
Oracle® Database
Introduction to Simple Oracle Document
Access (SODA)

E96228-06
December 2021

Oracle Database Introduction to Simple Oracle Document Access (SODA),

E96228-06

Copyright © 2018, 2021, Oracle and/or its affiliates.

Primary Author: Drew Adams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

Related Documents ix

Conventions ix

1 Overview of SODA

1.1 Overview of SODA Documents 1-4

1.2 Overview of SODA Document Collections 1-5

1.3 Default Naming of a Collection Table 1-10

1.4 A View of Your SODA Collections 1-11

1.5 Monitoring SODA Operation Performance 1-11

2 Overview of SODA Filter Specifications (QBEs)

2.1 Sample JSON Documents 2-4

2.2 Overview of Paths in SODA QBEs 2-5

2.3 Overview of QBE Comparison Operators 2-7

2.4 Overview of QBE Operator $not 2-9

2.5 Overview of QBE Item-Method Operators 2-9

2.6 Overview of QBE Logical Combining Operators 2-11

2.7 Overview of Nested Conditions in QBEs 2-13

2.8 Overview of QBE Operator $id 2-14

2.9 Overview of QBE Operator $orderby 2-15

2.10 Overview of QBE Spatial Operators 2-16

2.11 Overview of QBE Operator $contains 2-18

2.12 Overview of QBE Operator $textContains 2-19

3 Overview of SODA Indexing

iii

4 SODA Paths (Reference)

5 SODA Filter Specifications (Reference)

5.1 Composite Filters (Reference) 5-2

5.1.1 Orderby Clause Sorts Selected Objects 5-3

5.2 Filter Conditions (Reference) 5-7

5.2.1 Scalar-Equality Clause (Reference) 5-8

5.2.2 Field-Condition Clause (Reference) 5-8

5.2.2.1 Comparison Clause (Reference) 5-9

5.2.2.2 Not Clause (Reference) 5-13

5.2.2.3 Item-Method Clause (Reference) 5-14

5.2.2.4 ISO 8601 Date, Time, and Duration Support 5-20

5.2.3 Logical Combining Clause (Reference) 5-22

5.2.3.1 Omitting $and 5-22

5.2.4 Nested-Condition Clause (Reference) 5-24

5.2.5 ID Clause (Reference) 5-25

5.2.6 Text-Contains Clause (Reference) 5-26

5.2.7 Special-Criterion Clause (Reference) 5-28

5.2.7.1 Spatial Clause (Reference) 5-28

5.2.7.2 Contains Clause (Reference) 5-30

6 SODA Index Specifications (Reference)

7 SODA Collection Metadata Components (Reference)

7.1 Default Collection Metadata 7-3

7.2 Schema 7-5

7.3 Table or View 7-5

7.4 Key Column Name 7-6

7.5 Key Column Type 7-6

7.6 Key Column Max Length 7-7

7.7 Key Column Assignment Method 7-7

7.8 Key Column Path 7-8

7.9 Key Column Sequence Name 7-9

7.10 Content Column Name 7-10

7.11 Content Column Type 7-10

7.12 Content Column Format 7-11

7.13 Content Column Max Length 7-12

7.14 Content Column JSON Validation 7-12

iv

7.15 Content Column SecureFiles LOB Compression 7-13

7.16 Content Column SecureFiles LOB Cache 7-14

7.17 Content Column SecureFiles LOB Encryption 7-15

7.18 Version Column Name 7-15

7.19 Version Column Generation Method 7-16

7.20 Last-Modified Time Stamp Column Name 7-17

7.21 Last-Modified Column Index Name 7-17

7.22 Creation Time Stamp Column Name 7-18

7.23 Media Type Column Name 7-18

7.24 Read Only 7-19

8 SODA Drivers

9 SODA Feature Support

10

SODA Guidelines and Restrictions

10.1 SODA Guidelines 10-1

10.2 SODA Restrictions (Reference) 10-2

Index

v

List of Examples

1-1 Default Collection Metadata 1-8

1-2 Selecting Collection Data From USER_SODA_COLLECTIONS 1-11

2-1 Sample JSON Document 1 2-5

2-2 Sample JSON Document 2 2-5

2-3 Sample JSON Document 3 2-5

2-4 Using $id To Find Documents That Have Given Keys 2-14

3-1 Specifying a B-Tree Index 3-2

3-2 Specifying a Spatial Index 3-2

3-3 Specifying a JSON Search Index 3-4

5-1 Filter Specification with Explicit $and Operator 5-23

5-2 Filter Specification with Implicit $and Operator 5-23

5-3 Use of Operator $id in the Outermost QBE Condition 5-26

5-4 QBE With a Spatial Clause 5-29

8-1 Workaround To Use BLOB Content With Oracle Database 21c Or Later 8-2

vi

List of Tables

5-1 Query-By-Example (QBE) Comparison Operators 5-10

5-2 Item-Method Operators 5-16

7-1 Key Assignment Methods 7-7

7-2 Version Generation Methods 7-16

8-1 SODA Driver Minimum Required Versions 8-1

9-1 Minimal Client and Server Versions for SODA Features 9-1

vii

Preface

This document provides a conceptual overview of Simple Oracle Document Access
(SODA).

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This document is intended for users of Simple Oracle Document Access (SODA).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more information, see these Oracle resources:

• Simple Oracle Document Access (SODA) at Oracle Help Center for complete information
about SODA and each of its implementations

• Oracle Database JSON Developer’s Guide

• Oracle as a Document Store for general information about using JSON data in Oracle
Database, including with SODA

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN). You must register online before using
OTN; registration is free and can be done at OTN Registration.

If you already have a user name and password for OTN then you can go directly to the
documentation section of the OTN Web site at OTN Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html

1
Overview of SODA

Simple Oracle Document Access (SODA) is a set of NoSQL-style APIs that let you create
and store collections of documents (in particular JSON) in Oracle Database, retrieve them,
and query them, without needing to know Structured Query Language (SQL) or how the
documents are stored in the database.

There are separate SODA implementations for use with different languages and with the
representational state transfer (REST) architectural style. SODA for REST can itself be
accessed from almost any programming language. It maps SODA operations to Uniform
Resource Locator (URL) patterns.

Note:

This book describes the features that are present in different SODA
implementations. Some features described here may not be available for some
implementations. In addition, different implementations can have different ways of
providing some of the features. Please refer to the documentation for a particular
implementation for detailed information about it.

SODA APIs are document-centric. You can use any SODA implementation to perform create,
read, update, and delete (CRUD) operations on documents of nearly any kind (including
video, image, sound, and other binary content). You can also use any SODA implementation
to query the content of JavaScript Object Notation (JSON) documents using pattern-
matching: query-by-example (QBE). CRUD operations can be driven by document keys or by
QBEs.

Oracle Database supports storing and querying JSON data natively. SODA document
collections are backed by ordinary database tables and views. Because of this, you can take
advantage of database features for use with the content of SODA documents. SODA CRUD
and query operations are automatically mapped to SQL operations on the underlying
database tables or views, and these operations are optimized.

You do not need knowledge of SQL, or database administrator (DBA) assistance, to develop
or deploy a SODA application. However, database role SODA_APP must be granted to the
database schema (user account) that you use to store collections.

The SQL standard defines a set of SQL/JSON operators that allow direct querying of JSON
data. Database views based on these operators provide schema-on-read behavior that is
immune to changes in the structure of your documents. If needed, developers with SQL
knowledge can use SQL/JSON to perform advanced operations on your SODA data that
make full use of the database. For example, a SQL developer can apply database analytics
and reporting to your JSON data, and can include it in aggregation and join operations that
involve other data. In addition, your SODA applications can use database transactions.

These SODA abstractions hide the complexities of SQL and client programming:

• Collection

1-1

• Document

A document collection contains documents. Collections are persisted in an Oracle
Database schema (also known as a database user). In some SODA implementations
a database schema is referred to as a SODA database.

A SODA collection is analogous to an Oracle Database table or view.

SODA is designed primarily for working with JSON documents, but a document can be
of any Multipurpose Internet Mail Extensions (MIME) type.

In addition to its content, a document has other document components, including a
unique identifier, called its key, a version, a media type (type of content), and the date
and time that it was created and last modified. The key is typically assigned by SODA
when a document is created, but client-assigned keys can also be used. Besides the
content and key (if client-assigned), you can set the media type of a document. The
other components are generated and maintained by SODA. All components other than
content and key are optional.

A SODA document is analogous to, and is in fact backed by, a row of a database table
or view. The row has one column for each document component: key, content, version,
and so on.

In addition to the documents it contains, a collection also has associated collection
metadata. This specifies various details about the collection, such as its storage,
whether it should track version and time-stamp document components, how such
components are generated, and whether the collection can contain only JSON
documents.

In some contexts collection metadata is represented as a JSON document. This
metadata document is sometimes called a collection specification. You can supply a
custom collection specification when you create a collection, to provide metadata that
differs from that provided by default.

SODA provides CRUD operations on documents. JSON documents can additionally
be queried, using query-by-example (QBE) patterns, also known as filter
specifications. A filter specification is itself a JSON object.

SODA APIs provide operations for collection management (create, drop, list) and
document management (CRUD).

These are some of the actions you can perform using SODA:

• Create collections

• Open existing collections

• Drop collections

• List all existing collections

• Create documents

• Insert documents into a collection

• Save documents into a collection (insert new or update existing)

• Truncate a collection (empty it, deleting all of its documents)

• Find a document in a collection, by key or by key and version

• Find all documents in a collection

• Find documents in a collection, by keys or by QBE

Chapter 1

1-2

• Find documents in a collection whose content matches a text search

• Replace (update) a document in a collection, by key or by key and version (optimistic
locking)

• Remove a document from a collection, by key or by key and version (optimistic locking)

• Remove documents from a collection, by keys or by QBE

• Index the documents in a collection (to improve query performance)

• Create a JSON data guide for a collection, which summarizes document structural and
type information

• Create a relational view from a JSON data guide

Your applications use a database transaction when performing one or more such actions.1

• Overview of SODA Documents
SODA is designed primarily to manipulate JavaScript Object Notation (JSON)
documents, that is, documents whose content is JSON data, but other kinds of
documents can also be used. A document has other components, besides its content.

• Overview of SODA Document Collections
A SODA collection is a set of documents that is backed by an Oracle Database table or
view.

• Default Naming of a Collection Table
By default, the name of the database table that underlies a document collection is derived
from the collection name.

• A View of Your SODA Collections
Oracle Database static data dictionary view USER_SODA_COLLECTIONS lists the basic
features of all of your SODA collections, that is, all SODA collections created by the
database user (database schema) that you are currently connected to the database as.

• Monitoring SODA Operation Performance
You can turn on performance monitoring of the SQL operations that underlie a SODA
read or write operation, by adding a SQL hint to the SODA operation.

See Also:

• Simple Oracle Document Access (SODA) at Oracle Help Center for complete
information about SODA and each of its implementations

• Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data.

• Introducing JSON for information about JSON.

• Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with SODA

1 SODA for REST is an exception in this regard; you cannot use database transactions for its actions.

Chapter 1

1-3

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html

1.1 Overview of SODA Documents
SODA is designed primarily to manipulate JavaScript Object Notation (JSON)
documents, that is, documents whose content is JSON data, but other kinds of
documents can also be used. A document has other components, besides its content.

Here is a textual representation of the content of a simple JSON document:

{ "name" : "Alexander",
 "address" : "1234 Main Street",
 "city" : "Anytown",
 "state" : "CA",
 "zip" : "12345" }

You can set the following document components (with an application client, for
example):

• Key

• Content

• Media type

In a collection, each document must have a document key, which is unique for the
collection. By default, collections are configured to automatically generate document
keys for inserted documents. If you want to instead use your own, custom, keys for a
collection then you must provide the key for a document when you create it.

The media type specifies the type of content for a document. For JSON documents the
media type is "application/json".

The following document components are set and maintained automatically by SODA
itself:

• Version

• Creation time stamp

• Last-modified time stamp

A SODA document is an abstract object that encapsulates its components, including
its content — it is a carrier of content. A SODA create-document operation creates
such a programmatic document object, and a document object is returned by some
SODA operations, such as find operations.

A document is stored in Oracle Database as a row in a table or view, with each
component in its own column.

In a client application, a SODA document is represented in a way that is appropriate to
the particular SODA implementation used. For example:

• In SODA for Java, a document is represented as a Java interface.

• In SODA for PL/SQL, a document is represented as a PL/SQL object type.

2 Because REST is not a programming language, SODA for REST has no programmatic “object” that represents a
document. But SODA for REST operations involve the same concept of a document. For example, when you
read a document you obtain a JSON representation of it, which includes all of the components (key, content,
version, and so on).

Chapter 1
Overview of SODA Documents

1-4

• In SODA for C, a document is represented as an Oracle Call Interface (OCI) handle.

In all cases, there are methods or functions to create documents and access their
components.

To write content to SODA collections and read content from them, you use create-document,
write, and read operations:

• You use a SODA create-document operation to create a document object with content
that you provide. (The content can be JSON data or something else.)

• You use a SODA write operation (such as insert), to store the document persistently in
Oracle Database. (The document content is written to a database table.)

• You use a SODA read operation (such as find), to fetch the document back from Oracle
Database. You use specific getter operations to read specific document components
(such as key and content).

Related Topics

• SODA Feature Support
Features that are supported in different SODA implementations (languages) are listed,
along with their required client versions and database releases.

See Also:

Introducing JSON for general information about JSON

1.2 Overview of SODA Document Collections
A SODA collection is a set of documents that is backed by an Oracle Database table or view.

By default, creating a SODA document collection creates the following in Oracle Database:

• Persistent default collection metadata.

• A table for storing the collection, in the database schema to which your SODA client is
connected.

All SODA implementations provide a get-metadata operation, which returns the metadata for
a collection, represented in JSON. Example 1-1 shows an example of the default collection
metadata, which is returned for a default collection.

The default metadata specifies a collection that tracks five components for each document:
key, content, version, last-modified time stamp, and created-on time stamp. These are
specified in JSON by fields keyColumn, contentcolumn, versionColumn,
lastModifiedColumn, and creationTimeColumn, respectively. Each of these components is
stored in a separate column in the table or view that backs the collection in Oracle Database.
The metadata further specifies various details about these components and the database
columns that back them.

In Example 1-1, for the key component: the column name is "ID", the column type is
"VARCHAR2", the maximum key length is 255, and the key generation method used is "UUID".

In a client application, a document collection is represented in a way that is appropriate to the
particular SODA implementation used. For example:

Chapter 1
Overview of SODA Document Collections

1-5

• In SODA for Java, a collection is represented as a Java interface.

• In SODA for PL/SQL, a collection is represented as a PL/SQL object type.

• In SODA for C, a collection is represented as an Oracle Call Interface (OCI)
handle.

When a collection is created, the create-collection operation returns a Java or PL/SQL
object or an OCI handle, which you can use to perform various collection read and
write operations.3

Note:

In the SODA for REST URI syntax, after the version component, you can use
custom-actions, metadata-catalog, or a particular collection name. When
you use custom-actions or metadata-catalog, the next segment in the URI,
if there is one, is a collection name.

Because of this syntax flexibility, you cannot have a collection named either
custom-actions or metadata-catalog. An error is raised if you try to create
a collection with either of those names using SODA for REST.

In other SODA implementations, besides SODA for REST, nothing prevents
you from creating and using a collection named custom-actions or
metadata-catalog. But for possible interoperability, best practice calls for not
using these names for collections.

When you create a collection you can specify things such as the following:

• Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

• The presence or absence of columns for creation time stamp, last-modified time
stamp, and version.

• Whether the collection can store only JSON documents (the media type for the
column).

• Methods of document-key generation, and whether document keys are client-
assigned or generated automatically.

• Methods of version generation.

This configurability also lets you map a new collection to an existing database table or
view.

To configure a collection in a nondefault way, you must define custom collection
metadata and pass it to the create-collection operation. This metadata is represented
as JSON data.

3 This is the case only for language-based SODA implementations. In SODA for REST a collection is essentially
represented by just a URL.

Chapter 1
Overview of SODA Document Collections

1-6

Note:

You can customize collection metadata to obtain different behavior from that
provided by default. Just what you can change depends on the database you are
using. If you are using an Oracle Autonomous Database — Autonomous JSON
Database (AJD), Autonomous Transaction Processing (ATP), or Autonomous Data
Warehouse (ADW) — then the only metadata you can customize are the document-
key generation method and the content media type. In particular, you cannot
change the SQL data type of the column used to store JSON content (the content
column).

In addition, changing some components requires familiarity with Oracle Database
concepts, such as SQL data types. Oracle recommends that you do not change
such components unless you have a compelling reason. Because SODA collections
are implemented on top of Oracle Database tables (or views), many collection
configuration components are related to the underlying table configuration.

Reasons you might want to use custom metadata include:

• To configure SecureFiles LOB storage.

• To configure a collection to store documents other than JSON (a
heterogeneous collection).

• To map an existing Oracle Database table or view to a new collection.

• To specify that a collection mapping to an existing table is read-only.

• To use a VARCHAR2 column for JSON content, and to increase the default
maximum length of data allowed in the column.

You might want to increase the maximum allowed data length if your database
is configured with extended data types, which extends the maximum length of
these data types to 32767 bytes. For more information about extended data
types, see Oracle Database SQL Language Reference.

Note:

You can use online redefinition to change the metadata of an existing collection.

An important use case for this arises when you upgrade your database so that
initialization parameter compatible is at least 20. Then the default collection
metadata specifies JSON type for the content storage and UUID for the method used
to generate version values.

To take advantage of JSON type for the content storage of an existing collection, use
online redefinition to change metadata field contentColumn.sqlType to "JSON". To
use UUID as the version column generation method, use online redefinition to
change metadata field versionColumn.method to "UUID".

See Redefining a SODA Collection in Oracle Database SODA for PL/SQL
Developer's Guide for how to do this.

Chapter 1
Overview of SODA Document Collections

1-7

You can perform read and write operations on a collection only if it is open. Opening a
collection amounts to obtaining an object (in Java and PL/SQL) or a handle (in C) that
represents the collection. Creating a collection opens it automatically: the create-
collection operation returns a collection object or handle. There is also an open
operation, to open an existing collection. It too returns a collection object or handle. If
you try to create a collection, and a collection with the same name already exists, then
that existing collection is simply opened.

Note:

By default, the table name for a collection is derived from the collection
name, but it can also be explicitly provided in the custom collection metadata
that you pass to the create-collection operation. If this table name (derived or
explicitly provided) matches an existing table in the currently connected
database schema (user), the create-collection operation tries to use that
existing table to back the collection.4

You must therefore ensure that the existing table matches the collection
metadata. For example, if the collection metadata specifies that the collection
has three columns, for key, content, and version, then the underlying table
must have these same columns, and the column types must match those
specified in the collection metadata. The create-collection operation performs
minimal validation of the existing table, to check that it matches collection
metadata. If this check determines that the table and metadata do not match
then the create-collection operation raises an error.

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database table. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the table
underlying a collection does not also drop the collection metadata.

Example 1-1 Default Collection Metadata

This example shows the default metadata used for an Oracle Database that is not an
Oracle Autonomous Database (Autonomous Transaction Processing or Autonomous
Data Warehouse). The default metadata for an autonomous database is described in
Default Collection Metadata.

If database initialization parameter compatible is at least 20, then SODA uses JSON
data type by default for JSON content, and the version method is UUID. Here is the
default metadata for this case:

{
 "schemaName" : "mySchemaName",
 "tableName" : "myTableName",

4 SODA for REST is an exception here. for security reasons, in this context an error is raised for SODA for
REST, to disallow access to existing tables using REST operations.

Chapter 1
Overview of SODA Document Collections

1-8

 "keyColumn" :
 {
 "name" : "ID",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "UUID"
 },
 "contentColumn" :
 {
 "name" : "JSON_DOCUMENT",
 "sqlType" : "JSON"
 },
 "versionColumn" :
 {
 "name" : "VERSION",
 "method" : "UUID"
 },
 "lastModifiedColumn" :
 {
 "name" : "LAST_MODIFIED"
 },
 "creationTimeColumn" :
 {
 "name" : "CREATED_ON"
 },
 "readOnly" : false
}

If initialization parameter compatible is less than 20, then SODA uses "BLOB" textual data by
default for JSON content — the data is character data. Here is the default metadata for this
case:

{
 "schemaName" : "mySchemaName",
 "tableName" : "myTableName",
 "keyColumn" :
 {
 "name" : "ID",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "UUID"
 },
 "contentColumn" :
 {
 "name" : "JSON_DOCUMENT",
 "sqlType" : "BLOB",
 "compress" : "NONE",
 "cache" : true,
 "encrypt" : "NONE",
 "validation" : "STANDARD"
 },
 "versionColumn" :
 {
 "name" : "VERSION",

Chapter 1
Overview of SODA Document Collections

1-9

 "method" : "SHA256"
 },
 "lastModifiedColumn" :
 {
 "name" : "LAST_MODIFIED"
 },
 "creationTimeColumn" :
 {
 "name" : "CREATED_ON"
 },
 "readOnly" : false
}

Related Topics

• SODA Collection Metadata Components (Reference)
Collection metadata is composed of multiple components. A detailed definition of
the components is presented.

• Default Naming of a Collection Table
By default, the name of the database table that underlies a document collection is
derived from the collection name.

1.3 Default Naming of a Collection Table
By default, the name of the database table that underlies a document collection is
derived from the collection name.

If you want a different table name from that provided by default then use custom
collection metadata to explicitly provide the name.

The default table name is derived from the collection name you provide, as follows:

1. Each ASCII control character and double quotation mark character (") in the
collection name is replaced by an underscore character (_).

2. If all of the following conditions apply, then all letters in the name are converted to
uppercase, to provide the table name. In this case, you need not quote the table
name in SQL code; otherwise, you must quote it.

• The letters in the name are either all lowercase or all uppercase.

• The name begins with an ASCII letter.

• Each character in the name is alphanumeric ASCII, an underscore (_), a dollar
sign ($), or a number sign (#).

Note:

Oracle recommends that you do not use dollar-sign characters ($) or
number-sign characters (#) in Oracle identifier names.

For example:

Chapter 1
Default Naming of a Collection Table

1-10

• Collection names "col" and "COL" both result in a table named "COL". When used in
SQL, the table name is interpreted case-insensitively, so it need not be enclosed in
double quotation marks (").

• Collection name "myCol" results in a table named "myCol". When used in SQL, the table
name is interpreted case-sensitively, so it must be enclosed in double quotation marks
(").

Related Topics

• Table or View
The collection metadata component that specifies the name of the table or view to which
the collection is mapped.

1.4 A View of Your SODA Collections
Oracle Database static data dictionary view USER_SODA_COLLECTIONS lists the basic features
of all of your SODA collections, that is, all SODA collections created by the database user
(database schema) that you are currently connected to the database as.

The view includes, for each collection, its metadata and its underlying database information,
in particular, the collection name and the name and database schema of the table or view
that backs the collection.

Similarly, for database administrators there is view DBA_SODA_COLLECTIONS, which lists
collection information for all users (database schemas). It has the additional column OWNER,
which specifies the collection owner. You need the SELECT privilege on this view to select data
from it. This privilege is granted to role SELECT_CATALOG_ROLE.

View DBA_SODA_COLLECTIONS
You can use Structured Query Language (SQL) to select data for one or more of your
collections.

Note:

Oracle Database Reference for complete information about data dictionary views
USER_SODA_COLLECTIONS and DBA_SODA_COLLECTIONS. View DBA_SODA_COLLECTIONS
is available only for Autonomous Oracle Database 19c.

Example 1-2 Selecting Collection Data From USER_SODA_COLLECTIONS

This example selects all columns from the row of view USER_SODA_COLLECTIONS that
corresponds to collection name myCol.

SELECT * FROM USER_SODA_COLLECTIONS
 WHERE URI_NAME = 'myCol';

1.5 Monitoring SODA Operation Performance
You can turn on performance monitoring of the SQL operations that underlie a SODA read or
write operation, by adding a SQL hint to the SODA operation.

Chapter 1
A View of Your SODA Collections

1-11

The hint you provide to the SODA operation uses the Oracle SQL hint syntax (that is,
the actual hint text, without the enclosing SQL comment syntax /*+...*/).

Refer to the documentation for a particular SODA implementation (language) for how
to provide a hint for a given operation.

Use only hint MONITOR (turn on monitoring) or NO_MONITOR (turn off monitoring). You can
use this to pass any SQL hints, but MONITOR and NO_MONITOR are the useful ones for
SODA, and an inappropriate hint can cause the optimizer to produce a suboptimal
query plan.

See Also:

• Monitoring Database Operations in Oracle Database SQL Tuning Guide
for complete information about monitoring database operations

• MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning
Guide for information about the syntax and behavior of SQL hints
MONITOR and NO_MONITOR

Chapter 1
Monitoring SODA Operation Performance

1-12

2
Overview of SODA Filter Specifications
(QBEs)

A filter specification is a pattern expressed in JSON. You use it to select, from a collection,
the JSON documents whose content matches it, meaning that the condition expressed by the
pattern evaluates to true for the content of (only) those documents.

A filter specification is also called a query-by-example (QBE), or simply a filter.

Because a QBE selects documents from a collection, you can use it to drive read and write
operations on those documents. For example, you can use a QBE to remove all matching
documents from a collection.

Each SODA implementation that supports query-by-example provides its own way to query
JSON documents. They all use a SODA filter specification to define the data to be queried.
For example, with SODA for REST you use an HTTP POST request, passing URI argument
action=query, and providing the filter specification in the POST body.

Note:

In general, query-by-example (QBE) is for querying JSON documents. QBE
operators $id and $textContains can exceptionally be used with a heterogeneous
collection, that is, a collection that has the media type column.
Operator $textContains can only be used with a heterogeneous collection. (A
heterogeneous collection can, but it need not, contain JSON documents.)

SODA for Java and SODA for REST do not support operator $textContains, and
they do not support operator $id for use with a heterogeneous collection.

QBE patterns use operators for this document selection or matching, including condition
operators, which perform operations such as field-value comparison or testing for field
existence, and logical combining operators for union ($or) and intersection ($and).

A QBE operator occurs in a QBE as a field of a JSON object. The associated field value is
the operand on which the operator acts. SODA operators are predefined fields whose names
start with a dollar sign, $.

For example, in this QBE, the object that is the value of field age has as its only field the
operator $gt, and the associated operand is the numeric value 45:

{ "age" : { "$gt" : 45 } }

There are different kinds of QBE operators. In particular, there are operators that do the
following kinds of things. (This is not an exhaustive list of QBE operators.)

• Test whether a field value exists or how it compares with particular values.

2-1

This includes the comparison
operators: $all, $between, $eq, $exists, $gt, $gte, $hasSubstring, $in, $instr,
$like, $lt, $lte, $ne, $nin, $regex, and $startsWith.

For example, this QBE uses operator $gt to test whether the value of a field age is
greater than 50.

{ "age" : { "$gt" : 50 } }

• Test spatial (geographic or geometric) properties of a GeoJSON field value.

This includes operators $near, $intersects, and $within.

For example, this QBE uses operator $near to test whether the value of field
location is within 60 miles of the given $geometry value (elided here).

{ "location" { "$near" : {"$geometry" : {...},
 "$distance" : 60} } }

• Full-text search: test whether a field value pattern-matches a given string or
number.

This uses QBE operator $contains.

For example, this QBE tests whether the value of a field name contains the word
"beth".

{ "name" : { "$contains" : "beth" } }

• Combine conditions logically.

This includes operators $not, $and, $or, and $nor.

For example, this QBE matches either (or both) a field age whose value is not
greater than 50 or a field salary whose value is 10000.

{ "$or" : [{ "$not" {"age":{"$gt":50} },
 { "salary" : {"$eq":10000} }] }

• Sort the objects selected by a QBE query.

This uses QBE operator $orderby in conjunction with operator $query, which
provides the QBE that selects the objects to sort.

For example, this QBE first selects all objects in which the value of field salary is
greater than 10,000. It then uses operator $orderby to sort those objects by
ascending values of field name. The values to sort are interpreted as strings (data
type VARCHAR2).

{ "$query" : {"salary":{"$gt":10000}},
 "$orderby" : [{ "path" : "name", "datatype" : "varchar2" }] }

• Act on a matched value to produce a value that's tested in its place.

This includes the item-method
operators: $abs, $boolean, $ceiling, $date, $double, $floor, $length, $lower, $n
umber, $size, $string, $timestamp, $type, and $upper.

Chapter 2

2-2

For example, in this QBE, item-method $date interprets the value of field birthday as a
date value, which is then tested for being greater than (that is, later than) the date
represented by ISO 8601 string "2000-01-01". If it is, then the field value is considered a
match. The greater-than test uses the interpreted value that results from $date acting on
the field value.

{ "birthday" : { "$date" : {"$gt":"2000-01-01"} } }

• Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some query-
by-example (QBE) examples, as well as in some reference descriptions.

• Overview of Paths in SODA QBEs
A filter specification, or query-by-example (QBE), contains zero or more paths to fields in
JSON documents. A path to a field can have multiple steps, and it can cross the
boundaries of objects and arrays.

• Overview of QBE Comparison Operators
A query-by-example (QBE) comparison operator tests whether a given JSON object field
satisfies some conditions.

• Overview of QBE Operator $not
Query-by-example (QBE) operator $not negates the behavior of its operand, which is a
JSON object containing one or more comparison clauses, which are implicitly ANDed.

• Overview of QBE Item-Method Operators
A query-by-example (QBE) item-method operator acts on a JSON-object field value to
modify or transform it in some way (or simply to filter it from the query result set). Other
QBE operators that would otherwise act on the field value then act on the transformed
field value instead.

• Overview of QBE Logical Combining Operators
You use the query-by-example (QBE) logical combining operators, $and, $or, and $nor,
to combine conditions to form more complex QBEs. Each accepts an array of conditions
as its argument.

• Overview of Nested Conditions in QBEs
You can use a query-by-example (QBE) with a nested condition to match a document
that has a field with an array value with object elements, where a given object in the array
satisfies multiple conditions.

• Overview of QBE Operator $id
Other query-by-example (QBE) operators generally look for particular JSON fields within
documents and try to match their values. Operator $id is an exception in that it instead
matches document keys. It thus matches document metadata, not document content.
You use operator $id in the outermost condition of a QBE.

• Overview of QBE Operator $orderby
Query-by-example (QBE) operator $orderby is described. It sorts query results in
ascending or descending order.

• Overview of QBE Spatial Operators
You can use query-by-example (QBE) operator $near, $intersects, or $within to select
documents that have a field whose value is a GeoJSON geometry object that is near a
specified position, intersects a specified geometric object, or is within another specified
geometric object, respectively.

Chapter 2

2-3

• Overview of QBE Operator $contains
Query-by-example (QBE) operator $contains performs full-text search of JSON
documents in a SODA collection.

• Overview of QBE Operator $textContains
Query-by-example (QBE) operator $textContains performs full-text search of
documents in a heterogeneous SODA collection, that is, a collection that has the
media type column.

Related Topics

• SODA Paths (Reference)
SODA filter specifications contain paths, each of which targets a value in a
JavaScript Object Notation (JSON) document. A path is composed of a series of
steps. A detailed definition of SODA paths is presented.

• SODA Filter Specifications (Reference)
You can select JSON documents in a collection by pattern-matching. A detailed
definition of SODA filter specifications (QBEs) is presented.

• Overview of QBE Comparison Operators
A query-by-example (QBE) comparison operator tests whether a given JSON
object field satisfies some conditions.

• Overview of QBE Logical Combining Operators
You use the query-by-example (QBE) logical combining operators, $and, $or,
and $nor, to combine conditions to form more complex QBEs. Each accepts an
array of conditions as its argument.

• Overview of QBE Operator $not
Query-by-example (QBE) operator $not negates the behavior of its operand,
which is a JSON object containing one or more comparison clauses, which are
implicitly ANDed.

• Overview of QBE Item-Method Operators
A query-by-example (QBE) item-method operator acts on a JSON-object field
value to modify or transform it in some way (or simply to filter it from the query
result set). Other QBE operators that would otherwise act on the field value then
act on the transformed field value instead.

• Media Type Column Name
The collection metadata component that specifies the name of the column that
stores the media type of the document. A media type column is needed if the
collection is to be heterogeneous, that is, it can store documents other than
JavaScript Object Notation (JSON).

See Also:

• Introducing JSON for information about JSON

• GeoJSON.org for information about GeoJSON geographic JSON data

2.1 Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
query-by-example (QBE) examples, as well as in some reference descriptions.

Chapter 2
Sample JSON Documents

2-4

Example 2-1 Sample JSON Document 1

{ "name" : "Jason",
 "age" : 45,
 "address" : [{ "street" : "25 A street",
 "city" : "Mono Vista",
 "zip" : 94088,
 "state" : "CA" }],
 "drinks" : "tea" }

Example 2-2 Sample JSON Document 2

{ "name" : "Mary",
 "age" : 50,
 "address" : [{ "street" : "15 C street",
 "city" : "Mono Vista",
 "zip" : 97090,
 "state" : "OR" },
 { "street" : "30 ABC avenue",
 "city" : "Markstown",
 "zip" : 90001,
 "state" : "CA" }] }

Example 2-3 Sample JSON Document 3

{ "name" : "Mark",
 "age" : 65,
 "drinks" : ["soda", "tea"] }

Related Topics

• Field-Condition Clause (Reference)
A field-condition clause specifies that a given object field must satisfy a given set of
criteria. It constrains a field using one or more condition-operator clauses, each of which
is a comparison clause, a not clause, or an item-method clause.

2.2 Overview of Paths in SODA QBEs
A filter specification, or query-by-example (QBE), contains zero or more paths to fields in
JSON documents. A path to a field can have multiple steps, and it can cross the boundaries
of objects and arrays.

(In the context of a QBE, the term "path to a field" is sometimes shortened informally to
"field".)

For example, this QBE matches all JSON documents where a zip field exists under field
address and has value 94088:

{ "address.zip" : 94088 }

The path in the preceding QBE is address.zip, which matches Example 2-1.

Chapter 2
Overview of Paths in SODA QBEs

2-5

Note:

A SODA QBE is itself a JSON object. You must use strict JSON syntax in a
QBE. In particular, you must enclose all field names in double quotation
marks ("). This includes field names, such as address.zip, that act as
SODA paths. For example, you must write {"address.zip" : 94088}, not
{address.zip : 94088}.

Paths can target a particular element of an array in a JSON document, by enclosing
the array position of the element in square brackets ([and]).

For example, path address[1].zip targets all zip fields in the second object of array
addresses. (Array position numbers start at 0, not 1.) The following QBE matches
Example 2-2 because the second object of its address array has a zip field with value
90001.

{ "address[1].zip" : 90001}

Instead of specifying a single array position, you can specify a list of positions (for
example, [1,2]) or a range of positions (for example, [1 to 3]). The following QBE
matches Example 2-3 because it has "soda" as the first element (position 0) of array
drinks.

{ "drinks[0,1]" : "soda" }

And this QBE does not match any of the sample documents because they do not have
"soda" as the second or third array element (position 1 or 2).

{ "drinks[1 to 2]" : "soda" }

If you do not specify an array step then [*] is assumed, which matches any array
element — the asterisk, *, acts as a wildcard. For example, if the value of field drinks
is an array then the following QBE matches a document if the value of any array
element is the string "tea":

{"drinks" : "tea"}

This QBE thus matches sample documents 1 and 2. An equivalent QBE that uses the
wildcard explicitly is the following:

{"drinks[*]" : "tea"}

Related Topics

• SODA Paths (Reference)
SODA filter specifications contain paths, each of which targets a value in a
JavaScript Object Notation (JSON) document. A path is composed of a series of
steps. A detailed definition of SODA paths is presented.

Chapter 2
Overview of Paths in SODA QBEs

2-6

• Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some query-
by-example (QBE) examples, as well as in some reference descriptions.

See Also:

Oracle Database JSON Developer’s Guide for information about strict and lax
JSON syntax

2.3 Overview of QBE Comparison Operators
A query-by-example (QBE) comparison operator tests whether a given JSON object field
satisfies some conditions.

One of the simplest and most useful filter specifications tests a field for equality to a specific
value. For example, this filter specification matches any document that has a field name
whose value is "Jason". It uses the QBE operator $eq, which tests field-value equality.

{ "name" : { "$eq" : "Jason" } }

For convenience, for such a scalar-equality QBE you can generally omit operator $eq. This
scalar-equality filter specification is thus equivalent to the preceding one, which uses $eq:

{ "name" : "Jason" }

Both of the preceding filter specifications match Example 2-1.

The comparison operators are the following:

• $all — whether an array field value contains all of a set of values

• $between — whether a field value is between two string or number values (inclusive)

• $eq — whether a field value is equal to a given scalar

• $exists — whether a given field exists

• $gt — whether a field value is greater than a given scalar value

• $gte — whether a field value is greater than or equal to a given scalar

• $hasSubstring — whether a string field value has a given substring (same as $instr)

• $in — whether a field value is a member of a given set of scalar values

• $instr — whether a string field value has a given substring (same as $hasSubstring)

• $like — whether a field value matches a given SQL LIKE pattern

• $lt — whether a field value is less than a given scalar value

• $lte — whether a field value is less than or equal to a given scalar value

• $ne — whether a field valueis different from a given scalar value

• $nin — whether a field value is not a member of a given set of scalar values

Chapter 2
Overview of QBE Comparison Operators

2-7

• $regex — whether a string field value matches a given regular expression

• $startsWith — whether a string field value starts with a given substring

You can combine multiple comparison operators in the object that is the value of a
single QBE field. The operators are implicitly ANDed. For example, the following QBE
uses comparison operators $gt and $lt. It matches Example 2-2, because that
document contains an age field with a value (50), which is both greater than 45 and
less than 55.

{ "age" : { "$gt" : 45, "$lt" : 55 } }

Note:

Both the operand of a SODA operator and the data matched in your
documents by a QBE are JSON data. But a comparison operator can in
some cases interpret such JSON values specially before comparing them.
The use of item-method operators can specify that a comparison should first
interpret JSON string data as, for example, uppercase or as a date or a time
stamp (date with time). This is explained in the sections about item-method
operators.

Related Topics

• Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
query-by-example (QBE) examples, as well as in some reference descriptions.

• Overview of QBE Operator $not
Query-by-example (QBE) operator $not negates the behavior of its operand,
which is a JSON object containing one or more comparison clauses, which are
implicitly ANDed.

• Field-Condition Clause (Reference)
A field-condition clause specifies that a given object field must satisfy a given set
of criteria. It constrains a field using one or more condition-operator clauses, each
of which is a comparison clause, a not clause, or an item-method clause.

• Comparison Clause (Reference)
A comparison clause is an object member whose field is a comparison operator.
Example: "$gt" : 200.

• Overview of QBE Item-Method Operators
A query-by-example (QBE) item-method operator acts on a JSON-object field
value to modify or transform it in some way (or simply to filter it from the query
result set). Other QBE operators that would otherwise act on the field value then
act on the transformed field value instead.

Chapter 2
Overview of QBE Comparison Operators

2-8

2.4 Overview of QBE Operator $not
Query-by-example (QBE) operator $not negates the behavior of its operand, which is a
JSON object containing one or more comparison clauses, which are implicitly ANDed.

When any of those clauses evaluates to false, the application of $not to them evaluates to
true. When all of them evaluate to true, it evaluates to false.

For example, this QBE matches Example 2-1 and Example 2-3: document 1 has a field
matching path address.zip and whose value is not "90001", and document 3 has no field
matching path address.zip.

{"address.zip" : {"$not" : {"$eq" : "90001"}}}

The $not operand in the following QBE has two comparison clauses. It too matches
Example 2-1 and Example 2-3, because each of them has an age field whose value is not
both greater than 46 and less than 65.

{"age" : {"$not" : {"$gt" : 46, "$lt" : 65}}}

Related Topics

• Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter conditions.

• Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some query-
by-example (QBE) examples, as well as in some reference descriptions.

2.5 Overview of QBE Item-Method Operators
A query-by-example (QBE) item-method operator acts on a JSON-object field value to modify
or transform it in some way (or simply to filter it from the query result set). Other QBE
operators that would otherwise act on the field value then act on the transformed field value
instead.

Suppose you want to select documents whose string-valued field name starts with “Jo”,
irrespective of letter case, so that you find matches for name values "Joe", "joe", "JOE",
"joE", "Joey", "joseph", "josé", and so on. You might think of using operator $startsWith,
but that matches string prefixes literally, considering J and j as different characters, for
example.

This is where an item-method operator can come in. Your QBE can use item-method
operator $upper to, in effect, transform the raw field data, whether it is "Joey" or "josé", to
an uppercase string, before operator $startsWith is applied to test it.

The following QBE matches the prefix of the value of field name, but only after converting it to
uppercase. The uppercase value is matched using the condition that it starts with JO.

{ "name" : { "$upper" : { "$startsWith" : "JO" } } }

Chapter 2
Overview of QBE Operator $not

2-9

As another example, suppose that you have documents with a string-valued field
deadline that uses an ISO 8601 date-with-time format supported by SODA, and you
want to select those documents whose deadline is prior to 7:00 am, January 31, 2019,
UTC. You can use item-method operator $timestamp to convert the field string values
to UTC time values (not strings), and then perform a time comparison using an
operator such as $lt. This QBE does the job:

{ "deadline" : { "$timestamp" : { "$lt" : "2019-01-31T07:00:00Z" } } }

That matches each of the following deadline field values, because each of them
represents a time prior to the one specified in the QBE. (The last two represent the
exact same time, since 7 pm in a time zone that is 3 hours behind UTC is the same as
10 pm UTC.)

• { "deadline" : "2019-01-28T14:59:43Z" }
• { "deadline" : "2019-01-30T22:00:00Z" }
• { "deadline" : "2019-01-30T19:00:00–03:00" }
Not all item-method operators convert data to a given data type. Some perform other
kinds of conversion. Operator $upper, for instance, converts a string value to
uppercase — the result is still a string.

Some item-method operators even return data that is wholly different from the field
values they are applied to. Operator $type, for instance, returns a string value that
names the JSON-language data type of the field value.

So for example, this QBE selects only Example 2-3 of the three sample documents,
because it is the only one that has a drinks field whose value is an array (["soda",
"tea"]). In particular, it does not match Example 2-1, even though that document has
a field drinks, because the value of that field is the string "tea" — a scalar, not an
array.

{ "drinks" : { "$type" : "array" } }

Chapter 2
Overview of QBE Item-Method Operators

2-10

Note:

An item-method field (operator) does not, itself, use or act on its associated value
(its operand). Instead, it acts on the value of the JSON data that matches its parent
field.

For example, in the QBE {"birthday" : {"$date" : {"$gt" : "2000-01-01"}}},
item-method operator $date acts on the JSON data that matches its parent field,
birthday. It does not use or act on its operand, which is the JSON object (a
comparison clause in this case) {"$gt" : "2000-01-01"}. The birthday data (a
JSON string of format ISO 8601) in your JSON document is interpreted as a date,
and that date is then matched against the condition that it be greater than the date
represented by the (ISO date) string "2000-01-01" (later than January 1, 2000).

This can take some getting used to. The operand is used after the item-method
operator does its job. It is matched against the result of the action of the operator on
the value of its parent field. A item-method operator is a filter of sorts — it stands
syntactically between the field (to its left) that matches the data it acts on and (to its
right) some tests that are applied to the result of that action.

Note:

• To use item method operator $abs, $date, $size, $timestamp, or $type you
need Oracle Database Release 18c or later.

• To use any other item method you need Oracle Database Release 12c
(12.2.0.1) or later.

Related Topics

• Item-Method Clause (Reference)
An item-method clause is an item-method equality clause or an item-method modifier
clause. It applies an item method to the field of the field-condition clause in which it
appears, typically to modify the field value. It then matches the result against the operand
of the item-method.

• ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates, times, and durations. Oracle Database supports the
most common ISO 8601 formats as proper Oracle SQL date, time, and interval (duration)
values. The formats that are supported are essentially those that are numeric-only,
language-neutral, and unambiguous.

2.6 Overview of QBE Logical Combining Operators
You use the query-by-example (QBE) logical combining operators, $and, $or, and $nor, to
combine conditions to form more complex QBEs. Each accepts an array of conditions as its
argument.

QBE logical combining operator $and matches a document if each condition in its array
argument matches it. For example, this QBE matches Example 2-1, because that document

Chapter 2
Overview of QBE Logical Combining Operators

2-11

contains a field name whose value starts with "Ja", and it contains a field drinks
whose value is "tea".

{"$and" : [{"name" : {"$startsWith" : "Ja"}}, {"drinks" : "tea"}]}

Often you can omit operator $and — it is implicit. For example, the following query is
equivalent to the previous one:

{"name" : {"$startsWith" : "Ja"}, "drinks" : "tea"}

QBE logical combining operator $or matches a document if at least one of the
conditions in its array argument matches it.

For example, the following QBE matches Example 2-2 and Example 2-3, because
those documents contain a field drinks whose value is "soda" or they contain a field
zip under a field address, where the value of address.zip is less than 94000, or they
contain both:

{"$or" : [{"drinks" : "soda"}, {"address.zip" : {"$le" : 94000}}]}

QBE logical combining operator $nor matches a document if no condition in its array
argument matches it. (Operators $nor and $or are logical complements.)

The following query matches sample document 1, because in that document there is
neither a field drinks whose value is "soda" nor a field zip under a field address,
where the value of address.zip is less than 94000:

{"$nor" : [{"drinks" : "soda"}, {"address.zip" : {"$le" : 94000}}]}

Each element in the array argument of a logical combining operator is a condition.

For example, the following condition has a single logical combining clause, with
operator $and. The array value of $and has two conditions: the first condition restricts
the value of field age. The second condition has a single logical combining clause
with $or, and it restricts either the value of field name or the value of field drinks.

{ "$and" : [{ "age" : {"$gte" : 60} },
 { "$or" : [{"name" : "Jason"},
 {"drinks" : {"$in" : ["tea", "soda"]}}] }] }

• The condition with the comparison for field age matches sample document 3.

• The condition with logical combining operator $or matches sample documents 1
and 3.

• The overall condition matches only sample document 3, because that is the only
document that satisfies both the condition on age and the condition that uses $or.

The following condition has two conditions in the array argument of operator $or. The
first of these has a single logical combining clause with $and, and it restricts the values

Chapter 2
Overview of QBE Logical Combining Operators

2-12

of fields name and drinks. The second has a single logical combining clause with $nor, and it
restricts the values of fields age and name.

{ "$or" : [{ "$and" : [{"name" : "Jason"},
 {"drinks" : {"$in" : ["tea", "soda"]}}] },
 { "$nor" : [{"age" : {"$lt" : 65}},
 {"name" : "Jason"}] }] }

• The condition with operator $and matches sample document 1.

• The condition with operator $nor matches sample document 3.

• The overall condition matches both sample documents 1 and 3, because each of these
documents satisfies at least one condition in the $or argument.

Related Topics

• Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter conditions.

• Omitting $and
Sometimes you can omit the use of $and.

• Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some query-
by-example (QBE) examples, as well as in some reference descriptions.

2.7 Overview of Nested Conditions in QBEs
You can use a query-by-example (QBE) with a nested condition to match a document that
has a field with an array value with object elements, where a given object in the array
satisfies multiple conditions.

The following nested-condition query matches documents that have both a city value of
"Mono Vista" and a state value of "CA" in the same object element of array address.

{ "address[*]" : { "city" : "Mono Vista", "state" : "CA" } }

It specifies that a matching document must have a field address, and if the value of that field
is an array then it must have at least one object element that has a city field with value
"Mono Vista" and a state field with value "CA".

Of the three sample JSON documents, this QBE matches only Example 2-1.

The following QBE also matches sample document 1, but it also matches Example 2-2, which
has two addresses, one of which has city Mono Vista and the other of which has state CA.

{ "address.city" : "Mono Vista", "address.state" : "CA" }

Unlike the preceding QBE, which uses a nested condition clause, nothing here constrains the
city and state to belong to the same address. Instead, this QBE specifies only that matching
documents must have a city field with value "Mono Vista" in some object child of an
address field, and a state field with value "CA" in some object of the same address field. It
does not specify that fields address.city and address.state must reside within the same
object.

Chapter 2
Overview of Nested Conditions in QBEs

2-13

That last QBE is equivalent to the following one, which has the form of a nested-
condition clause but without the [*].

{ "address" : { "city" : "Mono Vista", "state" : "CA" } }

Do not forget to use [*], if your intention is to apply multiple conditions to an object in
an array.

Related Topics

• Nested-Condition Clause (Reference)
You use a QBE nested-condition clause to apply multiple conditions at the same
time, to array elements that are objects.

• Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
query-by-example (QBE) examples, as well as in some reference descriptions.

2.8 Overview of QBE Operator $id
Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. Operator $id is an exception in that it
instead matches document keys. It thus matches document metadata, not document
content. You use operator $id in the outermost condition of a QBE.

Example 2-4 shows three QBEs that use operator $id.

Example 2-4 Using $id To Find Documents That Have Given Keys

Find the unique document that has key key1.

{"$id" : "key1"}

Find the documents that have any of the keys key1, key2, and key3.

{"$id" : ["key1","key2","key3"]}

Find the documents that have at least one of the keys key1 and key2, and that have an
object with a field address.zip whose value is at least 94000.

{"$and" : [{$id : ["key1", "key2"]},
 {"address.zip" : { "$gte" : 94000 }}]}

Related Topics

• ID Clause (Reference)
Other query-by-example (QBE) operators generally look for particular JSON fields
within the content of documents and try to match their values. An ID clause, which
uses operator $id, instead matches document keys. It thus matches document
metadata, not document content.

Chapter 2
Overview of QBE Operator $id

2-14

2.9 Overview of QBE Operator $orderby
Query-by-example (QBE) operator $orderby is described. It sorts query results in ascending
or descending order.

You can specify the sort order for individual fields and the relative sort order among fields.

Operator $orderby can be used with two alternative syntaxes: array and abbreviated.

Regardless of the syntax choice, when you use $orderby in a filter specification together with
one or more filter conditions, you must wrap those conditions with operator $query. In the
queries shown here, the returned documents are restricted to those that satisfy a filter
condition that specifies that field age must have a value greater than 40.

Using the Orderby Clause Array Syntax

The array syntax is the more straightforward of the two. You follow $orderby by an array of
the fields to sort, in their relative sort order: the first array element specifies the first field to
sort by, the second element specifies the second field to sort by, and so on.

The array syntax also lets you specify the SQL data type to use for sorting a given field, that
is, how to interpret the field values, for sorting purposes.

For example, you can specify whether a field that has numeric codes (as a string or as a
number) should be sorted lexicographically (as a string of digit characters) or numerically as
a sequence of digits interpreted as a number). With "varchar2" as the sort data type, "100"
sorts, in ascending order, before "9". With "number" as the sort type, "9" sorts, in ascending
order, before "100", since the number 9 is smaller than the number 100.

Note:

To use a datatype value of date or timestamp you need Oracle Database Release
18c or later.

Finally, the array syntax also lets you specify, for a string-valued field, a maximum number of
characters at the start of the string. An error is raised if a string value for the targeted field is
too long.

The following QBE selects objects in which field salary is between 10,000 and 20,000,
inclusive. It sorts the objects first by descending age, interpreted as a number, then by
ascending name, interpreted as a string. An error is raised if the string value of field name is
longer than 100 characters in any matching document. The default error handling also
applies: raise an error if the value of any of the specified fields is not convertible to the
specified datatype, but do not raise an error just because some of the specified fields are
missing.

{ "$query" : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
 "$orderby" : [{ "path" : "age",
 "datatype" : "number",
 "order" : "desc" },
 { "path" : "name",
 "datatype" : "varchar2",

Chapter 2
Overview of QBE Operator $orderby

2-15

 "order" : "asc",
 "maxLength" : 100 }] }

The following QBE is the same, except that it specifies scalarRequired = true, to
require that field name be present in each matching document (as well as requiring that
its value be convertible to a string). Otherwise, an error is raised at query time.

{ "$query" : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
 "$orderby" : { "$fields" :
 [{ "path" : "age",
 "datatype" : "number",
 "order" : "desc" },
 { "path" : "name",
 "datatype" : "varchar2",
 "order" : "asc",
 "maxLength" : 100 }],
 "$scalarRequired" : true } }

Using the Orderby Clause Abbreviated Syntax

The abbreviated syntax lets you list the fields to sort by and their relative sort order in
a succinct way. You cannot use it to specify how to interpret the values of a given field
for sorting purposes, that is, which data type to interpret the values as. And you cannot
specify a maximum number of characters to take into account when sorting a string
field.

The following QBE specifies the order of fields age and name when sorting documents
where the salary is between 10,000 and 20,000. A value of –1 specifies descending
order for age. A value of 2 specifies ascending order for name. Sorting is done first by
age and then by name, because the absolute value of –1 is less than the absolute value
of 2 — not because -1 is less than 2, and not because field age appears before field
name in the $orderby object.

{ "$query" : { "salary" : { $between [10000, 20000] } },
 "$orderby" : { "age" : -1, "name" : 2 } }

Related Topics

• Orderby Clause Sorts Selected Objects
A filter specification (query-by-example, or QBE) with an orderby clause returns
the selected JSON documents in sorted order.

2.10 Overview of QBE Spatial Operators
You can use query-by-example (QBE) operator $near, $intersects, or $within to
select documents that have a field whose value is a GeoJSON geometry object that is
near a specified position, intersects a specified geometric object, or is within another
specified geometric object, respectively.

Chapter 2
Overview of QBE Spatial Operators

2-16

Note:

To use QBE spatial operators you need Oracle Database Release 12c (12.2.0.1) or
later.

The following QBE selects only documents that have a location field whose value is a Point
GeoJSON geometry object that represents a position within 50 kilometers of the coordinates
[34.0162, -118.2019].

{ "location" :
 { "$near" :
 { "$geometry" : { "type" : "Point",
 "coordinates" : [34.0162, -118.2019] },
 "$distance" : 50,
 "$unit" : "KM" } } }

It can retrieve a document that has an object such as this one, for example:

{ "location" : { "type" : "Point",
 "coordinates": [33.7243, -118.1579] } }

Any document that does not contain a location field is ignored (skipped) without error. But if
the queried collection contains a document with a location field that does not have as value
a (single) GeoJSON geometry object then an error is raised. A document with this object, for
example, raises an error:

{ "location" : "1600 Pennsylvania Ave NW, Washington, DC 20500" }

You can provide different (non-default) error-handling behavior for your QBE by including a
true-valued $scalarRequired or $lax field (but not both together) in the object that is the
value of spatial operator $near, $intersects, or $within.

• A true value for field $scalarRequired means raise an error if any document does not
have a location field. (An error is still also raised for a location field whose value is not
a geometry object.)

• A true value for field $lax means ignore not only a missing location field but also a
location field whose value is not a GeoJSON geometry object.

For example, this QBE raises an error if any document has no location field or if any
document has a location field whose value is not a geometry object:

{ "location" :
 { "$near" :
 { "$geometry" : { "type" : "Point",
 "coordinates" : [34.0162, -118.2019] },
 "$distance" : 50,
 "$unit" : "KM",
 "$scalarRequired : true } } }

Chapter 2
Overview of QBE Spatial Operators

2-17

And this QBE does not raise an error for a document that has no location field or for
a document that has a location field whose value is not a geometry object:

{ "location" :
 { "$near" :
 { "$geometry" : { "type" : "Point",
 "coordinates" : [34.0162, -118.2019] },
 "$distance" : 50,
 "$unit" : "KM",
 "$lax" : true } } }

Note:

If you have created a SODA spatial index for a field whose value is a
GeoJSON geometry object, and if you use a QBE that targets that field, then
the index can be picked up for the QBE only if both index and QBE specify
the same error-handling behavior for that field. Both must specify the same
one of these:

• scalarRequired : true
• lax : true
• Neither scalarRequired : true nor lax : true

Related Topics

• Spatial Clause (Reference)
GeoJSON objects are JSON objects that represent geographic data. You can use
a SODA QBE spatial clause to match GeoJSON geometry objects in your
documents.

• SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

2.11 Overview of QBE Operator $contains
Query-by-example (QBE) operator $contains performs full-text search of JSON
documents in a SODA collection.

A QBE field whose value is an object with a $contains operator matches a JSON
document if the document has that field with a full-word string value or a full-number
value that matches the string operand of $contains somewhere, including in an array
element. Matching is Oracle Text full-text.

The syntax of the search-pattern value for operator $contains is the same as the third
parameter of SQL condition json_textcontains, and the resulting behavior is the
same. This means, for instance, that you can query for text that is near some other
text, or query use fuzzy pattern-matching. (If the search-pattern argument contains a
character or a word that is reserved with respect to Oracle Text search then you must
escape that character or word.)

Chapter 2
Overview of QBE Operator $contains

2-18

To use full-text search with $contains you must create a JSON search index for the
document collection. To do that you pass a search-index specification, such as in
Example 3-3, to the index-creation function or method for your chosen SODA implementation
(language).

Once you have a search index for your collection, this simple QBE searches the street fields
of all documents, case-insensitively, for a value that contains the word "abc".

{"street" : { "$contains" : "abc"}}

Example 2-2 is a match, for example, because it has a street field with value "30 ABC
avenue".

Related Topics

• Contains Clause (Reference)
A contains clause is a field followed by an object with one $contains operator, whose
value is a string. It matches a JSON document only if a string or number in the field value
matches the string operand somewhere, including in array elements. Matching is Oracle
Text full-text.

• Overview of SODA Indexing
The performance of SODA QBEs can sometimes be improved by using indexes. You
define a SODA index with an index specification, which is a JSON object that specifies
how particular QBE patterns are to be indexed for quicker matching.

• SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

See Also:

JSON_TEXTCONTAINS Condition in Oracle Database SQL Language Reference

2.12 Overview of QBE Operator $textContains
Query-by-example (QBE) operator $textContains performs full-text search of documents in
a heterogeneous SODA collection, that is, a collection that has the media type column.

You can use it to find non-JSON documents that contain text that matches a full-text search
pattern. For example, Microsoft Word, Portable Document Format (PDF), and plain-text
documents can all be full-text searched using $textContains.

(You can also use $textContains with JSON documents, but for collection with only JSON
documents operator $contains is preferable. Operator $contains is not for heterogeneous
collections.)

The syntax of the search-pattern value for operator $textContains is the same as that used
by SQL function contains, and the resulting behavior is the same. This means, for instance,
that you can query for text that is near some other text, or query use fuzzy pattern-matching.
(If the search-pattern argument contains a character or a word that is reserved with respect to
Oracle Text search then you must escape that character or word.)

Chapter 2
Overview of QBE Operator $textContains

2-19

To be able to use operator $textContains you first must create an Oracle Text search
index for the database table that underlies the heterogeneous collection to be
searched. This SQL code creates search index mySearchIndex on content column
myContentColumn of table myTextCollectionTable:

CREATE SEARCH INDEX mySearchIndex ON
 myTextCollectionTable(myContentColumn)

Prior to Oracle Database Release 21c, this more verbose syntax is needed:

CREATE INDEX mySearchIndex ON
 myTextCollectionTable(myContentColumn)
 INDEXTYPE IS CTXSYS.CONTEXT

If you have a search index for your collection, this simple QBE searches for the text Is
it about a bicycle?.

{"$textContains" : "Is it about a bicycle?"}

Note:

Operator $textContains is not supported for SODA for Java or SODA for
REST.

To use $textContains with SODA for PL/SQL you need Oracle Database
Release 21c (21.3) or later.

To use $textContains with SODA for C, SODA for Node.js, or SODA for
Python you need the corresponding 21.3 client libraries.

Related Topics

• Text-Contains Clause (Reference)
A text-contains clause is operator $textContains with a string value that is used
as a full-text search pattern: $textcontains:pattern. It matches a non-JSON
document only if some text in the document matches that pattern. Matching is
Oracle Text full-text matching.

Chapter 2
Overview of QBE Operator $textContains

2-20

3
Overview of SODA Indexing

The performance of SODA QBEs can sometimes be improved by using indexes. You define a
SODA index with an index specification, which is a JSON object that specifies how particular
QBE patterns are to be indexed for quicker matching.

Suppose that you often use a query such as {"dateField" : {"$date" : DATE-STRING}},
where DATE-STRING is a string in an ISO 8601 format supported by SODA. Here, item
method $date transforms DATE-STRING to a SQL value of data type DATE. You can typically
improve the performance of queries on a field such as "dateField" by creating a B-tree
index for it.

Or suppose that you want to query spatial data in a GeoJSON geometry object. You can
improve the performance of such queries by creating a SODA spatial index for that data.

Or suppose that you want to be able to perform full-text queries using QBE
operator $contains. You can enable such queries by creating a JSON search index for your
data.

Or suppose that you want to perform metadata queries on a JSON data guide, which is a
summary of the structural and type information about a set of JSON documents. You can
create a JSON search index that holds and automatically updates such data-guide
information.

In all such cases you specify the index you want by creating a SODA index specification and
then using it to create the specified index.

Each SODA implementation that supports indexing provides a way to create an index. They
all use a SODA index specification to define the index to be created. For example, with
SODA for REST you use an HTTP POST request, passing URI argument action=index, and
providing the index specification in the POST body.

Note:

• To create a B-tree index you need Oracle Database Release 12c (12.2.0.1) or
later.

To create a B-tree index that indexes a DATE or a TIMESTAMP value you need
Oracle Database Release 18c (18.1) or later.

• To create a spatial index you need Oracle Database Release 12c (12.2.0.1) or
later.

• To create a search index you need Oracle Database Release 12c (12.2.0.1) or
later.

3-1

Example 3-1 Specifying a B-Tree Index

This example specifies a B-tree non-unique index for numeric field address.zip.

{ "name" : "ZIPCODE_IDX",
 "fields" : [{ "path" : "address.zip",
 "datatype" : "number",
 "order" : "asc" }] }

This indexes the field at path address.zip in Example 2-1 and Example 2-2.

Example 2-3 has no such field, so that document is skipped during indexing.

You can specify that the index requires that all indexed fields be scalar by including
scalarRequired : true in the index specification:

{ "name" : "ZIPCODE_IDX",
 "fields" : [{ "path" : "address.zip",
 "datatype" : "number",
 "order" : "asc" }],
 "scalarRequired" : true }

If a specification includes scalarRequired : true, and if the collection contains a
document that is missing one or more of the specified fields (just address.zip in this
case), or if any of them has a non-scalar value, then an error is raised when creating
the index. In addition, if such an index exists when you try to write a document that
lacks that one of the indexed fields then an error is raised for the write operation.

Regardless of the value of scalarRequired, an error is raised if you try to write a
document that has the targeted field but with a value that is not convertible to the
specified data type. For example, for the index defined in Example 3-1, if a document
contains field address.zip, but the field value is not convertible to a number, then an
error is raised. This would be the case, for instance, for a zip field whose value is an
object.

Example 3-2 Specifying a Spatial Index

This example specifies an Oracle Spatial and Graph index named
LOCATION_LONG_LAT_IDX, which indexes the GeoJSON geometry object that is the
value of field location in your documents:

{ "name" : "LOCATION_LONG_LAT_IDX",
 "spatial" : "location" }

This index specification applies to all documents that have a location field whose
value is a GeoJSON geometry object, and only to such documents. Here’s an example
of an object with such a location field, whose value is a geometry object of type
Point:

{ "location" : { "type" : "Point",
 "coordinates" : [33.7243, 118.1579] } }

That location value is indexed, because its value is a GeoJSON geometry object.

Chapter 3

3-2

Because neither scalarRequired : true nor lax : true is specified in the index
specification, a document that has no location field is silently skipped (not indexed) during
indexing.

And if the collection that is queried has a document with an object such as one of the
following, whose location values are not GeoJSON geometry objects, then an error is raised
during indexing.

{ "location" : [33.7243, 118.1579] }
{ "location" : "1600 Pennsylvania Ave NW, Washington, DC 20500" }

In addition, if such an index exists, and you try to write a document that has location field
with such a non-geometry value, then an error is raised for the write operation.

You can specify that the index requires that all indexed fields be scalar by including
scalarRequired : true in the index specification:

{ "name" : "LOCATION_LONG_LAT_IDX",
 "spatial" : "location",
 "scalarRequired" : true }

With scalarRequired : true, if the collection contains a document that has no location
field, then an error is raised when creating the index. In addition, if such an index exists, and
you try to write a document that lacks the indexed field (location), then an error is raised for
the write operation. (An error is still also raised, for index creation or a write operation, for a
location field whose value is not a geometry object.)

Alternatively you can specify that the index does not require indexed fields to be present and
have GeoJSON geometry values by including lax : true in the index specification:

{ "name" : "LOCATION_LONG_LAT_IDX",
 "spatial" : "location",
 "lax" : true }

With lax : true, no error is raised for a document that lacks a location field or for a
document with a location field value (such as {"location" : [33.7243, 118.1579]}) that
is not a GeoJSON geometry object. The index simply ignores such documents.

Note:

If you have created a SODA spatial index for a field whose value is a GeoJSON
geometry object, and if you use a QBE that targets that field, then the index can be
picked up for the QBE only if both index and QBE specify the same error-handling
behavior for that field. Both must specify the same one of these:

• scalarRequired : true
• lax : true
• Neither scalarRequired : true nor lax : true

Chapter 3

3-3

Example 3-3 Specifying a JSON Search Index

This example specifies a JSON search index. The index does both of these things:

• Enables you to perform ad hoc full-word and full-number queries on your JSON
documents.

• Automatically accumulates and updates aggregate structural and type information
about your JSON documents: a JSON data guide.

{ "name" : "SEARCH_AND_DATA_GUIDE_IDX" }

This index specification is equivalent. It just makes explicit the default values.

{ "name" : "SEARCH_AND_DATA_GUIDE_IDX",
 "dataguide" : "on",
 "search_on" : "text_value" }

(To specify a search index without data-guide support, just set field dataguide to
"off".)

Related Topics

• SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

See Also:

• Oracle Database JSON Developer’s Guide for information about using
SQL to create json_value B-tree indexes

• Oracle Spatial Developer's Guide for information about Oracle Spatial
and Graph indexes

• Oracle Database JSON Developer’s Guide for information about JSON
search indexes

Chapter 3

3-4

4
SODA Paths (Reference)

SODA filter specifications contain paths, each of which targets a value in a JavaScript Object
Notation (JSON) document. A path is composed of a series of steps. A detailed definition of
SODA paths is presented.

Note:

A SODA QBE is itself a JSON object. You must use strict JSON syntax in a QBE. In
particular, you must enclose all field names in double quotation marks ("). This
includes field names, such as address.zip, that act as SODA paths. For example,
you must write {"address.zip" : 94088}, not {address.zip : 94088}.

The following characters can have special syntactic meaning in some SODA path steps, in
which case their use in that context is called syntactic (they are used syntactically):

• Brackets ([and]) delimit a JSON array

• Comma (,) separates array elements or array index components

• Wildcard (*) is a placeholder that matches any array index in an array step or any field
name in a field step (defined below)

• Period (.) separates a parent-object field name (or *) from a child-object field name (or *)

In any other path-expression context than those just listed, these same characters have no
special syntactic meaning. For example, outside of its use in array syntax a comma is not
used syntactically.

A character that is not used syntactically in a given context is ordinary in that context. For
example, a comma is ordinary outside of its use in array syntax, and the character d is always
ordinary.

There are two kinds of steps in a path: field steps and array steps.

A field step is one of the following:

• The wildcard character * (by itself)

• A sequence of characters that are always ordinary — for example, cat
• A sequence of any characters that is enclosed in backquote characters (`) — for example,

`dog` and `cat.dog`
Characters within a field step that is enclosed in backquote characters are not used
syntactically; they are treated literally. If you intend for a character not to be used syntactically
where it normally would be then you must enclose its step in backquote characters.

4-1

All of the characters in field name dog are always ordinary, so backquote characters
are optional in `dog`. But the following field steps must be enclosed in backquote
characters because each contains one or more characters that would otherwise be
used syntactically:

`cat.dog`
`cat[dog]`
`*`

In the path a.*.b, the asterisk acts as a wildcard; it is a placeholder for a field name.
But in the path a.`*`.b the asterisk does not act as a wildcard. Because it is escaped
by backquotes it acts as an ordinary character — a field named *. (In both cases the
unescaped periods are used syntactically.)

Besides using backquotes to inhibit special syntactic meaning, you can use them to
escape a dollar-sign character ($) at the beginning of a field name, where it would
otherwise be interpreted as introducing a SODA operator name. For example,
because of the backquote characters, the field step `$eq` does not represent SODA
operator $eq; it represents an ordinary JSON field that has the same name. (Needing
to query data that has field names that begin with $ is rare.)

If a step that you enclose in backquote characters contains a backquote character,
then you must represent that character using two consecutive backquote characters.
For example: `Customer``s Comment`.

An unescaped period (.) must be followed by a field step. After the first step in a path,
each field step must be preceded by a period.

An array step is delimited by brackets ([and]). Inside the brackets can be either:

• The wildcard character * (by itself)

• One or more of these array index (position) components:

– A single array index, which is an integer greater than or equal to zero

– An array index range, which has this syntax:

x to y

x and y are integers greater than or equal to zero, and x is less than or equal
to y. There must be at least one whitespace character between x and to and
between to and y.

Multiple components must be separated by commas (,). In a list of multiple
components, array indexes must be in ascending order, and ranges cannot
overlap.

For example, these are valid array steps:

[*]
[1]
[1,2,3]
[1 to 3]
[1, 3 to 5]

Chapter 4

4-2

The following are not valid array steps:

[*, 6]
[3, 2, 1]
[3 to 1]
[1 to 3, 2 to 4]

Related Topics

• Overview of Paths in SODA QBEs
A filter specification, or query-by-example (QBE), contains zero or more paths to fields in
JSON documents. A path to a field can have multiple steps, and it can cross the
boundaries of objects and arrays.

• SODA Filter Specifications (Reference)
You can select JSON documents in a collection by pattern-matching. A detailed definition
of SODA filter specifications (QBEs) is presented.

See Also:

• Oracle Database JSON Developer’s Guide for information about strict and lax
JSON syntax

• Introducing JSON for information about JSON

Chapter 4

4-3

5
SODA Filter Specifications (Reference)

You can select JSON documents in a collection by pattern-matching. A detailed definition of
SODA filter specifications (QBEs) is presented.

A filter specification, also known as a query-by-example (QBE) or simply a filter, is a
SODA query that uses a pattern expressed in JSON. A QBE is itself a JSON object. SODA
query operations use a QBE to select all JSON documents in a collection that satisfy it,
meaning that the filter evaluates to true for only those documents. A QBE thus specifies
characteristics that the documents that satisfy it must possess.

A filter can use QBE operators, which are predefined JSON fields whose names start with a
dollar-sign character ($). The JSON value associated with an operator field is called its
operand or its argument.1

Although a SODA operator is itself a JSON field, for ease of exposition in the context of filter
specification descriptions, the term “field” generally refers here to a JSON field that is not a
SODA operator. Also, in the context of a QBE, “field” is often used informally to mean “path to
a field”.

Note:

You must use strict JSON syntax in a SODA filter specification, enclosing each
nonnumeric, non-Boolean, and non-null JSON value in double quotation marks (").
In particular, the names of all JSON fields, including SODA operators, must be
enclosed in double quotation marks.

A filter specification is a JSON object. There are two kinds of filter specification:

• Composite filter.

• Filter-condition filter.

A filter specification (QBE) can appear only at the top (root) level of a query. However, a filter
condition can be used either (a) on its own, as a filter-condition filter (a QBE), or (b) at a lower
level, in the query clause of a composite filter.

1 A syntax error is raised if the argument to a QBE operator is not of the required type (for example, if operator $gt is
passed an argument that is not a string or a number).

5-1

Note:

In general, query-by-example (QBE) is for querying JSON documents. QBE
operators $id and $textContains can exceptionally be used with a
heterogeneous collection, that is, a collection that has the media type
column. Operator $textContains can only be used with a heterogeneous
collection. (A heterogeneous collection can, but it need not, contain JSON
documents.)

SODA for Java and SODA for REST do not support operator $textContains,
and they do not support operator $id for use with a heterogeneous
collection.

• Composite Filters (Reference)
A composite filter specification (query-by-example, or QBE) can appear only at the
top level. That is, you cannot nest a composite filter inside another composite filter
or inside a filter condition.

• Filter Conditions (Reference)
A filter condition can be used either on its own, as a filter specification, or at a
lower level, in the query clause of a composite filter specification.

Related Topics

• Overview of SODA Filter Specifications (QBEs)
A filter specification is a pattern expressed in JSON. You use it to select, from a
collection, the JSON documents whose content matches it, meaning that the
condition expressed by the pattern evaluates to true for the content of (only) those
documents.

• Media Type Column Name
The collection metadata component that specifies the name of the column that
stores the media type of the document. A media type column is needed if the
collection is to be heterogeneous, that is, it can store documents other than
JavaScript Object Notation (JSON).

See Also:

Oracle Database JSON Developer’s Guide for information about strict and
lax JSON syntax

5.1 Composite Filters (Reference)
A composite filter specification (query-by-example, or QBE) can appear only at the top
level. That is, you cannot nest a composite filter inside another composite filter or
inside a filter condition.

A composite filter is an object that has at most one member of each of these
clauses:2

2 SODA for REST provides additional clauses for use in a composite filter.

Chapter 5
Composite Filters (Reference)

5-2

• Query clause

It has the form $query : filter_condition.

• Orderby clause

It has the form $orderby : orderby_spec, where is an array or an object specifying the
sort order for the selected documents.

The order of the clauses is not significant. Absence of a clause has the same effect as
applying its operator to an operand that is an empty object: Absence of a query clause
selects all documents; absence of an orderby clause imposes no order.

The following composite filter contains a query clause and an orderby clause. The query
clause selects documents that have a salary field whose value is greater than 10,000. The
orderby clause sorts the selected documents first by descending age and then by ascending
zip code.

{ "$query" : { "salary" : { "gt" : 10000 } },
 "$orderby" : { "age" : -1, "zip" : 2 } }

• Orderby Clause Sorts Selected Objects
A filter specification (query-by-example, or QBE) with an orderby clause returns the
selected JSON documents in sorted order.

Related Topics

• Filter Conditions (Reference)
A filter condition can be used either on its own, as a filter specification, or at a lower level,
in the query clause of a composite filter specification.

5.1.1 Orderby Clause Sorts Selected Objects
A filter specification (query-by-example, or QBE) with an orderby clause returns the selected
JSON documents in sorted order.

There are two ways of controlling the ordering behavior, with different orderby-clause
syntaxes:

• An array syntax lets you specify the SQL data types used and provides simple control
over the field order. Sorting is by the first field specified, then by the second, and so on.

There are two variants of this syntax, depending on whether you need to change the
default behavior for handling of errors or empty fields.

• An abbreviated syntax does not let you specify the SQL data types used. In its most
abbreviated form it also does not provide control over the order of the fields used for
sorting.

Orderby Clause Array Syntax

The simplest orderby array syntax is operator $orderby followed by an array of objects, each
of which has a path field, which targets a particular field from the root of the candidate object,
followed by at most one of each of these fields:

• datatype, which specifies the SQL data type to use — one of: "varchar2" (default),
"number", "date", "datetime", "timestamp", "string" or "varchar". (Value datetime is
a synonym for timestamp. Values "string" and "varchar" are synonyms for
"varchar2".)

Chapter 5
Composite Filters (Reference)

5-3

These values correspond to SQL data types VARCHAR2, NUMBER, DATE, and
TIMESTAMP, respectively.

Note:

To use a datatype value of date or timestamp you need Oracle
Database Release 18c or later.

• order, which specifies whether the field values are to be in ascending ("asc") or
descending ("desc") order (default: "asc")

• maxLength, which is a positive integer that specifies the maximum length, in
characters, of a targeted string value. If a string exceeds this limit then raise an
error. The use of $lax (see below) inhibits raising the error and ignores the
overlong string for sorting purposes. Field maxLength applies only when datatype
is "varchar2".

For example, this filter specification selects objects in which field salary has a value
greater than 10,000 and less than or equal to 20,000. It sorts the objects first by
descending age, interpreted as a number, then by ascending name, interpreted as a
string.

{ "$query" : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
 "$orderby" :
 [{ "path" : "age", "datatype" : "number", "order" : "desc" },
 { "path" : "name", "datatype" : "varchar2", "order" : "asc" }] }

The following SQL SELECT statement fragment is analogous:

WHERE (salary > 10000) AND (salary <= 20000) ORDER BY age DESC, name
ASC

This syntax serves most purposes. No error is raised just because the targeted field is
absent, and any other error encountered is raised.3

If you need to specify special handling of missing fields or errors then you need to use
the more elaborate array syntax. This wraps the array in a $fields object, which lets
you add another field, $scalarRequired or $lax, to the $orderby object. You cannot
specify a true value for both $lax and $scalarRequired, or else a syntax error is
raised at query time.

• $scalarRequired — Boolean. Optional. When set to true the targeted field must
be present, and its value must be a JSON scalar that is convertible to data type
datatype. Raise an error at query time if, for any matched document, that is not
the case.4

3 The default error-handling behavior corresponds to the SQL/JSON semantics ERROR ON ERROR NULL ON
EMPTY.

4 A true value of $scalarRequired corresponds to the use of SQL clause ERROR ON ERROR for a json_value
expression.

Chapter 5
Composite Filters (Reference)

5-4

• $lax — Boolean. Optional. When set to true the targeted field need not be present or
have a value that is a JSON scalar convertible to data type datatype. Do not raise an
error at query time if, for any matched document, that is the case.5

If neither scalarRequired nor lax is specified as true then the default error-handling
behavior applies (no error is raised just because the targeted field is absent, and any other
error encountered is raised).

For example, this filter specification has the same behavior as the preceding one, except that
it raises an error if any of the targeted fields is missing.

{ "$query" : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
 "$orderby" :
 { "$fields" : [{ "path" : "age",
 "datatype" : "number",
 "order" : "desc" },
 { "path" : "name",
 "datatype" : "varchar2",
 "order" : "asc",
 "maxLength" : 100 }],
 "$scalarRequired" : true } }

Note:

If you use Oracle Database Release 12c (12.1.0.2) then you must specify
either $scalarRequired or $lax; otherwise a syntax error is raised.

Note:

If you have defined a B-tree index for any of the fields targeted by a QBE that has
an orderby clause then that index must be specified with a true value of
indexNulls for it to be picked up for that query.

See Also:

• Oracle Database JSON Developer’s Guide for information about SQL/JSON
error-handling values ERROR ON ERROR and NULL ON ERROR

• Oracle Database JSON Developer’s Guide for information about SQL/JSON
empty field-handling values NULL ON EMPTY and ERROR ON EMPTY

Orderby Clause Abbreviated Syntax

The abbreviated $orderby syntax specifies the fields to use for sorting, along with their
individual directions and the order of sorting among the fields. It does not specify the SQL
data types to use when interpreting field values for sorting, and it does not let you limit string
sorting to the first N characters.5 A true value of $lax corresponds to the use of SQL clause NULL ON ERROR for a functional index created on a

json_value expression.

Chapter 5
Composite Filters (Reference)

5-5

The orderby abbreviated syntax is $orderby followed by an object with one or more
members, whose fields are used for sorting:

"$orderby" : { field1 : direction1, field2 : direction2, ... }

Each field is a string that is interpreted as a path from the root of the candidate
object.

Each direction is a non-zero integer. The returned documents are sorted by the
field value in ascending or descending order, depending on whether the value is
positive or negative, respectively.

The fields in the $orderby operand are sorted in the order of their magnitudes
(absolute values), smaller magnitudes before larger ones. For example, a field with
value -1 sorts before a field with value 2, which sorts before a field with value 3. As
usual, the order of the fields in the object value of $orderby is immaterial.

If the absolute values of two or more sort directions are equal then the order in which
the fields are sorted is determined by the order in which they appear in the serialized
JSON content that you use to create the JSON document.

Oracle recommends that you use sort directions that have unequal absolute values, to
precisely govern the order in which the fields are used, especially if you use an
external tool or library to create the JSON content and you are unsure of the order in
which the resulting content is serialized.

This query acts like the one in Orderby Clause Array Syntax, except that interpretation
of data types is not specified here, and (assuming that field name has string values) all
characters in the name are used for sorting here. Note that the order of the object
members is irrelevant here. In particular, it does not specify which field is sorted first —
that is determined by the value magnitudes.

{ "$query" : { "salary" : { $between [10000, 20000] } },
 "$orderby" : { "age" : -1, "name" : 2 } }

The following SQL SELECT statement fragment is analogous:

WHERE (salary >= 10000) AND (salary <= 20000) ORDER BY age DESC, name
ASC

Related Topics

• Overview of QBE Operator $orderby
Query-by-example (QBE) operator $orderby is described. It sorts query results in
ascending or descending order.

• SODA Paths (Reference)
SODA filter specifications contain paths, each of which targets a value in a
JavaScript Object Notation (JSON) document. A path is composed of a series of
steps. A detailed definition of SODA paths is presented.

• SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

Chapter 5
Composite Filters (Reference)

5-6

5.2 Filter Conditions (Reference)
A filter condition can be used either on its own, as a filter specification, or at a lower level, in
the query clause of a composite filter specification.

A filter condition is a JSON object whose members form one or more of these clauses:

• scalar-equality clause

• field-condition clause

• logical combining clause

• nested-condition clause

• ID clause

• text-contains clause

• special-criterion clause

A filter condition is true if and only if all of its clauses are true. A filter condition can be empty
(the empty object, {}), in which case all of its (zero) clauses are vacuously true (the filter
condition is satisfied).

For example, if a QBE involves only one filter condition and it is empty then all documents of
the collection are selected. In this case, a find operation returns all of the documents, and a
remove operation removes them all.

• Scalar-Equality Clause (Reference)
A scalar-equality clause tests whether a given object field is equal to a given scalar
value.

• Field-Condition Clause (Reference)
A field-condition clause specifies that a given object field must satisfy a given set of
criteria. It constrains a field using one or more condition-operator clauses, each of which
is a comparison clause, a not clause, or an item-method clause.

• Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter conditions.

• Nested-Condition Clause (Reference)
You use a QBE nested-condition clause to apply multiple conditions at the same time, to
array elements that are objects.

• ID Clause (Reference)
Other query-by-example (QBE) operators generally look for particular JSON fields within
the content of documents and try to match their values. An ID clause, which uses
operator $id, instead matches document keys. It thus matches document metadata, not
document content.

• Text-Contains Clause (Reference)
A text-contains clause is operator $textContains with a string value that is used as a full-
text search pattern: $textcontains:pattern. It matches a non-JSON document only if
some text in the document matches that pattern. Matching is Oracle Text full-text
matching.

• Special-Criterion Clause (Reference)
A special criterion clause is a spatial clause (with operator $near, $intersects,
or $within), or a contains clause (with operator $contains).

Chapter 5
Filter Conditions (Reference)

5-7

5.2.1 Scalar-Equality Clause (Reference)
A scalar-equality clause tests whether a given object field is equal to a given scalar
value.

A scalar-equality clause is an object member with a scalar value. It tests whether the
value of the field is equal to the scalar.

field : scalar

(Reminder: a JSON scalar is a value other than an object or an array; that is, it is a
JSON number, string, true, false, or null.)

A scalar-equality clause is equivalent in behavior to a field-condition clause with a
comparison clause that tests the same field value using operator $eq. That is, field :
scalar is equivalent to field : { "$eq" : scalar }.

Though the behavior is equivalent, a scalar-equality clause cannot be used in some
contexts where the corresponding "$eq" : field member can be used. For example,
a scalar-equality clause cannot be used in a not clause. The array elements in the
argument array of a not clause must be comparison clauses.

5.2.2 Field-Condition Clause (Reference)
A field-condition clause specifies that a given object field must satisfy a given set of
criteria. It constrains a field using one or more condition-operator clauses, each of
which is a comparison clause, a not clause, or an item-method clause.

A field-condition clause is JSON-object member whose field is not an operator and
whose value is an object with one or more members, each of which is a condition-
operator clause:

field : { condition-operator-clause ... }

A field-condition clause tests whether the field satisfies all of the condition-operator
clauses, which are thus implicitly ANDed.

A condition-operator clause is any of these:

• A comparison clause

• A not clause

• An item-method clause

Chapter 5
Filter Conditions (Reference)

5-8

Note:

When a path that does not end in an array step uses a comparison clause or a not
clause, and the path targets an array, the test applies to each element of the array.

For example, the QBE {"animal" : {"$eq" : "cat"}} matches the JSON data
{"animal" : ["dog", "cat"]}, even though "cat" is an array element. The QBE
{"animal" : {$not : {"$eq" : "frog"}}} matches the same data, because each
of the array elements is tested for equality with "frog" and this test fails.

• Comparison Clause (Reference)
A comparison clause is an object member whose field is a comparison operator.
Example: "$gt" : 200.

• Not Clause (Reference)
A not clause logically negates the truth value of a set of comparison clauses. When any
of the comparison clauses is true, the not clause evaluates to false; when all of them are
false, the not clause evaluates to true.

• Item-Method Clause (Reference)
An item-method clause is an item-method equality clause or an item-method modifier
clause. It applies an item method to the field of the field-condition clause in which it
appears, typically to modify the field value. It then matches the result against the operand
of the item-method.

• ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates, times, and durations. Oracle Database supports the
most common ISO 8601 formats as proper Oracle SQL date, time, and interval (duration)
values. The formats that are supported are essentially those that are numeric-only,
language-neutral, and unambiguous.

Related Topics

• Nested-Condition Clause (Reference)
You use a QBE nested-condition clause to apply multiple conditions at the same time, to
array elements that are objects.

• Composite Filters (Reference)
A composite filter specification (query-by-example, or QBE) can appear only at the top
level. That is, you cannot nest a composite filter inside another composite filter or inside a
filter condition.

• Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some query-
by-example (QBE) examples, as well as in some reference descriptions.

5.2.2.1 Comparison Clause (Reference)
A comparison clause is an object member whose field is a comparison operator. Example:
"$gt" : 200.

Table 5-1 describes the comparison operators. See Sample JSON Documents for the
documents used in the examples in column Description.

Chapter 5
Filter Conditions (Reference)

5-9

Table 5-1 Query-By-Example (QBE) Comparison Operators

Operator Description

$exists Tests whether the field exists. Matches document if either:

• The field exists and the operand represents true, meaning that it is any scalar value
except false, null, or 0.

• The field does not exist and the operand represents false, meaning that it is false,
null, or 0.

Operand
JSON scalar.

Example

{drinks : { "$exists" : true }}

matches sample document 3.

{drinks : { "$exists" : false }}

matches sample documents 1 and 2.

$eq Matches document only if field value equals operand value.

Operand
JSON scalar.

Example

{"name" : { "$eq" : "Jason" }}

matches sample document 1.

$ne Matches document only if field value does not equal operand value or there is no such field
in the document.

Operand
JSON scalar.

Example

{"name" : { "$ne" : "Jason" }}

matches sample documents 2 and 3.

$gt Matches document only if field value is greater than operand value.

Operand
JSON number or string.

Example

{"age" : { "$gt" : 50 }}

matches sample document 2.

Chapter 5
Filter Conditions (Reference)

5-10

Table 5-1 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator Description

$lt Matches document only if field value is less than operand value.

Operand
JSON number or string.

Example

{"age" : { "$lt" : 50 }}

matches sample document 1.

$gte Matches document only if field value is greater than or equal to operand value.

Operand
JSON number or string.

Example

{"age" : { "$gte" : 45 }}

matches sample documents 1, 2, and 3.

$lte Matches document only if field value is less than or equal to operand value.

Operand
JSON number or string.

Example

{"age" : { "$lte" : 45 }}

matches sample document 1.

$between Matches document only if string or number field value is between the two operand array
elements or equal to one of them.

Operand
JSON array of two scalar elements. The first must be the smaller of the two. (For string
values, smaller means first, lexicographically.)

At most one of the elements can be null, which means no limit. An error is raised if both
are null or if there are not exactly two array elements.

Example

{"age" : { "$between" : [49, 70] }}

matches sample documents 2 and 3.

{"age" : { "$between" : [45, null] }}

matches sample documents 1, 2, and 3. It is equivalent to

{"age" : { "$gte" : 45 }}

Chapter 5
Filter Conditions (Reference)

5-11

Table 5-1 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator Description

$startsWith Matches document only if field value starts with operand value.

Operand
JSON string.

Example

{"name" : {"$startsWith" : "J"}}

matches sample document 1.

$hasSubstring
or $instr

Matches document only if field value is a string with a substring equal to the operand.

Operand
Non-empty JSON string.

Example

{"street" : { "$hasSubstring" : "street" }}

matches sample documents 1 and 2.

$regex Matches document only if field value matches operand regular expression.

Operand
SQL regular expression, as a JSON string.

See Oracle Database SQL Language Reference.

Example

{"name" : { "$regex" : ".*son"}}

matches sample document 1.

$like Matches document only if field value matches operand pattern.

Operand
SQL LIKE condition pattern, as a JSON string.

See Oracle Database SQL Language Reference.

Example

{"city" : { "$like" : "Mar_" }}

matches sample documents 2 and 3.

$in Matches document only if field exists and its value equals at least one value in the operand
array.

Operand
Non-empty JSON array of scalars.1

Example

{"address.zip" : { "$in" : [94088, 90001] }}

matches sample documents 1 and 2.

Chapter 5
Filter Conditions (Reference)

5-12

Table 5-1 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator Description

$nin Matches document only if one of these is true:

• Field exists, but its value is not equal to any value in the operand array.
• Field does not exist.
Operand
Non-empty JSON array of scalars.1

Example

{"address.zip" : { "$nin" : [90001] }}

matches sample documents 1 and 2.

$all Matches document only if one of these is true:

• Field value is an array that contains all values in the operand array.
• Field value is a scalar value and the operand array contains a single matching value.
Operand
Non-empty JSON array of scalars.1

Example

{"drinks" : { "$all" : ["soda", "tea"]}}

matches sample document 2.

{"drinks": { "$all" : ["tea"]}}

matches sample documents 1 and 2.

1 A syntax error is raised if the array does not contain at least one element.

Related Topics

• Overview of QBE Comparison Operators
A query-by-example (QBE) comparison operator tests whether a given JSON object field
satisfies some conditions.

5.2.2.2 Not Clause (Reference)
A not clause logically negates the truth value of a set of comparison clauses. When any of
the comparison clauses is true, the not clause evaluates to false; when all of them are false,
the not clause evaluates to true.

A not clause is an object member whose field is operator $not and whose value is an object
whose members are comparison clauses, which are implicitly ANDed before negating the
truth value of that conjunction.

"$not" : { comparison-clause ... }

Example: "$not" : {"$eq" : 200, "$lt" : 40}.

Chapter 5
Filter Conditions (Reference)

5-13

The following field-condition clause matches documents that have no field
address.zip, as well as documents that have such a field but whose value is a scalar
other than "90001" or an array that has no elements equal to "90001":

"address.zip" : {"$not" : {"$eq" : "90001"}}

In contrast, the following field-condition clause has the complementary effect: it
matches documents that have a field address.zip whose value is either the scalar
"90001" or an array that contains that scalar value.

"address.zip" : {"$eq" : "90001"}}

Here is an example of a field-condition clause with field salary and with value a not
clause whose operand object has more than one comparison clause. It matches salary
values that are not both greater than 20,000 and less than 100,000. That is, it
matches salary values that are either less than or equal to 20,000 or greater than or
equal to 100,000.

"salary" : {"$not" : {"$gt":20000, "$lt":100000}}

Related Topics

• Overview of QBE Operator $not
Query-by-example (QBE) operator $not negates the behavior of its operand,
which is a JSON object containing one or more comparison clauses, which are
implicitly ANDed.

5.2.2.3 Item-Method Clause (Reference)
An item-method clause is an item-method equality clause or an item-method modifier
clause. It applies an item method to the field of the field-condition clause in which it
appears, typically to modify the field value. It then matches the result against the
operand of the item-method.

For example, item-method operator $timestamp interprets as a time stamp a string-
valued field that is in one of the supported ISO 8601 date formats. After the operator is
applied to the value of the targeted field, other processing takes place, including the
evaluation of any not clause and comparison clauses that make up the item-method
modifier clause. The QBE uses the modified data in place of the raw field data that is
in your JSON documents.

In some cases, the application of an item-method operator acts only as a filter,
removing targeted data from the QBE result set. For example, if item-
method $timestamp is applied to a string value that is not in one of the supported ISO
8601 date formats then there is no match — the query treats that field occurrence as if
it were not present in the document.

Chapter 5
Filter Conditions (Reference)

5-14

Note:

An item-method field (operator) does not, itself, use or act on its associated value
(its operand). Instead, it acts on the value of the JSON data that matches its parent
field.

For example, in the QBE {"birthday" : {"$date" : {"$gt" : "2000-01-01"}}},
item-method operator $date acts on the JSON data that matches its parent field,
birthday. It does not use or act on its operand, which is the JSON object (a
comparison clause in this case) {"$gt" : "2000-01-01"}. The birthday data (a
JSON string of format ISO 8601) in your JSON document is interpreted as a date,
and that date is then matched against the condition that it be greater than the date
represented by the (ISO date) string "2000-01-01" (later than January 1, 2000).

This can take some getting used to. The operand is used after the item-method
operator does its job. It is matched against the result of the action of the operator on
the value of its parent field. A item-method operator is a filter of sorts — it stands
syntactically between the field (to its left) that matches the data it acts on and (to its
right) some tests that are applied to the result of that action.

Item-Method Equality Clause

An item-method equality clause is an object member whose field is an item-method
operator and whose value is a JSON scalar.6

item-method-operator : scalar

The clause first applies the item method to the field of the field-condition clause. It then tests
whether the result is equal to the scalar value (operand).

Example: "$upper" : "john"
(An item-method equality clause is equivalent to an item-method modifier clause (see next)
whose field value (operand) is an object with a single comparison clause with comparison
operator $eq. For example, "$upper" : "john" is equivalent to "$upper" : {"$eq" :
"john"}.)

Item-Method Modifier Clause

An item-method modifier clause is an object member whose field is an item-method
operator and whose value (operand) is an object whose members are comparison clauses or
at most one not clause. The operand of the item-method operator cannot be an empty object.

item-method-operator : { comparison-or-not-clause ... }7

The clause first applies the item method to the field of the field-condition clause. It then tests
whether the result of that operation satisfies all of the comparison clauses and not clause in
its object value.

6 Reminder: a JSON scalar is a value other than an object or an array; that is, it is a JSON number, string, true, false, or
null.

7 At most one not clause is allowed in the operand.

Chapter 5
Filter Conditions (Reference)

5-15

Example: "$upper" : { "$between" : ["ALPHA", "LAMBDA"], "$not" :
{ "$startsWith" : "BE" } }

Item-Method Operators

Here is a brief description of each item-method operator. The target of the operator is
the data matched by the field of the field-condition clause in which the item-method
clause appears — the parent field of the operator. It is not the operand of the operator.

Table 5-2 Item-Method Operators

Operator Description
1

$abs Absolute value of the targeted JSON number.

Target of Operator
JSON number

Example
{"ordinate" : {"$abs" : {"$gt" : 1.0}}} matches a negative or positive
ordinate value whose magnitude is greater than 1.0. It matches, for example, –1.3 and
1.3.

$boolean A Boolean interpretation of the targeted JSON value.

Target of Operator
JSON Boolean value (true or false) or a string that when converted to lowercase is either
"true" or "false"
Example
{"retired" : {"$boolean" : true}} matches (only) a retired value of true or a
string that matches "true" case-insensitively.

$ceiling The targeted JSON number, rounded up to the nearest integer.

Target of Operator
JSON number

Example
{"age" : {"$ceiling" : {"$lt" : 65}}} matches an age value of 63.9. It does not
match a value of 64.1, because 64.1 rounds up to 65.

$date2 A date interpretation of the targeted JSON string.

Target of Operator
JSON string in supported ISO 8601 format

Example
{"birthday" : {"$date" : "2018–06–30"}} matches a "birthday" value of
"2018–06–30" or "2018–06–30T17:29:08Z", because they are supported ISO 8601
formats for the same date.

$double A SQL BINARY_DOUBLE interpretation of the targeted JSON number or numeric string
value.

Target of Operator
JSON number or numeric string

Example
{"thickness" : {"$double" : {"$lt" : 1.0}}} matches a thickness value of
"0.999999999".

Chapter 5
Filter Conditions (Reference)

5-16

Table 5-2 (Cont.) Item-Method Operators

Operator Description
1

$floor The targeted JSON number, rounded down to the nearest integer.

Target of Operator
JSON number

Example
{"age" : {"$floor" : {"$le" : 65}}} matches an age value of 65.2. It does not
match a value of 66.3, because 66.3 rounds down to 66.

$length The number of characters in the targeted JSON string.

Target of Operator
JSON string

Example
{"name" : {"$length" : {"$gt" : 4}}} matches "Jason". It does not match
"Mary" because that string has only 4 characters.

$lower The lowercase string that corresponds to the characters in the targeted JSON string.

Target of Operator
JSON string

Example
{"name" : {"$lower" : "mary"}} matches "Mary".

$number A SQL NUMBER interpretation of the targeted JSON number or numeric string value.

Using $number is equivalent to specifying a numeric constant.

Target of Operator
JSON number or numeric string

Example
{"thickness" : {"$number" : {"$lt" : 1.0}}} matches a thickness value of
"0.9999".

{"thickness" : {"$number" : {"$lt" : 1.0}}} is equivalent to {"thickness" :
{"$lt" : 1.0}}.

$size The number of elements in an array, or 1 for a scalar or an object.

Target of Operator
JSON value of any kind

Example
{"drinks" : {"$size" : {"$gt" : 1}}} matches a drinks value of ["soda",
"coffee"] because the value is an array with more than one element.

{"address" : {"$size" : 1}} matches an address value that is a JSON object.

$string A SQL VARCHAR2(4000) interpretation of the targeted JSON scalar.

Using $string is equivalent to specifying a string constant (literal).

Target of Operator
JSON scalar other than null
Example
{"age" : {"$string" : {"$lt" : "45"}}} matches a numeric age value of 100,
because the string "100" is lexicographically less than the string "45".

{"age" : {"$string" : {"$lt" : "45"}}} is equivalent to {"age" : {"$lt" :
"45"}}.

Chapter 5
Filter Conditions (Reference)

5-17

Table 5-2 (Cont.) Item-Method Operators

Operator Description
1

$timestamp3 A date-with-time interpretation of the targeted JSON string.

Target of Operator
JSON string in supported ISO 8601 format

Example
{"meeting—time" : {"$timestamp" : VALUE}}, where VALUE is any of the following,
matches any of the same values:

• "2016-07-26T02:06:01Z"
• "2016-07-26T02:06:01" (UTC by default)

• "2016-07-26T01:06:01-01:00" (1:00 am in a time zone that is one hour behind
UTC is equivalent to 2:00 am UTC.)

If VALUE is a date-only ISO 8601 string then its equivalent date-with-time value is used. For
example, a date value of "2016-07-26" is treated as the date-with-time zone value
"2016-07-26T00:00:00Z".

$type The name of the JSON-language data type of the targeted data, as a lowercase JSON
string.

• "null" for a value of null.

• "boolean" for a value of true or false.

• "number" for a number.

• "string" for a string.

• "array" for an array.

• "object" for an object.

Target of Operator
JSON value of any kind

Example
{"address" : {"$type" : "object"}} matches an address value that is a JSON
object.

$upper The uppercase string that corresponds to the characters in the targeted JSON string.

Target of Operator
JSON string

Example
{"name" : {"$upper" : "MARY"}} matches "Mary".

1 The scalar-equality abbreviation {field : {operator : value}} is used everywhere in examples here, in place of the
equivalent {field : {operator : {"$eq" : value}}}.

2 The operand of operator $date must be a JSON string that has a supported ISO 8601 format. Otherwise, no match is found.
3 The operand of operator $timestamp must be a JSON string that has a supported ISO 8601 format. Otherwise, no match is

found.

Chapter 5
Filter Conditions (Reference)

5-18

Note:

• If an item-method conversion fails for any reason, such as the operand being of
the wrong type, then the path cannot be matched (it refers to no data), and no
error is raised.

• If an item-method operator is applied to an array then it is in effect applied to
each of the array elements.

For example, QBE {"color" : {"$upper" : "RED"}} matches data
{"color" : ["Red", "Blue"]} because the array has an element that when
converted to uppercase matches "RED". The QBE is equivalent to
{"color[*]" : {"$upper" : "RED"}} — operator $upper is applied to each
array element of the target data.

Note:

• To use item method operator $abs, $date, $size, $timestamp, or $type you
need Oracle Database Release 18c or later.

• To use any other item method you need Oracle Database Release 12c
(12.2.0.1) or later.

Related Topics

• Overview of QBE Item-Method Operators
A query-by-example (QBE) item-method operator acts on a JSON-object field value to
modify or transform it in some way (or simply to filter it from the query result set). Other
QBE operators that would otherwise act on the field value then act on the transformed
field value instead.

• SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

• ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates, times, and durations. Oracle Database supports the
most common ISO 8601 formats as proper Oracle SQL date, time, and interval (duration)
values. The formats that are supported are essentially those that are numeric-only,
language-neutral, and unambiguous.

See Also:

Oracle Database JSON Developer’s Guide

Chapter 5
Filter Conditions (Reference)

5-19

5.2.2.4 ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates, times, and durations. Oracle Database supports the
most common ISO 8601 formats as proper Oracle SQL date, time, and interval
(duration) values. The formats that are supported are essentially those that are
numeric-only, language-neutral, and unambiguous.

(Simple Oracle Document Access (SODA) does not support durations.)

Oracle Database Syntax for ISO Dates and Times

This is the syntax that Oracle Database supports for ISO dates and times:

• Date (only): YYYY-MM-DD
• Date with time: YYYY-MM-DDThh:mm:ss[.s[s[s[s[s[s]]]]][Z|(+|-)hh:mm]
where:

• YYYY specifies the year, as four decimal digits.

• MM specifies the month, as two decimal digits, 00 to 12.

• DD specifies the day, as two decimal digits, 00 to 31.

• hh specifies the hour, as two decimal digits, 00 to 23.

• mm specifies the minutes, as two decimal digits, 00 to 59.

• ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59,
optionally followed by a decimal point and 1 to 6 decimal digits (representing the
fractional part of a second).

• Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but not by
–00:00.)

• (+|-)hh:mm specifies the time-zone as difference from UTC. (One of + or – is
required.)

For a time value, the time-zone part is optional. If it is absent then UTC time is
assumed.

No other ISO 8601 date-time syntax is supported. In particular:

• Negative dates (dates prior to year 1 BCE), which begin with a hyphen (e.g. –
2018–10–26T21:32:52), are not supported.

• Hyphen and colon separators are required: so-called “basic” format,
YYYYMMDDThhmmss, is not supported.

• Ordinal dates (year plus day of year, calendar week plus day number) are not
supported.

• Using more than four digits for the year is not supported.

Supported dates and times include the following:

• 2018–10–26T21:32:52
• 2018-10-26T21:32:52+02:00
• 2018-10-26T19:32:52Z

Chapter 5
Filter Conditions (Reference)

5-20

• 2018-10-26T19:32:52+00:00
• 2018-10-26T21:32:52.12679
Unsupported dates and times include the following:

• 2018-10-26T21:32 (if a time is specified then all of its parts must be present)

• 2018-10-26T25:32:52+02:00 (the hours part, 25, is out of range)

• 18-10-26T21:32 (the year is not specified fully)

Oracle Database Syntax for ISO Durations

Note:

Oracle Database supports ISO durations, but Simple Oracle Document Access
(SODA) does not support them.

There are two supported Oracle Database syntaxes for ISO durations, the ds_iso_format
specified for SQL function to_dsinterval and the ym_iso_format specified for SQL function
to_yminterval. (to_dsinterval returns an instance of SQL type INTERVAL DAY TO SECOND,
and to_yminterval returns an instance of type INTERVAL YEAR TO MONTH.)

These formats are used for data types daysecondInterval and yearmonthInterval,
respectively, which Oracle has added to the JSON language.

• ds_iso_format:

PdDThHmMsS, where d, h, m, and s are digit sequences for the number of days, hours,
minutes, and seconds, respectively. For example: "P0DT06H23M34S".

s can also be an integer-part digit sequence followed by a decimal point and a fractional-
part digit sequence. For example: P1DT6H23M3.141593S.

Any sequence whose value would be zero is omitted, along with its designator. For
example: "PT3M3.141593S". However, if all sequences would have zero values then the
syntax is "P0D".

• ym_iso_format

PyYmM, where y is a digit sequence for the number of years and m is a digit sequence
for the number of months. For example: "P7Y8M".

If the number of years or months is zero then it and its designator are omitted. Examples:
"P7Y", "P8M". However, if there are zero years and zero months then the syntax is "P0Y".

Related Topics

• Item-Method Clause (Reference)
An item-method clause is an item-method equality clause or an item-method modifier
clause. It applies an item method to the field of the field-condition clause in which it
appears, typically to modify the field value. It then matches the result against the operand
of the item-method.

Chapter 5
Filter Conditions (Reference)

5-21

See Also:

• ISO 8601 standard

• ISO 8601 at Wikipedia

5.2.3 Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter conditions.

A logical combining clause is a logical combining operator — $and, $or, or $nor
— followed by a non-empty array of one or more non-empty filter conditions.

This logical combining clause uses operator $or. It is satisfied if either of its conditions
is true (or if both are true). That is, it is satisfied if the document contains a field name
whose value is "Joe", or if it contains a field salary whose value is 10000.

"$or" : [{"name" : "Joe"}, {"salary" : 10000}]

The following logical combining clause uses operator $and. Its array operand has two
filter conditions as its members. The second of these is a condition with a logical
combining clause that uses operator $or. This logical combining clause is satisfied if
both of its conditions are true. That is, it is satisfied if the document contains a field age
whose value is at least 60, and either it contains a field name whose value is "Jason" or
it contains a field drinks whose value is "tea".

"$and" : [{"age" : {"$gte" : 60}},
 {"$or" : [{"name" : "Jason"}, {"drinks" : "tea"}]}]

• Omitting $and
Sometimes you can omit the use of $and.

5.2.3.1 Omitting $and
Sometimes you can omit the use of $and.

A filter condition is true if and only if all of its clauses are true. And a field-condition
clause can contain multiple condition clauses, all of which must be true for the field-
condition clause as whole to be true. In each of these, logical conjunction (AND) is
implied. Because of this you can often omit the use of $and, for brevity.

This is illustrated by Example 5-1 and Example 5-2, which are equivalent in their
effect. Operator $and is explicit in Example 5-1 and implicit (omitted) in Example 5-2.

The filter specifies objects for which the name starts with "Fred" and the salary is
greater than 10,000 and less than or equal to 20,000 and either address.city is
"Bedrock" or address.zip is 12345 and married is true.

8 A syntax error is raised if the array does not contain at least one element.

Chapter 5
Filter Conditions (Reference)

5-22

https://en.wikipedia.org/wiki/ISO_8601

A rule of thumb for $and omission is this: If you omit $and, make sure that no field or operator
in the resulting filter appears multiple times at the same level in the same object.

This rule precludes using a QBE such as this, where field salary appears twice at the same
level in the same object:

{ "salary" : { "$gt" : 10000 },
 "age" : { "$gt" : 40 },
 "salary" : { "$lt" : 20000 } }

And it precludes using a QBE such as this, where the same condition operator, $regex, is
applied more than once to field name in the same condition clause:

{ "name" : { "$regex" : "son", "$regex" : "Jas" } }

The behavior here is not that the field condition is true if and only if both of the $regex criteria
are true. To be sure to get that effect, you would use a QBE such as this one:

{ $and : [{ "name" : { "$regex" : "son" }, { "name" : { "$regex" :
"Jas" }] }

If you do not follow the rule of thumb for $and omission then only one of the conflicting
condition clauses that use the same field or operator is evaluated; the others are ignored, and
no error is raised. For the salary example, only one of the salary field-condition clauses is
evaluated; for the name example, only one of the $regex condition clauses is evaluated.
Which one of the set of multiple condition clauses gets evaluated is undefined.

Example 5-1 Filter Specification with Explicit $and Operator

{ "$and" : [{ "name" : { "$startsWith" : "Fred" } },
 { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
 { "$or" : [{ "address.city" : "Bedrock" },
 { "address.zip" : 12345 }] },
 { "married" : true }] }

Example 5-2 Filter Specification with Implicit $and Operator

{ "name" : { "$startsWith" : "Fred" },
 "salary" : { "$gt" : 10000, "$lte" : 20000 },
 "$or" : [{ "address.city" : "Bedrock" },
 { "address.zip" : 12345 }],
 "married" : true }

Chapter 5
Filter Conditions (Reference)

5-23

5.2.4 Nested-Condition Clause (Reference)
You use a QBE nested-condition clause to apply multiple conditions at the same time,
to array elements that are objects.

A nested-condition clause consists of a parent path, followed by a colon (:), and a
single, non-empty nested filter condition.

parent : filter-condition

The path targets a parent object whose value is a child object that satisfies the nested
condition. If the parent path ends with [*], then it targets a parent object whose value
is either such a child object or an array with such an object as at least one of its
elements. The latter case is typical: you end the parent path with [*].

All fields contained in the nested condition are scoped to the parent object. They act
as multiple conditions on each of the array objects (or the single child object, if the
parent's value is not an array).

Note:

Because the condition of a nested-condition clause follows a field, it cannot
contain an ID clause or a special-criterion clause. Those clauses can occur
only at the root level.

For example, suppose that field address has an array value with object elements that
have fields city and state. The following nested-condition clause tests whether array
address has at least one object with both a field address.city that has the value
"Boston" and a field address.state that has the value "MA":

"address[*]" : { "city" : "Boston", "state" : "MA" }

Similarly, this nested-condition clause tests whether the value of address.city starts
with Bos and address.state has the value "MA":

"address[*]" : { "city" : { "$startsWith : "Bos" }, "state" : "MA" }

Now suppose that you have this document:

{ "address" : [{ "city" : "Boston", "state" : "MA" },
 { "city" : "Los Angeles", "state" : "CA" }] }

Both of the above nested-condition clauses match that document.

Chapter 5
Filter Conditions (Reference)

5-24

They also match the following document, whose address field value is an object, not an array
of objects. The [*] in a nested-condition clause is needed to handle the array case, but it
also handles the single-object case.

{ "address" : { "city" : "Boston", "state" : "MA" } }

If you mistakenly omit the [*], then each object element of the array is matched
independently against each of the multiple conditions specified.

For example, the following two queries are equivalent. The first one has the form of a nested-
condition clause but without the [*]. These queries match each address in a document
independently. Each object element of an address array is matched to see if it has a city
value of "Boston" or it has a state value of "CA" — it can, but it need not, have both. Each of
these queries thus matches the document shown above, which has no single object with both
city "Boston" and state "CA".

{ "address" : { "city": "Boston", "state" : "CA" } }

{ "address.city" : "Boston", "address.state" : "CA" }

The following query, with a nested-condition clause for parent field address, does not match
the preceding document with an address value that is an array, because that document has
no single object in the array with both a field city of value "Boston" and a field state of
value "CA".

{ "address[*]" : { "city" : "Boston", "state" : "CA" } }

Related Topics

• Overview of Nested Conditions in QBEs
You can use a query-by-example (QBE) with a nested condition to match a document
that has a field with an array value with object elements, where a given object in the array
satisfies multiple conditions.

• Special-Criterion Clause (Reference)
A special criterion clause is a spatial clause (with operator $near, $intersects,
or $within), or a contains clause (with operator $contains).

5.2.5 ID Clause (Reference)
Other query-by-example (QBE) operators generally look for particular JSON fields within the
content of documents and try to match their values. An ID clause, which uses operator $id,
instead matches document keys. It thus matches document metadata, not document content.

Operator $id is not supported by SODA for Java or SODA for REST for use with a
heterogeneous collection, that is, a collection that has the media type column..

A document key uniquely identifies a given document. It is metadata, like the creation time
stamp, last-modified time stamp, and version. It pertains to the document as a whole and is
not part of the document content.

Chapter 5
Filter Conditions (Reference)

5-25

The syntax of an ID clause is QBE operator $id followed by either a scalar key
(document identifier) or a non-empty array of scalar keys.12 The scalar key must be
either an integer or a string. The array elements must be either all integers or all
strings. For example:

"$id" : "USA"
"$id" : [1001,1002,1003]

Like a special-criterion clause or a text-contains clause, you can use operator $id only
in the outermost condition of a QBE, that is, in a condition used in a composite filter or
in a filter-condition filter.

An ID clause can be combined with other clauses in a $and clause. Only a single ID
clause can be combined with other clauses in the same QBE.

Example 5-3 Use of Operator $id in the Outermost QBE Condition

Each of these equivalent QBEs finds documents that have at least one of the keys
key1 and key2, and that have a color field with value "red". (Operator $and is implicit
in the first QBE.)

{ "$id" : ["key1", "key2"], "color" : "red" }
{ "$and" : [{ "$id" : ["key1", "key2"] }, { "color" : "red" }] }
{ "$and" : [{ "$id" : ["key1", "key2"], "color" : "red" }] }

Related Topics

• Overview of QBE Operator $id
Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. Operator $id is an exception in
that it instead matches document keys. It thus matches document metadata, not
document content. You use operator $id in the outermost condition of a QBE.

• Special-Criterion Clause (Reference)
A special criterion clause is a spatial clause (with operator $near, $intersects,
or $within), or a contains clause (with operator $contains).

5.2.6 Text-Contains Clause (Reference)
A text-contains clause is operator $textContains with a string value that is used as a
full-text search pattern: $textcontains:pattern. It matches a non-JSON document
only if some text in the document matches that pattern. Matching is Oracle Text full-
text matching.

(Operator $textContains is not supported by SODA for Java or SODA for REST.)

Oracle Text technology underlies SODA operator $textContains. This means, for
instance, that you can query for text that is near some other text, or query use fuzzy
pattern-matching. Operator $textContains acts like SQL function contains, and the
syntax of the search-pattern is the same.

To use full-text search with $textContains you must first create an Oracle Text search
index for the heterogeneous collection to be searched. (See Overview of QBE
Operator $textContains for an example of how to do this.)

Chapter 5
Filter Conditions (Reference)

5-26

You can use a text-contains clause only in the outermost condition of a QBE, either in the
sole top-level filter condition or in the sole condition in a query clause ($query). In either case,
you can only use one text-contains clause in the condition.

Here is a typical filter condition containing a text-contains clause:

{ "$textContains" : "beth" }

You can use $textContains in conjunction with $id to search only particular documents. For
example, these (equivalent) examples search the documents that have keys 1001, 1002, and
1003.

{ "$textContains" : "beth", "$id" : [1001,1002,1003] }
{ "$and" : [{ "$textContains" : "beth" }, { "$id" : [1001,1002,1003] }] }

You cannot use a text-contains clause in conjunction with a clause other than ID. For
example, this is not allowed:

• { "$textcontains" : "beth", "age" : 42 }

• { "$and" [{ "$textcontains" : "beth" },
 { "age" : 42 }] }

Related Topics

• Contains Clause (Reference)
A contains clause is a field followed by an object with one $contains operator, whose
value is a string. It matches a JSON document only if a string or number in the field value
matches the string operand somewhere, including in array elements. Matching is Oracle
Text full-text.

• Overview of QBE Operator $textContains
Query-by-example (QBE) operator $textContains performs full-text search of documents
in a heterogeneous SODA collection, that is, a collection that has the media type column.

See Also:

• Oracle Text Reference for complete information about Oracle Text operator
contains, including its search-pattern syntax

• Oracle Text Reference for information about the use of special characters in
SQL function contains search patterns

• Oracle Text Reference for information about the words and characters that are
reserved with respect to Oracle Text search, and Oracle Text Reference for
information about how to escape them.

Chapter 5
Filter Conditions (Reference)

5-27

5.2.7 Special-Criterion Clause (Reference)
A special criterion clause is a spatial clause (with operator $near, $intersects,
or $within), or a contains clause (with operator $contains).

Like an ID clause or a text-contains clause, you can use a special-criterion clause only
in the outermost condition of a QBE, that is, in a condition used in a composite filter or
in a filter-condition filter.

More precisely, if a QBE also uses other operators, in addition to the operators for a
special-criterion clause, then its outermost condition must have operator $and, and the
special-criterion clauses must be members of elements in the array argument to
that $and occurrence.

• Spatial Clause (Reference)
GeoJSON objects are JSON objects that represent geographic data. You can use
a SODA QBE spatial clause to match GeoJSON geometry objects in your
documents.

• Contains Clause (Reference)
A contains clause is a field followed by an object with one $contains operator,
whose value is a string. It matches a JSON document only if a string or number in
the field value matches the string operand somewhere, including in array
elements. Matching is Oracle Text full-text.

Related Topics

• ID Clause (Reference)
Other query-by-example (QBE) operators generally look for particular JSON fields
within the content of documents and try to match their values. An ID clause, which
uses operator $id, instead matches document keys. It thus matches document
metadata, not document content.

• Contains Clause (Reference)
A contains clause is a field followed by an object with one $contains operator,
whose value is a string. It matches a JSON document only if a string or number in
the field value matches the string operand somewhere, including in array
elements. Matching is Oracle Text full-text.

5.2.7.1 Spatial Clause (Reference)
GeoJSON objects are JSON objects that represent geographic data. You can use a
SODA QBE spatial clause to match GeoJSON geometry objects in your documents.

Note:

To use QBE spatial operators you need Oracle Database Release 12c
(12.2.0.1) or later.

A spatial QBE clause is a field followed by an object with a spatial
operator: $near, $intersects, or $within. It matches the field only if it contains
GeoJSON geographic data that is near a specified position, intersects a specified
geometric object, or is within a specified geometric object, respectively.

Chapter 5
Filter Conditions (Reference)

5-28

Each of the spatial QBE operators is followed by a JSON object whose fields must
include $geometry. Operator $near must also include field $distance, and it can
include $unit. A compile-time error is raised if $geometry is missing or if $distance or $unit
is present with operator $intersects or $within.

The value of field $geometry is interpreted as a GeoJSON geometry object (other than a
geometry collection), such as a point or a polygon. Each such object has a type field, with the
geometry type, such as "Point" or "Polygon" as value, and a coordinates field, which
defines the shape and location of the object, respectively.

(For a single position, such as an object of type "Point", field coordinates is an array of
numbers, the first three of which generally represent longitude, latitude, and altitude, in that
order.)

The value of field $distance must be a positive number, the distance from the field preceding
spatial operator $near to the geometry object specified by $geometry. For non-point geometry
objects, such as lines and polygons, the distance is the minimum distance between them.
The distance between two adjacent polygons is zero.

The value of field $unit is a string such as "mile" that specifies the GeoJSON unit to use for
the $distance value. The available units are defined in database table
SDO_UNITS_OF_MEASURE. The default unit is "mile".

Example 5-4 QBE With a Spatial Clause

This example matches a location field whose value is GeoJSON geometry object of type
Point, and which is within 60 miles of the coordinates [-122.417, 37.783] (San Francisco,
California). It would match data with a "location" value of [-122.236, 37.483] (Redwood
City, California). (Note that the first element of array "coordinates" is the longitude, and the
second is the latitude.)

{"location" : { "$near" : { "$geometry" : { "type" : "Point",
 "coordinates" :
 [-122.417, 37.783] },
 "$distance" : 60,
 "$unit" : "mile" } } }

The default error-handling behavior for a QBE spatial clause is that the targeted field need
not be present, but if it is present then its value must be a single GeoJSON geometry object.
An error is raised at query time if, for any matching document, that is not the case.9

A spatial clause can specify an alternative error-handling behavior from the default by
including one of the following Boolean fields with a true value in the object that a spatial
operator ($near, $within, $intersects) applies to. (Only one of these error-handling fields
can be specified as true; otherwise, a syntax error is raised at query time.)

• $scalarRequired — Boolean. Optional. The targeted field must be present and have a
GeoJSON geometry object as its value. Raise an error at query time if, for any matched
document, that is not the case.

9 The default error-handling behavior corresponds to to the use of SQL clauses ERROR ON ERROR and NULL ON EMPTY
for a json_value expression.

1

0
A true value of $scalarRequired corresponds to the use of SQL clause ERROR ON ERROR for a json_value
expression.

Chapter 5
Filter Conditions (Reference)

5-29

• $lax — Boolean. Optional. The targeted field need not be present or have a
GeoJSON geometry object as its value. Do not raise an error at query time if, for
any matched document, that is the case.11

Note:

If you have created a SODA spatial index for a field whose value is a
GeoJSON geometry object, and if you use a QBE that targets that field, then
the index can be picked up for the QBE only if both index and QBE specify
the same error-handling behavior for that field. Both must specify the same
one of these:

• scalarRequired : true
• lax : true
• Neither scalarRequired : true nor lax : true

Related Topics

• Overview of QBE Spatial Operators
You can use query-by-example (QBE) operator $near, $intersects, or $within to
select documents that have a field whose value is a GeoJSON geometry object
that is near a specified position, intersects a specified geometric object, or is within
another specified geometric object, respectively.

• SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

See Also:

• Oracle Spatial Developer's Guide for information about using GeoJSON
data with Oracle Spatial and Graph

• Oracle Spatial Developer's Guide for information about Oracle Spatial
and Graph and SDO_GEOMETRY object type

• GeoJSON.org for information about GeoJSON

• The GeoJSON Format Specification for details about GeoJSON data

• Oracle Database JSON Developer’s Guide for information about using
GeoJSON geographic data with SQL/JSON functions

5.2.7.2 Contains Clause (Reference)
A contains clause is a field followed by an object with one $contains operator, whose
value is a string. It matches a JSON document only if a string or number in the field

1

1
A true value of $lax corresponds to the use of SQL clause NULL ON ERROR for a functional index created on a
json_value expression.

Chapter 5
Filter Conditions (Reference)

5-30

value matches the string operand somewhere, including in array elements. Matching is
Oracle Text full-text.

The string operand is matched as a full word or number against strings and numbers in the
field value, including in array elements.

For example, $contains operand "beth" matches the string "Beth Smith", but not the string
"Elizabeth Smith". Operand "10" matches the number 10 or the string "10 Main Street",
but not the number 110 or the string "102 Main Street".

Note:

To use operator $contains you need Oracle Database Release 12c (12.2.0.1) or
later.

Oracle Text technology underlies SODA QBE operator $contains. This means, for instance,
that you can query for text that is near some other text, or query use fuzzy pattern-matching.

For details about the behavior of a SODA QBE contains clause see the Oracle Database
documentation for SQL condition json_textcontains.

To be able to use operator $contains you first must create a JSON search index; otherwise,
a QBE with $contains raises a SQL error.

You can use a contains clause only in the outermost condition of a QBE. You can have
multiple contains clauses at the top level, provided their fields are different (objects in QBEs
must not have duplicate fields).

For example, this QBE checks for a "name" field that contains the word "beth" (case-
insensitively) and an "address" field that contains the number 10 or the string "10" as a
word:

{ "name" : { "$contains" : "beth" },
 "address" : { "$contains" : "10" } }

To have the effect of multiple contains clauses for the same field (search the same field for
multiple word or number patterns), the outermost condition must have operator $and, and the
contains clauses must occur in object elements of the array argument to that $and
occurrence.

For example, this QBE checks for an "address" field that contains both the word "street"
and either the number 10 or the word "10":

{"$and" : [{ "address" : { "$contains" : "street" } },
 { "address" : { "$contains" : "10" } }] }

Related Topics

• Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter conditions.

Chapter 5
Filter Conditions (Reference)

5-31

• Overview of SODA Indexing
The performance of SODA QBEs can sometimes be improved by using indexes.
You define a SODA index with an index specification, which is a JSON object that
specifies how particular QBE patterns are to be indexed for quicker matching.

• SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

• Overview of QBE Operator $contains
Query-by-example (QBE) operator $contains performs full-text search of JSON
documents in a SODA collection.

See Also:

• Oracle Database SQL Language Reference for reference information
about SQL condition json_textcontains

• Oracle Database JSON Developer’s Guide for information about full-text
search of JSON documents using SQL condition json_textcontains

Chapter 5
Filter Conditions (Reference)

5-32

6
SODA Index Specifications (Reference)

You can index the data in JSON documents using index specifications. A detailed definition of
SODA index specifications is presented.

Note:

• To create a B-tree index you need Oracle Database Release 12c (12.2.0.1) or
later. To create a B-tree index that indexes a DATE or a TIMESTAMP value you
need Oracle Database Release 18c (18.1) or later.

• To create a spatial index or a search index you need Oracle Database Release
12c (12.2.0.1) or later.

An index specification is a JSON object that specifies a particular kind of database index,
which is used for operations on JSON documents. You can specify these kinds of index:

• B-tree: Used to index scalar JSON values. It is identified by the presence of field fields.
(Only a B-tree index has this field.)

• Spatial: Used to index GeoJSON geographic data. It is identified by the presence of field
spatial. (Only a spatial index has this field.)

• Search: Used for one or both of the following:

– Ad hoc structural queries or full-text searches

– JSON data guide

A search index specification is identified by the lack of fields fields and spatial.

Each kind of index specification requires a name field, which is a string that names the index.

B-Tree Index Specifications

A SODA B-tree index specification specifies a B-tree function-based index on SQL/JSON
function json_value, which is used by SODA to query JSON documents for scalar values. A
B-tree index specification can have the following fields. Field fields is required for a B-tree
index specification. The other fields are optional.

• fields — Array of objects, each of which targets a field in the indexed documents that
has a scalar JSON value. When the array has more than one element the index
specification results in the creation of a composite B-tree index.

The order of the elements in array fields specifies the primary order of indexing, that is,
the order among the targeted fields. The field of the first array element has the highest
priority; the field of the last element has the lowest priority.

Each object in the array can have the following fields:

– path — String specifying the path to the targeted field, whose value is expected to be
a scalar. Required.

6-1

If there are any array steps in the path then only the first element of each such
array is used for indexing. In your documents, only scalar values for the
targeted field are handled by the index — any non-scalar values for the field
are ignored by the index.

– datatype — String naming the data type of the targeted-field value, for
indexing purposes. Optional. Possible values (all are interpreted case-
insensitively): "varchar2" (default), "number", "date", "timestamp", and the
"varchar2" synonyms "string" and "varchar".

An index can be used to improve performance when evaluating a QBE filter
criterion if the effective type of the input data matched by QBE filter criteria
matches the index datatype value.

For an index to be picked up, to evaluate a given QBE, it is sufficient that the
scalar JSON value targeted by the QBE be interpreted as being of the same
SQL data type as the value of index-specification field datatype. This is the
case for a JSON number value or string value and an index datatype of
"number" or "varchar2" (or a "varchar2" synonym or no datatype),
respectively.

For other datatype values there is no directly corresponding JSON scalar data
type, so for a QBE to pick up the index it needs to use an item-method
operator, to transform the JSON value to a SQL value of the appropriate data
type.

For example, in a QBE such as {"dateField" : {"$date" : "2017-07-25"}}
the input string value "2017-07-25" (which has one of the supported ISO 8601
date formats) is converted by QBE item-method operator $date to data type
"date". An index specified with a datatype value of "date" can be picked up
to evaluate the QBE.

A QBE that does not explicitly use item-method operator $number or $string
can pick up an index whose datatype is "number" or "varchar2" (or one of its
synonyms), respectively, because of the direct correspondence between
JSON and SQL data types for such values. For example:

* Using QBE {"numField" : 20}, like using {"numField" : {"$number" :
20}}, can pick up an index created with datatype value "number".

* Using QBE {"stringField" : "my string"}, like using
{"stringField" : {"$string" : "my string"}}, can pick up an index
created with datatype value "varchar2" (or one of its synonyms).

– maxlength — Number specifying the maximum length of the value to index.
Optional. Ignored if the datatype is one (such as number) that has no length. If
maxlength is not specified then the length of the value indexed is 4000 divided
by the number of string fields that are indexed.

– order — Index sorting order. Optional. The value of field order can be the
string "asc" or the number 1, meaning ascending order, or the string "desc" or
the number -1, meaning descending order. Default: ascending order.

• unique — Boolean. Optional. Whether the index is unique. Default: nonunique
(false).

• indexNulls — Boolean. Optional. Whether to index NULL values for the selected
columns (by appending the numeric value 1 to the list of columns to index).
Default: do not index NULL values (false).

Chapter 6

6-2

Note:

You must specify a true value for indexNulls, for the index to be picked up for
the orderby clause of a QBE.

The default error-handling behavior is that the targeted field need not be present, but if it is
present then its value must be a a JSON scalar that is convertible to data type datatype. An
error is raised at query time if, for any document, that is not the case. In addition, if such an
index exists, and you try to write a document where that is not the case, then an error is
raised for the write operation.1

A B-tree index specification can specify an alternative error-handling behavior from the
default by including field scalarRequired with a true value. That requires that the targeted
field be present and have a value convertible to data type datatype. If, for any document to
be indexed, that is not the case then an error is raised at indexing time. In addition, if such an
index exists, and you try to write a document where that is not the case, then raise an error
for the write operation.2

Note:

A JSON null value in your data is always convertible to the data type specified for
the index. That data is simply not indexed. (This is true regardless of the value of
scalarRequired.)

Spatial Index Specifications

A SODA spatial index specification specifies an Oracle Spatial and Graph index, which
indexes GeoJSON data. A spatial index specification has a spatial field, whose value is a
string specifying the path to the JSON field to be indexed. The value of that targeted JSON
field is expected to be a single GeoJSON geometry object, that is, a JSON scalar that is also
a GeoJSON geometry object.

The default error-handling behavior is that the targeted field need not be present, but if it is
present then its value must be a single GeoJSON geometry object. An error is raised at
indexing time if, for any document to be indexed, that is not the case. In addition, if such an
index exists, and you try to write a document where that is not the case, then an error is
raised for the write operation.3

A spatial index specification can specify an alternative error-handling behavior from the
default by including one of the following Boolean fields with a true value. (Only one of these
error-handling fields can be specified as true; otherwise, a syntax error is raised at index-
creation time.)

• scalarRequired — Boolean. Optional. The targeted field must be present and have a
GeoJSON geometry object as its value. Raise an error at indexing time if, for any

1 The default error-handling behavior corresponds to the use of SQL clauses ERROR ON ERROR and NULL ON EMPTY for a
functional index created on a json_value expression.

2 A true value of scalarRequired corresponds to the use of SQL clause ERROR ON ERROR for a functional index
created on a json_value expression.

3 The default error-handling behavior corresponds to the use of SQL clauses ERROR ON ERROR and NULL ON EMPTY for a
functional index created on a json_value expression.

Chapter 6

6-3

document to be indexed, that is not the case. In addition, if such an index exists,
and you try to write a document where that is not the case, then raise an error for
the write operation.

• lax — Boolean. Optional. The targeted field need not be present or have a
GeoJSON geometry object as its value. Do not raise an error at indexing time for
any document to be indexed that lacks the field or for which the field value is not
geometry. In addition, if such an index exists, and you try to write a document
where that is the case, do not raise an error for the write operation.5

Note:

If you have created a SODA spatial index for a field whose value is a
GeoJSON geometry object, and if you use a QBE that targets that field, then
the index can be picked up for the QBE only if both index and QBE specify
the same error-handling behavior for that field. Both must specify the same
one of these:

• scalarRequired : true
• lax : true
• Neither scalarRequired : true nor lax : true

Search Index Specifications

A SODA search index specification specifies a JSON search index, which indexes
the textual context of your JSON documents in a general way. A search index can
improve the performance of both (1) ad hoc structural queries, that is, queries that you
might not anticipate or use regularly, and (2) queries that make use of full-text search.
It is an Oracle Text index that is designed specifically for use with JSON data.

A JSON search index can also accumulate and update aggregate information about
your documents. In this it provides a JSON data guide, which is a summary of the
structural and type information contained in a set of JSON documents. It records
metadata about the fields used in those documents.

You can use data-guide information to:

• Generate a JSON Schema document that describes the set of JSON documents.

• Create database views that you can use to perform SQL operations on the data in
the documents.

• Automatically add or update virtual database columns that correspond to added or
changed fields in the documents.

The data-guide information contained in a JSON search index is updated automatically
as new JSON content is added.

By default, a search index specification creates an index that provides both of these
features: a general index and a data guide. These features are specified by fields
search_on (string) and dataguide (string), respectively.

If field search_on is present with value "none" then the index provides only the data-
guide functionality (no general search index). If field dataguide is present with value
"off" then only the general search-index functionality is provided (no data-guide

4 A true value of scalarRequired corresponds to the use of SQL clause ERROR ON ERROR for a functional index
created on a json_value expression.

5 A true value of lax corresponds to the use of SQL clause NULL ON ERROR for a functional index created on a
json_value expression.

Chapter 6

6-4

support). (A dataguide value of "on", or no field dataguide, specifies data-guide support).

Besides none, field search_on can also have value "text" or "text_value". Both of these
support full-text queries, which use QBE operator $contains, and they both support ad hoc
queries that make of other QBE operators, such as $eq, $ne, and $gt.

In addition, search_on value "text_value" indexes numeric ranges. This is a separate value
because it has an added performance cost. If you do not need range indexing then you can
save some index maintenance time and some disk space by specifying value text instead of
text_value. The default value of search_on is text_value.

Related Topics

• Overview of SODA Indexing
The performance of SODA QBEs can sometimes be improved by using indexes. You
define a SODA index with an index specification, which is a JSON object that specifies
how particular QBE patterns are to be indexed for quicker matching.

• Item-Method Clause (Reference)
An item-method clause is an item-method equality clause or an item-method modifier
clause. It applies an item method to the field of the field-condition clause in which it
appears, typically to modify the field value. It then matches the result against the operand
of the item-method.

• Orderby Clause Sorts Selected Objects
A filter specification (query-by-example, or QBE) with an orderby clause returns the
selected JSON documents in sorted order.

See Also:

• Oracle Database JSON Developer’s Guide for information about using SQL to
create json_value B-tree indexes

• Oracle Database JSON Developer’s Guide for information about using SQL to
index multiple JSON fields with a composite json_value B-tree index

• Ordering Columns in an Index in Oracle Database Performance Tuning Guide,
and Oracle Database SQL Language Reference, section ASC | DESC, for
information about indexing order

• Oracle Database JSON Developer’s Guide for information about the use of a
NULL ON EMPTY clause for a B-tree index created on a json_value expression

• Oracle Database JSON Developer’s Guide for information about JSON search
indexes

• ISO 8601 for information about the ISO date formats

• Oracle Spatial Developer's Guide for information about spatial indexes

Chapter 6

6-5

7
SODA Collection Metadata Components
(Reference)

Collection metadata is composed of multiple components. A detailed definition of the
components is presented.

Note:

The identifiers used for collection metadata components (schema name, table
name, view name, database sequence name, and column names) must be valid
Oracle quoted identifiers. Some characters and words that are allowed in Oracle
quoted identifiers are strongly discouraged. For details, see Oracle Database SQL
Language Reference.

• Default Collection Metadata
The kind of database you use determines the collection metadata that is used by default,
and which of its field values you can modify for custom metadata.

• Schema
The collection metadata component that specifies the name of the Oracle Database
schema that owns the table or view to which the collection is mapped.

• Table or View
The collection metadata component that specifies the name of the table or view to which
the collection is mapped.

• Key Column Name
The collection metadata component that specifies the name of the column that stores the
document key.

• Key Column Type
The collection metadata component that specifies the SQL data type of the column that
stores the document key.

• Key Column Max Length
The collection metadata component that specifies the maximum length of the key column
in bytes. This component applies only to keys of type VARCHAR2.

• Key Column Assignment Method
The collection metadata component that specifies the method used to assign keys to
objects that are inserted into the collection.

• Key Column Path
The collection metadata component that specifies the top-level document path to the field
used as an embedded document key.

1 Reminder: letter case is significant for a quoted SQL identifier; it is interpreted case-sensitively.

7-1

• Key Column Sequence Name
The collection metadata component that specifies the name of the database
sequence that generates keys for documents that are inserted into a collection if
the key assignment method is SEQUENCE.

• Content Column Name
The collection metadata component that specifies the name of the column that
stores the database content.

• Content Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document content.

• Content Column Format
The collection metadata component that specifies the format of the column that
stores the document content.

• Content Column Max Length
The collection metadata component that specifies the maximum length of the
content column in bytes. This component applies only to content of type VARCHAR2.

• Content Column JSON Validation
The collection metadata component that specifies the syntax to which JavaScript
Object Notation (JSON) content must conform—strict or lax.

• Content Column SecureFiles LOB Compression
The collection metadata component that specifies the SecureFiles LOB
compression setting.

• Content Column SecureFiles LOB Cache
The collection metadata component that specifies the SecureFiles LOB cache
setting.

• Content Column SecureFiles LOB Encryption
The collection metadata component that specifies the SecureFiles LOB encryption
setting.

• Version Column Name
The collection metadata component that specifies the name of the column that
stores the document version.

• Version Column Generation Method
The collection metadata component that specifies the method used to compute
version values for objects when they are inserted into a collection or replaced.

• Last-Modified Time Stamp Column Name
The collection metadata component that specifies the name of the column that
stores the last-modified time stamp of the document.

• Last-Modified Column Index Name
The collection metadata component that specifies the name of the index on the
last-modified column.

• Creation Time Stamp Column Name
The collection metadata component that specifies the name of the column that
stores the creation time stamp of the document. This time stamp is generated
during the insert, insertAndGet, save, or saveAndGet operation.

• Media Type Column Name
The collection metadata component that specifies the name of the column that
stores the media type of the document. A media type column is needed if the

Chapter 7

7-2

collection is to be heterogeneous, that is, it can store documents other than JavaScript
Object Notation (JSON).

• Read Only
The collection metadata component that specifies whether the collection is read-only.

Related Topics

• Overview of SODA Document Collections
A SODA collection is a set of documents that is backed by an Oracle Database table or
view.

7.1 Default Collection Metadata
The kind of database you use determines the collection metadata that is used by default, and
which of its field values you can modify for custom metadata.

In particular, the default SQL data type of the column used to store JSON content (the
content column), and the default method for computing object version values (the version
column generation method), depend on your database.

If the Oracle Database you use is an Oracle Autonomous Database — Autonomous JSON
Database (AJD), Autonomous Transaction Processing (ATP), or Autonomous Data
Warehouse (ADW) — then SODA always uses Oracle's native JSON format, OSON, to store
the JSON content. Fields contentColumn.sqlType and contentColumn.jsonFormat in the
metadata reflect this. These fields are not customizable for an autonomous database.

• If database initialization parameter compatible is at least 20 then:

– The value of field contentColumn.sqlType in the default metadata is "JSON". JSON
data type uses OSON format.

– The value of field versionColumn.method in the default metadata is "UUID".

• Otherwise (parameter compatible is less than 20).

For an autonomous database:

– The value of field contentColumn.sqlType is "BLOB". This Binary Large Object (BLOB)
data uses Oracle's native JSON format, OSON. (For an autonomous database this
field is not customizable.)

The additional field contentColumn.jsonFormat is present, with value "OSON". (For
an autonomous database this field is not customizable.)

The value of field versionColumn.method is "UUID".

For a nonautonomous database, that is, for an on-premise database or a
nonautonomous cloud database:

– The value of field contentColumn.sqlType in the default metadata is "BLOB". BLOB
textual data is used for JSON content, by default. The data is character data encoded
using a Unicode encoding, either UTF-8 or UTF-16.

– The following additional contentColumn fields are present: compress, cache, encrypt,
and validation.

– The value of field versionColumn.method in the default metadata is "SHA256".

You can define custom metadata, whose values for some fields differ from the default values,
as follows:

Chapter 7
Default Collection Metadata

7-3

• If the database you use is an autonomous database, then:

– You can change metadata field keyColumn.assignmentMethod to CLIENT
(instead of the default value, UUID), to specify client-assignment of document
keys.

– If the autonomous database is Autonomous Transaction Processing (ATP) or
Autonomous Data Warehouse (ADW), but not Autonomous JSON Database
(AJD), then you can add metadata field mediaTypeColumn.name, to specify the
name of the column that stores the media type of a document. (By default, this
field is absent.) A media-type column is needed for a heterogeneous
collection, that is, a collection that can store documents other than JSON
documents.

• If the database you use is not an autonomous database, then you can customize
any metadata fields.

Note:

You need certain versions of SODA drivers and related software to support
collection content type that uses Oracle's native JSON binary format, OSON,
that is, for JSON type or for BLOB type with format OSON. See SODA Drivers

Related Topics

• Content Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document content.

• Content Column Format
The collection metadata component that specifies the format of the column that
stores the document content.

• Content Column JSON Validation
The collection metadata component that specifies the syntax to which JavaScript
Object Notation (JSON) content must conform—strict or lax.

• Content Column SecureFiles LOB Compression
The collection metadata component that specifies the SecureFiles LOB
compression setting.

• Content Column SecureFiles LOB Cache
The collection metadata component that specifies the SecureFiles LOB cache
setting.

• Content Column SecureFiles LOB Encryption
The collection metadata component that specifies the SecureFiles LOB encryption
setting.

Chapter 7
Default Collection Metadata

7-4

7.2 Schema
The collection metadata component that specifies the name of the Oracle Database schema
that owns the table or view to which the collection is mapped.

Property Value

Default value None

Allowed values Valid Oracle quoted identifier1. If this value contains
double quotation marks (") or control characters,
SODA replaces them with underscore characters (_).

JSON collection metadata document path schemaName

See Also:

Oracle Database SQL Language Reference for information about valid Oracle
quoted identifiers

7.3 Table or View
The collection metadata component that specifies the name of the table or view to which the
collection is mapped.

Property Value

Default value None

Allowed values Valid Oracle quoted identifier1. If this value contains
double quotation marks (") or control characters,
SODA replaces them with underscore characters (_).

JSON collection metadata document path tableName or viewName

See Also:

Oracle Database SQL Language Reference for information about valid Oracle
quoted identifiers

Chapter 7
Schema

7-5

7.4 Key Column Name
The collection metadata component that specifies the name of the column that stores
the document key.

Property Value

Default value ID
Allowed values Valid Oracle quoted identifier1 (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (") or
control characters, SODA replaces them with
underscore characters (_).

JSON collection metadata document path keyColumn.name

7.5 Key Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document key.

Property Value

Default value VARCHAR2
Allowed values VARCHAR2

NUMBER
RAW(16)

JSON collection metadata document path keyColumn.sqlType

Caution:

If client-assigned keys are used and the key column type is VARCHAR2 then
Oracle recommends that the database character set be AL32UTF8. This
ensures that conversion of the keys to the database character set is lossless.

Otherwise, if client-assigned keys contain characters that are not supported
in your database character set then conversion of the key into the database
character set during a read or write operation is lossy. This can lead to
duplicate-key errors during insert operations. More generally, it can lead to
unpredictable results. For example, a read operation could return a value
that is associated with a different key from the one you expect.

Chapter 7
Key Column Name

7-6

7.6 Key Column Max Length
The collection metadata component that specifies the maximum length of the key column in
bytes. This component applies only to keys of type VARCHAR2.

Property Value

Default value 255
Allowed values At least 32 bytes if key assignment method is UUID or

GUID. See Key Column Assignment Method.

JSON collection metadata document path keyColumn.maxLength

Related Topics

• Key Column Type
The collection metadata component that specifies the SQL data type of the column that
stores the document key.

7.7 Key Column Assignment Method
The collection metadata component that specifies the method used to assign keys to objects
that are inserted into the collection.

Property Value

Default value UUID
Allowed values UUID

GUID
SEQUENCE
CLIENT
EMBEDDED_OID
For descriptions of these methods, see Table 7-1.

JSON collection metadata document path keyColumn.assignmentMethod

Table 7-1 Key Assignment Methods

Method Description

UUID (default — but
not used by Oracle
Database API for
MongoDB)

Keys are generated by SODA, based on the UUID (a Universal Unique
IDentifier).

GUID Keys are generated in Oracle Database by SQL function SYS_GUID, described
in Oracle Database SQL Language Reference.

SEQUENCE Keys are generated in Oracle Database by a database sequence. If you specify
the key assignment method as SEQUENCE then you must also specify the name
of that sequence — see Key Column Sequence Name.

Chapter 7
Key Column Max Length

7-7

Table 7-1 (Cont.) Key Assignment Methods

Method Description

CLIENT Keys are assigned by the client application.

Caution:

If client-assigned keys are used and the key
column type is VARCHAR2 then Oracle
recommends that the database character set be
AL32UTF8. This ensures that conversion of the
keys to the database character set is lossless.

Otherwise, if client-assigned keys contain
characters that are not supported in your database
character set then conversion of the key into the
database character set during a read or write
operation is lossy. This can lead to duplicate-key
errors during insert operations. More generally, it
can lead to unpredictable results. For example, a
read operation could return a value that is
associated with a different key from the one you
expect.

EMBEDDED_OID
(used always by
Oracle Database
API for MongoDB)

This method is used only, and automatically, with Oracle Database API for
MongoDB, which is available only for an Oracle Autonomous Database. (You
cannot create a collection that uses this method with any of the SODA
implementations/languages.)

The column value is a string (data type VARCHAR2). The value is also embedded
in the documents of the collection, as the value of top-level field _id.

• If a document already has a top-level field _id, then a string representation
of that field value is used for the key column.

• If a document has no such field, then a field _id with a generated value is
embedded in the document at top level, and that value is used for the key
column. The value is a string hexadecimal representation of a 12-byte
binary OID (ObjectID).

7.8 Key Column Path
The collection metadata component that specifies the top-level document path to the
field used as an embedded document key.

The component value is top-level path _id, the embedded key for documents in a
collection used by Oracle Database API for MongoDB.

This metadata component is required for key-column assignment method
EMBEDDED_OID, and it is used only with that assignment method. It is provided
automatically when EMBEDDED_OID is used; you need not specify it explicitly.

(If you do specify this component then an error is raised if keyColumn.path is specified
for an assignment method other than EMBEDDED_OID, or if the value specified is not
_id.)

Chapter 7
Key Column Path

7-8

Property Value

Default value _id
Allowed values _id
JSON collection metadata document path keyColumn.path

7.9 Key Column Sequence Name
The collection metadata component that specifies the name of the database sequence that
generates keys for documents that are inserted into a collection if the key assignment method
is SEQUENCE.

If you specify the key assignment method as SEQUENCE then you must also specify the name
of that sequence. If the specified sequence does not exist then SODA creates it.

Property Value

Default value None

Allowed values Valid Oracle quoted identifier1 (as defined in Oracle
Database SQL Language Reference). If this value
contains double quotation marks (") or control
characters, SODA replaces them with underscore
characters (_).

JSON collection metadata document path keyColumn.sequenceName

Note:

If you drop a collection using SODA, the sequence used for key generation is not
dropped. This is because it might not have been created using SODA. To drop the
sequence, use SQL command DROP SEQUENCE, after first dropping the collection.

Related Topics

• Key Column Assignment Method
The collection metadata component that specifies the method used to assign keys to
objects that are inserted into the collection.

See Also:

• Oracle Database SQL Language Reference for information about DROP
SEQUENCE

• Oracle Database Concepts for information about database sequences

Chapter 7
Key Column Sequence Name

7-9

7.10 Content Column Name
The collection metadata component that specifies the name of the column that stores
the database content.

Property Value

Default value JSON_DOCUMENT
Allowed values Valid Oracle quoted identifier1 (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (") or
control characters, SODA replaces them with
underscore characters (_).

JSON collection metadata document path contentColumn.name

7.11 Content Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document content.

Property Value

Default value • JSON, if database initialization parameter
compatible is at least 20 and component
mediaTypeColumn.name is not specified
(the content is homoogeneous — JSON data
only).

• BLOB, otherwise.

If the content type is BLOB then the format is
native JSON binary (OSON) if the database you
use is an Oracle Autonomous Database
(Autonomous JSON Database, Autonomous
Transaction Processing or Autonomous Data
Warehouse); otherwise, it is textual (unparsed
Unicode character data.).

If the database you use is an Autonomous JSON
Database (AJD) then component
mediaTypeColumn.name cannot be specified —
the content must be JSON data (homogeneous).

Allowed values JSON (only if database initialization parameter
compatible is at least 20)

VARCHAR2
BLOB
CLOB

JSON collection metadata document path contentColumn.sqlType

Chapter 7
Content Column Name

7-10

Note:

You need certain versions of SODA drivers and related software to support
collection content type that uses Oracle's native JSON binary format, OSON, that
is, for JSON type or for BLOB type with format OSON. See SODA Drivers

.

Related Topics

• Default Collection Metadata
The kind of database you use determines the collection metadata that is used by default,
and which of its field values you can modify for custom metadata.

7.12 Content Column Format
The collection metadata component that specifies the format of the column that stores the
document content.

The value of this metadata component is automatically OSON — you cannot change it. This
component is available only when the database is an Oracle Autonomous Database:
Autonomous JSON Database (AJD), Autonomous Transaction Processing (ATP), or
Autonomous Data Warehouse (ADW), and only when the value of metadata component
content type (field contentColumn.sqlType) is BLOB.

Property Value

Allowed value "OSON"
JSON collection metadata document path contentColumn.jsonFormat

Note:

You need certain versions of SODA drivers and related software to support
collection content type that uses Oracle's native JSON binary format, OSON, that
is, for JSON type or for BLOB type with format OSON. See SODA Drivers

.

Related Topics

• Default Collection Metadata
The kind of database you use determines the collection metadata that is used by default,
and which of its field values you can modify for custom metadata.

Chapter 7
Content Column Format

7-11

7.13 Content Column Max Length
The collection metadata component that specifies the maximum length of the content
column in bytes. This component applies only to content of type VARCHAR2.

Property Value

Default value 4000

Allowed values 32767 if extended data types are enabled.
Otherwise, 4000 if content column type is
VARCHAR2.

JSON collection metadata document path contentColumn.maxLength

Related Topics

• Content Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document content.

See Also:

Oracle Database SQL Language Reference for information about extended
data types

7.14 Content Column JSON Validation
The collection metadata component that specifies the syntax to which JavaScript
Object Notation (JSON) content must conform—strict or lax.

Note:

If the content column stores JSON data using Oracle's native binary format
OSON — either JSON type or BLOB with format OSON, then this metadata
component is absent.

Property Value

Default value STANDARD
Allowed values STANDARD

STRICT
LAX (default for SQL condition is json)

JSON collection metadata document path contentColumn.validation

Chapter 7
Content Column Max Length

7-12

• STANDARD validates according to the JSON RFC 8259 standard (or the RFC 4627
standard, if database initialization parameter compatible is less than 20). It corresponds
to the strict syntax defined for Oracle SQL condition is json.2

• STRICT is the same as STANDARD, except that it also verifies that the document does not
contain duplicate JSON field names. (It corresponds to the strict syntax defined for
Oracle SQL condition is json when the SQL keywords WITH UNIQUE KEYS are also
used.)

• LAX validates more loosely. (It corresponds to the lax syntax defined for Oracle SQL
condition is json.) Some of the relaxations that LAX allows include the following:

– It does not require JSON field names to be enclosed in double quotation marks (").

– It allows uppercase, lowercase, and mixed case versions of true, false, and null.

– Numerals can be represented in additional ways.

Related Topics

• Default Collection Metadata
The kind of database you use determines the collection metadata that is used by default,
and which of its field values you can modify for custom metadata.

See Also:

• Oracle Database JSON Developer’s Guide for information about strict and lax
JSON syntax

• IETF RFC 8259 for the JSON RFC 8259 standard

• IETF RFC 4627 for the JSON RFC 4627 standard

7.15 Content Column SecureFiles LOB Compression
The collection metadata component that specifies the SecureFiles LOB compression setting.

Note:

If the content column stores JSON data using Oracle's native binary format OSON
— either JSON type or BLOB with format OSON, then this metadata component is
absent.

Property Value

Default value NONE
Allowed values NONE

HIGH
MEDIUM
LOW2 In database releases prior to 20c only IETF RFC 4627 was supported. It allows only a JSON object or array, not a scalar,

at the top level of a JSON document. RFC 8259 support includes RFC 4627 support (and RFC 7159 support).

Chapter 7
Content Column SecureFiles LOB Compression

7-13

https://tools.ietf.org/html/rfc8259

Property Value

JSON collection metadata document path contentColumn.compress

Related Topics

• Default Collection Metadata
The kind of database you use determines the collection metadata that is used by
default, and which of its field values you can modify for custom metadata.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

7.16 Content Column SecureFiles LOB Cache
The collection metadata component that specifies the SecureFiles LOB cache setting.

Note:

If the content column stores JSON data using Oracle's native binary format
OSON — either JSON type or BLOB with format OSON, then this metadata
component is absent.

Property Value

Default value TRUE
Allowed values TRUE

FALSE
JSON collection metadata document path contentColumn.cache

Related Topics

• Default Collection Metadata
The kind of database you use determines the collection metadata that is used by
default, and which of its field values you can modify for custom metadata.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

Chapter 7
Content Column SecureFiles LOB Cache

7-14

7.17 Content Column SecureFiles LOB Encryption
The collection metadata component that specifies the SecureFiles LOB encryption setting.

Note:

If the content column stores JSON data using Oracle's native binary format OSON
— either JSON type or BLOB with format OSON, then this metadata component is
absent.

Before you create a collection that uses SecureFiles LOB encryption you must set up an
encryption wallet.

Property Value

Default value NONE
Allowed values NONE

3DES168
AES128
AES192
AES256

JSON collection metadata document path contentColumn.encrypt

Related Topics

• Default Collection Metadata
The kind of database you use determines the collection metadata that is used by default,
and which of its field values you can modify for custom metadata.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

• Oracle Database SQL Language Reference for information about how to set up
an encryption wallet using the SET ENCRYPTION WALLET clause of the
ALTER SYSTEM statement

7.18 Version Column Name
The collection metadata component that specifies the name of the column that stores the
document version.

Chapter 7
Content Column SecureFiles LOB Encryption

7-15

Property Value

Default value VERSION
Allowed values Valid Oracle quoted identifier1 (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (") or
control characters, SODA replaces them with
underscore characters (_).

JSON collection metadata document path versionColumn.name

7.19 Version Column Generation Method
The collection metadata component that specifies the method used to compute
version values for objects when they are inserted into a collection or replaced.

Property Value

Default value • UUID, if either (1) database
initialization parameter compatible
is at least 20 or (2) your database is
an Oracle Autonomous Database:
Autonomous JSON Database (AJD),
Autonomous Transaction Processing
(ATP), or Autonomous Data
Warehouse (ADW)

• SHA256, otherwise

Allowed values UUID
TIMESTAMP
MD5
SHA256
SEQUENTIAL
NONE

JSON collection metadata document
path

versionColumn.method

Table 7-2 describes the version generation methods.

Table 7-2 Version Generation Methods

Method Description

UUID Ignoring object content, SODA generates a universally unique
identifier (UUID) when the document is inserted and for every
replace operation. Efficient, but the version changes even if the
original and replacement documents have identical content.

Version column type value is VARCHAR2(255).

Chapter 7
Version Column Generation Method

7-16

Table 7-2 (Cont.) Version Generation Methods

Method Description

TIMESTAMP Ignoring object content, SODA generates a value from the time
stamp and coverts it to LONG. This method might require a round
trip to the database instance to get the time stamp. As with
UUID, the version changes even if the original and replacement
documents have identical content.

Version column type value is NUMBER.

MD5 SODA uses the MD5 algorithm to compute a hash value of the
document content. This method is less efficient than UUID, but
the version changes only if the document content changes.

Version column type value is VARCHAR2(255).

SHA256 SODA uses the SHA256 algorithm to compute a hash value of
the document content. This method is less efficient than UUID,
but the version changes only if the document content changes.

Version column type value is VARCHAR2(255).

SEQUENTIAL Ignoring object content, SODA assigns version 1 when the object
is inserted and increments the version value every time the
object is replaced. Version values are easily understood by
human users, but the version changes even if the original and
replacement documents have identical content.

Version column type value is NUMBER.

NONE If the version column is present, NONE means that the version is
generated outside SODA (for example, by a database trigger).

7.20 Last-Modified Time Stamp Column Name
The collection metadata component that specifies the name of the column that stores the
last-modified time stamp of the document.

Property Value

Default value LAST_MODIFIED
Allowed values Valid Oracle quoted identifier1 (as defined in Oracle

Database SQL Language Reference). If this value
contains double quotation marks (") or control
characters, SODA replaces them with underscore
characters (_).

JSON collection metadata document path lastModifiedColumn.name

7.21 Last-Modified Column Index Name
The collection metadata component that specifies the name of the index on the last-modified
column.

The value of this component is the name of a nonunique index on the last-modified time-
stamp column. The index is created if a name is specified. This index can improve the
performance of read and write operations that are driven by last-modified time stamps.

Chapter 7
Last-Modified Time Stamp Column Name

7-17

Only SODA for REST provides such an operation (operation GET collection with time-
stamp parameters since and until). Other implementations do not use this
component, since they do not provide any read or write operations that are driven by
last-modified time stamps. Even for SODA for REST, it is typically better not to set this
component if you are sure that your application does not use any read or write
operations that are driven by time stamps, because creating and maintaining an index
carries a cost.

Property Value

Default value None

Allowed values Valid Oracle quoted identifier1 (as defined in
Oracle Database SQL Language Reference). If
this value contains double quotation marks (") or
control characters, SODA replaces them with
underscore characters (_).

JSON collection metadata document path lastModifiedColumn.index

See Also:

Oracle REST Data Services SODA for REST Developer's Guide

7.22 Creation Time Stamp Column Name
The collection metadata component that specifies the name of the column that stores
the creation time stamp of the document. This time stamp is generated during the
insert, insertAndGet, save, or saveAndGet operation.

Property Value

Default value CREATED_ON
Allowed values Valid Oracle quoted identifier1 (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (") or
control characters, SODA replaces them with
underscore characters (_).

JSON collection metadata document path creationTimeColumn.name

7.23 Media Type Column Name
The collection metadata component that specifies the name of the column that stores
the media type of the document. A media type column is needed if the collection is to

Chapter 7
Creation Time Stamp Column Name

7-18

be heterogeneous, that is, it can store documents other than JavaScript Object Notation
(JSON).

Note:

You cannot use query-by-example (QBE) with a heterogeneous collection. An error
is raised if you try to do so.

Property Value

Default value None

Allowed values Valid Oracle quoted identifier1 (as defined in Oracle
Database SQL Language Reference). If this value
contains double quotation marks (") or control
characters then SODA replaces them with
underscore characters (_).

JSON collection metadata document path mediaTypeColumn.name

7.24 Read Only
The collection metadata component that specifies whether the collection is read-only.

Property Value

Default value FALSE
Allowed values TRUE

FALSE
JSON collection metadata document path readOnly

Chapter 7
Read Only

7-19

8
SODA Drivers

The drivers needed for different SODA implementations (languages) are described. The
latest version of each driver is recommended, in all cases. Minimum required versions are
described, for different SODA implementations with different Oracle databases.

Starting with Oracle Database 21c, the JSON content of SODA collections is, by default,
stored as JSON data type, that is, the content column of a collection is JSON type.

To avoid compatibility problems of SODA drivers with database release 21c and above,
Oracle recommends the following:

• Use the driver versions that are needed for working with JSON type, even if your database
release is lower than 21c.

• For projects that were started using a database release prior to 21c, explicitly specify the
metadata for the default collection, as specified in Example 8-1. For projects started
using release 21c or later, just use the default metadata.

Table 8-1 SODA Driver Minimum Required Versions

SODA Implementation (Language) JSON Data Type Content1 Content Other Than JSON Data
Type

Java • SODA for Java, version 1.1.7,
available from Maven Central at
these coordinates:

– Group ID:
com.oracle.database.s
oda

– Artifact ID: orajsoda
– Version: 1.1.7.1

• Oracle JDBC driver:
ojdbc8.jar for Oracle
Database 21c, available from
Maven Central or Oracle
Database JDBC and UCP
Downloads.

• javax.json-1.1.4.jar,
available from Maven Central.

SODA for Java, version 1.1.4,
available from Maven Central at
these coordinates:

• Group ID:
com.oracle.database.soda

• Artifact ID: orajsoda
• Version: 1.1.4
Obtaining SODA for Java from
Maven automatically picks up its
dependencies (Oracle JDBC driver
and javax.json-1.1.4.jar), as
well.

REST Oracle REST Data Services (ORDS),
release 20.4.1 or later.

If your database is not an Oracle
Autonomous Database then Oracle
REST Data Services (ORDS),
release 19.4.6 or later.

(If your database is an Oracle
Autonomous Database then the
required release of ORDS is
preinstalled.)

C Oracle Instant Client libraries must
be 21c or later. Obtain them from
Oracle Instant Client Downloads.

Oracle Instant Client libraries must
be 19.6 or later. Obtain them from
Oracle Instant Client Downloads.

8-1

https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://repo1.maven.org/maven2/org/glassfish/javax.json/1.1.4/javax.json-1.1.4.jar
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://www.oracle.com/database/technologies/instant-client/downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html

Table 8-1 (Cont.) SODA Driver Minimum Required Versions

SODA Implementation (Language) JSON Data Type Content1 Content Other Than JSON Data
Type

Node.js Minimum recommended Node.js
driver version is 4.0.

Oracle Instant Client libraries must
be 21c or later. Obtain them from
Oracle Instant Client Downloads.

Minimum recommended Node.js
driver version is 4.0.

Oracle Instant Client libraries must
be 19.6 or later. Obtain them from
Oracle Instant Client Downloads.

Python Minimum recommended Python
driver version is 7.1.

Oracle Instant Client libraries must
be 21c or later. Obtain them from
Oracle Instant Client Downloads.

Minimum recommended Python
driver version is 7.1.

Oracle Instant Client libraries must
be 19.6 or later. Obtain them from
Oracle Instant Client Downloads.

Oracle SQLcl (SQL Developer
Command Line)

SODA for SQLcl is not yet available
for use with JSON data type content.

Use Oracle SQLcl version 20.2 (not
20.3).

1 Content of JSON type requires database initialization parameter compatible to be at least 20.

Example 8-1 Workaround To Use BLOB Content With Oracle Database 21c Or
Later

If you have an on-premises Oracle Database that is release 21c or later, but you do
not have the minimum required client versions for using JSON data type, you can use
SODA with collections whose document content is BLOB data type instead. You can
create such a collection by supplying this custom metadata when creating the
collection:

{ "keyColumn" : { "name":"ID" },
 "contentColumn" : { "name" : "JSON_DOCUMENT", "sqlType" : "BLOB" },
 "versionColumn" : { "name" : "VERSION", "method" : "UUID" },
 "lastModifiedColumn" : { "name" : "LAST_MODIFIED" },
 "creationTimeColumn" : { "name" : "CREATED_ON" } }

Related Topics

• SODA Feature Support
Features that are supported in different SODA implementations (languages) are
listed, along with their required client versions and database releases.

Chapter 8

8-2

https://www.oracle.com/database/technologies/instant-client/downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html
https://www.oracle.com/database/technologies/instant-client/downloads.html

9
SODA Feature Support

Features that are supported in different SODA implementations (languages) are listed, along
with their required client versions and database releases.

Table 9-1 provides a general idea of the minimal database release and minimal driver version
needed for a given feature. The feature names or descriptions are only roughly indicative.
Refer to the documentation for a particular implementation for definitive and detailed
information about any given feature.

Legend: the following abbreviations are used in the table.

• X — The feature is not available.

• NA — The feature is not applicable to the given implementation.

Table 9-1 Minimal Client and Server Versions for SODA Features

Feature Oracle
Database
Release

PL/SQL Driver OCI C Driver1 Node.js Driver2 Python Driver2

Basic Collection
Operations (Create,
Open, List, Drop)

Java or REST:
12.2

Others: 18.3

18.3 v18: 18.5

v19: 19.6

3.0 7.0

Metadata Cache Java or REST:
12.2

Others: 18.3

NA v19: 19.11

v21: 21.3

5.2 8.2

Insert Document,
Replace Document,
Remove Document

Java or REST:
12.2

PL/SQL: 18.5

Others: 18.3

18.5 v18: 18.5

v19: 19.6

3.0 7.0

Bulk Insert Java or REST:
12.2

Others: 18.3

NA 19.11 4.0 7.2

Save Document Java or REST:
12.2

PL/SQL: 19.9

Others: 18.3

19.9 19.9 5.0 8.0

Truncate Collection Java or REST:
12.2

PL/SQL: 19.11

Others: 18.3

19.11 19.11 5.0 8.0

9-1

Table 9-1 (Cont.) Minimal Client and Server Versions for SODA Features

Feature Oracle
Database
Release

PL/SQL Driver OCI C Driver1 Node.js Driver2 Python Driver2

QBE Filter Java or REST:
12.2

PL/SQL:

• v18: 18.5
• v19: 19.3
Others: 18.3

v18: 18.5

v19: 19.3

v18: 18.5

v19: 19.6

3.0 7.0

Pagination Java or REST:
12.2

PL/SQL:

• v18: 18.5
• v19: 19.3
Others: 18.3

v18: 18.5

v19: 19.3

v18: 18.5

v19: 19.6

3.0 7.0

Optimistic Locking Java or REST:
12.2

PL/SQL:

• v18: 18.5
• v19: 19.3
Others: 18.3

v18: 18.5

v19: 19.3

v18: 18.5

v19: 19.6

3.0 7.0

Iteration Document
Cursor

Java or REST:
12.2

PL/SQL:

• v18: 18.5
• v19: 19.3
Others: 18.3

v18: 18.5

v19: 19.3

v18: 18.5

v19: 19.6

3.0 7.0

Create Index (B-Tree,
Search, Spatial)

Drop Index

Java or REST:
12.2

PL/SQL:

• v18: 18.5
• v19: 19.3
Others: 18.3

v18: 18.5

v19: 19.3

v18: 18.5

v19: 19.6

3.0 7.0

Data Guide Based on
a Search Index

Java or REST:
12.2

PL/SQL:

• v18: 18.5
• v19: 19.3
Others: 18.3

v18: 18.5

v19: 19.3

v18: 18.5

v19: 19.6

3.0 7.0

OSON Native JSON
Storage Format

Autonomous
Database 19c

19.1 19.1 3.0 7.0

JSON Data Type
Storage

21.1 21.1 21.1 5.1 8.1

Get Index v19: 19.13

v21: 21.3

v19: 19.13

v21: 21.3

v19: 19.13

v21: 21.3

X X

Chapter 9

9-2

Table 9-1 (Cont.) Minimal Client and Server Versions for SODA Features

Feature Oracle
Database
Release

PL/SQL Driver OCI C Driver1 Node.js Driver2 Python Driver2

List Indexes v19: 19.13

v21: 21.3

21.3 v19: 19.13

v21: 21.3

X X

Create View From
Data Guide

Java or REST:
12.2

PL/SQL: 19.1

Others: 18.3

19.1 NA NA NA

Array Fetch
Documents

Java or REST:
12.2

Others: 18.3

NA 19.9 5.0 8.0

Online Redefinition of
a Collection

21.1 21.1 NA NA NA

Pessimistic Locking Java or REST:
12.2

PL/SQL: 19.11

Others: 18.3

19.11 19.11 X X

Flashback Java or REST:
12.2

PL/SQL: 19.11

Others: 18.3

19.11 19.11 X X

Dynamic Data Guide Java or REST:
12.2

PL/SQL: 19.11

Others: 18.3

19.11 v19: 19.11

v21: 21.3

X X

Hint (Monitoring) Java or REST:
12.2

PL/SQL: 19.11

Others: 18.3

19.11 v19: 19.11

v21: 21.3

5.2 8.2

Text Search of Non-
JSON Documents

Java or REST:
12.2

PL/SQL — v19:
19.13, v21: 21.3

Others: 18.3

v19: 19.13

v21: 21.3

v19: 19.13

v21: 21.3

3.0 7.0

Sampling Documents Java or REST:
12.2

PL/SQL — v19:
19.13, v21: 21.3

Others: 18.3

v19: 19.13

v21: 21.3

v19: 19.13

v21: 21.3

X X

1 Oracle Call Interface
2 Support of Node.js and Python for a feature also requires the relevant minimal OCI driver version for that feature.

Chapter 9

9-3

Related Topics

• SODA Drivers
The drivers needed for different SODA implementations (languages) are
described. The latest version of each driver is recommended, in all cases.
Minimum required versions are described, for different SODA implementations
with different Oracle databases.

Related Topics

• Overview of SODA Document Collections
A SODA collection is a set of documents that is backed by an Oracle Database
table or view.

Chapter 9

9-4

10
SODA Guidelines and Restrictions

General guidelines and restrictions that apply across SODA implementations are presented.

• SODA Guidelines
Guidelines that apply across SODA implementations are described.

• SODA Restrictions (Reference)
Restrictions that apply across SODA implementations are described.

10.1 SODA Guidelines
Guidelines that apply across SODA implementations are described.

• AL32UTF8 database character set — Oracle recommends1 that you use AL32UTF8
(Unicode) for your database character set. Otherwise:

– Data can be altered by SODA when documents are written to a collection, because of
lossy conversion to the database character set. (This affects only collections stored
as VARCHAR2 and CLOB data; collections stored as BLOB data do not depend on the
database character set.

– Query-by-example (QBE) can return unpredictable results.

• Re-creating a collection2 — Do not drop a collection and then re-create it with different
metadata if there is any application running that uses the collection in any way. Shut
down any such applications before re-creating the collection, so that all live SODA
objects are released.

There is no problem just dropping a collection. Any read or write operation on a dropped
collection raises an error. And there is no problem dropping a collection and then re-
creating it with the same metadata. But if you re-create a collection with different
metadata, and if there are any live applications using SODA objects, then there is a risk
that a stale collection is accessed, and no error is raised in this case.

Note:

In SODA implementations that allow collection metadata caching, such as
SODA for Java, this risk is increased if such caching is enabled. In that case, a
cache can return an entry for a stale collection object even if the collection has
been dropped.

1 SODA for C requires that you use AL32UTF8 as the database character set.
2 Day-to-day use of a typical application that makes use of SODA does not require that you drop and re-create collections.

But if you need to do that for any reason then this guideline applies.

10-1

See Also:

• Key Column Type for information about the importance of using
AL32UTF8 with client-assigned document keys

• Oracle Database SODA for Java Developer's Guide for information
about collection metadata caching

10.2 SODA Restrictions (Reference)
Restrictions that apply across SODA implementations are described.

• Document size:

– For SODA for REST and SODA for Java the limit is approximately 2 gigabytes.

– For SODA for PL/SQL the size is limited by the maximum possible LOB size.

See Also:

Oracle Database SQL Language Reference for information about the
maximum size for BLOB and CLOB

Note:

You must ensure that you have sufficient RAM to support your workload.

• JSON document content:

In SODA, JSON content must conform to the JSON RFC 8259 standard, if
database initialization parameter compatible is at least 20, or to the RFC 4627
standard, if compatible is less than 20. RFC 8259 support includes RFC 4627
support (and RFC 7159 support).

In Oracle Database release 19c and prior, only RFC 4627 was supported. RFC
4627 allows only a JSON object or an array, not a scalar, at the top level of a
JSON document. For example, according to RFC 8259, the string value "hello"
is, by itself, valid JSON content; but according to RFC 4627, it is not.

In addition, SODA JSON content can be UTF-8 or UTF-16 (big endian (BE) or little
endian (LE)). Although RFC 4627 also allows UTF-32 (BE and LE) encodings,
SODA does not support them. Some implementations may support additional,
non-Unicode, encodings.

See Also:

– IETF RFC 8259 for the JSON RFC 8259 standard

Chapter 10
SODA Restrictions (Reference)

10-2

https://tools.ietf.org/html/rfc8259

– IETF RFC 4627 for the JSON RFC 4627 standard

Chapter 10
SODA Restrictions (Reference)

10-3

Index

Symbols
, character (comma), path syntax, 4-1
. character (period), path syntax, 4-1
[and] characters (brackets), path syntax, 4-1
* character (asterisk), path syntax, 4-1
` character (backquote), path syntax, 4-1
$ character (dollar sign)

escaping in QBE path, 4-1
in operator names, 5-1

$, prefix for QBE operator names, 2-1
$abs operator, 5-14
$all operator, 5-9
$and operator, 5-22

omitting, 2-11, 5-22
overview, 2-11

$between operator, 5-9
$boolean operator, 5-14
$ceiling operator, 5-14
$contains operator

overview, 2-18
reference, 5-30

$date operator, 5-14
$double operator, 5-14
$eq operator, 5-9

omitting, 5-9
$exists operator, 5-9
$floor operator, 5-14
$gt operator, 5-9
$gte operator, 5-9
$id operator, 5-25

overview, 2-14
used with $textContains, 5-26

$in operator, 5-9
$intersects operator, 5-28
$length operator, 5-14
$lower operator, 5-14
$lt operator, 5-9
$lte operator, 5-9
$ne operator, 5-9
$near operator, 5-28
$nin operator, 5-9
$nor operator, 5-22

overview, 2-11
$not operator, 5-13

$not QBE operator
overview, 2-9

$number operator, 5-14
$or operator, 5-22

overview, 2-11
$orderby operator, 5-2

overview, 2-15
$query operator, 5-2
$regex operator, 5-9
$size operator, 5-14
$startsWith operator, 5-9
$string operator, 5-14
$textContains operator

overview, 2-19
reference, 5-26

$timestamp operator, 5-14
$type operator, 5-14
$upper operator, 5-14
$within operator, 5-28

A
array index (position), 4-1
array step (QBE path), definition, 4-1
array, object satisfying multiple conditions, 2-13
asterisk character, path syntax, 4-1

B
B-tree index

details, 6-1
overview, 3-1

backquote character, path syntax, 4-1
bracket characters, path syntax, 4-1

C
collection, 1-5

heterogeneous, 2-1
definition, 1-5
media type column name, 7-18

collection configuration, 7-1
collection metadata

components of, 7-1

Index-1

collection metadata (continued)
content column format, 7-11
content column JSON validation, 7-12
content column max length, 7-12
content column name, 7-10
content column SecureFiles LOB cache, 7-14
content column SecureFiles LOB

compression, 7-13
content column SecureFiles LOB encryption,

7-15
content column type, 7-10
creation time stamp column name, 7-18
default, 7-3
default and custom, 1-1
key column assignment method, 7-7
key column max length, 7-7
key column name, 7-6
key column path, 7-8
key column sequence name, 7-9
key column type, 7-6
last-modified column index name, 7-17
last-modified time stamp column name, 7-17
media type column name, 7-18
read only, 7-19
schema, 7-5
table or view, 7-5
version column name, 7-15
version generation method, 7-16

collection table name, 1-10
collections, database view of, 1-11
comma character, path syntax, 4-1
comparison clause

definition, 5-9
comparison operator

definition, 5-9
comparison QBE operators

overview, 2-7
components, document, 1-1
composite filter specification, 5-2
condition

definition, 5-7
condition-operator clause

definition, 5-8
contains clause

definition, 5-30
content column format collection metadata

component, 7-11
content column JSON validation collection

metadata component, 7-12
content column max length collection metadata

component, 7-12
content column name collection metadata

component, 7-10
content column SecureFiles LOB cache

collection metadata component, 7-14

content column SecureFiles LOB compression
collection metadata component, 7-13

content column SecureFiles LOB encryption
collection metadata component, 7-15

content column type collection metadata
component, 7-10

creation time stamp column name collection
metadata component, 7-18

CRUD operations, 1-1

D
data guide

details, 6-1
overview, 3-1

database, SODA, 1-1
date formats, ISO 8601, 5-20
document, 1-4
document collection, 1-5
document components, 1-1
document key, 1-1

matching in QBE, 5-25
dollar sign, for QBE operator, 2-1
dollar-sign character

escaping in QBE path, 4-1
in operator names, 5-1

ds_iso_format ISO 8601 duration format, 5-20
duration formats, ISO 8601, 5-20

E
empty filter condition ({}), 5-7
empty query, 5-1
equality, scalar, 5-8

F
field step (QBE path), definition, 4-1
field-condition clause

definition, 5-8
filter

definition, 5-1
filter condition

definition, 5-7
filter specification, 1-1, 2-1

definition, 5-1
details, 5-1

full-text index,
details, 6-1
overview, 3-1

full-text search
JSON, overview, 2-18
non-JSON, overview, 2-19

Index

Index-2

G
guidelines, 10-1

H
heterogeneous collection, 2-1

definition, 1-5
media type column name, 7-18

hint
SQL monitoring, 1-11

I
ID clause, 5-25
implicit $and operator, 5-22
index (position), array, 4-1
index specification

details, 6-1
index specifications

overview, 3-1
ISO 8601 formats, 5-20
item-method clause

definition, 5-14
item-method equality clause

definition, 5-14
item-method modifier clause

definition, 5-14
item-method QBE operators, 5-14

$abs, 5-14
$boolean, 5-14
$ceiling, 5-14
$date, 5-14
$double, 5-14
$floor, 5-14
$length, 5-14
$lower, 5-14
$number, 5-14
$size, 5-14
$string, 5-14
$timestamp, 5-14
$type, 5-14
$upper, 5-14
overview, 2-9

J
JSON data format used for document content,

7-11
JSON data type used for document content, 7-10

K
key column assignment method collection

metadata component, 7-7
key column max length collection metadata

component, 7-7
key column name collection metadata

component, 7-6
key column path collection metadata component,

7-8
key column sequence name collection metadata

component, 7-9
key column type collection metadata component,

7-6
key, document, 1-1

matching in QBE, 5-25

L
last-modified column index name collection

metadata component, 7-17
last-modified time stamp column name collection

metadata component, 7-17
lax field, spatial index specification

details, 6-1
overview, 3-1

limitations, 10-2
logical combining clause

definition, 5-22
logical combining operator

definition, 5-22
logical combining operators

overview, 2-11

M
media type column name collection metadata

component, 7-18
metadata, collection, 1-1
modifiers

See item-method QBE operators
MONITOR SQL hint, 1-11
monitoring performance, 1-11

N
nested conditions, 2-13
nested-condition clause, 5-24
not clause

definition, 5-13

O
object in array, satisfying multiple conditions,

2-13

Index

Index-3

omitting $and operator, 5-22
omitting $eq operator, 5-9
operand, for QBE operator

definition, 5-1
operand, QBE, 2-1, 5-1
operator

$abs, 5-14
$all, 5-9
$and, 5-22

omitting, 2-11
overview, 2-11

$between, 5-9
$boolean, 5-14
$ceiling, 5-14
$contains

overview, 2-18
reference, 5-30

$date, 5-14
$double, 5-14
$eq, 5-9

omitting, 5-9
$exists, 5-9
$floor, 5-14
$gt, 5-9
$gte, 5-9
$id

overview, 2-14
reference, 5-25

$in, 5-9
$intersects, 5-28
$length, 5-14
$lower, 5-14
$lt, 5-9
$lte, 5-9
$ne, 5-9
$near, 5-28
$nin, 5-9
$nor, 5-22

overview, 2-11
$not, 5-13

overview, 2-9
$number, 5-14
$or, 5-22

overview, 2-11
$orderby, 5-2

overview, 2-15
$query, 5-2
$regex, 5-9
$size, 5-14
$startsWith, 5-9
$string, 5-14
$textContains

overview, 2-19
reference, 5-26

$timestamp, 5-14

operator (continued)
$type, 5-14
$upper, 5-14
$within, 5-28

operator, QBE, 2-1, 5-1
orderby clause, 5-3
ordinary characters, definition, 4-1

P
path, QBE, 2-5, 4-1
period character, path syntax, 4-1

Q
QBE

definition, 5-1
operand, 2-1, 5-1
operator, 2-1, 5-1

QBE (query by example), 1-1
QBE (query-by-example), 2-1
QBE operators

$all, 5-9
$and, 5-22
$between, 5-9
$contains

overview, 2-18
reference, 5-30

$eq, 5-9
$exists, 5-9
$gt, 5-9
$gte, 5-9
$id

overview, 2-14
reference, 5-25

$in, 5-9
$intersects, 5-28
$lax

for $orderby, 5-3
for QBE spatial clause, 5-28

$lt, 5-9
$lte, 5-9
$ne, 5-9
$near, 5-28
$nin, 5-9
$nor, 5-22
$not, 5-13

overview, 2-9
$or, 5-22
$orderby, 5-2, 5-3

overview, 2-15
$query, 5-2
$regex, 5-9
$scalarRequired

for $orderby, 5-3

Index

Index-4

QBE operators (continued)
$scalarRequired (continued)
for QBE spatial clause, 5-28

$startsWith, 5-9
$textContains

overview, 2-19
reference, 5-26

$within, 5-28
comparison

overview, 2-7
item-method, 5-14

overview, 2-9
spatial

overview, 2-16
QBE path, 2-5, 4-1
query by example (QBE), 1-1
query-by-example, 2-1
query-by-example (QBE)

definition, 5-1

R
read and write operations

monitoring performance, 1-11
read only collection metadata component, 7-19
restrictions, 10-2

S
sample JSON documents used in examples, 2-4
scalar-equality clause

definition, 5-8
scalarRequired field, index specification

details, 6-1
scalarRequired field, index specifications

overview, 3-1
schema collection metadata component, 7-5
scoping fields to a parent field in QBE, 5-24
search index

details, 6-1
overview, 3-1

search, full-text
JSON, overview, 2-18
non-JSON, overview, 2-19

SODA database, 1-1
SODA guidelines, 10-1
SODA implementations, 1-1
SODA limitations, 10-2
SODA operator

definition, 5-1
SODA restrictions, 10-2
sorting JSON data returned by a QBE, 5-3
spatial clause

definition, 5-28

spatial clause (continued)
spatial index

details, 6-1
overview, 3-1

spatial operator
$intersects, 5-28
$near, 5-28
$within, 5-28

spatial QBE operators
overview, 2-16

specification
filter

details, 5-1
index

details, 6-1
specifications

index
overview, 3-1

SQL/JSON operators, 1-1
square bracket characters, path syntax, 4-1
syntactic characters, definition, 4-1
syntax, QBE path, 4-1

T
table name, collection, 1-10
table or view collection metadata component, 7-5
text-contains clause

definition, 5-26
time formats, ISO 8601, 5-20

U
USER_SODA_COLLECTIONS database view,

1-11

V
version column name collection metadata

component, 7-15
version generation method collection metadata

component, 7-16
view of your SODA collections, 1-11

W
wildcard character, path syntax, 4-1
write and read operations

monitoring performance, 1-11

Y
ym_iso_format ISO 8601 duration format, 5-20

Index

Index-5

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Overview of SODA
	1.1 Overview of SODA Documents
	1.2 Overview of SODA Document Collections
	1.3 Default Naming of a Collection Table
	1.4 A View of Your SODA Collections
	1.5 Monitoring SODA Operation Performance

	2 Overview of SODA Filter Specifications (QBEs)
	2.1 Sample JSON Documents
	2.2 Overview of Paths in SODA QBEs
	2.3 Overview of QBE Comparison Operators
	2.4 Overview of QBE Operator $not
	2.5 Overview of QBE Item-Method Operators
	2.6 Overview of QBE Logical Combining Operators
	2.7 Overview of Nested Conditions in QBEs
	2.8 Overview of QBE Operator $id
	2.9 Overview of QBE Operator $orderby
	2.10 Overview of QBE Spatial Operators
	2.11 Overview of QBE Operator $contains
	2.12 Overview of QBE Operator $textContains

	3 Overview of SODA Indexing
	4 SODA Paths (Reference)
	5 SODA Filter Specifications (Reference)
	5.1 Composite Filters (Reference)
	5.1.1 Orderby Clause Sorts Selected Objects

	5.2 Filter Conditions (Reference)
	5.2.1 Scalar-Equality Clause (Reference)
	5.2.2 Field-Condition Clause (Reference)
	5.2.2.1 Comparison Clause (Reference)
	5.2.2.2 Not Clause (Reference)
	5.2.2.3 Item-Method Clause (Reference)
	5.2.2.4 ISO 8601 Date, Time, and Duration Support

	5.2.3 Logical Combining Clause (Reference)
	5.2.3.1 Omitting $and

	5.2.4 Nested-Condition Clause (Reference)
	5.2.5 ID Clause (Reference)
	5.2.6 Text-Contains Clause (Reference)
	5.2.7 Special-Criterion Clause (Reference)
	5.2.7.1 Spatial Clause (Reference)
	5.2.7.2 Contains Clause (Reference)

	6 SODA Index Specifications (Reference)
	7 SODA Collection Metadata Components (Reference)
	7.1 Default Collection Metadata
	7.2 Schema
	7.3 Table or View
	7.4 Key Column Name
	7.5 Key Column Type
	7.6 Key Column Max Length
	7.7 Key Column Assignment Method
	7.8 Key Column Path
	7.9 Key Column Sequence Name
	7.10 Content Column Name
	7.11 Content Column Type
	7.12 Content Column Format
	7.13 Content Column Max Length
	7.14 Content Column JSON Validation
	7.15 Content Column SecureFiles LOB Compression
	7.16 Content Column SecureFiles LOB Cache
	7.17 Content Column SecureFiles LOB Encryption
	7.18 Version Column Name
	7.19 Version Column Generation Method
	7.20 Last-Modified Time Stamp Column Name
	7.21 Last-Modified Column Index Name
	7.22 Creation Time Stamp Column Name
	7.23 Media Type Column Name
	7.24 Read Only

	8 SODA Drivers
	9 SODA Feature Support
	10 SODA Guidelines and Restrictions
	10.1 SODA Guidelines
	10.2 SODA Restrictions (Reference)

	Index

