
Java Platform, Standard Edition
Core Libraries

Release 9
E74190-02
September 2017

Java Platform, Standard Edition Core Libraries, Release 9

E74190-02

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility v

Conventions v

1 Enhanced Deprecation

Deprecation in the JDK 1-1

How to Deprecate APIs 1-1

Notifications and Warnings 1-3

Running jdeprscan 1-5

2 XML Catalog API

Purpose of XML Catalog API 2-1

XML Catalog API Interfaces 2-2

Using the XML Catalog API 2-3

System Reference 2-3

Public Reference 2-5

URI Reference 2-5

Java XML Processors Support 2-6

Enable Catalog Support 2-6

Use Catalog with XML Processors 2-7

Calling Order for Resolvers 2-11

Detecting Errors 2-11

3 Creating Immutable Lists, Sets, and Maps

Use Cases 3-1

Syntax 3-2

Immutable List Static Factory Methods 3-2

Immutable Set Static Factory Methods 3-2

Immutable Map Static Factory Methods 3-3

Randomized Iteration Order 3-4

iii

About Immutability 3-4

Space Efficiency 3-6

4 Process API

Process API Classes and Interfaces 4-1

ProcessBuilder Class 4-2

Process Class 4-2

ProcessHandle Interface 4-3

ProcessHandle.Info Interface 4-4

Creating a Process 4-4

Getting Information About a Process 4-5

Redirecting Output from a Process 4-6

Filtering Processes with Streams 4-6

Handling Processes When They Terminate with the onExit Method 4-7

Controlling Access to Sensitive Process Information 4-9

iv

Preface

This guide provides information about the Java core libraries.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Enhanced Deprecation

JDK 9 clarifies the semantics of what deprecation means, including whether an API
may be removed in the near future.

If you are a library maintainer, you can take advantage of the updated deprecation
syntax to inform users of your library about the status of APIs provided by your library.

If you are a library or application developer, you can use the jdeprscan tool to find uses
of deprecated JDK API elements in your applications or libraries.

Topics

• Deprecation in the JDK

• How to Deprecate APIs

• Notifications and Warnings

• Running jdeprscan

Deprecation in the JDK
Deprecation is a notification to library consumers that they should migrate code from a
deprecated API.

In the JDK, APIs have been deprecated for widely varying reasons, such as:

• The API is dangerous (for example, the Thread.stop method).

• There is a simple rename (for example, AWT Component.show/hide replaced
by setVisible).

• A newer, better API can be used instead.

• The deprecated API is going to be removed.

In prior releases, APIs were deprecated but virtually never removed. Starting with JDK
9, APIs may be marked as deprecated for removal. This indicates that the API is
eligible to be removed in the next release of the JDK platform. If your application or
library consumes any of these APIs, then you should make a plan to migrate from
them soon.

For a list of deprecated APIs in the JDK 9 release, see the Deprecated API page in the
API specification.

How to Deprecate APIs
Deprecating an API requires using two different mechanisms: the @Deprecated
annotation and the @deprecated Javadoc tag.

The @Deprecated annotation marks an API in a way that is recorded in the class file
and is available at runtime. This allows various tools, such as javac and jdeprscan, to
detect and flag usage of deprecated APIs. The @deprecated Javadoc tag is used in

1-1

https://docs.oracle.com/javase/9/docs/api/deprecated-list.html

documentation of deprecated APIs, for example, to describe the reason for
deprecation, and to suggest alternative APIs.

Note the capitalization: the annotation starts with an uppercase D and the Javadoc tag
starts with a lowercase d.

Using the @Deprecated Annotation

To indicate deprecation, precede the module, class, method, or member declaration
with @Deprecated. The annotation contains these elements:

• @Deprecated(since="<version>")

– <version> is the version when the API was deprecated. This is for
informational purposes. The default is the empty string ("").

• @Deprecated(forRemoval=<boolean>)

– forRemoval=true indicates that the API is subject to removal in a future
release.

– forRemoval=false recommends that code should no longer use this API;
however, there is no current intent to remove the API. This is the default value.

For example: @Deprecated(since="9", forRemoval=true)

The @Deprecated annotation causes the Javadoc-generated documentation to be
marked with one of the following, wherever that program element appears:

• Deprecated.

• Deprecated, for removal: This API element is subject to removal in a future
version.

The javadoc tool generates a page named deprecated-list.html which contains
the list of deprecated APIs, and adds a link in the navigation bar to that page.

The following is a simple example of using the @Deprecated annotation from the
java.lang.Thread class:

public class Thread implements Runnable {
 ...
 @Deprecated(since="1.2")
 public final void stop() {
 ...
 }
 ...

Semantics of Deprecation

The two elements of the @Deprecated annotation give developers the opportunity to
clarify what deprecation means for their exported APIs.

For the JDK platform:

• @Deprecated(forRemoval=true) indicates that the API is eligible to be
removed in a future release of the JDK platform.

• @Deprecated(since="<version>") contains the JDK version string that
indicates when the API element was deprecated, for those deprecated in JDK 9
and beyond.

Chapter 1
How to Deprecate APIs

1-2

If you maintain libraries and produce your own APIs, then you probably use the
@Deprecated annotation. You should determine and communicate your policy
around API removals. For example, if you release a new library every 6 weeks, then
you may choose to deprecate an API for removal, but not remove it for several months
to give your customers time to migrate.

Using the @deprecated Javadoc Tag

Use the @deprecated tag in the javadoc comment of any deprecated program
element to indicate that it should no longer be used (even though it may continue to
work). This tag is valid in all class, method, or field documentation comments. The
@deprecated tag must be followed by a space or a newline. In the paragraph
following the @deprecated tag, explain why the item was deprecated, and suggest
what to use instead. Mark the text that refers to new versions of the same functionality
with an @link tag.

When it encounters an @deprecated tag, the javadoc tool moves the text following
the @deprecated tag to the front of the description and precedes it with a warning.
For example, this source:

 /**
 * ...
 * @deprecated This method does not properly convert bytes into
 * characters. As of JDK 1.1, the preferred way to do this is via the
 * {@code String} constructors that take a {@link
 * java.nio.charset.Charset}, charset name, or that use the platform's
 * default charset.
 * ...
 */
 @Deprecated(since="1.1")
 public String(byte ascii[], int hibyte) {
 ...

generates the following output:

@Deprecated(since="1.1")
public String(byte[] ascii,
 int hibyte)
Deprecated. This method does not properly convert bytes into characters. As of
JDK 1.1, the preferred way to do this is via the String constructors that take a
Charset, charset name, or that use the platform's default charset.

If you use the @deprecated Javadoc tag without the corresponding @Deprecated
annotation, a warning is generated.

Notifications and Warnings
When an API is deprecated, developers must be notified. The deprecated API may
cause problems in your code, or, if it is eventually removed, cause failures at run time.

The Java compiler generates warnings about deprecated APIs. There are options to
generate more information about warnings, and you can also suppress deprecation
warnings.

Chapter 1
Notifications and Warnings

1-3

http://download.java.net/java/jdk9/docs/api/java/lang/Deprecated.html
http://download.java.net/java/jdk9/docs/api/java/lang/Deprecated.html#since--
http://download.java.net/java/jdk9/docs/api/java/nio/charset/Charset.html

Compiler Deprecation Warnings

If the deprecation is forRemoval=false, the Java compiler generates an "ordinary
deprecation warning". If the deprecation is forRemoval=true, the compiler generates a
"removal warning".

The two kinds of warnings are controlled by separate -Xlint flags: -Xlint:deprecation
and -Xlint:removal. The javac -Xlint:removal option is enabled by default, so removal
warnings are shown.

The warnings can also be turned off independently (note the "–"): -Xlint:-deprecation
and -Xlint:-removal.

This is an example of an ordinary deprecation warning.

$ javac src/example/DeprecationExample.java
Note: src/example/DeprecationExample.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.

Use the javac -Xlint:deprecation option to see what API is deprecated.

$ javac -Xlint:deprecation src/example/DeprecationExample.java
src/example/DeprecationExample.java:12: warning: [deprecation] getSelectedValues()
in JList has been deprecated
 Object[] values = jlist.getSelectedValues();
 ^
1 warning

Here is an example of a removal warning.

public class RemovalExample {
 public static void main(String[] args) {
 System.runFinalizersOnExit(true);
 }
}
$ javac RemovalExample.java
RemovalExample.java:3: warning: [removal] runFinalizersOnExit(boolean) in System
has been deprecated and marked for removal
 System.runFinalizersOnExit(true);
 ^
1 warning
==========

Suppressing Deprecation Warnings

The javac -Xlint options control warnings for all files compiled in a particular run of
javac. You may have identified specific locations in source code that generate
warnings that you no longer want to see. You can use the @SuppressWarnings
annotation to suppress warnings whenever that code is compiled. Place the
@SuppressWarnings annotation at the declaration of the class, method, field, or local
variable that uses a deprecated API.

The @SuppressWarnings options are:

• @SuppressWarnings("deprecation") — Suppresses only the ordinary
deprecation warnings.

• @SuppressWarnings("removal") — Suppresses only the removal warnings.

Chapter 1
Notifications and Warnings

1-4

• @SuppressWarnings({"deprecation","removal"}) — Suppresses both
types of warnings.

Here’s an example of suppressing a warning.

 @SuppressWarnings("deprecation")
 Object[] values = jlist.getSelectedValues();

With the @SuppressWarnings annotation, no warnings are issued for this line, even if
warnings are enabled on the command line.

Running jdeprscan
jdeprscan is a static analysis tool that reports on an application’s use of deprecated
JDK API elements. Run jdeprscan to help identify possible issues in compiled class
files or jar files.

You can find out about deprecated JDK APIs from the compiler notifications. However,
if you don’t recompile with every JDK release, or if the warnings were suppressed, or if
you depend on third-party libraries that are distributed as binary artifacts, then you
should run jdeprscan.

It’s important to discover dependencies on deprecated APIs before the APIs are
removed from the JDK. If the binary uses an API that is deprecated for removal in the
current JDK release, and you don’t recompile, then you won’t get any notifications.
When the API is removed in a future JDK release, then the binary will simply fail at
runtime. jdeprscan lets you detect such usage now, well before the API is removed.

For the complete syntax of how to run the tool and how to interpret the output, see
jdeprscan in the Java Platform, Standard Edition Tools Reference.

Chapter 1
Running jdeprscan

1-5

2
XML Catalog API

Use the XML Catalog API to implement a local XML catalog.

Java SE 9 introduces a new XML Catalog API to support the Organization for the
Advancement of Structured Information Standards (OASIS) XML Catalogs, OASIS
Standard V1.1. This chapter of the Oracle JDK 9 Core Libraries Guide describes the
API, its support by the Java XML processors, and usage patterns.

The XML Catalog API is a straightforward API for implementing a local catalog, and
the support by the JDK XML processors makes it easier to configure your processors
or the entire environment to take advantage of the feature.

Learning More About Creating Catalogs

To learn about creating catalogs, see the Catalog Standard. The XML catalogs under
the directory /etc/xml/catalog on some Linux distributions can also be a good
reference for creating a local catalog.

Purpose of XML Catalog API
The XML Catalog API and the Java XML processors provide an option for developers
and system administrators to better manage external resources.

The XML Catalog API provides an implementation of OASIS XML Catalogs v1.1, a
standard designed to address issues caused by external resources.

Problems Caused by External Resources

XML, XSD and XSL documents may contain references to external resources that the
Java XML processors need to retrieve to process the documents. External resources
can cause a problem for the applications or the system. The Catalog API and the Java
XML processors provide an option for developers and system administrators to better
manage these external resources.

External resources can cause a problem for the applications or the system in these
areas:

• Availability. When the resources are remote, the XML processors must be able to
connect to the remote server. Even though connectivity is rarely an issue, it’s still a
factor in the stability of an application. Too many connections can be a hazard to
servers that hold the resources (such as the well-documented case involving
excessive DTD traffic directed to the W3C’s servers), and this in turn could affect
your applications. See Use Catalog with Schema Validation) for an example that
solves this issue using the XML Catalog API.

• Performance. Although in most cases connectivity isn’t an issue, a remote
fetch can still cause a performance issue for an application. Furthermore, there
may be multiple applications on the same system attempting to resolve the same
source, and this would be a waste of system resources.

2-1

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

• Security. Allowing remote connections can pose a security risk if the application
processes untrusted XML sources.

• Manageability. If a system processes a large number of XML documents, then
externally referenced documents, whether local or remote, can become a
maintenance hassle.

How XML Catalog API Addresses Problems Caused by External Resources

The XML Catalog API and the Java XML processors provide an option for developers
and system administrators to better manage the external resources.

• Application developers – You can create a local catalog of all external references
for your application, and let the Catalog API resolve them for the application. This
not only avoids remote connections but also makes it easier to manage these
resources.

• System administrators – You can establish a local catalog for your system and
configure the Java VM to point to the catalog. Then, all of your applications on the
system may share the same catalog without any code changes to the applications,
assuming they’re compatible with Java SE 9. To establish a catalog, you may take
advantage of existing catalogs such as those included with some Linux
distributions.

XML Catalog API Interfaces
Access the XML Catalog API through its interfaces.

XML Catalog API Interfaces

The XML Catalog API defines the following interfaces:

• The Catalog interface represents an entity catalog as defined by XML Catalogs,
OASIS Standard V1.1, 7 October 2005. A Catalog object is immutable. After it’s
created, the Catalog object can be used to find matches in a system, public, or uri
entry. A custom resolver implementation may find it useful to locate local
resources through a catalog.

• The CatalogFeatures class holds all of the features and properties the Catalog API
supports, including javax.xml.catalog.files, javax.xml.catalog.defer,
javax.xml.catalog.prefer, and javax.xml.catalog.resolve.

• The CatalogManager class manages the creation of XML catalogs and catalog
resolvers.

• The CatalogResolver interface is a catalog resolver that implements
SAX EntityResolver, StAX XMLResolver, DOM LS LSResourceResolver used by
schema validation, and transform URIResolver. This interface resolves external
references using catalogs.

Details on the CatalogFeatures Class

The catalog features are collectively defined in the CatalogFeatures class. The
features are defined at the API and system levels, which means that they can be set
through the API, system properties, and JAXP properties. To set a feature through the
API, use the CatalogFeatures class.

The following code sets javax.xml.catalog.resolve to "continue" so that the
process continues even if no match is found by the CatalogResolver:

Chapter 2
XML Catalog API Interfaces

2-2

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

CatalogFeatures f = CatalogFeatures.builder().with(Feature.RESOLVE,
"continue").build();

To set this"continue" functionality system-wide, use the Java command line or
System.setProperty method:

System.setProperty(Feature.RESOLVE.getPropertyName(), "continue");

To set this"continue" functionality for the whole JVM instance, enter a line in the
jaxp.properties file:

javax.xml.catalog.resolve = "continue"

The resolve property, as well as the prefer and defer properties, can be set as an
attribute of the catalog or group entry in a catalog file. For example, in the following
catalog, the resolve attribute is set with a value "continue" on the catalog entry that
instructs the processor to continue when the no match is found through this catalog.
The attribute can also be set on the group entry as follows:

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog" resolve="continue"
xml:base="http://local/base/dtd/">
 <group resolve="continue">
<system systemId="http://remote/dtd/alice/docAlice.dtd" uri="http://local/dtd/
docAliceSys.dtd" />
</group>
</catalog>

Properties set in a narrower scope override those that are set in a wider one.
Therefore, a property set through the API always takes preference.

Using the XML Catalog API
Resolve DTD, entity, and alternate URI references in XML source documents using
the various entry types of the XML Catalog standard.

The XML Catalog Standard defines a number of entry types. Among them, the system
entries, including system, rewriteSystem, and systemSuffix entries, are used for
resolving DTD and entity references in XML source documents, while uri entries are
for alternate URI references.

System Reference
Use a CatalogResolver object to locate a local resource.

Locating a Local Resource

The following example demonstrates how to use a CatalogResolver object to locate a
local resource using a system entry, given an XML file that contains a reference to
example.dtd property:

<?xml version="1.0"?>
<!DOCTYPE catalogtest PUBLIC "-//OPENJDK//XML CATALOG DTD//1.0"
"http://openjdk.java.net/xml/catalog/dtd/example.dtd">

<catalogtest>

Chapter 2
Using the XML Catalog API

2-3

Test &example; entry
</catalogtest>

The example.dtd defines an entity "example":

<!ENTITY example "system">

The URI to the example.dtd in the XML doesn't need to exist. The purpose is to provide
a unique identifier for the CatalogResolver object to locate a local resource. To do this,
create a catalog entry file called catalog.xml with a system entry to refer to the local
resource:

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <system systemId="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
uri="example.dtd"/>
</catalog>

With this catalog and the system entry, all you need to do is get a default
CatalogFeatures object, and set the URI to the catalog file to create a CatalogResolver
object:

CatalogResolver cr = CatalogManager.catalogResolver(CatalogFeatures.defaults(),
catalogUri);

catalogUri must be a valid URI. For example:

URI.create("file:///users/auser/catalog/catalog.xml")

The CatalogResolver object can now be used as a JDK XML resolver. In the following
example, it’s used as a SAX EntityResolver:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
XMLReader reader = factory.newSAXParser().getXMLReader();
reader.setEntityResolver(cr);

Notice that in the example the system identifier is given an absolute URI. That makes
it easy for the resolver to find the match with exactly the same systemId in the catalog's
system entry.

If the system identifier in the XML is relative, then it may complicate the matching
process because the XML processor may have made it absolute with a specified base
URI or the source file's URI. In that situation, the systemId of the system entry would
need to match the anticipated absolute URI. An easier solution is to use the
systemSuffix entry, for example:

<systemSuffix systemIdSuffix="example.dtd" uri="example.dtd">

The systemSuffix entry matches any reference that ends with example.dtd in an XML
source and resolves it to a local example.dtd file as specified in the uri attribute. You
may add more to the systemId to ensure that it’s unique or the correct reference. For
example, you may set the systemIdSuffix to xml/catalog/dtd/example.dtd, or rename
the id in both the XML source file and the systemSuffix entry to make it a unique
match, for example my_example.dtd.

The URI of the system entry can be absolute or relative. If the external resources have
a fixed location, then an absolute URI is more likely to guarantee uniqueness. If the
external resources are placed relative to your application or the catalog entry file, then
a relative URI may be more effective, allowing the deployment of your application
without knowing where it’s installed. Such a relative URI then is resolved using the

Chapter 2
Using the XML Catalog API

2-4

base URI or the catalog file’s URI if the base URI isn’t specified. In the previous
example, example.dtd is assumed to have been placed in the same directory as the
catalog file.

Public Reference
Use a public entry instead of a system entry to find a desired resource.

If no system entry matches the desired resource, and the PREFER property is specified to
match public, then a public entry can do the same as a system entry. Note that public
is the default setting for the PREFER property.

Using a Public Entry

When the DTD reference in the parsed XML file contains a public identifier such as
"-//OPENJDK//XML CATALOG DTD//1.0", a public entry can be written as follows in the
catalog entry file:

<public publicId="-//OPENJDK//XML CATALOG DTD//1.0" uri="example.dtd"/>

When you create and use a CatalogResolver object with this entry file, the example.dtd
resolves through the publicId property. See System Reference for an example of
creating a CatalogResolver object.

URI Reference
Use a uri entry to find a desired resource.

The URI type entries, including uri, rewriteURI, and uriSuffix, can be used in a similar
way as the system type entries.

Using URI Entries

While the XML Catalog Standard gives a preference to the system type entries for
resolving DTD references, and uri type entries for everything else, the Java XML
Catalog API doesn’t make that distinction. This is because the specifications for the
existing Java XML Resolvers, such as XMLResolver and LSResourceResolver, doesn’t
give a preference. The uri type entries, including uri, rewriteURI, and uriSuffix, can
be used in a similar way as the system type entries. The uri elements are defined to
associate an alternate URI reference with a URI reference. In the case of system
reference, this is the systemId property.

You may therefore replace the system entry with a uri entry in the following example,
although system entries are more generally used for DTD references.

<system systemId="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
uri="example.dtd"/>

A uri entry would look like the following:

<uri name="http://openjdk.java.net/xml/catalog/dtd/example.dtd" uri="example.dtd"/>

While system entries are frequently used for DTDs, uri entries are preferred for URI
references such as XSD and XSL import and include. The next example uses a uri
entry to resolve a XSL import.

As described in The XML Catalog API, the XML Catalog API defines the
CatalogResolver interface that extends Java XML Resolvers including EntityResolver,

Chapter 2
Using the XML Catalog API

2-5

XMLResolver, URIResolver, and LSResolver. Therefore, a CatalogResolver object can be
used by SAX, DOM, StAX, Schema Validation, as well as XSLT Transform. The
following code creates a CatalogResolver object with default feature settings:

CatalogResolver cr = CatalogManager.catalogResolver(CatalogFeatures.defaults(),
catalogUri);

The code then registers this CatalogResolver object on a TransformerFactory class
where a URIResolver object is expected:

TransformerFactory factory = TransformerFactory.newInstance();
factory.setURIResolver(cr);

 Alternatively the code can register the CatalogResolver object on the Transformer
object:

Transformer transformer = factory.newTransformer(xslSource);
transformer.setURIResolver(cur);

Assuming the XSL source file contains an import element to import the xslImport.xsl
file into the XSL source:

<xsl:import href="pathto/xslImport.xsl" />

To resolve the import reference to where the import file is actually located, a
CatalogResolver object should be set on the TransformerFactory class before creating
the Transformer object, and a uri entry such as the following must be added to the
catalog entry file:

<uri name="pathto/xslImport.xsl" uri="xslImport.xsl"/>

The discussion about absolute or relative URIs and the use of systemSuffix or
uriSuffix entries with the system reference applies to the uri entries as well.

Java XML Processors Support
Use the XML Catalogs features with the standard Java XML processors.

The XML Catalogs features are supported throughout the Java XML processors,
including SAX and DOM (javax.xml.parsers), and StAX parsers (javax.xml.stream),
schema validation (javax.xml.validation), and XML transformation
(javax.xml.transform).

This means that you don’t need to create a CatalogResolver object outside an
XML processor. Catalog files can be registered directly to the Java XML processor, or
specified through system properties, or in the jaxp.properties file. The XML
processors perform the mappings through the catalogs automatically.

Enable Catalog Support
To enable the support for the XML Catalogs feature on a processor, the USE_CATALOG
feature must be set to true, and at least one catalog entry file specified.

USE_CATALOG

A Java XML processor determines whether the XML Catalogs feature is supported
based on the value of the USE_CATALOG feature. By default, USE_CATALOG is set to true for
all JDK XML Processors. The Java XML processor further checks for the availability of

Chapter 2
Java XML Processors Support

2-6

a catalog file, and attempts to use the XML Catalog API only when the USE_CATALOG
feature is true and a catalog is available.

The USE_CATALOG feature is supported by the XML Catalog API, the system property,
and the jaxp.properties file. For example, if USE_CATALOG is set to true and it’s desirable
to disable the catalog support for a particular processor, then this can be done by
setting the USE_CATALOG feature to false through the processor's setFeature method.
The following code sets the USE_CATALOG feature to the specified value useCatalog for an
XMLReader object:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
XMLReader reader = spf.newSAXParser().getXMLReader();
if (setUseCatalog) {
 reader.setFeature(XMLConstants.USE_CATALOG, useCatalog);
}

On the other hand, if the entire environment must have the catalog turned off, then this
can be done by configuring the jaxp.properties file with a line:

 javax.xml.useCatalog = false;

javax.xml.catalog.files

The javax.xml.catalog.files property is defined by the XML Catalog API and
supported by the JDK XML processors, along with other catalog features. To employ
the catalog feature on a parsing, validating, or transforming process, all that’s needed
is to set the FILES property on the processor, through its system property or using the
jaxp.properties file.

Catalog URI

The catalog file reference must be a valid URI, such as file:///users/auser/catalog/
catalog.xml.

The URI reference in a system or a URI entry in the catalog file can be absolute or
relative. If they’re relative, then they are resolved using the catalog file's URI or a base
URI if specified.

Using system or uri Entries

When using the XML Catalog API directly (see The XML Catalog API for an example),
system and uri entries both work when using the JDK XML Processors' native support
of the CatalogFeatures class. In general, system entries are searched first, then public
entries, and if no match is found then the processor continues searching uri entries.
Because both system and uri entries are supported, it’s recommended that you follow
the custom of XML specifications when selecting between using a system or uri entry.
For example, DTDs are defined with a systemId and therefore system entries are
preferable.

Use Catalog with XML Processors
Use the XML Catalog API with various Java XML processors.

The XML Catalog API is supported throughout JDK XML processors. The following
sections describe how it can be enabled for a particular type of processor.

Chapter 2
Java XML Processors Support

2-7

Use Catalog with DOM

To use a catalog with DOM, set the FILES property on a DocumentBuilderFactory
instance as demonstrated in the following code:

static final String CATALOG_FILE = CatalogFeatures.Feature.FILES.getPropertyName();
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
if (catalog != null) {
 dbf.setAttribute(CATALOG_FILE, catalog);
}

Note that catalog is a URI to a catalog file. For example, it could be something like
"file:///users/auser/catalog/catalog.xml".

It’s best to deploy resolving target files along with the catalog entry file, so that the files
can be resolved relative to the catalog file. For example, if the following is a uri entry
in the catalog file, then the XSLImport_html.xsl file will be located at /users/auser/
catalog/XSLImport_html.xsl.

<uri name="pathto/XSLImport_html.xsl" uri="XSLImport_html.xsl"/>

Use Catalog with SAX

To use the Catalog feature on a SAX parser, set the catalog file to the SAXParser
instance:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
spf.setXIncludeAware(true);
SAXParser parser = spf.newSAXParser();
parser.setProperty(CATALOG_FILE, catalog);

In the prior sample code, note the statement spf.setXIncludeAware(true). When this is
enabled, any XInclude is resolved using the catalog as well.

Given an XML file XI_simple.xml:

<simple>
<test xmlns:xinclude="http://www.w3.org/2001/XInclude">
 <latin1>
 <firstElement/>
 <xinclude:include href="pathto/XI_text.xml" parse="text"/>
 <insideChildren/>
 <another>
 <deeper>text</deeper>
 </another>
 </latin1>
 <test2>
 <xinclude:include href="pathto/XI_test2.xml"/>
 </test2>
</test>
</simple>

Additionally, given another XML file XI_test2.xml:

<?xml version="1.0"?>
<!-- comment before root -->
<!DOCTYPE red SYSTEM "pathto/XI_red.dtd">
<red xmlns:xinclude="http://www.w3.org/2001/XInclude">

Chapter 2
Java XML Processors Support

2-8

 <blue>
 <xinclude:include href="pathto/XI_text.xml" parse="text"/>
 </blue>
</red>

Assume another text file, XI_text.xml, contains a simple string, and the file XI_red.dtd
is as follows:

 <!ENTITY red "it is read">

In these XML files, there is an XInclude element inside an XInclude element, and a
reference to a DTD. Assuming they are located in the same folder along with the
catalog file CatalogSupport.xml, add the following catalog entries to map them:

<uri name="pathto/XI_text.xml" uri="XI_text.xml"/>
<uri name="pathto/XI_test2.xml" uri="XI_test2.xml"/>
<system systemId="pathto/XI_red.dtd" uri="XI_red.dtd"/>

When the parser.parse method is called to parse the XI_simple.xml file, it’s able to
locate the XI_test2.xml file in the XI_simple.xml file, and the XI_text.xml file and the
XI_red.dtd file in the XI_test2.xml file through the specified catalog.

Use Catalog with StAX

To use the catalog feature with a StAX parser, set the catalog file on the
XMLInputFactory instance before creating the XMLStreamReader object:

XMLInputFactory factory = XMLInputFactory.newInstance();
factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(), catalog);
XMLStreamReader streamReader = factory.createXMLStreamReader(xml, new
FileInputStream(xml));

When the XMLStreamReader streamReader object is used to parse the XML source,
external references in the source are then resolved in accordance with the specified
entries in the catalog.

Note that unlike the DocumentBuilderFactory class that has both setFeature and
setAttribute methods, the XMLInputFactory class defines only a setProperty method.
The XML Catalog API features including XMLConstants.USE_CATALOG are all set through
this setProperty method. For example, to disable USE_CATALOG on a XMLStreamReader
object, you can do the following:

factory.setProperty(XMLConstants.USE_CATALOG, false);

Use Catalog with Schema Validation

To use a catalog to resolve any external resources in a schema, such as XSD import
and include, set the catalog on the SchemaFactory object:

SchemaFactory factory =
SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(), catalog);
Schema schema = factory.newSchema(schemaFile);

The XMLSchema schema document contains references to external DTD:

<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "pathto/XMLSchema.dtd"
[
 ...
]>

Chapter 2
Java XML Processors Support

2-9

https://www.w3.org/2009/XMLSchema/XMLSchema.xsd

And to xsd import:

<xs:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="http://
www.w3.org/2001/pathto/xml.xsd">
 <xs:annotation>
 <xs:documentation>Get access to the xml: attribute groups for xml:lang
 as declared on 'schema' and 'documentation' below
 </xs:documentation>
 </xs:annotation>
</xs:import>

Following along with this example, to use local resources to improve your application
performance by reducing calls to the W3C server:

• Include these entries in the catalog set on the SchemaFactory object:

<public publicId="-//W3C//DTD XMLSCHEMA 200102//EN" uri="XMLSchema.dtd"/>
<!-- XMLSchema.dtd refers to datatypes.dtd -->
<systemSuffix systemIdSuffix="datatypes.dtd" uri="datatypes.dtd"/>
<uri name="http://www.w3.org/2001/pathto/xml.xsd" uri="xml.xsd"/>

• Download the source files XMLSchema.dtd, datatypes.dtd, and xml.xsd and save
them along with the catalog file.

As already discussed, the XML Catalog API lets you use any of the entry types that
you prefer. In the prior case, instead of the uri entry, you could also use either one of
the following:

• A public entry, because the namespace attribute in the import element is treated as
the publicId element:

<public publicId="http://www.w3.org/XML/1998/namespace" uri="xml.xsd"/>

• A system entry:

<system systemId="http://www.w3.org/2001/pathto/xml.xsd" uri="xml.xsd"/>

Note:

When experimenting with the XML Catalog API, it might be useful to ensure
that none of the URIs or system IDs used in your sample files points to any
actual resources on the internet, and especially not to the W3C server. This
lets you catch mistakes early should the catalog resolution fail, and avoids
putting a burden on W3C servers, thus freeing them from any unnecessary
connections. All the examples in this topic and other related topics about the
XML Catalog API, have an arbitrary string "pathto" added to any URI for that
purpose, so that no URI could possibly resolve to an external W3C resource.

To use the catalog to resolve any external resources in an XML source to be validated,
set the catalog on the Validator object:

SchemaFactory schemaFactory =
SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
Schema schema = schemaFactory.newSchema();
Validator validator = schema.newValidator();
validator.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(), catalog);
StreamSource source = new StreamSource(new File(xml));
validator.validate(source);

Chapter 2
Java XML Processors Support

2-10

Use Catalog with Transform

To use the XML Catalog API in a XSLT transform process, set the catalog file on the
TransformerFactory object.

TransformerFactory factory = TransformerFactory.newInstance();
factory.setAttribute(CatalogFeatures.Feature.FILES.getPropertyName(), catalog);
Transformer transformer = factory.newTransformer(xslSource);

If the XSL source that the factory is using to create the Transformer object contains
DTD, import, and include statements similar to these:

<!DOCTYPE HTMLlat1 SYSTEM "http://openjdk.java.net/xml/catalog/dtd/XSLDTD.dtd">
<xsl:import href="pathto/XSLImport_html.xsl"/>
<xsl:include href="pathto/XSLInclude_header.xsl"/>

Then the following catalog entries can be used to resolve these references:

<system systemId="http://openjdk.java.net/xml/catalog/dtd/XSLDTD.dtd"
uri="XSLDTD.dtd"/>
<uri name="pathto/XSLImport_html.xsl" uri="XSLImport_html.xsl"/>
<uri name="pathto/XSLInclude_header.xsl" uri="XSLInclude_header.xsl"/>

Calling Order for Resolvers
The JDK XML processors call a custom resolver before the catalog resolver.

Custom Resolver Preferred to Catalog Resolver

The catalog resolver (defined by the CatalogResolver interface) can be used to resolve
external references by the JDK XML processors to which a catalog file has been set.
However, if a custom resolver is also provided, then it’s always be placed ahead of the
catalog resolver. This means that a JDK XML processor first calls a custom resolver to
attempt to resolve external resources. If the resolution is successful, then the
processor skips the catalog resolver and continues. Only when there’s no custom
resolver or if the resolution by a custom resolver returns null, does the processor then
call the catalog resolver.

For applications that use custom resolvers, it’s therefore safe to set an additional
catalog to resolve any resources that the custom resolvers don’t handle. For existing
applications, if changing the code isn’t feasible, then you may set a catalog through
the system property or jaxp.properties file to redirect external references to local
resources knowing that such a setting won’t interfere with existing processes that are
handled by custom resolvers.

Detecting Errors
Detect configuration issues by isolating the problem.

The XML Catalogs Standard requires that the processors recover from any resource
failures and continue, therefore the XML Catalog API ignores any failed catalog entry
files without issuing an error, which makes it harder to detect configuration issues.

Chapter 2
Calling Order for Resolvers

2-11

Dectecting Configuration Issues

To detect configuration issues, isolate the issues by setting one catalog at a time,
setting the RESOLVE value to strict, and checking for a CatalogException exception
when no match is found.

Table 2-1 RESOLVE Settings

RESOLVE Value CatalogResolver Behavior Description

strict (default) Throws a CatalogException if
no match is found with a
specified reference

An unmatched reference may
indicate a possible error in the
catalog or in setting the
catalog.

continue Returns quietly This is useful in a production
environment where you want
the XML processors to
continue resolving any
external references not
covered by the catalog.

ignore Returns quietly For processors such as SAX,
that allow skipping the
external references, the
ignore value instructs the
CatalogResolver object to
return an empty InputSource
object, thus skipping the
external reference.

Chapter 2
Detecting Errors

2-12

3
Creating Immutable Lists, Sets, and Maps

Convenience static factory methods on the List, Set, and Map interfaces, which were
added in JDK 9, let you easily create immutable lists, sets, and maps.

An object is considered immutable if its state cannot change after it is constructed.
After you create an immutable instance of a collection, it holds the same data as long
as a reference to it exists.

If the collections created using these methods contain immutable objects, then they
are automatically thread safe after construction. Because the structures do not need to
support mutation, they can be made much more space efficient. Immutable collection
instances generally consume much less memory than their mutable counterparts.

As discussed in About Immutability, an immutable collection can contain mutable
objects, and if it does, the collection is neither immutable nor thread safe.

Topics

• Use Cases

• Syntax

• Randomized Iteration Order

• About Immutability

• Space Efficiency

Use Cases
The common use case for the immutable methods is a collection that is initialized from
known values, and that never changes. Also consider using these methods if your data
changes infrequently.

For optimal performance, the immutable collections store a data set that never
changes. However, you may be able to take advantage of the performance and space-
saving benefits even if your data is subject to change. These collections may provide
better performance than the mutable collections, even if your data changes
occasionally.

If you have a large number of values, you may consider storing them in a HashMap. If
you are constantly adding and removing entries, then this is a good choice. But, if you
have a set of values that never change, or rarely change, and you read from that set a
lot, then the immutable Map is a more efficient choice. If the data set is read frequently,
and the values change only rarely, then you may find that the overall speed is faster,
even when you include the performance impact of destroying and rebuilding an
immutable Map when a value changes.

3-1

https://docs.oracle.com/javase/9/docs/api/java/util/HashMap.html

Syntax
The API for these new collections is simple, especially for small numbers of elements.

Topics

• Immutable List Static Factory Methods

• Immutable Set Static Factory Methods

• Immutable Map Static Factory Methods

Immutable List Static Factory Methods
The List.of static factory methods provide a convenient way to create immutable
lists.

A list is an ordered collection, where duplicate elements are typically allowed. Null
values are not allowed.

The syntax of these methods is:

List.of()
List.of(e1)
List.of(e1, e2) // fixed-argument form overloads up to 10 elements
List.of(elements...) // varargs form supports an arbitrary number of elements or
an array

Example 3-1 Examples

In JDK 8:

List<String> stringList = Arrays.asList("a", "b", "c");
stringList = Collections.unmodifiableList(stringList);

In JDK 9:

List stringList = List.of("a", "b", "c");

See Immutable List Static Factory Methods.

Immutable Set Static Factory Methods
The Set.of static factory methods provide a convenient way to create immutable
sets.

A set is a collection that does not contain duplicate elements. If a duplicate entry is
detected, then an IllegalArgumentException is thrown. Null values are not allowed.

The syntax of these methods is:

Set.of()
Set.of(e1)
Set.of(e1, e2) // fixed-argument form overloads up to 10 elements
Set.of(elements...) // varargs form supports an arbitrary number of elements or an
array

Chapter 3
Syntax

3-2

http://download.java.net/java/jdk9/docs/api/java/util/List.html#immutable

Example 3-2 Examples

In JDK 8:

Set<String> stringSet = new HashSet<>(Arrays.asList("a", "b", "c"));
stringSet = Collections.unmodifiableSet(stringSet);

In JDK 9:

Set<String> stringSet = Set.of("a", "b", "c");

See Immutable Set Static Factory Methods.

Immutable Map Static Factory Methods
The Map.of and Map.ofEntries static factory methods provide a convenient way to
create immutable maps.

A Map cannot contain duplicate keys; each key can map to at most one value. If a
duplicate key is detected, then an IllegalArgumentException is thrown. Null values
cannot be used as Map keys or values.

The syntax of these methods is:

Map.of()
Map.of(k1, v1)
Map.of(k1, v1, k2, v2) // fixed-argument form overloads up to 10 key-value pairs
Map.ofEntries(entry(k1, v1), entry(k2, v2),...)
 // varargs form supports an arbitrary number of Entry objects or an array

Example 3-3 Examples

In JDK 8:

Map<String, Integer> stringMap = new HashMap<String, Integer>();
stringMap.put("a", 1);
stringMap.put("b", 2);
stringMap.put("c", 3);
stringMap = Collections.unmodifiableMap(stringMap);

In JDK 9:

Map stringMap = Map.of("a", 1, "b", 2, "c", 3);

Example 3-4 Map with Arbitrary Number of Pairs

If you have more than 10 key-value pairs, then create the map entries using the
Map.entry method, and pass those objects to the Map.ofEntries method. For
example:

import static java.util.Map.entry;
Map <Integer, String> friendMap = Map.ofEntries(
 entry(1, "Tom"),
 entry(2, "Dick"),
 entry(3, "Harry"),
 ...
 entry(99, "Mathilde"));

See Immutable Map Static Factory Methods.

Chapter 3
Syntax

3-3

http://download.java.net/java/jdk9/docs/api/java/util/Set.html#immutable
http://download.java.net/java/jdk9/docs/api/java/util/Map.html#immutable

Randomized Iteration Order
The iteration order for Set elements and Map keys is randomized: it is likely to be
different from one JVM run to the next. This is intentional — it makes it easier for you
to identify code that depends on iteration order. Sometimes dependencies on iteration
order inadvertently creep into code, and cause problems that are difficult to debug.

You can see how the iteration order is the same until jshell is restarted.

jshell> Map stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=1}

jshell> Map stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=1}

jshell> /exit
| Goodbye

C:\Program Files\Java\jdk-9\bin>jshell
| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell> Map stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {a=1, b=2, c=3}

The collection instances created by the Set.of, Map.of, and Map.ofEntries
methods are the only ones whose iteration orders are randomized. The iteration
ordering of collection implementations such as HashMap and HashSet is unchanged.

About Immutability
The collections returned by the convenience factory methods added in JDK 9 are
conventionally immutable. Any attempt to add, set, or remove elements from these
collections causes an UnsupportedOperationException to be thrown.

These collections are not "immutable persistent" or "functional" collections. If you are
using one of those collections, then you can modify it, but when you do, you are
returned a new updated collection that may share the structure of the first one.

One advantage of an immutable collection is that it is automatically thread safe. After
you create a collection, you can hand it to multiple threads, and they will all see a
consistent view.

However, an immutable collection of objects is not the same as a collection of
immutable objects. If the contained elements are mutable, then this may cause the
collection to behave inconsistently or make its contents to appear to change.

Let’s look at an example where an immutable collection contains mutable elements.
Using jshell, create two lists of String objects using the ArrayList class, where
the second list is a copy of the first. Trivial jshell output was removed.

jshell> List<String> list1 = new ArrayList<>();
jshell> list1.add("a")
jshell> list1.add("b")
jshell> list1
list1 ==> [a, b]

Chapter 3
Randomized Iteration Order

3-4

jshell> List<String> list2 = new ArrayList<>(list1);
list2 ==> [a, b]

Next, using the List.of method, create ilist1 and ilist2 that point to the first lists. If
you try to modify ilist1, then you see an exception error because ilist1 is immutable.
Any modification attempt throws an exception.

jshell> List<List<String>> ilist1 = List.of(list1, list1);
ilist1 ==> [[a, b], [a, b]]

jshell> List<List<String>> ilist2 = List.of(list2, list2);
ilist2 ==> [[a, b], [a, b]]

jshell> ilist1.add(new ArrayList<String>())
| java.lang.UnsupportedOperationException thrown:
| at ImmutableCollections.uoe (ImmutableCollections.java:70)
| at ImmutableCollections$AbstractImmutableList.add (ImmutableCollections
.java:76)
| at (#10:1)

But if you modify the original list1, ilist1 and ilist2 are no longer equal.

jshell> list1.add("c")
jshell> list1
list1 ==> [a, b, c]
jshell> ilist1
ilist1 ==> [[a, b, c], [a, b, c]]

jshell> ilist2
ilist2 ==> [[a, b], [a, b]]

jshell> ilist1.equals(ilist2)
$14 ==> false

Immutable and Unmodifiable Are Not the Same

The immutable collections behave in the same way as the
Collections.unmodifiable... wrappers. However, these collections are not
wrappers — these are data structures implemented by classes where any attempt to
modify the data causes an exception to be thrown.

If you create a List and pass it to the Collections.unmodifiableList method,
then you get an unmodifiable view. The underlying list is still modifiable, and
modifications to it are visible through the List that is returned, so it is not actually
immutable.

To demonstrate this behavior, create a List and pass it to
Collections.unmodifiableList. If you try to add to that List directly, then an
exception is thrown.

jshell> List<String> unmodlist1 = Collections.unmodifiableList(list1);
unmodlist1 ==> [a, b, c]

jshell> unmodlist1.add("d")
| java.lang.UnsupportedOperationException thrown:
| at Collections$UnmodifiableCollection.add (Collections.java:1056)
| at (#17:1)

But, if you change the original list1, no error is generated, and the unmodlist1 list has
been modified.

Chapter 3
About Immutability

3-5

jshell> list1.add("d")
$19 ==> true
jshell> list1
list1 ==> [a, b, c, d]

jshell> unmodlist1
unmodlist1 ==> [a, b, c, d]

Space Efficiency
The collections returned by the convenience factory methods are more space efficient
than their mutable equivalents.

All of the implementations of these collections are private classes hidden behind a
static factory method. When it is called, the static factory method chooses the
implementation class based on the size. The data may be stored in a compact field-
based or array-based layout.

Let’s look at the heap space consumed by two alternative implementations. First,
here’s an unmodifiable HashSet that contains two strings:

Set<String> set = new HashSet<>(3); // 3 buckets
set.add("silly");
set.add("string");
set = Collections.unmodifiableSet(set);

The set includes six objects: the unmodifiable wrapper; the HashSet, which contains a
HashMap; the table of buckets (an array); and two Node instances (one for each
element). On a typical VM, with a 12–byte header per object, the total overhead comes
to 96 bytes + 28 * 2 = 152 bytes for the set. This is a large amount of overhead
compared to the amount of data stored. Plus, access to the data unavoidably requires
multiple method calls and pointer dereferences.

Instead, we can implement the set using Set.of:

Set<String> set = Set.of("silly", "string");

Because this is a field-based implementation, the set contains one object and two
fields. The overhead is 20 bytes. The new collections consume less heap space, both
in terms of fixed overhead and on a per-element basis.

Not needing to support mutation also contributes to space savings. In addition, the
locality of reference is improved, because there are fewer objects required to hold the
data.

Chapter 3
Space Efficiency

3-6

4
Process API

The Process API lets you start, retrieve information about, and manage native
operating system processes.

With this API, you can work with operating system processes as follows:

• Run arbitrary commands:

– Filter running processes.

– Redirect output.

– Connect heterogeneous commands and shells by scheduling processes to
start when another ends.

• Test the execution of commands:

– Run a series of tests.

– Log output.

– Cleanup leftover processes.

• Monitor commands:

– Monitor long-running processes and restart them if they terminate

– Collect usage statistics

Topics

• Process API Classes and Interfaces

• Creating a Process

• Getting Information About a Process

• Redirecting Output from a Process

• Filtering Processes with Streams

• Handling Processes When They Terminate with the onExit Method

• Controlling Access to Sensitive Process Information

Process API Classes and Interfaces
The Process API consists of the classes and interfaces ProcessBuilder, Process,
ProcessHandle, and ProcessHandle.Info.

Topics

• ProcessBuilder Class

• Process Class

• ProcessHandle Interface

• ProcessHandle.Info Interface

4-1

ProcessBuilder Class
The ProcessBuilder class lets you create and start operating system processes.

See Creating a Process for examples on how to create and start a process. The
ProcessBuilder class manages various processes attributes, which the following
table summarizes:

Table 4-1 ProcessBuilder Class Attributes and Related Methods

Process Attribute Description Related Methods

Command Strings that specify the
external program file to call
and its arguments, if any.

• ProcessBuilder
constructor

• command(String...
command)

Environment The environment variables
(and their values). This is
initially a copy of the system
environment of the current
process.

• environment()

Working directory By default, the current working
directory of the current
process.

• directory()
• directory(File

directory)

Standard input source By default, a process reads
standard input from a pipe;
access this through the output
stream returned by the
Process.getOutputStr
eam method.

• redirectInput
(ProcessBuilder.R
edirect source)

Standard output and standard
error destinations

By default, a process writes
standard output and standard
error to pipes; access these
through the input streams
returned by the
Process.getInputStre
am and
Process.getErrorStre
am methods. See Redirecting
Output from a Process for an
example.

• redirectOutput(Pr
ocessBuilder.Redi
rect destination)

• redirectError(Pro
cessBuilder.Redir
ect destination)

redirectErrorStream
property

Specifies whether to send
standard output and error
output as two separate
streams (with a value of false)
or merge any error output with
standard output (with a value
of true).

• redirectErrorStre
am()

• redirectErrorStre
am(boolean
redirectErrorStre
am)

Process Class
The methods in the Process class let you to control processes started by the
methods ProcessBuilder.start and Runtime.exec. The following table
summarizes these methods:

Chapter 4
Process API Classes and Interfaces

4-2

https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#ProcessBuilder-java.lang.String...-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#command-java.lang.String...-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#command-java.lang.String...-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#environment--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#directory--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#directory-java.io.File-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#directory-java.io.File-
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getOutputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getOutputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectInput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectInput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectInput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getInputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getInputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectOutput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectOutput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectOutput-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectError-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectError-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectError-java.lang.ProcessBuilder.Redirect-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream-boolean-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream-boolean-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream-boolean-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessBuilder.html#redirectErrorStream-boolean-

The following table summarizes the methods of the Process class.

Table 4-2 Process Class Methods

Method Type Related Methods

Wait for the process to complete. • waitfor()
• waitFor(long timeout,

TimeUnit unit)

Retrieve information about the process. • isAlive()
• pid()
• info()
• exitValue()

Retrieve input, output, and error streams. See
Handling Processes When They Terminate
with the onExit Method for an example.

• getInputStream()
• getOutputStream()
• getErrorStream()

Retrieve direct and indirect child processes. • children()
• descendants()

Destroy or terminate the process. • destroy()
• destroyForcibly()
• supportsNormalTermination()

Return a CompletableFuture instance
that will be completed when the process exits.
See Handling Processes When They
Terminate with the onExit Method for an
example.

• onExit()

ProcessHandle Interface
The ProcessHandle interface lets you identify and control native processes. The
Process class is different from ProcessHandle because it lets you control
processes started only by the methods ProcessBuilder.start and
Runtime.exec; however, the Process class lets you access process input, output,
and error streams.

See Filtering Processes with Streams for an example of the ProcessHandle
interface. The following table summarizes the methods of this interface:

Table 4-3 ProcessHandle Interface Methods

Method Type Related Methods

Retrieve all operating system processes. • allProcesses()

Retrieve process handles. • current()
• of(long pid)
• parent()

Retrieve information about the process. • isAlive()
• pid()
• info()

Chapter 4
Process API Classes and Interfaces

4-3

https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#waitFor--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#waitFor-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#waitFor-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#isAlive--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#pid--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#info--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#exitValue--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getInputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getOutputStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#getErrorStream--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#children--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#descendants--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#destroy--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#destroyForcibly--
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#supportsNormalTermination--
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/9/docs/api/java/lang/Process.html#onExit--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#allProcesses--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#current--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#of-long-
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#parent--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#isAlive--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#pid--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#info--

Table 4-3 (Cont.) ProcessHandle Interface Methods

Method Type Related Methods

Retrieve streams of direct and indirect child
processes.

• children()
• descendants()

Destroy processes. • destroy()
• destroyForcibly()

Return a CompletableFuture instance
that will be completed when the process exits.
See Handling Processes When They
Terminate with the onExit Method for an
example.

• onExit()

ProcessHandle.Info Interface
The ProcessHandle.Info interface lets you retrieve information about a process,
including processes created by the ProcessBuilder.start method and native
processes.

See Getting Information About a Process for an example of the
ProcessHandle.Info interface. The following table summarizes the methods in this
interface:

Table 4-4 ProcessHandle.Info Interface Methods

Method Description

arguments() Returns the arguments of the process as a
String array.

command() Returns the executable path name of the
process.

commandLine() Returns the command line of the process.

startInstant() Returns the start time of the process.

totalCpuDuration() Returns the total CPU time accumulated of the
process.

user() Returns the user of the process.

Creating a Process
To create a process, first specify the attributes of the process, such as the command
name and its arguments, with the ProcessBuilder class. Then, start the process
with the ProcessBuilder.start method, which returns a Process instance.

The following lines create and start a process:

 ProcessBuilder pb = new ProcessBuilder("echo", "Hello World!");
 Process p = pb.start();

In the following excerpt, the setEnvTest method sets two environment variables, horse
and oats, then prints the value of these environment variables (as well as the system
environment variable HOME) with the echo command:

Chapter 4
Creating a Process

4-4

https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#children--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#descendants--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#destroy--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#destroyForcibly--
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.html#onExit--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#arguments--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#command--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#commandLine--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#startInstant--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#totalCpuDuration--
https://docs.oracle.com/javase/9/docs/api/java/lang/ProcessHandle.Info.html#user--

 public static void setEnvTest() throws IOException, InterruptedException {
 ProcessBuilder pb =
 new ProcessBuilder("/bin/sh", "-c", "echo $horse $dog $HOME").inheritIO();
 pb.environment().put("horse", "oats");
 pb.environment().put("dog", "treats");
 pb.start().waitFor();
 }

This method prints the following (assuming that your home directory is /home/admin):

oats treats /home/admin

Getting Information About a Process
The method Process.pid returns the native process ID of the process. The method
Process.info returns a ProcessHandle.Info instance, which contains additional
information about the process, such as its executable path name, start time, and user.

In the following excerpt, the method getInfoTest starts a process and then prints
information about it:

 public static void getInfoTest() throws IOException {
 ProcessBuilder pb = new ProcessBuilder("echo", "Hello World!");
 String na = "<not available>";
 Process p = pb.start();
 ProcessHandle.Info info = p.info();
 System.out.printf("Process ID: %s%n", p.pid());
 System.out.printf("Command name: %s%n", info.command().orElse(na));
 System.out.printf("Command line: %s%n", info.commandLine().orElse(na));

 System.out.printf("Start time: %s%n",
 info.startInstant().map(i -> i.atZone(ZoneId.systemDefault())
 .toLocalDateTime().toString())
 .orElse(na));

 System.out.printf("Arguments: %s%n",
 info.arguments().map(a -> Stream.of(a)
 .collect(Collectors.joining(" ")))
 .orElse(na));

 System.out.printf("User: %s%n", info.user().orElse(na));
 }

This method prints output similar to the following:

Process ID: 18761
Command name: /usr/bin/echo
Command line: echo Hello World!
Start time: 2017-05-30T18:52:15.577
Arguments: <not available>
User: administrator

Chapter 4
Getting Information About a Process

4-5

Note:

• The attributes of a process vary by operating system and are not available
in all implementations. In addition, information about processes is limited
by the operating system privileges of the process making the request.

• All the methods in the interface ProcessHandle.Info return instances
of Optional<T>; always check if the returned value is empty.

Redirecting Output from a Process
By default, a process writes standard output and standard error to pipes. In your
application, you can access these pipes through the input streams returned by the
methods Process.getOutputStream and Process.getErrorStream. However,
before starting the process, you can redirect standard output and standard error to
other destinations, such as a file, with the methods redirectOutput and redirectError.

In the following excerpt, the method redirectToFileTest redirects standard input to a
file, out.tmp, then prints this file:

 public static void redirectToFileTest() throws IOException, InterruptedException {
 File outFile = new File("out.tmp");
 Process p = new ProcessBuilder("ls", "-la")
 .redirectOutput(outFile)
 .redirectError(Redirect.INHERIT)
 .start();
 int status = p.waitFor();
 if (status == 0) {
 p = new ProcessBuilder("cat" , outFile.toString())
 .inheritIO()
 .start();
 p.waitFor();
 }
 }

The excerpt redirects standard output to the file out.tmp. It redirects standard error to
the standard error of the invoking process; the value Redirect.INHERIT specifies
that the subprocess I/O source or destination is the same as that of the current
process. The call to the inheritIO() method is equivalent to
redirectInput(Redirect.INHERIT).redirectOuput(Redirect.INHERIT).
redirectError(Redirect.INHERIT).

Filtering Processes with Streams
The method ProcessHandle.allProcesses returns a stream of all processes
visible to the current process. You can filter the ProcessHandle instances of this
stream the same way that you filter elements from a collection.

In the following excerpt, the method filterProcessesTest prints information about all
the processes owned by the current user, sorted by the process ID of their parent's
process:

public class ProcessTest {

Chapter 4
Redirecting Output from a Process

4-6

 // ...

 static void filterProcessesTest() {
 Optional<String> currUser = ProcessHandle.current().info().user();
 ProcessHandle.allProcesses()
 .filter(p1 -> p1.info().user().equals(currUser))
 .sorted(ProcessTest::parentComparator)
 .forEach(ProcessTest::showProcess);
 }

 static int parentComparator(ProcessHandle p1, ProcessHandle p2) {
 long pid1 = p1.parent().map(ph -> ph.pid()).orElse(-1L);
 long pid2 = p2.parent().map(ph -> ph.pid()).orElse(-1L);
 return Long.compare(pid1, pid2);
 }

 static void showProcess(ProcessHandle ph) {
 ProcessHandle.Info info = ph.info();
 System.out.printf("pid: %d, user: %s, cmd: %s%n",
 ph.pid(), info.user().orElse("none"), info.command().orElse("none"));
 }

 // ...
}

Note that the allProcesses method is limited by native operating system access
controls. Also, because all processes are created and terminated asynchronously,
there is no guarantee that a process in the stream is alive or that no other processes
may have been created since the call to the allProcesses method.

Handling Processes When They Terminate with the onExit
Method

The Process.onExit and ProcessHandle.onExit methods return a
CompletableFuture instance, which you can use to schedule tasks when a process
terminates. Alternatively, if you want your application to wait for a process to terminate,
then you can call onExit().get().

In the following excerpt, the method startProcessesTest creates three processes and
then starts them. Afterward, it calls onExit().thenAccept(onExitMethod) on each of the
processes; onExitMethod prints the process ID (PID), exit status, and output of the
process.

public class ProcessTest {

 // ...

 static public void startProcessesTest() throws IOException, InterruptedException {
 List<ProcessBuilder> greps = new ArrayList<>();
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"java\" *"));
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"Process\" *"));
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"onExit\" *"));
 ProcessTest.startSeveralProcesses (greps, ProcessTest::printGrepResults);
 System.out.println("\nPress enter to continue ...\n");
 System.in.read();
 }

 static void startSeveralProcesses (

Chapter 4
Handling Processes When They Terminate with the onExit Method

4-7

 List<ProcessBuilder> pBList,
 Consumer<Process> onExitMethod)
 throws InterruptedException {
 System.out.println("Number of processes: " + pBList.size());
 pBList.stream().forEach(
 pb -> {
 try {
 Process p = pb.start();
 System.out.printf("Start %d, %s%n",
 p.pid(), p.info().commandLine().orElse("<na>"));
 p.onExit().thenAccept(onExitMethod);
 } catch (IOException e) {
 System.err.println("Exception caught");
 e.printStackTrace();
 }
 }
);
 }

 static void printGrepResults(Process p) {
 System.out.printf("Exit %d, status %d%n%s%n%n",
 p.pid(), p.exitValue(), output(p.getInputStream()));
 }

 private static String output(InputStream inputStream) {
 String s = "";
 try (BufferedReader br = new BufferedReader(new InputStreamReader(inputStream)))
{
 s =
br.lines().collect(Collectors.joining(System.getProperty("line.separator")));
 } catch (IOException e) {
 System.err.println("Caught IOException");
 e.printStackTrace();
 }
 return s;
 }

 // ...
}

The output of the method startProcessesTest is similar to the following. Note that the
processes might exit in a different order than the order in which they were started.

Number of processes: 3
Start 12401, /bin/sh -c grep -c "java" *
Start 12403, /bin/sh -c grep -c "Process" *
Start 12404, /bin/sh -c grep -c "onExit" *

Press enter to continue ...

Exit 12401, status 0
ProcessTest.class:0
ProcessTest.java:16

Exit 12404, status 0
ProcessTest.class:0
ProcessTest.java:8

Exit 12403, status 0
ProcessTest.class:0
ProcessTest.java:38

Chapter 4
Handling Processes When They Terminate with the onExit Method

4-8

This method calls the System.in.read() method to prevent the program from
terminating before all the processes have exited (and have run the method specified
by the thenAccept method).

If you want to wait for a process to terminate before proceeding with the rest of the
program, then call onExit().get():

 static void startSeveralProcesses (
 List<ProcessBuilder> pBList, Consumer<Process> onExitMethod)
 throws InterruptedException {
 System.out.println("Number of processes: " + pBList.size());
 pBList.stream().forEach(
 pb -> {
 try {
 Process p = pb.start();
 System.out.printf("Start %d, %s%n",
 p.pid(), p.info().commandLine().orElse("<na>"));
 p.onExit().get();
 printGrepResults(p);
 } catch (IOException|InterruptedException|ExecutionException e) {
 System.err.println("Exception caught");
 e.printStackTrace();
 }
 }
);
 }

The ComputableFuture class contains a variety of methods that you can call to schedule
tasks when a process exits including the following:

• thenApply: Similar to thenAccept, except that it takes a lambda expression of
type Function (a lambda expression that returns a value).

• thenRun: Takes a lambda expression of type Runnable (no formal parameters
or return value).

• thenApplyAsyc: Runs the specified Function with a thread from
ForkJoinPool.commonPool().

Because ComputableFuture implements the Future interface, this class also contains
synchronous methods:

• get(long timeout, TimeUnit unit): Waits, if necessary, at most the time
specified by its arguments for the process to complete.

• isDone: Returns true if the process is completed.

Controlling Access to Sensitive Process Information
Process information may contain sensitive information such as user IDs, paths, and
arguments to commands. Control access to process information with a security
manager.

When running as a normal application, a ProcessHandle has the same operating system
privileges to information about other processes as a native application; however,
information about system processes may not be available.

If your application uses the SecurityManager class to implement a security policy,
then to enable it to access process information, the security policy must grant
RuntimePermission("manageProcess"). This permission enables native

Chapter 4
Controlling Access to Sensitive Process Information

4-9

process termination and access to the process ProcessHandle information. Note
that this permission enables code to identify and terminate processes that it did not
create.

Chapter 4
Controlling Access to Sensitive Process Information

4-10

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Enhanced Deprecation
	Deprecation in the JDK
	How to Deprecate APIs
	Notifications and Warnings
	Running jdeprscan

	2 XML Catalog API
	Purpose of XML Catalog API
	XML Catalog API Interfaces
	Using the XML Catalog API
	System Reference
	Public Reference
	URI Reference

	Java XML Processors Support
	Enable Catalog Support
	Use Catalog with XML Processors

	Calling Order for Resolvers
	Detecting Errors

	3 Creating Immutable Lists, Sets, and Maps
	Use Cases
	Syntax
	Immutable List Static Factory Methods
	Immutable Set Static Factory Methods
	Immutable Map Static Factory Methods

	Randomized Iteration Order
	About Immutability
	Space Efficiency

	4 Process API
	Process API Classes and Interfaces
	ProcessBuilder Class
	Process Class
	ProcessHandle Interface
	ProcessHandle.Info Interface

	Creating a Process
	Getting Information About a Process
	Redirecting Output from a Process
	Filtering Processes with Streams
	Handling Processes When They Terminate with the onExit Method
	Controlling Access to Sensitive Process Information

