Java Platform, Standard Edition
Core Libraries

Release 9
E74190-02
September 2017

ORACLE"

Java Platform, Standard Edition Core Libraries, Release 9
E74190-02
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility

Conventions
1 Enhanced Deprecation
Deprecation in the JDK 1-1
How to Deprecate APIs 1-1
Notifications and Warnings 1-3
Running jdeprscan 1-5
2 XML Catalog API
Purpose of XML Catalog API 2-1
XML Catalog API Interfaces 2-2
Using the XML Catalog API 2-3
System Reference 2-3
Public Reference 2-5
URI Reference 2-5
Java XML Processors Support 2-6
Enable Catalog Support 2-6
Use Catalog with XML Processors 2-7
Calling Order for Resolvers 2-11
Detecting Errors 2-11
3 Creating Immutable Lists, Sets, and Maps
Use Cases 3-1
Syntax 3-2
Immutable List Static Factory Methods 3-2
Immutable Set Static Factory Methods 3-2
Immutable Map Static Factory Methods 3-3
Randomized Iteration Order 3-4

ORACLE"

About Immutability 3-4
Space Efficiency 3-6
Process API
Process API Classes and Interfaces 4-1
ProcessBuilder Class 4-2
Process Class 4-2
ProcessHandle Interface 4-3
ProcessHandle.Info Interface 4-4
Creating a Process 4-4
Getting Information About a Process 4-5
Redirecting Output from a Process 4-6
Filtering Processes with Streams 4-6
Handling Processes When They Terminate with the onExit Method 4-7
Controlling Access to Sensitive Process Information 4-9

ORACLE

Preface

This guide provides information about the Java core libraries.
Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Enhanced Deprecation

JDK 9 clarifies the semantics of what deprecation means, including whether an API
may be removed in the near future.

If you are a library maintainer, you can take advantage of the updated deprecation
syntax to inform users of your library about the status of APIs provided by your library.

If you are a library or application developer, you can use the j depr scan tool to find uses
of deprecated JDK API elements in your applications or libraries.

Topics

» Deprecation in the JDK

* How to Deprecate APIs

* Notifications and Warnings

* Running jdeprscan

Deprecation in the JDK

Deprecation is a notification to library consumers that they should migrate code from a
deprecated API.

In the JDK, APIs have been deprecated for widely varying reasons, such as:
e The APl is dangerous (for example, the Thr ead. st op method).

e There is a simple rename (for example, AWT Conponent . show hi de replaced
by set Vi si bl e).

A newer, better API can be used instead.

e The deprecated API is going to be removed.

In prior releases, APIs were deprecated but virtually never removed. Starting with JDK
9, APIs may be marked as deprecated for removal. This indicates that the API is
eligible to be removed in the next release of the JDK platform. If your application or
library consumes any of these APIs, then you should make a plan to migrate from
them soon.

For a list of deprecated APIs in the JDK 9 release, see the Deprecated API page in the
API specification.

How to Deprecate APIs

ORACLE

Deprecating an API requires using two different mechanisms: the @epr ecat ed
annotation and the @lepr ecat ed Javadoc tag.

The @epr ecat ed annotation marks an APl in a way that is recorded in the class file
and is available at runtime. This allows various tools, such as j avac and j depr scan, to
detect and flag usage of deprecated APls. The @lepr ecat ed Javadoc tag is used in

1-1

https://docs.oracle.com/javase/9/docs/api/deprecated-list.html

ORACLE

Chapter 1
How to Deprecate APIs

documentation of deprecated APIs, for example, to describe the reason for
deprecation, and to suggest alternative APIs.

Note the capitalization: the annotation starts with an uppercase D and the Javadoc tag
starts with a lowercase d.

Using the @Deprecated Annotation

To indicate deprecation, precede the module, class, method, or member declaration
with @epr ecat ed. The annotation contains these elements:

e (@eprecated(si nce="<version>")

— <version> is the version when the APl was deprecated. This is for
informational purposes. The default is the empty string ("").

° (@eprecat ed(for Removal =<bool ean>)

— forRenoval =t r ue indicates that the API is subject to removal in a future
release.

— forRenoval =f al se recommends that code should no longer use this API;
however, there is no current intent to remove the API. This is the default value.

For example: @epr ecat ed(si nce="9", forRenoval =t rue)

The @epr ecat ed annotation causes the Javadoc-generated documentation to be
marked with one of the following, wherever that program element appears:

e Deprecated.

- Deprecated, for removal: This API element is subject to removal in a future
version.

The j avadoc tool generates a page named depr ecat ed- | i st. ht mM which contains
the list of deprecated APIs, and adds a link in the navigation bar to that page.

The following is a simple example of using the @epr ecat ed annotation from the
j ava. | ang. Thr ead class:

public class Thread inplenments Runnable {

@éprecat ed(since="1.2")
public final void stop() {

;o

Semantics of Deprecation

The two elements of the @epr ecat ed annotation give developers the opportunity to
clarify what deprecation means for their exported APIs.

For the JDK platform:

° (@eprecat ed(forRenoval =true) indicates that the API is eligible to be
removed in a future release of the JDK platform.

° (@eprecat ed(si nce="<version>") contains the JDK version string that
indicates when the API element was deprecated, for those deprecated in JDK 9
and beyond.

1-2

Chapter 1
Notifications and Warnings

If you maintain libraries and produce your own APIs, then you probably use the

@epr ecat ed annotation. You should determine and communicate your policy
around API removals. For example, if you release a new library every 6 weeks, then
you may choose to deprecate an API for removal, but not remove it for several months
to give your customers time to migrate.

Using the @deprecated Javadoc Tag

Use the @lepr ecat ed tag in the javadoc comment of any deprecated program
element to indicate that it should no longer be used (even though it may continue to
work). This tag is valid in all class, method, or field documentation comments. The
@lepr ecat ed tag must be followed by a space or a newline. In the paragraph
following the @lepr ecat ed tag, explain why the item was deprecated, and suggest
what to use instead. Mark the text that refers to new versions of the same functionality
withan @i nk tag.

When it encounters an @lepr ecat ed tag, the j avadoc tool moves the text following
the @lepr ecat ed tag to the front of the description and precedes it with a warning.
For example, this source:

/**

* CECE

* @leprecated This method does not properly convert bytes into

* characters. As of JDK 1.1, the preferred way to do this is via the

* {@ode String} constructors that take a {@ink

* java.nio.charset.Charset}, charset nane, or that use the platforms

* default charset.

*

*/ o
@epr ecat ed(since="1.1")
public String(byte ascii[], int hibyte) {

generates the following output:

@Deprecated(since="1. 1")
public String(byte[] ascii,

int hibyte)
Deprecated. This nethod does not properly convert bytes into characters. As of
JDK 1.1, the preferred way to do this is via the String constructors that take a
Charset, charset name, or that use the platforms default charset.

If you use the @lepr ecat ed Javadoc tag without the corresponding @epr ecat ed
annotation, a warning is generated.

Notifications and Warnings

When an API is deprecated, developers must be notified. The deprecated API may
cause problems in your code, or, if it is eventually removed, cause failures at run time.

The Java compiler generates warnings about deprecated APIs. There are options to
generate more information about warnings, and you can also suppress deprecation
warnings.

ORACLE 1-3

http://download.java.net/java/jdk9/docs/api/java/lang/Deprecated.html
http://download.java.net/java/jdk9/docs/api/java/lang/Deprecated.html#since--
http://download.java.net/java/jdk9/docs/api/java/nio/charset/Charset.html

ORACLE

Chapter 1
Notifications and Warnings

Compiler Deprecation Warnings

If the deprecation is f or Renoval =f al se, the Java compiler generates an "ordinary
deprecation warning". If the deprecation is f or Renoval =t r ue, the compiler generates a
"removal warning".

The two kinds of warnings are controlled by separate - Xl i nt flags: - Xl i nt: deprecati on
and -Xlint:removal . The javac - Xl int:removal option is enabled by default, so removal
warnings are shown.

The warnings can also be turned off independently (note the "—"): - Xl i nt : - depr ecat i on
and -Xint:-renoval .

This is an example of an ordinary deprecation warning.

$ javac src/exanpl e/ DeprecationExanpl e. j ava
Not e: src/exanpl e/ DeprecationExanpl e.java uses or overrides a deprecated API.
Note: Reconpile with -Xint:deprecation for details.

Use the javac - Xl int:deprecation option to see what API is deprecated.

$ javac -Xint:deprecation src/exanpl e/ Deprecati onExanpl e. j ava
src/ exanpl e/ Depr ecat i onExanpl e. java: 12: warning: [deprecation] get Sel ectedVal ues()
in JList has been deprecated

Qbject[] values = jlist.getSelectedVal ues();
N

1 warni ng

Here is an example of a removal warning.

public class Renoval Exanpl e {
public static void main(String[] args) {
System runFinal i zer sOnExi t (true);
}

}

$ javac Renoval Exanple. java
Renoval Exanpl e.java: 3: warning: [renoval] runFinalizersOnExit(bool ean) in System
has been deprecated and marked for renoval
System runFi nal i zersOnExit (true);
A

1 war ni ng

Suppressing Deprecation Warnings

The javac - Xl int options control warnings for all files compiled in a particular run of
javac. You may have identified specific locations in source code that generate
warnings that you no longer want to see. You can use the @uppr ess\Wr ni ngs
annotation to suppress warnings whenever that code is compiled. Place the

@uppr essWar ni ngs annotation at the declaration of the class, method, field, or local
variable that uses a deprecated API.

The @uppr ess\ar ni ngs options are:

° @uppressWarni ngs("deprecation") — Suppresses only the ordinary
deprecation warnings.

e @uppressWarni ngs("renmoval ") — Suppresses only the removal warnings.

1-4

Chapter 1
Running jdeprscan

e @uppressWarni ngs({"deprecation","renoval "}) — Suppresses both
types of warnings.

Here’s an example of suppressing a warning.

@uppr ess\War ni ngs(" deprecation")
Object[] values = jlist.getSelectedVal ues();

With the @uppr ess\ar ni ngs annotation, no warnings are issued for this line, even if
warnings are enabled on the command line.

Running jdeprscan

ORACLE

j deprscan is a static analysis tool that reports on an application’s use of deprecated
JDK API elements. Run j depr scan to help identify possible issues in compiled class
files or jar files.

You can find out about deprecated JDK APIs from the compiler notifications. However,
if you don’t recompile with every JDK release, or if the warnings were suppressed, or if
you depend on third-party libraries that are distributed as binary artifacts, then you
should run j deprscan.

It's important to discover dependencies on deprecated APIs before the APIs are
removed from the JDK. If the binary uses an API that is deprecated for removal in the
current JDK release, and you don’t recompile, then you won'’t get any notifications.
When the API is removed in a future JDK release, then the binary will simply fail at
runtime. j depr scan lets you detect such usage now, well before the API is removed.

For the complete syntax of how to run the tool and how to interpret the output, see
j deprscan in the Java Platform, Standard Edition Tools Reference.

1-5

XML Catalog API

Use the XML Catalog API to implement a local XML catalog.

Java SE 9 introduces a new XML Catalog API to support the Organization for the
Advancement of Structured Information Standards (OASIS) XML Catalogs, OASIS
Standard V1.1. This chapter of the Oracle JDK 9 Core Libraries Guide describes the
API, its support by the Java XML processors, and usage patterns.

The XML Catalog API is a straightforward API for implementing a local catalog, and
the support by the JDK XML processors makes it easier to configure your processors
or the entire environment to take advantage of the feature.

Learning More About Creating Catalogs

To learn about creating catalogs, see the Catalog Standard. The XML catalogs under
the directory / et ¢/ xm / cat al og on some Linux distributions can also be a good
reference for creating a local catalog.

Purpose of XML Catalog API

ORACLE

The XML Catalog API and the Java XML processors provide an option for developers
and system administrators to better manage external resources.

The XML Catalog API provides an implementation of OASIS XML Catalogs v1.1, a
standard designed to address issues caused by external resources.

Problems Caused by External Resources

XML, XSD and XSL documents may contain references to external resources that the
Java XML processors need to retrieve to process the documents. External resources
can cause a problem for the applications or the system. The Catalog APl and the Java
XML processors provide an option for developers and system administrators to better
manage these external resources.

External resources can cause a problem for the applications or the system in these
areas:

* Availability. When the resources are remote, the XML processors must be able to
connect to the remote server. Even though connectivity is rarely an issue, it's still a
factor in the stability of an application. Too many connections can be a hazard to
servers that hold the resources (such as the well-documented case involving
excessive DTD traffic directed to the W3C's servers), and this in turn could affect
your applications. See Use Catalog with Schema Validation) for an example that
solves this issue using the XML Catalog API.

* Performance. Although in most cases connectivity isn’t an issue, a remote
fetch can still cause a performance issue for an application. Furthermore, there
may be multiple applications on the same system attempting to resolve the same
source, and this would be a waste of system resources.

2-1

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Chapter 2
XML Catalog API Interfaces

» Security. Allowing remote connections can pose a security risk if the application
processes untrusted XML sources.

* Manageability. If a system processes a large number of XML documents, then
externally referenced documents, whether local or remote, can become a
maintenance hassle.

How XML Catalog API Addresses Problems Caused by External Resources

The XML Catalog API and the Java XML processors provide an option for developers
and system administrators to better manage the external resources.

» Application developers — You can create a local catalog of all external references
for your application, and let the Catalog API resolve them for the application. This
not only avoids remote connections but also makes it easier to manage these
resources.

e System administrators — You can establish a local catalog for your system and
configure the Java VM to point to the catalog. Then, all of your applications on the
system may share the same catalog without any code changes to the applications,
assuming they’re compatible with Java SE 9. To establish a catalog, you may take
advantage of existing catalogs such as those included with some Linux
distributions.

XML Catalog API Interfaces

ORACLE

Access the XML Catalog API through its interfaces.

XML Catalog API Interfaces
The XML Catalog API defines the following interfaces:

e The Catal og interface represents an entity catalog as defined by XML Catalogs,
OASIS Standard V1.1, 7 October 2005. A Cat al og object is immutable. After it's
created, the Cat al og object can be used to find matches in a system public, or uri
entry. A custom resolver implementation may find it useful to locate local
resources through a catalog.

e The Cat al ogFeat ures class holds all of the features and properties the Catalog API
supports, including j avax. xm . catal og. files, javax.xnl.catal og. defer,
javax.xm . catal og. prefer, and javax. xni . cat al og. resol ve.

e The Cat al ogvanager class manages the creation of XML catalogs and catalog
resolvers.

e The Catal ogResol ver interface is a catalog resolver that implements
SAX EntityResol ver, StAX XM_Resol ver, DOM LS LSResour ceResol ver used by
schema validation, and transform URI Resol ver . This interface resolves external
references using catalogs.

Details on the CatalogFeatures Class

The catalog features are collectively defined in the Cat al ogFeat ur es class. The
features are defined at the API and system levels, which means that they can be set
through the API, system properties, and JAXP properties. To set a feature through the
API, use the Cat al ogFeat ur es class.

The following code sets j avax. xni . cat al 0og. resol ve to "continue" so that the
process continues even if no match is found by the Cat al ogResol ver:

2-2

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Using the

Chapter 2
Using the XML Catalog API

Cat al ogFeatures f = Catal ogFeat ures. buil der().with(Feature. RESCLVE,
"continue"). build();

To set this" conti nue" functionality system-wide, use the Java command line or
Syst em set Property method:

Syst em set Propert y(Feat ur e. RESOLVE. get PropertyNane(), "continue");

To set this" conti nue" functionality for the whole JVM instance, enter a line in the
jaxp. properties file:

javax. xnl . catal og.resolve = "conti nue"

The resol ve property, as well as the prefer and def er properties, can be set as an
attribute of the catalog or group entry in a catalog file. For example, in the following
catalog, the resol ve attribute is set with a value "conti nue" on the catalog entry that
instructs the processor to continue when the no match is found through this catalog.
The attribute can also be set on the group entry as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<catal og xm ns="urn:oasi s:nanmes:tc:entity:xm ns: xn:catal og" resol ve="conti nue"
xnl : base="http://1ocal / base/ dtd/">
<group resol ve="continue">
<system system d="http://renote/dtd/alice/docAlice.dtd" uri="http://local/dtd/
docAli ceSys.dtd" />
</ group>
</ catal og>

Properties set in a narrower scope override those that are set in a wider one.
Therefore, a property set through the API always takes preference.

XML Catalog API

Resolve DTD, entity, and alternate URI references in XML source documents using
the various entry types of the XML Catalog standard.

The XML Catalog Standard defines a number of entry types. Among them, the system
entries, including syst em rew iteSystem and systenSuf fi x entries, are used for
resolving DTD and entity references in XML source documents, while uri entries are
for alternate URI references.

System Reference

ORACLE

Use a Cat al ogResol ver object to locate a local resource.

Locating a Local Resource

The following example demonstrates how to use a Cat al ogResol ver object to locate a
local resource using a syst ementry, given an XML file that contains a reference to
exanpl e. dt d property:

<?xm version="1.0"?>
<I DOCTYPE catal ogtest PUBLIC "-//OPENJDK//XM. CATALOG DTD//1.0"
"http://openjdk.java. net/xm /catal og/ dt d/ exanpl e. dtd">

<cat al ogt est >

2-3

ORACLE

Chapter 2
Using the XML Catalog API

Test &exanple; entry
</ cat al ogt est >

The exanpl e. dt d defines an entity " exanpl e":

<IENTITY exanpl e "systent>

The URI to the exanpl e. dtd in the XML doesn't need to exist. The purpose is to provide
a unique identifier for the Cat al ogResol ver object to locate a local resource. To do this,
create a catalog entry file called cat al og. xnl with a syst ementry to refer to the local
resource:

<?xm version="1.0" encodi ng="UTF-8"?>
<catal og xm ns="urn:oasi s:nanmes:tc:entity:xm ns: xn: catal og">
<system systen d="http://openj dk. j ava. net/xm / cat al og/ dt d/ exanpl e. dt d"
uri="exanpl e. dtd"/>
</ catal og>

With this catalog and the syst ementry, all you need to do is get a default
Cat al ogFeat ur es object, and set the URI to the catalog file to create a Cat al ogResol ver
object:

Cat al ogResol ver cr = Catal ogManager . cat al ogResol ver (Cat al ogFeat ures. defaul ts(),
catal ogUri);

catal oguri must be a valid URI. For example:

URI.create("file:///users/auser/catal og/catal og. xm")
The Cat al ogResol ver object can now be used as a JDK XML resolver. In the following
example, it's used as a SAX EntityResol ver:

SAXPar ser Factory factory = SAXParser Fact ory. newl nstance();
factory. set NanespaceAwar e(true);

XM.Reader reader = factory. newSAXParser().get XM.Reader ();
reader. set EntityResol ver(cr);

Notice that in the example the system identifier is given an absolute URI. That makes
it easy for the resolver to find the match with exactly the same syst er d in the catalog's
systementry.

If the syst emidentifier in the XML is relative, then it may complicate the matching
process because the XML processor may have made it absolute with a specified base
URI or the source file's URI. In that situation, the syst enl d of the system entry would
need to match the anticipated absolute URI. An easier solution is to use the

systensuf fi x entry, for example:

<systenBuf fix system dSuffix="exanpl e. dtd" uri="exanple.dtd">

The syst entuf fi x entry matches any reference that ends with exanpl e. dt d in an XML
source and resolves it to a local exanpl e. dt d file as specified in the uri attribute. You
may add more to the systenl d to ensure that it's unique or the correct reference. For
example, you may set the syst enl dSuf fi x to xnl / cat al og/ dt d/ exanpl e. dt d, or rename
the i d in both the XML source file and the syst enuf fi x entry to make it a unique
match, for example ny_exanpl e. dt d.

The URI of the syst ementry can be absolute or relative. If the external resources have
a fixed location, then an absolute URI is more likely to guarantee uniqueness. If the
external resources are placed relative to your application or the catalog entry file, then
a relative URI may be more effective, allowing the deployment of your application
without knowing where it's installed. Such a relative URI then is resolved using the

2-4

Chapter 2
Using the XML Catalog API

base URI or the catalog file's URI if the base URI isn’t specified. In the previous
example, exanpl e. dt d is assumed to have been placed in the same directory as the
catalog file.

Public Reference

Use a publ i ¢ entry instead of a syst ementry to find a desired resource.

If no systementry matches the desired resource, and the PREFER property is specified to
match publ i c, then a publ i ¢ entry can do the same as a syst ementry. Note that publ i ¢
is the default setting for the PREFER property.

Using a Public Entry

When the DTD reference in the parsed XML file contains a public identifier such as
"-// OPENJDK/ / XM. CATALOG DTD// 1. 0", @ publ i ¢ entry can be written as follows in the
catalog entry file:

<public publicld="-//OPENJDK// XM. CATALOG DTD//1.0" uri="exanple.dtd"/>
When you create and use a Cat al ogResol ver object with this entry file, the exanpl e. dt d

resolves through the publ i cl d property. See System Reference for an example of
creating a Cat al ogResol ver object.

URI Reference

ORACLE

Use auri entry to find a desired resource.

The URI type entries, including uri, rewiteUR, and uri Suf fi x, can be used in a similar
way as the system type entries.

Using URI Entries

While the XML Catalog Standard gives a preference to the syst emtype entries for
resolving DTD references, and uri type entries for everything else, the Java XML
Catalog API doesn’t make that distinction. This is because the specifications for the
existing Java XML Resolvers, such as XM.Resol ver and LSResour ceResol ver, doesn’t
give a preference. The uri type entries, including uri, rewiteURl, and uri Suffix, can
be used in a similar way as the syst emtype entries. The uri elements are defined to
associate an alternate URI reference with a URI reference. In the case of system
reference, this is the systenl d property.

You may therefore replace the syst ementry with a uri entry in the following example,
although syst ementries are more generally used for DTD references.

<system systenml d="http://openj dk. j ava. net/xnl / cat al og/ dt d/ exanpl e. dt d"
uri="exanpl e. dtd"/>

A uri entry would look like the following:

<uri name="http://openjdk.java.net/xm/catal og/dtd/ exanpl e. dtd" uri="exanple.dtd"/>

While syst ementries are frequently used for DTDs, uri entries are preferred for URI
references such as XSD and XSL import and include. The next example uses a uri
entry to resolve a XSL import.

As described in The XML Catalog API, the XML Catalog API defines the
Cat al ogResol ver interface that extends Java XML Resolvers including Enti t yResol ver,

2-5

Chapter 2
Java XML Processors Support

XM.Resol ver, URI Resol ver, and LSResol ver . Therefore, a Cat al ogResol ver object can be
used by SAX, DOM, StAX, Schema Validation, as well as XSLT Transform. The
following code creates a Cat al ogResol ver object with default feature settings:

Cat al ogResol ver cr = Cat al ogManager . cat al ogResol ver (Cat al ogFeat ures. defaul ts(),
catal ogUri);

The code then registers this Cat al ogResol ver object on a Transf or ner Fact ory class
where a URl Resol ver object is expected:

TransfornmerFactory factory = Transformer Fact ory. new nstance();
factory. set URI Resol ver(cr);

Alternatively the code can register the Cat al ogResol ver object on the Transf or ner
object:

Transformer transformer = factory. newlransf ormer (xsl Source);
transforner. set URl Resol ver(cur);

Assuming the XSL source file contains an i nport element to import the xs! I nport. xsl
file into the XSL source:

<xsl:inport href="pathto/xslInport.xsl" />

To resolve the i nport reference to where the import file is actually located, a

Cat al ogResol ver object should be set on the Transf or ner Fact ory class before creating
the Transf or mer object, and a uri entry such as the following must be added to the
catalog entry file:

<uri name="pathto/xsl Inport.xsl" uri="xslInport.xsl"/>

The discussion about absolute or relative URIs and the use of syst enSuffi x or
uri Suf fi x entries with the system reference applies to the uri entries as well.

Java XML Processors Support

Use the XML Catalogs features with the standard Java XML processors.

The XML Catalogs features are supported throughout the Java XML processors,
including SAX and DOM (j avax. xmi . par sers), and StAX parsers (j avax. xnl . st rean),
schema validation (j avax. xm . val i dati on), and XML transformation

(j avax. xnl . transf orm).

This means that you don’t need to create a Cat al ogResol ver object outside an
XML processor. Catalog files can be registered directly to the Java XML processor, or
specified through system properties, or in the j axp. properti es file. The XML
processors perform the mappings through the catalogs automatically.

Enable Catalog Support

ORACLE

To enable the support for the XML Catalogs feature on a processor, the USE_CATALOG
feature must be set to true, and at least one catalog entry file specified.

USE _CATALOG

A Java XML processor determines whether the XML Catalogs feature is supported
based on the value of the USE_CATALOG feature. By default, USE_CATALOG is set to true for
all JIDK XML Processors. The Java XML processor further checks for the availability of

2-6

Chapter 2
Java XML Processors Support

a catalog file, and attempts to use the XML Catalog API only when the USE_CATALOG
feature is true and a catalog is available.

The USE_CATALQG feature is supported by the XML Catalog API, the system property,
and the j axp. properti es file. For example, if USE_CATALOGs set to true and it's desirable
to disable the catalog support for a particular processor, then this can be done by
setting the USE_CATALOG feature to f al se through the processor's set Feat ur e method.
The following code sets the USE_CATALOG feature to the specified value useCat al og for an
XM_.Reader object:

SAXPar ser Factory spf = SAXParserFact ory. new nstance();
spf . set NanespaceAwar e(true);
XM.Reader reader = spf.newSAXParser (). get XM_Reader () ;
if (setUseCatal og) {
reader . set Feat ur e(XMLConst ant s. USE_CATALOG, useCat al 0g) ;

}

On the other hand, if the entire environment must have the catalog turned off, then this
can be done by configuring the j axp. properti es file with a line:

javax. xnl . useCatal og = fal se;

javax.xml.catalog.files

The javax. xn . catal og. fil es property is defined by the XML Catalog API and
supported by the JDK XML processors, along with other catalog features. To employ
the catalog feature on a parsing, validating, or transforming process, all that's needed
is to set the FI LES property on the processor, through its system property or using the
j axp. properties file.

Catalog URI

The catalog file reference must be a valid URI, such as file:///users/auser/ catal og/
catal og. xm .

The URI reference in a system or a URI entry in the catalog file can be absolute or
relative. If they're relative, then they are resolved using the catalog file's URI or a base
URI if specified.

Using system or uri Entries

When using the XML Catalog API directly (see The XML Catalog API for an example),
systemand uri entries both work when using the JDK XML Processors' native support
of the Cat al ogFeat ures class. In general, syst ementries are searched first, then public
entries, and if no match is found then the processor continues searching uri entries.
Because both systemand uri entries are supported, it's recommended that you follow
the custom of XML specifications when selecting between using a systemor uri entry.
For example, DTDs are defined with a syst enl d and therefore syst ementries are
preferable.

Use Catalog with XML Processors

ORACLE

Use the XML Catalog API with various Java XML processors.

The XML Catalog API is supported throughout JDK XML processors. The following
sections describe how it can be enabled for a particular type of processor.

2-7

ORACLE

Chapter 2
Java XML Processors Support

Use Catalog with DOM

To use a catalog with DOM, set the FI LES property on a Docunent Bui | der Fact ory
instance as demonstrated in the following code:

static final String CATALOG FILE = Catal ogFeat ures. Feat ure. FI LES. get PropertyNane();
Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nstance();
dbf . set NanespaceAwar e(true);
if (catalog !'= null) {
dbf . set Attri but e(CATALOG FI LE, catal og);
}

Note that cat al og is a URI to a catalog file. For example, it could be something like
"file://lusers/auser/catal og/catal og.xm".

It's best to deploy resolving target files along with the catalog entry file, so that the files
can be resolved relative to the catalog file. For example, if the following is a uri entry
in the catalog file, then the XSLInport_htm . xsl file will be located at / users/ auser/

cat al og/ XSLI nport _htni . xsl .

<uri name="pathto/ XSLI nport _htm .xsl" uri="XSLInport_htm .xsl"/>

Use Catalog with SAX

To use the Catalog feature on a SAX parser, set the catalog file to the SAXPar ser
instance:

SAXPar ser Factory spf = SAXParserFact ory. new nstance();
spf. set NanespaceAwar e(true);

spf. set Xl ncl udeAwar e(true);

SAXPar ser parser = spf.newSAXParser();

par ser. set Property(CATALOG FILE, catalog);

In the prior sample code, note the statement spf . set Xl ncl udeAwar e(true) . When this is
enabled, any X ncl ude is resolved using the catalog as well.

Given an XML file XI _si npl e. xm :

<si mpl e>
<test xm ns:xinclude="http://wwmv. w3. org/ 2001/ Xl ncl ude">
<l atinl>
<firstEl ement/>
<xi nclude:include href="pathto/ Xl _text.xm" parse="text"/>
<i nsi deChi | dren/ >
<anot her >
<deeper >t ext </ deeper >
</ anot her >
</latinl>
<test2>
<xi ncl ude:include href="pathto/ Xl _test2.xm"/>
</test2>
</test>
</ si mpl e>

Additionally, given another XML file XI _test 2. xni :

<?xm version="1.0"?>

<l-- coment before root -->

<! DOCTYPE red SYSTEM "pathto/ Xl _red.dtd">

<red xm ns: xinclude="http://ww. w3. org/ 2001/ XI ncl ude" >

2-8

ORACLE

Chapter 2
Java XML Processors Support

<bl ue>
<xinclude:include href="pathto/ Xl _text.xm" parse="text"/>
</ bl ue>
</red>

Assume another text file, XI _t ext. xnl , contains a simple string, and the file X _red. dtd
is as follows:

<IENTITY red "it is read">

In these XML files, there is an XI ncl ude element inside an X ncl ude element, and a
reference to a DTD. Assuming they are located in the same folder along with the
catalog file Cat al ogSupport. xnl , add the following catalog entries to map them:

<uri name="pathto/ Xl text.xm" uri="X _text.xm"/>
<uri name="pathto/ Xl test2.xm" uri="X _test2.xm"/>
<system systenl d="pathto/ XI _red.dtd" uri="X _red.dtd"/>

When the par ser . par se method is called to parse the X _si npl e. xni file, it's able to
locate the XI _test 2. xni file in the XI _sinpl e. xnl file, and the XI _text.xnl file and the
Xl _red. dtd file in the XI _test2. xni file through the specified catalog.

Use Catalog with StAX

To use the catalog feature with a StAX parser, set the catalog file on the
XMLI nput Fact ory instance before creating the XM_St r eanReader object:

XMLl nput Factory factory = XM.I nput Fact ory. new nstance();

factory. set Property(Catal ogFeat ures. Feature. FI LES. get PropertyNane(), catal og);
XMLSt reanReader streanReader = factory.createXM.StreanReader (xm, new

Fil el nput Stream(xm));

When the XM.St r eanReader st reanReader object is used to parse the XML source,
external references in the source are then resolved in accordance with the specified
entries in the catalog.

Note that unlike the Docunent Bui | der Fact ory class that has both set Feat ure and

set Attri but e methods, the XM.I nput Fact ory class defines only a set Property method.
The XML Catalog API features including XM.Const ant s. USE_CATALQG are all set through
this set Property method. For example, to disable USE_CATALOG on a XM.St r eanReader
object, you can do the following:

factory. set Property(XM.Const ants. USE_CATALOG fal se);

Use Catalog with Schema Validation

To use a catalog to resolve any external resources in a schema, such as XSD i nport
and i ncl ude, set the catalog on the SchemaFact ory object:

SchemaFactory factory =

SchemaFact ory. newl nst ance(XM_.Const ant s. WBC_XM._SCHEMA_NS_URI) ;

factory. set Property(Catal ogFeat ures. Feat ure. FI LES. get PropertyNane(), catal og);
Schema schema = factory. newSchema(schemaFile);

The XMLSchema schema document contains references to external DTD:

<! DOCTYPE xs: schema PUBLIC "-//WC// DTD XMLSCHEMA 200102//EN' "pat ht o/ XM.Schema. dt d"
[

1>

2-9

https://www.w3.org/2009/XMLSchema/XMLSchema.xsd

ORACLE

Chapter 2
Java XML Processors Support

And to xsd import:

<xs:inport namespace="http://wwmv. w3. org/ XM./ 1998/ namespace" schemalLocation="http://
www. W3. or g/ 2001/ pat ht o/ xm . xsd" >
<Xs:annot ation>
<xs: document ati on>Get access to the xm: attribute groups for xm:lang
as declared on 'schema' and 'documentation' bel ow
</ xs:docunent ati on>
</ xs:annot ati on>
</ xs:inport>

Following along with this example, to use local resources to improve your application
performance by reducing calls to the W3C server:

* Include these entries in the catalog set on the SchemaFact ory object:

<public publicld="-//WBC/ /DTD XM.SCHEMA 200102/ /EN' uri="XM.Schena. dtd"/>
<l-- XM.Schema.dtd refers to datatypes.dtd -->

<systenBuffix system dSuffix="datatypes.dtd" uri="datatypes.dtd"/>

<uri name="http://ww.w3. org/ 2001/ pat ht o/ xm . xsd" uri="xn .xsd"/>

e Download the source files XM_.Schema. dt d, dat at ypes. dtd, and xnl . xsd and save
them along with the catalog file.

As already discussed, the XML Catalog API lets you use any of the entry types that
you prefer. In the prior case, instead of the uri entry, you could also use either one of
the following:

* Anpublic entry, because the nanmespace attribute in the i nport element is treated as
the publicld element;

<public publicld="http://ww.w3.org/ XM./ 1998/ nanespace" uri="xm .xsd"/>

* Asystementry:

<system system d="http://ww. w3. org/ 2001/ pat ht o/ xm . xsd" uri="xn .xsd"/>

Note:

When experimenting with the XML Catalog API, it might be useful to ensure
that none of the URIs or system IDs used in your sample files points to any
actual resources on the internet, and especially not to the W3C server. This
lets you catch mistakes early should the catalog resolution fail, and avoids
putting a burden on W3C servers, thus freeing them from any unnecessary
connections. All the examples in this topic and other related topics about the
XML Catalog API, have an arbitrary string " pat ht 0" added to any URI for that
purpose, so that no URI could possibly resolve to an external W3C resource.

To use the catalog to resolve any external resources in an XML source to be validated,
set the catalog on the Val i dat or object:

SchemaFactory schemaFactory =

SchemaFact ory. newl nst ance(XM_Const ant s. W\BC_XM._SCHEMA_NS_URI) ;

Schema schema = schemaFact ory. newSchema() ;

Val i dator validator = schema. newvalidator();

val i dat or. set Property(Cat al ogFeat ures. Feat ure. FI LES. get PropertyNanme(), catal og);
St reanBour ce source = new Streanfource(new File(xm));

val i dator.val i dat e(source);

2-10

Chapter 2
Calling Order for Resolvers

Use Catalog with Transform

To use the XML Catalog API in a XSLT transform process, set the catalog file on the
Transf or ner Fact ory object.

TransformerFactory factory = Transformer Fact ory. new nstance();
factory.set Attribute(Catal ogFeatures. Feat ure. FI LES. get PropertyNane(), catal og);
Transformer transformer = factory. newlransformer(xsl Source);

If the XSL source that the factory is using to create the Transf or ner object contains
DTD, import, and include statements similar to these:

<I DOCTYPE HTM.I at 1 SYSTEM "http://openjdk.java.net/xnl /catal og/ dtd/ XSLDTD. dt d" >
<xsl:inport href="pathto/ XSLI nport_htm .xsl"/>
<xsl :include href="pathto/ XSLI ncl ude_header. xsl "/ >

Then the following catalog entries can be used to resolve these references:

<system systenml d="http://openj dk. j ava. net/xn / cat al og/ dt d/ XSLDTD. dt d"
uri="XSLDTD. dtd"/>

<uri name="pathto/ XSLI nport_htm . xsl" uri="XSLI nport_htm .xsl"/>

<uri name="pat ht o/ XSLI ncl ude_header. xsl" uri="XSLI ncl ude_header. xsl"/>

Calling Order for Resolvers

Detecting

ORACLE

The JDK XML processors call a custom resolver before the catalog resolver.

Custom Resolver Preferred to Catalog Resolver

The catalog resolver (defined by the Cat al ogResol ver interface) can be used to resolve
external references by the JDK XML processors to which a catalog file has been set.
However, if a custom resolver is also provided, then it's always be placed ahead of the
catalog resolver. This means that a JDK XML processor first calls a custom resolver to
attempt to resolve external resources. If the resolution is successful, then the
processor skips the catalog resolver and continues. Only when there’s no custom
resolver or if the resolution by a custom resolver returns null, does the processor then
call the catalog resolver.

For applications that use custom resolvers, it's therefore safe to set an additional
catalog to resolve any resources that the custom resolvers don’t handle. For existing
applications, if changing the code isn’t feasible, then you may set a catalog through
the system property or j axp. properti es file to redirect external references to local
resources knowing that such a setting won't interfere with existing processes that are
handled by custom resolvers.

Errors

Detect configuration issues by isolating the problem.

The XML Catalogs Standard requires that the processors recover from any resource
failures and continue, therefore the XML Catalog API ignores any failed catalog entry
files without issuing an error, which makes it harder to detect configuration issues.

2-11

ORACLE

Dectecting Configuration Issues

Chapter 2
Detecting Errors

To detect configuration issues, isolate the issues by setting one catalog at a time,
setting the RESOLVE value to strict, and checking for a Cat al ogExcepti on exception

when no match is found.

Table 2-1 RESOLVE Settings
|

RESCOLVE Value

Cat al ogResol ver Behavior

Description

strict (default)

Throws a Cat al ogException if An unmatched reference may

no match is found with a
specified reference

indicate a possible error in the
catalog or in setting the
catalog.

conti nue

Returns quietly

This is useful in a production
environment where you want
the XML processors to
continue resolving any
external references not
covered by the catalog.

i gnore

Returns quietly

For processors such as SAX,
that allow skipping the
external references, the

i gnor e value instructs the
Cat al ogResol ver object to
return an empty | nput Sour ce
object, thus skipping the
external reference.

2-12

Creating Immutable Lists, Sets, and Maps

Convenience static factory methods on the List, Set, and Map interfaces, which were
added in JDK 9, let you easily create immutable lists, sets, and maps.

An object is considered immutable if its state cannot change after it is constructed.
After you create an immutable instance of a collection, it holds the same data as long
as a reference to it exists.

If the collections created using these methods contain immutable objects, then they
are automatically thread safe after construction. Because the structures do not need to
support mutation, they can be made much more space efficient. Immutable collection
instances generally consume much less memory than their mutable counterparts.

As discussed in About Immutability, an immutable collection can contain mutable
objects, and if it does, the collection is neither immutable nor thread safe.

Topics

e Use Cases

* Syntax

* Randomized Iteration Order
e About Immutability

e Space Efficiency

Use Cases

The common use case for the immutable methods is a collection that is initialized from
known values, and that never changes. Also consider using these methods if your data
changes infrequently.

For optimal performance, the immutable collections store a data set that never
changes. However, you may be able to take advantage of the performance and space-
saving benefits even if your data is subject to change. These collections may provide
better performance than the mutable collections, even if your data changes
occasionally.

If you have a large number of values, you may consider storing them in a HashMap. If
you are constantly adding and removing entries, then this is a good choice. But, if you
have a set of values that never change, or rarely change, and you read from that set a
lot, then the immutable Map is a more efficient choice. If the data set is read frequently,
and the values change only rarely, then you may find that the overall speed is faster,
even when you include the performance impact of destroying and rebuilding an
immutable Map when a value changes.

ORACLE 3-1

https://docs.oracle.com/javase/9/docs/api/java/util/HashMap.html

Syntax

Chapter 3
Syntax

The API for these new collections is simple, especially for small numbers of elements.

Topics

* Immutable List Static Factory Methods

* Immutable Set Static Factory Methods

* Immutable Map Static Factory Methods

Immutable List Static Factory Methods

The Li st . of static factory methods provide a convenient way to create immutable
lists.

A list is an ordered collection, where duplicate elements are typically allowed. Null
values are not allowed.

The syntax of these methods is:

Li st.of ()

List.of (el)

List.of (el, e2) /1 fixed-argument formoverloads up to 10 el ements

List.of (elements...) [/ varargs formsupports an arbitrary nunber of elenments or
an array

Example 3-1 Examples
In JDK 8:

List<String> stringList = Arrays.asList("a", "b", "c");
stringList = Collections.unnodifiableList(stringList);

In JDK 9:

List stringList = List.of("a", "b", "c");

See Immutable List Static Factory Methods.

Immutable Set Static Factory Methods

ORACLE

The Set . of static factory methods provide a convenient way to create immutable
sets.

A set is a collection that does not contain duplicate elements. If a duplicate entry is
detected, then an |11 egal Ar gunent Except i on is thrown. Null values are not allowed.

The syntax of these methods is:

Set . of ()

Set . of (el)

Set.of (el, e2) /] fixed-argument formoverloads up to 10 el enents

Set.of (elements...) // varargs formsupports an arbitrary nunber of elements or an
array

3-2

http://download.java.net/java/jdk9/docs/api/java/util/List.html#immutable

Chapter 3
Syntax

Example 3-2 Examples
In JDK 8:

Set<String> stringSet = new HashSet <>(Arrays. asList("a", "b", "c"));
stringSet = Col | ections.unnodifiabl eSet(stringSet);

In JDK 9:

Set<String> stringSet = Set.of("a", "b", "c");

See Immutable Set Static Factory Methods.

Immutable Map Static Factory Methods

ORACLE

The Map. of and Map. of Ent ri es static factory methods provide a convenient way to
create immutable maps.

A Map cannot contain duplicate keys; each key can map to at most one value. If a
duplicate key is detected, then an I | | egal Ar gument Except i on is thrown. Null values
cannot be used as Map keys or values.

The syntax of these methods is:

Map. of ()

Map. of (k1, vi)

Map. of (k1, vi1, k2, v2) Il fixed-argunent formoverloads up to 10 key-val ue pairs
Map. of Entries(entry(kl, vl), entry(k2, v2),...)

/1 varargs formsupports an arbitrary nunber of Entry objects or an array

Example 3-3 Examples
In JDK 8:

Map<String, Integer> stringMap = new HashMap<String, Integer>();
stringMap. put("a", 1);

stringMap. put ("b", 2);

stringMap. put("c", 3);

stringMap = Col | ections. unnodifiabl eMap(stringhap);

In JDK 9:
Map stringMap = Map.of("a", 1, "b", 2, "c¢", 3);

Example 3-4 Map with Arbitrary Number of Pairs

If you have more than 10 key-value pairs, then create the map entries using the
Map. ent ry method, and pass those objects to the Map. of Ent ri es method. For
example:

inport static java.util.Map.entry;

Map <Integer, String> friendVap = Map. of Entries(
entry(1, "Tont),
entry(2, "Dick"),
entry(3, "Harry"),

entry(99, "Mathilde")):

See Immutable Map Static Factory Methods.

3-3

http://download.java.net/java/jdk9/docs/api/java/util/Set.html#immutable
http://download.java.net/java/jdk9/docs/api/java/util/Map.html#immutable

Chapter 3
Randomized Iteration Order

Randomized lteration Order

The iteration order for Set elements and Map keys is randomized: it is likely to be
different from one JVM run to the next. This is intentional — it makes it easier for you
to identify code that depends on iteration order. Sometimes dependencies on iteration
order inadvertently creep into code, and cause problems that are difficult to debug.

You can see how the iteration order is the same until j shel | is restarted.

jshell> Map stringMap = Map.of ("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=1}

jshell> Map stringMap = Map.of ("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=1}

jshell> /exit
| Goodbye

C:\Program Fi | es\ Java\j dk- 9\ bi n>j shel |
| Welcone to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell> Map stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {a=1, b=2, c=3}

The collection instances created by the Set . of , Map. of , and Map. of Entri es
methods are the only ones whose iteration orders are randomized. The iteration
ordering of collection implementations such as HashMap and HashSet is unchanged.

About Immutability

ORACLE

The collections returned by the convenience factory methods added in JDK 9 are
conventionally immutable. Any attempt to add, set, or remove elements from these
collections causes an Unsupport edOper at i onExcept i on to be thrown.

These collections are not "immutable persistent” or "functional” collections. If you are
using one of those collections, then you can modify it, but when you do, you are
returned a new updated collection that may share the structure of the first one.

One advantage of an immutable collection is that it is automatically thread safe. After
you create a collection, you can hand it to multiple threads, and they will all see a
consistent view.

However, an immutable collection of objects is not the same as a collection of
immutable objects. If the contained elements are mutable, then this may cause the
collection to behave inconsistently or make its contents to appear to change.

Let's look at an example where an immutable collection contains mutable elements.
Using j shel |, create two lists of St ri ng objects using the Arr ayLi st class, where
the second list is a copy of the first. Trivial j shel | output was removed.

jshell > List<String> listl = new ArrayList<>();
jshell> listl add("a")

jshell> listl add("b")

jshell> listl

listl ==>[a, D]

3-4

ORACLE

Chapter 3
About Immutability

jshell> List<String> Iist2 = new ArrayList<>(listl);
list2 ==>[a, b]

Next, using the Li st . of method, createilistlandilist2 that point to the first lists. If
you try to modify i li st 1, then you see an exception error because il i st 1 is immutable.
Any modification attempt throws an exception.

jshel I > List<List<String>> ilistl = List.of(listl, listl)
ilistl ==>[[a, b], [a, b]]

jshel I > List<List<String>> ilist2 = List.of(list2, list2)
ilist2 ==>[[a, b], [a, b]]

jshell>ilistl. add(new ArrayList<String>())

| java.lang.UnsupportedQperationException thrown:

| at | mut abl eCol | ections. uoe (I nmutabl eCol | ections.java: 70)

| at | mmutabl eCol | ections$Abst ract | mut abl eLi st. add (I nmut abl eCol | ecti ons
.java: 76)

| at (#10:1)

But if you modify the original Iist1,ilistl1andilist2 are nolonger equal.

jshell> listl add("c")

jshell> listl

listl ==>[a, b, c]
jshell>ilistl

ilistl ==>[[a, b, c], [a, b, c]]

jshell>ilist2
ilist2 == [[a, b], [a, b]]

jshell> ilistl. equals(ilist2)
$14 ==> fal se

Immutable and Unmodifiable Are Not the Same

The immutable collections behave in the same way as the

Col I ecti ons. unnodi fi abl e. .. wrappers. However, these collections are not
wrappers — these are data structures implemented by classes where any attempt to
modify the data causes an exception to be thrown.

If you create a Li st and pass it to the Col | ecti ons. unnodi fi abl eLi st method,
then you get an unmodifiable view. The underlying list is still modifiable, and
modifications to it are visible through the Li st that is returned, so it is not actually
immutable.

To demonstrate this behavior, create a Li st and pass it to
Col I ecti ons. unnodi fi abl eLi st . If you try to add to that Li st directly, then an
exception is thrown.

jshell > List<String> unnodlistl = Collections.unmodifiableList(listl);
unnodlistl ==>[a, b, c]

jshel I > unnodlist1.add("d")

| java.lang. UnsupportedCperati onException thrown:

| at Col | ections$Unmodi fi abl eCol | ection.add (Collections.java: 1056)
| at (#17:1)

But, if you change the original | i st 1, no error is generated, and the unnod! i st 1 list has
been modified.

3-5

Chapter 3
Space Efficiency

jshell> listl add("d")
$19 ==> true
jshell> listl
listl ==>1T[a, b, c, d]

jshel I > unnmodlistl
unnodlistl ==>[a, b, c, d]

Space Efficiency

ORACLE

The collections returned by the convenience factory methods are more space efficient
than their mutable equivalents.

All of the implementations of these collections are private classes hidden behind a
static factory method. When it is called, the static factory method chooses the
implementation class based on the size. The data may be stored in a compact field-
based or array-based layout.

Let's look at the heap space consumed by two alternative implementations. First,
here’'s an unmodifiable HashSet that contains two strings:

Set<String> set = new HashSet<>(3); // 3 buckets
set.add("silly");

set.add("string");

set = Collections. unnmodifiabl eSet (set);

The set includes six objects: the unmodifiable wrapper; the HashSet , which contains a
HashMap; the table of buckets (an array); and two Node instances (one for each
element). On a typical VM, with a 12—-byte header per object, the total overhead comes
to 96 bytes + 28 * 2 = 152 hytes for the set. This is a large amount of overhead
compared to the amount of data stored. Plus, access to the data unavoidably requires
multiple method calls and pointer dereferences.

Instead, we can implement the set using Set . of ;

Set<String> set = Set.of("silly", "string");

Because this is a field-based implementation, the set contains one object and two
fields. The overhead is 20 bytes. The new collections consume less heap space, both
in terms of fixed overhead and on a per-element basis.

Not needing to support mutation also contributes to space savings. In addition, the
locality of reference is improved, because there are fewer objects required to hold the
data.

3-6

Process API

The Process API lets you start, retrieve information about, and manage native
operating system processes.

With this API, you can work with operating system processes as follows:

Run arbitrary commands:
— Filter running processes.
— Redirect output.

— Connect heterogeneous commands and shells by scheduling processes to
start when another ends.

Test the execution of commands:

— Run a series of tests.

— Log output.

— Cleanup leftover processes.

Monitor commands:

— Monitor long-running processes and restart them if they terminate

— Collect usage statistics

Topics

Process API Classes and Interfaces

Creating a Process

Getting Information About a Process

Redirecting Output from a Process

Filtering Processes with Streams

Handling Processes When They Terminate with the onExit Method

Controlling Access to Sensitive Process Information

Process API Classes and Interfaces

The Process API consists of the classes and interfaces ProcessBui | der, Process,
ProcessHandl e, and ProcessHandl e. | nf o.

Topics

ORACLE

ProcessBuilder Class
Process Class
ProcessHandle Interface

ProcessHandle.Info Interface

4-1

Chapter 4
Process API Classes and Interfaces

ProcessBuilder Class

The Pr ocessBui | der class lets you create and start operating system processes.

See Creating a Process for examples on how to create and start a process. The
Pr ocessBui | der class manages various processes attributes, which the following
table summarizes:

Table 4-1 ProcessBuilder Class Attributes and Related Methods
]

Process Attribute Description Related Methods
Command Strings that specify the * ProcessBuil der
external program file to call constructor
and its arguments, if any. « comand(String. ..
conmand)
Environment The environment variables * environment ()

(and their values). This is
initially a copy of the system
environment of the current

process.

Working directory By default, the current working « directory()
directory of the current - directory(File
process. di rectory)

Standard input source By default, a process reads * redirectlnput
standard input from a pipe; (ProcessBuil der. R
access this through the output edirect source)

stream returned by the
Process. get Qut put Str

eammethod.
Standard output and standard By default, a process writes « redi r ect Qut put (Pr
error destinations standard output and standard ocessBui | der . Redi
error to pipes; access these rect destination)

through the input streams
returned by the

Process. getlnputStre
amand

Process. getErrorStre
ammethods. See Redirecting
Output from a Process for an

redirectError(Pro
cessBui | der. Redir
ect destination)

example.
redi rect Error Stream Specifies whether to send e redirectErrorStre
property standard output and error am()

output as two separate
streams (with a value of false)
or merge any error output with an _bOOI ean

standard output (with a value redirectErrorStre
of true). am

* redirectErrorStre

Process Class

The methods in the Pr ocess class let you to control processes started by the
methods Pr ocessBui | der. start and Runti ne. exec. The following table
summarizes these methods:

ORACLE 4-2

https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#ProcessBuilder-java.lang.String...-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#command-java.lang.String...-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#command-java.lang.String...-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#environment--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#directory--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#directory-java.io.File-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#directory-java.io.File-
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getOutputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getOutputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectInput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectInput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectInput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getInputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getInputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectOutput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectOutput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectOutput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectError-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectError-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectError-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream-boolean-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream-boolean-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream-boolean-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream-boolean-

Chapter 4
Process API Classes and Interfaces

The following table summarizes the methods of the Pr ocess class.

Table 4-2 Process Class Methods

|
Related Methods

Method Type

Wait for the process to complete.

Retrieve information about the process.

Retrieve input, output, and error streams. See
Handling Processes When They Terminate
with the onExit Method for an example.

Retrieve direct and indirect child processes.

Destroy or terminate the process.

Return a Conpl et abl eFut ur e instance
that will be completed when the process exits.
See Handling Processes When They
Terminate with the onExit Method for an
example.

wai tfor()

wai t For (1 ong ti neout,
TimeUnit unit)

i sAlive()

pi d()

i nfo()

exi t Val ue()

get | nput Streamn()

get Qut put St rean()
getError Stream()

chil dren()

descendant s()
destroy()
destroyForci bl y()
suppor t sNor mal Ter mi nati on()

onExit ()

ProcessHandle Interface

The Pr ocessHandl e interface lets you identify and control native processes. The
Pr ocess class is different from Pr ocessHandl e because it lets you control
processes started only by the methods Pr ocessBui | der. start and

Runt i ne. exec; however, the Pr ocess class lets you access process input, output,

ORACLE

and error streams.

See Filtering Processes with Streams for an example of the Pr ocessHandl e
interface. The following table summarizes the methods of this interface:

Table 4-3 ProcessHandle Interface Methods

|
Related Methods

Method Type

Retrieve all operating system processes.
Retrieve process handles.

Retrieve information about the process.

al | Processes()
current ()

of (1 ong pid)
parent ()

i sAlive()

pi d()

i nfo()

4-3

https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#waitFor--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#waitFor-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#waitFor-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#isAlive--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#pid--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#info--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#exitValue--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getInputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getOutputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#children--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#descendants--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#destroy--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#destroyForcibly--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#supportsNormalTermination--
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#onExit--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#allProcesses--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#current--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#of-long-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#parent--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#isAlive--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#pid--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#info--

Chapter 4
Creating a Process

Table 4-3 (Cont.) ProcessHandle Interface Methods
|

Method Type Related Methods
Retrieve streams of direct and indirect child * children()
processes. * descendant s()
Destroy processes. * destroy()

« destroyForcibly()

Return a Conpl et abl eFut ur e instance * onExit()
that will be completed when the process exits.

See Handling Processes When They

Terminate with the onExit Method for an

example.

ProcessHandle.Info Interface

The Pr ocessHandl e. | nf o interface lets you retrieve information about a process,
including processes created by the Pr ocessBui | der . st art method and native
processes.

See Getting Information About a Process for an example of the
Pr ocessHandl e. | nf o interface. The following table summarizes the methods in this
interface:

Table 4-4 ProcessHandle.Info Interface Methods
]

Method Description

argument s() Returns the arguments of the process as a
String array.

conmmand() Returns the executable path name of the
process.

conmandLi ne() Returns the command line of the process.

startlnstant () Returns the start time of the process.

t ot al CpubDur ati on() Returns the total CPU time accumulated of the
process.

user () Returns the user of the process.

Creating a Process

ORACLE

To create a process, first specify the attributes of the process, such as the command
name and its arguments, with the Pr ocessBui | der class. Then, start the process
with the Pr ocessBui | der. st art method, which returns a Pr ocess instance.

The following lines create and start a process:

ProcessBui | der pb = new ProcessBuil der("echo", "Hello Wrld!");
Process p = ph.start();

In the following excerpt, the set EnvTest method sets two environment variables, hor se
and oat s, then prints the value of these environment variables (as well as the system
environment variable HOVE) with the echo command:

4-4

https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#children--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#descendants--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#destroy--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#destroyForcibly--
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#onExit--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#arguments--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#command--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#commandLine--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#startInstant--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#totalCpuDuration--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#user--

Chapter 4
Getting Information About a Process

public static void setEnvTest() throws | CException, InterruptedException {
ProcessBui | der pb =
new ProcessBuil der ("/bin/sh", "-c", "echo $horse $dog $HOVE").inheritl);
pb. environnent (). put("horse", "oats");
pb. environnent (). put("dog", "treats");
pb.start().waitFor();
1

This method prints the following (assuming that your home directory is / hone/ adni n):

oats treats /hone/admn

Getting Information About a Process

ORACLE

The method Pr ocess. pi d returns the native process ID of the process. The method
Process. i nf o returns a Pr ocessHandl e. | nf o instance, which contains additional
information about the process, such as its executable path name, start time, and user.

In the following excerpt, the method get | nf oTest starts a process and then prints
information about it:

public static void getlnfoTest() throws | CException {
ProcessBui |l der pb = new ProcessBuil der("echo", "Hello Wrld!");
String na = "<not avail abl e>";
Process p = ph.start();
ProcessHandl e.Info info = p.info();
Systemout.printf("Process ID %%", p.pid());
System out. printf("Command nanme: %%", info.comand().orEl se(na));
Systemout. printf("Command |ine: %%", info.commandLine().orElse(na));

Systemout.printf("Start tine: %%",
info.startlnstant().mp(i -> i.atZone(Zoneld. systenDefault())
.toLocal DateTime().toString())
.0rEl'se(na));

Systemout. printf("Argunents: %%",
info.arguments().mp(a -> Stream of (a)
.collect(Collectors.joining(" ")))
.orEl'se(na));

Systemout.printf("User: %%", info.user().orElse(na));

}

This method prints output similar to the following:

Process I D 18761

Command name: /usr/bin/echo

Command |ine: echo Hello Wrld!
Start time: 2017-05-30T18:52: 15.577
Argunents: <not availabl e>

User: adm nistrator

4-5

Chapter 4
Redirecting Output from a Process

Note:

* The attributes of a process vary by operating system and are not available
in all implementations. In addition, information about processes is limited
by the operating system privileges of the process making the request.

» All the methods in the interface Pr ocessHandl e. | nf o return instances
of Opt i onal <T>; always check if the returned value is empty.

Redirecting Output from a Process

By default, a process writes standard output and standard error to pipes. In your
application, you can access these pipes through the input streams returned by the
methods Pr ocess. get Qut put St r eamand Pr ocess. get Err or St r eam However,
before starting the process, you can redirect standard output and standard error to
other destinations, such as a file, with the methods redirect Qut put and redirectError.

In the following excerpt, the method redi rect ToFi | eTest redirects standard input to a
file, out . t np, then prints this file:

public static void redirect ToFileTest() throws | OException, InterruptedException {

File outFile = new File("out.tnp");

Process p = new ProcessBuilder("ls", "-la")
.redirectQut put (outFile)
.redirectError(Redirect. | NHERI T)

.start();
int status = p.waitFor();
if (status == 0) {
p = new ProcessBuilder("cat" , outFile.toString())
cinheritlQ()
.start();
p.waitFor();
}
}

The excerpt redirects standard output to the file out . t np. It redirects standard error to
the standard error of the invoking process; the value Redi r ect . | NHERI T specifies
that the subprocess 1/O source or destination is the same as that of the current
process. The call to the i nheri t | () method is equivalent to

redirectlnput (Redirect. I NHERIT).redirect Quput (Redirect. | NHERI T).
redirectError(Redirect. INHERIT).

Filtering Processes with Streams

ORACLE

The method ProcessHandl e. al | Pr ocesses returns a stream of all processes
visible to the current process. You can filter the Pr ocessHandl e instances of this
stream the same way that you filter elements from a collection.

In the following excerpt, the method fil t er ProcessesTest prints information about all
the processes owned by the current user, sorted by the process ID of their parent's
process:

public class ProcessTest {

4-6

Chapter 4
Handling Processes When They Terminate with the onExit Method

...

static void filterProcessesTest() {
Optional <String> currUser = ProcessHandl e.current().info().user();
ProcessHandl e. al | Processes()
filter(pl -> pl.info().user().equal s(currUser))
.sorted(ProcessTest:: parent Conparat or)
.forEach(ProcessTest:: showProcess);

}

static int parentConparator(ProcessHandl e pl, ProcessHandl e p2) {
long pidl = pl.parent().map(ph -> ph.pid()).orEl se(-1L);
long pid2 = p2.parent (). map(ph -> ph.pid()).orEl se(-1L);
return Long. conpare(pi dl, pid2);

}

static void showProcess(ProcessHandl e ph) {
ProcessHandl e. Info info = ph.info();
Systemout.printf("pid: %, user: %, cnd: %%",
ph.pid(), info.user().orEl se("none"), info.command().orEl se("none"));

}

Note that the al | Pr ocesses method is limited by native operating system access
controls. Also, because all processes are created and terminated asynchronously,
there is no guarantee that a process in the stream is alive or that no other processes
may have been created since the call to the al | Pr ocesses method.

Handling Processes When They Terminate with the onExit
Method

The Process. onExi t and ProcessHandl e. onExi t methods return a

Conpl et abl eFut ur e instance, which you can use to schedule tasks when a process
terminates. Alternatively, if you want your application to wait for a process to terminate,
then you can call onExi t (). get ().

In the following excerpt, the method st art ProcessesTest creates three processes and
then starts them. Afterward, it calls onExi t (). t henAccept (onExi t Met hod) on each of the
processes; onExi t Met hod prints the process ID (PID), exit status, and output of the
process.

public class ProcessTest {
I,

static public void startProcessesTest() throws | OException, I|nterruptedException {
Li st <ProcessBui | der> greps = new ArraylList<>();
greps. add(new ProcessBui |l der ("/bin/sh", "-c", "grep -c¢ \"java\" *"));
greps. add(new ProcessBuil der ("/bin/sh", "-c", "grep -c \"Process\" *"));
greps. add(new ProcessBuil der ("/bin/sh", "-c", "grep -c¢ \"onExit\" *"));
ProcessTest. start Several Processes (greps, ProcessTest::printGepResults);
Systemout.printIn("\nPress enter to continue ...\n");
Systemin.read();

}

static void startSeveral Processes (

ORACLE 4.7

ORACLE

Chapter 4
Handling Processes When They Terminate with the onExit Method

Li st <ProcessBui | der> pBLi st,
Consumer <Process> onExi t Met hod)
throws |nterruptedException {
System out. println("Number of processes: " + pBList.size());
pBLi st . strean(). f or Each(
pb -> {
try {
Process p = pb.start();
Systemout.printf("Start %, %%",
p.pid(), p.info().commandLine().orEl se("<na>"));
p. onExi t (). thenAccept (onExit Met hod);
} catch (I OException e) {
Systemerr. println("Exception caught");
e.printStackTrace();
}
1
);
1

static void printGepResults(Process p) {
Systemout.printf("Exit %l, status %%%%%",
p.pid(), p.exitValue(), output(p.getlnputStrean()));

private static String output(InputStreaminputStrean {
String s ="";
try (BufferedReader br = new BufferedReader (new | nput St reanReader (i nput Strean)))
{
S =
br.lines().collect(Collectors.joining(SystemgetProperty("line.separator")));
} catch (I OException e) {
Systemerr. println("Caught | OException");
e.printStackTrace();
}

return s,

}

...
}

The output of the method st art ProcessesTest is similar to the following. Note that the
processes might exit in a different order than the order in which they were started.

Nunber of processes: 3

Start 12401, /bin/sh -c grep -c "java" *
Start 12403, /bin/sh -c grep -c "Process" *
Start 12404, /bin/sh -c grep -c "onExit" *

Press enter to continue ...

Exit 12401, status 0
ProcessTest.class: 0
ProcessTest.java: 16

Exit 12404, status 0
ProcessTest.class: 0
ProcessTest.java: 8

Exit 12403, status 0

ProcessTest.class: 0
ProcessTest.java: 38

4-8

Chapter 4
Controlling Access to Sensitive Process Information

This method calls the Syst em i n. r ead() method to prevent the program from
terminating before all the processes have exited (and have run the method specified
by the t henAccept method).

If you want to wait for a process to terminate before proceeding with the rest of the
program, then call onExi t (). get ():

static void startSeveral Processes (
Li st <ProcessBui | der> pBLi st, Consuner<Process> onExi t Met hod)
throws | nterruptedException {
Systemout. println("Nunber of processes: " + pBList.size());
pBLi st . strean(). for Each(
pb ->{
try {
Process p = ph.start();

Systemout.printf("Start %, %%",
p.pid(), p.info().conmmandLine().orEl se("<na>"));
p. onExi t (). get();
print G epResul ts(p);
} catch (I OException|InterruptedException|ExecutionException e) {
Systemerr. println("Exception caught");
e.printStackTrace();

The Conput abl eFut ur e class contains a variety of methods that you can call to schedule
tasks when a process exits including the following:

* thenAppl y: Similar to t henAccept , except that it takes a lambda expression of
type Funct i on (a lambda expression that returns a value).

* thenRun: Takes a lambda expression of type Runnabl e (no formal parameters
or return value).

* thenAppl yAsyc: Runs the specified Funct i on with a thread from
For kJoi nPool . cormonPool () .

Because Conput abl eFut ur e implements the Fut ur e interface, this class also contains
synchronous methods:

e get(long tinmeout, TinmeUnit unit):Waits, if necessary, at most the time
specified by its arguments for the process to complete.

« i sDone: Returns true if the process is completed.

Controlling Access to Sensitive Process Information

ORACLE

Process information may contain sensitive information such as user IDs, paths, and
arguments to commands. Control access to process information with a security
manager.

When running as a normal application, a ProcessHandl e has the same operating system
privileges to information about other processes as a native application; however,
information about system processes may not be available.

If your application uses the Securi t yManager class to implement a security policy,
then to enable it to access process information, the security policy must grant
Runt i nePer mi ssi on(" managePr ocess") . This permission enables native

4-9

Chapter 4
Controlling Access to Sensitive Process Information

process termination and access to the process Pr ocessHandl e information. Note
that this permission enables code to identify and terminate processes that it did not
create.

ORACLE 4-10

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Enhanced Deprecation
	Deprecation in the JDK
	How to Deprecate APIs
	Notifications and Warnings
	Running jdeprscan

	2 XML Catalog API
	Purpose of XML Catalog API
	XML Catalog API Interfaces
	Using the XML Catalog API
	System Reference
	Public Reference
	URI Reference

	Java XML Processors Support
	Enable Catalog Support
	Use Catalog with XML Processors

	Calling Order for Resolvers
	Detecting Errors

	3 Creating Immutable Lists, Sets, and Maps
	Use Cases
	Syntax
	Immutable List Static Factory Methods
	Immutable Set Static Factory Methods
	Immutable Map Static Factory Methods

	Randomized Iteration Order
	About Immutability
	Space Efficiency

	4 Process API
	Process API Classes and Interfaces
	ProcessBuilder Class
	Process Class
	ProcessHandle Interface
	ProcessHandle.Info Interface

	Creating a Process
	Getting Information About a Process
	Redirecting Output from a Process
	Filtering Processes with Streams
	Handling Processes When They Terminate with the onExit Method
	Controlling Access to Sensitive Process Information

