
Java Platform, Standard Edition
Java Language Updates

Release 14
F23118-01
March 2020

Java Platform, Standard Edition Java Language Updates, Release 14

F23118-01

Copyright © 2017, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Documents v

Conventions v

1 Java Language Changes

Java Language Changes for Java SE 14 1-1

Java Language Changes for Java SE 13 1-1

Java Language Changes for Java SE 12 1-1

Java Language Changes for Java SE 11 1-1

Java Language Changes for Java SE 10 1-1

Java Language Changes for Java SE 9 1-2

2 Preview Features

3 Pattern Matching for the instanceof Operator

4 Records

5 Switch Expressions

6 Text Blocks

7 Local Variable Type Inference

iii

8 More Concise try-with-resources Statements

9 Small Language Changes in Java SE 9

iv

Preface

This guide describes the updated language features in Java SE 9 and subsequent
releases.

Audience
This document is for Java developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See JDK 14 Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase14&id=homepage

1
Java Language Changes

This section summarizes the updated language features in Java SE 9 and subsequent
releases.

Java Language Changes for Java SE 14
Java SE 14 introduces pattern matching for the instanceof operator; if the result of
the instanceof operator is true, then the object being tested is automatically
assigned to a variable that you previously declared. See Pattern Matching for the
instanceof Operator. This release also introduces records, which are a new kind of
type declaration that's ideal for "plain data carriers," classes that contain data not
meant to be altered and only the most fundamental methods such as constructors and
accessors. See Records.

Text blocks accept two more escape sequences (see Programmer's Guide to Text
Blocks), and Switch Expressions is now a permanent language feature.

Java Language Changes for Java SE 13
Java SE 13 introduces text blocks, which are multiline string literals that don't require
common escape sequences; see Programmer's Guide to Text Blocks. It also
introduces one change to switch expressions: To specify their value, use the new
yield statement instead of the break statement; see Switch Expressions in Java
Platform, Standard Edition Java Language Updates, Release 13.

Java Language Changes for Java SE 12
Java SE 12 introduces switch expressions, plus a new kind of case label that prevents
fall through. This is available as a preview feature. See Switch Expressions in Java
Platform, Standard Edition Java Language Updates, Release 12.

Java Language Changes for Java SE 11
Java SE 11 lets you declare formal parameters of implicitly typed lambda expressions
with the var identifier; see Local Variable Type Inference.

Java Language Changes for Java SE 10
Java SE 10 introduces support for inferring the type of local variables from the context,
which makes code more readable and reduces the amount of required boilerplate
code.

1-1

http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=JSLAN-GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC#GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
http://www.oracle.com/pls/topic/lookup?ctx=javase12&id=JSLAN-GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC

Java Language Changes for Java SE 9
The major change to Java Platform, Standard Edition (Java SE) 9 is the introduction of
the Java Platform module system.

The Java Platform module system introduces a new kind of Java programing
component, the module, which is a named, self-describing collection of code and data.
Its code is organized as a set of packages containing types, i.e., Java classes and
interfaces; its data includes resources and other kinds of static information. Modules
can either export or encapsulate packages, and they express dependencies on other
modules explicitly.

To learn more about the Java Platform module system, see Project Jigsaw on
OpenJDK.

Apart from the new module system, a few changes have been made to the Java
language; see More Concise try-with-resources Statements and Small Language
Changes in Java SE 9.

Chapter 1
Java Language Changes for Java SE 9

1-2

http://openjdk.java.net/projects/jigsaw/

2
Preview Features

A preview feature is a new feature whose design, specification, and implementation
are complete, but which is not permanent, which means that the feature may exist in a
different form or not at all in future JDK releases.

Introducing a feature as a preview feature in a mainline JDK release enables the
largest developer audience possible to try the feature out in the real world and provide
feedback. In addition, tool vendors are encouraged to build support for the feature
before Java developers use it in production. Developer feedback helps determine
whether the feature has any design mistakes, which includes hard technical errors
(such as a flaw in the type system), soft usability problems (such as a surprising
interaction with an older feature), or poor architectural choices (such as one that
forecloses on directions for future features). Through this feedback, the feature's
strengths and weaknesses are evaluated to determine if the feature has a long-term
role in the Java SE Platform, and if so, whether it needs refinement. Consequently, the
feature may be granted final and permanent status (with or without refinements), or
undergo a further preview period (with or without refinements), or else be removed.

Every preview feature is described by a JDK Enhancement Proposal (JEP) that
defines its scope and sketches its design. For example, JEP 325 describes the JDK 12
preview feature for switch expressions. For background information about the role and
lifecycle of preview features, see JEP 12.

Using Preview Features

To use preview language features in your programs, you must explicitly enable them in
the compiler and the runtime system. If not, you'll receive an error message that states
that your code is using a preview feature and preview features are disabled by default.

To compile source code with javac that uses preview features from JDK release n,
use javac from JDK release n with the --enable-preview command-line option in
conjunction with either the --release n or -source n command-line option.

For example, suppose you have an application named MyApp.java that uses the JDK
12 preview language feature switch expressions. Compile this with JDK 12 as follows:

javac --enable-preview --release 12 MyApp.java

2-1

https://openjdk.java.net/jeps/325
https://openjdk.java.net/jeps/12

Note:

When you compile an application that uses preview features, you'll receive a
warning message similar to the following:

Note: MyApp.java uses preview language features.
Note: Recompile with -Xlint:preview for details

Remember that preview features are subject to change and are intended to
provoke feedback.

To run an application that uses preview features from JDK release n, use java from
JDK release n with the --enable-preview option. To continue the previous example,
to run MyApp, run java from JDK 12 as follows:

java --enable-preview MyApp

Note:

Code that uses preview features from an older release of the Java SE
Platform will not necessarily compile or run on a newer release.

The tools jshell and javadoc also support the --enable-preview command-line
option.

Sending Feedback

You can provide feedback on preview features, or anything else about the Java SE
Platform, as follows:

• If you find any bugs, then submit them at Java Bug Database.

• If you want to provide substantive feedback on the usability of a preview feature,
then post it on the OpenJDK mailing list where the feature is being discussed. To
find the mailing list of a particular feature, see the feature's JEP page and look for
the label Discussion. For example, on the page JEP 325: Switch Expressions
(Preview), you'll find "Discussion amber dash dev at openjdk dot java dot net" near
the top of the page.

• If you are working on an open source project, then see Quality Outreach on the
OpenJDK Wiki.

Chapter 2

2-2

https://bugs.java.com/bugdatabase/
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/325
https://wiki.openjdk.java.net/display/quality/Quality+Outreach

3
Pattern Matching for the instanceof
Operator

Pattern matching involves testing whether an object has a particular structure, then
extracting data from that object if there's a match. You can already do this with Java;
however, pattern matching introduces new language enhancements that enable you to
conditionally extract data from objects with code that's more concise and robust.

More specifically, JDK 14 extends the instanceof operator: you can specify a binding
variable; if the result of the instanceof operator is true, then the object being tested is
assigned to the binding variable.

Note:

This is a preview feature, which is a feature whose design, specification, and
implementation are complete, but is not permanent, which means that the
feature may exist in a different form or not at all in future JDK releases. To
compile and run code that contains preview features, you must specify
additional command-line options. See Preview Features.

For background information about pattern matching for the instaceof
operator, see JEP 305.

Consider the following code the calculates the perimeter of certain shapes:

public interface Shape { }

final class Rectangle implements Shape {
 final double length;
 final double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

 double length() { return length; }
 double width() { return width; }
}

public class Circle implements Shape {
 final double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

3-1

https://openjdk.java.net/jeps/305

 double radius() { return radius; }
}

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle) {
 Rectangle s = (Rectangle) shape;
 return 2 * s.length() + 2 * s.width();
 } else if (shape instanceof Circle) {
 Circle s = (Circle) shape;
 return 2 * s.radius() * Math.PI;
 } else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
 }

The method getPerimeter performs the following:

1. A test to determine the type of the Shape object

2. A conversion, casting the Shape object to Rectangle or Circle, depending on the
result of the instanceof operator

3. A destructuring, extracting either the length and width or the radius from the Shape
object

Pattern matching enables you to remove the conversion step by changing the second
operand of the instanceof operator with a type test pattern, making your code shorter
and easier to read:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle s) {
 return 2 * s.length() + 2 * s.width();
 } else if (shape instanceof Circle s) {
 return 2 * s.radius() * Math.PI;
 } else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
 }

Note:

Removing this conversion step also makes your code safer. Testing an
object's type with the instanceof, then assigning that object to a new
variable with a cast can introduce coding errors in your application. You
might change the type of one of the objects (either the tested object or the
new variable) and accidentally forget to change the type of the other object.

A pattern is a combination of a predicate that can be applied to a target and a set of
binding variables that are extracted from the target only if the predicate successfully
matches it. The predicate is a Boolean-valued function of one argument; in this case,

Chapter 3

3-2

it’s the instanceof operator testing whether the Shape argument is a Rectangle or a
Circle. The target is the argument of the predicate, which is the Shape argument. The
binding variables are those that store data from the target only if the predicate returns
true, which is the variable s.

A type test pattern consists of a predicate that specifies a type, along with a single
binding variable. In this example, the type test pattens are Rectangle s and Circle s.

Scope of Binding Variables

The scope of a binding variable are the places where the program can reach only if the
instanceof operator is true:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle s) {
 // You can use the binding variable s (of type Rectangle) here.
 } else if (shape instanceof Circle s) {
 // You can use the binding variable s of type Circle here
 // but not the binding variable s of type Rectangle.
 } else {
 // You cannot use either binding variable here.
 }
 }

The scope of a binding variable can extend beyond the statement that introduced it:

 public static boolean bigEnoughRect(Shape s) {
 if (!(s instanceof Rectangle r)) {
 // You cannot use the binding variable r here.
 return false;
 }
 // You can use r here.
 return r.length() > 5;
 }

You can use a binding variable in the expression of an if statement:

 if (shape instanceof Rectangle s && s.length() > 5) {
 // ...
 }

Because the conditional-AND operator (&&) is short-circuiting, the program can reach
the s.length() > 5 expression only if the instanceof operator is true.

Conversely, you can't pattern match with the instanceof operator in this situation:

 if (shape instanceof Rectangle s || s.length() > 0) { // error
 // ...
 }

The program can reach the s.length() || 5 if the instanceof is false; thus, you
cannot use the binding variable s here.

Chapter 3

3-3

4
Records

JDK 14 introduces records, which are a new kind of type declaration. Like an enum, a
record is a restricted form of a class. It’s ideal for "plain data carriers," classes that
contain data not meant to be altered and only the most fundamental methods such as
constructors and accessors.

Note:

This is a preview feature, which is a feature whose design, specification, and
implementation are complete, but is not permanent, which means that the
feature may exist in a different form or not at all in future JDK releases. To
compile and run code that contains preview features, you must specify
additional command-line options. See Preview Features.

For background information about records, see JEP 359.

Consider the following class definition:

final class Rectangle implements Shape {
 final double length;
 final double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

 double length() { return length; }
 double width() { return width; }
}

It has the following characteristics:

• All of its members are declared final

• Its only methods consist of a constructor, Rectangle(double length, double
width) and two accessors, length() and width()

You can represent this class with a record:

record Rectangle(float length, float width) { }

A record consists of a name (in this example, it's Rectangle) and a list of the record's
components (which in this example are float length and float width).

A record acquires these members automatically:

4-1

https://openjdk.java.net/jeps/359

• A private final field for each of its components

• A public read accessor method for each component with the same name and type
of the component; in this example, these methods are Rectangle::length() and
Rectangle::width()

• A public constructor whose signature is derived from the record components list.
The constructor initializes each private field from the corresponding argument.

• Implementations of the equals() and hashCode() methods, which specify that two
records are equal if they are of the same type and their corresponding record
components are equal

• An implementation of the toString() method that includes the string
representation of all the record's components, with their names

Compact Constructors

If you want your record's constructor to do more than initialize its private fields, you
can define a custom constructor for the record. However, unlike a class constructor, a
record constructor doesn't have a formal parameter list; this is called a compact
constructor.

For example, the following record, HelloWorld, has one field, message. Its custom
constructor calls Objects.requireNonNull(message), which specifies that if the
message field is initialized with a null value, then a NullPointerException is
thrown. (Custom record constructors still initialize their record's private fields.)

record HelloWorld(String message) {
 public HelloWorld {
 java.util.Objects.requireNonNull(message);
 }
}

Restrictions on Records

The following are restrictions on the use of records:

• Records cannot extend any class

• Records cannot declare instance fields (other than the private final fields that
correspond to the components of the record component list); any other declared
fields must be static

• Records cannot be abstract; they are implicitly final

• The components of a record are implicitly final

Beyond these restrictions, records behave like regular classes:

• You can declare them inside a class; nested records are implicitly static

• You can create generic records

• Records can implement interfaces

• You instantiate records with the new keyword

• You can declare in a record's body static methods, static fields, static initializers,
constructors, instance methods, and nested types

• You can annotate records and a record's individual components

Chapter 4

4-2

APIs Related to Records

The class java.lang.Class has two new methods related to records:

• RecordComponent[] getRecordComponents(): Returns an array of
java.lang.reflect.RecordComponent objects, which correspond to the
record's components.

• boolean isRecord(): Similar to isEnum() except that it returns true if the
class was declared as a record.

Chapter 4

4-3

5
Switch Expressions

Like all expressions, switch expressions evaluate to a single value and can be used in
statements. They may contain "case L ->" labels that eliminate the need for break
statements to prevent fall through. You can use a yield statement to specify the value
of a switch expression.

For background information about the design of switch expressions, see JEP 361.

"case L ->" Labels

Consider the following switch statement that prints the number of letters of a day of
the week:

public enum Day { SUNDAY, MONDAY, TUESDAY,
 WEDNESDAY, THURSDAY, FRIDAY, SATURDAY; }

// ...

 int numLetters = 0;
 Day day = Day.WEDNESDAY;
 switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 numLetters = 6;
 break;
 case TUESDAY:
 numLetters = 7;
 break;
 case THURSDAY:
 case SATURDAY:
 numLetters = 8;
 break;
 case WEDNESDAY:
 numLetters = 9;
 break;
 default:
 throw new IllegalStateException("Invalid day: " + day);
 }
 System.out.println(numLetters);

It would be better if you could "return" the length of the day's name instead of storing it
in the variable numLetters; you can do this with a switch expression. Furthermore, it
would be better if you didn't need break statements to prevent fall through; they are
laborious to write and easy to forget. You can do this with a new kind of case label.

5-1

https://openjdk.java.net/jeps/361

The following is a switch expression that uses the new kind of case label to print the
number of letters of a day of the week:

 Day day = Day.WEDNESDAY;
 System.out.println(
 switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> 6;
 case TUESDAY -> 7;
 case THURSDAY, SATURDAY -> 8;
 case WEDNESDAY -> 9;
 default -> throw new IllegalStateException("Invalid day: " +
day);
 }
);

The new kind of case label has the following form:

case label_1, label_2, ..., label_n -> expression;|throw-statement;|block

When the Java runtime matches any of the labels to the left of the arrow, it runs the
code to the right of the arrow and does not fall through; it does not run any other code
in the switch expression (or statement). If the code to the right of the arrow is an
expression, then the value of that expression is the value of the switch expression.

You can use the new kind of case label in switch statements. The following is like the
first example, except it uses "case L ->" labels instead of "case L:" labels:

 int numLetters = 0;
 Day day = Day.WEDNESDAY;
 switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> numLetters = 6;
 case TUESDAY -> numLetters = 7;
 case THURSDAY, SATURDAY -> numLetters = 8;
 case WEDNESDAY -> numLetters = 9;
 default -> throw new IllegalStateException("Invalid day: " + day);
 };
 System.out.println(numLetters);

A "case L ->" label along with its code to its right is called a switch labeled rule.

"case L:" Statements and the yield Statement

You can use "case L:" labels in switch expressions; a "case L:" label along with its
code to the right is called a switch labeled statement group:

 Day day = Day.WEDNESDAY;
 int numLetters = switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 System.out.println(6);
 yield 6;
 case TUESDAY:

Chapter 5

5-2

 System.out.println(7);
 yield 7;
 case THURSDAY:
 case SATURDAY:
 System.out.println(8);
 yield 8;
 case WEDNESDAY:
 System.out.println(9);
 yield 9;
 default:
 throw new IllegalStateException("Invalid day: " + day);
 };
 System.out.println(numLetters);

The previous example uses yield statements. They take one argument, which is the
value that the case label produces in a switch expression.

The yield statement makes it easier for you to differentiate between switch
statements and switch expressions. A switch statement, but not a switch expression,
can be the target of a break statement. Conversely, a switch expression, but not a
switch statement, can be the target of a yield statement.

Chapter 5

5-3

Note:

It's recommended that you use "case L ->" labels. It's easy to forget to insert
break or yield statements when using "case L:" labels; if you do, you might
introduce unintentional fall through in your code.

For "case L ->" labels, to specify multiple statements or code that are not
expressions or throw statements, enclose them in a block. Specify the value
that the case label produces with the yield statement:

 int numLetters = switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> {
 System.out.println(6);
 yield 6;
 }
 case TUESDAY -> {
 System.out.println(7);
 yield 7;
 }
 case THURSDAY, SATURDAY -> {
 System.out.println(8);
 yield 8;
 }
 case WEDNESDAY -> {
 System.out.println(9);
 yield 9;
 }
 default -> {
 throw new IllegalStateException("Invalid day: " + day);
 }
 };

Exhaustiveness

Unlike switch statements, the cases of switch expressions must be exhaustive, which
means that for all possible values, there must be a matching switch label. Thus,
switch expressions normally require a default clause. However, for enum switch
expressions that cover all known constants, the compiler inserts an implicit default
clause.

In addition, a switch expression must either complete normally with a value or
complete abruptly by throwing an exception. For example, the following code doesn't
compile because the switch labeled rule doesn't contain a yield statement:

int i = switch (day) {
 case MONDAY -> {
 System.out.println("Monday");
 // ERROR! Block doesn't contain a yield statement
 }
 default -> 1;
};

Chapter 5

5-4

The following example doesn't compile because the switch labeled statement group
doesn't contain a yield statement:

i = switch (day) {
 case MONDAY, TUESDAY, WEDNESDAY:
 yield 0;
 default:
 System.out.println("Second half of the week");
 // ERROR! Group doesn't contain a yield statement
};

Because a switch expression must evaluate to a single value (or throw an exception),
you can't jump through a switch expression with a break, yield, return, or continue
statement, like in the following example:

z:
 for (int i = 0; i < MAX_VALUE; ++i) {
 int k = switch (e) {
 case 0:
 yield 1;
 case 1:
 yield 2;
 default:
 continue z;
 // ERROR! Illegal jump through a switch expression
 };
 // ...
 }

Chapter 5

5-5

6
Text Blocks

See Programmer's Guide to Text Blocks for more information about this language
feature.

Note:

This is a preview feature, which is a feature whose design, specification, and
implementation are complete, but is not permanent, which means that the
feature may exist in a different form or not at all in future JDK releases. To
compile and run code that contains preview features, you must specify
additional command-line options. See Preview Features.

For background information about text blocks, see JEP 368.

6-1

http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=text_blocks
https://openjdk.java.net/jeps/368

7
Local Variable Type Inference

In JDK 10 and later, you can declare local variables with non-null initializers with the
var identifier, which can help you write code that’s easier to read.

Consider the following example, which seems redundant and is hard to read:

URL url = new URL("http://www.oracle.com/");
URLConnection conn = url.openConnection();
Reader reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

You can rewrite this example by declaring the local variables with the var identifier.
The type of the variables are inferred from the context:

var url = new URL("http://www.oracle.com/");
var conn = url.openConnection();
var reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

var is a reserved type name, not a keyword, which means that existing code that uses
var as a variable, method, or package name is not affected. However, code that uses
var as a class or interface name is affected and the class or interface needs to be
renamed.

var can be used for the following types of variables:

• Local variable declarations with initializers:

var list = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream(); // infers Stream<String>
var path = Paths.get(fileName); // infers Path
var bytes = Files.readAllBytes(path); // infers bytes[]

• Enhanced for-loop indexes:

List<String> myList = Arrays.asList("a", "b", "c");
for (var element : myList) {...} // infers String

• Index variables declared in traditional for loops:

for (var counter = 0; counter < 10; counter++) {...} // infers int

• try-with-resources variable:

try (var input =
 new FileInputStream("validation.txt")) {...} // infers
FileInputStream

7-1

• Formal parameter declarations of implicitly typed lambda expressions: A lambda
expression whose formal parameters have inferred types is implicitly typed:

BiFunction<Integer, Integer, Integer> = (a, b) -> a + b;

In JDK 11 and later, you can declare each formal parameter of an implicitly typed
lambda expression with the var identifier:

(var a, var b) -> a + b;

As a result, the syntax of a formal parameter declaration in an implicitly typed
lambda expression is consistent with the syntax of a local variable declaration;
applying the var identifier to each formal parameter in an implicitly typed lambda
expression has the same effect as not using var at all.

You cannot mix inferred formal parameters and var-declared formal parameters in
implicitly typed lambda expressions nor can you mix var-declared formal
parameters and manifest types in explicitly typed lambda expressions. The
following examples are not permitted:

(var x, y) -> x.process(y) // Cannot mix var and inferred formal
parameters
 // in implicitly typed lambda
expressions
(var x, int y) -> x.process(y) // Cannot mix var and manifest types
 // in explicitly typed lambda
expressions

Local Variable Type Inference Style Guidelines

Local variable declarations can make code more readable by eliminating redundant
information. However, it can also make code less readable by omitting useful
information. Consequently, use this feature with judgment; no strict rule exists about
when it should and shouldn't be used.

Local variable declarations don't exist in isolation; the surrounding code can affect or
even overwhelm the effects of var declarations. Style Guidelines for Local Variable
Type Inference in Java examines the impact that surrounding code has on var
declarations, explains tradeoffs between explicit and implicit type declarations, and
provides guidelines for the effective use of var declarations.

Chapter 7

7-2

http://openjdk.java.net/projects/amber/LVTIstyle.html
http://openjdk.java.net/projects/amber/LVTIstyle.html

8
More Concise try-with-resources
Statements

If you already have a resource as a final or effectively final variable, you can use
that variable in a try-with-resources statement without declaring a new variable. An
"effectively final" variable is one whose value is never changed after it is initialized.

For example, you declared these two resources:

 // A final resource
 final Resource resource1 = new Resource("resource1");
 // An effectively final resource
 Resource resource2 = new Resource("resource2");

In Java SE 7 or 8, you would declare new variables, like this:

 try (Resource r1 = resource1;
 Resource r2 = resource2) {
 ...
 }

In Java SE 9, you don’t need to declare r1 and r2:

// New and improved try-with-resources statement in Java SE 9
 try (resource1;
 resource2) {
 ...
 }

There is a more complete description of the try-with-resources statement in The Java
Tutorials (Java SE 8 and earlier).

8-1

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

9
Small Language Changes in Java SE 9

There are several small language changes in Java SE 9.

@SafeVarargs annotation is allowed on private instance methods.

The @SafeVarargs annotation can be applied only to methods that cannot be
overridden. These include static methods, final instance methods, and, new in Java
SE 9, private instance methods.

You can use diamond syntax in conjunction with anonymous inner classes.

Types that can be written in a Java program, such as int or String, are called
denotable types. The compiler-internal types that cannot be written in a Java program
are called non-denotable types.

Non-denotable types can occur as the result of the inference used by the diamond
operator. Because the inferred type using diamond with an anonymous class
constructor could be outside of the set of types supported by the signature attribute in
class files, using the diamond with anonymous classes was not allowed in Java SE 7.

In Java SE 9, as long as the inferred type is denotable, you can use the diamond
operator when you create an anonymous inner class.

The underscore character is not a legal name.

If you use the underscore character ("_") an identifier, your source code can no longer
be compiled.

Private interface methods are supported.

Private interface methods are supported. This support allows nonabstract methods of
an interface to share code between them.

9-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Java Language Changes
	Java Language Changes for Java SE 14
	Java Language Changes for Java SE 13
	Java Language Changes for Java SE 12
	Java Language Changes for Java SE 11
	Java Language Changes for Java SE 10
	Java Language Changes for Java SE 9

	2 Preview Features
	3 Pattern Matching for the instanceof Operator
	4 Records
	5 Switch Expressions
	6 Text Blocks
	7 Local Variable Type Inference
	8 More Concise try-with-resources Statements
	9 Small Language Changes in Java SE 9

