
Java Platform, Standard Edition
Internationalization Guide

Release 9
E76505-03
September 2017

Java Platform, Standard Edition Internationalization Guide, Release 9

E76505-03

Copyright © 1993, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vi

1 Internationalization Enhancements in JDK 9

Unicode 8.0 1-1

CLDR Locale Data Enabled by Default 1-1

UTF-8 Properties Files 1-2

2 Internationalization Overview

Text Representation 2-1

Locale Identification and Localization 2-2

Locales 2-2

Locale Class 2-2

Supported Locales 2-2

Localized Resources 2-3

ResourceBundle Class 2-3

ListResourceBundle Class 2-3

PropertyResourceBundle Class 2-3

Date and Time Handling 2-4

Text Processing 2-4

Formatting 2-4

Format Class 2-4

DateFormat Class 2-4

SimpleDateFormat Class 2-5

DateFormatSymbols Class 2-5

NumberFormat Class 2-5

DecimalFormat Class 2-5

DecimalFormatSymbols Class 2-6

iii

ChoiceFormat Class 2-6

MessageFormat Class 2-6

ParsePosition Class 2-6

FieldPosition Class 2-6

Locale-Sensitive String Operations 2-6

Collator Class 2-7

RuleBasedCollator Class 2-7

CollationElementIterator Class 2-7

CollationKey Class 2-7

BreakIterator Class 2-7

StringCharacterIterator Class 2-8

CharacterIterator Interface 2-8

Normalizer Class 2-8

Locale-Sensitive Services SPIs 2-8

Character Encoding Conversion 2-8

Supported Encodings 2-9

Stream I/O 2-9

Reader and Writer Classes 2-9

PrintStream Class 2-9

Charset Package 2-9

Input Methods 2-9

Input Method Support in Swing 2-10

Input Method Framework 2-10

3 Supported Encodings

Basic Encoding Set (contained in java.base module) 3-1

Extended Encoding Set (contained in jdk.charsets module) 3-3

4 Supported Calendars

5 Supported Fonts

Support for Physical Fonts 5-1

Support for Logical Fonts 5-1

The Lucida Fonts 5-1

6 Font Configuration Files

Supported Platforms 6-1

Loading Font Configuration Files 6-1

iv

Names Used in Font Configuration Files 6-2

Properties for All Platforms 6-3

Version Property 6-3

Component Font Mappings 6-3

Search Sequences 6-3

Exclusion Ranges 6-5

Proportional Fonts 6-5

Font File Names 6-6

Appended Font Path 6-6

Properties for Windows 6-6

Property for Solaris and Linux 6-7

v

Preface

This guide summarizes internationalization APIs and features of Java SE.

Audience
This guide is intended for Java programmers who want to design applications so that
they can be adapted to various languages and regions without engineering changes.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For coding examples and step-by-step instructions, see the Internationalization Trail in
The Java Tutorials (Java SE 8 and earlier).

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/javase/tutorial/i18n/index.html

1
Internationalization Enhancements in JDK
9

Internationalization enhancements for Oracle Java Development Kit 9 include:

• Unicode 8.0

• CLDR Locale Data Enabled by Default

• UTF-8 Properties Files

Unicode 8.0
Support has been added for Unicode 8.0. Java Platform, Standard Edition (Java SE) 8
supported Unicode 6.2.

The Unicode 6.3, 7.0, and 8.0 standards introduced 10,555 characters, 29 scripts, and
42 blocks, all of which are supported in Java SE 9.

CLDR Locale Data Enabled by Default
The XML-based locale data of the Unicode Common Locale Data Repository (CLDR),
first added in JDK 8, is the default locale data in JDK 9. In previous releases, the
default was JRE.

There are four distinct sources for locale data, identified by the following keywords:

• CLDR represents the locale data provided by the Unicode CLDR project.

• HOST represents the current user's customization of the underlying operating
system's settings. It works only with the user's default locale, and the customizable
settings may vary depending on the operating system. However, primarily date,
time, number, and currency formats are supported.

• SPI represents the locale-sensitive services implemented by the installed Service
Provider Interface (SPI) providers.

• COMPAT (formerly called JRE) represents the locale data that is compatible with
releases prior to JDK 9. JRE can still be used as the value, but COMPAT is preferred.

To select a locale data source, use the java.locale.providers system property, listing
the data sources in the preferred order. If a provider cannot offer the requested locale
data, the search proceeds to the next provider in order. For example:

java.locale.providers=HOST,SPI,CLDR,COMPAT

If you do not set this property, the default behavior is equivalent to the following
setting:

java.locale.providers=CLDR,COMPAT,SPI

1-1

http://www.unicode.org/versions/Unicode6.3.0
http://www.unicode.org/versions/Unicode7.0.0
http://www.unicode.org/versions/Unicode8.0.0/
http://cldr.unicode.org/index

To enable behavior that is compatible with JDK 8, set the java.locale.providers
system property to a value with COMPAT to the left of CLDR.

See the JDK 9 and JRE 9 Supported Locales page for supported locales. See
java.util.spi.LocaleServiceProvider API specification for the related API.

UTF-8 Properties Files
In Java SE 9, properties files are loaded in UTF-8 encoding. In previous releases,
ISO-8859-1 encoding was used for loading property resource bundles. UTF-8 is a
much more convenient way to represent non-Latin characters.

Most existing properties files should not be affected: UTF-8 and ISO-8859-1 have the
same encoding for ASCII characters, and human-readable non-ASCII ISO-8859-1
encoding is not valid UTF-8. If an invalid UTF-8 byte sequence is detected, the Java
runtime automatically rereads the file in ISO-8859-1.

If there is an issue, consider the following options:

• Convert the properties file into UTF-8 encoding.

• Specify the runtime system property for the properties file's encoding, as in this
example:

java.util.PropertyResourceBundle.encoding=ISO-8859-1

See java.util.PropertyResourceBundle.

Chapter 1
UTF-8 Properties Files

1-2

http://www.oracle.com/technetwork/java/javase/documentation/java9locales-3559485.html
https://docs.oracle.com/javase/9/docs/api/java/util/spi/LocaleServiceProvider.html
https://docs.oracle.com/javase/9/docs/api/java/util/PropertyResourceBundle.html

2
Internationalization Overview

Internationalization is the process of designing an application so that it can be adapted
to various languages and regions without engineering changes. Sometimes the term
internationalization is abbreviated as i18n, because there are 18 letters between the
first "i" and the last "n."

An internationalized program has the following characteristics:

• With the addition of localization data, the same executable can run worldwide.

• Textual elements, such as status messages and the GUI component labels, are
not hardcoded in the program. Instead they are stored outside the source code
and retrieved dynamically.

• Support for new languages does not require recompilation.

• Culturally-dependent data, such as dates and currencies, appear in formats that
conform to the end user's region and language.

• It can be localized quickly.

The global Internet demands global software - that is, software that can be developed
independently of the countries or languages of its users, and then localized for multiple
countries or regions. The Java Platform provides a rich set of APIs for developing
global applications. These internationalization APIs are based on the Unicode
standard and include the ability to adapt text, numbers, dates, currency, and user-
defined objects to any country's conventions.

This guide summarizes the internationalization APIs and features of the Java Platform,
Standard Edition. For coding examples and step-by-step instructions, see the
Internationalization Trail in the Java Tutorials.

Text Representation
The Java programming language is based on the Unicode character set, and several
libraries implement the Unicode standard. Unicode is an international character set
standard which supports all of the major scripts of the world, as well as common
technical symbols. The original Unicode specification defined characters as fixed-width
16-bit entities, but the Unicode standard has since been changed to allow for
characters whose representation requires more than 16 bits. The range of legal code
points is now U+0000 to U+10FFFF. An encoding defined by the standard, UTF-16,
allows to represent all Unicode code points using one or two 16-bit units.

The primitive data type char in the Java programming language is an unsigned 16-bit
integer that can represent a Unicode code point in the range U+0000 to U+FFFF, or
the code units of UTF-16. The various types and classes in the Java platform that
represent character sequences - char[], implementations of
java.lang.CharSequence (such as the String class), and implementations of
java.text.CharacterIterator - are UTF-16 sequences. Most Java source code
is written in ASCII, a 7-bit character encoding, or ISO-8859-1, an 8-bit character
encoding, but is translated into UTF-16 before processing.

2-1

http://docs.oracle.com/javase/tutorial/i18n/index.html
http://unicode.org/standard/standard.html

The Character class is an object wrapper for the char primitive type. The
Character class also contains static methods such as isLowerCase() and
isDigit() for determining the properties of a character. These methods have
overloads that accept either a char (which allows representation of Unicode code
points in the range U+0000 to U+FFFF) or an int (which allows representation of all
Unicode code points).

Locale Identification and Localization
A Locale object is an identifier for a particular combination of language and region.
Localization is the process of adapting software for a specific region or language by
adding locale-specific components and translating text.

Locales
On the Java platform, a locale is simply an identifier for a particular combination of
language and region. It is not a collection of locale-specific attributes. Instead, each
locale-sensitive class maintains its own locale-specific information. With this design,
there is no difference in how user and system objects maintain their locale-specific
resources. Both use the standard localization mechanism.

Java programs are not assigned a single global locale. All locale-sensitive operations
may be explicitly given a locale as an argument. This greatly simplifies multilingual
programs. While a global locale is not enforced, a default locale is available for
programs that do not wish to manage locales explicitly. A default locale also makes it
possible to affect the behavior of the entire presentation with a single choice.

Java locales act as requests for certain behavior from another object. For example, a
French Canadian locale passed to a Calendar object asks that the Calendar
behave correctly for the customs of Quebec. It is up to the object accepting the locale
to do the right thing. If the object has not been localized for a particular locale, it will try
to find a "close" match with a locale for which it has been localized. Thus if a
Calendar object was not localized for French Canada, but was localized for the
French language in general, it would use the French localization instead.

Locale Class
A Locale object represents a specific geographical, political, or cultural region. An
operation that requires a locale to perform its task is called locale-sensitive and uses
the Locale object to tailor information for the user. For example, displaying a number is
a locale-sensitive operation - the number should be formatted according to the
customs and conventions of the user's native country, region, or culture.

Supported Locales
On the Java platform, there does not have to be a single set of supported locales,
since each class maintains its own localizations. Nevertheless, there is a consistent
set of localizations supported by the classes of the Java Platform. Other
implementations of the Java platform may support different locales. Those supported
by the JRE are summarized in the JDK 9 and JRE 9 Supported Locales page.

Chapter 2
Locale Identification and Localization

2-2

http://docs.oracle.com/javase/9/docs/api/java/lang/Character.html
http://docs.oracle.com/javase/9/docs/api/java/util/Locale.html
http://www.oracle.com/technetwork/java/javase/documentation/java9locales-3559485.html

Localized Resources
All locale-sensitive classes must be able to access resources customized for the
locales they support. To aid in the process of localization, it helps to have these
resources grouped together by locale and separated from the locale-neutral parts of
the program.

ResourceBundle Class
The class ResourceBundle is an abstract base class representing containers of
resources. Programmers create subclasses of ResourceBundle that contain
resources for a particular locale. New resources can be added to an instance of
ResourceBundle, or new instances of ResourceBundle can be added to a system
without affecting the code that uses them. Packaging resources as classes allows
developers to take advantage of Java's class loading mechanism to find resources.

Resource bundles contain locale-specific objects. When a program needs a locale-
specific resource, such as a String object, the program can load it from the resource
bundle that is appropriate for the current user's locale. In this way, the programmer
can write code that is largely independent of the user's locale, isolating most, if not all,
of the locale-specific information in resource bundles.

This allows Java programmers to write code that can:

• be easily localized, or translated, into different languages

• handle multiple locales at once

• be easily modified later to support even more locales

ResourceBundle.Control Class
ResourceBundle.Control is a nested class of ResourceBundle. It defines methods
to be called by the ResourceBundle.getBundle factory methods so that the
resource bundle loading behavior may be changed. For example, application specific
resource bundle formats, such as XML, could be supported by overriding the methods.

Since Java SE 9, ResourceBundle.Control is not supported in named modules.
Existing code using Control is expected to work, but for new code in a named module,
implement basenameProvider and load the resource bundle from there. See Resource
Bundles in Named Modules.

ListResourceBundle Class
ListResourceBundle is an abstract subclass of ResourceBundle that manages
resources for a locale in a convenient and easy to use list.

PropertyResourceBundle Class
PropertyResourceBundle is a concrete subclass of ResourceBundle that
manages resources for a locale using a set of static strings from a property file.

Chapter 2
Locale Identification and Localization

2-3

http://docs.oracle.com/javase/9/docs/api/java/util/ResourceBundle.html
http://docs.oracle.com/javase/9/docs/api/java/util/ResourceBundle.Control.html
http://docs.oracle.com/javase/9/docs/api/java/util/ResourceBundle.html#getBundle-java.lang.String-java.util.Locale-java.lang.ClassLoader-java.util.ResourceBundle.Control-
https://docs.oracle.com/javase/9/docs/api/java/util/ResourceBundle.html#bundleprovider
https://docs.oracle.com/javase/9/docs/api/java/util/ResourceBundle.html#bundleprovider
http://docs.oracle.com/javase/9/docs/api/java/util/ListResourceBundle.html
http://docs.oracle.com/javase/9/docs/api/java/util/PropertyResourceBundle.html

Date and Time Handling
The Date-Time package, java.time, introduced in Java SE 8, provides a
comprehensive model for date and time. Although java.time is based on the
International Organization for Standardization (ISO) calendar system, commonly used
global calendars are also supported.

See The Date-Time Packages lesson in The Java Tutorials (Java SE 8 and earlier).

Text Processing
Text processing involves formatting locale-sensitive information such as, currencies,
dates, times, and text messages. It also includes manipulating text in a locale-sensitive
manner, meaning that string operations, such as searching and sorting, are properly
performed regardless of locale.

Formatting
It is in formatting data for output that many cultural conventions are applied. Numbers,
dates, times, and messages may all require formatting before they can be displayed.
The Java platform provides a set of flexible formatting classes that can handle both the
standard locale formats and programmer defined custom formats. These formatting
classes are also able to parse formatted strings back into their constituent objects.

Format Class
The class Format is an abstract base class for formatting locale-sensitive information
such as dates, times, messages, and numbers. Three main subclasses are provided:
DateFormat, NumberFormat, and MessageFormat. These three also provide subclasses of
their own.

DateFormat Class
Dates and times are stored internally in a locale-independent way, but should be
formatted so that they can be displayed in a locale-sensitive manner. For example, the
same date might be formatted as:

• November 3, 1997 (English)

• 3 novembre 1997 (French)

The class DateFormat is an abstract base class for formatting and parsing date and
time values in a locale-independent manner. It has a number of static factory methods
for getting standard time formats for a given locale.

The DateFormat object uses Calendar and TimeZone objects in order to interpret
time values. By default, a DateFormat object for a given locale will use the
appropriate Calendar object for that locale and the system's default TimeZone
object. The programmer can override these choices if desired.

Chapter 2
Date and Time Handling

2-4

https://docs.oracle.com/javase/9/docs/api/java/time/package-summary.html
https://docs.oracle.com/javase/tutorial/datetime/overview/packages.html
http://docs.oracle.com/javase/9/docs/api/java/text/Format.html
http://docs.oracle.com/javase/9/docs/api/java/text/DateFormat.html

SimpleDateFormat Class
The class SimpleDateFormat is a concrete class for formatting and parsing dates
and times in a locale-sensitive manner. It allows for formatting (milliseconds to text),
parsing (text to milliseconds), and normalization.

DateFormatSymbols Class
The class DateFormatSymbols is used to encapsulate localizable date-time
formatting data, such as the names of the months, the names of the days of the week,
time of day, and the time zone data. The DateFormat and SimpleDateFormat
classes both use the DateFormatSymbols class to encapsulate this information.

Usually, programmers will not use the DateFormatSymbols directly. Rather, they will
implement formatting with the DateFormat class's factory methods.

NumberFormat Class
The class NumberFormat is an abstract base class for formatting and parsing
numeric data. It contains a number of static factory methods for getting different kinds
of locale-specific number formats.

The NumberFormat class helps programmers to format and parse numbers for any
locale. Code using this class can be completely independent of the locale conventions
for decimal points, thousands-separators, the particular decimal digits used, or
whether the number format is even decimal. The application can also display a
number as a normal decimal number, currency, or percentage:

• 1,234.5 (decimal number in U.S. format)

• $1,234.50 (U.S. currency in U.S. format)

• 1.234,50 € (European currency in German format)

• 123.450% (percent in German format)

DecimalFormat Class
Numbers are stored internally in a locale-independent way, but should be formatted so
that they can be displayed in a locale-sensitive manner. For example, when using
"#,###.00" as a pattern, the same number might be formatted as:

• 1.234,56 (German)

• 1,234.56 (English)

The class DecimalFormat, which is a concrete subclass of the NumberFormat
class, can format decimal numbers. Programmers generally will not instantiate this
class directly but will use the factory methods provided.

The DecimalFormat class has the ability to take a pattern string to specify how a
number should be formatted. The pattern specifies attributes such as the precision of
the number, whether leading zeros should be printed, and what currency symbols are
used. The pattern string can be altered if a program needs to create a custom format.

Chapter 2
Text Processing

2-5

http://docs.oracle.com/javase/9/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/9/docs/api/java/text/DateFormatSymbols.html
http://docs.oracle.com/javase/9/docs/api/java/text/NumberFormat.html
http://docs.oracle.com/javase/9/docs/api/java/text/DecimalFormat.html

DecimalFormatSymbols Class
The class DecimalFormatSymbols represents the set of symbols (such as the
decimal separator, the grouping separator, and so on) needed by DecimalFormat to
format numbers. DecimalFormat creates for itself an instance of
DecimalFormatSymbols from its locale data. A programmer needing to change any
of these symbols can get the DecimalFormatSymbols object from the
DecimalFormat object and then modify it.

ChoiceFormat Class
The class ChoiceFormat is a concrete subclass of the NumberFormat class. The
ChoiceFormat class allows the programmer to attach a format to a range of
numbers. It is generally used in a MessageFormat object for handling plurals.

MessageFormat Class
Programs often need to build messages from sequences of strings, numbers and other
data. For example, the text of a message displaying the number of files on a disk drive
will vary:

• The disk C contains 100 files.

• The disk D contains 1 file.

• The disk F contains 0 files.

If a message built from sequences of strings and numbers is hard-coded, it cannot be
translated into other languages. For example, note the different positions of the
parameters "3" and "G" in the following translations:

• The disk G contains 3 files. (English)

• Il y a 3 fichiers sur le disque G. (French)

The class MessageFormat provides a means to produce concatenated messages in
language-neutral way. The MessageFormat object takes a set of objects, formats
them, and then inserts the formatted strings into the pattern at the appropriate places.

ParsePosition Class
The class ParsePosition is used by the Format class and its subclasses to keep
track of the current position during parsing. The parseObject() method in the
Format class requires a ParsePosition object as an argument.

FieldPosition Class
The FieldPosition class is used by the Format class and its subclasses to identify
fields in formatted output. One version of the format() method in the Format class
requires a FieldPosition object as an argument.

Locale-Sensitive String Operations
Programs frequently need to manipulate strings. Common operations on strings
include searching and sorting. Some tasks, such as collating strings or finding various

Chapter 2
Text Processing

2-6

http://docs.oracle.com/javase/9/docs/api/java/text/DecimalFormatSymbols.html
http://docs.oracle.com/javase/9/docs/api/java/text/ChoiceFormat.html
http://docs.oracle.com/javase/9/docs/api/java/text/MessageFormat.html
http://docs.oracle.com/javase/9/docs/api/java/text/ParsePosition.html
http://docs.oracle.com/javase/9/docs/api/java/text/FieldPosition.html

boundaries in text, are surprisingly difficult to get right and are even more difficult when
multiple languages must be considered. The Java Platform provides classes for
handling many of these common string manipulations in a locale-sensitive manner.

Collator Class
The Collator class performs locale-sensitive string comparison. Programmers use
this class to build searching and alphabetical sorting routines for natural language text.
Collator is an abstract base class. Its subclasses implement specific collation
strategies. One subclass, RuleBasedCollator, is applicable to a wide set of
languages. Other subclasses may be created to handle more specialized needs.

RuleBasedCollator Class
The RuleBasedCollator class, which is a concrete subclass of the Collator
class, provides a simple, data-driven, table collator. Using RuleBasedCollator, a
programmer can create a customized table-based collator. For example, a
programmer can build a collator that will ignore (or notice) uppercase letters, accents,
and Unicode combining characters.

CollationElementIterator Class
The CollationElementIterator class is used as an iterator to walk through each
character of an international string. Programmers use the iterator to return the ordering
priority of the positioned character. The ordering priority of a character, or key, defines
how a character is collated in the given Collator object. The
CollationElementIterator class is used by the compare() method of the
RuleBasedCollator class.

CollationKey Class
A CollationKey object represents a string under the rules of a specific Collator
object. Comparing two CollationKey objects returns the relative order of the strings
they represent. Using CollationKey objects to compare strings is generally faster
than using the Collator.compare() method. Thus, when the strings must be
compared multiple times, for example when sorting a list of strings, it is more efficient
to use CollationKey objects.

BreakIterator Class
The BreakIterator class indirectly implements methods for finding the position of
the following types of boundaries in a string of text:

• potential line break

• sentence

• word

• character

The conventions on where to break lines, sentences, words, and characters vary from
one language to another. Since the BreakIterator class is locale-sensitive, it can be
used by programs that perform text operations. For example, consider a a word
processing program that can highlight a character, cut a word, move the cursor to the
next sentence, or word-wrap at a line ending. This word processing program would

Chapter 2
Text Processing

2-7

http://docs.oracle.com/javase/9/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/9/docs/api/java/text/RuleBasedCollator.html
http://docs.oracle.com/javase/9/docs/api/java/text/CollationElementIterator.html
http://docs.oracle.com/javase/9/docs/api/java/text/CollationKey.html
http://docs.oracle.com/javase/9/docs/api/java/text/BreakIterator.html

use break iterators to determine the logical boundaries in text, enabling it to perform
text operations in a locale-sensitive manner.

StringCharacterIterator Class
The StringCharacterIterator class provides the ability to iterate over a string of
Unicode characters in a bidirectional manner. This class uses a cursor to move within
a range of text, and can return individual characters or their index values. The
StringCharacterIterator class implements the character iterator functionality of
the CharacterIterator interface.

CharacterIterator Interface
The CharacterIterator interface defines a protocol for bidirectional iteration over
Unicode characters. Classes should implement this interface if they want to move
about within a range of text and return individual Unicode characters or their index
values. CharacterIteratoris for searching is useful when performing character
searches.

Normalizer Class
The Normalizer class provides methods to transform Unicode text into an equivalent
composed or decomposed form. The class supports the Unicode Normalization Forms
defined by the Unicode standard.

Locale-Sensitive Services SPIs
Locale sensitive services provided by classes in the java.text and java.util packages
can be extended by implementing locale-sensitive services SPIs for locales the Java
runtime has not yet supported.

Although JDK 9 no longer supports the extension mechanism, SPI implementations for
internationalization functions in the java.text.spi, java.util.spi, and
java.awt.im.spi packages will be loaded from the application's classpath.

In addition to localized symbols or names for the Currency, Locale, and TimeZone
classes in the java.util package, implementations of the following classes in the
java.text package can be plugged in with the SPIs.

• BreakIterator

• Collator

• DateFormat

• DateFormatSymbols

• DecimalFormatSymbols

• NumberFormat

Character Encoding Conversion
The Java platform uses Unicode as its native character encoding; however, many
Java programs still need to handle text data in other encodings. Java therefore
provides a set of classes that convert many standard character encodings to and from

Chapter 2
Locale-Sensitive Services SPIs

2-8

http://docs.oracle.com/javase/9/docs/api/java/text/StringCharacterIterator.html
http://docs.oracle.com/javase/9/docs/api/java/text/CharacterIterator.html
http://docs.oracle.com/javase/9/docs/api/java/text/Normalizer.html
http://docs.oracle.com/javase/9/docs/api/java/util/Currency.html
http://docs.oracle.com/javase/9/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/9/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/9/docs/api/java/text/BreakIterator.html
http://docs.oracle.com/javase/9/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/9/docs/api/java/text/DateFormat.html
http://docs.oracle.com/javase/9/docs/api/java/text/DateFormatSymbols.html
http://docs.oracle.com/javase/9/docs/api/java/text/DecimalFormatSymbols.html
http://docs.oracle.com/javase/9/docs/api/java/text/NumberFormat.html

Unicode. Java programs that need to deal with non-Unicode text data convert that
data into Unicode, process the data as Unicode, then convert the result back to the
external character encoding. The InputStreamReader and OutputStreamWriter
classes provide methods that can convert between other character encodings and
Unicode.

Supported Encodings
The InputStreamReader, OutputStreamWriter, and String classes can convert
between Unicode and the set of character encodings listed in Supported Encodings.

Stream I/O
The Java Platform provides features in the java.io package to improve the handling
of character data: the Reader and Writer classes, and an enhancement to the
PrintStream class.

Reader and Writer Classes
The Reader and Writer class hierarchies provide the ability to perform I/O
operations on character streams. These hierarchies parallel the InputStream and
OutputStream class hierarchies, but operate on streams of characters rather than
streams of bytes. Character streams make it easy to write programs that are not
dependent upon a specific character encoding, and are therefore easier to
internationalize. The Reader and Writer classes also have the ability to convert
between Unicode and other character encodings.

PrintStream Class
The PrintStream class produces output using the system's default character
encoding and line terminator. This change allows methods such as
System.out.println() to act more reasonably with non-ASCII data.

Charset Package
The java.nio.charset package provides the underpinnings for character encoding
conversion. Applications can use its classes to fine-tune the behavior of built-in
character converters. Developers can also create custom converters for character
encodings that are not supported by built-in character converters, using the
java.nio.charset.spi package.

Input Methods
Input methods are software components that let the user enter text in ways other than
simple typing on a keyboard. They are commonly used to enter Japanese, Chinese, or
Korean - languages using thousands of different characters - on keyboards with far
fewer keys. However, the Java platform also supports input methods for other
languages and the use of entirely different input mechanisms, such as handwriting or
speech recognition.

Chapter 2
Input Methods

2-9

http://docs.oracle.com/javase/9/docs/api/java/io/InputStreamReader.html
http://docs.oracle.com/javase/9/docs/api/java/io/OutputStreamWriter.html
http://docs.oracle.com/javase/9/docs/api/java/io/Reader.html
http://docs.oracle.com/javase/9/docs/api/java/io/Writer.html
http://docs.oracle.com/javase/9/docs/api/java/io/PrintStream.html
http://docs.oracle.com/javase/9/docs/api/java/nio/charset/package-summary.html

The Java platform enables the use of native input methods provided by the host
operating system, such as Windows or Solaris, as well as the implementation and use
of input methods written in the Java programming language.

The term input methods does not refer to class methods of the Java programming
language.

Input Method Support in Swing
The Swing text components provide an integrated user interface for text input using
input methods. Depending on the locale, one of two input styles is used. With on-the-
spot (inline) input, the style used for most locales, the input methods insert the text
directly into the text component while the text is being composed. With below-the-spot
input, the style used for Chinese locales, a separate composition window is used,
which is positioned automatically to be near the point where the text is to be inserted
after being committed.

An application using Swing text components does not have to coordinate the
interaction between the text components and input methods. However, it should call
InputContext.endComposition when all text must be committed, such as when a
document is saved or printed.

Input Method Framework
The input method framework enables the collaboration between text editing
components and input methods in entering text. Programmers who develop text
editing components or input methods use this framework. Other application developers
generally make only minimal use of it. For example, they should call
InputContext.endComposition when all text must be committed, such as when a
document is saved or printed.

Chapter 2
Input Methods

2-10

http://docs.oracle.com/javase/9/docs/api/java/awt/im/InputContext.html#endComposition--
http://docs.oracle.com/javase/9/docs/api/java/awt/im/InputContext.html#endComposition--

3
Supported Encodings

The java.io.InputStreamReader, java.io.OutputStreamWriter, java.lang.String classes,
and classes in the java.nio.charset package can convert between Unicode and a
number of other character encodings. The supported encodings vary between different
implementations of the Java Platform, Standard Edition 9 (Java SE 9). The class
description for java.nio.charset.Charset lists the encodings that any
implementation of Java SE 9 is required to support.

The following tables show the encoding sets supported by Oracle Java SE 9. The
canonical names used by the java.nio APIs are in many cases not the same as those
used in the java.io and java.lang APIs.

Basic Encoding Set (contained in java.base module)

Canonical Name for
java.nio API

Canonical Name for java.io
API and java.lang API

Description

IBM00858 Cp858 Variant of Cp850 with Euro
character

IBM437 Cp437 MS-DOS United States,
Australia, New Zealand, South
Africa

IBM775 Cp775 PC Baltic

IBM850 Cp850 MS-DOS Latin-1

IBM852 Cp852 MS-DOS Latin-2

IBM855 Cp855 IBM Cyrillic

IBM857 Cp857 IBM Turkish

IBM862 Cp862 PC Hebrew

IBM866 Cp866 MS-DOS Russian

ISO-8859-1 ISO8859_1 ISO-8859-1, Latin Alphabet
No. 1

ISO-8859-2 ISO8859_2 Latin Alphabet No. 2

ISO-8859-4 ISO8859_4 Latin Alphabet No. 4

ISO-8859-5 ISO8859_5 Latin/Cyrillic Alphabet

ISO-8859-7 ISO8859_7 Latin/Greek Alphabet
(ISO-8859-7:2003)

ISO-8859-9 ISO8859_9 Latin Alphabet No. 5

ISO-8859-13 ISO8859_13 Latin Alphabet No. 7

ISO-8859-15 ISO8859_15 Latin Alphabet No. 9

KOI8-R KOI8_R KOI8-R, Russian

KOI8-U KOI8_U KOI8-U, Ukrainian

3-1

http://docs.oracle.com/javase/9/docs/api/java/nio/charset/Charset.html

Canonical Name for
java.nio API

Canonical Name for java.io
API and java.lang API

Description

US-ASCII ASCII American Standard Code for
Information Interchange

UTF-8 UTF8 Eight-bit Unicode (or UCS)
Transformation Format

UTF-16 UTF-16 Sixteen-bit Unicode (or UCS)
Transformation Format, byte
order identified by an optional
byte-order mark

UTF-16BE UnicodeBigUnmarked Sixteen-bit Unicode (or UCS)
Transformation Format, big-
endian byte order

UTF-16LE UnicodeLittleUnmarked Sixteen-bit Unicode (or UCS)
Transformation Format, little-
endian byte order

UTF-32 UTF_32 32-bit Unicode (or UCS)
Transformation Format, byte
order identified by an optional
byte-order mark

UTF-32BE UTF_32BE 32-bit Unicode (or UCS)
Transformation Format, big-
endian byte order

UTF-32LE UTF_32LE 32-bit Unicode (or UCS)
Transformation Format, little-
endian byte order

x-UTF-32BE-BOM UTF_32BE_BOM 32-bit Unicode (or UCS)
Transformation Format, big-
endian byte order, with byte-
order mark

x-UTF-32LE-BOM UTF_32LE_BOM 32-bit Unicode (or UCS)
Transformation Format, little-
endian byte order, with byte-
order mark

windows-1250 Cp1250 Windows Eastern European

windows-1251 Cp1251 Windows Cyrillic

windows-1252 Cp1252 Windows Latin-1

windows-1253 Cp1253 Windows Greek

windows-1254 Cp1254 Windows Turkish

windows-1257 Cp1257 Windows Baltic

Not available UnicodeBig Sixteen-bit Unicode (or UCS)
Transformation Format, big-
endian byte order, with byte-
order mark

x-IBM737 Cp737 PC Greek

x-IBM874 Cp874 IBM Thai

x-UTF-16LE-BOM UnicodeLittle Sixteen-bit Unicode (or UCS)
Transformation Format, little-
endian byte order, with byte-
order mark

Chapter 3
Basic Encoding Set (contained in java.base module)

3-2

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for
java.nio API

Canonical Name for java.io
API and java.lang API

Description

Big5 Big5 Big5, Traditional Chinese

Big5-HKSCS Big5_HKSCS Big5 with Hong Kong
extensions, Traditional
Chinese (incorporating 2001
revision)

EUC-JP EUC_JP JISX 0201, 0208 and 0212,
EUC encoding Japanese

EUC-KR EUC_KR KS C 5601, EUC encoding,
Korean

GB18030 GB18030 Simplified Chinese, PRC
standard

GB2312 EUC_CN GB2312, EUC encoding,
Simplified Chinese

GBK GBK GBK, Simplified Chinese

IBM-Thai Cp838 IBM Thailand extended SBCS

IBM01140 Cp1140 Variant of Cp037 with Euro
character

IBM01141 Cp1141 Variant of Cp273 with Euro
character

IBM01142 Cp1142 Variant of Cp277 with Euro
character

IBM01143 Cp1143 Variant of Cp278 with Euro
character

IBM01144 Cp1144 Variant of Cp280 with Euro
character

IBM01145 Cp1145 Variant of Cp284 with Euro
character

IBM01146 Cp1146 Variant of Cp285 with Euro
character

IBM01147 Cp1147 Variant of Cp297 with Euro
character

IBM01148 Cp1148 Variant of Cp500 with Euro
character

IBM01149 Cp1149 Variant of Cp871 with Euro
character

IBM037 Cp037 USA, Canada (Bilingual,
French), Netherlands,
Portugal, Brazil, Australia

IBM1026 Cp1026 IBM Latin-5, Turkey

IBM1047 Cp1047 Latin-1 character set for
EBCDIC hosts

IBM273 Cp273 IBM Austria, Germany

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-3

Canonical Name for
java.nio API

Canonical Name for java.io
API and java.lang API

Description

IBM277 Cp277 IBM Denmark, Norway

IBM278 Cp278 IBM Finland, Sweden

IBM280 Cp280 IBM Italy

IBM284 Cp284 IBM Catalan/Spain, Spanish
Latin America

IBM285 Cp285 IBM United Kingdom, Ireland

IBM290 Cp290 EBCDIC-JP-kana, Japanese
EBCDIC

IBM297 Cp297 IBM France

IBM300 Cp300 Japan DB EBCDIC, Japanese
EBCDIC

IBM420 Cp420 IBM Arabic

IBM424 Cp424 IBM Hebrew

IBM500 Cp500 EBCDIC 500V1

IBM860 Cp860 MS-DOS Portuguese

IBM861 Cp861 MS-DOS Icelandic

IBM863 Cp863 MS-DOS Canadian French

IBM864 Cp864 PC Arabic

IBM865 Cp865 MS-DOS Nordic

IBM868 Cp868 MS-DOS Pakistan

IBM869 Cp869 IBM Modern Greek

IBM870 Cp870 IBM Multilingual Latin-2

IBM871 Cp871 IBM Iceland

IBM918 Cp918 IBM Pakistan (Urdu)

ISO-2022-CN ISO2022CN GB2312 and CNS11643 in
ISO 2022 CN form, Simplified
and Traditional Chinese
(conversion to Unicode only)

ISO-2022-JP ISO2022JP JIS X 0201, 0208, in ISO 2022
form, Japanese

ISO-2022-KR ISO2022KR ISO 2022 KR, Korean

ISO-8859-3 ISO8859_3 Latin Alphabet No. 3

ISO-8859-6 ISO8859_6 Latin/Arabic Alphabet

ISO-8859-8 ISO8859_8 Latin/Hebrew Alphabet

JIS_X0201 JIS_X0201 JIS X 0201

JIS_X0212-1990 JIS_X0212-1990 JIS X 0212

Shift_JIS SJIS Shift-JIS, Japanese

TIS-620 TIS620 TIS620, Thai

windows-1255 Cp1255 Windows Hebrew

windows-1256 Cp1256 Windows Arabic

windows-1258 Cp1258 Windows Vietnamese

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-4

Canonical Name for
java.nio API

Canonical Name for java.io
API and java.lang API

Description

windows-31j MS932 Windows Japanese

x-Big5-Solaris Big5_Solaris Big5 with seven additional
Hanzi ideograph character
mappings for the Solaris
zh_TW.BIG5 locale

x-euc-jp-linux EUC_JP_LINUX JISX 0201, 0208, EUC
encoding Japanese

x-EUC-TW EUC_TW CNS11643 (Plane 1-7,15),
EUC encoding, Traditional
Chinese

x-eucJP-Open EUC_JP_Solaris JISX 0201, 0208, 0212, EUC
encoding Japanese

x-IBM1006 Cp1006 IBM AIX Pakistan (Urdu)

x-IBM1025 Cp1025 IBM Multilingual Cyrillic:
Bulgaria, Bosnia,
Herzegovinia, Macedonia
(FYR)

x-IBM1046 Cp1046 IBM Arabic - Windows

x-IBM1097 Cp1097 IBM Iran (Farsi)/Persian

x-IBM1098 Cp1098 IBM Iran (Farsi)/Persian (PC)

x-IBM1112 Cp1112 IBM Latvia, Lithuania

x-IBM1122 Cp1122 IBM Estonia

x-IBM1123 Cp1123 IBM Ukraine

x-IBM1124 Cp1124 IBM AIX Ukraine

x-IBM1381 Cp1381 IBM OS/2, DOS People's
Republic of China (PRC)

x-IBM1383 Cp1383 IBM AIX People's Republic of
China (PRC)

x-IBM33722 Cp33722 IBM-eucJP - Japanese
(superset of 5050)

x-IBM834 Cp834 IBM EBCDIC DBCS-only
Korean

x-IBM856 Cp856 IBM Hebrew

x-IBM875 Cp875 IBM Greek

x-IBM921 Cp921 IBM Latvia, Lithuania (AIX,
DOS)

x-IBM922 Cp922 IBM Estonia (AIX, DOS)

x-IBM930 Cp930 Japanese Katakana-Kanji
mixed with 4370 UDC,
superset of 5026

x-IBM933 Cp933 Korean Mixed with 1880 UDC,
superset of 5029

x-IBM935 Cp935 Simplified Chinese Host mixed
with 1880 UDC, superset of
5031

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-5

Canonical Name for
java.nio API

Canonical Name for java.io
API and java.lang API

Description

x-IBM937 Cp937 Traditional Chinese Host
miexed with 6204 UDC,
superset of 5033

x-IBM939 Cp939 Japanese Latin Kanji mixed
with 4370 UDC, superset of
5035

x-IBM942 Cp942 IBM OS/2 Japanese, superset
of Cp932

x-IBM942C Cp942C Variant of Cp942

x-IBM943 Cp943 IBM OS/2 Japanese, superset
of Cp932 and Shift-JIS

x-IBM943C Cp943C Variant of Cp943

x-IBM948 Cp948 OS/2 Chinese (Taiwan)
superset of 938

x-IBM949 Cp949 PC Korean

x-IBM949C Cp949C Variant of Cp949

x-IBM950 Cp950 PC Chinese (Hong Kong,
Taiwan)

x-IBM964 Cp964 AIX Chinese (Taiwan)

x-IBM970 Cp970 AIX Korean

x-ISCII91 ISCII91 ISCII91 encoding of Indic
scripts

x-ISO2022-CN-CNS ISO2022_CN_CNS CNS11643 in ISO 2022 CN
form, Traditional Chinese
(conversion from Unicode
only)

x-ISO2022-CN-GB ISO2022_CN_GB GB2312 in ISO 2022 CN form,
Simplified Chinese
(conversion from Unicode
only)

x-iso-8859-11 x-iso-8859-11 Latin/Thai Alphabet

x-JIS0208 x-JIS0208 JIS X 0208

x-JISAutoDetect JISAutoDetect Detects and converts from
Shift-JIS, EUC-JP, ISO 2022
JP (conversion to Unicode
only)

x-Johab x-Johab Korean, Johab character set

x-MacArabic MacArabic Macintosh Arabic

x-MacCentralEurope MacCentralEurope Macintosh Latin-2

x-MacCroatian MacCroatian Macintosh Croatian

x-MacCyrillic MacCyrillic Macintosh Cyrillic

x-MacDingbat MacDingbat Macintosh Dingbat

x-MacGreek MacGreek Macintosh Greek

x-MacHebrew MacHebrew Macintosh Hebrew

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-6

Canonical Name for
java.nio API

Canonical Name for java.io
API and java.lang API

Description

x-MacIceland MacIceland Macintosh Iceland

x-MacRoman MacRoman Macintosh Roman

x-MacRomania MacRomania Macintosh Romania

x-MacSymbol MacSymbol Macintosh Symbol

x-MacThai MacThai Macintosh Thai

x-MacTurkish MacTurkish Macintosh Turkish

x-MacUkraine MacUkraine Macintosh Ukraine

x-MS950-HKSCS MS950_HKSCS Windows Traditional Chinese
with Hong Kong extensions

x-mswin-936 MS936 Windows Simplified Chinese

x-PCK PCK Solaris version of Shift_JIS

x-SJIS_0213 x-SJIS_0213 Shift_JISX0213

x-windows-50220 Cp50220 Windows Codepage 50220 (7-
bit implementation)

x-windows-50221 Cp50221 Windows Codepage 50221 (7-
bit implementation)

x-windows-874 MS874 Windows Thai

x-windows-949 MS949 Windows Korean

x-windows-950 MS950 Windows Traditional Chinese

x-windows-iso2022jp x-windows-iso2022jp Variant ISO-2022-JP (MS932
based)

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-7

4
Supported Calendars

The core of the Date-Time API is the java.time package. The classes defined in
java.time base their calendar system on the ISO calendar, which is the world standard
for representing date and time. The ISO calendar follows the proleptic Gregorian rules.
There are also non-ISO calendars predefined in java.time.chrono package: the
Japanese, Hijrah, Minguo, and Thai Buddhist calendars. For more about the Date-
Time API, see the Internationalization Trail in the Java Tutorials.

4-1

https://docs.oracle.com/javase/9/docs/api/java/time/package-summary.html
http://docs.oracle.com/javase/tutorial/datetime/iso/index.html

5
Supported Fonts

The set of supported fonts varies between different implementations of the Java
platform. For the terminology used, see the Font class description.

• Support for Physical Fonts

• Support for Logical Fonts

• The Lucida Fonts

Support for Physical Fonts
The JRE supports TrueType and PostScript Type 1 fonts.

Physical fonts need to be installed in locations known to the Java runtime
environment. The JRE looks in two locations: the lib/fonts directory within the JRE
itself, and the normal font location(s) defined by the host operating system. If fonts with
the same name exist in both locations, the one in the lib/fonts directory is used.

You can add physical fonts that use a supported font technology by installing them in a
way supported by the host operating system. The recommended location to add per-
user fonts on Solaris or Linux is the $HOME/.fonts directory which is searched by the
platform's libfontconfig, and which is in turn used by the JRE.

Do not make any modifications under the lib directory within the JRE, as this is not
supported since JDK 9.

Support for Logical Fonts
Logical font names are mapped to physical fonts in implementation dependent ways.
Typically one logical font name maps to several physical fonts in order to cover a large
range of characters. The JRE uses font configuration files to define the mapping; see
Font Configuration Files.

The Lucida Fonts
The Oracle JRE includes several physical fonts of the "Lucida" design family. These
fonts are physical fonts, but since they come with the JRE, they don't depend on the
host operating system. These fonts are also licensed for use in other implementations
of the Java Platform. Using them provides the benefit of a consistent look and feel
across platforms and implementations for a large set of languages.

There are three different type families: "Lucida Sans", "Lucida Sans Typewriter", and
"Lucida Bright". Each family has plain, bold, italic, and bold-italic styles. Not all of
these are present in all JRE implementations. For example, the default download
bundle of the JRE for Windows only contains the Lucida Sans plain font (but note that
application developers can include all Lucida fonts with a JRE that they redistribute
with an application).

5-1

http://docs.oracle.com/javase/9/docs/api/java/awt/Font.html

The following table shows which Unicode character blocks are covered by each font
family:

Unicode Block Lucida Sans Lucida Sans
Typewriter

Lucida Bright

Basic Latin yes yes yes

Latin-1 Supplement yes yes yes

Latin Extended-A yes yes yes

Latin Extended-B partial partial partial

IPA Extensions partial no no

Spacing Modifier
Letter

partial partial partial

Combining Diacritical
Marks

partial no partial

Greek yes yes yes

Cyrillic partial partial partial

Hebrew yes yes no

Arabic partial partial partial

Devanagari yes no no

Thai yes yes no

General Punctuation partial partial partial

Superscripts and
Subscripts

partial partial partial

Currency Symbols partial partial partial

Letterlike Symbols partial partial partial

Number Forms partial partial no

Arrows partial partial partial

Mathematical
Operators

yes partial yes

Enclosed
Alphanumerics

partial no no

Box Drawings partial partial no

Block Elements partial partial no

Geometric Shapes partial partial partial

Miscellaneous
Symbols

partial partial no

Dingbats yes no no

Alphabetic
Presentation Forms

partial partial no

Arabic Presentation
Forms-A

partial partial partial

Arabic Presentation
Forms-B

yes yes yes

Chapter 5
The Lucida Fonts

5-2

Note that of the writing systems that are generally fully supported by the JRE, the
Lucida fonts do not support Chinese (Simplified), Chinese (Traditional), Japanese, and
Korean. See the JDK 9 and JRE 9 Supported Locales page.

The fonts are installed in the Java SE Runtime Environment's lib/fonts directory as
the following files (not all of them may be present):

LucidaSansDemiBold.ttf
LucidaSansRegular.ttf
LucidaTypewriterBold.ttf
LucidaTypewriterRegular.ttf
LucidaBrightDemiBold.ttf
LucidaBrightDemiItalic.ttf
LucidaBrightItalic.ttf
LucidaBrightRegular.ttf

Chapter 5
The Lucida Fonts

5-3

http://www.oracle.com/technetwork/java/javase/documentation/java9locales-3559485.html

6
Font Configuration Files

The Java Platform defines five logical font names that every implementation must
support: Serif, SansSerif, Monospaced, Dialog, and DialogInput. These
logical font names are mapped to physical fonts in implementation dependent ways.

One way the Oracle JDK maps logical font names to physical fonts is by using font
configuration files. There may be several files to support different mappings depending
on the host operating system version. The files are distributed with the JDK
installation. You can edit or create your own font configuration files to adjust the
mappings to your particular system setup, however these must be placed in conf/
fonts, and are subject to implementation notes discussed below.

Font configuration files come in two formats: a properties format and a binary format.
The properties format is described in detail in this document and can be used for user-
defined configurations. The binary format is undocumented and used only for the
JDK's predefined configurations; the corresponding files in properties format are
available for reference as files with the .properties.src extension.

Supported Platforms
Font configuration files are implementation dependent. Not all implementations of the
Java Platform use them, and the format and content vary between different runtime
environments as well as between releases. The macOS implementation does not use
font configuration files, as the mapping is hard coded in the source and cannot be
changed in any way.

The Oracle JDK supports font configuration files on the host operating system as
follows:

• For Windows, font configuration files are required.

• For macOS, font configuration files are unsupported.

• For Linux and Solaris: the Oracle JDK is moving away from providing custom font
configuration files on Linux platforms, as they are difficult to keep up to date
across distributions and versions. A distribution that has control over the fonts on
the system can continue to provide this custom file. If the JRE finds a custom file
that exactly matches the distribution and version it will use it. If no exact match is
found, the JRE dynamically creates the file at runtime. These generated files are
placed in a location determined by the implementation. They should be considered
implementation internal: they are not user editable and do not follow the syntax as
described in this specification.

Loading Font Configuration Files
The JDK places any files that it provides in $JDKHOME/lib. Do not modify that
location. Instead, put any updates or custom versions of the configuration files
in $JDKHOME/conf/fonts.

6-1

On platforms that support font configuration files, the runtime will look first
in $JDKHOME/conf/fonts. In other words, a user-supplied file is preferred if it is a
match.

The font configuration file for a host operating system is located as follows:

• JavaHome - the JDK directory, as given by the java.home system property.

• OS - a string identifying an operating system variant:

– For Windows, empty.

– For Solaris, empty.

– For Linux, "RedHat", "SuSE", etc.

• Version - a string identifying the operating system version.

The runtime uses the first of the following files it finds:

JavaHome/lib/fontconfig.OS.Version.properties
JavaHome/lib/fontconfig.OS.Version.bfc
JavaHome/lib/fontconfig.OS.properties
JavaHome/lib/fontconfig.OS.bfc
JavaHome/lib/fontconfig.Version.properties
JavaHome/lib/fontconfig.Version.bfc
JavaHome/lib/fontconfig.properties
JavaHome/lib/fontconfig.bfc

Files with a .properties suffix are assumed to be properties files as specified by the
Properties class and are loaded through that class. Files without this suffix are
assumed to be in binary format.

Names Used in Font Configuration Files
Throughout the font configuration files, a number of different names are used:

• LogicalFontName - one of the five logical font names: serif, sansserif, monospaced,
dialog, and dialoginput. In font configuration files, these names are always in
lowercase.

• StyleName - one of the four standard font styles: plain, bold, italic, and
bolditalic. Again, these names are always in lowercase.

• PlatformFontName - the name of a physical font, in a format typically used on the
platform:

– On Windows, a font face name, such as "Courier New" or "\uad74\ub9bc".

– On Solaris and Linux, an xlfd name, such as "-monotype-times new roman-
regular-r---*-%d-*-*-p-*-iso8859-1". Note that "%d" is used for the font size -
the actual font size is filled in at runtime.

• CharacterSubsetName - a name for a subset of the Unicode character set which
certain component fonts can render. For Windows, the following names are
predefined: alphabetic, arabic, chinese-ms936, chinese-gb18030, chinese-ms950,
chinese-hkscs, cyrillic-iso8859-5, cyrillic-cp1251, cyrillic-koi8-r, devanagari,
dingbats, greek, hebrew, japanese, korean, latin, symbol, thai. For Solaris and
Linux, the following names are predefined: arabic, chinese-gb2312, chinese-gbk,
chinese-gb18030-0, chinese-gb18030-1, chinese-cns11643-1, chinese-
cns11643-2, chinese-cns11643-3, chinese-big5, chinese-hkscs, cyrillic,
devanagari, dingbats, greek, hebrew, japanese-x0201, japanese-x0208, japanese-

Chapter 6
Names Used in Font Configuration Files

6-2

http://docs.oracle.com/javase/9/docs/api/java/util/Properties.html#load-java.io.InputStream-

x0212, korean, korean-johab, latin-1, latin-2, latin-4, latin-5, latin-7, latin-9,
symbol,thai. A font configuration file may define additional names to identify
additional character subsets.

• Encoding - the canonical name of the default encoding, as provided by
java.nio.charset.Charset.defaultCharset().name().

• Language - the language of the initial default locale.

• Country - the country of the initial default locale.

Properties for All Platforms
Properties that are applicable to all platforms enable you to specify the font
configuration format version, component font mappings, search sequences, exclusion
ranges, proportional fonts, font file names, and appended font path.

Version Property
The version property identifies the font configuration format version. This document
specifies version 1.

The complete property has the form:

version=1

Component Font Mappings
Component font mapping properties describe which physical font to use to render
characters from a given character subset with a given logical font in a given style.

The keys have the forms:

allfonts.CharacterSubsetName
LogicalFontName.StyleName.CharacterSubsetName

The first form is used if the same font is used for a character subset independent of
logical font and style (in this case, the font rendering engines apply algorithmic styles
to the font). The second form is used if different physical fonts are used for a character
subset for different logical fonts and styles. In this case, properties must be specified
for each combination of logical font and style, so 20 properties for one character
subset. If a property of the first form is present for a character subset, then properties
of the second form for the same character subset are ignored.

The values are platform font names, as described in Names Used in Font
Configuration Files.

Since the character subsets supported by given fonts often overlap, separate search
sequence properties are used to define in which order to try the fonts when rendering
a character.

Search Sequences
The Java runtime uses sequence properties to determine search sequences for the
five logical fonts. However, a font configuration file may specify properties that are
specific to a combination of encoding, language, and country, and the runtime will then
use a lookup to determine the search sequence property for each logical font.

Chapter 6
Properties for All Platforms

6-3

The keys have the form:

sequence.allfonts.Encoding.Language.Country
sequence.LogicalFontName.Encoding.Language.Country
sequence.allfonts.Encoding.Language
sequence.LogicalFontName.Encoding.Language
sequence.allfonts.Encoding
sequence.LogicalFontName.Encoding
sequence.allfonts
sequence.LogicalFontName

The allfonts forms are used if the sequence is used for all five logical fonts. The forms
specifying logical font names are used if different sequences are used for different
logical fonts.

For each logical font, the Java runtime uses the property value with the first of the
above keys. This property determines the primary search sequence for the logical font.

The file may also define a single fallback search sequence. The key for the fallback
search sequence property is:

sequence.fallback

The values of all search sequence properties have the form:

SearchSequenceValue:
 CharacterSubsetName
 CharacterSubsetName , SearchSequenceValue

The primary search sequence properties specify character subset names for required
fonts, which are used for both AWT and 2D font rendering. The fallback search
sequence property gives character subset names for optional fonts, which are used as
fallbacks for all logical fonts, but only for 2D font rendering. The runtime automatically
adds the Lucida Sans Regular font as a fallback font for 2D rendering if it's not already
specified. If the runtime environment has a lib/fonts/fallback directory that
contains valid TrueType or Type 1 fonts, the runtime automatically adds these fonts as
fallback fonts for 2D rendering. On Windows, if there is a system EUDC (End User
Defined Characters) font registered with Windows, the runtime automatically adds this
font as well as a fallback font for 2D rendering.

The sequence properties determine in which sequence component fonts are tried to
render a given character. For example, given the following properties:

sequence.monospaced=japanese,alphabetic
sequence.fallback=korean
monospaced.plain.alphabetic=Arial
monospaced.plain.japanese=MSGothic
monospaced.plain.korean=Gulim

The runtime will first attempt to render a character with the MSGothic font. If that font
doesn't provide a glyph for the character, it will attempt the Arial font. For 2D
rendering, it will also try the Gulim and the Lucida Sans Regular font as well as any
TrueType or Type 1 fonts in the runtime's lib/fonts/fallback directory. For 2D
rendering on Windows, if there is a system EUDC font registered with Windows, the
runtime will also try this EUDC font.

When calculating font metrics for a logical font without reference to a string, only the
required fonts are taken into consideration. For the example above, the
FontMetrics.getMaxDescent method would return results based on the MSGothic
and Arial fonts, but not the Gulim and Lucida Sans fonts. In this way, simple user

Chapter 6
Properties for All Platforms

6-4

http://docs.oracle.com/javase/9/docs/api/java/awt/FontMetrics.html#getMaxDescent--

interface elements such as buttons, which sometimes calculate their size based on
font metrics, are not affected by an extended list of component fonts which their labels
usually don't use. On the other hand, text components typically calculate metrics
based on the text they contain and thus will obtain correct results.

The sequence properties that the runtime obtains for the five logical fonts should list
the same character subsets, but may list them in different order.

Exclusion Ranges
The exclusion range properties specify Unicode character ranges which should be
excluded from being rendered with the fonts corresponding to a given character
subset. This is used if a font with a large character repertoire needs to be placed early
in the search sequence (for example, for performance reasons), but some characters
that it supports should be drawn with a different font instead. These properties are
optional, so there's at most one per character subset.

The keys have the form:

exclusion.CharacterSubsetName

The values have the form:

ExclusionRangeValue:
 Range
 Range , ExclusionRangeValue

Range:
 Char - Char

Char:
 HexDigit HexDigit HexDigit HexDigit
 HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit

A Char is a Unicode character represented as a hexadecimal value.

Proportional Fonts
The proportional font properties describe the relationship between proportional and
non-proportional variants of otherwise equivalent fonts. These properties are used to
implement preferences specified by the
GraphicsEnvironment.preferProportionalFonts method.

The keys have the form:

proportional.PlatformFontName

Space characters in the platform font name must be replaced with underscore
characters (_).

The values have the form:

PlatformFontName

In values, space characters are left unmodified.

Each property indicates that the font named in the value is the proportional equivalent
of the font named in the key, and also that the font named in the key is the non-
proportional equivalent of the font named in the value.

Chapter 6
Properties for All Platforms

6-5

http://docs.oracle.com/javase/9/docs/api/java/awt/GraphicsEnvironment.html#preferProportionalFonts--

Font File Names
Font file name properties provide the names of the files containing the physical fonts
used in the font configuration file. File names are required for all physical fonts on
Windows and recommended for all physical fonts on Solaris and Linux.

The keys have the form:

filename.PlatformFontName

Space characters in the platform font name must be replaced with underscore
characters (_).

The values are the file names of the files containing the fonts. On Windows, simple file
names are used; and the runtime environment looks for each file first in its own lib/
fonts directory, then in the Windows fonts directory. On Solaris and Linux, absolute
path names, path names starting with "$JRE_LIB_FONTS" for the runtime environment's
own lib/fonts directory, or xlfd names are used.

Appended Font Path
The Java runtime can automatically determine a number of directories that contain font
files, such as its own lib/fonts directory or the Windows fonts folder. Additional
directories can be specified to be appended to the font path.

The key has the form:

appendedfontpath

The value has the form:

AppendedFontPathValue:
 Directory
 Directory PathSeparator AppendedFontPathValue

The path separator is the platform dependent value of
java.io.File.pathSeparator.

Properties for Windows
There are no platform-specific properties for Windows. However, there is a special
form of the character subset name used in search sequences. The name "alphabetic"
can take a suffix indicating the character encoding associated with the subset:

alphabetic
alphabetic/default
alphabetic/1252

This information is only used for AWT, not for 2D. The /default suffix restricts use of
the component fonts for this character subset to the character set of the default
encoding; the /1252 suffix to the Windows-1252 character set. For accessing
component font mappings and exclusion ranges, the character encoding suffix is
omitted. For all other character subsets, the AWT character encoding is determined
internally by the Java runtime.

Chapter 6
Properties for Windows

6-6

http://docs.oracle.com/javase/9/docs/api/java/io/File.html#pathSeparator

Property for Solaris and Linux
The only property that is specific to Solaris and Linux is the AWT font path, which
identifies platform directories that should be added to the X11 server font path.

The keys have the form:

awtfontpath.CharacterSubsetName

The values have the form:

AWTFontPathValue:
 Directory
 Directory : AWTFontPathValue

The directories must be valid X11 font directories. The Java runtime ensures that the
directories for all character subsets of a primary search sequence found by the search
sequence lookup (see Search Sequences) are part of the X11 font path. The
implementation assumes that all logical fonts use the same set of character subsets
for a given environment of encoding, language, and country.

Chapter 6
Property for Solaris and Linux

6-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Internationalization Enhancements in JDK 9
	Unicode 8.0
	CLDR Locale Data Enabled by Default
	UTF-8 Properties Files

	2 Internationalization Overview
	Text Representation
	Locale Identification and Localization
	Locales
	Locale Class
	Supported Locales

	Localized Resources
	ResourceBundle Class
	ResourceBundle.Control Class

	ListResourceBundle Class
	PropertyResourceBundle Class

	Date and Time Handling
	Text Processing
	Formatting
	Format Class
	DateFormat Class
	SimpleDateFormat Class
	DateFormatSymbols Class
	NumberFormat Class
	DecimalFormat Class
	DecimalFormatSymbols Class
	ChoiceFormat Class
	MessageFormat Class
	ParsePosition Class
	FieldPosition Class

	Locale-Sensitive String Operations
	Collator Class
	RuleBasedCollator Class
	CollationElementIterator Class
	CollationKey Class
	BreakIterator Class
	StringCharacterIterator Class
	CharacterIterator Interface
	Normalizer Class

	Locale-Sensitive Services SPIs
	Character Encoding Conversion
	Supported Encodings
	Stream I/O
	Reader and Writer Classes
	PrintStream Class
	Charset Package

	Input Methods
	Input Method Support in Swing
	Input Method Framework

	3 Supported Encodings
	Basic Encoding Set (contained in java.base module)
	Extended Encoding Set (contained in jdk.charsets module)

	4 Supported Calendars
	5 Supported Fonts
	Support for Physical Fonts
	Support for Logical Fonts
	The Lucida Fonts

	6 Font Configuration Files
	Supported Platforms
	Loading Font Configuration Files
	Names Used in Font Configuration Files
	Properties for All Platforms
	Version Property
	Component Font Mappings
	Search Sequences
	Exclusion Ranges
	Proportional Fonts
	Font File Names
	Appended Font Path

	Properties for Windows
	Property for Solaris and Linux

