
Java Platform, Standard Edition
Deployment Guide

Release 9
E61695-03
September 2017



Java Platform, Standard Edition Deployment Guide, Release 9

E61695-03

Copyright © 1993, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions ix

Part I   Deployment Basics

1   Getting Started

Basic Steps 1-1

Choose the Execution Environment 1-2

Create the Package 1-2

Packaging Tools 1-3

NetBeans IDE 1-3

Ant Tasks 1-3

Java Packager Command-Line Tool 1-4

Create the Web Page 1-5

Distribute Your Application 1-6

Beyond the Basics 1-6

Part II   Packaging

2   Self-Contained Application Packaging

Introduction 2-1

Benefits and Drawbacks of Self-Contained Application Packages 2-1

Basics 2-2

Self-Contained Application Structure 2-3

Basic Build 2-3

Customizing the Package Using Drop-In Resources 2-4

iii



Prepare Custom Resources 2-4

Substitute a Built-In Resource 2-5

Customization Options 2-6

Platform-Specific Customization for Basic Packages 2-6

macOS 2-7

Passing Arguments to a Self-Contained Application 2-7

Associating Files with a Self-Contained Application 2-8

Supporting Multiple Entry Points 2-8

Customization of the JRE 2-9

Packaging for Modular Applications 2-9

Installable Packages 2-9

Types of Installable Packages 2-10

EXE Package 2-11

MSI Package 2-12

DMG Package 2-13

Linux Packages 2-15

Working Through a Deployment Scenario 2-15

3   JavaFX Ant Tasks

Requirements to Run JavaFX Ant Tasks 3-1

JavaFX Ant Elements 3-1

Using JavaFX Ant Tasks 3-2

Ant Script Examples 3-2

Deploying the JavaFX Hello World Example 3-2

Deploying the JavaFX Hello World Example as a Self-Contained Application 3-5

Deploying a JavaFX Application with External JAR Files 3-5

Overriding JVM Options for Self-Contained Applications 3-7

JavaFX Ant Task Reference 3-12

<fx:csstobin> 3-13

<fx:deploy> 3-13

<fx:jar> 3-18

<fx:signjar> 3-19

JavaFX Ant Helper Parameter Reference 3-20

<fx:add-modules> 3-21

<fx:application> 3-22

<fx:argument> 3-24

<fx:association> 3-24

<fx:bundleArgument> 3-26

<fx:callback> 3-29

<fx:callbacks> 3-30

iv



<fx:fileset> 3-31

<fx:htmlParam> 3-32

<fx:icon> 3-33

<fx:info> 3-35

<fx:jvmarg> 3-37

<fx:jvmuserarg> 3-37

<fx:limit-modules> 3-38

<fx:module-path> 3-38

<fx:param> 3-39

<fx:permissions> 3-39

<fx:platform> 3-40

<fx:preferences> 3-41

<fx:property> 3-43

<fx:resources> 3-43

<fx:runtime> 3-44

<fx:secondaryLauncher> 3-45

<fx:splash> 3-47

<fx:template> 3-48

Part III   Java Web Start Technology

4   Overview of Java Web Start Technology

Introduction to Java Web Start 4-1

Benefits of Java Web Start 4-1

Where to Find Java Web Start 4-2

Using Java Web Start Software 4-2

Launching from a Web Browser 4-2

Launching from Desktop Icons and the Start Menu (Microsoft Windows and
Linux Running GNOME 2.0+) 4-2

Using Java Web Start Software Behind a Proxy Server or Firewall 4-3

Setting Up the Web Server 4-3

Installing the Java Web Start Protocol Handler 4-4

Installing the Protocol Handler for Chrome 4-5

Installing the Protocol Handler in Firefox 4-5

5   Application Development Considerations

Introduction to Web Deployment 5-1

Retrieving Resources from JAR Files 5-2

Accessing the Client Using the JNLP API 5-2

v



Security and Code Signing 5-2

Signing JAR Files with a Test Certificate 5-3

How to Encode JNLP Files 5-4

Dynamic Download of HTTPS Certificates 5-4

6   Migrating Java Applets to Java Web Start and JNLP

Migrating an Existing Java Applet 6-1

Rewriting a Java Applet as a Java Web Start Application 6-2

Special Considerations 6-2

7   JNLP File Syntax

Introduction to JNLP File Syntax 7-1

Examples of a JNLP File 7-9

JNLP Elements 7-10

jnlp Element 7-11

information Element 7-11

security Element 7-13

update Element 7-13

resources Element 7-14

application-desc Element 7-18

applet-desc Element 7-19

component-desc Element 7-20

installer-desc Element 7-20

8   JNLP API Examples

Using the BasicService Service 8-1

Using the ClipboardService Service 8-2

Using the DownloadService Service 8-2

Using the DownloadService2 Service 8-3

Implementing the DownloadServiceListener Service 8-4

Using the FileOpenService Service 8-4

Using the FileSaveService Service 8-4

Using the IntegrationService Service 8-5

Using the PrintService Service 8-6

Using the PersistenceService Service 8-7

Using FileContents 8-8

Using a JNLPRandomAccessFile 8-9

Using the SingleInstanceService Service 8-10

vi



Using an ExtendedService Service 8-11

Part IV   Configuring and Monitoring Deployment

9   Java Control Panel

Overview of Java Control Panel 9-1

General Tab in the Java Control Panel 9-2

Update Tab in the Java Control Panel 9-2

Scheduling the Check for Updates 9-3

Java Update Scheduler 9-3

Desktop Settings Tab in the Java Control Panel 9-4

Editing Desktop Settings 9-4

Java Runtime Parameters 9-5

Setting classpath or cp 9-5

Enabling and Disabling Assertion Support 9-5

Tracing and Logging Support 9-6

Debugging Applets in Java Plug-in 9-6

Default Connection Timeout 9-7

Web Settings Tab in the Java Control Panel 9-7

Exception Site List Tab 9-8

Deployment Rule Set Tab 9-8

Temporary Files Settings Tab 9-9

Network Settings Tab 9-9

Java Cache Viewer Tab 9-10

Security Tab in the Java Control Panel 9-10

General Security Settings Tab 9-11

Manage Certificates Tab 9-11

User-Level Certificates 9-11

System-Level Certificates 9-12

Advanced Tab in the Java Control Panel 9-13

Debugging 9-13

Java Console 9-13

Shortcut Creation 9-14

JNLP File/MIME Association 9-14

Application Installation 9-14

Execution Environment Security Settings 9-14

Mixed code (sandboxed vs. trusted) security verification 9-15

Perform signed code certificate revocation checks on 9-15

Check for signed code certificate revocation using 9-15

Perform TLS certificate revocation checks on 9-15

vii



Check for signed code certificate revocation using 9-16

Advanced Security Settings 9-16

Miscellaneous 9-17

10  
 

Deployment Rule Set

Overview of Deployment Rule Sets 10-1

Create the Rule Set 10-2

Define the Rules 10-2

<ruleset> 10-3

<rule> 10-3

<id> 10-3

<certificate> 10-5

<checksum> 10-5

<jnlp-checksum> 10-6

<action> 10-6

<message> 10-9

<customer> 10-9

Set Up Rules for Calls From JavaScript Code (LiveConnect) 10-9

Set Up Rules for Mixed Code 10-10

Get the Certificate Hash 10-11

Packaging the Rule Set 10-11

Installing the Rule Set 10-11

Viewing the Active Rule Set 10-11

Security Considerations 10-12

Examples 10-13

Java Deployment Rule Set DTD 10-16

viii



Preface

This guide provides information about building, packaging, and deploying your Java
and JavaFX applications.

Audience
This document is intended for application developers who create Java or JavaFX
applications and want to deploy them to users on remote systems.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See Oracle JDK 9 Documentation for other JDK 9 guides.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=homepage


Part I
Deployment Basics

The topic in this part provides general information about the deployment process and
the tools that are available for deploying your Java and JavaFX applications.

• Getting Started



1
Getting Started

This topic describes the basics of deploying your Java and JavaFX applications.
This topic contains the following sections:

• Basic Steps

• Choose the Execution Environment

• Create the Package

• Create the Web Page

• Distribute Your Application

• Beyond the Basics

Basic Steps
Have an application ready to publish? Follow these steps for basic deployment:

1. Decide how you want users to access and run your application.

Applications can be deployed on a user's desktop, embedded in a web page, or
launched from a browser.

Note:

Although available and supported in JDK 9, the Applet API and the Java Plug-
in are marked as deprecated in preparation for removal in a future release.
Alternatives for applets and embedded JavaFX applications include Java Web
Start and self-contained applications.

2. Create the application package.

The application package consists of the following items:

• JAR files needed to run your application. If your application is embedded in a
web page or is launched from a browser, the JAR files must be signed with a
valid signing certificate.

• Deployment descriptor or JNLP file for applications that are embedded in a
web page or are launched from a browser

• JRE for self-contained applications. The Java packaging tools use the jlink
tool to create a custom runtime, which reduces the size of the package.

3. Set up the web page, if your application is embedded in a web page or is launched
from a browser.

The web page needs either HTML elements or JavaScript code to run an
application embedded in the page. JavaScript code is needed to launch an
application from the browser using Java Web Start. The Java packaging tools

1-1



generate an HTML file with JavaScript code for both types of execution, which you
can copy into your web page.

4. Copy the package to the location from which you want users to access it.

A web server is typically used for applications embedded in a web page or
launched from a browser. Desktop and self-contained applications can be
delivered directly to users or made available through an app store.

Choose the Execution Environment
Java and JavaFX applications can be run in multiple execution environments. How you
want users to access your application determines how you deploy it. The following
options are available:

• Launch as a native application

Users can install a self-contained application and launch it from a menu or desktop
shortcut.

• Launch as a desktop application

Users can start the application from the command line using the Java launcher, or
by double-clicking the JAR file for the application.

• Launch from a browser

Users can download and start the application by clicking a link in the browser.

• View in a web page

The application starts when the web page is loaded.

Note:

Although available and supported in JDK 9, the Applet API and the Java Plug-
in are marked as deprecated in preparation for removal in a future release.
Alternatives for applets and embedded JavaFX applications include Java Web
Start and self-contained applications.

Each environment has advantages and disadvantages.

Create the Package
By default, the Java packaging tools generate the following collection of files needed
to run the application:

• An application JAR file (or multiple JAR files for large applications)

Applications that are embedded in a web page or launched from a browser must
be signed with a valid signing certificate. The packaging tools or the jar command
can be used to sign the JAR file.

• A JNLP file with a deployment descriptor

A deployment descriptor is an XML file that describes application components,
platform requirements, and launch rules.

Chapter 1
Choose the Execution Environment

1-2



• An HTML file containing JavaScript code to embed or launch applications from the
web page

Applications can also be packaged as platform-specific, self-contained applications.
Self-contained applications include all application resources, the JRE, and a launcher.
These applications provide the same install and launch experience as native
applications for the operating system.

Self-contained applications can be distributed as zip files or as installable packages:
EXE or MSI for Windows; DMG, PKG, or mac.appStore for macOS; or RPM or DEB
for Linux.

Self-contained applications provide the following benefits:

• They resemble native applications for the target platform.

Users install the application with an installer that is familiar to them, and launch it
in the usual way.

• They offer no-hassle compatibility.

The version of JRE that is used by the application is controlled by the application
developer.

• They are easily deployed on fresh systems with no requirement for the JRE to be
installed.

• Deployment occurs with no need for admin permissions when using ZIP or user-
level installers.

Self-Contained Application Packaging describes how to generate a self-contained
application package.

Packaging Tools
Three different tools are available for packaging your application:

• NetBeans IDE

• Ant Tasks

• Java Packager Command-Line Tool

NetBeans IDE
If you use Netbeans IDE, then much of the work is done for you. Open Project
Properties to specify preferred dimensions for your JavaFX application scene. Build
the project with Clean and Build. The application package is generated in the dist
folder. To test your application, open this folder and double-click the HTML, JNLP, or
JAR file, depending on your execution environment.

To package a self-contained application, customize the build.xml script in the
NetBeans IDE. See Basic Build.

Ant Tasks
If you are using another IDE, then you can add Java packaging as a post-build step,
using Ant tasks that are included in the JDK. Example 1-1 shows an Ant package task
for the JavaFX example Colorful Circles. Download the ColorfulCircles.zip file for the
complete Colorful Circles example.

Chapter 1
Create the Package

1-3

http://docs.oracle.com/javase/8/javafx/sample-apps/ColorfulCircles.zip


When you add the nativeBundles="all" attribute into the <fx:deploy> Ant task, all
possible packages are created: a standalone application package, one or more self-
contained application packages for the platform on which you are running, and a web
deployment package. Installable packages are created based on the third-party
software that is available at packaging time. For example, if you have both Inno Setup
and WiX on Windows, then you get three packages: a folder with the application,
an .exe installer file, and an .msi installer file. A simple Ant task with the nativeBundles
attribute is shown in Example 1-1.

If your application will be embedded in a web page or launched from a browser,
include the required JAR manifest attributes in the <fx:jar> task and include an
<fx:signjar> task.

Note:

The <fx:signjar> task for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release. It also does not work with multi-
release JAR files. Use the standard Ant signjar task instead.

Example 1-1    Ant Task to Produce All Packages for the ColorfulCircles
Application

<taskdef resource="com/sun/javafx/tools/ant/antlib.xml"      
        uri="javafx:com.sun.javafx.tools.ant"
        classpath="${JAVA_HOME}/lib/ant-javafx.jar"/>
 
<fx:jar destfile="dist-web/ColorfulCircles.jar">
    <fx:application mainClass="colorfulcircles.ColorfulCircles"/>
    <fileset dir="build/classes/">
        <include name="**"/>
    </fileset>
</fx:jar>
 
<fx:deploy width="800" height="600" outdir="dist-web" 
        outfile="ColorfulCircles" nativeBundles="all">
    <fx:info title="Colorful Circles"/>
    <fx:application name="Colorful Circles example"
            mainClass="colorfulcircles.ColorfulCircles"/>
    <fx:resources>
        <fx:fileset dir="dist-web" includes="ColorfulCircles.jar"/>
    </fx:resources>
</fx:deploy> 

Java Packager Command-Line Tool
If you cannot use Ant or prefer command-line tools, use the Java Packager tool that
comes with the JDK. The Java Packager tool has several commands for packaging
applications, see javapackager in the Java Platform, Standard Edition Tools
Reference.

For a quick test build, you can use the javapackager -makeall command. This
command compiles source code and combines the javapackager -createjar and
javapackager -deploy commands with simplified options, as shown in the following
example.

Chapter 1
Create the Package

1-4



javapackager -makeall -appclass colorfulcircles.ColorfulCircles 
    -name "Colorful Circles" -width 800 -height 600

Note:

The -makeall command for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release.

As a command intended only to help to build simple projects quickly, the -makeall
command supports a limited set of options to customize the command behavior. The -
makeall command makes the following assumptions about input and output files:

• Source and other resource files must be in a directory named src under the main
project directory.

• The resulting package is always generated to a directory named dist, and file
names all start with the dist prefix.

• By default, the -makeall command tries to build a self-contained application
package. If this is not possible, the JAR, HTML, and JNLP files are generated so
you can deploy to other execution modes.

Note:

For JavaFX applications that are embedded in a web page, stage width and
height must always be specified.

When your application is ready to go live, use the -createjar and -deploy commands
instead of the -makeall command. The -createjar and -deploy commands have
considerably more options. You can create a self-contained application package with
the -deploy command plus the -native option, for example:

javapackager -deploy -native -outdir packages -outfile ColorfulCircles 
    -srcdir dist -srcfiles ColorfulCircles.jar 
    -appclass colorfulcircles.ColorfulCircles 

Tip:

Ant tasks provide more flexibility of options than the Java Packager tool.

Create the Web Page
If your application is embedded in a web page or launched from a browser, you need
to set up the web page that provides users with access to your application. The Java
Plug-in is used to run an application embedded in the web page. Java Web Start is
used to run an application that is launched from the browser.

Chapter 1
Create the Web Page

1-5



Note:

Although available and supported in JDK 9, the Applet API and the Java Plug-
in are marked as deprecated in preparation for removal in a future release.
Alternatives for applets and embedded JavaFX applications include Java Web
Start and self-contained applications.

You can use an <applet> or <object> element or JavaScript code for applications that
are embedded in a web page and use the Java Plug-In to run. Use JavaScript code to
create the link or button that calls Java Web Start to launch an application from the
browser. The Java packaging tools generate JavaScript code for both types of
execution, which you can copy into your web page.

The HTML page generated by the packaging tools is a simple test page for your
application. It includes sample JavaScript code to launch and embed your application,
which you can copy to your own web page. To avoid manual copying, consider using
HTML templates for application packaging to insert the JavaScript code into an
existing web page.

Distribute Your Application
When you have your application package and any web pages that you are using, copy
them to the appropriate location to make your application available to users.

• If your application is embedded in a web page or launched from a browser, copy
your package and the web page to the web server from which they will be loaded.

• If your application is a desktop application, copy the application to the location
from which users will download it. Self-contained applications provide installable
packages and the required JRE, which makes it easier for users to install and run
your application.

Beyond the Basics
This topic provides the minimum information needed to deploy a simple application,
which makes use of the default processing that is provided by the packaging tools.
More advanced applications could have additional requirements, for example:

• Include a custom splash screen that is shown when your application is loaded.

• Include a custom progress bar that is shown while your application is loading.

• Use JavaScript code to communicate between your application and the web page
in which it is embedded.

• Deploy Swing and SWT Applications with Embedded JavaFX Content

• Minimize the number of security dialogs and the warnings contained within the
dialogs to help ensure users that it is safe to run your application.

The Deployment trail in the Java Tutorials also provides information to help you deploy
applications embedded in a web page or launched from a browser.

Chapter 1
Distribute Your Application

1-6

http://docs.oracle.com/javase/tutorial/deployment/index.html


Part II
Packaging

The topics in this part describe the packaging process and the packaging tools that are
available.

• Self-Contained Application Packaging

• JavaFX Ant Tasks



2
Self-Contained Application Packaging

This topic describes how to generate the package for a self-contained application. A
self-contained application contains your Java or JavaFX application and the JRE
needed to run the application. Self-contained packages can be created for distribution
to systems running Linux, macOS, and Windows.
This topic includes the following sections:

• Introduction

• Benefits and Drawbacks of Self-Contained Application Packages

• Basics

• Installable Packages

• Working Through a Deployment Scenario

Introduction
The Java packaging tools provide built-in support for several formats of self-contained
application packages. The basic package is a single folder on your hard drive that
includes all application resources and the JRE. The package can be redistributed as
is, or you can build an installable package (for example, EXE or DMG format.)

From the standpoint of process, producing a self-contained application package is
similar to producing a basic application package, with the following differences:

• Self-contained application packages must be explicitly requested by passing the
native argument to the <fx:deploy> Ant task or javapackager -deploy command.

• Self-contained application packages must be built on the operating system on
which it is intended to run. Prerequisite tools must be available to build a package
in a specific format.

• Self-contained application packages can only be built using JDK 7 Update 6 or
later. The Java Packager for JDK 9 packages applications with a JDK 9 runtime
image. To package a JDK 8 or JDK 7 JRE with your application, use the JDK 8
Java Packager.

While it is easy to create a basic self-contained application package, tailoring it to
achieve the best user experience for a particular distribution method usually requires
some effort and a deeper understanding of the topic.

Benefits and Drawbacks of Self-Contained Application
Packages

Deciding whether the use of self-contained application packages is the best way to
deploy your application depends on your requirements.

Self-contained application packages provide the following benefits:

2-1



• Users install the application with an installer that is familiar to them and launch it in
the usual way.

• You control the version of the JRE used by the application.

• Applications can be deployed on fresh systems with no requirement for the JRE to
be installed.

• Deployment occurs with no need for admin permissions when using ZIP or user-
level installers.

• File associations can be registered for the application.

• Support for secondary launchers enables a suite of applications to be bundled in a
single self-contained application package.

Self-contained application packages have the following drawbacks:

• "Download and run" user experience

Unlike web deployment, the user experience is not about "launch the application
from the web." It is more one of "download, install, and run" process, in which the
user might need to go through additional steps to get the application launched. For
example, the user might have to accept a browser or operating system security
dialog, or find and launch the application installer from the download folder.

• Larger download size

In general, the size of self-contained application packages is larger than the size of
a standalone application, because a private copy of the JRE is included.

• Package per target platform

Self-contained application packages are platform-specific and can only be
produced for the same system on which you build. To deliver self-contained
application packages on Windows, Linux, and macOS, you must build your project
on all three platforms.

• Application updates are the responsibility of developer

Web-deployed Java applications automatically download application updates from
the web as soon as they are available. The Java Autoupdate mechanism takes
care of updating the JRE to the latest secure version several times every year.
Self-contained applications do not have built-in support for automatic updates.

Basics
Each self-contained application package includes the following items:

• Application code in a set of JAR files, plus any other application resources (data
files, native libraries)

• Copy of the JRE, to be used by this application only

• Native launcher for the application, multiple launchers for a single package are
supported

• Metadata, such as icons

Multiple package formats are possible. Built-in support is provided for several types of
packages. You can also assemble your own packages by post-processing a self-
contained application packaged as a folder, for example, if you want to distribute your
application as a ZIP file.

Chapter 2
Basics

2-2



Self-Contained Application Structure
The basic form of a self-contained application package is a single folder on your hard
drive, such as the example in Figure 2-1. When any of the packages are installed, the
result is a folder with the same content.

Figure 2-1    Example of a Self-Contained Application Package

The internal structure of a self-contained application folder is platform-specific, and
might change in the future. However, the following items apply to all platforms and are
not likely to change:

• The application package is included as a folder, preserving the application
directory structure.

• A copy of the JRE is included as another folder and the JRE directory structure is
preserved.

Because directory structure is preserved, the application can load external resources
using paths relative to the application JAR or java.home system property.

Note:

The Java packaging tools use the jlink tool to generate a custom JRE for the
application. If you need something that is not included by default, then you can
copy it in as a post-processing step. For installable packages, you can do this
from the config script that is executed after populating the self-contained
application folder. See Customizing the Package Using Drop-In Resources.

Basic Build
The easiest way to produce a self-contained application is to modify the deployment
task. To request the creation of all types of self-contained application packages for the
platform on which you are running, add nativeBundles="all" to the <fx:deploy> task, as
shown in the following example.

<fx:deploy width="${javafx.run.width}" height="${javafx.run.height}"
           nativeBundles="all"

Chapter 2
Basics

2-3



           outdir="${basedir}/${dist.dir}" outfile="${application.title}">
    <fx:application name="${application.title}" mainClass="${javafx.main.class}"/>
    <fx:resources>
        <fx:fileset dir="${basedir}/${dist.dir}" includes="*.jar"/>
    </fx:resources>
    <fx:info title="${application.title}" vendor="${application.vendor}"/>
</fx:deploy>

You can also specify the exact package format that you want to produce. Use the
value image to produce a basic package, exe to request an EXE installer, dmg to request
a DMG installer, and so on. For the full list of attribute values, see the nativeBundles
attribute in the <fx:deploy> entry in the Ant Task Reference.

You can also produce native packages using the Java Packager tool. You can request
specific formats using the -native option with the -deploy command. See the 
javapackager command reference in Java Platform, Standard Edition Tools Reference.

Example 2-1 shows the use of the -native option with the -deploy command, used to
generate all applicable self-contained application packages for the BrickBreaker
application. The -deploy command requires a JAR file as input, so it assumes that
dist/BrickBreaker.jar has already been built:

Example 2-1    Java Packager Command to Generate Self-Contained Application
Packages

javapackager -deploy -native -outdir packages -outfile BrickBreaker 
    -srcdir dist -srcfiles BrickBreaker.jar -appclass brickbreaker.Main 
    -name "BrickBreaker" -title "BrickBreaker demo"

Customizing the Package Using Drop-In Resources
The packaging tools use several built-in resources to produce a package, such as the
application icon or configuration files. One way to customize the resulting package is
to substitute a built-in resource with your customized version.

The following actions are needed:

• Prepare Custom Resources

• Substitute a Built-In Resource

Prepare Custom Resources
To get more insight into what resources are being used, enable verbose mode by
adding the verbose="true" attribute to <fx:deploy>, or pass the -v option to the
javapackager -deploy command.

Verbose mode includes the following actions:

• The following items are printed:

– List of configuration resources that are used for the package that you are
generating

– Role of each resource

– Expected custom resource name

Chapter 2
Basics

2-4



• A copy of the configuration files and resources used to create the self contained
package are saved to a temporary folder. You can use these files as a starting
point for customization.

The following example shows sample output in verbose mode, with the important parts
in bold:

Using base JDK at: /Library/Java/JavaVirtualMachines/jdk1.7.0_06.jdk
  Using default package resource [Bundle config file] (add
    package/macosx/Info.plist to the class path to customize)
  Using default package resource [icon] (add package/macosx/DemoApp.icns
      to the class path to customize)
Creating app bundle: /tmp/test/TestPackage/bundles/DemoApp.app
Config files are saved to /var/folders/rd/vg2ywnnx3qj081sc5pn9_
    vqr0000gn/T/build7039970456896502625.fxbundler/macosx. Use them 
    to customize package.

Now you can grab a copy of the configuration files and tune them to your needs. For
example, you can take the configuration file Info.plist and add localized package
names.

Note:

It is recommended that you disable verbose mode after you are done
customizing, or add a custom cleanup action to remove sample configuration
files.

Substitute a Built-In Resource
Packaging tools look for customized resources on the class path before reverting to
built-in resources. The Java Packager has "." (the current working directory) added to
the class path by default. Therefore, to replace the application icon, copy your custom
icon to ./package/macosx/DemoApp.icns in the directory from which javapackager is run
(typically, the root project directory).

The class path for Java Ant tasks is defined when task definitions are loaded. You
must add an additional path to the lookup before the path ant-javafx.jar.

Example 2-2 shows how to add "." to the custom resource path.

After you provide a customized resource, verbose build output reports that the
resource is used. For example, if you added a custom icon to an application, then the
verbose output reports the addition, shown in Example 2-3.

Example 2-2    Enabling Resource Customization for JavaFX Ant Tasks

<fx:bundleArgument arg="dropinResourcesRoot" value="."/>

Example 2-3    Verbose Output After Adding a Customized Icon Resource

Using base JDK at: /Library/Java/JavaVirtualMachines/jdk1.7.0_06.jdk
  Using default package resource [Bundle config file] (add
      package/macosx/Info.plist to the class path to customize)
Using custom package resource [icon] (loaded from
    package/macosx/DemoApp.icns on class path)
Creating app bundle: /tmp/test/TestPackage/bundles/DemoApp.app

Chapter 2
Basics

2-5



Customization Options
Many of the existing JavaFX Ant elements are used to customize self-contained
application packages. Different sets of parameters are needed for different packages,
and the same element might have different roles. Table 2-1 introduces some of the
customization options and relevant attributes. See JavaFX Ant Helper Parameter
Reference for a complete description of the elements and their attributes.

Table 2-1    Customization Options with Ant Elements and Attributes

Element Desciption

<fx:application> Application descriptor. Use this to set
application attributes, such as the name and
version.

<fx:preferences> Deployment preferences for the application.
Use this to set installation options, such as
requesting a shortcut or an entry in the system
application menu.

<fx:fileset> Extension of the standard Ant FileSet type.
Use this to identify the types of resources
provided.

<fx:info> Application description for users. Use this to
define the application information shown in
system dialog boxes, such as the title and
vendor of the application.

<fx:argument> Arguments to pass to the application when it is
started.

<fx:association> Types of files to associate with the application.

<fx:jvmarg> JVM arguments to be passed to JVM and
used to run the application, for example, large
heap size.

<fx:jvmUserArg> User-changeable JVM arguments to be
passed to JVM and used to run the
application.

<fx:property> Properties to be set in the JVM running the
application.

<fx:runtime> Customization of the Java runtime generated
for the application. Use this to add modules to
the runtime, specify the location of modules,
and include command-line tools.

Platform-Specific Customization for Basic Packages
Creating and customizing the basic form of self-contained application packages is a
fairly straightforward process, but note the following points:

• Different icon types are needed for different platforms.

For example, on Windows, the .ico format is expected, on Linux, the fomat is .png,
and on macOS the format is .icns. No icon is embedded into the launcher on
Linux, instead the .desktop file references the icon.

Chapter 2
Basics

2-6



• For JavaFX applications, add the icon to the application stage to ensure that the
icon is set in the runtime. For example, add the following code to the start()
method of your JavaFX application:

stage.getIcons().add(new
     Image(this.getClass().getResourceAsStream("app.png")));

• Sign files in the output folder if you plan to distribute the application.

For example, on Windows, the launcher executable can be signed using 
signtool.exe.

macOS
The resulting package on macOS is an "application bundle".

Several configuration parameters are placed in the Info.plist file in the application
bundle and must conform to the following rules:

• Application ID (or main class name if ID is not specified) is used as 
CFBundleIdentifier.

• Application version is used as CFBundleShortVersionString.

Gatekeeper in macOS prevents execution of untrusted code by default, regardless of
whether this code is implemented in Objective-C or Java.

The user can manually enable the application to run, but this is not a perfect user
experience. To get optimal user experience, obtain a Developer ID Certificate from
Apple. The Mac bundler uses the certificate to sign the .app folder. If your local user
information differs from the name of the certificate, you might need to set the bundle
argument mac.signing-key-user-name, as shown in Example 2-4. See Developer ID and
Gatekeeper at the Apple Developer site.

Example 2-4    Example using mac.signing-key-user-name

// Using javapackager tool
 javapackager ... -Bmac.signing-key-user-name="Jane Appleseed"

// Using Ant tasks
   <fx:deploy>
      //...
<fx:bundleArgument arg="mac.signing-key-user-name" value="Jane Appleseed"/>
      //...
    </fx:deploy>

Passing Arguments to a Self-Contained Application
Arguments can be passed to a self-contained application when the application is
started from the command line. You can also define a set of arguments to pass to the
application if no arguments are provided. To define default arguments, use the -
argument option with the javapackager deploy command or the <fx:argument> element
in an Ant task when the application package is created. Arguments entered from the
command line override the default arguments. If the application is started from the
launcher icon, the default arguments are used.

Chapter 2
Basics

2-7

http://msdn.microsoft.com/en-us/library/windows/desktop/aa387764(v=vs.85).aspx
http://developer.apple.com/library/ios/documentation/general/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#/apple_ref/doc/uid/TP40009249-SW1
http://developer.apple.com/library/ios/documentation/general/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#/apple_ref/doc/uid/TP40009249-SW1
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/


Associating Files with a Self-Contained Application
The installer for a self-contained application can be set up to register file associations
for the application. The <fx:association> element is used in an Ant task to identify the
files that can be handled by the application. File associations are based on either the
file extension or MIME type.

The following example associates the application with files that have the MIME type
application/x-vnd.MyAppFile.

<fx:info title="Association example">
  <fx:association mimetype="application/x-vnd.MyAppFile" description="Sample Test 
Files">
  </fx:association>
</fx:info>

Supporting Multiple Entry Points
The package for self-contained applications can be built to support a suite of products
with more than one entry point. Each entry point can have its own shortcut or icon. The
mainClass attribute for the <fx:application> element identifies the primary entry point.
Use the <fx:secondaryLauncher> element with the <fx:deploy> task to define each
secondary entry point.

Note:

Multiple entry points are supported only for Windows and Linux applications.

The following example defines entry points for the TestSuite application for Windows.

<fx:deploy outdir="test/apps" nativeBundles="image">
    <fx:application name="TestSuite Sample"
                    mainClass="samples.TestSuite"/>

    <fx:info title="Test Suite"/>

    <fx:secondaryLauncher
        mainClass="samples.TestSuite"
        name="Suite Applications"/>
        shortcut="true"/>
 
    <fx:secondaryLauncher name="Editor">
        <fx:bundleArgument arg="icon" value="../resources/editor.ico"/>
    </fx:secondaryLauncher>
 
    <fx:secondaryLauncher name="Spreadsheet">
        <fx:bundleArgument arg="icon" value="../resources/spreadsheet.ico"/>
    </fx:secondaryLauncher>
</fx:deploy>

Chapter 2
Basics

2-8



Customization of the JRE
The Java packaging tools use the jlink tool to generate a runtime for the self-
contained application. Add command-line tools and additional modules as needed.

By default, command-line tools such as java.exe are removed from the JRE that is
bundled with self-contained application packages. To keep these tools in the
generated JRE, set the strip-native-commands attribute of the <fx:runtime> element to
false.

To minimize the size of the JRE, the jlink tool is used to generate a custom runtime
that contains only the packages needed to run the application. If additional modules
are needed, use the <fx:add-modules> element to add them to the runtime. To add
multiple modules, use a single <fx:add-modules> element with a comma-separated list
of modules, or use a separate <fx:add-modules> element for each module.

The following example includes command-line tools and adds modules from
jdk.packager.services and javafx.controls.

<fx:runtime strip-native-commands="false">
  <fx:add-modules value="jdk.packager.services,javafx.controls"/>
</fx:runtime>

Packaging for Modular Applications
Use the Java Packager tool to package modular applications as well as non-modular
applications.

Modular applications can be packaged as self-contained applications. They cannot be
packaged as Java Web Start applications. To identify the main module of a modular
application, set the module attribute of the <fx:secondaryLauncher> element.

The following example identifies the main module for an application named
HelloWorldModular.

<fx:secondaryLauncher name="HelloWorldModular"
    module="hello.world"
    mainClass="com.sample.app.HelloWorld">
</fx:secondaryLauncher>

Installable Packages
A self-contained application can be wrapped into a platform-specific installable
package to simplify distribution. Java packaging tools provide built-in support for
several formats of installable packages, depending on the availability of third-party
tools.

Tuning the user experience for the installation process is specific to the particular
installer technology, as described in other sections in this chapter. However, you must
decide what type of installer you need. The following considerations might help with
your decision:

• System-wide or per-user installation?

System-wide installation results in a package installed into a shared location and
can be used by any user on the system. Admin permissions are typically required

Chapter 2
Customization of the JRE

2-9



and additional steps are likely to be needed during the installation process, such
as an OS prompt to approve elevating installer permissions.

Per-user installation copies the package into a private user directory and does not
require admin permissions. This type of installation enables you to show as few
dialogs as possible and run the program even if the user is not eligible for admin
privileges.

Note that whenever a user- or system-level installable package is requested, the
build procedure itself does not require admin permissions.

• Do you need a click-through license?

Some installable packages support showing license text before initiating the
installation. The installation process starts only after the user accepts the license.

• What menu and desktop integration is needed?

The user should be able to launch your application easily. Therefore, having a
desktop shortcut or adding the application to the list of applications in the menu is
required.

Note that the current implementation contains many simplifying assumptions. For
example, installers never ask the user to choose the location in which to install the
package. Developers also have limited control of the installation location, and can only
specify system-wide or per-user installation.

If the default assumptions do not meet your needs, advanced customizations are
available by tuning the configuration file templates (see Customizing the Package
Using Drop-In Resources) or packaging a basic self-contained application and then
wrapping it into an installable package on your own.

Types of Installable Packages
Create installable packages for self-contained applications based on the target
operating system and the packaging tools available.

The following table shows the supported installable-package formats and the tools
needed to create them:

Table 2-2    Installable Package Formats and Tool Prerequisites

Package
format

Installation Location (Default
mode in bold)

Click-Through
License

Prerequisites

EXE Per user: %LOCALAPPDATA%
System: %ProgramFiles%

Yes (option) • Windows
• Inno Setup 5 or later

MSI Per user: %LOCALAPPDATA%

System: %ProgramFiles%

No special support • Windows
• WiX 3.0 or later

DMG Per user: user's desktop folder

System: /Applications

Yes (option) • macOS

PKG Per user: user's desktop folder

System: /Applications

Yes (option) • macOS

RPM Per user: unsupported

System: /opt

No special support • Linux
• RPMBuild

Chapter 2
Installable Packages

2-10



Table 2-2    (Cont.) Installable Package Formats and Tool Prerequisites

Package
format

Installation Location (Default
mode in bold)

Click-Through
License

Prerequisites

DEB Per user: unsupported

System: /opt

No special support • Linux
• Debian packaging

tools

EXE Package
To generate an EXE package, you must have Inno Setup 5 or later installed and
available on the PATH. To validate that it is available, try running iscc.exe from the
command line where you launch the build or from your build script.

By default, the generated package has the following characteristics:

• Admin privileges not required

• Optimized to have a minimum number of dialogs

• Referenced from the programs menu or a desktop shortcut, or both

• Launches the application at the end of installation

Figure 2-2 shows a typical dialog box for a self-contained JavaFX application being
installed on Windows.

Figure 2-2    Windows Installation Dialog for a Self-Contained JavaFX
Application

Chapter 2
Installable Packages

2-11



Customization tips:

• If you chose system-wide installation, then the user needs to have admin
permissions, and the application is not launched at the end of installation.

• A click-through license is supported. An .rtf file is required.

• The image shown in the installation dialogs can be different from the application
icon.

The current version of Inno Setup assumes the image is a bitmap file with a
maximum size of 55x58 pixels.

• For JavaFX applications, the icon can be added to the application stage to ensure
that the icon is set in the runtime.

• The resulting .exe package can be signed.

You need to get a certificate from a Trusted Certificate Authority (TSA), then use
the Windows signtool.exe utility to sign the code.

• A Windows script file can be used to fine tune the self-contained application folder
before it is wrapped into an .exe file, for example to sign the launcher executable.

The techniques for adding a custom image and providing a Windows script file are
described in Customizing the Package Using Drop-In Resources. To add an icon to
the application stage in a JavaFX application, see Platform-Specific Customization for
Basic Packages.

Note:

While the resulting package is displayed in the list of installed applications, it
does not use Windows Installer (MSI) technology and does not require the use
of GUIDs. See the Inno Setup FAQ for details.

MSI Package
MSI packages are generated using the Windows Installer XML (WiX) toolset (also
known as WiX). WiX 3.8 or later is required, and it must be available on the PATH. To
validate, try running candle /? from the command line where you launch the build or
from your build script.

By default, a generated MSI package has the following characteristics:

• Optimized for deployment using enterprise deployment tools

• Installs to a system-wide location

• No click-through UI, only a progress dialog is shown

• Referenced from the programs menu or a desktop shortcut, or both

• Removes all files in the installation folder, even if they were created outside of the
installation process. (WiX 3.5 or later is required.)

• Tries to use the application identifier as UpgradeCode.

If the application identifier is not a valid GUID, then a random GUID for UpgradeCode
is generated.

Chapter 2
Installable Packages

2-12

http://www.jrsoftware.org/ishelp/index.php?topic=setup_wizardsmallimagefile
http://www.jrsoftware.org/ishelp/index.php?topic=setup_wizardsmallimagefile
http://msdn.microsoft.com/en-us/library/aa387764.aspx
http://www.jrsoftware.org/isfaq.php#msi)
http://wixtoolset.org/
http://msdn.microsoft.com/en-us/library/aa372375(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa368767(v=vs.85).aspx


• Randomly generates ProductCode.

To use a fixed Product code or add a custom UI to the MSI package, customize the
WiX template file used by Java Packager as described in Customizing the Package
Using Drop-In Resources. For a custom UI, also see WiX documentation.

If you plan to distribute your MSI package on the network, sign it for the best user
experience.

You can also fine tune the self-contained application folder before it is wrapped into
the .msi file, for example, to sign the launcher executable.

DMG Package
By default, a DMG package provides a simple drag-and-drop installation experience. 
Figure 2-3 shows an example of the default behavior during installation.

Figure 2-3    Example of Default Installer for macOS

To customize the appearance of the installation window, you can provide a custom
background image.

If the background image has different dimensions or you need to position the icons
differently, then you must also customize the DMG setup script that is used to modify
sizes and positions of elements in the install view. See Customizing the Package
Using Drop-In Resources.

Chapter 2
Installable Packages

2-13

http://wixtoolset.org/documentation/manual/v3/wixui/wixui_customizations.html


Figure 2-4    Example of Customized Appearance of Installable Package for
macOS

To fine tune the self-contained application folder before it is wrapped, provide your
own bash script to be executed after the application folder is populated. You can use
the script for such actions as adding localization files to the package. Figure 2-4 shows
an example of a "tuned" application installer.

To create a Gatekeeper-friendly package, the application in the DMG package must
be signed. It is not necessary to sign the DMG file itself. The Mac bundler handles the
signing of your application. If your local user information differs from the name of the
certificate, you might need to set the bundle argument mac.signing-key-user-name, as
shown in Example 2-4.

To sign the application manually, you can use a technique described in macOS to
provide a configuration script that is executed after the application bundle is populated.
For the sample DemoApp, the configuration script is located at package/macosx/DemoApp-
post-image.sh and has the content shown in the following example.

echo "Signing application bundle"
#Move to the folder containing application bundle
cd ../images/dmg.image
#do sign
codesign -s "Developer ID Application" *.app
echo "Done with signing"

Chapter 2
Installable Packages

2-14



The DMG installer also supports a click-though license provided in text format. If use
of rich text format is desired, then prepare the license.plist file externally and add it to
the package using the technique described in Customizing the Package Using Drop-In
Resources.

No third party tools are needed to create a DMG package.

Linux Packages
Producing install packages for Linux assumes that the native tools needed to build
install packages are installed. For RPM packages, this typically means the RPMBuild
package and its dependencies. For DEB packages, dpkg-deb and dependencies are
needed.

No admin permissions are needed to build the package.

By default the resulting package has the following characteristics:

• Installs the application to the /opt directory

• Adds a shortcut to the application menu

• Does not have any UI for installation, which is normal behavior for Linux packages

Customization tips:

• To place the application into a specific category in the application menu, use the
category attribute of <fx:info>.

See Desktop Menu Specification, and your window manager docs for the list of
category names.

• The icon is expected to be a .png file

• Advanced customization is possible by tuning the build template files using
techniques described in Customizing the Package Using Drop-In Resources..

See the DEB/RPM packaging guides for more information about available options.

Working Through a Deployment Scenario
Consider a scenario where you have a JavaFX application with the following
characteristics:

• Uses several third-party libraries

• One of the third-party libraries uses JNI and loads a platform-specific native library
using System.loadLibrary()

• Needs a large 1Gb heap

You want to package this application as a self-contained application that does not
need admin permissions to install.

It is assumed that your application works fine as a standalone application, that the
main JAR file is built in the dist folder (using <fx:jar>) and that third-party libraries are
copied to the dist/lib directory.

One way to assemble a self-contained application package is shown in Example 2-5,
and consists of the following actions:

• Include all application JAR files.

Chapter 2
Working Through a Deployment Scenario

2-15

http://standards.freedesktop.org/menu-spec/latest/apa.html


• Add native libraries applicable to current platform as resources of type data.

Ensure that the fileset base directory is set to the folder containing the library. This
ensures that the libraries are copied to the top-level application folder.

• Request a user-level installation with <fx:preferences install="false"/>

Note that the top-level application folder is added to the library search path, and
therefore System.loadLibrary() can be used.

Example 2-5 shows an example <fx:deploy> task.

Example 2-5    Example <fx:deploy> Task

<fx:deploy nativeBundles="all" width="600" height="400"
           outdir="${basedir}/dist" outfile="NativeLibDemo">
    <fx:application name="NativeLib Demo" mainClass="${javafx.main.class}"/>
 
    <fx:resources>
        <!-- include application jars -->
        <fx:fileset dir="dist" includes="*.jar"/>       
        <fx:fileset dir="dist" includes="lib/*.jar"/>

        <!-- native libs for self-contained application -->
        <!-- assume they are stored as
                 native/windows/x86/JNativeHook.dll
                 native/linux/x86_64/libJNativeHook.so
                 .... -->
        <!-- ensure libraries are included as top level elements
                to get them on java.library.path -->
        <fx:fileset dir="${basedir}/native/${os.name}/${os.arch}"
                    type="data">
            <include name="*.dll"/>
            <include name="*.jnilib"/>
            <include name="*.so"/>
        </fx:fileset>
    </fx:resources>
 
    <!-- Custom JVM setup for application -->
    <fx:platform>
        <fx:jvmarg value="-Xmx1024m"/>
        <fx:jvmarg value="-verbose:jni"/>
        <property name="my.property" value="something"/>
    </fx:platform>
 
    <!-- request user level installation -->
    <fx:preferences install="false"/>
</fx:deploy> 

Chapter 2
Working Through a Deployment Scenario

2-16



3
JavaFX Ant Tasks

This chapter shows how to use Ant to package Java and JavaFX applications.
JavaFX Ant tasks and the Java Packager tool are the recommended ways to package
your applications.

This chapter contains the following topics:

• Requirements to Run JavaFX Ant Tasks

• JavaFX Ant Elements

• Using JavaFX Ant Tasks

• Ant Script Examples

See also the following two Ant Task Reference sections:

• JavaFX Ant Task Reference

• JavaFX Ant Helper Parameter Reference

Requirements to Run JavaFX Ant Tasks
The ant-javafx.jar file is required to use these tasks. It is located in the following
locations:

• In JDK 7 Update 6 or later, it is located in jdk_home/lib

• In a standalone JavaFX installation, it is located in javafx-sdk-home/lib

JavaFX Ant Elements
There are two categories of Ant elements: JavaFX Ant tasks and Ant helper
parameters.

JavaFX Ant Tasks

JavaFX Ant tasks perform the following tasks:

• Creating JAR files that can be double-clicked

• Creating an HTML page and deployment descriptor for Web Start applications or
applications embedded in a web page

• Digitally signing an application, when necessary

• Converting CSS files to binary format

• Assembling self-contained application packages

Elements are described in JavaFX Ant Task Reference.

3-1



Ant Helper Parameters

Ant helper parameters are used by the JavaFX Ant tasks. The helper parameters are
described in JavaFX Ant Helper Parameter Reference.

Using JavaFX Ant Tasks
To use the JavaFX Ant tasks in your Ant script, you must load their definitions. An
example is shown in the build.xml file in Example 3-1.

Notes about Example 3-1:

• Ensure that you declare the fx: namespace, shown in bold in Example 3-1,
because short names for some of JavaFX tasks are the same as those used for
some system tasks.

• The current directory (".") is added to the classpath to simplify customization using
drop-in resources. See Customizing the Package Using Drop-In Resources.

After JavaFX Ant task definitions are loaded, the javafx.ant.version property can be
used to check the version of Ant tasks APIs. Use the following list for version numbers:

• Version 1.0: shipped in the JavaFX 2.0 SDK

• Version 1.1: shipped in the JavaFX 2.1 SDK

• Version 1.2: shipped in the JavaFX 2.2 SDK and JDK 7 Update 6

Example 3-1    Load JavaFX Ant Task Definitions

<project name="JavaFXSample" default="default" basedir="."
         xmlns:fx="javafx:com.sun.javafx.tools.ant">
    <target name="default">
        <taskdef resource="com/sun/javafx/tools/ant/antlib.xml"      
                uri="javafx:com.sun.javafx.tools.ant"
                classpath=".:${JAVA_HOME}/lib/ant-javafx.jar"/>    
    </target>
</project>

Ant Script Examples
This section covers the following topics:

• Deploying the JavaFX Hello World Example

• Deploying the JavaFX Hello World Example as a Self-Contained Application

• Deploying a JavaFX Application with External JAR Files

• Overriding JVM Options for Self-Contained Applications

Deploying the JavaFX Hello World Example
Follow these steps to deploy the JavaFX Hello World example as a JAR file with an
Ant script:

1. Create a directory to contain the example application. These steps use the
directory C:\example.

2. Save Example 3-2 as C:\example\src\HelloWorld.java.

Chapter 3
Using JavaFX Ant Tasks

3-2



3. Save Example 3-3 as C:\example\build.xml.

4. In the file build.xml, specify the location of the JDK installed in your computer by
changing the value of the JAVA_HOME property. Change the highlighted text to the
full path of your JDK:

<property name="JAVA_HOME" value="C:\\Java\\jdk-9"/>

5. At a command-line prompt, change directory to C:\example. Run the following
command to compile, build, and deploy the JavaFX HelloWorld example:

ant

6. To run the example, at a command-line prompt, change directory to C:\example
\dist and run the following command:

java -jar HelloWorld.jar

Example 3-2    HelloWorld.java

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
 
public class HelloWorld extends Application {
    
    @Override
    public void start(Stage primaryStage) {
        Button btn = new Button();
        btn.setText("Say 'Hello World'");
        btn.setOnAction(new EventHandler<ActionEvent>() {
 
            @Override
            public void handle(ActionEvent event) {
                System.out.println("Hello World!");
            }
        });
        
        StackPane root = new StackPane();
        root.getChildren().add(btn);
 
        Scene scene = new Scene(root, 300, 250);
 
        primaryStage.setTitle("Hello World!");
        primaryStage.setScene(scene);
        primaryStage.show();
    }
 public static void main(String[] args) {
        launch(args);
    }
}

Example 3-3    Ant Script to Deploy JavaFX Hello World Example

<?xml version="1.0" encoding="UTF-8" ?>
 
<project name="JavaFX Hello World Example" default="default" basedir="."
  xmlns:fx="javafx:com.sun.javafx.tools.ant">
 

Chapter 3
Ant Script Examples

3-3



  <property name="JAVA_HOME" value="C:\\Java\\jdk-9"/>
  <property name="build.src.dir" value="src"/>
  <property name="build.classes.dir" value="classes"/>
  <property name="build.dist.dir" value="dist"/>
 
  <target name="default" depends="clean,compile">
 
    <taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
      uri="javafx:com.sun.javafx.tools.ant"
      classpath="${JAVA_HOME}/lib/ant-javafx.jar"/>
 
      <fx:application id="HelloWorldID"
        name="JavaFXHelloWorldApp"
        mainClass="HelloWorld"/>
 
      <fx:resources id="appRes">
        <fx:fileset dir="${build.dist.dir}" includes="HelloWorld.jar"/>
      </fx:resources>
 
      <fx:jar destfile="${build.dist.dir}/HelloWorld.jar">
        <fx:application refid="HelloWorldID"/>
        <fx:resources refid="appRes"/>
        <fileset dir="${build.classes.dir}"/>
      </fx:jar>
 
      <fx:deploy width="300" height="250"
        outdir="." embedJNLP="true"
        outfile="helloworld">
 
        <fx:application refId="HelloWorldID"/>
 
        <fx:resources refid="appRes"/>
 
        <fx:info title="JavaFX Hello World Application"
          vendor="Oracle Corporation"/>
 
      </fx:deploy>
 
  </target>
 
  <target name="clean">
    <mkdir dir="${build.classes.dir}"/>
    <mkdir dir="${build.dist.dir}"/>

    <delete>
      <fileset dir="${build.classes.dir}" includes="**/*"/>
      <fileset dir="${build.dist.dir}" includes="**/*"/>
    </delete>
 
  </target>
 
  <target name="compile" depends="clean">
 
    <javac includeantruntime="false"
      srcdir="${build.src.dir}"
      destdir="${build.classes.dir}"
      fork="yes"
      executable="${JAVA_HOME}/bin/javac"
      source="9"
      debug="on">
    </javac>

Chapter 3
Ant Script Examples

3-4



  </target>
 
</project>

Deploying the JavaFX Hello World Example as a Self-Contained
Application

To deploy the JavaFX Hello World example as a self-contained application, add the
attribute nativeBundles="all" to the element <fx:deploy> in the build.xml script:

<fx:deploy width="300" height="250"
  outdir="." embedJNLP="true"
  outfile="helloworld"
  nativeBundles="all">

Compile, build, and deploy the JavaFX Hello World example as described in the
previous section. The Ant script creates all applicable self-contained application
packages and stores them in the directory C:\example\bundles\JavaFXHelloWorldApp.
(The name JavaFXHelloWorldApp is the value of the name attribute of the
<fx:application> element.) If you are deploying the JavaFX Hello World example with
Windows, for example, the Ant script creates an application named C:\example\bundles
\JavaFXHelloWorldApp\JavaFXHelloWorldApp.exe that you can run by double-clicking it in
a file browser.

You can customize how your Ant script creates self-contained applications. See Self-
Contained Application Packaging.

Deploying a JavaFX Application with External JAR Files
The JavaFX Ensemble8 sample application requires Apache Lucene. Example 3-4
shows how to deploy Ensemble8 as a self-contained application and include the
Apache Lucene JAR files in it.

The following lines in the Ant script copy resources contained in the src directory to
the directory that contains the compiled Java class files. The resources are copied
after the Ant script compiles the sample application:

      <copy todir="${build.classes.dir}">
        <fileset dir="src/app/resources"/>
        <fileset dir="src/generated/resources"/>
        <fileset dir="src/samples/resources"/>
      </copy>

The following lines from the Ant script include the Apache Lucerne JAR files (which
are contained in the lib directory):

      <fx:resources id="appRes">
        <fx:fileset dir="${build.dist.dir}"
          includes="ensemble8.jar"/>
        <fx:fileset dir="lib"/>
        <fx:fileset dir="${build.classes.dir}"/>
      </fx:resources>
 
      <fx:jar destfile="${build.dist.dir}/ensemble8.jar">
        <fx:application refid="ensemble8"/>
        <fx:resources refid="appRes"/>
      </fx:jar>

Chapter 3
Ant Script Examples

3-5



Example 3-4    Ant Script to Deploy Ensemble8 Sample Application

<?xml version="1.0" encoding="UTF-8" ?>
 
<project name="Ensemble8 JavaFX Demo Application" default="default" basedir="."
  xmlns:fx="javafx:com.sun.javafx.tools.ant">
 
  <property name="JAVA_HOME" value="C:\\Java\\jdk-9"/>
 
  <path id="CLASSPATH">
    <pathelement location="lib/lucene-core-3.2.0.jar"/>
    <pathelement location="lib/lucene-grouping-3.2.0.jar"/>
    <pathelement path="classes"/>
  </path>
  
  <property name="build.src.dir" value="src"/>
  <property name="build.classes.dir" value="classes"/>
  <property name="build.dist.dir" value="dist"/>
 
  <target name="default" depends="clean,compile">
 
    <taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
      uri="javafx:com.sun.javafx.tools.ant"
      classpath="${JAVA_HOME}/lib/ant-javafx.jar"/>
 
      <fx:application id="ensemble8"
        name="Ensemble8"
        mainClass="ensemble.EnsembleApp"/>
 
      <fx:resources id="appRes">
        <fx:fileset dir="${build.dist.dir}" includes="ensemble8.jar"/>
        <fx:fileset dir="lib"/>
        <fx:fileset dir="${build.classes.dir}"/>
      </fx:resources>
 
      <fx:jar destfile="${build.dist.dir}/ensemble8.jar">
        <fx:application refid="ensemble8"/>
        <fx:resources refid="appRes"/>
      </fx:jar>
 
      <fx:deploy outdir="." embedJNLP="true"
        outfile="ensemble8"
        nativeBundles="all">
 
        <fx:application refId="ensemble8"/>
 
        <fx:resources refid="appRes"/>
 
        <fx:info title="Ensemble8 JavaFX Demo Application"
          vendor="Oracle Corporation"/>
 
      </fx:deploy>
 
  </target>
 
  <target name="clean">
    <mkdir dir="${build.classes.dir}"/>
    <mkdir dir="${build.dist.dir}"/>
 
    <delete>
      <fileset dir="${build.classes.dir}" includes="**/*"/>

Chapter 3
Ant Script Examples

3-6



      <fileset dir="${build.dist.dir}" includes="**/*"/>
    </delete>
 
  </target>
 
  <target name="compile" depends="clean">
 
    <javac includeantruntime="false"
      srcdir="${build.src.dir}"
      destdir="${build.classes.dir}"
      fork="yes"
      executable="${JAVA_HOME}/bin/javac"
      source="9"
      debug="on"
      classpathref="CLASSPATH">
    </javac>
    
    <!-- Copy resources to build.classes.dir -->
    
      <copy todir="${build.classes.dir}">
        <fileset dir="src/app/resources"/>
        <fileset dir="src/generated/resources"/>
        <fileset dir="src/samples/resources"/>
      </copy>
    
  </target>
 
</project>

Overriding JVM Options for Self-Contained Applications
You can override JVM options in your self-contained applications by specifying them in
a preferences node, then setting the name of this node in the app.preferences.id
system property. The following example overrides the -Xms and -Xmx JVM options
specified in <fx:jvmuserarg> elements. To verify that these options have been
overridden, the application displays the initial and maximum sizes of the memory
allocation pool (based on the values of the -Xms and -Xmx options).

1. Create a directory to contain the example application. These steps use the
directory C:\memexample.

2. Save Example 3-5 as C:\memexample\src
\MemoryExamplePreferences.java.

The following statement retrieves the java.util.prefs.Preferences node that
stores the values of the options -Xms and -Xmx in your computer:

prefs = 
Preferences.userRoot().node(System.getProperty("app.preferences.id")).node("JVMUs
erOptions");

The name of this node is app.preferences.id/JVMUserOptions. The value of the
app.preferences.id property is the value of the id attribute of the <fx:application>
element. In this example, the value of app.preferences.id is MemoryTestAppID.
When you run a self-contained application, the launcher program sets the system
property automatically. However, if you run the class directly, you must specify the
value of app.preferences.id as a system property. For example, if you run this
class from the command line, you would specify the value of app.preferences.id as
follows:

Chapter 3
Ant Script Examples

3-7



java -cp classes -Dapp.preferences.id=MemoryTestAppID

Note that in this example, the Ant build script runs the MemoryTestPreferences class
for you and sets the value of the app.preferences.id property.

For example, if you are using Microsoft Windows, then this class creates a
preferences node named Computer\HKEY_CURRENT_USER\Software\JavaSoft\Prefs
\MemoryTestAppID\JVMUserOptions in the Windows registry.

3. Save Example 3-6 as C:\memexample\src\MemoryExample.java.

4. Save Example 3-7 as C:\memexample\build.xml.

This Ant script compiles and runs the MemoryTestPreferences class, and sets the
value of the app.preferences.id property:

        <java fork="true" jvm="${env.JAVA_HOME}\bin\java"
              classname="MemoryTestPreferences" classpath="${build.classes.dir}">
            <sysproperty key="app.preferences.id" value="MemoryTestAppID"/>
        </java>

5. In the file build.xml, specify the location of the JDK installed in your computer by
changing the value of the JAVA_HOME property. Change the highlighted text to the
full path of your JDK:

<property name="JAVA_HOME" value="C:\\Java\\jdk-9"/>

6. At a command-line prompt, change directory to C:\memexample. Run the following
command to compile, build, and deploy this example:

ant

7. To run the Memory Test application, run one of the applications contained in C:
\memexample\bundles\bundles/JavaFXMemoryTestApp.

In addition to the initial and maximum sizes of the memory allocation pool, the
example displays the JVM arguments that it uses:

-Djava.library.path=C:\memexample\bundles\JavaFXMemoryTestApp\app\
-Dapp.preferences.id=MemoryTestAppID
-Xms2048m
-Xmx2048m

Note that the Ant build script uses <fx:jvmuserarg> elements to specify the initial
and maximum sizes of the memory allocation pool as 31m and 64m, respectively.
However, the Ant script in this example runs another program that stores the
preferred values of 2048m and 2048m in the Preferences node before the
application is run, so those values are used instead.

Example 3-5    MemoryExamplePreferences.java

import java.util.prefs.Preferences;
 
public class MemoryTestPreferences {
  private Preferences prefs;
 
  public void setPreferences() {
 
    // This will define a node in which the preferences can be stored
    prefs = 
Preferences.userRoot().node(System.getProperty("app.preferences.id")).node("JVMUserOp
tions");
 
    // now set the values

Chapter 3
Ant Script Examples

3-8



    prefs.put("-Xmx", "2048m");
    prefs.put("-Xms", "2048m");
 
  }
 
  public static void main(String[] args) {
    MemoryTestPreferences myPrefs = new MemoryTestPreferences();
    myPrefs.setPreferences();
  }
}

Example 3-6    MemoryExample.java

import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.geometry.HPos;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.ListView;
import javafx.scene.control.TextField;
import javafx.scene.layout.ColumnConstraints;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.stage.Stage;
 
import java.lang.management.ManagementFactory;
import java.util.prefs.BackingStoreException;
import java.util.prefs.Preferences;
 
public class MemoryTest extends Application {
 
    @Override
    public void start(Stage primaryStage) {
        String startMemory = Long.toString(Runtime.getRuntime().totalMemory());
        String maxMemory = Long.toString(Runtime.getRuntime().maxMemory());
 
        System.out.println("Start memory: " + startMemory);
 
        System.out.println("Max memory: " + maxMemory);
 
        final Label startMemoryLabel = new Label("Start memory: ");
        TextField startMemoryTextField = new TextField(startMemory);
        startMemoryTextField.setPromptText(startMemory);
 
        Label maxMemoryLabel = new Label("Max memory: ");
        final TextField maxMemoryTextField = new TextField(maxMemory);
        maxMemoryTextField.setPromptText(maxMemory);
 
        Label jvmArgumentsLabel = new Label("JVM Arguments");
        ListView<String> jvmArguments = new 
ListView<>(FXCollections.observableArrayList(ManagementFactory.getRuntimeMXBean().get
InputArguments()));
        jvmArguments.setPrefSize(450, 150);
 
        Button btn = new Button();
        btn.setText("Update Preferences");
        btn.setOnAction(event -> {

Chapter 3
Ant Script Examples

3-9



            Preferences prefs = 
Preferences.userRoot().node(System.getProperty("app.preferences.id")).node("JVMUserOp
tions");
            String start = startMemoryTextField.getText();
            if (start == null || start.isEmpty()) {
                prefs.remove("-Xms");
            } else {
                prefs.put("-Xms", start);
            }
 
            String max = maxMemoryTextField.getText();
            if (max == null || max.isEmpty()) {
                prefs.remove("-Xmx");
            } else {
                prefs.put("-Xmx", max);
            }
 
            try {
                prefs.flush();
            } catch (BackingStoreException e) {
                e.printStackTrace();
            }
        });
 
 
        GridPane grid = new GridPane();
        grid.setAlignment(Pos.CENTER);
        grid.setHgap(10);
        grid.setVgap(10);
        grid.setPadding(new Insets(25, 25, 25, 25));
        grid.getColumnConstraints().setAll(
                new ColumnConstraints(Region.USE_PREF_SIZE, 
Region.USE_COMPUTED_SIZE, Region.USE_PREF_SIZE, Priority.NEVER, HPos.RIGHT, false),
                new ColumnConstraints(Region.USE_PREF_SIZE, 
Region.USE_COMPUTED_SIZE, Integer.MAX_VALUE, Priority.ALWAYS, HPos.LEFT, true)
        );
 
        grid.addRow(0, startMemoryLabel, startMemoryTextField);
        grid.addRow(1, maxMemoryLabel, maxMemoryTextField);
        grid.addRow(2, jvmArgumentsLabel, jvmArguments);
        grid.add(btn, 1, 3);
        grid.setMinSize(Region.USE_PREF_SIZE, Region.USE_PREF_SIZE);
 
 
        Scene scene = new Scene(grid);
 
        primaryStage.setTitle("Memory test");
        primaryStage.sizeToScene();
        primaryStage.setScene(scene);
        primaryStage.show();
    }
 
    public static void main(String[] args) {
        launch(args);
    }
}

Example 3-7    Ant Script for Memory Test Example

<?xml version="1.0" encoding="UTF-8" ?>
 

Chapter 3
Ant Script Examples

3-10



<project name="JavaFX Hello World Example" default="default" basedir="."
         xmlns:fx="javafx:com.sun.javafx.tools.ant">
 
    <property environment="env"/>
    <property name="env.JAVA_HOME" value="C:\\Java\\jdk-9"/>
    <property name="build.src.dir" value="src"/>
    <property name="build.classes.dir" value="classes"/>
    <property name="build.dist.dir" value="dist"/>
 
    <target name="default" depends="clean,compile">
 
        <taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
                 uri="javafx:com.sun.javafx.tools.ant"
                 classpath="${env.JAVA_HOME}/lib/ant-javafx.jar"/>
 
      <fx:application id="MemoryTestAppID"
                        name="JavaFXMemoryTestApp"
                        mainClass="MemoryTest"/>
 
        <fx:resources id="appRes">
            <fx:fileset dir="${build.dist.dir}" includes="MemoryTest.jar"/>
        </fx:resources>
 
        <fx:jar destfile="${build.dist.dir}/MemoryTest.jar">
        <fx:application refid="MemoryTestAppID"/>
            <fx:resources refid="appRes"/>
            <fileset dir="${build.classes.dir}"/>
        </fx:jar>
 
        <fx:deploy width="300" height="250"
                   outdir="." embedJNLP="true"
                   outfile="memorytest"
                   nativeBundles="image">
 
            <fx:platform>
                <fx:jvmuserarg name="-Xms" value="31m"/>
                <fx:jvmuserarg name="-Xmx" value="64m"/>
            </fx:platform>
 
        <fx:application refId="MemoryTestAppID"/>
 
            <fx:resources refid="appRes"/>
 
            <fx:info title="JavaFX Hello World Application"
                     vendor="Oracle Corporation"/>
 
        </fx:deploy>
 
    </target>
 
    <target name="clean">
        <mkdir dir="${build.classes.dir}"/>
        <mkdir dir="${build.dist.dir}"/>
 
        <delete>
            <fileset dir="${build.classes.dir}" includes="**/*"/>
            <fileset dir="${build.dist.dir}" includes="**/*"/>
        </delete>
 
    </target>
 

Chapter 3
Ant Script Examples

3-11



    <target name="compile" depends="clean">
 
        <javac includeantruntime="false"
               srcdir="${build.src.dir}"
               destdir="${build.classes.dir}"
               fork="yes"
               executable="${env.JAVA_HOME}/bin/javac"
               source="9"
               debug="on">
        </javac>
 
        <!-- Set preferences -->
 
        <java fork="true" jvm="${env.JAVA_HOME}\bin\java"
              classname="MemoryTestPreferences" classpath="${build.classes.dir}">
            <sysproperty key="app.preferences.id" value="MemoryTestAppID"/>
        </java>
    </target>
 
    <target name="jar" depends="compile">
        <jar destfile="dist/MemoryTest.jar"
             basedir="classes"/>
    </target>
 
</project>

The UserJvmOptionsService API offers an alternative method for setting JVM options for
self-contained applications. This API can be called from the application to get the
current settings and to update the settings for the next time that the application is
started.

JavaFX Ant Task Reference
The following items comprise the main JavaFX Ant tasks:

• <fx:csstobin>

Converts CSS files to binary format for faster processing.

• <fx:deploy>

Assembles the application package for redistribution. By default, the deploy task
will generate the base application package, but it can also generate self-contained
application packages if requested.

• <fx:jar>

Creates one or more application JAR files.

• <fx:signjar>

Provides the application with a digital signature.

Note:

The <fx:signjar> task for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release. It also does not work with multi-
release JAR files. Use the standard Ant signjar task instead.

Chapter 3
JavaFX Ant Task Reference

3-12



Items are in alphabetical order.

<fx:csstobin>
Description

Converts a set of CSS files into binary form (BSS).

Parent Elements

None.

Parameters

Attribute Description Type Required?

outdir Name of the directory in which
output files are generated.

String Yes

Parameters Accepted as Nested Elements

• <fx:fileset>

<fx:csstobin> Task Usage Examples

Example 1 Convert CSS Files to Binary
This example converts all CSS files in the output tree to binary form.

<fx:csstobin outdir="build/classes">
    <fileset dir="build/classes" includes="**/*.css"/>
</fx:csstobin>

<fx:deploy>
Description

Generates a package for both web deployment and standalone applications. The
package includes a set of JAR files, a JNLP file, and an HTML file.

Parent Elements

None.

Parameters

Attribute Description Type Required?

embeddedHeight If present, this value will be
used for Javascript/HMTL code
instead of width/height. Affects
only embedded deployment
mode.

Use it if you want to specify a
relative dimension for an
embedded application.

String No

Chapter 3
JavaFX Ant Task Reference

3-13



Attribute Description Type Required?

embeddedWidth Same description as for
embeddedHeight.

String No

embedjnlp If true, embed the JNLP
descriptor into the web page.
Reduces number of network
connections to be made on
startup and helps to improve
startup time.

Boolean No

Default is
false.

extension Treat the files named in
srcfiles as extensions. If
present, only a portion of the
deployment descriptor is
generated, and the HTML file is
not generated.

Boolean No

Default is
false.

height Height of the application scene,
for embedding applications into
a web page.

String Yes

includeDT If set to true, files related to the
Deployment Toolkit will be
copied to a web-files
subdirectory of the directory
specified in outdir. This setting
is useful for offline development
but is not advised for
production.

Boolean No

Default is
false.

nativeBundles Values:

• all
• deb
• dmg
• exe
• image
• installer
• jnlp
• mac.appStore
• msi
• none
• pkg
• rpm
Value all produces all
applicable self-contained
application packages for the
platform on which the Ant tasks
are run. Value installer
produces only installable
packages, not a disk image.
Value jnlp produces only
the .jnlp and .html files for
a Java Web Start application.
Value none produces no self-
contained application packages.
Other values produce a specific
package installer.

String No

Default is
none.

Chapter 3
JavaFX Ant Task Reference

3-14



Attribute Description Type Required?

offlineAllowed If the value is true, the cached
application can operate even if
the client system is
disconnected from the network.

Boolean Default is
true.

outdir Name of the directory in which
output files are generated.

String Yes

outfile Prefix of the output files, without
the extension.

String Yes

placeholderref Placeholder in the web page
where the application will be
embedded. This is expected to
be JavaScript DOM object.

String Yes

Either
reference or
ID of
placeholder
is required.

placeholderid Used with callbacks. The ID of
the placeholder in the web page
where application will be
embedded. The JavaScript
function
document.getElementById() is
used to resolve it.

String Yes

Either the
reference or
the ID of the
placeholder
is required.

signBundle Used for self-contained
applications to request that the
bundler sign the bundle that is
generated. This attribute is
ignored by bundlers that do not
support signing. At the time of
the 8u40 release of the JDK,
only macOS bundlers support
signing.

Boolean Default
depends on
the bundler
used.

updatemode Indicates the preferences for
when checks for application
updates are performed for
embedded and Web Start
applications.

A value of always means to
always check for updates
before launching the
application.

A value of background means
to launch the application while
checking for updates in the
background.

String No

Default is
background.

width Width of the application scene,
for embedding applications into
a web page.

String Yes

Parameters Accepted as Nested Elements

• <fx:platform>

• <fx:preferences>

• <fx:application>

Chapter 3
JavaFX Ant Task Reference

3-15



• <fx:permissions>

• <fx:template>

• <fx:callbacks>

• <fx:info>

• <fx:resources>

• <fx:bundleArgument>

• <fx:secondaryLauncher>

• <fx:runtime>

<fx:deploy> Task Usage Examples

Example 1 Minimal <fx:deploy> Task
This is a simple example of an <fx:deploy> Ant task. It generates an HTML file and
JNLP file into the web-dist directory and uses Fish as the prefix for the generated files.

<fx:deploy width="600" height="400"
        outdir="web-dist" outfile="Fish" 
        offlineAllowed="false">
    <fx:info title="Sample application"/>
    <fx:application refid="myapp"/>
    <fx:resources refid="myresources"/>
</fx:deploy>  

Example 2 <fx:deploy> Task for an Application with a Preloader
The following Ant task creates a distributable package for a simple application with a
preloader. Details about the application and its resources are defined in the
<fx:application> and <resource> elements in the task.
Note that the location of the output package is defined by the outdir attribute of the
<fx:deploy> task. New files are generated using the name prefix specified in the outfile
attribute. As a result of execution of this task, the following files are created in the
web-dist folder:

• preloader.jar

• helloworld.jar

• App.jnlp

• App.html

Note:

By default, the deployment package uses auxiliary files from java.com to
support web deployment. This is the preferred way, because it enables the
application to always use the best way to deploy on the web. However, if you
want to test your application in a closed network then you can include these
files into your application package. To do this, pass includeDT="true" as an
attribute in the <fx:deploy> Ant task.

<fx:deploy width="600" height="400"
        outdir="web-dist" outfile="App">

Chapter 3
JavaFX Ant Task Reference

3-16



    <fx:info title="Sample application"/>
    <fx:application name="SampleApp" 
            mainClass="testapp.MainApp"
            preloaderClass="testpreloader.Preloader">
        <fx:param name="testVariable" value="10"/>
    </fx:application>
    <fx:resources>
        <fx:fileset requiredFor="preloader" dir="dist">
            <include name="preloader.jar"/>
        </fx:fileset>
        <fx:fileset dir="dist">
            <include name="helloworld.jar"/>
        </fx:fileset>
    </fx:resources>
</fx:deploy>

Example 3 <fx:deploy> Task with Secondary Launchers
This example creates a package for a self-contained application that contains a
secondary launcher that can be used to start the application in a memory-constrained
environment. The main launcher does not set JVM options. The secondary launcher
passes an option to limit the amount of memory used.

<fx:deploy outdir="../samples/test/ant" nativeBundles="image">
    <fx:application name="Secondary Launcher Sample"
                    mainClass="hello.Test"/>

    <fx:resources>
        <fx:fileset dir="../samples/test/resources" includes="mainApp.jar"/>
    </fx:resources>

    <fx:info title="Secondary Launcher Test"/>

    <fx:secondaryLauncher
        mainClass="hello.Test"
        name="Standard Launch"/>
 
    <fx:secondaryLauncher name="Memory Constrained">
        <fx:jvmarg="-xmx64m"/>
    </fx:secondaryLauncher>
</fx:deploy>

Example 4 <fx:deploy> Task for modular application with a custom runtime

<fx:deploy outdir="${bundles.dir}"
    outfile="MinesweeperFX"
    nativeBundles="all"
    verbose="true"

  <fx:runtime strip-native-commands="false">
    <fx:add-modules value="java.base"/>
    <fx:add-modules value="jdk.packager.services,javafx.controls"/>
    <fx:limit-modules value="java.sql"/>
    <fx:limit-modules value="jdk.packager.services,javafx.controls"/>
    <fx:module-path value="${java.home}/../images/jmods"/>
    <fx:module-path value="${build.dir/modules"/>
  </fx:runtime>

  <fx:application id="MinesweeperFX"
      name="MinesweeperFX"

Chapter 3
JavaFX Ant Task Reference

3-17



      module="fx.minesweeper"
      mainClass="minesweeper.Minesweeper"
      version="1.0">
  </fx:application>

  <fx:secondaryLauncher name="Test2"
      module="hello.world"
      mainClass="com.greetings.HelloWorld">
  </fx:secondaryLauncher>
</fx:deploy>

<fx:jar>
Description

Packages an application into a JAR file. The set of files to be included is defined by
nested <fx:fileset> parameters. The <fx:jar> task also embeds a JAR manifest into
the JAR file.

In addition to creating a JAR archive, this task also:

• Embeds the JavaFX launcher for JavaFX applications, which detects the presence
of JavaFX Runtime, sets up the environment, and executes the application.

• Creates a manifest in the JAR file.

The resulting JAR file supports launching by double-clicking.

Parent Elements

None.

Parameters

Attribute Description Type Required?

codebase Base location for all relative
URLs specified in href
attributes in the JNLP file.

String No

destfile Path to output JAR file (location
and name)

String Yes

Parameters Accepted as Nested Elements

• <fx:platform>

• <fx:fileset>

• <fx:application>

• <fx:info>

• <fx:resources>

• <fx:permissions>

<fx:jar> Usage Examples

See Example 3-3 and the following example.

Chapter 3
JavaFX Ant Task Reference

3-18



Example 1 <fx:jar> Ant Task for a Simple Application
This example shows how to use the <fx:jar> Ant task to create the main application
JAR file for a simple application without a custom preloader. The resulting JAR file
performs the following two actions:

• Starts test.MyApplication with all resources needed on the classpath when
launched as java -jar application.jar or by double-clicking the JAR file.

• Automatically detects the location of JavaFX Runtime and prompts the user to
install it if it is not available, or reports if the platform is not supported.

<!-- Expect definition of JavaFX ant tasks is already imported -->
 
<fx:jar destfile="dist/application.jar">
    <!-- Details about application -->
    <fx:application name="Sample JavaFX application"
            mainClass="test.MyApplication"/>
 
    <!-- Define what auxilary resources are needed -->
    <fx:resources>
        <fx:fileset dir="dist" includes="lib/*.jar"/>
    </fx:resources>
            
    <!-- What to include into result jar file?
         Everything in the build tree -->
    <fileset dir="build/classes"/>
 
    <!-- Customize jar manifest (optional) -->
    <manifest>
        <attribute name="Implementation-Vendor" value="Samples Team"/>
        <attribute name="Implementation-Version" value="1.0"/>
    </manifest>
</fx:jar>   

<fx:signjar>
Description

Note:

The <fx:signjar> task for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release. It also does not work with multi-
release JAR files. Use the standard Ant signjar task instead.

Digitally signs an application JAR file with a certificate.

Signs the JAR file as BLOB. In other words, instead of every entry being signed
separately, the JAR file is signed as a single binary object.

Parent Elements

None.

Chapter 3
JavaFX Ant Task Reference

3-19



Parameters

Attribute Description Type Required?

alias The alias for the key String Yes

destdir Location of output file String Yes

keypass Password for the private key String Yes

keystore Keystore file name File Yes

jar The JAR file to sign* String No

Either this
attribute or a
nested
<fx:fileset>
element is
required.

storepass Password to check integrity of the
keystore or unlock the keystore

String Yes

storetype Keystore type String No

Default is jks.

verbose Enable verbose output. Boolean No

Default is false.

*Note that:

<fx:signjar jar="path/to/jar/folder/jarname" .../>

is simply a convenience syntax for the following:

<fx:signjar ...>
    <fileset dir="path/to/jar/folder" file="jarname"/> 
</fx:signjar>

Parameters Accepted as Nested Elements

• <fx:fileset>

<fx:signjar> Usage Examples

Example 1 Sign JAR Files
The following snippet of Ant code shows how to sign JAR files using the new sign as
BLOB technique.

<fx:signjar destdir="dist"
        keyStore="sampleKeystore.jks" storePass="****"
        alias="javafx" keyPass="****">
    <fileset dir='dist/*.jar'/>
</fx:signjar>

JavaFX Ant Helper Parameter Reference
Helper parameters are types that are used by the JavaFX tasks described in JavaFX
Ant Task Reference. This reference page contains the following elements:

• <fx:add-modules>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-20



• <fx:application>

• <fx:argument>

• <fx:association>

• <fx:bundleArgument>

• <fx:callback>

• <fx:callbacks>

• <fx:fileset>

• <fx:htmlParam>

• <fx:icon>

• <fx:info>

• <fx:jvmarg>

• <fx:limit-modules>

• <fx:module-path>

• <fx:param>

• <fx:permissions>

• <fx:platform>

• <fx:preferences>

• <fx:property>

• <fx:resources>

• <fx:runtime>

• <fx:secondaryLauncher>

• <fx:splash>

• <fx:template>

Items are in alphabetical order.

<fx:add-modules>
Description

List of modules to add to the runtime generated for a self-contained application. All
modules can be added in a single instance of <fx:add-modules> using a comma-
separated list, or an instance of <fx:add-modules> can be used for each module to add.

Parent Elements

• <fx:runtime>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-21



Parameters

Attribute Description Type Required?

value One or more modules to include
in the runtime. For more than one,
separate the modules with a
comma.

String No

Parameters Accepted as Nested Elements

None.

<fx:add-modules> Usage Examples

Example 1 Include modules from jdk.packager.services and javafx.controls in the
runtime
Use a single instance of <fx:add-modules>:

<fx:runtime>
  <fx:add-modules value="jdk.packager.services,javafx.controls"/>
</fx:runtime>

Use an instance of <fx:add-modules> for each module:

<fx:runtime>
  <fx:add-modules value="jdk.packager.services"/>
  <fx:add-modules value="javafx.controls"/>
</fx:runtime>

<fx:application>
Description

Basic application descriptor. It defines the main components and default set of
parameters of the application.

Parent Elements

• <fx:deploy>

Parameters

Attribute Description Type Required?

daemon Indicates if the application is
installed as a daemon or a
service.

Boolean No

Default value is
false.

id Application ID that can be
used to get a JavaScript
reference to the application in
HTML. The same ID can be
used to refer to an application
object in the Ant task (using
refid).

String No

Chapter 3
JavaFX Ant Helper Parameter Reference

3-22



Attribute Description Type Required?

mainClass Qualified name of the main
application class, which should
extend
javafx.application.Applica
tion

String Yes

module Main module of a modular
application. This is used as the
default root module when
constructing the application's
initial module graph.

String Yes, if bundling
a modular
application.
Invalid if the
application is
not modular.

name Short name of the application.
For self-contained
applications, also defines the
name of the output package.

String No

Default value is
derived from
the main
application
class.

preloaderClass Qualified name of the
preloader class, which should
extend
javafx.application.Preload
er

String No

Default is the
preloader that
is shipped with
the JavaFX
Runtime.

refid* -- Reference No

toolkit Indicates your preference for
the application to use a
specific UI toolkit. Possible
values:

• fx
• swing

String No

Default value is
fx.

version Version of the application
being packaged.

String No

Default value is
1.0.

* If refid is used, then none of the other parameters can be specified.

Parameters Accepted as Nested Elements

• <fx:argument>

• <fx:htmlParam>

• <fx:param>

<fx:application> Usage Examples

Example 1 Application description for non-modular application

<fx:application id="HelloWorldID"
    name="JavaFXHelloWorldApp"
    mainClass="HelloWorld"/>        

Chapter 3
JavaFX Ant Helper Parameter Reference

3-23



Example 2 Application description for modular application

<fx:application id="MinesweeperFX"
    name="MinesweeperFX"
    module="fx.minesweeper"
    mainClass="minesweeper.Minesweeper"/>        

See Example 3-3 for an example of a complete ant script.

<fx:argument>
Description

An unnamed argument that is inserted in the <fx:argument> element in the deployment
descriptor. Multiple arguments are added to the list of arguments in the same order as
they are listed in the Ant script.

Parent Elements

• <fx:application>

Parameters

None.

Parameters Accepted as Nested Elements

None.

<fx:argument> Usage Examples

Example 1 Passing Various Unnamed Arguments

<fx:application name="Sample app"
        mainClass="test.MyApplication">
    <!-- unnamed arguments -->
    <fx:argument>Something</fx:argument>
    <!-- value with spaces that are generated at build time -->
    <fx:argument>JRE version: ${java.version}</fx:argument>
    <!-- example of value using a special character -->
    <fx:argument>true &amp; false</fx:argument>
</fx:application> 

<fx:association>
Description

Associates file extensions or MIME types with a self-contained application. Multiple
instances of this element are supported.

Parent Element

• <fx:info>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-24



Parameters

Attribute Description Type Required?

description Description of the
types of tiles that are
associated with the
application. If no
description is
provided, then
application-name File
is used.

String No

extension One or more file
extensions to
associate with the
application. Separate
values with a space,
for example, aaa bbb
ccc. Wild card
symbols are not
allowed.

String Depends on the
bundler1

mimetype MIME type of the files
to associate with the
application. Wild card
symbols are not
allowed. Only one
value is allowed on
Windows, multiple
values separated by a
space can be provided
for Linux or macOS.

String Depends on the
bundler2

icon Name of the file that
contains the icon for
files associated with
this application. For
Windows the icon
format must be .ico,
for Linux the format
must be .png, for
macOS the format
must be .icns. If no
file name is provided,
then the icon for the
application is used.

String No

1 Required on Windows. Either extension or mimetype must be provided on macOS.
2 Required on Linux. Either extension or mimetype must be provided on macOS.

Parameters Accepted as Nested Elements

None.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-25



<fx:association> Usage Example

Example 1 Associate Files with a Self-Contained Application
This example associates a self-contained application on Windows with files that have
the file extension .aaa or .bbb. and provides a description and icon.

<fx:info title="Association example">
  <fx:association extension="aaa bbb" description="MyApp Data Files"
      icon="MyApp.ico">
  </fx:association>
</fx:info>

<fx:bundleArgument>
Description

Specifies an argument for the bundler that is used to create self-contained
applications. Each type of bundler has its own set of arguments.

Parent Elements

• <fx:deploy>

Parameters

Attribute Description Type Required?

arg Name of bundler argument String Yes

value Value of bundler argument String Yes

Arguments for Self-Contained Application Bundlers

Each type of bundler (macOS, Linux, and Windows) has its own set of arguments.

General Bundler Arguments

dropinResourcesRoot
Directory in which to look for bundler-specific drop-in resources. For example, on
macOS, to look in the current directory for the Info.plist file, use the following:

<fx:bundleArgument arg="dropinResourcesRoot" value="."/>

The file is then found in the current directory: package/macosx/Info.plist.

preferencesID
ID of a <fx:preferences> element to check for JVM options that the user can override.

macOS Application Bundler Arguments

icon
The path to the default icon to use for launchers and other assists. The file format
is .icns.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-26



mac.bundle-id-signing-prefix
Prefix that is applied to the signed binary when binaries that lack property list files
(plists, which use the extension .plist) or existing signatures are found inside the
bundles.

mac.category
Category for the application. The category must be in the list of categories found on
the Apple Developer website.

mac.CFBundleIdentifier
Value stored in the info.plist file for CFBundleIdentifier. This value must be globally
unique and contain only letters, numbers, dots, and dashes. Reverse DNS order is
recommended, for example, com.example.application.my-application.

mac.CFBundleName
Name of the application as it appears on the Mac Menu Bar. A name of less than 16
characters is recommended. The default is the name attribute of the <fx:application>
element.

mac.CFBundleVersion
Version number for the application, used internally. The value must be at least one
integer and no more than three integers separated by periods (.) for example, 1.3 or
2.0.1. The value can be different than the value for the version attribute of the
<fx:application> element. If the version attribute is specified with a valid value and
the mac.CFBundleVersion argument is not specified, then the value for the version
attribute is used. If neither value is specified, 100 is used as the version number.

mac.signing-key-developer-id-app
Name of the signing key used for Developer ID or Gatekeeper signing. If you imported
a standard key from the Apple Developer Website, then that key is used by default. If
no key can be identified, then the application is not signed.

macOS DMG (Disk Image) Bundler Arguments

licenseFile
Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources.

mac.CFBundleVersion
Version number for the application, used internally. The value must be at least one
integer and no more than three integers separated by periods (.) for example, 1.3 or
2.0.1. The value can be different than the value for the version attribute of the
<fx:application> element. If the version attribute is specified with a valid value and
the mac.CFBundleVersion argument is not specified, then the value for the version
attribute is used. If neither value is specified, 100 is used as the version number.

mac.dmg.simple
Flag that indicates if DMG customization steps that depend on executing AppleScript
code are skipped. Set to true to skip the steps. When set to true, the disk window
does not have a background image, and the icons are not moved into place. If the
systemWide argument is also set to true, then a symbolic link to the root Applications
folder is added to the DMG file. If the systemWide argument is set to false, then only
the application is added to the DMG file, no link to the desktop is added.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-27



macOS PKG Bundler Arguments

licenseFile
Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources.

mac.CFBundleVersion
Version number for the application, used internally. The value must be at least one
integer and no more than three integers separated by periods (.) for example, 1.3 or
2.0.1. The value can be different than the value for the version attribute of the
<fx:application> element. If the version attribute is specified with a valid value and
the mac.CFBundleVersion argument is not specified, then the value for the version
attribute is used. If neither value is specified, 100 is used as the version number.

mac.signing-key-developer-id-installer
Name of the signing key used for Developer ID or Gatekeeper signing. If you imported
a standard key from the Apple Developer Website, then that key is used by default. If
no key can be identified, then the application is not signed.

Mac App Store Bundler Arguments

mac.app-store-entitlements
Location of the file that contains the entitlements that the application operates under.
The file must be in the format specified by Apple. The path to the file can be specified
in absolute terms, or relative to your Ant file. If no entitlements are specified, then the
application operates in a sandbox that is stricter than the typical applet sandbox, and
access to network sockets and all files is prevented.

mac.CFBundleVersion
Version number for the application, used internally. The value must be at least one
integer and no more than three integers separated by periods (.) for example, 1.3 or
2.0.1. The value can be different than the value for the version attribute of the
<fx:application> element. If the version attribute is specified with a valid value and
the mac.CFBundleVersion argument is not specified, then the value for the version
attribute is used. If neither value is specified, 100 is used as the version number. If
this version is an upgrade for an existing application, the value must be greater than
the previous version number.

mac.signing-key-app
Name of the application signing key for the Mac App Store. If you imported a standard
key from the Apple Developer Website, then that key is used by default. If no key can
be identified, then the application is not signed.

mac.signing-key-pkg
Name of the installer signing key for the Mac App Store. If you imported a standard
key from the Apple Developer Website, then that key is used by default. If no key can
be identified, then the application is not signed.

Linux Bundler Arguments

icon
The path of the default icon to use for launchers and other assists. The file format
is .png.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-28



linux.bundleName
Name of the RPM or DEB package to create.

Windows EXE and MSI Bundler Arguments

icon
The path of the default icon to use for launchers and other assists. The file format
is .ico.

licenseFile
Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources.

win.menuGroup
Menu group in which to install the application when the menu attribute of the 
<fx:preferences> element is true. This argument is ignored when menu is false.

<fx:bundleArgument> Usage Example

The following example specifies that the generated Windows Installer Package (MSI
file) create a Start Menu shortcut in a menu group named Sample Applications. Note
that you must specify that the bundler create an MSI file with the nativeBundles
attribute of the <fx:deploy> element.

<fx:deploy outdir="." outfile="helloworld" nativeBundles="msi">
    <fx:platform basedir="${JAVA_HOME}"/>
    <fx:application refId="HelloWorldID"/>
    <fx:resources refid="appRes"/>
    <fx:info title="Hello World Example" vendor="Oracle Corporation"/>
    <fx:bundleArgument arg="win.menuGroup" value="Sample Applications"/>
</fx:deploy>

<fx:callback>
Description

Defines a JavaScript callback that can be used to customize user experience.

Parent Elements

• <fx:callbacks>

Parameters

Attribute Description Type Required?

name Name of the event for callback. String Yes

refid* -- Reference No

* If refid is used, then none of the other parameters can be specified.

Parameters Accepted as Nested Elements

<TEXT>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-29



<fx:callback> Usage Examples

Example 1 A Callback Calling a JavaScript Function
In this example, a callback is used to create an HTML splash screen for an application
embedded in a web page. When the event onGetSplash is triggered, the JavaScript
function customGetSplash is executed.

<fx:callbacks>
    <fx:callback name="onGetSplash">customGetSplash</fx:callback>
</fx:callbacks>

Example 2 A Callback with JavaScript Inserted
In this example, the callback is defined with JavaScript code in the <fx:callback>
element itself.

<fx:callbacks>
    <fx:callback name="onLoadHandler">
        function () {perfLog(0, "onLoad called");}
    </fx:callback>
</fx:callbacks>

Example 3 Multiple Callbacks

<fx:callbacks>
    <fx:callback name="onJavascriptReady">callAppFunction</fx:callback>
    <fx:callback name="onGetSplash">function(id) {}</fx:callback>
 </fx:callbacks>   

<fx:callbacks>
Description

Collection of JavaScript callbacks to be used to customize the user experience.

Parent Elements

• <fx:deploy>

Parameters

Attribute Description Type Required?

refid* -- Reference No

* If refid is used, then none of the other parameters can be specified.

Parameters Accepted as Nested Elements

• <fx:callback>

<fx:callbacks> Usage Examples

See the examples for <fx:callback>.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-30



<fx:fileset>
Description

Extension of the standard Ant FileSet type, which provides the means to specify
optional meta information about a selected set of files. This includes:

• Type of resource (see the type attribute)

• Operating system and architecture for which this resource is applicable

• When this resource is needed, which helps to optimize loading order

Depending on type, the resource might not be used by the enclosing task.

A fileset of type "jar" is expected to contain a set of JAR files to be added to the
classpath.

Resource of type "native" is expected to be a JAR file with a set of native libraries. In
most of cases, it makes sense to set the operating system and architecture for this
resource too.

Resources of type "jnlp" are expected to contain JNLP files defining external JNLP
extensions.

Filesets of type "license" can contain arbitrary files, but additional restrictions can be
applied when they are actually used (for example, on Mac it has to be a plain text file,
and on Windows it needs to be RTF).

Filesets of type "data" can contain arbitrary files.

Parent Elements

• <fx:jar>

• <fx:resources>

Parameters

Attribute Description Type Required?

arch

(used only when
<fx:fileset> is
nested under
<fx:resources>

Specifies the architecture for
which these resources should
be considered.

String No

Default is
any.

dir Specifies the root directory that
contains the files used in the
task.

String Yes

excludes Specifies files in the dir
directory that are excluded from
the task. Use an asterisk (*) as
a wild card to match multiple
files, for example, *test*.

String No

Chapter 3
JavaFX Ant Helper Parameter Reference

3-31



Attribute Description Type Required?

includes Specifies files in the dir
directory that are included for
the task. Use an asterisk (*) as
a wild card to match multiple
files, for example, **/*.jar.

String No

os

(used only when
<fx:fileset> is
nested under
<fx:resources>

Specifies the operating systems
for which these resources
should be considered.

String No

Default is
any.

requiredFor

(used only when
<fx:fileset> is
nested under
<fx:resources>

Defines when resources are
needed (affects loading
priority). Supported values are:

• preloader - resources are
needed to launch the
preloader (first thing to be
executed)

• startup - resources are
needed to launch the
application.

• runtime - resources are
not critical to launch the
application but may be
needed later.

String No

Default is
startup.

type

(used only when
<fx:fileset> is
nested under
<fx:resources>

Type of the resources in the
set. Supported values are:

• auto for autodetect
• data
• jar

• jnlp

• license
• native for JAR files

containing native libraries
• icon

String No

Default is to
guess based
on extension.

* If refid is used, then none of the other parameters can be specified.

Parameters Accepted as Nested Elements

None (except standard Ant elements).

<fx:htmlParam>
Description

Parameter to be passed to the embedded or Web Start application from the HTML
page. The value of the parameter can be calculated at runtime using JavaScript.

Parent Elements

• <fx:application>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-32



Parameters

Attribute Description Type Required?

escape Defines how to interpret the
value for the values that are
passed—as string literal (true)
or JavaScript variable (false).

Boolean No

Default is
true,
meaning
value is
treated as
string literal.

name Name of the parameter to be
passed to the embedded or
Web Start application from the
HTML page.

String Yes

value Value of the parameter. Could
also be the name of a
JavaScript variable whose
value is expected to be passed
as parameter.

For JavaScript variables,
ensure escape is set to false.

String Yes

Parameters Accepted as Nested Elements

None

<fx:htmlParam> Task Usage Examples

Example 1 Various Parameters Passed from HTML Page

<fx:application name="Sample app"
        mainClass="test.MyApplication">
    <!-- Parameters passed from HTML page. Only applicable 
         for embeddeded and Web Start applications and unused when
         run in a standalone and self-contained context.  -->
    <!-- Parameter with name 'fixedParam', whose value is string 
        '(new Date()).getTime()' -->
    <htmlParam name="fixedParam"
           value="(new Date()).getTime()"/>
    <!-- Parameter with name 'dynamicParam', whose value will be 
         the timestamp of the moment when the application is added  
         to the web page (value will be assigned the result 
         of execution of JavaScript code) -->
    <htmlParam name="dynamicParam" escape="false"
            value="(new Date()).getTime()"/>
</fx:application> 

<fx:icon>
Description

Passes an icon to the <fx:deploy> task, other than a splash screen image.

The icon specified in this element is used for Web Start and desktop applications.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-33



Note that in JavaFX 2.2, only icons of type default are used for self-contained
applications. For details on how to customize the icon for self-contained applications,
see Customizing the Package Using Drop-In Resources.

Parent Elements

• <fx:info>

Parameters

Attribute Description Type Required?

depth Color depth of the image in bits-
per-pixel. Common values are
8, 16, and 24.

String No

href Location of image.

For self-contained applications,
the supported graphic formats
depend on the operating
system:

• macOS: .icns
• Linux: .png
• Windows: .ico
Note that if you specify your
own icon for a self-contained
application, the values of the
attributes height, width, and
depth are not used. Ensure that
the size and the color depth of
your custom icons correspond
to what your operating system
expects.

For Web Start applications, the
supported graphic formats
are .gif, .jpg, .png, and .ico.

String Yes

height Image height in pixels String No

Chapter 3
JavaFX Ant Helper Parameter Reference

3-34



Attribute Description Type Required?

kind Icon type. Supported values
are:

• default

• disabled

• rollover

• selected

• shortcut

For Web Start applications, this
attribute corresponds to the
kind attribute in the icon
element of a JNLP file.

For desktop applications, if this
attribute is not specified or set
as default, then the icon
specified is the icon of the
launcher (.exe file for
Windows, .app file for macOS),
the icon in the taskbar or dock,
and in some instances the icon
for the installer package (such
as a DMG package).

String No

Default value
is default.

width Image width in pixels String No

Parameters Accepted as Nested Elements

None.

<fx:icon> Usage Examples

Example 1 Use of <fx:icon>

<fx:info title="Sample application">
    <!-- icon to be used by default for anything but splash -->
    <fx:icon href="shortcut.ico" kind="shortcut"
            width="32" height="32" depth="8"/> 
</fx:info> 

<fx:info>
Description

Application description for users. These details are shown in the system dialog boxes,
if they need to be shown.

Parent Elements

• <fx:deploy>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-35



Parameters

Attribute Description Type Required?

category Application category. Creates a
link to an application in a
specified category. Semantics
of the value depends on the
format of the package.

For example:

• For a self-contained
application on Linux, it is
used to define the
application menu category
where the application is
listed.

• On Mac: Creates key in
info.plist

<key>LSApplicationCatego
ryType</key>
<string>unknown</string>

• On Windows creates a
group, for instance, if you
specify "My Music" it will
create your app in C:
\ProgramData
\Microsoft\Windows
\Start Menu
\Programs\My Music

String No

copyright Short copyright statement String No

description A short statement describing
the application.

String No

license License type (for example,
GPL). As of JavaFX 2.2, this
attribute is used only for Linux
bundles.

String No

title Title of the application String Yes

vendor Provider of the application String Yes

Parameters Accepted as Nested Elements

• <fx:icon>

• <fx:splash>

<fx:info> Usage Examples

Example 1 <fx:info> Parameter Used in <fx:deploy> Task

<fx:info vendor="Uncle Joe" description="Test program"/>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-36



<fx:jvmarg>
Description

The JVM argument to be set in the JVM, where the application is executed. Can be
used multiple times. Note that you do not need to additionally escape values if they
contain space characters.

Parent Elements

• <fx:platform>

Parameters

Attribute Description Type Required?

value Value of JVM argument. String Yes

Parameters Accepted as Nested Elements

None.

<fx:jvmarg> Usage Examples

See Example 2, <fx:platform> Parameter to Specify JVM Options.

<fx:jvmuserarg>
Description

The user overridable JVM argument to be set in the JVM, where the application is
executed. Can be used multiple times. Note that you do not need to additionally
escape values if they contain space characters.

Parent Elements

• <fx:platform>

Parameters

Attribute Description Type Required?

value Value of JVM argument. String Yes

Parameters Accepted as Nested Elements

None.

<fx:jvmuserarg> Usage Examples

See Example 2, <fx:platform> Parameter to Specify JVM Options.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-37



<fx:limit-modules>
Description

Limit the set of observable modules to those in the transitive closure of the list
provided plus the main module, if any, plus any further modules specified in the
<fx:add-modules> element.

Parent Elements

• <fx:runtime>

Parameters

Attribute Description Type Required?

value Comma-separated list of modules
used to limit the universe of
observable modules.

String No

Parameters Accepted as Nested Elements

None.

<fx:limit-modules> Usage Examples

Example 1 Limit observable modules tojdk.packager.services and javafx.controls

<fx:limit-modules value="jdk.packager.services,javafx.controls"/>

<fx:module-path>
Description

Path to the application modules to include in the generated runtime.

Parent Elements

• <fx:runtime>

Parameters

Attribute Description Type Required?

value List of module locations. On Linux
and macOS, use a colon (:) to
separate paths. On Windows, use
a semicolon (;).

String No

Parameters Accepted as Nested Elements

None.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-38



<fx:module-path> Usage Examples

Example 1 On Linux, locate application modules in ${java.home}/../images/jmods
and ${build.dir}/modules

<fx:runtime>
   <fx:module-path value="${java.home}/../images/jmods:${build.dir}/modules"/>
</fx:runtime>

<fx:param>
Description

Parameter to be passed to the application (embedded into application package).

This tag has no impact on standalone applications, including self-contained
applications.

Parent Elements

• <fx:application>

Parameters

Attribute Description Type Required?

name Name of parameter String Yes

value Value of parameter String Yes

Parameters Accepted as Nested Elements

None.

<fx:param> Task Usage Examples

Example 1 Passing Various Types of Parameters

<fx:application name="Sample app"
        mainClass="test.MyApplication">
    <!-- parameter with name 'simpleParam' and fixed string value-->
    <param name="simpleParam" value="something"/>
    <!-- parameter with name 'complexParam' with value generated 
         at build time -->
    <param name="complexParam" value="Compiled by ${java.version}"/>
    <!-- parameter with name 'novalueParam' and no value -->
    <param name="novalueParam"/>
</fx:application> 

<fx:permissions>
Description

Definition of security permissions needed by application. By default, the application
runs in the sandbox. Requesting elevated permissions requires signing the application
JAR files.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-39



This option has no impact on standalone applications, including self-contained
applications.

Parent Elements

• <fx:deploy>

• <fx:jar>

Parameters

Attribute Description Type Required?

elevated If set to false, the application runs
in the sandbox.

Boolean No

Default is false.

Parameters Accepted as Nested Elements

None.

<fx:permissions> Usage Examples

Example 1 Run application with elevated permissions

<fx:permissions elevated="true"/>

<fx:platform>
Description

Defines application platform requirements.

Parent Elements

• <fx:deploy>

• <fx:jar>

Parameters

Attribute Description Type Required?

refid* -- Reference No

j2se Minimum version of JRE
required by the application.

String No

Default is
any JRE
supporting
JavaFX.

* If refid is used, then none of the other parameters can be specified.

Parameters Accepted as Nested Elements

• <fx:jvmarg>

• <fx:property>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-40



<fx:platform> Usage Examples

Example 1 <fx:platform> Parameter to Specify Version
In this example, the application needs JRE version 9.0 or later.

<fx:platform j2se="9.0"/>

Example 2 <fx:platform> Parameter to Specify JVM Options
In this example, the application needs JRE version 9.0 or later and needs to run in a
JVM launched with "-Xmx400 -verbose:jni -Dpurpose="sample value".

<fx:platform j2se="9.0">
    <fx:jvmarg value="-Xmx400m"/>
    <fx:jvmarg value="-verbose:jni"/>
    <property name="purpose" value="sample value"/>
</fx:platform>

Example 3 <fx:platform> Parameter to Specify User Overridable JVM Options
In this example, -Xmx768m is passed as a default value for heap size. The user can
override this value in a user configuration file.

            <fx:platform>
              <fx:jvmuserarg name="-Xmx" value="768m" />
            </fx:platform>

<fx:preferences>
Description

Deployment preferences for the application. Preferences can be expressed but may
not necessarily be satisfied, for example in the following cases:

• The packager may ignore a preference if it is not supported for a particular
execution mode.

• JRE may ignore it if it is not supported.

• The user may reject a request, for example if he is prompted whether a desktop
shortcut can be created.

Parent Elements

• <fx:deploy>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-41



Parameters

Attribute Description Type Required?

install Install true means that the
application is installed for the
system and false means the
application is installed for the
current user only.

For self-contained applications,
true indicates a developer
preference that the application
package should perform a
system-wide installation. If
false, then a package is
generated for per-user
installation.

This value is ignored if the
packager does not support
different types of install
packages for the requested
package format.

Boolean No

For Web Start
and
embedded
applications,
default is
false.

For self-
contained
applications,
default value
is different for
various
package
formats.

installdirChooser If true, then a dialog is shown
for the user to choose the
directory in which the
application is installed. If false,
then the install attribute is
used to determine where the
application is installed.

Boolean No

Default is
false.

menu If true, then the application
requests to add an entry to the
system application menu.

Boolean No

Default is
false.

refid* -- Reference No

shortcut If true, then application
requests a desktop shortcut to
be created.

Boolean No

Default is
false.

* If refid is used, then none of the other parameters can be specified.

Parameters Accepted as Nested Elements

None.

<fx:preferences> Usage Examples

Example 1 <fx:preferences> Parameter to Add a Desktop Shortcut
This example shows a request to create a desktop shortcut.

<fx:preferences id="p1" shortcut="true"/>

Example 2 <fx:preferences> Parameter to Mark as Installed
This example does the following:

Chapter 3
JavaFX Ant Helper Parameter Reference

3-42



• It requests creation of a web deployment descriptor that will add the application to
the Applications Menu and mark it as installed (in other words, the application will
be listed in Add/Remove programs.)

• If self-contained bundles are created, then they will be installed system-wide and
will create an application entry in the Applications menu.

<fx:preferences shortcut="false" install="true" menu="true"/>

Example 3 Using a refid to the <fx:preferences> Parameter
This example uses a reference to the <fx:preferences> parameter in Example 1,
<fx:preferences> Parameter to Add a Desktop Shortcut to create the shortcut.

<fx:resource refid="p1"/>

<fx:property>
Description

Optional element and can be used multiple times. Java property to be set in the JVM
where the application is executed.

Parent Elements

• <fx:platform>

Parameters

Attribute Description Type Required?

name Name of property to be set. String Yes

value Value of property to be set. String Yes

Parameters Accepted as Nested Elements

None.

<fx:resources>
Description

The collection of resources used by the application. Defined as a set of JavaFX
FileSet filters. Could be reused using id or refid.

Parent Elements

• <fx:deploy>

• <fx:jar>

Parameters

Attribute Description Type Required?

id ID that can be referred from
another element with a refid
attribute.

String No

Chapter 3
JavaFX Ant Helper Parameter Reference

3-43



Attribute Description Type Required?

refid* -- Reference No

* If refid is used, then none of the other parameters can be specified.

Parameters Accepted as Nested Elements

• <fx:fileset>

<fx:resources> Usage Examples

Example 1 <fx:resources> Parameters Used with id and refid Attributes
In this example, both <fx:resources> elements define the collection, consisting of
s.jar in the dist directory. The first <fx:resources> element uses an id attribute,
and the second <fx:resources> element refers to the first with the refid attribute.

<fx:resources id="aaa">
    <fx:fileset dir="dist" includes="s.jar"/>
</fx:resources>
<fx:resources refid="aaa"/>

Example 2 Using <fx:resources> for Extension Descriptors
If you mix signed and unsigned JAR files, use an additional <fx:deploy> Ant task to
generate an extension descriptor for each JAR file, and refer to the extension
descriptors by treating them as resources in the main file, as shown in this example.

<!-- Prepare extension -->
<fx:deploy extension="true"
        outdir="dist" outfile="other">
    ...
<fx:deploy>
 
<!-- Use it in the main descriptor -->
<fx:deploy outdir="web-dist" ...>
    ...
    <fx:resources>
        <fx:fileset dir="dist" includes="other.jnlp"/>
            ...
    </fx:resources>
<fx:deploy>

Additional examples are available in Self-Contained Application Packaging.

<fx:runtime>
Description

Runtime generated for your self-contained application. The jlink tool is used to
generate a runtime that contains only the packages that the application needs to run,
and optionally, command-line tools such as java.exe.

The Java Packager for JDK 9 generates a JDK 9 runtime image. To package a JDK 8
or JDK 7 JRE with your application, use the JDK 8 Java Packager.

Parent Elements

• <fx:deploy>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-44



Parameters

Attribute Description Type Required?

strip-native-commands If set to true, command-line tools
such as java.exe are removed
from the generated runtime. If set
to false, command-line tools are
included in the generated runtime.

Boolean No

Default is true.

Parameters Accepted as Nested Elements

• <fx:add-modules>

• <fx:limit-modules>

• <fx:module-path>

<fx:runtime> Usage Examples

Example 1 Generate a runtime that contains command line tools

<fx:runtime strip-native-commands="false"/>

Example 2 Include modules from jdk.packager.services and javafx.controls in the
runtime

<fx:runtime>
  <fx:add-modules value="jdk.packager.services,javafx.controls"/>
</fx:runtime>

Example 3 Include modules from jdk.packager.services and provide the location
of application modules

<fx:runtime>
  <fx:add-modules value="jdk.packager.services"/>
  <fx:module-path value="${java.home}/../images/jmods"/>
  <fx:module-path value="${build.dir}/modules"/>
</fx:runtime>

<fx:secondaryLauncher>
Description

Identifies a secondary entry point for a self-contained application and the main module
for a modular application. This parameter is ignored for standalone applications,
applications embedded in a web page, or applications launched from a browser.

This parameter is valid only for Windows and Linux applications.

Parent Elements

• <fx:deploy>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-45



Parameters

Attribute Description Type Required

appDescription Brief description of the
application.

String No

icon Path to the icon file for
the application.

String No

mainClass Qualified name of the
main application class.

String No

menu Flag that indicates if
the application is
added to the Start
menu.

Either the menu
attribute or shortcut
attribute must be set
to true. If both
attributes are set to
false, then the
application is added to
the Start menu.

Boolean No

Default is true.

module Main module of a
modular application.
This is used as the
default root module
when constructing the
application's initial
module graph.

String Yes, if bundling a
modular application.
Invalid if the
application is not
modular

name Name of the launcher
that is used to start
the application.

String Yes

shortcut Flag that indicates if a
shortcut to the
application is added to
the desktop.

Either the menu
attribute or shortcut
attribute must be set
to true. If both
attributes are set to
false, then the
application is added to
the Start menu.

Boolean No

Default is false.

title Title of the application. String No

vendor Name of the vendor
that provided the
application.

String No

version Version of the
application.

String No

Parameters Accepted as Nested Elements

• <fx:argument>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-46



• <fx:bundleArgument>, only the icon argument is valid when used with
<fx:secondaryLauncher>

• <fx:jvmarg>

• <fx:jvmuserarg>

• <fx:property>

<fx:secondaryLauncher> Usage Example

Example 1 Deploy task for non-modular application with secondary launchers
See Example 3, <fx:deploy> Task with Secondary Launchers.

Example 2 Secondary launcher for modular application

<fx:secondaryLauncher name="HelloWorldModular"
    module="hello.world"
    mainClass="com.sample.app.HelloWorld">
</fx:secondaryLauncher>

<fx:splash>
Description

Passes the location of the image to be used as a splash screen. Currently custom
splash images can only be passed to Web Start applications, and use of this
parameter has no impact on standalone applications or applications embedded into
web pages.

Parent Elements

• <fx:info>

Parameters

Attribute Description Type Required?

href Location of image. Supported
graphic formats are JPEG, GIF,
and PNG.

String Yes

mode Deployment mode. Supported
values are:

• any (but currently only
functional in Web Start
mode)

• webstart

String No

Default value
is any.

Parameters Accepted as Nested Elements

None.

<fx:splash> Usage Examples

Example 1 Use of <fx:splash>
In the following example, splash images of various types are passed.

Chapter 3
JavaFX Ant Helper Parameter Reference

3-47



<fx:info title="Sample application">
    <fx:splash href="http://my.site/custom.gif"/> 
</fx:info> 

<fx:template>
Description

Template to preprocess. A template is an HTML file that contains markers to be
replaced with the JavaScript or HTML snippets that are required for web deployment.
Using templates enables you to deploy your application directly into your own web
pages. This simplifies the development process, especially when the application is
tightly integrated with the page, for example when the web page uses JavaScript to
communicate to the application.

Template markers have one of the following forms:

• #XXX#

• #XXX(id)#

id is the identifier of an application and XXX is one of following:

• DT.SCRIPT.URL

Location of dtjava.js in the Deployment Toolkit. By default, the location is

https://java.com/js/dtjava.js.

• DT.SCRIPT.CODE

Script element to include dtjava.js of the Deployment Toolkit.

• DT.EMBED.CODE.DYNAMIC

Code to embed the application into a given placeholder. It is expected that the
code will be wrapped in the function() method.

• DT.EMBED.CODE.ONLOAD

All the code needed to embed the application into a web page using the onload
hook (except inclusion of dtjava.js).

• DT.LAUNCH.CODE

Code needed to launch the application. It is expected that the code will be
wrapped in the function() method.

A page with different applications can be processed multiple times, one per
application. To avoid confusion, markers must use application IDs with an
alphanumeric string and no spaces.

If the input and output files are the same then the template is processed in place.

Parent Elements

• <fx:deploy>

Parameters

Attribute Description Type Required?

file Input template file. File Yes

Chapter 3
JavaFX Ant Helper Parameter Reference

3-48



Attribute Description Type Required?

tofile Output file (after
preprocessing).

File No

Default is the
same as the
input file.

Parameters Accepted as Nested Elements

None

<fx:template> Usage Examples

Example 1 <fx:template> Parameter Used in <fx:deploy> Task
This example shows a <fx:template> parameter in which both input and output files
are specified.

<fx:template file="App_template.html" tofile="App.html"/>

Example 2 <fx:template> Parameter in Context

<fx:deploy placeholderId="ZZZ"
        width="600" height="400"
        outdir="dist-web" outfile="App1">
    <fx:application id="myApp" name="Demo"
            mainClass="fish.FishApplication"/>
    <fx:template file="src/templates/EmbedApp_template.html"
            tofile="dist-web/EmbedApp.html"/>
    <fx:resources>
        <fx:fileset requiredFor="startup" dir="dist" includes="*.jar"/>
    </fx:resources>
</fx:deploy>

Chapter 3
JavaFX Ant Helper Parameter Reference

3-49



Part III
Java Web Start Technology

The topics in this part describe Java Web Start technology and how to use it to deploy
Java applications.

• Overview of Java Web Start Technology

• Application Development Considerations

• Migrating Java Applets to Java Web Start and JNLP

• JNLP File Syntax

• JNLP API Examples



4
Overview of Java Web Start Technology

This chapter includes the following topics:

• Introduction to Java Web Start

• Using Java Web Start Software

• Setting Up the Web Server

• Installing the Java Web Start Protocol Handler

Introduction to Java Web Start
Java Web Start is an application-deployment technology that enables your users to
launch full-featured applications with a single click from any web browser. Users can
download and launch applications without going through complicated installation
procedures.

With Java Web Start, your users launch applications by clicking a web page link. If the
application is not present on their computer, Java Web Start automatically downloads
all necessary files. It then caches the files on the computer so that the application is
always ready to be relaunched anytime the user wants—either from an icon on the
desktop or from the browser link. No matter which method is used to launch the
application, the most current version of the application is always presented.

The technology underlying Java Web Start is the Java Network Launching Protocol &
API (JNLP). This technology was developed through the Java Community Process
(JCP). Java Web Start is the reference implementation (RI) for the JNLP specification.
The JNLP technology defines, among other things, the JNLP file, which is a standard
file format that describes how to launch an application. The JNLP specification is
available at JSR 56: Java Network Launching Protocol and API.

Benefits of Java Web Start
From a technology standpoint, Java Web Start has a number of key benefits that make
it an attractive platform to use for deploying applications.

The benefits include the following:

• Java Web Start is built exclusively to launch applications written to the Java
Platform, Standard Edition. Thus, a single application can be made available on a
web server and then deployed on a wide variety of platforms, including Windows
7+, Linux, and macOS.

• Java Web Start supports multiple revisions of the Java Platform, Standard Edition.
Thus, an application can request a particular version of the platform it requires,
such as Java SE 9. Several applications can run at the same time on different
platform revisions without causing conflicts.

• Java Web Start enables applications to be launched independently of a web
browser. This can be used for off-line operation of an application, where launching

4-1

http://jcp.org/en/jsr/detail?id=56


the application through the browser is inconvenient or impossible. The application
can also be launched through desktop shortcuts, making launching the web-
deployed application similar to launching a native application.

• Java Web Start takes advantage of security features of the Java Platform.
Sandbox applications are run in a protective environment with restricted access to
local disk and network resources. Users must also agree to run the application the
first time it is launched.

• Applications launched with Java Web Start are cached locally. Thus, an already-
downloaded application is launched similar to a traditionally installed application.

Where to Find Java Web Start
Java Web Start is included in the Java Platform, Standard Edition development kit
(JDK) and Java Runtime Environment (JRE), and includes the security features of the
Java platform.

The JDK and JRE are available from the java.com website.

Using Java Web Start Software
Java Web Start allows you to launch Java-technology-based applications directly from
the Web. An application can be launched in three different ways:

• From a web browser by clicking a link

• From desktop icons or the Start Menu

• From the Java Cache Viewer

Regardless of which way is used, Java Web Start will connect back to the web server
each time an application is launched, to check whether an updated version of the
application is available.

Launching from a Web Browser
Point your web browser to a page with a link to a JNLP application, and click that link.

A security dialog box will pop up with information about the origin of the application
based on who digitally signed the code, and the level of access requested. The
application will run only if you decide to trust the vendor.

That is really all there is to using Java Web Start, but how does it work? The HTML
links that launch the applications are, in fact, standard HTML links. However, instead
of pointing to another web page, they link to a special configuration file called a JNLP
file. The web browser examines the file extension or the MIME type of the file, and
sees that it belongs to Java Web Start. It then launches Java Web Start with the
downloaded JNLP file as an argument. Java Web Start proceeds with downloading,
caching, and running the application as directed by the JNLP file. 

Launching from Desktop Icons and the Start Menu (Microsoft Windows
and Linux Running GNOME 2.0+)

Java Web Start technology can automatically create shortcuts for your application on
the desktop and in the Start Menu for web-deployed applications developed with Java

Chapter 4
Using Java Web Start Software

4-2

http://java.com/


technology. You can use the Java Control Panel to control the shortcut settings.
Shortcuts can also be added by using the Java Web Start Cache Viewer, using the
install shortcut menu item.

Using Java Web Start Software Behind a Proxy Server or Firewall
Java Web Start software must be configured with the correct proxy settings in order to
launch applications from outside your firewall. Java Web Start software automatically
tries to detect the proxy settings from the default browser on your system (Internet
Explorer or Mozilla browsers on Microsoft Windows, and Mozilla browsers on the
Solaris Operating Environment and Linux). Java Web Start technology supports most
web proxy auto-configuration scripts. It can detect proxy settings in almost all
environments.

You can also use the Network Settings Tab in the Java Control Panel to view or edit
the proxy configuration.

Setting Up the Web Server
Applications can be deployed from any standard web server. Java Web Start
leverages existing internet technology, such as the HTTP protocol and web servers, so
existing infrastructure for deploying HTML-based content can be reused to deploy
Java Technology-based applications using Java Web Start.

To deploy your application to client machines, ensure that all files that contain your
application are accessible through a web server. This typically requires copying one or
more JAR files and a JNLP file into the web server's directories. Enabling the website
to support Java Web Start is similar to deploying HTML-based content. In addition, to
use Java Web Start, the web server must be configured to support the application/x-
java-jnlp-file MIME type.

Step 1 Configure the web server to use the Java Web Start MIME type.
Many web servers come with the Java Web Start MIME type configured by default. If
your web server does not, configure it so that all files with the .jnlp file extension are
set to the application/x-java-jnlp-file MIME type.
Most web browsers use the MIME type returned with the contents from the web
server to determine how to handle the particular content. The server must return the
application/x-java-jnlp-file MIME type for JNLP files in order for Java Web Start to
be invoked.
Each web server has a specific way in which to add MIME types. For example, for the
Apache web server, you add the following line to the .mime.types configuration file:
application/x-java-jnlp-file JNLP

Check the documentation for the specifics of your web server.

Step 2 Create a JNLP file for the application.
The easiest way to create this file is to modify an existing JNLP file with your
requirements. A simple JNLP file is shown in the following example:

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="9.0+"
  codebase="http://example.com/demos/helloworld" 
  href="HelloWorld.jnlp">
  <information>
    <title>HelloWorld</title>

Chapter 4
Setting Up the Web Server

4-3



    <description>HelloWorld demo application</description>
  </information>

  <resources>
    <j2se version="9"/>
    <jar href="HelloWorld.jar" size="47013" download="eager" />
  </resources>

  <application-desc main-class="HelloWorld"/>
</jnlp>

The syntax and format for the JNLP file is described in JNLP File Syntax.

Step 3 Make the application accessible on the web server.
Ensure that your application's JAR files and the JNLP file are accessible at the URLs
listed in the JNLP file.

Step 4 Create the web page that launches the application.
Create the web page and include one of the following options for starting a Java Web
Start application:

• Use a link to the JNLP file, as shown in the following examples:

<a href="/some/path/HelloWorld.jnlp">Launch HelloWorld demo</a>

<a href="https://docs.oracle.com/javase/tutorialJWS/samples/deployment/
dynamictree_webstartJWSProject/dynamictree_webstart.jnlp">Launch DynamicTree 
demo</a>

<a href="http://docs.oracle.com/javase/tutorialJWS/samples/deployment/
dynamictree_webstartJWSProject/dynamictree_webstart.jnlp">Launch DynamicTree 
demo</a>

• Use JavaScript, as shown in the following example:

<script src="https://www.java.com/js/deployJava.js"></script>
<script>
    var url = "https://docs.oracle.com/javase/tutorialJWS/samples/deployment/
dynamictree_webstartJWSProject/dynamictree_webstart.jnlp";
    deployJava.createWebStartLaunchButton(url, '1.6.0');
</script>

• Use a link with the jnlp: schema, as shown in the following example:

<a href="jnlp:https://docs.oracle.com/javase/tutorialJWS/samples/deployment/
dynamictree_webstartJWSProject/dynamictree_webstart.jnlp">Launch DynamicTree 
demo</a>

• Copy the JavaScript code from the HTML file generated by the Java Packager
tool.

If you are using the Java Packager tool, see Create the Web Page.

Installing the Java Web Start Protocol Handler
Java Web Start includes a protocol handler to handle the custom URI schemes jnlp:
and jnlps:. Use these schemes as a direct way to start Java Web Start applications.

The protocol handler is automatically installed on Windows and macOS systems. It
must be manually installed on Linux systems.

• Installing the Protocol Handler for Chrome

Chapter 4
Installing the Java Web Start Protocol Handler

4-4



• Installing the Protocol Handler in Firefox

Installing the Protocol Handler for Chrome
If you use the Chrome browser on Linux, manually install the protocol handler that
enables you to start Java Web Start applications using the jnlp or jnlps protocol.

In Linux, the xdg-open command is used to open a file or URL in the user's preferred
application. To install the protocol handler, configure xdg-open to use Java Web Start
for URLs that include the jnlp or jnlps protocol:

1. Use a text editor to create a file named javaws.desktop in the ~/.local/
share/applications directory.

2. Include the statements shown in the following example.

[Desktop Entry] 
Encoding=UTF-8 
Name=Java(TM) Web Launcher 
Exec=jre-home/bin/javaws %U 
Terminal=false 
Type=Application 
MimeType=x-scheme-handler/jnlp;x-scheme-handler/jnlps 

3. Save the file.

4. Run the following commands:

xdg-mime default javaws.desktop x-scheme-handler/jnlp 
xdg-mime default javaws.desktop x-scheme-handler/jnlps 

After installing the protocol handler, Java Web Start is used to launch applications
when the URL contains the jnlp or jnlps protocol. For example, the following URL
starts the Dynamic Tree sample from the Java Tutorials:

jnlps://docs.oracle.com/javase/tutorialJWS/samples/deployment/
dynamictree_webstartJWSProject/dynamictree_webstart.jnlp

Installing the Protocol Handler in Firefox
If you use the Firefox browser on Linux, manually install the protocol handler that
enables you to start Java Web Start applications using the jnlp or jnlps protocol.

To install the protocol handler, add properties to the Firefox configuration:

1. In the address bar in Firefox, enter about:config.

If you see a page with a warning about voiding your warranty, click I’ll be careful,
I promise! to continue to the configuration page.

2. Add a Boolean property.

a. Right-click on the page and select New, and then select Boolean.

b. In the New Boolean Value window, enter the name network.protocol-
handler.expose.jnlp and click OK.

c. Select false for the value and click OK.

The property is added to the configuration.

3. Repeat the previous step to add the property network.protocol-
handler.expose.jnlps with the value false.

Chapter 4
Installing the Java Web Start Protocol Handler

4-5



When you enter a URL or click a link that uses the jnlp or jnlps protocol, you are
prompted to choose the application to use to open the file. Select Java Web Start
Launcher or browse to the javaws.exe file in jre-home/bin.

Chapter 4
Installing the Java Web Start Protocol Handler

4-6



5
Application Development Considerations

This chapter includes the following topics:

• Introduction to Web Deployment

• Retrieving Resources from JAR files

• Accessing the Client Using JNLP API

• Security and Code Signing

• Signing JAR Files With a Test Certificate

• How to Encode JNLP Files

• Dynamic Download of HTTPS Certificates

Introduction to Web Deployment
Developing applications for deployment with Java Web Start is generally the same as
developing standalone applications for the Java Platform, Standard Edition. For
instance, the entry point for the application is the standard public static void
main(String[] argv).

However, to support web deployment—automatic downloading and launching of an
application—and to ensure that an application can run in a secure sandbox, there are
some additional considerations:

• An application must be delivered as a set of signed JAR files. All entries in each
JAR file must be signed.

• All application resources, such as files and images, must be stored in JAR files.
The resources must be referenced using the getResource mechanism in the Java
Platform, Standard Edition.

• If an application is written to run in a secure sandbox, it must follow these
restrictions:

– No access to a local disk.

– All JAR files must be downloaded from the same host.

– Network connections without user prompts are enabled only for the host from
which the JAR files are downloaded. Connections to other hosts require
approval from the user.

– No security manager can be installed.

– No native libraries can be used.

– Limited access to system properties. The application has read/write access to
all secure system properties defined in the JNLP file, as well as read-only
access to the same set of properties that an applet has access to.

Some of these restrictions can be overcome by the use of the JNLP API to access
the file system and other system resources.

5-1



• An application is allowed to use the System.exit call.

Retrieving Resources from JAR Files
Java Web Start only transfers JAR files from the Web server to the client machine. It
determines where to store the JAR files on the local machine. Thus, an application
cannot use disk-relative references to resources such as images and configuration
files.

All application resources must be retrieved from the JAR files specified in the
resources section of the JNLP file, or retrieved explicitly using an HTTP request to the
web server. Storing resources in JAR files is recommended, because they will be
cached on the local machine by Java Web Start.

The following code example shows how to retrieve images from a JAR file:

// Get current classloader
ClassLoader cl = this.getClass().getClassLoader();
// Create icons
Icon saveIcon  = new ImageIcon(cl.getResource("images/save.gif"));
Icon cutIcon   = new ImageIcon(cl.getResource("images/cut.gif"));
...

The example assumes that the following entries exist in one of the JAR files for the
application:

images/save.gif
images/cut.gif

Accessing the Client Using the JNLP API
The JNLP API can be used to access the client's file system and other resources. See
the following topics for more information about using the JNLPI API to access the
client:

• JNLP API Examples

• Accessing the Client Using JNLP API topic in the Deployment Trail of the Java
Tutorials. The information for the sample applet also applies to Java Web Start
applications.

Security and Code Signing
Java Web Start addresses the following security issues:

• Protecting users against malicious code (intentional and unintentional) that may
affect local files

• Protecting enterprises against code that may attempt to access or destroy data on
networks

Applications launched with Java Web Start are, by default, run in a restricted
environment where they have limited access to local computing resources, such as
storage devices and the local network.

An additional security feature supported by Java Web Start is digital code signing. If an
application being invoked is delivered in one or more signed JAR files, then Java Web

Chapter 5
Retrieving Resources from JAR Files

5-2

http://docs.oracle.com/javase/tutorial/deployment/doingMoreWithRIA/usingJNLPAPI.html


Start will verify that the contents of the JAR file have not been modified since they
were signed. If verification of a digital signature fails, then Java Web Start will not run
the application, because it might have been compromised by a third party.

The support for code signing is important for both users and for application service
providers. This service makes it possible for users to verify that an application comes
from a trusted source. A signed application that is trusted by the user can also request
additional system privileges, such as access to a local disk.

Java Web Start presents a dialog box that displays the application's origin, based on
the signer's certificate, before the application is launched. This enables the user to
make an informed decision about whether or not to grant additional privileges to the
downloaded code.

By including the following settings in the JNLP file, an application can request full
access to a client system if all its JAR files are signed:

<security>
   <all-permissions/>
</security>

The implementation of code signing in Java Web Start is based on the security API in
the core Java Platform, Standard Edition.

Developers sign code for use with Java Web Start in the same way as for Java applets
—by using the standard jarsigner tool from the Java Platform, Standard Edition. The 
jarsigner tool documentation provides examples of how to sign code and create test
certificates, and it discusses other issues related to signing.

Signing JAR Files with a Test Certificate
For testing purposes, a self-signed certificate can be used to sign a JAR file. For
production, use a code signing certificate issued by a trusted certificate authority.

These are the steps to sign a JAR file with a self-signed test certificate:

1. Ensure that you have an SDK keytool and jarsigner in your path. These tools are
located in the SDK bin directory.

2. Create a new key in a new keystore as follows:

keytool -genkey -keystore myKeystore -alias myself

You are prompted for information about the new key, such as password and
name. This creates the myKeystore file on the disk.

3. Create a self-signed test certificate as follows:

keytool -selfcert -alias myself -keystore myKeystore

This prompts for the password. Generating the certificate might take a few
minutes.

4. Check to ensure that everything is OK. To list the contents of the keystore, use
this command:

keytool -list -keystore myKeystore

The output should look similar to:

Chapter 5
Signing JAR Files with a Test Certificate

5-3



Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

myself, Tue Jan 23 19:29:32 PST 2001, keyEntry,
Certificate fingerprint (MD5):
C2:E9:BF:F9:D3:DF:4C:8F:3C:5F:22:9E:AF:0B:42:9D

5. Sign the JAR file with the test certificate as follows:

jarsigner -keystore myKeystore test.jar myself

Repeat this step with all of your JAR files.

Note that a self-signed test certificate should only be used for internal testing,
because it does not guarantee the identity of the user and therefore cannot be
trusted. A trustworthy certificate can be obtained from a certificate authority, such
as VeriSign or Thawte, and should be used when the application is put into
production.

To run an application that is signed with a self-signed test certificate, do one of the
following on the computer where the application will run:

• Add the location of the application to the Exception Site List, which is managed
from the Java Control Panel.

• Import the test certificate into the User Signer CA store using the Java Control
Panel or into the System Signer CA store using the keytool utility.

How to Encode JNLP Files
Encode JNLP files in any character encoding supported by the Java Platform,
Standard Edition. See Supported Encodings in the Java Platform, Standard Edition
Internationalization Guide for a list.

To encode a JNLP file, specify an encoding in the XML prolog of that file. For example,
the following line indicates that the JNLP file will be encoded in UTF-16.

<?xml version="1.0" encoding="utf-16"?>

The XML prolog itself must be UTF-8-encoded.

Dynamic Download of HTTPS Certificates
Java Web Start dynamically imports certificates in a similar way as browsers do. To
make this work, Java Web Start sets its own HTTPS handler, using the
java.protocol.handler.pkgs system properties, to initialize defaults for
SSLSocketFactory and HostnameVerifier. It sets the defaults with
HttpsURLConnection.setDefaultSSLSocketFactory and
HttpsURLConnection.setDefaultHostnameVerifier.

If your application uses those two methods, ensure that they are called after the Java
Web Start HTTPS handler is initialized, otherwise your custom handler will be replaced
by the Java Web Start default handler. You can ensure that your own customized
SSLSocketFactory and HostnameVerifier are used by doing either of the following:

1. Install your own HTTPS handler, which will completely replace the Java Web Start
HTTPS handler.

Chapter 5
How to Encode JNLP Files

5-4

http://www.verisign.com
http://www.thawte.com


2. Call HttpsURLConnection.setDefaultSSLSocketFactory or
HttpsURLConnection.setDefaultHostnameVerifier only after the first
HttpsURLConnection object is created, which executes the Java Web Start HTTPS
handler initialization code first.

Chapter 5
Dynamic Download of HTTPS Certificates

5-5



6
Migrating Java Applets to Java Web Start
and JNLP

Because browsers are reducing or eliminating support for the Java Plug-in, consider
migrating existing Java applets to Java Web Start, which uses the Java Network
Launching Protocol (JNLP) to download and run an application locally.

Although available and supported in JDK 9, the Applet API and the Java Plug-in are
marked as deprecated in preparation for removal in a future release. Alternatives for
applets and embedded JavaFX applications include Java Web Start and self-
contained applications.

Migrating to Java Web Start provides the ability to launch the application independent
of a web browser. When your user is offline or unable to access the browser, a
desktop shortcut can launch the application, providing your user with the same
experience as that of a native application.

This chapter includes the following topics:

• Migrating an Existing Java Applet

• Rewriting a Java Applet as a Java Web Start Application

• Special Considerations

Migrating an Existing Java Applet
Java Web Start technology has built-in support for applets. Your applet can run with
Java Web Start technology without any recompilation of the applet. Just convert your
applet HTML tags to a Java Network Launching Protocol (JNLP) file using the JNLP
applet-desc element, for example:

<resources>
  <jar href="SwingSet2.jar"/>
</resources>
<applet-desc main-class="SwingSet2Applet" name="SwingSet" width="625" height="595">
  <param name="param1" value="value1"/>
  <param name="param2" value="value2"/>
</applet-desc>

Note:

Although available and supported in JDK 9, the Applet API is marked as
deprecated in preparation for removal in a future release. Instead of applets,
consider alternatives such as Java Web Start or self-contained applications.

6-1



Rewriting a Java Applet as a Java Web Start Application
The best way to migrate your applet is to rewrite it as a standalone Java application,
and then deploy it with Java Web Start technology. Rewriting your applet and testing
the resulting application ensures that your converted applet works as expected, and
your application can take advantage of the Java Web Start features.

The major work needed is to convert your applet class to the main class of the
application. The applet init and start methods are no longer present, instead,
initialize the application at the beginning of the application's main method.

To quickly begin the migration, add the main method to your original applet class, and
then start calling your applet initialization code where it normally gets called from the
applet's init and start methods. When there is a main method in the applet class, you
can begin launching it by using the Java Web Start technology, and then slowly
remove the dependency on the Applet class and convert it completely to your
application's main class.

Special Considerations
The following items are things to consider when migrating:

• A Java Web Start application does not run within the web browser. If your applet
has any dependency on the browser (for example, Java-to-JavaScript or
JavaScript-to-Java communications using the browser), the communication code
will no longer work. The APIs that are affected include:

– JSObject API (netscape.javascript.JSObject.*) for Java-to-JavaScript
communication does not work for Java Web Start applications.

– Common Document Object Model (DOM) APIs (com.sun.java.browser.dom.*
and org.w3c.dom.*) available for Java Plug-in applets are not available to Java
Web Start applications.

• Similar to Java Plug-in technology, for faster start-up performance, Java Web Start
technology caches your application JARs and resources downloaded by your
application.

• Java Web Start technology provides permanent cookie support on Windows using
the cookie store in Internet Explorer (IE), and the cookie-handling behavior is
determined by the cookie control in IE. On Linux and Solaris, Java Web Start
technology provides permanent cookie support using its own cookie store
implementation. See Cookies in the Java Tutorials.

• If you deploy an applet with the JNLP applet-desc element, your applet is created
using the AppletContainer provided by Java Web Start technology. When your
applet calls Applet.getAppletContext(), it returns the AppletContainerContext
provided by Java Web Start technology. The following list describes minor
differences in implementation between the Java Plug-in AppletContext and the
Java Web Start AppletContext:

– The following Applet Persistence API methods are not implemented by Java
Web Start technology:

AppletContext.getStream(String key)
AppletContext.getStreamKeys()
AppletContext.setStream(String key, InputStream s)

Chapter 6
Rewriting a Java Applet as a Java Web Start Application

6-2

http://docs.oracle.com/javase/tutorial/deployment/doingMoreWithRIA/cookies.html


For Java Web Start applications, you can use the JNLP Persistence Service
API for storing data locally on the client's system. See the PersistenceService
interface.

– For AppletContext.showDocument(URL url, String target), the target argument
is ignored by Java Web Start technology.

– For AppletContext.showStatus(String status), when launched with Java Web
Start technology, this sets the JLabel text that is below the applet, hosted by
the Java Web Start AppletContainer.

• Similar to AppletContext.showDocument, Java Web Start applications are capable of
showing an HTML page using the system's default web browser by using the
BasicService.showDocument API.

For a Java Plug-in applet:

AppletContext.showDocument(URL url)
AppletContext.showDocument(URL url, String target)

For a Java Web Start application:

BasicService.showDocument(URL url)

See the BasicService interface.

• In an applet, if you obtain a resource using the following calls:

Applet.getImage(URL url)
Applet.getImage(URL url, String name)
Applet.getAudioClip(URL url)
Applet.getAudioClip(URL url, String name)
AppletContext.getAudioClip(URL url)
AppletContext.getImage(URL url)

Then in Java Web Start technology, the best practice is to include the resources in
your application JAR files, and access the resources using the JNLPClassLoader:

ClassLoader cl = this.getClass().getClassLoader();
URL url = cl.getResource(url);
Image im = Toolkit.getDefaultToolkit().createImage(url);

See Retrieving Resources from JAR Files.

• The pack200 JAR packing tool is supported by both the Java Web Start and the
Java Plug-in technologies. If you are already deploying your applet JARs with
pack200, no change is needed when migrating to Java Web Start technology.

• By using the OBJECT tag in Java Plug-in technology, you can detect whether Java is
available on the client's machine with the plug-in CLSID and then auto-download
Java if necessary. The same support is available with Java Web Start technology
by using the Java Web Start CLSID. See Ensuring the Presence of the JRE
Software in the Java Tutorials.

• If you want to deploy extensions for your Java Web Start application, then use the
JNLP extension protocol mechanism. See the JSR 56: Java Network Launching
Protocol and API, section 3.8 "Extension Descriptor."

One advantage of the JNLP extensions mechanism over Java Plug-in technology
is that the installed extensions are available to all Java Web Start applications
running on the system, no matter what version of the JRE the application is
running. For Java Plug-in technology, only applets running in the same JRE
version can use the installed extensions.

Chapter 6
Special Considerations

6-3

https://docs.oracle.com/javase/9/docs/api/javax/jnlp/PersistenceService.html
https://docs.oracle.com/javase/9/docs/api/javax/jnlp/BasicService.html
http://docs.oracle.com/javase/tutorial/deployment/deploymentInDepth/ensuringJRE.html
http://docs.oracle.com/javase/tutorial/deployment/deploymentInDepth/ensuringJRE.html
https://www.jcp.org/en/jsr/detail?id=56
https://www.jcp.org/en/jsr/detail?id=56


• For signed JAR files, similar to Java Plug-in technology, you can sign your
application JAR files and request your application to be run with all permissions
using the JNLP file. In Java Plug-in technology, your applet JARs can be signed
by different certificates. In Java Web Start technology, the same certificate must
be used to sign all JAR files (jar and nativelib elements) that are part of a single
JNLP file. This simplifies user management because only one certificate must be
presented to the user during a launch per JNLP file. If you must use JARs signed
with different certificates, then you can put them in a component extension JNLP
file, and reference the extension file from the main JNLP file. See the JSR 56:
Java Network Launching Protocol and API, section 5.4 "Signed Applications" and
section 4.7 "Extension Resources."

Chapter 6
Special Considerations

6-4

https://www.jcp.org/en/jsr/detail?id=56
https://www.jcp.org/en/jsr/detail?id=56


7
JNLP File Syntax

This chapter includes the following topics:

• Introduction to JNLP File Syntax

• Examples of a JNLP File

• JNLP Elements

– jnlp Element

– information Element

– security Element

– update Element

– resources Element

– application-desc Element

– applet-desc Element

– component-desc Element

– installer-desc Element

Introduction to JNLP File Syntax
The format used in this release is that specified in the Java Network Launching
Protocol & API Specification (JSR-56) version 6.0. The Java Network Launch Protocol
(JNLP) file for rich internet applications (RIAs) is an XML file. All elements and their
attributes must be entered in lowercase. The following table describes the most
commonly used elements of a JNLP file. For a complete description of the format, see
the specification.

7-1



Element Description Attributes Required

jnlp This is the main XML element for
a JNLP file. Everything is
contained within the jnlp
element.

spec
Specifies the minimum version of
the JNLP specification that this
JNLP file can work with. Valid
values are 1.0, 1.5, 6.0, 6.0.10,
6.0.18, 7.0, 8.20, 9 or a wildcard
such as 1.0+.

codebase
Specifies the base location for all
relative URLs specified in href
attributes in the JNLP file.

href
Specifies the URL of the JNLP
file itself.

version
Specifies the version of the
application being launched and
the version of the JNLP file itself.

Yes

information Contains other elements that
describe the application and its
source.

os
Specifies the operating systems
for which this information
element should be considered.
Added in 1.5.0.

arch
Specifies the architecture for
which this information element
should be considered. Added in
1.5.0.

platform
Specifies the platform for which
this information element should
be considered. Added in 1.5.0.

locale
Specifies the locale for which this
information element should be
considered. Added in 1.5.0.

No

title Specifies the title of the
application.

NA No

vendor Specifies the provider of the
application.

NA No

homepage Home page of the application.
href
Specifies the URL where more
information about this application
can be found. Required.

No

Chapter 7
Introduction to JNLP File Syntax

7-2



Element Description Attributes Required

description Short statement describing the
application. kind

Indicates the type of description
this is. Valid values are one-
line, short, and tooltip.

No

icon Describes an icon that can be
used to identify the application to
the user.

href
Specifies the URL for the icon
file. Can be in one of the
following formats: GIF, JPG,
PNG, ICO. Required.

kind
Indicates the suggested use of
the icon. Valid values are
default, splash, and shortcut.

width
Can be used to indicate the
resolution of the image.

height
Can be used to indicate the
resolution of the image.

depth
Can be used to indicate the
resolution of the image.

No

offline-allowed Indicates that this application can
operate when the client system is
disconnected from the network.

NA No

shortcut Can be used to indicate an
application's preferences for
desktop integration. Added in
1.5.0.

online
Can be used to describe the
application's preference for
creating a shortcut to run online
or offline.

install
Can be used in a shortcut
element to describe the
application's preference for being
considered installed. If the value
is true, then the application
prefers to be considered
installed. The default value of the
install attribute is false. On
Windows, this determines if the
application appears in the Add
and Remove Programs panel.
Added in 7.0.

No

Chapter 7
Introduction to JNLP File Syntax

7-3



Element Description Attributes Required

desktop Can be used to indicate an
application's preference for
putting a shortcut on the users
desktop. Added in 1.5.0.

NA No

menu Can be used to indicate an
application's preference for
putting a menu item in the user’s
start menus. Added in 1.5.0.

sub-menu
Can be used to indicate an
application's preference for
where to place the menu item.

No

association Can be used to hint to the JNLP
client that it wants to be
registered with the operating
system as the primary handler of
certain extensions and a certain
MIME type. If this element is
included, either the offline-
allowed element must also be
included, or the href attribute
must be set for the jnlp element.
Added in 1.5.0.

extensions
Contains a list of file extensions
(separated by spaces) that the
application requests it be
registered to handle.

mime-type
Contains the MIME type that the
application requests it be
registered to handle.

No

related-content Describes an additional piece of
related content that can be
integrated with the application.
Added in 1.5.0.

href
Specifies the URL to the related
content. Required.

No

update Indicates the preferences for how
application updates should be
handled by the JNLP client.
Added in 6.0.

check
Indicates the preference for
when the JNLP client should
check for updates. Valid values
are always, timeout, and
background.

policy
Indicates the preference for how
the JNLP client should handle an
application update when it is
known an update is available
before the application is
launched. Valid values are
always, prompt-update, and
prompt-run.

No

security Requests enhanced permissions. NA No

all-permissions Requests that the application be
run with all permissions.

NA No

j2ee-application-
client-permissions

Requests that the application be
run with a permission set that
meets the security specifications
of the J2EE application client
environment.

NA No

Chapter 7
Introduction to JNLP File Syntax

7-4



Element Description Attributes Required

resources Describes all the resources that
are needed for an application. os

Specifies the operating system
for which the resources element
should be considered.

arch
Specifies the architecture for
which the resources element
should be considered.

locale
Specifies that the locales for
which the resources element
should be considered.

Yes

java (or j2se) Specifies the versions of Java to
use to run the application. The
java element was added in 6.0.

version
Describes an ordered list of
version ranges to use. Required.

href
URL denoting the supplier of this
version of Java, and where it can
be downloaded from.

java-vm-args
Indicates an additional set of
standard and non-standard
virtual machine arguments that
the application would prefer the
JNLP client to use when
launching Java.

initial-heap-size
Indicates the initial size of the
Java heap.

max-heap-size
Indicates the maximum size of
the Java heap.

No

Chapter 7
Introduction to JNLP File Syntax

7-5



Element Description Attributes Required

jar Specifies a JAR file that is part of
the application's class path. href

URL of the JAR file. Required.

version
Requested version of the JAR
file. Requires using the version-
based download protocol.

main
Indicates if this JAR contains the
class containing the main
method of the application.

download
Can be used to indicate that this
JAR can be downloaded eagerly,
lazily, or for progress indication.

size
Indicates the downloadable size
of the JAR file in bytes.

part
Can be used to group resources
so they are downloaded at the
same time.

No, however, if a
main JNLP file does
not specify a JAR file,
then the JNLP file
must contain a
component extension
whose resources
section has at least
one jar element.

nativelib Specifies a JAR file that contains
native libraries in its root
directory.

href
URL of the JAR file. Required.

version
The requested version of the
JAR file. Requires using the
version-based download
protocol.

download
Can be used to indicate that this
JAR file can be downloaded
lazily.

size
Indicates the downloadable size
of the JAR file in bytes.

part
Can be used to group resources
together so they will be
downloaded at the same time.

No

Chapter 7
Introduction to JNLP File Syntax

7-6



Element Description Attributes Required

extension Contains a pointer to an
additional component-desc or
installer-desc to be used with
this application.

href
URL to the additional extension
JNLP file. Required.

version
Version of the additional
extension JNLP file.

name
Name of the additional extension
JNLP file.

No

ext-download Can be used in an extension
element to denote the parts
contained in a component
extension.

ext-part
Describes the name of a part that
is expected to be found in the
extension. Required.

download
Can be used to indicate that this
extension can be downloaded
eagerly or lazily.

part
Denotes the name of a part in
this JNLP file in which to include
the extension.

No

package Can be used to indicate to the
JNLP client which packages are
implemented in which JAR files.

name
Package name contained in the
JAR files of the given part.
Required.

part
Part name that contains the JAR
files that include the given
package name. Required.

recursive
Can be used to indicated that all
package names beginning with
the given name can be found in
the given part.

No

property Defines a system property that
will be available through the
System.getProperty and
System.getProperties methods.

name
Name of the system property.
Required.

value
Value for the property. Required.

No

Chapter 7
Introduction to JNLP File Syntax

7-7



Element Description Attributes Required

application-desc Denotes this is the JNLP file for
an application. main-class

Name of the class containing the
public static void
main(String[]) method of the
application. Required.

progress-class
Name of the class that contains
the implementation of
DownloadServiceListener that
can be used to indicate
download progress. Added in
6.0.18.

type
Type of application to be
deployed. Valid values are Java
and JavaFX. The default is Java.
Use this attribute in place of the
XML extensions that were
previously used to define a
JavaFX application.

A JNLP file must
contain one of the
following elements:
• application-

desc

• applet-desc

• component-desc

• installer-desc

argument Each argument contains (in
order) an additional argument to
be passed to the application’s
main method.

NA No

applet-desc Denotes this is the JNLP file for
an applet.

Note: Although available and
supported in JDK 9, the Applet
API is marked as deprecated in
preparation for removal in a
future release. Instead of applets,
consider alternatives such as
Java Web Start or self-contained
applications.

main-class
Name of the main Applet
class. Required.

documentbase
Document base for the applet as
a URL.

name
Name of the applet. Required.

width
Width of the applet in pixels.
Required.

height
Height of the applet in pixels.
Required.

progress-class
Name of the class that contains
the implementation of
DownloadServiceListener that
can be used to indicate
download progress. Added in
6.0.18.

A JNLP file must
contain one of the
following elements:
• application-

desc

• applet-desc

• component-desc

• installer-desc

Chapter 7
Introduction to JNLP File Syntax

7-8



Element Description Attributes Required

param Set of parameters that can be
passed into the application. This
element can be used as a sub
element of the applet-desc or
application-desc elements. If
used in an application-desc
element, then the values are
used only if the type attribute is
set to JavaFX. The values are
ignored if the type attribute is set
to Java.

name
Name of the parameter.
Required.

value
Value of the parameter.
Required.

No

component-desc Indicates this is the JNLP file for
a component extension. progress-class

Name of the class that contains
the implementation of
DownloadServiceListener that
can be used to indicate
download progress. Added in
6.0.18.

A JNLP file must
contain one of the
following elements:
• application-

desc

• applet-desc

• component-desc

• installer-desc

installer-desc Indicates this is the JNLP file for
an installed extension. main-class

Name of the class that contains
the public static void
main(String[]) method of the
installer. Required.

A JNLP file must
contain one of the
following elements:
• application-

desc

• applet-desc

• component-desc

• installer-desc

The JNLP file is an XML document. See Examples of a JNLP File.

Examples of a JNLP File
For a basic application that does not require a lot of customization, the JNLP file can
be simple. For more complex applications, additional elements can be added to the
JNLP file.

The elements are described in JNLP Elements.

Basic JNLP File

This example shows a simple JNLP file. The root element is jnlp, which has two
subelements: resources and application-desc.

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="9">
    <resources>
        <jar href="https://docs.oracle.com/javase/tutorialJWS/samples/deployment/
NotepadJWSProject/Notepad.jar" />
    </resources>
    <application-desc main-class="Notepad"/>
</jnlp>

Chapter 7
Examples of a JNLP File

7-9



JNLP File with Application Customizations

This example shows the basic outline of the JNLP file with settings for application
attributes. The root element is jnlp, which has four subelements: information,
security, resources, and application-desc. In addition, Java Web Start also supports
launching applets by using the applet-desc element.

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for SwingSet2 Demo Application -->
<jnlp
  spec="6.0+"
  codebase="http://my_company.com/jaws/apps"
  href="swingset2.jnlp">
  <information>
    <title>SwingSet2 Demo Application</title>
    <vendor>Sun Microsystems, Inc.</vendor>
    <homepage href="docs/help.html"/>
    <description>SwingSet2 Demo Application</description>
    <description kind="short">A demo of the capabilities 
    of the Swing Graphical User Interface.</description>
    <icon href="images/swingset2.jpg"/>
    <icon kind="splash" href="images/splash.gif"/>
    <offline-allowed/> 
    <association mime-type="application-x/swingset2-file"  extensions="swingset2"/> 
    <shortcut online="false" install="false">
      <desktop/>
      <menu submenu="My Corporation Apps"/>
    </shortcut>
  </information>
  <information os="linux">   
    <title> SwingSet2 Demo on Linux </title>
    <homepage href="docs/linuxhelp.html">
  </information>
  <security>
      <all-permissions/>
  </security>
  <resources>
    <j2se version="1.6+" java-vm-args="-esa -Xnoclassgc"/>
    <jar href="lib/SwingSet2.jar"/>
  </resources>
  <application-desc main-class="SwingSet2"/>
</jnlp> 

JNLP Elements
Information about commonly used JNLP elements is provided in the following sections:

• jnlp Element

• information Element

• security Element

• update Element

• resources Element

• application-desc Element

• applet-desc Element

Chapter 7
JNLP Elements

7-10



• component-desc Element

• installer-desc Element

jnlp Element
spec attribute: This attribute must be 1.0 or higher to work with this release. The default
value is 1.0+. Thus, it can typically be omitted. Note that the JDK 9 version of Java
Web Start supports all versions of the spec through version 9.  Previous versions of
Java Web Start support only those versions of the specification (spec) that were
available at the time of the JDK release. A JNLP file specifying spec="9+" will work with
this version, but not previous versions of Java Web Start.

codebase attribute: All relative URLs specified in href attributes in the JNLP file are
using this URL as a base.

href attribute: If present, this attribute points to the JNLP file that is used to download
and run the application. If not present, then depending on the method used to start the
application, Java Web Start might not know where the JNLP file came from, which can
affect the security dialog boxes.

information Element
os attribute: This attribute contains a list of operating system names for this element.
Read the discussion of the resources element later for a full discussion of the os
attribute.

title element: The name of the application.

vendor element: The name of the vendor of the application.

homepage element: Contains a single attribute, href, which is a URL locating the home
page for the application. It is used by the Java Application Cache Viewer to point the
user to a web page where more information about the application can be found.

description element: A short statement about the application. Description elements
are optional. The kind attribute defines how the description should be used. The
following values are valid for kind:

• one-line: If a reference to the application is going to appear on one row in a list or
a table, then this description is used.

• short: If a reference to the application is going to be displayed in a situation where
there is room for a paragraph, then this description is used.

• tooltip: If a reference to the application is going to appear in a tooltip, then this
description is used.

Only one description element of each kind can be specified. A description element
without a kind attribute is used as a default value. Thus, if Java Web Start needs a
description of kind short, and it is not specified in the JNLP file, then the text from the
description without an attribute is used.

All descriptions contain plain text. No formatting, such as with HTML tags, is
supported.

icon element: Contains an HTTP URL to an image file in either GIF, JPEG, ICO, or
PNG format. The icons are used to represent the application:

Chapter 7
JNLP Elements

7-11



• During the launch when Java Web Start presents the application to the user

• In the Java Application Cache Viewer

• In desktop shortcuts

A 64x64 icon is shown during the download. In the Java Application Cache Viewer and
in desktop shortcuts, a 32x32 icon is used. Java Web Start automatically resizes an
icon to the appropriate size.

Optional width and height attributes can be used to indicate the size of the images.

The optional kind attribute can have one of the following values:

• default: The specified image is used in the Java Application Cache Viewer. It is
also used if an icon element with a particular kind attribute has not been specified.
Not specifying the kind attribute is the same as specifying it with the default value.

• splash: The specified image is used as the splash image on the second and
subsequent launches of the application. During the initial launch of the application,
before resources are downloaded, the default splash image is used.

• shortcut: The specified image is used in desktop shortcuts.

A JNLP file can contain multiple icon elements that differ by their kind attribute. This
enables you to specify different icon images for your application.

offline-allowed element: The optional offline-allowed element indicates if the
application can be launched offline.

If offline-allowed is specified, then the application can be launched offline by the Java
Application Cache Viewer, and shortcuts can be created that launch the application
offline.

If an application is launched offline, then it does not check for updates, and the API
call BasicService.isOffline() returns true.

The offline-allowed element also controls how Java Web Start checks for an update
to an application. If the element is not specified—that is, the application is required to
be online to run—Java Web Start checks for an updated version before launching the
application. If an update is found, then the new application is downloaded and
launched. Thus, it is guaranteed that the user always runs the latest version of the
application. The application, however, must be run online.

If offline-allowed is specified, then Java Web Start also checks if an update is
available. However, if the application is already downloaded, the check times out after
a few seconds, in which case the cached application is launched instead. Given a
reasonably fast server connection, the latest version of the application is usually run,
but it is not guaranteed. The application, however, can be run offline.

shortcut element: The optional shortcut element can be used to indicate an
application's preferences for desktop integration. The shortcut element and its
subelements provide hints that the JNLP client may or may not use. The shortcut
element can contain the optional online and install attributes, and the two optional
subelements, desktop and menu.

association element: The optional association element is a hint to the JNLP client that
it wants to be registered with the operating system as the primary handler of certain
extensions and a certain MIME type. The association element must have the
extensions and mime-type attributes. If the association element is included, then either

Chapter 7
JNLP Elements

7-12



the offline-allowed element must also be included, or the href attribute must be set
for the jnlp element to ensure that the application can be located and run.

related-content element: The optional related-content element describes an
additional piece of related content, such as a readme file, help pages, or links to
registration pages, as a hint to a JNLP client. The application is asking that this
content be included in its desktop integration. The related-content element has a
mandatory href and title attribute. It can contain any of the following subelements:

• description element: A short description of the related content.

• icon element: The icon can be used by the JNLP client to identify the related
content to the user.

security Element
Each sandbox application is run in a restricted execution environment, similar to the
applet sandbox.  The security element can be used to request unrestricted access.

If the all-permissions element is specified, then the application has full access to the
client machine and local network. All JAR files must be signed. The user is prompted
to accept the certificate and agree to run the application.

update Element
The update element indicates the preferences for how application updates are handled
by Java Web Start.

The update element can contain the following two optional attributes:

check attribute: The check attribute indicates the preference for when the JNLP Client
should check for updates. The following values are valid:

• always: Check for updates before launching the application.

• timeout (default): means to check for updates until the timeout before launching
the application. If the update check is not completed before the timeout, then the
application is launched, and the update check continues in the background.

• background: Launch the application while checking for updates in the background.

policy attribute: The policy attribute indicates the preference for how the JNLP client
handles an application update when it is known an update is available before the
application is launched. The following values are valid:

• always (default): Download updates without any prompt.

• prompt-update: Ask users if they want to download and run the updated version, or
launch the cached version.

• prompt-run: Ask users if they want to download and run the updated version, or
cancel and stop running the application.

For example:

<update check="always" policy="prompt-update">

Chapter 7
JNLP Elements

7-13



resources Element
The resources element is used to specify all of the resources, such as Java class files,
native libraries, and system properties, that are part of the application. To restrict a
resource definition to a specific operating system, architecture, or locale, use the os,
arch, and locale attributes.

The os attribute contains a list of operating system names for a resource. For example,
you could use multiple resources definitions with different os attributes to supply a
native library for multiple operating systems.

The os attribute contains a list of operating system names separated by spaces. At
runtime, the os values are compared with the beginning of the os.name system property
to find a match. For example, an os attribute value of "Windows" matches both
"Windows 8" and "Windows 10" operating systems.

If you want to list an operating system whose name contains a space, then use a
backslash to indicate that the space is part of the operating system name. The
following example specifically matches "Windows 8" and "Windows 10":

    <resources os="Windows\ 8 Windows\ 10">
      <jar href="hello.jar"/>
    </resources>

The resources element has six different possible subelements: jar, nativelib, j2se,
property, package, and extension. The package and extension elements are not
discussed in this developer's guide.

A jar element specifies a JAR file that is part of the application's class path.  For
example:

      <jar href="myjar.jar"/>

The jar file is loaded into the JVM using a ClassLoader object.  The jar file typically
contains Java classes that contain the code for the particular application, but can also
contain other resources, such as icons and configuration files, that are available
through the getResource mechanism.

A nativelib element specifies a JAR file that contains native libraries, for example:

      <nativelib href="lib/windows/corelib.jar"/>

The JNLP client must ensure that each file entry in the root directory of the JAR file
(i.e., /) can be loaded into the running process using the System.loadLibrary method. 
Each entry must contain a platform-dependent shared library with the correct naming
convention, for example, *.dll on Windows or lib*.so on Solaris/Linux.  The
application is responsible for doing the actual call to System.loadLibrary.

Native libraries would typically be included in a resources element that is geared
toward a particular operating system and architecture, for example:

    <resources os="SunOS" arch="sparc">
      <nativelib href="lib/solaris/corelibs.jar"/>
    </resources>

By default, jar and nativelib resources are downloaded eagerly, that is, they are
downloaded and available locally to the JVM running the application before the
application is launched.  The jar and nativelib elements also allow a resource to be

Chapter 7
JNLP Elements

7-14



specified as lazy.  This means the resource does not have to be downloaded onto the
client system before the application is launched.

The download attribute is used to control whether a resource is downloaded eagerly,
lazily, or contains a custom progress implementation, for example:

    <jarhref="sound.jar" download="lazy"/>
    <nativelibhref="native-sound.jar" download="eager"/>

    <jarhref="progress.jar" download="progress"/>

A JAR file denoted with download="progress" is downloaded eagerly, and can be used
to indicate progress while downloading other resources.

The j2se element specifies what Java Platform, Standard Edition Runtime
Environment (JRE) versions an application is supported on and standard parameters
to the Java Virtual Machine.  If several JREs are specified, then this indicates a
prioritized list of the supported JREs, with the most preferred version first, for example:

       <j2se version="9" initial-heap-size="64m" max-heap-size="128m"/>
      <j2se version="1.8.0_101+" href="http://java.sun.com/products/autodl/j2se" 
java-vm-args="-esa -Xnoclassgc"/>

The version attribute refers, by default, to a platform version (specification version) of
the Java Platform Standard Edition. Currently defined platform versions are 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8, and 9. (A platform version does not usually contain a micro
version number; for example 1.4.2.)

Exact product versions (implementation versions) can also be specified by including
the href attribute, such as 1.7.0_111, or 1.8.0_92, for example:

<j2se version="1.7.0_111" href="http://java.sun.com/products/autodl/j2se"/

or

<j2se version="1.8.0_92" href="http://java.sun.com/products/autodl/j2se"/>

If a platform version is specified (that is, no href attribute is provided), Java Web Start
does not consider an installed non-General Availability (GA milestone) JRE as a
match. For example, a request in the following the form does not consider an installed
9-ea JRE as a match for the request:

<j2se version="9+"/>

The java-vm-args attribute of the j2se element specifies a preferred set of virtual
machine arguments to use when launching java.

<j2se version="9+" java-vm-args="-ea -Xincgc"/>

The following java-vm-args are supported by this version:

 -d32,                                                          /* use a 32-bit data 
model if available (unix platforms only) */
 -client,                                                       /* to select the 
client VM */
 -server,                                                       /* to select the 
server VM */
 -verbose,                                                      /* enable verbose 
output */
 -version,                                                      /* print product 
version and exit */

Chapter 7
JNLP Elements

7-15



 -showversion,                                                  /* print product 
version and continue */                                              
 -help,                                                         /* print this help 
message */
 -X,                                                            /* print help on non-
standard options */
 -ea,                                                           /* enable assertions 
*/
 -enableassertions,                                             /* enable assertions 
*/
 -da,                                                           /* disable 
assertions */
 -disableassertions,                                            /* disable 
assertions */
 -esa,                                                          /* enable system 
assertions */
 -enablesystemassertions,                                       /* enable system 
assertions */
 -dsa,                                                          /* disable system 
assertione */
 -disablesystemassertions,                                      /* disable system 
assertione */
 -Xmixed,                                                       /* mixed mode 
execution (default) */
 -Xint,                                                         /* interpreted mode 
execution only */
 -Xnoclassgc,                                                   /* disable class 
garbage collection */
 -Xincgc,                                                       /* enable 
incremental garbage collection */
 -Xbatch,                                                       /* disable 
background compilation */
 -Xprof,                                                        /* output cpu 
profiling data */
 -Xdebug,                                                       /* enable remote 
debugging */
 -Xfuture,                                                      /* enable strictest 
checks, anticipating future default */
 -Xrs,                                                          /* reduce use of OS 
signals by Java/VM (see documentation) */
 -XX:+ForceTimeHighResolution,                                  /* use high 
resolution timer */
 -XX:-ForceTimeHighResolution,                                  /* use low 
resolution (default) */
-XX:+PrintGCDetails,          /* Gives some details about the GCs */
-XX:+PrintGCTimeStamps,       /* Prints GCs times happen to the start of the 
application */
-XX:+PrintHeapAtGC,           /* Prints detailed GC info including heap occupancy */
-XX:+PrintTenuringDistribution,  /* Gives the aging distribution of the allocated 
objects */
-XX:+TraceClassUnloading,     /* Display classes as they are unloaded */
-XX:+CMSClassUnloadingEnabled,/* It needs to be combined with -XX:
+CMSPermGenSweepingEnabled */
-XX:+CMSIncrementalPacing,    /* Automatic adjustment of the incremental mode duty 
cycle */
-XX:+UseConcMarkSweepGC,      /* Turns on concurrent garbage collection */
-XX:-ParallelRefProcEnabled,
-XX:+DisableExplicitGC,       /* Disable calls to System.gc() */
-XX:+UseG1GC,
-XX:+HeapDumpOnOutOfMemoryError,
-XstartOnFirstThread,

Chapter 7
JNLP Elements

7-16



-XX:+UseG1GC,
-XX:+UseStringDeduplication,
-XX:+PrintStringDeduplicationStatistics,
-XX:+UseParallelOldGC,
-XX:-UseParallelOldGC",
-XX:+UseParallelOldGCCompacting",
-XX:-UseParallelOldGCCompacting",
-XX:+UseParallelGC,
-XX:-UseParallelGC,
-XX:+UseGCTimeLimit,
-XX:-UseGCTimeLimit,
-XX:+UseGCOverheadLimit,
-XX:-UseGCOverheadLimit,
-XX:+ScavengeBeforeFullGC,
-XX:-ScavengeBeforeFullGC,
-XX:+UseParallelScavenge,
-XX:-UseParallelScavenge,
-XX:-TransmitErrorReport,

Also supported are any arguments that start with one of the following strings:

-ea,                          /* enable assertions for classes */
-enableassertions,            /* enable assertions for classes */
-da,                          /* disable assertions for classes */
-disableassertions,           /* disable assertions for classes */
-verbose,                     /* enable verbose output */
-Xms,                         /* set initial Java heap size */
-Xmx,                         /* set maximum Java heap size */
-Xss,                         /* set java thread stack size */
-XX:NewRatio,                 /* set Ratio of new/old gen sizes */
-XX:NewSize,                  /* set initial size of new generation */
-XX:MaxNewSize,               /* set max size of new generation */
-XX:PermSize,                 /* set initial size of permanent gen */
-XX:MaxPermSize,              /* set max size of permanent gen */
-XX:MaxHeapFreeRatio,         /* heap free percentage (default 70) */
-XX:MinHeapFreeRatio,         /* heap free percentage (default 40) */
-XX:UseSerialGC,              /* use serial garbage collection */
-XX:ThreadStackSize,          /* thread stack size (in KB) */
-XX:MaxInlineSize,            /* set max num of bytecodes to inline */
-XX:ReservedCodeCacheSize,    /* Reserved code cache size (bytes) */
-XX:MaxDirectMemorySize,
-XX:PrintCMSStatistics,               /* If > 0, Print statistics about the 
concurrent collections */
-XX:SurvivorRatio,                    /* Sets the ratio of the survivor spaces */
-XX:MaxTenuringThreshold,             /* Determines how much the objects may age */
-XX:CMSMarkStackSize,
-XX:CMSMarkStackSizeMax,
-XX:CMSIncrementalDutyCycleMin,       /* The percentage which is the lower bound on 
the duty cycle */
-XX:ParallelCMSThreads,
-XX:ParallelGCThreads,                /* Sets the number of parallel GC threads */
-XX:CMSInitiatingOccupancyFraction,   /* Sets the threshold percentage of the used 
heap */
-XX:+UseCompressedOops,               /* Enables compressed references in 64-bit 
JVMs */
-XX:GCPauseIntervalMillis,
-XX:MaxGCPauseMillis,                 /* A hint to the virtual machine to pause 
times */
-XX:+CMSIncrementalMode,              /* Enables the incremental mode */
-XX:StringDeduplicationAgeThreshold,
-XX:GCTimeLimit",

Chapter 7
JNLP Elements

7-17



-XX:GCHeapFreeLimit",
-XX:MarkStackSize,
-XX:MarkStackSizeMax,
-XX:ConcGCThreads,

The property element defines a system property that is available through the
System.getProperty and System.setProperties methods. It has two required attributes:
name and value, for example:

<property name="key" value="overwritten"/>

Properties that are considered secure are set by Java Web Start after the VM is
started but before the application is invoked. These properties are passed as -
Dkey=value arguments to the java command when invoked. The following properties
are considered secure:

• Properties set in a signed JNLP file

• Properties set in an unsigned JNLP file that are prefixed with one of the following
strings: jnlp., javaws., or javapi.

• Predefined secure properties:

    sun.java2d.noddraw,
    javaws.cfg.jauthenticator,
    swing.useSystemFontSettings,
    swing.metalTheme,
    http.agent,
    http.keepAlive,
    sun.awt.noerasebackground,
    sun.java2d.opengl,
    sun.java2d.d3d,
    java.awt.syncLWRequests,
    java.awt.Window.locationByPlatform,
    sun.awt.erasebackgroundonresize,
    sun.awt.keepWorkingSetOnMinimize,
    swing.noxp,
    swing.boldMetal,
    awt.useSystemAAFontSettings,
    sun.java2d.dpiaware,
    sun.awt.disableMixing,
    sun.lang.ClassLoader.allowArraySyntax,
    java.awt.smartInvalidate"
    apple.laf.useScreenMenuBar,
    java.net.preferIPv4Stack,
    java.util.Arrays.useLegacyMergeSort",
    sun.locale.formatasdefault,
    sun.awt.enableExtraMouseButtons,
    com.sun.management.jmxremote.local.only,
    sun.nio.ch.bugLevel,
    sun.nio.ch.disableSystemWideOverlappingFileLockCheck,
    jdk.map.althashing.threshold

application-desc Element
The application-desc element indicates that the JNLP file is launching an application
(as opposed to an applet). The application element has an optional attribute, main-
class, for specifying the name of the application's main class, which is the class where
execution must begin:

Chapter 7
JNLP Elements

7-18



• For Java applications, the main class is the class that contains the public static
void main(String argv[]) method.

• For JavaFX applications, the main class is the class that extends
javafx.application.Application.

The main-class attribute can be omitted if the first JAR file specified in the JNLP file
contains a manifest file that contains the Main-Class attribute.

The optional type attribute can be used to indicate the type of application, either Java,
which is the default, or JavaFX. Java Web Start must know if it is a JavaFX application
to know how to invoke it.

Arguments can be specified for the application by including one or more nested
argument elements, for example:

  <application-desc main-class="Main">
      <argument>arg1</argument>
      <argument>arg2</argument>
  </application-desc>

Parameters can be added to applications with the type attribute set to JavaFX just as in
applets by including one or more param elements, for example:

<application-desc type="JavaFX" main-class="fxApp">
    <param name="key1" value="value1"/>
    <param name="key2" value="value2"/>
</application-desc>

The (optional) progress-class attribute can be used to indicate that the class of this
name implements the javax.jnlp.DownloadServiceListener interface. This
class can be loaded first and used to indicate the progress of other resources being
downloaded and verified.

applet-desc Element
Java Web Start has support for launching Java applets. This support provides easy
migration of existing code to Java Web Start.

Note:

Although available and supported in JDK 9, the Applet API is marked as
deprecated in preparation for removal in a future release.

An applet is launched using the applet-desc element instead of the application-desc
element, for example:

  <applet-desc
      documentBase="http://..."
      name="TimePilot"
      main-class="TimePilot.TimePilotApp"
      width="527"
      height="428">
    <param name="key1" value="value1"/>
    <param name="key2" value="value2"/>
  </applet-desc>

Chapter 7
JNLP Elements

7-19



The JAR files that make up the applet are described using the resources element, the
same as for applications. The documentBase must be provided explicitly because a
JNLP file is not embedded in an HTML page. The rest of the attributes correspond to
the respective HTML applet tag elements.

The main-class attribute is used instead of the code attribute. The main-class attribute is
assigned the name of the Applet class (without the .class extension). This attribute
can be omitted if the Applet class can be found from the Main-Class manifest entry in
the main JAR file.

The (optional) progress-class attribute can be used to indicate that the class of this
name implements the javax.jnlp.DownloadServiceListener interface. This
class can be loaded first and used to indicate the progress of other resources being
downloaded and verified.

Note:

Applets must be packaged in JAR files to work with Java Web Start.

component-desc Element
The component-desc element denotes that this JNLP file is not an application or an
applet but an extension that can be used as a resource in an application, applet, or
another extension.

A component extension is typically used to factor out a set of resources that are
shared among multiple applications or that have separate security needs.

The (optional) progress-class attribute can be used to indicate that the class of this
name implements the javax.jnlp.DownloadServiceListener interface. This
class can be loaded first and used to indicate the progress of other resources being
downloaded and verified.

installer-desc Element
The installer-desc element denotes that this JNLP file is an installer extension that
defines an application that will be run only once, the first time this extension JNLP file
is used in an application, applet, or another extension.

An installer extension is typically used to install platform-specific native code that
requires a more complicated setup than simply loading a native library into the VM.

Chapter 7
JNLP Elements

7-20



8
JNLP API Examples

The JNLP API provides additional information to the application that would otherwise
not be available using the standard Java Platform Standard Edition API. For untrusted
applications, the JNLP API provides methods for operations such as reading and
writing files or accessing the clipboard or printers, which would otherwise be prevented
by the security manager.

The public classes and interfaces in the JNLP API are included in the javaws.jar file,
which is in the lib directory. This JAR file must be included in the class path when
compiling source files that use the JNLP API. For example on Windows:

javac -classpath .;javaws.jar *.java

The following code examples show how the JNLP services can be used:

• Using the BasicService Service

• Using the ClipboardService Service

• Using the DownloadService Service

• Using the DownloadService2 Service

• Implementing the DownloadServiceListener Service

• Using the FileOpenService Service

• Using the FileSaveService Service

• Using the IntegrationService Service

• Using the PrintService Service

• Using the PersistenceService Service

• Using FileContents

• Using a JNLPRandomAccessFile

• Using the SingleInstanceService Service

• Using an ExtendedService Service

Using the BasicService Service
The javax.jnlp.BasicService service provides a set of methods for querying
and interacting with the environment similar to what the AppletContext provides for a
Java applet.

The showURL method uses the JNLP API to direct the default browser on the platform to
show the given URL. The method returns true if the request succeeds; otherwise, it
returns false.

import javax.jnlp.*;
   ...

8-1

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


   // Method to show a URL
   boolean showURL(URL url) {
       try {
           // Lookup the javax.jnlp.BasicService object
           BasicService bs = 
(BasicService)ServiceManager.lookup("javax.jnlp.BasicService");
           // Invoke the showDocument method
           return bs.showDocument(url);
       } catch(UnavailableServiceException ue) {
           // Service is not supported
           return false;
       }
    }

Using the ClipboardService Service
The javax.jnlp.ClipboardService service provides methods for accessing the
shared system-wide clipboard, even for applications that are running in the restricted
execution environment.

Java Web Start will warn the user of the potential security risk of letting an untrusted
application access potentially confidential information stored in the clipboard, or
overwriting contents stored in the clipboard.

import javax.jnlp;
    ...

    private ClipboardService cs;

    try {
        cs = (ClipboardService)ServiceManager.lookup
                 ("javax.jnlp.ClipboardService");
    } catch (UnavailableServiceException e) {
        cs = null;
    }

    if (cs != null) {
        // set the system clipboard contents to a string selection
        StringSelection ss = new StringSelection("Java Web Start!");
        cs.setContents(ss);
        // get the contents of the system clipboard and print them
        Transferable tr = cs.getContents();
        if (tr.isDataFlavorSupported(DataFlavor.stringFlavor)) {
           try {
                String s = (String)tr.getTransferData(DataFlavor.stringFlavor);
                System.out.println("Clipboard contents: " + s);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }

Using the DownloadService Service
The javax.jnlp.DownloadService service allows an application to control how its
resources are cached.

Chapter 8
Using the ClipboardService Service

8-2

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html
http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


The service allows an application to determine which of its resources are cached, to
force resources to be cached, and to remove resources from the cache.

import javax.jnlp.*; 
    ... 

    DownloadService ds; 

    try { 
        ds = (DownloadService)ServiceManager.lookup("javax.jnlp.DownloadService"); 
    } catch (UnavailableServiceException e) { 
        ds = null; 
    } 

    if (ds != null) { 

        try { 
            // determine if a particular resource is cached
            URL url = 
                    new URL("http://www.example.com/draw.jar"); 
            boolean cached = ds.isResourceCached(url, "1.0"); 
            // remove the resource from the cache 
            if (cached) { 
                ds.removeResource(url, "1.0"); 
            } 
            // reload the resource into the cache 
            DownloadServiceListener dsl = ds.getDefaultProgressWindow(); 
            ds.loadResource(url, "1.0", dsl); 
        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 

Using the DownloadService2 Service
The javax.jnlp.DownloadService2 service, introduced in the Java SE 6 update
18 release, provides the following methods:

• getCachedResources – Lists cached resources that match the given version, URL,
and resource type.

• getUpdateAvailableResources – Checks and lists resources for which updates are
available. If an application uses the version download protocol, then specify a
version in the DownloadService2.ResourceSpec. If not, then specify a null value for
the version.

An instance of the DownloadService2.ResourceSpec class specifies details about the
resource to be checked.

import javax.jnlp.*;
...
DownloadService2 service = (DownloadService2)
                        ServiceManager.lookup("javax.jnlp.DownloadService2");

// create a new instance of ResourceSpec. In this example: 
// - resource is downloaded from a directory on http://foo.bar.com:8080
// - version is 2. [0-9]+

Chapter 8
Using the DownloadService2 Service

8-3

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


// - resource type is JAR 
ResourceSpec spec = new ResourceSpec("http://foo.bar.com:8080/.*", 2.*, service.JAR)

// returns all cached resources that match the given ResourceSpec  
ResourceSpec results[] = service.getCachedResources(spec);

// returns all resources for which an update is available on the 
// server http://foo.bar.com:8080.
results = service.getUpdateAvailableResources(spec);

Implementing the DownloadServiceListener Service
The javax.jnlp.DownloadServiceListener service provides methods to
specify a customized loading progress indicator that indicates the progress of an
application's download.

Using the FileOpenService Service
The javax.jnlp.FileOpenService service provides methods for importing files
from the local disk, even for applications that are running in the restricted execution
environment.

This interface is designed to provide the same type of disk access to potentially
untrusted web-deployed applications that a web developer has when using HTML.
HTML forms support the inclusion of files by displaying an Open dialog box.

import javax.jnlp.*; 
    ... 

    FileOpenService fos; 

    try { 
        fos = (FileOpenService)ServiceManager.lookup("javax.jnlp.FileOpenService"); 
    } catch (UnavailableServiceException e) { 
        fos = null; 
    } 

    if (fos != null) { 
        try { 
            // ask user to select a file through this service 
            FileContents fc = fos.openFileDialog(null, null); 
            // ask user to select multiple files through this service 
            FileContents[] fcs = fos.openMultiFileDialog(null, null); 
        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 

Using the FileSaveService Service
The javax.jnlp.FileSaveService service provides methods for exporting files to
the local disk, even for applications that are running in the restricted execution
environment.

Chapter 8
Implementing the DownloadServiceListener Service

8-4

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html
http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html
http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


This interface is designed to provide the same level of disk access to potentially
untrusted web-deployed applications that a web browser provides for contents that it is
displaying.  Most browsers provide a Save As dialog box as part of their user interface.

import javax.jnlp.*; 
    ... 

    FileSaveService fss; 
    FileOpenService fos; 

    try { 
        fos = (FileOpenService)ServiceManager.lookup("javax.jnlp.FileOpenService"); 
        fss = (FileSaveService)ServiceManager.lookup 
                                   ("javax.jnlp.FileSaveService"); 
    } catch (UnavailableServiceException e) { 
        fss = null; 
        fos = null; 
    } 

    if (fss != null && fos != null) { 
        try { 
            // get a file with FileOpenService 
            FileContents fc = fos.openFileDialog(null, null); 
            // one way to save a file 
            FileContents newfc = fss.saveFileDialog(null, null, 
            fc.getInputStream(), "newFileName.txt"); 
            // another way to save a file 
            FileContents newfc2 = fss.saveAsFileDialog(null, null, fc); 

        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 

Also see Using FileContents.

Using the IntegrationService Service
The javax.jnlp.IntegrationService service provides methods for
programmatic management of shortcuts. By using this service, an application can
perform the following operations:

• Create a desktop shortcut

• Create a menu shortcut

• Query and delete shortcuts

• Create, query, and delete associations of an application with a MIME type or file
extensions.

import javax.jnlp.*;
...

IntegrationService is = null;
try {
    is = (IntegrationService) ServiceManager.lookup("javax.jnlp.IntegrationService");
} catch(UnavailableServiceException use){

Chapter 8
Using the IntegrationService Service

8-5

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


    ...
}

// creates a desktop and system menu shortcut; returns true if the shortcuts 
// were created successfully
boolean result = is.requestShortcut(true, true, null);

//removes all shortcuts for application
result = is.removeShortcuts();

// checks to see if there are shortcuts for the application
result = is.hasMenuShortcut() && is.hasDesktopShortcut());

// associates the application with the specified mime-type and file extensions
String mime = "x-application/aaa";
String [] exts = {"aaa", "abc"};
result = is.requestAssociation(mime, exts);

// checks if the application is associated with the specified mime-type and file 
extensions
result = is.hasAssociation(mime, exts);

// removes association between the application and the specified mime-type and file 
extensions
is.removeAssociation(mime, exts);

Using the PrintService Service
The javax.jnlp.PrintService service provides methods for access to printing,
even for applications that are running in the restricted execution environment.

Using this service, an application can submit a print job. Java Web Start then shows
this request to the user and, if accepted, queues the request to the printer.

Starting in Java Web Start 5.0, you can directly use the Java Printing APIs, and Java
Web Start pops up a security dialog box that asks the user to grant PrintPermission if
the application is running in a sandbox. There is no need to use the JNLP Printing
APIs anymore. You can have full access to the Java Printing APIs in any JNLP
application.

import javax.jnlp.*; 
    ... 

    PrintService ps; 

    try { 
        ps = (PrintService)ServiceManager.lookup("javax.jnlp.PrintService"); 
    } catch (UnavailableServiceException e) { 
        ps = null; 
    } 

    if (ps != null) { 
        try { 
             
            // get the default PageFormat
            PageFormat pf = ps.getDefaultPage(); 

            // ask the user to customize the PageFormat
            PageFormat newPf = ps.showPageFormatDialog(pf); 

Chapter 8
Using the PrintService Service

8-6

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


            // print the document with the PageFormat above
            ps.print(new DocToPrint()); 
           
        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 

    // Code to construct the Printable Document
    class DocToPrint implements Printable {
        public int print(Graphics g, PageFormat pageformat, int PageIndex){
            // code to generate what you want to print   
        }
    }

Using the PersistenceService Service
The  javax.jnlp.PersistenceService service provides methods for storing data
locally on the client system, even for applications that are running in the restricted
execution environment.

The service is designed to be similar to that which the cookie mechanism provides to
HTML-based applications. Cookies allow a small amount of data to be stored locally
on the client system. That data can be securely managed by the browser and can only
be retrieved by HTML pages that originate from the same URL as the page that stored
the data.

import javax.jnlp.*; 
    ... 

    PersistenceService ps; 
    BasicService bs; 

    try { 
        ps = 
(PersistenceService)ServiceManager.lookup("javax.jnlp.PersistenceService"); 
        bs = (BasicService)ServiceManager.lookup("javax.jnlp.BasicService"); 
    } catch (UnavailableServiceException e) { 
        ps = null; 
        bs = null; 
    } 

    if (ps != null && bs != null) { 

        try { 
            // find all the muffins for our URL
            URL codebase = bs.getCodeBase(); 
            String [] muffins = ps.getNames(url); 

            // get the attributes (tags) for each of these muffins. 
            // update the server's copy of the data if any muffins 
            // are dirty 
            int [] tags = new int[muffins.length]; 
            URL [] muffinURLs = new URL[muffins.length]; 
            for (int i = 0; i < muffins.length; i++) { 
                muffinURLs[i] = new URL(codebase.toString() + muffins[i]); 
                tags[i] = ps.getTag(muffinURLs[i]); 

Chapter 8
Using the PersistenceService Service

8-7

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


                // update the server if anything is tagged DIRTY 
                if (tags[i] == PersistenceService.DIRTY) { 
                    doUpdateServer(muffinURLs[i]); 
                } 
            } 

            // read in the contents of a muffin and then delete it 
            FileContents fc = ps.get(muffinURLs[0]); 
            long maxsize = fc.getMaxLength(); 
            byte [] buf = new byte[fc.getLength()]; 
            InputStream is = fc.getInputStream(); 
            long pos = 0; 
            while((pos = is.read(buf, pos, buf.length - pos)) > 0) { 
                // just loop 
            } 
            is.close(); 

            ps.delete(muffinURLs[0]); 

            // re-create the muffin and repopulate its data 
            ps.create(muffinURLs[0], maxsize); 
            fc = ps.get(muffinURLs[0]); 
            // don't append 
            OutputStream os = fc.getOutputStream(false); 
            os.write(buf); 
            os.close(); 

        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 

   void doUpdateServer(URL url) { 
        // update the server's copy of the persistent data 
        // represented by the given URL 
        ... 
        ps.setTag(url, PersistenceService.CACHED); 
   } 

Using FileContents
javax.jnlp.FileContents objects encapsulate the name and contents of a file. An
object of this class is used by the FileOpenService, FileSaveService, and
PersistenceService. Here is an example of how an instance of FileContents can be
used to read from and write to a file:

import javax.jnlp.*; 
    ... 

    FileOpenService fos; 

    //Initialize fos (see Using the FileOpenService Service example) 
    ... 

    if (fos != null) { 

        try { 

Chapter 8
Using FileContents

8-8

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


            // get a FileContents object to work with from the 
            // FileOpenService 
            FileContents fc = fos.openFileDialog(null, null); 

            // get the InputStream from the file and read a few bytes 
            byte [] buf = new byte[fc.getLength()]; 
            InputStream is = fc.getInputStream(); 
            int pos = 0; 
            while ((pos = is.read(buf, pos, buf.length - pos)) > 0) { 
                // just loop 
            } 
            is.close(); 

            // get the OutputStream and write the file back out 
            if (fc.canWrite()) { 
               // don't append 
               OutputStream os = fc.getOutputStream(false); 
               os.write(buf); 
            } 

        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 

Using a JNLPRandomAccessFile
Instances of javax.jnlp.JNLPRandomAccessFile support both reading and writing to a
random access file.  A random access file behaves like a large array of bytes stored in
the file system.  Here is an example of how an instance of a JNLPRandomAccessFile can
be used to write to a random access file:

import javax.jnlp.*; 
    ... 

    FileOpenService fos; 

    //Initialize fos (see Using the FileOpenService Service example) 
    ... 

    if (fos != null) { 
        try { 
           // ask the user to choose a file to open 
           FileContents fc = fos.openFileDialog(null, null); 

           // attempt to increase the maximum file length 
           long grantedLength = fc.getLength(); 
           if (grantedLength + 1024 > fc.getMaxLength()) { 
               // attempt to increase the maximum file size defined by 
               // the client 
               grantedLength = fc.setMaxLength(grantedLength + 1024); 
           } 

           // if we were able to increase the maximum allowable file size, 
           // get a JNLPRandomAccessFile representation of the file, and 
           // write to it 
           if (fc.getMaxSize() > fc.getLength() && fc.canWrite()) { 
               JNLPRandomAccessFile raf = fc.getRandomAccessFile("rw"); 

Chapter 8
Using a JNLPRandomAccessFile

8-9

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


               raf.seek(raf.length() - 1); 
               raf.writeUTF("Java Web Start!"); 
               raf.close(); 
           } 
        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 

Using the SingleInstanceService Service
The javax.jnlp.SingleInstanceService provides a set of methods for applications to
register themselves as singletons, and to register listeners for handling arguments
passed in from different instances of applications.

import javax.jnlp.*; 
    ... 

    SingleInstanceService sis; 

    ... 

    try { 
        sis = 
(SingleInstanceService)ServiceManager.lookup("javax.jnlp.SingleInstanceService");
    } catch (UnavailableServiceException e) { sis=null; }

    ...

    
    // Register the single instance listener at the start of your application
    
    SISListener sisL = new SISListener();
    sis.addSingleInstanceListener(sisL);

    ...
    
    
    // Remember to remove the listener before your application exits
    
    sis.removeSingleInstanceListener(sisL);
    System.exit(0);

    
    // Implement the SingleInstanceListener for your application
    
    class SISListener implements SingleInstanceListener {
        public void newActivation(String[] params) {
            
            // your code to handle the new arguments here
            
            ...
        }
    }

Chapter 8
Using the SingleInstanceService Service

8-10

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


Using an ExtendedService Service
The javax.jnlp.ExtendedService provides additional support to the current JNLP
API. It allows applications to open specific files in the client's file system.

import javax.jnlp.*; 
    ... 

    ExtendedService es; 

    ... 

    try { 
        es = 
(ExtendedService)ServiceManager.lookup("javax.jnlp.ExtendedService");
    } catch (UnavailableServiceException e) { es=null; }

    ...

    
    // Open a specific file in the local machine
    
    File a = new File("c:\somefile.txt");

    ...
    
    
    // Java Web Start will pop up a dialog asking the user to grant permission
    // to read/write the file c:\somefile.txt
    
    FileContents fc_a = es.openFile(a);

    
    // You can now use the FileContents object to read/write the file
    
    ...

    
    // Open a specific set of files in the local machine
    
    File[2] fArray = new File[2];
    
    fArray[0] = a;
    fArray[1] = new File("c:\anotherFile.txt");

    
    // Java Web Start will pop up a dialog asking the user to grant permission
    // to read/write files in fArray
    
    FileContents[] fc_Array = es.OpenFiles(fArray);

    
    // You can now read/write the set of files in fc_Array using the
    // FileContents objects
    
    }

Chapter 8
Using an ExtendedService Service

8-11

http://docs.oracle.com/javase/9/docs/api/javax/jnlp/package-summary.html


For detailed information about using the javaws command, see javaws in the Java
Platform, Standard Edition Tools Reference.

Chapter 8
Using an ExtendedService Service

8-12



Part IV
Configuring and Monitoring Deployment

The topics in this part provide information about the Java Control Panel, which is used
to configure deployment options, and deployment rule sets, which are used to manage
the Java desktop environment.

• Java Control Panel

• Deployment Rule Set



9
Java Control Panel

The Java Control Panel is used to control how Java and JavaFX applications that are
embedded in a browser or are launched from a browser run on your computer. The
settings in the Java Control Panel are not used by standalone and self-contained
applications.
The Java Control Panel includes the following tabs:

• General

• Update

• Desktop Settings

• Web Settings

• Security

• Advanced

Every tab contains a search field. Use this field to find settings related to the search
term entered.

Overview of Java Control Panel
The Java Control Panel maintains settings that manage how Java and JavaFX
applications embedded in or launched from a browser are run.

Note:

Although available and supported in JDK 9, the Applet API and the Java Plug-
in are marked as deprecated in preparation for removal in a future release.
Alternatives for applets and embedded JavaFX applications include Java Web
Start and self-contained applications.

In JDK 9, the Java Control Panel was rewritten as a JavaFX application and the
location of some functions has changed.

To start the Java Control Panel from the command line, enter <JRE installation home>
\bin\javacpl.exe on Windows, or <JRE installation home>/bin/jcontrol on macOS or
Linux. The Java Control Panel provides the following capabilities:

• View and delete temporary files used by the Java Plug-in, which runs applets and
JavaFX applications that are embedded in a browser, and by Java Web Start,
which enables you to run Java and JavaFX applications over the network.

• Update your version of the Java platform so that you always have the latest Java
Runtime Environment (JRE).

• Manage the JREs on your system and set runtime parameters for them.

• Manage certificates.

9-1



• View the active deployment rule set on your system, if any.

• Manage the exception site list for your system.

• Configure proxy settings.

• Enable enhanced security restrictions for Java and JavaFX applications
embedded in or launched from a browser.

• Configure settings for debugging, applet handling, and other functions.

• Search the Java Control Panel for settings to configure.

General Tab in the Java Control Panel
The General tab shows the version of the Java runtime (JRE) that you are running and
the security status of the JRE.

The JRE that is running is identified by the Java version number and the build number.
Security status is determined by the following attributes:

• Security Baseline - Minimum recommended update for Java.

• Expiration Date - Date related to the scheduled release of the next Critical Patch
Update. After the expiration date, additional security fixes might be available.

If your JRE is below the security baseline or past the expiration date, you are
encouraged to upgrade to the latest version.

Update Tab in the Java Control Panel
The Update tab shows when the check for updates is done and enables you to change
the settings for the update process.

Automatic updates are supported only on Microsoft Windows and macOS. The update
feature works with the Java Update Scheduler (jusched.exe) to provide you with the
latest Java updates. You must have Administrative privileges to update the JRE.

From this tab, you can automatically or manually update the system JRE that is
installed. If you have more than one JRE installed, the Desktop Settings tab shows
you which JRE is considered the system JRE. See Desktop Settings Tab in the Java
Control Panel.

The Update tab provides the options shown in the following table, not all options are
available on both platforms:

Option Description

Notify me before an
update is

Indicates when you want to be notified that an update is available. The
options are:

• Downloaded - Notifies you before the update is downloaded.
• Installed - Notifies you after the update is downloaded, but before

the update is installed.

Automatically check
for updates
(Recommended)

Indicates if the check for updates is done automatically. This option is
enabled by default. The time when the check is scheduled is shown.
See Scheduling the Check for Updates to set the schedule.

Check Now Checks for updates when clicked. The time of the last check is shown
above the button.

Chapter 9
General Tab in the Java Control Panel

9-2



Option Description

Download the latest
version of Java from
java.com

Provides a link to where you can download the latest JRE.

Scheduling the Check for Updates
Set the time and frequency for automatic updates of your JRE from the Update tab of
the Java Control Panel. A manual check can be done at any time from the same tab.

You must have Administrative privileges to update the JRE. The following instructions
are for Microsoft Windows. Not all options are available for macOS. To check for an
update:

1. To immediately check for an update, click Check Now. The time of the last check
is shown above the button.

2. To schedule an automatic check for updates:

a. Select Automatically Check for Updates. Your JREs are updated
automatically on a schedule that you set.

b. From the Notify Me Before an Update is drop-down list, choose to be notified
either before the update is downloaded, or after the update is downloaded but
before the update is installed.

c. Click the date and time shown for Check for Updates to set up the schedule
for updates.

The Automatic Update Advanced Settings window is shown.

d. Select how often you want the check to run and the day and time to run it.

Choose Daily, Weekly, or Monthly. For daily updates, select the time of the
day for the update. For weekly updates, select the day of the week and the
time of the day. For monthly updates, select the day of the week and the time
of the day. Monthly updates check weekly and notify you within 30 days that
an update is available. However, if an update is considered critical, you are
notified within a week of its release.

e. Close the Automatic Update Advanced Settings window to see your selection
in the Update tab.

f. Click Apply to save your changes, or OK to save your changes and close the
Java Control Panel.

Java Update Scheduler
On Microsoft Windows platforms, the Java Update Scheduler, jusched.exe, is used to
launch automatic updates when the option to update automatically is selected in the
Update tab. jusched.exe runs as a background process that launches the Update
Manager at predefined intervals set by the in the Update tab of the Java Control Panel.
The Update Manager coordinates the update process.

jusched.exe is launched when the user reboots the computer after installing the JDK or
JRE. It is normally transparent to the user, but can be viewed in the Processes tab of
the Windows Task Manager. If you do not want the scheduler to run, use the End
Process button of the Processes tab to kill the process.

Chapter 9
Update Tab in the Java Control Panel

9-3



Desktop Settings Tab in the Java Control Panel
The Desktop Settings tab shows information about the JREs that are installed on your
system and enables you to choose the JREs that you want to use to run applications
that are embedded in a web page or launched from a browser.

The following table describes the information that is shown for each JRE found on your
computer:

Setting Description

Web Enabled Flag that indicates which of the JRE versions are considered when
running an application using Java Plug-in or Java Web Start. Settings in
the Java Control Panel do not apply to standalone or self-contained
applications. If the check box for a JRE is not selected, then Java Plug-
in and Java Web Start will not use the JRE to launch Java applications.
However, the current JRE might be used even if it is not marked as
enabled.

Note: If Java content in the browser is disabled in the Security tab of
the Java Control Panel, enabling the JRE in the Desktop Settings tab
has no effect.

Platform Java platform number for the JRE, for example, 1.8 or 9

Product Full version number of the JRE, including the update number, for
example, 1.8.0_101

Architecture Architecture of the JRE

Type Type of JRE found, which is one of the following values:

• System - JRE that was used to start the Java Control Panel
• User - All of the registered JREs and the JREs that the user added

Path Full path to the JRE

Runtime Parameters Optional custom options used to override the Java Plug-in default
startup parameters, see Java Runtime Parameters

The table always has at least one entry, which is the most recently installed JRE. This
is the JRE that is associated with the Java Control Panel.

On Microsoft Windows all of the JREs that are installed on a computer are shown. The
Java Control Panel finds the JREs by looking in the registry. On Solaris, Linux, and
macOS, the JRE that Java Web Start or Java Plug-in is using to deploy applications is
the JRE that is considered registered. Use the Add and Remove buttons to change
which JREs are listed in the table, see Editing Desktop Settings. On macOS, only the
currently installed JRE is displayed, JDKs are not included.

Editing Desktop Settings
JREs can be added and removed from the table in the Desktop Settings tab and
runtime parameters can be set for each JRE.

The following functions are available for managing JREs on a computer:

• To change the runtime parameters for a user JRE, select the JRE, click the cell in
the Runtime Parameters column, and edit the value.

Chapter 9
Desktop Settings Tab in the Java Control Panel

9-4



• To add a JRE to the table, click Add. Browse to the location of the JRE and select
the home folder.

• To remove a JRE from the table, select the JRE and click Remove.

The System JRE cannot be removed.

Java Runtime Parameters
To override Java Plug-in default startup parameters, specify custom options in the
Runtime Parameters column for a JRE shown in the Desktop Settings tab of the Java
Control panel.

Note:

Although available and supported in JDK 9, the Java Plug-in has been marked
as deprecated in preparation for removal in a future release. Alternatives for
applets and embedded JavaFX applications, which require the plug-in, include
Java Web Start and self-contained applications.

With the exception of setting classpath and cp, the syntax is the same as that used
with parameters for the java command line invocation.

The following sections provide examples of Java runtime parameters:

• Setting classpath or cp

• Enabling and Disabling Assertion Support

• Tracing and Logging Support

• Debugging Applets in Java Plug-in

• Default Connection Timeout

See the java command in Java Platform, Standard Edition Tools Reference for a full
list of command line options.

Setting classpath or cp
The following format should be used for setting classpath or cp in Java Plug-in. It
differs slightly from the java command line format, which uses a space instead of the
equal (=) sign.

-classpath=path
-cp=path

The following example shows a class path for Windows:

-cp=C:\apps\java\MyClasses;C:\java\OtherClasses

The following example shows a class path for Linux:

-cp=apps/java/MyClasses:/java/OtherClasses

Enabling and Disabling Assertion Support
System properties are used to enable and disable assertion support.

Chapter 9
Desktop Settings Tab in the Java Control Panel

9-5



The following system property is used to enable assertion support:

-[ enableassertions | ea ][:<package name>"..." | : <class name> ]

The following system property is used to disable assertion in the Java Plug-in:

-[ disableassertions | da ][:<package name>"..." | : <class name> ]

Assertion is disabled in Java Plug-in code by default. The effect of assertion is
determined during Java Plug-in startup. If you change the assertion settings in the
Java Plug-in Control Panel, you must restart the browser for the new settings to take
effect.

Because Java code in Java Plug-in also has built-in assertion, it is possible to enable
the assertion in Java Plug-in code using the following parameter:

-[ enableassertions | ea ]:sun.plugin

Tracing and Logging Support
Tracing is a facility to redirect any output in the Java Console to a trace file
(plugin<random-number>.trace or javaws<random-number>.trace). Use the following
parameters to turn on tracing:

-Ddeployment.trace=true
-Ddeployment.trace.option=basic|net|security|ext|liveconnect

If you do not want to use the default trace file name, use the following parameter to
specify a different name:

-Ddeployment.trace.filename=<tracefilename>

Similar to tracing, logging is a facility to redirect any output in the Java Console to a
log file (plugin<random-number>.log or javaws<random-number>.log) using the Java
Logging API. Use the following parameter to turn on logging:

-Ddeployment.logging=true

If you do not want to use the default log file name, use the following parameter to
specify a different name:

-Ddeployment.log.filename=<logfilename>

Furthermore, if you do not want to overwrite the trace and log files each session, you
can use the following parameter:

-Ddeployment.outputfiles.overwrite=false

Tracing and logging set through the Java Control Panel take effect when the Plug-in is
launched. However, changes made through the Java Control Panel while a Plug-in is
running have no effect until a restart.

Debugging Applets in Java Plug-in
The following parameters are used when debugging applets in the Java Plug-in:

-Djava.compiler=NONE
-Xnoagent
-Xdebug
-Xrunjdwp:transport=dt_shmem,address=<connect-address>,server=y,suspend=n

Chapter 9
Desktop Settings Tab in the Java Control Panel

9-6



The <connect-address> can be any string, for example, 2502, which is used by the Java
Debugger (jdb) later to connect to the JVM.

Note:

Although available and supported in JDK 9, the Applet API and the Java Plug-
in are marked as deprecated in preparation for removal in a future release.
Alternatives for applets and embedded JavaFX applications include Java Web
Start and self-contained applications.

Default Connection Timeout
The default network timeout value for all HTTP connections is two minutes. You can
override this setting by using the following parameter:

-Dsun.net.client.defaultConnectTimeout=value-in-milliseconds

Another networking property that you can set is sun.net.client.defaultReadTimeout, as
shown in the following example:

-Dsun.net.client.defaultReadTimeout=value-in-milliseconds

Note:

Java Plug-in does not set sun.net.client.defaultReadTimeout by default. If you
want to set it, do so through the Java Runtime Parameters as shown above.

The following networking parameters can also be used to set the connect and read
timeout values for the protocol handlers used by java.net.URLConnection. The default
value set by the protocol handlers is -1, which means there is no timeout set.

• sun.net.client.defaultConnectTimeout specifies the timeout in milliseconds to
establish the connection to the host. For example, for HTTP connections, it is the
timeout when establishing the connection to the HTTP server. For FTP
connections it is the timeout when establishing the connection to FTP servers.

• sun.net.client.defaultReadTimeout specifies the timeout in milliseconds when
reading from an input stream when a connection is established to a resource.

Web Settings Tab in the Java Control Panel
The Web Settings tab shows information about permissions for Java applications and
how the applications connect to the network. The tab also enables you to manage
temporary files and the Java cache.
The Web Settings tab contains the following tabs:

• Exception Site List Tab

• Deployment Rule Set Tab

• Temporary Files Settings Tab

Chapter 9
Web Settings Tab in the Java Control Panel

9-7



• Network Settings Tab

• Java Cache Viewer Tab

Exception Site List Tab
The Exception Site List tab in the Web Settings tab enables you to manage Rich
Internet Applications (RIAs) that users want to run even if the RIAs are normally
blocked by security checks.

RIAs from the locations listed are allowed to run with applicable security prompts. Use
the following controls to manage the list:

• Click Add to add a location.

• Select an entry and click Remove to remove a location.

• Double-click an entry to edit it.

• Use the Filter field to search the list for sites that contain the search term.

The following rules apply to the format of the location URL:

• A protocol is required.

Supported protocols are HTTPS (https://), HTTP (http://), and FILE (file:///).
HTTPS is recommended. FILE and HTTP protocols are considered a security risk.

• A domain is required.

Wildcards are not supported. If only a domain is provided, any RIA from that
domain is allowed to run. A domain can have multiple entries, for example,
https://www.example.com and http://www.example.com.

• A port number is required only if the default port is not used.

• A path is optional.

Wildcards are not supported. If the path ends with a slash, for example, file:///C:
\local\apps\, RIAs in that directory and any subdirectory are allowed to run. If the
path does not end with a slash, for example, file:///C:\local\apps\applet.html,
only that specific RIA is allowed to run.

• The format must be the same as the format used for the RIA URL or href attribute.

For example, https://www.example.com/sample/app/sample1/../sample2 and
https://www.example.com/sample//app/sample2 are not considered matches to
https://www.example.com/sample/app/sample2.

Deployment Rule Set Tab
The Deployment Rule Set tab in the Web Settings tab shows the active deployment
rule set, which manages the running and blocking of Rich Internet Applications (RIAs).

If an active deployment rule set is installed on the system, the following information is
shown:

• Notice that the rule set is valid or a warning that it is not valid

• Text box that shows the rules in the Rules tab and information about the certificate
used to sign the rule set in the Certificate Details tab

• Timestamp of the rule set signature

Chapter 9
Web Settings Tab in the Java Control Panel

9-8



• Location of the rule set

• Expiration date of the rule set signature

When a rule set is available, the rules determine if a RIA is run without security
prompts, run with security prompts, or blocked. Deployment rules and rule sets are
described in Deployment Rule Set.

Temporary Files Settings Tab
The Temporary Files Settings tab in the Web Settings tab enables you to manage files
that are cached for applications that are embedded in a web page or launched from a
web page.

From this tab, you can perform the following actions:

• Select if you want to keep temporary files on your computer.

• Set the location where temporary files are kept.

• Set the compression level for JAR files that are cached. The higher the
compression level, the more compressed the file.

• Set the amount of disk space for storing temporary files.

• Delete temporary files by clicking Delete Files , which shows the Delete Files and
Applications dialog. From this dialog, you can select the types of files that you
want to delete:

– Trace and Log Files

– Cached Applications and Applets

– Installed Applications and Applets

• Restore default settings for the Temporary Files Settings dialog by clicking
Restore Defaults .

Network Settings Tab
The Network Settings tab in the Web Settings tab enables you to configure your
connection to the network.

The available options are shown in the following table:

Setting Description

Use browser settings Select this option to use the browser default proxy
settings. This is the default setting.

Use proxy server Select this option to provide the address and port
number of the proxy server that you want to use.
The option to bypass the proxy server for local
addresses is available.

To provide separate addresses for different
protocols, click Advanced. You can also specify
address that bypass the proxy server.

Chapter 9
Web Settings Tab in the Java Control Panel

9-9



Setting Description

Use automatic proxy configuration script Select this option to specify the URL for the
JavaScript file (.js or .pac extension) that
contains the FindProxyForURL function.
FindProxyForURL has the logic to determine the
proxy server to use for a connection request.

Direct Connection Select this option if you do not want to use a
proxy.

Java Cache Viewer Tab
The Java Cache Viewer tab in the Web Settings tab shows the applications,
resources, and deleted applications stored in the Java cache.

From this tab, you can perform the following actions for users or for the system by
using the icons or by right-clicking an application:

• For applications:

– Run applications.

– Visit the Web page of applications.

– View the JNLP file of applications.

– Install shortcuts to applications.

– Remove applications from the list. Applications are moved to the list of deleted
applications.

• For resources:

– View JNLP file resources.

– Remove resources.

• For deleted applications:

– Install deleted applications.

– Remove applications from the cache.

• View JNLP file resources.

• Install deleted applications.

Security Tab in the Java Control Panel
The Security tab shows general security settings and information about certificates
used to sign RIAs.
The Security tab contains the following tabs:

• General Security Settings Tab

• Manage Certificates Tab

Chapter 9
Security Tab in the Java Control Panel

9-10



General Security Settings Tab
The General tab of the Security tab shows the security settings that are in place. This
tab also enables you to restore security prompts.

The following table shows the options that are available.

Option Description

Enable Java Content
in the Browser

Enables Java applications to be run in a browser or launched from a
browser. To prevent these types of applications from running, do not
select this option. This option is selected by default.

Enable enhanced
security restrictions

Adds the additional restriction of requiring that the system must be able
to check the revocation status of the certificate used to sign the
application, or the application is blocked.

If not selected, applications that are signed with a valid certificate that is
located in the Signer CA keystore, and include the Permissions
attribute in the manifest for the main JAR file are allowed to run with
security prompts. This option is not selected by default.

Restore Security
Prompts

Restores the security prompts that were previously hidden. When
asked to confirm the selection, click Restore All. The next time an
application is started, the security prompt is shown.

To insure the continued security of your system, it is recommended that
you periodically restore the prompts that were hidden. Seeing the
prompts again provides an opportunity to review the applications and
ensure that you still want them to run.

Manage Certificates Tab
User-level and system-level certificates used to verify RIAs that you run can be
managed from the Manage Certificates tab of the Security tab.

From this tab, you can import, export, remove, and view the details for certificates.
Information is provided for the following types of certificates:

• Trusted Certificates - Certificates for signed RIAs that are trusted.

• Secure Site - Certificates for secure sites.

• Signer CA - Certificates of Certificate Authorities (CAs) who issue the certificates
to the signers of trusted certificates.

• Secure Site CA - Certificates of CAs who issue the certificates for secure sites.

• Client Authentication - Certificates used by a client to authenticate itself to a
server.

User-Level Certificates
You can export, import, remove, and view the details of user-level certificates using
the buttons provided in the Certificates dialog. To export, remove, or view the details,
first select a certificate from the list.

The following table shows the default location of the keystore files.

Chapter 9
Security Tab in the Java Control Panel

9-11



Table 9-1    Default Keystore Location

Operating System Location

Solaris, Linux, macOS ${user.home}/.java/deployment/security

Microsoft Windows ${deployment.user.home}\security

For example, the default location on Microsoft Windows 7 for user jsmith is

C:\Users\jsmith\AppData\LocalLow\Sun\Java\Deployment\security

To specify a user-level keystore in a location other than the default location, set
properties in the user-level deployment.properties file. The following table describes
the property to set for each type of certificate.

Table 9-2    Properties for User-Level Keystore Locations

Certificate Type Property Name

Trusted Certificates deployment.user.security.trusted.certs

Secure site deployment.user.security.trusted.jssecerts

Signer CA deployment.user.security.trusted.cacerts

Secure site CA deployment.user.security.trusted.jssecacerts

Client Authentication deployment.user.security.trusted.clientcerts

System-Level Certificates
You can export and view the details of system-level certificates using the buttons
provided in the Certificates dialog. System-level certificates cannot be imported or
removed by an end user.

Trusted, Secure Site, and Client Authentication certificate keystore files do not exist by
default. The following table shows the default location for the Signer CA keystore file.

Table 9-3    Default Location for the Signer CA Keystore

Operating System Location

Linux, or macOS $JAVA_HOME/lib/security/cacerts

Microsoft Windows $JAVA_HOME\lib\security\cacerts

The following table shows the default location for the Secure Site CA keystore.

Table 9-4    Default Location for the Secure Site CA Keystore

Operating System Location

Solaris, Linux, or macOS $JAVA_HOME/lib/security/jssecacerts

Microsoft Windows $JAVA_HOME\lib\security\jssecacerts

Chapter 9
Security Tab in the Java Control Panel

9-12



To specify a system-level keystore in a location other than the default location, set
properties in the system-level deployment.properties file. The System-Level
deployment.properties file does not exist by default. The following table describes the
property to set for each type of certificate.

Table 9-5    Properties for System-Level Keystore Locations

Certificate Type Property Name

Trusted Certificates deployment.system.security.trusted.certs

Secure site deployment.system.security.trusted.jssecerts

Signer CA deployment.system.security.trusted.cacerts

Secure site CA deployment.system.security.trusted.jssecacerts

Client Authentication deployment.system.security.trusted.clientcerts

Advanced Tab in the Java Control Panel
The Advanced tab enables you to set the options that are available for the JRE.
The following options are available:

• Debugging

• Java Console

• Shortcut Creation

• JNLP File/MIME Association

• Application Installation

• Execution Environment Security Settings

• Mixed code (sandboxed vs. trusted) security verification

• Perform signed code certificate revocation checks on

• Check for signed code certificate revocation using

• Advanced Security Settings

• Miscellaneous

Debugging
Enable tracing, logging, and the showing of applet lifecycle exceptions by selecting the
appropriate check boxes. If the boxes are not checked, the options are disabled.

Java Console
The Java Console is a debugging aid for Java applets and Java Web Start
applications. System.out and System.err messages and tracing and logging output are
shown in the console.

The following choices for viewing the console are available:

• Show the console

• Hide the console (default)

Chapter 9
Advanced Tab in the Java Control Panel

9-13



• Do not start the console

Shortcut Creation
This option provides the following choices for Java Web Start for creating shortcuts on
the desktop, select only one:

• Always allow

• Ask user if untrusted (default)

• Always ask user

• Never allow

JNLP File/MIME Association
This option enables you to associate files with the JNLP MIME type. The following
choices are available, select only one:

• Always allow

• Prompt user (default)

• Never allow

Application Installation
The following choices are available, select only one:

• Install if hinted (default)

• Install if shortcut created

• Install if hinted and shortcut

• Never install

A Java application or applet that is launched with Java Web Start can either be
installed or cached on the client computer. If the Java application is cached, then Java
Web Start stores the entire application in its cache; the application is removed from the
client computer when Java Web Start empties its cache. If the Java application is
installed, then the application has an entry in the Add or Remove Programs applet in
Windows Control Panel.

A Java application or applet can specify if it prefers to be cached or installed; if the
Java application specifies that it prefers to be installed, then it is hinted. By default,
Java applications that are hinted are installed on the client computer. You can also
specify that a Java application is installed if it creates a shortcut on the client
computer's desktop.

Execution Environment Security Settings
The following choices are available, more than one can be selected:

• Allow user to grant permissions to signed content

• Show sandbox warning banner

• Allow user to accept JNLP security requests

Chapter 9
Advanced Tab in the Java Control Panel

9-14



• Don't prompt for client certificate selection when no certificates or only one exists

• Warn if site certificate does not match hostname

• Show site certificate from server even if it is valid (not checked by default)

Mixed code (sandboxed vs. trusted) security verification
The following choices are available, select only one:

• Enable - show warning if needed (selected by default)

• Enable - hide warning and run with protections

• Enable - hide warning and don't run untrusted code

• Disable verification (not recommended)

Perform signed code certificate revocation checks on
Before a signed applet or Java Web Start application is run, the certificates used to
sign the JAR file can be checked to ensure that none have been revoked. You can
have all certificates checked, or only the certificate from the publisher of the app. If a
certificate has been revoked, any RIA that is signed with the certificate is not allowed
to run. This check can be disabled, but that is not recommended. The following
choices are available, select only one:

• Publisher's certificate only

• All certificates in the chain of trust (selected by default)

• Do not check (not recommended)

Check for signed code certificate revocation using
The following options indicate what to use to determine if a certificate has been
revoked, select only one:

• Certificate Revocations Lists (CRLs)

• Online Certificate Status Protocol (OCSP)

• Both CRLs and OCSP (selected by default)

If Do Not Check is selected for Perform signed code certificate revocation checks on,
this setting is ignored.

Perform TLS certificate revocation checks on
Before a signed applet or Java Web Start application is run from a secure server, the
certificates used to authenticate the secure server can be checked to ensure that none
have been revoked. You can have all certificates checked, or only the certificate from
the server. If a certificate has been revoked, any RIA that is signed with the certificate
is not allowed to run. This check can be disabled, but that is not recommended. The
following choices are available, select only one:

• Server certificate only

• All certificates in the chain of trust (selected by default)

• Do not check (not recommended)

Chapter 9
Advanced Tab in the Java Control Panel

9-15



Check for signed code certificate revocation using
The following options indicate what to use to determine if the certificate for a secure
server has been revoked, select only one:

• Certificate Revocations Lists (CRLs)

• Online Certificate Status Protocol (OCSP)

• Both CRLs and OCSP (selected by default)

If Do Not Check is selected for Perform TLS certificate revocation checks on, this
setting is ignored.

Advanced Security Settings
The following choices are available, more than one can be selected:

• Enable the operating system’s restricted environment (native sandbox) (Windows
only, not checked by default)

• Use certificates and keys in browser keystore

• Enable blacklist revocation check

• Enable caching password for authentication

• Use SSL 2.0 compatible ClientHello format (not checked by default)

• Use TLS 1.0

• Use TLS 1.1

• Use TLS 1.2

Native Sandbox

The native sandbox option is available only on Windows. When the native sandbox is
enabled, sandbox applets and Java Web Start applications run in a restricted
environment that is provided by the operating system. All-permission applications are
not affected and continue to run as before.

The following conditions apply:

• The native sandbox is disabled for applications included in the Exception Site List
or when a Deployment Rule Set is used.

• Sandbox applets deployed with the HTML applet tag, which includes all-
permissions JAR files from the Class-Path manifest attribute, run in the native
sandbox. In this case, a special warning dialog is shown to inform the user that the
applet might not work properly when it tries to access the all-permission JAR files.

• The custom preloader is disabled in the following cases when the native sandbox
is enabled:

– The custom preloader is disabled when a sandbox applet or Java Web Start
application is initializing. The default preloader is used instead. After the
application is initialized, Java VM restarts with the native sandbox enabled and
the custom preloader is used.

– For all-permission applications, the custom preloader is disabled if it is located
in a JNLP file that has sandbox permission, until the user agrees to run the

Chapter 9
Advanced Tab in the Java Control Panel

9-16



application from the Security Dialog, which grants unrestricted access
(privileged) to the application.

Miscellaneous
The following choices are available depending on your platform, none are checked by
default:

• Store user settings in the roaming profile (Windows only)

By default, user settings are stored in user_home\AppData\LocalLow\Sun
\Java\Deployment. Select this option to store user settings in user_home
\AppData\Roaming\Sun\Java\Deployment. When selected, the
deployment.properties file is copied to the Roaming directory. When
deselected, the file is removed from the Roaming directory. In addition, when the
option is selected, the following items are also stored in the Roaming directory:

– Local application properties

– Security baselines

– Blacklisted certificates

– Blacklisted JAR files

– User certificate stores

– Exception site list

• Place Java icon in system tray

• Suppress sponsor offers when installing or updating Java

Select this option if you do not want to be provided with offers from sponsors
during the installation or update process.

Chapter 9
Advanced Tab in the Java Control Panel

9-17



10
Deployment Rule Set

The Deployment Rule Set feature is for enterprises that manage their Java desktop
environment directly, and provides a way for enterprises to continue using legacy
business applications in an environment of ever-tightening Java applet and Java Web
Start application security policies. This feature also provides the ability to control the
version of the JRE that is used for specific applications.

Note:

The Deployment Rule Set feature is optional and shall only be used internally
in an organization with a controlled environment. If a JAR file that contains a
rule set is distributed or made available publicly, then the certificate used to
sign the rule set will be blacklisted and blocked in Java.

This topic contains the following sections:

• Overview of Deployment Rule Sets

• Create the Rule Set

• Packaging the Rule Set

• Installing the Rule Set

• Viewing the Active Rule Set

• Security Considerations

• Examples

• Java Deployment Rule Set DTD

Overview of Deployment Rule Sets
The Deployment Rule Set feature enables an enterprise to establish a whitelist of
known applications that can run without security prompts.

Java applets, Java Web Start applications, and JavaFX applications launched from or
embedded in a browser are known collectively as Rich Internet Applications (RIAs). To
protect the user and minimize the possibility that a RIA was compromised, security
checks are performed when a RIA is started, and the user is prompted for permission
to run the RIA. Applications on the whitelist defined by a Deployment Rule Set can be
run without most security prompts, however, the following prompts are not
suppressed:

• HTTPS security warnings

• Authentication dialogs that require the user to provide credentials to connect

• Security warnings from unsigned Java Web Start applications that want to perform
such actions as creating a shortcut or an association

10-1



Rules for deployment are defined in an XML file and packaged in a signed JAR file.
The rules are tested sequentially until one matches the RIA. Depending on the action
assigned to the rule, the RIA is then run without security prompts, blocked from
running, or run with default processing that shows any security prompts that are
applicable. If no rules are matched, then default processing is used. The rules also
provide the ability to specify the version of the JRE that is used to run the RIA and
suppress the notification of out-of-date JREs.

An active rule set that is installed on the system can be viewed from the Web Settings
tab of the Java Control Panel.

Create the Rule Set
The rule set is an XML file that must be named ruleset.xml. Use any text editor to
create this file.

Define the Rules
Define the rules that you need to run or block RIAs for your organization. See Java
Deployment Rule Set DTD for the syntax of the rule set. If unknown elements or
attributes are included in the rule set, warnings are written to the Java Console.

The following elements are valid:

• <ruleset>

• <rule>

• <id>

• <certificate>

• <checksum>

• <jnlp-checksum>

• <action>

• <message>

• <customer>

If the rule set is invalid, then an error that describes the problem is shown and all RIAs
are blocked. Either the ruleset.xml file must be corrected, or the DeploymentRuleSet.jar
file must be removed from the deployment directory (see Installing the Rule Set for the
location of this directory) before RIAs can be run. If a rule set is reported as invalid,
then check for the following problems based on the error you received:

• The file is unreadable.

• The structure of the file is invalid.

• The rules are not properly defined.

• A rule with an action of run has no selection criteria provided and therefore
matches all RIAs.

• The JAR file is not properly signed with a valid certificate.

If the DeploymentRuleSet.jar file is removed, RIAs are handled by the default
deployment process.

Chapter 10
Create the Rule Set

10-2



See Examples for some sample rule sets.

<ruleset>
The <ruleset> element is the top-level element of the policy file.

The valid child elements are <rule> and <customer>.

The following table describes the valid attribute.

Table 10-1    Attribute for <ruleset>

Attribute Description Required

version Minimum version of the Deployment Rule Set specification that is
required to process this file. Use a plus sign (+) to indicate that
later versions can also be used, for example 1.0+. If your JRE
does not support the version specified, all RIAs are blocked.

Yes

<rule>
The <rule> element defines the action taken for the RIA or set of RIAs that is matched
by the criteria specified for the rule.

This element contains one <id> element, one <action> element, and optional 
<customer> elements. Rules are processed sequentially until a rule is matched. When
a match is found, no further rules are processed. If no rule is matched, then default
processing is used, and any relevant security prompts or warnings are shown.

Note:

When a RIA has artifacts that are signed with a different certificate or that are
in a different location, ensure that the rule set contains rules for all artifacts of
the RIA. For mixed code cases, which are calls between JAR files with
different permission levels or calls from JavaScript code to privileged Java
code, see Set Up Rules for Mixed Code.

The valid parent element is <ruleset>. The valid child elements are <id> and <action>.

This element has no attributes.

<id>
The <id> element identifies the RIA or set of RIAs to which the rule applies. To be
considered a match, the RIA must match all attributes and child elements present. If
no attributes or child elements are present, then the rule matches all RIAs.

Chapter 10
Create the Rule Set

10-3



Note:

If the action for a rule is run, then at least one attribute or child element must
be present.

The valid parent element is <rule>. The valid child elements are <certificate>, 
<checksum>, and <jnlp-checksum>. Use the <certificate> element for signed JAR
files. Use the <checksum> element in Deployment Rule Set 1.2 and higher for unsigned
JAR files. Use the <jnlp-checksum> element in Deployment Rule Set 1.3 and higher
with a location-based run rule to allow insecure properties in an unsigned JNLP file to
be used.

The following table describes the valid attributes.

Table 10-2    Attributes for <id>

Attribute Description Required

location URL of the source of the RIA. For RIAs that use JNLP, this value
is matched to the href attribute in the main JNLP file, or the
jnlp_href parameter for the applet tag. If there is no href
attribute or jnlp_href parameter provided, use the <jnlp-
checksum> element with the location. For a JNLP extension, this
value is matched to the location of the extension element in the
resource element of the main artifact. For RIAs that do not use
JNLP, this value is matched to the URL for the HTML file. The
path is case sensitive and UTF-8 encoding is assumed.

Use of the HTTPS protocol is strongly recommended to avoid
potential man-in-the middle attacks.

A location is matched based on the following guidelines:

• If provided, then the protocols must match exactly.
• The host name can start with an asterisk followed by a dot

and a host name substring (*.host-name-substring), which
then matches any host that ends with the host name
substring provided after the dot. For example, *.example.com
matches host.example.com and host.test.example.com.
The host name cannot be just an asterisk or an asterisk with
no host name substring, such as *.com.

• If provided, then the port numbers must match exactly.
• If provided, then the beginning of the paths must match

exactly. If the location attribute does not contain a path, then
all paths from the host are considered a match. For example,
host.example.com/samples matches host.example.com/
samples and host.example.com/samples/test, but does not
match host.example.com/test. However, host.example.com
matches host.example.com/samples, host.example.com/
samples/test, and host.example.com/test.

If the location attribute is not present, or the value is null, then
the location matches all RIAs.

No

Chapter 10
Create the Rule Set

10-4



Table 10-2    (Cont.) Attributes for <id>

Attribute Description Required

title String used in the title element of the JNLP file, or as used by the
Java Plug-in. If the title attribute is present and the value is not
null, then the value must match the title of the RIA exactly. If the
title attribute is not present, or the value is null, then the title
matches all RIAs.

If the action for a rule is run or default and the title attribute is
present, another id attribute or child element must be specified
with the title attribute, otherwise the rule is invalid.

No

<certificate>
The <certificate> element identifies the certificate used to sign the RIA. The hash
attribute is required.

The valid parent element is <id>. This element has no child elements.

The following table describes the valid attributes:

Table 10-3    Attributes for <certificate>

Attribute Description Required

algorithm String that defines the hashing algorithm used to generate the
value for the hash attribute. Currently, only security hash
algorithm SHA-256 is supported. If the value is null, then SHA-256
is used.

No

hash String of hexadecimal digits that represent the hash value of the
code signing certificate. The value is based on the hashing
algorithm specified for the algorithm attribute. See Get the
Certificate Hash for information on getting the value to use.

Yes

<checksum>
The <checksum> element identifies the checksum for an unsigned JAR file. The hash
attribute is required. This element is available in Deployment Rule Set 1.2 and higher.

The valid parent element is <id>. This element has no child elements.

The following table describes the valid attributes:

Table 10-4    Attributes for <checksum>

Attribute Description Required

algorithm String that defines the hashing algorithm used to generate the
value for the hash attribute. Currently, only security hash
algorithm SHA-256 is supported. If the value is null, then SHA-256
is used. If a non-null value other than SHA-256 is used, a warning
is issued and SHA-256 is used.

No

Chapter 10
Create the Rule Set

10-5



Table 10-4    (Cont.) Attributes for <checksum>

Attribute Description Required

hash String of hexadecimal digits that represent the hash value of the
checksum for the uncompressed form of the JAR file
(compression level 0). The value is based on the hashing
algorithm specified for the algorithm attribute.

Yes

<jnlp-checksum>
The <jnlp-checksum> element identifies the checksum for a JNLP file. The hash attribute
is required. This element is available in Deployment Rule Set 1.3 and higher.

The valid parent element is <id>. This element has no child elements.

If the location attribute of the <id> element is null, the <jnlp-checksum> element is
ignored. You can specify more than one <jnlp-checksum> element. A rule matches if
the checksum for the JNLP file equals the hash attribute of one of the <jnlp-checksum>
elements in the rule. The following table describes the valid attribute:

Table 10-5    Attributes for <jnlp-checksum>

Attribute Description Required

hash String of hexadecimal digits that represent the hash value of the
checksum. The value is based on the hashing algorithm specified
for the algorithm attribute.

Yes

<action>
The <action> element defines the action taken for any RIA that matches the rule.

The valid parent element is <rule>. The valid child element is <message>.

The following table describes the valid attributes:

Chapter 10
Create the Rule Set

10-6



Table 10-6    Attributes for <action>

Attribute Description Required

permission Action taken. The valid values are block, default, and run.

block - RIA is not run. A message is shown to the user. To
provide a custom message, include the <message> element.

default - RIA is run with default processing and any applicable
security prompts are shown. To include a custom message
when default processing blocks the RIA, use version 1.2 or
higher of the Deployment Rule Set and include the <message>
element.

run - The following types of RIAs are allowed to run without
prompts:

• Signed with a valid certificate from a trusted certificate
authority

• Signed with an expired certificate
• Self-signed
• Unsigned
• Missing required JAR file manifest attributes
To include a custom message with the run action, use version
1.2 or higher of the Deployment Rule Set and include the
<message> element.

Yes

Chapter 10
Create the Rule Set

10-7



Table 10-6    (Cont.) Attributes for <action>

Attribute Description Required

version String that identifies the version of the JRE to use to run the
RIA. This attribute applies only when the value for the
permission attribute is run. Use the version attribute when an
older JRE is needed for compatibility with specific RIAs. If the
version attribute is not present, the RIA is run with the latest
JRE available.

The following values are valid:

• Platform version, such as 1.7, 1.7+, 1.8, 9. A platform
version requests the use of any version of the specified
platform, or the specified platform or later when a plus sign
(+) follows the version.

• Implementation version, such as 1.7.0_40, 1.8.0_20. An
implementation version requests the use of a specific
version.

• SECURE. The SECURE keyword requests the use of any
version at or above the security baseline.

• SECURE-version, where version is a valid platform
version, such as SECURE-1.8. The SECURE-version
keyword requests the use of any secure version of the
specified platform, or the specified platform or later when a
plus sign (+) follows the platform.

The version of the JRE that is used is determined by the
following order of precedence:

• The current version of the JRE is used if it is available and
matches both the version attribute and the version
requested by the RIA.

• The latest available version of the JRE is used if it
matches both the version attribute and the version
requested by the RIA.

• The current version of the JRE is used if it is available and
matches the version attribute.

• The latest available version of the JRE is used if it
matches the version attribute.

If no version is available that meets the criteria, then the RIA is
blocked, and a message is shown to the user. To provide a
custom message, include the message element.

No

force Boolean that indicates if the JRE specified for the version
attribute must be used to run the RIA. If this attribute is set to
true, the JRE specified in the rule overrides any JRE
requested by the RIA. If the JRE specified in the rule is not
available, the RIA is blocked. The default is false.

For example, if the RIA requests a JRE in the 1.7 family (1.7*)
and you want only secure versions of JRE 8 run in your
enterprise, you can create a rule that specifies SECURE-1.8 for
the version attribute and set the force attribute to true. This
rule forces the RIA to run only with a secure version from the
1.8 family.

This attribute is available in 1.1 and later versions of the
Deployment Rule Set.

No

Chapter 10
Create the Rule Set

10-8



<message>
The <message> element defines a custom message shown to the user. This message
can be used to explain why the RIA is blocked, or provide additional information to the
user.

Only plain text is allowed, HTML tags and other special formatting are not supported. If
this element is not present, then a default message is shown when a RIA is blocked. In
Deployment Rule Set 1.2 and higher, if this element is present for a rule with the action
set to run, then an additional dialog is shown to the user. To support multiple locales,
include a message element for each locale.

If the locale attribute is not specified, then the message is used for any locale for
which a message element is not provided. If a message element for the user's locale is
not provided and a message element without a locale is not present, then a default
message is shown.

To ensure that the dialog box that shows the message fits the screen, keep the
message under 1024 characters and test for all locales provided.

The valid parent element is <action>. This element has no child elements.

The following table describes the valid attribute:

Table 10-7    Attribute for the <message> element

Attribute Description Required

locale Locale to which the message applies. No

<customer>
Information provided in the <customer> element is written to the deployment trace file
and the Java console when tracing and the console are enabled. Use this element to
provide debug information or associate custom data with a rule or rule set.

You can enter any information in the <customer> element as either plain text or valid
XML. Include a <customer> element within a rule to provide information specific to that
rule. Include the element outside of the rules to provide information about the rule set.
Prior to Deployment Rule Set 1.2, this element is ignored. In Deployment Rule Set 1.2
and higher, information from this element is copied to the trace file and Java console
when they are enabled.

The valid parent elements are <ruleset> and <rule>. This element has no child
elements.

This element has no attributes.

Set Up Rules for Calls From JavaScript Code (LiveConnect)
If you need to make calls to your RIA from JavaScript code, then apply the following
guidelines to prevent the calls from being blocked:

• If the rule set contains a rule with the action of run that matches your RIA, then the
rule set must also contain a rule with the action of run that matches the location of
the JavaScript code.

Chapter 10
Create the Rule Set

10-9



• If the rule set contains a rule with the action of default that matches your RIA, or
no rule matches your RIA so default processing is used, then one of the following
must be true:

– The rule set contains a rule with the action of run that matches the location of
the JavaScript code.

– The rule set contains a rule with the action of default that matches the location
of the JavaScript code.

– No rule matches the location of the JavaScript code, so default processing is
used.

If the JavaScript code is calling privileged code and you want to suppress mixed code
warnings, see Set Up Rules for Mixed Code.

Set Up Rules for Mixed Code
When you create your rule set, ensure that you have rules for all of the artifacts that
are associated with the RIAs. Additional rules might be needed to suppress mixed
code security warnings that are generated when calls are made between code with
different permission levels, or from JavaScript code to privileged Java code.

To suppress the mixed code security warnings, include rules in your rule set based on
the following requirements of your RIA:

• To make calls between Java code with different permission levels, add a rule with
an action of run that matches the code being called.

For example, the following rule suppresses the mixed code prompt for calls to
privileged code located at https://host.example.com/apps from sandbox code:

<rule>
 <id location="https://host.example.com/apps"/>
 <action permission="run"/>
 </rule>

• To call privileged Java code from JavaScript code, add a rule with an action of run
that matches the location of the JavaScript code.

For example, the following rule suppresses the mixed code prompt for calls to
privileged Java code from JavaScript code that is located in any page on https://
host.example.com.

<rule>
 <id location="https://host.example.com/"/>
 <action permission="run"/>
 </rule>

If the rule set has no rule with an action of run or default that matches the location
of the JavaScript code, then calls from JavaScript code are blocked. If you want
any applicable security prompts to be shown for calls from JavaScript code, you
must define a rule with an action of default that matches the location of the
JavaScript code.

Be aware that the rules shown in this section for suppressing the mixed code prompt
also suppress the other security prompts for any RIA that matches the rule. Make sure
that your rules are defined in the order needed to provide the control that you want.

Chapter 10
Create the Rule Set

10-10



Get the Certificate Hash
If you want to define a rule that uses the certificate hash to match RIAs, you need to
obtain the correct string of hexadecimal digits. Follow these steps:

1. Use the following command to print out the certificate information for your JAR file,
replacing myjar.jar with the name of your JAR file:

keytool -printcert -jarfile myjar.jar | more

2. At the beginning of the output, find Signer #1

3. In the Certificate fingerprints section under Signer #1, find the line that begins
with SHA256.

The text that follows the SHA256 identifier contains 32 pairs of hexadecimal
numbers separated by colons. Use this string for the hash attribute of the
certificate element. The string can be used with or without the colons.

Packaging the Rule Set
The rule set defined in the ruleset.xml file must be packaged in a signed JAR file
named DeploymentRuleSet.jar. The JAR file must be signed with a valid certificate from
a trusted certificate authority.

For information about creating and signing a JAR file, see the lesson Packaging
Programs in JAR Files in the Java Tutorials.

Installing the Rule Set
The rule set must be installed on every system on which you need to run Java
applications.

Install the DeploymentRuleSet.jar file on your users' systems in the following
directories:

• On Windows platforms, install the file in the <Windows-directory>\Sun\Java
\Deployment directory, for example, c:\Windows\Sun\Java\Deployment.

• On Solaris and Linux platforms, install the file in the /etc/.java/deployment
directory.

• On macOS platforms, install the file in the /Library/Application Support/Oracle/
Java/Deployment/ directory.

Viewing the Active Rule Set
Only one deployment rule set can be active at a time. The active rule set can be
viewed from the Java Control Panel.

To view the active rule set:

1. Start the Java Control Panel.

2. Go to the Web Settings tab.

3. Go to the Deployment Rule Set tab.

Chapter 10
Packaging the Rule Set

10-11

http://docs.oracle.com/javase/tutorial/deployment/jar/index.html
http://docs.oracle.com/javase/tutorial/deployment/jar/index.html


If a rule set is active, a link to the rule set is shown. If no active rule set exists, a
message is shown.

4. Click the View the active Deployment Rule Set link.

Security Considerations
The Deployment Rule Set feature enables RIAs to run without notifying users of
potential security risks. Review the following security considerations to be aware of the
risks of using a rule set, and follow any recommendations provided:

• The location attribute of the id element is compared to the following information:

– Location of the HTML file, for applets that do not use JNLP

– Value of the href attribute in the JNLP file, for Java Web Start applications and
applets that do use JNLP

– Value of the jnlp_href parameter for the applet tag, for applets that use JNLP
and do not provide the href attribute in the JNLP file

If matched, then all of the content in the HTML file or JNLP file is considered
trusted. However, if the web site that hosts the file is vulnerable to cross-site
scripting attacks, malicious content could be injected into the HTML file or JNLP
file.

• For applets that use JNLP, the location of the HTML file is not checked, so the
applet could potentially be started from anywhere.

• If the location attribute is not used to match a rule to a RIA, then the HTML file or
JNLP file that is used to start the RIA could be compromised. Use of the location
attribute is recommended.

• Only include a path in the location attribute for a rule with an action of run if you
trust the entire server. Using a path in a run rule when other locations on the
server might not be trusted could present a security risk and is not recommended.

• When a path is included in the location attribute, avoid using complex paths or
multi-byte characters, if possible. The path is case sensitive and UTF-8 encoding
is assumed. Security exceptions occur when any unsupported characters,
decoding errors, or overlong encoding is encountered. If the web server, file
system, or browser normalizes the path differently, a rule based on the location
attribute could return unexpected results.

• A blocking rule for a specific URI is not intended to be a robust security
enforcement mechanism. For example, a rule established with a domain name can
be bypassed if a user uses the IP address instead. The recommended practice is
to have a final rule in your rule set with no identifiers and an action of block. Define
the rules that you need to run RIAs without security prompts or with default
processing, and let all other RIAs be matched by the final rule, which blocks them
from running.

• Use of the HTTPS protocol is recommended for all locations.

• The order of the rules in the deployment rule set is critical. Rules are processed
sequentially from the beginning of the file. When a match is found, no further rules
are processed. Review your final rule set and look at both positive and negative
cases to ensure that the rules cover the RIAs that you plan to manage without
allowing matches to unknown RIAs.

Chapter 10
Security Considerations

10-12



• Rules are required for all artifacts of the RIA, such as multiple JAR files and JNLP
extensions. Be careful when defining a rule for an artifact so that you do not
inadvertently allow other RIAs that match the rule to run.

• Deployment rules allow RIAs to run with old versions of the JRE when needed for
compatibility, however, older versions might have known security issues. Use the
latest JRE whenever possible, and set the version attribute to SECURE or SECURE-
version. If an older version of the JRE must be used, make any rule that requests
the old version as restrictive as possible to limit the RIAs that match the rule and
run with the old version. Use of all of the identifiers-location, title, and certificate
hash-is recommended in this case.

• If a rule with an action of run exists for the RIA, the RIA is run even if the certificate
used to sign the RIA is expired.

Examples
Sample deployment rule sets are provided to show how deployment rules are used to
block or allow applications to run.

Example 10-1    Run RIAs from a Single Location

This example allows all RIAs from https://host.example.com/ to run without security
prompts. RIAs from other locations do not match the rule so default processing is used
and security prompts are shown as applicable.

<ruleset version="1.0+">
  <rule>
    <id location="https://host.example.com" />
    <action permission="run" />
  </rule>
</ruleset>

Example 10-2    Block Any RIAs Not Matched

To ensure that all RIAs are handled by the rule set, you can provide a final rule that
matches any RIA that was not matched by a previous rule. The action for this rule
must be either block or default. This example allows all RIAs from https://
host.example.com:8080 to run without security prompts and blocks all other RIAs. The
default message is shown when a RIA is blocked because no custom message is
provided.

<ruleset version="1.0+">
  <rule>
    <id location="https://host.example.com:8080" />
    <action permission="run" />
  </rule>

  <rule>
    <id />
    <action permission="block" />
  </rule>
</ruleset>

Example 10-3    Rule Order Matters

Rules are processed in the order in which they appear in the rule set. Complex
patterns can be defined for matching rules by placing the rules in the correct order.
This example allows RIAs from https://host.example.com to run without security

Chapter 10
Examples

10-13



prompts using a secure version of the Java 1.7 platform, but uses default processing
for RIAs from https://host.example.com/games, which shows applicable security
prompts. RIAs from other locations do not match either rule, so default processing is
used.

<ruleset version="1.0+">
  <rule>
    <id location="https://host.example.com/games" />
    <action permission="default" />
  </rule>

  <rule>
    <id location="https://host.example.com" />
    <action permission="run" version="SECURE-1.7" />
  </rule>
</ruleset>

Example 10-4    Manage a Specific RIA

This example modifies the rule set in Example 10-3 and requires only the RIA named
Solitaire from https://host.example.com/games to run with default processing. Other
RIAs from https://host.example.com are allowed to run without security prompts using
a secure version of the Java 1.7 platform. All other RIAs are blocked, and a custom
message is shown.

<ruleset version="1.0+">
  <rule>
    <id title="Solitaire" location="https://host.example.com/games" />
    <action permission="default" />
  </rule>

  <rule>
    <id location="https://host.example.com" />
    <action permission="run" version="SECURE-1.7" />
  </rule>

  <rule>
    <id /> 
    <action permission="block">
      <message>Blocked by corporate. Contact J. Smith, smith@host.example.com, if 
you need to run this app.</message>
    </action>
  </rule>
</ruleset>

Example 10-5    Manage RIAs Based on Signing Certificate

To allow multiple RIAs from multiple locations to run, and all RIAs are signed with the
same certificate, you can use the certificate element to identify the RIAs with one
rule instead of creating rules for each location and title. This example allows all RIAs
that are signed with the certificate used by Oracle to run without security prompts
using a secure version of the Java platform. RIAs from any host ending with
example.com are allowed to run with default processing. All other RIAs are blocked, and
a custom message is shown.

<ruleset version="1.0+">
  <rule> <!-- allow anything signed with company's public cert --> 
    <id>
      <certificate 
hash="794F53C746E2AA77D84B843BE942CAB4309F258FD946D62A6C4CCEAB8E1DB2C6" />

Chapter 10
Examples

10-14



    </id>
    <action permission="run" version="SECURE" />
  </rule>

  <rule>
    <id location="*.example.com" />
    <action permission="default" />
  </rule>

  <rule>
    <id />
    <action permission="block">
      <message>Blocked by corporate. Contact J. Smith, smith@host.example.com, if 
you need to run this app.</message>
    </action>
  </rule>
</ruleset> 

Example 10-6    Force the Use of a Specific JRE

To force the use of a specific JRE, use the force attribute of the action element. This
attribute is introduced in the 1.1 version of the Deployment Rule Set. This example
allows RIAs from https://host.example.com/apps to run without security prompts using
version 1.8_20 of the JRE. Any version requested by the RIA is ignored. If version
1.8_20 is not available, the RIA is blocked. All other RIAs are blocked, and a custom
message is shown.

<ruleset version="1.1+">
  <rule>
    <id location="https://host.example.com/apps" />
    <action permission="run" version="1.8_20" force="true" />
  </rule>

  <rule>
    <id />
    <action permission="block">
      <message>Blocked by corporate. Contact J. Smith, smith@host.example.com, if 
you need to run this app.</message>
    </action>
  </rule>
</ruleset> 

Example 10-7    Include Customer Data in the Rule Set

The customer element enables you to provide comments, debug information, or other
data about the rules and rule set. Starting in Deployment Rule Set 1.2, this information
is written to the deployment trace file and the Java console when they are enabled.
This example shows customer information for the rule set and for two of the rules. The
XML elements used in the customer element is for illustration purposes, any valid XML
can be used.

<ruleset version="1.2+">
  <rule>
    <id location="https://host.example.com/verified-apps" />
    <action permission="run" />
    <customer>Allowing applications from https://host.example.com, which has been 
validated as a secure site</customer>
  </rule>

  <customer>
     <warning font=bold>Run rule not matched.</warning>

Chapter 10
Examples

10-15



     <text>Application will either be blocked or will show security dialogs.</text>
  </customer>

  <rule>
    <id location="*.example.com" />
    <action permission="default" />
  </rule>

  <rule>
    <id /> 
    <action permission="block">
      <message>Blocked by corporate. Contact J. Smith, smith@host.example.com, if 
you need to run this app.</message>
    </action>
    <customer>
       <warning font=bold>Blocked</warning>
       <text>No rule matched, application blocked by final rule.</text>
    </customer>
  </rule>
</ruleset>

Java Deployment Rule Set DTD
The following example shows the DTD for the version 1.3 of the Deployment Rule Set.
Version 1.3 is supported by 8u72 and higher. Version 1.2 is supported by JRE 8u60
and higher. Version 1.1 is supported by JRE 8u20 and higher. Version 1.0 is
supported by JRE 7u40 and higher. Items introduced after version 1.0 are noted.

<!ELEMENT ruleset (rule*, customer*)>
<!ATTLIST ruleset version CDATA #REQUIRED>
 
<!ELEMENT rule (id, action, customer*)>
 
<!-- checksum introduced in 1.2, jnlp-checksum introduced in 1.3 -->
<!ELEMENT id (certificate?, checksum?, jnlp-checksum*)>
<!ATTLIST id title CDATA #IMPLIED>
<!ATTLIST id location CDATA #IMPLIED>
 
<!-- jnlp-checksum introduced in 1.3 -->
<!ELEMENT jnlp-checksum EMPTY>
<!ATTLIST jnlp-checksum hash CDATA #REQUIRED>
 
<!ELEMENT certificate EMPTY>
<!ATTLIST certificate algorithm CDATA #IMPLIED>
<!ATTLIST certificate hash CDATA #REQUIRED>
 
<!-- checksum introduced in 1.2 -->
<!ELEMENT checksum EMPTY>
<!ATTLIST checksum algorithm CDATA #IMPLIED>
<!ATTLIST checksum hash CDATA #REQUIRED>
 
<!ELEMENT action (message?)>
<!ATTLIST action permission (run | block | default) #REQUIRED>
<!ATTLIST action version CDATA #IMPLIED>
<!ATTLIST action force (true|false) "false">  <!-- force introduced in 1.1 -->
 
<!ELEMENT message (#PCDATA)>
<!ATTLIST message locale CDATA #IMPLIED>

<!ELEMENT customer ANY>

Chapter 10
Java Deployment Rule Set DTD

10-16


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Deployment Basics
	1 Getting Started
	Basic Steps
	Choose the Execution Environment
	Create the Package
	Packaging Tools
	NetBeans IDE
	Ant Tasks
	Java Packager Command-Line Tool


	Create the Web Page
	Distribute Your Application
	Beyond the Basics


	Part II Packaging
	2 Self-Contained Application Packaging
	Introduction
	Benefits and Drawbacks of Self-Contained Application Packages
	Basics
	Self-Contained Application Structure
	Basic Build
	Customizing the Package Using Drop-In Resources
	Prepare Custom Resources
	Substitute a Built-In Resource

	Customization Options
	Platform-Specific Customization for Basic Packages
	macOS

	Passing Arguments to a Self-Contained Application
	Associating Files with a Self-Contained Application
	Supporting Multiple Entry Points

	Customization of the JRE
	Packaging for Modular Applications
	Installable Packages
	Types of Installable Packages
	EXE Package
	MSI Package
	DMG Package
	Linux Packages

	Working Through a Deployment Scenario

	3 JavaFX Ant Tasks
	Requirements to Run JavaFX Ant Tasks
	JavaFX Ant Elements
	Using JavaFX Ant Tasks
	Ant Script Examples
	Deploying the JavaFX Hello World Example
	Deploying the JavaFX Hello World Example as a Self-Contained Application
	Deploying a JavaFX Application with External JAR Files
	Overriding JVM Options for Self-Contained Applications

	JavaFX Ant Task Reference
	<fx:csstobin>
	<fx:deploy>
	<fx:jar>
	<fx:signjar>

	JavaFX Ant Helper Parameter Reference
	<fx:add-modules>
	<fx:application>
	<fx:argument>
	<fx:association>
	<fx:bundleArgument>
	<fx:callback>
	<fx:callbacks>
	<fx:fileset>
	<fx:htmlParam>
	<fx:icon>
	<fx:info>
	<fx:jvmarg>
	<fx:jvmuserarg>
	<fx:limit-modules>
	<fx:module-path>
	<fx:param>
	<fx:permissions>
	<fx:platform>
	<fx:preferences>
	<fx:property>
	<fx:resources>
	<fx:runtime>
	<fx:secondaryLauncher>
	<fx:splash>
	<fx:template>



	Part III Java Web Start Technology
	4 Overview of Java Web Start Technology
	Introduction to Java Web Start
	Benefits of Java Web Start
	Where to Find Java Web Start

	Using Java Web Start Software
	Launching from a Web Browser
	Launching from Desktop Icons and the Start Menu (Microsoft Windows and Linux Running GNOME 2.0+)
	Using Java Web Start Software Behind a Proxy Server or Firewall

	Setting Up the Web Server
	Installing the Java Web Start Protocol Handler
	Installing the Protocol Handler for Chrome
	Installing the Protocol Handler in Firefox


	5 Application Development Considerations
	Introduction to Web Deployment
	Retrieving Resources from JAR Files
	Accessing the Client Using the JNLP API
	Security and Code Signing
	Signing JAR Files with a Test Certificate
	How to Encode JNLP Files
	Dynamic Download of HTTPS Certificates

	6 Migrating Java Applets to Java Web Start and JNLP
	Migrating an Existing Java Applet
	Rewriting a Java Applet as a Java Web Start Application
	Special Considerations

	7 JNLP File Syntax
	Introduction to JNLP File Syntax
	Examples of a JNLP File
	JNLP Elements
	jnlp Element
	information Element
	security Element
	update Element
	resources Element
	application-desc Element
	applet-desc Element
	component-desc Element
	installer-desc Element


	8 JNLP API Examples
	Using the BasicService Service
	Using the ClipboardService Service
	Using the DownloadService Service
	Using the DownloadService2 Service
	Implementing the DownloadServiceListener Service
	Using the FileOpenService Service
	Using the FileSaveService Service
	Using the IntegrationService Service
	Using the PrintService Service
	Using the PersistenceService Service
	Using FileContents
	Using a JNLPRandomAccessFile
	Using the SingleInstanceService Service
	Using an ExtendedService Service


	Part IV Configuring and Monitoring Deployment
	9 Java Control Panel
	Overview of Java Control Panel
	General Tab in the Java Control Panel
	Update Tab in the Java Control Panel
	Scheduling the Check for Updates
	Java Update Scheduler

	Desktop Settings Tab in the Java Control Panel
	Editing Desktop Settings
	Java Runtime Parameters
	Setting classpath or cp
	Enabling and Disabling Assertion Support
	Tracing and Logging Support
	Debugging Applets in Java Plug-in
	Default Connection Timeout


	Web Settings Tab in the Java Control Panel
	Exception Site List Tab
	Deployment Rule Set Tab
	Temporary Files Settings Tab
	Network Settings Tab
	Java Cache Viewer Tab

	Security Tab in the Java Control Panel
	General Security Settings Tab
	Manage Certificates Tab
	User-Level Certificates
	System-Level Certificates


	Advanced Tab in the Java Control Panel
	Debugging
	Java Console
	Shortcut Creation
	JNLP File/MIME Association
	Application Installation
	Execution Environment Security Settings
	Mixed code (sandboxed vs. trusted) security verification
	Perform signed code certificate revocation checks on
	Check for signed code certificate revocation using
	Perform TLS certificate revocation checks on
	Check for signed code certificate revocation using
	Advanced Security Settings
	Miscellaneous


	10 Deployment Rule Set
	Overview of Deployment Rule Sets
	Create the Rule Set
	Define the Rules
	<ruleset>
	<rule>
	<id>
	<certificate>
	<checksum>
	<jnlp-checksum>
	<action>
	<message>
	<customer>

	Set Up Rules for Calls From JavaScript Code (LiveConnect)
	Set Up Rules for Mixed Code
	Get the Certificate Hash

	Packaging the Rule Set
	Installing the Rule Set
	Viewing the Active Rule Set
	Security Considerations
	Examples
	Java Deployment Rule Set DTD



