificate.

The PKIXParameters Class
The PKIXParametersClass class specifies the set of input parameters defined by the
PKIX certification path validation algorithm. It also includes a few additional useful
parameters.

This class implements the CertPathParameters interface.

Chapter 9
Core Classes and Interfaces

9-23

An X.509 CertPath object and a PKIXParameters object are passed as arguments to the
validate method of a CertPathValidator instance implementing the PKIX algorithm. The
CertPathValidator uses the parameters to initialize the PKIX certification path
validation algorithm.

Creating a PKIXParameters Object

To instantiate a PKIXParameters object, a caller must specify "the most-trusted CA(s)"
as defined by the PKIX validation algorithm. The most-trusted CAs can be specified
using one of two constructors:

 public PKIXParameters(Set<TrustAnchor> trustAnchors)
 throws InvalidAlgorithmParameterException
 public PKIXParameters(KeyStore keystore)
 throws KeyStoreException, InvalidAlgorithmParameterException

The first constructor allows the caller to specify the most-trusted CAs as a Set of
TrustAnchor objects. Alternatively, a caller can use the second constructor and specify
a KeyStore instance containing trusted certificate entries, each of which will be
considered as a most-trusted CA.

Setting Parameter Values

After a PKIXParameters object has been created, a caller can set (or replace the current
value of) various parameters. A few of the methods for setting parameters are
described here. Please refer to the PKIXParameters API documentation for details on
the other methods.

The setInitialPolicies method sets the initial policy identifiers, as specified by the
PKIX validation algorithm. The elements of the Set are object identifiers (OIDs)
represented as a String. If the initialPolicies parameter is null or not set, any policy
is acceptable:

 public void setInitialPolicies(Set<String> initialPolicies)

The setDate method sets the time for which the validity of the path should be
determined. If the date parameter is not set or is null, the current date is used:

 public void setDate(Date date)

The setPolicyMappingInhibited method sets the value of the policy mapping inhibited
flag. The default value for the flag, if not specified, is false:

 public void setPolicyMappingInhibited(boolean val)

The setExplicitPolicyRequired method sets the value of the explicit policy required
flag. The default value for the flag, if not specified, is false:

 public void setExplicitPolicyRequired(boolean val)

The setAnyPolicyInhibited method sets the value of the any policy inhibited flag. The
default value for the flag, if not specified, is false:

 public void setAnyPolicyInhibited(boolean val)

Chapter 9
Core Classes and Interfaces

9-24

The setTargetCertConstraints method allows the caller to set constraints on the target
or end-entity certificate. For example, the caller can specify that the target certificate
must contain a specific subject name. The constraints are specified as a CertSelector
object. If the selector parameter is null or not set, no constraints are defined on the
target certificate:

 public void setTargetCertConstraints(CertSelector selector)

The setCertStores method allows a caller to specify a List of CertStore objects that will
be used by a PKIX implementation of CertPathValidator to find CRLs for path
validation. This provides an extensible mechanism for specifying where to locate
CRLs. The setCertStores method takes a List of CertStore objects as a parameter.
The first CertStores in the list may be preferred to those that appear later.

 public void setCertStores(List<CertStore> stores)

The setCertPathCheckers method allows a caller to extend the PKIX validation
algorithm by creating implementation-specific certification path checkers. For example,
this mechanism can be used to process private certificate extensions. The
setCertPathCheckers method takes a list of PKIXCertPathChecker (discussed later) objects
as a parameter:

 public void setCertPathCheckers(List<PKIXCertPathChecker> checkers)

The setRevocationEnabled method allows a caller to disable revocation checking.
Revocation checking is enabled by default, since it is a required check of the PKIX
validation algorithm. However, PKIX does not define how revocation should be
checked. An implementation may use CRLs or OCSP, for example. This method
allows the caller to disable the implementation's default revocation checking
mechanism if it is not appropriate. A different revocation checking mechanism can
then be specified by calling the setCertPathCheckers method, and passing it a
PKIXCertPathChecker that implements the alternate mechanism.

 public void setRevocationEnabled(boolean val)

The setPolicyQualifiersRejected method allows a caller to enable or disable policy
qualifier processing. When a PKIXParameters object is created, this flag is set to true.
This setting reflects the most common (and simplest) strategy for processing policy
qualifiers. Applications that want to use a more sophisticated policy must set this flag
to false.

 public void setPolicyQualifiersRejected(boolean qualifiersRejected)

Getting Parameter Values

The current values for each of the parameters can be retrieved using an appropriate
get method. Please refer to the Class PKIXParameters API documentation for further
details on these methods.

The PKIXCertPathValidatorResult Class
The PKIXCertPathValidatorResult class represents the result of the PKIX certification
path validation algorithm.

Chapter 9
Core Classes and Interfaces

9-25

https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXParameters.html

This class implements the CertPathValidatorResult interface. It holds the valid policy tree
and subject public key resulting from the validation algorithm, and includes methods
(getPolicyTree() and getPublicKey()) for returning them. Instances of
PKIXCertPathValidatorResult are returned by the validate method of CertPathValidator
objects implementing the PKIX algorithm.

Please refer to the PKIXCertPathValidatorResult API documentation for more detailed
information on this class.

The PolicyNode Interface and PolicyQualifierInfo Class
The PKIX validation algorithm defines several outputs related to certificate policy
processing. Most applications will not need to use these outputs, but all providers that
implement the PKIX validation or building algorithm must support them.

The PolicyNode interface represents a node of a valid policy tree resulting from a
successful execution of the PKIX certification path validation. An application can obtain
the root of a valid policy tree using the getPolicyTree method of
PKIXCertPathValidatorResult. Policy Trees are discussed in more detail in the RFC
5280.

The getPolicyQualifiers method of PolicyNode returns a Set of PolicyQualifierInfo
objects, each of which represents a policy qualifier contained in the Certificate Policies
extension of the relevant certificate that this policy applies to.

Most applications will not need to examine the valid policy tree and policy qualifiers.
They can achieve their policy processing goals by setting the policy-related
parameters in PKIXParameters. However, the valid policy tree is available for more
sophisticated applications, especially those that process policy qualifiers.

Please refer to the Interface PolicyNode and PolicyQualifierInfo API documentation
for more detailed information on these classes.

Example 9-1 Example of Validating a Certification Path using the PKIX
algorithm

This is an example of validating a certification path with the PKIX validation algorithm.
The example ignores most of the exception handling and assumes that the certification
path and public key of the trust anchor have already been created.

First, create the CertPathValidator, as in the following line:

 CertPathValidator cpv = CertPathValidator.getInstance("PKIX");

The next step is to create a TrustAnchor object. This will be used as an anchor for
validating the certification path. In this example, the most-trusted CA is specified as a
public key and name (name constraints are not applied and are specified as null):

 TrustAnchor anchor = new TrustAnchor("O=xyz,C=us", pubkey, null);

The next step is to create a PKIXParameters object. This will be used to populate the
parameters used by the PKIX algorithm. In this example, we pass to the constructor a
Set containing a single element - the TrustAnchor we created in the previous step:

 PKIXParameters params = new PKIXParameters(Collections.singleton(anchor));

Chapter 9
Core Classes and Interfaces

9-26

https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXCertPathValidatorResult.html
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://docs.oracle.com/javase/9/docs/api/java/security/cert/PolicyNode.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/PolicyQualifierInfo.html

Next, we populate the parameters object with constraints or other parameters used by
the validation algorithm. In this example, we enable the explicitPolicyRequired flag and
specify a set of initial policy OIDs (the contents of the set are not shown):

 // set other PKIX parameters here
 params.setExplicitPolicyRequired(true);
 params.setInitialPolicies(policyIds);

The final step is to validate the certification path using the input parameter set we have
created:

 try {
 PKIXCertPathValidatorResult result =
 (PKIXCertPathValidatorResult) cpv.validate(certPath, params);
 PolicyNode policyTree = result.getPolicyTree();
 PublicKey subjectPublicKey = result.getPublicKey();
 } catch (CertPathValidatorException cpve) {
 System.out.println("Validation failure, cert["
 + cpve.getIndex() + "] :" + cpve.getMessage());
 }

If the validation algorithm is successful, the policy tree and subject public key resulting
from the validation algorithm are obtained using the getPolicyTree and getPublicKey
methods of PKIXCertPathValidatorResult.

Otherwise, a CertPathValidatorException is thrown and the caller can catch the
exception and print some details about the failure, such as the error message and the
index of the certificate that caused the failure.

The PKIXBuilderParameters Class
The PKIXBuilderParameters class specifies the set of parameters to be used with
CertPathBuilder class.

This class (which extends the PKIXParameters class) specifies the set of parameters to be
used with CertPathBuilder class that build certification paths validated against the
PKIX certification path validation algorithm.

A PKIXBuilderParameters object is passed as an argument to the build method of a
CertPathBuilder instance implementing the PKIX algorithm. All PKIX CertPathBuilders
must return certification paths which have been validated according to the PKIX
certification path validation algorithm.

Please note that the mechanism that a PKIX CertPathBuilder uses to validate a
constructed path is an implementation detail. For example, an implementation might
attempt to first build a path with minimal validation and then fully validate it using an
instance of a PKIX CertPathValidator, whereas a more efficient implementation may
validate more of the path as it is building it, and backtrack to previous stages if it
encounters validation failures or dead-ends.

Creating a PKIXBuilderParameters Object

Creating a PKIXBuilderParameters object is similar to creating a PKIXParameters object.
However, a caller must specify constraints on the target or end-entity certificate when
creating a PKIXBuilderParameters object. These constraints should provide the
CertPathBuilder with enough information to find the target certificate. The constraints

Chapter 9
Core Classes and Interfaces

9-27

are specified as a CertSelector object. Use one of the following constructors to create
a PKIXBuilderParameters object:

 public PKIXBuilderParameters(Set<TrustAnchor> trustAnchors,
 CertSelector targetConstraints)
 throws InvalidAlgorithmParameterException
 public PKIXBuilderParameters(KeyStore keystore,
 CertSelector targetConstraints)
 throws KeyStoreException, InvalidAlgorithmParameterException

Getting/Setting Parameter Values

The PKIXBuilderParameters class inherits all of the parameters that can be set in the
PKIXParameters class. In addition, the setMaxPathLength method can be called to place a
limit on the maximum number of certificates in a certification path:

 public void setMaxPathLength(int maxPathLength)

The maxPathLength parameter specifies the maximum number of non-self-issued
intermediate certificates that may exist in a certification path. A CertPathBuilder
instance implementing the PKIX algorithm must not build paths longer than the length
specified. If the value is 0, the path can only contain a single certificate. If the value is
-1, the path length is unconstrained (i.e., there is no maximum). The default maximum
path length, if not specified, is 5. This method is useful to prevent the CertPathBuilder
from spending resources and time constructing long paths that may or may not meet
the caller's requirements.

If any of the CA certificates in the path contain a Basic Constraints extension, the
value of the pathLenConstraint component of the extension overrides the value of the
maxPathLength parameter whenever the result is a certification path of smaller length.
There is also a corresponding getMaxPathLength method for retrieving this parameter:

 public int getMaxPathLength()

Also, the setCertStores method (inherited from the PKIXParameters class) is typically
used by a PKIX implementation of CertPathBuilder to find Certificates for path
construction as well as finding CRLs for path validation. This provides an extensible
mechanism for specifying where to locate Certificates and CRLs.

The PKIXCertPathBuilderResult Class
The PKIXCertPathBuilderResult class represents the successful result of the PKIX
certification path construction algorithm.

This class extends the PKIXCertPathValidatorResult class and implements the
CertPathBuilder interface. Instances of PKIXCertPathBuilderResult are returned by the
build method of CertPathBuilder objects implementing the PKIX algorithm.

The getCertPath method of a PKIXCertPathBuilderResult instance always returns a
CertPath object validated using the PKIX certification path validation algorithm. The
returned CertPath object does not include the most-trusted CA certificate that may
have been used to anchor the path. Instead, use the getTrustAnchor method to get the
Certificate of the most-trusted CA.

Chapter 9
Core Classes and Interfaces

9-28

See the PKIXCertPathBuilderResult API documentation for more detailed information
on this class.

Example 9-2 Example of Building a Certification Path using the PKIX algorithm

This is an example of building a certification path validated against the PKIX algorithm.
Some details have been left out, such as exception handling, and the creation of the
trust anchors and certificates for populating the CertStore.

First, create the CertPathBuilder, as in the following example:

 CertPathBuilder cpb = CertPathBuilder.getInstance("PKIX");

This call creates a CertPathBuilder object that returns paths validated against the PKIX
algorithm.

The next step is to create a PKIXBuilderParameters object. This will be used to populate the
PKIX parameters used by the CertPathBuilder:

 // Create parameters object, passing it a Set of
 // trust anchors for anchoring the path
 // and a target subject DN.
 X509CertSelector targetConstraints = new X509CertSelector();
 targetConstraints.setSubject("CN=alice,O=xyz,C=us");
 PKIXBuilderParameters params =
 new PKIXBuilderParameters(trustAnchors, targetConstraints);

The next step is to specify the CertStore that the CertPathBuilder will use to look for
certificates and CRLs. For this example, we will populate a Collection CertStore with
the certificates and CRLs:

 CollectionCertStoreParameters ccsp =
 new CollectionCertStoreParameters(certsAndCrls);
 CertStore store = CertStore.getInstance("Collection", ccsp);
 params.addCertStore(store);

The next step is to build the certification path using the input parameter set we have
created:

 try {
 PKIXCertPathBuilderResult result =
 (PKIXCertPathBuilderResult) cpb.build(params);
 CertPath cp = result.getCertPath();
 } catch (CertPathBuilderException cpbe) {
 System.out.println("build failed: " + cpbe.getMessage());
 }

If the CertPathBuilder cannot build a path that meets the supplied parameters it will
throw a CertPathBuilderException. Otherwise, the validated certification path can be
obtained from the PKIXCertPathBuilderResult using the getCertPath method.

The PKIXCertPathChecker Class
The PKIXCertPathChecker class allows a user to extend a PKIX CertPathValidator or
CertPathBuilder implementation. This is an advanced feature that most users will not

Chapter 9
Core Classes and Interfaces

9-29

https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXCertPathBuilderResult.html

need to understand. However, anyone implementing a PKIX service provider should
read this section

The PKIXCertPathChecker class is an abstract class that executes one or more checks
on an X.509 certificate. Developers should create concrete implementations of the
PKIXCertPathChecker class when it is necessary to dynamically extend a PKIX
CertPathValidator or CertPathBuilder implementation at runtime. The following are a
few examples of when a PKIXCertPathChecker implementation is useful:

• If the revocation mechanism supplied by a PKIX CertPathValidator or
CertPathBuilder implementation is not adequate: For example, you can use the
PKIXRevocationChecker (introduced in JDK 8; see Check Revocation Status of
Certificates with PKIXRevocationChecker Class) to have more control over the
revocation mechanism, or you can implement your own PKIXCertPathChecker to
check that certificates have not been revoked.

• If the user wants to recognize certificates containing a critical private extension.
Since the extension is private, it will not be recognized by the PKIX
CertPathValidator or CertPathBuilder implementation and a
CertPathValidatorException will be thrown. In this case, a developer can implement
a PKIXCertPathChecker that recognizes and processes the critical private extension.

• If the developer wants to record information about each certificate processed for
debugging or display purposes.

• If the user wants to reject certificates with certain policy qualifiers.

The setCertPathCheckers method of the PKIXParameters class allows a user to pass a
List of PKIXCertPathChecker objects to a PKIX CertPathValidator or CertPathBuilder
implementation. Each of the PKIXCertPathChecker objects will be called in turn, for each
certificate processed by the PKIX CertPathValidator or CertPathBuilder
implementation.

Creating and using a PKIXCertPathChecker Object

The PKIXCertPathChecker class does not have a public constructor. This is intentional,
since creating an instance of PKIXCertPathChecker is an implementation-specific issue.
For example, the constructor for a PKIXCertPathChecker implementation that uses
OCSP to check a certificate's revocation status may require the hostname and port of
the OCSP server:

 PKIXCertPathChecker checker = new OCSPChecker("ocsp.sun.com", 1321);

Once the checker has been instantiated, it can be added as a parameter using the
addCertPathChecker method of the PKIXParameters class:

 params.addCertPathChecker(checker);

Alternatively, a List of checkers can be added using the setCertPathCheckers method
of the PKIXParameters class.

Implementing a PKIXCertPathChecker Object

The PKIXCertPathChecker class is abstract. It has four methods (check,
getSupportedExtensions, init, and isForwardCheckingSupported) that all concrete
subclasses must implement.

Chapter 9
Core Classes and Interfaces

9-30

https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXRevocationChecker.html

Implementing a PKIXCertPathChecker may be trivial or complex. A PKIXCertPathChecker
implementation can be stateless or stateful. A stateless implementation does not
maintain state between successive calls of the check method. For example, a
PKIXCertPathChecker that checks that each certificate contains a particular policy
qualifier is stateless. In contrast, a stateful implementation does maintain state
between successive calls of the check method. The check method of a stateful
implementation usually depends on the contents of prior certificates in the certification
path. For example, a PKIXCertPathChecker that processes the NameConstraints
extension is stateful.

Also, the order in which the certificates processed by a service provider
implementation are presented (passed) to a PKIXCertPathChecker is very important,
especially if the implementation is stateful. Depending on the algorithm used by the
service provider, the certificates may be presented in reverse or forward order. A
reverse ordering means that the certificates are ordered from the most trusted CA (if
present) to the target subject, whereas a forward ordering means that the certificates
are ordered from the target subject to the most trusted CA. The order must be made
known to the PKIXCertPathChecker implementation, so that it knows how to process
consecutive certificates.

Initializing a PKIXCertPathChecker Object

The init method initializes the internal state of the checker:

 public abstract void init(boolean forward)

All stateful implementations should clear or initialize any internal state in the checker.
This prevents a service provider implementation from calling a checker that is in an
uninitialized state. It also allows stateful checkers to be reused in subsequent
operations without reinstantiating them. The forward parameter indicates the order of
the certificates presented to the PKIXCertPathChecker. If forward is true, the certificates
are presented from target to trust anchor; if false, from trust anchor to target.

Forward Checking

The isForwardCheckingSupported method returns a boolean that indicates if the
PKIXCertPathChecker supports forward checking:

 public abstract boolean isForwardCheckingSupported()

All PKIXCertPathChecker implementations mustsupport reverse checking. A
PKIXCertPathChecker implementation maysupport forward checking.

Supporting forward checking improves the efficiency of CertPathBuilders that build
forward, since it allows paths to be checked as they are built. However, some stateful
PKIXCertPathCheckers may find it difficult or impossible to support forward checking.

Supported Extensions

The getSupportedExtensions method returns an immutable Set of OID Strings for the X.
509 extensions that the PKIXCertPathChecker implementation supports (i.e., recognizes,
is able to process):

 public abstract Set<String> getSupportedExtensions()

Chapter 9
Core Classes and Interfaces

9-31

The method should return null if no extensions are processed. All implementations
should return the Set of OID Strings that the check method may process.

A CertPathBuilder can use this information to identify certificates with unrecognized
critical extensions, even when performing a forward build with a PKIXCertPathChecker
that does not support forward checking.

Executing the Check

The following method executes a check on the certificate:

 public abstract void
 check(Certificate cert, Collection<String> unresolvedCritExts)
 throws CertPathValidatorException

The unresolvedCritExts parameter contains a collection of OIDs as Strings. These
OIDs represent the set of critical extensions in the certificate that have not yet been
resolved by the certification path validation algorithm. Concrete implementations of the
check method should remove any critical extensions that it processes from the
unresolvedCritExts parameter.

If the certificate does not pass the check(s), a CertPathValidatorException should be
thrown.

Cloning a PKIXCertPathChecker

The PKIXCertPathChecker class implements the Cloneable interface. All stateful
PKIXCertPathChecker implementations must override the clone method if necessary.
The default implementation of the clone method calls the Object.clone method, which
performs a simple clone by copying all fields of the original object to the new object. A
stateless implementation should not override the clone method. However, all stateful
implementations must ensure that the default clone method is correct, and override it if
necessary. For example, a PKIXCertPathChecker that stores state in an array must
override the clone method to make a copy of the array, rather than just a reference to
the array.

The reason that PKIXCertPathChecker objects are Cloneable is to allow a PKIX
CertPathBuilder implementation to efficiently backtrack and try another path when a
potential certification path reaches a dead end or point of failure. In this case, the
implementation is able to restore prior path validation states by restoring the cloned
objects.

Example 9-3 Sample Code to Check for a Private Extension

This is an example of a stateless PKIXCertPathChecker implementation. It checks if a
private extension exists in a certificate and processes it according to some rules.

 import java.security.cert.Certificate;
 import java.security.cert.X509Certificate;
 import java.util.Collection;
 import java.util.Collections;
 import java.util.Set;
 import java.security.cert.PKIXCertPathChecker;
 import java.security.cert.CertPathValidatorException;

 public class MyChecker extends PKIXCertPathChecker {
 private static Set supportedExtensions =
 Collections.singleton("2.16.840.1.113730.1.1");

Chapter 9
Core Classes and Interfaces

9-32

 /*
 * Initialize checker
 */
 public void init(boolean forward)
 throws CertPathValidatorException {
 // nothing to initialize
 }

 public Set getSupportedExtensions() {
 return supportedExtensions;
 }

 public boolean isForwardCheckingSupported() {
 return true;
 }

 /*
 * Check certificate for presence of Netscape's
 * private extension
 * with OID "2.16.840.1.113730.1.1"
 */
 public void check(Certificate cert,
 Collection unresolvedCritExts)
 throws CertPathValidatorException
 {
 X509Certificate xcert = (X509Certificate) cert;
 byte[] ext =
 xcert.getExtensionValue("2.16.840.1.113730.1.1");
 if (ext == null)
 return;

 //
 // process private extension according to some
 // rules - if check fails, throw a
 // CertPathValidatorException ...
 // {insert code here}

 // remove extension from collection of unresolved
 // extensions (if it exists)
 if (unresolvedCritExts != null)
 unresolvedCritExts.remove("2.16.840.1.113730.1.1");
 }
 }

How a PKIX Service Provider implementation should use a
PKIXCertPathChecker

Each PKIXCertPathChecker object must be initialized by a service provider
implementation before commencing the build or validation algorithm, for example:

 List<PKIXCertPathChecker> checkers = params.getCertPathCheckers();
 for (PKIXCertPathChecker checker : checkers) {
 checker.init(false);
 }

For each certificate that it validates, the service provider implementation must call the
check method of each PKIXCertPathChecker object in turn, passing it the certificate and
any remaining unresolved critical extensions:

Chapter 9
Core Classes and Interfaces

9-33

 for (PKIXCertPathChecker checker : checkers) {
 checker.check(cert, unresolvedCritExts);
 }

If any of the checks throw a CertPathValidatorException, a CertPathValidator
implementation should terminate the validation procedure. However, a CertPathBuilder
implementation may simply log the failure and continue to search for other potential
paths. If all of the checks are successful, the service provider implementation should
check that all critical extensions have been resolved and if not, consider the validation
to have failed. For example:

 if (unresolvedCritExts != null &&
 !unresolvedCritExts.isEmpty())
 {
 // note that a CertPathBuilder may have an enclosing
 // try block to catch the exception below and continue on error
 throw new CertPathValidatorException
 ("Unrecognized Critical Extension");
 }

As discussed in the previous section, a CertPathBuilder implementation may need to
backtrack when a potential certification path reaches a dead end or point of failure.
Backtracking in this context implies returning to the previous certificate in the path and
checking for other potential paths. If the CertPathBuilder implementation is validating
the path as it is building it, it will need to restore the previous state of each
PKIXCertPathChecker. It can do this by making clones of the PKIXCertPathChecker objects
before each certificate is processed, for example:

 /* clone checkers */
 List newList = new ArrayList(checkers);
 ListIterator li = newList.listIterator();
 while (li.hasNext()) {
 PKIXCertPathChecker checker = (PKIXCertPathChecker) li.next();
 li.set(checker.clone());
 }

Using PKIXCertPathChecker in Certificate Path Validation
Using a PKIXCertPathChecker to customize certificate path validation is relatively
straightforward.

Basic Certification Path Validation

First, consider code that validates a certificate path:

Set<TrustAnchor> trustAnchors = getTrustAnchors();
CertPath cp = getCertPath();

PKIXParameters pkixp = new PKIXParameters(trustAnchors);
pkixp.setRevocationEnabled(false);

CertPathValidator cpv = CertPathValidator.getInstance("PKIX");
PKIXCertPathValidatorResult pcpvr =
 (PKIXCertPathValidatorResult)cpv.validate(cp, pkixp);

Chapter 9
Core Classes and Interfaces

9-34

If the validation fails, the validate() method throws an exception.

The fundamental steps are as follows:

1. Obtain the CA root certificates and the certification path to be validated.

2. Create a PKIXParameters with the trust anchors.

3. Use a CertPathValidator to validate the certificate path.

In this example, getTrustAnchors() and getCertPath() are the methods that obtain CA
root certificates and the certification path.

The getTrustAnchors() method in the example must return a Set of TrustAnchors that
represent the CA root certificates you wish to use for validation. Here is one simple
implementation that loads a single CA root certificate from a file:

public Set<TrustAnchor> getTrustAnchors()
 throws IOException, CertificateException {

 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 X509Certificate c;
 try (InputStream in = new FileInputStream("x509_ca-certificate.cer")) {
 c = (X509Certificate)cf.generateCertificate(in);
 }

 TrustAnchor anchor = new TrustAnchor(c, null);
 return Collections.singleton(anchor);
}

Similarly, here is a simple implementation of getCertPath() that loads a certificate path
from a file:

public CertPath getCertPath() throws IOException, CertificateException {
 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 CertPath cp;
 try (InputStream in = new FileInputStream("certpath.pkcs7")) {
 cp = cf.generateCertPath(in, "PKCS7");
 }
 return cp;
}

Note that PKCS#7 does not require a specific order for the certificates in the file, so
this code only works for certification path validation when the certificates are ordered
starting from the entity to be validated and progressing back toward the CA root. If the
certificates are not in the right order, you need to do some additional processing.
CertificateFactory has a generateCertPath() method that accepts a Collection, which
is useful for this type of processing.

Adding in a PKIXCertPathChecker

To customize certification path validation, add a PKIXCertPathChecker as follows. In this
example, SimpleChecker is a PKIXCertPathChecker subclass. The new lines are shown in
bold.

Set<TrustAnchor> trustAnchors = getTrustAnchors();
CertPath cp = getCertPath();

Chapter 9
Core Classes and Interfaces

9-35

PKIXParameters pkixp = new PKIXParameters(trustAnchors);
pkixp.setRevocationEnabled(false);

SimpleChecker sc = new SimpleChecker();
pkixp.addCertPathChecker(sc);

CertPathValidator cpv = CertPathValidator.getInstance("PKIX");
PKIXCertPathValidatorResult pcpvr =
 (PKIXCertPathValidatorResult)cpv.validate(cp, pkixp);

SimpleChecker is a rudimentary subclass of PKIXCertPathChecker. Its check() method is
called for every certificate in the certification path that is being validated. SimpleChecker
uses an AlgorithmConstraints implementation to examine the signature algorithm and
public key of each certificate.

import java.security.AlgorithmConstraints;
import java.security.CryptoPrimitive;
import java.security.Key;
import java.security.cert.*;
import java.util.*;

public class SimpleChecker extends PKIXCertPathChecker {
 private final static Set<CryptoPrimitive> SIGNATURE_PRIMITIVE_SET =
 EnumSet.of(CryptoPrimitive.SIGNATURE);

 public void init(boolean forward) throws CertPathValidatorException {}

 public boolean isForwardCheckingSupported() { return true; }

 public Set<String> getSupportedExtensions() { return null; }

 public void check(Certificate cert,
 Collection<String> unresolvedCritExts)
 throws CertPathValidatorException {
 X509Certificate c = (X509Certificate)cert;
 String sa = c.getSigAlgName();
 Key key = c.getPublicKey();

 AlgorithmConstraints constraints = new SimpleConstraints();

 if (constraints.permits(SIGNATURE_PRIMITIVE_SET, sa, null) == false)
 throw new CertPathValidatorException("Forbidden algorithm: " + sa);

 if (constraints.permits(SIGNATURE_PRIMITIVE_SET, key) == false)
 throw new CertPathValidatorException("Forbidden key: " + key);
 }
}

Finally, SimpleConstraints is an AlgorithmConstraints implementation that requires
RSA 2048.

import java.security.AlgorithmConstraints;
import java.security.AlgorithmParameters;
import java.security.CryptoPrimitive;
import java.security.Key;
import java.security.interfaces.RSAKey;
import java.util.Set;

Chapter 9
Core Classes and Interfaces

9-36

public class SimpleConstraints implements AlgorithmConstraints {
 public boolean permits(Set<CryptoPrimitive> primitives,
 String algorithm, AlgorithmParameters parameters) {
 return permits(primitives, algorithm, null, parameters);
 }

 public boolean permits(Set<CryptoPrimitive> primitives, Key key) {
 return permits(primitives, null, key, null);
 }

 public boolean permits(Set<CryptoPrimitive> primitives,
 String algorithm, Key key, AlgorithmParameters parameters) {
 if (algorithm == null) algorithm = key.getAlgorithm();

 if (algorithm.indexOf("RSA") == -1) return false;

 if (key != null) {
 RSAKey rsaKey = (RSAKey)key;
 int size = rsaKey.getModulus().bitLength();
 if (size < 2048) return false;
 }

 return true;
 }
}

Check Revocation Status of Certificates with PKIXRevocationChecker Class
An instance of PKIXRevocationChecker checks the revocation status of certificates with
the Online Certificate Status Protocol (OCSP) or Certificate Revocation Lists (CRLs).

The PKIXRevocationChecker (introduced in JDK 8), which is a subclass of
PKIXCertPathChecker, checks the revocation status of certificates with the PKIX
algorithm.

An instance of PKIXRevocationChecker checks the revocation status of certificates with
the Online Certificate Status Protocol (OCSP) or Certificate Revocation Lists (CRLs).
OCSP is described in RFC 2560 and is a network protocol for determining the status
of a certificate. A CRL is a time-stamped list identifying revoked certificates, and RFC
5280 describes an algorithm for determining the revocation status of certificates using
CRLs.

Each PKIX CertPathValidator and CertPathBuilder instance provides a default
revocation implementation that is enabled by default. If you want more control over the
revocation settings used by that implementation, use the PKIXRevocationChecker class.

Follow these general steps to check the revocation status of a certificate path with the
PKIXRevocationChecker class:

1. Obtain a PKIXRevocationChecker instance by calling the getRevocationChecker
method of a PKIX CertPathValidator or CertPathBuilder instance.

2. Set additional parameters and options specific to certificate revocation with
methods contained in the PKIXRevocationChecker class. These methods include
setOCSPResponder(URI), which sets the URI that identifies the location of the OCSP
responder (although normally the URI is included in the certificate and does not
have to be set) and setOptions(Set<PKIXRevocationChecker.Option>), which sets
revocation options. PKIXRevocationChecker.Option is an enumerated type used to
specify the following options:

Chapter 9
Core Classes and Interfaces

9-37

https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXRevocationChecker.html
http://www.ietf.org/rfc/rfc2560.txt
https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXRevocationChecker.html#setOcspResponder-java.net.URI-
https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXRevocationChecker.html#setOptions-java.util.Set-
https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXRevocationChecker.Option.html

• ONLY_END_ENTITY: Only check the revocation status of end-entity certificates.

• PREFER_CRLS: By default, OCSP is the preferred mechanism for checking
revocation status, with CRLs as the fallback mechanism. Switch this
preference to CRLs with this option.

• SOFT_FAIL: Ignore network failures.

3. After obtaining an instance of PKIXRevocationChecker, add it to a PKIXParameters or
PKIXBuilderParameters object with the addCertPathChecker or setCertPathCheckers
method.

4. Follow one of these steps depending on whether you are using a PKIX
CertPathValidator or CertPathBuilder instance:

• If you are using a PKIX CertPathValidator instance, call the validate method
using as arguments the certificate path you want to validate and the
PKIXParameters object that contains a revocation checker.

• If you are using a PKIX CertPathBuilder instance, call the build method using
as arguments the PKIXBuilderParameters object that contains a revocation
checker.

5. Call the validate method of the PKIX CertPathValidator or CertPathBuilder
instance using as arguments the certificate path you want to validate and the
PKIXParameters or PKIXBuilderParameters object that contains a revocation checker.

The following excerpt checks the revocation status of certificates contained in a
certificate path. The CertPath object path is the certificate path, and params is an object
of type PKIXParameters:

 CertPathValidator cpv = CertPathValidator.getInstance("PKIX");
 PKIXRevocationChecker rc = (PKIXRevocationChecker)cpv.getRevocationChecker();
 rc.setOptions(EnumSet.of(Option.SOFT_FAIL));
 params.addCertPathChecker(rc);
 params.setRevocationEnabled(false);
 CertPathValidatorResult res = cpv.validate(path, params);

In this excerpt, the SOFT_FAIL option causes the revocation checker to ignore any
network failures (such as failing to establish a connection to the OCSP server) when it
checks the revocation status.

Implementing a Service Provider
Experienced programmers can create their own provider packages supplying
certification path service implementations.

This section assumes that you have read Java Cryptography Architecture (JCA)
Reference Guide.

The following engine classes are defined in the Java Certification Path API:

• CertPathValidator - used to validate certification paths

• CertPathBuilder - used to build certification paths

• CertStore - used to retrieve certificates and CRLs from a repository

In addition, the pre-existing CertificateFactory engine class also supports the
generation of certification paths.

Chapter 9
Implementing a Service Provider

9-38

https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXParameters.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXParameters.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXCertPathValidatorResult.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPathBuilder.html#build-java.security.cert.CertPathParameters-

The application interfaces supplied by an engine class are implemented in terms of a
"Service Provider Interface" (SPI). The name of each SPI class is the same as that of
the corresponding engine class, followed by "Spi". For example, the SPI class
corresponding to the CertPathValidator engine class is the CertPathValidatorSpi class.
Each SPI class is abstract. To supply the implementation of a particular type of
service, for a specific algorithm or type, a provider must subclass the corresponding
SPI class and provide implementations for all the abstract methods. For example, the
CertStore class provides access to the functionality of retrieving certificates and CRLs
from a repository. The actual implementation supplied in a CertStoreSpi subclass
would be that for a specific type of certificate repository, such as LDAP.

Steps to Implement and Integrate a Provider
When implementing and integrating a provider for the certification path services, you
must ensure that certain information is provided.

Developers should follow the Steps to Implement and Integrate a Provider. Here are
some additional rules to follow for certain steps:

Step 3: Write your "Master Class", a subclass of Provider

In Step 3: Write Your Master Class, a Subclass of Provider these are the properties
that must be defined for the certification path services, where the algorithm name is
substituted for algName, and certstore type for storeType:

• CertPathValidator.algName

• CertPathBuilder.algName

• CertStore.storeType

See Java Security Standard Algorithm Names Specification for the standard names
that are defined for algName and storeType. The value of each property must be the
fully qualified name of the class implementing the specified algorithm, or certstore
type. That is, it must be the package name followed by the class name, where the two
are separated by a period. For example, a provider sets the CertPathValidator.PKIX
property to have the value
"sun.security.provider.certpath.PKIXCertPathValidator" as follows:

put("CertPathValidator.PKIX", "sun.security.provider.certpath.PKIXCertPathValidator")

In addition, service attributes can be defined for the certification path services. These
attributes can be used as filters for selecting service providers. See Appendix A for the
definition of some standard service attributes. For example, a provider may set the
ValidationAlgorithm service attribute to the name of an RFC or specification that
defines the PKIX validation algorithm:

put("CertPathValidator.PKIX ValidationAlgorithm", "RFC5280");

Step 11: Document your Provider and its Supported Services

In Step 12: Document Your Provider and Its Supported Services, certification path
service providers should document the following information for each SPI:

Certificate Factories

Chapter 9
Implementing a Service Provider

9-39

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec

A provider should document what types of certification paths (and the version numbers
of the certificates in the path, if relevant) can be created by the factory. A provider
should describe the ordering of the certificates in the certification path, as well as the
contents.

A provider should document the list of encoding formats supported. This is not
technically necessary, since the client can request them by calling the
getCertPathEncodings method. However, the documentation should describe
each encoding format in more detail and reference any standards when applicable.

Certification Path Validators

A provider should document any relevant information regarding the CertPathValidator
implementation, including the types of certification paths that it validates. In particular,
a PKIX CertPathValidator implementation should document the following information:

• The RFC or specification it is compliant with.

• The mechanism it uses to check that certificates have not been revoked.

• Any optional certificate or CRL extensions that it recognizes and how it processes
them.

Certification Path Builders

A provider should document any relevant information regarding the CertPathBuilder
implementation, including the types of certification paths that it creates and whether or
not they are validated. In particular a PKIX CertPathBuilder implementation should
document the following information:

• The RFC or specification it is compliant with.

• The mechanism it uses to check that certificates have not been revoked.

• Any optional certificate or CRL extensions that it recognizes and how it processes
them.

• Details on the algorithm it uses for finding certification paths. Ex: depth-first,
breadth-first, forward (i.e., from target to trust anchor(s)), reverse (i.e., from trust
anchor(s) to target).

• The algorithm it uses to select and sort potential certificates. For example, given
two certificates that are potential candidates for the next certificate in the path,
what criteria are used to select one before the other? What criteria are used to
reject a certificate?

• If applicable, the algorithm it uses for backtracking or constructing another path
(i.e., when potential paths do not meet constraints).

• The types of CertStore implementations that have been tested. The
implementation should be designed to work with any CertStore type, but this
information may still be useful.

All CertPathBuilder implementations should provide additional debugging support, in
order to analyze and correct potential path building problems. Details on how to
access this debugging information should be documented.

Certificate/CRL Stores

A provider should document what types of certificates and CRLs (and the version
numbers, if relevant) are retrieved by the CertStore.

Chapter 9
Implementing a Service Provider

9-40

A provider should also document any relevant information regarding the CertStore
implementation (such as protocols used or formats supported). For example, an LDAP
CertStore implementation should describe which versions of LDAP are supported and
which standard attributes are used for finding certificates and CRLs. It should also
document if the implementation caches results, and for how long (i.e., under what
conditions are they refreshed).

If the implementation returns the certificates and CRLs in a particular order, it should
describe the sorting algorithm. An implementation should also document any
additional or default initialization parameters. Finally, an implementation should
document if and how it uses information in the CertSelector or CRLSelector objects to
find certificates and CRLs.

Service Interdependencies
Common types of algorithm interdependencies in certification path service
implementations.

The following are some common types of algorithm interdependencies in certification
path service implementations:

• Certification Path Validation and Signature Algorithms

A CertPathValidator implementation often requires use of a signature algorithm to
verify each certificate's digital signature. The setSigProvider method of the
PKIXParameters class allows a user to specify a specific Signature provider.

• Certification Path Builders and Certificate Factories

A CertPathBuilder implementation will often utilize a CertificateFactory to
generate a certification path from a list of certificates.

• CertStores and Certificate Factories

A CertStore implementation will often utilize a CertificateFactory to generate
certificates and CRLs from their encodings. For example, an LDAP CertStore
implementation may use an X.509 CertificateFactory to generate X.509
certificates and CRLs from their ASN.1 encoded form.

Certification Path Parameter Specification Interfaces
The Certification Path API contains two interfaces representing transparent
specifications of parameters, the CertPathParameters and CertStoreParameters
interfaces.

Two implementations of the CertPathParameters interface are included, the
PKIXParameters and PKIXBuilderParameters classes. If you are working with PKIX
certification path validation and algorithm parameters, you can utilize these classes. If
you need parameters for a different algorithm, you will need to supply your own
CertPathParameters implementation for that algorithm.

Two implementations of the CertStoreParameters interface are included, the
LDAPCertStoreParameters and the CollectionCertStoreParameters classes. These
classes are to be used with LDAP and Collection CertStore implementations,
respectively. If you need parameters for a different repository type, you will need to
supply your own CertStoreParameters implementation for that type.

The CertPathParameters and CertStoreParameters interfaces each define a clone
method that implementations should override. A typical implementation will perform a

Chapter 9
Implementing a Service Provider

9-41

"deep" copy of the object, such that subsequent changes to the copy will not affect the
original (and vice versa). However, this is not an absolute requirement for
implementations of CertStoreParameters. A shallow copy implementation of clone is
more appropriate for applications that need to hold a reference to a parameter
contained in the CertStoreParameters. For example, since CertStore.getInstance
makes a clone of the specified CertStoreParameters, a shallow copy clone allows an
application to hold a reference to and later release the resources of a particular
CertStore initialization parameter, rather than waiting for the garbage collection
mechanism. This should be done with the utmost care, since the CertStore may still be
in use by other threads.

Certification Path Result Specification Interfaces
The Certification Path API contains two interfaces representing transparent
specifications of results, the CertPathValidatorResult and CertPathBuilderResult
interfaces.

One implementation for each of the interfaces is included: the
PKIXCertPathValidatorResult and PKIXCertPathBuilderResult classes. If you are
implementing PKIX certification path service providers, you can utilize these classes. If
you need certification path results for a different algorithm, you will need to supply your
own CertPathValidatorResult or CertPathBuilderResult implementation for that
algorithm.

A PKIX implementation of a CertPathValidator or a CertPathBuilder may find it useful
to store additional information in the PKIXCertPathValidatorResult or
PKIXCertPathBuilderResult, such as debugging traces. In these cases, the
implementation should implement a subclass of the appropriate result class with
methods to retrieve the relevant information. These classes must be shipped with the
provider classes, for example, as part of the provider JAR file.

Certification Path Exception Classes
The Certification Path API contains a set of exception classes for handling errors.
CertPathValidatorException, CertPathBuilderException, and CertStoreException are
subclasses of GeneralSecurityException.

You may need to extend these classes in your service provider implementation.

For example, a CertPathBuilder implementation may provide additional information
such as debugging traces when a CertPathBuilderException is thrown. The
implementation may throw a subclass of CertPathBuilderException that holds this
information. Likewise, a CertStore implementation can provide additional information
when a failure occurs by throwing a subclass of CertStoreException . Also, you may
want to implement a subclass of CertPathValidatorException to describe a particular
failure mode of your CertPathValidator implementation.

In each case, the new exception classes must be shipped with the provider classes,
for example, as part of the provider JAR file. Each provider should document the
exception subclasses.

Appendix A: Standard Names
The Java Certification Path API requires and utilizes a set of standard names for
certification path validation algorithms, encodings and certificate storage types.

Chapter 9
Appendix A: Standard Names

9-42

The standard names previously found here in Appendix A and in the other security
specifications (JCA/JSSE/etc.) have been combined in the Java Security Standard
Algorithm Names Specification. Specific provider information can be found in the JDK
Providers.

Please note that a service provider may choose to define a new name for a proprietary
or non-standard algorithm that is not mentioned in the Standard Names document.
However, to prevent name collisions, it is recommended that the name be prefixed
with the reverse Internet domain name of the provider's organization (for example:
com.sun.MyCertPathValidator).

Appendix B: CertPath Implementation in SUN Provider
The "SUN" provider supports the following standard algorithms, types and encodings:

• CertificateFactory: X.509 CertPath type with PKCS7 and PkiPath encodings

• CertPathValidator: PKIX algorithm

• CertPathBuilder: PKIX algorithm

• CertStore: Collection CertStore type

Each of these service provider interface implementations is discussed in more detail
below.

CertificateFactory

The "SUN" provider for the CertificateFactory engine class supports generation of X.
509 CertPath objects. The PKCS7 and PkiPath encodings are supported. The PKCS#7
implementation supports a subset of RFC 2315 (only the SignedData ContentInfo type
is supported). The certificates in the CertPath are ordered in the forward direction (from
target to trust anchor). Each certificate in the CertPath is of type
java.security.cert.X509Certificate , and versions 1, 2 and 3 are supported.

CertPathValidator

The "SUN" provider supplies a PKIX implementation of the CertPathValidator engine
class. The implementation validates CertPaths of type X.509 and implements the
certification path validation algorithm defined in RFC 5280: PKIX Certificate and CRL
Profile. This implementation sets the ValidationAlgorithm service attribute to
"RFC5280".

Weak cryptographic algorithms can be disabled in the "SUN" provider using the
jdk.certpath.disabledAlgorithms Security Property. See Appendix E: Disabling
Cryptographic Algorithms for a description and examples of this property.

The PKIX Certificate and CRL Profile has many optional features. The "SUN" provider
implements support for the policy mapping, authority information access and CRL
distribution point certificate extensions, the issuing distribution point CRL extension,
and the reason code and certificate issuer CRL entry extensions. It does not
implement support for the freshest CRL or subject information access certificate
extensions. It also does not include support for the freshest CRL and delta CRL
Indicator CRL extensions and the invalidity date and hold instruction code CRL entry
extensions.

The implementation supports a CRL revocation checking mechanism that conforms to
section 6.3 of the PKIX Certificate and CRL Profile. OCSP (RFC 2560) is also

Chapter 9
Appendix B: CertPath Implementation in SUN Provider

9-43

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=security_standard_algorithm_spec
http://www.ietf.org/rfc/rfc2315.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc2560.txt

currently supported as a built in revocation checking mechanism. See Appendix C:
OCSP Support for more details on the implementation and configuration and how it
works in conjunction with CRLs.

The implementation does not support the nameConstraints parameter of the
TrustAnchor class and the validate method throws an
InvalidAlgorithmParameterException if it is specified.

CertPathBuilder

The "SUN" provider supplies a PKIX implementation of the CertPathBuilder engine
class. The implementation builds CertPaths of type X.509. Each CertPath is validated
according to the PKIX algorithm defined in RFC 5280: PKIX Certificate and CRL
Profile. This implementation sets the ValidationAlgorithm service attribute to
"RFC5280".

The implementation requires that the targetConstraints parameter of a
PKIXBuilderParameters object is an instance of X509CertSelector and the subject
criterion is set to a non-null value. Otherwise the build method throws an
InvalidAlgorithmParameterException.

The implementation builds CertPath objects in a forward direction using a depth-first
algorithm. It backtracks to previous states and tries alternate paths when a potential
path is determined to be invalid or exceeds the PKIXBuilderParameters maxPathLength
parameter.

Validation of the path is performed in the same manner as the CertPathValidator
implementation. The implementation validates most of the path as it is being built, in
order to eliminate invalid paths earlier in the process. Validation checks that cannot be
executed on certificates ordered in a forward direction are delayed and executed on
the path after it has been constructed (but before it is returned to the application).

As with CertPathValidator, the jdk.certpath.disabledAlgorithms Security Property can
be used to exclude cryptographic algorithms that are not considered safe.

When two or more potential certificates are discovered that may lead to finding a path
that meets the specified constraints, the implementation uses the following criteria to
prioritize the certificates (in the examples below, assume a TrustAnchor distinguished
name of "ou=D,ou=C,o=B,c=A" is specified):

1. The issuer DN of the certificate matches the DN of one of the specified
TrustAnchors (ex: issuerDN = "ou=D,ou=C,o=B,c=A").

2. The issuer DN of the certificate is a descendant of the DN of one of the
TrustAnchors, ordered by proximity to the anchor (ex: issuerDN =
"ou=E,ou=D,ou=C,o=B,c=A").

3. The issuer DN of the certificate is an ancestor of the DN of one of the
TrustAnchors, ordered by proximity to the anchor (ex: issuerDN = "ou=C,o=B,c=A".

4. The issuer DN of the certificate is in the same namespace of one of the
TrustAnchors, ordered by proximity to the anchor (ex: issuerDN =
"ou=G,ou=C,o=B,c=A").

5. The issuer DN of the certificate is an ancestor of the subject DN of the certificate,
ordered by proximity to the subject.

These are followed by certificates which don't meet any of the above criteria.

Chapter 9
Appendix B: CertPath Implementation in SUN Provider

9-44

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt

This implementation has been tested with the LDAP and Collection CertStore
implementations included in this release of the "SUN" provider.

Debugging support can be enabled by setting the java.security.debug property to
certpath. For example:

 java -Djava.security.debug=certpath BuildCertPath

This will print additional debugging information to standard error.

Collection CertStore

The SUN provider supports the Collection implementation of the CertStore engine
class.

The Collection CertStore implementation can hold any objects that are an instance of
java.security.cert.Certificate or java.security.cert.CRL.

The certificates and CRLs are not returned in any particular order and will not contain
duplicates.

Support for the CRL Distribution Points Extension

Support for the CRL Distribution Points extension is available. It is disabled by default
for compatibility and can be enabled by setting the system property
com.sun.security.enableCRLDP to the value true.

If set to true, Sun's PKIX implementation uses the information in a certificate's CRL
Distribution Points extension (in addition to CertStores that are specified) to find the
CRL, provided the distribution point is an X.500 distinguished name or a URI of type
ldap, http, or ftp.

Note:

Depending on your network and firewall setup, it may be necessary to also
configure your networking proxy servers.

Support for the Authority Information Access (AIA) Extension

Support for the caIssuers access method of the Authority Information Access
extension is available. It is disabled by default for compatibility and can be enabled by
setting the system property com.sun.security.enableAIAcaIssuers to the value true.

If set to true, Sun's PKIX implementation of CertPathBuilder uses the information in a
certificate's AIA extension (in addition to CertStores that are specified) to find the
issuing CA certificate, provided it is a URI of type ldap, http, or ftp.

Note:

Depending on your network and firewall setup, it may be necessary to also
configure your networking proxy servers.

Chapter 9
Appendix B: CertPath Implementation in SUN Provider

9-45

Appendix C: OCSP Support
Client-side support for the On-Line Certificate Status Protocol (OCSP) as defined in
RFC 2560 is supported.

OCSP checking is controlled by the following five Security Properties:

Property Name Description

ocsp.enable This property's value is either true or false. If
true, OCSP checking is enabled when doing
certificate revocation checking; if false or not
set, OCSP checking is disabled.

ocsp.responderURL This property's value is a URL that identifies
the location of the OCSP responder. Here is
an example

ocsp.responderURL=http://
ocsp.example.net:80

By default, the location of the OCSP
responder is determined implicitly from the
certificate being validated. The property is
used when the Authority Information Access
extension (defined in RFC 5280) is absent
from the certificate or when it requires
overriding.

ocsp.responderCertSubjectName This property's value is the subject name of
the OCSP responder's certificate. Here is an
example

ocsp.responderCertSubjectName="CN=OCSP
Responder, O=XYZ Corp"

By default, the certificate of the OCSP
responder is that of the issuer of the certificate
being validated. This property identifies the
certificate of the OCSP responder when the
default does not apply. Its value is a string
distinguished name (defined in RFC 2253)
which identifies a certificate in the set of
certificates supplied during cert path
validation. In cases where the subject name
alone is not sufficient to uniquely identify the
certificate, then both the
ocsp.responderCertIssuerName and
ocsp.responderCertSerialNumber properties
must be used instead. When this property is
set, then those two properties are ignored.

Chapter 9
Appendix C: OCSP Support

9-46

Property Name Description

ocsp.responderCertIssuerName This property's value is the issuer name of the
OCSP responder's certificate . Here is an
example

ocsp.responderCertIssuerName="CN=Enterpri
se CA, O=XYZ Corp"

By default, the certificate of the OCSP
responder is that of the issuer of the certificate
being validated. This property identifies the
certificate of the OCSP responder when the
default does not apply. Its value is a string
distinguished name (defined in RFC 2253)
which identifies a certificate in the set of
certificates supplied during cert path
validation. When this property is set then the
ocsp.responderCertSerialNumber property
must also be set. Note that this property is
ignored when the
ocsp.responderCertSubjectName property
has been set.

ocsp.responderCertSerialNumber This property's value is the serial number of
the OCSP responder's certificate Here is an
example

ocsp.responderCertSerialNumber=2A:FF:00

By default, the certificate of the OCSP
responder is that of the issuer of the certificate
being validated. This property identifies the
certificate of the OCSP responder when the
default does not apply. Its value is a string of
hexadecimal digits (colon or space separators
may be present) which identifies a certificate
in the set of certificates supplied during cert
path validation. When this property is set then
the ocsp.responderCertIssuerName property
must also be set. Note that this property is
ignored when the
ocsp.responderCertSubjectName property
has been set.

These properties may be set either statically in the Java runtime's <java_home>/
conf/security/java.security file, or dynamically using the
java.security.Security.setProperty() method.

By default, OCSP checking is not enabled. It is enabled by setting the ocsp.enable
property to "true". Use of the remaining properties is optional. Note that enabling
OCSP checking only has an effect if revocation checking has also been enabled.
Revocation checking is enabled via the
PKIXParameters.setRevocationEnabled() method.

OCSP checking works in conjunction with Certificate Revocation Lists (CRLs) during
revocation checking. Below is a summary of the interaction of OCSP and CRLs.
Failover to CRLs occurs only if an OCSP problem is encountered. Failover does not

Chapter 9
Appendix C: OCSP Support

9-47

occur if the OCSP responder confirms either that the certificate has been revoked or
that it has not been revoked.

PKIXParameters
RevocationEnabled
(default=true)

ocsp.enable (default=false) Behavior

true true Revocation checking using
OCSP, failover to using CRLs

true false Revocation checking using
CRLs only

false true No revocation checking

false false No revocation checking

Appendix D: CertPath Implementation in JdkLDAP Provider
The JdkLDAP provider supports the LDAP implementation of the CertStore engine
class.

LDAP CertStore

The LDAP CertStore implementation retrieves certificates and CRLs from an LDAP
directory using the LDAP schema defined in RFC 2587.

The LDAPSchema service attribute is set to "RFC2587".

The implementation fetches certificates from different locations, depending on the
values of the subject, issuer, and basicConstraints selection criteria specified in the
X509CertSelector. It performs as many of the following operations as possible:

1. Subject non-null, basicConstraints <= -1
Looks for certificates in the subject DN's "userCertificate" attribute.

2. Subject non-null, basicConstraints >= -1
Looks for certificates in the forward element of the subject DN's
"crossCertificatePair" attribute AND in the subject's "caCertificate" attribute.

3. Issuer non-null, basicConstraints >= -1
Looks for certificates in the reverse element of the issuer DN's
"crossCertificatePair" attribute AND in the issuer DN's "caCertificate" attribute.

In each case, certificates are checked using X509CertSelector.match() before
adding them to the resulting collection.

If none of the conditions specified above applies, then an exception is thrown to
indicate that it was impossible to fetch certificates using the criteria supplied. Note that
even if one or more of the conditions apply, the Collection returned may still be empty
if there are no certificates in the directory.

The implementation fetches CRLs from the issuer DNs specified in the
setCertificateChecking, addIssuerName or setIssuerNames methods of the
X509CRLSelector class. If no issuer DNs have been specified using one of these
methods, the implementation throws an exception indicating it was impossible to fetch
CRLs using the criteria supplied. Otherwise, the CRLs are searched as follows:

1. The implementation first creates a list of issuer names. If a certificate was
specified in the setCertificateChecking method, it uses the issuer of that

Chapter 9
Appendix D: CertPath Implementation in JdkLDAP Provider

9-48

http://www.ietf.org/rfc/rfc2587.txt

certificate. Otherwise, it uses the issuer names specified using the
addIssuerName or setIssuerNames methods.

2. Next, the implementation iterates through the list of issuer names. For each issuer
name, it searches first in the issuer's "authorityRevocationList" attribute and then,
if no matching CRL was found there, in the issuer's "certificateRevocationList"
attribute. One exception to the above is that if the issuer name was obtained from
the certificate specified in the setCertificateChecking method, it only checks
the issuer's "authorityRevocationList" attribute if the specified certificate is a CA
certificate.

3. All CRLs are checked using X509CRLSelector.match() before adding them to
the resulting collection.

4. If no CRLs satisfying the selection criteria can be found, an empty Collection is
returned.

Caching

By default each LDAP CertStore instance caches lookups for a maximum of 30
seconds. The cache lifetime can be changed by setting the system property
sun.security.certpath.ldap.cache.lifetime to a value in seconds. A value of 0
disables the cache completely. A value of -1 means unlimited lifetime.

Appendix E: Disabling Cryptographic Algorithms
The jdk.certpath.disabledAlgorithms Security Property contains a list of cryptographic
algorithms and key size constraints that are considered weak or broken. Certificates
and other data (CRLs, OCSPResponses) containing any of these algorithms or key
sizes will be blocked during certification path building and validation. This property is
used by Oracle's PKIX implementation, other implementations might not examine and
use it.

The exact syntax of the jdk.certpath.disabledAlgorithms property is described in the
java.security file. In Java SE 9, the default value of the property is:

jdk.certpath.disabledAlgorithms=MD2, MD5, SHA1 jdkCA & usage TLSServer, \
 RSA keySize < 1024, DSA keySize < 1024, EC keySize < 224

In this syntax:

MD2
Any MD2-based algorithm will be blocked.
For example, a certificate, CRL, or OCSPResponse signed with an MD2withRSA
signature algorithm.

MD5
Any MD5-based algorithm will be blocked.
For example, a certificate, CRL, or OCSPResponse signed with an MD5withRSA
signature algorithm.

SHA1 jdkCA & usage TLSServer
All SHA1 certificates that chain to trust anchors pre-installed in the cacerts keystore
and that are used for authentication of TLS Servers. See JEP 288.

RSA keySize < 1024
Any RSA key less than 1024 bits will be blocked.

Chapter 9
Appendix E: Disabling Cryptographic Algorithms

9-49

http://openjdk.java.net/jeps/288

For example, a certificate with a 768-bit RSA public key.

DSA keySize < 1024
Any DSA key less than 1024 bits will be blocked.
For example, a certificate with a 512-bit DSA public key.

EC keySize < 224
Any EC key less than 224 bits will be blocked.
For example, a certificate with a 160-bit EC public key.

Administrators or users can modify the value of the jdk.certpath.disabledAlgorithms
property to address additional security requirements. However, removing any of the
current algorithms or key sizes is not recommended.

Chapter 9
Appendix E: Disabling Cryptographic Algorithms

9-50

10
Java SASL API Programming and
Deployment Guide

Simple Authentication and Security Layer (SASL) protocol specifies the authentication
and optional establishment of a security layer between client and server applications.

SASL, is an Internet standard (RFC 2222) that specifies a protocol for authentication
and optional establishment of a security layer between client and server applications.
SASL defines how authentication data is to be exchanged but does not itself specify
the contents of that data. It is a framework into which specific authentication
mechanisms that specify the contents and semantics of the authentication data can fit.

SASL is used by protocols, such as the Lightweight Directory Access Protocol, version
3 (LDAP v3), and the Internet Message Access Protocol, version 4 (IMAP v4) to
enable pluggable authentication. Instead of hardwiring an authentication method into
the protocol, LDAP v3 and IMAP v4 use SASL to perform authentication, thus enabling
authentication via various SASL mechanisms.

There are a number of standard SASL mechanisms defined by the Internet community
for various levels of security and deployment scenarios. These range from no security
(e.g., anonymous authentication) to high security (e.g., Kerberos authentication) and
levels in between.

The Java SASL API

The Java SASL API defines classes and interfaces for applications that use SASL
mechanisms. It is defined to be mechanism-neutral: the application that uses the API
need not be hardwired into using any particular SASL mechanism. The API supports
both client and server applications. It allows applications to select the mechanism to
use based on desired security features, such as whether they are susceptible to
passive dictionary attacks or whether they accept anonymous authentication.

The Java SASL API also allows developers to use their own, custom SASL
mechanisms. SASL mechanisms are installed by using the Java Cryptography
Architecture (JCA) Reference Guide (JCA).

When to Use SASL

SASL provides pluggable authentication and security layer for network applications.
There are other features in the Java SE that provide similar functionality, including the
Java Secure Socket Extension (JSSE) Reference Guide and Java Generic Security
Service.

Java GSS is the Java language bindings for the Generic Security Service Application
Programming Interface GSS-API.

The only mechanism currently supported underneath this API on Java SE is Kerberos
v5.

When compared with JSSE and Java GSS, SASL is relatively lightweight and is
popular among more recent protocols. It also has the advantage that several popular,

10-1

http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2060.txt
http://www.ietf.org/rfc/rfc2853.txt
http://www.ietf.org/rfc/rfc2853.txt
http://www.ietf.org/rfc/rfc2743.txt

lightweight (in terms infrastructure support) SASL mechanisms have been defined.
Primary JSSE and Java GSS mechanisms, on the other hand, have relatively
heavyweight mechanisms that require more elaborate infrastructures (Public Key
Infrastructure and Kerberos, respectively).

SASL, JSSE, and Java GSS are often used together. For example, a common pattern
is for an application to use JSSE for establishing a secure channel, and to use SASL
for client, username/password-based authentication. There are also SASL
mechanisms layered on top of GSS-API mechanisms; one popular example is a SASL
GSS-API/Kerberos v5 mechanism that is used with LDAP.

Except when defining and building protocols from scratch, often the biggest factor
determining which API to use is the protocol definition. For example, LDAP and IMAP
are defined to use SASL, so software related to these protocols should use the Java
SASL API. When building Kerberos applications and services, the API to use is Java
GSS. When building applications and services that use SSL/TLS as their protocol, the
API to use is JSSE.

Java SASL API Overview

How SASL Mechanisms are Installed and Selected

The SunSASL Provider

Implementing a SASL Security Provider

Java SASL API Overview
The Java SASL API has interfaces SaslClient and SaslServer that represent the client-
side and server-side APIs.

SASL is a challenge-response protocol. The server issues a challenge to the client,
and the client sends a response based on the challenge. This exchange continues
until the server is satisfied and issues no further challenge. These challenges and
responses are binary tokens of arbitrary length. The encapsulating protocol (such as
LDAP or IMAP) specifies how these tokens are encoded and exchanged. For
example, LDAP specifies how SASL tokens are encapsulated within LDAP bind
requests and responses.

The Java SASL API is modeled according to this style of interaction and usage. It has
interfaces, SaslClient and SaslServer , that represent client-side and server-side
mechanisms, respectively. The application interacts with the mechanisms via byte
arrays that represent the challenges and responses. The server-side mechanism
iterates, issuing challenges and processing responses, until it is satisfied, while the
client-side mechanism iterates, evaluating challenges and issuing responses, until the
server is satisfied. The application that is using the mechanism drives each iteration.
That is, it extracts the challenge or response from a protocol packet and supplies it to
the mechanism, and then puts the response or challenge returned by the mechanism
into a protocol packet and sends it to the peer.

Creating the Mechanisms

Passing Input to the Mechanisms

Using the Mechanisms

Using the Negotiated Security Layer

Chapter 10
Java SASL API Overview

10-2

Creating the Mechanisms
The client and server code that uses the SASL mechanisms are not hardwired to use
specific mechanism(s). In many protocols that use SASL, the server advertises (either
statically or dynamically) a list of SASL mechanisms that it supports. The client then
selects one of these based on its security requirements.

The Sasl class is used for creating instances of SaslClient and SaslServer. Here is an
example of how an application creates a SASL client mechanism using a list of
possible SASL mechanisms.

String[] mechanisms = new String[]{"DIGEST-MD5", "PLAIN"};
SaslClient sc = Sasl.createSaslClient(mechanisms, authzid, protocol,
 serverName, props, callbackHandler);

Based on the availability of the mechanisms supported by the platform and other
configuration information provided via the parameters, the Java SASL framework
selects one of the listed mechanisms and return an instance of SaslClient.

The name of the selected mechanism is usually transmitted to the server via the
application protocol. Upon receiving the mechanism name, the server creates a
corresponding SaslServer object to process client-sent responses. Here is an example
of how the server would create an instance of SaslServer.

SaslServer ss = Sasl.createSaslServer(mechanism, protocol,
 myName, props, callbackHandler);

Passing Input to the Mechanisms
The API provides three ways by which an application gives input to a mechanism.

Because the Java SASL API is a general framework, it must be able to accommodate
many different types of mechanisms. Each mechanism needs to be initialized with
input and may need input to make progress. The API provides three means by which
an application gives input to a mechanism:

1. Common input parameters The application uses predefined parameters to
supply information that are defined by the SASL specification and commonly
required by mechanisms. For SaslClient mechanisms, the input parameters are
authorization id, protocol id, and server name. For SaslServer mechanisms, the
common input parameters are prototol id and (its own fully qualified) server name.

2. Properties parameter The application uses the properties parameter, a mapping
of property names to (possibly non-string) property values, to supply configuration
information. The Java SASL API defines some standard properties, such as
Sasl.QOP, Sasl.STRENGTH, and Sasl.MAX_BUFFER. The parameter can also be used to
pass in non-standard properties that are specific to particular mechanisms.

3. Callbacks The application uses the Interface CallbackHandler parameter to
supply input that cannot be predetermined or might not be common across
mechanisms. When a mechanism requires input data, it uses the callback handler
supplied by the application to collect the data, possibly from the end-user of the
application. For example, a mechanism might require the end-user of the
application to supply a name and password.

Chapter 10
Java SASL API Overview

10-3

https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslClient.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslServer.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslClient.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslServer.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslServer.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslClient.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslServer.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#STRENGTH
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/CallbackHandler.html

Mechanisms can use the callbacks defined in the javax.security.auth.callback
package; these are generic callbacks useful for building applications that perform
authentication. Mechanisms might also need SASL-specific callbacks, such as
those for collecting realm and authorization information, or even (non-
standardized) mechanism-specific callbacks. The application should be able to
accommodate a variety of mechanisms. Consequently, its callback handler must
be able to service all of the callbacks that the mechanisms might request. This is
not possible in general for arbitrary mechanisms, but is usually feasible due to the
limited number of mechanisms that are typically deployed and used.

Using the Mechanisms
After the application has created a mechanism, it uses the mechanism to obtain SASL
tokens to exchange with the peer.

Some protocols allows the client to accompany the request with an optional initial
response for mechanisms that have an initial response. This feature can be used to
lower the number of message exchanges required for authentication. Example 10-1
illustrates how a client might use SaslClient for authentication.
The client application iterates through each step of the authentication by using the
mechanism (sc) to evaluate the challenge gotten from the server and to get a response
to send back to the server. It continues this cycle until either the mechanism or
application-level protocol indicates that the authentication has completed, or if the
mechanism cannot evaluate a challenge. If the mechanism cannot evaluate the
challenge, it throws an exception to indicate the error and terminates the
authentication. Disagreement between the mechanism and protocol about the
completion state must be treated as an error because it might indicate a compromise
of the authentication exchange.

Example 10-2 illustrates how a server might use SaslServer.

The server application iterates through each step of the authentication by giving the
client's response to the mechanism (ss) to process. If the response is incorrect, the
mechanism indicates the error by throwing a SaslException so that the server can
report the error and terminate the authentication. If the response is correct, the
mechanism returns challenge data to be sent to the client and indicates whether the
authentication is complete. Note that challenge data can accompany a "success"
indication. This might be used, for example, to tell the client to finalize some
negotiated state.

Example 10-1 Sample Code for Using SASL Client for Authentication

// Get optional initial response
byte[] response =
 (sc.hasInitialResponse() ? sc.evaluateChallenge(new byte[]) : null);

String mechanism = sc.getMechanismName();

// Send selected mechanism name and optional initial response to server
send(mechanism, response);

// Read response
msg = receive();
while (!sc.isComplete() && (msg.status == CONTINUE || msg.status == SUCCESS)) {
 // Evaluate server challenge
 response = sc.evaluateChallenge(msg.contents);

Chapter 10
Java SASL API Overview

10-4

https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslClient.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslServer.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslException.html

 if (msg.status == SUCCESS) {
 // done; server doesn't expect any more SASL data
 if (response != null) {
 throw new IOException(
 "Protocol error: attempting to send response after completion");
 }
 break;
 } else {
 send(mechanism, response);
 msg = receive();
 }

Example 10-2 Sample Code for Using SASL Server for Authentication

// Read request that contains mechanism name and optional initial response
msg.receive();

// Obtain a SaslServer to perform authentication
SaslServer ss = Sasl.createSaslServer(msg.mechanism,
 protocol, myName, props, callbackHandler);

// Perform authentication steps until done
while (!ss.isComplete()) {
 try {
 // Process response
 byte[] challenge = sc.evaluateResponse(msg.contents);

 if (ss.isComplete()) {
 send(mechanism, challenge, SUCCESS);
 } else {
 send(mechanism, challenge, CONTINUE);
 msg.receive();
 }
 } catch (SaslException e) {
 send(ERROR);
 sc.dispose();
 break;
 }
}

Using the Negotiated Security Layer
Some SASL mechanisms support only authentication while others support use of a
negotiated security layer after authentication. The security layer feature is often not
used when the application uses some other means, such as SSL/TLS, to
communicate securely with the peer.

When a security layer has been negotiated, all subsequent communication with the
peer must take place using the security layer. To determine whether a security layer
has been negotiated, get the negotiated Sasl.QOP from the mechanism. Here is an
example of how to determine whether a security layer has been negotiated.

String qop = (String) sc.getNegotiatedProperty(Sasl.QOP);
boolean hasSecurityLayer = (qop != null &&
 (qop.equals("auth-int") || qop.equals("auth-conf")));

A security layer has been negotiated if the Sasl.QOP property indicates that either
integrity and/or confidentiality has been negotiated.

Chapter 10
Java SASL API Overview

10-5

https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#QOP

To communicate with the peer using the negotiated layer, the application first uses the
wrap method to encode the data to be sent to the peer to produce a "wrapped" buffer. It
then transfers a length field representing the number of octets in the wrapped buffer
followed by the contents of the wrapped buffer to the peer. The peer receiving the
stream of octets passes the buffer (without the length field) to unwrap to obtain the
decoded bytes sent by the peer. Details of this protocol are described in RFC 2222.
Example 10-3 illustrates how a client application sends and receives application data
using a security layer.

Example 10-3 Sample Code for SASL Client Send and Receive Data

// Send outgoing application data to peer
byte[] outgoing = ...;
byte[] netOut = sc.wrap(outgoing, 0, outgoing.length);

send(netOut.length, netOut); // send to peer

// Receive incoming application data from peer
byte[] netIn = receive(); // read length and ensuing bytes from peer

byte[] incoming = sc.unwrap(netIn, 0, netIn.length);

How SASL Mechanisms are Installed and Selected
SASL mechanism implementations are provided by SASL security providers. Each
provider may support one or more SASL mechanisms and is registered with the JCA.

By default, in J2SE 5, the SunSASL provider is automatically registered as a JCA
provider. To remove it or reorder its priority as a JCA provider, change the line

security.provider.7=com.sun.security.sasl.Provider

in the Java security properties file (java-home/conf/security/java.security).

To add or remove a SASL provider, you add or remove the corresponding line in the
security properties file. For example, if you want to add a SASL provider and have its
mechanisms be chosen over the same ones implemented by the SunSASL provider,
then you would add a line to the security properties file with a lower number.

security.provider.7=com.example.MyProvider
security.provider.8=com.sun.security.sasl.Provider

Alternatively, you can programmatically add your own provider using the
java.security.Security class. For example, the following sample code registers the
com.example.MyProvider to the list of available SASL security providers.

Security.addProvider(new com.example.MyProvider());

When an application requests a SASL mechanism by supplying one or more
mechanism names, the SASL framework looks for registered SASL providers that
support that mechanism by going through, in order, the list of registered providers. The
providers must then determine whether the requested mechanism matches the
selection policy properties in the Sasl and if so, return an implementation for the
mechanism.

Chapter 10
How SASL Mechanisms are Installed and Selected

10-6

https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslClient.html#wrap-byte:A-int-int-
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/SaslClient.html#unwrap-byte:A-int-int-
http://www.ietf.org/rfc/rfc2222.txt
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html

The selection policy properties specify the security aspects of a mechanism, such as
its susceptibility to certain attacks. These are characteristics of the mechanism
(definition), rather than its implementation so all providers should come to the same
conclusion about a particular mechanism. For example, the PLAIN mechanism is
susceptible to plaintext attacks regardless of how it is implemented. If no selection
policy properties are supplied, there are no restrictions on the selected mechanism.
Using these properties, an application can ensure that it does not use unsuitable
mechanisms that might be deployed in the execution environment. For example, an
application might use the following sample code if it does not want to allow the use of
mechanisms susceptible to plaintext attacks.

Map props = new HashMap();
props.add(Sasl.POLICY_NOPLAINTEXT, "true");
SaslClient sc = Sasl.createSaslClient(mechanisms,
 authzid, protocol, serverName, props, callbackHandler);

The SunSASL Provider
Information about the SunSASL provider client and server mechanisms.

The SunSASL provider supports the following client and server mechanisms.

• Client Mechanisms

– PLAIN (RFC 2595). This mechanism supports cleartext username/password
authentication.

– CRAM-MD5 (RFC 2195). This mechanism supports a hashed username/
password authentication scheme.

– DIGEST-MD5 (RFC 2831). This mechanism defines how HTTP Digest
Authentication can be used as a SASL mechanism.

– EXTERNAL (RFC 2222). This mechanism obtains authentication information
from an external channel (such as TLS or IPsec).

• Server Mechanisms

– CRAM-MD5

– DIGEST-MD5

The SunSASL Provider Client Mechanisms
The SunSASL provider supports several SASL client mechanisms used in popular
protocols such as LDAP, IMAP, and SMTP.

The following table summarizes the client mechanisms and their required input.

Table 10-1 SunSASL Provider Client Mechanisms

Client Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

CRAM-MD5 authorization id (as
default username)

PasswordCallback

NameCallback

 None Sasl.POLICY_NOANON
YMOUS

Sasl.POLICY_NOPLAI
NTEXT

Chapter 10
The SunSASL Provider

10-7

http://www.ietf.org/rfc/rfc2595.txt
http://www.ietf.org/rfc/rfc2195.txt
http://www.ietf.org/rfc/rfc2831.txt
http://www.ietf.org/rfc/rfc2222.txt
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT

Table 10-1 (Cont.) SunSASL Provider Client Mechanisms

Client Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

DIGEST-MD5 authorization id

protocol id

server name

NameCallback

PasswordCallback

RealmCallback

RealmChoiceCallbac
k

RealmChoiceCallbac
k

Sasl.QOP

Sasl.STRENGTH

Sasl.MAX_BUFFER

Sasl.SERVER_AUTH

"javax.security.sasl.s
endmaxbuffer"

"com.sun.security.sas
l.digest.cipher"

Sasl.POLICY_NOANON
YMOUS

Sasl.POLICY_NOPLAI
NTEXT

EXTERNAL authorization id

external channel

 None None Sasl.POLICY_NOPLAI
NTEXT

Sasl.POLICY_NOACTI
VE

Sasl.POLICY_NODICT
IONARY

PLAIN authorization id NameCallback

PasswordCallback

 None Sasl.POLICY_NOANON
YMOUS

An application that uses these mechanisms from the SunSASL provider must supply
the required parameters, callbacks and properties. The properties have reasonable
defaults and only need to be set if the application wants to override the defaults. Most
of the parameters, callbacks, and properties are described in the API documentation.
The following sections describe mechanism-specific behaviors and parameters not
already covered by the API documentation.

Cram-MD5

The Cram-MD5 client mechanism uses the authorization id parameter, if supplied, as
the default username in the NameCallback to solicit the application/end-user for the
authentication id. The authorization id is otherwise not used by the Cram-MD5
mechanism; only the authentication id is exchanged with the server.

Digest-MD5

The Digest-MD5 mechanism is used for digest authentication and optional
establishment of a security layer. It specifies the following ciphers for use with the
security layer: Triple DES, DES and RC4 (128, 56, and 40 bits). The Digest-MD5
mechanism can support only ciphers that are available on the platform. For example, if
the platform does not support the RC4 ciphers, then the Digest-MD5 mechanism will
not use those ciphers.

The Sasl.STRENGTH property supports "high", "medium", and "low" settings; its default is
"high,medium,low". The ciphers are mapped to the strength settings as follows:

Chapter 10
The SunSASL Provider

10-8

https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/RealmCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/RealmChoiceCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/RealmChoiceCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#STRENGTH
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#SERVER_AUTH
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NODICTIONARY
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NODICTIONARY
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS

Table 10-2 Cipher Strength

Strength Cipher Cipher Id

high Triple DES
RC4 128 bits

3des rc4

medium DES
RC4 56 bits

des rc4-56

low RC4 40 bits rc4-40

When there is more than one choice for a particular strength, the cipher selected
depends on the availability of the ciphers in the underlying platform. To explicitly name
the cipher to use, set the "com.sun.security.sasl.digest.cipher" property to the
corresponding cipher id. Note that this property setting must be compatible with
Sasl.STRENGTH and the ciphers available in the underlying platform. For example,
Sasl.STRENGTH being set to "low" and "com.sun.security.sasl.digest.cipher" being set
to "3des" are incompatible. The "com.sun.security.sasl.digest.cipher" property has
no default.

The "javax.security.sasl.sendmaxbuffer" property specifies (the string representation
of) the maximum send buffer size in bytes. The default is 65536. The actual maximum
number of bytes will be the minimum of this number and the peer's maximum receive
buffer size.

The SunSASL Provider Server Mechanisms
The SunSASL provider supports several SASL server mechanisms used in popular
protocols such as LDAP, IMAP, and SMTP.

The following table summarizes the server mechanisms and the required input:

Table 10-3 Server Mechanisms

Server Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

CRAM-MD5 server name AuthorizeCallback

NameCallback

PasswordCallback

 None Sasl.POLICY_NOANON
YMOUS

Sasl.POLICY_NOPLAI
NTEXT

DIGEST-MD5 protocol id
server name

AuthorizeCallback

NameCallback

PasswordCallback

RealmCallback

Sasl.QOP

Sasl.STRENGTH

Sasl.MAX_BUFFER

"javax.security.sa
sl.sendmaxbuffer"

"com.sun.security.
sasl.digest.realm"

"com.sun.security.
sasl.digest.utf8"

Sasl.POLICY_NOANON
YMOUS

Sasl.POLICY_NOPLAI
NTEXT

An application that uses these mechanisms from the SunSASL provider must supply
the required parameters, callbacks and properties. The properties have reasonable
defaults and only need to be set if the application wants to override the defaults.

Chapter 10
The SunSASL Provider

10-9

https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/RealmCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#STRENGTH
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT

All users of server mechanisms must have a callback handler that deals with the
AuthorizeCallback. This is used by the mechanisms to determine whether the
authenticated user is allowed to act on behalf of the requested authorization id, and
also to obtain the canonicalized name of the authorized user (if canonicalization is
applicable).

Most of the parameters, callbacks, and properties are described in the API
documentation. The following sections describe mechanism-specific behaviors and
parameters not already covered by the API documentation.

Cram-MD5

The Cram-MD5 server mechanism uses the NameCallback and PasswordCallback to
obtain the password required to verify the SASL client's response. The callback
handler should use the NameCallback.getDefaultName() as the key to fetch the
password.

Digest-MD5

The Digest-MD5 server mechanism uses the RealmCallback, NameCallback, and
PasswordCallback to obtain the password required to verify the SASL client's response.
The callback handler should use RealmCallback.getDefaultText() and
NameCallback.getDefaultName() as keys to fetch the password.

The "javax.security.sasl.sendmaxbuffer" property specifies (the string representation
of) the maximum send buffer size in bytes. The default is 65536. The actual maximum
number of bytes will be the minimum of this number and the peer's maximum receive
buffer size.

The "com.sun.security.sasl.digest.realm" property is used to specify a list of space-
separated realm names that the server supports. The list is sent to the client as part of
the challenge. If this property has not been set, the default realm is the server's name
(supplied as a parameter).

The "com.sun.security.sasl.digest.utf8" property is used to specify the character
encoding to use. "true" means to use UTF-8 encoding; "false" means to use ISO Latin
1 (ISO-8859-1). The default is "true".

Debugging and Monitoring
The SunSASL and JdkSASL providers uses the Logging APIs to provide
implementation logging output. This output can be controlled by using the logging
configuration file and programmatic API (java.util.logging)

The logger name used by the SunSASL provider is "javax.security.sasl”

Here is a sample logging configuration file that enables the FINEST logging level for the
SunSASL provider:

javax.security.sasl.level=FINEST
handlers=java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level=FINEST

The table below shows the mechanisms and the logging output that they generate:

Chapter 10
The SunSASL Provider

10-10

Table 10-4 Logging Output

Mechanism Logging Level Information Logged

CRAM-MD5 FINE Configuration properties; challenge/
response messages

DIGEST-MD5 INFO Message discarded due to encoding
problem (e.g., unmatched MACs,
incorrect padding)

DIGEST-MD5 FINE Configuration properties; challenge/
response messages

DIGEST-MD5 FINER More detailed information about
challenge/response messages

DIGEST-MD5 FINEST Buffers exchanged at the security
layer

GSSAPI FINE Configuration properties; challenge/
response messages

GSSAPI FINER More detailed information about
challenge/response messages

GSSAPI FINEST Buffers exchanged at the security
layer

The JdkSASL Provider
Information about the JdkSASL provider client and server mechanisms.

The JdkSASL provider supports the following client and server mechanisms.

• Client Mechanisms

– GSSAPI (RFC 2222). This mechanism uses the GSSAPI for obtaining
authentication information. It supports Kerberos v5 authentication.

• Server Mechanisms

– GSSAPI (Kerberos v5)

The JdkSASL Provider Client Mechanism
The JdkSASL provider supports the GSSAPI client mechanism used in popular
protocols such as LDAP, IMAP, and SMTP.

The following table summarizes the GSSAPI client mechanism and its required input.

Chapter 10
The JdkSASL Provider

10-11

https://docs.oracle.com/javase/9/docs/api/java/util/logging/Level.html#FINE
https://docs.oracle.com/javase/9/docs/api/java/util/logging/Level.html#INFO
https://docs.oracle.com/javase/9/docs/api/java/util/logging/Level.html#FINE
https://docs.oracle.com/javase/9/docs/api/java/util/logging/Level.html#FINER
https://docs.oracle.com/javase/9/docs/api/java/util/logging/Level.html#FINEST
https://docs.oracle.com/javase/9/docs/api/java/util/logging/Level.html#FINE
https://docs.oracle.com/javase/9/docs/api/java/util/logging/Level.html#FINER
https://docs.oracle.com/javase/9/docs/api/java/util/logging/Level.html#FINEST
http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2078.txt

Table 10-5 JdkSASL Provider Client Mechanism

Client Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

GSSAPI JAAS Subject
authorization id

protocol id

server name

 None Sasl.QOP

Sasl.MAX_BUFFER

Sasl.SERVER_AUTH

"javax.security.sasl.s
endmaxbuffer"

Sasl.POLICY_NOACTI
VE

Sasl.POLICY_NOANON
YMOUS

Sasl.POLICY_NOPLAI
NTEXT

An application that uses the GSSAPI mechanism from the JdkSASL provider must
supply the required parameters, callbacks and properties. The properties have
reasonable defaults and only need to be set if the application wants to override the
defaults. Most of the parameters, callbacks, and properties are described in the API
documentation. The following section describes further GSSAPI behaviors and
parameters not already covered by the API documentation.

GSSAPI

The GSSAPI mechanism is used for Kerberos v5 authentication and optional
establishment of a security layer. The mechanism expects the calling thread's Subject
to contain the client's Kerberos credentials or that the credentials could be obtained by
implicitly logging in to Kerberos. To obtain the client's Kerberos credentials, use the
Java Authentication and Authorization Service (JAAS) to log in using the Kerberos
login module. See the JAAS and Java GSS-API Tutorial for details and examples.
After using JAAS authentication to obtain the Kerberos credentials, you put the code
that uses the SASL GSSAPI mechanism within doAs or doAsPrivileged.

LoginContext lc = new LoginContext("JaasSample", new TextCallbackHandler());
lc.login();
lc.getSubject().doAs(new SaslAction());

class SaslAction implements java.security.PrivilegedAction {
 public class run() {
 ...
 String[] mechanisms = new String[]{"GSSAPI"};
 SaslClient sc = Sasl.createSaslClient(mechanisms,
 authzid, protocol, serverName, props, callbackHandler);
 ...
 }
}

To obtain Kerberos credentials without doing explicit JAAS programming, see the
JAAS and Java GSS-API Tutorial . When using this approach, there is no need to
wrap the code within doAs or doAsPrivileged

The "javax.security.sasl.sendmaxbuffer" property specifies (the string representation
of) the maximum send buffer size in bytes. The default is 65536. The actual maximum
number of bytes will be the minimum of this number and the peer's maximum receive
buffer size.

Chapter 10
The JdkSASL Provider

10-12

https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#SERVER_AUTH
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
http://www.oracle.com/technetwork/java/javase/jaas/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html

The JdkSASL Provider Server Mechanism
The JdkSASL provider supports the GSSAPI mechanism used in popular protocols
such as LDAP, IMAP, and SMTP.

The following table summarizes the GSSAPI server mechanism and the required
input:

Table 10-6 Server mechanism

Server Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

GSSAPI Subject

protocol id

server name

AuthorizeCallback Sasl.QOP

Sasl.MAX_BUFFER

"javax.security.sa
sl.sendmaxbuffer"

Sasl.POLICY_NOACTI
VE

Sasl.POLICY_NOANON
YMOUS

Sasl.POLICY_NOPLAI
NTEXT

An application that uses the GSSAPI mechanism from the JdkSASL provider must
supply the required parameters, callbacks and properties. The properties have
reasonable defaults and only need to be set if the application wants to override the
defaults.

All users of server mechanism must have a callback handler that deals with the
AuthorizeCallback. This is used by the mechanism to determine whether the
authenticated user is allowed to act on behalf of the requested authorization id, and
also to obtain the canonicalized name of the authorized user (if canonicalization is
applicable).

Most of the parameters, callbacks, and properties are described in the API
documentation. The following section describes GSSAPI mechanism-specific
behaviors and parameters not already covered by the API documentation.

GSSAPI

The GSSAPI mechanism is used for Kerberos v5 authentication and optional
establishment of a security layer. The mechanism expects the calling thread's Subject
to contain the client's Kerberos credentials or that the credentials could be obtained by
implicitly logging in to Kerberos. To obtain the client's Kerberos credentials, use the
Java Authentication and Authorization Service (JAAS) to log in using the Kerberos
login module. See the JAAS and Java GSS-API Tutorial for details and examples.
After using JAAS authentication to obtain the Kerberos credentials, you put the code
that uses the SASL GSSAPI mechanism within doAs or doAsPrivileged.

LoginContext lc = new LoginContext("JaasSample", new TextCallbackHandler());
lc.login();
lc.getSubject().doAs(new SaslAction());

class SaslAction implements java.security.PrivilegedAction {
 public class run() {
 ...
 String[] mechanisms = new String[]{"GSSAPI"};
 SaslClient sc = Sasl.createSaslClient(mechanisms,

Chapter 10
The JdkSASL Provider

10-13

https://docs.oracle.com/javase/9/docs/api/javax/security/auth/Subject.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
http://www.oracle.com/technetwork/java/javase/jaas/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html

 authzid, protocol, serverName, props, callbackHandler);
 ...
 }
}

To obtain Kerberos credentials without doing explicit JAAS programming, see the
JAAS and Java GSS-API Tutorial . When using this approach, there is no need to
wrap the code within doAs or doAsPrivileged

The "javax.security.sasl.sendmaxbuffer" property specifies (the string representation
of) the maximum send buffer size in bytes. The default is 65536. The actual maximum
number of bytes will be the minimum of this number and the peer's maximum receive
buffer size.

Implementing a SASL Security Provider
Procedure to implement a SASL Security Provider.

There are three basic steps in implementing a SASL security provider:

1. Write a class that implements the SaslClient or SaslServer interface.

This involves providing an implementation for the SASL mechanism. To implement
a client mechanism, you need to implement the methods declared in the
SaslClient interface. Similarly, for a server mechanism, you need to implement the
methods declared in the SaslServer interface. For the purposes of this discussion,
suppose you are developing an implementation for the client mechanism
"SAMPLE-MECH", implemented by the class, com.example.SampleMechClient. You
must decide what input are needed by the mechanism and how the
implementation is going to collect them. For example, if the mechanism is
username/password-based, then the implementation would likely need to collect
that information via the callback handler parameter.

2. Write a factory class (that implements SaslClientFactory or SaslServerFactory) that
creates instances of the class.

This involves providing a factory class that will create instances of
com.example.SampleMechClient. The factory needs to determine the characteristics
of the mechanism that it supports (as described by the Sasl.POLICY_* properties)
so that it can return an instance of the mechanism when the API user requests it
using compatible policy properties. The factory may also check for validity of the
parameters before creating the mechanism. For the purposes of this discussion,
suppose the factory class is named com.example.MySampleClientFactory. Although
our sample factory is responsible for only one mechanism, a single factory can be
responsible for any number of mechanisms.

3. Write a JCA provider that registers the factory.

This involves creating a JCA provider. The steps for creating a JCA provider is
described in detail in the document, Steps to Implement and Integrate a Provider.
SASL client factories are registered using property names of the form
SaslClientFactory.mechName while SASL server factories are registered using
property names of the form SaslServerFactory.mechName

mechName is the SASL mechanism's name. This is what's returned by
SaslClient.getMechanismName() and SaslServer.getMechanismName(). Continuing with
our example, here is how the provider would register the "SAMPLE-MECH"
mechanism.

Chapter 10
Implementing a SASL Security Provider

10-14

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html

put("SaslClientFactory.SAMPLE-MECH", "com.example.MySampleClientFactory");

A single SASL provider might be responsible for many mechanisms. Therefore, it
might have many invocations of put to register the relevant factories. The
completed SASL provider can then be made available to applications using the
instructions given above.

Chapter 10
Implementing a SASL Security Provider

10-15

11
XML Digital Signature

Java XML Digital Signature API Specification describes a standard API for generating
and validating XML signatures. It also describes how to create a concrete
implementation of the XML Digital Signature API and register it as a cryptographic
service of a Java Cryptography Architecture (JCA) provider.

XML Digital Signature API Overview and Tutorial demonstrates how to validate and
generate an XML signature with the API.

Java XML Digital Signature API Specification
This document describes the Java XML Digital Signature API Specification (JSR 105).
The purpose of this JSR is to define a standard Java API for generating and validating
XML signatures.

When this specification is final, there will be a Reference Implementation which will
demonstrate the capabilities of this API and will provide an operational definition of this
specification. A Technology Compatibility Kit (TCK) will also be available that will verify
whether an implementation of the specification is compliant. These are required as per
the Java Community Process 2.1.

The JSR 105 API is intended to target the following two types of users:

• Java programmers who want to use the JSR 105 API to generate and validate
XML signatures.

• Java programmers who want to create a concrete implementation of the JSR 105
API and register it as a cryptographic service of a JCA provider (see The Provider
Class).

Acknowledgements

The JSR 105 Expert Group:

• Nicolas Catania, Hewlett-Packard

• Donald E. Eastlake 3rd, Motorola

• Christian Geuer-Pollmann, Apache Software Foundation

• Hans Granqvist, VeriSign

• Kazuyuki Harada, Fujitsu

• Anthony Ho, DSTC

• Merlin Hughes, Baltimore Technologies

• Joyce Leung, IBM

• Gregor Karlinger, IAIK

11-1

http://jcp.org/en/jsr/detail?id=105
http://jcp.org/en/procedures/jcp2

• Serge Mister, Entrust Technologies

• Takuya Mori, NEC Corporation

• Sean Mullan, Sun Microsystems (co-specification lead)

• Anthony Nadalin, IBM (co-specification lead)

• Erwin van der Koogh, Apache Software Foundation

• Chris Yeung, XML Asia

Also, special thanks to: Valerie Peng, Vincent Ryan, Sharon Liu, Chok Poh, K.
Venugopal Rao., Paul Rank, Alexey Gavrilov, Bill Situ, Eric Jendrock, Andrew Fan,
Manveen Kaur, Tom Amiro, Michael Mi, Dmitri Silaev, Roman Makarchuk, Vanitha
Venkatraman, Arkadiy Sutchilin, and Scott Fordin from Sun Microsystems, Vishal
Mahajan from Apache, and Martin Centner from IAIK.

Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

1. W3C Recommendation, XML-Signature Syntax and Processing.

• The API MUST allow a programmer to generate and validate XML Signatures
such that all of the SHOULD and MUST requirements specified by the W3C
recommendation can be satisfied.

• The API MUST allow an implementation of the API to be created such that all
of the SHOULD and MUST requirements specified by the W3C
recommendation can be satisfied.

2. An implementation SHOULD support the W3C Recommendation, XML-
Signature XPath Filter Transform 2.0.

3. An implementation SHOULD support the W3C Recommendation, Exclusive
XML Canonicalization Version 1.0.

4. DOM-independent API. The API MUST NOT have dependencies on a specific
XML representation, such as DOM. It MUST be possible to create
implementations of the API for different XML processing and mechanism
representations, such as DOM, JDOM or dom4j.

5. Extensible, provider-based API. It MUST be possible for a third-party to create
and plug in an implementation responsible for managing and creating
cryptographic and transform algorithms, dereferencing URIs, and marshalling
objects to/from XML.

6. Support for a default XML mechanism type: DOM. An implementation MUST
minimally support the default mechanism type: DOM. This ensures that all
implementations of JSR 105 are guaranteed a minimal level of functionality.
Implementations MAY support other mechanism types.

7. Interoperability for the default XML mechanism type: DOM. The API SHOULD
ensure that applications using a DOM implementation are portable and
interoperable.

8. J2SE requirements. Implementations of this technology MAY support J2SE 1.2 or
later but MUST at a minimum support version 1.4 or later of J2SE.

Chapter 11
Java XML Digital Signature API Specification

11-2

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-filter2/
http://www.w3.org/TR/xmldsig-filter2/
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xml-exc-c14n/
http://jdom.org
http://www.dom4j.org/

API Dependencies

• J2SE (JDK) 1.2 or higher

• W3C DOM Level 2 API. This dependency is required by classes of the
javax.xml.crypto.dom and javax.xml.crypto.dsig.dom packages.

Non-Goals

1. Support for non-DOM implementations. While the API SHOULD allow non-
DOM implementations to be created, it is beyond the scope of the first version to
ensure interoperability between implementations other than DOM. Additional
standard service provider types MAY be added in the future and necessary API
enhancements MAY be considered for a maintenance revision of JSR 105.

2. Support for a higher-level API. We expect that programmers MAY design high-
level APIs which will be built on the JSR 105 API to hide low-level details, address
common use-cases or apply profiling constraints. However, it is beyond the scope
of the first version to support these requirements. A high-level API MAY be
considered for a maintenance release of JSR 105.

3. Support for user-pluggable algorithms (other than transform and
canonicalization algorithms which is supported by the
javax.xml.crypto.dsig.TransformService class): Allowing developers to
plug in their own implementations of XML Signature algorithms without requiring
them to create a complete JSR 105 implementation seems like a worthy goal but
SHALL NOT be REQUIRED for this release of JSR 105. A solution we are
investigating for a subsequent release of Java SE is to enhance the underlying
JCA/JCE to add better support for registering, parsing and processing XML
security algorithms, parameters, and key information.

Package Overview

The JSR 105 API consists of 6 packages:

• javax.xml.crypto

• javax.xml.crypto.dom

• javax.xml.crypto.dsig

• javax.xml.crypto.dsig.dom

• javax.xml.crypto.dsig.keyinfo

• javax.xml.crypto.dsig.spec

The javax.xml.crypto package contains common classes that are used to perform
XML cryptographic operations, such as generating an XML signature or encrypting
XML data. Two notable classes in this package are the KeySelector class, the
purpose of which is to allow developers to supply implementations which locate and
optionally validate keys using the information contained in a KeyInfo object, and the
URIDereferencer class which allows developers to create and specify their own
URI dereferencing implementations.

Chapter 11
Java XML Digital Signature API Specification

11-3

http://www.oracle.com/technetwork/java/archive-139210.html
http://www.w3.org/DOM/DOMTR
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/TransformService.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/dom/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/KeySelector.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/URIDereferencer.html

The javax.xml.crypto.dsig package includes interfaces that represent the core
elements defined in the W3C XML digital signature specification. Of primary
significance is the XMLSignature class, which allows you to sign and validate an
XML digital signature. Most of the XML signature structures or elements are
represented by a corresponding interface (except for the KeyInfo structures, which
are included in their own package, and discussed in the next paragraph). These
interfaces include: SignedInfo, CanonicalizationMethod, SignatureMethod,
Reference, Transform, DigestMethod, XMLObject, Manifest,
SignatureProperty, and SignatureProperties. The XMLSignatureFactory
class is an abstract factory that is used to create objects that implement these
interfaces.

The javax.xml.crypto.dsig.keyinfo package contains interfaces that
represent most of the KeyInfo structures defined in the W3C XML digital signature
recommendation, including KeyInfo, KeyName, KeyValue, X509Data,
X509IssuerSerial, RetrievalMethod, and PGPData. The KeyInfoFactory
class is an abstract factory that is used to create objects that implement these
interfaces.

The javax.xml.crypto.dsig.spec package contains interfaces and classes
representing input parameters for the digest, signature, transform, or canonicalization
algorithms used in the processing of XML signatures.

Finally, the javax.xml.crypto.dom and javax.xml.crypto.dsig.dom
packages contains DOM-specific classes for the javax.xml.crypto and
javax.xml.crypto.dsig packages, respectively. Only developers and users who
are creating or using a DOM-based XMLSignatureFactory or KeyInfoFactory
implementation should need to make direct use of these packages.

Service Providers

A JSR 105 cryptographic service is a concrete implementation of the abstract
XMLSignatureFactory and KeyInfoFactory classes and is responsible for
creating objects and algorithms that parse, generate and validate XML Signatures and
KeyInfo structures. A concrete implementation of XMLSignatureFactory MUST
provide support for each of the REQUIRED algorithms as specified by the W3C
recommendation for XML Signatures. It MAY support other algorithms as defined by
the W3C recommendation or other specifications.

JSR 105 leverages the JCA provider model (see The Provider Class) for registering
and loading XMLSignatureFactory and KeyInfoFactory implementations.

Each concrete XMLSignatureFactory or KeyInfoFactory implementation
supports a specific XML mechanism type that identifies the XML processing
mechanism that an implementation uses internally to parse and generate XML
signature and KeyInfo structures. This JSR supports one standard type: DOM.
Support for new standard types (such as JDOM) MAY be added in the future.

A JSR 105 implementation SHOULD use underlying JCA engine classes, such as
java.security.Signature and java.security.MessageDigest to perform
cryptographic operations.

In addition to the XMLSignatureFactory and KeyInfoFactory classes, JSR 105
supports a service provider interface for transform and canonicalization algorithms.
The TransformService class allows you to develop and plug in an implementation
of a specific transform or canonicalization algorithm for a particular XML mechanism

Chapter 11
Java XML Digital Signature API Specification

11-4

https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignature.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/SignedInfo.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/CanonicalizationMethod.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/SignatureMethod.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Reference.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Transform.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/DigestMethod.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLObject.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Manifest.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/SignatureProperty.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/SignatureProperties.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfo.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyName.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyValue.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/X509Data.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/X509IssuerSerial.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/RetrievalMethod.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/PGPData.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/dom/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/javase/9/docs/api/java/security/Signature.html
https://docs.oracle.com/javase/9/docs/api/java/security/MessageDigest.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/TransformService.html

type. The TransformService class uses the standard JCA provider model for
registering and loading implementations. Each JSR 105 implementation SHOULD use
the TransformService class to find a provider that supports transform and
canonicalization algorithms in XML Signatures that it is generating or validating.

DOM Mechanism Requirements

The following requirements MUST be abided by when implementing a DOM-based
XMLSignatureFactory, KeyInfoFactory or TransformService in order to
minimize interoperability problems:

1. The unmarshalXMLSignature method of XMLSignatureFactory MUST
support DOMValidateContext types. If the type is DOMValidateContext, it
SHOULD contain an Element of type Signature. Additionally, the
unmarshalXMLSignature method MAY populate the Id/Element mappings of
the passed-in DOMValidateContext.

2. The sign method of XMLSignatures produced by XMLSignatureFactory
MUST support DOMSignContext types and the validate method MUST
support DOMValidateContext types. This requirement also applies to the
validate method of SignatureValue and the validate method of
Reference.

3. The implementation MUST support DOMStructures as the mechanism for the
application to specify extensible content (any elements or mixed content).

4. If the dereference method of user-specified URIDereferencers returns
NodeSetData objects, the iterator method MUST return an iteration over objects
of type org.w3c.dom.Node.

5. URIReference objects passed to the dereference method of user-specified
URIDereferencers MUST be of type DOMURIReference and
XMLCryptoContext objects MUST implement DOMCryptoContext.

6. The previous 2 requirements also apply to URIDereferencers returned by the
getURIDereferencer method of XMLSignatureFactory and
KeyInfoFactory.

7. The unmarshalKeyInfo method of KeyInfoFactory MUST support
DOMStructure types. If the type is DOMStructure, it SHOULD contain an
Element of type KeyInfo.

8. The transform method of Transform MUST support DOMCryptoContext
context parameter types.

9. The newtransform and newCanonicalizationMethod methods of
XMLSignatureFactory MUST support DOMStructure parameter types.

10. The init, and marshalParams methods of TransformService MUST support
DOMStructure and DOMCryptoContext types.

11. The unmarshalXMLSignature method of XMLSignatureFactory MUST
support DOMStructure types. If the type is DOMStructure, it SHOULD contain
an Element of type Signature.

12. The marshal method of KeyInfo MUST support DOMStructure and
DOMCryptoContext parameter types.

Chapter 11
Java XML Digital Signature API Specification

11-5

https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#unmarshalXMLSignature
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/dom/DOMValidateContext.html
https://docs.oracle.com/javase/9/docs/api/org/w3c/dom/Element.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignature.html#sign
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignature.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/dom/DOMSignContext.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignature.html#validate
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/dom/DOMValidateContext.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignature.SignatureValue.html#validate
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignature.SignatureValue.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Reference.html#validate
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Reference.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMStructure.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/URIDereferencer.html#dereference
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/URIDereferencer.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/NodeSetData.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMURIReference.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMCryptoContext.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html#unmarshalKeyInfo
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMStructure.html
https://docs.oracle.com/javase/9/docs/api/org/w3c/dom/Element.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Transform.html#transform
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMCryptoContext.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#newTransform-String-XMLStructure-
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#newCanonicalizationMethod-String-XMLStructure-
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMStructure.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/TransformService.html#init
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/TransformService.html#marshalParams
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMStructure.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMCryptoContext.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#unmarshalXMLSignature
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMStructure.html
https://docs.oracle.com/javase/9/docs/api/org/w3c/dom/Element.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfo.html#marshal
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMStructure.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/DOMCryptoContext.html

Note that a DOM implementation MAY internally use other XML parsing APIs other
than DOM as long as it doesn't affect interoperability. For example, a DOM
implementation of XMLSignatureFactory might use a SAX parser internally to
canonicalize data.

Open API Issues

The following is a list of open API issues.

1. ID attribute registration of external XML document references is not supported.
Consider the following reference:

Dereferencing the external document results in an octet stream which is
subsequently converted to a NodeSet by the JSR 105 implementation. But the API
does not provide a mechanism for registering ID attributes of external documents
and therefore the XPath Transform implementation may be unable to identify the
"foo" ID.

<Reference URI="document.xml">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <XPath>id("foo")</XPath>
 </Transform>
 </Transforms>
</Reference>

Programming Examples

Examples 1-3 below demonstrate how to generate different types of simple XML
Digital Signature using the JSR 105 API. Example 1 describes how to generate a
detached signature using the DSA signature algorithm. Example 2 describes how to
generate an enveloped signature. Example 3 describes how to generate an
enveloping signature. Example 4 describes how to validate an XML Signature.

Example 11-1 1. Generating a detached XML Digital Signature

import javax.xml.crypto.*;
import javax.xml.crypto.dsig.*;
import javax.xml.crypto.dom.*;
import javax.xml.crypto.dsig.dom.DOMSignContext;
import javax.xml.crypto.dsig.keyinfo.*;
import javax.xml.crypto.dsig.spec.C14NMethodParameterSpec;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.security.*;
import java.util.Collections;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import org.w3c.dom.Document;

/**
 * This is a simple example of generating a Detached XML
 * Signature using the JSR 105 API. The resulting signature will look
 * like (key and signature values will be different):
 *
 * <pre><code>

Chapter 11
Java XML Digital Signature API Specification

11-6

 * <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 * <SignedInfo>
 * <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
 * <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha256"/>
 * <Reference URI="http://www.w3.org/TR/xml-stylesheet">
 * <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 * <DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>
 * </Reference>
 * </SignedInfo>
 * <SignatureValue>
 * DpEylhQoiUKBoKWmYfajXO7LZxiDYgVtUtCNyTgwZgoChzorA2nhkQ==
 * </SignatureValue>
 * <KeyInfo>
 * <KeyValue>
 * <DSAKeyValue>
 * <P>
 * rFto8uPQM6y34FLPmDh40BLJ1rVrC8VeRquuhPZ6jYNFkQuwxnu/wCvIAMhukPBL
 * FET8bJf/b2ef+oqxZajEb+88zlZoyG8g/wMfDBHTxz+CnowLahnCCTYBp5kt7G8q
 * UobJuvjylwj1st7V9Lsu03iXMXtbiriUjFa5gURasN8=
 * </P>
 * <Q>
 * kEjAFpCe4lcUOdwphpzf+tBaUds=
 * </Q>
 * <G>
 * oe14R2OtyKx+s+60O5BRNMOYpIg2TU/f15N3bsDErKOWtKXeNK9FS7dWStreDxo2
 * SSgOonqAd4FuJ/4uva7GgNL4ULIqY7E+mW5iwJ7n/WTELh98mEocsLXkNh24HcH4
 * BZfSCTruuzmCyjdV1KSqX/Eux04HfCWYmdxN3SQ/qqw=
 * </G>
 * <Y>
 * pA5NnZvcd574WRXuOA7ZfC/7Lqt4cB0MRLWtHubtJoVOao9ib5ry4rTk0r6ddnOv
 * AIGKktutzK3ymvKleS3DOrwZQgJ+/BDWDW8kO9R66o6rdjiSobBi/0c2V1+dkqOg
 * jFmKz395mvCOZGhC7fqAVhHat2EjGPMfgSZyABa7+1k=
 * </Y>
 * </DSAKeyValue>
 * </KeyValue>
 * </KeyInfo>
 * </Signature>
 * </code></pre>
 */
public class GenDetached {

 //
 // Synopsis: java GenDetached [output]
 //
 // where output is the name of the file that will contain the detached
 // signature. If not specified, standard output is used.
 //
 public static void main(String[] args) throws Exception {

 // First, create a DOM XMLSignatureFactory that will be used to
 // generate the XMLSignature and marshal it to DOM.
 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

 // Create a Reference to an external URI that will be digested
 // using the SHA256 digest algorithm
 Reference ref = fac.newReference("http://www.w3.org/TR/xml-stylesheet",
 fac.newDigestMethod(DigestMethod.SHA256, null));

 // Create the SignedInfo
 SignedInfo si = fac.newSignedInfo(

Chapter 11
Java XML Digital Signature API Specification

11-7

 fac.newCanonicalizationMethod
 (CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
 (C14NMethodParameterSpec) null),
 fac.newSignatureMethod("http://www.w3.org/2000/09/xmldsig#dsa-sha256",
null),
 Collections.singletonList(ref));

 // Create a DSA KeyPair
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
 kpg.initialize(2048);
 KeyPair kp = kpg.generateKeyPair();

 // Create a KeyValue containing the DSA PublicKey that was generated
 KeyInfoFactory kif = fac.getKeyInfoFactory();
 KeyValue kv = kif.newKeyValue(kp.getPublic());

 // Create a KeyInfo and add the KeyValue to it
 KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

 // Create the XMLSignature (but don't sign it yet)
 XMLSignature signature = fac.newXMLSignature(si, ki);

 // Create the Document that will hold the resulting XMLSignature
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true); // must be set
 Document doc = dbf.newDocumentBuilder().newDocument();

 // Create a DOMSignContext and set the signing Key to the DSA
 // PrivateKey and specify where the XMLSignature should be inserted
 // in the target document (in this case, the document root)
 DOMSignContext signContext = new DOMSignContext(kp.getPrivate(), doc);

 // Marshal, generate (and sign) the detached XMLSignature. The DOM
 // Document will contain the XML Signature if this method returns
 // successfully.
 signature.sign(signContext);

 // output the resulting document
 OutputStream os;
 if (args.length > 0) {
 os = new FileOutputStream(args[0]);
 } else {
 os = System.out;
 }

 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer trans = tf.newTransformer();
 trans.transform(new DOMSource(doc), new StreamResult(os));
 }
}

Example 11-2 2. Generating an enveloped XML Digital Signature

import javax.xml.crypto.*;
import javax.xml.crypto.dsig.*;
import javax.xml.crypto.dom.*;
import javax.xml.crypto.dsig.dom.DOMSignContext;
import javax.xml.crypto.dsig.keyinfo.*;
import javax.xml.crypto.dsig.spec.*;
import java.io.FileInputStream;
import java.io.FileOutputStream;

Chapter 11
Java XML Digital Signature API Specification

11-8

import java.io.OutputStream;
import java.security.*;
import java.util.Collections;
import java.util.Iterator;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import org.w3c.dom.Document;

/**
 * This is a simple example of generating an Enveloped XML
 * Signature using the JSR 105 API. The resulting signature will look
 * like (key and signature values will be different):
 *
 * <pre><code>
 *<Envelope xmlns="urn:envelope">
 * <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 * <SignedInfo>
 * <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
 * <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha256"/>
 * <Reference URI="">
 * <Transforms>
 * <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>
 * </Transforms>
 * <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 * <DigestValue>K8M/lPbKnuMDsO0Uzuj75lQtzQI=<DigestValue>
 * </Reference>
 * </SignedInfo>
 * <SignatureValue>
 * DpEylhQoiUKBoKWmYfajXO7LZxiDYgVtUtCNyTgwZgoChzorA2nhkQ==
 * </SignatureValue>
 * <KeyInfo>
 * <KeyValue>
 * <DSAKeyValue>
 * <P>
 * rFto8uPQM6y34FLPmDh40BLJ1rVrC8VeRquuhPZ6jYNFkQuwxnu/wCvIAMhukPBL
 * FET8bJf/b2ef+oqxZajEb+88zlZoyG8g/wMfDBHTxz+CnowLahnCCTYBp5kt7G8q
 * UobJuvjylwj1st7V9Lsu03iXMXtbiriUjFa5gURasN8=
 * </P>
 * <Q>
 * kEjAFpCe4lcUOdwphpzf+tBaUds=
 * </Q>
 * <G>
 * oe14R2OtyKx+s+60O5BRNMOYpIg2TU/f15N3bsDErKOWtKXeNK9FS7dWStreDxo2
 * SSgOonqAd4FuJ/4uva7GgNL4ULIqY7E+mW5iwJ7n/WTELh98mEocsLXkNh24HcH4
 * BZfSCTruuzmCyjdV1KSqX/Eux04HfCWYmdxN3SQ/qqw=
 * </G>
 * <Y>
 * pA5NnZvcd574WRXuOA7ZfC/7Lqt4cB0MRLWtHubtJoVOao9ib5ry4rTk0r6ddnOv
 * AIGKktutzK3ymvKleS3DOrwZQgJ+/BDWDW8kO9R66o6rdjiSobBi/0c2V1+dkqOg
 * jFmKz395mvCOZGhC7fqAVhHat2EjGPMfgSZyABa7+1k=
 * </Y>
 * </DSAKeyValue>
 * </KeyValue>
 * </KeyInfo>
 * </Signature>
 *</Envelope>
 * </code></pre>

Chapter 11
Java XML Digital Signature API Specification

11-9

 */
public class GenEnveloped {

 //
 // Synopsis: java GenEnveloped [document] [output]
 //
 // where "document" is the name of a file containing the XML document
 // to be signed, and "output" is the name of the file to store the
 // signed document. The 2nd argument is optional - if not specified,
 // standard output will be used.
 //
 public static void main(String[] args) throws Exception {

 // Create a DOM XMLSignatureFactory that will be used to generate the
 // enveloped signature
 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

 // Create a Reference to the enveloped document (in this case we are
 // signing the whole document, so a URI of "" signifies that) and
 // also specify the SHA256 digest algorithm and the ENVELOPED Transform.
 Reference ref = fac.newReference
 ("", fac.newDigestMethod(DigestMethod.SHA256, null),
 Collections.singletonList
 (fac.newTransform
 (Transform.ENVELOPED, (TransformParameterSpec) null)),
 null, null);

 // Create the SignedInfo
 SignedInfo si = fac.newSignedInfo
 (fac.newCanonicalizationMethod
 (CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
 (C14NMethodParameterSpec) null),
 fac.newSignatureMethod("http://www.w3.org/2000/09/xmldsig#dsa-sha256",
null),
 Collections.singletonList(ref));

 // Create a DSA KeyPair
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
 kpg.initialize(2048);
 KeyPair kp = kpg.generateKeyPair();

 // Create a KeyValue containing the DSA PublicKey that was generated
 KeyInfoFactory kif = fac.getKeyInfoFactory();
 KeyValue kv = kif.newKeyValue(kp.getPublic());

 // Create a KeyInfo and add the KeyValue to it
 KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

 // Instantiate the document to be signed
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 Document doc =
 dbf.newDocumentBuilder().parse(new FileInputStream(args[0]));

 // Create a DOMSignContext and specify the DSA PrivateKey and
 // location of the resulting XMLSignature's parent element
 DOMSignContext dsc = new DOMSignContext
 (kp.getPrivate(), doc.getDocumentElement());

 // Create the XMLSignature (but don't sign it yet)
 XMLSignature signature = fac.newXMLSignature(si, ki);

Chapter 11
Java XML Digital Signature API Specification

11-10

 // Marshal, generate (and sign) the enveloped signature
 signature.sign(dsc);

 // output the resulting document
 OutputStream os;
 if (args.length > 1) {
 os = new FileOutputStream(args[1]);
 } else {
 os = System.out;
 }

 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer trans = tf.newTransformer();
 trans.transform(new DOMSource(doc), new StreamResult(os));
 }
}

Example 11-3 3. Generating an enveloping XML Digital Signature

import javax.xml.crypto.*;
import javax.xml.crypto.dsig.*;
import javax.xml.crypto.dom.*;
import javax.xml.crypto.dsig.dom.DOMSignContext;
import javax.xml.crypto.dsig.keyinfo.*;
import javax.xml.crypto.dsig.spec.C14NMethodParameterSpec;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.security.*;
import java.util.Arrays;
import java.util.Collections;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import org.w3c.dom.Document;
import org.w3c.dom.Node;

/**
 * This is a simple example of generating an Enveloping XML
 * Signature using the JSR 105 API. The signature in this case references a
 * local URI that points to an Object element.
 * The resulting signature will look like (certificate and
 * signature values will be different):
 *
 * <pre><code>
 * <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 * <SignedInfo>
 * <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315#WithComments"/>
 * <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha256"/>
 * <Reference URI="#object">
 * <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 * <DigestValue>7/XTsHaBSOnJ/jXD5v0zL6VKYsk=</DigestValue>
 * </Reference>
 * </SignedInfo>
 * <SignatureValue>
 * RpMRbtMHLa0siSS+BwUpLIEmTfh/0fsld2JYQWZzCzfa5kBTz25+XA==
 * </SignatureValue>

Chapter 11
Java XML Digital Signature API Specification

11-11

 * <KeyInfo>
 * <KeyValue>
 * <DSAKeyValue>
 * <P>
 * /KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxeEu0Imbz
 * RMqzVDZkVG9xD7nN1kuFw==
 * </P>
 * <Q>
 * li7dzDacuo67Jg7mtqEm2TRuOMU=
 * </Q>
 * <G>
 * Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ01khpMdLRQnG541Awtx/XPaF5Bpsy4pNWMOH
 * CBiNU0NogpsQW5QvnlMpA==
 * </G>
 * <Y>
 * wbEUaCgHZXqK4qLvbdYrAc6+Do0XVcsziCJqxzn4cJJRxwc3E1xnEXHscVgr1Cql9
 * i5fanOKQbFXzmb+bChqig==
 * </Y>
 * </DSAKeyValue>
 * </KeyValue>
 * </KeyInfo>
 * <Object Id="object">some text</Object>
 * </Signature>
 *
 * </code></pre>
 */
public class GenEnveloping {

 //
 // Synopis: java GenEnveloping [output]
 //
 // where "output" is the name of a file that will contain the
 // generated signature. If not specified, standard ouput will be used.
 //
 public static void main(String[] args) throws Exception {

 // First, create the DOM XMLSignatureFactory that will be used to
 // generate the XMLSignature
 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

 // Next, create a Reference to a same-document URI that is an Object
 // element and specify the SHA256 digest algorithm
 Reference ref = fac.newReference("#object",
 fac.newDigestMethod(DigestMethod.SHA256, null));

 // Next, create the referenced Object
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 Document doc = dbf.newDocumentBuilder().newDocument();
 Node text = doc.createTextNode("some text");
 XMLStructure content = new DOMStructure(text);
 XMLObject obj = fac.newXMLObject
 (Collections.singletonList(content), "object", null, null);

 // Create the SignedInfo
 SignedInfo si = fac.newSignedInfo(
 fac.newCanonicalizationMethod
 (CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
 (C14NMethodParameterSpec) null),
 fac.newSignatureMethod("http://www.w3.org/2000/09/xmldsig#dsa-sha256",
null),

Chapter 11
Java XML Digital Signature API Specification

11-12

 Collections.singletonList(ref));

 // Create a DSA KeyPair
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
 kpg.initialize(2048);
 KeyPair kp = kpg.generateKeyPair();

 // Create a KeyValue containing the DSA PublicKey that was generated
 KeyInfoFactory kif = fac.getKeyInfoFactory();
 KeyValue kv = kif.newKeyValue(kp.getPublic());

 // Create a KeyInfo and add the KeyValue to it
 KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

 // Create the XMLSignature (but don't sign it yet)
 XMLSignature signature = fac.newXMLSignature(si, ki,
 Collections.singletonList(obj), null, null);

 // Create a DOMSignContext and specify the DSA PrivateKey for signing
 // and the document location of the XMLSignature
 DOMSignContext dsc = new DOMSignContext(kp.getPrivate(), doc);

 // Lastly, generate the enveloping signature using the PrivateKey
 signature.sign(dsc);

 // output the resulting document
 OutputStream os;
 if (args.length > 0) {
 os = new FileOutputStream(args[0]);
 } else {
 os = System.out;
 }

 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer trans = tf.newTransformer();
 trans.transform(new DOMSource(doc), new StreamResult(os));
 }
}

Example 11-4 4. Validating an XML Digital Signature

import javax.xml.crypto.*;
import javax.xml.crypto.dsig.*;
import javax.xml.crypto.dom.*;
import javax.xml.crypto.dsig.dom.DOMValidateContext;
import javax.xml.crypto.dsig.keyinfo.*;
import java.io.FileInputStream;
import java.security.*;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;

/**
 * This is a simple example of validating an XML
 * Signature using the JSR 105 API. It assumes the key needed to
 * validate the signature is contained in a KeyValue KeyInfo.
 */
public class Validate {

Chapter 11
Java XML Digital Signature API Specification

11-13

 //
 // Synopsis: java Validate [document]
 //
 // where "document" is the name of a file containing the XML document
 // to be validated.
 //
 public static void main(String[] args) throws Exception {

 // Instantiate the document to be validated
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 Document doc =
 dbf.newDocumentBuilder().parse(new FileInputStream(args[0]));

 // Find Signature element
 NodeList nl =
 doc.getElementsByTagNameNS(XMLSignature.XMLNS, "Signature");
 if (nl.getLength() == 0) {
 throw new Exception("Cannot find Signature element");
 }

 // Create a DOM XMLSignatureFactory that will be used to unmarshal the
 // document containing the XMLSignature
 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

 // Create a DOMValidateContext and specify a KeyValue KeySelector
 // and document context
 DOMValidateContext valContext = new DOMValidateContext
 (new KeyValueKeySelector(), nl.item(0));

 // unmarshal the XMLSignature
 XMLSignature signature = fac.unmarshalXMLSignature(valContext);

 // Validate the XMLSignature (generated above)
 boolean coreValidity = signature.validate(valContext);

 // Check core validation status
 if (coreValidity == false) {
 System.err.println("Signature failed core validation");
 boolean sv = signature.getSignatureValue().validate(valContext);
 System.out.println("signature validation status: " + sv);
 // check the validation status of each Reference
 Iterator i = signature.getSignedInfo().getReferences().iterator();
 for (int j=0; i.hasNext(); j++) {
 boolean refValid =
 ((Reference) i.next()).validate(valContext);
 System.out.println("ref["+j+"] validity status: " + refValid);
 }
 } else {
 System.out.println("Signature passed core validation");
 }
 }

 /**
 * KeySelector which retrieves the public key out of the
 * KeyValue element and returns it.
 * NOTE: If the key algorithm doesn't match signature algorithm,
 * then the public key will be ignored.
 */
 private static class KeyValueKeySelector extends KeySelector {

Chapter 11
Java XML Digital Signature API Specification

11-14

 public KeySelectorResult select(KeyInfo keyInfo,
 KeySelector.Purpose purpose,
 AlgorithmMethod method,
 XMLCryptoContext context)
 throws KeySelectorException {
 if (keyInfo == null) {
 throw new KeySelectorException("Null KeyInfo object!");
 }
 SignatureMethod sm = (SignatureMethod) method;
 List list = keyInfo.getContent();

 for (int i = 0; i < list.size(); i++) {
 XMLStructure xmlStructure = (XMLStructure) list.get(i);
 if (xmlStructure instanceof KeyValue) {
 PublicKey pk = null;
 try {
 pk = ((KeyValue)xmlStructure).getPublicKey();
 } catch (KeyException ke) {
 throw new KeySelectorException(ke);
 }
 // make sure algorithm is compatible with method
 if (algEquals(sm.getAlgorithm(), pk.getAlgorithm())) {
 return new SimpleKeySelectorResult(pk);
 }
 }
 }
 throw new KeySelectorException("No KeyValue element found!");
 }

 //@@@FIXME: this should also work for key types other than DSA/RSA
 static boolean algEquals(String algURI, String algName) {
 if (algName.equalsIgnoreCase("DSA") &&
 algURI.equalsIgnoreCase("http://www.w3.org/2000/09/xmldsig#dsa-
sha256")) {
 return true;
 } else if (algName.equalsIgnoreCase("RSA") &&
 algURI.equalsIgnoreCase("http://www.w3.org/2000/09/
xmldsig#dsa-sha256")) {
 return true;
 } else {
 return false;
 }
 }
 }

 private static class SimpleKeySelectorResult implements KeySelectorResult {
 private PublicKey pk;
 SimpleKeySelectorResult(PublicKey pk) {
 this.pk = pk;
 }

 public Key getKey() { return pk; }
 }
}

XML Digital Signature API Overview and Tutorial
The Java XML Digital Signature API is a standard Java API for generating and
validating XML Signatures. This API was defined under the Java Community Process

Chapter 11
XML Digital Signature API Overview and Tutorial

11-15

as JSR 105. This JSR is final and this release of Java SE contains an FCS access
implementation of the Final version of the APIs.

XML Signatures can be applied to data of any type, XML or binary (see XML Signature
Syntax and Processing). The resulting signature is represented in XML. An XML
Signature can be used to secure your data and provide data integrity, message
authentication, and signer authentication.

After providing a brief overview of XML Signatures and the XML Digital Signature API,
this document presents two examples that demonstrate how to use the API to validate
and generate an XML Signature. This document assumes that you have a basic
knowledge of cryptography and digital signatures.

The API is designed to support all of the required or recommended features of the
W3C Recommendation for XML-Signature Syntax and Processing. The API is
extensible and pluggable and is based on the Java Cryptography Service Provider
Architecture. The API is designed for two types of developers:

• Developers who want to use the XML Digital Signature API to generate and
validate XML signatures

• Developers who want to create a concrete implementation of the XML Digital
Signature API and register it as a cryptographic service of a JCA provider (see
The Provider Class).

Package Hierarchy

The six packages listed below comprise the XML Digital Signature API:

• javax.xml.crypto

• javax.xml.crypto.dsig

• javax.xml.crypto.dsig.keyinfo

• javax.xml.crypto.dsig.spec

• javax.xml.crypto.dom

• javax.xml.crypto.dsig.dom

The javax.xml.crypto package contains common classes that are used to perform
XML cryptographic operations, such as generating an XML signature or encrypting
XML data. Two notable classes in this package are the KeySelector class, which
allows developers to supply implementations that locate and optionally validate keys
using the information contained in a KeyInfo object, and the URIDereferencer
class, which allows developers to create and specify their own URI dereferencing
implementations.

The javax.xml.crypto.dsig package includes interfaces that represent the core
elements defined in the W3C XML digital signature specification. Of primary
significance is the XMLSignature class, which allows you to sign and validate an
XML digital signature. Most of the XML signature structures or elements are
represented by a corresponding interface (except for the KeyInfo structures, which are
included in their own package and are discussed in the next paragraph). These
interfaces include: SignedInfo, CanonicalizationMethod, SignatureMethod,

Chapter 11
XML Digital Signature API Overview and Tutorial

11-16

http://www.jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/KeySelector.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/URIDereferencer.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignature.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/SignedInfo.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/CanonicalizationMethod.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/SignatureMethod.html

Reference, Transform, DigestMethod, XMLObject, Manifest,
SignatureProperty, and SignatureProperties. The XMLSignatureFactory
class is an abstract factory that is used to create objects that implement these
interfaces.

The javax.xml.crypto.dsig.keyinfo package contains interfaces that
represent most of the KeyInfo structures defined in the W3C XML digital signature
recommendation, including KeyInfo, KeyName, KeyValue, X509Data,
X509IssuerSerial, RetrievalMethod, and PGPData. The KeyInfoFactory
class is an abstract factory that is used to create objects that implement these
interfaces.

The javax.xml.crypto.dsig.spec package contains interfaces and classes
representing input parameters for the digest, signature, transform, or canonicalization
algorithms used in the processing of XML signatures.

Finally, the javax.xml.crypto.dom and javax.xml.crypto.dsig.dom
packages contains DOM-specific classes for the javax.xml.crypto and
javax.xml.crypto.dsig packages, respectively. Only developers and users who
are creating or using a DOM-based XMLSignatureFactory or KeyInfoFactory
implementation will need to make direct use of these packages.

Service Providers

A JSR 105 cryptographic service is a concrete implementation of the abstract
XMLSignatureFactory and KeyInfoFactory classes and is responsible for
creating objects and algorithms that parse, generate and validate XML Signatures and
KeyInfo structures. A concrete implementation of XMLSignatureFactory must
provide support for each of the required algorithms as specified by the W3C
recommendation for XML Signatures. It can optionally support other algorithms as
defined by the W3C recommendation or other specifications.

JSR 105 leverages the JCA provider model for registering and loading
XMLSignatureFactory and KeyInfoFactory implementations.

Each concrete XMLSignatureFactory or KeyInfoFactory implementation
supports a specific XML mechanism type that identifies the XML processing
mechanism that an implementation uses internally to parse and generate XML
signature and KeyInfo structures. This JSR supports one standard type, DOM. The
XML Digital Signature provider implementation that is bundled with Java SE supports
the DOM mechanism. Support for new standard types, such as JDOM, may be added
in the future.

An XML Digital Signature API implementation should use underlying JCA engine
classes, such as java.security.Signature and
java.security.MessageDigest, to perform cryptographic operations.

In addition to the XMLSignatureFactory and KeyInfoFactory classes, JSR 105
supports a service provider interface for transform and canonicalization algorithms.
The TransformService class allows you to develop and plug in an implementation
of a specific transform or canonicalization algorithm for a particular XML mechanism
type. The TransformService class uses the standard JCA provider model for
registering and loading implementations. Each JSR 105 implementation should use
the TransformService class to find a provider that supports transform and
canonicalization algorithms in XML Signatures that it is generating or validating.

Chapter 11
XML Digital Signature API Overview and Tutorial

11-17

https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Reference.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Transform.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/DigestMethod.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLObject.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/Manifest.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/SignatureProperty.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/SignatureProperties.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfo.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyName.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyValue.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/X509Data.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/X509IssuerSerial.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/RetrievalMethod.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/PGPData.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/dom/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/javase/9/docs/api/java/security/Signature.html
https://docs.oracle.com/javase/9/docs/api/java/security/MessageDigest.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/TransformService.html

Introduction to XML Signatures

You can use an XML Signature to sign any arbitrary data, whether it is XML or binary.
The data is identified via URIs in one or more Reference elements. XML Signatures
are described in one or more of three forms: detached, enveloping, or enveloped. A
detached signature is over data that is external, or outside of the signature element
itself. Enveloping signatures are signatures over data that is inside the signature
element, and an enveloped signature is a signature that is contained inside the data
that it is signing.

Example of an XML Signature

The easiest way to describe the contents of an XML Signature is to show an actual
sample and describe each component in more detail. The following is an example of
an enveloped XML Signature generated over the contents of an XML document. The
contents of the document before it is signed are:

<Envelope xmlns="urn:envelope">
</Envelope>

The resulting enveloped XML Signature, indented and formatted for readability, is as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="urn:envelope">
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>uooqbWYa5VCqcJCbuymBKqm17vY=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
 KedJuTob5gtvYx9qM3k3gm7kbLBwVbEQRl26S2tmXjqNND7MRGtoew==
 </SignatureValue>
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>
 /KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
 Eu0ImbzRMqzVDZkVG9xD7nN1kuFw==
 </P>
 <Q>li7dzDacuo67Jg7mtqEm2TRuOMU=</Q>
 <G>
 Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ01khpMdLRQnG541Awtx/
 XPaF5Bpsy4pNWMOHCBiNU0NogpsQW5QvnlMpA==
 </G>
 <Y>

Chapter 11
XML Digital Signature API Overview and Tutorial

11-18

 qV38IqrWJG0V/mZQvRVi1OHw9Zj84nDC4jO8P0axi1gb6d+475yhMjSc/
 BrIVC58W3ydbkK+Ri4OKbaRZlYeRA==
 </Y>
 </DSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </Signature>
</Envelope>

The Signature element has been inserted inside the content that it is signing, thereby
making it an enveloped signature. The required SignedInfo element contains the
information that is actually signed:

<SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>uooqbWYa5VCqcJCbuymBKqm17vY=</DigestValue>
 </Reference>
</SignedInfo>

The required CanonicalizationMethod element defines the algorithm used to
canonicalize the SignedInfo element before it is signed or validated. Canonicalization is
the process of converting XML content to a canonical form, to take into account
changes that can invalidate a signature over that data. Canonicalization is necessary
due to the nature of XML and the way it is parsed by different processors and
intermediaries, which can change the data such that the signature is no longer valid
but the signed data is still logically equivalent.

The required SignatureMethod element defines the digital signature algorithm used to
generate the signature, in this case DSA with SHA-1.

One or more Reference elements identify the data that is digested. Each Reference
element identifies the data via a URI. In this example, the value of the URI is the
empty String (""), which indicates the root of the document. The optional Transforms
element contains a list of one or more Transform elements, each of which describes a
transformation algorithm used to transform the data before it is digested. In this
example, there is one Transform element for the enveloped transform algorithm. The
enveloped transform is required for enveloped signatures so that the signature
element itself is removed before calculating the signature value. The required
DigestMethod element defines the algorithm used to digest the data, in this case SHA1.
Finally the required DigestValue element contains the actual base64-encoded digested
value.

The required SignatureValue element contains the base64-encoded signature value of
the signature over the SignedInfo element.

The optional KeyInfo element contains information about the key that is needed to
validate the signature:

<KeyInfo>
 <KeyValue>
 <DSAKeyValue>

Chapter 11
XML Digital Signature API Overview and Tutorial

11-19

 <P>
 /KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxe
 Eu0ImbzRMqzVDZkVG9xD7nN1kuFw==
 </P>
 <Q>li7dzDacuo67Jg7mtqEm2TRuOMU=</Q>
 <G>
 Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ01khpMdLRQnG541Awtx/
 XPaF5Bpsy4pNWMOHCBiNU0NogpsQW5QvnlMpA==
 </G>
 <Y>
 qV38IqrWJG0V/mZQvRVi1OHw9Zj84nDC4jO8P0axi1gb6d+475yhMjSc/
 BrIVC58W3ydbkK+Ri4OKbaRZlYeRA==
 </Y>
 </DSAKeyValue>
 </KeyValue>
</KeyInfo>

This KeyInfo element contains a KeyValue element, which in turn contains a DSAKeyValue
element consisting of the public key needed to validate the signature. KeyInfo can
contain various content such as X.509 certificates and PGP key identifiers. See The
KeyInfo Element in XML Signature Syntax and Processing for more information on the
different KeyInfo types.

XML Digital Signature API Examples

The following sections describe two examples that show how to use the XML Digital
Signature API:

Validate Example

To compile and run the example, execute the following commands:

$ javac Validate.java
$ java Validate signature.xml

The sample program will validate the signature in the file signature.xml in the
current working directory.

Example 11-5 Validate.java

import javax.xml.crypto.*;
import javax.xml.crypto.dsig.*;
import javax.xml.crypto.dom.*;
import javax.xml.crypto.dsig.dom.DOMValidateContext;
import javax.xml.crypto.dsig.keyinfo.*;
import java.io.FileInputStream;
import java.security.*;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;

/**
 * This is a simple example of validating an XML
 * Signature using the JSR 105 API. It assumes the key needed to

Chapter 11
XML Digital Signature API Overview and Tutorial

11-20

http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo
http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo
https://www.w3.org/TR/xmldsig-core/

 * validate the signature is contained in a KeyValue KeyInfo.
 */
public class Validate {

 //
 // Synopsis: java Validate [document]
 //
 // where "document" is the name of a file containing the XML document
 // to be validated.
 //
 public static void main(String[] args) throws Exception {

 // Instantiate the document to be validated
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 Document doc =
 dbf.newDocumentBuilder().parse(new FileInputStream(args[0]));

 // Find Signature element
 NodeList nl =
 doc.getElementsByTagNameNS(XMLSignature.XMLNS, "Signature");
 if (nl.getLength() == 0) {
 throw new Exception("Cannot find Signature element");
 }

 // Create a DOM XMLSignatureFactory that will be used to unmarshal the
 // document containing the XMLSignature
 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

 // Create a DOMValidateContext and specify a KeyValue KeySelector
 // and document context
 DOMValidateContext valContext = new DOMValidateContext
 (new KeyValueKeySelector(), nl.item(0));

 // unmarshal the XMLSignature
 XMLSignature signature = fac.unmarshalXMLSignature(valContext);

 // Validate the XMLSignature (generated above)
 boolean coreValidity = signature.validate(valContext);

 // Check core validation status
 if (coreValidity == false) {
 System.err.println("Signature failed core validation");
 boolean sv = signature.getSignatureValue().validate(valContext);
 System.out.println("signature validation status: " + sv);
 // check the validation status of each Reference
 Iterator i = signature.getSignedInfo().getReferences().iterator();
 for (int j=0; i.hasNext(); j++) {
 boolean refValid =
 ((Reference) i.next()).validate(valContext);
 System.out.println("ref["+j+"] validity status: " + refValid);
 }
 } else {
 System.out.println("Signature passed core validation");
 }
 }

 /**
 * KeySelector which retrieves the public key out of the
 * KeyValue element and returns it.
 * NOTE: If the key algorithm doesn't match signature algorithm,

Chapter 11
XML Digital Signature API Overview and Tutorial

11-21

 * then the public key will be ignored.
 */
 private static class KeyValueKeySelector extends KeySelector {
 public KeySelectorResult select(KeyInfo keyInfo,
 KeySelector.Purpose purpose,
 AlgorithmMethod method,
 XMLCryptoContext context)
 throws KeySelectorException {
 if (keyInfo == null) {
 throw new KeySelectorException("Null KeyInfo object!");
 }
 SignatureMethod sm = (SignatureMethod) method;
 List list = keyInfo.getContent();

 for (int i = 0; i < list.size(); i++) {
 XMLStructure xmlStructure = (XMLStructure) list.get(i);
 if (xmlStructure instanceof KeyValue) {
 PublicKey pk = null;
 try {
 pk = ((KeyValue)xmlStructure).getPublicKey();
 } catch (KeyException ke) {
 throw new KeySelectorException(ke);
 }
 // make sure algorithm is compatible with method
 if (algEquals(sm.getAlgorithm(), pk.getAlgorithm())) {
 return new SimpleKeySelectorResult(pk);
 }
 }
 }
 throw new KeySelectorException("No KeyValue element found!");
 }

 //@@@FIXME: this should also work for key types other than DSA/RSA
 static boolean algEquals(String algURI, String algName) {
 if (algName.equalsIgnoreCase("DSA") &&
 algURI.equalsIgnoreCase("http://www.w3.org/2009/xmldsig11#dsa-
sha256")) {
 return true;
 } else if (algName.equalsIgnoreCase("RSA") &&
 algURI.equalsIgnoreCase("http://www.w3.org/2001/04/xmldsig-
more#rsa-sha256")) {
 return true;
 } else {
 return false;
 }
 }
 }

 private static class SimpleKeySelectorResult implements KeySelectorResult {
 private PublicKey pk;
 SimpleKeySelectorResult(PublicKey pk) {
 this.pk = pk;
 }

 public Key getKey() { return pk; }
 }
}

Chapter 11
XML Digital Signature API Overview and Tutorial

11-22

Example 11-6 envelope.xml

<Envelope xmlns="urn:envelope">
</Envelope>

Example 11-7 signature.xml

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="urn:envelope">
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"
 xmlns="http://www.w3.org/2000/09/xmldsig#"/>
 <SignatureMethod
 Algorithm="http://www.w3.org/2009/xmldsig11#dsa-sha256"
 xmlns="http://www.w3.org/2000/09/xmldsig#"/>
 <Reference URI="" xmlns="http://www.w3.org/2000/09/xmldsig#">
 <Transforms xmlns="http://www.w3.org/2000/09/xmldsig#">
 <Transform
 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"
 xmlns="http://www.w3.org/2000/09/xmldsig#"/>
 </Transforms>
 <DigestMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"
 xmlns="http://www.w3.org/2000/09/xmldsig#"/>
 <DigestValue xmlns="http://www.w3.org/2000/09/
xmldsig#">uooqbWYa5VCqcJCbuymBKqm17vY=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue xmlns="http://www.w3.org/2000/09/
xmldsig#">eO7K1BdC0kzNvr1HpMf4hKoWsvl+oI04nMw55GO+Z5hyI6By3Oihow==</SignatureValue>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyValue xmlns="http://www.w3.org/2000/09/xmldsig#">
 <DSAKeyValue xmlns="http://www.w3.org/2000/09/xmldsig#">
 <P xmlns="http://www.w3.org/2000/09/xmldsig#">/
KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxeEu0ImbzRMqzVDZkVG9xD7nN1kuFw
==</P>
 <Q xmlns="http://www.w3.org/2000/09/
xmldsig#">li7dzDacuo67Jg7mtqEm2TRuOMU=</Q>
 <G xmlns="http://www.w3.org/2000/09/
xmldsig#">Z4Rxsnqc9E7pGknFFH2xqaryRPBaQ01khpMdLRQnG541Awtx/
XPaF5Bpsy4pNWMOHCBiNU0NogpsQW5QvnlMpA==</G>
 <Y xmlns="http://www.w3.org/2000/09/
xmldsig#">OqFi0sGpvroi6Ut3m154QNWc6gavH3j2ZoRPDW7qVBbgk7XompuKvZe1owz0yvxq+1K+mWbL7ST
+t5nr6UFBCg==</Y>
 </DSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </Signature>
</Envelope>

Validating an XML Signature

This example shows you how to validate an XML Signature using the JSR 105 API.
The example uses DOM (the Document Object Model) to parse an XML document
containing a Signature element and a JSR 105 DOM implementation to validate the
signature.

Chapter 11
XML Digital Signature API Overview and Tutorial

11-23

Instantiating the Document that Contains the Signature

First we use a JAXP DocumentBuilderFactory to parse the XML document containing
the Signature. An application obtains the default implementation for
DocumentBuilderFactory by calling the following line of code:

DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:

dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of a DocumentBuilder, which is used to
parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

Specifying the Signature Element to be Validated

We need to specify the Signature element that we want to validate, since there could
be more than one in the document. We use the DOM method
Document.getElementsByTagNameNS, passing it the XML Signature namespace URI
and the tag name of the Signature element, as shown:

NodeList nl = doc.getElementsByTagNameNS
 (XMLSignature.XMLNS, "Signature");
if (nl.getLength() == 0) {
 throw new Exception("Cannot find Signature element");
}

This returns a list of all Signature elements in the document. In this example, there is
only one Signature element.

Creating a Validation Context

We create an XMLValidateContext instance containing input parameters for validating
the signature. Since we are using DOM, we instantiate a DOMValidateContext
instance (a subclass of XMLValidateContext), and pass it two parameters, a
KeyValueKeySelector object and a reference to the Signature element to be validated
(which is the first entry of the NodeList we generated earlier):

DOMValidateContext valContext = new DOMValidateContext
 (new KeyValueKeySelector(), nl.item(0));

The KeyValueKeySelector is explained in greater detail in Using KeySelectors.

Unmarshalling the XML Signature

We extract the contents of the Signature element into an XMLSignature object. This
process is called unmarshalling. The Signature element is unmarshalled using an

Chapter 11
XML Digital Signature API Overview and Tutorial

11-24

http://docs.oracle.com/javase/8/docs/technotes/guides/security/xmldsig/XMLDigitalSignature.html#wp511424

XMLSignatureFactory object. An application can obtain a DOM implementation of
XMLSignatureFactory by calling the following line of code:

XMLSignatureFactory factory =
 XMLSignatureFactory.getInstance("DOM");

We then invoke the unmarshalXMLSignature method of the factory to unmarshal an
XMLSignature object, and pass it the validation context we created earlier:

XMLSignature signature =
 factory.unmarshalXMLSignature(valContext);

Validating the XML Signature

Now we are ready to validate the signature. We do this by invoking the validate
method on the XMLSignature object, and pass it the validation context as follows:

boolean coreValidity = signature.validate(valContext);

The validate method returns "true" if the signature validates successfully according to
the core validation rules in the W3C XML Signature Recommendation, and false
otherwise.

Using KeySelectors

KeySelectors are used to find and select keys that are needed to validate an
XMLSignature. Earlier, when we created a DOMValidateContext object, we passed a
KeySelector object as the first argument:

DOMValidateContext valContext = new DOMValidateContext
 (new KeyValueKeySelector(), nl.item(0));

Alternatively, we could have passed a PublicKey as the first argument if we already
knew what key is needed to validate the signature. However, we often don't know.

The KeyValueKeySelector is a concrete implementation of the abstract KeySelector
class. The KeyValueKeySelector implementation tries to find an appropriate validation
key using the data contained in KeyValue elements of the KeyInfo element of an
XMLSignature. It does not determine if the key is trusted. This is a very simple
KeySelector implementation, designed for illustration rather than real-world usage. A
more practical example of a KeySelector is one that searches a KeyStore for trusted
keys that match X509Data information (for example, X509SubjectName,
X509IssuerSerial, X509SKI, or X509Certificate elements) contained in a KeyInfo.

The implementation of the KeyValueKeySelector is as follows:

private static class KeyValueKeySelector extends KeySelector {

 public KeySelectorResult select(KeyInfo keyInfo,
 KeySelector.Purpose purpose,
 AlgorithmMethod method,
 XMLCryptoContext context)
 throws KeySelectorException {

 if (keyInfo == null) {
 throw new KeySelectorException("Null KeyInfo object!");

Chapter 11
XML Digital Signature API Overview and Tutorial

11-25

 }
 SignatureMethod sm = (SignatureMethod) method;
 List list = keyInfo.getContent();

 for (int i = 0; i < list.size(); i++) {
 XMLStructure xmlStructure = (XMLStructure) list.get(i);
 if (xmlStructure instanceof KeyValue) {
 PublicKey pk = null;
 try {
 pk = ((KeyValue)xmlStructure).getPublicKey();
 } catch (KeyException ke) {
 throw new KeySelectorException(ke);
 }
 // make sure algorithm is compatible with method
 if (algEquals(sm.getAlgorithm(),
 pk.getAlgorithm())) {
 return new SimpleKeySelectorResult(pk);
 }
 }
 }
 throw new KeySelectorException("No KeyValue element
found!");
 }

 static boolean algEquals(String algURI, String algName) {
 if (algName.equalsIgnoreCase("DSA") &&
 algURI.equalsIgnoreCase(SignatureMethod.DSA_SHA1)) {
 return true;
 } else if (algName.equalsIgnoreCase("RSA") &&
 algURI.equalsIgnoreCase(SignatureMethod.RSA_SHA1)) {
 return true;
 } else {
 return false;
 }
 }
}

GenEnveloped Example

To compile and run this sample, execute the following command:

$ javac GenEnveloped.java
$ java GenEnveloped envelope.xml envelopedSignature.xml

The sample program will generate an enveloped signature of the document in the file
envelope.xml and store it in the file envelopedSignature.xml in the current
working directory.

Example 11-8 GenEnveloped.java

import javax.xml.crypto.*;
import javax.xml.crypto.dsig.*;
import javax.xml.crypto.dom.*;
import javax.xml.crypto.dsig.dom.DOMSignContext;
import javax.xml.crypto.dsig.keyinfo.*;
import javax.xml.crypto.dsig.spec.*;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.security.*;

Chapter 11
XML Digital Signature API Overview and Tutorial

11-26

import java.util.Collections;
import java.util.Iterator;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import org.w3c.dom.Document;

/**
 * This is a simple example of generating an Enveloped XML
 * Signature using the JSR 105 API. The resulting signature will look
 * like (key and signature values will be different):
 *
 * <pre><code>
 *<Envelope xmlns="urn:envelope">
 * <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 * <SignedInfo>
 * <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
 * <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha256"/>
 * <Reference URI="">
 * <Transforms>
 * <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>
 * </Transforms>
 * <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 * <DigestValue>K8M/lPbKnuMDsO0Uzuj75lQtzQI=<DigestValue>
 * </Reference>
 * </SignedInfo>
 * <SignatureValue>
 * DpEylhQoiUKBoKWmYfajXO7LZxiDYgVtUtCNyTgwZgoChzorA2nhkQ==
 * </SignatureValue>
 * <KeyInfo>
 * <KeyValue>
 * <DSAKeyValue>
 * <P>
 * rFto8uPQM6y34FLPmDh40BLJ1rVrC8VeRquuhPZ6jYNFkQuwxnu/wCvIAMhukPBL
 * FET8bJf/b2ef+oqxZajEb+88zlZoyG8g/wMfDBHTxz+CnowLahnCCTYBp5kt7G8q
 * UobJuvjylwj1st7V9Lsu03iXMXtbiriUjFa5gURasN8=
 * </P>
 * <Q>
 * kEjAFpCe4lcUOdwphpzf+tBaUds=
 * </Q>
 * <G>
 * oe14R2OtyKx+s+60O5BRNMOYpIg2TU/f15N3bsDErKOWtKXeNK9FS7dWStreDxo2
 * SSgOonqAd4FuJ/4uva7GgNL4ULIqY7E+mW5iwJ7n/WTELh98mEocsLXkNh24HcH4
 * BZfSCTruuzmCyjdV1KSqX/Eux04HfCWYmdxN3SQ/qqw=
 * </G>
 * <Y>
 * pA5NnZvcd574WRXuOA7ZfC/7Lqt4cB0MRLWtHubtJoVOao9ib5ry4rTk0r6ddnOv
 * AIGKktutzK3ymvKleS3DOrwZQgJ+/BDWDW8kO9R66o6rdjiSobBi/0c2V1+dkqOg
 * jFmKz395mvCOZGhC7fqAVhHat2EjGPMfgSZyABa7+1k=
 * </Y>
 * </DSAKeyValue>
 * </KeyValue>
 * </KeyInfo>
 * </Signature>
 *</Envelope>
 * </code></pre>
 */
public class GenEnveloped {

Chapter 11
XML Digital Signature API Overview and Tutorial

11-27

 //
 // Synopsis: java GenEnveloped [document] [output]
 //
 // where "document" is the name of a file containing the XML document
 // to be signed, and "output" is the name of the file to store the
 // signed document. The 2nd argument is optional - if not specified,
 // standard output will be used.
 //
 public static void main(String[] args) throws Exception {

 // Create a DOM XMLSignatureFactory that will be used to generate the
 // enveloped signature
 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

 // Create a Reference to the enveloped document (in this case we are
 // signing the whole document, so a URI of "" signifies that) and
 // also specify the SHA256 digest algorithm and the ENVELOPED Transform.
 Reference ref = fac.newReference
 ("", fac.newDigestMethod(DigestMethod.SHA256, null),
 Collections.singletonList
 (fac.newTransform
 (Transform.ENVELOPED, (TransformParameterSpec) null)),
 null, null);

 // Create the SignedInfo
 SignedInfo si = fac.newSignedInfo
 (fac.newCanonicalizationMethod
 (CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
 (C14NMethodParameterSpec) null),
 fac.newSignatureMethod("http://www.w3.org/2000/09/xmldsig#dsa-sha256",
null),
 Collections.singletonList(ref));

 // Create a DSA KeyPair
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
 kpg.initialize(2048);
 KeyPair kp = kpg.generateKeyPair();

 // Create a KeyValue containing the DSA PublicKey that was generated
 KeyInfoFactory kif = fac.getKeyInfoFactory();
 KeyValue kv = kif.newKeyValue(kp.getPublic());

 // Create a KeyInfo and add the KeyValue to it
 KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

 // Instantiate the document to be signed
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 Document doc =
 dbf.newDocumentBuilder().parse(new FileInputStream(args[0]));

 // Create a DOMSignContext and specify the DSA PrivateKey and
 // location of the resulting XMLSignature's parent element
 DOMSignContext dsc = new DOMSignContext
 (kp.getPrivate(), doc.getDocumentElement());

 // Create the XMLSignature (but don't sign it yet)
 XMLSignature signature = fac.newXMLSignature(si, ki);

 // Marshal, generate (and sign) the enveloped signature

Chapter 11
XML Digital Signature API Overview and Tutorial

11-28

 signature.sign(dsc);

 // output the resulting document
 OutputStream os;
 if (args.length > 1) {
 os = new FileOutputStream(args[1]);
 } else {
 os = System.out;
 }

 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer trans = tf.newTransformer();
 trans.transform(new DOMSource(doc), new StreamResult(os));
 }
}

Example 11-9 envelope.xml

<Envelope xmlns="urn:envelope">
</Envelope>

Generating an XML Signature

This example shows you how to generate an XML Signature using the XML Digital
Signature API. More specifically, the example generates an enveloped XML Signature
of an XML document. An enveloped signature is a signature that is contained inside
the content that it is signing. The example uses DOM (the Document Object Model) to
parse the XML document to be signed and a JSR 105 DOM implementation to
generate the resulting signature.

A basic knowledge of XML Signatures and their different components is helpful for
understanding this section. See http://www.w3.org/TR/xmldsig-core/ for more
information.

Instantiating the Document to be Signed

First, we use a JAXP DocumentBuilderFactory to parse the XML document that we
want to sign. An application obtains the default implementation for
DocumentBuilderFactory by calling the following line of code:

DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:

dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of a DocumentBuilder, which is used to
parse the document:

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

Creating a Public Key Pair

Chapter 11
XML Digital Signature API Overview and Tutorial

11-29

http://www.w3.org/TR/xmldsig-core/

We generate a public key pair. Later in the example, we will use the private key to
generate the signature. We create the key pair with a KeyPairGenerator. In this
example, we will create a DSA KeyPair with a length of 2048 bytes:

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
kpg.initialize(2048);
KeyPair kp = kpg.generateKeyPair();

In practice, the private key is usually previously generated and stored in a KeyStore
file with an associated public key certificate.

Creating a Signing Context

We create an XML Digital Signature XMLSignContext containing input parameters for
generating the signature. Since we are using DOM, we instantiate a DOMSignContext
(a subclass of XMLSignContext), and pass it two parameters, the private key that will
be used to sign the document and the root of the document to be signed:

DOMSignContext dsc = new DOMSignContext
 (kp.getPrivate(), doc.getDocumentElement());

Assembling the XML Signature

We assemble the different parts of the Signature element into an XMLSignature
object. These objects are all created and assembled using an XMLSignatureFactory
object. An application obtains a DOM implementation of XMLSignatureFactory by
calling the following line of code:

XMLSignatureFactory fac =
 XMLSignatureFactory.getInstance("DOM");

We then invoke various factory methods to create the different parts of the
XMLSignature object as shown below. We create a Reference object, passing to it the
following:

• The URI of the object to be signed (We specify a URI of "", which implies the root
of the document.)

• The DigestMethod (we use SHA1)

• A single Transform, the enveloped Transform, which is required for enveloped
signatures so that the signature itself is removed before calculating the signature
value

Reference ref = fac.newReference
 ("", fac.newDigestMethod(DigestMethod.SHA1, null),
 Collections.singletonList
 (fac.newTransform(Transform.ENVELOPED,
 (TransformParameterSpec) null)), null, null);

Next, we create the SignedInfo object, which is the object that is actually signed, as
shown below. When creating the SignedInfo, we pass as parameters:

• The CanonicalizationMethod (we use inclusive and preserve comments)

• The SignatureMethod (we use DSA)

• A list of References (in this case, only one)

Chapter 11
XML Digital Signature API Overview and Tutorial

11-30

SignedInfo si = fac.newSignedInfo
 (fac.newCanonicalizationMethod
 (CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
 (C14NMethodParameterSpec) null),
 fac.newSignatureMethod(SignatureMethod.DSA_SHA1, null),
 Collections.singletonList(ref));

Next, we create the optional KeyInfo object, which contains information that enables
the recipient to find the key needed to validate the signature. In this example, we add a
KeyValue object containing the public key. To create KeyInfo and its various subtypes,
we use a KeyInfoFactory object, which can be obtained by invoking the
getKeyInfoFactory method of the XMLSignatureFactory, as follows:

KeyInfoFactory kif = fac.getKeyInfoFactory();

We then use the KeyInfoFactory to create the KeyValue object and add it to a KeyInfo
object:

KeyValue kv = kif.newKeyValue(kp.getPublic());
KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

Finally, we create the XMLSignature object, passing as parameters the SignedInfo and
KeyInfo objects that we created earlier:

XMLSignature signature = fac.newXMLSignature(si, ki);

Notice that we haven't actually generated the signature yet; we'll do that in the next
step.

Generating the XML Signature

Now we are ready to generate the signature, which we do by invoking the sign method
on the XMLSignature object, and pass it the signing context as follows:

signature.sign(dsc);

The resulting document now contains a signature, which has been inserted as the last
child element of the root element.

Printing or Displaying the Resulting Document

You can use the following code to print the resulting signed document to a file or
standard output:

OutputStream os;
if (args.length > 1) {
 os = new FileOutputStream(args[1]);
} else {
 os = System.out;
}
TransformerFactory tf = TransformerFactory.newInstance();
Transformer trans = tf.newTransformer();
trans.transform(new DOMSource(doc), new StreamResult(os));

Chapter 11
XML Digital Signature API Overview and Tutorial

11-31

12
Security API Specification

General Security

• java.security

• javax.crypto

• javax.security.cert

• javax.crypto.spec

• java.security.spec

• java.security.interfaces

• javax.crypto.interfaces

• javax.rmi.ssl

Certification Path

java.security.cert

JAAS

• javax.security.auth

• javax.security.auth.callback

• javax.security.auth.kerberos

• javax.security.auth.login

• javax.security.auth.spi

• javax.security.auth.x500

Java GSS-API

• org.ietf.jgss

• com.sun.security.jgss

JSSE

• javax.net

• javax.net.ssl

• java.security.cert

Java SASL

javax.security.sasl

12-1

https://docs.oracle.com/javase/9/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/cert/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/spec/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/spec/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/interfaces/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/crypto/interfaces/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/rmi/ssl/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/callback/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/kerberos/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/login/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/spi/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/x500/package-summary.html
https://docs.oracle.com/javase/9/docs/api/org/ietf/jgss/package-summary.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/jgss/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/net/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/net/ssl/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/security/cert/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/security/sasl/package-summary.html

SSL/TLS-Based RMI Socket Factories

javax.rmi.ssl

XML Digital Signature

• javax.xml.crypto

• javax.xml.crypto.dom

• javax.xml.crypto.dsig

• javax.xml.crypto.dsig.dom

• javax.xml.crypto.dsig.keyinfo

• javax.xml.crypto.dsig.spec

Smart Card I/O

javax.smartcardio

Chapter 12

12-2

https://docs.oracle.com/javase/9/docs/api/javax/rmi/ssl/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dom/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/dom/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/keyinfo/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/crypto/dsig/spec/package-summary.html
https://docs.oracle.com/javase/9/docs/api/javax/smartcardio/package-summary.html

13
Deprecated Security APIs Marked for
Removal

The following APIs are deprecated and eligible to be removed in a future release.

You can check the API dependencies using the jdeprscan tool. See jdeprscan in Java
Platform, Standard Edition Tools Reference.

The following classes are deprecated and marked for removal:

• com.sun.security.auth.PolicyFile

• com.sun.security.auth.SolarisNumericGroupPrincipal

• com.sun.security.auth.SolarisNumericUserPrincipal

• com.sun.security.auth.SolarisPrincipal

• com.sun.security.auth.X500Principal

• com.sun.security.auth.module.SolarisLoginModule

• com.sun.security.auth.module.SolarisSystem

The following methods are deprecated and marked for removal:

• java.lang.SecurityManager.getInCheck

• java.lang.SecurityManager.checkMemberAccess

• java.lang.SecurityManager.classDepth

• java.lang.SecurityManager.currentClassLoader

• java.lang.SecurityManager.currentLoadedClass

• java.lang.SecurityManager.inClass

• java.lang.SecurityManager.inClassLoader

• java.lang.SecurityManager.checkAwtEventQueueAccess

• java.lang.SecurityManager.checkTopLevelWindow

• java.lang.SecurityManager.checkSystemClipboardAccess

The following field is deprecated and marked for removal:

• java.lang.SecurityManager.incheck

13-1

14
Security Tools

See Security Tools and Commands in Java Platform, Standard Edition Tools
Reference.

14-1

15
Security Tutorials

• The Security Features in Java SE trail of the Java Tutorial

• JAAS Tutorials

• Java GSS-API and JAAS Tutorials for Use with Kerberos

15-1

http://docs.oracle.com/javase/tutorial/security/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/tutorials/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 General Security
	Java Security Overview
	Introduction to Java Security
	Java Language Security and Bytecode Verification
	Basic Security Architecture
	Security Providers
	File Locations

	Java Cryptography
	Public Key Infrastructure
	Key and Certificate Storage
	Public Key Infrastructure Tools

	Authentication
	Secure Communication
	SSL, TLS, and DTLS Protocols
	Simple Authentication and Security Layer (SASL)
	Generic Security Service API and Kerberos

	Access Control
	Permissions
	Security Policy
	Access Control Enforcement

	XML Signature
	Additional Information about Java Security
	Java Security Classes Summary
	Deprecated Security APIs Marked for Removal
	Security Tools Summary
	Built-In Providers

	Security Architecture
	Standard Algorithm Names
	Permissions in the Java Development Kit (JDK)
	Permission Descriptions and Risks
	NIO-Related Targets
	Methods and the Required Permissions
	java.lang.SecurityManager Method Permission Checks

	Default Policy Implementation and Policy File Syntax
	Default Policy Implementation
	Default Policy File Locations
	Modifying the Policy Implementation
	Policy File Syntax
	Keystore Entry
	Grant Entries
	The SignedBy, Principal, and CodeBase Fields
	KeyStore Alias Replacement
	The Permission Entries
	File Path Specifications on Windows Systems

	Policy File Examples
	Property Expansion in Policy Files
	Windows Systems, File Paths, and Property Expansion
	Path-Name Canonicalization
	General Expansion in Policy Files

	API for Privileged Blocks
	Using the doPrivileged API
	No Return Value, No Exception Thrown
	Returning Values
	Accessing Local Variables
	Handling Exceptions
	Asserting a Subset of Privileges
	Least Privilege
	More Privilege

	What It Means to Have Privileged Code
	Reflection

	Troubleshooting Security

	2 Java Cryptography Architecture (JCA) Reference Guide
	Introduction to Java Cryptography Architecture
	JCA Design Principles
	Provider Architecture
	Cryptographic Service Providers
	How Providers Are Actually Implemented
	Keystores

	Engine Classes and Algorithms

	Core Classes and Interfaces
	The Provider Class
	How Provider Implementations Are Requested and Supplied
	Installing Providers
	Provider Class Methods

	The Security Class
	Managing Providers
	Security Properties

	The SecureRandom Class
	Creating a SecureRandom Object
	Seeding or Re-Seeding the SecureRandom Object
	Using a SecureRandom Object
	Generating Seed Bytes

	The MessageDigest Class
	Creating a MessageDigest Object
	Updating a Message Digest Object
	Computing the Digest

	The Signature Class
	Signature Object States
	Creating a Signature Object
	Initializing a Signature Object
	Signing with a Signature Object
	Verifying with a Signature Object

	The Cipher Class
	Other Cipher-based Classes
	The Cipher Stream Classes
	The SealedObject Class

	The Mac Class
	Key Interfaces
	The KeyPair Class
	Key Specification Interfaces and Classes
	The KeySpec Interface
	The KeySpec Subinterfaces
	The EncodedKeySpec Class
	The PKCS8EncodedKeySpec Class
	The X509EncodedKeySpec Class

	Generators and Factories
	The KeyFactory Class
	The SecretKeyFactory Class
	The KeyPairGenerator Class
	The KeyGenerator Class

	The KeyAgreement Class
	Key Management
	The KeyStore Class

	Algorithm Parameters Classes
	The AlgorithmParameterSpec Interface
	The AlgorithmParameters Class
	The AlgorithmParameterGenerator Class

	The CertificateFactory Class

	How the JCA Might Be Used in a SSL/TLS Implementation
	Cryptographic Strength Configuration
	Jurisdiction Policy File Format
	How to Make Applications Exempt from Cryptographic Restrictions
	Standard Names
	Packaging Your Application
	Additional JCA Code Samples
	Computing a MessageDigest Object
	Generating a Pair of Keys
	Generating and Verifying a Signature Using Generated Keys
	Generating/Verifying Signatures Using Key Specifications and KeyFactory
	Generating Random Numbers
	Determining If Two Keys Are Equal
	Reading Base64-Encoded Certificates
	Parsing a Certificate Reply
	Using Encryption
	Using Password-Based Encryption

	Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256
	Diffie-Hellman Key Exchange between 2 Parties
	Diffie-Hellman Key Exchange between 3 Parties
	AES/GCM Example
	HMAC-SHA256 Example

	3 How to Implement a Provider in the Java Cryptography Architecture
	Who Should Read This Document
	Notes on Terminology
	Introduction to Implementing Providers
	Engine Classes and Corresponding Service Provider Interface Classes
	Steps to Implement and Integrate a Provider
	Step 1: Write your Service Implementation Code
	Step 1.1: Consider Additional JCA Provider Requirements and Recommendations for Encryption Implementations

	Step 2: Give your Provider a Name
	Step 3: Write Your Master Class, a Subclass of Provider
	Step 3.1: Create a Provider That Uses String Objects to Register Its Services
	Step 3.2: Create a Provider That Uses Provider.Service
	Step 3.3: Specify Additional Information for Cipher Implementations

	Step 4: Create a Module Declaration for Your Provider
	Step 5: Compile Your Code
	Step 6: Place Your Provider in a JAR File
	Step 7: Sign Your JAR File, If Necessary
	Step 7.1: Get a Code-Signing Certificate
	Step 7.2: Sign Your Provider

	Step 8: Prepare for Testing
	Step 8.1: Configure the Provider
	Step 8.2: Set Provider Permissions

	Step 9: Write and Compile Your Test Programs
	Step 10: Run Your Test Programs
	Step 11: Apply for U.S. Government Export Approval If Required
	Step 12: Document Your Provider and Its Supported Services
	Step 12.1: Indicate Whether Your Implementation is Cloneable for Message Digests and MACs

	Step 13: Make Your Class Files and Documentation Available to Clients

	Further Implementation Details and Requirements
	Alias Names
	Service Interdependencies
	Default Initialization
	Default Key Pair Generator Parameter Requirements
	The Provider.Service Class
	Signature Formats
	DSA Interfaces and their Required Implementations
	RSA Interfaces and their Required Implementations
	Diffie-Hellman Interfaces and their Required Implementations
	Interfaces for Other Algorithm Types
	Algorithm Parameter Specification Interfaces and Classes
	Key Specification Interfaces and Classes Required by Key Factories
	Secret-Key Generation
	Adding New Object Identifiers
	Ensuring Exportability

	Sample Code for MyProvider

	4 JDK Providers Documentation
	Introduction to JDK Providers
	Import Limits on Cryptographic Algorithms
	Cipher Transformations
	SecureRandom Implementations
	The SunPKCS11 Provider
	The SUN Provider
	The SunRsaSign Provider
	The SunJSSE Provider
	The SunJCE Provider
	The SunJGSS Provider
	The SunSASL Provider
	The XMLDSig Provider
	The SunPCSC Provider
	The SunMSCAPI Provider
	The SunEC Provider
	The OracleUcrypto Provider
	The Apple Provider
	The JdkLDAP Provider
	The JdkSASL Provider

	5 PKCS#11 Reference Guide
	SunPKCS11 Provider
	SunPKCS11 Requirements
	SunPKCS11 Configuration
	Accessing Network Security Services (NSS)
	Troubleshooting PKCS#11
	Disabling PKCS#11 Providers and/or Individual PKCS#11 Mechanisms
	Application Developers
	Token Login
	Token Keys
	Delayed Provider Selection
	JAAS KeyStoreLoginModule
	Tokens as JSSE Keystore and Trust Stores

	Using keytool and jarsigner with PKCS#11 Tokens
	Policy Tool
	Provider Developers
	Provider Services
	Parameter Support

	SunPKCS11 Provider Supported Algorithms
	SunPKCS11 Provider KeyStore Requirements
	Example Provider

	6 Java Authentication and Authorization Service (JAAS)
	JAAS Reference Guide
	JAAS Tutorials
	Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide
	Introduction to LoginModule
	Steps to Implement a LoginModule
	Step 1: Understand the Authentication Technology
	Step 2: Name the LoginModule Implementation
	Step 3: Implement the Abstract LoginModule Methods
	Step 4: Choose or Write a Sample Application
	Step 5: Compile the LoginModule and Application
	Step 6: Prepare for Testing
	Step 7: Test Use of the LoginModule
	Step 8: Document Your LoginModule Implementation
	Step 9: Make LoginModule JAR File and Documents Available

	7 Java Generic Security Services (Java GSS-API)
	Java GSS-API and JAAS Tutorials for Use with Kerberos
	Single Sign-on Using Kerberos in Java
	Java GSS Advanced Security Programming
	The Kerberos 5 GSS-API Mechanism

	8 Java Secure Socket Extension (JSSE) Reference Guide
	Introduction to JSSE
	JSSE Features and Benefits
	JSSE Standard API
	SunJSSE Provider
	JSSE Related Documentation

	Terms and Definitions
	Secure Sockets Layer (SSL) Protocol Overview
	Why Use SSL?
	How SSL Works
	Cryptographic Processes
	Secret-Key Cryptography
	Public-Key Cryptography
	Comparison Between Secret-Key and Public-Key Cryptography
	Public Key Certificates
	Cryptographic Hash Functions
	Message Authentication Code
	Digital Signatures

	The SSL Handshake
	The SSL Protocol
	Handshaking Again (Renegotiation)
	Cipher Suite Choice and Remote Entity Verification

	Client-Driven OCSP and OCSP Stapling
	Client-Driven OCSP and Certificate Revocation
	Setting up a Java Client to use Client-Driven OCSP

	OCSP Stapling and Certificate Revocation
	Setting Up a Java Client to Use OCSP Stapling
	Setting Up a Java Server to Use OCSP Stapling

	OCSP Stapling Configuration Properties

	JSSE Classes and Interfaces
	JSSE Core Classes and Interfaces
	SocketFactory and ServerSocketFactory Classes
	SSLSocketFactory and SSLServerSocketFactory Classes
	Obtaining an SSLSocketFactory

	SSLSocket and SSLServerSocket Classes
	Obtaining an SSLSocket

	SSLEngine Class
	Creating an SSLEngine Object
	Generating and Processing SSL/TLS Data
	Datagram Transport Layer Security (DTLS) Protocol
	The DTLS Handshake
	The DTLS Handshake Message Exchange
	Handshaking Again (Renegotiation)

	Handling Retransmissions in DTLS Connections
	Handling Retransmission in an Application
	Handling a Buffered Handshake Message in an Application

	Creating an SSLEngine Object for DTLS
	Generating and Processing DTLS Data
	Understanding SSLEngine Operation Statuses
	Dealing With Blocking Tasks
	Shutting Down a SSL/TLS/DTLS Connection

	SSLSession and ExtendedSSLSession
	HttpsURLConnection Class
	Setting the Assigned SSLSocketFactory
	Setting the Assigned HostnameVerifier

	Support Classes and Interfaces
	The SSLContext Class
	Obtaining and Initializing the SSLContext Class
	Creating an SSLContext Object

	The TrustManager Interface
	The TrustManagerFactory Class
	Creating a TrustManagerFactory
	PKIX TrustManager Support

	The X509TrustManager Interface
	Creating an X509TrustManager
	Creating Your Own X509TrustManager
	Updating the Keystore Dynamically

	X509ExtendedTrustManager Class
	Creating an X509ExtendedTrustManager
	Creating Your Own X509ExtendedTrustManager

	The KeyManager Interface
	The KeyManagerFactory Class
	Creating a KeyManagerFactory

	The X509KeyManager Interface
	Creating an X509KeyManager
	Creating Your Own X509KeyManager

	The X509ExtendedKeyManager Class
	Relationship Between a TrustManager and a KeyManager

	Secondary Support Classes and Interfaces
	The SSLParameters Class
	Cipher Suite Preference

	The SSLSessionContext Interface
	The SSLSessionBindingListener Interface
	The SSLSessionBindingEvent Class
	The HandShakeCompletedListener Interface
	The HandShakeCompletedEvent Class
	The HostnameVerifier Interface
	The X509Certificate Class
	The AlgorithmConstraints Interface
	The StandardConstants Class
	The SNIServerName Class
	The SNIMatcher Class
	The SNIHostName Class

	Customizing JSSE
	How to Specify a java.lang.System Property
	How to Specify a java.security.Security Property
	Customizing the X509Certificate Implementation
	Specifying an Alternative HTTPS Protocol Implementation
	Customizing the Provider Implementation
	Registering the Cryptographic Provider Statically
	Registering the Cryptographic Service Provider Dynamically
	Provider Configuration
	Configuring the Preferred Provider for Specific Algorithms
	Customizing the Default Keystores and Truststores, Store Types, and Store Passwords
	Customizing the Default Key Managers and Trust Managers
	Disabled and Restricted Cryptographic Algorithms
	Customizing the Encryption Algorithm Providers
	Customizing Size of Ephemeral Diffie-Hellman Keys
	Customizing Maximum Fragment Length Negotiation (MFLN) Extension
	Configuring the Maximum and Minimum Packet Size

	Transport Layer Security (TLS) Renegotiation Issue
	Phased Approach to Fixing This Issue
	Description of the Phase 2 Fix
	Workarounds and Alternatives to SSL/TLS Renegotiation
	TLS Implementation Details
	Description of the Phase 1 Fix
	Allow Unsafe Server Certificate Change in SSL/TLS Renegotiations

	Hardware Acceleration and Smartcard Support
	Configuring JSSE to Use Smartcards as Keystores and Truststores
	Multiple and Dynamic Keystores

	Kerberos Cipher Suites
	Kerberos Requirements
	Peer Identity Information
	Security Manager

	Additional Keystore Formats (PKCS12)
	Server Name Indication (SNI) Extension
	TLS Application Layer Protocol Negotiation
	Setting up ALPN on the Client
	Setting up Default ALPN on the Server
	Setting up Custom ALPN on the Server
	Determining Negotiated ALPN Value during Handshaking
	ALPN Related Classes and Methods

	Troubleshooting JSSE
	Configuration Problems
	CertificateException While Handshaking
	Runtime Exception: SSL Service Not Available
	Runtime Exception: "No available certificate corresponding to the SSL cipher suites which are enabled"
	Runtime Exception: No Cipher Suites in Common
	Socket Disconnected After Sending ClientHello Message
	SunJSSE Cannot Find a JCA Provider That Supports a Required Algorithm and Causes a NoSuchAlgorithmException
	FailedDownloadException Thrown When Trying to Obtain Application Resources from Web Server over SSL
	IllegalArgumentException When RC4 Cipher Suites are Configured for DTLS

	Debugging Utilities
	Debugging SSL/TLS Connections

	Code Examples
	Converting an Unsecure Socket to a Secure Socket
	Running the JSSE Sample Code
	Creating a Keystore to Use with JSSE
	Using the Server Name Indication (SNI) Extension
	Typical Client-Side Usage Examples
	Typical Server-Side Usage Examples
	Working with Virtual Infrastructures

	Standard Names
	Provider Pluggability
	JSSE Cipher Suite Parameters

	9 Java PKI Programmers Guide
	PKI Programmers Guide Overview
	Introduction to Public Key Certificates
	X.509 Certificates and Certificate Revocation Lists (CRLs)

	Core Classes and Interfaces
	Basic Certification Path Classes
	The CertPath Class
	The CertificateFactory Class
	The CertPathParameters Interface

	Certification Path Validation Classes
	The CertPathValidator Class
	The CertPathValidatorResult Interface

	Certification Path Building Classes
	The CertPathBuilder Class
	The CertPathBuilderResult Interface

	Certificate/CRL Storage Classes
	The CertStore Class
	The CertStoreParameters Interface
	The CertSelector and CRLSelector Interfaces
	The X509CertSelector Class
	The X509CRLSelector Class

	PKIX Classes
	The TrustAnchor Class
	The PKIXParameters Class
	The PKIXCertPathValidatorResult Class
	The PolicyNode Interface and PolicyQualifierInfo Class
	The PKIXBuilderParameters Class
	The PKIXCertPathBuilderResult Class
	The PKIXCertPathChecker Class
	Using PKIXCertPathChecker in Certificate Path Validation
	Check Revocation Status of Certificates with PKIXRevocationChecker Class

	Implementing a Service Provider
	Steps to Implement and Integrate a Provider
	Service Interdependencies
	Certification Path Parameter Specification Interfaces
	Certification Path Result Specification Interfaces
	Certification Path Exception Classes

	Appendix A: Standard Names
	Appendix B: CertPath Implementation in SUN Provider
	Appendix C: OCSP Support
	Appendix D: CertPath Implementation in JdkLDAP Provider
	Appendix E: Disabling Cryptographic Algorithms

	10 Java SASL API Programming and Deployment Guide
	Java SASL API Overview
	Creating the Mechanisms
	Passing Input to the Mechanisms
	Using the Mechanisms
	Using the Negotiated Security Layer

	How SASL Mechanisms are Installed and Selected
	The SunSASL Provider
	The SunSASL Provider Client Mechanisms
	The SunSASL Provider Server Mechanisms
	Debugging and Monitoring

	The JdkSASL Provider
	The JdkSASL Provider Client Mechanism
	The JdkSASL Provider Server Mechanism

	Implementing a SASL Security Provider

	11 XML Digital Signature
	Java XML Digital Signature API Specification
	Acknowledgements
	Requirements
	API Dependencies
	Non-Goals
	Package Overview
	Service Providers
	DOM Mechanism Requirements
	Open API Issues
	Programming Examples

	XML Digital Signature API Overview and Tutorial
	Package Hierarchy
	Service Providers
	Introduction to XML Signatures
	Example of an XML Signature
	XML Digital Signature API Examples
	Validate Example
	Validating an XML Signature
	Instantiating the Document that Contains the Signature
	Specifying the Signature Element to be Validated
	Creating a Validation Context
	Unmarshalling the XML Signature
	Validating the XML Signature
	Using KeySelectors

	GenEnveloped Example
	Generating an XML Signature
	Instantiating the Document to be Signed
	Creating a Public Key Pair
	Creating a Signing Context
	Assembling the XML Signature
	Generating the XML Signature
	Printing or Displaying the Resulting Document

	12 Security API Specification
	13 Deprecated Security APIs Marked for Removal
	14 Security Tools
	15 Security Tutorials

