
Java Platform, Standard Edition
JRockit to HotSpot Migration Guide

Release 9
E76287-05
October 2017

Java Platform, Standard Edition JRockit to HotSpot Migration Guide, Release 9

E76287-05

Copyright © 1995, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Documents v

Conventions v

1 Introduction

Heap Sizing 1-1

2 Garbage Collectors

Tuning Garbage Collection 2-1

3 Runtime

Runtime Options 3-1

4 Compilation Optimization

Compiler Considerations 4-1

Important HotSpot JIT Compiler Options 4-2

5 Logging

Verbose Logging 5-1

HotSpot Logging Options 5-2

6 Command-Line Options

Mapping of Oracle JRockit to HotSpot Command-Line Options 6-1

jcmd Commands 6-8

iii

7 Common Migration Issues and Solutions

8 Troubleshooting Tools

Troubleshooting Tools Available in Java SE 8-1

iv

Preface

This guide helps users of Oracle JRockit to migrate to Java HotSpot VM (Java
Platform, Standard Edition). The document describes the command-line options and
tools available in Oracle JRockit, and their equivalents in the Java HotSpot VM
(HotSpot).

Audience
The target audiences for this document are developers and users who are working on
Oracle JRockit and planning to migrate to the Java Development Kit (JDK). The JDK is
Oracle's implementation of the Java Platform, Standard Edition (Java SE). The current
release is Java SE 9 and JDK 9. However, most of the information in this document
can be applied to releases earlier than JDK 9.

This document is intended for readers who have a detailed understanding of the Java
HotSpot VM components, and also have some understanding of concepts such as
garbage collection, threads, and native libraries. In addition, it is assumed that the
reader is reasonably proficient with the operating systems where the Java application
is developed and run.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See Oracle JDK 9 Documentation for other JDK 9 guides.

Conventions
The following text conventions are used in this document:

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=homepage

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Introduction

This document provides simple guidelines to help migrate applications from Oracle
JRockit to Java HotSpot VM (HotSpot). It contains sections for each JVM system
component that describe the equivalents of those components in both Oracle JRockit
and HotSpot. The document also lists the corresponding JVM options of those
components. It includes tables that map the complete set of Oracle JRockit -X and -XX
command-line options to the ones available in HotSpot.

Note:

Some of the tools described in this document require a commercial license for
use in production. To learn more about commercial features and how to
enable them, see Oracle Java SE Advanced and Oracle Java SE Suite.

Heap Sizing
HotSpot has the same options as Oracle JRockit to set the initial and the maximum
Java heap size.

Table 1-1 Heap Size

Option Oracle JRockit HotSpot

-Xms Sets the initial and minimum
size of the heap

Sets the initial and minimum
size of the heap

-Xmx Sets the maximum size of the
heap

Sets the maximum size of the
heap

Note:

When migrating from Oracle JRockit to HotSpot, the Java heap size must
essentially be the same.

1-1

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=javase_advanced_suite_overview

2
Garbage Collectors

This topic describes garbage collection tuning options available in Oracle JRockit and
HotSpot, and compares their functionality and performance.

Tuning Garbage Collection
The following table lists important garbage collection (GC) tuning options available in
Oracle JRockit and HotSpot:

Table 2-1 Garbage Collectors

Oracle JRockit Garbage
Collectors

HotSpot Garbage Collectors Notes

Throughput collector set using
any of these options:

• -Xgc:throughput

• -Xgc:genpar

• -Xgc:singlepar

• -Xgc:parallel

Throughput collector:

—XX:+UseParallelGC - Use parallel
compacting collector for both young and
old generation

-XX:+UseParallelGC -XX:-
UseParallelOldGC - Use parallel
compacting collector for the young
generation and serial mark-sweep for the
old generation

The number of parallel GC threads
can be controlled using

-XX:ParallelGCThreads=n.

Low latency collector set using
any of the following options:

-Xgc:pausetime

-Xgc:gencon

-Xgc:singlecon

-XX:+UseG1GC

Or

-XX:+UseConcurrentMarkSweepGC

The HotSpot offers a choice
between the two mostly concurrent
collectors:

• Garbage-First (G1) Garbage
Collector is a server-style
collector for multiprocessor
machines with large memories.
It meets garbage collection
pause time goals with high
probability while achieving high
throughput

• Concurrent Mark Sweep (CMS)
Collector is for applications that
prefer shorter garbage collection
pauses and can afford to share
processor resources with the
garbage collection

The Garbage-First Garbage
Collector is the default collector.

To understand the various garbage collectors that are included with the HotSpot, see
Introduction to Garbage Collection Tuning in Java Platform, Standard Edition HotSpot
Virtual Machine Garbage Collection Tuning Guide.

2-1

3
Runtime

This topic describes important options that control the runtime behavior of the HotSpot.

Runtime Options
The following table lists important equivalent options of the runtime subsystem in
Oracle JRockit and HotSpot:

Table 3-1 Runtime Options

Oracle JRockit HotSpot Notes

-XX:+UseLazyUnlocking -XX:+UseBiasedLocking UseBiasedLocking
improves the
performance of
uncontended
synchronization. This
option is enabled by
default. However, if the
application has high
contended
synchronization, then
disable the
UseBiasedLocking
option to enhance the
performance.

-XlargePages -XX:+UseLargePages In HotSpot, this option
is enabled by default
on the Solaris platform.
On the Linux platform,
this option was
disabled from version
7u60 onwards.

Use -XX:
+UseLargePages to
enable the use of large
pages on the platforms
where it is disabled by
default. However, -XX:
+UseLargePages
doesn’t enable the use
of large pages in the
MetaSpace. To enable
this option, add -XX:
+UseLargePagesInMeta
space.

3-1

Table 3-1 (Cont.) Runtime Options

Oracle JRockit HotSpot Notes

-XX:MaxLargePageSize -XX:LargePageSizeInBytes=size Sets the maximum size
(in bytes) for large
pages used for the
Java heap. By default,
the size is set to 0,
which implies that the
JVM chooses the size
for large pages
automatically.

-XXcompressedRefs -XX:+UseCompressedOops Use of Compressed
Oops is the default for
64-bit HotSpot
processes when -Xmx
isn’t specified and the
values of -Xmx are less
than 32 gigabytes.

Chapter 3
Runtime Options

3-2

4
Compilation Optimization

This topic describes the various compiler options available in Oracle JRockit and
HotSpot to optimize compilation.

• Compiler Considerations

• Important HotSpot JIT Compiler Options

Compiler Considerations
Unlike Oracle JRockit, HotSpot features a Java byte code interpreter in addition to two
different Just In Time (JIT) compilers: client (also known as C1) and server (also
known as C2).

This section provides details about the complier that you can use.

HotSpot VM defaults to interpreting Java byte code. It compiles (JIT compilation)
methods that runtime profiling determines to be "hot", that is, the methods that are
executed for a predetermined number of times. JIT compliers are either client or server
compilers.

• Client compiler: It compiles methods quickly but emits machine code that is less
optimized than the server compiler. This complier is used for quick startup. Also, in
this compiler, the smaller memory footprint is more important than steady-state
performance.

• Server compiler: The compiler often takes more time (and memory) to compile the
same methods. However, it generates better optimized machine code than the
code generated by the client compiler. It provides better runtime performance after
the application reaches the steady state.

The tiered compilation enhances the server VM startup speed equivalent to the client
VM speed by using client compiler as the first tier. A server VM uses the interpreter to
collect the profiling information about the methods that is fed into the compiler. In the
tiered scheme, in addition to the interpreter, the client compiler generates compiled
versions of methods that collect profiling information about themselves. As the
compiled code is substantially faster than the interpreter, the program executes with
greater performance during this profiling phase. Often, a startup that is even faster
than with the client VM can be achieved, because the final code produced by the
server compiler is available during the early stages of application initialization. The
tiered scheme can also achieve better peak performance than a regular server VM.
This is because the faster profiling phase allows a longer period of profiling, which
yields better optimization.

Tiered compilation is the default mode for the server VM. The 64-bit mode is
supported. To enable tiered compilation manually, use the -XX:+TieredCompilation flag.
You can disable tiered compilation by using the -XX:-TieredCompilation flag.

Oracle JRockit JVM compiles a Java method and generates the machine code for the
first time it is invoked. This compiled code of frequently invoked methods is optimized
in the background by an Optimizer thread. This code is different from the HotSpot

4-1

where methods are interpreted first and compiled later, either by the client (fewer
optimizations) or the server (more optimizations) compiler.

Important HotSpot JIT Compiler Options
The following table lists some important Oracle JRockit and HotSpot compiler options:

Chapter 4
Important HotSpot JIT Compiler Options

4-2

Table 4-1 JIT Compiler Options

Oracle JRockit HotSpot Notes

-XnoOpt

-XXoptFile:<file>

As JIT compilation in HotSpot is considered analogous to
optimization in Oracle JRockit (that is, both techniques
are only used on methods that are determined by
profiling to be hot), the HotSpot equivalent to Oracle
JRockit's -XnoOpt is -Xint. In this technique, no JIT
compilation is done and only the byte code interpreter is
used to execute all methods. This compilation might
impact the performance. However, it can be useful when-
XnoOpt is used for troubleshooting or working around
possible compiler issues of Oracle JRockit.

Like Oracle JRockit, HotSpot also offers ways to exclude
methods from compilation or to disable specific
optimizations on them.

If there are any problems while optimizing the methods,
then use XnoOpt or XXoptFile options with Oracle
JRockit VM to disable the optimization on those methods.
However, to exclude the compilation or disable specific
optimizations on these methods, ensure that you don’t
directly translate to HotSpot options.

The same compilation or optimization problems observed
with the Oracle JRockit JVM for any specific methods are
unlikely to happen with the HotSpot JVM. So, to begin
with, it is best to remove these options while migrating to
the HotSpot JVM.

Equivalent HotSpot JVM options are:

• -XX:CompileCommand=command,method[,option]

Specifies a command to perform on a method. For
example, to exclude the indexOf() method of the
String class from being compiled, use the following:

-XX:CompileCommand=exclude,java/lang/
String.indexOf

• -XX:CompileCommandFile=<filename>

Sets the file from which JIT compiler commands are
read. By default, the .hotspot_compiler file is used
to store commands performed by the JIT compiler.

• -XX:CompileOnly=<methods>

Sets the list of methods (separated by commas) to
which compilation must be restricted.

• -XX:CompileThreshold=<invocations>

Sets the number of interpreted method invocations
before compilation. By default, in the server JVM, the
JIT compiler performs 10,000 interpreted method
invocations to gather information for efficient
compilation. For the client JVM, the default setting is
1,500 invocations.

Options CompileCommand,
CompileCommandFile,
CompileOnly, and
CompileThreshold can be used
to disable or delay the
compilation of specified
methods.

Chapter 4
Important HotSpot JIT Compiler Options

4-3

Table 4-1 (Cont.) JIT Compiler Options

Oracle JRockit HotSpot Notes

-XX:OptThreads There are no optimization threads in HotSpot JVM. The
count of compiler threads that perform both the
compilation and the optimizations can be set using:

-XX:CICompilerCount=<threads>

Sets the number of compiler
threads to use for compilation.
By default, the number of
threads is set to 2 for the server
JVM, to 1 for the client JVM, and
it scales to the number of cores
if tiered compilation is used.

-XX:
+ReserveCodeMemory

-
XX:MaxCodeMemory=<
size>

-XX:ReservedCodeCacheSize=<size> Sets the maximum code cache
size (in bytes) for JIT-compiled
code. This option is equivalent to
-Xmaxjitcodesize.

None -XX:+TieredCompilation Enables the use of tiered
compilation. This option is
enabled by default from JDK 8
and later versions. Only the Java
HotSpot Server VM supports this
option.

Chapter 4
Important HotSpot JIT Compiler Options

4-4

5
Logging

This topic describes the various logging options available in Oracle JRockit and
HotSpot:

• Verbose Logging

• HotSpot Logging Options

Verbose Logging
Verbose logging in HotSpot can be enabled using the -verbose option. There are some
specific flags that can be used with this option to get area-specific verbose output.

The following table lists various logging options available in Oracle JRockit and
compares them with the options available in HotSpot:

Table 5-1 Verbose Logging

Oracle JRockit Verbose
Module

HotSpot Option Notes

alloc NA NA

class -verbose:class Displays information about the
classes that are being loaded.

codegen NA NA

compaction NA NA

cpuinfo NA NA

exceptions NA NA

gc -verbose:gc Displays information about
each garbage collection (GC)
event.

gcheuristic NA NA

gcpause NA NA

gcpausetree NA NA

gcreport NA NA

load NA NA

memory NA NA

memdbg NA NA

opt NA NA

refobj NA NA

starttime NA NA

shutdown NA NA

systemgc NA NA

5-1

Table 5-1 (Cont.) Verbose Logging

Oracle JRockit Verbose
Module

HotSpot Option Notes

timing NA NA

NA -verbose:jni Displays information about the
use of native methods and
other Java Native Interface
(JNI) activity.

HotSpot Logging Options
These are some of the common logging options available in HotSpot that can be used
to enable the diagnostic output for a specific subsystem within the HotSpot JVM.

Table 5-2 Logging Options

HotSpot Logging Options Notes

-Xloggc:<filename> Sets the file to which verbose GC event information must be
redirected for logging. The information written to this file is
similar to the output of -verbose:gc with the time elapsed from
the first GC event preceding each logged event. The -Xloggc
option overrides the-verbose:gc, if both are given with the
same java command.

-XX:LogFile=<path> Sets the path and file name where the log data is written.

-XX:+PrintCommandLineFlags Enables printing of the selected JVM flags that appeared on
the command-line.

-XX:+PrintNMTStatistics Enables printing of collected native memory tracking data at
JVM exit when native memory tracking is enabled.

-XX:+LogCompilation Enables logging of compilation activity to a file named
hotspot.log in the current working directory. You can specify
a different log file path and name using the -XX:LogFile
option. The -XX:+LogCompilation option must be used
together with the -XX:UnlockDiagnosticVMOptions option that
unlocks diagnostic JVM options.

-XX:+PrintAssembly Enables printing of assembly code resulting from JIT
compilation of Java bytecode by using the external
disassembler.so library. This option enables you to view the
generated code, which helps you to diagnose the performance
issues. This option must be used together with the -
XX:UnlockDiagnosticVMOptions option that unlocks diagnostic
JVM options.

-XX:+PrintCompilation Enables verbose diagnostic output from the JVM by printing a
message to the console every time a method is compiled.

-XX:+PrintInlining Enables printing of inlining decisions. This option enables you
to view the methods that are getting inlined.

-XX:+PrintClassHistogram Enables printing of a class instance histogram after a Control
+C event (SIGTERM). By default, this option is disabled.

Chapter 5
HotSpot Logging Options

5-2

Table 5-2 (Cont.) Logging Options

HotSpot Logging Options Notes

-XX:+PrintConcurrentLocks Enables printing of java.util.concurrent locks after a
Control+C event (SIGTERM). By default, this option is
disabled.

-XX:+G1PrintHeapRegions Enables the printing of information about the regions that are
allocated and that are reclaimed by the G1 collector.

-XX:
+PrintAdaptiveSizePolicy

Enables printing of information about adaptive generation
sizing.

-XX:+PrintGC Enables printing of messages at every GC.

-XX:
+PrintGCApplicationConcurr
entTime

Enables printing of the time elapsed from the last pause (for
example, a GC pause).

-XX:
+PrintGCApplicationStopped
Time

Enables printing of the duration of the pause (for example, a
GC pause) that lasted.

-XX:+PrintGCDateStamps Enables printing of a date stamp at every GC.

-XX:+PrintGCDetails Enables printing of detailed messages at every GC.

-XX:+PrintGCTaskTimeStamps Enables printing of time stamps for every individual GC worker
thread task.

-XX:+PrintGCTimeStamps Enables printing of time stamps at every GC.

-XX:
+PrintStringDeduplicationS
tatistics

Prints detailed deduplication statistics.

-XX:
+PrintTenuringDistribution

Enables printing of tenuring age information.

-Xlog Enables the common logging system for all JVM components.

Chapter 5
HotSpot Logging Options

5-3

6
Command-Line Options

This topic describes the various HotSpot command-line options and compares them
with those available in Oracle JRockit:

• Mapping of Oracle JRockit to HotSpot Command-Line Options

• jcmd Commands

Mapping of Oracle JRockit to HotSpot Command-Line
Options

Certain Oracle JRockit command-line options are similar to HotSpot options.

This section provides either a one-to-one mapping of Oracle JRockit options to
HotSpot options, or refers you to other sections of this document. There are certain
Oracle JRockit options for which there are no corresponding HotSpot JVM options.
Also, some of the mapped HotSpot options aren’t exactly equivalent to the Oracle
JRockit options and may provide slightly different behavior on the HotSpot.

When migrating, simply translating every option used with Oracle JRockit into similar
HotSpot options isn’t recommended. Especially for performance-related options, the
best practice is to start by only specifying the Java heap size and the garbage
collector, such as CMS or G1. Any additional tuning for HotSpot, if necessary, must be
done based on new benchmarking and profiling done with HotSpot. It isn’t advised to
assume that most, if any, JVM-level tuning decisions made for an Oracle JRockit
configuration will also apply to a HotSpot configuration.

Table 6-1 -X Command-Line Options

Oracle JRockit HotSpot Notes

-Xbootclasspath Same NA

-Xbootclasspath/a Same NA

-Xbootclasspath/p Same NA

-Xcheck:jni Same NA

-Xdebug Same NA

-Xgc NA See Tuning Garbage
Collection.

-XgcPrio (deprecated) NA See Garbage Collectors .

-XlargePages -XX:+UseLargePages NA

-Xmanagement NA NA

-Xms Same NA

-Xmx Same NA

6-1

Table 6-1 (Cont.) -X Command-Line Options

Oracle JRockit HotSpot Notes

-XnoClassGC (deprecated) Same Don’t use, except for
troubleshooting.

-XnoOpt NA See Compilation
Optimization .

-Xns Same NA

-XpauseTarget -XX:MaxGCPauseMillis=n See Garbage Collectors .

-Xrs Same NA

-Xss Same NA

-XstrictFP NA NA

-Xverbose -verbose See Logging .

-Xverbosedecorations NA See Logging.

-XverboseLog NA See Logging.

-XverboseTimeStamp NA See Logging.

-Xverify Same NA

Table 6-2 -XX Command-Line Options

Oracle JRockit HotSpot Notes on HotSpot
Options

-XXaggressive -XX:+AggressiveHeap

-XX:+AggressiveOpts

-XX:+AggressiveHeap
enables Java heap
optimization. This sets
various parameters to be
optimal for long-running
jobs with intensive memory
allocation, based on the
configuration of the
computer (RAM and CPU).
By default, the option is
disabled and the heap isn’t
optimized.

-XX:+AggressiveOpts
enables other non-heap
related optimization.

-XX:AllocChunkSize Related options:

• -
XX:AllocateInstancePrefetchLines=<lines>

• -XX:AllocatePrefetchDistance=<size>

• -XX:AllocatePrefetchInstr=<instruction>

• -XX:AllocatePrefetchLines=<lines>

• -XX:AllocatePrefetchStepSize=<size>

• -XX:AllocatePrefetchStyle=<style>

NA

-XX:+|-CheckJNICalls -Xcheck:jni NA

-XX:+|-CheckStacks NA NA

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

6-2

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Notes on HotSpot
Options

-XXcompaction NA NA

-XXcompactRatio (deprecated) NA NA

-XXcompactSetLimit
(deprecated)

NA NA

-XXcompactSetLimitPerObject
(deprecated)

NA NA

-XXcompressedRefs -XX:-UseCompressedOops See Runtime Options.

-XX:+|-
CrashOnOutOfMemoryError

Same NA

-XX:+|-
DisableAttachMechanism

Same NA

-XXdumpFullState NA On the HotSpot side, there
is an option
CreateMinidumpOnCrash to
enable the dumping of
minidumps when fatal
errors occur on the
Windows platform.

-XXdumpSize NA NA

-XX:ExceptionTraceFilter NA NA

-XX:+|-
ExitOnOutOfMemoryError

Same NA

-
XX:ExitOnOutOfMemoryErrorEx
itCode

NA NA

-XXexternalCompactRatio
(deprecated)

NA NA

-XX:+|-
FailOverToOldVerifier

Same NA

-XX:+|-FlightRecorder Same Enables the use of the
Java Flight Recorder (JFR)
during the runtime of the
application. This is a
commercial feature that
requires you to also specify
the -XX:
+UnlockCommercialFeatur
es option.

-XX:FlightRecorderOptions Same NA

-XX:+|-
FlightRecordingDumpOnUnhand
ledException

NA NA

-XX:FlightRecordingDumpPath NA NA

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

6-3

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Notes on HotSpot
Options

-XXfullSystemGC Related options:

• -XX:+DisableExplicitGC

• -XX:+ExplicitGCInvokesConcurrent

• -XX:
+ExplicitGCInvokesConcurrentAndUnloadsCl
asses

See Garbage Collectors .

-XXgcThreads Related options:

• -XX:ParallelGCThreads=<threads>

• -XX:ConcGCThreads=<threads>

See Garbage Collectors.

-XX:GCTimePercentage NA NA

-XX:GCTimeRatio NA NA

-XXgcTrigger Related options:

• -
XX:CMSInitiatingOccupancyFraction=<perce
nt>

• -XX:CMSTriggerRatio=<percent>

See Garbage Collectors .

-XX:+|-
HeapDiagnosticsOnOutOfMemor
yError

Can achieve the same by using -
XX:OnOutOfMemoryError=<command>

Example:

java -
XX:OnOutOfMemoryError="
jmap -heap %p"
JavaProgram

-XX:HeapDiagnosticsPath NA NA

-XX:+|-HeapDumpOnCtrlBreak NA NA

-XX:+|-
HeapDumpOnOutOfMemoryError

Same NA

-XX:HeapDumpPath Same NA

-XX:HeapDumpSegmentSize NA NA

-XXheapParts (deprecated) NA NA

-XXinternalCompactRatio
(deprecated)

NA NA

-XX:+|-JavaDebug NA NA

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

6-4

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Notes on HotSpot
Options

-XXkeepAreaRatio XX:SurvivorRatio=<ratio> Sets the ratio between the
eden space size and the
survivor space size. By
default, this option is set to
8.

There is another option -
XX:InitialSurvivorRatio
=ratio to set the initial
survivor space ratio used
by the throughput garbage
collector. Adaptive sizing is
enabled by default with the
throughput garbage
collector by using the -XX:
+UseParallelGC and -XX:
+UseParallelOldGC
options, and the survivor
space is resized according
to the application behavior,
starting with this initial
value.

-XXlargeObjectLimit
(deprecated)

NA NA

-XX:MaxCodeMemory -XX:ReservedCodeCacheSize=<size> See Compilation
Optimization .

-XX:MaxDirectMemorySize Same NA

-
XX:MaximumNurseryPercentage

-XX:NewRatio=<ratio> Sets the ratio between
young and old generation
sizes. By default, this
option is set to 2.

-XX:MaxLargePageSize -XX:LargePageSizeInBytes=<size> See Runtime options.

-XX:MaxRecvBufferSize NA NA

-XXminBlockSize (deprecated) NA NA

-XXnoSystemGC Related options:

• -XX:+DisableExplicitGC

• -XX:+ExplicitGCInvokesConcurrent

• -XX:
+ExplicitGCInvokesConcurrentAndUnloadsCl
asses

See Garbage Collectors .

-XX:OptThreads -XX:CICompilerCount=threads See Compilation
Optimization .

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

6-5

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Notes on HotSpot
Options

-XX:+|-RedoAllocPrefetch Related options:

• -
XX:AllocateInstancePrefetchLines=<lines>

• -XX:AllocatePrefetchDistance=<size>
• -XX:AllocatePrefetchInstr=<instruction>
• -XX:AllocatePrefetchLines=<lines>
• -XX:AllocatePrefetchStepSize=<size>

• -XX:AllocatePrefetchStyle=<style>

NA

-XX:+|-ReserveCodeMemory -XX:ReservedCodeCacheSize=<size> See Compilation
Optimization .

-
XX:SegmentedHeapDumpThresho
ld

NA NA

-XXsetGC (deprecated) NA NA

-XX:+|-StrictFP NA NA

-XX:StartFlightRecording Same NA

-XXtlaSize XX:TLABSize=<size> Sets the initial size (in
bytes) of a thread-local
allocation buffer (TLAB). If
this option is set to 0, then
the JVM chooses the initial
size automatically.

-XX:TreeMapNodeSize NA NA

-XX:+|-UseAdaptiveFatSpin NA NA

-XX:+|-UseAllocPrefetch Related options:

• -
XX:AllocateInstancePrefetchLines=<lines>

• -XX:AllocatePrefetchDistance=<size>

• -XX:AllocatePrefetchInstr=<instruction>

• -XX:AllocatePrefetchLines=<lines>

• -XX:AllocatePrefetchStepSize=<size>

• -XX:AllocatePrefetchStyle=<style

NA

-XX:+|-UseCallProfiling -XX:+UseTypeProfile NA

-XX:+|-UseCfsAdaptedYield NA NA

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

6-6

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Notes on HotSpot
Options

-XX:+|-UseClassGC -Xnoclassgc Disables garbage
collection (GC) of classes.
This can save the GC time,
which shortens
interruptions during the
application run.

When you specify
Xnoclassgc at startup, the
class objects in the
application will be left
untouched during GC and
will always be considered
active.

-XX:+|-UseCPoolGC NA NA

-XX:+|-UseFastTime NA NA

-XX:+|-UseFatSpin NA NA

-XX:+|-
UseLargePagesFor[Heap|Code]

• -XX:+UseLargePages

• -XX:+UseLargePagesInMetaspace
See Runtime Options.

-XX:+|-UseLazyUnlocking -XX:+UseBiasedLocking See Runtime Options.

-XX:+|-UseLockProfiling NA NA

-XX:+|-UseLowAddressForHeap NA No direct corresponding
option available in HotSpot
but the low heap base can
be specified explicitly using
HeapBaseMinAddress
option.

-XX:+|-UseNewHashFunction Same Only relevant for JDK 5.
This option must not be
used on JDK 6 or later
versions.

-XX:+|-UseThreadPriorities Same On HotSpot, this option is
enabled by default for the
Windows platform. On
JRockit, this option is
disabled by default for the
Windows platform.

Table 6-3 Diagnostic Commands

Oracle JRockit HotSpot

check_flightrecording JFR.check

command_line VM.command_line

dump_flightrecording JFR.dump

exception_trace_filter NA

force_crash NA

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

6-7

Table 6-3 (Cont.) Diagnostic Commands

Oracle JRockit HotSpot

heap_diagnostics GC.heap_info

help help

hprofdump GC.heap_dump

kill_management_server ManagementAgent.stop

list_vmflags VM.flags

lockprofile_print NA

lockprofile_reset NA

memleakserver NA

print_class_summary GC.class_stats

print_exceptions NA

print_memusage VM.native_memory

print_object_summary GC.class_histogram

print_threads Thread.print

print_utf8pool VM.stringtable and VM.symboltable

print_vm_state VM.info

runsystemgc GC.run

set_filename NA

start_flightrecording JFR.start

start_management_server ManagementAgent.start

ManagementAgent.start_local

stop_flightrecording JFR.stop

stop_management_server ManagementAgent.stop

timestamp NA

verbosity NA

version VM.version

jcmd Commands
The following are the list of jcmd commands:

• JFR.configure

• JFR.stop

• JFR.start

• JFR.dump

• JFR.check

• VM.log

• VM.native_memory

• VM.check_commercial_features

Chapter 6
jcmd Commands

6-8

• VM.unlock_commercial_features

• ManagementAgent.status

• ManagementAgent.stop

• ManagementAgent.start_local

• ManagementAgent.start

• Compiler.directives_clear

• Compiler.directives_remove

• Compiler.directives_add

• Compiler.directives_print

• VM.print_touched_methods

• Compiler.codecache

• Compiler.codelist

• Compiler.queue

• VM.classloader_stats

• Thread.print

• JVMTI.data_dump

• JVMTI.agent_load

• VM.stringtable

• VM.symboltable

• VM.class_hierarchy

• GC.class_stats

• GC.class_histogram

• GC.heap_dump

• GC.finalizer_info

• GC.heap_info

• GC.run_finalization

• GC.run

• VM.info

• VM.uptime

• VM.dynlibs

• VM.set_flag

• VM.flags

• VM.system_properties

• VM.command_line

• VM.version help

For the complete list of commands, refer to jcmd Commands in the Java Platform,
Standard Edition Tools Reference guide.

Chapter 6
jcmd Commands

6-9

7
Common Migration Issues and Solutions

This topic describes some common issues that can occur while migrating from Oracle
JRockit to HotSpot, along with their solutions.
The following table lists some common issues that can occur during the migration
process and solutions for resolving them:

Table 7-1 Migrations Issues and Solutions

Problem Oracle JRockit Option HotSpot Option Notes

Performance
degradation after
migrating to JDK 7.

The issue was resolved
with the use of -
XX:ReservedCodeCache
Size=1g

-XX:+ReserveCodeMemory

Default values:

• When you use -XX:
+UseLargePagesForCode:
64 MB

• When you use -XX:-
UseLargePagesForCode:
1024 MB

-
XX:ReservedCodeCache
Size

The default value on
most of the platforms is
48 MB.

With HotSpot VM, it was
observed that in some cases
increasing the
ReservedCodeCacheSize value,
for example, -
XX:ReservedCodeCacheSize=1g
, improves the performance
significantly.

Increased locking/
unlocking events
observed after
switching to HotSpot.

Disabling
UseBiasedLocking
helped improve the
overall performance.

-XX:-UseLazyUnlocking (to
disable)

-XX:-
UseBiasedLocking (to
disable)

The UseBiasedLocking option
improves the performance of
uncontended synchronization.
This option is enabled by
default.

However, if the application has
high contended
synchronization, then disabling
UseBiasedLocking benefits the
performance.

If you face performance issues
due to locking or
synchronization after migrating
to HotSpot, then disabling this
option might provide some
performance gains.

7-1

8
Troubleshooting Tools

This topic describes various troubleshooting tools available in Java SE and compares
their functionality to those available in Oracle JRockit.

Troubleshooting Tools Available in Java SE
The following table lists various tools available for troubleshooting in Java SE. Some of
these tools were brought over from Oracle JRockit to HotSpot VM for providing
comparable functionality:

Table 8-1 Tools

Java SE Troubleshooting
Tools

Notes and Resources

Java Flight Recorder and
Mission Control

See the following topics in Java Platform, Standard Edition
Troubleshooting Guide:
• Java Mission Control
• What are Java Flight Recordings
• How to produce a Flight Recording
• Inspect a Flight Recording
• Debug a Memory Leak Using Java Flight Recorder

Serviceability Agent See the article about the Serviceability Agent published in the
Java Magazine dated July 2012:
HotSpot’s Hidden Treasure

JConsole See
Troubleshoot with JConsole in Java Platform, Standard Edition
Troubleshooting Guide

jcmd command utility See:
• Troubleshoot with jcmd Utility

in Java Platform, Standard Edition Troubleshooting Guide
• jcmd

in Java Platform, Standard Edition Tools Reference
JDK utilities There are many useful utilities bundled with JDK. See the

following topics in Java Platform, Standard Edition
Troubleshooting Guide:

• jdb
• jinfo
• jmap
• jps
• jstack
• jstat
• jrunscript
• jsadebugd
• jstatd

8-1

https://bitbucket.org/javamagazine/magdownloads/downloads/2012-07-JavaMag-ServiceabilityAgent.pdf

Table 8-1 (Cont.) Tools

Java SE Troubleshooting
Tools

Notes and Resources

visualgc See
visualgc Tool in Java Platform, Standard Edition Troubleshooting
Guide.

Native Memory Tracking
Tool

See Native Memory Tracking in Java Platform, Standard Edition
Java Virtual Machine Guide.

Chapter 8
Troubleshooting Tools Available in Java SE

8-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	Heap Sizing

	2 Garbage Collectors
	Tuning Garbage Collection

	3 Runtime
	Runtime Options

	4 Compilation Optimization
	Compiler Considerations
	Important HotSpot JIT Compiler Options

	5 Logging
	Verbose Logging
	HotSpot Logging Options

	6 Command-Line Options
	Mapping of Oracle JRockit to HotSpot Command-Line Options
	jcmd Commands

	7 Common Migration Issues and Solutions
	8 Troubleshooting Tools
	Troubleshooting Tools Available in Java SE

