Java Platform, Standard Edition
Monitoring and Management Guide

Release 9
E75744-02
September 2017

ORACLE"

Java Platform, Standard Edition Monitoring and Management Guide, Release 9
E75744-02
Copyright © 2006, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Vi
Documentation Accessibility Vi
Related Documents Vi
Conventions Vi

1 Overview of Java SE Monitoring and Management
Key Monitoring and Management Features 1-1
Java Virtual Machine Instrumentation 1-1
Monitoring and Management API 1-1
Monitoring and Management Tools 1-2
Java Management Extensions Technology 1-2
What Are MBeans? 1-3
MBean Server 1-3
Creating and Registering MBeans 1-3
Instrumenting Applications 1-4
Platform MXBeans 1-4
Platform MBean Server 1-5
2 Monitoring and Management Using JMX Technology

Setting System Properties 2-1
Enabling the Ready-to-Use Management 2-1
Local Monitoring and Management 2-2
Local Monitoring and Management Using JConsole 2-2
Remote Monitoring and Management 2-3
Using Password Authentication 2-4
Disabling Password Authentication 2-6
Using SSL 2-6
Enabling RMI Registry Authentication 2-7
Enabling SSL Client Authentication 2-7
Disabling SSL 2-7

ORACLE

Disabling Security 2-8

Remote Monitoring with JConsole 2-8
Remote Monitoring with JConsole with SSL Enabled 2-8

Using Password and Access Files 2-9
Password Files 2-9
Access Files 2-9
Remote Monitoring with JConsole with SSL Disabled 2-10
Ready-to-Use Monitoring and Management Properties 2-10
Configuration Errors 2-13
Connecting to the JIMX Agent Programmatically 2-13
Setting Up Monitoring and Management Programmatically 2-13
Mimicking Ready-to-Use Management Using the JIMX Remote API 2-14
Example of Mimicking Ready-to-Use Management 2-15
Monitoring Applications Through a Firewall 2-17
Using an Agent Class to Instrument an Application 2-17
Creating an Agent Class to Instrument an Application 2-18

3 Using JConsole

Starting JConsole 3-1
Command Syntax 3-1
Setting Up Local Monitoring 3-1

Setting Up Remote Monitoring 3-2

Setting Up Secure Remote Monitoring 3-2
Connecting to a JMX Agent 3-2
Connecting JConsole to a Local Process 3-3
Connecting JConsole to a Remote Process 3-5
Connecting Using a JMX Service URL 3-6
Presenting the JConsole Tabs 3-6
Viewing Overview Information 3-7

Saving Chart Data 3-7
Monitoring Memory Consumption 3-8
Monitoring Class Loading 3-13
Viewing VM Information 3-13
Monitoring and Managing MBeans 3-15
Creating Custom Tabs 3-24

4 Using the Platform MBean Server and Platform MXBeans

Using the Platform MBean Server 4-1
Accessing Platform MXBeans 4-1

ORACLE iv

Accessing Platform MXBeans Using the ManagementFactory Class 4-1
Accessing Platform MXBeans Using an MXBean Proxy 4-2
Accessing Platform MXBeans Using the MBeanServerConnection Class 4-2
Using Oracle JDK's Platform Extension 4-3
Accessing MXBean Attributes Directly 4-3
Accessing MXBean Attributes Using MBeanServerConnection 4-3
Monitoring Thread Contention and CPU Time 4-4
Managing the Operating System 4-4
Logging Management 4-4
Detecting Low Memory 4-5
Memory Thresholds 4-5
Usage Threshold 4-5
Collection Usage Threshold 4-6
Memory MXBean 4-6
Memory Pool MXBean 4-6
Polling 4-7
Threshold Notifications 4-8
SNMP Monitoring and Management
Enabling the SNMP Agent 5-1
Access Control List File 5-1
To Enable the SNMP Agent in a Single-User Environment 5-2
To Enable the SNMP Agent in a Multiple-User Environment 5-2
SNMP Monitoring and Management Properties 5-2
Configuration Errors 5-3

Java Discovery Protocol (JDP)

ORACLE

Preface

Preface

Audience

The Java Platform, Standard Edition 9 (Java SE 9) provide utilities that allow you to
monitor and manage the performance of a Java Virtual Machine (Java VM), and the
Java applications that are running in it. The Java SE Monitoring and Management
Guide describes those monitoring and management utilities.

This guide is intended for experienced users of the Java language, such as systems
administrators and software developers, for whom the performance of the Java
platform and their applications is of vital importance.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

See Oracle JDK 9 Documentation for other JDK 9 guides.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=homepage

Overview of Java SE Monitoring and
Management

This topic introduces the features and utilities that provide monitoring and
management services to the Java Platform, Standard Edition (Java SE platform).

Key Monitoring and Management Features

The Java SE platform includes significant monitoring and management features.
These features fall into four broad categories:

» Java Virtual Machine Instrumentation
e Monitoring and Management API
e Monitoring and Management Tools

e Java Management Extensions Technology

Java Virtual Machine Instrumentation

The Java Virtual Machine (Java VM) is instrumented for monitoring and management,
enabling built-in (or ready-to-use) management capabilities that can be accessed both
remotely and locally.

See Monitoring and Management Using JMX Technology and SNMP Monitoring and
Management.

The Java VM includes a platform MBean server and platform MBeans for use by
management applications that conform to the Java Management Extensions (JMX)
specification. These platforms are implementations of the monitoring and management
API. The platform MXBeans and MBean servers are introduced in the Platform
MXBeans and Platform MBean Server topics.

Monitoring and Management API

Java SE includes the following APIs for monitoring and management:

* java.l ang. managenent : Enables monitoring and managing the Java virtual
machine and the underlying operating system. The API enables applications to
monitor themselves, and enables JMX-compliant tools to monitor and manage a
virtual machine locally and remotely. This API provides access to the following
types of information:

Number of classes loaded and threads running

Java VM uptime, system properties, and VM input arguments

Thread state, thread contention statistics, and stack trace of live threads

Memory consumption

ORACLE 1-1

https://docs.oracle.com/javase/9/docs/api/java/lang/management/package-summary.html

Chapter 1
Key Monitoring and Management Features

— Garbage collection statistics

— Low memory detection

— On-demand deadlock detection
— Operating system information

e java.util.logging. Loggi ngMXBean: Enables you to retrieve and set logging
information.

e Attach: Allows a management agent to be dynamically loaded onto a virtual
machine.

e JConsole: Provides a programmatic interface to access JConsole such as adding
a JConsole plug-in. JTop is an example of a JConsole plug-in that's available at
the JDK_HOVE/ deno/ managenent / JTop directory.

Monitoring and Management Tools

The Java SE platform provides a graphical monitoring tool called JConsole. JConsole
implements the IMX API, and enables you to monitor the performance of a Java VM
and any instrumented applications. It provides information to help you optimize the
performance.

Some of the enhancements in JConsole are as follows:

e JConsole plug-in support, which allows you to build your own plug-ins to run with
JConsole. For example, you can add a custom tab for accessing the MBeans of
the application.

» Dynamic attach capability allowing you to connect JConsole to any application that
supports the Attach API.

» Enhanced user interface, which makes data more easily accessible.

* New Overview and VM Summary tabs for a better presentation of general
information about your Java VM.

* HotSpot Diagnostic MBean, which provides an API to request heap dump at
runtime and also change the setting of certain VM options.

* Improved presentation of MBeans to make it easier to access the MBeans
operations and attributes.

JConsole is presented in detail in the Using JConsole topic.

Other command-line tools are also supplied with the Java SE platform.

Java Management Extensions Technology

ORACLE

The Java SE platform, release 9 includes the Java Management Extensions (JMX)
specification, version 1.4. The JMX API allows you to instrument applications for
monitoring and management. A remote method invocation (RMI) connector allows this
instrumentation to be remotely accessible, for example, using JConsole.

See JMX technology documentation in the Java Platform, Standard Edition Java
Management Extensions Guide.

The following sections provide a brief introduction to the main components of the JIMX
API.

1-2

https://docs.oracle.com/javase/9/docs/api/java/util/logging/LoggingMXBean.html
https://docs.oracle.com/javase/9/docs/api/jdk.attach-summary.html
https://docs.oracle.com/javase/9/docs/api/jdk.jconsole-summary.html

Chapter 1
Key Monitoring and Management Features

What Are MBeans?

JMX technology MBeans are managed beans, namely Java objects that represent
resources to be managed. An MBean has a management interface consisting of the
following:

* Named and typed attributes that can be read and written.
* Named and typed operations that can be invoked.
* Typed notifications that can be emitted by the MBean.

For example, an MBean representing an application's configuration can have attributes
representing different configuration parameters, such as a CacheSi ze. Reading the
CacheSi ze attribute will return the current size of the cache. Writing CacheSi ze updates
the size of the cache, potentially changing the behavior of the running application. An
operation such as save stores the current configuration persistently. The MBean can
send a notification such as Confi gurati onChangedNot i fi cati on when the configuration
changes.

MBeans can be standard or dynamic. Standard MBeans are Java objects that conform
to design patterns derived from the JavaBeans component model. Dynamic MBeans
define their management interface at runtime. An additional type of MBean, called
MXBean, is added to the Java platform.

* A standard MBean exposes the resource to be managed directly through its
attributes and operations. Attributes are exposed through getter and setter
methods. Operations are the other methods of the class that are available to
managers. All these methods are defined statically in the MBean interface and are
visible to a JMX agent through introspection. This method is the most
straightforward way of making a new resource manageable.

e Adynamic MBean is an MBean that defines its management interface at runtime.
For example, a configuration MBean determines the names and types of the
attributes that it exposes, by parsing an XML file.

 An MXBean is a type of MBean that provides a simple way to code an MBean that
references only a predefined set of types. In this way, you can ensure that the
MBean is usable by any client. It includes remote clients without any requirement
that the client has access to model-specific classes, which represents the types of
your MBeans. The platform MBeans are all MXBeans.

MBean Server

To be useful, an MBean must be registered in an MBean server. An MBean server is a
repository of MBeans. Each MBean is registered with a uniqgue name within the MBean
server. Usually the only access to the MBeans is through the MBean server. In other
words, code does not access an MBean directly, but rather accesses the MBean by
the name through the MBean server.

The Java SE platform includes a built-in platform MBean server. See Using the
Platform MBean Server and Platform MXBeans.

Creating and Registering MBeans

There are two ways to create an MBean. One is to construct a Java object that will be
the MBean, then use the regi st er MBean method to register it in the MBean server. The

ORACLE 1-3

Chapter 1
Platform MXBeans

other method is to create and register the MBean in a single operation using one of the

cr eat eMBean methods.

The regi st er MBean method is simpler for local use, but cannot be used remotely. The
creat eMBean method can be used remotely, but sometimes requires attention to the
class loading issues. An MBean can perform actions when it is registered in or
unregistered from an MBean server if it implements the MBeanRegi st rat i on interface.

Instrumenting Applications

General instructions on how to instrument your applications for management by the
JMX APl is beyond the scope of this document.

Platform MXBeans

A platform MXBean is an MBean for monitoring and managing the Java VM, and other
components of the Java Runtime Environment (JRE). Each MXBean encapsulates a

part of VM functionality such as the class loading system, just-in-time (JIT) compilation
system, garbage collector, and so on.

ORACLE

Table 1-1 lists all the platform MXBeans and the aspect of the VM that they manage.
Each platform MXBean has a unique j avax. management . Obj ect Name for registration in
the platform MBean server. A Java VM may have zero, one, or more than one
instance of each MXBean, depending on its function, as shown in the table.

Table 1-1 Platform MXBeans
]

Interface

Part of VM Managed

Object Name

Instances per VM

C assLoadi ngMXBean

Conpi | at i onMXBean

Gar bageCol | ect or MXB
ean

Loggi ngMXBean

Mermor yManager MXBean
(subinterface of

Gar bageCol | ect or MXB
ean)

Menor yPool MXBean

Memor yMXBean

QOper at i ngSyst emviXBe

an

Runt i neMXBean

Class loading system

Compilation system

Garbage collector

Logging system

Memory pool

Memory

Memory system

Underlying operating
system

Runtime system

java.lang: type=

d assLoadi ng
java.lang: type=
Conpi | ation
java.lang: type=
Gar bageCol | ect or,
nane=col | ect or Nane

java.util.logging:t
ype =Loggi ng
java.lang:

t ypeMenor yManager,
name=nmanager Nane

java.lang: type=
Menor yPool ,
name=pool Nane

java.lang: type=
Memory
java.lang: type=
Oper at i ngSyst em
java.lang: type=
Runti nme

One

Zero or one

One or more

One

One or more

One or more

One

One

One

1-4

Chapter 1
Platform MBean Server

Table 1-1 (Cont.) Platform MXBeans

Interface Part of VM Managed Object Name Instances per VM
Thr eadMXBean Thread system java.lang: type= One
Threadi ng

The details on platform MXBeans (apart from Loggi ngM<Bean) are described in the
j ava. | ang. managenent API reference. The Loggi ngMXBean interface is described in
thejava. util .| oggi ng API reference.

Platform MBean Server

ORACLE

The platform MBean server can be shared by different managed components running
within the same Java VM. You can access the platform MBean server with the method
Management Fact ory. get Pl at f or mvBeanSer ver () . The first call to this method creates the
platform MBean server and registers the platform MXBeans using their unique object
names. Subsequently, this method returns the initially created platform MBeanSer ver
instance.

MXBeans that are created and destroyed dynamically (for example, memory pools and
managers) will automatically be registered and unregistered in the platform MBean
server. If the system property j avax. management . bui | der.initial is set, then the
platform MBean server will be created by the specified MBeanSer ver Bui | der parameter.

You can use the platform MBean server to register other MBeans besides the platform
MXBeans. This enables all MBeans to be published through the same MBean server,
and makes network publishing and discovery easier.

1-5

https://docs.oracle.com/javase/9/docs/api/java/lang/management/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/util/logging/package-summary.html

Monitoring and Management Using JMX
Technology

The Java virtual machine (Java VM) has built-in instrumentation that enables you to
monitor and manage it using the Java Management Extensions (JMX) technology.
These built-in management utilities are often referred to as out-of-the-box
management tools for the Java VM. You can also monitor any appropriately
instrumented applications using the JMX API.

Setting System Properties

To enable and configure the ready-to-use JMX agent so that it can monitor and
manage the Java VM, you must set certain system properties when you start the Java
VM. You set a system property on the command line as follows:

java -Dproperty=val ue ...

You can set any number of system properties in this way. If you do not specify a value
for a management property, then the property is set with its default value. See

Table 2-1 for the full set of ready-to-use management properties. You can also set
system properties in a configuration file, as described in the Ready-to-Use Monitoring
and Management Properties section.

Note:

To run the Java VM from the command line, you must add JRE_HOVE/ bi n to
your path, where JRE_HOME is the directory containing the Java Runtime
Environment (JRE) implementation. Alternatively, you can enter the full path
when you enter the command.

The syntax and the full set of command-line options supported by the Java HotSpot
VMs are described in the Java application launcher section of Java Platform, Standard
Edition Tools Reference.

Enabling the Ready-to-Use Management

ORACLE

To monitor a Java platform using the IMX API, you must do the following:

1. Enable the JMX agent (another name for the platform MBean server) when you
start the Java VM. You can enable the JMX agent for:

e Local monitoring, for a client management application running on the local
system.

¢ Remote monitoring, for a client management application running on a remote
system.

2-1

Chapter 2
Enabling the Ready-to-Use Management

2. Monitor the Java VM with a tool that complies with the JMX specification, such as
JConsole. See Using JConsole.

Local Monitoring and Management

Earlier while starting the Java VM or Java application, you set the following property to
allow the JMX client access to a local Java VM:

com sun. managenent . j nxr enot e

Setting this property registered the Java VM platform's MBeans and published the
remote method invocation (RMI) connector through a private interface. This setting
allows JMX client applications to monitor a local Java platform, that is, a Java VM
running on the same machine as the JMX client.

In the current Java SE platform, it is no longer necessary to set this system property.
Any application that is started on the current Java SE platform supports the Attach
API, and will automatically be made available for local monitoring and management
when needed.

For example, previously, to enable the JIMX agent for the Java SE sample application
Not epad, you would run the following commands:

% cd JDK_HOVE/ dero/ | f ¢/ Not epad
% java - Dcom sun. managenent. j nxremote -jar Notepad.jar

In the preceding command, JDK_HOME is the directory in which the Java Development
Kit (JDK) is installed. In the current Java SE platform, you have to run the following
command to start Not epad.

%java -jar Notepad.]jar

After Not epad has been started, a JMX client using the Attach API can then enable the
out-of-the-box management agent to monitor and manage the Not epad application.

Note:

On Windows platforms, for security reasons, local monitoring and
management is supported only if your default temporary directory is on a file
system that allows the setting of permissions on files and directories (for
example, on a New Technology File System (NTFS) file system). It is not
supported on a File Allocation Table (FAT) file system, which provides
insufficient access controls.

Local Monitoring and Management Using JConsole

ORACLE

Local monitoring with JConsole is useful for development and creating prototypes.
Using JConsole locally is not recommended for production environments, because
JConsole itself consumes significant system resources. Rather, you should use
JConsole on a remote system to isolate it from the platform being monitored.

However, if you do wish to perform local monitoring using JConsole, then you start the
tool by entering j consol e in a command shell. When you start j consol e without any
arguments, it will automatically detect all local Java applications, and display a dialog
box that enables you to select the application that you want to monitor. Both JConsole

2-2

Chapter 2
Enabling the Ready-to-Use Management

and the application must by executed by the same user, because the monitoring and
management system uses the operating system's file permissions.

Note:

To run JConsole from the command line, you must add JDK_HOME/ bi n to your
path. Alternatively, you can enter the full path when you enter the command.
See Using JConsole.

Remote Monitoring and Management

By default, the remote stubs for locally created remote objects that are sent to client
contains the IP address of the local host in dot t ed- quad format. For remote stubs to be
associated with a specific interface address, the j ava. rni . server. host nane system
property must be set to IP address of that interface.

To enable monitoring and management from remote systems, you must set the
following system property when you start the Java VM:

com sun. managenent . j nxr enot e. por t =por t Num

Where, port Numis the port number to enable JMX RMI connections. Ensure that you
specify an unused port number. In addition to publishing an RMI connector for local
access, setting this property publishes an additional RMI connector in a private read-
only registry at the specified port using the name, j nxrni . The port number to which
the RMI connector will be bound using the system property:

com sun. managenent . j mxrenot e. rni . port

Ensure to use an unused port number.

Note:

You must set the prior system property in addition to any properties that you
might set for security.

Remote monitoring and management requires security to ensure that unauthorized
persons cannot control or monitor your application. Password authentication over the
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) is enabled by default.
You can disable password authentication and SSL separately.

Note:

For production systems, use both SSL client certificates to authenticate the
client host and password authentication for user management. See Using SSL
and Using LDAP Authentication.

The Java platform supports pluggable | ogi n nodul es for authentication. You can
plug in any login module depending on the authentication infrastructure in your
organization. Using LDAP Authentication describes how to plug in the

ORACLE 2-3

https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/package-summary.html

Chapter 2
Enabling the Ready-to-Use Management

com sun. security. aut h. nodul e. LdapLogi nMbdul e module for Lightweight
Directory Access Protocol (LDAP)-based authentication.

After you have enabled the JMX agent for remote use, you can monitor your
application using JConsole, as described in Remote Monitoring with JConsole. How to
connect to the management agent programmatically is described in Connecting to the
JMX Agent Programmatically.

Using Password Authentication

This section details different password authentication methods that can be
implemented based on the requirement.

Using LDAP Authentication

ORACLE

The JMXAut hent i cat or implementation in the JMX agent is based on Java
Authentication and Authorization Service (JAAS) technology. Authentication is
performed by passing the user credentials to a JAAS

j avax. security. aut h. spi . Logi nModul e object. The

com sun. security. aut h. nodul e. LdapLogi nModul e class enables
authentication using LDAP. You can replace the default Logi nMvdul e class with the
LdapLogi nMbdul e class.

Create a JAAS configuration file that works in the required business organization. Here
is an example of a configuration file (I dap. config) :

Exanpl eConpanyConfi g {
com sun. security. aut h. nodul e. LdapLogi nMbdul e REQUI RED
user Provi der="1 dap: / / exanpl e- ds/ ou=peopl e, dc=exanpl econpany, dc=con
user Fi | ter="(& ui d={ USERNANE}) (obj ect O ass=i net Or gPerson))"
aut hzl dent it y=noni t or Rol €;

b
Here is an overview of the options mentioned in the configuration file:

e The comsun. security. aut h. nodul e. LdapLogi nMbdul e REQUI RED option means that
authentication using LdapLogi nMbdul e is required for the overall authentication to be
successful.

e The userProvi der option identifies the LDAP server and the position in the directory
tree where user entries are located.

* The userFilter option specifies the search filter to use to locate a user entry in the
LDAP directory. The token { USERNAME} is replaced with the user name before the
filter is used to search the directory.

e The aut hzl dentity option specifies the access role for authenticated users. In the
example, authenticated users will have the moni t or Rol e option. See Access Files.

The details of the configuration options mentioned in the code example is explained in
the com sun. security. aut h. nodul e. LdapLogi nModul e class.

Start your application with the following properties set on the command line:

* com sun. managenent . j mxrenot e. | ogi n. confi g: This property configures the JMX
agent to use the specified JAAS configuration entry.

e java.security.auth.login.config: This property specifies the path to the JAAS
configuration file.

2-4

https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/LdapLoginModule.html
https://docs.oracle.com/javase/9/docs/api/javax/management/remote/JMXAuthenticator.html
https://docs.oracle.com/javase/9/docs/api/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/LdapLoginModule.html
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/LdapLoginModule.html

Chapter 2
Enabling the Ready-to-Use Management

Here is a sample command line:

java -Dcom sun. management . j nxr enot e. por t =5000
- Dcom sun. managenent . j nxr enot e. | ogi n. conf i g=Exanpl eConpanyConfi g
-D ava. security. auth. | ogin. confi g=I dap. config

-jar MyApplication.jar

Using File-Based Password Authentication

The file-based password authentication mechanism supported by the JIMX agent
stores the password in clear-text and is intended only for development use. For
production use, it is recommended that you use SSL client certificates for
authentication or plug in a secure login configuration.

Note:

Caution : A potential security issue has been identified with password
authentication for remote connectors when the client obtains the remote
connector from an insecure RMI registry (the default). If an attacker starts a
bogus RMI registry on the target server before the legitimate registry is
started, then the attacker can steal clients' passwords. This scenario includes
the case where you start a Java VM with remote management enabled, using
the system property com sun. managenent . j nxr enot e. port =por t Num even when
SSL is enabled. Although such attacks are likely to be noticed, it is
nevertheless a vulnerability.

By default, when you enable the JMX agent for remote monitoring, it uses password
authentication. However, the way you set it up depends on whether you are in a
single-user environment or a multiple-user environment.

As passwords are stored in clear-text in the password file, it is not advisable to use
your regular user name and password for monitoring. Instead, use the user names
specified in the password file such as noni t or Rol e and cont r ol Rol e. See Using
Password and Access Files.

To Set Up a Single-User Environment
You set up the password file in the JRE_HOVE/ | i b/ managenent directory as follows:

1. Copy the password template file, j mxr enot e. passwor d. t enpl at e, to
j mxr enot e. passwor d.

2. Set file permissions so that only the owner can read and write the password file.

3. Add passwords for roles such as noni t or Rol e and control Rol e.

To Set Up a Multiple-User Environment
You set up the password file in the JRE_HOVE/ | i b/ managenent directory as follows:

1. Copy the password template file, j mr enot e. passwor d. t enpl at e, to your home
directory and rename it to j nxr enot e. passwor d.

2. Set file permissions so that only you can read and write the password file.

3. Add passwords for the roles such as noni t or Rol e and cont r ol Rol e.

ORACLE 2-5

Chapter 2
Enabling the Ready-to-Use Management

4. Set the following system property when you start the Java VM.

com sun. managenent . j mxrenot e. passwor d. fi | e=pwFi | ePath

In the preceding property, pwFi | ePat h is the path to the password file.

Disabling Password Authentication

Using SSL

ORACLE

Password authentication for remote monitoring is enabled by default. To disable it, set
the following system property when you start the Java VM:

com sun. managenent . j mxr enot e. aut hent i cat e=f al se

Note:

Caution : This configuration is insecure. Any remote user who knows (or
guesses) your JMX port number and host name will be able to monitor and
control your Java application and platform. While it may be acceptable for
development, it is not recommended for production systems.

When you disable password authentication, you can also disable SSL, as described in
Disabling Security. You can also disable passwords, but use SSL client authentication,
as described in Enabling SSL Client Authentication.

SSL is enabled by default when you enable remote monitoring and management. To
use SSL, you need to set up a digital certificate on the system where the JMX agent
(the MBean server) is running and then configure SSL properly. You use the
command-line utility keyt ool to work with certificates.

The general procedure to set up SSL is as follows:

1. If you do not have a key pair and certificate set up on the server, then perform the
following tasks:

* Generate a key pair with the keyt ool - genkey command.

* Request a signed certificate from a certificate authority (CA) with the keyt ool -
certreq command.

e Import the certificate into your keystore with the keyt ool -inport command.
See the Importing Certificates in keyt ool documentation.

2. Configure SSL on the server system. Complete explanation of configuring and
customizing SSL is beyond the scope of this document, but you generally need to
set the system properties as described in the following list:

javax. net.ssl.keyStore Keystore location

javax. net.ssl . keySt oreType Default keystore type
javax. net.ssl . keySt or ePasswor d Default keystore password
javax.net.ssl.trustStore Truststore location

2-6

Chapter 2
Enabling the Ready-to-Use Management

javax. net.ssl.trust StoreType Default truststore type

javax. net.ssl.trust StorePassword Default truststore password

Setting system properties is detailed in the Setting System Properties section.

See:

» keytool - Key and Certificate Management Tool in theJava Platform, Standard
Edition Tools Reference

e Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords in Java Platform, Standard Edition Security Developer's Guide

Enabling RMI Registry Authentication

When setting up connections for monitoring remote applications, you can optionally
bind the RMI connector stub to an RMI registry that is protected by SSL. This allows
clients with the appropriate SSL certificates to get the connector stub that is registered
in the RMI registry. To protect the RMI registry using SSL, you must set the following
system property:

com sun. managenent . j nxrenot e. regi stry. ssl=true

When this property is set to true, an RMI registry protected by SSL will be created and
configured by the ready-to-use management agent when the Java VM is started. The
default value of this property is f al se. However, it is recommended that you set this
property to true. If this property is set to t rue, then to have full security, you must also
enable SSL client authentication.

Enabling SSL Client Authentication

To enable SSL client authentication, set the following system property when you start
the Java VM:

com sun. managenent . j nxr enot e. ssl . need. cl i ent. aut h=true

SSL must be enabled (default is set to f al se) to use client SSL authentication. It is
recommended that you set this property to true. This configuration requires that the
client system have a valid digital certificate. You must install a certificate and configure
SSL on the client system, as described in Using SSL. As stated in the previous
section, if RMI registry SSL protection is enabled, then client SSL authentication must
be setto true.

Disabling SSL

ORACLE

To disable SSL when monitoring remotely, you must set the following system property
when you start the Java VM:

com sun. managenent . j nxr enot e. ssl =f al se

Password authentication will still be required unless you disable it, as specified in
Disabling Password Authentication.

2-7

Chapter 2
Enabling the Ready-to-Use Management

Disabling Security

To disable both password authentication and SSL (namely to disable all security), you
should set the following system properties when you start the Java VM:

com sun. managenent . j mxr enot e. aut hent i cat e=f al se
com sun. managenent . j mxr enot e. ssl =f al se

Note:

Caution : This configuration is insecure; any remote user who knows (or
guesses) your port number and host name will be able to monitor and control
your Java applications and platform. Furthermore, possible harm is not limited
to the operations that you define in your MBeans. A remote client could create
a j avax. managenent . | oadi ng. M.et MBean and use it to create new MBeans
from arbitrary URLS, at least if there is no security manager. In other words, a
remote client can make your Java application execute arbitrary code.

Consequently, while disabling security might be acceptable for development, it is
strongly recommended that you do not disable security for production systems.

Remote Monitoring with JConsole

You can remotely monitor an application using JConsole, with or without security
enabled.

Remote Monitoring with JConsole with SSL Enabled

ORACLE

To monitor a remote application with SSL enabled, you need to set up the truststore
file on the system where JConsole is running and configure SSL properly. For
example, you can create a keyst or e file and start your application (called Server in this
example) with the following commands:

% java -Djavax.net.ssl.keyStore=keystore \
-Dj avax. net . ssl . keySt or ePasswor d=password Server

See Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords in the Java Platform, Standard Edition Security Developer's Guide.

If you create the keyst or e file and start the Server applicaton, then start JConsole as
follows:

% jconsol e -J-Djavax.net.ssl.trustStore=truststore \
-J-Dj avax. net. ssl . trust St orePasswor d=t rustword

See Using JConsole.

The configuration authenticates the server only. If SSL client authentication is set up,
then you need to provide a similar keyst or e file for JConsole's keys and an appropriate
trust st ore file for the application.

2-8

Chapter 2
Enabling the Ready-to-Use Management

Using Password and Access Files

The password and access files control security for remote monitoring and
management. These files are located by default in JRE_HOME/ | i b/ managenent and are in
the standard Java properties file format. For more information on the format, see the
API reference for the j ava. uti | . Properti es package.

Password Files

Access Files

ORACLE

The password file defines the different roles and their passwords. The access control
file (j mxrenot e. access by default) defines the permitted access for each role. To be
functional, a role must have an entry in both the password and the access files.

The JRE implementation contains a password file template named

j mxr enot e. passwor d. t enpl at e. Copy this file to j re_home/ | i b/ managenent /

j mxr emot e. passwor d in to your home directory and add the passwords for the roles
defined in the access file.

You must ensure that only the owner has read and write permissions on this file,
because it contains the passwords in clear-text. For security reasons, the system
checks that the file is readable only by the owner and exits with an error if it is not.
Thus in a multiple-user environment, you should store the password file in a private
location such as your home directory.

Property names are roles, and the associated value is the role's password. Example
2-1 shows sample entries in the password file.

Example 2-1 An Example Password File

specify actual password instead of the text password
moni t or Rol e password
control Rol e password

On Solaris, Linux, or macOS operating systems, you can set the file permissions for
the password file by running the following command:

chrmod 600 j nxrenot e. password

By default, the access file is named j nxr enot e. access. Property names are identities
from the same space as the password file. The associated value must either be
readonly orreadwite.

The access file defines roles and their access levels. By default, the access file
defines the following primary roles:

* nonitorRol e, which grants read-only access for monitoring.
» control Rol e, which grants read/write access for monitoring and management.

An access control entry consists of a role name and an associated access level. The
role name cannot contain spaces or tabs and must correspond to an entry in the
password file. The access level can be either one of the following:

e readonl y: Grants access to read the MBean's attributes. For monitoring, this
means that a remote client in this role can read measurements but cannot perform

2-9

https://docs.oracle.com/javase/9/docs/api/java/util/logging/package-summary.html

Chapter 2
Remote Monitoring with JConsole with SSL Disabled

any action that changes the environment of the running program. The remote
client can also listen to MBean noatifications.

* readwite: Grants access to read and write the MBean's attributes, to call
operations on them, and to create or remove them. This access should be granted
only to trusted clients, because they can potentially interfere with the operation of
an application.

A role should have only one entry in the access file. If a role has no entry, then it has
no access. If a role has multiple entries, then the last entry takes precedence. Typical
predefined roles in the access file resemble what is shown in the Example 2-2.

Example 2-2 An Example Access File

The "nonitorRole" role has readonly access.
The "control Role" role has readwite access.
moni t or Rol e readonly
controlRole readwite

Remote Monitoring with JConsole with SSL Disabled

To monitor a remote application with SSL disabled, start the JConsole with the
following command:

% j consol e host Name: port Num

You can also omit the host name and port number, and enter them in the dialog box
that JConsole provides.

Ready-to-Use Monitoring and Management Properties

You can set ready-to-use monitoring and management properties in a configuration file
or on the command line. Properties specified on the command line override properties
in a configuration file. The default location for the configuration file is j re_hone/ | i b/
nmanagement / managenent . properties. The Java VM reads this file if either of the
command-line properties is set:

° com sun. management . j nxrenot e
or
* com sun. managenent . j nxrenot e. port

Management using the Simple Network Management Protocol (SNMP) uses the same
configuration file. See SNMP Monitoring and Management.

You can specify a different location for the configuration file with the following
command-line option:

com sun. managenent . confi g. file=Confi gFi | ePat h

Confi gFi | ePat h is the path to the configuration file.

Table 2-1 describes the ready-to-use monitoring and management properties.

ORACLE 2-10

ORACLE

Chapter 2

Ready-to-Use Monitoring and Management Properties

Table 2-1 Ready-to-Use Monitoring and Management Properties

Property

Description

Values

com sun. management . j nxr enp
te

COm sun. managenent . j NXr eno
te. port

com sun. managenent . j nxr eno
te.registry.ssl

com sun. nanagenent . j nxr eno
te.ssl

com sun. managenent . j Nxr enmo
te.ssl.enabl ed. protocol s

com sun. managenent . j nxr eno
te.ssl.enabl ed. ci pher. sui t
es

com sun. managenent . j Nxr eno
te.ssl.need.client.auth

Enables the JMX remote
agent and local monitoring
using a JMX connector. This
agent is published on a private
interface that is used by
JConsole and any other local
JMX clients, which use the
Attach API. JConsole can use
this connector if it is started by
the same user who started the
agent. No password or access
files are checked for requests
coming from this connector.

Enables the JMX remote
agent and creates a remote
JMX connector to listen
through the specified port. By
default, the SSL, password,
and access file properties are
used for this connector. It also
enables local monitoring as
described for the

com sun. managenent . j nxr em
t e property.

Binds the RMI connector stub
to an RMI registry that is
protected by SSL.

Enables secure monitoring
using SSL. If the value is
fal se, then SSL is not used.

Shows a comma-delimited list
of SSL/TLS protocol versions

to enable. Used in conjunction
with

com sun. managenent . j nxr emo
te.ssl.

Shows a comma-delimited list
of SSL/TLS cipher suites to
enable. Used in conjunction
with

com sun. managenent . j nxr emo
te.ssl.

Performs client authentication
if this property is t r ue and the
property

com sun. nanagenent . j nxr emo
te.ssl isalsotrue.

It is recommended that you
set this property to t rue.

true/fal se. Defaultis true.

Port number. No default.

true/fal se. Defaultis f al se.

true/fal se. Defaultistrue.

Default SSL/TLS protocol

version.

Default SSL/TLS cipher suites.

true/fal se. Defaultis f al se.

2-11

ORACLE

Chapter 2

Ready-to-Use Monitoring and Management Properties

Table 2-1 (Cont.) Ready-to-Use Monitoring and Management Properties

Property

Description

Values

com sun. managenent . j NXr eno
te.authenticate

com sun. managenent . j nxr eno
te. password.file

com sun. nanagenent . j mxr eno
te.access.file

com sun. managenent . j Nxr emo
te.login.config

Prevents JMX from using
password or access files if this
property is f al se. All users are
provided complete access.

Specifies the location for the
password file. If

com sun. managenent . j nxr emo
te.authenticateisfal se,
then this property, and the
password and access files are
ignored. Otherwise, the
password file must exist and
be in the valid format. If the
password file is empty or
nonexistent, then no access is
allowed.

Specifies the location for the
access file. If

com sun. managenent . j nxr eno
te. aut henti cat e is false, then
this property, and the
password and access files,
are ignored. Otherwise, the
access file must exist and be
in the valid format. If the
access file is empty or
nonexistent, then no access is
allowed.

Specifies the name of a Java
Authentication and
Authorization Service (JAAS)
login configuration entry to use
when the JMX agent
authenticates users. When
using this property to override
the default login configuration,
the named configuration entry
must be in a file that is loaded
by JAAS. In addition, the login
modules specified in the
configuration should use the
name and password callbacks
to acquire the user's
credentials. For more
information, see the API
documentation for

javax. security.auth.callba
ck. NameCal | back and

javax. security.auth.callba
ck. Passwor dCal | back.

true/fal se. Defaultis true.

JRE_HOWE/ | i b/ management /
j mxr enot e. password

JRE_HOVE/ | i b/ management /
j nxr enot e. access

Default login configuration is a
file-based password
authentication.

2-12

Chapter 2
Connecting to the JMX Agent Programmatically

Configuration Errors

If any errors occur during the start up of the MBean server, the RMI registry, or the
connector, then the Java VM will throw an exception and exit. Configuration errors
include the following:

e Failure to bind to the port number

* Invalid password file

* Invalid access file

» Password file is readable by users other than the owner

If your application runs a security manager, then additional permissions are required in
the security permissions file.

Connecting to the JMX Agent Programmatically

After you have enabled the JMX agent, a client can use the following URL to access
the monitoring service:

service:jm:rm:///jndi/rm://hostNane: portNunt j mxrni

A client can create a connector for the agent by instantiating a

j avax. managenent . r enot e. JMXSer vi ceURL object using the URL, and then creating a
connection using the JMXConnect or Fact ory. connect method, as shown in the
Example 2-3.

Example 2-3 Creating a Connection Using JMXConnectorFactory.connect

JMXServiceURL u = new JMXSer vi ceURL(
"service:jmc rm:///jndi/rm://" + hostName + ":" + portNum+ "/jmxrmi");
JMXConnector ¢ = JMXConnect or Fact ory. connect (u);

Setting Up Monitoring and Management Programmatically

ORACLE

You can create a JMX client that uses the Attach API to enable ready-to-use
monitoring and management of any applications that are started on the Java SE 9
platform, without having to configure the applications for monitoring when you start
them. The Attach API provides a way for tools to attach to and start agents in the
target application. After an agent is running, JMX clients (and other tools) are able to
obtain the JMX connector address for that agent using a property list that is
maintained by the Java VM on behalf of the agents. The properties in the list are
accessible from tools that use the Attach API. So, if an agent is started in an
application, and if the agent creates a property to represent a piece of configuration
information, then that configuration information is available to tools that attach to the
application.

The JMX agent creates a property with the address of the local IMX connector server.
This allows JMX tools to attach to and get the connector address of an agent, if it is
running.

Example 2-4 shows code that could be used in a JMX tool to attach to a target VM, get
the connector address of the JMX agent and connect to it.

Example 2-4 Attaching a JMX Tool To A Connector And Getting the Agent's Address

2-13

http://download.java.net/java/jdk9/docs/jdk/api/attach/spec/overview-summary.html

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

static final String CONNECTOR_ADDRESS =
"com sun. managenent . j mxrenot e. | ocal Connect or Addr ess";

/1 attach to the target application
Virtual Machine vm = Virtual Machi ne. attach(id);

/1 get the connector address
String connectorAddress =
vm get Agent Properties(). getProperty(CONNECTOR_ADDRESS) ;

/1 no connector address, so we start the JMX agent
if (connectorAddress == null) {
String agent = vm get SystenProperties().getProperty("java. home") +
File.separator + "lib" + File.separator + "managenent-agent.jar";
vm | oadAgent (agent);

/] agent is started, get the connector address
connect or Address =
vm get Agent Properties(). get Property(CONNECTOR_ADDRESS) ;
}

/] establish connection to connector server
JMXServi ceURL url = new JMXServi ceURL(connect or Addr ess) ;
JMXConnect or = JMXConnect or Fact ory. connect (url);

Example 2-4 uses the com sun. t ool s. attach. Vi rt ual Machi ne class's attach() method to
attach to a given Java VM so that it can read the properties that the target Java VM
maintains on behalf of any agents running in it. If an agent is already running, then the
Vi rt ual Machi ne class's get Agent Properti es() method is called to obtain the agent's
address. The get Agent Properti es() method returns a string property for the local
connector address com sun. managenent . j mxr enot e. | ocal Connect or Addr ess, which you
can use to connect to the local IMX agent.

If no agent is running, then one is loaded by the Vi rt ual Machi ne class from
jre_home/ | i b/ managenent - agent . j ar, and its connector address is obtained by the
get Agent Properties() method.

A connection to the agent is then established by calling JMXConnect or Fact ory. connect
on a JMX service URL that has been constructed from this connector address.

Mimicking Ready-to-Use Management Using the JIMX
Remote AP|

ORACLE

The remote access to the ready-to-use management agent is protected by
authentication and authorization, and by SSL encryption. The configuration is
performed by setting system properties or by defining a managenent . properti es file. In
most cases, using the ready-to-use management agent and configuring it through the
managenent . properti es file is sufficient to provide secure management of remote Java
VMs. However, in some cases, greater levels of security are required and in other
cases, certain system configurations do not allow the use of a management . properti es
file. Such cases might involve exporting the RMI server's remote objects over a certain
port to allow passage through a firewall, or exporting the RMI server's remote objects
using a specific network interface in multihomed systems. For such cases, the
behavior of the ready-to-use management agent can be mimicked by using the JIMX
Remote API directly to create, configure, and deploy the management agent
programmatically.

2-14

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

Example of Mimicking Ready-to-Use Management

ORACLE

This section provides an example of how to implement a JMX agent that identically
mimics an ready-to-use management agent. In exactly the same way as the ready-to-
use management agent, the agent created in Example 2-5 will run on port 3000. It will
have a password file named passwor d. properti es, an access file named

access. properties, and it will implement the default configuration for SSL/TLS-based
RMI Socket Factories, requiring server authentication only. This example assumes a
keyst or e has already been created, as described in Using SSL. Information about how
to set up the SSL configuration is explained in Creating a Keystore to Use with JSSE
section of Java Platform, Standard Edition Security Developer's Guide.

To enable monitoring and management on an application named com exanpl e. M/App,
using the ready-to-use JMX agent with the configuration, run the com exanpl e. MyApp
with the following command:

% j ava - Dcom sun. managenent . j nxr enot e. por t =3000 \
-Dcom sun. management . j mxr enot e. passwor d. i | e=password. properties \
-Dcom sun. management . j nxrenot e. access. fil e=access. properties \
-Dj avax. net. ssl . keySt ore=keystore \
-Dj avax. net. ssl . keySt or ePasswor d=password \

com exanpl e. \yApp

Note:

The com sun. managenent . j mxr enot e. * properties can be specified in a
managenent . properti es file instead of passing them at the command line. In that
case, the system property -

Dcom sun. managenent . confi g. fi | e=management . properti es is required to specify
the location of the managenment . properti es file.

Example 2-5 shows the code that you need to write to programmatically create a IMX
agent, which will allow exactly the same monitoring and management on
com exanpl e. M/App as using the prior command.

Example 2-5 Mimicking a Ready-to-Use JMX Agent Programmatically

package com exanpl e;

inport java.lang.mnagenent.*;

import java.rm.registry.*;

import java.util.*;

inport javax. managenent.*;

i nport javax.managenent.renote. *;

i nport javax.managenent.remote.rni.*;
inport javax.rm.ssl.*;

public class MApp {
public static void main(String[] args) throws Exception {
/'l Ensure cryptographically strong random nunber generator used
/] to choose the object nunber - see java.rni.server.ChjID

/11
System set Property("java.rm.server.random Ds", "true");

2-15

ORACLE

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

[/ Start an RM registry on port 3000.

/11

Systemout.printIn("Create RM registry on port 3000");
Locat eRegi stry. creat eRegi stry(3000);

/] Retrieve the Pl atfornmvBeanServer.

/11

Systemout.printIn("Get the platforms MBean server");
MBeanServer nbs = Managenent Factory. get Pl at f or mMBeanSer ver () ;

[l Environment map.

11

Systemout.printin("Initialize the environment map");
HashMap<St ri ng, Obj ect > env = new HashMap<Stri ng, Obj ect>();

/'l Provide SSL-based RM socket factories.

1

/1 The protocol and cipher suites to be enabled will be the ones

/1 defined by the default JSSE inplementation and only server

/] authentication will be required.

1

SsI RM Oi ent Socket Factory csf = new Ssl RM O i ent Socket Factory();

Ss| RM Server Socket Fact ory ssf = new Ss| RM Server Socket Fact ory();

env. put (RM Connect or Server. RM _CLI ENT_SOCKET_FACTORY_ATTRI BUTE, csf);
env. put (RM Connect or Server. RM _SERVER_SOCKET_FACTORY_ATTRI BUTE, ssf);

[l Provide the password file used by the connector server to

/1 performuser authentication. The password file is a properties
/] based text file specifying username/password pairs.

11

env. put ("j mx. renote. x. password. file", "password.properties");

/1 Provide the access level file used by the connector server to

/'l performuser authorization. The access level file is a properties
/'l based text file specifying username/access |evel pairs where

/'l access level is either "readonly" or "readwite" access to the
/1 MBeanServer operations.

/11

env. put ("j mx.renote. x. access. file", "access.properties");

I/ Create an RM connector server.
/1
/1 As specified in the JMXServiceURL the RM Server stub will be
/'l registered in the RM registry running in the |ocal host on
/] port 3000 with the name "jmxrmi". This is the sane nane that the
/'l ready-to-use managenent agent uses to register the RM Server
/1 stub.
/1
Systemout.printIn("Create an RM connector server");
JMXServiceURL url =
new JMXServi ceURL("service:jm:rm:///jndi/rm://:3000/jmrm");
JMXConnect or Server cs =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (url, env, nbs);

/] Start the RM connector server.

/11

Systemout.printIn("Start the RM connector server");
cs.start();

2-16

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

Start this application with the following command:

java -Davax. net.ssl.keyStore=keystore \
- D avax. net. ssl . keySt or ePasswor d=password \

com exanpl e. MyApp

The com exanpl e. MyApp application will enable the JMX agent and will be monitored and
managed in exactly the same way as if the Java platform's ready-to-use management
agent has been used. However, there is one slight but important difference between
the RMI registry used by the ready-to-use management agent and the one used by a
management agent that mimics it. The RMI registry used by the ready-to-use
management agent is read-only, namely a single entry can be bound to it and upon
being bound, this entry cannot be unbound. This is not true with the RMI registry
created in Example 2-5.

Furthermore, both RMI registries are insecure as they do not use SSL/TLS. The RMI
registries should be created using SSL/TLS-based RMI socket factories that require
client authentication. This will prevent a client from sending its credentials to a rogue
RMI server and will also prevent the RMI registry from giving access to the RMI server
stub to a nontrusted client.

RMI registries that implement SSL/TLS RMI socket factories can be created by adding
the following properties to your managenent . properti es file:

com sun. managenent . j nxrenot e. regi stry. ssl=true
com sun. managenent . j nxrenot e. ssl . need. cl i ent. auth=true

Example 2-5 mimics the main behavior of the ready-to-use JMX agent, but does not
replicate all the existing properties in the managenent . properti es file. However, you can
add other properties by modifying com exanpl e. MyApp appropriately.

Monitoring Applications Through a Firewall

The code in Example 2-5 can be used to monitor applications through a firewall, which
might not be possible if you use the ready-to-use monitoring solution. The

com sun. management . j nxr enot e. port management property specifies the port where the
RMI registry can be reached but the ports where the RM Server and RM Connect i on
remote objects are exported is chosen by the RMI stack. To export the remote objects
(RM Server and RM Connect i on) to a given port, you heed to create your own RMI
connector server programmatically, as described in Example 2-5. However, you must
specify JMXSer vi ceURL as follows:

JMXServiceURL url = new JMXServiceURL("service:jm:rni://local host:" +
portl + "/jndi/rm://local host:" + port2 + "/jmxrm");

port 1 is the port number on which the RM Server and RM Connect i on remote objects are
exported, and port 2 is the port number of the RMI Registry.

Using an Agent Class to Instrument an Application

ORACLE

The Java SE platform provides services that allow Java programming language agents
to instrument programs running on the Java VM. Creating an instrumentation agent
means that you do not have to add any new code to your application in order to allow it
to be monitored. Instead of implementing monitoring and management in your
application's static nmai n method, you implement it in a separate agent class, and start
your application with the -j avaagent option specified. See the API reference

2-17

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

documentation for the j ava. | ang. i nst rument package for full details about how to
create an agent class to instrument your applications.

Creating an Agent Class to Instrument an Application

The following procedure shows how you can adapt the code of com exanpl e. My/App to
create an agent to instrument any other application for monitoring and management.

1. Create a com exanpl e. MyAgent class.
Create a class called com exanpl e. MyAgent , declaring a premai n method rather than
a mai n method.

package com exanpl e;

[...]
public class MyAgent {

public static void premain(String args) throws Exception {
[...]

The rest of the code for the com exanpl e. M/Agent class is same as the
com exanpl e. MyApp class as shown in Example 2-5.

2. Compile the com exanpl e. M\/Agent class.

3. Create a manifest file, MANI FEST. MF, with a Prenai n- C ass entry.
An agent is deployed as a Java archive (JAR) file. An attribute in the JAR file
manifest specifies the agent class that will be loaded to start the agent. Create a
file called MANI FEST. MF, containing the following line:

Premai n-C ass: com exanpl e. MyAgent

4. Create a JAR file, M/Agent . jar.
The JAR file should contain the following files:

° META-| NF/ MANI FEST. MF
e conl exanpl e/ MyAgent . cl ass

5. Start an application, specifying the agent to provide monitoring and management
services.
You can use com exanpl e. M/Agent to instrument any application for monitoring and
management. This example uses the Not epad application.

% java -javaagent: M/Agent.jar -Djavax.net.ssl.keyStore=keystore \
-Dj avax. net . ssl . keySt or ePasswor d=password -jar Notepad.j ar

The com exanpl e. MyAgent agent is specified using the -j avaagent option when you
start Not epad. Also, if your com exanpl e. MyAgent application replicates the same
code as the com exanpl e. MyApp application shown in Example 2-5, then provide the
keyst or e and passwor d information because the RMI connector server is protected
by SSL.

ORACLE 2-18

https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html

Using JConsole

The JConsole graphical user interface is a monitoring tool that complies with the Java
Management Extensions (JMX) specification. JConsole uses the extensive
instrumentation of the Java Virtual Machine (Java VM) to provide information about the
performance and resource consumption of applications running on the Java platform.

JConsole has been updated to present the look and feel of the Windows and GNOME
desktops (other platforms will present the standard Java graphical look and feel). The
screen captures presented in this document are taken from an instance of the
interface running on Windows XP.

Starting JConsole

The j consol e executable file can be found in JDK_HOVE/ bi n, where JDK_HOME is the
directory in which the Java Development Kit (JDK) is installed. If this directory is in
your system path, then you can start JConsole by simply entering j consol e in a
command (shell) prompt. Otherwise, you have to enter the full path to the executable
file.

Command Syntax

You can use JConsole to monitor both local applications, namely those running on the
same system as JConsole, as well as remote applications, namely those running on
other systems.

Note:

Using JConsole to monitor a local application is useful for development and for
creating prototypes, but is not recommended for production environments,
because JConsole itself consumes significant system resources. Remote
monitoring is recommended to isolate the JConsole application from the
platform being monitored.

See j consol e in the Java Platform, Standard Edition Tools Reference for the complete
syntax.

Setting Up Local Monitoring

ORACLE

Start JConsole using the following command:

% j consol e

When JConsole starts, select the required Java applications running locally that
JConsole can connect to.

3-1

Chapter 3
Starting JConsole

If you want to monitor a specific application, and you know that application's process
ID, then start JConsole so that it connects to that application. This application must be
running with the same user ID as JConsole. Use the following command syntax to
start JConsole for local monitoring of a specific application:

% j consol e processlD

processl Dis the application's process ID (PID). You can determine an application's PID
in the following ways:

e On Solaris, Linux, or macOS systems, you can use the ps command to find the
PID of the j ava instance that is running.

* On Windows systems, you can use the Task Manager to find the PID of j ava or
j avaw.

* You can also use the j ps command-line utility to determine PIDs. See j ps in Java
Platform, Standard Edition Tools Reference.

For example, if the process ID of the Not epad application is 2956, then start JConsole
with the following command:

% j consol e 2956

Both JConsole and the application must by executed by the same user. The
management and monitoring system uses the operating system's file permissions. If
you do not specify a process ID, JConsole will automatically detect all local Java
applications, and display a dialog box that lets you select which one you want to
monitor (see Connecting to a JMX Agent).

See Local Monitoring and Management.

Setting Up Remote Monitoring

To start JConsole for remote monitoring, use the following command syntax:

% j consol e host Nane: port Num

The host Nane is the name of the system running the application and port Numis the port
number you specified when you enabled the JMX agent while starting the Java VM.
See Remote Monitoring and Management.

If you do not specify a host name/port number combination, then JConsole will display
a connection dialog box (Connecting to a JMX Agent) to enable you to enter a host
name and port number.

Setting Up Secure Remote Monitoring

You can also start JConsole so that monitoring will be performed over a connection
that is secured using Secure Sockets Layer (SSL). See Remote Monitoring with
JConsole with SSL Enabled for the command to start JConsole with a secure
connection.

Connecting to a JMX Agent

If you start JConsole with arguments specifying a JMX agent to connect to, then it will
automatically start monitoring the specified Java VM. You can connect to a different

ORACLE 3-2

Chapter 3
Starting JConsole

host at any time by selecting Connection and New Connection, and entering the
necessary information.

Otherwise, if you do not provide any arguments when you start JConsole, then the first
thing that you see is the connection dialog box. This dialog box has two options,
allowing connections to either Local or Remote processes.

Connecting JConsole to a Local Process

ORACLE

If you start JConsole without providing a specific JMX agent to connect to, then you
will see the following dialog box:

Figure 3-1 Creating a Connection to a Local Process

JConsole: New Connection

New Connection

{#) Local Process:

! Mame
| cam,boy, anagrams, Ui, Anagrams
nsole -inkerval=4
| org/netbeans/Main --branding nb
Mote: The managerent agent will be enabled on this procese,

) Remote Process:

Usage: =zhostnames=: =port= O service:jmx: =protocal =1 2sap =

P [———

Username: | | Password: |

Connect][Cancel

The Local Process option lists any Java VMs running on the local system that were
started with the same user ID as JConsole, along with their process ID and their class
or argument information. To connect JConsole to your application, select the
application that you want to monitor, then click Connect. The list of local processes
includes applications running in the following types of Java VM:

* Applications with the management agent enabled: These include applications on
the Java SE platform that were started with the - Dcom sun. managenent . j mxr enot e
option or with the - Dcom sun. managenent . j nxr enot e. port option specified. In
addition, the list also includes any applications that were started on the Java SE
platform without any management properties, but are attached to by JConsole,
which enables the management agent at runtime.

* Applications that are attachable, with the management agent disabled: These
include an attachable application that supports loading of the management agent

3-3

ORACLE

Chapter 3
Starting JConsole

at runtime. Attachable applications include applications that are started on the
Java SE platform, which support the Attach API. Applications that support dynamic
attach do not require the management agent to be started by specifying the

com sun. managenent . j nxr enot e OF com sun. managenent . j nxr enot e. port options at the
command line. JConsole does not need to connect to the management agent
before the application is started. If you select this application, then a note is
displayed on screen that the management agent will be enabled when the
connection is made. In the example, connection dialog box that is shown in
Figure 3-1, the NetBeans IDE and JConsole are started within a Java SE platform
VM. Both appear in normal text, meaning that JConsole can connect to them. In
Figure 3-1, JConsole is selected and the note is visible.

Applications that are not attachable, with the management agent disabled: These
include applications started on a Java SE platform without the -

Dcom sun. managenent . j kr enpt e OF com sun. managenent . j mxr enot e. port options.
These applications appear grayed-out in the table and JConsole cannot connect to
them. In the example connection dialog box shown in Figure 3-1, the Anagr ans
application was started with a Java SE platform VM without any of the
management properties to enable the JMX agent, and consequently shows up in
gray and cannot be selected.

Figure 3-2 Attempting to Connect to an Application Without the Manhagement
Agent Enabled

JConsole: Hew Connection

New Connection

(*) Local Process:

| Mame
conn, boy, anagrams. i, Anagr ams
| sum,koals, jeonsole, 3 onsole -inkerval=4

| orgfnetbeans|Main --branding nb
Mote: The managerent agent is not enabled on this process,

{) Remote Process:

Usage: =hostrame:=: =port= OR sarvice:jrmx: <protocol=! =sap=

e T P PSP PP
|

Username: l | Password: |

Cancel

In the example connection dialog box shown in Figure 3-2, you can see that the

Anagr ans application is selected, but Connect remains grayed-out, and a note has
appeared informing you that the management agent is not enabled for this process.
JConsole cannot connect to Anagr ans because it was not started with the correct Java
VM or with the correct options.

3-4

Chapter 3
Starting JConsole

Connecting JConsole to a Remote Process

ORACLE"

When the connection dialog box opens, you are also given the option of connecting to
a remote process.

Figure 3-3 Creating a Connection to a Remote Process

JConsole: New Connection

New Connection

() Local Process:

Marme

conn, boy ., anagrams. i, Anagrams
sun.tools, joonsale, Joonsale -inkerval=4
arg/netbeans Main --branding nb

{*) Remote Process:

lncalhost: 5555

Usage: =hostrame:=: =port= OR sarvice:jma: =protocol=: sap=

Username: |Username | Password: iu

Conneck H Cancel

To monitor a process running on a remote Java VM, you must provide the following
information:

Host name: The name of the machine on which the Java VM is running.

Port number: The JMX agent port number you specified when you started the Java
VM.

User name and password: The user name and password to use (required only if
monitoring a Java VM through a JMX agent that requires password
authentication).

To set the port number of the JIMX agent, see Enabling the Ready-to-Use
Management.

See Using Password and Access Files.

To monitor the Java VM that is running JConsole, click Connect and enter host as
| ocal host and the port 0.

3-5

Chapter 3
Starting JConsole

Connecting Using a JMX Service URL

You can also use the Remote Process option to connect to other IMX agents by
specifying their JIMX service URL, and the user name and password. The syntax of a
JMX service URL requires that you provide the transport protocol used to make the
connection, as well as a service access point. The full syntax for a JIMX service URL is
described in the APl documentation for j avax. managenent . r emot e. JMXSer vi ceURL.

Figure 3-4 Connecting to a JMX Agent Using the JMX Service URL

JConsole: Hew Connection

New Connection

) Local Process:

Marme

corn, koY, anagrarms, Ui, Anagrarns
sun.kools.jcansale, Jansale -inkerval=4
arg/netbeans/Main --branding nb

{#) Remote Process:

Eservice:jmx: <protocol = <sap >
Usage: =zhostname:=: =port= OF sarvice!jmx: =protocol=! =zap=

Username: |Username

Password: esssssss

Conneck][Cancel

If the IMX agent uses a connector that is not included in the Java platform, then you
must add the connector classes to the class path when you run the j consol e
command, as follows:

% j consol e -J-Dj ava. cl ass. pat h=JAVA HOME/ | i b/ j consol e. j ar: JAVA_ HOVE/ | i b/
tool s.jar:connector-path

connect or - pat h is the directory or the Java archive (JAR) file containing the connector
classes that are not included in the JDK, to be used by JConsole.

Presenting the JConsole Tabs

After you have connected JConsole to an application, JConsole displays the following
Six tabs:

* Overview: Displays overview information about the Java VM and monitored values
* Memory: Displays information about memory use

e Threads: Displays information about thread use

ORACLE 3-6

Chapter 3
Starting JConsole

» Classes: Displays information about class loading
* VM: Displays information about the Java VM
* MBeans: Displays information about MBeans

Use the green connection status icon in the upper right-hand corner of JConsole to
disconnect from or reconnect to a running Java VM. You can connect to any number
of running Java VMs at a time by selecting Connection, then New Connection from
the drop-down menu.

Viewing Overview Information

The Overview tab displays graphical monitoring information about CPU usage,
memory usage, thread counts, and the classes loaded in the Java VM, all in a single
screen.

Figure 3-5 Overview Tab

|&| Connmection ‘Window Help =l =

Overview | Memary | Threads | Classes || YM Summary || MBeans =

Threads N

| ==e ‘

Heap Memory Usage

40 Mb 40

30
Used
4 6,794,544

0.0 Mb 20

Live threads
30 Mb o

20 Mb
10 Mb

20:10 20:15 20:20 20:10 20:15 20:20

Used: 6,8 Mb Committed: 35.5Mb Max: 66,7 Mb Live: 34 Peak: 34 Total: 34

Classes CPU Usage

4,000 60%
3,000

50%
Loaded 0%
=l 3,127 30%
20%
10% « %
2,000 0%
e S

CPU Usage

20:10 20:15 20:20 20:10 20:15 20:20

-

The Overview tab provides an easy way to correlate information that was previously
available only by switching between multiple tabs.

Saving Chart Data

ORACLE

JConsole allows you to save the data presented in the charts in a comma-separated
values (CSV) file. To save data from a chart, right-click on any chart, select Save data
as..., and then specify the file in which the data will be saved. You can save the data
from any of the charts displayed in any of JConsole's different tabs in this way.

The CSV format is commonly used for data exchange between spreadsheet
applications. The CSV file can be imported into spreadsheet applications and can be
used to create diagrams in these applications. The data is presented as two or more
named columns, where the first column represents the time stamps. After importing
the file into a spreadsheet application, you will usually need to select the first column
and change its format to be dat e or dat e/ t i ne as appropriate.

3-7

Chapter 3
Starting JConsole

Monitoring Memory Consumption

ORACLE

The Memory tab provides information about memory consumption and memory pools.

Figure 3-6 Memory Tab

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole
|£| Connection ‘Window Help — il

Overview | MEMOrY | Threads | Classes || YM Summary || MBeans =

Perform GC

v Tirme Range: A

40 Mb
30 Mb
20 Mb
Used
10 Mb 4 9,684,552

0.0 Mb

20:10 20:15 20:20

Details

Time: 2006-07-27 20:22:20 100% --

| Used: 10, 593 Kboytes —

| Committed: 34, 696 khytes |
: Max: 65,085 kbytes | sew-
GC time: 2.051 seconds on Copy (771 collections) 25% -
2.324 seconds on MarkSweepCompart (22 collections) 0% -

| Heap | | Mon-Heap ‘

Click Perform GC in the Memory tab to perform garbage collection whenever you
want. The chart shows the memory use of the Java VM over time, for heap and
nonheap memory, as well as for specific memory pools. The memory pools available
depend on the version of the Java VM being used. For the HotSpot Java VM, the
memory pools for serial garbage collection are the following:

e Eden Space (heap): The pool from which memory is initially allocated for most
objects.

e Survivor Space (heap): The pool containing objects that have survived the
garbage collection of the Eden space.

e Tenured Generation (heap): The pool containing objects that have existed for
some time in the survivor space.

* Permanent Generation (nonheap): The pool containing all the reflective data of the
virtual machine itself, such as class and method objects. With Java VMs that use
class data sharing, this generation is divided into read-only and read/write areas.

e Code Cache (nonheap): The HotSpot Java VM also includes a code cache,
containing memory that is used for compilation and storage of native code.

You can display different charts for charting the consumption of these memory pools
by selecting the required options in the Chart drop-down menu. Also, clicking either
the Heap or Nonheap bar charts in the bottom right-hand corner will switch the chart
displayed. Finally, you can specify the time range over which you track memory usage,
by selecting the required options in the Time Range drop-down menu.

See Garbage Collection.

The Details area shows several current memory metrics:

3-8

Chapter 3
Starting JConsole

Used: The amount of memory currently used, including the memory occupied by
all objects, both reachable and unreachable.

Committed: The amount of memory guaranteed to be available for use by the Java
VM. The amount of committed memory may change over time. The Java virtual
machine may release memory to the system and the amount of committed
memory could be less than the amount of memory initially allocated at startup. The
amount of committed memory will always be greater than or equal to the amount
of used memory.

Max: The maximum amount of memory that can be used for memory
management. Its value may change or be undefined. A memory allocation may fail
if the Java VM attempts to increase the used memory to be greater than
committed memory, even if the amount used is less than or equal to max (for
example, when the system is low on virtual memory).

GC time: The cumulative time spent on garbage collection and the total number of
calls. It may have multiple rows, each of which represents one garbage collector
algorithm used in the Java VM.

The bar chart on the lower right-hand side shows the memory consumed by the
memory pools in heap and nonheap memory. The bar will turn red when the memory
used exceeds the memory usage threshold. You can set the memory usage threshold
through an attribute of the Menor yMxBean.

Heap and Nonheap Memory

The Java VM manages two kinds of memory: heap and nonheap memory, both of
which are created when the Java VM starts.

Heap memory: Is the runtime data area from which the Java VM allocates memory
for all class instances and arrays. The heap may be of a fixed or variable size. The
garbage collector is an automatic memory management system that reclaims heap
memory for objects.

Nonheap memory: Includes a method area shared among all threads and memory
required for the internal processing or optimization for the Java VM. It stores per-
class structures such as a runtime constant pool, field and method data, and the
code for methods and constructors. The method area is logically part of the heap
but, depending on the implementation, a Java VM may not garbage collect or
compact it. Like the heap memory, the method area may be of a fixed or variable
size. The memory for the method area does not need to be contiguous.

In addition to the method area, a Java VM may require memory for internal processing
or optimization, which also belongs to nonheap memory. For example, the Just-In-
Time (JIT) compiler requires memory for storing the native machine code translated
from the Java VM code for high performance.

Memory Pools and Memory Managers

ORACLE

Memory pools and memory managers are key aspects of the Java VM's memory
system.

Memory pool: Represents a memory area that the Java VM manages. The Java
VM has at least one memory pool and it may create or remove memory pools
during execution. A memory pool can belong either to heap or to nonheap
memory.

3-9

Chapter 3
Starting JConsole

* Memory manager: Manages one or more memory pools. The garbage collector is
a type of memory manager responsible for reclaiming memory used by
unreachable objects. A Java VM may have one or more memory managers. It may
add or remove memory managers during execution. A memory pool can be
managed by more than one memory manager.

Garbage Collection

ORACLE

Garbage collection (GC) is how the Java VM frees memory occupied by objects that
are no longer referenced. It is common to think of objects that have active references
as being live and nonreferenced (or unreachable) objects as dead. Garbage collection
is the process of releasing memory used by the dead objects. The algorithms and
parameters used by GC can have dramatic effects on performance.

The Java HotSpot VM garbage collector uses generational GC. Generational GC
takes advantage of the observation that most programs conform to the following
generalizations:

e They create many objects that have short lives, for example, iterators and local
variables.

e They create some objects that have very long lives, for example, high-level
persistent objects.

Generational GC divides memory into several generations, and assigns one or more
memory pools to each. When a generation uses up its allotted memory, the VM

performs a partial GC (also called a minor collection) on that memory pool to reclaim
memory used by dead objects. This partial GC is usually much faster than a full GC.

The Java HotSpot VM defines two generations: the young generation (sometimes
called the nursery) and the old generation. The young generation consists of an Eden
space and two survivor spaces. The VM initially assigns all objects to the Eden space,
and most objects die there. When it performs a minor GC, the VM moves any
remaining objects from the Eden space to one of the survivor spaces. The VM moves
objects that live long enough in the survivor spaces to the tenured space in the old
generation. When the tenured generation fills up, there is a full GC that is often much
slower because it involves all live objects. The permanent generation holds all the
reflective data of the virtual machine itself, such as class and method objects.

The default arrangement of generations looks something like Figure 3-7.

Figure 3-7 Generations of Data in Garbage Collection

3-10

Chapter 3
Starting JConsole

Tenured
Eden - =

Virtual

-—
Young Perm

If the garbage collector has become a bottleneck, then you can improve performance
by customizing the generation sizes. Using JConsole, you can investigate the
sensitivity of your performance metric by experimenting with the garbage collector
parameters. See Performance Considerations in Java Platform, Standard Edition
HotSpot Virtual Machine Garbage Collection Tuning Guide.

Monitoring Thread Use

The Threads tab provides information about thread use.

Figure 3-8 Threads Tab

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole . E |
[ﬁ Connection Window Help | Han|
I_l Crvetview || Memoryl Threads | Classes || WM Surrnary || MBeansl *
Time Range: |E W

Mumber of Threads | &
40 Paak

301*:'—r/—1

20

20:10 20:15 20:20
Threads
Reference Handler Name: Finalizer A

Firalizer

[|

State: WAITING on java.lang.ref.ReferenceQueueiLocklc?a

Signal Dispatcher Total blocked: 3 Toral waited: 96

Attach Listener
JavazD Disposer

AT -Shutdown HEEER BEEEE
AWT-Windows Java. lang.Chject.wait (HNative Hethod)
AMIT-Fuamk™iensZn b’

¥ |iava. lana. ref . Referenreimene . remmve (Refereneeiiene iawa

£ | > % i | >
|Filter |H Detect Deadlock, J

The Threads list in the lower left corner lists all the active threads. If you enter a string
in the Filter field, then the Threads list will show only those threads whose name
contains the string that you entered. Click the name of a thread in the Threads list to

ORACLE" 3-11

Chapter 3
Starting JConsole

display information about that thread to the right, including the thread name, state, and
stack trace.

The chart shows the number of live threads over time. Two lines are shown:

e Red: Peak number of threads
e Blue: Number of live threads

The Threading MXBean provides several other useful operations that are not covered
by the Threads tab.

e findMonitorDeadl ockedThr eads: Detects if any threads are deadlocked on the object
monitor locks. This operation returns an array of deadlocked thread IDs.

e get Threadl nf o: Returns the thread information. This includes the name, stack
trace, and the monitor lock that the thread is currently blocked on, if any, and
which thread is holding that lock, as well as thread contention statistics.

e get ThreadCpuTi me: Returns the CPU time consumed by a given thread.

You can access these additional features through the MBeans tab by selecting
Threading MXBean in the MBeans tree. This MXBean lists all the attributes and
operations for accessing threading information in the Java VM being monitored. See
Monitoring and Managing MBeans.

Detecting Deadlocked Threads

ORACLE

To check if your application has run into a deadlock (for example, your application
seems to be hanging), deadlocked threads can be detected by clicking Detect
Deadlock. If any deadlocked threads are detected, these are displayed in a new tab
that appears next to the Threads tab, as shown in Figure 3-9.

Figure 3-9 Deadlocked Threads

Threads | Deadiack 1 | peadiack 2

[Deadlock-Thread-3

:Name: Deadlock-Thread-3
Deadiack-Thread-1 |srgre: WAITING on java.util.concurrent. locks.ReentrantLock$HNonfairSyn
Deadiock-Thread2 | oo 01 piocked: 0 Total waited: 2

Stack trace:

sun.misc.Unsafe.park (Native Method)
Java.util.concurrent. locks. LockSupport.park (LockSupport. java: 145)
Java.util.concurrent. locks. AbstractQueuedlynchronizer . parkindCheckInt:
Java.util.concurrent. locks. AbstractQueued3ynchroni zer .. acquireCueusd | A
Java.util.concurrent. locks. AbstractQueuedSynchronizer . acquire (Abstrac)
java.util.concurrent. locks. ReentrantlockiNonfairSyne. lock (ReentrantLod
Java.util.concurrent. locks. Reentrantlock. lock (FeentrantLock. javai263)
SynchronizerleadlockileadlockingThread. g(3ynchronizerbeadlock. java: 95
3ynchronieerDeadlockibeadlockingThread. £ (Synchronizerbeadlock, java: &8
SynchroniserDeadlockileadlockingThread. run (Synchronizerbeadlock. java:

< ¥

Detect Deadlock will detect deadlock cycles involving object monitors and
java.util.concurrent ownable synchronizers (see the API specification documentation
forj ava. | ang. managenent . Lockl nf o). Monitoring support for
java.util.concurrent locks has been added in Java SE from version 6.0. If JConsole
connects to a Java SE 5.0 VM, then the Detect Deadlock mechanism will find only

3-12

https://docs.oracle.com/javase/9/docs/api/java/lang/management/LockInfo.html

Chapter 3
Starting JConsole

deadlocks related to object monitors. JConsole will not show any deadlocks related to
ownable synchronizers.

See the API documentation for j ava. | ang. Thr ead for more information about threads
and daemon threads.

Monitoring Class Loading

The Classes tab displays information about class loading.

Figure 3-10 Classes Tab

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole

|£| Connection ‘Window Help 2
Cverview | Memory | Threads | Classes '\-'M Summary | MBeans ==
Time Range: | F] | [] verbose Cutput
Mumber of Loaded Classes
4,000
Total Loaded
03,240
1,-" Loaded
3,000 1 |F—— 3,132
2,000
20:10 20:15 20:20
Details

| Time: 2006-07-27 20:23:22
ECurrent classes loaded: 3,132
: Total classes loaded: 3,240
| Total classes unloaded: 103

The chart plots the number of classes loaded over time.

e The red line is the total number of classes loaded (including those subsequently
unloaded).

e The blue line is the current number of classes loaded.

The Details section at the bottom of the tab displays the total number of classes
loaded since the Java VM started, the number currently loaded, and the number
unloaded. You can set the tracing of class loading to verbose output by selecting the
check box in the top right-hand corner.

Viewing VM Information

The VM Summary tab provides information about the Java VM.

Figure 3-11 VM Summary Tab

ORACLE' 313

ORACLE

Chapter 3
Starting JConsole

=
Java Monitoring & Management Console - pid: 3036 sun.tools. jconsole. JConsole E"E|g|

|| Conmection ‘Window Help | [| [

Cverview | Memory | Threads | Classes \-'MSummary MBeans ==
VM Summary ” 1

Friday, July 28, 2006 10:43:22 AN CEST

Connection name: pid: 3036 sun.tools jeonsole JConsole
Virtual Machine: Java HotSpot{Th) Client ¥IuI version

Uptime: 1 minate
Process CPU time: 26.015 seconds
JIT compiler: HotSpot Client Compiler
Total compile time: 1.720 seconds

1 6.0-1e-b3
Vendor: Sun Mictosysters Ing.
Name: 3036@dolei

Live threads: 22 Current classes loaded: 3,102
Peak: 3z Total classes loaded: 3,162
Daemon threads: 19 Total classes unloaded: &0

Total threads started: 135

Current heap size: 31,141 khytes
Maximum heap size: 65,088 kbytes Pending finalization: 0 chjects
Garbage collector: Mawe ='Copy, Collections = 214, Total tite spent = 0.817 seconds
Garbage collector: Name = 'WarkSweepCompact', Collections = 20, Total time spent = 1.926 seconds

Committed memory: 56,6380 khytes

Operating System: Windows XP 5.1 Total physical memory: 1,047,785 Kbytes
Architecture: =26 Free physical memory: 473,496 koytes

Number of processors: 2 Total swap space: Z,520,984 khytes
Committed virtual memory: 51,504 Kaytes Free swap space: 2,145,760 khytes

VM arguments: -Der class.path=CProgram Files\Uavraljrel 5 0_061blexctQTJava zip -Dapplication home=C Program

Class path: C:\Program Files\Uarvaljdkl 6 Oilibfieonsole jar,C:\Program Files\avaljdk] 6.0MbfAools jar,C \Prograrm

Files\Javaljdkl 6.0

Filac) Taneatidl- 14 Niclaccas

The information presented in this tab includes the following:

Summary

Uptime: Total amount of time since the Java VM was started.

Process CPU Time: Total amount of CPU time that the Java VM has
consumed since it was started.

Total Compile Time: Total accumulated time spent in JIT compilation. The
Java VM determines when JIT compilation occurs. The Hotspot VM uses
adaptive compilation, in which the VM launches an application using a
standard interpreter, but then analyzes the code as it runs to detect
performance bottlenecks, or hot spots.

Threads

Live threads: Current number of live daemon threads plus nondaemon
threads.

Peak: Highest number of live threads since Java VM started.
Daemon threads: Current number of live daemon threads.

Total threads started: Total number of threads started since Java VM started,
including daemon, nondaemon, and terminated threads.

Classes

Current classes loaded: Number of classes currently loaded into memory.

3-14

Chapter 3
Starting JConsole

Total classes loaded: Total number of classes loaded into memory since the
Java VM started, including those that have subsequently been unloaded.

Total classes unloaded: Number of classes unloaded from memory since the
Java VM started.

e Memory

Current heap size: Number of kilobytes currently occupied by the heap.
Committed memory: Total amount of memory allocated for use by the heap.
Maximum heap size: Maximum number of kilobytes occupied by the heap.
Objects pending for finalization: Number of objects pending for finalization.

Garbage collector: Information about garbage collection, including the garbage
collector names, number of collections performed, and total time spent
performing GC.

* Operating System

Total physical memory: Amount of random access memory (RAM) the
operating system has.

Free physical memory: Amount of free RAM available to the operating system.

Committed virtual memory: Amount of virtual memory guaranteed to be
available to the running process.

e Other Information

VM arguments: The input arguments that the application passed to the Java
VM, not including the arguments to the main method.

Class path: The class path that is used by the system class loader to search
for class files.

Library path: The list of paths to search when loading libraries.

Boot class path: The path used by the bootstrap class loader to search for
class files.

Monitoring and Managing MBeans

The MBeans tab displays information about all the MBeans registered with the
platform MBean server in a generic way. The MBeans tab allows you to access the full
set of the platform MXBean instrumentation, including the ones that are not visible in
the other tabs. In addition, you can monitor and manage your application's MBeans
using the MBeans tab.

Figure 3-12 MBeans Tab

ORACLE

3-15

Chapter 3
Starting JConsole

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole

|| Conmection ‘Window Help

x
Crvarview | Memary | Threads | Classes | WM Summary | MEBeans =]

| #-|5) MImplementation
) com.sun. management
java.lang

#-08 ClassLoading g i

E\ @ Compilation : EOb]ectName java.lang:type=Memory

-3 GarbageCollector | gclassl?.lall'ne sun.mantagement.MemoryImpI .

g || |Drescription Information on the management interface of the MBean

[#-Attributes
---Operations
[#-Motifications

[C5) MemoryManager
() MemoryPoal

) OperatingSystem

&3 Runtime Desmptm ..
I) Threading [] Mame Value
| (#-[3) java.util.logging || anfa
limrutableInfa true
linkerfaceClasshame java.lang. management, MemoryMxBean
| |mebean true

The tree on the left shows all the MBeans currently running. When you select an
MBean in the tree, its MBeanl nf o and its MBean Descri pt or are both displayed on the
right, and any attributes, operations, or notifications appear in the tree below it.

All the platform MXBeans and their various operations and attributes are accessible
from JConsole's MBeans tab.

Constructing the MBean Tree

ORACLE

By default, the MBeans are displayed in the tree based on their object names. The
order of key properties specified when the object names are created is preserved by
JConsole when it adds MBeans to the MBean tree. The exact key property list that
JConsole will use to build the MBean tree will be the one returned by the method

Obj ect Nane. get KeyPropertyLi st String(), with type as the first key, and j 2eeType, if
present, as the second key.

However, relying on the default order of the oj ect Name key properties can sometimes
lead to unexpected behavior when JConsole renders the MBean tree. For example, if
two object names have similar keys but their key order differs, then the corresponding
MBeans will not be created under the same node in the MBean tree.

For example, suppose you create Tri angl e MBean objects with the following names.

com sun. exanpl e: t ype=Tri angl e, si de=i soscel es, nane=1
com sun. exanpl e: t ype=Tri angl e, nane=2, si de=i soscel es
com sun. exanpl e: t ype=Tri angl e, si de=i soscel es, nane=3

As far as the JMX technology is concerned, these objects will be treated in exactly the
same way. The order of the keys in the object name makes no difference to the JMX
technology. However, if JConsole connects to these MBeans and the default MBean
tree rendering is used, then the object

com sun. exanpl e: t ype=Tri angl e, name=2, si de=i soscel es will end up being created under

3-16

Chapter 3
Starting JConsole

the Tri angl e node, in a node called 2, which in turn will contain a subnode called
i soscel es. The other two isosceles triangles, nanme=1 and name=3, will be grouped
together under Tri angl e in a different node called i soscel es, as shown in Figure 3-13.

Figure 3-13 Example of Unexpected MBean Tree Rendering

+-[) IMImplementation
-) com.sun.example
= -~} Triangle
_ oz
- L isosceles
o1 isosreles
f =
. et & 3
-7 scalens
|} carm, sun. managernent
-2 java.lang
|2 java.utillogging

B ra g

¥

To avoid this problem, you can specify the order in which the MBeans are displayed in
the tree by supplying an ordered key property list when you start JConsole at the
command line. This is achieved by setting the system property

com sun. t ool s. j consol e. nbeans. keyPropertyLi st, as shown in the following command.

% j consol e -J-Dcom sun. tool s.jconsol e. mheans. keyPropertyLi st =key[, key] *

The key property list system property takes a comma-separated list of keys, in the
order of your selection, where key must be a string representing an object name key or
an empty string. If a key specified in the list does not apply to a particular MBean, then
that key will be discarded. If an MBean has more keys than the ones specified in the
key property list, then the key order defined by the value returned by

Obj ect Nane. get KeyPropertyLi st String() will be used to complete the key order defined
by keyPropertylLi st. Therefore, specifying an empty list of keys means that JConsole
will display keys in the order that they appear in the MBean's Obj ect Nane.

So, returning to the example of the Tri angl e MBeans cited previously, you can start
JConsole by specifying the keyPropertyLi st system property, so that all your MBeans
will be grouped according to their si de key property first, and their nane key property
second. To do this, start the JConsole with the following command:

% j consol e -J-Dcom sun. tool s.jconsol e. nheans. keyPropert yLi st =si de, nane

Starting JConsole with this system property specified will produce the MBean tree as
shown in the Figure 3-14.

Figure 3-14 Example of MBean Tree Constructed Using keyPropertyList

ORACLE 3-17

Chapter 3
Starting JConsole

+-|) IMImplementation

5[5 com.sun.example

-1 isnsceles

_ 1

L@ Triangle

_ =z

L@ Triangle

3£ 3
- @ Triangle

+-|) scalene

-7 cam.sun, management

#-|7) java.lang

-7 java.util.logging

In Figure 3-14, the si de key comes first, followed by the nane key. The type key comes
at the end because it was not specified in the key property list, so the MBean tree
algorithm applied the original key order for the remaining keys. Consequently, the t ype
key is appended at the end, after the keys, which were defined by the keyPr opert yLi st
system property.

According to the object name convention defined by the JMX Best Practices
Guidelines, the type key should always come first. You must start JConsole with the
following system property:

% j consol e -J-Dcom sun. tool s.jconsol e. mheans. keyPropertyLi st =t ype, si de, nane

The prior command will cause JConsole to render the MBean tree for the Triangle
MBeans as shown in the Figure 3-15.

Figure 3-15 Example of MBean Tree Constructed Respecting JMX Best Practices

-

(2 IMImplernentation
-3 com.sun. example
—_} Triangle
—_,'r isosceles
L@
-
L L@ 3
-7 scalene
|2 com, sun. managerment
) java.lang
| java.util.logging

8 o B oy

This is comprehensible than the MBean trees as shown in Figure 3-13 and
Figure 3-14.

MBean Attributes

Selecting the Attributes node displays all the attributes of an MBean. Figure 3-16
shows all the attributes of the Threading platform MXBean.

Figure 3-16 Viewing All MBean Attributes

ORACLE 3-18

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

ORACLE"

Chapter 3
Starting JConsole

Java Monitoring & Management Console - pid: 2784 sun_tools. jeonsole. JConsole

| £ Connection Window Help = | ar x
Overview Memoary | Threads | Classes VM Summar\,.f | MBeans | ==
-5 IMImplementation Attribute values
(-5 com.sun.management
(=3 java.lang e Value

@ ClassLoading allThreadlds long[28]
{:@] Compilation Current ThreadCpuTime 2921875000
[é‘ Garbagerollector CurrentThreadCpuTimeSupported krue
' & Memory Current ThreadlserTime 2671875000
E MemoryManager DaemonThreadCount 18
) MemoryPacl ObjectManitorlsageSupparted true
: @ Opsratingsystem PeakThreadCount 34
{:@] Runtime SynchronizerlsageSupported krue
E\f:‘@ Threading ThreadContentionMonitoringEnabled False
Friblitee ThreadContentionMonitoringSupported krug
---Operations ThreadCaunt 28
[£-C3) java.uillogging ThreadCpuTimeEnabled tre
ThreadCpuTimeSupported true
TakalStartedThreadCount 2554

Selecting an individual MBean attribute from the tree then displays the attribute's
value, its MBeanAt tri but el nf 0, and the associated Descriptor in the right pane, as you
can see in Figure 3-17.

Figure 3-17 Viewing an Individual MBean Attribute

Jaya Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole

- BIX]
|£| Connection Window Help = & =
Crverview | Memary | Threads | Classes | vm Summaryl MBeans | s
[~ |5y IMImplementation aktribute value
. , t
@ Com. U, Managerer e Ve

| =17 java.lang
: @ ClassLoading HeapMemorylsage |javaH.management.upenmhean.Eumpusite...
@@ Compillation
|C5) GarbageCollector
@ emeny MEeanattributelnfo
[=-Attributes
I L. T B | Name Yalue

-MonHeapMemor ribube: A
! MonHeapM Attribut
-ObjectPendingFi | [Mame HeapMemoryl)sage
| ~-Yerbose Descripkion HeapMemorylsage

perations Readable Lrue
I --Motifications Witable False
| () MemoryManager Is false b
[C5) MemoryPool ;
| 4 OperatingSystemn Descriptor
. @3 Runtime Marne Yalue

@ Threading Attribute:
i#-{3) java.util.logging openType javax.management, openmbean, Composite Type(name=java.lang.man. .,
| originalType java.lang.management, Memorylsage
< »

You can display additional information about an attribute by double-clicking the
attribute value, if it appears in bold text. For example, if you click the value of the
HeapMeror yUsage attribute of the j ava. | ang. Menory MBean, then you will see a chart that
looks something like Figure 3-18.

Figure 3-18 Displaying Attribute Values

3-19

Chapter 3
Starting JConsole

Attribute walue

Mame Yalue
Marme Yalue
HeapMemarylsage commikked 23244300
inik: 0
= BEES0112
used 15596160

Double-clicking numeric attribute values will display a chart that plots changes in that
numeric value. For example, double-clicking the CollectionTime attribute of the
Garbage Collector MBean PS Mar ksweep will plot the time spent performing garbage
collection.

You can also use JConsole to set the values of writable attributes. The value of a
writable attribute is displayed in blue. Here you can see the Memory MBean's Verbose
attribute.

Figure 3-19 Setting Writable Attribute Values

Attribuke value

Mame Yalue

Yerbose |False

You can set attributes by clicking them and then editing them. For example, to enable
or disable the verbose tracing of the garbage collector in JConsole, select the Memory
MXBean in the MBeans tab and set the Ver bose attribute to true or f al se. Similarly, the
class loading MXBean also has the Ver bose attribute, which can be set to enable or
disable class loading verbose tracing.

MBean Operations

Selecting the Operations node displays all the operations of an MBean. The MBean
operations appear as buttons, that you can click to call the operation. Figure 3-20
shows all the operations of the Threading platform MXBean.

Figure 3-20 Viewing All MBean Operations

ORACLE 3-20

Chapter 3
Starting JConsole

Java Monitoring & Management Console - pid: 2784 sun.tools. jeonsole. JConsole

| £ Connection Mindow Help -

Crverview | Memory | Threads | Classes | WM Summary| MBBEIHS|

EJ JrImplement ation Ciperation inrocation
E.‘I O, SUM. Managemesnt i
Ellf} java.lang Compositeatal] [dumpalThreads] { pO | true , Pl | true |)
#-0@ ClassLoading
lonal] [findDeadlockedThreads] 9]
lonal] [findMonitorDeadlockedThreads] 0
long [getThreadCpuTime] { po | 1} | 1
Elf’féj Threading)
e CompositeDatal] e e { po | [. pl | true , p2 | brue |)
rations
[#-|3) java.util.logging ComposteDatal] . Lo { po | [pi | 0 |)
el [getThreadInfo] [p0 | a | 1
ComposteDAL] [orthveadinfo | (p ’
CompositeData [getThreadInfo] { p0 |] , pl | 0 |)
long [getThreadUserTime] [p0 |] |)
void [resetPeakThreadCount]]

Selecting an individual MBean operation in the tree displays the button for calling the
MBean operation, and the operation's MBeanQper at i onl nf o and its Descriptor, as shown
in Figure 3-21.

Figure 3-21 Viewing Individual MBean Operations

ORACLE' 301

Chapter 3
Starting JConsole

B Java Monitoring & Management Console - pid: 3912 sun.tools. jeonsole. IConsole |’._||’E|g|
|§| Conneckion Window Help | S| [y

| Owerview | Memory | Threads || Classes | wm Surnrnary| MBeans | ARl
@ JIrmplementation Operation invocation

|C5) com.sun.management

B@ java.lang vaid ()

(- ClassLoading
@ Compilation MB=anCper ationInfo
®-I5) GarbageCollector
B % Memorgy Mame Yalue
 [-Attributes Pperation:
MName qc
Description ac
[-Motifications Impact UNKNOWN
-5 MemoryManager ReturnType woid
@ MemaryPaal
[#--£8 OperatingSystem
+--053 Runtime :
-4 Threading DRt
[y java.util. logging Mame Yalue
Operation:
openType javax.management. openmbean. SimpleTypeiname=java.lang. Yoid)
original Type woid

MBean Notifications

You can subscribe to receive notifications by selecting the Notifications node in the
left-hand tree, and clicking the Subscribe button that appears on the right. The
number of notifications received is displayed in brackets, and the Notifications node
itself will appear in bold text when new notifications are received. The notifications of
the Memory platform MXBean are shown in Figure 3-22.

Figure 3-22 Viewing MBean Notifications

Java Monitoring & Management Console - pid: 2784 sun.tools. jeonsole. JConsole

|£| Commection Window Help — | x
Owerview | Memory | Threads | Classes | WM Summary| MBeans| ==
[#-(5) IMImplement ation Matification buffer
g]F:\T;.Isl:nnémanagement Tirestamp Type UserData Seqhum Message
@ ClassLaading 12:03:29:453 [java.management. memory.threshold. exceeded [javax.man... |11 Memory usage exces... [..|..
: @ Compilation 12:08:21:156 [java.management. merory. thieshold.exceeded [javax.man... |10 Memary usage excee... [..|...
f#1-{3) Garbagecollector 12:07:35:671 java.management, memory, threshold. exceeded javax.man... |2 Memory usage exces... [..|..
: Memory 12:07:33:890 [jawa.management. mermory. threshaold.exceeded [javax.man... |3 Memary usage excee... [..|...
Abtributes 12:07:33:328 [java.management.memory . threshold. exceeded [javax.man... |7 Memory usage exces... [..|..
Operations 12:06:45:250 [jawa.management. mermory. threshaold.exceeded [javax.man... |6 Memary usage excee... [..|...
12:06;11:000 [java.management.memory.threshold. exceeded [javax.man... |5 Memory usage exces... [..|..
-5 MmoryMaager 12:06:02:890 [jawa.management. mermory. threshold.exceeded [javax.man... |4 Memary usage excee... [..|...
E:l MemaryPodl 12:04;55:718 [java.management.memory.threshold. exceeded [javax.man... |3 Memory usage exces... [..|..
@ OperatingSystem 12:04:23:703 [java.management. mermory. threshold.exceeded [javax.man... |2 Memary usage excee... [..|...
@ Runtime 12:02:07:515 [java.management.memory.threshold exceeded [javax.man... |1 Memory usage exces... [..|..
#-4@ Threading

[#-7) java.util.logging

[Subscribe][Unsubscribe][Clear]

Selecting an individual MBean notification displays the MBeanNot i fi cati onl nf o in the
right pane, as shown in Figure 3-23.

ORACLE 3-22

Chapter 3
Starting JConsole

Figure 3-23 Viewing Individual MBean Notifications

Java Monitoring & Management Console - pid: 3912 sun.tools. jeonsole. JConsole

[h+[C5) jawa.util.logging

£ | >

|£| Connection Window Help = haf =
| Overview || Memary || Threads || Classes || WM Surnmary | MBeans AR
[T IMImplement atian MBeanmatificationInfo
H i) _com sun.management s Value
=3 javalang "
[#-{8 ClassLoading otification: - o
I Compilation Name_ _]avax.rnana.gn.erne.nt.motl ication
l) GarbageCollector Description Mernory Maotification
B Memory Mokif Types [java.management. memary threshold. exceeded, java. management.m...
-fAktributes
I 1 - Operations
| [=-Motifications
' 3. Managens
[#~(C5) MemoryManage
o Memor\,.fPooI Descriptar
i 18 OperatingSystem
| 113 Runtime Marne Yalue
| -8 Threading

HotSpot Diagnostic MXBean

JConsole's MBeans tab also allows you to tell the HotSpot VM to perform a heap
dump, and to get or set a VM option using the Hot Spot Di agnosti ¢ MXBean.

Figure 3-24 Viewing the HotSpot Diagnhostic MBean

ORACLE 3-23

Chapter 3
Starting JConsole

B ava Monitoring & Management Console - pid: 3912 sun.tools. jeonsole. IConsole |‘._||E|E|
|£| Connection ‘Window Help | | [
Crvepview | Memary | Threads | Classes | WM Summary | MEBeans =fi=

= IMIrplerentation Operation invocation
__J com.sun. management I
=48 HatSpatDiagnastic

-Attributes i

~-dumpHeap

- get¥MOption

.setYMOption
[java.lang

) java.utillogging :
I CompositeData qetvMOptian (o |

b setvMOption [pd | String |+ PL| Skring N

You can perform a heap dump manually by calling the

com sun. management . Hot Spot Di agnosti ¢ MXBean's dunpHeap operation. In addition, you
can specify the HeapDunpOnQut Of Menor yEr ror Java VM option using the set VMt i on
operation, so that the VM performs a heap dump automatically whenever it receives
an Qut Of Meror yError .

Creating Custom Tabs

In addition to the existing standard tabs, you can add your own custom tabs to
JConsole, to perform your own monitoring activities. The JConsole plug-in API
provides a mechanism by which you can, for example, add a tab to access your own
application's MBeans. The JConsole plug-in API defines the

com sun. t ool s. j consol e. JConsol ePl ugi n abstract class that you can extend to build your
custom plug-in.

As stated previously, your plug-in must extend JConsol ePl ugi n, and implement the
JConsol ePl ugi nget Tabs and newSwi ngWr ker methods. The get Tabs method returns either
the list of tabs to be added to JConsole, or an empty list. The newSwi ngWr ker method
returns the Swi ngWr ker to be responsible for the plug-in's GUI update.

Your plug-in must be provided in a Java archive (JAR) file that contains a file named
META- | NF/ servi ces/ com sun. t ool s. j consol e. JConsol ePl ugi n. This JConsol ePl ugi n file
itself contains a list of all the fully qualified class names of the plug-ins that you want to
add as new JConsole tabs. JConsole uses the service-provider loading facility to look
up and load the plug-ins. You can have multiple plug-ins, with one entry per plug-in in
the JConsol ePl ugi n.

To load the new custom plug-ins into JConsole, start JConsole with the following
command:

% jconsole -pluginpath plugin-path

ORACLE 3-24

ORACLE

Chapter 3
Starting JConsole

In the previous command, pl ugi n- pat h specifies the paths to the JConsole plug-ins to
be looked up. These paths can either be to directory names or to JAR files, and
multiple paths can be specified, using your platform's standard separator character.

An example JConsole plug-in is provided with the Java SE 9 platform. The JTop
application is a JDK demonstration (demo) that shows the CPU usage of all threads
running in the application. This demo is useful for identifying threads that have high
CPU consumption, and it has been updated to be used as a JConsole plug-in as well
as a standalone GUI. JTop is bundled with the Java SE 9 platform, as a demo
application. You can run JConsole with the JTop plug-in by running the following
command:

% JDK_HOVE/ bi n/ j consol e -pl ugi npath JDK_HOVE/ dermo/ managenent / JTop/ JTop. j ar

If you connect to this instance of JConsole, then you will see that the JTop tab has
been added, showing CPU usage of the various threads running.

Figure 3-25 Viewing a Custom Plug-in Tab

Java Monitoring & Management Console - pid: 3160 sun.tools. jeonsole. JConsole -pluginpath ... |Z||E|rg|

|£| Connection Window Help | A | e
Cwerview || Mermory | Threads | Classes | WM Summary || MBeans 'JTD '_ .
Threadiarne CPU{sec) State i
AWT-EventQueue-0 9,0000 | WAITING
AWT-Windows 2.0000 | RUMMAELE
I RMI TCP Connection(S)-129, 157,209,222 0.0000 | RUNMABLE
RMI TCP Connection(4)-129,157,209,222 0.0000 | RUNMAEBLE
RMI TCP Connection(&)-129,157,209,222 0.0000 | RUNMAEBLE
I Attach Listener 0.0000 | RUNMABLE
DestroyJavalii 0.0000 | RUNMABLE
Worker-MBeans-3160 0.0000 [WAITING
EReference Handler 0.0000 | WAITIMG
Finalizer 0.0000 | WAITING

3-25

Using the Platform MBean Server and
Platform MXBeans

This topic introduces the MBean server and the MXBeans that are provided as part of
the Java Platform, Standard Edition (Java SE), which can be used for monitoring and
management purposes. Java Management Extensions (JMX) technology MBeans and
MBean servers were introduced briefly in Overview of Java SE Monitoring and
Management. See Introduction to JMX Technology in Java Platform, Standard Edition
Java Management Extensions Guide.

Using the Platform MBean Server

An MBean server is a repository of MBeans that provides management applications
access to MBeans. Applications do not access MBeans directly, but instead access
them through the MBean server using their unique oj ect Name class. An MBean server
implements the interface j avax. managenent . MBeanSer ver .

The platform MBean server was introduced in Java SE 5.0, and is an MBean server
that is built into the Java Virtual Machine (Java VM). The platform MBean server can
be shared by all managed components that are running in the Java VM. You access
the platform MBean server using the j ava. | ang. managenent . Managenent Fact ory method
get Pl at f or mvBeanSer ver . Of course, you can also create your own MBean server using
the j avax. management . MBeanSer ver Fact ory class. However, there is generally no need
for more than one MBean server, so using the platform MBean server is
recommended.

Accessing Platform MXBeans

A platform MXBean is an MBean for monitoring and managing the Java VM. Each
MXBean encapsulates a part of the VM functionality. A full list of the MXBeans that are
provided with the platform is provided in Table 1-1 - Platform MXBeans.

A management application can access platform MXBeans in three different ways:
» Direct access from the Managenent Fact ory class
» Direct access from an MXBean proxy

e Indirect access from the MBeanSer ver Connect i on class

Accessing Platform MXBeans Using the ManagementFactory Class

ORACLE

An application can make direct calls to the methods of a platform MXBean that is
running in the same Java VM as itself. To make direct calls, you can use the static
methods of the Managenent Fact ory class. The Managenent Fact ory class has accessor
methods for each of the different platform MXBeans, such as,

get O assLoadi ngMXBean() , get Gar bageCol | ect or MXBeans(), get Runt i meMXBean(), and so on.

4-1

Chapter 4
Accessing Platform MXBeans

In case there are more than one platform MXBean, the method returns a list of the
platform MXBeans found.

For example, Example 4-1 uses the static method of Managenent Fact ory to get the
platform MXBean Runti neMXBean, and then gets the vendor name from the platform
MXBean.

Example 4-1 Accessing a Platform MXBean Using ManagementFactory Class

Runt i mMXBean nmxbean = Managenent Fact ory. get Runti meMXBean() ;
String vendor = nmxbean. get VnVendor () ;

Accessing Platform MXBeans Using an MXBean Proxy

An application can also call platform MXBean methods using an MXBean proxy. To do
S0, you must construct an MXBean proxy instance that forwards the method calls to a
given MBean server by calling the static method

Managenent Fact ory. newPl at f or mMvXBeanPr oxy() . An application typically constructs a
proxy to obtain remote access to a platform MXBean of another Java VM.

For example, Example 4-2 performs exactly the same operation as Example 4-1, but
this time it uses an MXBean proxy.

Example 4-2 Accessing a Platform MXBean Using an MXBean Proxy

MBeanSer ver Connecti on nbs;

/1 Get a MBean proxy for RuntinmeMXBean interface
Runt i meMXBean proxy =
Management Fact ory. newP! at f or mviXBeanPr oxy(nbs,
Management Fact ory. RUNTI ME_MXBEAN_NAME,
Runt i meMXBean. cl ass) ;
/1 CGet standard attribute "Vnvendor"
String vendor = proxy.getVnvendor();

Accessing Platform MXBeans Using the MBeanServerConnection

Class

ORACLE

An application can indirectly call platform MXBean methods through an
MBeanSer ver Connect i on interface that connects to the platform MBean server of another
running Java VM. You use the MBeanSer ver Connect i on class get Attribut e() method to
get an attribute of a platform MXBean by providing the MBean's Obj ect Name and the
attribute name as parameters.

For example, Example 4-3 performs the same job as Example 4-1 and Example 4-2,
but it uses an indirect call through MBeanSer ver Connect i on.

Example 4-3 Accessing a Platform MXBean Using the MBeanServerConnection Class

MBeanSer ver Connect i on nbs;

try {
bj ect Name onane = new (bj ect Name(Managenent Fact ory. RUNTI ME_MXBEAN_NAME) ;
Il Get standard attribute "VnVendor"
String vendor = (String) nbs.getAttribute(onane, "VnVendor");

} catch (....) {

I/ Catch the exceptions thrown by CbjectName constructor
/1 and MBeanServer.getAttribute method

4-2

Chapter 4
Using Oracle JDK's Platform Extension

}...

Using Oracle JDK's Platform Extension

Java VMs can extend the management interface by defining interfaces for platform-
specific measurements and management operations. The static factory methods in the
Management Fact ory class will return the MBeans with the platform extension.

The com sun. managenent package contains Oracle JDK's platform extensions. The
following sections provide examples of how to access a platform-specific attribute from
Oracle JDK's implementation of the Qper at i ngSyst emXBean interface.

Accessing MXBean Attributes Directly

Example 4-4 illustrates direct access to one of Oracle JDK's MXBean interfaces.
Example 4-4 Accessing an MXBean Attribute Directly

com sun. managenent . Oper at i ngSyst emXBean nmxbean =
(com sun. managenent . Oper at i ngSyst emvXBean)
Managenent Fact ory. get Oper at i ngSyst emvXBean() ;

/1 Get the nunmber of processors
int nunProcessors = nxbean. get Avai | abl eProcessors();

[l Get the Oracle JDK-specific attribute Process CPU tine
I ong cpuTime = nmxbean. get ProcessCpuTi me();

Accessing MXBean Attributes Using MBeanServerConnection

Example 4-5 illustrates access to one of Oracle JDK's MXBean interfaces using the
MBeanSer ver Connect i on class.

Example 4-5 Accessing an MXBean Attribute Using MBeanServerConnection

MBeanSer ver Connect i on nbs;

/1 Connect to a running Java VM (or itself) and get MBeanServer Connection
/1 that has the MXBeans registered in it

try {
/1 Assuming the QperatingSystem MXBean has been registered in nbs

(bj ect Name onane = new
bj ect Name(Management Fact ory. OPERATI NG_SYSTEM MXBEAN_NAME) ;

/] Get standard attribute "Name"
String vendor = (String) mbs.getAttribute(oname, "Nane");

/1 Check if this MXBean contains Oracle JDK s extension

if (nbs.islnstanceCf (onane, "com sun. managenent. QperatingSyst enXBean")) {
/] Get platformspecific attribute "ProcessCpuTime"
long cpuTinme = (Long) nbs.getAttribute(oname, "ProcessCouTine");

}

} catch (....) {
/] Catch the exceptions thrown by bjectNane constructor
/1 and MBeanServer nmethods

ORACLE 4.3

Chapter 4
Monitoring Thread Contention and CPU Time

}

Monitoring Thread Contention and CPU Time

The Thr eadMXBean platform MXBean provides support for monitoring thread contention
and thread central processing unit (CPU) time.

The Oracle JDK's HotSpot VM supports thread contention monitoring. You use the
Thr eadMXBean. i sThr eadCont ent i onhbni t ori ngSupport ed() method to determine if a Java
VM supports thread contention monitoring. Thread contention monitoring is disabled
by default. Use the set ThreadCont ent i onMbni t or i ngEnabl ed() method to enable it.

The Oracle JDK's HotSpot VM supports the measurement of thread CPU time on most
platforms. The CPU time provided by this interface has nanosecond precision but not
necessarily nanosecond accuracy.

You use the i sThreadCpuTi meSuppor t ed() method to determine if a Java VM supports
the measurement of the CPU time for any thread. You use

i sCurrent ThreadCpuTi neSupport ed() to determine if a Java VM supports the
measurement of the CPU time for the current thread. A Java VM that supports CPU
time measurement for any thread will also support that for the current thread.

A Java VM can disable thread CPU time measurement. You use the

i sThreadCpuTi neEnabl ed() method to determine if thread CPU time measurement is
enabled. You use the set Thr eadCpuTi meEnabl ed() method to enable or disable the
measurement of thread CPU time.

Managing the Operating System

The Oper at i ngSyst emplatform MXBean allows you to access certain operating system
resource information, such as the following:

* Process CPU time
* Amount of total and free physical memory

* Amount of committed virtual memory (that is, the amount of virtual memory
guaranteed to be available to the running process)

* Amount of total and free swap space
* Number of open file descriptors (only for Solaris, Linux, or macOS platforms).

When the Operating System MXBean in the MBeans tab is selected in JConsole, you
see all the attributes and operations including the platform extension. You can monitor
the changes of a numerical attribute over time by double-clicking the value field of the
attribute.

Logging Management

ORACLE

The Java SE platform provides a special MXBean for logging purposes, the
Loggi ngMXBean interface.

The Loggi ngMXBean interface enables you to perform the following tasks:

e Get the name of the log level associated with the specified logger

4-4

Detecting

Chapter 4
Detecting Low Memory

* Get the list of currently registered loggers
* Get the name of the parent for the specified logger
» Set the specified logger to the specified new level

The unique Obj ect Nane of the Loggi ngMXBean is j ava. uti | . | oggi ng: t ype=Loggi ng. This
object name is stored in the LogManager . LOGG NG_MXBEAN NAME field.

There is a single global instance of the Loggi ngMXBean interface, which you can get by
calling LogManager . get Loggi ngMXBean() .

The Loggi ngMXBean interface defines a Logger Nanes attribute describing the list of logger
names. To find the list of loggers in your application, you can select the Loggi ng MXBean
interface under the j ava. util .l oggi ng domain in the MBeans tab, and double-click the
value field of the Logger Nanes attribute.

The Loggi ng MXBean interface also supports two operations:

* getLoggerLevel : Returns the log level of a given logger
e setloggerLevel : Sets the log level of a given logger to a new level

These operations take a logger name as the first parameter. To change the level of a
logger, enter the logger name in the first parameter and the name of the level that it
should be set to in the second parameter of the set Logger Level operation.

Low Memory

Memory use is an important attribute of the memory system. It can be indicative of the
following problems:

» Excessive memory consumption by an application
* An excessive workload imposed on the automatic memory management system
* Potential memory leakages

There are two kinds of memory thresholds that you can use to detect low memory
conditions: a usage threshold and a collection usage threshold. You can detect low
memory conditions using either of these thresholds with polling or threshold
notification.

Memory Thresholds

A memory pool can have two kinds of memory thresholds: a usage threshold and a
collection usage threshold. Either one of these thresholds may not be supported by a
particular memory pool. The values for the usage threshold and collection usage
threshold can both be set using the MBeans tab in JConsole.

Usage Threshold

ORACLE

The usage threshold is a manageable attribute of some memory pools. It enables you
to monitor memory use with a low overhead. Setting the threshold to a positive value
enables a memory pool to perform usage threshold checking. Setting the usage
threshold to zero disables usage threshold checking. The default value is supplied by
the Java VM.

4-5

Chapter 4
Detecting Low Memory

A Java VM performs usage threshold checking on a memaory pool at the most
appropriate time, typically during garbage collection. Each memory pool increments a
usage threshold count whenever the usage crosses the threshold.

You use the i sUsageThr eshol dSupport ed() method to determine whether a memory pool
supports a usage threshold, because a usage threshold is not appropriate for some
memory pools. For example, in a generational garbage collector (such as the one in
the HotSpot VM; see Garbage Collection), most of the objects are allocated in the
young generation, from the Eden memory pool. The Eden pool is designed to be filled
up. Garbage collecting the Eden memory pool will free most of its memory space
because it is expected to contain mostly short-lived objects that are unreachable at
garbage collection time. So, it is not appropriate for the Eden memory pool to support
a usage threshold.

Collection Usage Threshold

The collection usage threshold is a manageable attribute of some garbage-collected
memory pools. After a Java VM has performed garbage collection on a memory pool,
some memory in the pool will still be in use. The collection usage threshold allows you
to set a value for this memory. You use the i sCol | ect i onUsageThr eshol dSupport ed()
method of the Menor yPool MXBean interface to determine if the pool supports a collection
usage threshold.

A Java VM may check the collection usage threshold on a memory pool when it
performs garbage collection. Set the collection usage threshold to a positive value to
enable checking. Set the collection usage threshold to zero (the default) to disable
checking.

The usage threshold and collection usage threshold can be set in the MBeans tab of
JConsole.

Memory MXBean

The various memory thresholds can be managed using the platform Menor yMxBean. The
Menmor yMXBean defines the following four attributes:

* HeapMenoryUsage: A read-only attribute describing the current heap memory usage.
* NonHeapMenoryUsage: A read-only attribute describing nonheap memory usage.

e (nj ect Pendi ngFi nal i zat i onCount : A read-only attribute describing the number of
objects pending for finalization.

e Verbose: A Boolean attribute describing the Garbage Collection (GC) verbose
tracing setting. This can be set dynamically. The GC verbose traces will be
displayed at the location specified when you start the Java VM. The default
location for GC verbose output of the Hotspot VM is st dout .

The Memory MXBean supports one operation, gc, for explicit garbage collection
requests.

Details of the Memory MXBean interface are defined in the
java. | ang. managenent . Memor yMXBean specification.

Memory Pool MXBean

The Menor yPool MXBean platform MXBean defines a set of operations to manage memory
thresholds.

ORACLE 4-6

Polling

ORACLE

Chapter 4
Detecting Low Memory

* getUsageThreshol d()

* setUsageThreshol d(1 ong threshol d)

* isUsageThreshol dExceeded()

* isUsageThreshol dSupported()

* getCol | ectionUsageThreshol d()

° setCollectionUsageThreshol d(I ong threshol d)
* isCollectionUsageThreshol dSupported()

* isCollectionUsageThreshol dExceeded()

Each memory pool may have two kinds of memory thresholds for low memory
detection support: a usage threshold and a collection usage threshold. Either one of
these thresholds might not be supported by a particular memory pool. For more
information, see the API reference documentation for the Menor yPool MXBean class.

An application can continuously monitor its memory usage by calling either the
get Usage() method for all memory pools or the i sUsageThr eshol dExceeded() method for
memory pools that support a usage threshold.

Example 4-6 has a thread dedicated to task distribution and processing. At every
interval, it determines whether it should receive and process new tasks based on its
memory usage. If the memory usage exceeds its usage threshold, then it redistributes
outstanding tasks to other VMs and stops receiving new tasks until the memory usage
returns below the threshold.

Example 4-6 Using Polling
pool . set UsageThr eshol d(nyThreshol d);

bool ean | owMerory = fal se;
while (true) {
if (pool.isUsageThreshol dExceeded()) {
| owMerory = true;
redistributeTasks(); // redistribute tasks to other VMs
st opRecei vingTasks(); // stop receiving new tasks
} else {
if (lowMermory) { // resune receiving tasks
[owMerory = fal se;
resunmeRecei vi ngTasks();

}

/'l processing outstanding task

}...

Il sleep for sometime

try {
Thread. sl eep(sonetine);

} catch (InterruptedException e) {

.
}

Example 4-6 does not differentiate the case in which the memory usage has
temporarily dropped below the usage threshold from the case in which the memory
usage remains above the threshold between two iterations. You can use the usage

4-7

Chapter 4
Detecting Low Memory

threshold count returned by the get UsageThr eshol dCount () method to determine if the
memory usage has returned below the threshold between two polls.

To test the collection usage threshold instead, you use the

i sCol | ecti onUsageThr eshol dSupported(), i sCol | ecti onThreshol dExceeded() and
get Col | ecti onUsageThreshol d() methods in the same way as shown in the
Example 4-6.

Threshold Notifications

ORACLE

When the Menor yMXBean interface detects that a memory pool has reached or exceeded
its usage threshold, it emits a usage threshold exceeded natification. The Memor yMXBean
interface will not issue another usage threshold exceeded notification until the usage
has fallen below the threshold and then exceeded it again. Similarly, when the memory
usage after garbage collection exceeds the collection usage threshold, the

Menor yMXBean interface emits a collection usage threshold exceeded notification.

Example 4-7 implements the same logic as Example 4-6, but uses usage threshold
notification to detect low memory conditions. Upon receiving a notification, the listener
notifies another thread to perform actions such as redistributing outstanding tasks,
refusing to accept new tasks, or allowing new tasks to be accepted again.

In general, you should design the handl eNot i fi cati on method to do a minimal amount
of work, to avoid causing delay in delivering subsequent notifications. You should
perform time-consuming actions in a separate thread. As multiple threads can
concurrently call the notification listener, the listener should synchronize the tasks that
it performs properly.

Example 4-7 Using Threshold Notifications

class MyListener inplenents javax.managenent.NotificationListener {
public void handl eNotification(Notification notification, Object handback) {
String notifType = notification.getType();
if (notifType.equal s(MenoryNotificationlnfo. MEMORY_THRESHOLD EXCEEDED)) {
Il potential low menory, redistribute tasks to other VMs & stop receiving new
tasks.
| owMerory = true;
noti f yAnot her Thread(| owvenory);
}
}
}

/1 Register MListener with MenoryMXBean

Menmor yMXBean nbean = Managenent Fact ory. get Menor yMXBean() ;
NotificationEmtter emtter = (NotificationEmtter) nbean;
MyLi stener |istener = new MyListener();
enitter.addNotificationListener(listener, null, null);

Assuming this memory pool supports a usage threshold, you can set the threshold to
some value (representing a number of bytes), above which the application will not
accept new tasks.

pool . set UsageThr eshol d(nyThr eshol d) ;

After this point, usage threshold detection is enabled and MyLi st ener class will handle
notification.

4-8

SNMP Monitoring and Management

The Simple Network Management Protocol (SNMP) is an industry standard for
network management. Objects managed by SNMP are arranged in management
information bases (MIBs). The SNMP agent publishes the standard MIB for the Java
virtual machine (Java VM) instrumentation. The file JVM MANAGEMENT- M B. nmi b is
the standard MIB for monitoring and management of the Java VM.

Enabling the SNMP Agent

To monitor a Java VM with SNMP, you must first enable an SNMP agent when you
start the Java VM. You can enable the SNMP agent for either a single-user
environment or a multiple-user environment. Then, you can monitor the Java VM with
an SNMP-compliant tool.

For general information on setting system properties when you start the Java VM, see
Setting System Properties. How to enable the SNMP agent in single-user and multiple-
user environments is described in the following sections. The process is the same for
both environments, but the actions performed are slightly different.

Access Control List File

An access control list (ACL) template file is provided with the Java Platform, Standard
Edition (Java SE platform) in JRE_HOME/ | i b/ management / snnp. acl . t enpl at e, where
JRE_HOME is the directory in which the Java Runtime Environment (JRE) implementation
is installed. Copy this file to either JRE_HOVE/ | i b/ managenment / snnp. acl or to your home
directory, depending on whether you are operating in a single-user or multiple-user
environment. Ensure that only you have read permissions, because the file contains
nonencrypted SNMP community strings. For security reasons, the system checks that
only the owner has read permissions on the file and exits with an error if this is not the
case. Thus, in a multiple-user environment, you should put this file in private location,
such as your home directory.

Example 5-1 shows some possible entries in an ACL file.
Example 5-1 Sample ACL Entries

#The comunities public and private are allowed access fromthe |ocal host.
acl ={
{
communities = public, private
access = read-only
managers = | ocal host
}
}

Traps are sent to |ocal host only
trap = {
{
trap-comunity = public
hosts = I ocal host

ORACLE 5-1

Chapter 5
SNMP Monitoring and Management Properties

}
}

To Enable the SNMP Agent in a Single-User Environment

1. Set the following system property when you start the Java VM:

com sun. managenent . snnp. por t =por t Num

The port Numis the port number to use for monitoring. Setting this property starts an
SNMP agent that listens on the specified port number for incoming SNMP
requests.

2. Create an ACL file:
Copy the ACL template file from JRE_HOVE/ | i b/ nanagenent / snnp. acl . tenpl at e to
JRE_HOVE/ | i b/ management / snnp. acl .

3. Set the permissions on the ACL file:
Ensure that the ACL file is readable by only the owner and add community strings
as needed.

To Enable the SNMP Agent in a Multiple-User Environment

1. Set the following system properties when you start the Java VM:

com sun. management . snnp. port =port Num
com sun. managenent . snnp. acl . fil e=ACLFi | ePat h

The ACLFi | ePat h is the path to the ACL file.

2. Create an ACL file:
Copy the ACL template file from JRE_HOVE/ | i b/ managenent / snnp. acl . tenpl ate to a
file named snnp. acl in your home directory.

3. Set the permissions on the ACL file:
Ensure that the ACL file is readable by only the owner, and add community strings
as needed.

SNMP Monitoring and Management Properties

ORACLE

You can set SNMP monitoring and management properties in a configuration file or on
the command line. Properties specified on the command line override properties in a
configuration file. The default location for the configuration file is JRE_HOVE | i b/
nmanagement / managenent . properti es. The Java VM reads this file if the command-line
property com sun. managenent . snnp. port is set.

You can specify a different location for the configuration file with the following
command-line option:

com sun. managenent . config.file=ConfigFilePath

In the preceding property, Confi gFi | ePat h is the path to the configuration file.

You must specify all system properties when you start the Java VM. After the Java VM
has started, any changes to system properties (for example, using the set Property
method), to the password file, to the ACL file, or to the configuration file will have no
effect.

5-2

Chapter 5
SNMP Monitoring and Management Properties

Table 5-1 describes all the SNMP management properties.

Table 5-1 SNMP Monitoring and Management Properties

Property Name Description Default

com sun. nanagement . snnp. tr Remote port to which the 162

ap SNMP agent sends traps.

com sun. nanagenent . snnp. Optional. The local host Not applicable
interface I net Addr ess, to force the

SNMP agent to bind to the
given | net Addr ess. This is for
multihome hosts if one wants
to listen to a specific subnet

only.
com sun. managenment . snnp. ac The enabling or disabling of true
I SNMP ACL checks.
com sun. managenent . snnp. Path to a valid ACL file. After ~JRE_HOME/ | i b/ managenent/
acl .file the Java VM has started, snnp. acl
modifying the ACL file has no
effect.

Configuration Errors

ORACLE

If any errors occur during the startup of the SNMP agent, then the Java VM will throw
an exception and exit. Configuration errors include the following:

e Failure to bind to the port number.
e The password file is readable by anyone other than the owner.
* Invalid SNMP ACL file.

If your application runs a security manager, then additional permissions are required in
the security permissions file.

5-3

Java Discovery Protocol (JDP)

ORACLE

The Java Discovery Protocol (JDP) is a protocol that enables technologies, in
particular, Java Mission Control and Java Flight Recorder, to discover manageable
JVMs across the same network subnet.

A manageable JVM is one that has the Java Management Extensions (JMX) agent
running. JDP is multicast-based and works like a beacon; it broadcasts the JIMX
service URL (see the class JMXServiceURL) required to connect to the external IMX
agent. This enables technologies to detect JVMs that have failed or are no longer
available for monitoring.

Enabling and Configuring JDP

To enable JDP, specify the following option at the command line when starting a Java
application:

- Dcom sun. managenent . j nxr enot e. aut odi scovery=true

Note:

Enabling JDP does not affect IMX security. To enable and configure JMX
security, see Monitoring and Management Using JMX Technology.

Table 6-1 describes other properties that you may set to configure JDP:

Table 6-1 JDP Properties

__|
Property Description Default Value

- Enables autodiscovery (JDP) false
Dcom sun. managenent . aut odi sco on the network subnet

very

- Specifies the broadcast 5

Dcom sun. managenent . j dp. pause interval in seconds

-Dcom sun. managenent. jdp.ttl Time-to-live in seconds for 1
autodiscovery packets

- Multicast address to send 224.0.23.178

Dcom sun. managenent . j dp. addr e autodiscovery packets

ss

-Dcom sun. managenent . j dp. port Multicast port to send 7095

autodiscovery packets.
Enables autodiscovery even if
the

com sun. managenent . aut odi s
covery property has not been
set.

- Dcom sun. managenent . j dp. name Broadcast name of the JVM No default

6-1

https://docs.oracle.com/javase/9/docs/api/javax/management/remote/JMXServiceURL.html

ORACLE

Chapter 6

Table 6-1 (Cont.) JDP Properties

___|
Property Description Default Value

- Address of source interface to Automatically assigned
Dcom sun. managenent . j dp. sour ¢ use for broadcast
e_addr

6-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview of Java SE Monitoring and Management
	Key Monitoring and Management Features
	Java Virtual Machine Instrumentation
	Monitoring and Management API
	Monitoring and Management Tools
	Java Management Extensions Technology
	What Are MBeans?
	MBean Server
	Creating and Registering MBeans
	Instrumenting Applications

	Platform MXBeans
	Platform MBean Server

	2 Monitoring and Management Using JMX Technology
	Setting System Properties
	Enabling the Ready-to-Use Management
	Local Monitoring and Management
	Local Monitoring and Management Using JConsole

	Remote Monitoring and Management
	Using Password Authentication
	Using LDAP Authentication
	Using File-Based Password Authentication
	To Set Up a Single-User Environment
	To Set Up a Multiple-User Environment

	Disabling Password Authentication
	Using SSL
	Enabling RMI Registry Authentication
	Enabling SSL Client Authentication
	Disabling SSL
	Disabling Security
	Remote Monitoring with JConsole
	Remote Monitoring with JConsole with SSL Enabled

	Using Password and Access Files
	Password Files
	Access Files

	Remote Monitoring with JConsole with SSL Disabled
	Ready-to-Use Monitoring and Management Properties
	Configuration Errors

	Connecting to the JMX Agent Programmatically
	Setting Up Monitoring and Management Programmatically
	Mimicking Ready-to-Use Management Using the JMX Remote API
	Example of Mimicking Ready-to-Use Management
	Monitoring Applications Through a Firewall
	Using an Agent Class to Instrument an Application
	Creating an Agent Class to Instrument an Application

	3 Using JConsole
	Starting JConsole
	Command Syntax
	Setting Up Local Monitoring
	Setting Up Remote Monitoring
	Setting Up Secure Remote Monitoring

	Connecting to a JMX Agent
	Connecting JConsole to a Local Process
	Connecting JConsole to a Remote Process
	Connecting Using a JMX Service URL

	Presenting the JConsole Tabs
	Viewing Overview Information
	Saving Chart Data
	Monitoring Memory Consumption
	Heap and Nonheap Memory
	Memory Pools and Memory Managers
	Garbage Collection
	Monitoring Thread Use
	Detecting Deadlocked Threads

	Monitoring Class Loading
	Viewing VM Information
	Monitoring and Managing MBeans
	Constructing the MBean Tree
	MBean Attributes
	MBean Operations
	MBean Notifications
	HotSpot Diagnostic MXBean

	Creating Custom Tabs

	4 Using the Platform MBean Server and Platform MXBeans
	Using the Platform MBean Server
	Accessing Platform MXBeans
	Accessing Platform MXBeans Using the ManagementFactory Class
	Accessing Platform MXBeans Using an MXBean Proxy
	Accessing Platform MXBeans Using the MBeanServerConnection Class

	Using Oracle JDK's Platform Extension
	Accessing MXBean Attributes Directly
	Accessing MXBean Attributes Using MBeanServerConnection

	Monitoring Thread Contention and CPU Time
	Managing the Operating System
	Logging Management
	Detecting Low Memory
	Memory Thresholds
	Usage Threshold
	Collection Usage Threshold
	Memory MXBean
	Memory Pool MXBean

	Polling
	Threshold Notifications

	5 SNMP Monitoring and Management
	Enabling the SNMP Agent
	Access Control List File
	To Enable the SNMP Agent in a Single-User Environment
	To Enable the SNMP Agent in a Multiple-User Environment

	SNMP Monitoring and Management Properties
	Configuration Errors

	6 Java Discovery Protocol (JDP)

