
Oracle® Database
XStream Guide

23ai
F47495-04
March 2025

Oracle Database XStream Guide, 23ai

F47495-04

Copyright © 2009, 2025, Oracle and/or its affiliates.

Primary Authors: Sunil Surabhi, Roopesh Ashok Kumar

Contributors: Prakash Jashnani, Alan Downing, Thuvan Hoang, Richard Huang, Joydip Kundu, Belinda Leung, Tianshu
Li, Edwina Lu, Rui Mao, Pat McElroy, Valarie Moore, Srikanth Nalla, Partha Raghunathan, Ashish Ray, Jim Stamos,
Byron Wang, Rod Ward, Lik Wong, Haobo Xu, Kevin Xu, Jun Yuan, Lei Zheng, Volker Kuhr, Jing Liu, Lewis Kaplan,
Hung Tran, Mahesh Subramaniam, Vincent Gerard, Fernando Gutierrez Mendez, Qinqin Wang, Jorge Rivera, Susana
Garduno, Roberto Morales

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Diversity and Inclusion xiii

Conventions xiv

Part I XStream General Concepts and Use Cases

1 Introduction to XStream

About XStream 1-1

Purpose of XStream 1-3

XStream Use Cases 1-4

Replicating Data Changes with Non-Oracle Databases 1-5

Using Files to Store Data Changes 1-5

XStream Demo That Replicates Database Changes Using Files 1-6

Sharing Data Changes with a Client-Side Memory Cache 1-6

Prerequisites for XStream 1-7

XStream Security Model 1-8

Tasks and Tools for XStream 1-8

XStream Tasks 1-8

XStream Tools 1-9

2 General XStream Concepts

Logical Change Records (LCRs) 2-1

Row LCRs 2-2

Row LCR Subtypes 2-4

DDL LCRs 2-4

Extra Information in Row LCRs and DDL LCRs 2-6

Sequence LCRs 2-7

Position Order in an LCR Stream 2-7

LCRIDs and the Position of LCRs 2-8

iii

Rules and Rule Sets 2-9

Rules and Rule Sets Defined 2-9

Rule Sets and XStream Components 2-10

System-Created Rules and XStream 2-10

XStream System-Created Rule Procedures 2-11

Global Rules 2-12

Schema Rules 2-13

Table Rules 2-14

Subset Rules 2-15

System-Created Rules and a Multitenant Environment 2-15

Rule-Based Transformations 2-18

Declarative Rule-Based Transformations 2-19

Declarative Rule-Based Transformation Ordering 2-19

Evaluating Transformation Ordering 2-21

Row Migration Transformation Ordering 2-21

User-Specified Declarative Transformation Ordering 2-22

Considerations for Rule-Based Transformations 2-22

XStream and the Oracle Replication Performance Advisor 2-22

XStream Components 2-23

XStream Out Apply Subcomponents 2-23

XStream In Apply Subcomponents 2-24

Topology and Stream Paths 2-24

XStream and Component-Level Statistics 2-24

The UTL_RPADV Package 2-25

Collecting XStream Statistics Using the UTL_RPADV Package 2-26

Showing XStream Statistics on the Command Line 2-27

Interpreting SHOW_STATS Output 2-28

Showing XStream Statistics in an HTML Report 2-30

Interpreting the HTML Report From SHOW_STATS_HTML 2-31

Using Automatic Workload Repository (AWR) Reports for Oracle Database 2-31

Replication System Resource Usage 2-32

Replication Top SQLs 2-33

Automatic Workload Repository (AWR) Report for XStream 2-34

XStream In 2-34

XStream Out 2-35

XStream and SQL Generation 2-36

Interfaces for Performing SQL Generation 2-36

SQL Generation Formats 2-37

SQL Generation and Data Types 2-37

SQL Generation and Automatic Data Type Conversion 2-39

SQL Generation and LOB, LONG, LONG RAW, and XMLType Data Types 2-39

SQL Generation and Character Sets 2-40

iv

Sample Generated SQL Statements 2-40

Sample Generated SQL Statements for the hr.employees Table 2-41

Sample Generated SQL Statements for a Table With LOB Columns 2-42

SQL Generation Demo 2-43

Part II XStream Out

3 XStream Out Concepts

Introduction to XStream Out 3-1

Capture Processes 3-2

Capture Process Overview 3-2

Data Types Captured by a Capture Process 3-3

Types of DML Changes Captured by Capture Processes 3-4

ID Key LCRs 3-5

ID Key LCRs Demo 3-6

Tables, Views, and Materialized Views 3-7

Scope of Support for Lock-free Reservation 3-7

Scope of Support for Blockchain and Immutable Tables 3-7

Local Capture and Downstream Capture 3-8

Local Capture 3-8

Downstream Capture 3-9

Capture Processes and RESTRICTED SESSION 3-14

XStream Out Process Subcomponents 3-15

Capture Process States 3-16

Capture Process Parameters 3-16

Capture Process Checkpoints and XStream Out 3-16

Required Checkpoint SCN 3-17

Maximum Checkpoint SCN 3-17

Checkpoint Retention Time 3-17

SCN Values Related to a Capture Process 3-17

Captured SCN and Applied SCN 3-18

First SCN and Start SCN 3-18

Outbound Servers 3-19

Overview of Outbound Servers 3-20

Data Types Supported by Outbound Servers 3-21

Apply User for an Outbound Server 3-21

Outbound Servers and RESTRICTED SESSION 3-22

Outbound Server Subcomponents 3-22

Considerations for Outbound Servers 3-23

Outbound Servers and Apply Parameters 3-24

v

Position of LCRs and XStream Out 3-24

Additional LCR Attributes Related to Position in XStream Out 3-25

The Processed Low Position and Restartability for XStream Out 3-25

Streaming Network Transmission 3-26

XStream Out and Distributed Transactions 3-26

XStream Out and Security 3-27

Capture Process Trace Files 3-28

The XStream Out Client Application and Security 3-28

XStream Out Component-Level Security 3-29

Privileges Required by the Capture User for a Capture Process 3-29

Privileges Required by the Connect User for an Outbound Server 3-29

XStream Out and Other Oracle Database Components 3-30

XStream Out and Oracle Real Application Clusters 3-31

Capture Processes and Oracle Real Application Clusters 3-31

Queues and Oracle Real Application Clusters 3-32

Propagations and Oracle Real Application Clusters 3-33

Outbound Servers and Oracle Real Application Clusters 3-34

XStream Out and Transparent Data Encryption 3-34

Capture Processes and Transparent Data Encryption 3-34

Outbound Servers and Transparent Data Encryption 3-35

XStream Out and Flashback Data Archive 3-36

XStream Out and Recovery Manager 3-37

RMAN and Local Capture Processes 3-37

RMAN and Downstream Capture Processes 3-38

XStream and Distributed Transactions 3-39

XStream Out and a Multitenant Environment 3-40

Configure a Multitenant Container Database 3-42

4 Configuring XStream Out

Preparing for XStream Out 4-1

Decide How to Configure XStream Out 4-2

Prerequisites for Configuring XStream Out 4-4

Configure an XStream Administrator on All Databases 4-5

Granting Additional Privileges to the XStream Administrator 4-7

Grant User Privileges for Oracle Database 23ai and Higher 4-9

If Required, Configure Network Connectivity and Database Links 4-10

Ensure That Each Source Database Is in ARCHIVELOG Mode 4-11

Set the Relevant Initialization Parameters 4-11

Configure the Streams pool 4-11

If Required, Configure Supplemental Logging 4-13

If Required, Configure Log File Transfer to a Downstream Database 4-18

vi

If Required, Add Standby Redo Logs for Real-Time Downstream Capture 4-21

Configuring XStream Out 4-24

Configuring an Outbound Server Using CREATE_OUTBOUND 4-25

Adding an Additional Outbound Server to a Capture Process Stream 4-28

Configuring an Outbound Server Using ADD_OUTBOUND 4-30

Configuring XStream Out in a CDB 4-35

Configuring XStream Out with Local Capture in a CDB 4-36

Configuring XStream Out with Downstream Capture in CDBs 4-39

5 Managing XStream Out

About Managing XStream Out 5-1

Managing an Outbound Server 5-2

Starting an Outbound Server 5-3

Stopping an Outbound Server 5-4

Setting an Apply Parameter for an Outbound Server 5-4

Changing the Connect User for an Outbound Server 5-5

Managing the Capture Process for an Outbound Server 5-6

Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture
Process 5-7

Starting a Capture Process 5-8

Stopping a Capture Process 5-9

Setting a Capture Process Parameter 5-10

Changing the Capture User of an Outbound Server's Capture Process 5-11

Changing the Start SCN or Start Time of an Outbound Server's Capture Process 5-12

Changing the Start SCN of an Outbound Server's Capture Process 5-13

Changing the Start Time of an Outbound Server's Capture Process 5-14

Setting the First SCN for a Capture Process 5-15

Managing Rules for an XStream Out Configuration 5-16

Adding Rules to an XStream Out Configuration 5-16

Adding Schema Rules and Table Rules to an XStream Out Configuration 5-17

Adding Subset Rules to an Outbound Server's Positive Rule Set 5-18

Adding Rules With Custom Conditions to XStream Out Components 5-20

Removing Rules from an XStream Out Configuration 5-21

Removing Schema Rules and Table Rules From an XStream Out Configuration 5-21

Removing Subset Rules from an Outbound Server's Positive Rule Set 5-23

Removing Rules Using the REMOVE_RULE Procedure 5-24

Managing Declarative Rule-Based Transformations 5-25

Adding Declarative Rule-Based Transformations 5-25

Adding a Declarative Rule-Based Transformation That Renames a Table 5-26

Adding a Declarative Rule-Based Transformation That Adds a Column 5-26

Overwriting Existing Declarative Rule-Based Transformations 5-27

vii

Removing Declarative Rule-Based Transformations 5-28

Dropping Components in an XStream Out Configuration 5-30

Removing an XStream Out Configuration 5-31

6 Monitoring XStream Out

About Monitoring XStream Out 6-1

Monitoring Session Information About XStream Out Components 6-2

Monitoring the History of Events for XStream Out Components 6-3

Monitoring an Outbound Server 6-4

Displaying General Information About an Outbound Server 6-5

Displaying Status and Error Information for an Outbound Server 6-6

Displaying Information About an Outbound Server's Current Transaction 6-7

Displaying Statistics for an Outbound Server 6-8

Displaying the Processed Low Position for an Outbound Server 6-9

Determining the Process Information for an Outbound Server 6-10

Displaying the Apply Parameter Settings for an Outbound Server 6-11

Monitoring the Capture Process for an Outbound Server 6-13

Displaying Change Capture Information About Each Capture Process 6-14

Displaying the Registered Redo Log Files for Each Capture Process 6-15

Displaying Redo Log Files That Are Required by Each Capture Process 6-16

Displaying SCN Values for Each Redo Log File Used by Each Capture Process 6-17

Listing the Parameter Settings for Each Capture Process 6-18

Determining the Applied SCN for Each Capture Process 6-20

Displaying the Redo Log Scanning Latency for Each Capture Process 6-20

Displaying the Extra Attributes Captured by a Capture Process 6-21

Monitoring XStream Rules 6-22

Monitoring Declarative Rule-Based Transformations 6-23

Displaying Information About ADD COLUMN Transformations 6-25

Displaying Information About RENAME TABLE Transformations 6-26

7 Troubleshooting XStream Out

Diagnosing Problems with XStream Out 7-1

Viewing Alerts 7-1

Checking the Trace File and Alert Log for Problems 7-3

Capture Process Trace Files 7-4

Logminer Trace Files 7-4

Outbound Server Trace File 7-4

Client Application Trace Files 7-4

Problems and Solutions for XStream Out 7-5

An OCI Client Application Cannot Attach to the Outbound Server 7-5

viii

Changes Are Failing to Reach the Client Application in XStream Out 7-6

The Capture Process Is Missing Required Redo Log Files 7-8

LCRs Streaming from an Outbound Server Are Missing Extra Attributes 7-10

The XStream Out Client Application Is Unresponsive 7-11

How to Get More Help with XStream Out 7-13

Part III XStream In

8 XStream In Concepts

Introduction to XStream In 8-1

The Inbound Server 8-2

Overview of Inbound Servers 8-2

Data Types Applied by Inbound Servers 8-3

LCR Processing Options for Inbound Servers 8-5

Procedure DML Handlers 8-6

Error Handlers 8-6

DDL Handlers 8-7

Precommit Handlers 8-7

Inbound Servers and RESTRICTED SESSION 8-7

Inbound Server Components 8-8

Considerations for Inbound Servers 8-9

The Error Queue for an Inbound Server 8-9

Position of LCRs and XStream In 8-10

XStream In and Performance Considerations 8-12

Optimizing XStream In Performance for Large Transactions 8-13

Optimizing Transaction Apply Scheduling 8-13

XStream In and Security 8-14

The XStream In Client Application and Security 8-14

XStream In Component-Level Security 8-15

Privileges Required by the Apply User for an Inbound Server 8-15

XStream In and Other Oracle Database Components 8-16

XStream In and Oracle Real Application Clusters 8-16

XStream In and Flashback Data Archive 8-16

XStream In and Transportable Tablespaces 8-17

XStream In and a Multitenant Environment 8-17

9 Configuring XStream In

Preparing for XStream In 9-1

Configure an XStream Administrator 9-2

Granting Additional Privileges to the XStream Administrator 9-4

ix

Set the Relevant Initialization Parameters 9-6

Configure the Streams pool 9-6

If Required, Specify Supplemental Logging at the Source Database 9-7

Configuring XStream In 9-7

10

Managing XStream In

About Managing XStream In 10-2

Starting an Inbound Server 10-3

Stopping an Inbound Server 10-3

Setting an Apply Parameter for an Inbound Server 10-4

Changing the Apply User for an Inbound Server 10-5

Managing XStream In Conflict Detection and Resolution 10-6

About DML Conflicts in an XStream Environment 10-6

Conflict Types in an XStream Environment 10-7

Update Conflicts in an XStream Environment 10-7

Uniqueness Conflicts in an XStream Environment 10-7

Delete Conflicts in an XStream Environment 10-8

Foreign Key Conflicts in an XStream Environment 10-8

Conflicts and Transaction Ordering in an XStream Environment 10-8

Conflict Detection in an XStream Environment 10-9

About Conflict Detection in an XStream Environment 10-9

Control Over Conflict Detection for Non-Key Columns 10-10

Rows Identification During Conflict Detection in an XStream Environment 10-10

Conflict Avoidance in an XStream Environment 10-10

Use a Primary Database Ownership Model 10-10

Avoid Specific Types of Conflicts 10-10

Conflict Resolution in an XStream Environment 10-12

About Conflict Resolution in an XStream Environment 10-12

Prebuilt DML Conflict Handlers 10-13

Types of Prebuilt DML Conflict Handlers 10-13

Column Lists 10-16

Resolution Columns 10-18

Data Convergence 10-18

Collision Handling Without a DML Conflict Handler 10-19

Custom Conflict Handlers 10-19

Managing DML Conflict Handlers 10-20

Setting a DML Conflict Handler 10-20

Removing a DML Conflict Handler 10-22

Stopping Conflict Detection for Non-Key Columns 10-23

Managing Apply Errors 10-24

Inbound Server Error Handling 10-25

x

About Error Handlers 10-25

Setting and Unsetting an Error Handler 10-26

Retrying Apply Error Transactions 10-27

Retrying a Specific Apply Error Transaction 10-28

Retrying All Error Transactions for an Inbound Server 10-30

Deleting Apply Error Transactions 10-31

Deleting a Specific Apply Error Transaction 10-31

Deleting All Error Transactions for an Inbound Server 10-32

Managing Eager Errors Encountered by an Inbound Server 10-32

Conflict and Error Handling Precedence 10-36

Dropping Components in an XStream In Configuration 10-37

11

Monitoring XStream In

Displaying Session Information for Inbound Servers 11-2

Displaying General Information About an Inbound Server 11-3

Monitoring the History of Events for XStream In Components 11-4

Displaying the Status and Error Information for an Inbound Server 11-5

Displaying Apply Parameter Settings for an Inbound Server 11-6

Displaying the Position Information for an Inbound Server 11-7

Displaying Information About DML Conflict Handlers 11-8

Displaying Information About Error Handlers 11-9

Checking for Apply Errors 11-10

Displaying Detailed Information About Apply Errors 11-11

Step 1: Grant Explicit SELECT Privilege on the ALL_APPLY_ERROR View 11-12

Step 2: Create a Procedure that Prints the Value in an ANYDATA Object 11-12

Step 3: Create a Procedure that Prints a Specified LCR 11-13

Step 4: Create a Procedure that Prints All the LCRs in the Error Queue 11-15

Step 5: Create a Procedure that Prints All the Error LCRs for a Transaction 11-16

12

Troubleshooting XStream In

Diagnosing Problems with XStream In 12-1

Viewing Alerts 12-1

Checking the Trace File and Alert Log for Problems 12-3

Problems and Solutions for XStream In 12-4

XStream In Cannot Identify an Inbound Server 12-4

Inbound Server Encounters an ORA-03135 Error 12-5

Changes Are Failing to Reach the Client Application in XStream In 12-5

How to Get More Help with XStream In 12-6

xi

Part IV Appendixes

A Sample XStream Client Application

About the Sample XStream Client Application A-1

Sample XStream Client Application for the Oracle Call Interface API A-3

Sample XStream Client Application for the Java API A-16

B XStream Out Restrictions

Capture Process Restrictions B-1

Unsupported Data Types for Capture Processes B-1

Unsupported Changes for Capture Processes B-3

Supplemental Logging Data Type Restrictions B-7

Operational Requirements for Downstream XStream Out with XStream Out B-7

Capture Processes Do Not Support Oracle Label Security B-8

Propagation Restrictions B-8

Connection Qualifiers and Propagations B-8

Outbound Server Restrictions B-8

Unsupported Data Types for Outbound Servers B-8

Types of DDL Changes Ignored by an Outbound Server B-9

Apply Process Features That Are Not Applicable to Outbound Servers B-10

XStream Out Rule Restrictions B-11

Restrictions for Subset Rules B-12

XStream Out Rule-Based Transformation Restrictions B-12

Unsupported Data Types for Declarative Rule-Based Transformations B-12

XStream Out Limitations for Extended Data Types B-13

C XStream In Restrictions

Inbound Server Restrictions C-1

Unsupported Data Types for Inbound Servers C-1

Unsupported Data Types for Apply Handlers C-2

Types of DDL Changes Ignored by an Inbound Server C-2

Current Schema User Must Exist at Destination Database C-3

Inbound Servers Do Not Support Oracle Label Security C-4

XStream In Rule Restrictions C-4

Restrictions for Subset Rules C-4

XStream In Rule-Based Transformation Restrictions C-5

Unsupported Data Types for Declarative Rule-Based Transformations C-5

XStream In Limitations for Extended Data Types C-5

xii

Preface

Oracle Database XStream Guide describes the features and functionality of XStream. This
document contains conceptual information about XStream, along with information about
configuring and managing an XStream environment. In addition, this document contains
reference information related to XStream.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Conventions

Audience
This guide is intended for database administrators who configure and manage XStream
environments. To use this document, database administrators must be familiar with relational
database concepts, SQL, distributed database administration, PL/SQL, and the operating
systems under which they run an XStream environment.

This guide is also intended for programmers who develop applications that use XStream. To
use this document, programmers need knowledge of an application development language
and relational database concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiv

Part I
XStream General Concepts and Use Cases

Database administrators who configure and manage XStream environments must understand
XStream concepts and use cases.

• Introduction to XStream
XStream enables information sharing with outstanding performance and usability.

• General XStream Concepts
General XStream concepts apply to both XStream Out and XStream In.

1
Introduction to XStream

XStream enables information sharing with outstanding performance and usability.

• About XStream
XStream consists of Oracle Database components and application programming interfaces
(APIs) that enable client applications to receive data changes from an Oracle database
and send data changes to an Oracle database.

• Purpose of XStream
Some customers, especially Independent Software Vendors (ISVs) and partners, need
access to the Oracle database as a platform for their own information sharing products,
such as file-level replication, middle-tier caches or even to support replication between
Oracle and non-Oracle data stores. XStream provides these customers with fast, real-time
access to changes made in the Oracle database.

• XStream Use Cases
There are several common XStream use cases.

• Prerequisites for XStream
Meet prerequisites before using XStream.

• XStream Security Model
To use the XStream APIs and manage XStream configurations, you must be granted the
roles XSTREAM_CAPTURE or XSTREAM_APPLY.

• Tasks and Tools for XStream
You perform common tasks with XStream and use a set of tools to complete these tasks.

About XStream
XStream consists of Oracle Database components and application programming interfaces
(APIs) that enable client applications to receive data changes from an Oracle database and
send data changes to an Oracle database.

These data changes can be shared between Oracle databases and other systems. The other
systems include non-Oracle databases, non-RDBMS Oracle products, file systems, third party
software applications, and so on. A client application is designed by the user for specific
purposes and use cases.

XStream consists of two major features: XStream Out and XStream In. XStream Out provides
Oracle Database components and APIs that enable you to share data changes made to an
Oracle database with other systems. XStream Out can retrieve both data manipulation
language (DML) and data definition language (DDL) changes from the redo log and send these
changes to a client application that uses the APIs, as shown in the following figure.

1-1

Figure 1-1 XStream Out

Client
Application

XStream

Out

Interface

Outbound
Server

Database

Connect

Data Stream

ACK

Redo
Log

Red
Log

RedoRed

Redo
LogLog

Red
Log

Redo
Log

Red
Log

Redo
Log

Queue

.

.

.

Capture

XStream In provides Oracle Database components and APIs that enable you to share data
changes made to other systems with an Oracle database. XStream In can apply these
changes to database objects in the Oracle database, as shown in the following figure.

Figure 1-2 XStream In

Database

Connect

Data Stream

ACK

Client
Application

XStream

In Interface

Inbound
Server

XStream uses the capture and apply features of the Oracle database. These features enable
the following functionality for XStream:

• The logical change record (LCR) format for streaming database changes

Chapter 1
About XStream

1-2

An LCR is a message with a specific format that describes a database change. If the
change was a data manipulation language (DML) operation, then a row LCR encapsulates
each row change resulting from the DML operation. One DML operation might result in
multiple row changes, and so one DML operation might result in multiple row LCRs. If the
change was a data definition language (DDL) operation, then a single DDL LCR
encapsulates the DDL change.

• Rules and rule sets that control behavior, including inclusion and exclusion rules

Rules enable the filtering of database changes at the database level, schema level, table
level, and row/column level.

• Rule-based transformations that modify captured data changes

• Support for most data types in the database, including LOBs, LONG, LONG RAW, JSON,
BOOLEAN, and XMLType

• Customized configurations, including multiple inbound streams to a single database
instance, multiple outbound streams from a single database instance, multiple outbound
streams from a single capture process, and so on

• Full-featured apply for XStream In, including apply parallelism for optimal performance,
SQL generation, conflict detection and resolution, error handling, and customized apply
with apply handlers

Note:

In both XStream Out and XStream In configurations, the client application must use a
dedicated server connection.

Related Topics

• Configuring XStream In
You can configure the Oracle Database components that are used by XStream.

• Logical Change Records (LCRs)
An LCR is a message with a specific format that describes a database change.

• Rules and Rule Sets
XStream uses rules and rule sets.

• Oracle Database PL/SQL Packages and Types Reference

Purpose of XStream
Some customers, especially Independent Software Vendors (ISVs) and partners, need access
to the Oracle database as a platform for their own information sharing products, such as file-
level replication, middle-tier caches or even to support replication between Oracle and non-
Oracle data stores. XStream provides these customers with fast, real-time access to changes
made in the Oracle database.

XStream is a programmatic interface that allows client applications to connect to the Oracle
database and attach directly into the database capture or apply process. A client application
can take advantage of a high performing capture mechanism by attaching to the XStream
outbound server to directly access the stream of changes from an Oracle database. XStream
Out streams logical change records (LCRs) to the client application in committed transaction
order.

Chapter 1
Purpose of XStream

1-3

To apply changes to the Oracle database, a client application can hook directly into the
XStream inbound server. The application provides the inbound server with LCRs in
transactional order and can take advantage of the high performance of the database apply
engine to apply the changes to the Oracle database.

XStream Use Cases
There are several common XStream use cases.

XStream provides a flexible infrastructure for sharing information between Oracle data sources
and non-Oracle data sources. You can use XStream to meet the data and informational
sharing needs of various organizations.

Each XStream use case in this section contains three main elements:

• A general description of the use case as it applies to both XStream Out and XStream In

• A specific scenario for XStream Out

• A specific scenario for XStream In

In each XStream Out use case, the following components and actions send Oracle Database
changes to a client application:

• A capture process captures data changes made to an Oracle database.

• XStream Out sends these changes, in the form of logical change records (LCRs), to an
outbound server.

• The outbound server sends the LCRs to a client application.

How the client application processes the LCRs is different for each use case.

In each XStream In use case, the following components and actions send Oracle Database
changes to an inbound server:

• A client application gathers data changes from an external data source and sends them to
an inbound server in the form of LCRs.

• The inbound server receives the LCRs from a client application.

• The inbound server can apply the data changes to database objects in an Oracle
database. The inbound server can also process the LCRs in a customized way.

How the client application gathers the data changes is different for each use case.

• Replicating Data Changes with Non-Oracle Databases
Replication is generally used to improve availability and to improve performance by
spreading the network load over multiple regions and servers.

• Using Files to Store Data Changes
Some environments use files to store data changes.

• Sharing Data Changes with a Client-Side Memory Cache
Some environments cache data in memory to improve performance.

Chapter 1
XStream Use Cases

1-4

See Also:

• "Introduction to XStream Out"

• "Introduction to XStream In"

Replicating Data Changes with Non-Oracle Databases
Replication is generally used to improve availability and to improve performance by spreading
the network load over multiple regions and servers.

XStream enables you replicate data changes made to an Oracle database with other Oracle
databases and with non-Oracle data sources.

You can configure a heterogeneous replication environment with XStream. Replication is
generally used to improve availability and to improve performance by spreading the network
load over multiple regions and servers. In a heterogeneous replication environment, data is
replicated between databases from different vendors.

XStream Out can send data changes made to an Oracle database to a non-Oracle database.
Specifically, the client application connects to the outbound server and receives changes made
to tables within the Oracle database. The client application then applies the data changes in
the LCRs to the non-Oracle database. The client application can process the LCRs in any
customized way before applying them.

XStream In can receive data changes made to a non-Oracle database. Specifically, the client
application gathers the data changes made to the non-Oracle database, formats these
changes into LCRs, and sends these LCRs to an inbound server. The inbound server applies
the changes in the LCRs to the Oracle database.

Note:

Oracle GoldenGate is a complete solution for replicating data between Oracle and
non-Oracle databases. Oracle GoldenGate documentation for more information.

Using Files to Store Data Changes
Some environments use files to store data changes.

Typically, files store data changes for the following reasons:

• To process data changes in an environment that has no physical network or a limited
physical network. For example, some locations do not have a physical network for security
reasons.

• To process data changes in an environment that uses disconnected computing. For
example, a salesperson might fill orders on a laptop at various locations without a network
connection, and then update a primary database over the network once a day.

• To process data changes in an environment that uses satellite communications. In this
case, a bulk transfer of files is more efficient than incremental changes over the network.

XStream Out can send Oracle Database changes to a file in a file system. Specifically, the
client application writes the data changes in LCRs to the file. The client application can

Chapter 1
XStream Use Cases

1-5

process the LCRs in any customized way before writing them to the file, and the file can
reside on the computer system running the client application or on a different computer
system. Using SQL generation, the client application can also write the SQL statement
required to perform the change encapsulated in a row LCR to a file.

XStream In can send data changes from a file to an Oracle database. Specifically, the
client application reads the data changes from the file and sends the changes, in the form
of LCRs, to an inbound server.

See Also:

"XStream and SQL Generation"

• XStream Demo That Replicates Database Changes Using Files
A demo is available that creates sample client applications that perform file-based
replication using the XStream APIs.

XStream Demo That Replicates Database Changes Using Files
A demo is available that creates sample client applications that perform file-based replication
using the XStream APIs.

Specifically, at one database, the demo creates an XStream Out configuration that captures
database changes and sends the LCRs to an outbound server. A client application attaches to
the outbound server and writes the database changes to a file.

At a different database, the demo creates an XStream In client application that attaches to an
inbound server, reads the changes in the file, and sends them in the form of LCRs to the
inbound server. The inbound server applies the changes to the database objects at the
destination database.

This demo is available in the following location:

$ORACLE_HOME/rdbms/demo/xstream/fbr

Sharing Data Changes with a Client-Side Memory Cache
Some environments cache data in memory to improve performance.

Cached data can provide low response times and high throughput for systems that require the
best possible performance. XStream can share data changes incrementally with a client side
memory cache.

XStream Out can incrementally refresh a client-side memory cache by sending Oracle
database changes to a memory cache. Specifically, the client application applies the data
changes in the LCRs to the memory cache. The client application can process the LCRs in any
customized way before applying them, and the memory cache can reside on the computer
system running the client application or on a different computer system.

XStream In can incrementally retrieve data changes from a memory cache. Specifically, the
client application retrieves the data changes and sends the changes, in the form of LCRs, to an
inbound server. The memory cache can reside on the computer system running the client
application or on a different computer system.

Chapter 1
XStream Use Cases

1-6

Prerequisites for XStream
Meet prerequisites before using XStream.

This document assumes that you have the following skills:

• Knowledge of relational database concepts and Oracle Database concepts

XStream includes components that run in an Oracle database. To use XStream
successfully, you must be able to administer an Oracle Database.

See Also:

Oracle Database Concepts for information about this topic

• Knowledge of distributed databases

An XStream environment can include multiple data sources, including Oracle databases
and non-Oracle data sources. You should understand distributed database concepts
before using XStream.

See Also:

Oracle Database Administrator’s Guide for information about this topic

• Knowledge of SQL and PL/SQL

To administer an Oracle database and the XStream components running in an Oracle
database, you must know how to use SQL and PL/SQL.

See Also:

Oracle Database SQL Language Reference, Oracle Database PL/SQL Language
Reference, and Oracle Database PL/SQL Packages and Types Reference for
information about this topic

• Knowledge of application programming

XStream Out sends data changes to a client application for processing. XStream In
receives data changes from a client application. You use the Oracle Call Interface (OCI)
API or the Java API to create a client application that communicates with XStream.

See Also:

– Oracle Call Interface Developer's Guide for information about the OCI API

– Oracle Database Get Started with Java Development and Oracle Database
Java Developer’s Guide for information about the Java API

Chapter 1
Prerequisites for XStream

1-7

Note:

Using the XStream APIs requires purchasing a license for the Oracle GoldenGate
product. See the Oracle GoldenGate documentation for more information.

XStream Security Model
To use the XStream APIs and manage XStream configurations, you must be granted the roles
XSTREAM_CAPTURE or XSTREAM_APPLY.

The role required by the user depends on the type of configuration they manage, XStream Out
or XStream In. Each user can only manage the XStream components that they own.

See Also :

• "XStream Out and Security"

• "XStream In and Security"

• "Configure an XStream Administrator on All Databases"

• "Configure an XStream Administrator"

Tasks and Tools for XStream
You perform common tasks with XStream and use a set of tools to complete these tasks.

• XStream Tasks
You complete common tasks with XStream.

• XStream Tools
You use a set of tools to complete tasks with XStream.

XStream Tasks
You complete common tasks with XStream.

The common tasks for XStream are the following:

• Configure XStream

Configuring XStream involves preparing an Oracle Database for XStream, creating the
Oracle Database components used by XStream, and creating one or more client
applications that communicate with the Oracle Database.

See Also:

Configuring XStream Out and Configuring XStream In for information about this
task

• Administer XStream

Chapter 1
XStream Security Model

1-8

Administering XStream involves managing the Oracle Database components used by
XStream. It also involves managing the rules and rule sets used by these components. It
might also require modifications to a client application.

See Also:

Managing XStream Out and Managing XStream In for information about this task

• Monitor XStream

Monitoring XStream involves viewing Oracle Enterprise Manager Cloud Control pages
related to XStream and querying data dictionary views related to XStream.

See Also:

The Oracle Enterprise Manager Cloud Control online help, Monitoring XStream
Out and Monitoring XStream In for information about this task

XStream Tools
You use a set of tools to complete tasks with XStream.

Use the following tools to complete the tasks for XStream:

• SQL and PL/SQL

You can use SQL and PL/SQL to configure, administer, and monitor XStream. SQL
enables you to create an XStream administrator and monitor XStream using data
dictionary views. Several Oracle-supplied PL/SQL packages enable you to configure and
manage XStream.

See Also:

Oracle Database SQL Language Reference, Oracle Database Reference, Oracle
Database PL/SQL Language Reference, and Oracle Database PL/SQL
Packages and Types Reference for information about this topic

• Oracle Enterprise Manager Cloud Control

You can use Oracle Enterprise Manager Cloud Control to manage and monitor XStream
components. You can also use Oracle Enterprise Manager Cloud Control to view
information about the LCRs that are streaming in an XStream configuration.

See the Oracle Enterprise Manager Cloud Control online help for more information about
this topic.

• The OCI API and Java API

You can use the XStream OCI API and XStream Java API to create client application that
communicate with XStream. These applications can work with XStream Out to stream
LCRs out of an Oracle Database, and these applications can work with XStream In to
stream LCRs into an Oracle Database.

Chapter 1
Tasks and Tools for XStream

1-9

See Also:

– Oracle Call Interface Developer's Guide for information about the OCI API

– Oracle Database XStream Java API Reference for information about the
XStream Java API

– Oracle Database Get Started with Java Development and Oracle Database
Java Developer’s Guide for information about the Java API

Chapter 1
Tasks and Tools for XStream

1-10

2
General XStream Concepts

General XStream concepts apply to both XStream Out and XStream In.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB, depending
on context. In some contexts, such as upgrades, "non-CDB" refers to a non-CDB
from a previous release.

• Logical Change Records (LCRs)
An LCR is a message with a specific format that describes a database change.

• Rules and Rule Sets
XStream uses rules and rule sets.

• Rule-Based Transformations
In XStream, a rule-based transformation is any modification to a logical change record
(LCR) when a rule in a positive rule set evaluates to TRUE.

• XStream and the Oracle Replication Performance Advisor
The Oracle Replication Performance Advisor consists a collection of data dictionary views.

• Using Automatic Workload Repository (AWR) Reports for Oracle Database

• Automatic Workload Repository (AWR) Report for XStream
Automatic Workload Repository (AWR) reports help leverage the existing statistics from
AWR tables.

• XStream and SQL Generation
SQL generation is the ability to generate the SQL statement required to perform the
change encapsulated in a row LCR.

See Also:

• XStream Out Concepts

• XStream In Concepts

Logical Change Records (LCRs)
An LCR is a message with a specific format that describes a database change.

There are three types of LCRs: row LCRs, DDL LCRs, and sequence LCRs. In XStream, an
LCR is the basic unit of information that describes a database change.

2-1

In an XStream Out configuration, a capture process can capture LCRs and send them to an
outbound server. The outbound server can send the LCRs to the XStream client application.

In an XStream In configuration, an XStream client application can construct LCRs and send
them to an inbound server. The inbound server can apply the database changes directly to the
database object in the database, or the inbound server can process the LCRs in a customized
way.

• Row LCRs
A row LCR describes a change to the data in a single row or a change to a single LOB
column, LONG column, LONG RAW column, or XMLType column in a row.

• DDL LCRs
A DDL LCR describes a data definition language (DDL) change.

• Extra Information in Row LCRs and DDL LCRs
In addition to the information discussed in the previous sections, row LCRs and DDL LCRs
optionally can include extra information (or LCR attributes).

• Sequence LCRs
A sequence LCR is a row LCR that includes information about sequence values.
Sequence database objects generate sequence values.

• Position Order in an LCR Stream
Each LCR has a position attribute. The position of an LCR identifies its placement in the
stream of LCRs in a transaction.

• LCRIDs and the Position of LCRs
An LCRID is the raw value that specifies the position of an LCR for XStream Out. It is
strictly increasing, uniquely identifies an LCR, and is persistent across restart. XStream
uses LCRID values for ordering logical change records (LCRs) and for determining which
LCRs and transactions have been received and applied.

Row LCRs
A row LCR describes a change to the data in a single row or a change to a single LOB column,
LONG column, LONG RAW column, or XMLType column in a row.

The change results from a data manipulation language (DML) statement or a piecewise
operation. It may help to think of a row LCR as a DML LCR. For example, a single DML
statement can insert or merge multiple rows into a table, can update multiple rows in a table, or
can delete multiple rows from a table.

Since a single DML statement can affect more than one row, the capture process creates a row
LCR for each row that is changed by the DML statement. Row LCRs represent the data
changes made by a SQL or PL/SQL procedure invocation.

Each row LCR is encapsulated in an object of LCR$_ROW_RECORD type. The following table
describes the attributes that are present in each row LCR.

Table 2-1 Attributes Present in All Row LCRs

Attribute Description

source_database_name The name of the source database where the row change occurred.

If the LCRs originated in a multitenant container database (CDB), then this attribute specifies
the global name container where the row change occurred.

command_type The type of DML statement that produced the change, either INSERT, UPDATE, DELETE, LOB
ERASE, LOB WRITE, or LOB TRIM.

Chapter 2
Logical Change Records (LCRs)

2-2

Table 2-1 (Cont.) Attributes Present in All Row LCRs

Attribute Description

object_owner The schema name that contains the table with the changed row.

object_name The name of the table that contains the changed row.

tag A raw tag that you can use to track the LCR.

transaction_id The identifier of the transaction in which the DML statement was run.

scn The system change number (SCN) at the time when the change was made.

old_values The old column values related to the change. These are the column values for the row before
the DML change. If the type of the DML statement is UPDATE or DELETE, then these old
values include some or all of the columns in the changed row before the DML statement. If
the type of the DML statement is INSERT, then there are no old values. For UPDATE and
DELETE statements, row LCRs created by a capture process can include some or all of the
old column values in the row.

new_values The new column values related to the change. These are the column values for the row after
the DML change. If the type of the DML statement is UPDATE or INSERT, then these new
values include some or all of the columns in the changed row after the DML statement. If the
type of the DML statement is DELETE, then there are no new values. For UPDATE and
INSERT statements, row LCRs created by a capture process can include some or all of the
new column values in the row.

position A unique identifier of RAW data type for each LCR. The position is strictly increasing within a
transaction and across transactions.

LCR position is commonly used in XStream configurations.

See "Position Order in an LCR Stream".

root_name If the LCR originated in a CDB, then this attribute specifies the global name of the root in the
CDB.

If the LCR originated in a non-CDB, then this attribute is the same as the
source_database_name attribute.

Row LCRs that were captured by a capture process in an XStream Out configuration contain
additional attributes. The following table describes these additional attributes. These attributes
are not present in row LCRs constructed by an XStream client application in an XStream In
configuration.

Table 2-2 Additional Attributes in LCRs Captured by a Capture Process

Attribute Description

commit_scn The commit system change number (SCN) of the transaction to which the LCR belongs.

commit_scn_from_positi
on

The commit system change number (SCN) of a transaction determined by the input position,
which is generated by an XStream outbound server.

commit_time The commit time of the transaction to which the LCR belongs.

compatible The minimal database compatibility required to support the LCR.

instance_number The instance number of the database instance that made the change that is encapsulated in
the LCR. Typically, the instance number is relevant in an Oracle Real Application Clusters
(Oracle RAC) configuration.

lob_information The LOB information for the column, such as NOT_A_LOB or LOB_CHUNK.

lob_offset The LOB offset for the specified column in the number of characters for CLOB columns and
the number of bytes for BLOB columns.

Chapter 2
Logical Change Records (LCRs)

2-3

Table 2-2 (Cont.) Additional Attributes in LCRs Captured by a Capture Process

Attribute Description

lob_operation_size The operation size for the LOB column in the number of characters for CLOB columns and the
number of bytes for BLOB columns.

long_information The LONG information for the column, such as NOT_A_LONG or LONG_CHUNK.

row_text The SQL statement for the change that is encapsulated in the row LCR.

scn_from_position The SCN of the LCR.

source_time The time when the change in an LCR captured by a capture process was generated in the
redo log of the source database, or the time when a persistent LCR was created.

xml_information The XML information for the column, such as NOT_XML, XML_DOC, or XML_DIFF.

• Row LCR Subtypes
A row LCR can also contain transaction control statements. These row LCRs contain
transaction control directives such as COMMIT and ROLLBACK.

Row LCR Subtypes
A row LCR can also contain transaction control statements. These row LCRs contain
transaction control directives such as COMMIT and ROLLBACK.

Such row LCRs are internal and can be used by outbound servers, inbound servers, and
XStream client applications to maintain transaction consistency.

See Also:

Oracle Database PL/SQL Packages and Types Reference

DDL LCRs
A DDL LCR describes a data definition language (DDL) change.

A DDL statement changes the structure of the database. For example, a DDL statement can
create, alter, or drop a database object.

Each DDL LCR is encapsulated in an object of LCR$_DDL_RECORD type. The following table
describes the attributes that are present in each DDL LCR.

Table 2-3 Attributes Present in All DDL LCRs

Attribute Description

source_database_name The name of the source database where the DDL change occurred.

If the LCRs originated in a CDB, then this attribute specifies the global name of the container
where the DDL change occurred.

command_type The type of DDL statement that produced the change, for example ALTER TABLE or CREATE
INDEX.

Chapter 2
Logical Change Records (LCRs)

2-4

Table 2-3 (Cont.) Attributes Present in All DDL LCRs

Attribute Description

object_owner The schema name of the user who owns the database object on which the DDL statement
was run.

object_name The name of the database object on which the DDL statement was run.

object_type The type of database object on which the DDL statement was run, for example TABLE or
PACKAGE.

ddl_text The text of the DDL statement.

logon_user The logon user, which is the user whose session executed the DDL statement.

current_schema The schema that is used if no schema is specified for an object in the DDL text.

base_table_owner The base table owner. If the DDL statement is dependent on a table, then the base table
owner is the owner of the table on which it is dependent.

base_table_name The base table name. If the DDL statement is dependent on a table, then the base table
name is the name of the table on which it is dependent.

tag A raw tag that you can use to track the LCR.

transaction_id The identifier of the transaction in which the DDL statement was run.

scn The system change number (SCN) at the time when the change was made.

position A unique identifier of RAW data type for each LCR. The position is strictly increasing within a
transaction and across transactions.

LCR position is commonly used in XStream configurations.

See "Position Order in an LCR Stream".

edition_name The name of the edition in which the DDL statement was executed.

root_name If the LCR originated in a CDB, then this attribute specifies the global name of the root in the
CDB.

If the LCR originated in a non-CDB, then this attribute is the same as the
source_database_name attribute.

DDL LCRs that were captured by a capture process contain additional attributes. The following
table describes these additional attributes. These attributes are not present in DDL LCRs
constructed by an XStream client application in an XStream In configuration.

Table 2-4 Additional Attributes in DDL LCRs Captured by a Capture Process

Attribute Description

commit_scn The commit system change number (SCN) of the transaction to which the LCR belongs.

commit_scn_from_positi
on

The commit SCN of a transaction determined by the input position, which is generated by an
XStream outbound server.

commit_time The commit time of the transaction to which the LCR belongs.

compatible The minimal database compatibility required to support the LCR.

instance_number The instance number of the database instance that made the change that is encapsulated in
the LCR. Typically, the instance number is relevant in an Oracle Real Application Clusters
(Oracle RAC) configuration.

scn_from_position The SCN of the LCR.

source_time The time when the change in an LCR captured by a capture process was generated in the
redo log of the source database, or the time when a persistent LCR was created.

Chapter 2
Logical Change Records (LCRs)

2-5

Note:

Both row LCRs and DDL LCRs contain the source database name of the database
where a change originated. To avoid problems, Oracle recommends that you do not
change the global name of the source database after a capture process has started
capturing changes.

See Also:

• Oracle Call Interface Developer's Guide for a complete list of the types of DDL
statements in the "SQL Command Codes" table

• Oracle Database PL/SQL Packages and Types Reference

Extra Information in Row LCRs and DDL LCRs
In addition to the information discussed in the previous sections, row LCRs and DDL LCRs
optionally can include extra information (or LCR attributes).

The extra attributes in LCRs are described in the following table.

Table 2-5 Extra Attributes in LCRs

Attribute Description

row_id The rowid of the row changed in a row LCR. This attribute is not included in DDL LCRs or
row LCRs for index-organized tables.

serial# The serial number of the session that performed the change captured in the LCR.

session# The identifier of the session that performed the change captured in the LCR.

thread# The thread number of the instance in which the change captured in the LCR was performed.
Typically, the thread number is relevant only in an Oracle Real Application Clusters (Oracle
RAC) environment.

tx_name The name of the transaction that includes the LCR.

username The name of the current user who performed the change captured in the LCR.

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to
instruct a capture process to capture one or more extra attributes.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the INCLUDE_EXTRA_ATTRIBUTE procedure

• Oracle Database PL/SQL Language Reference for more information about the
current user

Chapter 2
Logical Change Records (LCRs)

2-6

Sequence LCRs
A sequence LCR is a row LCR that includes information about sequence values. Sequence
database objects generate sequence values.

You can stream sequence LCRs in the following ways:

• To capture sequence LCRs using a capture process, set the capture process parameter
capture_sequence_nextval to Y.

• To construct sequence LCRs using the OCI interface, use the OCILCRNew function and the
OCILCRHeaderSet function with the OCI_ROWLCR_SEQ_LCR flag.

• To construct sequence LCRs using the Java interface, use the DefaultRowLCR constructor
and setSequenceLCRFlag method.

An XStream inbound server or an Oracle Apply process can use sequence LCRs to ensure
that the sequence values at a destination database use the appropriate values. For increasing
sequences, the sequence values at the destination are equal to or greater than the sequence
values at the source database. For decreasing sequences, the sequence values at the
destination are less than or equal to the sequence values at the source database. To instruct
an inbound server or apply process to use sequence LCRs, set the apply_sequence_nextval
apply parameter to Y.

Note:

Sequence LCRs are intended for one-way replication configurations. Sequence LCRs
cannot be used in bidirectional replication configurations.

See Also:

• "Setting a Capture Process Parameter"

• Oracle Call Interface Developer's Guide for more information about the OCI
interface

• Oracle Database XStream Java API Reference for more information about the
Java interface

• Oracle Database Administrator’s Guide for information about sequences

Position Order in an LCR Stream
Each LCR has a position attribute. The position of an LCR identifies its placement in the
stream of LCRs in a transaction.

Both XStream Out and XStream In use LCR streams to share transactions. XStream Out
sends LCR streams to a client application. XStream In receives LCR streams from a client
application.

Each LCR position has the following properties:

Chapter 2
Logical Change Records (LCRs)

2-7

• The position is unique for each LCR.

• The position is of RAW data type.

• The position is strictly increasing within the LCR stream, within a transaction, and across
transactions.

• The position is byte-comparable, and the comparison results for multiple positions
determines the ordering of the LCRs in the stream.

• The position of an LCR remains identical when the database, the client application, or an
XStream component restarts.

• The position is not affected by any rule changes that might reduce or increase the number
of LCRs in the stream.

XStream Out only sends committed data, and XStream In only receives committed data.

The following are the properties related to an LCR stream:

• An LCR stream must be repeatable.

• An LCR stream must contain a list of assembled, committed transactions. LCRs from one
transaction are contiguous. There is no interleaving of transactions in an LCR stream.

• Each transaction within an LCR stream must have an ordered list of LCRs and a
transaction ID.

• The last LCR in each transaction must be a commit LCR.

• Each LCR must have a unique position.

• The position of all LCRs within a single transaction and across transactions must be strictly
increasing.

An LCR stream can batch LCRs from multiple transactions and arrange them in increasing
position order. LCRs from one transaction are contiguous, and the position must be increasing
in the transaction. Also, the position must be nonzero for all LCRs.

See Also:

• "Position of LCRs and XStream Out"

• "Position of LCRs and XStream In"

LCRIDs and the Position of LCRs
An LCRID is the raw value that specifies the position of an LCR for XStream Out. It is strictly
increasing, uniquely identifies an LCR, and is persistent across restart. XStream uses LCRID
values for ordering logical change records (LCRs) and for determining which LCRs and
transactions have been received and applied.

Starting with Oracle Database 12c Release 2 (12.2.0.1), the LCRID is versioned. When you
create or add an outbound server, you can choose the LCRID version it uses. To specify
version 2, the database compatibility level must be at 12.2.0 or higher. By default, an outbound
server created or added when database compatibility is lower than 12.2.0 uses LCRID version
1, and an outbound server created or added when database compatibility is at 12.2.0 or higher
uses LCRID version 2. You might choose to use LCRID version 1 for an outbound server if, for

Chapter 2
Logical Change Records (LCRs)

2-8

example, the outbound server captures LCRs that will be applied at a database that is at a
lower compatibility level.

After an outbound server is created or added, its LCRID version cannot be changed. To
change the LCRID version, you must drop and re-create the outbound server. If the outbound
server was sending LCRs to an inbound server, then you must drop and re-create the inbound
server.

The same database change has different LCRID values for version 1 and version 2. New
functions in the DBMS_XSTREAM_ADM package enable you to compare any stored LCRID values
in different versions and convert LCRID values from one version to another. Specifically, the
COMPARE_POSITION function compares two LCRID values, and the CONVERT_POSITION function
converts LCRID values from one version to another.

Related Topics

• Configuring XStream Out
An outbound server in an XStream Out configuration streams Oracle database changes to
a client application.

Rules and Rule Sets
XStream uses rules and rule sets.

• Rules and Rule Sets Defined
A rule is a database object that enables a client to perform an action when an event occurs
and a condition is satisfied. In an XStream configuration, rules identify which LCRs to
stream from one component to another.

• Rule Sets and XStream Components
An XStream component performs its task if a database change satisfies its rule sets.

• System-Created Rules and XStream
An XStream component performs its task for an LCR if the LCR satisfies its rule sets. A
system-created rule is created by the DBMS_XSTREAM_ADM package.

See Also:

• "Managing Rules for an XStream Out Configuration"

• "Monitoring XStream Rules"

Rules and Rule Sets Defined
A rule is a database object that enables a client to perform an action when an event occurs
and a condition is satisfied. In an XStream configuration, rules identify which LCRs to stream
from one component to another.

Capture processes, propagations, outbound servers and inbound servers can use rules. You
can configure rules for each XStream component independently, and the rules for different
XStream components do not need to match.

A rule set is a collection of rules. The behavior of each XStream component is determined by
the rules in the rule sets that are associated with it. You can associate a positive rule set and a
negative rule set with each XStream component.

Chapter 2
Rules and Rule Sets

2-9

In addition, a single rule pertains to either the results of data manipulation language (DML)
changes or data definition language (DDL) changes. So, for example, you must use at least
two rules to include all of the changes to a particular table: one rule for the results of DML
changes and another rule for DDL changes.

The results of a DML change are row changes, and an LCR that encapsulates a row change is
called a row LCR. A single DML change can result in multiple row changes. Therefore, a single
DML change can result in multiple row LCRs. An LCR that encapsulates a DDL change is
called a DDL LCR.

Rule Sets and XStream Components
An XStream component performs its task if a database change satisfies its rule sets.

In general, a change satisfies the rule sets when no rules in the negative rule set evaluate to
TRUE for the change and at least one rule in the positive rule set evaluates to TRUE for the
change. The negative rule set is always evaluated first.

You use rule sets in an XStream configuration to specify the following:

• Changes that a capture process captures from the redo log or discards. If a change found
in the redo log satisfies the rule sets for a capture process, then the capture process
captures the change. If a change found in the redo log does not satisfy the rule sets for a
capture process, then the capture process discards the change.

In XStream Out configurations that share one capture process among several outbound
servers, the rules for the capture process must pass the LCRs that are needed by any of
the outbound servers that share the capture process.

• The LCRs that a propagation sends from one queue to another or discards. If an LCR in a
queue satisfies the rule sets for a propagation, then the propagation sends the LCR. If an
LCR in a queue does not satisfy the rule sets for a propagation, then the propagation
discards the LCR.

• The LCRs that an outbound server sends to an XStream client application or discards. If
an LCR satisfies the rule sets for an outbound server, then the outbound server sends the
LCR to the XStream client application. If an LCR does not satisfy the rule sets for an
outbound server, then the outbound server discards the LCR.

• The LCRs that an inbound server applies or discards. If an LCR satisfies the rule sets for
an inbound server, then the inbound server applies the LCR. If an LCR in not satisfy the
rule sets for an inbound server, then the inbound server discards the LCR.

When an XStream component has no rule sets, the component performs its task for all
database changes. For example, if an inbound server has no rule sets, then it applies all of the
LCRs sent to it by an XStream client application.

System-Created Rules and XStream
An XStream component performs its task for an LCR if the LCR satisfies its rule sets. A
system-created rule is created by the DBMS_XSTREAM_ADM package.

A system-created rule can specify one of the following levels of granularity: table, schema, or
global.

• XStream System-Created Rule Procedures
Several PL/SQL procedures in the DBMS_XSTREAM_ADM package can create system-
generated rules.

Chapter 2
Rules and Rule Sets

2-10

• Global Rules
When you use a rule to specify a task that is relevant to an entire database, you are
specifying a global rule.

• Schema Rules
When you use a rule to specify a task that is relevant to a schema, you are specifying a
schema rule.

• Table Rules
When you use a rule to specify a task that is relevant to a table, you are specifying a table
rule.

• Subset Rules
A subset rule is a special type of table rule for DML changes that is relevant only to a
subset of the rows in a table.

• System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database. This self-contained collection is called a pluggable database (PDB). A
CDB contains PDBs.

See Also:

• "Managing Rules for an XStream Out Configuration"

• "Monitoring XStream Rules"

• Oracle Database PL/SQL Packages and Types Reference

XStream System-Created Rule Procedures
Several PL/SQL procedures in the DBMS_XSTREAM_ADM package can create system-generated
rules.

There are three types of procedures that create system-created rules:

• Procedures that create or alter an outbound server and the rules for the outbound server

These procedures include CREATE_OUTBOUND, ADD_OUTBOUND, and ALTER_OUTBOUND. These
procedures make it easy to configure XStream Out quickly. If they meet your needs, then
you should use these procedures to simplify XStream Out configuration. The
CREATE_OUTBOUND procedure creates the queue and capture process used by the outbound
server in addition to the outbound server.

• Procedures that create a propagation or add rules to an existing propagation

These procedures include the ADD_*_PROPAGATION_RULES procedures. If the specified
propagation does not exist, then these procedures create the propagation and add rules to
the propagation's rule sets. If the specified propagation exists, then these procedures add
rules to the existing propagation's rule sets.

• Procedures that add rules to an existing XStream component, such as a capture process,
outbound server, or inbound server

These procedures include the ADD_*_RULES procedures. These procedure provide more
flexibility and fine-grained control over the system-created rules. You should use these
procedures when necessary to add rules to your XStream configuration.

Chapter 2
Rules and Rule Sets

2-11

The following table describes which procedures can create rules for which XStream
components.

Table 2-6 XStream System-Created Rule Procedures

Procedure Capture Process Propagation Outbound Server Inbound Server

CREATE_OUTBOUND Yes No Yes No

ADD_OUTBOUND No No Yes No

ALTER_OUTBOUND Yes No Yes No

ADD_GLOBAL_RULES Yes No Yes Yes

ADD_GLOBAL_PROPAGATION_RU
LES

No Yes No No

ADD_SCHEMA_RULES Yes No Yes Yes

ADD_SCHEMA_PROPAGATION_RU
LES

No Yes No No

ADD_GLOBAL_RULES Yes No Yes Yes

ADD_SUBSET_OUTBOUND_RULES No No Yes No

ADD_SUBSET_RULES Yes No Yes Yes

ADD_SUBSET_PROPAGATION_RU
LES

No Yes No No

ADD_TABLE_RULES Yes No Yes Yes

ADD_TABLE_PROPAGATION_RUL
ES

No Yes No No

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about these procedures

Global Rules
When you use a rule to specify a task that is relevant to an entire database, you are specifying
a global rule.

You can specify a global rule for DML changes, a global rule for DDL changes, or a global rule
for each type of change (two rules total).

A single global rule in the positive rule set for a capture process means that the capture
process captures the results of either all DML changes or all DDL changes to the source
database. A single global rule in the negative rule set for a capture process means that the
capture process discards the results of either all DML changes or all DDL changes to the
source database.

A single global rule in the positive rule set for a propagation means that the propagation rule
controls the set of LCRs that are applicable to a specific outbound server. If a single capture
services multiple outbound servers, the set of changes distributed to each outbound server is
controlled by the propagation rules (the capture rules are the superset of all changes). A single

Chapter 2
Rules and Rule Sets

2-12

global rule in the negative rule set for a propagation means that the propagation discards either
all row LCRs or all DDL LCRs from the capture process.

A single global rule in the positive rule set for an outbound server means that the outbound
server sends either all row LCRs or all DDL LCRs that it receives to an XStream client
application. A single global rule in the negative rule set for an outbound server means that the
outbound server discards either all row LCRs or all DDL LCRs that it receives.

A single global rule in the positive rule set for an inbound server means that the inbound server
applies either all row LCRs or all DDL LCRs sent to it by the XStream client application. A
single global rule in the negative rule set for an inbound server means that the inbound server
discards either all row LCRs or all DDL LCRs sent to it by the XStream client application.

When an inbound server should apply all of the LCRs it receives from its client application, you
can configure the inbound server with no rule sets instead of using global rules. Also, for an
inbound server to perform best, it should not receive LCRs that it should not apply.

To specify global rules for an outbound server, use the ALTER_OUTBOUND procedure or, for
specifying a greater level of detail, the ADD_GLOBAL_RULES procedure in the DBMS_XSTREAM_ADM
package.

To specify global rules for an inbound server, use the ALTER_INBOUND procedure or, for
specifying a greater level of detail, the ADD_GLOBAL_RULES procedure in the DBMS_XSTREAM_ADM
package.

See Also:

• "Managing Rules for an XStream Out Configuration"

• "Monitoring XStream Rules"

• Oracle Database PL/SQL Packages and Types Reference

Schema Rules
When you use a rule to specify a task that is relevant to a schema, you are specifying a
schema rule.

You can specify a schema rule for DML changes, a schema rule for DDL changes, or a
schema rule for each type of change to the schema (two rules total).

A single schema rule in the positive rule set for a capture process means that the capture
process captures either the DML changes or the DDL changes to the schema. A single
schema rule in the negative rule set for a capture process means that the capture process
discards either the DML changes or the DDL changes to the schema.

A single schema rule in the positive rule set for a propagation means that the propagation
propagates either the row LCRs or the DDL LCRs in the source queue that contain changes to
the schema. A single schema rule in the negative rule set for a propagation means that the
propagation discards either the row LCRs or the DDL LCRs in the source queue that contain
changes to the schema.

A single schema rule in the positive rule set for an outbound server means that the outbound
server sends either the row LCRs or the DDL LCRs that it receives that contain changes to the
schema to an XStream client application. A single schema rule in the negative rule set for an

Chapter 2
Rules and Rule Sets

2-13

outbound server means that the outbound server discards either the row LCRs or the DDL
LCRs that it receives that contain changes to the schema.

A single schema rule in the positive rule set for an inbound server means that the inbound
server applies either the row LCRs or the DDL LCRs that it receives from an XStream client
application that contain changes to the schema. A single schema rule in the negative rule set
for an inbound server means that the inbound server discards either the row LCRs or the DDL
LCRs that it receives from an XStream client application that contain changes to the schema.

To specify schema rules for either an outbound server or an inbound server, use the
ALTER_OUTBOUND procedure or the ADD_SCHEMA_RULES procedure in the DBMS_XSTREAM_ADM
package.

See Also:

• "Managing Rules for an XStream Out Configuration"

• "Monitoring XStream Rules"

• Oracle Database PL/SQL Packages and Types Reference

Table Rules
When you use a rule to specify a task that is relevant to a table, you are specifying a table rule.

You can specify a table rule for DML changes, a table rule for DDL changes, or a table rule for
each type of change to the table (two rules total).

A single table rule in the positive rule set for a capture process means that the capture process
captures either the DML changes or the DDL changes to the table. A single table rule in the
negative rule set for a capture process means that the capture process discards either the
DML changes or the DDL changes to the table.

A single table rule in the positive rule set for a propagation means that the propagation
propagates either the row LCRs or the DDL LCRs in the source queue that contain changes to
the table. A single table rule in the negative rule set for a propagation means that the
propagation discards either the row LCRs or the DDL LCRs in the source queue that contain
changes to the table.

A single table rule in the positive rule set for an outbound server means that the outbound
server sends either the row LCRs or the DDL LCRs that it receives that contain changes to the
table to an XStream client application. A single table rule in the negative rule set for an
outbound server means that the outbound server discards either the row LCRs or the DDL
LCRs that it receives that contain changes to the table.

A single table rule in the positive rule set for an inbound server means that the inbound server
applies either the row LCRs or the DDL LCRs that it receives from an XStream client
application that contain changes to the table. A single table rule in the negative rule set for an
inbound server means that the inbound server discards either the row LCRs or the DDL LCRs
that it receives from an XStream client application that contain changes to the table.

To specify table rules for an outbound server or inbound server, use either the ALTER_OUTBOUND
procedure or ADD_TABLE_RULES in the DBMS_XSTREAM_ADM package.

Chapter 2
Rules and Rule Sets

2-14

Subset Rules
A subset rule is a special type of table rule for DML changes that is relevant only to a subset of
the rows in a table.

When you create a subset rule, you use a condition similar to a WHERE clause in a SELECT
statement to specify the following:

• That a capture process only captures a subset of the row changes resulting from DML
changes to a particular table

• That a propagation only propagates a subset of the row LCRs relating to a particular table

• That an outbound server only sends a subset of the row LCRs relating to a particular table
to an XStream client application

• That an inbound server only applies a subset of the row LCRs relating to a particular table

Supplemental logging is required when you specify the following types of subset rules:

• Subset rules for a capture process

• Subset rules for a propagation that will propagate LCRs captured by a capture process

• Subset rules for an outbound server that will send LCRs captured by a capture process to
an XStream client application

In any of these cases, an unconditional supplemental log group must be specified at the
source database for all the columns in the subset condition. In some cases, when a subset rule
is specified, an update can be converted to an insert, and, in these cases, supplemental
information might be needed for some or all of the columns.

To specify subset rules for an outbound server, use the ADD_SUBSET_OUTBOUND_RULES,
ADD_SUBSET_RULES, or the REMOVE_SUBSET_OUTBOUND_RULES procedures in the
DBMS_XSTREAM_ADM package.

See Also:

• "If Required, Configure Supplemental Logging"

• "Adding Subset Rules to an Outbound Server's Positive Rule Set"

• "Removing Subset Rules from an Outbound Server's Positive Rule Set"

• "Monitoring XStream Rules"

System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of schemas,
objects, and related structures that appears logically to an application as a separate database.
This self-contained collection is called a pluggable database (PDB). A CDB contains PDBs.

It can also contain application containers. An application container is an optional component of
a CDB that consists of an application root and the application PDBs associated with it. An
application container stores data for one or more applications. An application container shares
application metadata and common data. In a CDB, each of the following is a container: the
CDB root, each PDB, each application root, and each application PDB.

Chapter 2
Rules and Rule Sets

2-15

In a CDB, LCRs can contain the global name of the container where the change originated in
the source_database_name attribute and the global name of the CDB root in the root_name
attribute. The rules for XStream components can consider these attributes.

• System-Created Rules in a CDB and XStream Out
In a CDB, XStream Out must be configured in the CDB root. Therefore, the PL/SQL
procedures in the DBMS_XSTREAM_ADM package that create system-created rules must be
run in the CDB root while connected as a common user.

• System-Created Rules in a CDB and XStream In
You can configure XStream In in the root or in any container in a CDB.

Related Topics

• Oracle Multitenant Administrator's Guide

System-Created Rules in a CDB and XStream Out
In a CDB, XStream Out must be configured in the CDB root. Therefore, the PL/SQL
procedures in the DBMS_XSTREAM_ADM package that create system-created rules must be run in
the CDB root while connected as a common user.

Excluding the procedures that create rules for propagations, the procedures that create
system-created rules for XStream Out, such as the ADD_GLOBAL_RULES procedure, include the
key parameters in the following table:

Table 2-7 Key Procedure Parameters for System-Created Rules in a CDB

Parameter Description

source_database The global name of the source database. In a CDB, specify the global name
of the container to which the rules pertain. The container can be the CDB
root, a PDB, an application root, or an application PDB. The following are
examples: mycdb.example.com or hrpdb.example.com.

source_root_name The global name of the CDB root in the source CDB. The following are
examples: mycdb.example.com.

source_container_na
me

The short name of the source container. The container can be the CDB root,
a PDB, an application root, or an application PDB. The following are
examples: CDB$ROOT or hrpdb.

If you do not include the domain name when you specify source_database or
source_root_name, then the procedure appends it to the name automatically. For example, if
you specify DBS1 and the domain is .EXAMPLE.COM, then the procedure specifies
DBS1.EXAMPLE.COM automatically.

The combination of these key parameters determines which containers' changes XStream Out
captures and streams to the client application, based on the rules generated by the
procedures. Regardless of the settings for these parameters, system-generated rules can still
limit the changes captured and streamed to specific schemas and tables.

Local capture means that a capture process runs on the source CDB. In a local capture
configuration, the source_root_name parameter specifies the global name of the CDB root in
the local CDB. If this parameter is NULL, then the global name of the CDB root in the local CDB
is specified automatically. The resulting rules include a condition for the global name of the
CDB root in the current CDB.

Downstream capture means that a capture process runs on a CDB other than the source CDB.
In a downstream capture configuration, the source_root_name parameter must be non-NULL,

Chapter 2
Rules and Rule Sets

2-16

and it must specify the global name of the CDB root in the remote source CDB. The resulting
rules include a condition for the global name of the CDB root in the remote CDB. If this
parameter is NULL, then local capture is assumed.

The following table describes the rule conditions for various source_database and
source_container_name parameter settings in a local capture configuration.

Table 2-8 Local Capture and XStream Out Container Rule Conditions

source_database
Parameter Setting

source_container_na
me Parameter Setting

Description

NULL NULL XStream Out captures and streams changes made
in any container in the local CDB, including the
CDB root, all PDBs, all application roots, and all
application PDBs.

non-NULL NULL XStream Out captures and streams changes made
in the specified source container of the local CDB.
The source container can be the CDB root, a PDB,
an application root, or an application PDB. The
DBMS_XSTREAM_ADM procedure queries the
CDB_PDBS view and CDB_PROPERTIES view to
determine the source_container_name value.

NULL non-NULL XStream Out captures and streams changes made
in the specified source container of the local CDB.
The source container can be the CDB root, a PDB,
an application root, or an application PDB. The
DBMS_XSTREAM_ADM procedure queries the
CDB_PDBS view and CDB_PROPERTIES view to
determine the source_database value.

non-NULL non-NULL XStream Out captures and streams changes made
in the specified source container of the local CDB.
The source container can be the CDB root, a PDB,
an application root, or an application PDB.

If the prefix of the source_database value is
different from the source_container_name value,
then the resulting rules include a condition for the
source_database value, and an internal table
maps the source_database value to the
source_container_name value.

The following table describes the rule conditions for various source_database and
source_container_name parameter settings in a downstream capture configuration.

Table 2-9 Downstream Capture and XStream Out Container Rule Conditions

source_database
Parameter Setting

source_container_na
me Parameter Setting

Description

NULL NULL XStream Out captures and streams changes made
in any container in the remote source CDB,
including the CDB root, all PDBs, all application
roots, and all application PDBs.

Chapter 2
Rules and Rule Sets

2-17

Table 2-9 (Cont.) Downstream Capture and XStream Out Container Rule Conditions

source_database
Parameter Setting

source_container_na
me Parameter Setting

Description

non-NULL NULL XStream Out captures and streams changes made
in the specified source container of the remote
source CDB. The source container can be the CDB
root, a PDB, an application root, or an application
PDB. The DBMS_XSTREAM_ADM procedure derives
the source_container_name value from the
prefix of source_database value.

NULL non-NULL The DBMS_XSTREAM_ADM procedure raises an
error.

non-NULL non-NULL XStream Out captures and streams changes made
in the specified source container of the remote
source CDB. The source container can be the CDB
root, a PDB, an application root, or an application
PDB.

If the prefix of the source_database value is
different from the source_container_name value,
then the resulting rules include a condition for the
source_database value, and an internal table
maps the source_database value to the
source_container_name value.

Related Topics

• Local Capture and Downstream Capture
You can configure a capture process to run locally on a source database or remotely on a
downstream database.

• Oracle Database PL/SQL Packages and Types Reference

System-Created Rules in a CDB and XStream In
You can configure XStream In in the root or in any container in a CDB.

Typically, an inbound server does not use rule sets or rules. Instead, it usually processes all
LCRs that it receives from its client application. An inbound server can apply changes to the
current container only. Therefore, if an inbound server is configured in the CDB root, then it can
apply changes only to the CDB root. If an inbound server is configured in a PDB, then it can
apply changes only to that PDB. If an inbound server is configured in an application root, then
it can apply changes only to that application root, and if an inbound server is configured in an
application PDB, then it can apply changes only to that application PDB.

Related Topics

• Oracle Multitenant Administrator's Guide

Rule-Based Transformations
In XStream, a rule-based transformation is any modification to a logical change record (LCR)
when a rule in a positive rule set evaluates to TRUE.

In general, it is best for the client application to perform transformations of the data. If this is
not possible, then the database can perform some simple transformations on DML LCRs.

Chapter 2
Rule-Based Transformations

2-18

• Declarative Rule-Based Transformations
Declarative rule-based transformations cover a set of common transformation scenarios for
row LCRs.

• Declarative Rule-Based Transformation Ordering
The order in which different types of rule-based transformations is evaluated is important
as results will vary.

• Evaluating Transformation Ordering
You can evaluate transformation ordering.

Declarative Rule-Based Transformations
Declarative rule-based transformations cover a set of common transformation scenarios for
row LCRs.

You specify (or declare) such a transformation using one of the following procedures in the
DBMS_XSTREAM_ADM package:

• ADD_COLUMN either adds or removes a declarative transformation that adds a column to a
row LCR.

• DELETE_COLUMN either adds or removes a declarative transformation that deletes a column
from a row LCR.

• KEEP_COLUMNS either adds or removes a declarative transformation that keeps a list of
columns in a row LCR. The transformation removes columns that are not in the list from
the row LCR.

• RENAME_COLUMN either adds or removes a declarative transformation that renames a
column in a row LCR.

• RENAME_SCHEMA either adds or removes a declarative transformation that renames the
schema in a row LCR.

• RENAME_TABLE either adds or removes a declarative transformation that renames the table
in a row LCR.

When you specify a declarative rule-based transformation, you specify the rule that is
associated with it. When the specified rule evaluates to TRUE for a row LCR, XStream performs
the declarative transformation internally on the row LCR, without invoking PL/SQL.

Declarative rule-based transformations provide the following advantages:

• Performance is improved because the transformations are run internally without using PL/
SQL.

• Complexity is reduced because custom PL/SQL functions are not required.

Declarative rule-based transformations can transform row LCRs only. Therefore, a DML rule
must be specified when you run one of the procedures to add a declarative transformation. If a
DDL rule is specified, then an error is raised.

Declarative Rule-Based Transformation Ordering
The order in which different types of rule-based transformations is evaluated is important as
results will vary.

By default, Oracle Database performs declarative transformations in the following order when
the rule evaluates to TRUE:

1. Keep columns

Chapter 2
Rule-Based Transformations

2-19

2. Delete column

3. Rename column

4. Add column

5. Rename table

6. Rename schema

The results of a declarative transformation are used in each subsequent declarative
transformation. For example, suppose the following declarative transformations are specified
for a single rule:

• Delete column address

• Add column address

Assuming column address exists in a row LCR, both declarative transformations should be
performed in this case because the column address is deleted from the row LCR before
column address is added back to the row LCR. The following table shows the transformation
ordering for this example.

Step
Number

Transformation Type Transformation Details Transformation
Performed?

1 Keep columns - -

2 Delete column Delete column address from row LCR Yes

3 Rename column - -

4 Add column Add column address to row LCR Yes

5 Rename table - -

6 Rename schema - -

Another scenario might rename a table and then rename a schema. For example, suppose the
following declarative transformations are specified for a single rule:

• Rename table john.customers to sue.clients
• Rename schema sue to mary
Notice that the rename table transformation also renames the schema for the table. In this
case, both transformations should be performed and, after both transformations, the table
name becomes mary.clients. The following table shows the transformation ordering for this
example.

Step
Number

Transformation Type Transformation Details Transformation
Performed?

1 Keep columns - -

2 Delete column - -

3 Rename column - -

4 Add column - -

5 Rename table Rename table john.customers to
sue.clients

Yes

6 Rename schema Rename schema sue to mary Yes

Consider a similar scenario in which the following declarative transformations are specified for
a single rule:

Chapter 2
Rule-Based Transformations

2-20

• Rename table john.customers to sue.clients
• Rename schema john to mary
In this case, the first transformation is performed, but the second one is not. After the first
transformation, the table name is sue.clients. The second transformation is not performed
because the schema of the table is now sue, not john. The following table shows the
transformation ordering for this example.

Step
Number

Transformation Type Transformation Details Transformation
Performed?

1 Keep columns - -

2 Delete column - -

3 Rename column - -

4 Add column - -

5 Rename table Rename table john.customers to
sue.clients

Yes

6 Rename schema Rename schema john to mary No

The rename schema transformation is not performed, but it does not result in an error. In this
case, the row LCR is transformed by the rename table transformation, and a row LCR with the
table name sue.clients is returned.

Evaluating Transformation Ordering
You can evaluate transformation ordering.

• Row Migration Transformation Ordering
In addition to declarative rule-based transformations, a row migration is an internal
transformation that takes place when a subset rule evaluates to TRUE.

• User-Specified Declarative Transformation Ordering
If you do not want to use the default declarative rule-based transformation ordering for a
particular rule, then you can specify step numbers for each declarative transformation
specified for the rule.

• Considerations for Rule-Based Transformations
Several considerations apply to declarative rule-based transformations.

Row Migration Transformation Ordering
In addition to declarative rule-based transformations, a row migration is an internal
transformation that takes place when a subset rule evaluates to TRUE.

You can use the DBMS_XSTREAM_ADM.ADD_SUBSET_RULES procedure to add subset rules. If both
types of transformations are specified for a single rule, then Oracle Database performs the
transformations in the following order when the rule evaluates to TRUE:

1. Row migration

2. Declarative rule-based transformation

Chapter 2
Rule-Based Transformations

2-21

User-Specified Declarative Transformation Ordering
If you do not want to use the default declarative rule-based transformation ordering for a
particular rule, then you can specify step numbers for each declarative transformation specified
for the rule.

If you specify a step number for one or more declarative transformations for a particular rule,
then the declarative transformations for the rule behave in the following way:

• Declarative transformations are performed in order of increasing step number.

• The default step number for a declarative transformation is 0 (zero). A declarative
transformation uses this default if no step number is explicitly specified for it.

• If two or more declarative transformations have the same step number, then these
declarative transformations follow the default ordering described in "Declarative Rule-
Based Transformation Ordering".

For example, you can reverse the default ordering for declarative transformations by specifying
the following step numbers for transformations associated with a particular rule:

• Keep columns with step number 6

• Delete column with step number 5

• Rename column with step number 4

• Add column with step number 3

• Rename table with step number 2

• Rename schema with step number 1

With this ordering specified, rename schema transformations are performed first, and delete
column transformations are performed last.

Considerations for Rule-Based Transformations
Several considerations apply to declarative rule-based transformations.

These considerations include the following:

• For a rule-based transformation to be performed by an XStream component, the rule must
be in the positive rule set for the XStream component. If the rule is in the negative rule set
for the XStream component, then the XStream component ignores the rule-based
transformation.

• Rule-based transformations are different from transformations performed using the
DBMS_TRANSFORM package. This document does not discuss transformations performed with
the DBMS_TRANSFORM package.

• If a large percentage of row LCRs will be transformed in an XStream In configuration, you
can use DML handlers with XStream In. Be aware that this method may not perform as
well as making the changes in the XStream In client application. If you are performing
multiple or complex transformations on row LCRs in an XStream In configuration, then
consider reducing the XStream In processing time by making these modifications in the
client application prior to sending the changes to XStream In.

XStream and the Oracle Replication Performance Advisor
The Oracle Replication Performance Advisor consists a collection of data dictionary views.

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-22

The Performance Advisor enables you to monitor the topology and performance of an XStream
environment. The XStream topology includes information about the components in an XStream
environment, the links between the components, and the way information flows from capture to
consumption. The Performance Advisor also provides information about how Oracle
Replication components are performing.

Apply processes function as XStream outbound servers and inbound servers. In general, the
Performance Advisor works the same way for an Oracle Replication environment with apply
processes and an XStream environment with outbound servers or inbound servers. This
section describes important considerations about using the Performance Advisor in an
XStream environment.

• XStream Components
The Performance Advisor tracks several XStream components.

• Topology and Stream Paths
In the Oracle Replication topology, a stream path is a flow of LCRs from a source to a
destination.

• XStream and Component-Level Statistics
The Performance Advisor tracks component-level statistics.

• The UTL_RPADV Package
The UTL_RPADV package automates the collection of statistics associated with XStream
performance.

XStream Components
The Performance Advisor tracks several XStream components.

The Performance Advisor tracks the following types of components in an XStream
environment:

• QUEUE
• CAPTURE
• PROPAGATION SENDER
• PROPAGATION RECEIVER
• APPLY
The preceding types are the same in an Oracle Replication environment and an XStream
environment, except for APPLY. The APPLY component type can be an XStream outbound
server or inbound server.

In addition, the Performance Advisor identifies a bottleneck component as the busiest
component or the component with the least amount of idle time. In an XStream configuration,
the XStream client application might be the bottleneck when EXTERNAL appears in the
ACTION_NAME column of the DBA_STREAMS_TP_PATH_BOTTLENECK view.

• XStream Out Apply Subcomponents
There are several XStream Out apply subcomponents types.

• XStream In Apply Subcomponents
There are several XStream In apply subcomponents types.

XStream Out Apply Subcomponents
There are several XStream Out apply subcomponents types.

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-23

The following subcomponent types are possible:

• PROPAGATION SENDER+RECEIVER for sending LCRs from a capture process to an outbound
server where the capture process and outbound server are in different databases.

• APPLY READER for a reader server. APPLY READER receives LCRs from the capture process,
organizes them into transactions, does dependency calculations, and passes the LCRs to
the apply coordinator.

• APPLY COORDINATOR for a coordinator process. It takes the transactions from the capture
process, uses the dependency information to determine how to schedule the transactions
and sends the LCRs to the apply server.

• APPLY SERVER for an apply server. It delivers the LCRs to the client application.

XStream In Apply Subcomponents
There are several XStream In apply subcomponents types.

The following subcomponent types are possible:

• APPLY READER for a reader server. It takes the LCRs from client application converts them
into transactions, checks the transactional order and does dependency calculations.

• APPLY COORDINATOR for a coordinator process. It takes the transactions from the reader
server, uses the dependency information to determine how to schedule the transactions
and sends the LCRs to the apply server.

• APPLY SERVER for an apply server. It applies the LCRs to an apply handler. If the LCR
cannot be applied, it is placed into an error queue.

Topology and Stream Paths
In the Oracle Replication topology, a stream path is a flow of LCRs from a source to a
destination.

A stream path begins with a capture process or XStream In client application. A stream path
ends where an apply process, outbound server, or inbound server receives the LCRs. The
stream path might flow through multiple source and destination components before it reaches
an apply process, outbound server, or inbound server. Therefore, a single stream path can
consist of multiple source/destination component pairs before it reaches last component.

The Oracle Replication topology only gathers information about a stream path if the stream
path ends with an apply process, an outbound server, or an inbound server.

XStream and Component-Level Statistics
The Performance Advisor tracks component-level statistics.

The Performance Advisor tracks the following component-level statistics:

• The MESSAGE APPLY RATE is the average number of LCRs applied each second by the apply
process, outbound server, or inbound server.

• The TRANSACTION APPLY RATE is the average number of transactions applied by the apply
process, outbound server, or inbound server each second. Transactions typically include
multiple LCRs.

An LCR can be applied in one of the following ways:

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-24

• An apply process or inbound server makes the change encapsulated in the LCR to a
database object.

• An apply process or inbound server passes the LCR to an apply handler.

• If the LCR raises an error, then an apply process or inbound server sends the LCR to the
error queue.

• An outbound server passes the LCR to an XStream client application. If the LCR raises an
error, then the outbound server also reports the error to the client application.

Also, the Performance Advisor tracks the LATENCY component-level statistics. LATENCY is
defined in the following ways:

• For apply processes, the LATENCY is the amount of time between when the LCR was
created at a source database and when the LCR was applied by the apply process at the
destination database.

• For outbound servers, the apply LATENCY is amount of time between when the LCR was
created at a source database and when the LCR was sent to the XStream client
application.

• For inbound servers, the apply LATENCY is amount of time between when the LCR was
created by the XStream client application and when the LCR was applied by the apply
process.

When a capture process creates an LCR, the message creation time is the time when the redo
entry for the database change was recorded. When an XStream client application creates an
LCR, the message creation time is the time when the LCR was constructed.

The UTL_RPADV Package
The UTL_RPADV package automates the collection of statistics associated with XStream
performance.

UTL_RPADV provides a series of subprograms that collect and analyze statistics for the XStream
components in a distributed database environment. The package uses the Performance
Advisor and the COLLECT_STATS procedure to automate the collection of statistics.

The output is formatted so that it can be imported into a spreadsheet easily and analyzed. You
can examine XStream performance statistics output with the UTL_RPADV.SHOW_STATS procedure
or view the same information in an HTML-formatted report with the
UTL_RPADV.SHOW_STATS_HTML procedure.

The UTL_RPADV package works essentially the same way for an Oracle Replication environment
with apply processes as it does for an XStream environment with outbound servers or inbound
servers. Since XStream is concerned with data changes to or from a client application, the
output of the SHOW_STATS procedure is different for XStream than for Oracle Replication.

• Collecting XStream Statistics Using the UTL_RPADV Package
You can collect XStream statistics with the UTL_RPADV package.

• Showing XStream Statistics on the Command Line
The SHOW_STATS procedure in the UTL_RPADV package displays the statistics that the
Performance Advisor gathered and stored.

• Interpreting SHOW_STATS Output
There are differences between the output for apply processes and the output for XStream
outbound servers and inbound servers.

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-25

• Showing XStream Statistics in an HTML Report
The SHOW_STATS_HTML procedure in the UTL_RPADV package creates an HTML report that
contains the statistics that the Performance Advisor gathered and stored.

• Interpreting the HTML Report From SHOW_STATS_HTML
The SHOW_STATS_HTML procedure in the UTL_RPADV package can generate the same output
as the SHOW_STATS procedure, but it formats the output as HTML in HTML files.

Collecting XStream Statistics Using the UTL_RPADV Package
You can collect XStream statistics with the UTL_RPADV package.

To collect XStream statistics using the UTL_RPADV package, complete the following steps:

1. Identify the database that you will use to gather the information. An administrative user at
this database must meet the following requirements:

• If you want to gather XStream statistics for more than one database, the user must
have access to a database link to each database that contains XStream components
to monitor.

• The user must have been granted privileges using the XSTREAM_CAPTURE or
XSTREAM_APPLY roles. If you want to gather XStream statistics for more than one
database, each database link must connect to a user at the remote database that has
been granted the XSTREAM_CAPTURE or XSTREAM_APPLY roles.

If you configure an XStream administrator at each database with XStream
components, then the XStream administrator has the necessary privileges.

• The user must have the necessary privileges to create tables and procedures. If you
want to gather XStream statistics for more than one database, each database link
must connect to a user at the remote database that has the necessary privileges to
create tables and procedures.

If no database in your environment meets these requirements, then choose a database,
configure the necessary database links, and grant the necessary privileges to the users
before proceeding.

2. In SQL*Plus, connect to the database you identified in Step 1 as a user that meets the
requirements listed in Step 1.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

3. Run the utlrpadv.sql script in the rdbms/admin directory in ORACLE_HOME to load the
UTL_RPADV package. For example:

@utlrpadv.sql
4. Either collect the current XStream performance statistics once, or create a job that

continually monitors XStream performance:

• To collect the current XStream performance statistics once, run the COLLECT_STATS
procedure:

exec UTL_RPADV.COLLECT_STATS

This example uses the default values for the parameters in the COLLECT_STATS
procedure. Therefore, this example runs the Performance Advisor 10 times with 60
seconds between each run. These values correspond with the default values for the
num_runs and interval parameters, respectively, in the COLLECT_STATS procedure.

• To create a job that continually monitors XStream performance:

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-26

exec UTL_RPADV.START_MONITORING

This example creates a monitoring job, and the monitoring job gathers performance
statistics continually at set intervals. This example uses the default values for the
parameters in the START_MONITORING procedure. Therefore, this example runs the
Performance Advisor every 60 seconds. This value corresponds with the default value
for the interval parameter in the START_MONITORING procedure. If an interval is
specified in the START_MONITORING procedure, then the specified interval is used for the
interval parameter in the COLLECT_STATS procedure.

These procedures include several parameters that you can use to adjust the way
performance statistics are gathered. See Oracle Database PL/SQL Packages and Types
Reference for more information.

You can show the statistics by running the SHOW_STATS procedure. See "Showing XStream
Statistics on the Command Line".

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the UTL_RPADV package

Showing XStream Statistics on the Command Line
The SHOW_STATS procedure in the UTL_RPADV package displays the statistics that the
Performance Advisor gathered and stored.

Use the path_stat_table parameter to specify the table that contains the statistics.

When you gather statistics using the COLLECT_STATS procedure, this table is specified in the
path_stat_table parameter in the COLLECT_STATS procedure. By default, the table name is
STREAMS$_ADVISOR_PATH_STAT.

When you gather statistics using the START_MONITORING procedure, you can determine the
name for this table by querying the SHOW_STATS_TABLE column in the STREAMS$_PA_MONITORING
view. The default table for a monitoring job is STREAMS$_PA_SHOW_PATH_STAT.

To show statistics collected using the UTL_RPADV package and stored in the
STREAMS$_ADVISOR_PATH_STAT table, complete the following steps:

1. Collect statistics by completing the steps described in "Collecting XStream Statistics Using
the UTL_RPADV Package".

2. Connect to the database as the user who collected the statistics.

3. If you are using a monitoring job, then query the SHOW_STATS_TABLE column in the
STREAMS$_PA_MONITORING view to determine the name of this table that stores the
statistics:

SELECT SHOW_STATS_TABLE FROM STREAMS$_PA_MONITORING;
4. Run the SHOW_STATS procedure.

For example, if you are using a monitoring job and the default storage table, then run the
following procedure:

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-27

SET SERVEROUTPUT ON SIZE 50000
BEGIN
 UTL_RPADV.SHOW_STATS(
 path_stat_table => 'STREAMS$_PA_SHOW_PATH_STAT');
END;
/

Interpreting SHOW_STATS Output
There are differences between the output for apply processes and the output for XStream
outbound servers and inbound servers.

Note:

The rest of this section assumes that you are familiar with the UTL_RPADV package
and the SHOW_STATS output for apply processes.

• Sample Output When an Outbound Server Is the Last Component in a Path
Here is sample output for when an outbound server is the last component in a path.

• Sample Output When an Inbound Server Is the Last Component in a Path
Here is sample output for when an inbound server is the last component in a path.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about using the UTL_RPADV package

Sample Output When an Outbound Server Is the Last Component in a Path
Here is sample output for when an outbound server is the last component in a path.

LEGEND
<statistics>=<capture> [<queue> <psender> <preceiver> <queue>]<apply>
<bottleneck>
<capture> = '|<C>'<name> <msgs captured/sec> <msgs enqueued/sec> <latency>
 'LMR'<idl%> <flwctrl%> <topevt%> <topevt>
 'LMP' (<parallelism>)<idl%> <flwctrl%> <topevt%> <topevt>
 'LMB'<idl%> <flwctrl%> <topevt%> <topevt>
 'CAP'<idl%> <flwctrl%> <topevt%> <topevt>
 'CAP+PS'<msgs sent/sec> <bytes sent/sec> <latency> <idl%>
<flwctrl%> <topevt%> <topevt>
<apply> = '|<A>'<name> <msgs applied/sec> <txns applied/sec> <latency>
 'PS+PR'<idl%> <flwctrl%> <topevt%> <topevt>
 'APR'<idl%> <flwctrl%> <topevt%> <topevt>
 'APC'<idl%> <flwctrl%> <topevt%> <topevt>
 'APS' (<parallelism>)<idl%> <flwctrl%> <topevt%> <topevt>
<queue> = '|<Q>'<name> <msgs enqueued/sec> <msgs spilled/sec> <msgs in
queue>
<psender> = '|<PS>'<name> <msgs sent/sec> <bytes sent/sec> <latency> <idl%>
<flwctrl%> <topevt%> <topevt>
<preceiver> = '|<PR>'<name> <idl%> <flwctrl%> <topevt%> <topevt>
<bottleneck>= '|'<name> <sub_name> <sessionid> <serial#> <topevt%> <topevt>

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-28

OUTPUT

PATH 1 RUN_ID 2 RUN_TIME 2009-MAY-15 12:20:55 CCA Y
|<C> CAP$_XOUT_1 2733 2730 3392 LMR 8.3% 91.7% 0% "" LMP (1) 8.3% 91.7% 0% ""
LMB 8.3% 91.7% 0% "" CAP 8.3% 91.7% 0% "" |<Q> "XSTRMADMIN"."Q$_XOUT_2" 2730 0.01
4109 |<A> XOUT 2329 2.73 0 -1 PS+PR 8.3% 91.7% 0% "" APR 8.3% 91.7% 0% "" APC
100% 0% 0% "" APS (1) 8.3% 83.3% 8.3% "" | "EXTERNAL"
.
.
.

Note:

This output is for illustrative purposes only. Actual performance characteristics vary
depending on individual configurations and conditions.

In this output, the A component is the outbound server XOUT. The output for when an outbound
server is the last component in a path is similar to the output for when an apply process is the
last component in a path. However, the apply server (APS) is not the last component because
the outbound server connects to a client application. Statistics are not collected for the client
application.

In an XStream Out configuration, the output can indicate flow control for the network because
the "SQL*Net more data to client" performance metric for an apply server is measured like a
flow control event. If the output indicates flow control for an apply server, then either the
network or the client application is considered the bottleneck component. In the previous
output, EXTERNAL indicates that either the network or the client application is the bottleneck.

Other than these differences, you can interpret the statistics in the same way that you would for
a path that ends with an apply process. Use the legend and the abbreviations to determine the
statistics in the output.

Sample Output When an Inbound Server Is the Last Component in a Path
Here is sample output for when an inbound server is the last component in a path.

OUTPUT

PATH 1 RUN_ID 2 RUN_TIME 2009-MAY-16 10:11:38 CCA N
|<PR> "clientcap"=> 75% 0% 8.3% "CPU + Wait for CPU" |<Q> "XSTRMADMIN"."QUEUE2" 467 0.01 1
|<A> XIN 476 4.71 0 APR 100% 0% 0% "" APC 100% 0% 0% "" APS (4) 366.7% 0% 33.3% "CPU + Wait for
CPU"
| "EXTERNAL"
.
.
.

Note:

This output is for illustrative purposes only. Actual performance characteristics vary
depending on individual configurations and conditions.

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-29

In this output, the A component is the inbound server XIN. When an inbound server is the last
component in a path, the XStream client application connects to the inbound server, and the
inbound server applies the changes in the LCRs. The client application is not shown in the
output.

The propagation receiver receives the LCRs from the client application. So, the propagation
receiver is the first component shown in the output. In the previous sample output, the
propagation receiver is named clientcap. In this case, clientcap is the source name given by
the client application when it attaches to the inbound server.

If the propagation receiver is idle for a significant percentage of time, then either the network or
the client application is considered a bottleneck component. In the previous output, EXTERNAL
indicates that either the network or the client application is the bottleneck.

Other than these differences, you can interpret the statistics in the same way that you would for
a path that ends with an apply process. If you and the abbreviations to determine the statistics
in the output.

Showing XStream Statistics in an HTML Report
The SHOW_STATS_HTML procedure in the UTL_RPADV package creates an HTML report that
contains the statistics that the Performance Advisor gathered and stored.

Use the comp_stat_table parameter to specify the table that contains the statistics.

When you gather statistics using the COLLECT_STATS procedure, this table is specified in the
comp_stat_table parameter in the COLLECT_STATS procedure. By default, the table name is
STREAMS$_ADVISOR_COMP_STAT.

When you gather statistics using the START_MONITORING procedure, you can determine the
name for this table by querying the SHOW_STATS_TABLE column in the STREAMS$_PA_MONITORING
view. The default table for a monitoring job is STREAMS$_ADVISOR_COMP_STAT.

The default for the comp_stat_table parameter is STREAMS$_ADVISOR_COMP_STAT. Ensure that
you specify the correct table when you run the SHOW_STATS_HTML procedure.

The SHOW_STATS_HTML procedure must store the HTML report in a directory. Use the directory
parameter to specify a directory object.

To show statistics collected using the UTL_RPADV package and stored in the
STREAMS$_ADVISOR_COMP_STAT table, complete the following steps:

1. Collect statistics by completing the steps described in "Collecting XStream Statistics Using
the UTL_RPADV Package".

2. Connect to the database as the user who collected the statistics.

3. If you are using a monitoring job, then query the SHOW_STATS_TABLE column in the
STREAMS$_PA_MONITORING view to determine the name of this table that stores the
statistics:

SELECT SHOW_STATS_TABLE FROM STREAMS$_PA_MONITORING;
4. Create a directory object for the directory that will contain the files in the HTML report.

For example, to create a directory object named XSTREAM_STATS_HTML for the /usr/xstream/
reports directory, run the following SQL statement:

CREATE DIRECTORY XSTREAM_STATS_HTML AS '/usr/xstream/reports';
5. Run the SHOW_STATS_HTML procedure.

Chapter 2
XStream and the Oracle Replication Performance Advisor

2-30

For example, if you are using a monitoring job and the default storage table, then run the
following procedure:

BEGIN
 UTL_RPADV.SHOW_STATS_HTML(
 directory => 'XSTREAM_STATS_HTML',
 reportname => 'xstream_stats.html',
 comp_stat_table => 'STREAMS$_ADVISOR_COMP_STAT');
END;
/

Interpreting the HTML Report From SHOW_STATS_HTML
The SHOW_STATS_HTML procedure in the UTL_RPADV package can generate the same output as
the SHOW_STATS procedure, but it formats the output as HTML in HTML files.

The SHOW_STATS_HTML output is easier to read than the SHOW_STATS output. For example, the
procedure generates multiple files, and each file begins with the report name. The report
includes tables with the performance statistics. Statistics for different paths are in different rows
in these tables, and you can click on a path for more detailed statistics about the path. The
report_name parameter indicates the master HTML file with links to the other HTML files.

The following are considerations for using the SHOW_STATS_HTML procedure:

• The default table that stores the statistics is STREAMS$_ADVISOR_COMP_STAT. The
SHOW_STATS procedure uses a different default table (STREAMS$_ADVISOR_PATH_STAT).

• You must specify a directory object in the directory parameter of the procedure. This
directory stores the HTML files generated by the procedure.

The specified directory object must be created using the SQL statement CREATE
DIRECTORY, and the user who invokes the procedure must have READ and WRITE privilege
on the directory.

See Also:

"Interpreting SHOW_STATS Output"

Using Automatic Workload Repository (AWR) Reports for Oracle
Database

Automatic Workload Repository (AWR) is a good starting point for identifying general database
performance issues, which can provide indicators to help locate problems with XStream Out or
XStream In processes. Using AWR, you can easily determine if the bottlenecks are inside or
outside of the database.

Starting with Oracle Database 23ai, AWR queries and reports are simplified and enhanced to
present the data in an easy to understand view of the XStream In process. With these report
views, it would be easier to troubleshoot XStream In performance issues by categorizing them
as one of the following:

• Workload issue

• Misconfiguration issue, such as slow XStream In SQL due to lack of indexes

Chapter 2
Using Automatic Workload Repository (AWR) Reports for Oracle Database

2-31

• Performance bottleneck issue at the database side or in the Oracle Database XStream
processes outside of the database

The XStream Inion sections of the enhanced AWR reports include the following features:

• A more complete XStream Inion System Resource Usage section, which shows the
system resource usage for all Oracle GoldenGate and XStream XStream In processes,
whether they be foreground or background, and presented on a per PDB XStream Out or
XStream In basis.

• A separate section for XStream Inion related Top SQL statistics to make it easier to identify
XStream Inion related SQL performance issues. The number of Top SQL shown is a
fraction of the Top SQL shown for the database.

• A separate section for top wait events for XStream In related processes to easily
troubleshoot XStream Inion related performance problems.

• Reorganized XStream Inion related sections to present the XStream In statistics organized
by individual XStream Out, XStream In, and XStream type.

• Customized information for XStream In or XStream Out processes.

Topics:

• Replication System Resource Usage

• Replication Top SQLs

Replication System Resource Usage
Oracle Database XStream replication process name, process type and number of sessions of
its sub-components are displayed in the metrics. The performance statistic are aggregated by
the functionality of process sub-components, group by process name. This allows the ability to
monitor resource usage at per XStream Out and XStream In, with detailed information of all its
sub-components.

Chapter 2
Using Automatic Workload Repository (AWR) Reports for Oracle Database

2-32

Replication Top SQLs
SQLs executed by replication processes, displayed in different sections ordered by Elapsed
Time, CPU Time and Execution are presented. Replication process name is added for
identifying the process that is executing the SQL.

While the common TOP SQL section of AWR is related to all SQL statements within the
database, the Top SQL within the Replication section is focused on XStream and Oracle
GoldenGate related SQL only. Therefore, more replication information is visible in this section.

Here are examples of the top SQL reports.

Chapter 2
Using Automatic Workload Repository (AWR) Reports for Oracle Database

2-33

Automatic Workload Repository (AWR) Report for XStream
Automatic Workload Repository (AWR) reports help leverage the existing statistics from AWR
tables.

The AWR report provides information about system resource usage, top SQL statistics and
wait events, and helps organize replication process performance.

• XStream In
XStream In provides Oracle Database components and APIs that enable you to share data
changes made to other systems with an Oracle Database.

• XStream Out
XStream Out provides Oracle Database components and APIs that enable you to share
data changes made to an Oracle Database with other systems.

XStream In
XStream In provides Oracle Database components and APIs that enable you to share data
changes made to other systems with an Oracle Database.

XStream In consists of the following sub-components:

• Apply Network receiver

• Apply Reader

• Apply Coordinator

• Apply Server

Table 2-10 XStream In

XStream In Name XStream In Client Name

Apply Name Apply process name

LCRs Buffered (Reader) Number of LCRs buffered waiting to be processed by Apply
Reader

Txns Received (Coordinator) Number of Txns received by Apply Coordinator

Txns Not Assigned (Coordinator) Total number of Txns not assigned yet by Coordinator

Txns Assigned (Apply Server) Number of Txns assigned to Apply Server

LCRs Applied (Apply Server) Number of LCRs applied by Apply Server

Txns with Dependencies % Percentage of transactions having to wait for other transactions
due to dependency

Chapter 2
Automatic Workload Repository (AWR) Report for XStream

2-34

Table 2-10 (Cont.) XStream In

XStream In Name XStream In Client Name

Txns with Watermark Dependency % Percentage of transactions having to wait due to source
transaction commit ordering

Total Errors Total Txns with errors

XStream Out
XStream Out provides Oracle Database components and APIs that enable you to share data
changes made to an Oracle Database with other systems.

XStream Out configuration consists of a capture engine that captures Data Manipulation
Language (DML) and DML changes, and an Outbound Server sends those changes in the
logical change record (LCR) format to the client.

XStream Out consists of the following sub-components:

• Logminer Engine (Reader, Builder, Preparer, Merger when parallelism > 0)

• Capture Engine

• Outbound Server:

– Apply Network Receiver (ANR)

– Apply Coordinator

– Apply Server

Table 2-11 XStream Out Capture

XStream Out Name XStream Out Client Application Name

XStream Out Name XStream Out client application name

Capture Name Capture process name

Begin Lag(s) Time when the most recent LCR received – creation time of the
most recent LCR at the start of the snapshot interval

End Lag(s) Time when the most recent LCR received – creation time of the
most recent LCR at the end of the snapshot interval

Redo Mined(B) The amount of redo data mined (in bytes) since the Capture
process last started within the snapshot interval

Redo Mined(B) per Sec Redo Mined Rate derived from the snapshot interval

Bytes Sent Number of bytes sent by the Capture process to the Extract
process since the last time the Extract process attached to the
Capture process

Capture LCRs Number of LCRs delivered to capture from Logminer

Capture LCRs per Sec Capture LCRs Rate

Sent LCRs per Sec Sent LCRs Rate

Redo Wait Time(sec) Time spent by the Capture process in the WAITING FOR REDO
state

Redo Wait Time per LCR Redo Wait Time per LCR

Pause Time(sec) Time the Capture spent in flow control, waiting for downstream
Outbound Server

Pause Time (s)/LCR Pause Time per LCR

Chapter 2
Automatic Workload Repository (AWR) Report for XStream

2-35

Table 2-12 XStream Out Outbound Server

XStream Out Name XStream Out Client Name

Outbound Server Outbound server name

LCRs Buffered Number of LCRs buffered

Txns Received Number of Txns received by Apply Coordinator

Txns Available to Send Number of Txns available to send to Apply Server

LCRs per Sec Sent LCR sent rate

XStream and SQL Generation
SQL generation is the ability to generate the SQL statement required to perform the change
encapsulated in a row LCR.

XStream outbound servers and XStream inbound servers can use SQL generation to generate
the SQL statement necessary to perform the insert, update, or delete operation in a row LCR.

• Interfaces for Performing SQL Generation
You can use different interfaces for SQL generation.

• SQL Generation Formats
SQL statements can be generated in one of two formats: inline values or bind variables.

• SQL Generation and Data Types
SQL generation supports most data types.

• SQL Generation and Character Sets
When you use the LCR methods, the generated SQL is in the database character set.

• Sample Generated SQL Statements
Examples illustrate generated SQL statements.

• SQL Generation Demo
A demo that performs SQL generation is available.

Interfaces for Performing SQL Generation
You can use different interfaces for SQL generation.

You can use the following interfaces to perform SQL generation:

• The PL/SQL interface, which uses the GET_ROW_TEXT and GET_WHERE_CLAUSE member
procedures for row LCRs

• The OCI for XStream

• The Java interface for XStream

The PL/SQL interface generates SQL in a CLOB data type, while the OCI and Java interfaces
generate SQL in plain text. In the Java interface, the size of the text is limited by the size of
String data type.

Chapter 2
XStream and SQL Generation

2-36

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the GET_ROW_TEXT and GET_WHERE_CLAUSE row LCR member procedures

• Oracle Call Interface Developer's Guide

• Oracle Database XStream Java API Reference for information about the Java
interface for XStream

SQL Generation Formats
SQL statements can be generated in one of two formats: inline values or bind variables.

Use inline values when the returned SQL statement is relatively small. For larger SQL
statements, use bind variables. In this case, the bind variables are passed to the client
application in a separate list that includes pointers to both old and new column values.

For information about using bind variables with each interface, refer to the following
documentation:

• The documentation for the GET_ROW_TEXT and GET_WHERE_CLAUSE row LCR member
procedures in Oracle Database PL/SQL Packages and Types Reference

• Oracle Call Interface Developer's Guide

• The documentation for DefaultRowLCR.getBinds() in Oracle Database XStream Java API
Reference

Note:

For generated SQL statements with the values inline, SQL injection is possible. SQL
injection is a technique for maliciously exploiting applications that use client-supplied
data in SQL statements, thereby gaining unauthorized access to a database to view
or manipulate restricted data. Oracle strongly recommends using bind variables if you
plan to execute the generated SQL statement.

See Also:

Oracle Database PL/SQL Language Reference for more information about SQL
injection

SQL Generation and Data Types
SQL generation supports most data types.

SQL generation supports the following data types:

• VARCHAR2

Chapter 2
XStream and SQL Generation

2-37

• NVARCHAR2
• NUMBER
• FLOAT
• DATE
• BINARY_FLOAT
• BINARY_DOUBLE
• LONG
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND
• RAW
• LONG RAW
• CHAR
• NCHAR
• CLOB with BASICFILE storage

• NCLOB with BASICFILE storage

• BLOB with BASICFILE storage

• XMLType stored as CLOB, object relational, or as binary XML

• JSON
• BOOLEAN

Note:

• The maximum size of the VARCHAR2, NVARCHAR2, and RAW data types has been
increased in Oracle Database 12c when the COMPATIBLE initialization parameter
is set to 12.0.0 and the MAX_STRING_SIZE initialization parameter is set to
EXTENDED.

• XMLType stored as a CLOB is deprecated in Oracle Database 12c Release 1
(12.1).

• SQL Generation and Automatic Data Type Conversion
An XStream outbound server or inbound server performs implicit data type conversion
where it is possible, and the generated SQL follows ANSI standards where it is possible.

• SQL Generation and LOB, LONG, LONG RAW, and XMLType Data Types
For INSERT and UPDATE operations on LOB columns, an outbound server automatically
assembles the LOB chunks using LOB assembly.

Chapter 2
XStream and SQL Generation

2-38

See Also:

Oracle Database SQL Language Reference for information about data types

SQL Generation and Automatic Data Type Conversion
An XStream outbound server or inbound server performs implicit data type conversion where it
is possible, and the generated SQL follows ANSI standards where it is possible.

The following are considerations for automatic data type conversions:

• NULL is specified as "NULL".

• Single quotation marks are converted into double quotation marks for the following data
types when they are inline values: CHAR, VARCHAR2, NVARCHAR2, NCHAR, CLOB, and NCLOB.

• LONG data is converted into CLOB data.

• LONG RAW data is converted into BLOB data.

SQL Generation and LOB, LONG, LONG RAW, and XMLType Data Types
For INSERT and UPDATE operations on LOB columns, an outbound server automatically
assembles the LOB chunks using LOB assembly.

For these operations, the generated SQL includes a non-NULL empty value. The actual values
of the chunked columns arrive in subsequent LCRs. For each chunk, you must perform the
correct SQL operation on the correct column.

Similarly, for LONG, LONG RAW, and XMLType data types, an outbound server generates a non-
NULL empty value, and the actual values of the column arrive in chunks in subsequent LCRs.
For each chunk, you must perform the correct SQL operation on the correct column.

In the inline version of the generated SQL, for LOB, LONG, LONG RAW, and XMLType data type
columns, the following SQL is generated for inserts and updates:

• For CLOB, NCLOB, and LONG data type columns:

EMPTY_CLOB()
• For BLOB and LONG RAW data type columns:

EMPTY_BLOB()
• For XMLType columns:

XMLTYPE.CREATEXML('xml /')

where xml / is the XML chunk.

After the LCR that contains the DML statement arrives, the data for these changes arrive in
separate chunks. You can generate the WHERE clause for such a change and use the generated
WHERE clause to identify the row for the modifications contained in the chunks. For example, in
PL/SQL you can use the GET_WHERE_CLAUSE row LCR member procedure to generate the
WHERE clause for a row change.

For INSERT and UPDATE operations, the generated WHERE clause identifies the row after the
insert or update. For example, consider the following update to the hr.departments table:

Chapter 2
XStream and SQL Generation

2-39

UPDATE hr.departments SET department_name='Management'
 WHERE department_name='Administration';

The generated WHERE clause for this change is the following:

WHERE "DEPARTMENT_NAME"='Management'

For piecewise LOB operation performed by subprograms in the DBMS_LOB package (including
the WRITE, TRIM, and ERASE procedures), the generated SQL includes a SELECT FOR UPDATE
statement.

For example, a LOB_WRITE operation on a clob_col results in generated SQL similar to the
following:

SELECT "CLOB_COL" FROM "HR"."LOB_TAB" WHERE "N1"=2 FOR UPDATE

The selected clob_col must be defined. You can use the LOB locator to perform piecewise
LOB operations with the LOB chunks that follow the row LCR.

See Also:

"Sample Generated SQL Statements"

SQL Generation and Character Sets
When you use the LCR methods, the generated SQL is in the database character set.

SQL keywords, such as INSERT, UPDATE, and INTO, do not change with the character set.

See Also:

• Oracle Database Globalization Support Guide for information about data
conversion in JDBC

• Oracle Database SQL Language Reference for information about SQL keywords

Sample Generated SQL Statements
Examples illustrate generated SQL statements.

• Sample Generated SQL Statements for the hr.employees Table
Examples illustrate SQL statements generated by an outbound server for changes made to
the hr.employees table.

• Sample Generated SQL Statements for a Table With LOB Columns
Examples illustrate SQL statements generated by an outbound server for changes made ti
a table with LOB columns.

Chapter 2
XStream and SQL Generation

2-40

Sample Generated SQL Statements for the hr.employees Table
Examples illustrate SQL statements generated by an outbound server for changes made to the
hr.employees table.

Note:

Generated SQL is in a single line and is not formatted.

Example 2-1 Generated Insert

Assume the following insert is executed:

INSERT INTO hr.employees (employee_id,
 last_name,
 email,
 hire_date,
 job_id,
 salary,
 commission_pct)
 VALUES (207,
 'Gregory',
 'pgregory@example.com',
 SYSDATE,
 'PU_CLERK',
 9000,
 NULL);

The following is the generated SQL with inline values:

INSERT INTO "HR"."EMPLOYEES"("EMPLOYEE_ID","FIRST_NAME","LAST_NAME",
"EMAIL","PHONE_NUMBER","HIRE_DATE","JOB_ID","SALARY","COMMISSION_PCT",
"MANAGER_ID","DEPARTMENT_ID") VALUES (207, NULL,'Gregory',
'pgregory@example.com', NULL , TO_DATE(' 2009-04-15','syyyy-mm-dd'),
'PU_CLERK',9000, NULL , NULL , NULL)

The following is the generated SQL with bind variables:

INSERT INTO "HR"."EMPLOYEES"("EMPLOYEE_ID","FIRST_NAME","LAST_NAME",
"EMAIL","PHONE_NUMBER","HIRE_DATE","JOB_ID","SALARY",
"COMMISSION_PCT","MANAGER_ID","DEPARTMENT_ID") VALUES (:1 ,:2 ,:3
,:4 ,:5 ,:6 ,:7 ,:8 ,:9 ,:10 ,:11)

Example 2-2 Generated Update

Assume the following update is executed:

UPDATE hr.employees SET salary=10000 WHERE employee_id=207;

The following is the generated SQL with inline values:

UPDATE "HR"."EMPLOYEES" SET "SALARY"=10000 WHERE "EMPLOYEE_ID"=207
AND "SALARY"=9000

The following is the generated SQL with bind variables:

UPDATE "HR"."EMPLOYEES" SET "SALARY"=:1 WHERE "EMPLOYEE_ID"=:2
AND "SALARY"=:3

Chapter 2
XStream and SQL Generation

2-41

Example 2-3 Generated Delete

Assume the following delete is executed:

DELETE FROM hr.employees WHERE employee_id=207;

The following is the generated SQL with inline values:

DELETE FROM "HR"."EMPLOYEES" WHERE "EMPLOYEE_ID"=207 AND "FIRST_NAME" IS NULL
AND "LAST_NAME"='Gregory' AND "EMAIL"='pgregory@example.com' AND
"PHONE_NUMBER" IS NULL AND "HIRE_DATE"= TO_DATE(' 2009-04-15','syyyy-mm-dd')
AND "JOB_ID"='PU_CLERK' AND "SALARY"=10000 AND "COMMISSION_PCT" IS NULL
AND "MANAGER_ID" IS NULL AND "DEPARTMENT_ID" IS NULL

The following is the generated SQL with bind variables:

DELETE FROM "HR"."EMPLOYEES" WHERE "EMPLOYEE_ID"=:1 AND "FIRST_NAME"=:2
AND "LAST_NAME"=:3 AND "EMAIL"=:4 AND "PHONE_NUMBER"=:5 AND
"HIRE_DATE"=:6 AND "JOB_ID"=:7 AND "SALARY"=:8 AND
"COMMISSION_PCT"=:9 AND "MANAGER_ID"=:10 AND "DEPARTMENT_ID"=:11

Sample Generated SQL Statements for a Table With LOB Columns
Examples illustrate SQL statements generated by an outbound server for changes made ti a
table with LOB columns.

Examples illustrate SQL statements generated by an outbound server for changes made to the
following table:

CREATE TABLE hr.lob_tab(
 n1 number primary key,
 clob_col CLOB,
 nclob_col NCLOB,
 blob_col BLOB);

Note:

Generated SQL is in a single line and is not formatted.

The GET_WHERE_CLAUSE member procedure generates the following WHERE clause for this insert:

• Inline:

WHERE "N1"=2
• Bind variables:

WHERE "N1"=:1
You can use the WHERE clause to identify the row that was inserted when the subsequent
chunks arrive for the LOB column change.

Example 2-4 Generated Insert for a Table with LOB Columns

Assume the following insert is executed:

INSERT INTO hr.lob_tab VALUES (2, 'test insert', NULL, NULL);

The following is the generated SQL with inline values:

Chapter 2
XStream and SQL Generation

2-42

INSERT INTO "HR"."LOB_TAB"("N1","BLOB_COL","CLOB_COL","NCLOB_COL")
VALUES (2,, EMPTY_CLOB() ,)

The following is the generated SQL with bind variables:

INSERT INTO "HR"."LOB_TAB"("N1","BLOB_COL","CLOB_COL","NCLOB_COL")
VALUES (:1 ,:2 ,:3 ,:4)

Example 2-5 Generated Update for a Table with LOB Columns

Assume the following update is executed:

UPDATE hr.lob_tab SET clob_col='test update' WHERE n1=2;

The following is the generated SQL with inline values:

UPDATE "HR"."LOB_TAB" SET "CLOB_COL"= EMPTY_CLOB() WHERE "N1"=2

The following is the generated SQL with bind variables:

UPDATE "HR"."LOB_TAB" SET "CLOB_COL"=:1 WHERE "N1"=:2

Example 2-6 Generated Delete for a Table with LOB Columns

Assume the following delete is executed:

DELETE FROM hr.lob_tab WHERE n1=2;

The following is the generated SQL with inline values:

DELETE FROM "HR"."LOB_TAB" WHERE "N1"=2

The following is the generated SQL with bind variables:

DELETE FROM "HR"."LOB_TAB" WHERE "N1"=:1

SQL Generation Demo
A demo that performs SQL generation is available.

The demo uses the DBMS_XSTREAM_ADM PL/SQL package to configure an XStream Out
environment, and it uses an OCI client application to perform SQL generation.

The demo uses SQL generation to replicate DML changes from a source database to a
destination database. Specifically, the demo creates the xsdemosg schema in both the source
database and the destination database. It creates various types of tables in the xsdemosg
schema at each database, including tables with LOB columns. It executes a set of DML
statements on the tables in xsdemosg schema in the source database. Oracle Replication
components, such as a capture process and a queue, send the changes in the form of LCRs to
an XStream outbound server that is also running on the source database. The outbound server
makes the LCRs available to the demo client application.

The demo client application, when run, uses the OCI API to connect to the outbound server
and receive the LCRs. The demo client application uses SQL generation to execute the
changes that are encapsulated in the LCRs. Therefore, the client application replicates the
changes made to xsdemosg schema in the source database to the xsdemosg in the destination
database.

You can modify the demo to replicate changes to any schema. Both the schema and the
replicated tables must exist on both the source database and the destination database. SQL

Chapter 2
XStream and SQL Generation

2-43

generation is only possible for DML changes. Therefore, this demo cannot be used to replicate
DDL changes.

This demo is available in the following location:

$ORACLE_HOME/rdbms/demo/xstream/sqlgen

Note:

The SQL generation demo is not available for the XStream Java API.

Chapter 2
XStream and SQL Generation

2-44

Part II
XStream Out

You can configure and manage an XStream Out environment.

• XStream Out Concepts
Become familiar with concepts related to XStream Out.

• Configuring XStream Out
You can configure the Oracle Database components that are used by XStream Out.

• Managing XStream Out
You can manage XStream Out components and their rules.

• Monitoring XStream Out
You can monitor an XStream Out configuration.

• Troubleshooting XStream Out
You can diagnose and correct problems with an XStream Out configuration.

3
XStream Out Concepts

Become familiar with concepts related to XStream Out.

• Introduction to XStream Out
XStream Out can capture transactions from the redo log of an Oracle database and send
them efficiently to a client application.

• Capture Processes
Become familiar with concepts related to capture processes.

• Outbound Servers
With XStream Out, an outbound server sends database changes to a client application.

• Position of LCRs and XStream Out
An XStream Out outbound server streams LCRs that were captured by a capture process
to a client application. The position of an LCR identifies its placement in the stream of
LCRs in a transaction.

• XStream Out and Distributed Transactions
There are considerations for XStream Out and distributed transactions.

• XStream Out and Security
Understand security related to the client application and XStream components, as well as
the privileges required by the capture user and the connect user.

• XStream Out and Other Oracle Database Components
XStream Out can work with other Oracle Database components.

See Also:

Configuring XStream Out

Introduction to XStream Out
XStream Out can capture transactions from the redo log of an Oracle database and send them
efficiently to a client application.

XStream Out provides a transaction-based interface for streaming these changes to client
applications. The client application can interact with other systems, including non-Oracle
systems, such as non-Oracle databases or file systems.

In an XStream Out configuration, a capture process captures database changes and sends
these changes to an outbound server. This section describes capture processes and outbound
servers in detail.

XStream Out has both OCI and Java interfaces and supports most of the data types that are
supported by Oracle Database, including LOBs, LONG, LONG RAW, and XMLType.

3-1

See Also:

• Oracle Call Interface Developer's Guide

• Oracle Database XStream Java API Reference

Capture Processes
Become familiar with concepts related to capture processes.

• Capture Process Overview
A capture process is an optional Oracle background process that scans the database
redo log to capture DML and DDL changes made to database objects.

• Data Types Captured by a Capture Process
A capture process can capture changes made to columns of most data types.

• Types of DML Changes Captured by Capture Processes
A capture process can capture different types of DML changes.

• Tables, Views, and Materialized Views

• Local Capture and Downstream Capture
You can configure a capture process to run locally on a source database or remotely on a
downstream database.

• Capture Processes and RESTRICTED SESSION
Enabling and disabling restricted session affects capture processes.

• XStream Out Process Subcomponents
The XStream Out process subcomponents are a reader server, one or more preparer
servers, and a builder server.

• Capture Process States
The state of a capture process describes what the capture process is doing currently.

• Capture Process Parameters
Capture process parameters control the way a capture process operates.

• Capture Process Checkpoints and XStream Out
A checkpoint is information about the current state of a capture process that is stored
persistently in the data dictionary of the database running the capture process.

• SCN Values Related to a Capture Process
Specific system change number (SCN) values are important for a capture process.

Capture Process Overview
A capture process is an optional Oracle background process that scans the database redo
log to capture DML and DDL changes made to database objects.

The primary function of the redo log is to record all of the changes made to the database. A
capture process captures database changes from the redo log, and the database where the
changes were generated is called the source database for the capture process.

When a capture process captures a database change, it converts it into a specific message
format called a logical change record (LCR). In an XStream Out configuration, the capture
process sends these LCRs to an outbound server.

Chapter 3
Capture Processes

3-2

Figure 3-1 shows a capture process.

Figure 3-1 Capture Process

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
LCR
LCR
LCR
LCR
LCR
.
.
.

Capture
Process

Enqueue
LCRs

Capture
Changes

Log
Changes

A capture process can run on its source database or on a remote database. When a capture
process runs on its source database, the capture process is a local capture process.

You can also capture changes for the source database by running the capture process on
different server. When a capture process runs on a remote database, the capture process is
called a downstream capture process, and the remote database is called the downstream
database. The log files are written to the remote database and to the source database. In this
configuration, the source logfiles must be available at the downstream capture database. The
capture process on the remote database mines the logs from the source database and stages
them locally. This configuration can be helpful when you want to offload the processing of
capture changes from a production database to different, remote database.

Data Types Captured by a Capture Process
A capture process can capture changes made to columns of most data types.

When capturing the row changes resulting from DML changes made to tables, a capture
process can capture changes made to columns of the following data types:

• NUMBER
• FLOAT
• BINARY_FLOAT
• BINARY_DOUBLE
• VARCHAR2
• NVARCHAR2
• CHAR

Chapter 3
Capture Processes

3-3

• NCHAR
• BOOLEAN
• DATE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND
• RAW
• LONG
• LONG RAW
• UROWID
• CLOB with BASICFILE or SECUREFILE storage

• NCLOB with BASICFILE or SECUREFILE storage

• BLOB with BASICFILE or SECUREFILE storage

• BFILE
• XMLType stored as CLOB, object relational, or as binary XML

• JSON
• Varrays

• REF data types

Types of DML Changes Captured by Capture Processes
A capture process can capture different types of DML changes.

When you specify that DML changes made to certain tables should be captured, a capture
process captures the following types of DML changes made to these tables:

• INSERT
• UPDATE
• DELETE
• MERGE
• Piecewise operations

A capture process converts each MERGE change into an INSERT or UPDATE change. MERGE is not
a valid command type in a row LCR.

If XStream is replicating data for an object type, then the replication must be unidirectional, and
all replication sites must agree on the names and data types of the attributes in the object type.
You establish the names and data types of the attributes when you create the object type. For
example, consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),

Chapter 3
Capture Processes

3-4

 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all replication sites, street_address must be VARCHAR2(40), postal_code must be
VARCHAR2(10), city must be VARCHAR2(30), and so on.

Note:

• The maximum size of the VARCHAR2, NVARCHAR2, and RAW data types has been
increased in Oracle Database 12c when the COMPATIBLE initialization parameter
is set to 12.0.0 and the MAX_STRING_SIZE initialization parameter is set to
EXTENDED.

• XMLType stored as a CLOB is deprecated in Oracle Database 12c Release 1
(12.1).

• For BFILE, only the data type structure is replicated and not the content of the
BFILE that exists on the file system.

• ID Key LCRs
An ID key LCR is a special type of row LCR. ID key LCRs enable an XStream client
application to process changes to rows that include unsupported data types.

• ID Key LCRs Demo
A demo is available that creates a sample client application that processes ID key LCRs.

ID Key LCRs
An ID key LCR is a special type of row LCR. ID key LCRs enable an XStream client
application to process changes to rows that include unsupported data types.

XStream Out does not fully support the following data types in row LCRs:

• ROWID
• Nested tables

• The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression.

These data type restrictions pertain to both ordinary (heap-organized) tables and index-
organized tables.

ID key LCRs do not contain all of the columns for a row change. Instead, they contain the
rowid of the changed row, a group of key columns to identify the row in the table, and the data
for the scalar columns of the table that are supported by XStream Out. ID key LCRs do not
contain data for columns of unsupported data types.

XStream Out can capture changes for tables that are not fully supported by setting the
CAPTURE_IDKEY_OBJECTS capture process parameter to Y. An XStream client application can
use ID key LCRs in the following ways:

• If the application does not require the data in the unsupported columns, then the
application can process the values of the supported columns in the ID key LCRs normally.

Chapter 3
Capture Processes

3-5

• If the application requires the data in the unsupported columns, then the application can
use the information in an ID key LCR to query the correct row in the database and
consume the unsupported data for the row.

You can use the DBA_XSTREAM_OUT_SUPPORT_MODE view to display a list of local tables
supported by ID key LCRs. This view shows the following types of XStream Out support for
tables in the SUPPORT_MODE column:

• FULL for tables that are fully supported by XStream Out (without using ID key LCRs)

• ID KEY for tables that are supported only by using ID key LCRs

• NONE for tables that are not supported by XStream Out.

Even ID key LCRs cannot be used to process changes to rows in tables that show NONE in
the DBA_XSTREAM_OUT_SUPPORT_MODE view.

For example, run the following query to show XStream Out support for all of the tables in the
database:

COLUMN OWNER FORMAT A30
COLUMN OBJECT_NAME FORMAT A30
COLUMN SUPPORT_MODE FORMAT A12

SELECT OWNER, OBJECT_NAME, SUPPORT_MODE
 FROM DBA_XSTREAM_OUT_SUPPORT_MODE
 ORDER BY OBJECT_NAME;

Your output is similar to the following:

OWNER OBJECT_NAME SUPPORT_MODE
------------------------------ ------------------------------ ------------
.
.
.

IX ORDERS_QUEUETABLE NONE
OE ORDER_ITEMS FULL
SH PLAN_TABLE FULL
PM PRINT_MEDIA ID KEY
.
.
.

See Also:

• Oracle Database Reference

• "Row LCRs"

• "Setting a Capture Process Parameter"

ID Key LCRs Demo
A demo is available that creates a sample client application that processes ID key LCRs.

Chapter 3
Capture Processes

3-6

Specifically, the client application attaches to an XStream outbound server and waits for LCRs
from the outbound server. When the client application receives an ID key LCR, it can query the
appropriate source database table using the rowid in the ID key LCR.

The demo is available in the following location in both OCI and Java code:

$ORACLE_HOME/rdbms/demo/xstream/idkey

Tables, Views, and Materialized Views
The following DML operations are supported for regular tables, index-organized tables,
clustered tables, and materialized views:

• INSERT
• UPDATE
• DELETE
• Associated transaction control operations

Starting with Oracle Database 23ai, the following features are available for tables:

• 4K column in tables with row size less than 4 MB

• Blockchain and Immutable Tables

See Scope of Support for Blockchain and Immutable Tables for details.

Tip:

You can use the DBA_XSTREAM_SUPPORT_MODE data dictionary view to display
information about the level of Oracle GoldenGate capture process support for the
tables in your database. The PLSQL value of DBA_XSTREAM_SUPPORT_MODE indicates
that the table is supported natively, but requires procedural supplemental logging. For
more information, see the DBA_XSTREAM_SUPPORT_MODE.

• Scope of Support for Lock-free Reservation

• Scope of Support for Blockchain and Immutable Tables

Scope of Support for Lock-free Reservation
Starting with Oracle Database 23ai, Oracle XStream-Out supports lock-free reservable
columns.

Source tables using lock-free columns to the target tables with implicit delta conflict resolution
for replication from reservable columns on the source to the reservable columns on the target.

Scope of Support for Blockchain and Immutable Tables
Starting with Oracle Database 23ai, XStream-Out supports capturing changes from blockchain
and immutable tables.

Chapter 3
Capture Processes

3-7

Local Capture and Downstream Capture
You can configure a capture process to run locally on a source database or remotely on a
downstream database.

A single database can have one or more capture processes that capture local changes and
other capture processes that capture changes from a remote source database. That is, you
can configure a single database to perform both local capture and downstream capture.

• Local Capture
Local capture means that a capture process runs on the source database.

• Downstream Capture

Local Capture
Local capture means that a capture process runs on the source database.

Figure 3-1 shows a database using local capture.

• The Source Database Performs All Change Capture Actions
With local capture, the capture actions are performed at the source database.

• Advantages of Local Capture
Local capture has several advantages.

The Source Database Performs All Change Capture Actions
With local capture, the capture actions are performed at the source database.

If you configure local capture, then the following actions are performed at the source database:

• The DBMS_CAPTURE_ADM.BUILD procedure is run to extract (or build) the data dictionary to
the redo log.

• Supplemental logging at the source database places additional information in the redo log.
This information might be needed when captured changes are processed by an XStream
client application. See "If Required, Configure Supplemental Logging".

• The first time a capture process is started at the database, Oracle Database uses the
extracted data dictionary information in the redo log to create a LogMiner data dictionary,
which is separate from the primary data dictionary for the source database. Additional
capture processes can use this existing LogMiner data dictionary, or they can create new
LogMiner data dictionaries.

• A capture process scans the redo log for changes using LogMiner.

• The rules engine evaluates changes based on the rules in one or more of the capture
process rule sets.

• The capture process enqueues changes that satisfy the rules in its rule sets into a local
ANYDATA queue.

• If the captured changes are shared with one or more outbound servers on other
databases, then one or more propagations propagate these changes from the source
database to the other databases.

Advantages of Local Capture
Local capture has several advantages.

Chapter 3
Capture Processes

3-8

The following are the advantages of using local capture:

• Configuration and administration of the capture process is simpler than when downstream
capture is used. When you use local capture, you do not need to configure redo data
copying to a downstream database, and you administer the capture process locally at the
database where the captured changes originated.

• A local capture process can scan changes in the online redo log before the database
writes these changes to an archived redo log file. When you use an archived-log
downstream capture process, archived redo log files are copied to the downstream
database after the source database has finished writing changes to them, and some time
is required to copy the redo log files to the downstream database. However, a real-time
downstream capture process can capture changes in the online redo log sent from the
source database.

• The amount of data being sent over the network is reduced, because the redo data is not
copied to the downstream database. Even if captured LCRs are propagated to other
databases, the captured LCRs can be a subset of the total changes made to the database,
and only the LCRs that satisfy the rules in the rule sets for a propagation are propagated.

• Security might be improved because only the source (local) database can access the redo
data. For example, if the capture process captures changes in the hr schema only, then,
when you use local capture, only the source database can access the redo data to
enqueue changes to the hr schema into the capture process queue. However, when you
use downstream capture, the redo data is copied to the downstream database, and the
redo data contains all of the changes made to the database, not just the changes made to
a specific object or schema.

Downstream Capture
The following types of downstream capture configurations are possible: real-time downstream
capture and archived-log downstream capture. The downstream_real_time_mine capture
process parameter controls whether a downstream capture process performs real-time
downstream capture or archived-log downstream capture. A real-time downstream capture
process and one or more archived-log downstream capture processes can coexist at a
downstream database. With downstream capture, the redo log files of the source database
must be available at the downstream database.

Note:

• References to "downstream capture processes" in this document apply to both
real-time downstream capture processes and archived-log downstream capture
processes. This document distinguishes between the two types of downstream
capture processes when necessary.

• Per PDB XStream Out does not exist in Downstream Capture.

• A downstream capture process only can capture changes from a single source
database. However, multiple downstream capture processes at a single
downstream database can capture changes from a single source database or
multiple source databases.

• Real-Time Downstream Capture
The advantage of real-time downstream capture over archived-log downstream capture is
that real-time downstream capture reduces the amount of time required to capture
changes made at the source database.

Chapter 3
Capture Processes

3-9

• Archived-Log Downstream Capture
The advantage of archived-log downstream capture over real-time downstream capture is
that archived-log downstream capture allows downstream capture processes from multiple
source databases at a downstream database.

• The Downstream Database Performs Most Change Capture Actions
With downstream capture, most capture actions are performed at the downstream
database.

• Advantages of Downstream Capture
Downstream capture provides several advantages.

• Optional Database Link From the Downstream Database to the Source Database
When you create or alter a downstream capture process, you optionally can specify the
use of a database link from the downstream database to the source database.

• Operational Requirements for Downstream XStream Out with XStream Out
Some operational requirements apply to downstream XStream Out.

Real-Time Downstream Capture
The advantage of real-time downstream capture over archived-log downstream capture is that
real-time downstream capture reduces the amount of time required to capture changes made
at the source database.

The time is reduced because the real-time downstream capture process does not need to wait
for the redo log file to be archived before it can capture data from it.

A real-time downstream capture configuration works in the following way:

• Redo transport services sends redo data to the downstream database either
synchronously or asynchronously. At the same time, the log writer process (LGWR)
records redo data in the online redo log at the source database.

• A remote file server process (RFS) at the downstream database receives the redo data
over the network and stores the redo data in the standby redo log.

• A log switch at the source database causes a log switch at the downstream database, and
the ARCHn process at the downstream database archives the current standby redo log file.

• The real-time downstream capture process captures changes from the standby redo log
whenever possible and from the archived standby redo log files whenever necessary. A
capture process can capture changes in the archived standby redo log files if it falls
behind. When it catches up, it resumes capturing changes from the standby redo log.

Chapter 3
Capture Processes

3-10

Figure 3-2 Real-Time Downstream Capture

Queue

LCR
LCR
LCR
LCR
LCR
.
.
.

Capture
Process

Enqueue
LCRs

User Changes

RFS

ARCn

Redo
Log Files

Archived

Redo
Log

Standby

Log
Changes

Read Redo
Data

Write Redo
Data

Source Database Downstream Database

Redo
Log

Online

Record
Changes

Send Redo
Data

Log
Changes

LGWR

Record
Changes

Database Objects

Redo
Transport
Services

Note:

You can configure more than one real-time downstream capture process that
captures changes from the same source database, but you cannot configure real-
time downstream capture for multiple source databases at one downstream
database.

Archived-Log Downstream Capture
The advantage of archived-log downstream capture over real-time downstream capture is that
archived-log downstream capture allows downstream capture processes from multiple source
databases at a downstream database.

An archived-log downstream capture configuration means that archived redo log files from the
source database are copied to the downstream database, and the capture process captures
changes in these archived redo log files. You can copy the archived redo log files to the
downstream database using redo transport services, the DBMS_FILE_TRANSFER package, file
transfer protocol (FTP), or some other mechanism.

Chapter 3
Capture Processes

3-11

Figure 3-3 Archived-Log Downstream Capture

Queue

LCR
LCR
LCR
LCR
LCR
LCR
.
.
.

Capture
Process

LGWR

ARCn

Capture
Changes

Enqueue
LCRs

User Changes

Redo
Log

Online

Redo
Log Files

Source

Record
Changes

Log
Changes

Write
Redo
Data

Copy Redo
Log Files

Read Redo
Data

Database Objects

Redo
Log Files

Archived

Source Database Downstream Database

You can copy redo log files from multiple source databases to a single downstream database
and configure multiple archived-log downstream capture processes to capture changes in
these redo log files.

See Also:

Oracle Data Guard Concepts and Administration for more information about redo
transport services

The Downstream Database Performs Most Change Capture Actions
With downstream capture, most capture actions are performed at the downstream database.

If you configure either real-time or archived-log downstream capture, then the following actions
are performed at the downstream database:

• The first time a downstream capture process is started at the downstream database,
Oracle Database uses data dictionary information in the redo data from the source
database to create a LogMiner data dictionary at the downstream database. The
DBMS_CAPTURE_ADM.BUILD procedure is run at the source database to extract the source
data dictionary information to the redo log at the source database. Next, the redo data is
copied to the downstream database from the source database. Additional downstream
capture processes for the same source database can use this existing LogMiner data
dictionary, or they can create new LogMiner data dictionaries. Also, a real-time
downstream capture process can share a LogMiner data dictionary with one or more
archived-log downstream capture processes.

Chapter 3
Capture Processes

3-12

• A capture process scans the redo data from the source database for changes using
LogMiner.

• The rules engine evaluates changes based on the rules in one or more of the capture
process rule sets.

• The capture process enqueues changes that satisfy the rules in its rule sets into a local
ANYDATA queue. The capture process formats the changes as LCRs.

In a downstream capture configuration, the following actions are performed at the source
database:

• The DBMS_CAPTURE_ADM.BUILD procedure is run at the source database to extract the data
dictionary to the redo log.

• Supplemental logging at the source database places additional information that might be
needed for apply in the redo log. See "If Required, Configure Supplemental Logging".

In addition, the redo data must be copied from the computer system running the source
database to the computer system running the downstream database. In a real-time
downstream capture configuration, redo transport services sends redo data to the downstream
database. Typically, in an archived-log downstream capture configuration, redo transport
services copies the archived redo log files to the downstream database.

Advantages of Downstream Capture
Downstream capture provides several advantages.

The following are the advantages of using downstream capture:

• Capturing changes uses fewer resources at the source database because the downstream
database performs most of the required work.

• If you plan to capture changes originating at multiple source databases, then capture
process administration can be simplified by running multiple archived-log downstream
capture processes with different source databases at one downstream database. That is,
one downstream database can act as the central location for change capture from multiple
sources. In such a configuration, one real-time downstream capture process can run at the
downstream database in addition to the archived-log downstream capture processes.

• Copying redo data to one or more downstream databases provides improved protection
against data loss. For example, redo log files at the downstream database can be used for
recovery of the source database in some situations.

• The ability to configure at one or more downstream databases multiple capture processes
that capture changes from a single source database provides more flexibility and can
improve scalability.

Optional Database Link From the Downstream Database to the Source Database
When you create or alter a downstream capture process, you optionally can specify the use of
a database link from the downstream database to the source database.

This database link must have the same name as the global name of the source database.
Such a database link simplifies the creation and administration of a downstream capture
process. You specify that a downstream capture process uses a database link by setting the
use_database_link parameter to TRUE when you run the CREATE_CAPTURE or ALTER_CAPTURE
procedure on the downstream capture process. The name of the database link must match the
global name of the source database.

Chapter 3
Capture Processes

3-13

When a downstream capture process uses a database link to the source database, the capture
process connects to the source database to perform the following administrative actions
automatically:

• In certain situations, runs the DBMS_CAPTURE_ADM.BUILD procedure at the source database
to extract the data dictionary at the source database to the redo log when a capture
process is created.

• Obtains the first SCN for the downstream capture process if the first system change
number (SCN) is not specified during capture process creation. The first SCN is needed to
create a capture process.

If a downstream capture process does not use a database link, then you must perform these
actions manually.

Note:

During the creation of a downstream capture process, if the first_scn parameter is
set to NULL in the CREATE_CAPTURE procedure, then the use_database_link parameter
must be set to TRUE. Otherwise, an error is raised.

Operational Requirements for Downstream XStream Out with XStream Out
Some operational requirements apply to downstream XStream Out.

The following are operational requirements for using downstream XStream Out:

• The source database must be running at least Oracle Database 12c Release 2 (12.2).

• The operating system on the source and downstream XStream Out sites must be the
same, but the operating system release does not need to be the same. In addition, the
downstream sites can use a directory structure that is different from the source site.

• The hardware architecture on the source and downstream XStream Out sites must be the
same. For example, a downstream XStream Out configuration with a source database on a
64-bit Sun system must have a downstream database that is configured on a 64-bit Sun
system. Other hardware elements, such as the number of CPUs, memory size, and
storage configuration, can differ in the source and downstream sites.

Note:

• A sourceless cascaded XStream setup is not supported.

• A DownStream XStream is not supported in a cascaded environment.

Capture Processes and RESTRICTED SESSION
Enabling and disabling restricted session affects capture processes.

When you enable restricted session during system startup by issuing a STARTUP RESTRICT
statement, capture processes do not start, even if they were running when the database shut
down. When restricted session is disabled with an ALTER SYSTEM statement, each capture
process that was running when the database shut down is started.

Chapter 3
Capture Processes

3-14

When restricted session is enabled in a running database by the SQL statement ALTER SYSTEM
ENABLE RESTRICTED SESSION clause, it does not affect any running capture processes. These
capture processes continue to run and capture changes. If a stopped capture process is
started in a restricted session, then the capture process does not actually start until the
restricted session is disabled.

XStream Out Process Subcomponents
The XStream Out process subcomponents are a reader server, one or more preparer servers,
and a builder server.

A XStream Out process is an optional Oracle background process whose process name is
CPnn, where nn can include letters and numbers. A XStream Out process XStream Outs
changes from the redo log by using the infrastructure of LogMiner. XStream configures
LogMiner automatically. You can create, alter, start, stop, and drop a XStream Out process,
and you can define XStream Out process rules that control which changes a XStream Out
process XStream Outs.

The parallelism XStream Out process parameter controls XStream Out process parallelism.
When XStream Out process parallelism is 0 (zero), the default for XStream Out, the XStream
Out process does not use subcomponents to perform its work. Instead, the CPnn process
completes all of the tasks required to XStream Out database changes.

When XStream Out process parallelism is greater than 0, the XStream Out process uses the
underlying LogMiner process name is MSnn, where nn can include letters and numbers. When
XStream Out process parallelism is 0 (zero), the XStream Out process does not use this
process.

When XStream Out process parallelism is greater than 0, the XStream Out process consists of
the following subcomponents:

• One reader server that reads the redo log and divides the redo log into regions.

• One or more preparer servers that scan the regions defined by the reader server in
parallel and perform prefiltering of changes found in the redo log. Prefiltering involves
sending partial information about changes, such as schema and object name for a change,
to the rules engine for evaluation, and receiving the results of the evaluation. You can
control the number of preparer servers using the parallelism XStream Out process
parameter.

• One builder server that merges redo records from the preparer servers. These redo
records either evaluated to TRUE during partial evaluation or partial evaluation was
inconclusive for them. The builder server preserves the system change number (SCN)
order of these redo records and passes the merged redo records to the XStream Out
process.

• The XStream Out process (CPnn) performs the following actions for each change when it
receives merged redo records from the builder server:

– Formats the change into an LCR

– If the partial evaluation performed by a preparer server was inconclusive for the
change in the LCR, then sends the LCR to the rules engine for full evaluation

– Receives the results of the full evaluation of the LCR if it was performed

– Discards the LCR if it satisfies the rules in the negative rule set for the XStream Out
process or if it does not satisfy the rules in the positive rule set

– Enqueues the LCR into the queue associated with the XStream Out process if the LCR
satisfies the rules in the positive rule set for the XStream Out process

Chapter 3
Capture Processes

3-15

Each reader server, preparer server, and builder server is a process.

Capture Process States
The state of a capture process describes what the capture process is doing currently.

You can view the state of a capture process by querying the STATE column in the
V$XSTREAM_CAPTURE dynamic performance view.

See Also:

Oracle Database Reference

Capture Process Parameters
Capture process parameters control the way a capture process operates.

For example, the parallelism capture process parameter controls the number of preparer
servers used by a capture process, and the time_limit capture process parameter specifies
the amount of time a capture process runs before it is shut down automatically. You set capture
process parameters using the DBMS_CAPTURE_ADM.SET_PARAMETER procedure. After creation, a
capture process is disabled so that you can set the capture process parameters for your
environment before starting it for the first time.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Capture Process Checkpoints and XStream Out
A checkpoint is information about the current state of a capture process that is stored
persistently in the data dictionary of the database running the capture process.

A capture process tries to record a checkpoint at regular intervals called checkpoint intervals.

• Required Checkpoint SCN
The system change number (SCN) that corresponds to the lowest checkpoint for which a
capture process requires redo data is the required checkpoint SCN.

• Maximum Checkpoint SCN
The SCN that corresponds to the last physical checkpoint recorded by a capture process is
the maximum checkpoint SCN.

• Checkpoint Retention Time
The checkpoint retention time is the amount of time, in number of days, that a capture
process retains checkpoints before purging them automatically.

Chapter 3
Capture Processes

3-16

Required Checkpoint SCN
The system change number (SCN) that corresponds to the lowest checkpoint for which a
capture process requires redo data is the required checkpoint SCN.

The redo log file that contains the required checkpoint SCN, and all subsequent redo log files,
must be available to the capture process. If a capture process is stopped and restarted, then it
starts scanning the redo log from the SCN that corresponds to its required checkpoint SCN.
The required checkpoint SCN is important for recovery if a database stops unexpectedly. Also,
if the first SCN is reset for a capture process, then it must be set to a value that is less than or
equal to the required checkpoint SCN for the captured process. You can determine the
required checkpoint SCN for a capture process by querying the REQUIRED_CHECKPOINT_SCN
column in the ALL_CAPTURE data dictionary view.

Maximum Checkpoint SCN
The SCN that corresponds to the last physical checkpoint recorded by a capture process is the
maximum checkpoint SCN.

The maximum checkpoint SCN can be lower than or higher than the required checkpoint SCN
for a capture process. The maximum checkpoint SCN can also be 0 (zero) if the capture
process is new and has not yet recorded a physical checkpoint.

Checkpoint Retention Time
The checkpoint retention time is the amount of time, in number of days, that a capture process
retains checkpoints before purging them automatically.

A capture process periodically computes the age of a checkpoint by subtracting the NEXT_TIME
of the archived redo log file that corresponds to the checkpoint from FIRST_TIME of the
archived redo log file containing the required checkpoint SCN for the capture process. If the
resulting value is greater than the checkpoint retention time, then the capture process
automatically purges the checkpoint by advancing its first SCN value. Otherwise, the
checkpoint is retained.

You can use the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package to set the
checkpoint retention time for a capture process. The DBA_REGISTERED_ARCHIVED_LOG view
displays the FIRST_TIME and NEXT_TIME for archived redo log files, and the
REQUIRED_CHECKPOINT_SCN column in the ALL_CAPTURE view displays the required checkpoint
SCN for a capture process.

See Also:

Oracle Database PL/SQL Packages and Types Reference

SCN Values Related to a Capture Process
Specific system change number (SCN) values are important for a capture process.

You can query the ALL_CAPTURE data dictionary view to display these values for one or more
capture processes.

Chapter 3
Capture Processes

3-17

• Captured SCN and Applied SCN
The captured SCN is the SCN that corresponds to the most recent change scanned in the
redo log by a capture process. The applied SCN for a capture process is the SCN of the
most recent LCR processed by the relevant outbound server.

• First SCN and Start SCN
The first SCN and start SCN are important for a capture process.

Captured SCN and Applied SCN
The captured SCN is the SCN that corresponds to the most recent change scanned in the redo
log by a capture process. The applied SCN for a capture process is the SCN of the most
recent LCR processed by the relevant outbound server.

All LCRs lower than the applied SCN have been processed by all outbound servers that
process changes captured by the capture process. The applied SCN for a capture process is
equivalent to the low-watermark SCN for an outbound server that processes changes captured
by the capture process.

First SCN and Start SCN
The first SCN and start SCN are important for a capture process.

• First SCN
The first SCN is the lowest SCN in the redo log from which a capture process can capture
changes.

• Start SCN
The start SCN is the SCN from which a capture process begins to capture changes.

• Start SCN Must Be Greater Than or Equal to First SCN
If you specify a start SCN when you create or alter a capture process, then the start SCN
specified must be greater than or equal to the first SCN for the capture process.

First SCN
The first SCN is the lowest SCN in the redo log from which a capture process can capture
changes.

If you specify a first SCN during capture process creation, then the database must be able to
access redo data from the SCN specified and higher.

The DBMS_CAPTURE_ADM.BUILD procedure extracts the source database data dictionary to the
redo log. When you create a capture process, you can specify a first SCN that corresponds to
this data dictionary build in the redo log. Specifically, the first SCN for the capture process
being created can be set to any value returned by the following query:

COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999
COLUMN NAME HEADING 'Log File Name' FORMAT A50

SELECT DISTINCT FIRST_CHANGE#, NAME FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES';

The value returned for the NAME column is the name of the redo log file that contains the SCN
corresponding to the first SCN. This redo log file, and all subsequent redo log files, must be
available to the capture process. If this query returns multiple distinct values for
FIRST_CHANGE#, then the DBMS_CAPTURE_ADM.BUILD procedure has been run more than once on
the source database. In this case, choose the first SCN value that is most appropriate for the
capture process you are creating.

Chapter 3
Capture Processes

3-18

In some cases, the DBMS_CAPTURE_ADM.BUILD procedure is run automatically when a capture
process is created. When this happens, the first SCN for the capture process corresponds to
this data dictionary build.

Start SCN
The start SCN is the SCN from which a capture process begins to capture changes.

The start SCN is the SCN from which a capture process begins to capture changes. You can
specify a start SCN that is different than the first SCN during capture process creation, or you
can alter a capture process to set its start SCN. The start SCN does not need to be modified
for normal operation of a capture process. Typically, you reset the start SCN for a capture
process if point-in-time recovery must be performed on one of the destination databases that
receive changes from the capture process. In these cases, the capture process can capture
the changes made at the source database after the point-in-time of the recovery.

Note:

An existing capture process must be stopped before setting its start SCN.

Start SCN Must Be Greater Than or Equal to First SCN
If you specify a start SCN when you create or alter a capture process, then the start SCN
specified must be greater than or equal to the first SCN for the capture process.

A capture process always scans any unscanned redo log records that have higher SCN values
than the first SCN, even if the redo log records have lower SCN values than the start SCN. So,
if you specify a start SCN that is greater than the first SCN, then the capture process might
scan redo log records for which it cannot capture changes, because these redo log records
have a lower SCN than the start SCN.

Scanning redo log records before the start SCN should be avoided if possible because it can
take some time. Therefore, Oracle recommends that the difference between the first SCN and
start SCN be as small as possible during capture process creation to keep the initial capture
process startup time to a minimum.

Note:

When a capture process is started or restarted, it might need to scan redo log files
with a FIRST_CHANGE# value that is lower than start SCN. Removing required redo log
files before they are scanned by a capture process causes the capture process to
abort. You can query the ALL_CAPTURE data dictionary view to determine the first
SCN, start SCN, and required checkpoint SCN. A capture process needs the redo log
file that includes the required checkpoint SCN, and all subsequent redo log files.

Outbound Servers
With XStream Out, an outbound server sends database changes to a client application.

Chapter 3
Outbound Servers

3-19

• Overview of Outbound Servers
An outbound server is an optional Oracle background process that sends database
changes to a client application.

• Data Types Supported by Outbound Servers
Outbound servers support all of the data types that are supported by capture processes.

• Apply User for an Outbound Server
The apply user for an outbound server is the user who receives LCRs from the outbound
server's capture process.

• Outbound Servers and RESTRICTED SESSION
Enabling and disabling restricted session affects outbound servers.

• Outbound Server Subcomponents
An outbound server consists of a reader server, a coordinator process, and an apply
server.

• Considerations for Outbound Servers
There are several considerations for XStream outbound servers.

• Outbound Servers and Apply Parameters
Apply parameters control the behavior of outbound servers.

Overview of Outbound Servers
An outbound server is an optional Oracle background process that sends database changes
to a client application.

Specifically, a client application can attach to an outbound server and extract database
changes from LCRs. A client application attaches to the outbound server using OCI or Java
interfaces.

A client application can create multiple sessions. Each session can attach to only one
outbound server, and each outbound server can serve only one session at a time. However,
different client application sessions can connect to different outbound servers or inbound
servers.

When both the outbound server and its capture process are enabled, data changes,
encapsulated in row LCRs and DDL LCRs, are sent to the outbound server. The outbound
server can publish LCRs in various formats, such as OCI and Java. The client application can
process LCRs that are passed to it from the outbound server or wait for LCRs from the
outbound server by using a loop.

An outbound server sends LOB, LONG, LONG RAW, and XMLType data to the client application in
chunks. Several chunks comprise a single column value of LOB, LONG, LONG RAW, or XMLType
data type.

Figure 3-4 shows an outbound server configuration.

Chapter 3
Outbound Servers

3-20

Figure 3-4 XStream Out Outbound Server

Queue

.

.

.

.

.

.

Capture
Process�

Enqueue�
Changes

Redo
Log

Record�
Changes

Capture
Changes

Database Objects

Oracle Database

Connect

Events
Dequeue
Changes

Acknowledgement

Outbound
Server

Client
Application

Using
XStream Out

Interface

The client application can detach from the outbound server whenever necessary. When the
client application re-attaches, the outbound server automatically determines where in the
stream of LCRs the client application was when it detached. The outbound server starts
sending LCRs from this point forward.

See Also:

"Capture Processes" for detailed information about capture processes

Data Types Supported by Outbound Servers
Outbound servers support all of the data types that are supported by capture processes.

Outbound servers can send LCRs that include changes to columns of these data types to
XStream client applications.

See Also:

"Data Types Captured by a Capture Process"

Apply User for an Outbound Server
The apply user for an outbound server is the user who receives LCRs from the outbound
server's capture process.

The apply user for an outbound server must match the capture user for the outbound server's
capture process.

Chapter 3
Outbound Servers

3-21

See Also:

"Privileges Required by the Capture User for a Capture Process"

Outbound Servers and RESTRICTED SESSION
Enabling and disabling restricted session affects outbound servers.

When restricted session is enabled during system startup by issuing a STARTUP RESTRICT
statement, outbound servers do not start, even if they were running when the database shut
down. When the restricted session is disabled, each outbound server that was not stopped is
started.

When restricted session is enabled in a running database by the SQL statement ALTER SYSTEM
ENABLE RESTRICTED SESSION, it does not affect any running outbound servers. These outbound
servers continue to run and send LCRs to an XStream client application. If a stopped outbound
server is started in a restricted session, then the outbound server does not actually start until
the restricted session is disabled.

Outbound Server Subcomponents
An outbound server consists of a reader server, a coordinator process, and an apply server.

• A reader server that receives LCRs from the outbound server's capture process. The
reader server is a process that computes dependencies between LCRs and assembles
LCRs into transactions. The reader server then returns the assembled transactions to the
coordinator process.

You can view the state of the reader server for an outbound server by querying the
V$XSTREAM_APPLY_READER dynamic performance view.

• A coordinator process that gets transactions from the reader server and passes them to
apply servers. The coordinator process name is APnn, where nn can include letters and
numbers. The coordinator process is an Oracle background process.

You can view the state of a coordinator process by querying the
V$XSTREAM_APPLY_COORDINATOR dynamic performance view.

• An apply server that sends LCRs to an XStream client application. The apply server is a
process. If the apply server encounters an error, then it then it records information about
the error in the ALL_APPLY view.

You can view the state of the apply server for an outbound server by querying the
V$XSTREAM_APPLY_SERVER dynamic performance view.

The reader server and the apply server process names are ASnn, where nn can include letters
and numbers.

Chapter 3
Outbound Servers

3-22

See Also:

• Oracle Database Reference for more information on V$XSTREAM_APPLY_READER
dynamic performance view

• Oracle Database Reference for more information on
V$XSTREAM_APPLY_COORDINATOR dynamic performance view

• Oracle Database Reference for more information on V$XSTREAM_APPLY_SERVER
dynamic performance view

Considerations for Outbound Servers
There are several considerations for XStream outbound servers.

The following are considerations for outbound servers:

• LCRs processed by an outbound server must be LCRs that were captured by a capture
process. An outbound server does not support LCRs that were constructed by
applications.

• A single outbound server can process captured LCRs from only one source database. The
source database is the database where the changes encapsulated in the LCRs were
generated in the redo log.

• The source database for the changes captured by a capture process must be at 10.2.0 or
higher compatibility level for these changes to be processed by an outbound server.

• The capture process for an outbound server must be running on an Oracle Database 11g
Release 2 (11.2) or later database.

• A single capture process cannot capture changes for both an outbound server and an
apply process. However, a single capture process can capture changes for multiple
outbound servers.

• Automatic split and merge of a stream is possible when the capture process and the
outbound server for the stream run on different databases. However, when the capture
process and outbound server for a stream run on the same database, automatic split and
merge of the stream is not possible.

• An outbound server's LCRs can spill from memory to hard disk if they have been in the
buffered queue for a period of time without being processed, if there are a large number of
LCRs in a transaction, or if there is not enough space in memory to hold all of the LCRs.
An outbound server performs best when a minimum of LCRs spill from memory. You can
control an outbound server's behavior regarding spilled LCRs using the
txn_age_spill_threshold and txn_lcr_spill_threshold apply parameters.

• Instantiation SCNs are not required for database objects processed by an outbound server.
If an instantiation SCN is set for a database object, then the outbound server only sends
the LCRs for the database object with SCN values that are greater than the instantiation
SCN value. If a database object does not have an instantiation SCN set, then the outbound
server skips the instantiation SCN check and sends all LCRs for that database object. In
both cases, the outbound server only sends LCRs that satisfy its rule sets.

Chapter 3
Outbound Servers

3-23

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about
apply parameters

Outbound Servers and Apply Parameters
Apply parameters control the behavior of outbound servers.

You can use the following apply parameters with outbound servers:

• apply_sequence_nextval
• disable_on_limit
• grouptransops
• ignore_transaction
• max_sga_size
• maximum_scn
• startup_seconds
• time_limit
• trace_level
• transaction_limit
• txn_age_spill_threshold
• txn_lcr_spill_threshold
• write_alert_log

See Also:

Oracle Database PL/SQL Packages and Types Reference

Position of LCRs and XStream Out
An XStream Out outbound server streams LCRs that were captured by a capture process to a
client application. The position of an LCR identifies its placement in the stream of LCRs in a
transaction.

• Additional LCR Attributes Related to Position in XStream Out
In LCRs that were captured by a capture process, there is additional information related to
LCR position.

• The Processed Low Position and Restartability for XStream Out
The processed low position is a position below which all transactions have been
processed by the client application.

Chapter 3
Position of LCRs and XStream Out

3-24

• Streaming Network Transmission
To minimize network latency, the outbound server streams LCRs to the client application
with time-based acknowledgments. For example, the outbound server might send an
acknowledgment every 30 seconds.

See Also:

"Position Order in an LCR Stream"

Additional LCR Attributes Related to Position in XStream Out
In LCRs that were captured by a capture process, there is additional information related to
LCR position.

LCRs that were captured by a capture process contain the following additional attributes
related to LCR position:

• The scn_from_position attribute contains the SCN of the LCR.

• The commit_scn_from_position attribute contains the commit SCN of the transaction to
which the LCR belongs.

Note:

The scn_from_position and commit_scn_from_position attributes are not present
in explicitly captured row LCRs.

See Also:

Oracle Database PL/SQL Packages and Types Reference

The Processed Low Position and Restartability for XStream Out
The processed low position is a position below which all transactions have been processed
by the client application.

If the outbound server or the client application stops abnormally, then the connection between
the two is broken automatically. In this case, the client application must roll back all incomplete
transactions.

The client application must maintain its processed low position to recover properly after either it
or the outbound server (or both) are restarted. The processed low position indicates that the
client application has processed all LCRs that are less than or equal to this value. The client
application can update the processed low position for each transaction that it consumes.

When the client application attaches to the outbound server, the following conditions related to
the processed low position are possible:

Chapter 3
Position of LCRs and XStream Out

3-25

• The client application can pass a processed low position to the outbound server that is
equal to or greater than the outbound server's processed low position. In this case, the
outbound server resumes streaming LCRs from the first LCR that has a position greater
than the client application's processed low position.

• The client application can pass a processed low position to the outbound server that is less
than the outbound server's processed low position. In this case, the outbound server raises
an error.

• The client application can pass NULL to the outbound server. In this case, the outbound
server determines the processed low position automatically and starts streaming LCRs
from the LCR that has a position greater than this processed low position. When this
happens, the client application must suppress or discard each LCR with a position less
than or equal to the client application's processed low position.

See Also:

"Displaying the Processed Low Position for an Outbound Server"

Streaming Network Transmission
To minimize network latency, the outbound server streams LCRs to the client application with
time-based acknowledgments. For example, the outbound server might send an
acknowledgment every 30 seconds.

This streaming protocol fully utilizes the available network bandwidth, and the performance is
unaffected by the presence of a wide area network (WAN) separating the sender and the
receiver. The outbound server extends the underlying Oracle Replication infrastructure, and
the outbound server maintains the streaming performance rate.

Using OCI, you can control the time period of the interval by setting the
OCI_ATTR_XSTREAM_ACK_INTERVAL attribute through the OCI client application. The default is 30
seconds.

Using Java, you can control the time period of the interval by setting the batchInterval
parameter in the attach method in the XStreamOut class. The client application can specify this
interval when it invokes the attach method.

If the interval is large, then the outbound server can stream out more LCRs for each
acknowledgment interval. However, a longer interval delays how often the client application
can send the processed low position to the outbound server. Therefore, a longer interval might
mean that the processed low position maintained by the outbound server is not current. In this
case, when the outbound server restarts, it must start processing LCRs at an earlier position
than the one that corresponds to the processed low position maintained by the client
application. Therefore, more LCRs might be retransmitted, and the client application must
discard the ones that have been applied.

XStream Out and Distributed Transactions
There are considerations for XStream Out and distributed transactions.

You can perform distributed transactions using either of the following methods:

• Modify tables in multiple databases in a coordinated manner using database links.

Chapter 3
XStream Out and Distributed Transactions

3-26

• Use the XA interface, as exposed by the DBMS_XA supplied PL/SQL package or by the OCI
or JDBC libraries. The XA interface implements X/Open Distributed Transaction
Processing (DTP) architecture.

In an XStream Out configuration, changes made to the source database during a distributed
transaction using either of the preceding methods are streamed to an XStream outbound
server. The outbound server sends the changes in a transaction to the XStream client
application after the transaction has committed.

However, the distributed transaction state is not replicated or sent. The client application does
not inherit the in-doubt or prepared state of such a transaction. Also, XStream does not
replicate or send the changes using the same global transaction identifier used at the source
database for XA transactions.

XA transactions can be performed in two ways:

• Tightly coupled, where different XA branches share locks

• Loosely coupled, where different XA branches do not share locks

XStream supports replication of changes made by loosely coupled XA branches regardless of
the COMPATIBLE initialization parameter value. XStream supports replication of changes made
by tightly coupled branches on an Oracle RAC source database only if the COMPATIBLE
initialization parameter is set to 11.2.0.0 or higher.

See Also:

• Oracle Database Administrator’s Guide for more information about distributed
transactions

• Oracle Database Development Guide for more information about Oracle XA

XStream Out and Security
Understand security related to the client application and XStream components, as well as the
privileges required by the capture user and the connect user.

• Capture Process Trace Files
A capture process is an Oracle background process named CPnn, where nn can include
letters and numbers.

• The XStream Out Client Application and Security
There are security considerations for the client application because XStream Out allows it
to receive LCRs.

• XStream Out Component-Level Security
All the components of the XStream Out configuration run as the same XStream
administrator. This user needs to be granted the XSTREAM_CAPTURE role.

• Privileges Required by the Capture User for a Capture Process
Changes are captured in the security domain of the capture user for a capture process.
The capture user captures all changes that satisfy the capture process rule sets. The
capture user must have the necessary privileges to perform these actions.

Chapter 3
XStream Out and Security

3-27

• Privileges Required by the Connect User for an Outbound Server
An outbound server sends LCRs to an XStream client application in the security domain of
its connect user.

See Also:

• "XStream Security Model"

• Oracle Database PL/SQL Packages and Types Reference

Capture Process Trace Files
A capture process is an Oracle background process named CPnn, where nn can include letters
and numbers.

For example, on some operating systems, if the system identifier for a database running a
capture process is hqdb and the capture process number is 01, then the trace file for the
capture process starts with hqdb_CP01.

See Also:

"Displaying Change Capture Information About Each Capture Process" for a query
that displays the capture process number of a capture process

The XStream Out Client Application and Security
There are security considerations for the client application because XStream Out allows it to
receive LCRs.

After an XStream Out application receives LCRs, the application might save the contents of
LCRs to a file or generate the SQL statements to execute the LCRs on a non-Oracle database.

Java and OCI client applications must connect to an Oracle database before attaching to an
XStream outbound server created on that database. The connected user must be the same as
the connect_user configured for the outbound server. Otherwise, an error is raised. XStream
does not assume that the connected user to the outbound server is trusted.

The XStream Java layer API relies on Oracle JDBC security because XStream accepts the
Oracle JDBC connection instance created by client application in the XStream attach method
in the XStreamOut class. The connected user is validated as an XStream user.

Chapter 3
XStream Out and Security

3-28

See Also:

• Oracle Call Interface Developer's Guide for information about the OCI interface
for XStream

• Oracle Database XStream Java API Reference for information about the Java
interface for XStream

XStream Out Component-Level Security
All the components of the XStream Out configuration run as the same XStream administrator.
This user needs to be granted the XSTREAM_CAPTURE role.

The XSTREAM_CAPTURE role contains privileges for Oracle for Oracle-supplied views and
packages required to run components in an XStream Out configuration.

Privileges Required by the Capture User for a Capture Process
Changes are captured in the security domain of the capture user for a capture process. The
capture user captures all changes that satisfy the capture process rule sets. The capture user
must have the necessary privileges to perform these actions.

The capture user must have the following privileges:

• EXECUTE privilege on the rule sets used by the capture process

• EXECUTE privilege on all custom rule-based transformation functions specified for rules in
the positive rule set

• Privileges to enqueue LCRs into the capture process queue

A capture process can be associated with only one user, but one user can be associated with
many capture processes.

Grant privileges to the capture user with the XSTREAM_CAPTURE role.

See Also:

• "Configure an XStream Administrator on All Databases"

• "Changing the Capture User of an Outbound Server's Capture Process"

Privileges Required by the Connect User for an Outbound Server
An outbound server sends LCRs to an XStream client application in the security domain of its
connect user.

The connect user sends LCRs that satisfy the outbound server's rule sets to the XStream client
application. In addition, the connect user runs all custom rule-based transformations specified
by the rules in these rule sets.

The connect user must have the following privileges:

Chapter 3
XStream Out and Security

3-29

• EXECUTE privilege on the rule sets used by the outbound server

• EXECUTE privilege on all custom rule-based transformation functions specified for rules in
the positive rule set

A outbound server can be associated with only one user, but one user can be associated with
many outbound servers.

See Also:

• "XStream Security Model"

• "Changing the Connect User for an Outbound Server"

• Oracle Database PL/SQL Packages and Types Reference DBMS_XSTREAM_ADM
package "Security Model" for information about the security requirements for
configuring and managing XStream

• Oracle Call Interface Developer's Guide for information about the OCI interface
for XStream

XStream Out and Other Oracle Database Components
XStream Out can work with other Oracle Database components.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB, depending
on context. In some contexts, such as upgrades, "non-CDB" refers to a non-CDB
from a previous release.

• XStream Out and Oracle Real Application Clusters
XStream Out can work with Oracle Real Application Clusters (Oracle RAC).

• XStream Out and Transparent Data Encryption
XStream Out can work with Transparent Data Encryption.

• XStream Out and Flashback Data Archive
XStream Out supports tables in a flashback data archive.

• XStream Out and Recovery Manager
RMAN deletion policies can affect capture processes.

• XStream and Distributed Transactions
XStream Out supports distributed transactions.

• XStream Out and a Multitenant Environment
A multitenant environment enables a database to contain a portable set of schemas,
objects, and related structures that appears logically to an application as a separate
database.

Chapter 3
XStream Out and Other Oracle Database Components

3-30

XStream Out and Oracle Real Application Clusters
XStream Out can work with Oracle Real Application Clusters (Oracle RAC).

• Capture Processes and Oracle Real Application Clusters
A capture process can capture changes in an Oracle Real Application Clusters (Oracle
RAC) environment.

• Queues and Oracle Real Application Clusters
You can configure queues in an Oracle Real Application Clusters (Oracle RAC)
environment.

• Propagations and Oracle Real Application Clusters
A propagation can propagate LCRs from one queue to another in an Oracle Real
Application Clusters (Oracle RAC) environment. A propagation job running on an instance
propagates logical change records (LCRs) from any queue owned by that instance to
destination queues.

• Outbound Servers and Oracle Real Application Clusters
You can configure an outbound server in an Oracle Real Application Clusters (Oracle
RAC) environment provided you have set use_rac_service to Y in the procedure
DBMS_CAPTURE_ADM.SET_PARAMETER.

Capture Processes and Oracle Real Application Clusters
A capture process can capture changes in an Oracle Real Application Clusters (Oracle RAC)
environment.

If you use one or more capture processes and Oracle RAC in the same environment, then all
archived logs that contain changes to be captured by a capture process must be available for
all instances in the Oracle RAC environment. In an Oracle RAC environment, a capture
process reads changes made by all instances. Multiple outbound server processes that use
the same capture process must run in the same Oracle RAC instance as the capture process.

You ensure that the capture process runs in the same Oracle RAC instance as its queue by
setting the parameter use_rac_service to Y in the procedure
DBMS_CAPTURE_ADM.SET_PARAMETER.

If the value for the capture process parameter use_rac_service is set to Y, then each capture
process is started and stopped on the owner instance for its ANYDATA queue, even if the start or
stop procedure is run on a different instance. Also, a capture process follows its queue to a
different instance if the current owner instance becomes unavailable. The queue itself follows
the rules for primary instance and secondary instance ownership.

If the value for the capture process parameter use_rac_service is set to N, then the capture
process is started on the instance to which the client application connects. Stopping the
capture process must be performed on the same instance where the capture process was
started.

If the owner instance for a queue table containing a queue used by a capture process
becomes unavailable, then queue ownership is transferred automatically to another instance in
the cluster. In addition, if the capture process was enabled when the owner instance became
unavailable, then the capture process is restarted automatically on the new owner instance. If
the capture process was disabled when the owner instance became unavailable, then the
capture process remains disabled on the new owner instance.

LogMiner supports the LOG_ARCHIVE_DEST_n initialization parameter, and capture processes
use LogMiner to capture changes from the redo log. If an archived log file is inaccessible from

Chapter 3
XStream Out and Other Oracle Database Components

3-31

one destination, then a local capture process can read it from another accessible destination.
On an Oracle RAC database, this ability also enables you to use cross instance archival (CIA)
such that each instance archives its files to all other instances. This solution cannot detect or
resolve gaps caused by missing archived log files. Hence, it can be used only to complement
an existing solution to have the archived files shared between all instances.

In a downstream capture process environment, the source database can be a single instance
database or a multi-instance Oracle RAC database. The downstream database can be a single
instance database or a multi-instance Oracle RAC database, regardless of whether the source
database is single instance or multi-instance.

See Also:

• "Capture Processes"

• Oracle Database Reference for more information about the ALL_QUEUE_TABLES
data dictionary view

• Oracle Real Application Clusters Administration and Deployment Guide for more
information about configuring archived logs to be shared between instances

Queues and Oracle Real Application Clusters
You can configure queues in an Oracle Real Application Clusters (Oracle RAC) environment.

In an Oracle RAC environment, only the owner instance can have a buffer for a queue, but
different instances can have buffers for different queues. A buffered queue is System Global
Area (SGA) memory associated with a queue.

You set the capture process parameter use_rac_service to Y to specify ownership of the
queue table or the primary and secondary instance for a given queue table.

XStream Out processes and jobs support primary instance and secondary instance
specifications for queue tables. If use_rac_service is set to Y, you can use the specifications
for queue tables and the secondary instance assumes ownership of a queue table when the
primary instance becomes unavailable. The queue ownership is transferred back to the
primary instance when it becomes available again.

If the owner instance for a queue table containing a destination queue for a propagation
becomes unavailable, then queue ownership is transferred automatically to another instance in
the cluster. If both the primary and secondary instance for a queue table containing a
destination queue become unavailable, then queue ownership is transferred automatically to
another instance in the cluster. In this case, if the primary or secondary instance becomes
available again, then ownership is transferred back to one of them accordingly.

You can set primary and secondary instance specifications using the ALTER_QUEUE_TABLE
procedure in the DBMS_AQADM package. The ALL_QUEUE_TABLES data dictionary view contains
information about the owner instance for a queue table. A queue table can contain multiple
queues. In this case, each queue in a queue table has the same owner instance as the queue
table.

The NETWORK_NAME column in the ALL_QUEUES data dictionary view contains the network name
for a queue service. Do not manage the services for queues in any way. Oracle manages them
automatically.

Chapter 3
XStream Out and Other Oracle Database Components

3-32

See Also:

• Oracle Database Reference for more information about the ALL_QUEUE_TABLES
data dictionary view

• Oracle Database Advanced Queuing User's Guide for more information about
queues and Oracle RAC

• Oracle Database PL/SQL Packages and Types Reference for more information
about the ALTER_QUEUE_TABLE procedure

Propagations and Oracle Real Application Clusters
A propagation can propagate LCRs from one queue to another in an Oracle Real Application
Clusters (Oracle RAC) environment. A propagation job running on an instance propagates
logical change records (LCRs) from any queue owned by that instance to destination queues.

The information in this section only applies to XStream configurations that include
propagations. In a typical XStream configuration, an outbound server and its capture process
are configured on the same database, and propagation is not required. The information in this
section does not apply to configurations that do not include propagation. However, it is possible
to configure a capture process on one database and an outbound server on another database.
In this case, a propagation sends LCRs from the capture process's queue to the outbound
server's queue.

Before you can propagate LCRs in an Oracle RAC environment, you must set
use_rac_service to Y in the procedure DBMS_CAPTURE_ADM.SET_PARAMETER.

Any propagation to an Oracle RAC database is made over database links. The database links
must be configured to connect to the destination instance that owns the queue that will receive
the LCRs.

A queue-to-queue propagation to a buffered destination queue uses a service to provide
transparent failover in an Oracle RAC environment. That is, a propagation job for a queue-to-
queue propagation automatically connects to the instance that owns the destination queue.
The service used by a queue-to-queue propagation always runs on the owner instance of the
destination queue. This service is created only for buffered queues in an Oracle RAC
database. If you plan to use buffered messaging with an Oracle RAC database, then LCRs can
be enqueued into a buffered queue on any instance. If LCRs are enqueued on an instance that
does not own the queue, then the LCRs are sent to the correct instance, but it is more efficient
to enqueue LCRs on the instance that owns the queue. You can use the service to connect to
the owner instance of the queue before enqueuing LCRs into a buffered queue.

Because the queue service always runs on the owner instance of the queue, transparent
failover can occur when Oracle RAC instances fail. When multiple queue-to-queue
propagations use a single database link, the connect description for each queue-to-queue
propagation changes automatically to propagate LCRs to the correct destination queue.

Note:

If a queue contains or will contain captured LCRs in an Oracle RAC environment,
then use queue-to-queue propagations to propagate LCRs to an Oracle RAC
destination database.

Chapter 3
XStream Out and Other Oracle Database Components

3-33

Outbound Servers and Oracle Real Application Clusters
You can configure an outbound server in an Oracle Real Application Clusters (Oracle RAC)
environment provided you have set use_rac_service to Y in the procedure
DBMS_CAPTURE_ADM.SET_PARAMETER.

Each outbound server is started and stopped on the owner instance for its ANYDATA queue,
even if the start or stop procedure is run on a different instance. A coordinator process, its
corresponding apply reader server, and its apply server run on a single instance. Multiple
XStream Out processes that use the same capture process must run in the same Oracle RAC
instance as the capture process.

If the owner instance for a queue table containing a queue used by an outbound server
becomes unavailable, then queue ownership is transferred automatically to another instance in
the cluster. Also, an outbound server will follow its queue to a different instance if the current
owner instance becomes unavailable. The queue itself follows the rules for primary instance
and secondary instance ownership. In addition, if the outbound server was enabled when the
owner instance became unavailable, then the outbound server is restarted automatically on the
new owner instance. If the outbound server was disabled when the owner instance became
unavailable, then the outbound server remains disabled on the new owner instance.

See Also:

• "Outbound Servers"

• Oracle Database Reference for more information about the ALL_QUEUE_TABLES
data dictionary view

XStream Out and Transparent Data Encryption
XStream Out can work with Transparent Data Encryption.

• Capture Processes and Transparent Data Encryption
Capture processes can capture changes to columns that have been encrypted using
Transparent Data Encryption.

• Outbound Servers and Transparent Data Encryption
An outbound server can process implicitly captured row logical change records (row LCRs)
that contain columns encrypted using Transparent Data Encryption.

See Also:

Oracle Database Advanced Security Guide for information about Transparent Data
Encryption

Capture Processes and Transparent Data Encryption
Capture processes can capture changes to columns that have been encrypted using
Transparent Data Encryption.

Chapter 3
XStream Out and Other Oracle Database Components

3-34

A local capture process can capture changes to columns that have been encrypted using
Transparent Data Encryption. A downstream capture process can capture changes to columns
that have been encrypted only if the downstream database shares an encryption keystore
(container for authentication and signing credentials) with the source database. A keystore can
be shared through a network file system (NFS), or it can be copied from one computer system
to another manually. When a keystore is shared with a downstream database, ensure that the
WALLET_ROOT parameter in the sqlnet.ora file at the downstream database specifies the
keystore location.

If you copy a keystore to a downstream database, then ensure that you copy the keystore from
the source database to the downstream database whenever the keystore at the source
database changes. Do not perform any operations on the keystore at the downstream
database, such as changing the encryption key for a replicated table.

Encrypted columns in row logical change records (row LCRs) captured by a local or
downstream capture process are decrypted when the row LCRs are staged in a buffered
queue.

Note:

A capture process only supports encrypted columns if the redo logs used by the
capture process were generated by a database with a compatibility level of 11.0.0 or
higher. The compatibility level is controlled by the COMPATIBLE initialization parameter.

Note:

The SQLNET.ENCRYPTION_WALLET_LOCATION sqlnet.ora parameter is deprecated in
Oracle Database 19c.

Starting with Oracle Database 23ai, the parameter ENCRYPTION_WALLET_LOCATION is
desupported.

See Also:

"Capture Processes"

Outbound Servers and Transparent Data Encryption
An outbound server can process implicitly captured row logical change records (row LCRs)
that contain columns encrypted using Transparent Data Encryption.

When row LCRs with encrypted columns are processed by an outbound server, the encrypted
columns are decrypted. These row LCRs with decrypted columns are sent to the XStream
client application.

When row LCRs with encrypted columns are stored in buffered queues, the columns are
decrypted. When row LCRs spill to disk, XStream transparently encrypts any encrypted
columns while the row LCRs are stored on disk.

Chapter 3
XStream Out and Other Oracle Database Components

3-35

Note:

For XStream Out to encrypt columns transparently, the encryption master key must
be stored in the keystore on the local database, and the keystore must be open. The
following statements set the master key and open the keystore:

ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY key-password;

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY key-password;

Because the same keystore needs to be available and open in any instance where
columns are encrypted, make sure you copy the keystore to the downstream capture
database. In the case of a downstream capture, you must also run the above
commands on the downstream instance.

See Also:

"Outbound Servers"

XStream Out and Flashback Data Archive
XStream Out supports tables in a flashback data archive.

Capture processes can capture data manipulation language (DML) and data definition
language (DDL) changes made to these tables. Outbound servers can process the captured
LCRs.

XStream Out also support the following DDL statements:

• CREATE FLASHBACK ARCHIVE
• ALTER FLASHBACK ARCHIVE
• DROP FLASHBACK ARCHIVE
• CREATE TABLE with a FLASHBACK ARCHIVE clause

• ALTER TABLE with a FLASHBACK ARCHIVE clause

Note:

XStream Out does not capture changes made to internal tables used by a flashback
data archive.

Chapter 3
XStream Out and Other Oracle Database Components

3-36

See Also:

• Oracle Database Development Guide for information about flashback data
archive

• "Capture Processes"

• "Outbound Servers"

XStream Out and Recovery Manager
RMAN deletion policies can affect capture processes.

Some RMAN deletion policies and commands delete archived redo log files. If one of these
RMAN policies or commands is used on a database that generates redo log files for one or
more capture processes, then ensure that the RMAN commands do not delete archived redo
log files that are required by a capture process.

• RMAN and Local Capture Processes
When a local capture process is configured, RMAN does not delete archived redo log files
that are required by the local capture process unless there is space pressure in the fast
recovery area.

• RMAN and Downstream Capture Processes
When a downstream capture process captures database changes made at a source
database, ensure that no RMAN deletion policy or command deletes an archived redo log
file until after it is transferred from the source database to the downstream capture process
database.

See Also:

• "Capture Processes"

• "The Capture Process Is Missing Required Redo Log Files" for information about
determining whether a capture process is missing required archived redo log files
and for information correcting this problem

• "Checking the Trace File and Alert Log for Problems"

• Oracle Database Backup and Recovery User’s Guide and Oracle Database
Backup and Recovery Reference for more information about RMAN

RMAN and Local Capture Processes
When a local capture process is configured, RMAN does not delete archived redo log files that
are required by the local capture process unless there is space pressure in the fast recovery
area.

Specifically, RMAN does not delete archived redo log files that contain changes with system
change number (SCN) values that are equal to or greater than the required checkpoint SCN for
the local capture process. This is the default RMAN behavior for all RMAN deletion policies
and DELETE commands, including DELETE ARCHIVELOG and DELETE OBSOLETE.

Chapter 3
XStream Out and Other Oracle Database Components

3-37

When there is not enough space in the fast recovery area to write a new log file, RMAN
automatically deletes one or more archived redo log files. Oracle Database writes warnings to
the alert log when RMAN automatically deletes an archived redo log file that is required by a
local capture process.

When backups of the archived redo log files are taken on the local capture process database,
Oracle recommends the following RMAN deletion policy:

CONFIGURE ARCHIVELOG DELETION POLICY TO BACKED UP integer TIMES
 TO DEVICE TYPE deviceSpecifier;

This deletion policy requires that a log file be backed up integer times before it is considered
for deletion.

When no backups of the archived redo log files are taken on the local capture process
database, no specific deletion policy is recommended. By default, RMAN does not delete
archived redo log files that are required by a local capture process.

RMAN and Downstream Capture Processes
When a downstream capture process captures database changes made at a source database,
ensure that no RMAN deletion policy or command deletes an archived redo log file until after it
is transferred from the source database to the downstream capture process database.

The following are considerations for specific RMAN deletion policies and commands that
delete archived redo log files:

• The RMAN command CONFIGURE ARCHIVELOG DELETION POLICY sets a deletion policy that
determines when archived redo log files in the fast recovery area are eligible for deletion.
The deletion policy also applies to all RMAN DELETE commands, including DELETE
ARCHIVELOG and DELETE OBSOLETE.

The following settings determine the behavior at the source database:

– A deletion policy set TO SHIPPED TO STANDBY does not delete a log file until after it is
transferred to a downstream capture process database that requires the file. These log
files might or might not have been processed by the downstream capture process.
Automatic deletion occurs when there is not enough space in the fast recovery area to
write a new log file.

– A deletion policy set TO APPLIED ON STANDBY does not delete a log file until after it is
transferred to a downstream capture process database that requires the file and the
source database marks the log file as applied. The source database marks a log file as
applied when the minimum required checkpoint SCN of all of the downstream capture
processes for the source database is greater than the highest SCN in the log file.

– A deletion policy set to BACKED UP integer TIMES TO DEVICE TYPE requires that a log file
be backed up integer times before it is considered for deletion. A log file can be
deleted even if the log file has not been processed by a downstream capture process
that requires it.

– A deletion policy set TO NONE means that a log file can be deleted when there is space
pressure on the fast recovery area, even if the log file has not been processed by a
downstream capture process that requires it.

• The RMAN command DELETE ARCHIVELOG deletes archived redo log files that meet all of
the following conditions:

– The log files satisfy the condition specified in the DELETE ARCHIVELOG command.

Chapter 3
XStream Out and Other Oracle Database Components

3-38

– The log files can be deleted according to the CONFIGURE ARCHIVELOG DELETION POLICY.
For example, if the policy is set TO SHIPPED TO STANDBY, then this command does not
delete a log file until after it is transferred to any downstream capture process
database that requires it.

This behavior applies when the database is mounted or open.

If archived redo log files are not deleted because they contain changes required by a
downstream capture process, then RMAN displays a warning message about skipping the
delete operation for these files.

• The RMAN command DELETE OBSOLETE permanently purges the archived redo log files that
meet all of the following conditions:

– The log files are obsolete according to the retention policy.

– The log files can be deleted according to the CONFIGURE ARCHIVELOG DELETION POLICY.
For example, if the policy is set TO SHIPPED TO STANDBY, then this command does not
delete a log file until after it is transferred to any downstream capture process
database that requires it.

This behavior applies when the database is mounted or open.

• The RMAN command BACKUP ARCHIVELOG ALL DELETE INPUT copies the archived redo log
files and deletes the original files after completing the backup. This command does not
delete the log file until after it is transferred to a downstream capture process database
when the following conditions are met:

– The database is mounted or open.

– The log file is required by a downstream capture process.

– The deletion policy is set TO SHIPPED TO STANDBY.

If archived redo log files are not deleted because they contain changes required by a
downstream capture process, then RMAN displays a warning message about skipping the
delete operation for these files.

Oracle recommends one of the following RMAN deletion policies at the source database for a
downstream capture process:

• When backups of the archived redo log files are taken on the source database, set the
deletion policy to the following:

CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO STANDBY
 BACKED UP integer TIMES TO DEVICE TYPE deviceSpecifier;

• When no backups of the archived redo log files are taken on the source database, set the
deletion policy to the following:

CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO STANDBY;

Note:

At a downstream capture process database, archived redo log files transferred from a
source database are not managed by RMAN.

XStream and Distributed Transactions
XStream Out supports distributed transactions.

Chapter 3
XStream Out and Other Oracle Database Components

3-39

You can perform distributed transactions using either of the following methods:

• Modify tables in multiple databases in a coordinated manner using database links.

• Use the XA interface, as exposed by the DBMS_XA supplied PL/SQL package or by the OCI
or JDBC libraries. The XA interface implements X/Open Distributed Transaction
Processing (DTP) architecture.

A capture process captures changes made to the source database during a distributed
transaction using either of these two methods and sends the changes to an outbound server.
An outbound server sends the changes in a transaction to a client application after the
transaction has committed.

However, the distributed transaction state is not sent. The client application does not inherit the
in-doubt or prepared state of such a transaction. Also, the outbound server does not send the
changes using the same global transaction identifier used at the source database for XA
transactions.

XA transactions can be performed in two ways:

• Tightly coupled, where different XA branches share locks

• Loosely coupled, where different XA branches do not share locks

XStream Out supports changes made by loosely coupled XA branches regardless of the
COMPATIBLE initialization parameter value. XStream Out supports replication of changes made
by tightly coupled branches on an Oracle RAC source database only if the COMPATIBLE
initialization parameter set to 11.2.0.0 or higher.

See Also:

• Oracle Database Administrator’s Guide for more information about distributed
transactions

• Oracle Database Development Guide for more information about Oracle XA

XStream Out and a Multitenant Environment
A multitenant environment enables a database to contain a portable set of schemas, objects,
and related structures that appears logically to an application as a separate database.

This self-contained collection is called a pluggable database (PDB). A multitenant container
database (CDB) contains PDBs. In a CDB, XStream Out functions much the same as it does in
a non-CDB.

A CDB can also contain application containers. An application container is an optional
component of a CDB that consists of an application root and all application PDBs associated
with it. An application container stores data for one or more applications. An application
container shares application metadata and common data. In a CDB, each of the following is a
container: the CDB root, each PDB, each application root, and each application PDB.

The main differences in the way XStream Out functions in a CDB and non-CDB are:

• XStream Out must be configured only in the CDB root.

• XStream Out can see changes made to any container within the CDB.

Chapter 3
XStream Out and Other Oracle Database Components

3-40

• XStream Out capture rules can limit the LCRs to those that are needed for the client
application. The system-generated capture rules select the appropriate LCRs based on the
parameters that were passed to the ADD_OUTBOUND and CREATE_OUTBOUND procedures in the
DBMS_XSTREAM_ADM package. You can use the ADD_*_RULES procedures in the same
package for more fine-grained control over the rules used by the XStream Out
components.

• The user who performs XStream Out tasks must be a common user.

Unplug and Plug Operations in an XStream Environment

When a PDB, application root, or application PDB involved with XStream Out is unplugged
from its CDB and plugged into another CDB, any capture process or outbound server is not
considered part of the container. You must configure the capture process and outbound server
again in the other CDB.

If an outbound server is configured in a different database than the capture process, then
unplug and plug operations have additional considerations.

For this example, assume the following:

• A CDB named CDB1 contains PDB PDB1.

• A capture process is configured in CDB1, and it sends LCRs from PDB1 to an outbound
server in a CDB named CDB2.

• You unplug PDB1 from CDB1, and then plug it into a CDB named CDB3.

To continue delivering LCRs from PDB1 to the outbound server in CDB2, you must configure a
new capture process in CDB3 to capture and send LCRs to CDB2.

The rules used by the outbound server in database B must be altered to change references to
the root of CDB1 to the root of CDB3. In addition, if PDB1 was given a different name in CDB3, then
the rules must be altered to reflect the new PDB name.

Application Containers in an XStream Environment

When a CDB has one or more application containers, XStream Out must be configured in the
CDB root, and XStream Out can capture changes made in any container in the CDB, including
the application roots and application PDBs. Changes captured in an application container can
be sent to containers of any type, including PDBs, application roots, and application PDBs.

When replicating changes from one application root to another application root, XStream can
replicate ALTER PLUGGABLE DATABASE APPLICATION statements. To avoid errors, the target
application root that applies the statements must have the same application installed as the
source application root, and the application name must be identical in both application roots.

To avoid errors when replicating changes from an application root to a container that is not an
application root, you must ensure that ALTER PLUGGABLE DATABASE APPLICATION statements
are not replicated.

With the XStream OCI API, you can control whether ALTER PLUGGABLE DATABASE APPLICATION
statements are replicated using the OCIXStreamOutAttach function and the OCILCRHeaderGet
function. With the XStream Java API, you can control this behavior using the mode parameter in
the XStreamOut.attach method.

• Configure a Multitenant Container Database

Chapter 3
XStream Out and Other Oracle Database Components

3-41

Related Topics

• System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database. This self-contained collection is called a pluggable database (PDB). A
CDB contains PDBs.

• Configuring XStream Out in a CDB
When you configure XStream Out in a CDB, you must decide which database changes will
be captured by XStream Out and sent to the client application.

• Oracle Multitenant Administrator's Guide

Configure a Multitenant Container Database
Oracle Database 23ai and higher releases allow each pluggable database (PDB) can have
XStream Out registered for a specific PDB, which is called per-PDB XStream Out.

The following diagram shows the multitenant container database configuration:

Adding XStream Out directly from the PDB. This approach is useful when XStream Out
captures from isolated PDBs, managing ownership and responsibility at the PDB level.

Using a per-PDB XStream Out, you can connect as the local PDB user (for example,
xstrmadmin) and then register this XStream Out with the database. As you are already logged
in as the PDB user, an additional container clause is not required. Similarly, the
SOURCECATALOG or a three-part naming convention is also not needed.

Chapter 3
XStream Out and Other Oracle Database Components

3-42

Considerations for Multitenant Container Database Configuration

Consider the following guidelines when configuring a multitenant container databases for data
replication using Oracle Database XStream:

• The different pluggable databases in the multitenant container database can have different
character sets. Oracle Database XStream captures data from any multitenant database
with different character sets into one trail file and replicates the data without corruption due
to using different character sets.

• To create and register a per-PDB XStream Out, you will need to connect to the PDB user
such as xstrmadmin created for PDB-level access.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. Starting with Oracle Database 23ai, only Per-PDB
XStream Out is supported. While the documentation is being revised, legacy
terminology may persist. In most cases, "database", "non-CDB", and "CDB" refer to
PDB level actions only. In some contexts, such as upgrades, "non-CDB" refers to a
non-CDB from a previous release.

Chapter 3
XStream Out and Other Oracle Database Components

3-43

4
Configuring XStream Out

You can configure the Oracle Database components that are used by XStream Out.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB, depending
on context. In some contexts, such as upgrades, "non-CDB" refers to a non-CDB
from a previous release.

• Preparing for XStream Out
There are decisions to make and tasks to complete to prepare for an XStream Out
configuration.

• Configuring XStream Out
An outbound server in an XStream Out configuration streams Oracle database changes to
a client application.

See Also:

• "XStream Out Concepts"

• "XStream Use Cases"

• Oracle Call Interface Developer's Guide

• Oracle Database XStream Java API Reference

Preparing for XStream Out
There are decisions to make and tasks to complete to prepare for an XStream Out
configuration.

• Decide How to Configure XStream Out
When you configure XStream Out, you must configure XStream components to capture
database changes and send these changes to the outbound server in the form of logical
change records (LCRs).

• Prerequisites for Configuring XStream Out
Preparing for an XStream Out outbound server is similar to preparing for an Oracle
Replication environment.

4-1

Decide How to Configure XStream Out
When you configure XStream Out, you must configure XStream components to capture
database changes and send these changes to the outbound server in the form of logical
change records (LCRs).

These components include a capture process and at least one queue. The capture process
can be a local capture process or a downstream capture process. For some configurations,
you must also configure a propagation.

Local capture means that a capture process runs on the source database. The source
database is the database where the changes were generated. Downstream capture means
that a capture process runs on a database other than the source database. The primary
reason to use downstream capture is to reduce the load on the source database, thereby
improving its performance. The primary reason to use a local capture is because it is easier to
configure and maintain.

The database that captures changes made to the source database is called the capture
database. One of the following databases can be the capture database:

• Source database (local capture)

• Destination database (downstream capture)

• A third database (downstream capture)

If the database running the outbound server is not the capture database, then a propagation
sends changes from the capture database to the database running the outbound server. If the
database running the outbound server is the capture database, then this propagation between
databases is not needed because the capture process and outbound server use the same
queue.

You can configure the components in the following ways:

• Local capture and outbound server in the same database: The database objects,
capture process, and outbound server are all in the same database. This configuration is
the easiest to configure and maintain because all of the components are contained in one
database. See Figure 4-1 for an overview of this configuration.

• Downstream capture and outbound server in the same database: The database
objects are in one database, and the capture process and outbound server are in another
database. This configuration is best when you want to optimize the performance of the
database with the database objects and want to offload change capture to another
database. With this configuration, most of the components run on the database with the
outbound server. See Figure 4-2 for an overview of this configuration.

The following figures illustrate these different configurations.

Chapter 4
Preparing for XStream Out

4-2

Figure 4-1 Local Capture and Outbound Server in the Same Database

Queue

.

.

.

.

.

.

Capture
Process

Enqueue
LCRs

Redo
Log

Record
Changes

Capture
LCRs

Database Objects

Receive LCRs
from committed
transactions

Dequeue
LCRs Outbound

Server
Client

Application

Oracle Database

Figure 4-2 Downstream Capture and Outbound Server in the Same Database

Oracle Database

Oracle Database

Client
Application

Redo
Log

From
Source

Database Objects

Record
Changes

Redo
Log

Send Redo
Data

Capture
Process

Enqueue
LCRs

Dequeue
LCRs

Queue

.

.

.

.

.

.

Outbound
Server

Receive LCRs
from committed
transactions

Capture
LCRs

Chapter 4
Preparing for XStream Out

4-3

If you decide to configure a downstream capture process, then you must decide which type of
downstream capture process you want to configure. The following types are available:

• A real-time downstream capture process configuration means that redo transport
services at the source database sends redo data to the downstream database, and a
remote file server process (RFS) at the downstream database receives the redo data over
the network and stores the redo data in the standby redo log, where the capture process
captures changes in real-time.

• An archived-log downstream capture process configuration means that archived redo
log files from the source database are copied to the downstream database, and the
capture process captures changes in these archived redo log files. These log files can be
transferred automatically using redo transport services, or they can be transferred
manually using a method such as FTP.

The advantage of real-time downstream capture over archived-log downstream capture is that
real-time downstream capture reduces the amount of time required to capture changes made
to the source database. The time is reduced because the real-time downstream capture
process does not need to wait for the redo log file to be archived before it can capture changes
from it. You can configure multiple real-time downstream capture processes that capture
changes from the same source database, but you cannot configure real-time downstream
capture for multiple source databases at one downstream database.

The advantage of archived-log downstream capture over real-time downstream capture is that
archived-log downstream capture allows downstream capture processes for multiple source
databases at a downstream database. You can copy redo log files from multiple source
databases to a single downstream database and configure multiple archived-log downstream
capture processes to capture changes in these redo log files.

See Also:

"Local Capture and Downstream Capture"

Prerequisites for Configuring XStream Out
Preparing for an XStream Out outbound server is similar to preparing for an Oracle Replication
environment.

The components used in an Oracle Replication environment to capture changes and send
them to an apply process are the same components used to capture changes and send them
to an outbound server. These components include a capture process and one or more queues.
If the capture process runs on a different database than the outbound server, then a
propagation is also required.

This section provides an overview of each task and specific information about completing the
task for an XStream Out configuration.

• Configure an XStream Administrator on All Databases
An XStream administrator configures and manages XStream components in an XStream
Out environment.

• Granting Additional Privileges to the XStream Administrator
Additional privileges might be required for the XStream administrator.

• Grant User Privileges for Oracle Database 23ai and Higher

Chapter 4
Preparing for XStream Out

4-4

• If Required, Configure Network Connectivity and Database Links
Network connectivity and database links are required when an XStream Out configuration
includes multiple databases.

• Ensure That Each Source Database Is in ARCHIVELOG Mode
Each source database that generates changes that will be captured by a capture process
must be in ARCHIVELOG mode.

• Set the Relevant Initialization Parameters
Some initialization parameters are important for the configuration, operation, reliability, and
performance of the components in an XStream configuration. Set these parameters
appropriately.

• Configure the Streams pool
The Streams pool is a portion of memory in the System Global Area (SGA) that is used by
bothOracle Streams and XStream components.

• If Required, Configure Supplemental Logging
When you use a capture process to capture changes, supplemental logging must be
specified for certain columns at a source database for changes to the columns to be
applied successfully at a destination database.

• If Required, Configure Log File Transfer to a Downstream Database
If you decided to use a local capture process, then log file transfer is not required.
However, if you decided to use downstream capture that uses redo transport services to
transfer archived redo log files to the downstream database automatically, then configure
log file transfer from the source database to the capture database.

• If Required, Add Standby Redo Logs for Real-Time Downstream Capture
If you decided to configure real-time downstream capture, then add standby redo logs to
the capture database.

Configure an XStream Administrator on All Databases
An XStream administrator configures and manages XStream components in an XStream Out
environment.

You can configure an XStream administrator by granting a user the appropriate privileges. You
must configure an XStream administrator in each Oracle database included in the XStream
configuration.

Prerequisites

Before configuring an XStream administrator, ensure that the following prerequisites are met:

• Ensure that you can log in to each database in the XStream configuration as an
administrative user who can create users, grant privileges, and create tablespaces.

• Identify a user who will be the XStream administrator. Either create a new user with the
appropriate privileges or grant these privileges to an existing user.

Do not use the SYS or SYSTEM user as an XStream administrator, and ensure that the
XStream administrator does not use the SYSTEM tablespace as its default tablespace.

• If a new tablespace is required for the XStream administrator, then ensure that there is
enough disk space on each computer system in the XStream configuration for the
tablespace. The recommended size of the tablespace is 25 MB.

Assumptions

This section makes the following assumptions:

Chapter 4
Preparing for XStream Out

4-5

• The user name of the XStream administrator is xstrmadmin for a non-CDB. The user name
of the XStream administrator is c##xstrmadmin for a multitenant container database
(CDB).

• The tablespace used by the XStream administrator is xstream_tbs.

To configure an XStream administrator:

1. In SQL*Plus, connect as an administrative user who can create users, grant privileges, and
create tablespaces. Remain connected as this administrative user for all subsequent steps.

If you are configuring an XStream administrator for XStream Out in a CDB, then connect to
the root and configure the XStream administrator in the CDB root.

See Also:

• Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus

• "XStream Out and a Multitenant Environment" for more information about
XStream Out and CDBs

2. Either create a tablespace for the XStream administrator or use an existing tablespace.

This tablespace stores any objects created in the XStream administrator's schema.

For example, the following statement creates a new tablespace for the XStream
administrator:

CREATE TABLESPACE xstream_tbs DATAFILE '/usr/oracle/dbs/xstream_tbs.dbf'
 SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

If you are creating an XStream administrator in a CDB, then you must create the
tablespace in all of the containers in the CDB, including the CDB root, all pluggable
databases (PDBs), all application roots, and all application containers. The tablespace is
required in all containers because the XStream administrator must be a common user and
so must have access to the tablespace in any container.

3. Create a new user to act as the XStream administrator or identify an existing user.

For example, to create a user named xstrmadmin and specify that this user uses the
xstream_tbs tablespace, run the following statement:

CREATE USER xstrmadmin IDENTIFIED BY password
 DEFAULT TABLESPACE xstream_tbs
 QUOTA UNLIMITED ON xstream_tbs;

If you are creating an XStream administrator in a CDB, then the XStream administrator
must be a common user. Therefore, include the CONTAINER=ALL clause in the CREATE USER
statement:

CREATE USER c##xstrmadmin IDENTIFIED BY password
 DEFAULT TABLESPACE xstream_tbs
 QUOTA UNLIMITED ON xstream_tbs
 CONTAINER=ALL;

Chapter 4
Preparing for XStream Out

4-6

Note:

Enter an appropriate password for the administrative user.

See Also:

Oracle Database Security Guide for guidelines about choosing passwords

4. Grant CREATE SESSION privilege to the XStream administrator.

If you created a new user to act as the XStream administrator, then grant this user CREATE
SESSION privilege.

For example, to grant CREATE SESSION privilege to user xstrmadmin, run the following
statement:

GRANT CREATE SESSION TO xstrmadmin;

If you are creating an XStream administrator in a CDB, then grant CREATE SESSION privilege
and SET CONTAINER privilege to the XStream administrator, and include the CONTAINER=ALL
clause in the statement.

For example, to grant these privileges to user c##xstrmadmin in a CDB, run the following
statement:

GRANT CREATE SESSION, SET CONTAINER TO c##xstrmadmin CONTAINER=ALL;
5. Grant the XSTREAM_CAPTURE role to the XStream administrator.

See Also:

Oracle Database PL/SQL Packages and Types Reference

6. If necessary, grant additional privileges to the XStream administrator.

See "Granting Additional Privileges to the XStream Administrator".

7. Repeat all of the previous steps at each Oracle database in the environment that will use
XStream.

Example 4-1 Granting Privileges to a XStream Administrator in a Non-CDB

GRANT XSTREAM_CAPTURE TO xstrmadmin;

Granting Additional Privileges to the XStream Administrator
Additional privileges might be required for the XStream administrator.

Grant any of the following additional privileges to the XStream administrator if necessary:

• If you plan to use Oracle Enterprise Manager Cloud Control to manage databases with
XStream components, then the XStream administrator must be granted DBA role. You must
also configure the XStream administrator to be an Oracle Enterprise Manager
administrative user. Doing so grants additional privileges required by Oracle Enterprise

Chapter 4
Preparing for XStream Out

4-7

Manager Cloud Control, such as the privileges required to run Oracle Enterprise Manager
Cloud Control jobs. See the Oracle Enterprise Manager Cloud Control online help for
information about creating Oracle Enterprise Manager administrative users.

• Grant the privileges for a remote XStream administrator to perform actions in the local
database. Grant this privilege if a remote XStream administrator will use a database link
that connects to the local XStream administrator to perform administrative actions.
Specifically, grant these privileges if either of the following conditions is true:

– You plan to configure a downstream capture process at a remote downstream
database that captures changes originating at the local source database, and the
downstream capture process will use a database link to perform administrative actions
at the source database.

– You plan to use a remote XStream administrator to set the instantiation system change
number (SCN) values for replicated database objects at the local database.

• Grant the XStream administrator EXECUTE privilege on any PL/SQL function owned by
another user that is specified in a custom rule-based transformation for a rule used by a
capture process, propagation, or outbound server. For a capture process, if a capture user
is specified, then the capture user must have these privileges. These privileges must be
granted directly. They cannot be granted through a role.

• Grant the XStream administrator privileges to alter database objects where appropriate.
For example, if the XStream administrator must create a supplemental log group for a table
in another schema, then the XStream administrator must have the necessary privileges to
alter the table. These privileges can be granted directly or through a role.

• If the XStream administrator does not own the queue used by a capture process,
propagation, or outbound server, and is not specified as the queue user for the queue
when the queue is created, then the XStream administrator must be configured as a
secure queue user of the queue if you want the XStream administrator to be able to
enqueue LCRs into or dequeue LCRs from the queue. The XStream administrator might
also need ENQUEUE or DEQUEUE privileges on the queue, or both.

• Grant the XStream administrator EXECUTE privilege on any object types that the XStream
administrator might need to access. These privileges can be granted directly or through a
role.

• If you are using Oracle Database Vault, then the XStream administrator must be granted
the DV_XSTREAM_ADMIN role to perform the following tasks: create a capture process, create
an outbound server, and modify the capture user for a capture process. When the XStream
administrator is not performing these tasks, you can revoke DV_XSTREAM_ADMIN role from
the XStream administrator.

In addition, the user who performs the following actions must be granted the BECOME USER
system privilege:

– Creates or alters a capture process

– Creates or alters an outbound server

Granting the BECOME USER system privilege to the user who performs these actions is not
required if Oracle Database Vault is not installed. You can revoke the BECOME USER system
privilege from the user after the completing one of these actions, if necessary.

See Oracle Database Vault Administrator’s Guide.

Chapter 4
Preparing for XStream Out

4-8

Grant User Privileges for Oracle Database 23ai and Higher
Oracle Database 23ai uses a role-based approach to grant privileges necessary for replication.
The roles are a replacement of the GRANT_ADMIN_PRIVILEGE procedures from the
DBMS_XSTREAM_AUTH package.

For example, to create an Oracle XStream Administration user, you have to grant the
appropriate XSTREAM_CAPTURE or XSTREAM_APPLY roles to the user while creating the user. If you
still use GRANT_ADMIN_PRIVILEGE procedures from the DBMS_XSTREAM_AUTH package in Oracle
Database 23ai, no privileges are granted. Instead, a warning message is raised alerting that
the procedure call is disabled.

Here are the user roles introduced in Oracle XStream 23ai:

XSTREAM_CAPTURE
XSTREAM_CAPTURE has the privileges necessary for using and managing XStream Out
processes.
For capturing DML and DDL with Oracle XStream Out, a user requires the following
permissions:

GRANT CONNECT, RESOURCE to xstrmadmin;
GRANT XSTREAM_CAPTURE to xstrmadmin;

A downstream XStream Out process is registered at the root container level. When
configuring a downstream XStream Out process, the following step is required:

ALTER USER c##xstrmadmin CONTAINER_DATA = all CONTAINER = current;

XSTREAM_APPLY
Role with privileges necessary for using Oracle XStream In.
To use Oracle XStream In processes a user needs this role, as well as the permissions to
execute DML and DDL at the target. For example, if an Oracle XStream In process is intended
to perform DML operations on the EMPLOYEES table from the HR schema:

GRANT CONNECT, RESOURCE to xstrmadmin;
GRANT XSTRM_APPLY to xstrmadmin;
GRANT SELECT, INSERT, UPDATE, DELETE on HR.EMPLOYEES;

If the user is intended to apply DDL operations like CREATE TABLE, DROP TABLE and ALTER
TABLE it should receive the system privileges necessary to execute such statements:

GRANT CREATE TABLE, ALTER TABLE, DROP TABLE to xstrmadmin;

XSTRM_APPLY_PROCREP
Role with privileges necessary to execute packages supported for procedural replication with
Oracle XStream. It only includes the execution permissions, therefore, this role should be
used together with XSTREAM_APPLY role to allow the user to run the Oracle XStream In process
and to execute the procedures at the target.

Chapter 4
Preparing for XStream Out

4-9

For example, if an Oracle XStream In will apply procedure executions. The grant process
should be as follows:

GRANT CONNECT, RESOURCE to xstrmadmin;
GRANT XSTRM_APPLY, XSTRM_APPLY_PROCREP to xstrmadmin;

If Required, Configure Network Connectivity and Database Links
Network connectivity and database links are required when an XStream Out configuration
includes multiple databases.

Network connectivity and database links are not required when all of the components run on
the same database. These components include the capture process, queue, and outbound
server.

You must configure network connectivity and database links if you decided to configure
XStream in either of the following ways:

• The capture process and the outbound server will run on different databases.

• Downstream capture will be used.

See "Decide How to Configure XStream Out" for more information about these decisions.

If network connectivity is required, then configure your network and Oracle Net so that the
databases can communicate with each other.

The following database links are required:

• When the capture process runs on a different database from the outbound server, create a
database link from the capture database to the outbound server database. A propagation
uses this database link to send changes from the capture database to the outbound server
database.

• When you use downstream capture, create a database link from the capture database to
the source database. The source database is the database that generates the redo data
that the capture process uses to capture changes. The capture process uses this database
link to perform administrative tasks at the source database.

The name of each database link must match the global name of the destination database, and
each database link should be created in the XStream administrator's schema.

For example, assume that you want to create a database link in a configuration with the
following characteristics:

• The global name of the source database is dbs1.example.com.

• The global name of the destination database is dbs2.example.com.

• The XStream administrator is xstrmadmin at each database.

Given these assumptions, the following statement creates a database link from
dbs1.example.com to dbs2.example.com:

CONNECT xstrmadmin@dbs1.example.com
Enter password: password

CREATE DATABASE LINK dbs2.example.com CONNECT TO xstrmadmin
 IDENTIFIED BY password USING 'dbs2.example.com';

Chapter 4
Preparing for XStream Out

4-10

See Also:

• Oracle Database 2 Day DBA

• Oracle Database Administrator’s Guide for more information about database
links

Ensure That Each Source Database Is in ARCHIVELOG Mode
Each source database that generates changes that will be captured by a capture process must
be in ARCHIVELOG mode.

For downstream capture processes, the downstream database also must be in ARCHIVELOG
mode if you plan to configure a real-time downstream capture process. The downstream
database does not need to be in ARCHIVELOG mode if you plan to run only archived-log
downstream capture processes on it.

If you are configuring XStream in an Oracle Real Application Clusters (Oracle RAC)
environment, then the archived redo log files of all threads from all instances must be available
to any instance running a capture process. This requirement pertains to both local and
downstream capture processes.

See Also:

Oracle Database Administrator’s Guidefor instructions about running a database in
ARCHIVELOG mode

Set the Relevant Initialization Parameters
Some initialization parameters are important for the configuration, operation, reliability, and
performance of the components in an XStream configuration. Set these parameters
appropriately.

The following requirements apply to XStream outbound servers:

• Ensure that the PROCESSES initialization parameter is set to a value large enough to
accommodate the outbound server background processes and all of the other Oracle
Database background processes.

• Ensure that the SESSIONS initialization parameter is set to a value large enough to
accommodate the sessions used by the outbound server background processes and all of
the other Oracle Database sessions.

Configure the Streams pool
The Streams pool is a portion of memory in the System Global Area (SGA) that is used by
bothOracle Streams and XStream components.

The Streams pool stores buffered queue LCRs in memory, and it provides memory for capture
processes and outbound servers.

The following are considerations for configuring the Streams pool:

Chapter 4
Preparing for XStream Out

4-11

• Oracle recommends that you set the MAX_SGA_SIZE parameter to 1GB as a starting
point. The Streams Pool Utilization might be higher or lower. Depending on the workload,
you can increase or decrease the Streams_Pool_Size. If there are multiple Outbound or
Inbound servers, then Oracle recommends that you use the SUM of any
MAX_SGA_SIZES with a 25 percent offset.

• After XStream Out is configured, you can use the max_sga_size capture process
parameter to control the amount of system global area (SGA) memory allocated
specifically to a capture process.

The sum of system global area (SGA) memory allocated for all components on a database
must be less than the value set for the STREAMS_POOL_SIZE initialization parameter.

• After XStream Out is configured, you can use the max_sga_size apply parameter to control
the amount of SGA memory allocated specifically to an outbound server.

• Ensure that there is enough space in the Streams pool at each database to run XStream
components and to store LCRs and run the components properly.

• The Streams pool is initialized the first time an outbound server is started.

• The best practice is to set the STREAMS_POOL_SIZE initialization parameter explicitly to the
desired Streams pool size.

The Automatic Shared Memory Management feature automatically manages the size of the
Streams pool when the following conditions are met:

• The MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters are both set to 0
(zero).

• The SGA_TARGET initialization parameter is set to a nonzero value.

The Streams pool size is the value specified by the STREAMS_POOL_SIZE parameter, in bytes, if
the following conditions are met:

• The MEMORY_TARGET, MEMORY_MAX_TARGET, and SGA_TARGET initialization parameters are all
set to 0 (zero).

• The STREAMS_POOL_SIZE initialization parameter is set to a nonzero value.

If you are using Automatic Shared Memory Management, and if the STREAMS_POOL_SIZE
initialization parameter also is set to a nonzero value, then Automatic Shared Memory
Management uses this value as a minimum for the Oracle Streams pool. If your environment
needs a minimum amount of memory in the Oracle Streams pool to function properly, then you
can set a minimum size. To view the current memory allocated to Oracle Streams pool by
Automatic Shared Memory Management, query the V$SGA_DYNAMIC_COMPONENTS view. In
addition, you can query the V$STREAMS_POOL_STATISTICS view to view the current usage of the
Oracle Streams pool.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the max_sga_size capture process parameter

• Oracle Database Administrator’s Guide

• Oracle Database Reference

Chapter 4
Preparing for XStream Out

4-12

If Required, Configure Supplemental Logging
When you use a capture process to capture changes, supplemental logging must be specified
for certain columns at a source database for changes to the columns to be applied successfully
at a destination database.

Supplemental logging places additional information in the redo log for these columns. A
capture process captures this additional information and places it in logical change records
(LCRs), and an XStream inbound server or client application might need this additional
information to process changes properly.

• Required Supplemental Logging in an XStream Environment
There are two types of supplemental logging: database supplemental logging and table
supplemental logging.

• Specifying Table Supplemental Logging Using Unconditional Log Groups
You can specify supplemental logging using unconditional log groups.

• Specifying Table Supplemental Logging Using Conditional Log Groups
You can specify table supplemental logging using conditional log groups.

• Dropping a Supplemental Log Group
To drop a conditional or unconditional supplemental log group, use the DROP SUPPLEMENTAL
LOG GROUP clause in the ALTER TABLE statement.

• Specifying Database Supplemental Logging of Key Columns
You have the option of specifying supplemental logging for all primary key, unique key,
bitmap index, and foreign key columns in a source database.

• Dropping Database Supplemental Logging of Key Columns
To drop supplemental logging for all primary key, unique key, bitmap index, and foreign key
columns in a source database, issue the ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
statement.

• Procedures That Automatically Specify Supplemental Logging
Some procedures in the DBMS_CAPTURE_ADM package automatically specify supplemental
logging.

Required Supplemental Logging in an XStream Environment
There are two types of supplemental logging: database supplemental logging and table
supplemental logging.

Database supplemental logging specifies supplemental logging for an entire database, while
table supplemental logging enables you to specify log groups for supplemental logging of a
particular table. If you use table supplemental logging, then you can choose between two types
of log groups: unconditional log groups and conditional log groups.

Unconditional log groups log the before images of specified columns when the table is
changed, regardless of whether the change affected any of the specified columns.
Unconditional log groups are sometimes referred to as "always log groups." Conditional log
groups log the before images of all specified columns only if at least one of the columns in the
log group is changed.

Supplementing logging at the database level, unconditional log groups at the table level, and
conditional log groups at the table level determine which old values are logged for a change.

If you plan to use one or more XStream inbound servers to apply LCRs captured by a capture
process, then you must enable supplemental logging at the source database for the following
types of columns in tables at the destination database:

Chapter 4
Preparing for XStream Out

4-13

• Any columns at the source database that are used in a primary key in tables for which
changes are applied at a destination database must be unconditionally logged in a log
group or by database supplemental logging of primary key columns.

• If the parallelism of any inbound server that will apply the changes is greater than 1, then
any unique constraint column at a destination database that comes from multiple columns
at the source database must be conditionally logged. Supplemental logging does not need
to be specified if a unique constraint column comes from a single column at the source
database.

• If the parallelism of any inbound server that will apply the changes is greater than 1, then
any foreign key column at a destination database that comes from multiple columns at the
source database must be conditionally logged. Supplemental logging does not need to be
specified if the foreign key column comes from a single column at the source database.

• If the parallelism of any inbound server that will apply the changes is greater than 1, then
any bitmap index column at a destination database that comes from multiple columns at
the source database must be conditionally logged. Supplemental logging does not need to
be specified if the bitmap index column comes from a single column at the source
database.

• Any columns at the source database that are used as substitute key columns for an
inbound server at a destination database must be unconditionally logged. You specify
substitute key columns for a table using the SET_KEY_COLUMNS procedure in the
DBMS_APPLY_ADM package.

• The columns specified in a column list for conflict resolution during apply must be
conditionally logged if multiple columns at the source database are used in the column list
at the destination database.

• Any columns at the source database that are used by a change handler, procedure DML
handler, or error handler at a destination database must be unconditionally logged.

• Any columns at the source database that are used by a rule or a rule-based transformation
must be unconditionally logged.

• Any columns at the source database that are specified in a value dependency virtual
dependency definition at a destination database must be unconditionally logged.

• If you specify row subsetting for a table at a destination database, then any columns at the
source database that are in the destination table or columns at the source database that
are in the subset condition must be unconditionally logged. You specify a row subsetting
condition for an inbound server using the dml_condition parameter in the
ADD_SUBSET_RULES procedure in the DBMS_XSTREAM_ADM package.

If you do not use supplemental logging for these types of columns at a source database, then
changes involving these columns might not apply properly at a destination database.

Note:

Columns of the following data types cannot be part of a supplemental log group:
LOB, LONG, LONG RAW, user-defined types (including object types, REFs, varrays,
nested tables), and Oracle-supplied types (including Any types, XML types, spatial
types, and media types).

Chapter 4
Preparing for XStream Out

4-14

Specifying Table Supplemental Logging Using Unconditional Log Groups
You can specify supplemental logging using unconditional log groups.

To specify an unconditional supplemental log group that only includes the primary key
column(s) for a table, use an ALTER TABLE statement with the PRIMARY KEY option in the ADD
SUPPLEMENTAL LOG DATA clause. For example, the following statement adds the primary key
column of the hr.regions table to an unconditional log group with a system-generated name:

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

To specify an unconditional supplemental log group that includes all of the columns in a table,
use an ALTER TABLE statement with the ALL option in the ADD SUPPLEMENTAL LOG DATA clause.
For example, the following statement adds all of the columns in the hr.regions table to an
unconditional log group with a system-generated name:

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

To specify an unconditional supplemental log group that contains columns that you select, use
an ALTER TABLE statement with the ALWAYS specification for the ADD SUPPLEMENTAL LOG GROUP
clause. These log groups can include key columns, if necessary.

For example, the following statement adds the department_id column and the manager_id
column of the hr.departments table to an unconditional log group named log_group_dep_pk:

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG GROUP log_group_dep_pk
 (department_id, manager_id) ALWAYS;

The ALWAYS specification makes this log group an unconditional log group.

Specifying Table Supplemental Logging Using Conditional Log Groups
You can specify table supplemental logging using conditional log groups.

You can use the following options in the ADD SUPPLEMENTAL LOG DATA clause of an ALTER TABLE
statement:

• The FOREIGN KEY option creates a conditional log group that includes the foreign key
column(s) in the table.

• The UNIQUE option creates a conditional log group that includes the unique key column(s)
and bitmap index column(s) in the table.

If you specify multiple options in a single ALTER TABLE statement, then a separate conditional
log group is created for each option.

For example, the following statement creates two conditional log groups:

ALTER TABLE hr.employees ADD SUPPLEMENTAL LOG DATA
 (UNIQUE, FOREIGN KEY) COLUMNS;

One conditional log group includes the unique key columns and bitmap index columns for the
table, and the other conditional log group includes the foreign key columns for the table. Both
log groups have a system-generated name.

Chapter 4
Preparing for XStream Out

4-15

Note:

Specifying the UNIQUE option does not enable supplemental logging of bitmap join
index columns.

To specify a conditional supplemental log group that includes any columns you choose to add,
you can use the ADD SUPPLEMENTAL LOG GROUP clause in the ALTER TABLE statement. To make
the log group conditional, do not include the ALWAYS specification.

For example, suppose the min_salary and max_salary columns in the hr.jobs table are
included in a column list for conflict resolution at a destination database. The following
statement adds the min_salary and max_salary columns to a conditional log group named
log_group_jobs_cr:

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP log_group_jobs_cr
 (min_salary, max_salary);

Dropping a Supplemental Log Group
To drop a conditional or unconditional supplemental log group, use the DROP SUPPLEMENTAL LOG
GROUP clause in the ALTER TABLE statement.

For example, to drop a supplemental log group named log_group_jobs_cr, run the following
statement:

ALTER TABLE hr.jobs DROP SUPPLEMENTAL LOG GROUP log_group_jobs_cr;

Specifying Database Supplemental Logging of Key Columns
You have the option of specifying supplemental logging for all primary key, unique key, bitmap
index, and foreign key columns in a source database.

You might choose this option if you configure a capture process to capture changes to an
entire database. To specify supplemental logging for all primary key, unique key, bitmap index,
and foreign key columns in a source database, issue the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

If your primary key, unique key, bitmap index, and foreign key columns are the same at all
source and destination databases, then running this command at the source database
provides the supplemental logging needed for primary key, unique key, bitmap index, and
foreign key columns at all destination databases. When you specify the PRIMARY KEY option, all
columns of a row's primary key are placed in the redo log file any time the table is modified
(unconditional logging). When you specify the UNIQUE option, any columns in a row's unique
key and bitmap index are placed in the redo log file if any column belonging to the unique key
or bitmap index is modified (conditional logging). When you specify the FOREIGN KEY option, all
columns of a row's foreign key are placed in the redo log file if any column belonging to the
foreign key is modified (conditional logging).

You can omit one or more of these options. For example, if you do not want to supplementally
log all of the foreign key columns in the database, then you can omit the FOREIGN KEY option,
as in the following example:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE) COLUMNS;

Chapter 4
Preparing for XStream Out

4-16

In addition to PRIMARY KEY, UNIQUE, and FOREIGN KEY, you can also use the ALL option. The ALL
option specifies that, when a row is changed, all the columns of that row (except for LOB, LONG,
LONG RAW, user-defined type, and Oracle-supplied type columns) are placed in the redo log file
(unconditional logging).

Supplemental logging statements are cumulative. If you issue two consecutive ALTER DATABASE
ADD SUPPLEMENTAL LOG DATA statements, each with a different identification key, then both keys
are supplementally logged.

Note:

Specifying the UNIQUE option does not enable supplemental logging of bitmap join
index columns.

See Also:

Oracle Database SQL Language Reference for information about data types

Dropping Database Supplemental Logging of Key Columns
To drop supplemental logging for all primary key, unique key, bitmap index, and foreign key
columns in a source database, issue the ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
statement.

For example, to drop database supplemental logging for all primary key, unique key, bitmap
index, and foreign key columns, issue the following SQL statement:

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

Note:

Dropping database supplemental logging of key columns does not affect any existing
table-level supplemental log groups.

Procedures That Automatically Specify Supplemental Logging
Some procedures in the DBMS_CAPTURE_ADM package automatically specify supplemental
logging.

The following procedures in the DBMS_CAPTURE_ADM package automatically specify
supplemental logging:

• BUILD
• PREPARE_GLOBAL_INSTANTIATION
• PREPARE_SCHEMA_INSTANTIATION
• PREPARE_TABLE_INSTANTIATION

Chapter 4
Preparing for XStream Out

4-17

The BUILD procedure automatically specifies database supplemental logging by running the
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA statement. In most cases, the BUILD procedure is
run automatically when a capture process is created.

The PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and
PREPARE_TABLE_INSTANTIATION procedures automatically specify supplemental logging of the
primary key, unique key, bitmap index, and foreign key columns in the tables prepared for
instantiation.

Certain procedures in the DBMS_XSTREAM_ADM package automatically run a procedure listed
previously, including the ADD_SUBSET_RULES, ADD_TABLE_RULES, ADD_SCHEMA_RULES, and
ADD_GLOBAL_RULES procedures.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
these procedures

If Required, Configure Log File Transfer to a Downstream Database
If you decided to use a local capture process, then log file transfer is not required. However, if
you decided to use downstream capture that uses redo transport services to transfer archived
redo log files to the downstream database automatically, then configure log file transfer from
the source database to the capture database.

See "Decide How to Configure XStream Out" for information about this decision.

Tip:

You can use Oracle Enterprise Manager Cloud Control to configure log file transfer
and a downstream capture process. See the Oracle Enterprise Manager Cloud
Control online help for instructions.

The steps in this section configure the source database to transfer its redo log files to the
capture database and configure the capture database to accept these redo log files.

To configure log file transfer to a downstream database:

1. Configure Oracle Net so that the source database can communicate with the downstream
database.

See Also:

Oracle Database Net Services Administrator's Guide

2. Configure authentication at both databases to support the transfer of redo data.

Redo transport sessions are authenticated using either the Secure Sockets Layer (SSL)
protocol or a remote login password file. If the source database has a remote login
password file, then copy it to the appropriate directory on the downstream capture

Chapter 4
Preparing for XStream Out

4-18

database system. The password file must be the same at the source database and the
downstream capture database.

See Also:

Oracle Data Guard Concepts and Administration for detailed information about
authentication requirements for redo transport

3. At the source database, set the following initialization parameters to configure redo
transport services to transmit redo data from the source database to the downstream
database:

• LOG_ARCHIVE_DEST_n - Configure at least one LOG_ARCHIVE_DEST_n initialization
parameter to transmit redo data to the downstream database. Set the following
attributes of this parameter in the following way:

– SERVICE - Specify the network service name of the downstream database.

– ASYNC or SYNC - Specify a redo transport mode.

The advantage of specifying ASYNC is that it results in little or no effect on the
performance of the source database. ASYNC is recommended to avoid affecting
source database performance if the downstream database or network is
performing poorly.

The advantage of specifying SYNC is that redo data is sent to the downstream
database faster than when ASYNC is specified. Also, specifying SYNC AFFIRM results
in behavior that is similar to MAXIMUM AVAILABILITY standby protection mode. Note
that specifying an ALTER DATABASE STANDBY DATABASE TO MAXIMIZE AVAILABILITY
SQL statement has no effect on an XStream capture process.

– NOREGISTER - Specify this attribute so that the location of the archived redo log files
is not recorded in the downstream database control file.

– VALID_FOR - Specify either (ONLINE_LOGFILE,PRIMARY_ROLE) or
(ONLINE_LOGFILE,ALL_ROLES).

– TEMPLATE - If you are configuring an archived-log downstream capture process,
then specify a directory and format template for archived redo logs at the
downstream database. The TEMPLATE attribute overrides the LOG_ARCHIVE_FORMAT
initialization parameter settings at the downstream database. The TEMPLATE
attribute is valid only with remote destinations. Ensure that the format uses all of
the following variables at each source database: %t, %s, and %r.

Do not specify the TEMPLATE attribute if you are configuring a real-time downstream
capture process.

– DB_UNIQUE_NAME - The unique name of the downstream database. Use the name
specified for the DB_UNIQUE_NAME initialization parameter at the downstream
database.

The following example is a LOG_ARCHIVE_DEST_n setting that specifies the downstream
database dbs2 for a real-time downstream capture process:

LOG_ARCHIVE_DEST_2='SERVICE=DBS2.EXAMPLE.COM ASYNC NOREGISTER
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=dbs2'

Chapter 4
Preparing for XStream Out

4-19

The following example is a LOG_ARCHIVE_DEST_n setting that specifies the downstream
database dbs2 for an archived-log downstream capture process:

LOG_ARCHIVE_DEST_2='SERVICE=DBS2.EXAMPLE.COM ASYNC NOREGISTER
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 TEMPLATE=/usr/oracle/log_for_dbs1/dbs1_arch_%t_%s_%r.log
 DB_UNIQUE_NAME=dbs2'

See "Decide How to Configure XStream Out" for information about the differences
between real-time and archived-log downstream capture.

Tip:

If you are configuring an archived-log downstream capture process, then
specify a value for the TEMPLATE attribute that keeps log files from a remote
source database separate from local database log files. In addition, if the
downstream database contains log files from multiple source databases, then
the log files from each source database should be kept separate from each
other.

• LOG_ARCHIVE_DEST_STATE_n - Set this initialization parameter that corresponds with the
LOG_ARCHIVE_DEST_n parameter for the downstream database to ENABLE.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set for the
downstream database, then set the LOG_ARCHIVE_DEST_STATE_2 parameter in the
following way:

LOG_ARCHIVE_DEST_STATE_2=ENABLE
• LOG_ARCHIVE_CONFIG - Set the DB_CONFIG attribute in this initialization parameter to

include the DB_UNIQUE_NAME of the source database and the downstream database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the
DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following
parameter:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'

By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send and
receive redo.

See Also:

Oracle Database Reference and Oracle Data Guard Concepts and
Administration for more information about these initialization parameters

4. At the downstream database, set the DB_CONFIG attribute in the LOG_ARCHIVE_CONFIG
initialization parameter to include the DB_UNIQUE_NAME of the source database and the
downstream database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the
DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following
parameter:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'

Chapter 4
Preparing for XStream Out

4-20

By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send and
receive redo.

5. If you reset any initialization parameters while the instance was running at a database in
Step 3 or Step 4, then you might want to reset them in the initialization parameter file as
well, so that the new values are retained when the database is restarted.

If you did not reset the initialization parameters while the instance was running, but instead
reset them in the initialization parameter file in Step 3 or Step 4, then restart the database.
The source database must be open when it sends redo log files to the downstream
database, because the global name of the source database is sent to the downstream
database only if the source database is open.

When these steps are complete, you can add standby redo logs files at the downstream
database if you want to configure a real-time downstream capture process. In this case, see
the instructions in "If Required, Add Standby Redo Logs for Real-Time Downstream Capture".

If Required, Add Standby Redo Logs for Real-Time Downstream Capture
If you decided to configure real-time downstream capture, then add standby redo logs to the
capture database.

See "Decide How to Configure XStream Out" for information about this decision.

The example in this section adds standby redo logs at a downstream database. Standby redo
logs are required to configure a real-time downstream capture process. In the example, the
source database is dbs1.example.com and the downstream database is dbs2.example.com
The steps in this section are required only if you are configuring real-time downstream capture.
If you are configuring archived-log downstream capture, then do not complete the steps in this
section.

To add standby redo logs for real-time downstream capture:

1. Complete the steps in "If Required, Configure Log File Transfer to a Downstream
Database".

2. At the downstream database, set the following initialization parameters to configure
archiving of the redo data generated locally:

• Set at least one archive log destination in the LOG_ARCHIVE_DEST_n initialization
parameter either to a directory or to the fast recovery area on the computer system
running the downstream database. Set the following attributes of this parameter in the
following way:

– LOCATION - Specify either a valid path name for a disk directory or, to use a fast
recovery area, specify USE_DB_RECOVERY_FILE_DEST. This location is the local
destination for archived redo log files written from the standby redo logs. Log files
from a remote source database should be kept separate from local database log
files. See Oracle Database Backup and Recovery User’s Guide for information
about configuring a fast recovery area.

– VALID_FOR - Specify either (ONLINE_LOGFILE,PRIMARY_ROLE) or
(ONLINE_LOGFILE,ALL_ROLES).

The following example is a LOG_ARCHIVE_DEST_n setting for the locally generated redo
data at the real-time downstream capture database:

LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local_rl_dbs2
 VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Chapter 4
Preparing for XStream Out

4-21

A real-time downstream capture configuration should keep archived standby redo log
files separate from archived online redo log files generated by the downstream
database. Specify ONLINE_LOGFILE instead of ALL_LOGFILES for the redo log type in the
VALID_FOR attribute to accomplish this.

You can specify other attributes in the LOG_ARCHIVE_DEST_n initialization parameter if
necessary.

• Set the LOG_ARCHIVE_DEST_STATE_n initialization parameter that corresponds with the
LOG_ARCHIVE_DEST_n parameter previously set in this step to ENABLE.

For example, if the LOG_ARCHIVE_DEST_1 initialization parameter is set, then set the
LOG_ARCHIVE_DEST_STATE_1 parameter in the following way:

LOG_ARCHIVE_DEST_STATE_1=ENABLE
3. At the downstream database, set the following initialization parameters to configure the

downstream database to receive redo data from the source database and write the redo
data to the standby redo log at the downstream database:

• Set at least one archive log destination in the LOG_ARCHIVE_DEST_n initialization
parameter either to a directory or to the fast recovery area on the computer system
running the downstream database. Set the following attributes of this parameter in the
following way:

– LOCATION - Specify either a valid path name for a disk directory or, to use a fast
recovery area, specify USE_DB_RECOVERY_FILE_DEST. This location is the local
destination for archived redo log files written from the standby redo logs. Log files
from a remote source database should be kept separate from local database log
files. See Oracle Database Backup and Recovery User’s Guide for information
about configuring a fast recovery area.

– VALID_FOR - Specify either (STANDBY_LOGFILE,PRIMARY_ROLE) or
(STANDBY_LOGFILE,ALL_ROLES).

The following example is a LOG_ARCHIVE_DEST_n setting for the redo data received
from the source database at the real-time downstream capture database:

LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbs1
 VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

You can specify other attributes in the LOG_ARCHIVE_DEST_n initialization parameter if
necessary.

• Set the LOG_ARCHIVE_DEST_STATE_n initialization parameter that corresponds with the
LOG_ARCHIVE_DEST_n parameter previously set in this step to ENABLE.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set for the
downstream database, then set the LOG_ARCHIVE_DEST_STATE_2 parameter in the
following way:

LOG_ARCHIVE_DEST_STATE_2=ENABLE

See Also:

Oracle Database ReferenceandOracle Data Guard Concepts and
Administrationfor more information about these initialization parameters

Chapter 4
Preparing for XStream Out

4-22

4. If you reset any initialization parameters while an instance was running at a database in
Step 2 or Step 3, then you might want to reset them in the relevant initialization parameter
file as well, so that the new values are retained when the database is restarted.

If you did not reset the initialization parameters while an instance was running, but instead
reset them in the initialization parameter file in Step 2 or Step 3, then restart the database.
The source database must be open when it sends redo data to the downstream database,
because the global name of the source database is sent to the downstream database only
if the source database is open.

5. Create the standby redo log files.

Note:

The following steps outline the general procedure for adding standby redo log
files to the downstream database. The specific steps and SQL statements used
to add standby redo log files depend on your environment. For example, in an
Oracle Real Application Clusters (Oracle RAC) environment, the steps are
different. See Oracle Data Guard Concepts and Administration for detailed
instructions about adding standby redo log files to a database.

a. In SQL*Plus, connect to the source database dbs1.example.com as an administrative
user.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

b. Determine the log file size used on the source database. The standby log file size must
exactly match (or be larger than) the source database log file size. For example, if the
source database log file size is 500 MB, then the standby log file size must be 500 MB
or larger. You can determine the size of the redo log files at the source database (in
bytes) by querying the V$LOG view at the source database.

For example, query the V$LOG view:

SELECT BYTES FROM V$LOG;
c. Determine the number of standby log file groups required on the downstream

database.

The number of standby log file groups must be at least one more than the number of
online log file groups on the source database. For example, if the source database has
two online log file groups, then the downstream database must have at least three
standby log file groups.

You can determine the number of source database online log file groups by querying
the V$LOG view of the source database for a single instance database or by querying
the GV$LOG view for a database cluster.

For example, query the GV$LOG view:

SELECT COUNT(GROUP#) FROM GV$LOG;
d. In SQL*Plus, connect to the downstream database dbs2.example.com as an

administrative user.

e. Use the SQL statement ALTER DATABASE ADD STANDBY LOGFILE to add the standby log
file groups to the downstream database.

Chapter 4
Preparing for XStream Out

4-23

For example, assume that the source database has two online redo log file groups and
is using a log file size of 500 MB. In this case, use the following statements to create
the appropriate standby log file groups:

ALTER DATABASE ADD STANDBY LOGFILE GROUP 3
 ('/oracle/dbs/slog3a.rdo', '/oracle/dbs/slog3b.rdo') SIZE 500M;

ALTER DATABASE ADD STANDBY LOGFILE GROUP 4
 ('/oracle/dbs/slog4.rdo', '/oracle/dbs/slog4b.rdo') SIZE 500M;

ALTER DATABASE ADD STANDBY LOGFILE GROUP 5
 ('/oracle/dbs/slog5.rdo', '/oracle/dbs/slog5b.rdo') SIZE 500M;

f. Ensure that the standby log file groups were added successfully by running the
following query:

SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS
 FROM V$STANDBY_LOG;

You output should be similar to the following:

 GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 0 0 YES UNASSIGNED
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED

g. Ensure that log files from the source database are appearing in the location specified
in the LOCATION attribute in Step 3. You might need to switch the log file at the source
database to see files in the directory.

When these steps are complete, you are ready to configure a real-time downstream capture
process.

Tip:

You can use Oracle Enterprise Manager Cloud Control to configure real-time
downstream capture. See the Oracle Enterprise Manager Cloud Control online help
for instructions.

Configuring XStream Out
An outbound server in an XStream Out configuration streams Oracle database changes to a
client application.

The client application attaches to the outbound server using the Oracle Call Interface (OCI) or
Java interface to receive these changes.

Configuring an outbound server involves creating the components that send captured
database changes to the outbound server. It also involves configuring the outbound server
itself, which includes specifying the connect user that the client application will use to attach to
the outbound server.

You can create an outbound server using the following procedures in the DBMS_XSTREAM_ADM
package:

• The CREATE_OUTBOUND procedure creates an outbound server, a queue, and a capture
process in a single database with one procedure call.

Chapter 4
Configuring XStream Out

4-24

• The ADD_OUTBOUND procedure can create an outbound server, or it can add an outbound
server to an existing XStream Out configuration. When you use this procedure on a
database without an existing XStream Out configuration, it only creates an outbound
server. You must create the capture process and queue separately, and they must exist
before you run the ADD_OUTBOUND procedure. You can configure the capture process on the
same database as the outbound server or on a different database.

In both cases, you must create the client application that communicates with the outbound
server and receives LCRs from the outbound server.

If you require multiple outbound servers, then you can use the CREATE_OUTBOUND procedure to
create the capture process that captures database changes for the first outbound server. Next,
you can run the ADD_OUTBOUND procedure to add additional outbound servers that receive the
same captured changes. The capture process can reside on the same database as the
outbound servers or on a different database.

In addition, there are special considerations when you are configuring XStream Out in a CDB.
This section provides instructions for creating outbound servers in a CDB.

Tip:

In an XStream Out configuration with multiple outbound servers, the best practice is
to create one capture process that captures changes for all of the outbound servers.

• Configuring an Outbound Server Using CREATE_OUTBOUND
The CREATE_OUTBOUND procedure in the DBMS_XSTREAM_ADM package creates a capture
process, queue, and outbound server in a single database.

• Adding an Additional Outbound Server to a Capture Process Stream
XStream Out configurations often require multiple outbound servers that process a stream
of LCRs from a single capture process. You can add an additional outbound server to a
database that already includes at least one outbound server.

• Configuring an Outbound Server Using ADD_OUTBOUND
The ADD_OUTBOUND procedure in the DBMS_XSTREAM_ADM package creates an outbound
server.

• Configuring XStream Out in a CDB
When you configure XStream Out in a CDB, you must decide which database changes will
be captured by XStream Out and sent to the client application.

Configuring an Outbound Server Using CREATE_OUTBOUND
The CREATE_OUTBOUND procedure in the DBMS_XSTREAM_ADM package creates a capture process,
queue, and outbound server in a single database.

Both the capture process and the outbound server use the queue created by the procedure.
When you run the procedure, you provide the name of the new outbound server, while the
procedure generates a name for the capture process and queue. If you want all of the
components to run on the same database, then the CREATE_OUTBOUND procedure is the fastest
and easiest way to create an outbound server.

Prerequisites

Before configuring XStream Out, ensure that the following prerequisites are met:

Chapter 4
Configuring XStream Out

4-25

• Complete the tasks described in "Prerequisites for Configuring XStream Out".

Assumptions

This section makes the following assumptions:

• The capture process will be a local capture process, and it will run on the same database
as the outbound server.

The instructions in this section can only set up the local capture and outbound server on
the same database configuration described in "Decide How to Configure XStream Out".

• The name of the outbound server is xout.

• Data manipulation language (DML) and data definition language (DDL) changes made to
the oe.orders and oe.order_items tables are sent to the outbound server.

• DML and DDL changes made to the hr schema are sent to the outbound server.

Figure 4-3 provides an overview of this XStream Out configuration.

Figure 4-3 Sample XStream Out Configuration Created Using CREATE_OUTBOUND

Record
Changes

hr
Schema

Oracle Database

Capture
Process

Enqueue
LCRs

Capture DML and DDL Changes to hr Schema,
oe.orders Table, and oe.order_items Table

Dequeue
LCRs

Receive LCRs
from committed
transactions

Outbound
Server

xout

Client
Application

oe.orders Table

oe.orders Tableoe.order_items Table

Redo
Log

Queue

.

.

.

.

.

.

To create an outbound server using the CREATE_OUTBOUND procedure:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Chapter 4
Configuring XStream Out

4-26

2. Run the CREATE_OUTBOUND procedure.

Given the assumptions for this section, run the following CREATE_OUTBOUND procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.CREATE_OUTBOUND(
 server_name => 'xout',
 table_names => tables,
 schema_names => schemas);
END;
/

Running this procedure performs the following actions:

• Configures supplemental logging for the oe.orders and oe.order_items tables and for
all of the tables in the hr schema.

• Creates a queue with a system-generated name that is used by the capture process
and the outbound server.

• Creates and starts a capture process with a system-generated name with rule sets that
instruct it to capture DML and DDL changes to the oe.orders table, the
oe.order_items table, and the hr schema.

• Creates and starts an outbound server named xout with rule sets that instruct it to
send DML and DDL changes to the oe.orders table, the oe.order_items table, and
the hr schema to the client application.

• Sets the current user as the connect user for the outbound server. In this example, the
current user is the XStream administrator. The client application must connect to the
database as the connect user to interact with the outbound server.

Note:

The server_name value cannot exceed 30 bytes.

Tip:

To capture and send all database changes to the outbound server, specify NULL
(the default) for the table_names and schema_names parameters.

3. Create and run the client application that will connect to the outbound server and receive
the LCRs. See Sample XStream Client Application for a sample application.

4. To add one or more additional outbound servers that receive LCRs from the capture
process created in Step 2, follow the instructions in "Adding an Additional Outbound Server
to a Capture Process Stream".

When you run the client application, the outbound server is started automatically.

Chapter 4
Configuring XStream Out

4-27

See Also:

Oracle Database PL/SQL Packages and Types Reference

Adding an Additional Outbound Server to a Capture Process Stream
XStream Out configurations often require multiple outbound servers that process a stream of
LCRs from a single capture process. You can add an additional outbound server to a database
that already includes at least one outbound server.

The additional outbound server uses the same queue as another outbound server to receive
the LCRs from the capture process. When an XStream Out environment exists, use the
ADD_OUTBOUND procedure in the DBMS_XSTREAM_ADM package to add another outbound server to
a capture process stream.

Prerequisites

Before completing the steps in this section, configure an XStream Out environment that
includes at least one outbound server. The following sections describe configuring and
XStream Out environment:

• "Configuring an Outbound Server Using CREATE_OUTBOUND"

• "Configuring an Outbound Server Using ADD_OUTBOUND"

Assumptions

This section makes the following assumptions:

• The name of the outbound server is xout2.

• The queue used by the outbound server is xstrmadmin.xstream_queue.

• DML and DDL changes made to the oe.orders and oe.order_items tables are sent to the
outbound server.

• DML and DDL changes made to the hr schema are sent to the outbound server.

• The source database for the database changes is db1.example.com.

Figure 4-4 provides an overview of this XStream Out configuration.

Chapter 4
Configuring XStream Out

4-28

Figure 4-4 Sample XStream Out Configuration With an Additional Outbound Server

Record
Changes

hr
Schema

Oracle Database

Queue

xstrmadmin.xstream_queue
.
.
.
.

Capture
Process

Enqueue
LCRs

Capture DML and DDL Changes to hr Schema,
oe.orders Table, and oe.order_items Table

Dequeue
LCRs

Receive LCRs
from committed
transactions

Outbound
Server

xout

Client
Application

Dequeue
LCRs

Receive LCRs
from committed
transactions

Outbound
Server
xout2

Client
Application

oe.orders Table

oe.orders Tableoe.order_items Table

Redo
Log

To add another outbound server to a capture process stream using the ADD_OUTBOUND
procedure:

1. In SQL*Plus, connect to the database that will run the additional outbound server as the
XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Determine the name of the queue used by an existing outbound server that receives LCRs
from the capture process.

Run the query in "Displaying General Information About an Outbound Server" to determine
the owner and name of the queue. This query also shows the name of the capture process
and the source database name.

3. Run the ADD_OUTBOUND procedure.

Given the assumptions for this section, run the following ADD_OUTBOUND procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';

Chapter 4
Configuring XStream Out

4-29

 DBMS_XSTREAM_ADM.ADD_OUTBOUND(
 server_name => 'xout2',
 queue_name => 'xstrmadmin.xstream_queue',
 source_database => 'db1.example.com',
 table_names => tables,
 schema_names => schemas);
END;
/

Running this procedure performs the following actions:

• Creates an outbound server named xout2. The outbound server has rule sets that
instruct it to send DML and DDL changes to the oe.orders table, the oe.order_items
table, and the hr schema to the client application. The rules specify that these changes
must have originated at the db1.example.com database. The outbound server
dequeues LCRs from the queue xstrmadmin.xstream_queue.

• Sets the current user as the connect user for the outbound server. In this example, the
current user is the XStream administrator. The client application must connect to the
database as the connect user to interact with the outbound server.

Note:

The server_name value cannot exceed 30 bytes.

Tip:

For the outbound server to receive all of the LCRs sent by the capture process,
specify NULL (the default) for the table_names and schema_names parameters.

4. If a client application does not exist, then create and run the client application that will
connect to the outbound server and receive the LCRs. See Sample XStream Client
Application for a sample application.

When you run the client application, the outbound server is started automatically.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Configuring an Outbound Server Using ADD_OUTBOUND
The ADD_OUTBOUND procedure in the DBMS_XSTREAM_ADM package creates an outbound server.

This procedure does not create the capture process or the queue. In a database without an
existing XStream Out configuration, you must configure these components manually.

You can use the ADD_OUTBOUND procedure to set up any of the configurations described in
"Decide How to Configure XStream Out". However, if you chose to configure local capture and
outbound server on the same database, then it is usually easier to use the CREATE_OUTBOUND

Chapter 4
Configuring XStream Out

4-30

procedure to configure all of the components simultaneously. See "Configuring an Outbound
Server Using CREATE_OUTBOUND".

This section includes an example that configures downstream capture and the outbound server
in the same database.

Prerequisites

Before configuring XStream Out, ensure that the following prerequisites are met:

• Complete the tasks described in "Prerequisites for Configuring XStream Out".

If you decide to use downstream capture, then you must configure log file transfer from the
source database to a downstream database. See "If Required, Configure Log File Transfer
to a Downstream Database".

If you want to use real-time downstream capture, then you must also add the required
standby redo logs. See "If Required, Add Standby Redo Logs for Real-Time Downstream
Capture".

The example in this section uses downstream capture. Therefore, log file transfer must be
configured to complete the example.

Assumptions

This section makes the following assumptions:

• The name of the outbound server is xout.

• The queue used by the outbound server is xstrmadmin.xstream_queue.

• The source database is db1.example.com.

• The capture process and outbound server run on a different database than the source
database. Therefore, downstream capture is configured.

• DML and DDL changes made to the oe.orders and oe.order_items tables are sent to the
outbound server.

• DML and DDL changes made to the hr schema are sent to the outbound server.

Figure 4-5 provides an overview of this XStream Out configuration.

Chapter 4
Configuring XStream Out

4-31

Figure 4-5 Sample XStream Out Configuration Created Using ADD_OUTBOUND

Oracle Database

Oracle Database

Client
Application

Redo
Log

From
Source

Database Objects

Record
Changes

Redo
Log

Send Redo
Data

Capture
Process

Enqueue
LCRs

Dequeue
LCRs

Queue

.

.

.

.

.

.

Outbound
Server

Receive LCRs
from committed
transactions

Capture
LCRs

To create an outbound server using the ADD_OUTBOUND procedure:

1. In SQL*Plus, connect to the database that will run the capture process (the capture
database) as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Create the queue that will be used by the capture process.

For example, run the following procedure:

BEGIN
 DBMS_XSTREAM_ADM.SET_UP_QUEUE(
 queue_table => 'xstrmadmin.xstream_queue_table',
 queue_name => 'xstrmadmin.xstream_queue');
END;
/

3. Create the database link from the downstream capture database to the source database.

In this example, create a database link from the downstream capture database to
db1.example.com. For example, if the user xstrmadmin is the XStream administrator on
both databases, then create the following database link:

Chapter 4
Configuring XStream Out

4-32

CREATE DATABASE LINK db1.example.com CONNECT TO xstrmadmin
 IDENTIFIED BY password USING 'db1.example.com';

See "If Required, Configure Network Connectivity and Database Links".

If you do not create the database link, then you must complete the following steps in
source database:

a. Connect to the source database as the XStream administrator.

b. Run the DBMS_CAPTURE_ADM.BUILD procedure. For example:

SET SERVEROUTPUT ON
DECLARE
 scn NUMBER;
BEGIN
 DBMS_CAPTURE_ADM.BUILD(
 first_scn => scn);
 DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 409391

This procedure displays the valid first SCN value for the capture process that will be
created in the downstream capture database. Make a note of the SCN value returned
because you will use it when you create the capture process in Step 4.

c. Ensure that required supplemental logging is specified for the database objects at the
source database.

For this example, ensure that supplemental logging is configured for the hr schema,
the oe.orders table, and the oe.order_items table in the db1.example.com database.

See "If Required, Configure Supplemental Logging" for instructions about specifying
supplemental logging.

These steps are not required if you create the database link.

4. While connected to the downstream capture database, create the capture process and add
rules to it.

For example, run the following procedure to create the capture process:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'xstrmadmin.xstream_queue',
 capture_name => 'xout_capture',
 capture_class => 'xstream');
END;
/

Add rules to the capture process's rule sets to capture changes to the hr schema, the
oe.orders table, and the oe.order_items table.

For example, run the following procedures to create the rules:

BEGIN
 DBMS_XSTREAM_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'xout_capture',
 queue_name => 'xstrmadmin.xstream_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'db1.example.com');

Chapter 4
Configuring XStream Out

4-33

END;
/

BEGIN
 DBMS_XSTREAM_ADM.ADD_TABLE_RULES(
 table_name => 'oe.orders',
 streams_type => 'capture',
 streams_name => 'xout_capture',
 queue_name => 'xstrmadmin.xstream_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'db1.example.com');
END;
/

BEGIN
 DBMS_XSTREAM_ADM.ADD_TABLE_RULES(
 table_name => 'oe.order_items',
 streams_type => 'capture',
 streams_name => 'xout_capture',
 queue_name => 'xstrmadmin.xstream_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'db1.example.com');
END;
/

Do not start the capture process.

5. Run the ADD_OUTBOUND procedure.

Given the assumption for this section, run the following ADD_OUTBOUND procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.ADD_OUTBOUND(
 server_name => 'xout',
 queue_name => 'xstrmadmin.xstream_queue',
 source_database => 'db1.example.com',
 table_names => tables,
 schema_names => schemas);
END;
/

Running this procedure performs the following actions:

• Creates an outbound server named xout. The outbound server has rule sets that
instruct it to send DML and DDL changes to the oe.orders table, the oe.order_items
table, and the hr schema to the client application. The rules specify that these changes
must have originated at the db1.example.com database. The outbound server
dequeues LCRs from the queue xstrmadmin.xstream_queue.

• Sets the current user as the connect user for the outbound server. In this example, the
current user is the XStream administrator. The client application must connect to the
database as the connect user to interact with the outbound server.

Chapter 4
Configuring XStream Out

4-34

Note:

The server_name value cannot exceed 30 bytes.

Tip:

For the outbound server to receive all of the LCRs sent by the capture process,
specify NULL (the default) for the table_names and schema_names parameters.

6. Create and run the client application that will connect to the outbound server and receive
the LCRs. See Sample XStream Client Application for a sample application.

When you run the client application, the outbound server is started automatically.

7. To add one or more additional outbound servers that receive LCRs from the capture
process created in Step 4, follow the instructions in "Adding an Additional Outbound Server
to a Capture Process Stream".

See Also:

Oracle Database PL/SQL Packages and Types Reference

Configuring XStream Out in a CDB
When you configure XStream Out in a CDB, you must decide which database changes will be
captured by XStream Out and sent to the client application.

XStream Out can stream all database changes for all containers, including the CDB root and
all PDBs, application roots, and application PDBs, or XStream Out can stream the changes
from specific containers. In addition, you can configure XStream Out with local capture, or you
can configure it with downstream capture to offload the work required to capture changes from
the source database.

The following restrictions apply when you configure XStream Out in a CDB:

• The capture process and outbound server must be in the CDB root.

• The capture process and outbound server must be in the same CDB.

• Each container in the CDB must be open during XStream Out configuration.

• When changes made to an application root are captured, you must ensure that ALTER
PLUGGABLE DATABASE APPLICATION statements are replicated only to other application
roots.

In addition, ensure that you create the XStream administrator properly for a CDB.

Chapter 4
Configuring XStream Out

4-35

Note:

When a container is created using a non-CDB, any XStream Out components from
the non-CDB cannot be used in the container. You must drop and re-create the
XStream Out components, including the capture process and outbound servers, in
the CDB root.

• Configuring XStream Out with Local Capture in a CDB
An example illustrates configuring XStream Out with local capture in a CDB.

• Configuring XStream Out with Downstream Capture in CDBs
Using downstream capture, the XStream Out components can reside in databases other
than the source database.

Related Topics

• XStream Out and a Multitenant Environment
A multitenant environment enables a database to contain a portable set of schemas,
objects, and related structures that appears logically to an application as a separate
database.

• System-Created Rules in a CDB and XStream Out
In a CDB, XStream Out must be configured in the CDB root. Therefore, the PL/SQL
procedures in the DBMS_XSTREAM_ADM package that create system-created rules must be
run in the CDB root while connected as a common user.

• Configure an XStream Administrator on All Databases
An XStream administrator configures and manages XStream components in an XStream
Out environment.

• Oracle Multitenant Administrator's Guide

Configuring XStream Out with Local Capture in a CDB
An example illustrates configuring XStream Out with local capture in a CDB.

Prerequisites

Before configuring XStream Out, ensure that all containers in the CDB are in open read/write
mode during XStream Out configuration.

Assumptions

This section makes the following assumptions:

• The capture process will be a local capture process, and it will run on the same database
as the outbound server.

• The name of the outbound server is xout.

• Data manipulation language (DML) and data definition language (DDL) changes made to
the oe.orders and oe.order_items tables in PDB pdb1.example.com are sent to the
outbound server.

• DML and DDL changes made to the hr schema in the PDB pdb1.example.com are sent to
the outbound server.

Figure 4-6 provides an overview of this XStream Out configuration.

Chapter 4
Configuring XStream Out

4-36

Figure 4-6 Sample XStream Out Configuration Created Using CREATE_OUTBOUND for a PDB

pdb1.example.com

pdb2.example.com

pdb3.example.com

pdb4.example.com

pdb5.example.com

pdb6.example.com

CDB

Seed (PDB$SEED)

Root (CDB$ROOT)

Redo
Log

hr Schema

oe.orders Table

oe.order_items Table

Record
Changes

Capture
Process

Enqueue
LCRs

Dequeue
LCRs

Queue

.

.

.

Client
Application

Capture DML
and DDL Changes
from pdb1.example.com

Outbound
Server

xout

Receive LCRs
from committed
transactions

To create an outbound server using the CREATE_OUTBOUND procedure:

1. In SQL*Plus, connect to the root in the CDB (not to the PDB pdb1.example.com) as the
XStream administrator.

2. Create the outbound server and other XStream components.

a. Ensure that all containers in the source CDB are in open read/write mode.

b. Run the CREATE_OUTBOUND procedure.

Given the assumptions for this example, run the following CREATE_OUTBOUND procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.CREATE_OUTBOUND(

Chapter 4
Configuring XStream Out

4-37

 server_name => 'xout',
 source_database => 'pdb1.example.com',
 table_names => tables,
 schema_names => schemas);
END;
/

Note:

To capture changes in all containers in a CDB, including the CDB root, all
PDBs, all application roots, and all application PDBs, and send those
changes to the XStream client application, you can omit the
source_database parameter when you run the CREATE_OUTBOUND procedure.

c. After the CREATE_OUTBOUND procedure completes successfully, optionally change the
open mode of one or more containers if necessary.

Running the procedure in Step b performs the following actions:

• Configures supplemental logging for the oe.orders and oe.order_items tables and for
all tables in the hr schema in the pdb1.example.com PDB.

• Creates a queue with a system-generated name that is used by the capture process
and the outbound server.

• Creates and starts a capture process with a system-generated name with rule sets that
instruct it to capture DML and DDL changes to the oe.orders table, the
oe.order_items table, and the hr schema from the pdb1.example.com PDB.

• Creates and starts an outbound server named xout with rule sets that instruct it to
send DML and DDL changes to the oe.orders table, the oe.order_items table, and
the hr schema to the client application.

• Sets the current user as the connect user for the outbound server. In this example, the
current user is the XStream administrator. The client application must connect to the
database as the connect user to interact with the outbound server.

Note:

The server_name value cannot exceed 30 bytes.

Tip:

To capture and send all database changes from the pdb1.example.com database
to the outbound server, specify NULL (the default) for the table_names and
schema_names parameters.

3. Create and run the client application that will connect to the outbound server in the root of
the CDB and receive the LCRs.

When you run the client application, the outbound server is started automatically.

Chapter 4
Configuring XStream Out

4-38

Related Topics

• Prerequisites for Configuring XStream Out
Preparing for an XStream Out outbound server is similar to preparing for an Oracle
Replication environment.

• Sample XStream Client Application
Examples illustrate how to configure the Oracle Database components that are used by
XStream. The examples configure sample client applications that communicate with an
XStream outbound server and inbound server.

Configuring XStream Out with Downstream Capture in CDBs
Using downstream capture, the XStream Out components can reside in databases other than
the source database.

When you have multiple CDBs, the source database can be in one CDB, and you can use
downstream capture to capture the changes in another CDB.

Prerequisites

Before configuring XStream Out, the following prerequisites must be met:

• Ensure that all containers in the CDB are in open read/write mode during XStream Out
configuration.

• This example uses downstream capture. Therefore, you must configure log file transfer
from the source database to a downstream database.

• If you want to use real-time downstream capture, then you must also add the required
standby redo logs.

Assumptions

This section makes the following assumptions:

• The name of the outbound server is xout.

• The queue used by the outbound server is c##xstrmadmin.xstream_queue.

• The source database is the PDB pdb1.example.com in the CDB data.example.com.

• The capture process runs in the CDB capture.example.com.

• The outbound server runs in the CDB capture.example.com.

• DML and DDL changes made to the oe.orders and oe.order_items tables from the PDB
pdb1.example.com are sent to the outbound server.

• DML and DDL changes made to the hr schema from the PDB pdb1.example.com are sent
to the outbound server.

The following figure gives an overview of this XStream Out configuration.

Chapter 4
Configuring XStream Out

4-39

Figure 4-7 Sample XStream Out Configuration Using Multiple CDBs and Downstream Capture

pdba.example.com

pdbb.example.com

pdbc.example.com

pdbd.example.com

pdbe.example.com

pdbf.example.com

CDB:
capture.example.com

Seed (PDB$SEED)

Root (CDB$ROOT)

Redo Log from
data.example.com

Local
Redo Log

hr Schema oe.orders Table oe.order_items Table

Capture
Process

Enqueue
LCRs

Dequeue
LCRs

Queue

.

.

.

Client
Application

Capture DML
and DDL Changes
from pdb1.example.com

Outbound
Server

xout

Receive LCRs
from committed
transactions

pdb1.example.com

pdb2.example.com

pdb3.example.com

pdb4.example.com

pdb5.example.com

pdb6.example.com

CDB:
data.example.com

Seed (PDB$SEED)

Root (CDB$ROOT)

Redo
Log

Record
Changes

Chapter 4
Configuring XStream Out

4-40

To configure XStream Out with downstream capture in CDBs:

1. In SQL*Plus, connect to the root of the downstream capture CDB as the XStream
administrator.

In this example. the downstream capture CDB is capture.example.com.

2. Create the queue that will be used by the capture process.

For example, run the following procedure:

BEGIN
 DBMS_XSTREAM_ADM.SET_UP_QUEUE(
 queue_table => 'c##xstrmadmin.xstream_queue_table',
 queue_name => 'c##xstrmadmin.xstream_queue');
END;
/

3. Optionally, create the database link from the root in the downstream capture CDB to the
root in the source CDB.

In this example, create a database link from the root in capture.example.com to the root in
data.example.com. For example, if the user c##xstrmadmin is the XStream administrator
on both databases, then create the following database link:

CREATE DATABASE LINK data.example.com CONNECT TO c##xstrmadmin
 IDENTIFIED BY password USING 'data.example.com';

4. Ensure that all containers in the source CDB are in open read/write mode.

5. If you did not create the database link in Step 3, then you must complete additional steps
in the root of the source CDB.

These steps are not required if you created the database link in Step 3.

Run the BUILD procedure and ensure that required supplemental logging is specified for
the database objects in the source CDB:

a. Connect to the root in the source CDB as the XStream administrator.

b. Run the DBMS_CAPTURE_ADM.BUILD procedure. For example:

SET SERVEROUTPUT ON
DECLARE
 scn NUMBER;
BEGIN
 DBMS_CAPTURE_ADM.BUILD(
 first_scn => scn);
 DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 409391

This procedure displays the valid first SCN value for the capture process that will be
created in the root in the capture.example.com CDB. Make a note of the SCN value
returned because you will use it when you create the capture process in Step 6.

c. Ensure that required supplemental logging is specified for the database objects in the
source CDB.

Chapter 4
Configuring XStream Out

4-41

For this example, ensure that supplemental logging is configured for the hr schema,
the oe.orders table, and the oe.order_items table in the pdb1.example.com PDB.

6. While connected to the root in the downstream capture CDB, create the capture process.

For example, run the following procedure to create the capture process while connected as
the XStream administrator to capture.example.com:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'c##xstrmadmin.xstream_queue',
 capture_name => 'real_time_capture',
 rule_set_name => NULL,
 start_scn => NULL,
 source_database => NULL,
 use_database_link => TRUE,
 first_scn => NULL,
 logfile_assignment => 'implicit',
 source_root_name => 'data.example.com',
 capture_class => 'xstream');
END;
/

If you did not create a database link in Step 3, then specify the SCN value returned by the
DBMS_CAPTURE_ADM.BUILD procedure for the first_scn parameter.

Do not start the capture process.

7. After the capture process is created, optionally change the open mode of one or more
PDBs if necessary.

8. Run the ADD_OUTBOUND procedure.

Given the assumption for this section, run the following ADD_OUTBOUND procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.ADD_OUTBOUND(
 server_name => 'xout',
 queue_name => 'c##xstrmadmin.xstream_queue',
 source_database => 'pdb1.example.com',
 table_names => tables,
 schema_names => schemas,
 source_root_name => 'data.example.com',
 source_container_name => 'pdb1');
END;
/

Running this procedure performs the following actions:

• Creates an outbound server named xout. The outbound server has rule sets that
instruct it to send DML and DDL changes to the oe.orders table, the oe.order_items
table, and the hr schema to the client application. The rules specify that these changes

Chapter 4
Configuring XStream Out

4-42

must have originated at the PDB pdb1.example.com in the CDB data.example.com.
The outbound server dequeues LCRs from the queue c##xstrmadmin.xstream_queue.

• Sets the current user as the connect_user for the outbound server. In this example,
the current_user is the XStream administrator. The client application must connect to
the database as the connect_user to interact with the outbound server.

Note:

The server_name value cannot exceed 30 bytes.

9. Create and run the client application that will connect to the outbound server and receive
the LCRs.

When you run the client application, the outbound server is started automatically at the
downstream capture CDB.

Related Topics

• Prerequisites for Configuring XStream Out
Preparing for an XStream Out outbound server is similar to preparing for an Oracle
Replication environment.

Chapter 4
Configuring XStream Out

4-43

5
Managing XStream Out

You can manage XStream Out components and their rules.

• About Managing XStream Out
You can modify the database components that are part of an XStream Out configuration,
such as outbound servers, capture processes, and rules.

• Managing an Outbound Server
You can manage an outbound server by starting it, stopping it, setting an apply parameter
for it, and changing its connect user.

• Managing the Capture Process for an Outbound Server
You can manage the capture process for an outbound server. The capture process
captures database changes and sends them to an outbound server.

• Managing Rules for an XStream Out Configuration
You can manage the rules for an XStream Out configuration. Rules control which database
changes are streamed to the outbound server and which database changes the outbound
server streams to the client application.

• Managing Declarative Rule-Based Transformations
Declarative rule-based transformations cover a set of common transformation scenarios for
row LCRs.

• Dropping Components in an XStream Out Configuration
To drop an outbound server, use the DROP_OUTBOUND procedure in the DBMS_XSTREAM_ADM
package.

• Removing an XStream Out Configuration
You run the REMOVE_XSTREAM_CONFIGURATION procedure in the DBMS_XSTREAM_ADM package
to remove an XStream Out configuration in a multitenant container database (CDB) or non-
CDB.

About Managing XStream Out
You can modify the database components that are part of an XStream Out configuration, such
as outbound servers, capture processes, and rules.

The main interface for managing XStream Out database components is PL/SQL. Specifically,
use the following Oracle supplied PL/SQL packages to manage XStream Out:

• DBMS_XSTREAM_ADM
The DBMS_XSTREAM_ADM package is the main package for managing XStream Out. This
package includes subprograms that enable you to configure, modify, or drop outbound
servers. This package also enables you modify the rules used by capture processes and
outbound servers.

5-1

Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

• XSTREAM_CAPTURE
The XSTREAM_CAPTURE role enables you to configure and modify XStream administrators.

Starting with Oracle Database 23ai, you can manage XStream administrators with the
XSTREAM_CAPTURE role. You can use the REVOKE_ADMIN_PRIVILEGE procedure to revoke
privileges from a user that received XStream privileges prior to the Oracle Database 23ai
upgrade.

See Also:

– Configure an XStream Administrator on All Databases for information on
creating an XStream administrator

– Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

• DBMS_APPLY_ADM
The DBMS_APPLY_ADM package enables you modify outbound servers.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

• DBMS_CAPTURE_ADM
The DBMS_CAPTURE_ADM package enables you configure and modify capture processes.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

Managing an Outbound Server
You can manage an outbound server by starting it, stopping it, setting an apply parameter for it,
and changing its connect user.

• Starting an Outbound Server
A outbound server must be enabled for it to send logical change records (LCRs) to an
XStream client application. You run the START_OUTBOUND procedure in the
DBMS_OUTBOUND_ADM package to start an existing outbound server.

Chapter 5
Managing an Outbound Server

5-2

• Stopping an Outbound Server
You run the STOP_SERVER procedure in the DBMS_XSTREAM_ADM package to stop an existing
outbound server. You might stop an outbound server when you are troubleshooting a
problem in an XStream configuration.

• Setting an Apply Parameter for an Outbound Server
You set an apply parameter for an outbound server using the SET_PARAMETER procedure in
the DBMS_XSTREAM_ADM package. Apply parameters control the way an outbound server
operates.

• Changing the Connect User for an Outbound Server
A client application connects to an outbound server as the connect user. You can change
the connect user for an outbound server using the ALTER_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

Starting an Outbound Server
A outbound server must be enabled for it to send logical change records (LCRs) to an XStream
client application. You run the START_OUTBOUND procedure in the DBMS_OUTBOUND_ADM package
to start an existing outbound server.

To start an outbound server:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the START_OUTBOUND procedure in the DBMS_XSTREAM_ADM package, and specify the
outbound server for the server_name parameter.

The following example starts an outbound server named xout.

Example 5-1 Starting an Outbound Server Named xout

BEGIN
 DBMS_XSTREAM_ADM.START_OUTBOUND(
 server_name => 'xout');
END;
/

Note:

When an XStream client application attaches to an outbound server, it starts the
outbound server and the outbound server's capture process automatically if either of
these components are disabled.

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
starting an apply process or an outbound server with Oracle Enterprise Manager
Cloud Control

Chapter 5
Managing an Outbound Server

5-3

Stopping an Outbound Server
You run the STOP_SERVER procedure in the DBMS_XSTREAM_ADM package to stop an existing
outbound server. You might stop an outbound server when you are troubleshooting a problem
in an XStream configuration.

To stop an outbound server:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the STOP_SERVER procedure in the DBMS_XSTREAM_ADM package, and specify the
outbound server for the server_name parameter.

The following example stops an outbound server named xout.

Example 5-2 Stopping an Outbound Server Named xout

BEGIN
 DBMS_XSTREAM_ADM.STOP_OUTBOUND(
 server_name => 'xout');
END;
/

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
stopping an apply process or an outbound server with Oracle Enterprise Manager
Cloud Control

Setting an Apply Parameter for an Outbound Server
You set an apply parameter for an outbound server using the SET_PARAMETER procedure in the
DBMS_XSTREAM_ADM package. Apply parameters control the way an outbound server operates.

To set an outbound server parameter:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the SET_PARAMETER procedure in the DBMS_XSTREAM_ADM package.

Example 5-3 Setting an Outbound Server Parameter

The following example sets the disable_on_error parameter for an outbound server named
xout to N.

BEGIN
 DBMS_XSTREAM_ADM.SET_PARAMETER(
 streams_name => 'xout',
 streams_type => 'apply',
 parameter => 'disable_on_error',

Chapter 5
Managing an Outbound Server

5-4

 value => 'N');
END;
/

Example 5-4 Setting an Outbound Server Parameter to Its Default Value

If the value parameter is set to NULL or is not specified, then the parameter is set to its default
value. The following example sets the MAX_SGA_SIZE apply parameter to NULL:

BEGIN
 DBMS_XSTREAM_ADM.SET_PARAMETER(
 streams_name => 'xout',
 streams_type => 'apply',
 parameter => 'max_sga_size',
 value => NULL);
END;
/

Note:

• The value parameter is always entered as a VARCHAR2 value, even if the
parameter value is a number.

• If the value parameter is set to NULL or is not specified, then the parameter is set
to its default value.

See Also:

• The Oracle Enterprise Manager Cloud Control online help for instructions about
setting an apply parameter with Oracle Enterprise Manager Cloud Control

• Oracle Database PL/SQL Packages and Types Reference for information about
apply parameters

Changing the Connect User for an Outbound Server
A client application connects to an outbound server as the connect user. You can change the
connect user for an outbound server using the ALTER_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

The connect user is the user who can attach to the outbound server to retrieve the LCR
stream. The client application must attach to the outbound server as the connect user.

You can change the connect_user when a client application must connect to an outbound
server as a different user. Ensure that the connect user is granted the required privileges.

Chapter 5
Managing an Outbound Server

5-5

Note:

The default connect_user is the user that configured the outbound server. If you want
to run the client application as a different user, follow the steps outlined below.

To change the connect_user for an outbound server:

1. Connect to the outbound server database as the XStream administrator.

The XStream administrator must be granted the DBA role to change the connect user for an
outbound server.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

• server_name - Specify the name of the outbound server.

• connect_user - Specify the new connect user.

Example 5-5 Changing the Connect User for an Outbound Server

To change the connect user to hr for an outbound server named xout, run the following
procedure:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 connect_user => 'hr');
END;
/

See Also:

• "Privileges Required by the Connect User for an Outbound Server"

• Oracle Database PL/SQL Packages and Types Reference

Managing the Capture Process for an Outbound Server
You can manage the capture process for an outbound server. The capture process captures
database changes and sends them to an outbound server.

• Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process
In some XStream Out configurations, you can use the DBMS_XSTREAM_ADM package to
manage the capture process that captures changes for an outbound server.

• Starting a Capture Process
A capture process must be enabled for it to capture database changes and send the
changes to an XStream outbound server. You run the START_CAPTURE procedure in the
DBMS_CAPTURE_ADM package to start an existing capture process.

Chapter 5
Managing the Capture Process for an Outbound Server

5-6

• Stopping a Capture Process
You run the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop an existing
capture process. You might stop a capture process when you are troubleshooting a
problem in an XStream configuration.

• Setting a Capture Process Parameter
Capture process parameters control the way a capture process operates. You set a
capture process parameter using the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM
package.

• Changing the Capture User of an Outbound Server's Capture Process
A capture user is the user in whose security domain a capture process captures changes
from the redo log.

• Changing the Start SCN or Start Time of an Outbound Server's Capture Process
You can change the start system change number (SCN) or start time for a capture process
that captures changes for an outbound server using the ALTER_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

• Setting the First SCN for a Capture Process
You can set the first system change number (SCN) for an existing capture process. The
first SCN is the SCN in the redo log from which a capture process can capture changes.

Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a
Capture Process

In some XStream Out configurations, you can use the DBMS_XSTREAM_ADM package to manage
the capture process that captures changes for an outbound server.

Even when you cannot use the DBMS_XSTREAM_ADM package, you can always use the
DBMS_CAPTURE_ADM package to manage the capture process.

The DBMS_XSTREAM_ADM package can manage an outbound server's capture process if either of
the following conditions are met:

• The capture process was created by the CREATE_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

• The queue used by the capture process was created by the CREATE_OUTBOUND procedure.

If either of these conditions are met, then the DBMS_XSTREAM_ADM package can manage an
outbound server's capture process in the following ways:

• Add rules to and remove rules from the capture process's rule sets

• Change the capture user for the capture process

• Set the start system change number (SCN) or start time

• Drop the capture process

The DBMS_CAPTURE_ADM package can manage a capture process in the following ways:

• Start and stop the capture process

• Alter the capture process, which includes changing the capture process's rule sets, capture
user, first SCN, start SCN, and start time

• Set capture process parameters

• Drop the capture process

Chapter 5
Managing the Capture Process for an Outbound Server

5-7

To check whether an outbound server's capture process can be managed by the
DBMS_XSTREAM_ADM package:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound Server Name' FORMAT A30
COLUMN CAPTURE_NAME HEADING 'Capture Process Name' FORMAT A30

SELECT SERVER_NAME,
 CAPTURE_NAME
 FROM ALL_XSTREAM_OUTBOUND;

Your output looks similar to the following:

Outbound Server Name Capture Process Name
------------------------------ ------------------------------
XOUT CAP$_XOUT_4

If the Capture Process Name for an outbound server is non-NULL, then the
DBMS_XSTREAM_ADM package can manage the capture process. In this case, you can also
manage the capture process using the DBMS_CAPTURE_ADM package. However, it is usually
better to manage the capture process for an outbound server using the DBMS_XSTREAM_ADM
package when it is possible.

If the Capture Process Name for an outbound server is NULL, then the DBMS_XSTREAM_ADM
package cannot manage the capture process. In this case, you must manage the capture
process using the DBMS_CAPTURE_ADM package.

See Also:

• "Managing Rules for an XStream Out Configuration"

• "Changing the Capture User of an Outbound Server's Capture Process"

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

Starting a Capture Process
A capture process must be enabled for it to capture database changes and send the changes
to an XStream outbound server. You run the START_CAPTURE procedure in the
DBMS_CAPTURE_ADM package to start an existing capture process.

To start a capture process:

1. Connect to the capture process database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Chapter 5
Managing the Capture Process for an Outbound Server

5-8

2. Run the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package, and specify the
capture process for the capture_name parameter.

The following example starts a capture process named xstream_capture.

Example 5-6 Starting a Capture Process Named xstream_capture

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'xstream_capture');
END;
/

Note:

When an XStream client application attaches to an outbound server, it starts the
outbound server's capture process automatically if the capture process is disabled.

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
starting a capture process with Oracle Enterprise Manager Cloud Control

Stopping a Capture Process
You run the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop an existing
capture process. You might stop a capture process when you are troubleshooting a problem in
an XStream configuration.

To stop a capture process:

1. Connect to the capture process database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package, and specify the
capture process for the capture_name parameter.

The following example starts a capture process named xstream_capture.

Example 5-7 Stopping a Capture Process Named xstream_capture

BEGIN
 DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name => 'xstream_capture');
END;
/

Chapter 5
Managing the Capture Process for an Outbound Server

5-9

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
stopping a capture process with Oracle Enterprise Manager Cloud Control

Setting a Capture Process Parameter
Capture process parameters control the way a capture process operates. You set a capture
process parameter using the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM package.

To set a capture process parameter:

1. Connect to the capture process database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM package.

The following example sets the parallelism parameter for a capture process named
xstream_capture to 1 from the default value of 0. The parallelism parameter controls the
number of processes that concurrently mine the redo log for changes. It is a good idea to
monitor the effect of increasing the parallelism for the capture process since additional
processes are started.

Example 5-8 Setting a Capture Process Parameter

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'xstream_capture',
 parameter => 'parallelism',
 value => '1');
END;
/

Note:

• Setting the parallelism parameter automatically stops and restarts a capture
process.

• The value parameter is always entered as a VARCHAR2 value, even if the
parameter value is a number.

• If the value parameter is set to NULL or is not specified, then the parameter is set
to its default value.

Chapter 5
Managing the Capture Process for an Outbound Server

5-10

See Also:

• The Oracle Enterprise Manager Cloud Control online help for instructions about
setting a capture process parameter with Oracle Enterprise Manager Cloud
Control

• Oracle Database PL/SQL Packages and Types Reference for information about
capture process parameters

Changing the Capture User of an Outbound Server's Capture Process
A capture user is the user in whose security domain a capture process captures changes from
the redo log.

You can change the capture user for a capture process that captures changes for an outbound
server using the ALTER_OUTBOUND procedure in the DBMS_XSTREAM_ADM package.

You can change the capture user when the capture process must capture changes in a
different security domain. Only a user granted DBA role can change the capture user for a
capture process. Ensure that the capture user is granted the required privileges. When you
change the capture user, the ALTER_OUTBOUND procedure grants the new capture user enqueue
privilege on the queue used by the capture process and configures the user as a secure queue
user.

Note:

If Oracle Database Vault is installed, then the user who changes the capture user
must be granted the BECOME USER system privilege. Granting this privilege to the user
is not required if Oracle Database Vault is not installed. You can revoke the BECOME
USER system privilege from the user after capture user is changed, if necessary.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
privileges required by a capture user

To change the capture user of the capture process for an outbound server:

1. Determine whether the DBMS_XSTREAM_ADM package can manage the capture process. See
"Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture
Process".

If the capture process can be managed using the DBMS_XSTREAM_ADM package, then
proceed to Step 2.

2. Connect to the outbound server database as the XStream administrator.

To change the capture user, the user who invokes the ALTER_OUTBOUND procedure must be
granted DBA role. Only the SYS user can set the capture user to SYS.

Chapter 5
Managing the Capture Process for an Outbound Server

5-11

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

3. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

• server_name - Specify the name of the outbound server.

• capture_user - Specify the new capture user.

Example 5-9 Changing the Capture User of the Capture Process for an Outbound
Server

To change the capture user to hq_admin for an outbound server named xout, run the following
procedure:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 capture_user => 'hq_admin');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference

Changing the Start SCN or Start Time of an Outbound Server's Capture
Process

You can change the start system change number (SCN) or start time for a capture process that
captures changes for an outbound server using the ALTER_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

The start SCN is the SCN from which a capture process begins to capture changes. The start
time is the time from which a capture process begins to capture changes. When you reset a
start SCN or start time for a capture process, ensure that the required redo log files are
available to the capture process.

Typically, you reset the start SCN or start time for a capture process if point-in-time recovery
was performed on one of the destination databases that receive changes from the capture
process.

Note:

• The start_scn and start_time parameters in the ALTER_OUTBOUND procedure
are mutually exclusive.

• You do not need to set the start SCN for a capture process after a normal restart
of the database.

• Changing the Start SCN of an Outbound Server's Capture Process
You can change the start SCN of the capture process for an outbound server.

Chapter 5
Managing the Capture Process for an Outbound Server

5-12

• Changing the Start Time of an Outbound Server's Capture Process
You can change the start time of the capture process for an outbound server.

Changing the Start SCN of an Outbound Server's Capture Process
You can change the start SCN of the capture process for an outbound server.

To change the start SCN for a capture process:

1. Determine whether the DBMS_XSTREAM_ADM package can manage the capture process. See
"Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture
Process".

If the capture process can be managed using the DBMS_XSTREAM_ADM package, then
proceed to Step 2.

2. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

3. Check the first SCN of the capture process:

COLUMN CAPTURE_PROCESS HEADING 'Capture Process Name' FORMAT A30
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT 99999999999999

SELECT CAPTURE_NAME, FIRST_SCN FROM ALL_CAPTURE;

CAPTURE_NAME First SCN
------------------------------ ---------------
CAP$_XOUT_1 604426

When you reset the start SCN, the specified start SCN must be equal to or greater than the
first SCN for the capture process.

4. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

• server_name - Specify the name of the outbound server.

• start_scn - Specify the SCN from which the capture process begins to capture
changes.

If the capture process is enabled, then the ALTER_OUTBOUND procedure automatically stops
and restarts the capture process when the start_scn parameter is non-NULL.

If the capture process is disabled, then the ALTER_OUTBOUND procedure automatically starts
the capture process when the start_scn parameter is non-NULL.

Example 5-10 Setting the Start SCN of the Capture Process for an Outbound Server

Run the following procedure to set the start SCN to 650000 for the capture process used by the
xout outbound server:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 start_scn => 650000);
END;
/

Chapter 5
Managing the Capture Process for an Outbound Server

5-13

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• "SCN Values Related to a Capture Process"

Changing the Start Time of an Outbound Server's Capture Process
You can change the start time of the capture process for an outbound server.

To change the start time for a capture process:

1. Determine whether the DBMS_XSTREAM_ADM package can manage the capture process. See
"Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture
Process".

If the capture process can be managed using the DBMS_XSTREAM_ADM package, then
proceed to Step 2.

2. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

3. Check the time that corresponds with the first SCN of the capture process:

COLUMN CAPTURE_PROCESS HEADING 'Capture Process Name' FORMAT A30
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT A40

SELECT CAPTURE_NAME, SCN_TO_TIMESTAMP(FIRST_SCN) FIRST_SCN FROM ALL_CAPTURE;

CAPTURE_NAME First SCN
------------------------------ --
CAP$_XOUT_1 05-MAY-10 08.11.17.000000000 AM

When you reset the start time, the specified start time must be greater than or equal to the
time that corresponds with the first SCN for the capture process.

4. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

• server_name - Specify the name of the outbound server.

• start_time - Specify the time from which the capture process begins to capture
changes.

If the capture process is enabled, then the ALTER_OUTBOUND procedure automatically stops
and restarts the capture process when the start_time parameter is non-NULL.

If the capture process is disabled, then the ALTER_OUTBOUND procedure automatically starts
the capture process when the start_time parameter is non-NULL.

The following examples set the start_time parameter for the capture process that
captures changes for an outbound server named xout.

Example 5-11 Set the Start Time to a Specific Time

Run the following procedure to set the start time to 05-MAY-10 11.11.17 AM for the capture
process used by the xout outbound server:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(

Chapter 5
Managing the Capture Process for an Outbound Server

5-14

 server_name => 'xout',
 start_time => '05-MAY-10 11.11.17 AM');
END;
/

Example 5-12 Set the Start Time Using the NUMTODSINTERVAL SQL Function

Run the following procedure to set the start time to four hours earlier than the current time for
the capture process used by the xout outbound server:

DECLARE
 ts TIMESTAMP;
BEGIN
 ts := SYSTIMESTAMP - NUMTODSINTERVAL(4, 'HOUR');
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 start_time => ts);
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• "SCN Values Related to a Capture Process"

Setting the First SCN for a Capture Process
You can set the first system change number (SCN) for an existing capture process. The first
SCN is the SCN in the redo log from which a capture process can capture changes.

The specified first SCN must meet the following requirements:

• It must be greater than the current first SCN for the capture process.

• It must be less than or equal to the current applied SCN for the capture process. However,
this requirement does not apply if the current applied SCN for the capture process is zero.

• It must be less than or equal to the required checkpoint SCN for the capture process.

You can determine the current first SCN, applied SCN, and required checkpoint SCN for each
capture process in a database using the following query:

SELECT CAPTURE_NAME, FIRST_SCN, APPLIED_SCN, REQUIRED_CHECKPOINT_SCN FROM ALL_CAPTURE;

When you reset a first SCN for a capture process, information below the new first SCN setting
is purged from the LogMiner data dictionary for the capture process automatically. Therefore,
after the first SCN is reset for a capture process, the start SCN for the capture process cannot
be set lower than the new first SCN. Also, redo log files that contain information before the new
first SCN setting will never be needed by the capture process.

You set the first SCN for a capture process using the ALTER_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

To set the first SCN for a capture process:

1. Connect to the capture process database as the XStream administrator.

Chapter 5
Managing the Capture Process for an Outbound Server

5-15

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package, and specify the new
first SCN in the first_scn parameter.

The following example sets the first SCN to 351232 for the xstream_capture capture process.

Example 5-13 Setting the First SCN for a Capture Process

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'xstream_capture',
 first_scn => 351232);
END;
/

Note:

• If the specified first SCN is higher than the current start SCN for the capture
process, then the start SCN is set automatically to the new value of the first SCN.

• If you must capture changes in the redo log from a point in time in the past, then
you can create a capture process and specify a first SCN that corresponds to a
previous data dictionary build in the redo log. The BUILD procedure in the
DBMS_CAPTURE_ADM package performs a data dictionary build in the redo log.

• You can query the DBA_LOGMNR_PURGED_LOG data dictionary view to determine
which redo log files will never be needed by any capture process.

See Also:

"SCN Values Related to a Capture Process"

Managing Rules for an XStream Out Configuration
You can manage the rules for an XStream Out configuration. Rules control which database
changes are streamed to the outbound server and which database changes the outbound
server streams to the client application.

• Adding Rules to an XStream Out Configuration
You can add schema rules, table rules, and subset rules to an XStream Out configuration.

• Removing Rules from an XStream Out Configuration
You can remove rules from an XStream Out configuration.

Adding Rules to an XStream Out Configuration
You can add schema rules, table rules, and subset rules to an XStream Out configuration.

Chapter 5
Managing Rules for an XStream Out Configuration

5-16

• Adding Schema Rules and Table Rules to an XStream Out Configuration
You can add schema rules and table rules to an XStream Out configuration using the
ALTER_OUTBOUND procedure in the DBMS_XSTREAM_ADM package.

• Adding Subset Rules to an Outbound Server's Positive Rule Set
You can add subset rules to an outbound server's positive rule set using the
ADD_SUBSET_OUTBOUND_RULES procedure in the DBMS_XSTREAM_ADM package.

• Adding Rules With Custom Conditions to XStream Out Components
Some of the procedures that create rules in the DBMS_XSTREAM_ADM package include an
and_condition parameter. This parameter enables you to add conditions to system-
created rules.

Adding Schema Rules and Table Rules to an XStream Out Configuration
You can add schema rules and table rules to an XStream Out configuration using the
ALTER_OUTBOUND procedure in the DBMS_XSTREAM_ADM package.

The ALTER_OUTBOUND procedure adds rules for both data manipulation language (DML) and
data definition language (DDL) changes.

When you follow the instructions in this section, the ALTER_OUTBOUND procedure always adds
rules for the specified schemas and tables to one of the outbound server's rule sets. If the
DBMS_XSTREAM_ADM package can manage the outbound server's capture process, then the
ALTER_OUTBOUND procedure also adds rules for the specified schemas and tables to one of the
rule sets used by this capture process.

To determine whether the DBMS_XSTREAM_ADM package can manage the outbound server's
capture process, see "Checking Whether the DBMS_XSTREAM_ADM Package Can Manage
a Capture Process". If the DBMS_XSTREAM_ADM package cannot manage the outbound server's
capture process, then the ALTER_OUTBOUND procedure adds rules to the outbound server's rule
set only. In this case, if rules for same schemas and tables should be added to the capture
process's rule set as well, then use the ADD_*_RULES procedures in the DBMS_XSTREAM_ADM
package to add them.

In addition, if the capture process is running on a different database than the outbound server,
then add schema and table rules to the propagation that sends logical change records (LCRs)
to the outbound server's database. Use the ADD_*_PROPAGATION_RULES procedures in the
DBMS_XSTREAM_ADM package to add them.

To add schema rules and table rules to an XStream Out configuration:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

• server_name - Specify the name of the outbound server.

• table_names - Specify the tables for which to add rules, or specify NULL to add no table
rules.

• schema_name - Specify the schemas for which to add rules, or specify NULL to add no
schema rules.

• add - Specify TRUE so that the rules are added. (Rules are removed if you specify
FALSE.)

Chapter 5
Managing Rules for an XStream Out Configuration

5-17

• inclusion_rule - Specify TRUE to add rules to the positive rule set of the outbound
server, or specify FALSE to add rules to the negative rule set of the outbound server. If
the DBMS_XSTREAM_ADM package can manage the outbound server's capture process,
then rules are also added to this capture process's rule set.

The following examples add rules to the configuration of an outbound server named xout.

Example 5-14 Adding Rules for the hr Schema, oe.orders Table, and oe.order_items
Table to the Positive Rule Set

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 table_names => 'oe.orders, oe.order_items',
 schema_names => 'hr',
 add => TRUE,
 inclusion_rule => TRUE);
END;
/

Example 5-15 Adding Rules for the hr Schema to the Negative Rule Set

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 table_names => NULL,
 schema_names => 'hr',
 add => TRUE,
 inclusion_rule => FALSE);
END;
/

See Also:

• "Rules and Rule Sets"

• Oracle Database PL/SQL Packages and Types Reference

Adding Subset Rules to an Outbound Server's Positive Rule Set
You can add subset rules to an outbound server's positive rule set using the
ADD_SUBSET_OUTBOUND_RULES procedure in the DBMS_XSTREAM_ADM package.

The ADD_SUBSET_OUTBOUND_RULES procedure only adds rules for DML changes to an outbound
server's positive rule set. It does not add rules for DDL changes, and it does not add rules to a
capture process's rule set.

To add subset rules to an outbound server's positive rule set:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ADD_SUBSET_OUTBOUND_RULES procedure, and specify the following parameters:

• server_name - Specify the name of the outbound server.

Chapter 5
Managing Rules for an XStream Out Configuration

5-18

• table_name - Specify the table for which you want to capture and stream a subset of
data.

• condition - Specify the subset condition, which is similar to the WHERE clause in a SQL
statement, to stream changes to a subset of rows in the table.

• column_list - Specify the subset of columns to keep or discard, or specify NULL to
keep all of the columns.

• keep - Specify TRUE to keep the columns listed in the column_list parameter, or
specify FALSE to discard the columns in the column_list parameter.

When column_list is non-NULL and keep is set to TRUE, the procedure creates a keep
columns declarative rule-based transformation for the columns listed in column_list.

When column_list is non-NULL and keep is set to FALSE, the procedure creates a delete
column declarative rule-based transformation for each column listed in column_list.

3. If subset rules should also be added to the rule set of a capture process or propagation
that streams row LCRs to the outbound server, then use the ADD_*_RULES procedures in
the DBMS_XSTREAM_ADM package to add them.

Example 5-16 Adding Rules That Stream Changes to a Subset of Rows in a Table

The following procedure creates rules that only evaluate to TRUE for row changes where the
department_id value is 40 in the hr.employees table:

DECLARE
 cols DBMS_UTILITY.LNAME_ARRAY;
BEGIN
 cols(1) := 'employee_id';
 cols(2) := 'first_name';
 cols(3) := 'last_name';
 cols(4) := 'email';
 cols(5) := 'phone_number';
 cols(6) := 'hire_date';
 cols(7) := 'job_id';
 cols(8) := 'salary';
 cols(9) := 'commission_pct';
 cols(10) := 'manager_id';
 cols(11) := 'department_id';
 DBMS_XSTREAM_ADM.ADD_SUBSET_OUTBOUND_RULES(
 server_name => 'xout',
 table_name => 'hr.employees',
 condition => 'department_id=40',
 column_list => cols);
END;
/

Example 5-17 Adding Rules That Stream Changes to a Subset of Rows and Columns
in a Table

The following procedure creates rules that only evaluate to TRUE for row changes where the
department_id value is 40 for the hr.employees table. The procedure also creates delete
column declarative rule-based transformations for the salary and commission_pct columns.

BEGIN
 DBMS_XSTREAM_ADM.ADD_SUBSET_OUTBOUND_RULES(
 server_name => 'xout',
 table_name => 'hr.employees',
 condition => 'department_id=40',
 column_list => 'salary,commission_pct',
 keep => FALSE);

Chapter 5
Managing Rules for an XStream Out Configuration

5-19

END;
/

See Also:

• "Rules and Rule Sets"

• Oracle Database PL/SQL Packages and Types Reference

• "Declarative Rule-Based Transformations"

Adding Rules With Custom Conditions to XStream Out Components
Some of the procedures that create rules in the DBMS_XSTREAM_ADM package include an
and_condition parameter. This parameter enables you to add conditions to system-created
rules.

The condition specified by the and_condition parameter is appended to the system-created
rule condition using an AND clause in the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr.

To add a rule with a custom condition to an XStream Out component:

1. Connect to the database running the XStream Out component as the XStream
administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run an ADD_*_RULES procedure and specify the custom condition in the and_condition
parameter.

See "System-Created Rules and XStream" for information about these procedures.

If you are specifying an LCR member subprogram that is dependent on the LCR type (row or
DDL), then ensure that this procedure only generates the appropriate rule. Specifically, if you
specify an LCR member subprogram that is valid only for row LCRs, then specify TRUE for the
include_dml parameter and FALSE for the include_ddl parameter. If you specify an LCR
member subprogram that is valid only for DDL LCRs, then specify FALSE for the include_dml
parameter and TRUE for the include_ddl parameter.

For example, the GET_OBJECT_TYPE member function only applies to DDL LCRs. Therefore, if
you use this member function in an and_condition, then specify FALSE for the include_dml
parameter and TRUE for the include_ddl parameter.

Example 5-18 Adding a Table Rule With a Custom Condition

This example specifies that the table rules generated by the ADD_TABLE_RULES procedure
evaluate to TRUE only if the table is hr.departments, the source database is
dbs1.example.com, and the tag value is the hexadecimal equivalent of '02'.

BEGIN
 DBMS_XSTREAM_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',

Chapter 5
Managing Rules for an XStream Out Configuration

5-20

 streams_type => 'capture',
 streams_name => 'xout_capture',
 queue_name => 'xstream_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE,
 and_condition => ':lcr.get_tag() = HEXTORAW(''02'')');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
LCR member subprograms

Removing Rules from an XStream Out Configuration
You can remove rules from an XStream Out configuration.

• Removing Schema Rules and Table Rules From an XStream Out Configuration
You can remove schema rules and table rules from an XStream Out configuration using
the ALTER_OUTBOUND procedure in the DBMS_XSTREAM_ADM package. The ALTER_OUTBOUND
procedure removes rules for both DML and DDL changes.

• Removing Subset Rules from an Outbound Server's Positive Rule Set
You can remove subset rules from an outbound server's positive rule set using the
REMOVE_SUBSET_OUTBOUND_RULES procedure in the DBMS_XSTREAM_ADM package.

• Removing Rules Using the REMOVE_RULE Procedure
You can remove a single rule from an XStream Out component's rule set or all rules from
the rule set using the REMOVE_RULE procedure in the DBMS_XSTREAM_ADM package.

Removing Schema Rules and Table Rules From an XStream Out Configuration
You can remove schema rules and table rules from an XStream Out configuration using the
ALTER_OUTBOUND procedure in the DBMS_XSTREAM_ADM package. The ALTER_OUTBOUND procedure
removes rules for both DML and DDL changes.

When you follow the instructions in this section, the ALTER_OUTBOUND procedure always
removes rules for the specified schemas and tables from one of the outbound server's rule
sets. If the DBMS_XSTREAM_ADM package can manage the outbound server's capture process,
then the ALTER_OUTBOUND procedure also removes rules for the specified schemas and tables
from one of the rule sets used by this capture process.

To determine whether the DBMS_XSTREAM_ADM package can manage the outbound server's
capture process, see "Checking Whether the DBMS_XSTREAM_ADM Package Can Manage
a Capture Process". If the DBMS_XSTREAM_ADM package cannot manage the outbound server's
capture process, then the ALTER_OUTBOUND procedure removes rules from the outbound
server's rule set only. In this case, if you must remove the rules for same schemas and tables
from the capture process's rule set as well, then see "Removing Rules Using the
REMOVE_RULE Procedure" for instructions.

Chapter 5
Managing Rules for an XStream Out Configuration

5-21

In addition, if the capture process is running on a different database than the outbound server,
then remove the schema and table rules from the propagation that sends LCRs to the
outbound server's database. See "Removing Rules Using the REMOVE_RULE Procedure" for
instructions.

To remove schema rules and table rules from an XStream Out configuration:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

• server_name - Specify the name of the outbound server.

• table_names - Specify the tables for which to remove rules, or specify NULL to remove
no table rules.

• schema_name - Specify the schemas for which to remove rules, or specify NULL to
remove no schema rules.

• add - Specify FALSE so that the rules are removed. (Rules are added if you specify
TRUE.)

• inclusion_rule - Specify TRUE to remove rules from the positive rule set of the
outbound server, or specify FALSE to remove rules from the negative rule set of the
outbound server. If the DBMS_XSTREAM_ADM package can manage the outbound server's
capture process, then rules are also removed from this capture process's rule set.

The following examples remove rules from the configuration of an outbound server named
xout.

Example 5-19 Removing Rules for the hr Schema, oe.orders Table, and oe.order_items
Table from the Positive Rule Set

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 table_names => 'oe.orders, oe.order_items',
 schema_names => 'hr',
 add => FALSE,
 inclusion_rule => TRUE);
END;
/

Example 5-20 Removing Rules for the hr Schema from the Negative Rule Set

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 table_names => NULL,
 schema_names => 'hr',
 add => FALSE,
 inclusion_rule => FALSE);
END;
/

Chapter 5
Managing Rules for an XStream Out Configuration

5-22

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• "Declarative Rule-Based Transformations"

Removing Subset Rules from an Outbound Server's Positive Rule Set
You can remove subset rules from an outbound server's positive rule set using the
REMOVE_SUBSET_OUTBOUND_RULES procedure in the DBMS_XSTREAM_ADM package.

The REMOVE_SUBSET_OUTBOUND_RULES procedure only removes rules for DML changes. It does
not remove rules for DDL changes, and it does not remove rules from a capture process's rule
set.

To remove subset rules from an outbound server's positive rule set:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Determine the rule names for the subset rules by running the following query:

SELECT RULE_OWNER, SUBSETTING_OPERATION, RULE_NAME
 FROM ALL_XSTREAM_RULES
 WHERE SUBSETTING_OPERATION IS NOT NULL;

3. Run the REMOVE_SUBSET_OUTBOUND_RULES procedure, and specify the rules to remove from
the list of rules displayed in Step 2.

For example, assume that Step 2 returned the following results:

RULE_OWNER SUBSET RULE_NAME
------------------------------ ------ ------------------------------
XSTRMADMIN INSERT EMPLOYEES71
XSTRMADMIN UPDATE EMPLOYEES72
XSTRMADMIN DELETE EMPLOYEES73

4. If subset rules should also be removed from the rule set of a capture process and
propagation that streams row LCRs to the outbound server, then see "Removing Rules
Using the REMOVE_RULE Procedure" for information about removing rules.

Example 5-21 Removing Subset Rules From an Outbound Server's Positive Rule Set

To remove these rules from the positive rule set of the xout outbound server, run the following
procedure:

BEGIN
 DBMS_XSTREAM_ADM.REMOVE_SUBSET_OUTBOUND_RULES(
 server_name => 'xout',
 insert_rule_name => 'xstrmadmin.employees71',
 update_rule_name => 'xstrmadmin.employees72',
 delete_rule_name => 'xstrmadmin.employees73');
END;
/

Chapter 5
Managing Rules for an XStream Out Configuration

5-23

See Also:

Oracle Database PL/SQL Packages and Types Reference

Removing Rules Using the REMOVE_RULE Procedure
You can remove a single rule from an XStream Out component's rule set or all rules from the
rule set using the REMOVE_RULE procedure in the DBMS_XSTREAM_ADM package.

The XStream Out component can be a capture process, propagation, or outbound server.

The REMOVE_RULE procedure only can remove rules for both DML and DDL changes, and it can
remove rules from either the component's positive rule set or negative rule set.

To remove a single rule or all rules from an outbound server's rule set:

1. Connect to the database running the XStream Out component as the XStream
administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Determine the rule name and XStream component name.

See "Monitoring XStream Rules" for a query that displays this information.

3. Run the REMOVE_RULE procedure.

The inclusion_rule parameter is set to TRUE to indicate the positive rule set.

The rule_name parameter is set to NULL to specify that all of the rules are removed from the
rule set, and the inclusion_rule parameter is set to FALSE to indicate the negative rule set.

Example 5-22 Removing a Rule From an Outbound Server's Rule Set

This example removes a rule named orders12 from positive rule set of the xout outbound
server.

BEGIN
 DBMS_XSTREAM_ADM.REMOVE_RULE(
 rule_name => 'orders12',
 streams_type => 'APPLY',
 streams_name => 'xout',
 inclusion_rule => TRUE);
/

Example 5-23 Removing All of the Rules From an Outbound Server's Rule Set

This example removes all of the rules from the negative rule set of the xout outbound server.

BEGIN
 DBMS_XSTREAM_ADM.REMOVE_RULE(
 rule_name => NULL,
 streams_type => 'APPLY',
 streams_name => 'xout',
 inclusion_rule => FALSE);
/

Chapter 5
Managing Rules for an XStream Out Configuration

5-24

See Also:

Oracle Database PL/SQL Packages and Types Reference

Managing Declarative Rule-Based Transformations
Declarative rule-based transformations cover a set of common transformation scenarios for
row LCRs.

You can use the following procedures in the DBMS_XSTREAM_ADM package to manage declarative
rule-based transformations: ADD_COLUMN, DELETE_COLUMN, KEEP_COLUMNS, RENAME_COLUMN,
RENAME_SCHEMA, and RENAME_TABLE.

• Adding Declarative Rule-Based Transformations
Examples illustrate adding declarative rule-based transformations to DML rules.

• Overwriting Existing Declarative Rule-Based Transformations
You can overwrite existing declarative rule-based transformations using the
DBMS_XSTREAM_ADM package.

• Removing Declarative Rule-Based Transformations
To remove a declarative rule-based transformation from a rule, use the same procedure
used to add the transformation, but specify REMOVE for the operation parameter.

See Also:

"Declarative Rule-Based Transformations"

Adding Declarative Rule-Based Transformations
Examples illustrate adding declarative rule-based transformations to DML rules.

Note:

Declarative rule-based transformations can be specified for DML rules only. They
cannot be specified for DDL rules.

• Adding a Declarative Rule-Based Transformation That Renames a Table
Use the RENAME_TABLE procedure in the DBMS_XSTREAM_ADM package to add a declarative
rule-based transformation that renames a table in a row LCR.

• Adding a Declarative Rule-Based Transformation That Adds a Column
Use the ADD_COLUMN procedure in the DBMS_XSTREAM_ADM package to add a declarative
rule-based transformation that adds a column to a row in a row LCR.

Chapter 5
Managing Declarative Rule-Based Transformations

5-25

Adding a Declarative Rule-Based Transformation That Renames a Table
Use the RENAME_TABLE procedure in the DBMS_XSTREAM_ADM package to add a declarative rule-
based transformation that renames a table in a row LCR.

The example in this section adds a declarative rule-based transformation to the jobs12 rule in
the xstrmadmin schema.

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following procedure:

BEGIN
 DBMS_XSTREAM_ADM.RENAME_TABLE(
 rule_name => 'xstrmadmin.jobs12',
 from_table_name => 'hr.jobs',
 to_table_name => 'hr.assignments',
 step_number => 0,
 operation => 'ADD');
END;
/

The declarative rule-based transformation added by this procedure renames the table hr.jobs
to hr.assignments in a row LCR when the rule jobs12 evaluates to TRUE for the row LCR. If
more than one declarative rule-based transformation is specified for the jobs12 rule, then this
transformation follows default transformation ordering because the step_number parameter is
set to 0 (zero). In addition, the operation parameter is set to ADD to indicate that the
transformation is being added to the rule, not removed from it.

The RENAME_TABLE procedure can also add a transformation that renames the schema in
addition to the table. For example, in the previous example, to specify that the schema should
be renamed to oe, specify oe.assignments for the to_table_name parameter.

Adding a Declarative Rule-Based Transformation That Adds a Column
Use the ADD_COLUMN procedure in the DBMS_XSTREAM_ADM package to add a declarative rule-
based transformation that adds a column to a row in a row LCR.

The example in this section adds a declarative rule-based transformation to the employees35
rule in the xstrmadmin schema.

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following procedure:

BEGIN
 DBMS_XSTREAM_ADM.ADD_COLUMN(
 rule_name => 'xstrmadmin.employees35',
 table_name => 'hr.employees',
 column_name => 'birth_date',
 column_value => ANYDATA.ConvertDate(NULL),
 value_type => 'NEW',
 step_number => 0,
 operation => 'ADD');

Chapter 5
Managing Declarative Rule-Based Transformations

5-26

END;
/

The declarative rule-based transformation added by this procedure adds a birth_date column
of data type DATE to an hr.employees table row in a row LCR when the rule employees35
evaluates to TRUE for the row LCR.

Notice that the ANYDATA.ConvertDate function specifies the column type and the column value.
In this example, the added column value is NULL, but a valid date can also be specified. Use
the appropriate ANYDATA function for the column being added. For example, if the data type of
the column being added is NUMBER, then use the ANYDATA.ConvertNumber function.

The value_type parameter is set to NEW to indicate that the column is added to the new values
in a row LCR. You can also specify OLD to add the column to the old values.

If more than one declarative rule-based transformation is specified for the employees35 rule,
then the transformation follows default transformation ordering because the step_number
parameter is set to 0 (zero). In addition, the operation parameter is set to ADD to indicate that
the transformation is being added, not removed.

Note:

The ADD_COLUMN procedure is overloaded. A column_function parameter can specify
that the current system date or time stamp is the value for the added column. The
column_value and column_function parameters are mutually exclusive.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
AnyData type functions

Overwriting Existing Declarative Rule-Based Transformations
You can overwrite existing declarative rule-based transformations using the DBMS_XSTREAM_ADM
package.

When the operation parameter is set to ADD in a procedure that adds a declarative rule-based
transformation, an existing declarative rule-based transformation is overwritten if the
parameters in the following list match the existing transformation parameters:

• ADD_COLUMN procedure: rule_name, table_name, column_name, and step_number
parameters

• DELETE_COLUMN procedure: rule_name, table_name, column_name, and step_number
parameters

• KEEP_COLUMNS procedure: rule_name, table_name, column_list, and step_number
parameters, or rule_name, table_name, column_table, and step_number parameters (The
column_list and column_table parameters are mutually exclusive.)

• RENAME_COLUMN procedure: rule_name, table_name, from_column_name, and step_number
parameters

Chapter 5
Managing Declarative Rule-Based Transformations

5-27

• RENAME_SCHEMA procedure: rule_name, from_schema_name, and step_number parameters

• RENAME_TABLE procedure: rule_name, from_table_name, and step_number parameters

To overwrite an existing rule-based transformation:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the appropriate procedure in the DBMS_XSTREAM_ADM package, and specify the
appropriate parameters.

Example 5-24 Overwriting a RENAME_COLUMN Declarative Rule-Based
Transformation

Suppose an existing declarative rule-based transformation was creating by running the
following procedure:

BEGIN
 DBMS_XSTREAM_ADM.RENAME_COLUMN(
 rule_name => 'departments33',
 table_name => 'hr.departments',
 from_column_name => 'manager_id',
 to_column_name => 'lead_id',
 value_type => 'NEW',
 step_number => 0,
 operation => 'ADD');
END;
/

Running the following procedure overwrites this existing declarative rule-based transformation:

BEGIN
 DBMS_XSTREAM_ADM.RENAME_COLUMN(
 rule_name => 'departments33',
 table_name => 'hr.departments',
 from_column_name => 'manager_id',
 to_column_name => 'lead_id',
 value_type => '*',
 step_number => 0,
 operation => 'ADD');
END;
/

In this case, the value_type parameter in the declarative rule-based transformation was
changed from NEW to *. That is, in the original transformation, only new values were renamed in
row LCRs, but, in the new transformation, both old and new values are renamed in row LCRs.

Removing Declarative Rule-Based Transformations
To remove a declarative rule-based transformation from a rule, use the same procedure used
to add the transformation, but specify REMOVE for the operation parameter.

To remove a declarative rule-based transformation:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Chapter 5
Managing Declarative Rule-Based Transformations

5-28

2. Run the appropriate procedure in the DBMS_XSTREAM_ADM package and specify REMOVE for
the operation parameter.

When the operation parameter is set to REMOVE in any of the declarative transformation
procedures listed in "Managing Declarative Rule-Based Transformations", the other
parameters in the procedure are optional, excluding the rule_name parameter. If these optional
parameters are set to NULL, then they become wildcards.

The RENAME_TABLE procedure in the previous example behaves in the following way when one
or more of the optional parameters are set to NULL:

Table 5-1 Behavior of Optional Parameters in the RENAME_TABLE Procedure

from_table_name
Parameter

to_table_name
Parameter

step_number
Parameter

Result

NULL NULL NULL Remove all rename table
transformations for the specified rule

non-NULL NULL NULL Remove all rename table
transformations with the specified
from_table_name for the specified
rule

NULL non-NULL NULL Remove all rename table
transformations with the specified
to_table_name for the specified rule

NULL NULL non-NULL Remove all rename table
transformations with the specified
step_number for the specified rule

non-NULL non-NULL NULL Remove all rename table
transformations with the specified
from_table_name and
to_table_name for the specified rule

NULL non-NULL non-NULL Remove all rename table
transformations with the specified
to_table_name and step_number for
the specified rule

non-NULL NULL non-NULL Remove all rename table
transformations with the specified
from_table_name and step_number
for the specified rule

The other declarative transformation procedures work in a similar way when optional
parameters are set to NULL and the operation parameter is set to REMOVE.

Example 5-25 Removing a RENAME_TABLE Declarative Rule-Based Transformation

To remove the transformation added in "Adding a Declarative Rule-Based Transformation That
Renames a Table", run the following procedure:

BEGIN
 DBMS_XSTREAM_ADM.RENAME_TABLE(
 rule_name => 'strmadmin.jobs12',
 from_table_name => 'hr.jobs',
 to_table_name => 'hr.assignments',
 step_number => 0,
 operation => 'REMOVE');
END;
/

Chapter 5
Managing Declarative Rule-Based Transformations

5-29

Dropping Components in an XStream Out Configuration
To drop an outbound server, use the DROP_OUTBOUND procedure in the DBMS_XSTREAM_ADM
package.

This procedure always drops the specified outbound server. This procedure also drops the
queue used by the outbound server if both of the following conditions are met:

• The queue was created by the ADD_OUTBOUND or CREATE_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

• The outbound server is the only subscriber to the queue.

If either one of the preceding conditions is not met, then the DROP_OUTBOUND procedure only
drops the outbound server. It does not drop the queue.

This procedure also drops the capture process for the outbound server if both of the following
conditions are met:

• The procedure can drop the outbound server's queue.

• The DBMS_XSTREAM_ADM package can manage the outbound server's capture process. See
"Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture
Process".

If the procedure can drop the queue but cannot manage the capture process, then it drops the
queue without dropping the capture process.

To drop an outbound server:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the DROP_OUTBOUND procedure.

Example 5-26 Dropping an Outbound Server

To drop an outbound server named xout, run the following procedure:

exec DBMS_XSTREAM_ADM.DROP_OUTBOUND('xout');

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DROP_OUTBOUND procedure

Chapter 5
Dropping Components in an XStream Out Configuration

5-30

Removing an XStream Out Configuration
You run the REMOVE_XSTREAM_CONFIGURATION procedure in the DBMS_XSTREAM_ADM package to
remove an XStream Out configuration in a multitenant container database (CDB) or non-CDB.

Note:

Run this procedure only if you are sure you want to remove the entire XStream Out
configuration at a database. This procedure also removes all XStream In
components, Oracle GoldenGate components, and Oracle Replication components
from the database.

To remove the XStream Out configuration:

1. Connect to the outbound server database as the XStream administrator.

In a CDB, connect to the CDB root.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the REMOVE_XSTREAM_CONFIGURATION procedure.

In a non-CDB, run the following procedure:

EXEC DBMS_XSTREAM_ADM.REMOVE_XSTREAM_CONFIGURATION();

In a CDB, ensure that all containers are open in read/write mode and run the following
procedure:

EXEC DBMS_XSTREAM_ADM.REMOVE_XSTREAM_CONFIGURATION(container => 'ALL');

Setting the container parameter to ALL removes the XStream configuration from all
containers in the CDB.

3. Drop the XStream administrator at the database, if possible.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about the actions performed by the REMOVE_XSTREAM_CONFIGURATION procedure

Chapter 5
Removing an XStream Out Configuration

5-31

6
Monitoring XStream Out

You can monitor an XStream Out configuration.

Note:

Whenever possible, this chapter uses ALL_ static data dictionary views for query
examples. In some cases, information in the ALL_ views is more limited than the
information in the DBA_ views.

• About Monitoring XStream Out
You can query data dictionary views related to XStream for information about XStream
components and statistics related to XStream.

• Monitoring Session Information About XStream Out Components
An example illustrates monitoring session information about XStream Out components.

• Monitoring the History of Events for XStream Out Components
An example illustrates monitoring the history of events for XStream components by
querying the DBA_REPLICATION_PROCESS_EVENTS view.

• Monitoring an Outbound Server
Sample queries illustrate how to monitor an outbound server.

• Monitoring the Capture Process for an Outbound Server
Sample queries illustrate how to monitor the capture process for an outbound server.

• Monitoring XStream Rules
A sample query illustrates how to monitor XStream rules.

• Monitoring Declarative Rule-Based Transformations
A sample query illustrates how to monitor declarative rule-based transformations.

See Also:

• "XStream Out Concepts"

• "XStream Use Cases"

• "Configuring XStream Out"

• "Troubleshooting XStream Out"

About Monitoring XStream Out
You can query data dictionary views related to XStream for information about XStream
components and statistics related to XStream.

6-1

The main interface for monitoring XStream database components is SQL*Plus, although you
can monitor some aspects of an XStream configuring using Oracle Enterprise Manager Cloud
Control. For example, you can view information about capture processes, outbound servers,
inbound servers, and rules in Oracle Enterprise Manager Cloud Control.

In SQL*Plus, trusted XStream administrators can query the ALL_ and DBA_ views. Untrusted
XStream administrators can query the ALL_ views only.

This chapter also describes using the Oracle Replication Performance Advisor to monitor an
XStream configuration. The Oracle Replication Performance Advisor consists a collection of
data dictionary views. The Oracle Replication Performance Advisor enables you to monitor the
topology and performance of an XStream environment.

Monitoring Session Information About XStream Out Components
An example illustrates monitoring session information about XStream Out components.

The query in this section displays the following session information about each XStream
component in a database:

• The XStream component name

• The session identifier

• The serial number

• The operating system process identification number

• The XStream program name

This query is especially useful for determining the session information for specific XStream
components when there are multiple XStream Out components configured in a database.

To display this information for each XStream component in a database:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN ACTION HEADING 'XStream Component' FORMAT A30
COLUMN SID HEADING 'Session ID' FORMAT 99999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 99999999
COLUMN PROCESS HEADING 'Operating System|Process ID' FORMAT A17
COLUMN PROCESS_NAME HEADING 'XStream|Program|Name' FORMAT A7

SELECT /*+PARAM('_module_action_old_length',0)*/ ACTION,
 SID,
 SERIAL#,
 PROCESS,
 SUBSTR(PROGRAM,INSTR(PROGRAM,'(')+1,4) PROCESS_NAME
 FROM V$SESSION
 WHERE MODULE ='XStream';

Your output for an XStream Out configuration looks similar to the following:

 Session XStream
 Serial Operating System Program
XStream Component Session ID Number Process ID Name
------------------------------ ---------- --------- ----------------- -------

Chapter 6
Monitoring Session Information About XStream Out Components

6-2

XOUT - Apply Coordinator 21 9 27222 AP01
CAP$_XOUT_18 - Capture 28 33 27248 CP01
XOUT - Apply Server 97 43 27226 AS00
XOUT - Apply Reader 105 5 27224 AS01
XOUT - Apply Server 112 27 27342 TNS
XOUT - Propagation Send/Rcv 117 5 27250 CS00

The row that shows TNS for the XStream program name contains information about the session
for the XStream client application that is attached to the outbound server.

See Also:

Oracle Database Reference for more information about the V$SESSION view

Monitoring the History of Events for XStream Out Components
An example illustrates monitoring the history of events for XStream components by querying
the DBA_REPLICATION_PROCESS_EVENTS view.

For example, the view can display when a component was created or started. It can also
display when a component parameter was changed. If the component encountered an error,
the view can display information about the error.

The query in this topic displays the following information about XStream Out component
events:

• The XStream component name

• The component type

• The event name

• The description of the event

• The event time

To display this information for each XStream Out component in a database:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN STREAMS_NAME FORMAT A12
COLUMN PROCESS_TYPE FORMAT A17
COLUMN EVENT_NAME FORMAT A10
COLUMN DESCRIPTION FORMAT A20
COLUMN EVENT_TIME FORMAT A15

SELECT STREAMS_NAME,
 PROCESS_TYPE,
 EVENT_NAME,
 DESCRIPTION,
 EVENT_TIME
 FROM DBA_REPLICATION_PROCESS_EVENTS;

Your output for an XStream Out configuration looks similar to the following:

Chapter 6
Monitoring the History of Events for XStream Out Components

6-3

STREAMS_NAME PROCESS_TYPE EVENT_NAME DESCRIPTION EVENT_TIME
------------ ----------------- ---------- -------------------- ---------------
CAP$_XOUT_7 CAPTURE CREATE SUCCESS 10-NOV-15 12.30
 .13.845080 PM
XOUT APPLY COORDINATOR CREATE SUCCESS 10-NOV-15 12.30
 .16.841110 PM
"CAP$_XOUT_7 CAPTURE ALTER RULE_SET_NAME => "SY 10-NOV-15 12.30
" S"."RULESET$_12" .17.373285 PM
"XOUT" APPLY COORDINATOR ALTER RULE_SET_NAME => "SY 10-NOV-15 12.30
 S"."RULESET$_19" .18.817718 PM
"CAP$_XOUT_7 CAPTURE PARAMETER Change parameter 'XO 10-NOV-15 12.30
" CHANGE UT_CLIENT_EXISTS' to .19.100361 PM
 value 'Y'
CAP$_XOUT_7 CAPTURE START SUCCESS 10-NOV-15 12.30
 .19.434029 PM
XOUT APPLY COORDINATOR START SUCCESS 10-NOV-15 12.30
 .19.543379 PM
XOUT APPLY READER START SUCCESS 10-NOV-15 12.30
 .20.584332 PM
XOUT APPLY SERVER START SUCCESS 10-NOV-15 12.30
 .20.593923 PM
CAP$_XOUT_7 CAPTURE SERVER START SUCCESS 10-NOV-15 12.30
 .20.926374 PM

Related Topics

• Oracle Database Reference

Monitoring an Outbound Server
Sample queries illustrate how to monitor an outbound server.

With XStream Out, an Oracle Apply process functions as an outbound server. Therefore, you
can also use the data dictionary views for apply processes to monitor outbound servers. In
addition, an XStream Out environment includes capture processes and queues, and might
include other components, such as propagations, rules, and rule-based transformations.

• Displaying General Information About an Outbound Server
A sample query illustrates how to display general information about an outbound server.

• Displaying Status and Error Information for an Outbound Server
A sample query illustrates how to display status and error information for an outbound
server.

• Displaying Information About an Outbound Server's Current Transaction
A sample query illustrates how to display information about an outbound server’s current
transaction.

• Displaying Statistics for an Outbound Server
An example illustrates how to display statistics for an outbound server.

• Displaying the Processed Low Position for an Outbound Server
A sample query illustrates how to display the processed low position for an outbound
server.

• Determining the Process Information for an Outbound Server
A sample query illustrates how to determine the process information for an outbound
server.

• Displaying the Apply Parameter Settings for an Outbound Server
A sample query illustrates how to display the apply parameter settings for an outbound
server.

Chapter 6
Monitoring an Outbound Server

6-4

Displaying General Information About an Outbound Server
A sample query illustrates how to display general information about an outbound server.

You can display the following information for an outbound server by running the query in this
section:

• The outbound server name

• The name of the connect user for the outbound server

The connect user is the user who can attach to the outbound server to retrieve the logical
change record (LCR) stream. The client application must attach to the outbound server as
the specified connect user.

• The name of the capture user for the capture process that captures changes for the
outbound server to process

• The name of the capture process that captures changes for the outbound server to
process

• The name of the source database for the captured changes

• The owner of the queue used by the outbound server

• The name of the queue used by the outbound server

The ALL_XSTREAM_OUTBOUND view contains information about the capture user, the capture
process, and the source database in either of the following cases:

• The outbound server was created using the CREATE_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

• The outbound server was created using the ADD_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package, and the capture process for the outbound server runs on the
same database as the outbound server.

If the outbound server was created using the ADD_OUTBOUND procedure, and the capture
process for the outbound server is on a different database, then the ALL_XSTREAM_OUTBOUND
view does not contain information about the capture user, the capture process, or the source
database.

To display this general information about an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound|Server|Name' FORMAT A10
COLUMN CONNECT_USER HEADING 'Connect|User' FORMAT A10
COLUMN CAPTURE_USER HEADING 'Capture|User' FORMAT A10
COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A12
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A11
COLUMN QUEUE_OWNER HEADING 'Queue|Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A10

SELECT SERVER_NAME,
 CONNECT_USER,
 CAPTURE_USER,
 CAPTURE_NAME,

Chapter 6
Monitoring an Outbound Server

6-5

 SOURCE_DATABASE,
 QUEUE_OWNER,
 QUEUE_NAME
 FROM ALL_XSTREAM_OUTBOUND;

Your output looks similar to the following:

Outbound Capture
Server Connect Capture Process Source Queue Queue
Name User User Name Database Owner Name
---------- ---------- ---------- ------------ ----------- ---------- ----------
XOUT XSTRMADMIN XSTRMADMIN CAP$_XOUT_18 XOUT.EXAMPL XSTRMADMIN Q$_XOUT_19
 E.COM

See Also:

Oracle Database Reference

Displaying Status and Error Information for an Outbound Server
A sample query illustrates how to display status and error information for an outbound server.

The DBA_APPLY view shows XStream Out in the PURPOSE column for an apply process that is
functioning as an outbound server.

To display detailed information about an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN APPLY_NAME HEADING 'Outbound Server|Name' FORMAT A15
COLUMN STATUS HEADING 'Status' FORMAT A8
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 9999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT APPLY_NAME,
 STATUS,
 ERROR_NUMBER,
 ERROR_MESSAGE
 FROM DBA_APPLY
 WHERE PURPOSE = 'XStream Out';

Your output looks similar to the following:

Outbound Server
Name Status Error Number Error Message
--------------- -------- ------------ --
XOUT ENABLED

This output shows that XOUT is an apply process that is functioning as an outbound server.

Chapter 6
Monitoring an Outbound Server

6-6

Note:

This example queries the DBA_APPLY view. This view enables trusted users to see
information for all apply users in the database. Untrusted users must query the
ALL_APPLY view, which limits information to the current user.

See Also:

Oracle Database Reference

Displaying Information About an Outbound Server's Current Transaction
A sample query illustrates how to display information about an outbound server’s current
transaction.

The V$XSTREAM_OUTBOUND_SERVER view contains the following information about the transaction
currently being processed by an XStream outbound server:

• The name of the outbound server

• The transaction ID of the transaction currently being processed

• Commit system change number (SCN) of the transaction currently being processed

• Commit position of the transaction currently being processed

• The position of the last LCR sent to the XStream client application

• The message number of the current LCR being processed by the outbound server

Run this query to determine how many LCRs an outbound server has processed in a specific
transaction. You can query the TOTAL_MESSAGE_COUNT column in the V$XSTREAM_TRANSACTION
view to determine the total number of LCRs in a transaction.

To display information about an outbound server's current transaction:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound|Server|Name' FORMAT A10
COLUMN 'Transaction ID' HEADING 'Transaction|ID' FORMAT A11
COLUMN COMMITSCN HEADING 'Commit SCN' FORMAT 9999999999999
COLUMN COMMIT_POSITION HEADING 'Commit Position' FORMAT A15
COLUMN LAST_SENT_POSITION HEADING 'Last Sent|Position' FORMAT A15
COLUMN MESSAGE_SEQUENCE HEADING 'Message|Number' FORMAT 999999999

SELECT SERVER_NAME,
 XIDUSN ||'.'||
 XIDSLT ||'.'||
 XIDSQN "Transaction ID",
 COMMITSCN,
 COMMIT_POSITION,

Chapter 6
Monitoring an Outbound Server

6-7

 LAST_SENT_POSITION,
 MESSAGE_SEQUENCE
 FROM V$XSTREAM_OUTBOUND_SERVER;

Your output looks similar to the following:

Outbound
Server Transaction Last Sent Message
Name ID Commit SCN Commit Position Position Number
---------- ----------- -------------- --------------- --------------- ----------
XOUT 2.22.304 820023 0000000C82E4000 0000000C8337000 616
 000010000000100 000010000000100
 00000C82E400000 00000C833700000
 0010000000101 0010000000101

Note:

The COMMITSCN and COMMIT_POSITION values are populated only if the
COMMITTED_DATA_ONLY value is YES in V$XSTREAM_OUTBOUND_SERVER.

See Also:

Oracle Database Reference

Displaying Statistics for an Outbound Server
An example illustrates how to display statistics for an outbound server.

The V$XSTREAM_OUTBOUND_SERVER view contains the following statistics about the database
changes processed by an XStream outbound server:

• The name of the outbound server

• The number of transactions sent from the outbound server to the XStream client
application since the last time the client application attached to the outbound server

• The number of LCRs sent from the outbound server to the XStream client application since
the last time the client application attached to the outbound server

• The number of megabytes sent from the outbound server to the XStream client application
since the last time the client application attached to the outbound server

• The amount of time the outbound server spent sending LCRs to the XStream client
application since the last time the client application attached to the outbound server

• The message number of the last LCR sent by the outbound server to the XStream client
application

• Creation time at the source database of the last LCR sent by the outbound server to the
client application

To display statistics for an outbound server:

1. Connect to the database as the XStream administrator.

Chapter 6
Monitoring an Outbound Server

6-8

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound|Server|Name' FORMAT A8
COLUMN TOTAL_TRANSACTIONS_SENT HEADING 'Total|Trans|Sent' FORMAT 9999999
COLUMN TOTAL_MESSAGES_SENT HEADING 'Total|LCRs|Sent' FORMAT 9999999999
COLUMN BYTES_SENT HEADING 'Total|MB|Sent' FORMAT 99999999999999
COLUMN ELAPSED_SEND_TIME HEADING 'Time|Sending|LCRs|(in seconds)' FORMAT 99999999
COLUMN LAST_SENT_MESSAGE_NUMBER HEADING 'Last|Sent|Message|Number' FORMAT 99999999
COLUMN LAST_SENT_MESSAGE_CREATE_TIME HEADING 'Last|Sent|Message|Creation|Time'
FORMAT A9

SELECT SERVER_NAME,
 TOTAL_TRANSACTIONS_SENT,
 TOTAL_MESSAGES_SENT,
 (BYTES_SENT/1024)/1024 BYTES_SENT,
 (ELAPSED_SEND_TIME/100) ELAPSED_SEND_TIME,
 LAST_SENT_MESSAGE_NUMBER,
 TO_CHAR(LAST_SENT_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY')
 LAST_SENT_MESSAGE_CREATE_TIME
 FROM V$XSTREAM_OUTBOUND_SERVER;

Your output looks similar to the following:

 Last
 Time Last Sent
Outbound Total Total Total Sending Sent Message
Server Trans LCRs MB LCRs Message Creation
Name Sent Sent Sent (in seconds) Number Time
-------- -------- ----------- --------------- ------------ --------- ---------
XOUT 4028 256632 67 1 820023 10:11:00
 02/28/11

Note:

The TOTAL_TRANSACTIONS_SENT value is populated only if the COMMITTED_DATA_ONLY
value is YES in V$XSTREAM_OUTBOUND_SERVER.

See Also:

Oracle Database Reference

Displaying the Processed Low Position for an Outbound Server
A sample query illustrates how to display the processed low position for an outbound server.

For an outbound server, the processed low position is the position below which all transactions
have been committed and logged by the client application. The processed low position is
important when the outbound server or the client application is restarted.

You can display the following information about the processed low position for an outbound
server by running the query in this section:

Chapter 6
Monitoring an Outbound Server

6-9

• The outbound server name

• The name of the source database for the captured changes

• The processed low position, which indicates the low watermark position processed by the
client application

• The time when the processed low position was last updated by the outbound server

To display the processed low position for an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound|Server|Name' FORMAT A10
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A20
COLUMN PROCESSED_LOW_POSITION HEADING 'Processed|Low LCR|Position' FORMAT A30
COLUMN PROCESSED_LOW_TIME HEADING 'Processed|Low|Time' FORMAT A9

SELECT SERVER_NAME,
 SOURCE_DATABASE,
 PROCESSED_LOW_POSITION,
 TO_CHAR(PROCESSED_LOW_TIME,'HH24:MI:SS MM/DD/YY') PROCESSED_LOW_TIME
FROM ALL_XSTREAM_OUTBOUND_PROGRESS;

Your output looks similar to the following:

Outbound Processed Processed
Server Source Low LCR Low
Name Database Position Time
---------- -------------------- ------------------------------ ---------
XOUT XOUT.EXAMPLE.COM 0000000C84EA000000000000000000 10:18:37
 00000C84EA000000000000000001 02/28/11

See Also:

• Oracle Database Reference

• "The Processed Low Position and Restartability for XStream Out"

Determining the Process Information for an Outbound Server
A sample query illustrates how to determine the process information for an outbound server.

An outbound server is an Oracle background process. This background process runs only
when an XStream client application attaches to the outbound server. The
V$XSTREAM_OUTBOUND_SERVER view contains information about this background process.

You can display the following information for an outbound server by running the query in this
section:

• The outbound server name

• The session ID of the outbound server's session

• The serial number of the outbound server's session

Chapter 6
Monitoring an Outbound Server

6-10

• The process identification number of the operating-system process that sends LCRs to the
client application

To display the process information for an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound Server Name' FORMAT A20
COLUMN SID HEADING 'Session ID' FORMAT 9999999999
COLUMN SERIAL# HEADING 'Serial Number' FORMAT 9999999999
COLUMN SPID HEADING 'Operating-System Process' FORMAT A25

SELECT SERVER_NAME,
 SID,
 SERIAL#,
 SPID
 FROM V$XSTREAM_OUTBOUND_SERVER;

Your output looks similar to the following:

Outbound Server Name Session ID Serial Number Operating-System Process
-------------------- ----------- ------------- -------------------------
XOUT 18 19 15906

Note:

The V$XSTREAM_APPLY_SERVER view provides additional information about the
outbound server process, and information about the apply server background
processes used by the outbound server.

See Also:

Oracle Database Reference

Displaying the Apply Parameter Settings for an Outbound Server
A sample query illustrates how to display the apply parameter settings for an outbound server.

Apply parameters determine how an outbound server operates.

To display the apply parameter settings for an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

Chapter 6
Monitoring an Outbound Server

6-11

COLUMN APPLY_NAME HEADING 'Outbound Server|Name' FORMAT A15
COLUMN PARAMETER HEADING 'Parameter' FORMAT A30
COLUMN VALUE HEADING 'Value' FORMAT A22
COLUMN SET_BY_USER HEADING 'Set by|User?' FORMAT A10

SELECT APPLY_NAME,
 PARAMETER,
 VALUE,
 SET_BY_USER
 FROM ALL_APPLY_PARAMETERS a, ALL_XSTREAM_OUTBOUND o
 WHERE a.APPLY_NAME=o.SERVER_NAME
 ORDER BY a.PARAMETER;

Your output looks similar to the following:

Outbound Server Set by
Name Parameter Value User?
--------------- ------------------------------ ---------------------- ----------
XOUT ALLOW_DUPLICATE_ROWS N NO
XOUT APPLY_SEQUENCE_NEXTVAL Y NO
XOUT COMMIT_SERIALIZATION DEPENDENT_TRANSACTIONS NO
XOUT COMPARE_KEY_ONLY N NO
XOUT COMPUTE_LCR_DEP_ON_ARRIVAL N NO
XOUT DISABLE_ON_ERROR Y NO
XOUT DISABLE_ON_LIMIT N NO
XOUT EAGER_SIZE 9500 NO
XOUT ENABLE_XSTREAM_TABLE_STATS Y NO
XOUT EXCLUDETAG NO
XOUT EXCLUDETRANS NO
XOUT EXCLUDEUSER NO
XOUT EXCLUDEUSERID NO
XOUT GETAPPLOPS Y NO
XOUT GETREPLICATES N NO
XOUT GROUPTRANSOPS 10000 NO
XOUT HANDLECOLLISIONS N NO
XOUT IGNORE_TRANSACTION NO
XOUT MAXIMUM_SCN INFINITE NO
XOUT MAX_PARALLELISM 1 NO
XOUT MAX_SGA_SIZE INFINITE NO
XOUT OPTIMIZE_PROGRESS_TABLE Y NO
XOUT OPTIMIZE_SELF_UPDATES Y NO
XOUT PARALLELISM 1 NO
XOUT PRESERVE_ENCRYPTION Y NO
XOUT RTRIM_ON_IMPLICIT_CONVERSION Y NO
XOUT STARTUP_SECONDS 0 NO
XOUT SUPPRESSTRIGGERS Y NO
XOUT TIME_LIMIT INFINITE NO
XOUT TRACE_LEVEL 0 NO
XOUT TRANSACTION_LIMIT INFINITE NO
XOUT TXN_AGE_SPILL_THRESHOLD 900 NO
XOUT TXN_LCR_SPILL_THRESHOLD 10000 NO
XOUT WRITE_ALERT_LOG Y NO

Chapter 6
Monitoring an Outbound Server

6-12

Note:

The apply parameter OPTIMIZE_PROGRESS_TABLE for Oracle GoldenGate Integrated
Replicat, XStream In, and Logical Standby, is desupported in Oracle Database 19c.
Before you upgrade to Oracle Database 19, you must turn off this parameter. If
OPTIMIZE_PROGRESS_TABLE is set to ON, then stop apply gracefully, turn off the
parameter, and restart apply. For GoldenGate Apply and XStream, this parameter is
set to OFF by default.

Outbound servers ignore some apply parameter settings.

Note:

If the Set by User? column is NO for a parameter, then the parameter is set to its
default value. If the Set by User? column is YES for a parameter, then the parameter
was set by a user and might or might not be set to its default value.

See Also:

• "Setting an Apply Parameter for an Outbound Server"

• Oracle Database PL/SQL Packages and Types Reference for information about
apply parameters

Monitoring the Capture Process for an Outbound Server
Sample queries illustrate how to monitor the capture process for an outbound server.

• Displaying Change Capture Information About Each Capture Process
A sample query illustrates how to display change capture information about each capture
process.

• Displaying the Registered Redo Log Files for Each Capture Process
A sample query illustrates how to display information about the archived redo log files that
are registered for each capture process in a database.

• Displaying Redo Log Files That Are Required by Each Capture Process
A sample query illustrates how to display redo log files that are required by each capture
process.

• Displaying SCN Values for Each Redo Log File Used by Each Capture Process
A sample query illustrates how to display information about the SCN values for archived
redo log files that are registered for each capture process in a database.

• Listing the Parameter Settings for Each Capture Process
A sample query illustrates how to list the parameter settings for each capture process.

• Determining the Applied SCN for Each Capture Process
A sample query illustrates how to determine the applied SCN for each capture process.

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-13

• Displaying the Redo Log Scanning Latency for Each Capture Process
A sample query illustrates how to display the redo log scanning latency for each capture
process.

• Displaying the Extra Attributes Captured by a Capture Process
A sample query illustrates how to display the extra attributes captured by a capture
process.

Displaying Change Capture Information About Each Capture Process
A sample query illustrates how to display change capture information about each capture
process.

The query in this section displays the following information about each capture process in a
database:

• The name of the capture process.

• The current state of the capture process

See "Capture Process States".

• The total number of redo entries passed by LogMiner to the capture process for detailed
rule evaluation. A capture process converts a redo entry into an LCR and performs
detailed rule evaluation on the LCR when capture process prefiltering cannot discard the
change.

• The total number LCRs enqueued since the capture process was last started.

To display this change capture information about each capture process in a database:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN STATE HEADING 'State' FORMAT A25
COLUMN TOTAL_MESSAGES_CAPTURED HEADING 'Redo|Entries|Evaluated|In Detail' FORMAT
99999999999999
COLUMN TOTAL_MESSAGES_ENQUEUED HEADING 'Total|LCRs|Enqueued' FORMAT 99999999999999

SELECT CAPTURE_NAME,
 STATE,
 TOTAL_MESSAGES_CAPTURED,
 TOTAL_MESSAGES_ENQUEUED
 FROM V$XSTREAM_CAPTURE;

Your output looks similar to the following:

 Redo
 Entries Total
Capture Evaluated LCRs
Name State In Detail Enqueued
--------------- ------------------------- --------------- ---------------
CAP$_XOUT_1 WAITING FOR TRANSACTION 297666 261798

The number of redo entries scanned can be higher than the number of DML and DDL redo
entries captured by a capture process. Only DML and DDL redo entries that satisfy the rule
sets of a capture process are captured and sent to an outbound server. Also, the total LCRs
enqueued includes LCRs that contain transaction control statements. These row LCRs contain

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-14

directives such as COMMIT and ROLLBACK. Therefore, the total LCRs enqueued is a number
higher than the number of row changes and DDL changes enqueued by a capture process.

See Also:

"Row LCRs" for more information about transaction control statements

Displaying the Registered Redo Log Files for Each Capture Process
A sample query illustrates how to display information about the archived redo log files that are
registered for each capture process in a database.

The sample query displays information about these files for both local capture processes and
downstream capture processes.

The query displays the following information for each registered archived redo log file:

• The name of a capture process that uses the file

• The source database of the file

• The sequence number of the file

• The name and location of the file at the local site

• Whether the file contains the beginning of a data dictionary build

• Whether the file contains the end of a data dictionary build

To display the registered redo log files for each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A20
COLUMN DICTIONARY_BEGIN HEADING 'Dictionary|Build|Begin' FORMAT A10
COLUMN DICTIONARY_END HEADING 'Dictionary|Build|End' FORMAT A10

SELECT r.CONSUMER_NAME,
 r.SOURCE_DATABASE,
 r.SEQUENCE#,
 r.NAME,
 r.DICTIONARY_BEGIN,
 r.DICTIONARY_END
 FROM DBA_REGISTERED_ARCHIVED_LOG r, ALL_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;

Your output looks similar to the following:

Capture Dictionary Dictionary
Process Source Sequence Archived Redo Log Build Build
Name Database Number File Name Begin End
--------------- ---------- -------- -------------------- ---------- ----------

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-15

CAP$_XOUT_1 DBS2.EXAMP 15 /orc/dbs/log/arch2_1 NO NO
 LE.COM _15_478347508.arc
CAP$_XOUT_1 DBS2.EXAMP 16 /orc/dbs/log/arch2_1 NO NO
 LE.COM _16_478347508.arc
CAP$_XOUT_2 DBS1.EXAMP 45 /remote_logs/arch1_1 YES YES
 LE.COM _45_478347335.arc
CAP$_XOUT_2 DBS1.EXAMP 46 /remote_logs/arch1_1 NO NO
 LE.COM _46_478347335.arc
CAP$_XOUT_2 DBS1.EXAMP 47 /remote_logs/arch1_1 NO NO
 LE.COM _47_478347335.arc

Assume that this query was run at the dbs2.example.com database, and that cap$_xout_1 is a
local capture process, and cap$_xout_2 is a downstream capture process. The source
database for the cap$_xout_2 downstream capture process is dbs1.example.com. This query
shows that there are two registered archived redo log files for cap$_xout_1 and three
registered archived redo log files for cap$_xout_2. This query shows the name and location of
each of these files in the local file system.

See Also:

• "Capture Process Overview"

• "Local Capture and Downstream Capture"

• "SCN Values Related to a Capture Process" for information about dictionary
builds

Displaying Redo Log Files That Are Required by Each Capture Process
A sample query illustrates how to display redo log files that are required by each capture
process.

A capture process needs the redo log file that includes the required checkpoint SCN, and all
subsequent redo log files. You can query the REQUIRED_CHECKPOINT_SCN column in the
ALL_CAPTURE data dictionary view to determine the required checkpoint SCN for a capture
process. Redo log files before the redo log file that contains the required checkpoint SCN are
no longer needed by the capture process. These redo log files can be stored offline if they are
no longer needed for any other purpose. If you reset the start SCN for a capture process to a
lower value in the future, then these redo log files might be needed.

The query displays the following information for each required archived redo log file:

• The name of a capture process that uses the file

• The source database of the file

• The sequence number of the file

• The name and location of the required redo log file at the local site

To display this information about each required archive redo log file in a database, run the
following query:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-16

2. Run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Required|Archived Redo Log|File Name' FORMAT A40

SELECT r.CONSUMER_NAME,
 r.SOURCE_DATABASE,
 r.SEQUENCE#,
 r.NAME
 FROM DBA_REGISTERED_ARCHIVED_LOG r, ALL_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME AND
 r.NEXT_SCN >= c.REQUIRED_CHECKPOINT_SCN;

Your output looks similar to the following:

Capture Required
Process Source Sequence Archived Redo Log
Name Database Number File Name
--------------- ---------- -------- --
CAP$_XOUT_1 DBS2.EXAMP 16 /orc/dbs/log/arch2_1_16_478347508.arc
 LE.COM
CAP$_XOUT_2 DBS1.EXAMP 47 /remote_logs/arch1_1_47_478347335.arc
 LE.COM

See Also:

"Capture Process Overview"

Displaying SCN Values for Each Redo Log File Used by Each Capture
Process

A sample query illustrates how to display information about the SCN values for archived redo
log files that are registered for each capture process in a database.

This query displays the SCN values for these files for both local capture processes and
downstream capture processes. This query also identifies redo log files that are no longer
needed by any capture process at the local database.

The query displays the following information for each registered archived redo log file:

• The capture process name of a capture process that uses the file

• The name and location of the file at the local site

• The lowest SCN value for the information contained in the redo log file

• The lowest SCN value for the next redo log file in the sequence

• Whether the redo log file is purgeable

To display SCN values for each redo log file used by each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-17

2. Run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A25
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT 99999999999
COLUMN NEXT_SCN HEADING 'Next SCN' FORMAT 99999999999
COLUMN PURGEABLE HEADING 'Purgeable?' FORMAT A10

SELECT r.CONSUMER_NAME,
 r.NAME,
 r.FIRST_SCN,
 r.NEXT_SCN,
 r.PURGEABLE
 FROM DBA_REGISTERED_ARCHIVED_LOG r, ALL_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;

Your output looks similar to the following:

Capture
Process Archived Redo Log
Name File Name First SCN Next SCN Purgeable?
--------------- ------------------------- ------------ ------------ ----------
CAP$_XOUT_1 /private1/ARCHIVE_LOGS/1_ 509686 549100 YES
 3_502628294.dbf

CAP$_XOUT_1 /private1/ARCHIVE_LOGS/1_ 549100 587296 YES
 4_502628294.dbf

CAP$_XOUT_1 /private1/ARCHIVE_LOGS/1_ 587296 623107 NO
 5_502628294.dbf

The redo log files with YES for Purgeable? for all capture processes will never be needed by
any capture process at the local database. These redo log files can be removed without
affecting any existing capture process at the local database. The redo log files with NO for
Purgeable? for one or more capture processes must be retained.

Listing the Parameter Settings for Each Capture Process
A sample query illustrates how to list the parameter settings for each capture process.

Capture process parameters determine how a capture process operates.

To list the parameter settings for each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A25
COLUMN PARAMETER HEADING 'Parameter' FORMAT A30
COLUMN VALUE HEADING 'Value' FORMAT A10
COLUMN SET_BY_USER HEADING 'Set by|User?' FORMAT A10

SELECT c.CAPTURE_NAME,
 PARAMETER,
 VALUE,
 SET_BY_USER
 FROM ALL_CAPTURE_PARAMETERS c, ALL_XSTREAM_OUTBOUND o
 WHERE c.CAPTURE_NAME=o.CAPTURE_NAME
 ORDER BY PARAMETER;

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-18

Your output looks similar to the following:

Capture
Process Set by
Name Parameter Value User?
------------------------- ------------------------------ ---------- ----------
CAP$_XOUT_1 CAPTURE_IDKEY_OBJECTS N NO
CAP$_XOUT_1 CAPTURE_SEQUENCE_NEXTVAL N NO
CAP$_XOUT_1 DISABLE_ON_LIMIT N NO
CAP$_XOUT_1 DOWNSTREAM_REAL_TIME_MINE Y NO
CAP$_XOUT_1 EXCLUDETAG NO
CAP$_XOUT_1 EXCLUDETRANS NO
CAP$_XOUT_1 EXCLUDEUSER NO
CAP$_XOUT_1 EXCLUDEUSERID NO
CAP$_XOUT_1 GETAPPLOPS Y NO
CAP$_XOUT_1 GETREPLICATES N NO
CAP$_XOUT_1 IGNORE_TRANSACTION NO
CAP$_XOUT_1 IGNORE_UNSUPPORTED_TABLE * NO
CAP$_XOUT_1 INCLUDE_OBJECTS NO
CAP$_XOUT_1 INLINE_LOB_OPTIMIZATION N NO
CAP$_XOUT_1 MAXIMUM_SCN INFINITE NO
CAP$_XOUT_1 MAX_SGA_SIZE INFINITE NO
CAP$_XOUT_1 MERGE_THRESHOLD 60 NO
CAP$_XOUT_1 MESSAGE_LIMIT INFINITE NO
CAP$_XOUT_1 MESSAGE_TRACKING_FREQUENCY 2000000 NO
CAP$_XOUT_1 PARALLELISM 0 NO
CAP$_XOUT_1 SKIP_AUTOFILTERED_TABLE_DDL Y NO
CAP$_XOUT_1 SPLIT_THRESHOLD 1800 NO
CAP$_XOUT_1 STARTUP_SECONDS 0 NO
CAP$_XOUT_1 TIME_LIMIT INFINITE NO
CAP$_XOUT_1 TRACE_LEVEL 0 NO
CAP$_XOUT_1 USE_RAC_SERVICE N NO
CAP$_XOUT_1 WRITE_ALERT_LOG Y NO
CAP$_XOUT_1 XOUT_CLIENT_EXISTS Y NO

Note:

If the Set by User? column is NO for a parameter, then the parameter is set to its
default value. If the Set by User? column is YES for a parameter, then the parameter
was set by a user and might or might not be set to its default value.

See Also:

• "XStream Out Process Subcomponents"

• "Setting a Capture Process Parameter"

• Oracle Database PL/SQL Packages and Types Reference for information about
capture process parameters

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-19

Determining the Applied SCN for Each Capture Process
A sample query illustrates how to determine the applied SCN for each capture process.

The applied system change number (SCN) for a capture process is the SCN of the most recent
logical change record (LCR) dequeued by the relevant outbound servers. All changes below
this applied SCN have been processed by all outbound servers that process changes captured
by the capture process.

To determine the applied SCN for each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture Process Name' FORMAT A30
COLUMN APPLIED_SCN HEADING 'Applied SCN' FORMAT 99999999999

SELECT CAPTURE_NAME, APPLIED_SCN FROM ALL_CAPTURE;
Your output looks similar to the following:

Capture Process Name Applied SCN
------------------------------ ------------
CAP$_XOUT_1 824825

Displaying the Redo Log Scanning Latency for Each Capture Process
A sample query illustrates how to display the redo log scanning latency for each capture
process.

You can find the following information about each capture process by running the query in this
section:

• The redo log scanning latency, which specifies the number of seconds between the
creation time of the most recent redo log entry scanned by a capture process and the
current time. This number might be relatively large immediately after you start a capture
process.

• The seconds since last recorded status, which is the number of seconds since a capture
process last recorded its status.

• The current capture process time, which is the latest time when the capture process
recorded its status.

• The logical change record (LCR) creation time, which is the time when the data
manipulation language (DML) or data definition language (DDL) change generated the
redo data at the source database for the most recently captured LCR.

The information displayed by this query is valid only for an enabled capture process.

To display the redo log scanning latency for each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-20

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A12
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN LAST_STATUS HEADING 'Seconds Since|Last Status' FORMAT 999999
COLUMN CAPTURE_TIME HEADING 'Current|Process|Time'
COLUMN CREATE_TIME HEADING 'Message|Creation Time' FORMAT 999999

SELECT CAPTURE_NAME,
 ((SYSDATE - CAPTURE_MESSAGE_CREATE_TIME)*86400) LATENCY_SECONDS,
 ((SYSDATE - CAPTURE_TIME)*86400) LAST_STATUS,
 TO_CHAR(CAPTURE_TIME, 'HH24:MI:SS MM/DD/YY') CAPTURE_TIME,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME
 FROM V$XSTREAM_CAPTURE;

Your output looks similar to the following:

Capture Latency Current
Process in Seconds Since Process Message
Name Seconds Last Status Time Creation Time
------------ ------- ------------- ----------------- -----------------
CAP$_XOUT_1 1 1 10:32:52 02/28/11 10:32:52 02/28/11

The "Latency in Seconds" returned by this query is the difference between the current time
(SYSDATE) and the "Message Creation Time." The "Seconds Since Last Status" returned by
this query is the difference between the current time (SYSDATE) and the "Current Process
Time."

Displaying the Extra Attributes Captured by a Capture Process
A sample query illustrates how to display the extra attributes captured by a capture process.

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to
instruct a capture process to capture one or more extra attributes and include the extra
attributes in logical change records (LCRs).

To display extra attributes captured by a capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture Process' FORMAT A20
COLUMN ATTRIBUTE_NAME HEADING 'Attribute Name' FORMAT A15
COLUMN INCLUDE HEADING 'Include Attribute in LCRs?' FORMAT A30

SELECT CAPTURE_NAME, ATTRIBUTE_NAME, INCLUDE
 FROM ALL_CAPTURE_EXTRA_ATTRIBUTES
 ORDER BY CAPTURE_NAME;

Your output looks similar to the following:

Capture Process Attribute Name Include Attribute in LCRs?
-------------------- --------------- ------------------------------
CAP$_XOUT_1 ROW_ID NO
CAP$_XOUT_1 SERIAL# NO
CAP$_XOUT_1 SESSION# NO
CAP$_XOUT_1 THREAD# NO
CAP$_XOUT_1 TX_NAME YES
CAP$_XOUT_1 USERNAME NO

Chapter 6
Monitoring the Capture Process for an Outbound Server

6-21

Based on this output, the capture process named xcapture includes the transaction name
(tx_name) in the LCRs that it captures, but this capture process does not include any other
extra attributes in the LCRs that it captures.

See Also:

• "Extra Information in Row LCRs and DDL LCRs"

• Oracle Database PL/SQL Packages and Types Referencefor more information
about the INCLUDE_EXTRA_ATTRIBUTE procedure

Monitoring XStream Rules
A sample query illustrates how to monitor XStream rules.

The ALL_XSTREAM_RULES view contains information about the rules used by outbound servers
and inbound servers. If an outbound server was created using the CREATE_OUTBOUND procedure
in the DBMS_XSTREAM_ADM package, then these views also contain information about the rules
used by the capture process that sends changes to the outbound server. However, if an
outbound server was created using the ADD_OUTBOUND procedure, then these views do not
contain information about the capture process rules. Also, these views do not contain
information about the rules used by any propagation in the stream from a capture process to
an outbound server.

To display information about the rules used by XStream components:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN STREAMS_NAME HEADING 'XStream|Component|Name' FORMAT A9
COLUMN STREAMS_TYPE HEADING 'XStream|Component|Type' FORMAT A9
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A13
COLUMN RULE_SET_TYPE HEADING 'Rule Set|Type' FORMAT A8
COLUMN STREAMS_RULE_TYPE HEADING 'Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4

SELECT STREAMS_NAME,
 STREAMS_TYPE,
 RULE_NAME,
 RULE_SET_TYPE,
 STREAMS_RULE_TYPE,
 SCHEMA_NAME,
 OBJECT_NAME,
 RULE_TYPE
 FROM ALL_XSTREAM_RULES;

Your output looks similar to the following:

XStream XStream
Component Component Rule Rule Set Rule Schema Object Rule
Name Type Name Type Level Name Name Type

Chapter 6
Monitoring XStream Rules

6-22

--------- --------- ------------- -------- ------- ------ ----------- ----
XOUT APPLY ORDERS11 POSITIVE TABLE OE ORDERS DML
XOUT APPLY ORDERS12 POSITIVE TABLE OE ORDERS DDL
XOUT APPLY ORDER_ITEMS14 POSITIVE TABLE OE ORDER_ITEMS DML
XOUT APPLY ORDER_ITEMS15 POSITIVE TABLE OE ORDER_ITEMS DDL
XOUT APPLY HR16 POSITIVE SCHEMA HR DML
XOUT APPLY HR17 POSITIVE SCHEMA HR DDL

Notice that the STREAMS_TYPE is APPLY even though the rules are in the positive rule set for the
outbound server xout. You can determine the purpose of an apply component by querying the
PURPOSE column in the ALL_APPLY view.

The ALL_XSTREAM_RULES view contains more information about the rules used in an XStream
configuration than what is shown in this example. For example, you can query this view to
show information about the rule sets used by XStream components.

To view information about the rules used by all components, including capture processes,
propagations, apply processes, outbound servers, and inbound servers, you can query the
ALL_XSTREAM_RULES view.

See Also:

Oracle Database Reference

Monitoring Declarative Rule-Based Transformations
A sample query illustrates how to monitor declarative rule-based transformations.

A declarative rule-based transformations is a rule-based transformation that covers one of a
common set of transformation scenarios for row LCRs. Declarative rule-based transformations
are run internally without using PL/SQL.

The query in this section displays the following information about each declarative rule-based
transformation in a database:

• The owner of the rule for which a declarative rule-based transformation is specified.

• The name of the rule for which a declarative rule-based transformation is specified.

• The type of declarative rule-based transformation specified. The following types are
possible: ADD COLUMN, DELETE COLUMN, KEEP COLUMNS, RENAME COLUMN, RENAME SCHEMA, and
RENAME TABLE.

• The precedence of the declarative rule-based transformation. The precedence is the
execution order of a transformation in relation to other transformations with the same step
number specified for the same rule. For transformations with the same step number, the
transformation with the lowest precedence is executed first.

• The step number of the declarative rule-based transformation. If more than one declarative
rule-based transformation is specified for the same rule, then the transformation with the
lowest step number is executed first. You can specify the step number for a declarative
rule-based transformation when you create the transformation.

You must have DBA role in order to access the DBA_XSTREAM_TRANSFORMATIONS view.

Run the following query to display this information for the declarative rule-based
transformations in a database:

Chapter 6
Monitoring Declarative Rule-Based Transformations

6-23

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN DECLARATIVE_TYPE HEADING 'Declarative|Type' FORMAT A15
COLUMN PRECEDENCE HEADING 'Precedence' FORMAT 99999
COLUMN STEP_NUMBER HEADING 'Step Number' FORMAT 99999

SELECT RULE_OWNER,
 RULE_NAME,
 DECLARATIVE_TYPE,
 PRECEDENCE,
 STEP_NUMBER
 FROM DBA_XSTREAM_TRANSFORMATIONS
 WHERE TRANSFORM_TYPE = 'DECLARATIVE TRANSFORMATION';

Your output looks similar to the following:

 Declarative
Rule Owner Rule Name Type Precedence Step Number
--------------- --------------- --------------- ---------- -----------
XSTRMADMIN JOBS26 RENAME TABLE 4 0
XSTRMADMIN EMPLOYEES22 ADD COLUMN 3 0

Based on this output, the ADD COLUMN transformation executes before the RENAME TABLE
transformation because the step number is the same (zero) for both transformations and the
ADD COLUMN transformation has the lower precedence.

The DBA_XSTREAM_TRANSFORMATIONS view can display more detailed information about each
transformation based on the declarative type of the transformation. Include a WHERE clause in
the query with the DECLARATIVE_TYPE equal to the type of transformation, such as ADD COLUMN,
DELETE COLUMN, and so on.

For example, the previous query listed an ADD COLUMN transformation and a RENAME TABLE
transformation.

Note:

Precedence and step number pertain only to declarative rule-based transformations.
They do not pertain to subset rule transformations or custom rule-based
transformations.

• Displaying Information About ADD COLUMN Transformations
A sample query illustrates how to display detailed information about the ADD COLUMN
declarative rule-based transformations in a database.

• Displaying Information About RENAME TABLE Transformations
A sample query illustrates how to display detailed information about the RENAME TABLE
declarative rule-based transformations in a database.

Chapter 6
Monitoring Declarative Rule-Based Transformations

6-24

See Also:

• "Rule-Based Transformations"

• "Managing Declarative Rule-Based Transformations"

Displaying Information About ADD COLUMN Transformations
A sample query illustrates how to display detailed information about the ADD COLUMN declarative
rule-based transformations in a database.

You use the view DBA_XTREAM_TRANSFORMATIONS to display information about the columns that
are added to row LCRs with the declarative rule-based transformation procedure
DBMS_XSTREAM_ADM.

To display information about ADD COLUMN transformations:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN RULE_OWNER HEADING 'Rule|Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A11
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN TABLE_NAME HEADING 'Table|Name' FORMAT A9
COLUMN COLUMN_NAME HEADING 'Column|Name' FORMAT A10
COLUMN COLUMN_VALUE HEADING 'Column|Value' FORMAT A10
COLUMN COLUMN_TYPE HEADING 'Column|Type' FORMAT A8

SELECT RULE_OWNER,
 RULE_NAME,
 SCHEMA_NAME,
 TABLE_NAME,
 COLUMN_NAME,
 ANYDATA.AccessDate(COLUMN_VALUE) "Value",
 COLUMN_TYPE
 FROM DBA_XSTREAM_TRANSFORMATIONS
 WHERE DECLARATIVE_TYPE = 'ADD COLUMN';

Your output looks similar to the following:

Rule Rule Schema Table Column Column Column
Owner Name Name Name Name Value Type
---------- ----------- ------ --------- ---------- ---------- --------
XSTRMADMIN EMPLOYEES22 HR EMPLOYEES BIRTH_DATE SYS.DATE

This output show the following information about the ADD COLUMN declarative rule-based
transformation:

• It is specified on the employees22 rule in the xstrmadmin schema.

• It adds a column to row LCRs that involve the employees table in the hr schema.

• The column name of the added column is BIRTH_DATE.

• The value of the added column is NULL. The COLUMN_VALUE column in the
ALL_XSTREAM_TRANSFORMATIONS view is type ANYDATA. In this example, because the column

Chapter 6
Monitoring Declarative Rule-Based Transformations

6-25

type is DATE, the ANYDATA.AccessDate member function is used to display the value. Use
the appropriate member function to display values of other types.

• The column type of the added column is DATE.

Displaying Information About RENAME TABLE Transformations
A sample query illustrates how to display detailed information about the RENAME TABLE
declarative rule-based transformations in a database.

You use the view DBA_XSTREAM_TRANSFORMATIONS to display information about declarative rule-
based transformations that rename a table in a row logical change record (LCR).

To display information about RENAME TABLE transformations:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN RULE_OWNER HEADING 'Rule|Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A10
COLUMN FROM_SCHEMA_NAME HEADING 'From|Schema|Name' FORMAT A10
COLUMN TO_SCHEMA_NAME HEADING 'To|Schema|Name' FORMAT A10
COLUMN FROM_TABLE_NAME HEADING 'From|Table|Name' FORMAT A15
COLUMN TO_TABLE_NAME HEADING 'To|Table|Name' FORMAT A15

SELECT RULE_OWNER,
 RULE_NAME,
 FROM_SCHEMA_NAME,
 TO_SCHEMA_NAME,
 FROM_TABLE_NAME,
 TO_TABLE_NAME
 FROM DBA_XSTREAM_TRANSFORMATIONS
 WHERE DECLARATIVE_TYPE = 'RENAME TABLE';

Your output looks similar to the following:

 From To From To
Rule Rule Schema Schema Table Table
Owner Name Name Name Name Name
---------- ---------- ---------- ---------- --------------- ---------------
XSTRMADMIN JOBS26 HR HR HR.JOBS HR.ASSIGNMENTS

This output show the following information about the RENAME TABLE declarative rule-based
transformation:

• It is specified on the jobs26 rule in the xstrmadmin schema.

• It renames the hr.jobs table in row LCRs to the hr.assignments table.

Chapter 6
Monitoring Declarative Rule-Based Transformations

6-26

7
Troubleshooting XStream Out

You can diagnose and correct problems with an XStream Out configuration.

• Diagnosing Problems with XStream Out
You can diagnose problems with XStream Out by using several different techniques.

• Problems and Solutions for XStream Out
You can implement solutions for common problems with XStream Out.

• How to Get More Help with XStream Out
Oracle Support can provide more help with XStream Out.

See Also:

• "XStream Out Concepts"

• "XStream Use Cases"

• "Configuring XStream Out"

Diagnosing Problems with XStream Out
You can diagnose problems with XStream Out by using several different techniques.

• Viewing Alerts
An alert is a warning about a potential problem or an indication that a critical threshold has
been crossed.

• Checking the Trace File and Alert Log for Problems
Messages about each capture process and outbound server are recorded in trace files for
the database in which the process is running.

Viewing Alerts
An alert is a warning about a potential problem or an indication that a critical threshold has
been crossed.

There are two types of alerts:

• Stateless: Alerts that indicate single events that are not necessarily tied to the system
state. For example, an alert that indicates that a capture aborted with a specific error is a
stateless alert.

• Stateful: Alerts that are associated with a specific system state. Stateful alerts are usually
based on a numeric value, with thresholds defined at warning and critical levels. For
example, an alert on the current Streams pool memory usage percentage, with the warning
level at 85% and the critical level at 95%, is a stateful alert.

An Oracle database generates a stateless alert under the following conditions:

7-1

• A capture process aborts.

• An outbound server aborts.

An Oracle database generates a stateful XStream alert when the Streams pool memory usage
exceeds the percentage specified by the STREAMS_POOL_USED_PCT metric. You can manage this
metric with the SET_THRESHOLD procedure in the DBMS_SERVER_ALERT package.

You can view alerts in Oracle Enterprise Manager Cloud Control, or you can query the
following data dictionary views:

• The DBA_OUTSTANDING_ALERTS view records current stateful alerts. The DBA_ALERT_HISTORY
view records stateless alerts and stateful alerts that have been cleared. For example, if the
memory usage in the Streams pool exceeds the specified threshold, then a stateful alert is
recorded in the DBA_OUTSTANDING_ALERTS view.

• The DBA_ALERT_HISTORY data dictionary view shows alerts that have been cleared from the
DBA_OUTSTANDING_ALERTS view. For example, if the memory usage in the streams pool falls
below the specified threshold, then the alert recorded in the DBA_OUTSTANDING_ALERTS view
is cleared and moved to the DBA_ALERT_HISTORY view.

For example, to list the current stateful alerts, run the following query on the
DBA_OUTSTANDING_ALERTS view:

COLUMN REASON HEADING 'Reason for Alert' FORMAT A35
COLUMN SUGGESTED_ACTION HEADING 'Suggested Response' FORMAT A35

SELECT REASON, SUGGESTED_ACTION
 FROM DBA_OUTSTANDING_ALERTS
 WHERE MODULE_ID LIKE '%XSTREAM%';

To list the stateless alerts and cleared XStream stateful alerts, run the following query on the
DBA_ALERT_HISTORY view:

COLUMN REASON HEADING 'Reason for Alert' FORMAT A35
COLUMN SUGGESTED_ACTION HEADING 'Suggested Response' FORMAT A35

SELECT REASON, SUGGESTED_ACTION
 FROM DBA_ALERT_HISTORY
 WHERE MODULE_ID LIKE '%XSTREAM%';

Most alerts are cleared automatically when the cause of the problem disappears or is
acknowledged by the database administrator.

See Also:

• Oracle Database Administrator’s Guide for information about alerts and for
information about subscribing to the ALERT_QUE queue to receive notifications
when new alerts are generated

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SERVER_ALERT package

• "Configure the Streams pool"

• Oracle Database Get Started with Performance Tuning for more information on
clearing and purging alerts with Oracle Enterprise Manager Cloud Control

Chapter 7
Diagnosing Problems with XStream Out

7-2

Checking the Trace File and Alert Log for Problems
Messages about each capture process and outbound server are recorded in trace files for the
database in which the process is running.

A local capture process runs on a source database and a downstream capture process runs on
a downstream database. These trace file messages can help you to identify and resolve
problems in an XStream Out configuration.

All trace files for background processes are written to the Automatic Diagnostic Repository.
The names of trace files are operating system specific, but each file usually includes the name
of the process writing the file.

For example, on some operating systems, the trace file name for a process is
sid_xxxx_iiiii.trc, where:

• sid is the system identifier for the database

• xxxx is the name of the process

• iiiii is the operating system process number

Also, you can set the write_alert_log parameter to y for both a capture process and an
outbound server. When this parameter is set to y, which is the default setting, the alert log for
the database contains messages about why the capture process or outbound server stopped.

You can control the information in the trace files by setting the trace_level capture process or
outbound server apply parameter using the SET_PARAMETER procedure in the
DBMS_XSTREAM_ADM package.

• Capture Process Trace Files
A capture process is an Oracle background process named CPnn, where nn can include
letters and numbers.

• Logminer Trace Files
Logminer trace files are useful in understanding issues with XStream Out.

• Outbound Server Trace File
An outbound server is an Oracle background process named APnn, where nn can include
letters and numbers.

• Client Application Trace Files
Client application trace files can help to isolate a problem with XStream Out.

See Also:

• Oracle Database Administrator’s Guidefor more information about trace files and
the alert log, and for more information about their names and locations

• Oracle Database PL/SQL Packages and Types Referencefor more information
about setting the trace_level capture process parameter and the trace_level
apply parameter

• Your operating system specific Oracle documentation for more information about
the names and locations of trace files

Chapter 7
Diagnosing Problems with XStream Out

7-3

Capture Process Trace Files
A capture process is an Oracle background process named CPnn, where nn can include letters
and numbers.

For example, on some operating systems, if the system identifier for a database running a
capture process is hqdb and the capture process number is 01, then the trace file for the
capture process starts with hqdb_CP01.

See Also:

"Displaying Change Capture Information About Each Capture Process" for a query
that displays the capture process number of a capture process

Logminer Trace Files
Logminer trace files are useful in understanding issues with XStream Out.

The logminer trace files are created when the parallelism capture process parameter is set to a
value greater than 0. There are at least 3 logminer trace files that are generated and written to
the Automated Diagnostic Repository.

Outbound Server Trace File
An outbound server is an Oracle background process named APnn, where nn can include
letters and numbers.

For example, on some operating systems, if the system identifier for a database running an
outbound server is hqdb and the outbound server number is 01, then the trace file for the
outbound server starts with hqdb_ap01_xxxx.trc.

An outbound server also uses other processes. Information about an outbound server might be
recorded in the trace file for one or more of these processes. The process name of the reader
server and apply servers is ASnn, where nn can include letters and numbers. So, on some
operating systems, if the system identifier for a database running an outbound server is hqdb
and the process number is 01, then the trace file that contains information about a process
used by an outbound server starts with hqdb_AS01.

See Also:

"Monitoring Session Information About XStream Out Components"

Client Application Trace Files
Client application trace files can help to isolate a problem with XStream Out.

When troubleshooting errors, isolating a problem to a key component, or identifying potential
performance issues, it is a good idea to examine the trace files from all of the key sources in

Chapter 7
Diagnosing Problems with XStream Out

7-4

your XStream environment. One key source to check is the client application trace files. The
client trace files are located in the directory: $ORACLE_HOME/diag/clients/.

Problems and Solutions for XStream Out
You can implement solutions for common problems with XStream Out.

In general, you can troubleshoot XStream outbound servers in the same way that you
troubleshoot Oracle Apply processes. In addition, an XStream Out environment includes
capture processes and queues, and might include other components, such as propagations,
rules, and rule-based transformations.

• An OCI Client Application Cannot Attach to the Outbound Server
An XStream client application cannot attach to an outbound server using the Oracle Call
Interface (OCI) OCIXStreamOutAttach() function.

• Changes Are Failing to Reach the Client Application in XStream Out
In an XStream Out configuration, database changes that should be captured and streamed
to the XStream client application are not reaching the client application.

• The Capture Process Is Missing Required Redo Log Files
When a capture process is started or stopped and restarted, it might need to scan redo log
files that were generated before the log file that contains the SCN that corresponds to the
required checkpoint SCN, and these files might have been removed.

• LCRs Streaming from an Outbound Server Are Missing Extra Attributes
LCRs streaming from an outbound server are expected to include extra attributes, but
these attributes are not included in the LCRs.

• The XStream Out Client Application Is Unresponsive
The XStream client application in an XStream Out configuration is unresponsive.

An OCI Client Application Cannot Attach to the Outbound Server
An XStream client application cannot attach to an outbound server using the Oracle Call
Interface (OCI) OCIXStreamOutAttach() function.

The following sections describe possible problems and their solutions.

Problem 1: Client Application Not Connected as Connect User

The client application is not connected as the outbound server's connect user to the outbound
server's database. The client application connected to the database as a different user.

To display information about the XStream Out servers that are accessible to the connect
user:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query to determine the connect user:

SELECT SERVER_NAME,
 CONNECT_USER,
 CAPTURE_NAME,
 SOURCE_DATABASE,
 CAPTURE_USER,

Chapter 7
Problems and Solutions for XStream Out

7-5

 QUEUE_OWNER
 FROM ALL_XSTREAM_OUTBOUND;

This query displays the name of the user (connect_user) who can connect to the outbound
server and process the outbound LCRs.

Solution 1

To correct problem 1:

• Modify the client application to connect to the database as the connect user before
attaching to the outbound server.

Problem 2: Client Application Not Passing Service Handle

The client application is not passing a service handle to the outbound server.

Solution 2

To correct problem 2:

• Modify the client application so that it passes a service handle using OCISvcCtx and not
OCIServer.

See Also:

• "XStream Out and Security"

• Oracle Call Interface Developer's Guide

Changes Are Failing to Reach the Client Application in XStream Out
In an XStream Out configuration, database changes that should be captured and streamed to
the XStream client application are not reaching the client application.

The following sections describe possible problems and their solutions.

Problem 1: Capture Process Has Fallen Behind

The capture process has fallen behind.

To determine whether the capture process has fallen behind:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN STATE HEADING 'State' FORMAT A15
COLUMN CREATE_MESSAGE HEADING 'Last LCR|Create Time'
COLUMN ENQUEUE_MESSAGE HEADING 'Last|Enqueue Time'

SELECT CAPTURE_NAME, STATE,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_MESSAGE,

Chapter 7
Problems and Solutions for XStream Out

7-6

 TO_CHAR(ENQUEUE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') ENQUEUE_MESSAGE
 FROM V$XSTREAM_CAPTURE;

This query shows the current state of the capture process. This query also displays the
time when the capture process last created a logical change record (LCR) and the time
when the capture process last enqueued an LCR. If the times returned are before the time
when the database changes were made, then the capture process must catch up and
capture the changes.

Solution 1

No action is required. Normally, the capture process will catch up on its own without the need
for intervention.

See Also:

Oracle Database Reference

Problem 2: Rules or Rule-Based Transformation Excluding Changes

Rules or rule-based transformations are excluding the changes that should be captured.

Rules determine which LCRs are captured by a capture process, sent from a source queue to
a destination queue by a propagation, and sent to an XStream client application by an
outbound server. If the rules are not configured properly, then the client application might not
receive the LCRs it should receive. The client application might also receive LCRs that it
should not receive.

Rule-based transformations modify the contents of LCRs. Therefore, if the expected change
data is not reaching the client application, it might be because a rule-based transformation
modified the data or deleted the data. For example, a DELETE_COLUMN declarative rule-based
transformation removes a column from an LCR.

Solution 2

To correct problem 2:

• Check the rules and rule-based transformations that are configured for each component in
the stream from the capture process to the client application, and correct any problems.

Problem 3: LCRs Blocked in the Stream

If the capture process has not fallen behind, and there are no problems with rules or rule-
based transformations, then LCRs might be blocked in the stream for some other reason. For
example, a propagation or outbound server might be disabled, a database link might be
broken, or there might be another problem.

You can track an LCR through a stream using one of the following methods:

• Setting the message_tracking_frequency capture process parameter to 1 or another
relatively low value

To disable LCR tracking when you use this method, set the message_tracking_frequency
capture process parameter to NULL or exit the session.

• Running the SET_MESSAGE_TRACKING procedure in the DBMS_XSTREAM_ADM package

Chapter 7
Problems and Solutions for XStream Out

7-7

To disable LCR tracking when you use this method, set the tracking_label parameter to
NULL in the SET_MESSAGE_TRACKING procedure or exit the session.

After using one of these methods, use the V$XSTREAM_MESSAGE_TRACKING view to monitor the
progress of LCRs through a stream. By tracking an LCR through the stream, you can
determine where the LCR is blocked.

In addition, if a propagation is used to send LCRs in the configuration, then you can check the
current state of the propagation sender by running the following query:

SELECT STATE FROM V$PROPAGATION_SENDER;

You can check the current state of an outbound server by running the following query:

SELECT SERVER_NAME, STATE FROM V$XSTREAM_OUTBOUND_SERVER;

You can verify that the client application is attached to the outbound server by running the
following query:

COLUMN SERVER_NAME HEADING 'Capture|Name' FORMAT A30
COLUMN STATUS HEADING 'Status' FORMAT A8

SELECT SERVER_NAME, STATUS FROM ALL_XSTREAM_OUTBOUND;

The STATUS column shows ATTACHED when the client application is attached to the outbound
server.

Solution 3

To correct problem 3:

• Take the appropriate action based on the reason that the LCR is blocked. For example, if a
propagation is disabled, then enable it.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
message_tracking_frequency capture process parameter

The Capture Process Is Missing Required Redo Log Files
When a capture process is started or stopped and restarted, it might need to scan redo log
files that were generated before the log file that contains the SCN that corresponds to the
required checkpoint SCN, and these files might have been removed.

You can query the ALL_CAPTURE data dictionary view to determine the required checkpoint SCN
for a capture process. It is also helpful to query the V$XSTREAM_CAPTURE and check the STATE
column. The state of a capture process describes what the capture process is doing currently.
In this case, you can gain additional insight as to why the capture process is missing or waiting
for redo log files.

COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30
COLUMN STATE HEADING 'State' FORMAT A30

SELECT CAPTURE_NAME, STATE FROM V$XSTREAM_CAPTURE;

Chapter 7
Problems and Solutions for XStream Out

7-8

CAPTURE_NAME STATE
------------------ -----------------
XOUT_SRC_CAPTURE WAITING FOR REDO

Additional information might be displayed along with the state information when you query the
V$XSTREAM_CAPTURE view. The additional information can help you to determine why the
capture process is waiting for redo. For example, a statement similar to the following might
appear for the STATE column when you query the view:

WAITING FOR REDO: LAST SCN MINED 6700345

In this case, the output shows the last system change number (SCN) scanned by the capture
process. In other cases, the output might display the redo log file name explicitly. Either way,
the additional information can help you identify the redo log file for which the capture process is
waiting. To correct the problem, make any missing redo log files available to the capture
process.

Problem: Required Redo Log Files Were Removed

Removing required redo log files before they are scanned by a capture process causes the
capture process to abort and results in the following error in a capture process trace file:

ORA-01291: missing logfile

Solution: Restore Missing Redo Log Files and Prevent Future Problems

If you see this error, then try restoring any missing redo log files and restarting the capture
process. You can check the V$LOGMNR_LOGS dynamic performance view to determine the
missing SCN range, and add the relevant redo log files. A capture process needs the redo log
file that includes the required checkpoint SCN and all subsequent redo log files. You can query
the REQUIRED_CHECKPOINT_SCN column in the ALL_CAPTURE data dictionary view to determine
the required checkpoint SCN for a capture process.

If the capture process is disabled for longer than the amount of time specified in the
CONTROL_FILE_RECORD_KEEP_TIME initialization parameter, then information about the missing
redo log files might have been replaced in the control file. You can query the V$ARCHIVE_LOG
view to see if the log file names are listed. If they are not listed, then you can register them with
a ALTER DATABASE REGISTER OR REPLACE LOGFILE SQL statement.

If you are using the fast recovery area feature of Recovery Manager (RMAN) on a source
database in an XStream environment, then RMAN might delete archived redo log files that are
required by a capture process. RMAN might delete these files when the disk space used by the
recovery-related files is nearing the specified disk quota for the fast recovery area. To prevent
this problem in the future, complete one or more of the following actions:

• Increase the disk quota for the fast recovery area. Increasing the disk quota makes it less
likely that RMAN will delete a required archived redo log file, but it will not always prevent
the problem.

• Configure the source database to store archived redo log files in a location other than the
fast recovery area. A local capture process will be able to use the log files in the other
location if the required log files are missing in the fast recovery area. In this case, a
database administrator must manage the log files manually in the other location.

RMAN always ensures that archived redo log files are backed up before it deletes them. If
RMAN deletes an archived redo log file that is required by a capture process, then RMAN
records this action in the alert log.

Chapter 7
Problems and Solutions for XStream Out

7-9

See Also:

• "Capture Processes"

• "XStream Out and Recovery Manager"

• "Displaying Redo Log Files That Are Required by Each Capture Process"

LCRs Streaming from an Outbound Server Are Missing Extra Attributes
LCRs streaming from an outbound server are expected to include extra attributes, but these
attributes are not included in the LCRs.

LCRs can contain the following extra attributes related to database changes:

• row_id
• serial#
• session#
• thread#
• tx_name
• username
By default, a capture process does not capture these extra attributes. If you want extra
attributes to be included in LCRs streamed from an outbound server to an XStream client
application, but the LCRs do not contain values for extra attributes, then make sure the capture
process that captures changes for the outbound server is configured to capture values for the
extra attributes.

The following sections describe the possible problem and its solution.

Problem: Capture Process Not Configured to Capture Extra Attributes

The capture process is not configured to capture the required extra attributes.

To display the extra attributes currently being captured by the capture processes in a
database:

1. Connect to the database running the capture process as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture Process' FORMAT A30
COLUMN ATTRIBUTE_NAME HEADING 'Attribute Name' FORMAT A30

SELECT CAPTURE_NAME, ATTRIBUTE_NAME
 FROM ALL_CAPTURE_EXTRA_ATTRIBUTES
 WHERE INCLUDE = 'YES'
 ORDER BY CAPTURE_NAME;

If an extra attribute is not displayed by this query, then it is not being captured.

Chapter 7
Problems and Solutions for XStream Out

7-10

Solution

To solve the problem, configure the capture process to capture the required extra
attributes:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package.

Example 7-1 Including the tx_name Attribute for the Capture Process xcapture

BEGIN
 DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name => 'xcapture',
 attribute_name => 'tx_name',
 include => TRUE);
END;
/

The XStream Out Client Application Is Unresponsive
The XStream client application in an XStream Out configuration is unresponsive.

The following sections describe the possible problem and its solution.

Problem 1: Streams Pool Size Is Too Small

The Streams pool size might be too small.

To determine whether the Streams pool size is too small:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following queries at the database that contains the outbound server:

• Query the V$PROPAGATION_RECEIVER view.:

SELECT STATE FROM V$PROPAGATION_RECEIVER;

If the state is WAITING FOR MEMORY, then consider increasing the Streams pool size.

• Query the V$STREAMS_POOL_STATISTICS view.:

SELECT TOTAL_MEMORY_ALLOCATED/CURRENT_SIZE FROM V$STREAMS_POOL_STATISTICS;

If the value returned is.90 or greater, then consider increasing the Streams pool size.

Solution 1

To correct problem 1:

• Increase the Streams pool size by modifying the STREAMS_POOL_SIZE initialization
parameter or by modifying other initialization parameters related to memory.

Chapter 7
Problems and Solutions for XStream Out

7-11

See Also:

• Oracle Database Reference

• Oracle Database Administrator’s Guide for information about setting initialization
parameters

Problem 2: The Maximum SGA Size for the Capture Process Is Too Small

The max_sga_size capture process parameter controls the amount of system global area
(SGA) memory allocated specifically to the capture process, in megabytes.

To determine whether the maximum SGA size for the capture process is too small:

1. Connect to the database running the XStream component as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following queries at the database:

• Query the V$XSTREAM_CAPTURE view:

SELECT CAPTURE_NAME AS CAP,
 SGA_USED/(1024*1024) AS USED,
 SGA_ALLOCATED/(1024*1024) AS ALLOCATED,
 TOTAL_MESSAGES_CAPTURED AS CAPTURED,
 TOTAL_MESSAGES_ENQUEUED AS ENQUEUED
 FROM V$XSTREAM_CAPTURE;

If the USED field is equal to or almost equal to the ALLOCATED field in the output, then
you might need to increase the maximum SGA size for the capture process.

• Query the V$LOGMNR_SESSION view:

SELECT SESSION_NAME AS CAP,
 MAX_MEMORY_SIZE/(1024*1024) AS LMMAX,
 USED_MEMORY_SIZE/(1024*1024) AS LMUSED,
 USED_MEMORY_SIZE/MAX_MEMORY_SIZE AS PCT
 FROM V$LOGMNR_SESSION;

If the PCT field is equal to or almost equal to 1 in the output, then you might need to
increase the maximum SGA size for the capture process.

Solution 2

To correct problem 2:

• Increase the maximum SGA size for the capture process by modifying the max_sga_size
capture process parameter.

See Also:

"Setting a Capture Process Parameter"

Chapter 7
Problems and Solutions for XStream Out

7-12

Problem 3: Programming Errors

If there is enough memory in the Streams pool and the MAX_SGA_SIZE capture process
parameter and apply parameter are set correctly, then check your client application for
programming errors.

Solution 3

To correct problem 3:

• Correct the programming errors.

How to Get More Help with XStream Out
Oracle Support can provide more help with XStream Out.

You can check My Oracle Support at http://support.oracle.com for more solutions to your
problem.

You can visit http://www.oracle.com/support/contact.html for more information about
Oracle Support.

Chapter 7
How to Get More Help with XStream Out

7-13

http://support.oracle.com
http://www.oracle.com/support/contact.html

Part III
XStream In

You can configure and manage an XStream In environment.

• XStream In Concepts
Become familiar with the concepts related to XStream In.

• Configuring XStream In
You can configure the Oracle Database components that are used by XStream.

• Managing XStream In
You can manage an XStream In configuration.

• Monitoring XStream In
You can monitor an XStream In configuration by querying data dictionary views.

• Troubleshooting XStream In
You can diagnose and correct problems with an XStream In configuration.

8
XStream In Concepts

Become familiar with the concepts related to XStream In.

• Introduction to XStream In
XStream In enables a remote client application to send information into an Oracle
database from another system, such as a non-Oracle database or a file system.

• The Inbound Server
With XStream In, an inbound server receives database changes from a client application.

• Position of LCRs and XStream In
A client application streams LCRs to an XStream In inbound server.

• XStream In and Performance Considerations
There are considerations for XStream In and performance.

• XStream In and Security
Understand security related to the client application and XStream components, as well as
the privileges required by the apply user for an inbound server.

• XStream In and Other Oracle Database Components
XStream In can work with other Oracle Database components.

Introduction to XStream In
XStream In enables a remote client application to send information into an Oracle database
from another system, such as a non-Oracle database or a file system.

XStream In provides an efficient, transaction-based interface for sending information to an
Oracle database from client applications. XStream In can consume the information coming into
the Oracle database in several ways, including data replication, auditing, and change data
capture. XStream In supports both OCI and Java interfaces.

When compared with OCI client applications that make DML changes to an Oracle database
directly, XStream In is more efficient for near real-time, transaction-based, heterogeneous DML
changes to Oracle databases.

XStream In uses the following Oracle Replication features:

• High performance processing of DML changes, optionally with parallelism

• Apply process features such as SQL generation, conflict detection and resolution, error
handling, and customized processing with apply handlers

• Streaming network transmission of information with minimal network round-trips

• Rules, rule sets, and rule-based transformations

When a custom rule-based transformation is specified on a rule used by an inbound
server, the user who calls the transformation function is the apply user for the inbound
server.

XStream In supports all of the data types that are supported by Oracle Replication, including
LOBs, LONG, LONG RAW, JSON, BOOLEAN, and XMLType. A client application sends LOB and

8-1

XMLType data to the inbound server in chunks. Several chunks comprise a single column value
of LOB, LONG, LONG RAW, or XMLType data type.

See Also:

• Oracle Call Interface Developer's Guide

• Oracle Database XStream Java API Reference

The Inbound Server
With XStream In, an inbound server receives database changes from a client application.

• Overview of Inbound Servers
An inbound server is an optional Oracle background process that receives LCRs from a
client application.

• Data Types Applied by Inbound Servers
An inbound server supports most data types.

• LCR Processing Options for Inbound Servers
An inbound server can either apply LCRs directly or send LCRs to an apply handler for
processing. Your options for LCR processing depend on whether the LCR received by an
inbound server is a row LCR or a DDL LCR.

• Inbound Servers and RESTRICTED SESSION
Enabling and disabling restricted session affects inbound servers.

• Inbound Server Components
An inbound server consists of the following subcomponents: a reader server, a coordinator
process, and one or more apply servers.

• Considerations for Inbound Servers
There are several considerations for inbound servers.

• The Error Queue for an Inbound Server
The error queue contains all of the current apply errors for a database. If there are multiple
inbound servers in a database, then the error queue contains the apply errors for each
inbound server.

Overview of Inbound Servers
An inbound server is an optional Oracle background process that receives LCRs from a client
application.

Specifically, a client application can attach to an inbound server and send row changes, DDL
changes, and procedure calls encapsulated in LCRs.

An external client application connects to the inbound server using the OCI or the Java
interface. After the connection is established, the client application acts as the capture agent
for the inbound server by streaming LCRs to it.

A client application can create multiple sessions. Each session can attach to only one inbound
server, and each inbound server can serve only one session at a time. However, different client
application sessions can connect to different inbound servers or outbound servers. A client
application can detach from the inbound server whenever necessary.

Chapter 8
The Inbound Server

8-2

Figure 8-1 shows an inbound server configuration.

Figure 8-1 XStream In Inbound Server

External Data
Source

Send
Changes

Oracle Database

Connect

Events

Acknowledgement

Apply
Changes

Database Objects

Inbound
Server

Client
Application

Using
XStream In
Interface

Note:

An inbound server uses a queue that is not shown in Figure 8-1. An inbound server's
queue is only used to store error transactions.

Data Types Applied by Inbound Servers
An inbound server supports most data types.

When applying row LCRs resulting from DML changes to tables, an inbound server applies
changes made to columns of the following data types:

• JSON
• BOOLEAN
• VARCHAR2
• NVARCHAR2
• NUMBER
• FLOAT
• LONG
• DATE
• BINARY_FLOAT
• BINARY_DOUBLE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE

Chapter 8
The Inbound Server

8-3

• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND
• RAW
• LONG RAW
• UROWID
• CHAR
• NCHAR
• CLOB with BASICFILE or SECUREFILE storage

• NCLOB with BASICFILE or SECUREFILE storage

• BLOB with BASICFILE or SECUREFILE storage

• XMLType stored as CLOB, object relational, or as binary XML

• Object types

• Varrays

• REF data types

• The following Oracle-supplied types: ANYDATA, SDO_GEOMETRY, and media types

• BFILE
If XStream is replicating data for an object type, then the replication must be unidirectional, and
all replication sites must agree on the names and data types of the attributes in the object type.
You establish the names and data types of the attributes when you create the object type. For
example, consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all replication sites, street_address must be VARCHAR2(40), postal_code must be
VARCHAR2(10), city must be VARCHAR2(30), and so on.

Note:

• The maximum size of the VARCHAR2, NVARCHAR2, and RAW data types has been
increased in Oracle Database 12c when the COMPATIBLE initialization parameter
is set to 12.0.0 and the MAX_STRING_SIZE initialization parameter is set to
EXTENDED.

• XMLType stored as a CLOB is deprecated in Oracle Database 12c Release 1
(12.1).

• For BFILE, only the data type structure is replicated and not the content of the
BFILE that exists on the file system.

Chapter 8
The Inbound Server

8-4

See Also:

Oracle Database SQL Language Reference for information about data types

LCR Processing Options for Inbound Servers
An inbound server can either apply LCRs directly or send LCRs to an apply handler for
processing. Your options for LCR processing depend on whether the LCR received by an
inbound server is a row LCR or a DDL LCR.

By default, an inbound server applies LCRs directly. The inbound server executes the change
in the LCR on the database object identified in the LCR. The inbound server either successfully
applies the change in the LCR or, if a conflict or an apply error is encountered, tries to resolve
the error with a conflict handler or a user-specified procedure called an error handler.

If a conflict handler can resolve the conflict, then it either applies the LCR or it discards the
change in the LCR. If an error handler can resolve the error, then it should apply the LCR, if
appropriate. An error handler can resolve an error by modifying the LCR before applying it. If
the conflict handler or error handler cannot resolve the error, then the inbound server places
the transaction, and all LCRs associated with the transaction, into the error queue.

Instead of applying LCRs directly, you can process LCRs in a customized way with apply
handlers. When you use an apply handler, an inbound server passes an LCR to a collection of
SQL statements or to a user-defined PL/SQL procedure for processing. An apply handler can
process the LCR in a customized way.

There are several types of apply handlers. This section uses the following categories to
describe apply handlers:

Table 8-1 Characteristics of Apply Handlers

Category Description

Mechanism The means by which the apply handler processes LCRs. The
mechanism for an apply handler is either SQL statements or a user-
defined PL/SQL procedure.

Type of LCR The type of LCR processed by the apply handler. The LCR type is
either row LCR, DDL LCR, or transaction control directive.

Scope The level at which the apply handler is set. The scope is either one
operation on one table or all operations on all database objects.

Number allowed for each
inbound server

The number of apply handlers of a specific type allowed for each
inbound server. The number allowed is either one or many.

• Procedure DML Handlers
A procedure DML handler uses a PL/SQL procedure to process row LCRs.

• Error Handlers
An error handler is similar to a procedure DML handler. The difference between the two is
that an error handler is invoked only if an apply error results when an inbound server tries
to apply a row LCR for the specified operation on the specified table.

• DDL Handlers
A DDL handler uses a PL/SQL procedure to process DDL LCRs.

Chapter 8
The Inbound Server

8-5

• Precommit Handlers
A precommit handler uses a PL/SQL procedure to process commit directive for
transactions that include row LCRs.

Procedure DML Handlers
A procedure DML handler uses a PL/SQL procedure to process row LCRs.

A procedure DML handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of LCR: Row LCR

• Scope: One operation on one table

• Number allowed for each inbound server: Many, but only one can be specified for the
same operation on the same table

For each table associated with an inbound server, you can set a separate procedure DML
handler to process each of the following types of operations in row LCRs:

• INSERT
• UPDATE
• DELETE
• LOB_UPDATE
A procedure DML handler is invoked when the inbound server receives a row LCR that
performs the specified operation on the specified table. For example, the hr.employees table
can have one procedure DML handler to process INSERT operations and a different procedure
DML handler to process UPDATE operations. Alternatively, the hr.employees table can use the
same procedure DML handler for each type of operation.

The PL/SQL procedure can perform any customized processing of row LCRs. For example, if
you want each insert into a particular table at the source database to result in inserts into
multiple tables at the destination database, then you can create a user-defined PL/SQL
procedure that processes INSERT operations on the table to accomplish this. Procedure DML
handlers can modify the column values in row LCRs.

Error Handlers
An error handler is similar to a procedure DML handler. The difference between the two is that
an error handler is invoked only if an apply error results when an inbound server tries to apply
a row LCR for the specified operation on the specified table.

An error handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of LCR: Row LCR

• Scope: One operation on one table

• Number allowed for each inbound server: Many, but only one can be specified for the
same operation on the same table

Chapter 8
The Inbound Server

8-6

See Also:

"Procedure DML Handlers"

DDL Handlers
A DDL handler uses a PL/SQL procedure to process DDL LCRs.

A DDL handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of LCR: DDL LCR

• Scope: All DDL LCRs received by the inbound server

• Number allowed for each inbound server: One

The user-defined PL/SQL procedure can perform any customized processing of DDL LCRs.
For example, to log DDL changes before applying them, you can create a procedure that
processes DDL operations to accomplish this.

Precommit Handlers
A precommit handler uses a PL/SQL procedure to process commit directive for transactions
that include row LCRs.

A precommit handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of LCR: Commit directive for transactions that include row LCRs

• Scope: All row LCRs with commit directives received by the inbound server

• Number allowed for each inbound server: One

You can use a precommit handler to audit commit directives for LCRs. A commit directive is a
transaction control directive that contains a COMMIT. A precommit handler is a user-defined
PL/SQL procedure that can receive the commit information for a transaction and process the
commit information in any customized way. A precommit handler works with a procedure DML
handler.

For example, a precommit handler can improve performance by caching data for the length of
a transaction. This data can include cursors, temporary LOBs, data from a message, and so
on. The precommit handler can release or execute the objects cached by the handler when a
transaction completes.

Inbound Servers and RESTRICTED SESSION
Enabling and disabling restricted session affects inbound servers.

When restricted session is enabled during system startup by issuing a STARTUP RESTRICT
statement, inbound servers do not start, even if they were running when the database shut
down. When the restricted session is disabled, each inbound server that was not stopped is
started.

When restricted session is enabled in a running database by the SQL statement ALTER SYSTEM
ENABLE RESTRICTED SESSION, it does not affect any running inbound servers. These inbound

Chapter 8
The Inbound Server

8-7

servers continue to run and send LCRs to an XStream client application. If a stopped inbound
server is started in a restricted session, then the inbound server does not actually start until the
restricted session is disabled.

Inbound Server Components
An inbound server consists of the following subcomponents: a reader server, a coordinator
process, and one or more apply servers.

An inbound server consists of the following subcomponents:

• A reader server that receives LCRs from an XStream client application. The reader server
is a process that computes dependencies between logical change records (LCRs) and
assembles LCRs into transactions. The reader server then returns the assembled
transactions to the coordinator process.

You can view the state of the reader server for an inbound server by querying the
V$XSTREAM_APPLY_READER dynamic performance view.

• A coordinator process that gets transactions from the reader server and passes them to
apply servers. The coordinator process name is APnn, where nn can include letters and
numbers. The coordinator process is an Oracle background process.

You can view the state of a coordinator process by querying the
V$XSTREAM_APPLY_COORDINATOR dynamic performance view.

• One or more apply servers that apply LCRs to database objects as DML or DDL
statements or that pass the LCRs to their appropriate apply handlers. Apply servers can
also enqueue LCRs into the persistent queue portion of a queue specified by the
DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION procedure. Each apply server is a process. If
an apply server encounters an error, then it then tries to resolve the error with a user-
specified conflict handler or error handler. If an apply server cannot resolve an error, then it
rolls back the transaction and places the entire transaction, including all of its LCRs, in the
error queue.

When an apply server commits a completed transaction, this transaction has been applied.
When an apply server places a transaction in the error queue and commits, this
transaction also has been applied.

You can view the state of each apply server for an inbound server by querying the
V$XSTREAM_APPLY_SERVER dynamic performance view.

The reader server and the apply server process names are ASnn, where nn can include letters
and numbers. If a transaction being handled by an apply server has a dependency on another
transaction that is not known to have been applied, then the apply server contacts the
coordinator process and waits for instructions. The coordinator process monitors all of the
apply servers to ensure that transactions are applied and committed in the correct order.

Chapter 8
The Inbound Server

8-8

See Also:

• Oracle Database Reference for more information about
V$XSTREAM_APPLY_READER dynamic performance view

• Oracle Database Reference for more information about
V$XSTREAM_APPLY_COORDINATOR dynamic performance view

• Oracle Database Reference for more information about
V$XSTREAM_APPLY_SERVER dynamic performance view

Considerations for Inbound Servers
There are several considerations for inbound servers.

The following are considerations for XStream inbound servers:

• You can control a DML or DDL trigger's firing property using the
SET_TRIGGER_FIRING_PROPERTY procedure in the DBMS_DDL package. This procedure lets
you specify whether a trigger always fires, fires once, or fires for inbound server changes
only. When a trigger is set to fire once, it fires for changes made by a user process, but it
does not fire for changes made by an inbound server. A trigger's firing property works the
same for apply processes and inbound servers.

• An inbound server ignores the setting for the ignore_transaction apply parameter
because LCRs sent to the inbound server by the client application might not have
transaction ID values.

• An inbound server ignores the setting for the maximum_scn apply parameter because LCRs
sent to the inbound server by the client application might not have SCN values.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about apply parameters

The Error Queue for an Inbound Server
The error queue contains all of the current apply errors for a database. If there are multiple
inbound servers in a database, then the error queue contains the apply errors for each inbound
server.

Trusted users can view apply errors by querying the DBA_APPLY_ERROR data dictionary view or
by using Oracle Enterprise Manager Cloud Control. The DBA_APPLY_ERROR data dictionary view
enables the trusted user to see information about apply errors for other users. Untrusted users
can view apply errors by querying the ALL_APPLY_ERROR data dictionary view. This view shows
only apply errors for the untrusted user.

Also, trusted users can view more detailed information about apply errors by querying the
DBA_APPLY_ERROR_MESSAGES data dictionary view. Untrusted users can view more detailed
information about apply errors by querying the ALL_APPLY_ERROR_MESSAGES data dictionary
view. These views include information about the row that caused the error in an error
transaction.

Chapter 8
The Inbound Server

8-9

The error queue stores information about transactions that could not be applied successfully by
the inbound server running in a database. A transaction can include many LCRs. When an
unhandled error occurs during apply, an inbound server automatically moves all of the LCRs in
the transaction that satisfy the inbound server's rule sets to the error queue.

You can correct the condition that caused an error and then reexecute the transaction that
caused the error. For example, you might modify a row in a table to correct the condition that
caused an error.

When the condition that caused the error has been corrected, you can either reexecute the
transaction in the error queue using the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure, or
you can delete the transaction from the error queue using the DELETE_ERROR or
DELETE_ALL_ERRORS procedure. These procedures are in the DBMS_APPLY_ADM package.

When you reexecute a transaction in the error queue, you can specify that the transaction be
executed either by the user who originally placed the error in the error queue or by the user
who is reexecuting the transaction. Also, the current tag for the inbound server is used when
you reexecute a transaction in the error queue.

A reexecuted transaction uses any relevant apply handlers and conflict resolution handlers. If,
to resolve the error, a row LCR in an error queue must be modified before it is executed, then
you can configure a procedure DML handler to process the row LCR that caused the error in
the error queue. In this case, the DML handler can modify the row LCR to avoid a repetition of
the same error. The row LCR is passed to the DML handler when you reexecute the error
containing the row LCR. For example, a procedure DML handler might modify one or more
columns in the row LCR to avoid a repetition of the same error.

Position of LCRs and XStream In
A client application streams LCRs to an XStream In inbound server.

This section describes concepts related to the LCR positions for an inbound server.

Each position must be encoded in a format (such as base-16 encoding) that supports byte
comparison. The position is essential to the total order of the transaction stream sent by client
applications using the XStream In interface.

The following positions are important for inbound servers:

• The applied low position indicates that the LCRs less than or equal to this value have
been applied.

An LCR is applied by an inbound server when the LCR has either been executed, sent to
an apply handler, or moved to the error queue.

• The spill position indicates that the LCRs with positions less than or equal to this value
have either been applied or spilled from memory to hard disk.

• The applied high position indicates the highest position of an LCR that has been applied.

When the commit_serialization apply parameter is set to DEPENDENT_TRANSACTIONS for
an inbound server, an LCR with a higher commit position might be applied before an LCR
with a lower commit position. When this happens, the applied high position is different from
the applied low position.

• The processed low position is the higher value of either the applied low position or the spill
position.

The processed low position is the position below which the inbound server no longer
requires any LCRs. This position corresponds with the oldest SCN for an Oracle Apply
process that applies changes captured by a capture process.

Chapter 8
Position of LCRs and XStream In

8-10

The processed low position indicates that the LCRs with positions less than or equal to this
position have been processed by the inbound server. If the client re-attaches to the
inbound server, then it must send only LCRs with positions greater than the processed low
position because the inbound server discards any LCRs with positions less than or equal
to the processed low position.

If the client application stops abnormally, then the connection between the client application
and the inbound server is automatically broken. Upon restart, the client application retrieves
the processed low position from the inbound server and instructs its capture agent to retrieve
changes starting from this processed low position.

To limit the recovery time of a client application using the XStream In interface, the client
application can send activity, such as empty transactions, periodically to the inbound server.
Row LCRs can include commit transaction control directives. When there are no LCRs to send
to the server, the client application can send a row LCR with a commit directive to advance the
inbound server's processed low position. This activity acts as an acknowledgment so that the
inbound server's processed low position is advanced.

After position 3, there are no relevant changes to send to the inbound server. If the inbound
server restarts when the client application has processed all the changes up to position 101,
then, after restarting, the client application must recheck all of the external database changes
from position 4 forward. The rechecks are required because the inbound server's processed
low position is 3.

Instead, assume that the client application sends commits to the inbound server periodically,
even when there are no relevant changes to the hr.employees table:

Position Change Client Application Activity

1 Insert into the hr.employees
table

Send row LCR including the change to the
inbound server

2 Insert into the oe.orders table None

3 Commit Send a row LCR with a commit directive to
inbound server

4 Insert into the oe.orders table None

5 Update the oe.orders table None

6 Commit None

7 Commit None

... ... (Activity on the external data
source, but no changes to the
hr.employees table)

Send several row LCRs, each one with a
commit directive, to the inbound server

100 Insert into the oe.orders table None

101 Commit Send a row LCR with a commit directive to
the inbound server

In this case, the inbound server moves its processed low position to 101 when it has
processed all of the row LCRs sent by the client application. If the inbound server restarts, its
processed low position is 101, and the client application does not need to check all of the
changes back to position 3.

The sample applications in Sample XStream Client Application include code that sends a row
LCR with a commit directive to an inbound server. These commit directives are sometimes
called "ping LCRs." Search for the word "ping" in the sample XStream client applications to find
the parts of the applications that include this code.

Chapter 8
Position of LCRs and XStream In

8-11

Example 8-1 Advancing the Processed Low Position of an Inbound Server

Consider a client application and an external data source. The client application sends
changes made to the hr.employees table to the inbound server for processing, but the external
data source includes many other tables, including the oe.orders table.

Assume that the following changes are made to the external data source:

Position Change Client Application Activity

1 Insert into the hr.employees
table

Send row LCR including the change to the
inbound server

2 Insert into the oe.orders table None

3 Commit Send a row LCR with a commit directive to
inbound server

4 Insert into the oe.orders table None

5 Update the oe.orders table None

6 Commit None

7 Commit None

... ... (Activity on the external data
source, but no changes to the
hr.employees table)

None

100 Insert into the oe.orders table None

101 Commit None

The client application gets the changes from the external data source, generates appropriate
LCRs, and sends the LCRs to the inbound server. Therefore, the inbound server receives the
following LCRs:

• Row LCR for position 1

• Row LCR for position 3

See Also:

• "Position Order in an LCR Stream"

• "Displaying the Position Information for an Inbound Server"

XStream In and Performance Considerations
There are considerations for XStream In and performance.

• Optimizing XStream In Performance for Large Transactions
For small transactions, XStream In does not begin to apply the logical change records
(LCRs) until the inbound server receives a commit LCR for the transaction from the source.
As a performance optimization, an inbound server can use eager apply to begin to apply
large transactions before it receives the commit LCR.

Chapter 8
XStream In and Performance Considerations

8-12

• Optimizing Transaction Apply Scheduling
When the constraints on the target tables match the constraints on the source tables, you
can optimize dependency computation by setting the compute_lcr_dep_on_arrival apply
parameter for an inbound server to Y.

Optimizing XStream In Performance for Large Transactions
For small transactions, XStream In does not begin to apply the logical change records (LCRs)
until the inbound server receives a commit LCR for the transaction from the source. As a
performance optimization, an inbound server can use eager apply to begin to apply large
transactions before it receives the commit LCR.

The eager_size apply parameter controls the minimum number of LCRs received by the
inbound server before eager apply begins. When the number of LCRs in a transaction exceeds
the value of the eager_size apply parameter, the inbound server begins to apply the LCRs.
The default value for this parameter is 9500. You can modify the parameter value to optimize
XStream In performance in your environment.

Large transactions may require additional apply servers to apply the LCRs. After eager apply
starts for a transaction, an inbound server can automatically create additional apply servers to
apply the LCRs. The max_parallelism apply parameter controls the maximum number of
apply servers for an inbound server.

If an inbound server automatically creates additional apply servers, and some of them are idle
for a period of time, then XStream In determines that they are no longer necessary and
removes them automatically. However, the number of apply servers never goes below the
value specified by the parallelism apply parameter. Any statistics for these apply servers are
aggregated as apply server 0 (zero).

For an inbound server to use eager apply for large transactions, the value of the eager_size
apply parameter must be less than the value of the txn_lcr_spill_threshold apply
parameter. When the value of txn_lcr_spill_threshold is lower than eager_size, a
transaction spills to disk before eager apply begins, and a an inbound server cannot use eager
apply for a transaction that has spilled to disk.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• "Managing Eager Errors Encountered by an Inbound Server"

Optimizing Transaction Apply Scheduling
When the constraints on the target tables match the constraints on the source tables, you can
optimize dependency computation by setting the compute_lcr_dep_on_arrival apply
parameter for an inbound server to Y.

If the constraints do not match, then set this apply parameter to N, the default.

If this apply parameter is set to Y, then the dependencies are computed as the LCRs for the
transaction are received. If this apply parameter is set to N, then the dependencies are
computed only after all the LCRs for a committed transaction are received.

Chapter 8
XStream In and Performance Considerations

8-13

Regardless of compute_lcr_dep_on_arrival apply parameter setting, the before image of the
key columns must be available in the LCRs received by the inbound server. Key columns
include primary key columns, foreign key column, and unique constraint columns. In an
XStream configuration in which an inbound server applies changes captured by a capture
process in an XStream Out configuration, supplemental logging ensures that the required
information is in the LCRs.

See Also:

• "If Required, Configure Supplemental Logging"

• Oracle Database PL/SQL Packages and Types Reference

XStream In and Security
Understand security related to the client application and XStream components, as well as the
privileges required by the apply user for an inbound server.

• The XStream In Client Application and Security
XStream In allows an application to send LCRs to an inbound server, and an inbound
server can apply the database changes in the LCRs to the database.

• XStream In Component-Level Security
All the components of the XStream In configuration run as the same user. This user is the
apply user for the inbound server.

• Privileges Required by the Apply User for an Inbound Server
An inbound server applies LCRs in the security domain of its apply user.

See Also:

• "XStream Security Model"

• Oracle Database PL/SQL Packages and Types Reference

The XStream In Client Application and Security
XStream In allows an application to send LCRs to an inbound server, and an inbound server
can apply the database changes in the LCRs to the database.

Java and OCI client applications must connect to an Oracle database before attaching to an
XStream inbound server created on that database. The connected user must be the same as
the apply user configured for the inbound server. Otherwise, an error is raised.

The XStream Java layer API relies on Oracle JDBC security because XStream accepts the
Oracle JDBC connection instance created by client applications in the XStream attach method
in the XStreamIn class. The connected user is validated as an XStream user.

Chapter 8
XStream In and Security

8-14

See Also:

• Oracle Call Interface Developer's Guide for information about the OCI interface
for XStream

• Oracle Database XStream Java API Reference for information about the Java
interface for XStream

XStream In Component-Level Security
All the components of the XStream In configuration run as the same user. This user is the
apply user for the inbound server.

The XSTREAM_APPLY role has privileges required to run components in an XStream In
configuration. This role does not contain privileges on the database objects owned by users. If
such privileges are required, then they must be granted separately.

See Also:

"Configure an XStream Administrator" for detailed information about configuring an
XStream administrator

Privileges Required by the Apply User for an Inbound Server
An inbound server applies LCRs in the security domain of its apply user.

The inbound server receives LCRs from an XStream client application and applies the LCRs
that satisfy the inbound server's rule sets. The apply user can apply LCRs directly to database
objects. In addition, the apply user runs all custom rule-based transformations specified by the
rules in these rule sets. The apply user also runs user-defined apply handlers. XStream In
does not assume that the apply user for the inbound server is trusted.

The apply user must have the necessary privileges to apply changes, including the following
privileges:

• The required privileges to apply data manipulation language (DML) changes to tables in
other schemas (when the inbound server receives DML changes to tables in other
schemas)

• The required privileges to apply data definition language (DDL) changes to the database
(when the inbound server receives DDL changes)

• EXECUTE privilege on the rule sets used by the inbound server

• EXECUTE privilege on all custom rule-based transformation functions specified for rules in
the positive rule set

• EXECUTE privilege on any apply handlers

An inbound server can be associated with only one user, but one user can be associated with
many inbound servers.

Grant privileges to the apply user with the XSTREAM_APPLY role.

Chapter 8
XStream In and Security

8-15

See Also:

• "Configure an XStream Administrator"

• "Changing the Apply User for an Inbound Server"

XStream In and Other Oracle Database Components
XStream In can work with other Oracle Database components.

• XStream In and Oracle Real Application Clusters
You can configure an inbound server to apply changes in an Oracle Real Application
Clusters (Oracle RAC) environment.

• XStream In and Flashback Data Archive
Inbound servers can apply changes encapsulated in logical change records (LCRs) to
tables in a flashback data archive.

• XStream In and Transportable Tablespaces
You can import data into databases involved in an XStream replication environment using
transportable tablespaces.

• XStream In and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database.

XStream In and Oracle Real Application Clusters
You can configure an inbound server to apply changes in an Oracle Real Application Clusters
(Oracle RAC) environment.

The inbound server runs in the Oracle RAC instance where you connected. In the event that
this instance fails, you can connect to a surviving instance and start the inbound server again.

See Also:

• The Inbound Server

• Oracle Real Application Clusters Administration and Deployment Guide

XStream In and Flashback Data Archive
Inbound servers can apply changes encapsulated in logical change records (LCRs) to tables in
a flashback data archive.

Inbound servers also support the following DDL statements:

• CREATE FLASHBACK ARCHIVE
• ALTER FLASHBACK ARCHIVE
• DROP FLASHBACK ARCHIVE

Chapter 8
XStream In and Other Oracle Database Components

8-16

• CREATE TABLE with a FLASHBACK ARCHIVE clause

• ALTER TABLE with a FLASHBACK ARCHIVE clause

See Also:

• The Inbound Server

• Oracle Database Development Guide for information about flashback data
archive

XStream In and Transportable Tablespaces
You can import data into databases involved in an XStream replication environment using
transportable tablespaces.

The instructions in this section apply when the following conditions are met:

• The replication configuration is one in which an inbound server applies changes captured
by a capture process in an XStream Out configuration.

• The data being imported with transportable tablespaces must be included in each
database in the replication environment.

• After the import operation is complete, changes to the imported data will be replicated.

In addition, the rules should instruct the replication environment to avoid replicating tagged
LCRs.

When these conditions are met, complete the following steps:

1. Stop replication.

2. Use transportable tablespaces to import the data into each database in the replication
environment.

3. Restart replication.

See Also:

Oracle Database Administrator’s Guide for more information about transportable
tablespaces

XStream In and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of schemas,
objects, and related structures that appears logically to an application as a separate database.

This self-contained collection is called a pluggable database (PDB). A multitenant container
database (CDB) contains PDBs. It can also contain application containers. An application
container is an optional component of a CDB that consists of an application root and all
application PDBs associated with it. An application container stores data for one or more
applications. An application container shares application metadata and common data. In a

Chapter 8
XStream In and Other Oracle Database Components

8-17

CDB, each of the following is a container: the CDB root, each PDB, each application root, and
each application PDB.

In a CDB, the inbound server is restricted to receiving LCRs from one source database and
only executing changes in the current container (one PDB, one application root, one
application PDB, or the CDB root). A single inbound server cannot apply changes to more than
one container in a CDB.

When the inbound server is in the CDB root, the apply user must be a common user. When the
inbound server is in an application root, the apply user must be a common user or an
application common user. When the inbound server is in a PDB or application PDB, the apply
user can be a common user or a local user.

Note:

XStream does not synchronize changes done in the application root container. Do
not use the XStream In replication to replicate operations done in the application root
container. You can manually apply these changes in the application root containers in
the target. Note that the operations done in the PDBs can still be replicated.

Related Topics

• System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database. This self-contained collection is called a pluggable database (PDB). A
CDB contains PDBs.

• Oracle Multitenant Administrator's Guide

Chapter 8
XStream In and Other Oracle Database Components

8-18

9
Configuring XStream In

You can configure the Oracle Database components that are used by XStream.

• Preparing for XStream In
Prerequisites must be met before configuring XStream In.

• Configuring XStream In
The CREATE_INBOUND procedure in the DBMS_XSTREAM_ADM package creates an inbound
server. You must create the client application that communicates with the inbound server
and sends LCRs to the inbound server.

See Also:

• "XStream Out Concepts"

• "XStream Use Cases"

• Oracle Call Interface Developer's Guide

• Oracle Database XStream Java API Reference

Preparing for XStream In
Prerequisites must be met before configuring XStream In.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB, depending
on context. In some contexts, such as upgrades, "non-CDB" refers to a non-CDB
from a previous release.

• Configure an XStream Administrator
An XStream administrator configures and manages XStream components in an XStream
In environment.

• Set the Relevant Initialization Parameters
Some initialization parameters are important for the configuration, operation, reliability, and
performance of XStream inbound servers. Set these parameters appropriately.

• Configure the Streams pool
The Streams pool is a portion of memory in the System Global Area (SGA) that is used by
both Oracle Streams and XStream components. The Streams pool stores buffered queue
LCRs in memory, and it provides memory for inbound servers.

9-1

• If Required, Specify Supplemental Logging at the Source Database
In an XStream configuration in which an inbound server applies changes captured by a
capture process in an XStream Out configuration, supplemental logging might be required
at the source database on columns in the tables for which an inbound server applies
changes.

Configure an XStream Administrator
An XStream administrator configures and manages XStream components in an XStream In
environment.

You can configure an XStream administrator by granting a user the appropriate privileges. You
must configure an XStream administrator in each Oracle database included in the XStream
configuration.

If you are configuring XStream In in a multitenant container database (CDB), then configure
the XStream administrator in the container that will run the inbound server. This container can
be the CDB root, a pluggable database (PDB), an application root, or an application PDB. See
"XStream In and a Multitenant Environment" for information about using XStream In in a CDB.

Prerequisites

Before configuring an XStream administrator, ensure that the following prerequisites are met:

• Ensure that you can log in to each database in the XStream configuration as an
administrative user who can create users, grant privileges, and create tablespaces.

• Identify a user who will be the XStream administrator. Either create a new user with the
appropriate privileges or grant these privileges to an existing user.

Do not use the SYS or SYSTEM user as an XStream administrator, and ensure that the
XStream administrator does not use the SYSTEM tablespace as its default tablespace.

• If a new tablespace is required for the XStream administrator, then ensure that there is
enough disk space on each computer system in the XStream configuration for the
tablespace. The recommended size of the tablespace is 25 MB.

Assumptions

This section makes the following assumptions:

• The user name of the XStream administrator is xstrmadmin for a non-CDB. In a CDB,
when the XStream administrator is a common user, the user name of the XStream
administrator is c##xstrmadmin. When the XStream administrator in a CDB is a local user
in a container, the user name of the XStream administrator is xstrmadmin.

• The tablespace used by the XStream administrator is xstream_tbs.

To configure an XStream administrator:

1. In SQL*Plus, connect as an administrative user who can create users, grant privileges, and
create tablespaces. Remain connected as this administrative user for all subsequent steps.

See Also:

Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus

Chapter 9
Preparing for XStream In

9-2

2. Either create a tablespace for the XStream administrator or use an existing tablespace.

This tablespace stores any objects created in the XStream administrator's schema.

For example, the following statement creates a new tablespace for the XStream
administrator:

CREATE TABLESPACE xstream_tbs DATAFILE '/usr/oracle/dbs/xstream_tbs.dbf'
 SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

If you are creating an XStream administrator as a common user in a CDB, then you must
create the tablespace in the CDB root and in all containers. The tablespace is required in
all containers because a common user must have access to the tablespace in any
container.

3. Create a new user to act as the XStream administrator or identify an existing user.

For example, to create a user named xstrmadmin and specify that this user uses the
xstream_tbs tablespace, run the following statement:

CREATE USER xstrmadmin IDENTIFIED BY password
 DEFAULT TABLESPACE xstream_tbs
 QUOTA UNLIMITED ON xstream_tbs;

If you are creating an XStream administrator in a CDB and the inbound server is in the
CDB root, then the XStream administrator must be a common user.

If you are creating an XStream administrator in a CDB and the inbound server is in a PDB,
application root, or application PDB, then the XStream administrator can be a common
user or a local user. Oracle recommends configuring a common user as the XStream
administrator even when the inbound server is in a container other than the CDB root.

To create a common user, include the CONTAINER=ALL clause in the CREATE USER statement
when the current container is the CDB root:

CREATE USER c##xstrmadmin IDENTIFIED BY password
 DEFAULT TABLESPACE xstream_tbs
 QUOTA UNLIMITED ON xstream_tbs
 CONTAINER=ALL;

Note:

Enter an appropriate password for the administrative user.

See Also:

Oracle Database Security Guide for guidelines about choosing passwords

4. Grant CREATE SESSION privilege to the XStream administrator.

If you created a new user to act as the XStream administrator, then grant this user CREATE
SESSION privilege.

For example, to grant CREATE SESSION privilege to user xstrmadmin, run the following
statement:

GRANT CREATE SESSION TO xstrmadmin;

Chapter 9
Preparing for XStream In

9-3

If you are creating an XStream administrator as a common user in a CDB, then grant
CREATE SESSION privilege and SET CONTAINER privilege to the XStream administrator, and
include the CONTAINER=ALL clause in the statement.

For example, to grant these privileges to user xstrmadmin in a CDB, run the following
statement:

GRANT CREATE SESSION, SET CONTAINER TO c##xstrmadmin CONTAINER=ALL;
5. Grant the XSTREAM_APPLY role to the XStream administrator.

If you are creating an XStream administrator as a common user in a PDB, then run the
following statement:

GRANT XSTREAM_APPLY to xstrmadmin;

If you are creating an XStream administrator in a CDB, run the following statement:

GRANT XSTREAM_APPLY to c##xstrmadmin CONTAINER=ALL;

See Also:

Oracle Database PL/SQL Packages and Types Reference

6. If necessary, grant additional privileges to the XStream administrator.

See "Granting Additional Privileges to the XStream Administrator".

7. Repeat all of the previous steps at each Oracle database in the environment that will use
XStream.

Example 9-1 Granting Privileges to a XStream Administrator in PDB

GRANT XSTREAM_APPLY to xsadmin;

Example 9-2 Granting Privileges to a Trusted XStream Administrator in CDB

In this example, the XStream administrator is a common user.

GRANT XSTREAM_APPLY to c##xstrmadmin CONTAINER=ALL;

• Granting Additional Privileges to the XStream Administrator
Additional privileges might be required for the XStream administrator.

Granting Additional Privileges to the XStream Administrator
Additional privileges might be required for the XStream administrator.

Grant any of the following additional privileges to the XStream Administrator if necessary:

• If you plan to use Oracle Enterprise Manager Cloud Control to manage databases with
XStream components, then the XStream administrator must be trusted and must be
granted DBA role. You must also configure the XStream administrator to be an Oracle
Enterprise Manager administrative user. Doing so grants additional privileges required by
Oracle Enterprise Manager Cloud Control, such as the privileges required to run Oracle
Enterprise Manager Cloud Control jobs. See the Oracle Enterprise Manager Cloud Control
online help for information about creating Oracle Enterprise Manager administrative users.

Chapter 9
Preparing for XStream In

9-4

• If no apply user is specified for an inbound server, then grant the XStream administrator
the necessary privileges to perform DML and DDL changes on the apply objects owned by
other users. If an apply user is specified, then the apply user must have these privileges.
These privileges can be granted directly or through a role.

• If no apply user is specified for an inbound server, then grant the XStream administrator
EXECUTE privilege on any PL/SQL subprogram owned by another user that is executed by
an inbound server. These subprograms can be used in apply handlers or error handlers. If
an apply user is specified, then the apply user must have these privileges. These privileges
must be granted directly. They cannot be granted through a role.

• Grant the XStream administrator EXECUTE privilege on any PL/SQL function owned by
another user that is specified in a custom rule-based transformation for a rule used by an
inbound server. For an inbound server, if an apply user is specified, then the apply user
must have these privileges. These privileges must be granted directly. They cannot be
granted through a role.

• If the XStream administrator does not own the queue used by an inbound server and is not
specified as the queue user for the queue when the queue is created, then the XStream
administrator must be configured as a secure queue user of the queue if you want the
XStream administrator to be able to enqueue LCRs into or dequeue LCRs from the queue.
The XStream administrator might also need ENQUEUE or DEQUEUE privileges on the queue,
or both.

• Grant the XStream administrator EXECUTE privilege on any object types that the XStream
administrator might need to access. These privileges can be granted directly or through a
role.

• If you are using Oracle Database Vault, then the following additional privileges are
required:

– The apply user for an inbound server must be authorized to apply changes to realms
that include replicated database objects. The replicated database objects are the
objects to which the inbound server applies changes.

To authorize an apply user for a realm, run the
DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM procedure and specify the realm and the
apply user. For example, to authorize apply user xstrmadmin for the sales realm, run
the following procedure:

BEGIN
 DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'sales',
 grantee => 'xstrmadmin');
END;
/

– The user who creates or alters an inbound server must be granted the BECOME USER
system privilege.

Granting the BECOME USER system privilege to the user who performs these actions is
not required if Oracle Database Vault is not installed. You can revoke the BECOME USER
system privilege from the user after the completing one of these actions, if necessary.

See Also:

Oracle Database Vault Administrator’s Guide

Chapter 9
Preparing for XStream In

9-5

Set the Relevant Initialization Parameters
Some initialization parameters are important for the configuration, operation, reliability, and
performance of XStream inbound servers. Set these parameters appropriately.

The following requirements apply to XStream inbound servers:

• Ensure that the PROCESSES initialization parameter is set to a value large enough to
accommodate the inbound server background processes and all of the other Oracle
Database background processes.

• Ensure that the SESSIONS initialization parameter is set to a value large enough to
accommodate the sessions used by the inbound server background processes and all of
the other Oracle Database sessions.

Configure the Streams pool
The Streams pool is a portion of memory in the System Global Area (SGA) that is used by both
Oracle Streams and XStream components. The Streams pool stores buffered queue LCRs in
memory, and it provides memory for inbound servers.

The following are considerations for configuring the Streams pool:

• At least 300 MB of memory is required for the Streams pool.

• The best practice is to set the STREAMS_POOL_SIZE initialization parameter explicitly to the
desired Streams pool size.

• After XStream In is configured, you can use the max_sga_size apply parameter to control
the amount of SGA memory allocated specifically to an inbound server.

• Ensure that there is enough space in the Streams pool at each database to run XStream
components and to store LCRs and run the components properly.

• The Streams pool is initialized the first time an inbound server is started.

The Streams pool size is the value specified by the STREAMS_POOL_SIZE parameter, in bytes, if
the following conditions are met:

• The MEMORY_TARGET, MEMORY_MAX_TARGET, and SGA_TARGET initialization parameters are all
set to 0 (zero).

• The STREAMS_POOL_SIZE initialization parameter is set to a nonzero value.

The Automatic Shared Memory Management feature automatically manages the size of the
Streams pool when the following conditions are met:

• The MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters are both set to 0
(zero).

• The SGA_TARGET initialization parameter is set to a nonzero value.

If you are using Automatic Shared Memory Management, and if the STREAMS_POOL_SIZE
initialization parameter also is set to a nonzero value, then Automatic Shared Memory
Management uses this value as a minimum for the Oracle Streams pool. If your environment
needs a minimum amount of memory in the Oracle Streams pool to function properly, then you
can set a minimum size. To view the current memory allocated to Oracle Streams pool by
Automatic Shared Memory Management, query the V$SGA_DYNAMIC_COMPONENTS view. In
addition, you can query the V$STREAMS_POOL_STATISTICS view to view the current usage of the
Oracle Streams pool.

Chapter 9
Preparing for XStream In

9-6

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the max_sga_size apply parameter

• Oracle Database Administrator’s Guide

• Oracle Database Reference

If Required, Specify Supplemental Logging at the Source Database
In an XStream configuration in which an inbound server applies changes captured by a capture
process in an XStream Out configuration, supplemental logging might be required at the
source database on columns in the tables for which an inbound server applies changes.

The required supplemental logging depends on the configuration of the inbound server you
create.

See Also:

"If Required, Configure Supplemental Logging"

Configuring XStream In
The CREATE_INBOUND procedure in the DBMS_XSTREAM_ADM package creates an inbound server.
You must create the client application that communicates with the inbound server and sends
LCRs to the inbound server.

An inbound server in an XStream In configuration receives a stream of changes from a client
application. The inbound server can apply these changes to database objects in an Oracle
database, or it can process the changes in a customized way. A client application can attach to
an inbound server and send row changes and DDL changes encapsulated in LCRs using the
OCI or Java interface.

Prerequisites

Before configuring XStream In, ensure that the following prerequisite is met:

• Complete the tasks described in "Preparing for XStream In".

Assumptions for the Sample XStream In Configuration

This section makes the following assumptions:

• The name of the inbound server is xin.

• The inbound server applies all of the changes it receives from the XStream client
application.

• The queue used by the inbound server is xstrmadmin.xin_queue.

Figure 9-1 provides an overview of this XStream In configuration.

Chapter 9
Configuring XStream In

9-7

Figure 9-1 Sample XStream In Configuration

Apply
Changes

Send
LCRs

Inbound
Server

xin

Client
Application

Oracle Database

Database Objects

Queue

xstrmadmin.xin_queue
.
.
.
.

Send Error
Transactions

To create an inbound server:

1. In SQL*Plus, connect to the database that will run the inbound server as the XStream
administrator.

If you are configuring XStream In in a CDB, then connect to the container to which the
inbound server will apply changes. The container can be the CDB root, a PDB, an
application root, or an application PDB. An inbound server can apply changes only in its
own container.

See Also:

• Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus

• Oracle Multitenant Administrator's Guide for information about connecting to
a container in a CDB in SQL*Plus

• "XStream In and a Multitenant Environment" for information about using
XStream In in a CDB

2. Run the CREATE_INBOUND procedure.

For example, the following CREATE_INBOUND procedure configures an inbound server
named xin:

BEGIN
 DBMS_XSTREAM_ADM.CREATE_INBOUND(
 server_name => 'xin',
 queue_name => 'xin_queue');
END;
/

Chapter 9
Configuring XStream In

9-8

Running this procedure performs the following actions:

• Creates an inbound server named xin.

• Sets the queue with the name xin_queue as the inbound server's queue, and creates
this queue if it does not exist. This queue does not store LCRs sent by the client
application. Instead, the queue stores error transactions if an LCR raises an error. The
current user is the queue owner. In this example, the current user is the XStream
administrator.

• Sets the current user as the apply user for the inbound server. In this example, the
current user is the XStream administrator. The client application must connect to the
database as the apply user to interact with the inbound server.

Tip:

By default, an inbound server does not use rules or rule sets. Therefore, it
processes all LCRs sent to it by the client application. To add rules and rule sets,
use the DBMS_XSTREAM_ADM package or the DBMS_RULE_ADM package. See Oracle
Database PL/SQL Packages and Types Reference.

3. If necessary, create apply handlers for the inbound server.

Apply handlers are optional. Apply handlers process LCRs sent to an inbound server in a
customized way.

See Also:

"LCR Processing Options for Inbound Servers"

4. Create and run the client application that will connect to the inbound server and send LCRs
to it.

See Also:

"Sample XStream Client Application" for a sample application

5. If the inbound server is disabled, then start the inbound server.

For example, enter the following:

exec DBMS_APPLY_ADM.START_APPLY('xin');

See Also:

Oracle Database PL/SQL Packages and Types Reference

Chapter 9
Configuring XStream In

9-9

10
Managing XStream In

You can manage an XStream In configuration.

This chapter does not cover using rules, rule sets, or rule-based transformations with inbound
servers. By default, an inbound server does not use rules or rule sets. Therefore, an inbound
server applies all of the logical change records (LCRs) sent to it by an XStream client
application. However, to filter the LCRs sent to an inbound server, you can add rules and rule
sets to an inbound server using the DBMS_XSTREAM_ADM and DBMS_RULE_ADM packages. You can
also specify rule-based transformations using the DBMS_XSTREAM_ADM package.

• About Managing XStream In
You can modify the database components that are part of an XStream In configuration,
such as inbound servers.

• Starting an Inbound Server
A inbound server must be enabled for it to receive logical change records (LCRs) from an
XStream client application and apply the LCRs. You run the START_APPLY procedure in the
DBMS_APPLY_ADM package to start an existing inbound server.

• Stopping an Inbound Server
You run the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop an existing
inbound server. You might stop an inbound server when you are troubleshooting a problem
in an XStream configuration.

• Setting an Apply Parameter for an Inbound Server
Apply parameters control the way an inbound server operates. You set an apply parameter
for an inbound server using the SET_PARAMETER procedure in the DBMS_XSTREAM_ADM
package.

• Changing the Apply User for an Inbound Server
An inbound server applies LCRs in the security domain of its apply user, and the client
application must attach to the inbound server as the apply user. You can change the apply
user for an inbound server with the ALTER_INBOUND procedure in the DBMS_XSTREAM_ADM
package.

• Managing XStream In Conflict Detection and Resolution
When more than one client modifies the same table row at approximately the same time,
conflicts are possible. XStream In detects conflicts and provides methods for resolving
conflicts.

• Managing Apply Errors
Apply errors result when an inbound server tries to apply an LCR, and an error is raised.

• Conflict and Error Handling Precedence
To resolve a conflict or error, an inbound server tries to find conflict handlers and error
handlers.

• Dropping Components in an XStream In Configuration
You can drop an inbound server with the DROP_INBOUND procedure in the
DBMS_XSTREAM_ADM package.

10-1

About Managing XStream In
You can modify the database components that are part of an XStream In configuration, such as
inbound servers.

The main interface for managing XStream In database components is PL/SQL. Specifically,
use the following Oracle supplied PL/SQL packages to manage XStream In:

• DBMS_XSTREAM_ADM
The DBMS_XSTREAM_ADM package is the main package for managing XStream In. This
package includes subprograms that enable you to configure, modify, or drop inbound
servers. This package also enables you modify the rules, rule sets, and rule-based
transformations used by inbound servers.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

• XSTREAM_APPLY
The XSTREAM_APPLY role enables you to configure and modify XStream administrators.

Starting with Oracle Database 23ai, you can manage XStream administrators with the
XSTREAM_APPLY role. You can start the REVOKE_ADMIN_PRIVILEGE procedure by canceling
privileges for a user that received XStream privileges prior to the Oracle Database 23ai
upgrade.

See Also:

– Configure an XStream Administrator on All Databases for information on
creating an XStream administrator

– Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

• DBMS_APPLY_ADM
The DBMS_APPLY_ADM package enables you modify inbound servers.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

Chapter 10
About Managing XStream In

10-2

Starting an Inbound Server
A inbound server must be enabled for it to receive logical change records (LCRs) from an
XStream client application and apply the LCRs. You run the START_APPLY procedure in the
DBMS_APPLY_ADM package to start an existing inbound server.

To start an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the START_APPLY procedure in the DBMS_APPLY_ADM package, and specify the inbound
server for the apply_name parameter.

The following example starts an inbound server named xin.

Example 10-1 Starting an Outbound Server Named xout

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'xin');
END;
/

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
starting an apply process or an inbound server with Oracle Enterprise Manager Cloud
Control

Stopping an Inbound Server
You run the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop an existing inbound
server. You might stop an inbound server when you are troubleshooting a problem in an
XStream configuration.

To stop an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the STOP_APPLY procedure in the DBMS_APPLY_ADM package, and specify the inbound
server for the apply_name parameter.

The following example stops an inbound server named xin.

Example 10-2 Stopping an Inbound Server Named xout

BEGIN
 DBMS_APPLY_ADM.STOP_APPLY(
 apply_name => 'xin');

Chapter 10
Starting an Inbound Server

10-3

END;
/

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
stopping an apply process or an inbound server with Oracle Enterprise Manager
Cloud Control

Setting an Apply Parameter for an Inbound Server
Apply parameters control the way an inbound server operates. You set an apply parameter for
an inbound server using the SET_PARAMETER procedure in the DBMS_XSTREAM_ADM package.

To set an inbound server apply parameter:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the SET_PARAMETER procedure in the DBMS_XSTREAM_ADM package, and specify the
following parameters:

• streams_name - Specify the name of the inbound server.

• streams_type - Specify apply.

• parameter - Specify the name of the apply parameter.

• value - Specify the value for the apply parameter.

The following example sets the parallelism parameter for an inbound server named xin to 4.

Example 10-3 Setting an Outbound Server Parameter

BEGIN
 DBMS_XSTREAM_ADM.SET_PARAMETER(
 streams_name => 'xin',
 streams_type => 'apply',
 parameter => 'parallelism',
 value => '4');
END;
/

Note:

• The value parameter is always entered as a VARCHAR2 value, even if the
parameter value is a number.

• If the value parameter is set to NULL or is not specified, then the parameter is set
to its default value.

Chapter 10
Setting an Apply Parameter for an Inbound Server

10-4

See Also:

• The Oracle Enterprise Manager Cloud Control online help for instructions about
setting an apply parameter with Oracle Enterprise Manager Cloud Control

• Oracle Database PL/SQL Packages and Types Reference for information about
apply parameters

Changing the Apply User for an Inbound Server
An inbound server applies LCRs in the security domain of its apply user, and the client
application must attach to the inbound server as the apply user. You can change the apply user
for an inbound server with the ALTER_INBOUND procedure in the DBMS_XSTREAM_ADM package.

You can change the apply user when a client application must connect to an inbound server as
a different user or when you want to apply changes using the privileges associated with a
different user. Ensure that the apply user is granted the required privileges.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
privileges required by an apply user.

To change the apply user for an inbound server:

1. Connect to the inbound server database as the XStream administrator.

The XStream administrator must be granted the DBA role to change the apply user for an
inbound server.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_INBOUND procedure in the DBMS_XSTREAM_ADM package, and specify the
following parameters:

• server_name - Specify the name of the inbound server.

• apply_user - Specify the new apply user.

Example 10-4 Changing the Apply User for an Inbound Server

To change the apply user to hr for an inbound server named xin, run the following procedure:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_INBOUND(
 server_name => 'xin',
 apply_user => 'hr');
END;
/

Chapter 10
Changing the Apply User for an Inbound Server

10-5

See Also:

• "XStream In and Security"

• Oracle Database PL/SQL Packages and Types Reference

Managing XStream In Conflict Detection and Resolution
When more than one client modifies the same table row at approximately the same time,
conflicts are possible. XStream In detects conflicts and provides methods for resolving
conflicts.

• About DML Conflicts in an XStream Environment
A conflict is a mismatch between the old values in an LCR and the data in a table.

• Conflict Types in an XStream Environment
You can encounter several different types of conflicts when you share data at multiple
databases.

• Conflicts and Transaction Ordering in an XStream Environment
Ordering conflicts can occur in an XStream environment when three or more databases
share data and the data is updated at two or more of these databases.

• Conflict Detection in an XStream Environment
An inbound server detects conflicts automatically.

• Conflict Avoidance in an XStream Environment
There are several ways to avoid data conflicts.

• Conflict Resolution in an XStream Environment
After an update conflict has been detected, a conflict handler can attempt to resolve it.

• Managing DML Conflict Handlers
You can set and remove a DML conflict handler. To modify an existing DML conflict
handler, you must remove it and reset it.

• Stopping Conflict Detection for Non-Key Columns
You can stop conflict detection for non-key columns by using the COMPARE_OLD_VALUES
procedure in the DBMS_APPLY_ADM package.

About DML Conflicts in an XStream Environment
A conflict is a mismatch between the old values in an LCR and the data in a table.

Conflicts can occur in an XStream environment that permits concurrent data manipulation
language (DML) operations on the same data at multiple databases. In an XStream
environment, DML conflicts can occur only when an inbound server is applying a row LCR that
contains a row change resulting from a DML operation. An inbound server automatically
detects conflicts caused by row LCRs.

For example, when two transactions originating at different databases update the same row at
nearly the same time, a conflict can occur. When you configure an XStream environment, you
must consider whether conflicts can occur. You can configure conflict resolution to resolve
conflicts automatically, if your system design permits conflicts.

In general, it is best practice to design an XStream environment that avoids the possibility of
conflicts. Using the conflict avoidance techniques discussed later in this chapter, most system

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-6

designs can avoid conflicts in all or a large percentage of the shared data. However, many
applications require that some percentage of the shared data be updatable at multiple
databases at any time. If this is the case, then you must address the possibility of conflicts.

Note:

An inbound server does not detect DDL conflicts. Ensure that your environment
avoids these types of conflicts.

Related Topics

• Row LCRs
A row LCR describes a change to the data in a single row or a change to a single LOB
column, LONG column, LONG RAW column, or XMLType column in a row.

Conflict Types in an XStream Environment
You can encounter several different types of conflicts when you share data at multiple
databases.

• Update Conflicts in an XStream Environment
An update conflict occurs when an inbound server applies a row LCR containing an
update to a row that conflicts with another update to the same row.

• Uniqueness Conflicts in an XStream Environment
A uniqueness conflict occurs when an inbound server applies a row LCR containing a
change to a row that violates a uniqueness integrity constraint, such as a PRIMARY KEY or
UNIQUE constraint.

• Delete Conflicts in an XStream Environment
A delete conflict occurs when two transactions originate at different databases, with one
transaction deleting a row and another transaction updating or deleting the same row.

• Foreign Key Conflicts in an XStream Environment
A foreign key conflict occurs when an inbound server applies a row LCR containing a
change to a row that violates a foreign key constraint.

Update Conflicts in an XStream Environment
An update conflict occurs when an inbound server applies a row LCR containing an update to
a row that conflicts with another update to the same row.

Update conflicts can happen when two transactions originating from different databases
update the same row at nearly the same time.

Uniqueness Conflicts in an XStream Environment
A uniqueness conflict occurs when an inbound server applies a row LCR containing a
change to a row that violates a uniqueness integrity constraint, such as a PRIMARY KEY or
UNIQUE constraint.

For example, consider what happens when two transactions originate from two different
databases, each inserting a row into a table with the same primary key value. In this case, the
transactions cause a uniqueness conflict.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-7

Delete Conflicts in an XStream Environment
A delete conflict occurs when two transactions originate at different databases, with one
transaction deleting a row and another transaction updating or deleting the same row.

In this case, the row referenced in the row LCR does not exist and therefore cannot be
updated or deleted.

Foreign Key Conflicts in an XStream Environment
A foreign key conflict occurs when an inbound server applies a row LCR containing a change
to a row that violates a foreign key constraint.

For example, in the hr schema, the department_id column in the employees table is a foreign
key of the department_id column in the departments table. Consider what can happen when
the following changes originate at two different databases (A and B) and are propagated to a
third database (C):

• At database A, a row is inserted into the departments table with a department_id of 271.
This change is propagated to database B and applied there.

• At database B, a row is inserted into the employees table with an employee_id of 206 and a
department_id of 271.

If the change that originated at database B is applied at database C before the change that
originated at database A, then a foreign key conflict results because the row for the department
with a department_id of 271 does not yet exist in the departments table at database C.

Conflicts and Transaction Ordering in an XStream Environment
Ordering conflicts can occur in an XStream environment when three or more databases share
data and the data is updated at two or more of these databases.

For example, consider a scenario in which three databases share information in the
hr.departments table. The database names are mult1.example.com, mult2.example.com, and
mult3.example.com. Suppose a change is made to a row in the hr.departments table at
mult1.example.com that will be propagated to both mult2.example.com and
mult3.example.com. The following series of actions might occur:

1. The change is propagated to mult2.example.com.

2. An inbound server at mult2.example.com applies the change from mult1.example.com.

3. A different change to the same row is made at mult2.example.com.

4. The change at mult2.example.com is propagated to mult3.example.com.

5. An inbound server at mult3.example.com attempts to apply the change from
mult2.example.com before another inbound server at mult3.example.com applies the
change from mult1.example.com.

In this case, a conflict occurs because a column value for the row at mult3.example.com does
not match the corresponding old value in the row LCR propagated from mult2.example.com.

In addition to causing a data conflict, transactions that are applied out of order might
experience referential integrity problems at a remote database if supporting data has not been
successfully propagated to that database. Consider the scenario where a new customer calls
an order department. A customer record is created and an order is placed. If the order data is

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-8

applied at a remote database before the customer data, then a referential integrity error is
raised because the customer that the order references does not exist at the remote database.

If an ordering conflict is encountered, then you can resolve the conflict by reexecuting the
transaction in the error queue after the required data has been propagated to the remote
database and applied.

Conflict Detection in an XStream Environment
An inbound server detects conflicts automatically.

• About Conflict Detection in an XStream Environment
An inbound server detects update, uniqueness, delete, and foreign key conflicts.

• Control Over Conflict Detection for Non-Key Columns
By default, an inbound server compares old values for all columns during conflict detection,
but you can stop conflict detection for non-key columns using the COMPARE_OLD_VALUES
procedure in the DBMS_APPLY_ADM package.

• Rows Identification During Conflict Detection in an XStream Environment
To detect conflicts accurately, Oracle Database must be able to identify and match
corresponding rows at different databases uniquely.

About Conflict Detection in an XStream Environment
An inbound server detects update, uniqueness, delete, and foreign key conflicts.

An inbound server detects these conflicts as follows:

• An inbound server detects an update conflict if there is any difference between the old
values for a row in a row LCR and the current values of the same row at the destination
database.

• An inbound server detects a uniqueness conflict if a uniqueness constraint violation occurs
when applying an LCR that contains an insert or update operation.

• An inbound server detects a delete conflict if it cannot find a row when applying an LCR
that contains an update or delete operation, because the primary key of the row does not
exist.

• An inbound server detects a foreign key conflict if a foreign key constraint violation occurs
when applying an LCR.

A conflict can be detected when an inbound server attempts to apply an LCR directly or when
an inbound server handler, such as a DML conflict handler, runs the EXECUTE member
procedure for an LCR. A conflict can also be detected when either the EXECUTE_ERROR or
EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package is run.

Note:

• If a column is updated and the column's old value equals its new value, then
Oracle Database never detects a conflict for this column update.

• Any old LOB values in update LCRs, delete LCRs, and LCRs dealing with
piecewise updates to LOB columns are not used by conflict detection.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-9

Control Over Conflict Detection for Non-Key Columns
By default, an inbound server compares old values for all columns during conflict detection, but
you can stop conflict detection for non-key columns using the COMPARE_OLD_VALUES procedure
in the DBMS_APPLY_ADM package.

Conflict detection might not be needed for some non-key columns.

See Also:

"Stopping Conflict Detection for Non-Key Columns"

Rows Identification During Conflict Detection in an XStream Environment
To detect conflicts accurately, Oracle Database must be able to identify and match
corresponding rows at different databases uniquely.

By default, Oracle Database uses the primary key of a table to identify rows in a table uniquely.
When a table does not have a primary key, it is best practice to designate a substitute key. A
substitute key is a column or set of columns that Oracle Database can use to identify uniquely
rows in the table.

Conflict Avoidance in an XStream Environment
There are several ways to avoid data conflicts.

• Use a Primary Database Ownership Model
You can avoid the possibility of conflicts by limiting the number of databases that have
simultaneous update access to the tables containing shared data.

• Avoid Specific Types of Conflicts
If a primary database ownership model is too restrictive for your application requirements,
then you can use a shared ownership data model, which means that conflicts might be
possible. Even so, typically you can use some simple strategies to avoid specific types of
conflicts.

Use a Primary Database Ownership Model
You can avoid the possibility of conflicts by limiting the number of databases that have
simultaneous update access to the tables containing shared data.

Primary ownership prevents all conflicts, because only a single database permits updates to a
set of shared data. Applications can even use row and column subsetting to establish more
granular ownership of data than at the table level. For example, applications might have
update access to specific columns or rows in a shared table on a database-by-database basis.

Avoid Specific Types of Conflicts
If a primary database ownership model is too restrictive for your application requirements, then
you can use a shared ownership data model, which means that conflicts might be possible.
Even so, typically you can use some simple strategies to avoid specific types of conflicts.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-10

• Avoid Uniqueness Conflicts in an XStream Environment
You can avoid uniqueness conflicts by ensuring that each database uses unique identifiers
for shared data.

• Avoid Delete Conflicts in an Oracle Replication Environment
Always avoid delete conflicts in shared data environments.

• Avoid Update Conflicts in an XStream Environment
After trying to eliminate the possibility of uniqueness and delete conflicts, you should also
try to limit the number of possible update conflicts.

Avoid Uniqueness Conflicts in an XStream Environment
You can avoid uniqueness conflicts by ensuring that each database uses unique identifiers for
shared data.

There are three ways to ensure unique identifiers at all databases in an XStream environment.

• One way is to construct a unique identifier by executing the following select statement:

SELECT SYS_GUID() OID FROM DUAL;

This SQL operator returns a 16-byte globally unique identifier. The globally unique identifier
appears in a format similar to the following:

A741C791252B3EA0E034080020AE3E0A
• Another way to avoid uniqueness conflicts is to create a sequence at each of the

databases that shares data and concatenate the database name (or other globally unique
value) with the local sequence. This approach helps to avoid any duplicate sequence
values and helps to prevent uniqueness conflicts.

• Finally, you can create a customized sequence at each of the databases that shares data
so that no two databases can generate the same value. You can accomplish this by using
a combination of starting, incrementing, and maximum values in the CREATE SEQUENCE
statement. For example, you might configure the following sequences:

Table 10-1 Customized Sequences

Parameter Database A Database B Database C

START WITH 1 3 5

INCREMENT BY 10 10 10

Range Example 1, 11, 21, 31, 41,... 3, 13, 23, 33, 43,... 5, 15, 25, 35, 45,...

Using a similar approach, you can define different ranges for each database by specifying
a START WITH and MAXVALUE that would produce a unique range for each database.

Avoid Delete Conflicts in an Oracle Replication Environment
Always avoid delete conflicts in shared data environments.

In general, it is best practice for applications that operate within a shared ownership data
model to avoid deleting rows using DELETE statements. Instead, applications can mark rows for
deletion and then configure the system to purge logically deleted rows periodically.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-11

Avoid Update Conflicts in an XStream Environment
After trying to eliminate the possibility of uniqueness and delete conflicts, you should also try to
limit the number of possible update conflicts.

However, in a shared ownership data model, update conflicts cannot be avoided in all cases. If
you cannot avoid all update conflicts, then you must understand the types of conflicts possible
and configure the system to resolve them if they occur.

Conflict Resolution in an XStream Environment
After an update conflict has been detected, a conflict handler can attempt to resolve it.

• About Conflict Resolution in an XStream Environment
XStream provides prebuilt conflict handlers to resolve insert and update conflicts.

• Prebuilt DML Conflict Handlers
There are several types of prebuilt DML conflict handlers available. Column lists and
resolution columns are used in prebuilt DML conflict handlers.

• Types of Prebuilt DML Conflict Handlers
Oracle provides the following types of prebuilt DML conflict handlers for an Oracle
Replication environment: RECORD, IGNORE, OVERWRITE, MAXIMUM, MINIMUM, and DELTA.

• Column Lists
Each time you specify a prebuilt DML conflict handler for a table, you must specify a
column list.

• Resolution Columns
The resolution column is the column used to identify a prebuilt DML conflict handler.

• Data Convergence
When you share data between multiple databases, and you want the data to be the same
at all of these databases, ensure that you use conflict resolution handlers that cause the
data to converge at all databases.

• Collision Handling Without a DML Conflict Handler
In the absence of a DML conflict handler for a table, you can enable basic collision
handling using the HANDLE_COLLISIONS procedure in the DBMS_APPLY_ADM package.

• Custom Conflict Handlers
You can create a PL/SQL procedure to use as a custom conflict handler.

About Conflict Resolution in an XStream Environment
XStream provides prebuilt conflict handlers to resolve insert and update conflicts.

There are no prebuilt conflict handlers for delete, foreign key, or ordering conflicts. However,
you can build your own custom conflict handler to resolve data conflicts specific to your
business rules. Such a conflict handler can be part of a procedure DML handler or an error
handler.

Whether you use prebuilt or custom conflict handlers, a conflict handler is applied as soon as a
conflict is detected. If neither the specified conflict handler nor the relevant apply handler can
resolve the conflict, then the conflict is logged in the error queue. You might want to use the
relevant apply handler to notify the database administrator when a conflict occurs.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-12

When a conflict causes a transaction to be moved to the error queue, sometimes it is possible
to correct the condition that caused the conflict. In these cases, you can reexecute a
transaction using the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package.

See Also:

Oracle Database PL/SQL Packages and Types Referencefor more information about
the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package

Prebuilt DML Conflict Handlers
There are several types of prebuilt DML conflict handlers available. Column lists and resolution
columns are used in prebuilt DML conflict handlers.

A column list is a list of columns for which the DML conflict handler is called when there is an
insert or update conflict. The resolution column identifies a DML conflict handler. If you use a
MAXIMUM or MINIMUM prebuilt DML conflict handler, then the resolution column is also the
column used to resolve the conflict. The resolution column must be one of the columns in the
column list for the handler.

Use the SET_DML_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package to specify one
or more DML conflict handlers for a particular table. There are no prebuilt DML conflict
handlers for delete or foreign key conflicts.

See Also:

• "Managing DML Conflict Handlers" for instructions on setting and removing an
DML conflict handler

• Oracle Database PL/SQL Packages and Types Reference for more information
about the SET_DML_CONFLICT_HANDLER procedure

• "Column Lists"

• "Resolution Columns"

Types of Prebuilt DML Conflict Handlers
Oracle provides the following types of prebuilt DML conflict handlers for an Oracle Replication
environment: RECORD, IGNORE, OVERWRITE, MAXIMUM, MINIMUM, and DELTA.

The description for each type of handler later in this topic refers to the following conflict
scenario:

1. The following update is made at the dbs1.example.com source database:

UPDATE hr.employees SET salary = 4900 WHERE employee_id = 200;
COMMIT;

This update changes the salary for employee 200 from 4400 to 4900.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-13

2. At nearly the same time, the following update is made at the dbs2.example.com destination
database:

UPDATE hr.employees SET salary = 5000 WHERE employee_id = 200;
COMMIT;

3. A capture process captures the update at the dbs1.example.com source database and
puts the resulting row LCR in a queue.

4. A propagation propagates the row LCR from the queue at dbs1.example.com to a queue at
dbs2.example.com.

5. An apply process at dbs2.example.com attempts to apply the row LCR to the
hr.employees table but encounters a conflict because the salary value at
dbs2.example.com is 5000, which does not match the old value for the salary in the row
LCR (4400).

The following sections describe each prebuilt conflict handler and explain how the handler
resolves this conflict.

RECORD

When a conflict occurs, the RECORD handler places the LCR into the error queue. The RECORD
handler can be used for all conflict types, but it can only be specified for a column group that
contains all the columns in the table.

If the RECORD handler is used for the hr.employees table at the dbs2.example.com destination
database in the conflict example, then the row LCR from dbs1.example.com is placed in the
error queue at dbs1.example.com, and its changes are not applied. Therefore, after the conflict
is resolved, the salary for employee 200 is 5000 at dbs2.example.com.

IGNORE

When a conflict occurs, the IGNORE handler ignores the values in the LCR from the source
database and retains the value at the destination database.

If the IGNORE handler is used for the hr.employees table at the dbs2.example.com destination
database in the conflict example, then the new value in the row LCR is discarded. Therefore,
after the conflict is resolved, the salary for employee 200 is 5000 at dbs2.example.com.

OVERWRITE

When a conflict occurs, the OVERWRITE handler replaces the current value at the destination
database with the new value in the LCR from the source database.

If the OVERWRITE handler is used for the hr.employees table at the dbs2.example.com
destination database in the conflict example, then the new value in the row LCR overwrites the
value at dbs2.example.com. Therefore, after the conflict is resolved, the salary for employee
200 is 4900.

MAXIMUM

When a conflict occurs, the MAXIMUM conflict handler compares the new value in the LCR from
the source database with the current value in the destination database for a designated
resolution column. If the new value of the resolution column in the LCR is greater than the
current value of the column at the destination database, then the apply process resolves the
conflict in favor of the LCR. If the new value of the resolution column in the LCR is less than
the current value of the column at the destination database, then the apply process resolves
the conflict in favor of the destination database.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-14

If the MAXIMUM handler is used for the salary column in the hr.employees table at the
dbs2.example.com destination database in the conflict example, then the apply process does
not apply the row LCR, because the salary in the row LCR is less than the current salary in the
table. Therefore, after the conflict is resolved, the salary for employee 200 is 5000 at
dbs2.example.com.

If you want to resolve conflicts based on the time of the transactions involved, then one way to
do this is to add a column to a shared table that automatically records the transaction time with
a trigger. You can designate this column as a resolution column for a MAXIMUM conflict handler,
and the transaction with the latest (or greater) time would be used automatically.

The following is an example of a trigger that records the time of a transaction for the
hr.employees table. Assume that the job_id, salary, and commission_pct columns are part of
the column list for the conflict resolution handler. The trigger should fire only when an UPDATE is
performed on the columns in the column list or when an INSERT is performed.

ALTER TABLE hr.employees ADD (time TIMESTAMP WITH TIME ZONE);

CREATE OR REPLACE TRIGGER hr.insert_time_employees
BEFORE
 INSERT OR UPDATE OF job_id, salary, commission_pct ON hr.employees
FOR EACH ROW
BEGIN
 -- Consider time synchronization problems. The previous update to this
 -- row might have originated from a site with a clock time ahead of the
 -- local clock time.
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

If you use such a trigger for conflict resolution, then ensure that the trigger's firing property is
“fire once,” which is the default. Otherwise, a new time might be marked when transactions are
applied by an apply process, resulting in the loss of the actual time of the transaction.

MINIMUM

When a conflict occurs, the MINIMUM conflict handler compares the new value in the LCR from
the source database with the current value in the destination database for a designated
resolution column. If the new value of the resolution column in the LCR is less than the current
value of the column at the destination database, then the apply process resolves the conflict in
favor of the LCR. If the new value of the resolution column in the LCR is greater than the
current value of the column at the destination database, then the apply process resolves the
conflict in favor of the destination database.

If the MINIMUM handler is used for the salary column in the hr.employees table at the
dbs2.example.com destination database in the conflict example, then the apply process
resolves the conflict in favor of the row LCR, because the salary in the row LCR is less than
the current salary in the table. Therefore, after the conflict is resolved, the salary for employee
200 is 4900.

DELTA

When a conflict occurs, the DELTA conflict handler calculates the difference between the old
value for the column and the new value for the column and adds the difference to the current

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-15

value of the column. The DELTA conflict handler can only be used when the conflict_type is
set to ROW_EXISTS and all of the columns in the column group are numbers.

If the DELTA handler is used for the salary column in the hr.employees table at the
dbs2.example.com destination database in the conflict example, then the apply process
resolves the conflict by calculating the difference between the old value for the column and the
new value for the column (4900 – 4400 = 500) and adding it to the current value of the column
(5000 + 500 = 5500). Therefore, after the conflict is resolved, the salary for employee 200
is 5500.

MAX_AND_EQUALS

When a conflict occurs, apply the column list from in the LCR if the value of resolution column
is greater than or equal to the value of the column in the database. Otherwise, discard the
LCR.

If the MAX_AND_EQUALS handler is used for the salary column in the hr.employees table at the
dbs2.example.com destination database in the conflict example, then the apply process
resolves the conflict by discarding the LCR. Therefore, after the conflict is resolved, the salary
for employee 200 is 5000.

MIN_AND_EQUALS

When a conflict occurs, apply the column list from the LCR if the value of resolution column is
less than or equal to the value of the column in the database. Otherwise, discard the LCR.

If the MIN_AND_EQUALS handler is used for the salary column in the hr.employees table at the
dbs2.example.com destination database in the conflict example, then the apply process
resolves the conflict by applying the LCR. Therefore, after the conflict is resolved, the salary for
employee 200 is 4900.

Column Lists
Each time you specify a prebuilt DML conflict handler for a table, you must specify a column
list.

A column list is a list of columns for which the DML conflict handler is called. If an update
conflict occurs for one or more of the columns in the list when an inbound server tries to apply
a row LCR, then the DML conflict handler is called to resolve the conflict. The DML conflict
handler is not called if a conflict occurs only in columns that are not in the list. The scope of
conflict resolution is a single column list on a single row LCR.

You can specify multiple DML conflict handlers for a particular table, but the same column
cannot be in more than one column list. For example, suppose you specify two prebuilt DML
conflict handlers on hr.employees table:

• The first DML conflict handler has the following columns in its column list: salary and
commission_pct.

• The second DML conflict handler has the following columns in its column list: job_id and
department_id.

Also, assume that no other conflict handlers exist for this table. In this case, the following
examples illustrate the outcomes for different scenarios:

• If a conflict occurs for the salary column when an inbound server tries to apply a row LCR,
then the first DML conflict handler is called to resolve the conflict.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-16

• If a conflict occurs for the department_id column, then the second DML conflict handler is
called to resolve the conflict.

• If a conflict occurs for a column that is not in a column list for any conflict handler, then no
conflict handler is called, and an error results. For instance, if a conflict occurs for the
manager_id column in the hr.employees table, then an error results.

• If conflicts occur in more than one column list when a row LCR is being applied, and there
are no conflicts in any columns that are not in a column list, then the appropriate DML
conflict handler is invoked for each column list with a conflict.

Column lists enable you to use different handlers to resolve conflicts for different types of data.
For example, numeric data is often suited for a maximum or minimum conflict handler, while an
overwrite or discard conflict handler might be preferred for character data.

If a conflict occurs in a column that is not in a column list, then the error handler for the specific
operation on the table attempts to resolve the conflict. If the error handler cannot resolve the
conflict, or if there is no such error handler, then the transaction that caused the conflict is
moved to the error queue.

Also, if a conflict occurs for a column in a column list that uses either the OVERWRITE, MAXIMUM,
or MINIMUM prebuilt handler, and if the row LCR does not contain all of the columns in this
column list, then the conflict cannot be resolved because all of the values are not available. In
this case, the transaction that caused the conflict is moved to the error queue. If the column list
uses the DISCARD prebuilt method, then the row LCR is discarded and no error results, even if
the row LCR does not contain all of the columns in this column list.

If more than one column at the source database affects the column list at the destination
database, then a conditional supplemental log group must be specified for the columns
specified in a column list. Supplemental logging is specified at the source database and adds
additional information to the LCR, which is needed to resolve conflicts properly. Typically, a
conditional supplemental log group must be specified for the columns in a column list if there
are multiple columns in the column list, but not if there is only one column in the column list.

However, in some cases, a conditional supplemental log group is required even if there is only
one column in a column list. That is, an apply handler or custom rule-based transformation can
combine multiple columns from the source database into a single column in the column list at
the destination database. For example, a custom rule-based transformation can take three
columns that store street, state, and postal code data from a source database and combine the
data into a single address column at a destination database.

Also, in some cases, no conditional supplemental log group is required even if there are
multiple columns in a column list. For example, an apply handler or custom rule-based
transformation can separate one address column from the source database into multiple
columns that are in a column list at the destination database. A custom rule-based
transformation can take an address that includes street, state, and postal code data in one
address column at a source database and separate the data into three columns at a
destination database.

Note:

Prebuilt DML conflict handlers do not support LOB, LONG, LONG RAW, user-defined
type, and Oracle-supplied type columns. Therefore, you should not include these
types of columns in the column_list parameter when running the
SET_DML_CONFLICT_HANDLER procedure.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-17

See Also:

• "If Required, Specify Supplemental Logging at the Source Database"

• Oracle Database SQL Language Reference for information about data types

Resolution Columns
The resolution column is the column used to identify a prebuilt DML conflict handler.

If you use a MAXIMUM or MINIMUM prebuilt DML conflict handler, then the resolution column is
also the column used to resolve the conflict. The resolution column must be one of the
columns in the column list for the handler.

For example, if the salary column in the hr.employees table is specified as the resolution
column for a maximum or minimum conflict handler, then the salary column is evaluated to
determine whether column list values in the row LCR are applied or the destination database
values for the column list are retained.

In either of the following situations involving a resolution column for a conflict, the apply
process moves the transaction containing the row LCR that caused the conflict to the error
queue, if the error handler cannot resolve the problem. In these cases, the conflict cannot be
resolved and the values of the columns at the destination database remain unchanged:

• The new LCR value and the destination row value for the resolution column are the same
(for example, if the resolution column was not the column causing the conflict).

• Either the new LCR value of the resolution column or the current value of the resolution
column at the destination database is NULL.

Note:

Although the resolution column is not used for OVERWRITE and DISCARD conflict
handlers, you must specify a resolution column for these conflict handlers.

Data Convergence
When you share data between multiple databases, and you want the data to be the same at all
of these databases, ensure that you use conflict resolution handlers that cause the data to
converge at all databases.

If you allow changes to shared data at all of your databases, then data convergence for a table
is possible only if all databases that are sharing data capture changes to the shared data and
propagate these changes to all of the other databases that are sharing the data.

In such an environment, the MAXIMUM conflict resolution method can guarantee convergence
only if the values in the resolution column are always increasing. If successive time stamps on
a row are distinct, then a time-based resolution column meets this requirement. The MINIMUM
conflict resolution method can guarantee convergence in such an environment only if the
values in the resolution column are always decreasing.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-18

Collision Handling Without a DML Conflict Handler
In the absence of a DML conflict handler for a table, you can enable basic collision handling
using the HANDLE_COLLISIONS procedure in the DBMS_APPLY_ADM package.

When you enable basic collision handling for an inbound server and a table, conflicts are
resolved in the following ways:

• When a conflict is detected for a row that exists in the table, the data in the row LCR
overwrites the data in the table.

For example, if a row LCR contains an insert, but the row already exists in the table. The
data in the row LCR overwrites the existing data in the table. If a row LCR contains an
update, and an old value in the row does not match an old value in the row LCR, the data
in the row LCR overwrites the data in the table.

• When a conflict is detected for a row that does not exist in the table, the data in the row
LCR is ignored.

For example, if a row LCR contains an update to a row, but the row does not exist in the
table, the row LCR is ignored.

Example 10-5 Enabling Basic Collision Handling for a Table

app_emphr.employees

BEGIN
 DBMS_APPLY_ADM.HANDLE_COLLISIONS(
 apply_name => 'app_emp',
 enable => TRUE,
 object => 'hr.employees');
END;
/

To disable basic collision handling for this table, run the same procedure, but set the enable
parameter to FALSE.

Custom Conflict Handlers
You can create a PL/SQL procedure to use as a custom conflict handler.

You use the SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package to designate one or
more custom conflict handlers for a particular table. Specifically, set the following parameters
when you run this procedure to specify a custom conflict handler:

• Set the object_name parameter to the fully qualified name of the table for which you want
to perform conflict resolution.

• Set the object_type parameter to TABLE.

• Set the operation_name parameter to the type of operation for which the custom conflict
handler is called. The possible operations are the following: INSERT, UPDATE, DELETE, and
LOB_UPDATE. You can also set the operation_name parameter to DEFAULT so that the
handler is the default handler for all operations.

• If you want an error handler to perform conflict resolution when an error is raised, then set
the error_handler parameter to TRUE. Or, if you want to include conflict resolution in your
procedure DML handler, then set the error_handler parameter to FALSE.

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-19

If you specify FALSE for this parameter, then, when you execute a row LCR using the
EXECUTE member procedure for the LCR, the conflict resolution within the procedure DML
handler is performed for the specified object and operation(s).

• Specify the procedure to resolve a conflict by setting the user_procedure parameter. This
user procedure is called to resolve any conflicts on the specified table resulting from the
specified type of operation.

If the custom conflict handler cannot resolve the conflict, then the inbound server moves the
transaction containing the conflict to the error queue and does not apply the transaction.

If both a prebuilt DML conflict handler and a custom conflict handler exist for a particular
object, then the prebuilt DML conflict handler is invoked only if both of the following conditions
are met:

• The custom conflict handler executes the row LCR using the EXECUTE member procedure
for the LCR.

• The conflict_resolution parameter in the EXECUTE member procedure for the row LCR
is set to TRUE.

See Also:

Oracle Database PL/SQL Packages and Types Referencefor more information about
the SET_DML_HANDLER procedure

Managing DML Conflict Handlers
You can set and remove a DML conflict handler. To modify an existing DML conflict handler,
you must remove it and reset it.

• Setting a DML Conflict Handler
Set a DML conflict handler using the SET_DML_CONFLICT_HANDLER procedure in the
DBMS_APPLY_ADM package.

• Removing a DML Conflict Handler
You can remove an existing DML conflict handler by running the
SET_DML_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package.

Setting a DML Conflict Handler
Set a DML conflict handler using the SET_DML_CONFLICT_HANDLER procedure in the
DBMS_APPLY_ADM package.

You can use one of the following prebuilt methods when you create a DML conflict resolution
handler:

• RECORD
• IGNORE
• OVERWRITE
• MAXIMUM
• MINIMUM

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-20

• DELTA
• MAX_AND_EQUALS
• MIN_AND_EQUALS
To set a DML conflict handler:

1. Connect to the inbound server database as the XStream administrator.

2. Run the SET_DML_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package.

Example 10-6 Setting DML Conflict Handlers

Suppose an XStream In client receives changes to be applied to the hr.jobs table at
dbs1.example.com. In this environment, conflicts can occur because the changes from the
external database that the client receives may not be coordinated with the changes to the
target database dbs1.example.com. If there is a conflict for a particular DML insert or update,
then the change from the external database must always overwrite the change at the target
database. In this environment, you can accomplish this goal by specifying an OVERWRITE
handler at the dbs1.example.com database. If there is a conflict because the row for a DML
delete does not exist, then the row LCR is ignored.

This example specifies DML conflict handlers for the hr.jobs table at the dbs1.example.com
database.

DECLARE
 cols DBMS_UTILITY.LNAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_DML_CONFLICT_HANDLER(
 apply_name => 'app_jobs',
 conflict_handler_name => 'jobs_handler_insert',
 object => 'hr.jobs',
 operation_name => 'INSERT',
 conflict_type => 'ROW_EXISTS',
 method_name => 'OVERWRITE',
 column_table => cols);
 DBMS_APPLY_ADM.SET_DML_CONFLICT_HANDLER(
 apply_name => 'app_jobs',
 conflict_handler_name => 'jobs_handler_update',
 object => 'hr.jobs',
 operation_name => 'UPDATE',
 conflict_type => 'ROW_EXISTS',
 method_name => 'OVERWRITE',
 column_table => cols);
 DBMS_APPLY_ADM.SET_DML_CONFLICT_HANDLER(
 apply_name => 'app_jobs',
 conflict_handler_name => 'jobs_handler_delete',
 object => 'hr.jobs',
 operation_name => 'DELETE',
 conflict_type => 'ROW_MISSING',
 method_name => 'IGNORE',
 column_list => '*');
END;
/

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-21

The apply process app_jobs uses the specified DML conflict handlers.

Note:

• For the jobs_handler_delete DML conflict handler, the column_list parameter
is set to '*' because all columns must be specified when the operation_name is
set to DELETE.

• If the client is obtaining data from an Oracle database using XStream Out, then
you must specify a conditional supplemental log group at the source database for
all of the columns in the column_list at the destination database. In this
example, you would specify a conditional supplemental log group including the
job_title, min_salary, and max_salary columns in the hr.jobs table at the
external database.

• Prebuilt DML conflict handlers do not support LOB, LONG, LONG RAW, user-defined
type, and Oracle-supplied type columns. Therefore, do not include these types of
columns in the column_list parameter when running the procedure
SET_DML_CONFLICT_HANDLER.

See Also:

Oracle Database SQL Language Reference for information about data types

Removing a DML Conflict Handler
You can remove an existing DML conflict handler by running the SET_DML_CONFLICT_HANDLER
procedure in the DBMS_APPLY_ADM package.

To remove an existing DML conflict handler, specify NULL for the method, and specify the same
apply name and DML conflict handler name as the existing DML conflict handler.

To remove a DML conflict handler:

1. Connect to the inbound server database as the XStream administrator.

2. Run the SET_DML_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package with NULL
specified for the method, and specify the same apply name, DML conflict handler name,
object name, conflict type, and resolution column as the existing DML conflict handler.

Example 10-7 Removing a DML Conflict Handler

To remove the DML conflict handler created in "Setting a DML Conflict Handler", run the
following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_DML_CONFLICT_HANDLER(
 apply_name => 'app_jobs',
 conflict_handler_name => 'jobs_handler_insert',
 method_name => NULL);
 DBMS_APPLY_ADM.SET_DML_CONFLICT_HANDLER(
 apply_name => 'app_jobs',

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-22

 conflict_handler_name => 'jobs_handler_update',
 method_name => NULL);
 DBMS_APPLY_ADM.SET_DML_CONFLICT_HANDLER(
 apply_name => 'app_jobs',
 conflict_handler_name => 'jobs_handler_delete',
 method_name => NULL);
END;
/

Stopping Conflict Detection for Non-Key Columns
You can stop conflict detection for non-key columns by using the COMPARE_OLD_VALUES
procedure in the DBMS_APPLY_ADM package.

To stop conflict detection for non-key columns:

1. Connect to the inbound server database as the XStream administrator.

2. Run the COMPARE_OLD_VALUES procedure in the DBMS_APPLY_ADM package, and specify the
non-key columns and FALSE for the compare parameter.

Example 10-8 Stopping Conflict Detection for Non-Key Columns

Suppose you configure a time column for conflict resolution for the hr.employees table. A
trigger records the current time in this column for each change to the table. In this case, you
can decide to stop conflict detection for the other non-key columns in the table. Add the
columns in the hr.employees table to the column list for an update conflict handler:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 cols(9) := 'manager_id';
 cols(10) := 'department_id';
 cols(11) := 'time';
 DBMS_APPLY_ADM.SET_DML_CONFLICT_HANDLER(
 apply_name => 'app_employees',
 conflict_handler_name => 'emp_handler',
 object => 'hr.employees',
 operation_name => 'UPDATE',
 conflict_type => 'ROW_EXISTS',
 method_name => 'MAXIMUM',
 column_list => cols,
 resolution_column => 'time');
END;
/

Chapter 10
Managing XStream In Conflict Detection and Resolution

10-23

This example does not include the primary key for the table in the column list because it
assumes that the primary key is never updated. However, other key columns are included in
the column list.

To stop conflict detection for all non-key columns in the table for UPDATE operations, enter the
following:

DECLARE
 cols DBMS_UTILITY.LNAME_ARRAY;
 BEGIN
 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 DBMS_APPLY_ADM.COMPARE_OLD_VALUES(
 object_name => 'hr.employees',
 column_table => cols,
 operation => '*',
 compare => FALSE);
END;
/

The asterisk (*) specified for the operation parameter means that conflict detection is stopped
for UPDATE operations. After you run this procedure, all apply processes running on the
database that apply changes to the specified table locally do not detect conflicts on the
specified columns. Therefore, in this example, the time column is the only column used for
conflict detection.

Note:

The example in this section sets an DML conflict handler before stopping conflict
detection for non-key columns. However, a DML conflict handler is not required
before you stop conflict detection for non-key columns.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the COMPARE_OLD_VALUES procedure

Managing Apply Errors
Apply errors result when an inbound server tries to apply an LCR, and an error is raised.

When an apply error occurs, the LCR that caused the error and all of the other LCRs in the
same transaction are moved to the error queue.

Chapter 10
Managing Apply Errors

10-24

• Inbound Server Error Handling
You can configure error handlers to handle specific types of errors.

• Retrying Apply Error Transactions
You can retry a specific error transaction, or you can retry all error transactions for an
inbound server.

• Deleting Apply Error Transactions
You can delete a specific error transaction, or you can delete all error transactions for an
inbound server.

• Managing Eager Errors Encountered by an Inbound Server
As a performance optimization, an inbound server can use eager apply to begin to apply
large transactions before it receives the commit LCR.

See Also:

• "The Error Queue for an Inbound Server"

• The Oracle Enterprise Manager Cloud Control online help for instructions on
managing apply errors in Oracle Enterprise Manager Cloud Control

Inbound Server Error Handling
You can configure error handlers to handle specific types of errors.

• About Error Handlers
An error handler specifies a method for handling a specific error during apply.

• Setting and Unsetting an Error Handler
You set an error handler with the SET_REPERROR_HANDLER procedure in the DBMS_APPLY
package.

About Error Handlers
An error handler specifies a method for handling a specific error during apply.

When an inbound server applies row LCRs, it can encounter errors. You can configure an error
handler to handle a specific error using a designated method with the SET_REPERROR_HANDLER
procedure in the DBMS_APPLY package. For example, you can set an error handler that handles
ORA-26787 errors that occur when a row LCR tries to update or delete a row that does not
exist in a table. In addition, you can configure a default error handling method without
specifying a particular error.

You set an error handler for a specific apply process. You can set an error handler for a specific
table or for all tables.

The following table describes each error handler method.

Table 10-2 Error Handler Methods

Method Description

ABEND Stop the inbound server when the error is
encountered.

Chapter 10
Managing Apply Errors

10-25

Table 10-2 (Cont.) Error Handler Methods

Method Description

RECORD Move the row LCR that caused the error to the
error queue when the error is encountered.

IGNORE Silently ignore the error, and do not apply the row
LCR, when the error is encountered.

RETRY Retry the row LCR for the specified number of
times when the error is encountered.

If retry fails, then the entire transaction is moved to
the error queue.

RETRY_TRANSACTION Retry the transaction for the specified number of
times, with the specified delay before retry, when
the error is encountered.

If retry fails, then the entire transaction is moved to
the error queue.

RECORD_TRANSACTION Move the entire transaction to the error queue
when the error is encountered.
RECORD_TRANSACTION is the default.

Setting and Unsetting an Error Handler
You set an error handler with the SET_REPERROR_HANDLER procedure in the DBMS_APPLY
package.

You can use one of the following methods when you set an error handler:

• ABEND
• RECORD
• IGNORE
• RETRY
• RETRY_TRANSACTION
• RECORD_TRANSACTION
To unset an error handler, set the method parameter in the SET_REPERROR_HANDLER procedure
to NULL.

To set or unset an error handler:

1. Connect to the inbound server database as the XStream administrator.

2. Run the SET_REPERROR_HANDLER procedure in the DBMS_APPLY_ADM package.

Example 10-9 Setting an Error Handler That Stops the Inbound Server for All Errors on
a Specific Table

This example sets an error handler that stops the app_oe inbound server for any errors on the
oe.orders table. The 0 setting for the error_number parameter specifies all errors. The ABEND
setting for the method parameter specifies that the inbound server is stopped when an error is
encountered.

BEGIN
 DBMS_APPLY_ADM.SET_REPERROR_HANDLER(

Chapter 10
Managing Apply Errors

10-26

 apply_name => 'app_oe',
 object => 'oe.orders',
 error_number => 0,
 method => 'ABEND');
END;
/

Example 10-10 Setting an Error Handler That Ignores Row LCRs for a Specific Table
and a Specific Error

This example sets an error handler that ignores row LCRs that raise the ORA-1403 error for
the app_oe inbound server. The error handler applies to the oe.orders table.

BEGIN
 DBMS_APPLY_ADM.SET_REPERROR_HANDLER(
 apply_name => 'app_oe',
 object => 'oe.orders',
 error_number => 1403,
 method => 'IGNORE');
END;
/

Example 10-11 Unsetting an Error Handler

This example unsets an error handler that ignores row LCRs that raise the ORA-1403 error for
the app_oe inbound server. The error handler was set for the oe.orders table.

BEGIN
 DBMS_APPLY_ADM.SET_REPERROR_HANDLER(
 apply_name => 'app_oe',
 object => 'oe.orders',
 error_number => 1403,
 method => NULL);
END;
/

Retrying Apply Error Transactions
You can retry a specific error transaction, or you can retry all error transactions for an inbound
server.

Before you retry error transactions, you might need to make DML or DDL changes to database
objects to correct the conditions that caused one or more apply errors.

• Retrying a Specific Apply Error Transaction
When you retry an error transaction, you can execute it immediately or send the error
transaction to a user procedure for modifications before executing it.

• Retrying All Error Transactions for an Inbound Server
After you correct the conditions that caused all of the apply errors for an inbound server,
you can retry all of the error transactions by running the EXECUTE_ALL_ERRORS procedure in
the DBMS_APPLY_ADM package.

Chapter 10
Managing Apply Errors

10-27

Retrying a Specific Apply Error Transaction
When you retry an error transaction, you can execute it immediately or send the error
transaction to a user procedure for modifications before executing it.

• Retrying a Specific Apply Error Transaction Without a User Procedure
After you correct the conditions that caused an apply error, you can retry the transaction by
running the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package without specifying a
user procedure. In this case, the transaction executes without any custom processing.

• Retrying a Specific Apply Error Transaction With a User Procedure
You can retry an error transaction by running the EXECUTE_ERROR procedure in the
DBMS_APPLY_ADM package and specify a user procedure to modify one or more LCRs in the
transaction before the transaction is executed.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the EXECUTE_ERROR procedure

Retrying a Specific Apply Error Transaction Without a User Procedure
After you correct the conditions that caused an apply error, you can retry the transaction by
running the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package without specifying a
user procedure. In this case, the transaction executes without any custom processing.

When there are multiple error transactions, transaction ordering might be important when you
execute them. In general, it is best practice to execute the oldest transaction first, and then
each later transaction in order until you reach the newest transaction. The
SOURCE_COMMIT_POSITION column in the DBA_APPLY_ERROR view shows the transaction time.

To retry a specific apply error transaction without a user procedure:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package, and specify the
transaction identifier.

To retry a transaction with the transaction identifier 5.4.312, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.EXECUTE_ERROR(
 local_transaction_id => '5.4.312',
 execute_as_user => FALSE,
 user_procedure => NULL);
END;
/

If execute_as_user is TRUE, then the inbound server executes the transaction in the security
context of the current user. If execute_as_user is FALSE, then the inbound server executes the
transaction in the security context of the original receiver of the transaction. The original
receiver is the user who was processing the transaction when the error was raised.

Chapter 10
Managing Apply Errors

10-28

In either case, the user who executes the transaction must have privileges to perform DML and
DDL changes on the apply objects and to run any apply handlers.

Retrying a Specific Apply Error Transaction With a User Procedure
You can retry an error transaction by running the EXECUTE_ERROR procedure in the
DBMS_APPLY_ADM package and specify a user procedure to modify one or more LCRs in the
transaction before the transaction is executed.

The modifications should enable successful execution of the transaction.

For example, consider a case in which a conflict caused an apply error. Examination of the
error transaction reveals that the old value for the salary column in a row LCR contained the
wrong value. Specifically, the current value of the salary of the employee with employee_id of
197 in the hr.employees table did not match the old value of the salary for this employee in the
row LCR. Assume that the current value for this employee is 3250 in the hr.employees table.
The example in this section creates a procedure to resolve the error.

To retry a specific apply error transaction with a user procedure:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Given this scenario described previously, create the following user procedure to modify the
salary in the row LCR that caused the error:

CREATE OR REPLACE PROCEDURE xstrmadmin.modify_emp_salary(
 in_any IN ANYDATA,
 error_record IN ALL_APPLY_ERROR%ROWTYPE,
 error_message_number IN NUMBER,
 messaging_default_processing IN OUT BOOLEAN,
 out_any OUT ANYDATA)
AS
 row_lcr SYS.LCR$_ROW_RECORD;
 row_lcr_changed BOOLEAN := FALSE;
 res NUMBER;
 ob_owner VARCHAR2(32);
 ob_name VARCHAR2(32);
 cmd_type VARCHAR2(30);
 employee_id NUMBER;
BEGIN
 IF in_any.getTypeName() = 'SYS.LCR$_ROW_RECORD' THEN
 -- Access the LCR
 res := in_any.GETOBJECT(row_lcr);
 -- Determine the owner of the database object for the LCR
 ob_owner := row_lcr.GET_OBJECT_OWNER;
 -- Determine the name of the database object for the LCR
 ob_name := row_lcr.GET_OBJECT_NAME;
 -- Determine the type of DML change
 cmd_type := row_lcr.GET_COMMAND_TYPE;
 IF (ob_owner = 'HR' AND ob_name = 'EMPLOYEES' AND cmd_type = 'UPDATE') THEN
 -- Determine the employee_id of the row change
 IF row_lcr.GET_VALUE('old', 'employee_id') IS NOT NULL THEN
 employee_id := row_lcr.GET_VALUE('old', 'employee_id').ACCESSNUMBER();
 IF (employee_id = 197) THEN
 -- error_record.message_number should equal error_message_number
 row_lcr.SET_VALUE(
 value_type => 'OLD',
 column_name => 'salary',

Chapter 10
Managing Apply Errors

10-29

 column_value => ANYDATA.ConvertNumber(3250));
 row_lcr_changed := TRUE;
 END IF;
 END IF;
 END IF;
 END IF;
 -- Specify that the inbound server continues to process the current message
 messaging_default_processing := TRUE;
 -- assign out_any appropriately
 IF row_lcr_changed THEN
 out_any := ANYDATA.ConvertObject(row_lcr);
 ELSE
 out_any := in_any;
 END IF;
END;
/

3. Run the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package, and specify the
transaction identifier and the user procedure.

To retry a transaction with the transaction identifier 5.6.924 and process the transaction
with the modify_emp_salary procedure in the xstrmadmin schema before execution, run
the following procedure:

BEGIN
 DBMS_APPLY_ADM.EXECUTE_ERROR(
 local_transaction_id => '5.6.924',
 execute_as_user => FALSE,
 user_procedure => 'xstrmadmin.modify_emp_salary');
END;
/

Note:

The user who runs the procedure must have SELECT privilege on the
ALL_APPLY_ERROR data dictionary view.

Retrying All Error Transactions for an Inbound Server
After you correct the conditions that caused all of the apply errors for an inbound server, you
can retry all of the error transactions by running the EXECUTE_ALL_ERRORS procedure in the
DBMS_APPLY_ADM package.

When there are multiple error transactions, the EXECUTE_ALL_ERRORS procedure executes the
oldest transaction first, and then executes each later transaction in order up to the newest
transaction.

To retry all error transactions for an inbound server:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package, and specify the
name of the inbound server.

Chapter 10
Managing Apply Errors

10-30

To retry all of the error transactions for an inbound server named xin, run the following
procedure:

BEGIN
 DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(
 apply_name => 'xin',
 execute_as_user => FALSE);
END;
/

Note:

If you specify NULL for the apply_name parameter, and you have multiple inbound
servers, then all of the apply errors are retried for all of the inbound servers.

Deleting Apply Error Transactions
You can delete a specific error transaction, or you can delete all error transactions for an
inbound server.

• Deleting a Specific Apply Error Transaction
If an error transaction should not be applied, then you can delete the transaction from the
error queue using the DELETE_ERROR procedure in the DBMS_APPLY_ADM package.

• Deleting All Error Transactions for an Inbound Server
If none of the error transactions should be applied, then you can delete all of the error
transactions by running the DELETE_ALL_ERRORS procedure in the DBMS_APPLY_ADM
package.

Deleting a Specific Apply Error Transaction
If an error transaction should not be applied, then you can delete the transaction from the error
queue using the DELETE_ERROR procedure in the DBMS_APPLY_ADM package.

To delete a specific apply error transaction:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Identify the transaction ID of the error transaction you want to delete.

For example, run the following query to list the local apply error transactions:

COLUMN APPLY_NAME FORMAT A11
COLUMN SOURCE_DATABASE' FORMAT A10
COLUMN LOCAL_TRANSACTION_ID FORMAT A11
COLUMN ERROR_NUMBER FORMAT 99999999
COLUMN ERROR_MESSAGE FORMAT A20
COLUMN MESSAGE_COUNT FORMAT 99999999

SELECT APPLY_NAME,
 SOURCE_DATABASE,
 LOCAL_TRANSACTION_ID,
 ERROR_NUMBER,

Chapter 10
Managing Apply Errors

10-31

 ERROR_MESSAGE,
 MESSAGE_COUNT
 FROM DBA_APPLY_ERROR;

3. Run the DELETE_ERROR procedure in the DBMS_APPLY_ADM package, and specify the
transaction identifier.

To delete a transaction with the transaction identifier 5.4.312, run the following procedure:

EXEC DBMS_APPLY_ADM.DELETE_ERROR(local_transaction_id => '5.4.312');

Deleting All Error Transactions for an Inbound Server
If none of the error transactions should be applied, then you can delete all of the error
transactions by running the DELETE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package.

To delete all error transactions for an inbound server:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the DELETE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package, and specify the
name of the inbound server.

To delete all of the error transactions for an inbound server named xin, run the following
procedure:

EXEC DBMS_APPLY_ADM.DELETE_ALL_ERRORS(apply_name => 'xin');

Note:

If you specify NULL for the apply_name parameter, and you have multiple inbound
servers, then all of the apply errors are deleted for all of the inbound servers.

Managing Eager Errors Encountered by an Inbound Server
As a performance optimization, an inbound server can use eager apply to begin to apply large
transactions before it receives the commit LCR.

See "Optimizing XStream In Performance for Large Transactions" for information about eager
apply.

An inbound server can encounter an error while eagerly applying a transaction. Because all of
the LCRs are not available for the transaction, an EAGER ERROR is recorded for this failed
transaction. In this case, an entry in the ALL_APPLY_ERROR view shows an eager error for the
transaction, but the LCRs are not recorded in the error queue. If an error transaction is not an
eager error transaction, then it is referred to as a normal error transaction.

Normal error transactions and eager error transactions must be managed differently. An
inbound server moves a normal error transaction, including all of its LCRs, to the error queue,
but an inbound server does not move an eager error transaction to the error queue.

An eager error causes the inbound server to stop. When it restarts, if the error queue has an
EAGER ERROR for the restarting transaction, then the transaction is started as a normal

Chapter 10
Managing Apply Errors

10-32

transaction. That is, the LCRs in the large transaction spill to disk, and the inbound server
begins to apply them only after the commit LCR is received.

The following statements apply to both normal error transactions and eager error transactions:

• The ALL_APPLY_ERROR and ALL_APPLY_ERROR_MESSAGES views contain information
(metadata) about the error transaction.

• The inbound server does not apply the error transaction.

Table 10-3 explains the options for managing a normal error transaction.

Table 10-3 Options Available for Managing a Normal Error Transaction

Action Mechanisms Description

Delete the error
transaction

DBMS_APPLY_ADM.DELETE_ERROR
DBMS_APPLY_ADM.DELETE_ALL_ERROR
S
Oracle Enterprise Manager Cloud
Control

The error transaction is deleted
from the error queue, and the
metadata about the error
transaction is deleted. An inbound
server does not try to reexecute the
transaction when the inbound
server is restarted. The transaction
is not applied.

Execute the error
transaction

DBMS_APPLY_ADM.EXECUTE_ERROR
DBMS_APPLY_ADM.EXECUTE_ALL_ERRO
RS
Oracle Enterprise Manager Cloud
Control

The error transaction in the error
queue is executed. If there are no
errors during execution, then the
transaction is applied. If an LCR
raises an error during execution,
then the normal error transaction is
moved back to the error queue.

Retain the error
transaction

None. (The error transaction is retained
automatically.)

The error transaction remains in the
error queue even if the inbound
server is restarted. The metadata
about the error transaction is also
retained. The transaction is not
applied.

Table 10-4 explains the options for managing an eager error transaction.

Table 10-4 Options Available for Managing an Eager Error Transaction

Action Mechanisms Description

Delete error transaction DBMS_APPLY_ADM.DELETE_ERROR
DBMS_APPLY_ADM.DELETE_ALL_ERRO
RS
Oracle Enterprise Manager Cloud
Control

The metadata about the eager error
transaction is deleted. When the
inbound server is restarted, it
attempts to execute the transaction
as an eager transaction. If the
inbound server does not encounter
an error during execution, then the
transaction is applied successfully. If
the inbound server encounters an
error during execution, then the
eager error transaction is recorded.

Chapter 10
Managing Apply Errors

10-33

Table 10-4 (Cont.) Options Available for Managing an Eager Error Transaction

Action Mechanisms Description

Retain error transaction None. (The metadata about the error
transaction is retained automatically.)

The metadata about the eager error
transaction is retained. When the
inbound server is restarted, it
attempts to execute the transaction
as a normal transaction.

Specifically, the inbound server spills
the transaction to disk and attempts
to execute the transaction. If the
inbound server does not encounter
an error during execution, then the
transaction is applied successfully. If
the inbound server encounters an
error during execution, then the
transaction becomes a normal error
transaction. In this case, the LCR
that raised the error and all of the
other LCRs in the transaction are
moved to the error queue. After the
normal error transaction is moved to
the error queue, you must manage
the error transaction as a normal
error transaction (not an eager error
transaction).

Note:

If you attempt to execute an eager error transaction manually using the
DBMS_APPLY_ADM package or Oracle Enterprise Manager Cloud Control, then the
following error is raised:

ORA-26909: cannot reexecute an eager error

An eager error transaction cannot be executed manually. Instead, it is executed
automatically when the inbound server is enabled.

To manage an eager error transaction encountered by an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Query the ERROR_TYPE column in the ALL_APPLY_ERROR data dictionary view:

SELECT APPLY_NAME, ERROR_TYPE FROM ALL_APPLY_ERROR;

Follow the appropriate instructions based on the error type:

• If the ERROR_TYPE column shows EAGER ERROR, then proceed to Step 3.

• If the ERROR_TYPE column shows NULL, then the apply error is not an eager error, and
you cannot use the instructions in this section to manage it. Instead, use the

Chapter 10
Managing Apply Errors

10-34

instructions in "Retrying Apply Error Transactions" and "Deleting Apply Error
Transactions".

3. Examine the error message raised by the LCR, and determine the cause of the error.

See Also:

• "Checking for Apply Errors" and "Displaying Detailed Information About Apply
Errors" for information about checking for apply errors using data dictionary
views

• Oracle Enterprise Manager Cloud Control online help for information about
checking for apply errors using Oracle Enterprise Manager Cloud Control

4. If possible, determine how to avoid the error, and make any changes necessary to avoid
the error.

See Also:

"Troubleshooting XStream In" for information about common apply errors and
solutions for them

5. Either retain the error transaction or delete the error transaction:

• Delete the error transaction only if you have corrected the problem. The inbound
server reexecutes the transaction when it is enabled.

For example, to delete a transaction with the transaction identifier 5.4.312, run the
following procedure:

EXEC DBMS_APPLY_ADM.DELETE_ERROR(local_transaction_id => '5.4.312');
• Retain the error transaction if you cannot correct the problem now or if you plan to

reexecute it in the future. No action is necessary to retain the error transaction. It
remains in the error queue until it is reexecuted or deleted.

See Table 10-4 for more information about these choices.

Note:

It might not be possible to recover a normal error transaction that is deleted.
Before deleting the error transaction, ensure that the error type is EAGER ERROR.

See Also:

• "Deleting Apply Error Transactions" for more information about deleting an
error transaction using the DBMS_APPLY_ADM package

• See the Oracle Enterprise Manager Cloud Control online help for information
about deleting an error transaction using Oracle Enterprise Manager Cloud
Control.

Chapter 10
Managing Apply Errors

10-35

6. If the inbound server is disabled, then start the inbound server.

Query the STATUS column in the ALL_APPLY_ERROR view to determine whether the inbound
server is enabled or disabled.

If the disable_on_error apply parameter is set to Y for the inbound server, then the
inbound server becomes disabled when it encounters the error and remains disabled.

If the disable_on_error apply parameter is set to N for the inbound server, then the
inbound server stops and restarts automatically when it encounters the error.

See Table 10-4 for information about how the inbound server handles the error transaction
based on your choice in Step 5.

See Also:

• "Starting an Inbound Server" for information about starting an inbound server
or apply process using the DBMS_APPLY_ADM package

• Oracle Enterprise Manager Cloud Control online help for information about
starting an inbound server or apply process using Oracle Enterprise Manager
Cloud Control

See Also:

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

Conflict and Error Handling Precedence
To resolve a conflict or error, an inbound server tries to find conflict handlers and error
handlers.

When an inbound server encounters a conflict or an error, it tries to resolve the problem by
checking for the following types of handlers that apply to the error in the specified order:

1. An update conflict handler set with the SET_UPDATE_CONFLICT_HANDLER procedure

2. A custom conflict handler set with the SET_DML_CONFLICT_HANDLER procedure

3. A collision handler set with the HANDLE_COLLISIONS procedure

4. An error handler set with the SET_REPERROR_HANDLER procedure

5. A custom conflict handler set with the SET_DML_HANDLER procedure

All of the procedures are in the DBMS_APPLY_ADM package.

If no handler applies to the conflict or error, then the transaction that caused the error is moved
to the error queue.

Chapter 10
Conflict and Error Handling Precedence

10-36

Dropping Components in an XStream In Configuration
You can drop an inbound server with the DROP_INBOUND procedure in the DBMS_XSTREAM_ADM
package.

This procedure always drops the specified inbound server. This procedure also drops the
queue for the inbound server if both of the following conditions are met:

• One call to the CREATE_INBOUND procedure created the inbound server and the queue.

• The inbound server is the only subscriber to the queue.

If either one of the preceding conditions is not met, then the DROP_INBOUND procedure only
drops the inbound server. It does not drop the queue.

To drop an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the DROP_INBOUND procedure.

If the inbound server's queue is not dropped automatically, then run the REMOVE_QUEUE
procedure to drop it.

Example 10-12 Dropping an Inbound Server

To drop an inbound server named xin, run the following procedure:

exec DBMS_XSTREAM_ADM.DROP_INBOUND('xin');

Example 10-13 Dropping an Inbound Server's Queue

To drop a queue named xin_queue, run the following procedure:

exec DBMS_XSTREAM_ADM.REMOVE_QUEUE('xin_queue');

See Also:

Oracle Database PL/SQL Packages and Types Reference

Chapter 10
Dropping Components in an XStream In Configuration

10-37

11
Monitoring XStream In

You can monitor an XStream In configuration by querying data dictionary views.

This chapter provides instructions for monitoring XStream.

With XStream In, an Oracle Apply process functions as an inbound server. Therefore, you can
also use the data dictionary views for apply processes to monitor inbound servers.

Note:

Whenever possible, this chapter uses ALL_ static data dictionary views for query
examples. In some cases, information in the ALL_ views is more limited than the
information in the DBA_ views.

In SQL*Plus, trusted XStream administrators can query the ALL_ and DBA_ views.
Untrusted XStream administrators can query the ALL_ views only.

• Displaying Session Information for Inbound Servers
An example illustrates displaying session information for inbound servers.

• Displaying General Information About an Inbound Server
An example illustrates displaying general information about an inbound server.

• Monitoring the History of Events for XStream In Components
An example illustrates monitoring the history of events for XStream In components by
querying the DBA_REPLICATION_PROCESS_EVENTS view.

• Displaying the Status and Error Information for an Inbound Server
An example illustrates displaying the status and error information for an inbound server.

• Displaying Apply Parameter Settings for an Inbound Server
An example illustrates displaying apply parameter settings for an inbound server.

• Displaying the Position Information for an Inbound Server
An example illustrates displaying the position information for an inbound server.

• Displaying Information About DML Conflict Handlers
The DBA_APPLY_DML_CONF_HANDLERS view displays information about DML conflict
handlers.

• Displaying Information About Error Handlers
The DBA_APPLY_REPERROR_HANDLERS view displays information about DML conflict
handlers.

• Checking for Apply Errors
An example illustrates checking for apply errors.

• Displaying Detailed Information About Apply Errors
SQL scripts display detailed information about the error transactions in the error queue in a
database.

11-1

See Also:

• "XStream Out Concepts"

• "XStream Use Cases"

• "Troubleshooting XStream In"

Displaying Session Information for Inbound Servers
An example illustrates displaying session information for inbound servers.

The query in this section displays the following session information about each XStream
component in a database:

• The XStream component name

• The session identifier

• The serial number

• The operating system process identification number

• The XStream process number

This query is especially useful for determining the session information for specific XStream
components when there are multiple XStream In components configured in a database.

To display this information for each XStream component in a database:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN ACTION HEADING 'XStream Component' FORMAT A30
COLUMN SID HEADING 'Session ID' FORMAT 99999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 99999999
COLUMN PROCESS HEADING 'Operating System|Process Number' FORMAT A17
COLUMN PROCESS_NAME HEADING 'XStream|Process|Number' FORMAT A7

SELECT /*+PARAM('_module_action_old_length',0)*/ ACTION,
 SID,
 SERIAL#,
 PROCESS,
 SUBSTR(PROGRAM,INSTR(PROGRAM,'(')+1,4) PROCESS_NAME
 FROM V$SESSION
 WHERE MODULE ='XStream';

Your output for an XStream In configuration looks similar to the following:

 Session XStream
 Serial Operating System Process
XStream Component Session ID Number Process Number Number
------------------------------ ---------- --------- ----------------- -------
XIN - Apply Reader 19 9 27304 AS01
XIN - Apply Server 22 5 27308 AS03
XIN - Apply Server 25 31 27313 AS05
XIN - Apply Coordinator 112 7 27302 AP01

Chapter 11
Displaying Session Information for Inbound Servers

11-2

XIN - Apply Server 113 5 27306 AS02
XIN - Propagation Receiver 114 17 27342 TNS
XIN - Apply Server 115 39 27311 AS04

The row that shows TNS for the XStream process number contains information about the
session for the XStream client application that is attached to the inbound server.

Note:

To run this query, a user must have the necessary privileges to query the V$SESSION
view.

See Also:

Oracle Database Reference for more information about the V$SESSION view

Displaying General Information About an Inbound Server
An example illustrates displaying general information about an inbound server.

You can display the following information for an inbound server by running the query in this
section:

• The inbound server name

• The owner of the queue used by the inbound server

• The name of the queue used by the inbound server

• The apply user for the inbound server

To display general information about an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Inbound Server Name' FORMAT A20
COLUMN QUEUE_OWNER HEADING 'Queue Owner' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A15
COLUMN APPLY_USER HEADING 'Apply User' FORMAT A15

SELECT SERVER_NAME,
 QUEUE_OWNER,
 QUEUE_NAME,
 APPLY_USER
 FROM ALL_XSTREAM_INBOUND;

Your output looks similar to the following:

Chapter 11
Displaying General Information About an Inbound Server

11-3

Inbound Server Name Queue Owner Queue Name Apply User
-------------------- --------------- --------------- ---------------
XIN XSTRMADMIN XIN_QUEUE XSTRMADMIN

See Also:

Oracle Database Reference

Monitoring the History of Events for XStream In Components
An example illustrates monitoring the history of events for XStream In components by querying
the DBA_REPLICATION_PROCESS_EVENTS view.

For example, this view can display when a component was created or started. It can also
display when a component parameter was changed. If the component encountered an error,
then it can display information about the error.

The query in this topic displays the following information about XStream Out component
events:

• The XStream component name

• The component type

• The event name

• The description of the event

• The event time

To display this information for each XStream In component in a database:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN STREAMS_NAME FORMAT A12
COLUMN PROCESS_TYPE FORMAT A17
COLUMN EVENT_NAME FORMAT A10
COLUMN DESCRIPTION FORMAT A20
COLUMN EVENT_TIME FORMAT A15

SELECT STREAMS_NAME,
 PROCESS_TYPE,
 EVENT_NAME,
 DESCRIPTION,
 EVENT_TIME
 FROM DBA_REPLICATION_PROCESS_EVENTS;

Your output for an XStream In configuration looks similar to the following:

STREAMS_NAME PROCESS_TYPE EVENT_NAME DESCRIPTION EVENT_TIME
------------ ----------------- ---------- -------------------- ---------------
APP_JOBS APPLY COORDINATOR CREATE SUCCESS 03-NOV-15 07.19
 .27.238151 AM
APP_JOBS APPLY COORDINATOR START SUCCESS 03-NOV-15 07.21

Chapter 11
Monitoring the History of Events for XStream In Components

11-4

 .50.812534 AM
APP_JOBS APPLY READER START SUCCESS 03-NOV-15 07.21
 .51.713367 AM
APP_JOBS APPLY SERVER START SUCCESS 03-NOV-15 07.21
 .51.895019 AM

Related Topics

• Oracle Database Reference

Displaying the Status and Error Information for an Inbound
Server

An example illustrates displaying the status and error information for an inbound server.

The DBA_APPLY view shows XStream In in the PURPOSE column for an apply process that is
functioning as an inbound server.

To display the status of an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN APPLY_NAME HEADING 'Inbound Server|Name' FORMAT A15
COLUMN STATUS HEADING 'Status' FORMAT A8
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 9999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT APPLY_NAME,
 STATUS,
 ERROR_NUMBER,
 ERROR_MESSAGE
 FROM DBA_APPLY
 WHERE PURPOSE = 'XStream In';

Your output looks similar to the following:

Inbound Server
Name Status Error Number Error Message
--------------- -------- ------------ --
XIN ENABLED

This output shows that XIN is an apply process that is functioning as an inbound server.

Note:

This example queries the DBA_APPLY view. This view enables trusted users to see
information for all apply users in the database. Untrusted users must query the
ALL_APPLY view, which limits information to the current user.

Chapter 11
Displaying the Status and Error Information for an Inbound Server

11-5

See Also:

Oracle Database Reference

Displaying Apply Parameter Settings for an Inbound Server
An example illustrates displaying apply parameter settings for an inbound server.

Apply parameters determine how an inbound server operates. To display the apply parameter
settings for an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN APPLY_NAME HEADING 'Inbound Server|Name' FORMAT A15
COLUMN PARAMETER HEADING 'Parameter' FORMAT A30
COLUMN VALUE HEADING 'Value' FORMAT A22
COLUMN SET_BY_USER HEADING 'Set by|User?' FORMAT A10

SELECT APPLY_NAME,
 PARAMETER,
 VALUE,
 SET_BY_USER
 FROM ALL_APPLY_PARAMETERS a, ALL_XSTREAM_INBOUND i
 WHERE a.APPLY_NAME=i.SERVER_NAME
 ORDER BY a.PARAMETER;

Your output looks similar to the following:

Inbound Server Set by
Name Parameter Value User?
--------------- ------------------------------ ---------------------- ----------
XIN ALLOW_DUPLICATE_ROWS N NO
XIN APPLY_SEQUENCE_NEXTVAL Y NO
XIN COMMIT_SERIALIZATION DEPENDENT_TRANSACTIONS NO
XIN COMPARE_KEY_ONLY Y NO
XIN COMPUTE_LCR_DEP_ON_ARRIVAL N NO
XIN DISABLE_ON_ERROR Y NO
XIN DISABLE_ON_LIMIT N NO
XIN EAGER_SIZE 9500 NO
XIN ENABLE_XSTREAM_TABLE_STATS Y NO
XIN EXCLUDETAG NO
XIN EXCLUDETRANS NO
XIN EXCLUDEUSER NO
XIN EXCLUDEUSERID NO
XIN GETAPPLOPS Y NO
XIN GETREPLICATES N NO
XIN GROUPTRANSOPS 250 NO
XIN HANDLECOLLISIONS N NO
XIN IGNORE_TRANSACTION NO
XIN MAXIMUM_SCN INFINITE NO
XIN MAX_PARALLELISM 50 NO
XIN MAX_SGA_SIZE INFINITE NO
XIN OPTIMIZE_PROGRESS_TABLE N NO
XIN OPTIMIZE_SELF_UPDATES Y NO
XIN PARALLELISM 4 NO

Chapter 11
Displaying Apply Parameter Settings for an Inbound Server

11-6

XIN PRESERVE_ENCRYPTION Y NO
XIN RTRIM_ON_IMPLICIT_CONVERSION Y NO
XIN STARTUP_SECONDS 0 NO
XIN SUPPRESSTRIGGERS Y NO
XIN TIME_LIMIT INFINITE NO
XIN TRACE_LEVEL 0 NO
XIN TRANSACTION_LIMIT INFINITE NO
XIN TXN_AGE_SPILL_THRESHOLD 900 NO
XIN TXN_LCR_SPILL_THRESHOLD 10000 NO
XIN WRITE_ALERT_LOG Y NO

Inbound servers ignore some apply parameter settings.

Note:

If the SET_BY_USER column is NO for a parameter, then the parameter is set to its
default value. If the SET_BY_USER column is YES for a parameter, then the parameter
was set by a user and might or might not be set to its default value.

Desupport of OPTIMIZE_PROGRESS_TABLE Parameter

OPTIMIZE_PROGRESS_TABLE for Oracle GoldenGate Integrated Replicat, XStream In, and
Logical Standby, is desupported in Oracle Database 19c
The apply parameter OPTIMIZE_PROGRESS_TABLE for Oracle GoldenGate Integrated Replicat,
XStream In, and Logical Standby was desupported in Oracle Database 19c. Before you
upgrade to Oracle Database 19c, you must turn off this parameter. If
OPTIMIZE_PROGRESS_TABLE set to ON, then stop apply gracefully, turn off the parameter, and
restart apply. For GoldenGate Apply and XStream, this parameter was set to OFF, by default

See Also:

• "Setting an Apply Parameter for an Inbound Server"

• Oracle Database PL/SQL Packages and Types Reference for information about
apply parameters

Displaying the Position Information for an Inbound Server
An example illustrates displaying the position information for an inbound server.

For an inbound server, you can view position information by querying the
ALL_XSTREAM_INBOUND_PROGRESS view. Specifically, you can display the following position
information by running the query in this section:

• The inbound server name

• The applied low position for the inbound server

• The spill position for the inbound server

• The applied high position for the inbound server

• The processed low position for the inbound server

Chapter 11
Displaying the Position Information for an Inbound Server

11-7

To display the position information for an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Inbound|Server|Name' FORMAT A10
COLUMN APPLIED_LOW_POSITION HEADING 'Applied Low|Position' FORMAT A15
COLUMN SPILL_POSITION HEADING 'Spill Position' FORMAT A15
COLUMN APPLIED_HIGH_POSITION HEADING 'Applied High|Position' FORMAT A15
COLUMN PROCESSED_LOW_POSITION HEADING 'Processed Low|Position' FORMAT A15

SELECT SERVER_NAME,
 APPLIED_LOW_POSITION,
 SPILL_POSITION,
 APPLIED_HIGH_POSITION,
 PROCESSED_LOW_POSITION
 FROM ALL_XSTREAM_INBOUND_PROGRESS;

Your output looks similar to the following:

Inbound
Server Applied Low Applied High Processed Low
Name Position Spill Position Position Position
---------- --------------- --------------- --------------- ---------------
XIN C10A C11D C10A C11D

The values of the positions shown in the output were set by the client application that attaches
to the inbound server. However, the inbound server determines which values are the current
applied low position, spill position, applied high position, and processed low position.

See Also:

• Oracle Database Reference

• "Position Order in an LCR Stream"

• "Position of LCRs and XStream In"

Displaying Information About DML Conflict Handlers
The DBA_APPLY_DML_CONF_HANDLERS view displays information about DML conflict handlers.

You can configure DML conflict handlers using the SET_DML_CONFLICT_HANDLER procedure in
the DBMS_APPLY_ADM package.

1. Connect to the database as the XStream administrator.

2. Query the DBA_APPLY_DML_CONF_HANDLERS view.

Example 11-1 Displaying Information About DML Conflict Handlers

COLUMN APPLY_NAME FORMAT A8
COLUMN OBJECT_OWNER FORMAT A5

Chapter 11
Displaying Information About DML Conflict Handlers

11-8

COLUMN OBJECT_NAME FORMAT A12
COLUMN COMMAND_TYPE FORMAT A6
COLUMN CONFLICT_TYPE FORMAT A11
COLUMN METHOD_NAME FORMAT A12
COLUMN CONFLICT_HANDLER_NAME FORMAT A20

SELECT APPLY_NAME,
 OBJECT_OWNER,
 OBJECT_NAME,
 COMMAND_TYPE,
 CONFLICT_TYPE,
 METHOD_NAME,
 CONFLICT_HANDLER_NAME
 FROM DBA_APPLY_DML_CONF_HANDLERS
 ORDER BY OBJECT_OWNER, OBJECT_NAME, CONFLICT_HANDLER_NAME;

Your output looks similar to the following:

APPLY_NA OBJEC OBJECT_NAME COMMAN CONFLICT_TY METHOD_NAME
CONFLICT_HANDLER_NAM
-------- ----- ------------ ------ ----------- ------------

APP_JOBS HR JOBS DELETE ROW_MISSING IGNORE
JOBS_HANDLER_DELETE
APP_JOBS HR JOBS INSERT ROW_EXISTS OVERWRITE
JOBS_HANDLER_INSERT
APP_JOBS HR JOBS UPDATE ROW_EXISTS OVERWRITE
JOBS_HANDLER_UPDATE

Related Topics

• Setting a DML Conflict Handler
Set a DML conflict handler using the SET_DML_CONFLICT_HANDLER procedure in the
DBMS_APPLY_ADM package.

Displaying Information About Error Handlers
The DBA_APPLY_REPERROR_HANDLERS view displays information about DML conflict handlers.

You can configure error handlers using the SET_REPERROR_HANDLER procedure in the
DBMS_APPLY_ADM package.

1. Connect to the database as the XStream administrator.

2. Query the DBA_APPLY_REPERROR_HANDLERS view.

Example 11-2 Displaying Information About DML Conflict Handlers

COLUMN APPLY_NAME FORMAT A15
COLUMN OBJECT_OWNER FORMAT A15
COLUMN OBJECT_NAME FORMAT A15
COLUMN ERROR_NUMBER 999999999
COLUMN METHOD FORMAT A15

SELECT APPLY_NAME,
 OBJECT_OWNER,

Chapter 11
Displaying Information About Error Handlers

11-9

 OBJECT_NAME,
 ERROR_NUMBER,
 METHOD
 FROM DBA_APPLY_REPERROR_HANDLERS
 ORDER BY OBJECT_OWNER, OBJECT_NAME;

Your output looks similar to the following:

APPLY_NAME OBJECT_OWNER OBJECT_NAME ERROR_NUMBER METHOD
--------------- --------------- --------------- ------------ ---------------
APP_OE OE ORDERS 26787 IGNORE

Related Topics

• Setting and Unsetting an Error Handler
You set an error handler with the SET_REPERROR_HANDLER procedure in the DBMS_APPLY
package.

Checking for Apply Errors
An example illustrates checking for apply errors.

Trusted users can check for apply errors by querying the DBA_APPLY_ERROR data dictionary view
or by using Oracle Enterprise Manager Cloud Control. Untrusted users can check for apply
errors by querying the ALL_APPLY_ERROR data dictionary view.

To check for apply errors:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN APPLY_NAME HEADING 'Inbound|Server|Name' FORMAT A7
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A8
COLUMN SOURCE_TRANSACTION_ID HEADING 'Source|Transaction|ID' FORMAT A11
COLUMN MESSAGE_NUMBER HEADING 'Failed Message|in Error|Transaction' FORMAT 99999999
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 99999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A10
COLUMN MESSAGE_COUNT HEADING 'Messages in|Error|Transaction' FORMAT 99999999

SELECT APPLY_NAME,
 SOURCE_DATABASE,
 SOURCE_TRANSACTION_ID,
 MESSAGE_NUMBER,
 ERROR_NUMBER,
 ERROR_MESSAGE,
 MESSAGE_COUNT
 FROM ALL_APPLY_ERROR;

Note:

Trusted users should replace ALL_APPLY_ERROR with DBA_APPLY_ERROR in the query.

Chapter 11
Checking for Apply Errors

11-10

If there are any apply errors, then your output looks similar to the following:

Inbound Source Failed Message Messages in
Server Source Transaction in Error Error
Name Database ID Transaction Error Number Error Mess Transaction
------- -------- ----------- -------------- ------------ ---------- -----------
XIN OUTX.EXA 19.20.215 1 1031 ORA-01031: 1
 MPLE.COM insuffici
 ent privil
 eges
XIN OUTX.EXA 11.21.158 1 1031 ORA-01031: 1
 MPLE.COM insuffici
 ent privil
 eges

If there are apply errors, then you can either try to reexecute the transactions that encountered
the errors, or you can delete the transactions. To reexecute a transaction that encountered an
error, first correct the condition that caused the transaction to raise an error.

If you want to delete a transaction that encountered an error, and if you are sharing data
between multiple databases, then you might need to resynchronize data manually. Remember
to set an appropriate session tag, if necessary, when you resynchronize data manually.

See Also:

• "The Error Queue for an Inbound Server"

• "Managing Apply Errors"

Displaying Detailed Information About Apply Errors
SQL scripts display detailed information about the error transactions in the error queue in a
database.

• Step 1: Grant Explicit SELECT Privilege on the ALL_APPLY_ERROR View

• Step 2: Create a Procedure that Prints the Value in an ANYDATA Object
Create a procedure that prints the value in a specified ANYDATA object for some selected
data types. Optionally, you can add more data types to this procedure.

• Step 3: Create a Procedure that Prints a Specified LCR
Create a procedure that prints a specified LCR.

• Step 4: Create a Procedure that Prints All the LCRs in the Error Queue
Create a procedure that prints all of the LCRs in all of the error queues.

• Step 5: Create a Procedure that Prints All the Error LCRs for a Transaction
Create a procedure that prints all the LCRs in the error queue for a particular transaction.

Chapter 11
Displaying Detailed Information About Apply Errors

11-11

See Also:

• "The Error Queue for an Inbound Server"

• "Managing Apply Errors"

Step 1: Grant Explicit SELECT Privilege on the ALL_APPLY_ERROR View
The user who creates and runs the print_errors and print_transaction procedures
described in the following sections must be granted explicit SELECT privilege on the
ALL_APPLY_ERROR data dictionary view. This privilege cannot be granted through a role because
the procedures in the following section are definer's rights.

To grant explicit SELECT privilege on the ALL_APPLY_ERROR view:

1. In SQL*Plus, connect as an administrative user who can grant privileges.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Grant SELECT privilege on the ALL_APPLY_ERROR data dictionary view to the appropriate
user. For example, to grant this privilege to the xstrmadmin user, run the following
statement:

GRANT SELECT ON ALL_APPLY_ERROR TO xstrmadmin;
3. Grant EXECUTE privilege on the DBMS_APPLY_ADM package. For example, to grant this

privilege to the xstrmadmin user, run the following statement:

GRANT EXECUTE ON DBMS_APPLY_ADM TO xstrmadmin;
4. Connect to the database as the user to whom you granted the privilege in Step 2 and 3.

Step 2: Create a Procedure that Prints the Value in an ANYDATA Object
Create a procedure that prints the value in a specified ANYDATA object for some selected data
types. Optionally, you can add more data types to this procedure.

CREATE OR REPLACE PROCEDURE print_any(data IN ANYDATA) IS
 tn VARCHAR2(61);
 str VARCHAR2(4000);
 chr VARCHAR2(1000);
 num NUMBER;
 dat DATE;
 rw RAW(4000);
 res NUMBER;
BEGIN
 IF data IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('NULL value');
 RETURN;
 END IF;
 tn := data.GETTYPENAME();
 IF tn = 'SYS.VARCHAR2' THEN
 res := data.GETVARCHAR2(str);
 DBMS_OUTPUT.PUT_LINE(SUBSTR(str,0,253));
 ELSIF tn = 'SYS.CHAR' then
 res := data.GETCHAR(chr);
 DBMS_OUTPUT.PUT_LINE(SUBSTR(chr,0,253));

Chapter 11
Displaying Detailed Information About Apply Errors

11-12

 ELSIF tn = 'SYS.VARCHAR' THEN
 res := data.GETVARCHAR(chr);
 DBMS_OUTPUT.PUT_LINE(chr);
 ELSIF tn = 'SYS.NUMBER' THEN
 res := data.GETNUMBER(num);
 DBMS_OUTPUT.PUT_LINE(num);
 ELSIF tn = 'SYS.DATE' THEN
 res := data.GETDATE(dat);
 DBMS_OUTPUT.PUT_LINE(dat);
 ELSIF tn= 'SYS.TIMESTAMP' THEN
 res := data.GETTIMESTAMP(dat);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(dat,'DD-MON-RR HH.MI.SSXFF AM'));
 ELSIF tn= 'SYS.TIMESTAMPTZ' THEN
 res := data.GETTIMESTAMPTZ(dat);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(dat,'DD-MON-RR HH.MI.SSXFF AM'));
 ELSIF tn= 'SYS.TIMESTAMPLTZ' THEN
 res := data.GETTIMESTAMPLTZ(dat);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(dat,'DD-MON-RR HH.MI.SSXFF AM'));
 ELSIF tn = 'SYS.RAW' THEN
 -- res := data.GETRAW(rw);
 -- DBMS_OUTPUT.PUT_LINE(SUBSTR(DBMS_LOB.SUBSTR(rw),0,253));
 DBMS_OUTPUT.PUT_LINE('BLOB Value');
 ELSIF tn = 'SYS.BLOB' THEN
 DBMS_OUTPUT.PUT_LINE('BLOB Found');
 ELSE
 DBMS_OUTPUT.PUT_LINE('typename is ' || tn);
 END IF;
END print_any;
/

Step 3: Create a Procedure that Prints a Specified LCR
Create a procedure that prints a specified LCR.

The procedure calls the print_any procedure created in "Step 2: Create a Procedure that
Prints the Value in an ANYDATA Object".

CREATE OR REPLACE PROCEDURE print_lcr(lcr IN ANYDATA) IS
 typenm VARCHAR2(61);
 ddllcr SYS.LCR$_DDL_RECORD;
 proclcr SYS.LCR$_PROCEDURE_RECORD;
 rowlcr SYS.LCR$_ROW_RECORD;
 res NUMBER;
 newlist SYS.LCR$_ROW_LIST;
 oldlist SYS.LCR$_ROW_LIST;
 ddl_text CLOB;
 ext_attr ANYDATA;
BEGIN
 typenm := lcr.GETTYPENAME();
 DBMS_OUTPUT.PUT_LINE('type name: ' || typenm);
 IF (typenm = 'SYS.LCR$_DDL_RECORD') THEN
 res := lcr.GETOBJECT(ddllcr);
 DBMS_OUTPUT.PUT_LINE('source database: ' ||
 ddllcr.GET_SOURCE_DATABASE_NAME);
 DBMS_OUTPUT.PUT_LINE('owner: ' || ddllcr.GET_OBJECT_OWNER);
 DBMS_OUTPUT.PUT_LINE('object: ' || ddllcr.GET_OBJECT_NAME);
 DBMS_OUTPUT.PUT_LINE('is tag null: ' || ddllcr.IS_NULL_TAG);
 DBMS_LOB.CREATETEMPORARY(ddl_text, TRUE);
 ddllcr.GET_DDL_TEXT(ddl_text);
 DBMS_OUTPUT.PUT_LINE('ddl: ' || ddl_text);
 -- Print extra attributes in DDL LCR
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('serial#');

Chapter 11
Displaying Detailed Information About Apply Errors

11-13

 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('serial#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('session#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('session#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('thread#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('thread#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('tx_name');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('transaction name: ' || ext_attr.ACCESSVARCHAR2());
 END IF;
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('username');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('username: ' || ext_attr.ACCESSVARCHAR2());
 END IF;
 DBMS_LOB.FREETEMPORARY(ddl_text);
 ELSIF (typenm = 'SYS.LCR$_ROW_RECORD') THEN
 res := lcr.GETOBJECT(rowlcr);
 DBMS_OUTPUT.PUT_LINE('source database: ' ||
 rowlcr.GET_SOURCE_DATABASE_NAME);
 DBMS_OUTPUT.PUT_LINE('owner: ' || rowlcr.GET_OBJECT_OWNER);
 DBMS_OUTPUT.PUT_LINE('object: ' || rowlcr.GET_OBJECT_NAME);
 DBMS_OUTPUT.PUT_LINE('is tag null: ' || rowlcr.IS_NULL_TAG);
 DBMS_OUTPUT.PUT_LINE('command_type: ' || rowlcr.GET_COMMAND_TYPE);
 oldlist := rowlcr.GET_VALUES('old');
 FOR i IN 1..oldlist.COUNT LOOP
 IF oldlist(i) IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('old(' || i || '): ' || oldlist(i).column_name);
 print_any(oldlist(i).data);
 END IF;
 END LOOP;
 newlist := rowlcr.GET_VALUES('new', 'n');
 FOR i in 1..newlist.count LOOP
 IF newlist(i) IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('new(' || i || '): ' || newlist(i).column_name);
 print_any(newlist(i).data);
 END IF;
 END LOOP;
 -- Print extra attributes in row LCR
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('row_id');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('row_id: ' || ext_attr.ACCESSUROWID());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('serial#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('serial#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('session#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('session#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('thread#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('thread#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('tx_name');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('transaction name: ' || ext_attr.ACCESSVARCHAR2());

Chapter 11
Displaying Detailed Information About Apply Errors

11-14

 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('username');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('username: ' || ext_attr.ACCESSVARCHAR2());
 END IF;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Non-LCR Message with type ' || typenm);
 END IF;
END print_lcr;
/

Step 4: Create a Procedure that Prints All the LCRs in the Error Queue
Create a procedure that prints all of the LCRs in all of the error queues.

The procedure calls the print_lcr procedure created in "Step 3: Create a Procedure that
Prints a Specified LCR".

CREATE OR REPLACE PROCEDURE print_errors IS
 CURSOR c IS
 SELECT LOCAL_TRANSACTION_ID,
 SOURCE_DATABASE,
 MESSAGE_NUMBER,
 MESSAGE_COUNT,
 ERROR_NUMBER,
 ERROR_MESSAGE
 FROM ALL_APPLY_ERROR
 ORDER BY SOURCE_DATABASE, SOURCE_COMMIT_SCN;
 i NUMBER;
 txnid VARCHAR2(30);
 source VARCHAR2(128);
 msgno NUMBER;
 msgcnt NUMBER;
 errnum NUMBER := 0;
 errno NUMBER;
 errmsg VARCHAR2(2000);
 lcr ANYDATA;
 r NUMBER;
BEGIN
 FOR r IN c LOOP
 errnum := errnum + 1;
 msgcnt := r.MESSAGE_COUNT;
 txnid := r.LOCAL_TRANSACTION_ID;
 source := r.SOURCE_DATABASE;
 msgno := r.MESSAGE_NUMBER;
 errno := r.ERROR_NUMBER;
 errmsg := r.ERROR_MESSAGE;
DBMS_OUTPUT.PUT_LINE('***');
 DBMS_OUTPUT.PUT_LINE('----- ERROR #' || errnum);
 DBMS_OUTPUT.PUT_LINE('----- Local Transaction ID: ' || txnid);
 DBMS_OUTPUT.PUT_LINE('----- Source Database: ' || source);
 DBMS_OUTPUT.PUT_LINE('----Error in Message: '|| msgno);
 DBMS_OUTPUT.PUT_LINE('----Error Number: '||errno);
 DBMS_OUTPUT.PUT_LINE('----Message Text: '||errmsg);
 FOR i IN 1..msgcnt LOOP
 DBMS_OUTPUT.PUT_LINE('--message: ' || i);
 lcr := DBMS_APPLY_ADM.GET_ERROR_MESSAGE(i, txnid);
 print_lcr(lcr);
 END LOOP;
 END LOOP;
END print_errors;
/

Chapter 11
Displaying Detailed Information About Apply Errors

11-15

To run this procedure after you create it, enter the following:

SET SERVEROUTPUT ON SIZE 1000000

EXEC print_errors

Step 5: Create a Procedure that Prints All the Error LCRs for a Transaction
Create a procedure that prints all the LCRs in the error queue for a particular transaction.

The procedure calls the print_lcr procedure created in "Step 3: Create a Procedure that
Prints a Specified LCR".

CREATE OR REPLACE PROCEDURE print_transaction(ltxnid IN VARCHAR2) IS
 i NUMBER;
 txnid VARCHAR2(30);
 source VARCHAR2(128);
 msgno NUMBER;
 msgcnt NUMBER;
 errno NUMBER;
 errmsg VARCHAR2(2000);
 lcr ANYDATA;
BEGIN
 SELECT LOCAL_TRANSACTION_ID,
 SOURCE_DATABASE,
 MESSAGE_NUMBER,
 MESSAGE_COUNT,
 ERROR_NUMBER,
 ERROR_MESSAGE
 INTO txnid, source, msgno, msgcnt, errno, errmsg
 FROM ALL_APPLY_ERROR
 WHERE LOCAL_TRANSACTION_ID = ltxnid;
 DBMS_OUTPUT.PUT_LINE('----- Local Transaction ID: ' || txnid);
 DBMS_OUTPUT.PUT_LINE('----- Source Database: ' || source);
 DBMS_OUTPUT.PUT_LINE('----Error in Message: '|| msgno);
 DBMS_OUTPUT.PUT_LINE('----Error Number: '||errno);
 DBMS_OUTPUT.PUT_LINE('----Message Text: '||errmsg);
 FOR i IN 1..msgcnt LOOP
 DBMS_OUTPUT.PUT_LINE('--message: ' || i);
 lcr := DBMS_APPLY_ADM.GET_ERROR_MESSAGE(i, txnid); -- gets the LCR
 print_lcr(lcr);
 END LOOP;
END print_transaction;
/

To run this procedure after you create it, pass to it the local transaction identifier of an error
transaction. For example, if the local transaction identifier is 1.17.2485, then enter the
following:

SET SERVEROUTPUT ON SIZE 1000000

EXEC print_transaction('1.17.2485')

Chapter 11
Displaying Detailed Information About Apply Errors

11-16

12
Troubleshooting XStream In

You can diagnose and correct problems with an XStream In configuration.

• Diagnosing Problems with XStream In
You can diagnose problems with XStream In by using several different techniques.

• Problems and Solutions for XStream In
You can implement solutions for common problems with XStream In.

• How to Get More Help with XStream In
Oracle Support can provide more help with XStream In.

See Also:

• "XStream Out Concepts"

• "XStream Use Cases"

• "Configuring XStream Out"

Diagnosing Problems with XStream In
You can diagnose problems with XStream In by using several different techniques.

• Viewing Alerts
An alert is a warning about a potential problem or an indication that a critical threshold has
been crossed.

• Checking the Trace File and Alert Log for Problems
Messages about inbound server are recorded in trace files for the database in which the
process is running.

Viewing Alerts
An alert is a warning about a potential problem or an indication that a critical threshold has
been crossed.

There are two types of alerts:

• Stateless: Alerts that indicate single events that are not necessarily tied to the system
state. For example, an alert that indicates that a capture aborted with a specific error is a
stateless alert.

• Stateful: Alerts that are associated with a specific system state. Stateful alerts are usually
based on a numeric value, with thresholds defined at warning and critical levels. For
example, an alert on the current Streams pool memory usage percentage, with the warning
level at 85% and the critical level at 95%, is a stateful alert.

An Oracle database generates a stateless alert when an inbound server aborts.

12-1

An Oracle database generates a stateful XStream alert when the Streams pool memory usage
exceeds the percentage specified by the STREAMS_POOL_USED_PCT metric. You can manage this
metric with the SET_THRESHOLD procedure in the DBMS_SERVER_ALERT package.

You can view alerts in Oracle Enterprise Manager Cloud Control, or you can query the
following data dictionary views:

• The DBA_OUTSTANDING_ALERTS view records current stateful alerts. The DBA_ALERT_HISTORY
view records stateless alerts and stateful alerts that have been cleared. For example, if the
memory usage in the Streams pool exceeds the specified threshold, then a stateful alert is
recorded in the DBA_OUTSTANDING_ALERTS view.

• The DBA_ALERT_HISTORY data dictionary view shows alerts that have been cleared from the
DBA_OUTSTANDING_ALERTS view. For example, if the memory usage in the Streams pool falls
below the specified threshold, then the alert recorded in the DBA_OUTSTANDING_ALERTS view
is cleared and moved to the DBA_ALERT_HISTORY view.

For example, to list the current stateful alerts, run the following query on the
DBA_OUTSTANDING_ALERTS view:

COLUMN REASON HEADING 'Reason for Alert' FORMAT A35
COLUMN SUGGESTED_ACTION HEADING 'Suggested Response' FORMAT A35

SELECT REASON, SUGGESTED_ACTION
 FROM DBA_OUTSTANDING_ALERTS
 WHERE MODULE_ID LIKE '%XSTREAM%';

To list the stateless alerts and cleared XStream stateful alerts, run the following query on the
DBA_ALERT_HISTORY view:

COLUMN REASON HEADING 'Reason for Alert' FORMAT A35
COLUMN SUGGESTED_ACTION HEADING 'Suggested Response' FORMAT A35

SELECT REASON, SUGGESTED_ACTION
 FROM DBA_ALERT_HISTORY
 WHERE MODULE_ID LIKE '%XSTREAM%';

See Also:

• Oracle Database Get Started with Performance Tuning for information about
managing alerts and metric thresholds

• Oracle Database Administrator’s Guide for information about alerts and for
information about subscribing to the ALERT_QUE queue to receive notifications
when new alerts are generated

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SERVER_ALERT package

• "Configure the Streams pool"

Chapter 12
Diagnosing Problems with XStream In

12-2

Checking the Trace File and Alert Log for Problems
Messages about inbound server are recorded in trace files for the database in which the
process is running.

These trace file messages can help you to identify and resolve problems in an XStream In
configuration.

All trace files for background processes are written to the Automatic Diagnostic Repository.
The names of trace files are operating system specific, but each file usually includes the name
of the process writing the file.

For example, on some operating systems, the trace file name for a process is
sid_xxxx_iiiii.trc, where:

• sid is the system identifier for the database

• xxxx is the name of the process

• iiiii is the operating system process number

Also, you can set the write_alert_log parameter to y for both a capture process and an
outbound server. When this parameter is set to y, which is the default setting, the alert log for
the database contains messages about why the capture process or outbound server stopped.

You can control the information in the trace files by setting the trace_level inbound server
apply parameter using the SET_PARAMETER procedure in the DBMS_XSTREAM_ADM package.

An inbound server is an Oracle background process named APnn, where nn can include letters
and numbers. For example, on some operating systems, if the system identifier for a database
running an inbound server is hqdb and the inbound server number is 01, then the trace file for
the inbound server starts with hqdb_AP01.

An inbound server also uses other processes. Information about an inbound server might be
recorded in the trace file for one or more of these processes. The process name of the reader
server and apply servers is ASnn, where nn can include letters and numbers. So, on some
operating systems, if the system identifier for a database running an inbound server is hqdb
and the process number is 01, then the trace file that contains information about a process
used by an inbound server starts with hqdb_AS01.

See Also:

• "Displaying Session Information for Inbound Servers"

• Oracle Database Administrator’s Guidefor more information about trace files and
the alert log, and for more information about their names and locations

• Oracle Database PL/SQL Packages and Types Referencefor more information
about setting the trace_level apply parameter

• Your operating system specific Oracle documentation for more information about
the names and locations of trace files

Chapter 12
Diagnosing Problems with XStream In

12-3

Problems and Solutions for XStream In
You can implement solutions for common problems with XStream In.

In general, you can troubleshoot XStream inbound servers in the same way that you
troubleshoot Oracle Apply processes.

• XStream In Cannot Identify an Inbound Server
When an XStream In configuration cannot identify an inbound server, then there might be
multiple subscribers to the inbound server’s queue.

• Inbound Server Encounters an ORA-03135 Error
If the connection is broken between the inbound server and the XStream client application,
restart the client application.

• Changes Are Failing to Reach the Client Application in XStream In
In an XStream In configuration, database changes that should be streamed to apply
handlers or to the XStream client application are not reaching the apply handler or client
application.

XStream In Cannot Identify an Inbound Server
When an XStream In configuration cannot identify an inbound server, then there might be
multiple subscribers to the inbound server’s queue.

If an XStream In configuration cannot identify an inbound server, then an error is returned.

The following sections describe the possible problem and its solution.

Problem: Multiple Subscribers to the Inbound Server's Queue

The ORA-26840 error indicates that there are multiple subscribers to the queue used by the
inbound server. Subscribers can include inbound servers, outbound servers, apply processes,
and propagations.

To determine whether there are multiple subscribers to the inbound server's queue:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

SELECT OWNER, QUEUE_NAME, CONSUMER_NAME, ADDRESS
 FROM DBA_QUEUE_SUBSCRIBERS;

You can add a WHERE clause to the query to limit the output to the inbound server's queue.

Solution

To correct the problem:

• If the query returns multiple subscribers to the inbound server's queue, then reconfigure
the subscribers so that the inbound server is the only subscriber.

Chapter 12
Problems and Solutions for XStream In

12-4

See Also:

"Configuring XStream In"

Inbound Server Encounters an ORA-03135 Error
If the connection is broken between the inbound server and the XStream client application,
restart the client application.

An inbound server encounters the following error:

ORA-03135: connection lost contact

Problem: Connection Broken Between the Inbound Server and the Client Application

The ORA-03135 error indicates that the connection between the inbound server and the
XStream client application was broken.

Solution

To correct the problem:

• Restart the XStream client application.

See Also:

"Sample XStream Client Application"

Changes Are Failing to Reach the Client Application in XStream In
In an XStream In configuration, database changes that should be streamed to apply handlers
or to the XStream client application are not reaching the apply handler or client application.

The following sections describe possible problems and their solutions.

Problem: LCRs Blocked in the Stream

LCRs might be blocked after reaching the inbound server. For example, the inbound server
might be encountering errors and moving transactions to the error queue, or there might be
another problem.

You can track an LCR through a stream using one of the following methods:

• Setting the message_tracking_frequency apply parameter to 1 or another relatively low
value

To disable LCR tracking when you use this method, set the message_tracking_frequency
apply parameter to NULL or exit the session.

• Running the SET_MESSAGE_TRACKING procedure in the DBMS_XSTREAM_ADM package

To disable LCR tracking when you use this method, set the tracking_label parameter to
NULL in the SET_MESSAGE_TRACKING procedure or exit the session.

Chapter 12
Problems and Solutions for XStream In

12-5

After using one of these methods, use the V$XSTREAM_MESSAGE_TRACKING view to monitor the
progress of LCRs through a stream. If you are using Oracle GoldenGate to process the LCR,
then you can use the V$GOLDENGATE_MESSAGE_TRACKING view to monitor the progress of LCRs
through Oracle GoldenGate components. By tracking an LCR through the stream, you can
determine where the LCR is blocked.

Solution

To correct problem:

• Take the appropriate action based on the reason that the LCR is blocked. For example, the
following actions might correct the problem:

– If an inbound server is encountering errors, then correct the problem that is causing
the errors.

– If an apply handler is not processing LCRs correctly, then correct the apply handler.

– If an Oracle GoldenGate component is not processing LCRs correctly, then correct the
Oracle GoldenGate component.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the message_tracking_frequency apply parameter

• The Oracle GoldenGate documentation for more information about Oracle
GoldenGate

How to Get More Help with XStream In
Oracle Support can provide more help with XStream In.

You can check My Oracle Support at http://support.oracle.com for more solutions to your
problem.

You can visit http://www.oracle.com/support/contact.html for more information about
Oracle Support.

Chapter 12
How to Get More Help with XStream In

12-6

http://support.oracle.com
http://www.oracle.com/support/contact.html

Part IV
Appendixes

Appendixes include information about XStream client applications and XStream restrictions.

• Sample XStream Client Application
Examples illustrate how to configure the Oracle Database components that are used by
XStream. The examples configure sample client applications that communicate with an
XStream outbound server and inbound server.

• XStream Out Restrictions
Restrictions apply to XStream Out.

• XStream In Restrictions
Restrictions apply to XStream In.

A
Sample XStream Client Application

Examples illustrate how to configure the Oracle Database components that are used by
XStream. The examples configure sample client applications that communicate with an
XStream outbound server and inbound server.

• About the Sample XStream Client Application
A sample XStream client application illustrates the basic tasks that are required of an
XStream Out and XStream In application.

• Sample XStream Client Application for the Oracle Call Interface API
To run the sample XStream client application for the OCI API, compile and link the
application file.

• Sample XStream Client Application for the Java API
To run the sample XStream client application for the Java API, compile and link the
application file.

See Also:

• "XStream Out Concepts"

• "XStream Use Cases"

• Oracle Call Interface Developer's Guide

• Oracle Database XStream Java API Reference

About the Sample XStream Client Application
A sample XStream client application illustrates the basic tasks that are required of an XStream
Out and XStream In application.

The application performs the following tasks:

• It attaches to an XStream outbound server and inbound server and waits for LCRs from
the outbound server. The outbound server and inbound server are in two different
databases.

• When it receives an LCR from the outbound server, it immediately sends the LCR to the
inbound server.

• It periodically gets the processed low position from the inbound server and sends this
value to the outbound server.

• It periodically sends a "ping" LCR from the outbound server to the inbound server to move
the inbound server's processed low position forward in times of low activity.

In an XStream Out configuration that does not send LCRs to an inbound server, the client
application must obtain the processed low position in another way.

A-1

This application waits indefinitely for transactions from the outbound server. To interrupt the
application, enter the interrupt command for your operating system. For example, the interrupt
command on some operating systems is control-C. If the program is restarted, then the
outbound server starts sending LCRs from the processed low position that was set during the
previous run.

Figure A-1 provides an overview of the XStream environment configured in this section.

Figure A-1 Sample XStream Configuration

Receive�
LCRs

Send
LCRs

Set �
Processed�
Low Position

Get �
Processed �
Low Position

Client
Application

Outbound�
Server

Inbound�
Server�

Queue

Dequeue
LCRs

Capture�
LCRs

Record�
Changes

Equeue
LCRs

Redo
Log

Capture�
Process

Database�
Objects

Oracle Database Oracle Database

Before running the sample application, ensure that the following components exist:

• Two Oracle databases with network connectivity between them

• An XStream administrator on both databases

• An outbound server configuration on one database, including a capture process, queue,
and outbound server

• An inbound server configuration on another database

If you are running the sample application with a multitenant container database (CDB), then
ensure that the client application connects to the correct container:

• When the client application connects to the outbound server, it must connect to the root.

• When the client application connects to the inbound server, it must connect to the
container in which the inbound server was created.

The sample applications in the following sections perform the same tasks. One sample
application uses the OCI API, and the other uses the Java API.

• Sample XStream Client Application for the Oracle Call Interface API

• Sample XStream Client Application for the Java API

A-2

Note:

An Oracle Database installation includes several XStream demos. These demos are
in the following location:

$ORACLE_HOME/rdbms/demo/xstream

See Also:

• "Position Order in an LCR Stream"

• "Configuring XStream Out"

• "Configuring XStream In"

• Oracle Database PL/SQL Packages and Types Reference

Sample XStream Client Application for the Oracle Call Interface API
To run the sample XStream client application for the OCI API, compile and link the application
file.

Next, enter the following on a command line:

xio -ob_svr xout_name -ob_db sn_xout_db -ob_usr xout_cu -ob_pwd xout_cu_pass
-ib_svr xin_name -ib_db sn_xin_db -ib_usr xin_au -ib_pwd xin_au_pass

Substitute the appropriate values for the following placeholders:

• xout_name is the name of the outbound server.

• sn_xout_db is the service name for the outbound server's database.

• xout_cu is the outbound server's connect user.

• xout_cu_pass is the password for the outbound server's connect user.

• xin_name is the name of the inbound server.

• sn_xin_db is the service name for the inbound server's database.

• xin_au is the inbound server's apply user.

• xin_au_pass is the password for the inbound server's apply user.

When the sample client application is running, it prints information about the row LCRs it is
processing. The output looks similar to the following:

 ----------- ROW LCR Header -----------------
 src_db_name=DB.EXAMPLE.COM
 cmd_type=UPDATE txid=17.0.74
 owner=HR oname=COUNTRIES

 ----------- ROW LCR Header -----------------
 src_db_name=DB.EXAMPLE.COM
 cmd_type=COMMIT txid=17.0.74

A-3

 ----------- ROW LCR Header -----------------
 src_db_name=DB.EXAMPLE.COM
 cmd_type=UPDATE txid=12.25.77
 owner=OE oname=ORDERS

 ----------- ROW LCR Header -----------------
 src_db_name=DB.EXAMPLE.COM
 cmd_type=UPDATE txid=12.25.77
 owner=OE oname=ORDERS

This output contains the following information for each row LCR:

• src_db_name shows the source database for the change encapsulated in the row LCR.

• cmd_type shows the type of SQL statement that made the change.

• txid shows the transaction ID of the transaction that includes the row LCR.

• owner shows the owner of the database object that was changed.

• oname shows the name of the database object that was changed.

This demo is available in the following location:

$ORACLE_HOME/rdbms/demo/xstream/oci

The file name for the demo is xio.c. See the README.txt file in the demo directory for more
information about compiling and running the application.

The code for the sample application that uses the OCI API follows:

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#ifndef _STDIO_H
#include <stdio.h>
#endif

#ifndef _STDLIB_H
#include <stdlib.h>
#endif

#ifndef _STRING_H
#include <string.h>
#endif

#ifndef _MALLOC_H
#include <malloc.h>
#endif

/*--
 * Internal structures
 --/

#define M_DBNAME_LEN (128)

typedef struct conn_info /* connect info */
{
 oratext * user;
 ub4 userlen;
 oratext * passw;
 ub4 passwlen;
 oratext * dbname;

A-4

 ub4 dbnamelen;
 oratext * svrnm;
 ub4 svrnmlen;
} conn_info_t;

typedef struct params
{
 conn_info_t xout; /* outbound info */
 conn_info_t xin; /* inbound info */
} params_t;

typedef struct oci /* OCI handles */
{
 OCIEnv *envp; /* Environment handle */
 OCIError *errp; /* Error handle */
 OCIServer *srvp; /* Server handle */
 OCISvcCtx *svcp; /* Service handle */
 OCISession *authp;
 OCIStmt *stmtp;
 boolean attached;
 boolean outbound;
} oci_t;

static void connect_db(conn_info_t *opt_params_p, oci_t ** ocip, ub2 char_csid,
 ub2 nchar_csid);
static void disconnect_db(oci_t * ocip);
static void ocierror(oci_t * ocip, char * msg);
static void attach(oci_t * ocip, conn_info_t *conn, boolean outbound);
static void detach(oci_t *ocip);
static void get_lcrs(oci_t *xin_ocip, oci_t *xout_ocip);
static void get_chunks(oci_t *xin_ocip, oci_t *xout_ocip);
static void print_lcr(oci_t *ocip, void *lcrp, ub1 lcrtype,
 oratext **src_db_name, ub2 *src_db_namel);
static void print_chunk (ub1 *chunk_ptr, ub4 chunk_len, ub2 dty);
static void get_inputs(conn_info_t *xout_params, conn_info_t *xin_params,
 int argc, char ** argv);
static void get_db_charsets(conn_info_t *params_p, ub2 *char_csid,
 ub2 *nchar_csid);
static void set_client_charset(oci_t *outbound_ocip);

#define OCICALL(ocip, function) do {\
sword status=function;\
if (OCI_SUCCESS==status) break;\
else if (OCI_ERROR==status) \
{ocierror(ocip, (char *)"OCI_ERROR");\
exit(1);}\
else {printf("Error encountered %d\n", status);\
exit(1);}\
} while(0)

/*---
 * M A I N P R O G R A M
 ---/
main(int argc, char **argv)
{
 /* Outbound and inbound connection info */
 conn_info_t xout_params;
 conn_info_t xin_params;
 oci_t *xout_ocip = (oci_t *)NULL;
 oci_t *xin_ocip = (oci_t *)NULL;
 ub2 obdb_char_csid = 0; /* outbound db char csid */
 ub2 obdb_nchar_csid = 0; /* outbound db nchar csid */

A-5

 /* parse command line arguments */
 get_inputs(&xout_params, &xin_params, argc, argv);

 /* Get the outbound database CHAR and NCHAR character set info */
 get_db_charsets(&xout_params, &obdb_char_csid, &obdb_nchar_csid);

 /* Connect to the outbound db and set the client env to the outbound charsets
 * to minimize character conversion when transferring LCRs from outbound
 * directly to inbound server.
 */
 connect_db(&xout_params, &xout_ocip, obdb_char_csid, obdb_nchar_csid);

 /* Attach to outbound server */
 attach(xout_ocip, &xout_params, TRUE);

 /* connect to inbound db and set the client charsets the same as the
 * outbound db charsets.
 */
 connect_db(&xin_params, &xin_ocip, obdb_char_csid, obdb_nchar_csid);

 /* Attach to inbound server */
 attach(xin_ocip, &xin_params, FALSE);

 /* Get lcrs from outbound server and send to inbound server */
 get_lcrs(xin_ocip, xout_ocip);

 /* Detach from XStream servers */
 detach(xout_ocip);
 detach(xin_ocip);

 /* Disconnect from both databases */
 disconnect_db(xout_ocip);
 disconnect_db(xin_ocip);

 free(xout_ocip);
 free(xin_ocip);
 exit (0);
}

/*---
 * connect_db - Connect to the database and set the env to the given
 * char and nchar character set ids.
 ---/
static void connect_db(conn_info_t *params_p, oci_t **ociptr, ub2 char_csid,
 ub2 nchar_csid)
{
 oci_t *ocip;

 printf ("Connect to Oracle as %.*s@%.*s ",
 params_p->userlen, params_p->user,
 params_p->dbnamelen, params_p->dbname);

 if (char_csid && nchar_csid)
 printf ("using char csid=%d and nchar csid=%d", char_csid, nchar_csid);

 printf("\n");

 ocip = (oci_t *)malloc(sizeof(oci_t));

 if (OCIEnvNlsCreate(&ocip->envp, OCI_OBJECT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,

A-6

 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0,
 (size_t) 0, (dvoid **) 0, char_csid, nchar_csid))
 {
 ocierror(ocip, (char *)"OCIEnvCreate() failed");
 }

 if (OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->errp,
 (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
 {
 ocierror(ocip, (char *)"OCIHandleAlloc(OCI_HTYPE_ERROR) failed");
 }

 /* Logon to database */
 OCICALL(ocip,
 OCILogon(ocip->envp, ocip->errp, &ocip->svcp,
 params_p->user, params_p->userlen,
 params_p->passw, params_p->passwlen,
 params_p->dbname, params_p->dbnamelen));

 /* allocate the server handle */
 OCICALL(ocip,
 OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->srvp,
 OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0));

 OCICALL(ocip,
 OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->stmtp,
 (ub4) OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 if (*ociptr == (oci_t *)NULL)
 {
 *ociptr = ocip;
 }
}

/*---
 * get_db_charsets - Get the database CHAR and NCHAR character set ids.
 ---/
static const oratext GET_DB_CHARSETS[] = \
 "select parameter, value from nls_database_parameters where parameter = \
 'NLS_CHARACTERSET' or parameter = 'NLS_NCHAR_CHARACTERSET'";

#define PARM_BUFLEN (30)

static void get_db_charsets(conn_info_t *params_p, ub2 *char_csid,
 ub2 *nchar_csid)
{
 OCIDefine *defnp1 = (OCIDefine *) NULL;
 OCIDefine *defnp2 = (OCIDefine *) NULL;
 oratext parm[PARM_BUFLEN];
 oratext value[OCI_NLS_MAXBUFSZ];
 ub2 parm_len = 0;
 ub2 value_len = 0;
 oci_t ocistruct;
 oci_t *ocip = &ocistruct;

 *char_csid = 0;
 *nchar_csid = 0;
 memset (ocip, 0, sizeof(ocistruct));

 if (OCIEnvCreate(&ocip->envp, OCI_OBJECT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,

A-7

 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0,
 (size_t) 0, (dvoid **) 0))
 {
 ocierror(ocip, (char *)"OCIEnvCreate() failed");
 }

 if (OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->errp,
 (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
 {
 ocierror(ocip, (char *)"OCIHandleAlloc(OCI_HTYPE_ERROR) failed");
 }

 OCICALL(ocip,
 OCILogon(ocip->envp, ocip->errp, &ocip->svcp,
 params_p->user, params_p->userlen,
 params_p->passw, params_p->passwlen,
 params_p->dbname, params_p->dbnamelen));

 OCICALL(ocip,
 OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->stmtp,
 (ub4) OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /* Execute stmt to select the db nls char and nchar character set */
 OCICALL(ocip,
 OCIStmtPrepare(ocip->stmtp, ocip->errp,
 (CONST text *)GET_DB_CHARSETS,
 (ub4)strlen((char *)GET_DB_CHARSETS),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 OCICALL(ocip,
 OCIDefineByPos(ocip->stmtp, &defnp1,
 ocip->errp, (ub4) 1, parm,
 PARM_BUFLEN, SQLT_CHR, (void*) 0,
 &parm_len, (ub2 *)0, OCI_DEFAULT));

 OCICALL(ocip,
 OCIDefineByPos(ocip->stmtp, &defnp2,
 ocip->errp, (ub4) 2, value,
 OCI_NLS_MAXBUFSZ, SQLT_CHR, (void*) 0,
 &value_len, (ub2 *)0, OCI_DEFAULT));

 OCICALL(ocip,
 OCIStmtExecute(ocip->svcp, ocip->stmtp,
 ocip->errp, (ub4)0, (ub4)0,
 (const OCISnapshot *)0,
 (OCISnapshot *)0, (ub4)OCI_DEFAULT));

 while (OCIStmtFetch(ocip->stmtp, ocip->errp, 1,
 OCI_FETCH_NEXT, OCI_DEFAULT) == OCI_SUCCESS)
 {
 value[value_len] = '\0';
 if (parm_len == strlen("NLS_CHARACTERSET") &&
 !memcmp(parm, "NLS_CHARACTERSET", parm_len))
 {
 *char_csid = OCINlsCharSetNameToId(ocip->envp, value);
 printf("Outbound database NLS_CHARACTERSET = %.*s (csid = %d) \n",
 value_len, value, *char_csid);
 }
 else if (parm_len == strlen("NLS_NCHAR_CHARACTERSET") &&
 !memcmp(parm, "NLS_NCHAR_CHARACTERSET", parm_len))
 {

A-8

 *nchar_csid = OCINlsCharSetNameToId(ocip->envp, value);
 printf("Outbound database NLS_NCHAR_CHARACTERSET = %.*s (csid = %d) \n",
 value_len, value, *nchar_csid);
 }
 }

 disconnect_db(ocip);
}

/*---
 * attach - Attach to XStream server specified in connection info
 ---/
static void attach(oci_t * ocip, conn_info_t *conn, boolean outbound)
{
 sword err;

 printf ("Attach to XStream %s server '%.*s'\n",
 outbound ? "outbound" : "inbound",
 conn->svrnmlen, conn->svrnm);

 if (outbound)
 {
 OCICALL(ocip,
 OCIXStreamOutAttach(ocip->svcp, ocip->errp, conn->svrnm,
 (ub2)conn->svrnmlen, (ub1 *)0, 0, OCI_DEFAULT));
 }
 else
 {
 OCICALL(ocip,
 OCIXStreamInAttach(ocip->svcp, ocip->errp, conn->svrnm,
 (ub2)conn->svrnmlen,
 (oratext *)"From_XOUT", 9,
 (ub1 *)0, 0, OCI_DEFAULT));
 }

 ocip->attached = TRUE;
 ocip->outbound = outbound;
}

/*---
 * ping_svr - Ping inbound server by sending a commit LCR.
 ---/
static void ping_svr(oci_t *xin_ocip, void *commit_lcr,
 ub1 *cmtpos, ub2 cmtpos_len,
 oratext *source_db, ub2 source_db_len)
{
 OCIDate src_time;
 oratext txid[128];

 OCICALL(xin_ocip, OCIDateSysDate(xin_ocip->errp, &src_time));
 sprintf((char *)txid, "Ping %2d:%2d:%2d",
 src_time.OCIDateTime.OCITimeHH,
 src_time.OCIDateTime.OCITimeMI,
 src_time.OCIDateTime.OCITimeSS);

 /* Initialize LCR with new txid and commit position */
 OCICALL(xin_ocip,
 OCILCRHeaderSet(xin_ocip->svcp, xin_ocip->errp,
 source_db, source_db_len,
 (oratext *)OCI_LCR_ROW_CMD_COMMIT,
 (ub2)strlen(OCI_LCR_ROW_CMD_COMMIT),
 (oratext *)0, 0, /* null owner */

A-9

 (oratext *)0, 0, /* null object */
 (ub1 *)0, 0, /* null tag */
 txid, (ub2)strlen((char *)txid),
 &src_time, cmtpos, cmtpos_len,
 0, commit_lcr, OCI_DEFAULT));

 /* Send commit lcr to inbound server. */
 if (OCIXStreamInLCRSend(xin_ocip->svcp, xin_ocip->errp, commit_lcr,
 OCI_LCR_XROW, 0, OCI_DEFAULT) == OCI_ERROR)
 {
 ocierror(xin_ocip, (char *)"OCIXStreamInLCRSend failed in ping_svr()");
 }
}

/*---
 * get_lcrs - Get LCRs from outbound server and send to inbound server.
 ---/
static void get_lcrs(oci_t *xin_ocip, oci_t *xout_ocip)
{
 sword status = OCI_SUCCESS;
 void *lcr;
 ub1 lcrtype;
 oraub8 flag;
 ub1 proclwm[OCI_LCR_MAX_POSITION_LEN];
 ub2 proclwm_len = 0;
 ub1 sv_pingpos[OCI_LCR_MAX_POSITION_LEN];
 ub2 sv_pingpos_len = 0;
 ub1 fetchlwm[OCI_LCR_MAX_POSITION_LEN];
 ub2 fetchlwm_len = 0;
 void *commit_lcr = (void *)0;
 oratext *lcr_srcdb = (oratext *)0;
 ub2 lcr_srcdb_len = 0;
 oratext source_db[M_DBNAME_LEN];
 ub2 source_db_len = 0;
 ub4 lcrcnt = 0;

 /* create an lcr to ping the inbound server periodically by sending a
 * commit lcr.
 */
 commit_lcr = (void*)0;
 OCICALL(xin_ocip,
 OCILCRNew(xin_ocip->svcp, xin_ocip->errp, OCI_DURATION_SESSION,
 OCI_LCR_XROW, &commit_lcr, OCI_DEFAULT));

 while (status == OCI_SUCCESS)
 {
 lcrcnt = 0; /* reset lcr count before each batch */

 while ((status =
 OCIXStreamOutLCRReceive(xout_ocip->svcp, xout_ocip->errp,
 &lcr, &lcrtype, &flag,
 fetchlwm, &fetchlwm_len, OCI_DEFAULT))
 == OCI_STILL_EXECUTING)
 {
 lcrcnt++;

 /* print header of LCR just received */
 print_lcr(xout_ocip, lcr, lcrtype, &lcr_srcdb, &lcr_srcdb_len);

 /* save the source db to construct ping lcr later */
 if (!source_db_len && lcr_srcdb_len)
 {

A-10

 memcpy(source_db, lcr_srcdb, lcr_srcdb_len);
 source_db_len = lcr_srcdb_len;
 }

 /* send the LCR just received */
 if (OCIXStreamInLCRSend(xin_ocip->svcp, xin_ocip->errp,
 lcr, lcrtype, flag, OCI_DEFAULT) == OCI_ERROR)
 {
 ocierror(xin_ocip, (char *)"OCIXStreamInLCRSend failed");
 }

 /* If LCR has chunked columns (i.e, has LOB/Long/XMLType columns) */
 if (flag & OCI_XSTREAM_MORE_ROW_DATA)
 {
 /* receive and send chunked columns */
 get_chunks(xin_ocip, xout_ocip);
 }
 }

 if (status == OCI_ERROR)
 ocierror(xout_ocip, (char *)"OCIXStreamOutLCRReceive failed");

 /* clear the saved ping position if we just received some new lcrs */
 if (lcrcnt)
 {
 sv_pingpos_len = 0;
 }

 /* If no lcrs received during previous WHILE loop and got a new fetch
 * LWM then send a commit lcr to ping the inbound server with the new
 * fetch LWM position.
 */
 else if (fetchlwm_len > 0 && source_db_len > 0 &&
 (fetchlwm_len != sv_pingpos_len ||
 memcmp(sv_pingpos, fetchlwm, fetchlwm_len)))
 {
 /* To ensure we don't send multiple lcrs with duplicate position, send
 * a new ping only if we have saved the last ping position.
 */
 if (sv_pingpos_len > 0)
 {
 ping_svr(xin_ocip, commit_lcr, fetchlwm, fetchlwm_len,
 source_db, source_db_len);
 }

 /* save the position just sent to inbound server */
 memcpy(sv_pingpos, fetchlwm, fetchlwm_len);
 sv_pingpos_len = fetchlwm_len;
 }

 /* flush inbound network to flush all lcrs to inbound server */
 OCICALL(xin_ocip,
 OCIXStreamInFlush(xin_ocip->svcp, xin_ocip->errp, OCI_DEFAULT));

 /* get processed LWM of inbound server */
 OCICALL(xin_ocip,
 OCIXStreamInProcessedLWMGet(xin_ocip->svcp, xin_ocip->errp,
 proclwm, &proclwm_len, OCI_DEFAULT));

 if (proclwm_len > 0)
 {

A-11

 /* Set processed LWM for outbound server */
 OCICALL(xout_ocip,
 OCIXStreamOutProcessedLWMSet(xout_ocip->svcp, xout_ocip->errp,
 proclwm, proclwm_len, OCI_DEFAULT));
 }
 }

 if (status != OCI_SUCCESS)
 ocierror(xout_ocip, (char *)"get_lcrs() encounters error");
}

/*---
 * get_chunks - Get each chunk for the current LCR and send it to
 * the inbound server.
 ---/
static void get_chunks(oci_t *xin_ocip, oci_t *xout_ocip)
{
 oratext *colname;
 ub2 colname_len;
 ub2 coldty;
 oraub8 col_flags;
 ub2 col_csid;
 ub4 chunk_len;
 ub1 *chunk_ptr;
 oraub8 row_flag;
 sword err;
 sb4 rtncode;

 do
 {
 /* Get a chunk from outbound server */
 OCICALL(xout_ocip,
 OCIXStreamOutChunkReceive(xout_ocip->svcp, xout_ocip->errp,
 &colname, &colname_len, &coldty,
 &col_flags, &col_csid, &chunk_len,
 &chunk_ptr, &row_flag, OCI_DEFAULT));

 /* print chunked column info */
 printf(
 " Chunked column name=%.*s DTY=%d chunk len=%d csid=%d col_flag=0x%lx\n",
 colname_len, colname, coldty, chunk_len, col_csid, col_flags);

 /* print chunk data */
 print_chunk(chunk_ptr, chunk_len, coldty);

 /* Send the chunk just received to inbound server */
 OCICALL(xin_ocip,
 OCIXStreamInChunkSend(xin_ocip->svcp, xin_ocip->errp, colname,
 colname_len, coldty, col_flags,
 col_csid, chunk_len, chunk_ptr,
 row_flag, OCI_DEFAULT));

 } while (row_flag & OCI_XSTREAM_MORE_ROW_DATA);
}

/*---
 * print_chunk - Print chunked column information. Only print the first
 * 50 bytes for each chunk.
 ---/
static void print_chunk (ub1 *chunk_ptr, ub4 chunk_len, ub2 dty)
{
#define MAX_PRINT_BYTES (50) /* print max of 50 bytes per chunk */

A-12

 ub4 print_bytes;

 if (chunk_len == 0)
 return;

 print_bytes = chunk_len > MAX_PRINT_BYTES ? MAX_PRINT_BYTES : chunk_len;

 printf(" Data = ");
 if (dty == SQLT_CHR)
 printf("%.*s", print_bytes, chunk_ptr);
 else
 {
 ub2 idx;

 for (idx = 0; idx < print_bytes; idx++)
 printf("%02x", chunk_ptr[idx]);
 }
 printf("\n");
}

/*---
 * print_lcr - Print header information of given lcr.
 ---/
static void print_lcr(oci_t *ocip, void *lcrp, ub1 lcrtype,
 oratext **src_db_name, ub2 *src_db_namel)
{
 oratext *cmd_type;
 ub2 cmd_type_len;
 oratext *owner;
 ub2 ownerl;
 oratext *oname;
 ub2 onamel;
 oratext *txid;
 ub2 txidl;
 sword ret;

 printf("\n ----------- %s LCR Header -----------------\n",
 lcrtype == OCI_LCR_XDDL ? "DDL" : "ROW");

 /* Get LCR Header information */
 ret = OCILCRHeaderGet(ocip->svcp, ocip->errp,
 src_db_name, src_db_namel, /* source db */
 &cmd_type, &cmd_type_len, /* command type */
 &owner, &ownerl, /* owner name */
 &oname, &onamel, /* object name */
 (ub1 **)0, (ub2 *)0, /* lcr tag */
 &txid, &txidl, (OCIDate *)0, /* txn id & src time */
 (ub2 *)0, (ub2 *)0, /* OLD/NEW col cnts */
 (ub1 **)0, (ub2 *)0, /* LCR position */
 (oraub8*)0, lcrp, OCI_DEFAULT);

 if (ret != OCI_SUCCESS)
 ocierror(ocip, (char *)"OCILCRHeaderGet failed");
 else
 {
 printf(" src_db_name=%.*s\n cmd_type=%.*s txid=%.*s\n",
 *src_db_namel, *src_db_name, cmd_type_len, cmd_type, txidl, txid);

 if (ownerl > 0)
 printf(" owner=%.*s oname=%.*s \n", ownerl, owner, onamel, oname);
 }

A-13

}

/*---
 * detach - Detach from XStream server
 ---/
static void detach(oci_t * ocip)
{
 sword err = OCI_SUCCESS;

 printf ("Detach from XStream %s server\n",
 ocip->outbound ? "outbound" : "inbound");

 if (ocip->outbound)
 {
 OCICALL(ocip, OCIXStreamOutDetach(ocip->svcp, ocip->errp, OCI_DEFAULT));
 }
 else
 {
 OCICALL(ocip, OCIXStreamInDetach(ocip->svcp, ocip->errp,
 (ub1 *)0, (ub2 *)0, /* processed LWM */
 OCI_DEFAULT));
 }
}

/*---
 * disconnect_db - Logoff from the database
 ---/
static void disconnect_db(oci_t * ocip)
{
 if (OCILogoff(ocip->svcp, ocip->errp))
 {
 ocierror(ocip, (char *)"OCILogoff() failed");
 }

 if (ocip->errp)
 OCIHandleFree((dvoid *) ocip->errp, (ub4) OCI_HTYPE_ERROR);

 if (ocip->envp)
 OCIHandleFree((dvoid *) ocip->envp, (ub4) OCI_HTYPE_ENV);
}

/*---
 * ocierror - Print error status and exit program
 ---/
static void ocierror(oci_t * ocip, char * msg)
{
 sb4 errcode=0;
 text bufp[4096];

 if (ocip->errp)
 {
 OCIErrorGet((dvoid *) ocip->errp, (ub4) 1, (text *) NULL, &errcode,
 bufp, (ub4) 4096, (ub4) OCI_HTYPE_ERROR);
 printf("%s\n%s", msg, bufp);
 }
 else
 puts(msg);

 printf ("\n");
 exit(1);
}

A-14

/*--
 * print_usage - Print command usage
 ---/
static void print_usage(int exitcode)
{
 puts("\nUsage: xio -ob_svr <outbound_svr> -ob_db <outbound_db>\n"
 " -ob_usr <conn_user> -ob_pwd <conn_user_pwd>\n"
 " -ib_svr <inbound_svr> -ib_db <inbound_db>\n"
 " -ib_usr <apply_user> -ib_pwd <apply_user_pwd>\n");
 puts(" ob_svr : outbound server name\n"
 " ob_db : database name of outbound server\n"
 " ob_usr : connect user to outbound server\n"
 " ob_pwd : password of outbound's connect user\n"
 " ib_svr : inbound server name\n"
 " ib_db : database name of inbound server\n"
 " ib_usr : apply user for inbound server\n"
 " ib_pwd : password of inbound's apply user\n");

 exit(exitcode);
}

/*--
 * get_inputs - Get user inputs from command line
 ---/
static void get_inputs(conn_info_t *xout_params, conn_info_t *xin_params,
 int argc, char ** argv)
{
 char * option;
 char * value;

 memset (xout_params, 0, sizeof(*xout_params));
 memset (xin_params, 0, sizeof(*xin_params));
 while(--argc)
 {
 /* get the option name */
 argv++;
 option = *argv;

 /* check that the option begins with a "-" */
 if (!strncmp(option, (char *)"-", 1))
 {
 option ++;
 }
 else
 {
 printf("Error: bad argument '%s'\n", option);
 print_usage(1);
 }

 /* get the value of the option */
 --argc;
 argv++;

 value = *argv;

 if (!strncmp(option, (char *)"ob_db", 5))
 {
 xout_params->dbname = (oratext *)value;
 xout_params->dbnamelen = (ub4)strlen(value);
 }
 else if (!strncmp(option, (char *)"ob_usr", 6))
 {

A-15

 xout_params->user = (oratext *)value;
 xout_params->userlen = (ub4)strlen(value);
 }
 else if (!strncmp(option, (char *)"ob_pwd", 6))
 {
 xout_params->passw = (oratext *)value;
 xout_params->passwlen = (ub4)strlen(value);
 }
 else if (!strncmp(option, (char *)"ob_svr", 6))
 {
 xout_params->svrnm = (oratext *)value;
 xout_params->svrnmlen = (ub4)strlen(value);
 }
 else if (!strncmp(option, (char *)"ib_db", 5))
 {
 xin_params->dbname = (oratext *)value;
 xin_params->dbnamelen = (ub4)strlen(value);
 }
 else if (!strncmp(option, (char *)"ib_usr", 6))
 {
 xin_params->user = (oratext *)value;
 xin_params->userlen = (ub4)strlen(value);
 }
 else if (!strncmp(option, (char *)"ib_pwd", 6))
 {
 xin_params->passw = (oratext *)value;
 xin_params->passwlen = (ub4)strlen(value);
 }
 else if (!strncmp(option, (char *)"ib_svr", 6))
 {
 xin_params->svrnm = (oratext *)value;
 xin_params->svrnmlen = (ub4)strlen(value);
 }
 else
 {
 printf("Error: unknown option '%s'.\n", option);
 print_usage(1);
 }
 }

 /* print usage and exit if any argument is not specified */
 if (!xout_params->svrnmlen || !xout_params->passwlen ||
 !xout_params->userlen || !xout_params->dbnamelen ||
 !xin_params->svrnmlen || !xin_params->passwlen ||
 !xin_params->userlen || !xin_params->dbnamelen)
 {
 printf("Error: missing command arguments. \n");
 print_usage(1);
 }
}

Sample XStream Client Application for the Java API
To run the sample XStream client application for the Java API, compile and link the application
file.

Next, enter the following on a command line:

java xio xsin_oraclesid xsin_host xsin_port xsin_username
xsin_passwd xin_servername xsout_oraclesid xsout_host xsout_port
xsout_username xsout_passwd xsout_servername

A-16

Substitute the appropriate values for the following placeholders:

• xsin_oraclesid is the Oracle SID of the inbound server's database.

• xsin_host is the host name of the computer system running the inbound server.

• xsin_port is the port number of the listener for the inbound server's database.

• xsin_username is the inbound server's apply user.

• xsin_passwd is the password for the inbound server's apply user.

• xin_servername is the name of the inbound server.

• xsout_oraclesid is the Oracle SID of the outbound server's database.

• xsout_host is the host name of the computer system running the outbound server.

• xsout_port is the port number of the listener for the outbound server's database.

• xsout_username is the outbound server's connect user.

• xsout_passwd is the password for the outbound server's connect user.

• xsout_servername is the name of the outbound server.

When the sample client application is running, it prints information about attaching to the
inbound server and outbound server, along with the last position for each server. The output
looks similar to the following:

xsin_host = server2.example.com
xsin_port = 1482
xsin_ora_sid = db2
xsin connection url: jdbc:oracle:oci:@server2.example.com:1482:db2
xsout_host = server1.example.com
xsout_port = 1481
xsout_ora_sid = db1
xsout connection url: jdbc:oracle:oci:@server1.example.com:1481:db1
Attached to inbound server:xin
Inbound Server Last Position is:
0000000920250000000100000001000000092025000000010000000101
Attached to outbound server:xout
Last Position is: 0000000920250000000100000001000000092025000000010000000101

This demo is available in the following location:

$ORACLE_HOME/rdbms/demo/xstream/java

The file name for the demo is xio.java. See the README.txt file in the demo directory for more
information about compiling and running the application.

The code for the sample application that uses the Java API follows:

import oracle.streams.*;
import oracle.jdbc.internal.OracleConnection;
import oracle.jdbc.*;
import oracle.sql.*;
import java.sql.*;
import java.util.*;

public class xio
{
 public static String xsinusername = null;
 public static String xsinpasswd = null;
 public static String xsinName = null;
 public static String xsoutusername = null;
 public static String xsoutpasswd = null;

A-17

 public static String xsoutName = null;
 public static String in_url = null;
 public static String out_url = null;
 public static Connection in_conn = null;
 public static Connection out_conn = null;
 public static XStreamIn xsIn = null;
 public static XStreamOut xsOut = null;
 public static byte[] lastPosition = null;
 public static byte[] processedLowPosition = null;

 public static void main(String args[])
 {
 // get connection url to inbound and outbound server
 in_url = parseXSInArguments(args);
 out_url = parseXSOutArguments(args);

 // create connection to inbound and outbound server
 in_conn = createConnection(in_url, xsinusername, xsinpasswd);
 out_conn = createConnection(out_url, xsoutusername, xsoutpasswd);

 // attach to inbound and outbound server
 xsIn = attachInbound(in_conn);
 xsOut = attachOutbound(out_conn);

 // main loop to get lcrs
 get_lcrs(xsIn, xsOut);

 // detach from inbound and outbound server
 detachInbound(xsIn);
 detachOutbound(xsOut);
 }

 // parse the arguments to get the conncetion url to inbound db
 public static String parseXSInArguments(String args[])
 {
 String trace, pref;
 String orasid, host, port;

 if (args.length != 12)
 {
 printUsage();
 System.exit(0);
 }

 orasid = args[0];
 host = args[1];
 port = args[2];
 xsinusername = args[3];
 xsinpasswd = args[4];
 xsinName = args[5];

 System.out.println("xsin_host = "+host);
 System.out.println("xsin_port = "+port);
 System.out.println("xsin_ora_sid = "+orasid);

 String in_url = "jdbc:oracle:oci:@"+host+":"+port+":"+orasid;
 System.out.println("xsin connection url: "+ in_url);

 return in_url;
 }

 // parse the arguments to get the conncetion url to outbound db

A-18

 public static String parseXSOutArguments(String args[])
 {
 String trace, pref;
 String orasid, host, port;

 if (args.length != 12)
 {
 printUsage();
 System.exit(0);
 }

 orasid = args[6];
 host = args[7];
 port = args[8];
 xsoutusername = args[9];
 xsoutpasswd = args[10];
 xsoutName = args[11];

 System.out.println("xsout_host = "+host);
 System.out.println("xsout_port = "+port);
 System.out.println("xsout_ora_sid = "+orasid);

 String out_url = "jdbc:oracle:oci:@"+host+":"+port+":"+orasid;
 System.out.println("xsout connection url: "+ out_url);

 return out_url;
 }

 // print out sample program usage message
 public static void printUsage()
 {
 System.out.println("");
 System.out.println("Usage: java xio "+"<xsin_oraclesid> " + "<xsin_host> "
 + "<xsin_port> ");
 System.out.println(" "+"<xsin_username> " + "<xsin_passwd> "
 + "<xsin_servername> ");
 System.out.println(" "+"<xsout_oraclesid> " + "<xsout_host> "
 + "<xsout_port> ");
 System.out.println(" "+"<xsout_username> " + "<xsout_passwd> "
 + "<xsout_servername> ");
 }

 // create a connection to an Oracle Database
 public static Connection createConnection(String url,
 String username,
 String passwd)
 {
 try
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 return DriverManager.getConnection(url, username, passwd);
 }
 catch(Exception e)
 {
 System.out.println("fail to establish DB connection to: " +url);
 e.printStackTrace();
 return null;
 }
 }

 // attach to the XStream Inbound Server

A-19

 public static XStreamIn attachInbound(Connection in_conn)
 {
 XStreamIn xsIn = null;
 try
 {
 xsIn = XStreamIn.attach((OracleConnection)in_conn, xsinName,
 "XSDEMOINCLIENT" , XStreamIn.DEFAULT_MODE);

 // use last position to decide where should we start sending LCRs
 lastPosition = xsIn.getLastPosition();
 System.out.println("Attached to inbound server:"+xsinName);
 System.out.print("Inbound Server Last Position is: ");
 if (null == lastPosition)
 {
 System.out.println("null");
 }
 else
 {
 printHex(lastPosition);
 }
 return xsIn;
 }
 catch(Exception e)
 {
 System.out.println("cannot attach to inbound server: "+xsinName);
 System.out.println(e.getMessage());
 e.printStackTrace();
 return null;
 }
 }

 // attach to the XStream Outbound Server
 public static XStreamOut attachOutbound(Connection out_conn)
 {
 XStreamOut xsOut = null;

 try
 {
 // when attach to an outbound server, client needs to tell outbound
 // server the last position.
 xsOut = XStreamOut.attach((OracleConnection)out_conn, xsoutName,
 lastPosition, XStreamOut.DEFAULT_MODE);
 System.out.println("Attached to outbound server:"+xsoutName);
 System.out.print("Last Position is: ");
 if (lastPosition != null)
 {
 printHex(lastPosition);
 }
 else
 {
 System.out.println("NULL");
 }
 return xsOut;
 }
 catch(Exception e)
 {
 System.out.println("cannot attach to outbound server: "+xsoutName);
 System.out.println(e.getMessage());
 e.printStackTrace();
 return null;
 }
 }

A-20

 // detach from the XStream Inbound Server
 public static void detachInbound(XStreamIn xsIn)
 {
 byte[] processedLowPosition = null;
 try
 {
 processedLowPosition = xsIn.detach(XStreamIn.DEFAULT_MODE);
 System.out.print("Inbound server processed low Position is: ");
 if (processedLowPosition != null)
 {
 printHex(processedLowPosition);
 }
 else
 {
 System.out.println("NULL");
 }
 }
 catch(Exception e)
 {
 System.out.println("cannot detach from the inbound server: "+xsinName);
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 // detach from the XStream Outbound Server
 public static void detachOutbound(XStreamOut xsOut)
 {
 try
 {
 xsOut.detach(XStreamOut.DEFAULT_MODE);
 }
 catch(Exception e)
 {
 System.out.println("cannot detach from the outbound server: "+xsoutName);
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 public static void get_lcrs(XStreamIn xsIn, XStreamOut xsOut)
 {
 if (null == xsIn)
 {
 System.out.println("xstreamIn is null");
 System.exit(0);
 }

 if (null == xsOut)
 {
 System.out.println("xstreamOut is null");
 System.exit(0);
 }

 try
 {
 while(true)
 {
 // receive an LCR from outbound server
 LCR alcr = xsOut.receiveLCR(XStreamOut.DEFAULT_MODE);

A-21

 if (xsOut.getBatchStatus() == XStreamOut.EXECUTING) // batch is active
 {
 assert alcr != null;
 // send the LCR to the inbound server
 xsIn.sendLCR(alcr, XStreamIn.DEFAULT_MODE);

 // also get chunk data for this LCR if any
 if (alcr instanceof RowLCR)
 {
 // receive chunk from outbound then send to inbound
 if (((RowLCR)alcr).hasChunkData())
 {
 ChunkColumnValue chunk = null;
 do
 {
 chunk = xsOut.receiveChunk(XStreamOut.DEFAULT_MODE);
 xsIn.sendChunk(chunk, XStreamIn.DEFAULT_MODE);
 } while (!chunk.isEndOfRow());
 }
 }
 processedLowPosition = alcr.getPosition();
 }
 else // batch is end
 {
 assert alcr == null;
 // flush the network
 xsIn.flush(XStreamIn.DEFAULT_MODE);
 // get the processed_low_position from inbound server
 processedLowPosition =
 xsIn.getProcessedLowWatermark();
 // update the processed_low_position at oubound server
 if (null != processedLowPosition)
 xsOut.setProcessedLowWatermark(processedLowPosition,
 XStreamOut.DEFAULT_MODE);
 }
 }
 }
 catch(Exception e)
 {
 System.out.println("exception when processing LCRs");
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 public static void printHex(byte[] b)
 {
 for (int i = 0; i < b.length; ++i)
 {
 System.out.print(
 Integer.toHexString((b[i]&0xFF) | 0x100).substring(1,3));
 }
 System.out.println("");
 }
}

A-22

B
XStream Out Restrictions

Restrictions apply to XStream Out.

• Capture Process Restrictions
Restrictions apply to capture processes.

• Propagation Restrictions
Restrictions apply to propagations.

• Outbound Server Restrictions
Restrictions apply to outbound servers.

• XStream Out Rule Restrictions
Restrictions apply to rules.

• XStream Out Rule-Based Transformation Restrictions
Restrictions apply to rule-based transformations in XStream Out.

• XStream Out Limitations for Extended Data Types
Some restrictions apply to extended data types in XStream Out.

Capture Process Restrictions
Restrictions apply to capture processes.

• Unsupported Data Types for Capture Processes
Capture processes do not support some data types.

• Unsupported Changes for Capture Processes
Capture processes do not support some changes.

• Supplemental Logging Data Type Restrictions
Some types of columns cannot be part of a supplemental log group.

• Operational Requirements for Downstream XStream Out with XStream Out
There are operational requirements for downstream XStream Out with XStream Out.

• Capture Processes Do Not Support Oracle Label Security
Capture processes do not support database objects that use Oracle Label Security (OLS).

Unsupported Data Types for Capture Processes
Capture processes do not support some data types.

A capture process does not capture the results of DML changes to columns of the following
data types:

• ROWID
• Nested tables

• The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression

These data type restrictions pertain to both ordinary (heap-organized) tables and index-
organized tables.

B-1

Note:

XStream does not support LONG columns in databases with varying width multibyte
character sets.

See Also:

"Data Types Captured by a Capture Process"

Capture processes can capture changes to SecureFiles LOB columns only if the source
database compatibility level is set to 11.2.0.0 or higher. Also, capture processes do not support
capturing changes resulting from fragment-based operations on SecureFiles LOB columns or
capturing changes resulting from SecureFiles archive manager operations.

When a capture process tries to create a row LCR for a DML change to a column of an
unsupported data type, the capture process can either ignore the change to the table or raise
an error. The behavior of the capture process depends on the setting for the
ignore_unsupported_table capture process parameter.

When the capture process ignores the change to the table, it does not capture the change, and
it records the table name in the alert log. When the capture process raises an error, it writes
the LCR that caused the error into its trace file, raises an ORA-26744 error, and becomes
disabled. In either case, modify the rules used by the capture process to avoid recording
messages in the alert log or capture process errors. After modifying the capture process's
rules, restart the capture process.

Note:

• You can add rules to a negative rule set for a capture process that instruct the
capture process to discard changes to tables with columns of unsupported data
types.

• Capture processes do not support primary keys that contain object type
attributes.

• A capture process raises an error if it attempts to capture an INSERT operation
with an APPEND hint if the INSERT operation includes a column of either of the
following types: XMLType stored as object relational or XMLType stored as binary
XML

B-2

See Also:

• "Rules and Rule Sets"

• Oracle Database PL/SQL Packages and Types Reference for more information
about the ignore_unsupported_table capture process parameter

• Oracle Database Utilities for more information about LogMiner restrictions for
SecureFiles LOB columns

• Oracle Database Upgrade Guide for information about database compatibility

Unsupported Changes for Capture Processes
Capture processes do not support some changes.

• Unsupported Schemas for Capture Processes
Capture processes do not support some schemas.

• Unsupported Table Types for Capture Processes
Capture processes do not support some table types.

• Unsupported DDL Changes for Capture Processes
Capture processes do not support some data definition language (DDL) changes.

• Changes Ignored by a Capture Process
Capture processes ignore some types of changes.

• NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
If you use the NOLOGGING or UNRECOVERABLE keyword for a SQL operation, then the
changes resulting from the SQL operation cannot be captured by a capture process.

• UNRECOVERABLE Clause for Direct Path Loads
If you use the UNRECOVERABLE clause in the SQL*Loader control file for a direct path load,
then a capture process cannot capture the changes resulting from the direct path load.

Unsupported Schemas for Capture Processes
Capture processes do not support some schemas.

By default, a capture process does not capture changes made to the following schemas:

• CTXSYS
• DBSNMP
• DMSYS
• DVSYS
• EXFSYS
• LBACSYS
• MDDATA
• MDSYS
• OLAPSYS
• ORDDATA

B-3

• ORDPLUGINS
• ORDSYS
• OUTLN
• SI_INFORMTN_SCHEMA
• SYS
• SYSMAN
• SYSTEM
• WMSYS
• XDB
If the include_objects capture process parameter specifies one or more of these schemas,
then the capture process captures changes made to the specified schemas. If the
include_objects capture process parameter specifies one or more tables in these schemas,
then the capture process captures changes made to the specified tables.

By default, the include_objects capture process parameter is set to NULL. Therefore, the
capture process does not capture changes made to these schemas.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the include_objects capture process parameter

Unsupported Table Types for Capture Processes
Capture processes do not support some table types.

A capture process cannot capture DML changes made to the following types of tables:

• Temporary tables

• Object tables that include the unsupported data types described in "Unsupported Data
Types for Capture Processes"

Note:

• A capture process can capture changes to tables compressed with basic table
compression and OLTP table compression only if the compatibility level at both
the source database and the capture database is set to 11.2.0.0.0 or higher.

• A capture process can capture changes to tables compressed with hybrid
columnar compression if all of the following conditions are met: both the source
database and the capture database must be running Oracle Database 11g
Release 2 (11.2.0.2), and the compatibility level at both the source database and
the capture database is set to 11.2.0.0.0 or higher.

B-4

See Also:

• "Data Types Captured by a Capture Process"

• Oracle Database Administrator’s Guide for information about compressed tables

Unsupported DDL Changes for Capture Processes
Capture processes do not support some data definition language (DDL) changes.

A capture process captures the DDL changes that satisfy its rule sets, except for the following
types of DDL changes:

• ALTER DATABASE
• CREATE CONTROLFILE
• CREATE DATABASE
• CREATE PFILE
• CREATE SPFILE
A capture process can capture DDL statements, but not the results of DDL statements, unless
the DDL statement is a CREATE TABLE AS SELECT statement. For example, when a capture
process captures an ANALYZE statement, it does not capture the statistics generated by the
ANALYZE statement. However, when a capture process captures a CREATE TABLE AS SELECT
statement, it captures the statement itself and all of the rows selected (as INSERT row LCRs).

Some types of DDL changes that are captured by a capture process cannot be applied by an
outbound server. If an outbound server receives a DDL LCR that specifies an operation that
cannot be processed, then the outbound server ignores the DDL LCR and records information
about it in its trace file.

See Also:

"Rules and Rule Sets"

Changes Ignored by a Capture Process
Capture processes ignore some types of changes.

A capture process ignores the following types of changes:

• The session control statements ALTER SESSION and SET ROLE.

• The system control statement ALTER SYSTEM.

• CALL, EXPLAIN PLAN, and LOCK TABLE statements.

• GRANT statements on views.

• Changes made to a table or schema by online redefinition using the DBMS_REDEFINITION
package. Online table redefinition is supported on a table for which a capture process
captures changes, but the logical structure of the table before online redefinition must be
the same as the logical structure after online redefinition.

B-5

• Changes to sequence values. For example, if a user references a NEXTVAL or sets the
sequence, then a capture process does not capture changes resulting from these
operations. Also, if you share a sequence at multiple databases, then sequence values
used for individual rows at these databases might vary.

• Invocations of PL/SQL procedures, which means that a call to a PL/SQL procedure is not
captured. However, if a call to a PL/SQL procedure causes changes to database objects,
then these changes can be captured by a capture process if the changes satisfy the
capture process rule sets.

Note:

• If an Oracle-supplied package related to XML makes changes to database
objects, then these changes are not captured by capture processes.

• If an Oracle-supplied package related to Oracle Text makes changes to database
objects, then these changes are not captured by capture processes.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
packages related to XML

• Oracle Text Reference for information about packages related to Oracle Text

NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
If you use the NOLOGGING or UNRECOVERABLE keyword for a SQL operation, then the changes
resulting from the SQL operation cannot be captured by a capture process.

Therefore, do not use these keywords to capture the changes that result from a SQL operation.

If the object for which you are specifying the logging attributes resides in a database or
tablespace in FORCE LOGGING mode, then Oracle Database ignores any NOLOGGING or
UNRECOVERABLE setting until the database or tablespace is taken out of FORCE LOGGING mode.
You can determine the current logging mode for a database by querying the FORCE_LOGGING
column in the V$DATABASE dynamic performance view. You can determine the current logging
mode for a tablespace by querying the FORCE_LOGGING column in the ALL_TABLESPACES static
data dictionary view.

Note:

The UNRECOVERABLE keyword is deprecated and has been replaced with the
NOLOGGING keyword in the logging_clause. Although UNRECOVERABLE is supported for
backward compatibility, Oracle strongly recommends that you use the NOLOGGING
keyword, when appropriate.

B-6

See Also:

Oracle Database SQL Language Referencefor more information about the NOLOGGING
and UNRECOVERABLE keywords, FORCE LOGGING mode, and the logging_clause

UNRECOVERABLE Clause for Direct Path Loads
If you use the UNRECOVERABLE clause in the SQL*Loader control file for a direct path load, then
a capture process cannot capture the changes resulting from the direct path load.

Therefore, if the changes resulting from a direct path load should be captured by a capture
process, then do not use the UNRECOVERABLE clause.

If you load objects into a database or tablespace that is in FORCE LOGGING mode, then Oracle
Database ignores any UNRECOVERABLE clause during a direct path load, and the loaded
changes are logged. You can determine the current logging mode for a database by querying
the FORCE_LOGGING column in the V$DATABASE dynamic performance view. You can determine
the current logging mode for a tablespace by querying the FORCE_LOGGING column in the
DBA_TABLESPACES static data dictionary view.

See Also:

Oracle Database Utilities for information about direct path loads and SQL*Loader

Supplemental Logging Data Type Restrictions
Some types of columns cannot be part of a supplemental log group.

Columns of the following data types cannot be part of a supplemental log group: LOB, LONG,
LONG RAW, user-defined types (including object types, REFs, varrays, nested tables), and Oracle-
supplied types (including Any types, XML types, spatial types, and media types).

See Also:

• "If Required, Configure Supplemental Logging"

• Oracle Database SQL Language Reference for information about data types

Operational Requirements for Downstream XStream Out with XStream Out
There are operational requirements for downstream XStream Out with XStream Out.

The following are operational requirements for using downstream XStream Out:

• The source database must be running at least Oracle Database 12c Release 2 (12.2).

B-7

• The operating system on the source and downstream XStream Out sites must be the
same, but the operating system release does not need to be the same. In addition, the
downstream sites can use a different directory structure than the source site.

• The hardware architecture on the source and downstream XStream Out sites must be the
same. For example, a downstream XStream Out configuration with a source database on a
64-bit Sun system must have a downstream database that is configured on a 64-bit Sun
system. Other hardware elements, such as the number of CPUs, memory size, and
storage configuration, can be different between the source and downstream sites.

See Also:

"Local Capture and Downstream Capture"

Capture Processes Do Not Support Oracle Label Security
Capture processes do not support database objects that use Oracle Label Security (OLS).

See Also:

Oracle Label Security Administrator’s Guide

Propagation Restrictions
Restrictions apply to propagations.

• Connection Qualifiers and Propagations
Connection qualifiers cannot be specified in the database links that are used by
propagations.

Connection Qualifiers and Propagations
Connection qualifiers cannot be specified in the database links that are used by propagations.

Outbound Server Restrictions
Restrictions apply to outbound servers.

• Unsupported Data Types for Outbound Servers
Outbound servers do not support some data types.

• Types of DDL Changes Ignored by an Outbound Server
Outbound servers do not support some types of DDL changes.

• Apply Process Features That Are Not Applicable to Outbound Servers
Some features cannot be used with outbound servers.

Unsupported Data Types for Outbound Servers
Outbound servers do not support some data types.

B-8

An outbound server does not process row LCRs containing the results of DML changes in
columns of the following data types:

• ROWID
• Nested tables

• The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression

Note:

XStream does not support LONG columns in databases with varying width multibyte
character sets.

An outbound server raises an error if it attempts to process a row LCR that contains
information about a column of an unsupported data type. In addition, an outbound server
cannot process DML changes to the following types of tables:

• Temporary tables

• Object tables that include unsupported data types

An outbound server raises an error if it attempts to process such changes. When an outbound
server raises an error for an LCR, it moves the transaction that includes the LCR into the error
queue.

See Also:

• "Data Types Supported by Outbound Servers"

• Oracle Database SQL Language Reference for information about data types

Types of DDL Changes Ignored by an Outbound Server
Outbound servers do not support some types of DDL changes.

The following types of DDL changes are not supported by an outbound server:

• CREATE DATABASE LINK
• CREATE SCHEMA AUTHORIZATION
• DROP DATABASE LINK
• FLASHBACK DATABASE
• RENAME
XStream OUT processes DDL as a LCR$_DDL_RECORD in which the DDL text is a string. It
is the responsibility of the target application or database how this will be handled. Not all DDL
generated by XStream OUT can be applied by XStream IN.

If an outbound server receives a DDL LCR that specifies an operation that cannot be
processed, then the outbound server ignores the DDL LCR and records the following message
in the outbound server trace file, followed by the DDL text that was ignored:

B-9

Apply process ignored the following DDL:

An outbound server applies all other types of DDL changes if the DDL LCRs containing the
changes should be applied according to the outbound server rule sets.

Note:

• Instead of using the command RENAME TABLE, you can use the ALTER TABLE jobs
RENAME command which is supported and is an alternative solution.

• The name "materialized view" is synonymous with the name "snapshot".
Snapshot equivalents of the statements on materialized views are ignored by an
outbound server.

Related Topics

• Types of DDL Changes Ignored by an Inbound Server
Inbound servers ignore some types of DDL changes.

See Also:

Rules and Rule Sets

Apply Process Features That Are Not Applicable to Outbound Servers
Some features cannot be used with outbound servers.

The following apply process features cannot be used with outbound servers:

• Apply handlers

You cannot specify an apply handler for an outbound server. The client application can
perform custom processing of the LCRs instead if necessary. However, if apply processes
are configured in the same database as the outbound server, then you can specify apply
handlers for these apply processes. In addition, you can configure general apply handlers
for the database. An outbound server ignores general apply handlers.

• The following apply parameters:

– allow_duplicate_rows
– commit_serialization
– compare_key_only
– disable_on_error
– parallelism
– preserve_encryption
– rtrim_on_implicit_conversion
Outbound servers ignore the settings for these apply parameters.

The commit_serialization parameter is always set to FULL for an outbound server, and
the parallelism parameter is always set to 1 for an outbound server.

B-10

See Also:

Oracle Database PL/SQL Packages and Types Reference

• Apply tags

An outbound server cannot set an apply tag for the changes it processes.

• Apply database links

Outbound servers cannot use database links.

• Conflict detection and resolution

An outbound server does not detect conflicts, and conflict resolution cannot be set for an
outbound server.

• Dependency scheduling

An outbound server does not evaluate dependencies because its parallelism must be 1.

• Substitute key column settings

An outbound server ignores substitute key column settings.

• Enqueue directives specified by the SET_ENQUEUE_DESTINATION procedure in the
DBMS_APPLY_ADM package

An outbound server cannot enqueue changes into an Oracle database queue
automatically using the SET_ENQUEUE_DESTINATION procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference

• Execute directives specified by the SET_EXECUTE procedure in the DBMS_APPLY_ADM
package

An outbound server ignores execute directives.

See Also:

Oracle Database PL/SQL Packages and Types Reference

• Error creation and execution

An outbound server does not create an error transaction when it encounters an error. It
records information about errors in the ALL_APPLY view, but it does not enqueue the
transaction into an error queue.

XStream Out Rule Restrictions
Restrictions apply to rules.

• Restrictions for Subset Rules
Restrictions apply to subset rules.

B-11

Restrictions for Subset Rules
Restrictions apply to subset rules.

The following restrictions apply to subset rules:

• A table with the table name referenced in the subset rule must exist in the same database
as the subset rule, and this table must be in the same schema referenced for the table in
the subset rule.

• If the subset rule is in the positive rule set for a capture process, then the table must
contain the columns specified in the subset condition, and the data type of each of these
columns must match the data type of the corresponding column at the source database.

• If the subset rule is in the positive rule set for a propagation, then the table must contain
the columns specified in the subset condition, and the data type of each column must
match the data type of the corresponding column in row LCRs that evaluate to TRUE for the
subset rule.

• Creating subset rules for tables that have one or more columns of the following data types
is not supported: LOB, LONG, LONG RAW, nested tables, and Oracle-supplied types (including
Any types, XML types, spatial types, and media types).

See Also:

• "Subset Rules"

• Oracle Database SQL Language Reference for more information about data
types

XStream Out Rule-Based Transformation Restrictions
Restrictions apply to rule-based transformations in XStream Out.

• Unsupported Data Types for Declarative Rule-Based Transformations
Except for add column transformations, declarative rule-based transformations that
operate on columns support the same data types that are supported by capture processes.

See Also:

"Rule-Based Transformations"

Unsupported Data Types for Declarative Rule-Based Transformations
Except for add column transformations, declarative rule-based transformations that operate on
columns support the same data types that are supported by capture processes.

Add column transformations cannot add columns of the following data types: BLOB, CLOB,
NCLOB, BFILE, LONG, LONG RAW, ROWID, nested tables, and Oracle-supplied types (including Any
types, XML types, spatial types, and media types).

B-12

Extended data type columns cannot be used in the following types of declarative rule-based
transformations:

• Add column

• Keep columns

See Also:

• "Data Types Captured by a Capture Process"

• "Unsupported Data Types for Capture Processes"

• "XStream Out Limitations for Extended Data Types"

• Oracle Database SQL Language Reference for information about data types

XStream Out Limitations for Extended Data Types
Some restrictions apply to extended data types in XStream Out.

The maximum size of the VARCHAR2, NVARCHAR2, and RAW data types has been increased in
Oracle Database 12c when the COMPATIBLE initialization parameter is set to 12.0.0 and the
MAX_STRING_SIZE initialization parameter is set to EXTENDED. XStream Out supports these
extended data types.

However, the following limitations apply to the extended data type:

• Information about an extended data type column might not be contained in the original
LCR for a data manipulation language (DML) operation. Instead, XStream Out might treat
the extended data type column similar to the way it treats LOB columns. Specifically,
additional LCRs might contain the information for the extended data type column.

• XStream rules cannot access data in LCRs for extended data type columns.

• Extended data type columns cannot be specified in a subset rule clause.

• Extended data type columns cannot be used in the following types of declarative rule-
based transformations:

– Add column

– Keep columns

See Also:

Oracle Database SQL Language Reference for more information about extended
data types

B-13

C
XStream In Restrictions

Restrictions apply to XStream In.

• Inbound Server Restrictions
Restrictions apply to inbound servers.

• XStream In Rule Restrictions
Restrictions apply to rules.

• XStream In Rule-Based Transformation Restrictions
Restrictions apply to rule-based transformations in XStream In.

• XStream In Limitations for Extended Data Types
Limitations apply to extended data types in XStream In.

Inbound Server Restrictions
Restrictions apply to inbound servers.

• Unsupported Data Types for Inbound Servers
Inbound servers do not support some data types.

• Unsupported Data Types for Apply Handlers
Apply handlers do not support some data types.

• Types of DDL Changes Ignored by an Inbound Server
Inbound servers ignore some types of DDL changes.

• Current Schema User Must Exist at Destination Database
For a DDL LCR to be applied at a destination database successfully, the user specified as
the current_schema in the DDL LCR must exist at the destination database.

• Inbound Servers Do Not Support Oracle Label Security
Inbound servers do not support database objects that use Oracle Label Security (OLS).

Unsupported Data Types for Inbound Servers
Inbound servers do not support some data types.

An inbound server does not apply row LCRs containing the results of DML changes in columns
of the following data types:

• ROWID
• Nested tables

• The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression

C-1

Note:

XStream does not support LONG columns in databases with varying width multibyte
character sets.

An inbound server raises an error if it attempts to apply a row LCR that contains information
about a column of an unsupported data type. In addition, an inbound server cannot apply DML
changes to the following types of tables:

• Temporary tables

• Object tables that include unsupported data types

An inbound server raises an error if it attempts to apply such changes. When an inbound
server raises an error for an LCR, it moves the transaction that includes the LCR into the error
queue.

These data type restrictions pertain to both ordinary (heap-organized) tables and index-
organized tables.

See Also:

• "Data Types Applied by Inbound Servers"

• Oracle Database SQL Language Reference for information about data types

Unsupported Data Types for Apply Handlers
Apply handlers do not support some data types.

Procedure DML handlers and error handlers cannot process LONG or LONG RAW column data in
row LCRs. However, procedure DML handlers and error handlers can process both
nonassembled and assembled LOB column data in row LCRs, but these handlers cannot
modify nonassembled LOB column data.

See Also:

• "LCR Processing Options for Inbound Servers"

• Oracle Database SQL Language Reference for more information about data
types

Types of DDL Changes Ignored by an Inbound Server
Inbound servers ignore some types of DDL changes.

The following types of DDL changes are not supported by an inbound server. These types of
DDL changes are not applied:

C-2

• ALTER MATERIALIZED VIEW
• ALTER MATERIALIZED VIEW LOG
• CREATE DATABASE LINK
• CREATE SCHEMA AUTHORIZATION
• CREATE MATERIALIZED VIEW
• CREATE MATERIALIZED VIEW LOG
• DROP DATABASE LINK
• DROP MATERIALIZED VIEW
• DROP MATERIALIZED VIEW LOG
• FLASHBACK DATABASE
• RENAME
If an inbound server receives a DDL LCR that specifies an operation that cannot be applied,
then the inbound server ignores the DDL LCR and records the following message in the
inbound server trace file, followed by the DDL text that was ignored:

Inbound server ignored the following DDL:

An inbound server applies all other types of DDL changes if the DDL LCRs containing the
changes should be applied according to the inbound server rule sets.

Note:

• An inbound server applies ALTER object_type object_name RENAME changes,
such as ALTER TABLE jobs RENAME. Therefore, if you want DDL changes that
rename objects to be applied, then use ALTER object_type object_name RENAME
statements instead of RENAME statements. After changing the name of a database
object, new rules that specify the new database object name might be needed to
replicate changes to the database object.

• The name "materialized view" is synonymous with the name "snapshot".
Snapshot equivalents of the statements on materialized views are ignored by an
inbound server.

See Also:

"Rules and Rule Sets"

Current Schema User Must Exist at Destination Database
For a DDL LCR to be applied at a destination database successfully, the user specified as the
current_schema in the DDL LCR must exist at the destination database.

The current schema is the schema that is used if no schema is specified for an object in the
DDL text.

C-3

See Also:

• Oracle Database Conceptsfor more information about database structures

• Oracle Database PL/SQL Packages and Types Referencefor more information
about the current_schema attribute in DDL LCRs

Inbound Servers Do Not Support Oracle Label Security
Inbound servers do not support database objects that use Oracle Label Security (OLS).

See Also:

Oracle Label Security Administrator’s Guide

XStream In Rule Restrictions
Restrictions apply to rules.

• Restrictions for Subset Rules
Restrictions apply to subset rules.

Restrictions for Subset Rules
Restrictions apply to subset rules.

The following restrictions apply to subset rules:

• A table with the table name referenced in the subset rule must exist in the same database
as the subset rule, and this table must be in the same schema referenced for the table in
the subset rule.

• If the subset rule is in the positive rule set for an inbound server, then the table must
contain the columns specified in the subset condition, and the data type of each column
must match the data type of the corresponding column in row LCRs that evaluate to TRUE
for the subset rule.

• Creating subset rules for tables that have one or more columns of the following data types
is not supported: LOB, LONG, LONG RAW, user-defined types (including object types, REFs,
varrays, nested tables), and Oracle-supplied types (including Any types, XML types, spatial
types, and media types).

C-4

See Also:

• "Subset Rules"

• Oracle Database SQL Language Reference for more information about data
types

XStream In Rule-Based Transformation Restrictions
Restrictions apply to rule-based transformations in XStream In.

• Unsupported Data Types for Declarative Rule-Based Transformations
Except for add column transformations, declarative rule-based transformations that
operate on columns support the same data types that are supported by inbound servers.

See Also:

"Rule-Based Transformations"

Unsupported Data Types for Declarative Rule-Based Transformations
Except for add column transformations, declarative rule-based transformations that operate on
columns support the same data types that are supported by inbound servers.

Add column transformations cannot add columns of the following data types: BLOB, CLOB,
NCLOB, BFILE, LONG, LONG RAW, ROWID, user-defined types (including object types, REFs, varrays,
nested tables), and Oracle-supplied types (including Any types, XML types, spatial types, and
media types).

See Also:

• "Data Types Applied by Inbound Servers"

• "Unsupported Data Types for Inbound Servers"

• Oracle Database SQL Language Reference for information about data types

XStream In Limitations for Extended Data Types
Limitations apply to extended data types in XStream In.

The maximum size of the VARCHAR2, NVARCHAR2, and RAW data types has been increased in
Oracle Database 12c when the COMPATIBLE initialization parameter is set to 12.0.0 and the
MAX_STRING_SIZE initialization parameter is set to EXTENDED. XStream In supports these
extended data types.

However, the following limitations apply to the extended data types:

C-5

• Information about an extended data type column might not be contained in the original
LCR for a data manipulation language (DML) operation. Instead, XStream In might treat
the extended data type column similar to the way it treats LOB columns. Specifically,
additional LCRs might contain the information for the extended data type column.

• XStream rules cannot access data in LCRs for extended data type columns.

• Extended data type columns cannot be specified in a subset rule clause.

• Extended data type columns cannot be used for conflict detection.

• Extended data type columns cannot be used for a substitute primary key for apply
purposes with the DBMS_APPLY_ADM.SET_KEY_COLUMNS procedure.

• Extended data type columns cannot be used in the following types of declarative rule-
based transformations:

– Add column

– Keep columns

See Also:

Oracle Database SQL Language Reference for more information about extended
data types

C-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	Part I XStream General Concepts and Use Cases
	1 Introduction to XStream
	About XStream
	Purpose of XStream
	XStream Use Cases
	Replicating Data Changes with Non-Oracle Databases
	Using Files to Store Data Changes
	XStream Demo That Replicates Database Changes Using Files

	Sharing Data Changes with a Client-Side Memory Cache

	Prerequisites for XStream
	XStream Security Model
	Tasks and Tools for XStream
	XStream Tasks
	XStream Tools

	2 General XStream Concepts
	Logical Change Records (LCRs)
	Row LCRs
	Row LCR Subtypes

	DDL LCRs
	Extra Information in Row LCRs and DDL LCRs
	Sequence LCRs
	Position Order in an LCR Stream
	LCRIDs and the Position of LCRs

	Rules and Rule Sets
	Rules and Rule Sets Defined
	Rule Sets and XStream Components
	System-Created Rules and XStream
	XStream System-Created Rule Procedures
	Global Rules
	Schema Rules
	Table Rules
	Subset Rules
	System-Created Rules and a Multitenant Environment
	System-Created Rules in a CDB and XStream Out
	System-Created Rules in a CDB and XStream In

	Rule-Based Transformations
	Declarative Rule-Based Transformations
	Declarative Rule-Based Transformation Ordering
	Evaluating Transformation Ordering
	Row Migration Transformation Ordering
	User-Specified Declarative Transformation Ordering
	Considerations for Rule-Based Transformations

	XStream and the Oracle Replication Performance Advisor
	XStream Components
	XStream Out Apply Subcomponents
	XStream In Apply Subcomponents

	Topology and Stream Paths
	XStream and Component-Level Statistics
	The UTL_RPADV Package
	Collecting XStream Statistics Using the UTL_RPADV Package
	Showing XStream Statistics on the Command Line
	Interpreting SHOW_STATS Output
	Sample Output When an Outbound Server Is the Last Component in a Path
	Sample Output When an Inbound Server Is the Last Component in a Path

	Showing XStream Statistics in an HTML Report
	Interpreting the HTML Report From SHOW_STATS_HTML

	Using Automatic Workload Repository (AWR) Reports for Oracle Database
	Replication System Resource Usage
	Replication Top SQLs

	Automatic Workload Repository (AWR) Report for XStream
	XStream In
	XStream Out

	XStream and SQL Generation
	Interfaces for Performing SQL Generation
	SQL Generation Formats
	SQL Generation and Data Types
	SQL Generation and Automatic Data Type Conversion
	SQL Generation and LOB, LONG, LONG RAW, and XMLType Data Types

	SQL Generation and Character Sets
	Sample Generated SQL Statements
	Sample Generated SQL Statements for the hr.employees Table
	Sample Generated SQL Statements for a Table With LOB Columns

	SQL Generation Demo

	Part II XStream Out
	3 XStream Out Concepts
	Introduction to XStream Out
	Capture Processes
	Capture Process Overview
	Data Types Captured by a Capture Process
	Types of DML Changes Captured by Capture Processes
	ID Key LCRs
	ID Key LCRs Demo

	Tables, Views, and Materialized Views
	Scope of Support for Lock-free Reservation
	Scope of Support for Blockchain and Immutable Tables

	Local Capture and Downstream Capture
	Local Capture
	The Source Database Performs All Change Capture Actions
	Advantages of Local Capture

	Downstream Capture
	Real-Time Downstream Capture
	Archived-Log Downstream Capture
	The Downstream Database Performs Most Change Capture Actions
	Advantages of Downstream Capture
	Optional Database Link From the Downstream Database to the Source Database
	Operational Requirements for Downstream XStream Out with XStream Out

	Capture Processes and RESTRICTED SESSION
	XStream Out Process Subcomponents
	Capture Process States
	Capture Process Parameters
	Capture Process Checkpoints and XStream Out
	Required Checkpoint SCN
	Maximum Checkpoint SCN
	Checkpoint Retention Time

	SCN Values Related to a Capture Process
	Captured SCN and Applied SCN
	First SCN and Start SCN
	First SCN
	Start SCN
	Start SCN Must Be Greater Than or Equal to First SCN

	Outbound Servers
	Overview of Outbound Servers
	Data Types Supported by Outbound Servers
	Apply User for an Outbound Server
	Outbound Servers and RESTRICTED SESSION
	Outbound Server Subcomponents
	Considerations for Outbound Servers
	Outbound Servers and Apply Parameters

	Position of LCRs and XStream Out
	Additional LCR Attributes Related to Position in XStream Out
	The Processed Low Position and Restartability for XStream Out
	Streaming Network Transmission

	XStream Out and Distributed Transactions
	XStream Out and Security
	Capture Process Trace Files
	The XStream Out Client Application and Security
	XStream Out Component-Level Security
	Privileges Required by the Capture User for a Capture Process
	Privileges Required by the Connect User for an Outbound Server

	XStream Out and Other Oracle Database Components
	XStream Out and Oracle Real Application Clusters
	Capture Processes and Oracle Real Application Clusters
	Queues and Oracle Real Application Clusters
	Propagations and Oracle Real Application Clusters
	Outbound Servers and Oracle Real Application Clusters

	XStream Out and Transparent Data Encryption
	Capture Processes and Transparent Data Encryption
	Outbound Servers and Transparent Data Encryption

	XStream Out and Flashback Data Archive
	XStream Out and Recovery Manager
	RMAN and Local Capture Processes
	RMAN and Downstream Capture Processes

	XStream and Distributed Transactions
	XStream Out and a Multitenant Environment
	Configure a Multitenant Container Database

	4 Configuring XStream Out
	Preparing for XStream Out
	Decide How to Configure XStream Out
	Prerequisites for Configuring XStream Out
	Configure an XStream Administrator on All Databases
	Granting Additional Privileges to the XStream Administrator
	Grant User Privileges for Oracle Database 23ai and Higher
	If Required, Configure Network Connectivity and Database Links
	Ensure That Each Source Database Is in ARCHIVELOG Mode
	Set the Relevant Initialization Parameters
	Configure the Streams pool
	If Required, Configure Supplemental Logging
	Required Supplemental Logging in an XStream Environment
	Specifying Table Supplemental Logging Using Unconditional Log Groups
	Specifying Table Supplemental Logging Using Conditional Log Groups
	Dropping a Supplemental Log Group
	Specifying Database Supplemental Logging of Key Columns
	Dropping Database Supplemental Logging of Key Columns
	Procedures That Automatically Specify Supplemental Logging

	If Required, Configure Log File Transfer to a Downstream Database
	If Required, Add Standby Redo Logs for Real-Time Downstream Capture

	Configuring XStream Out
	Configuring an Outbound Server Using CREATE_OUTBOUND
	Adding an Additional Outbound Server to a Capture Process Stream
	Configuring an Outbound Server Using ADD_OUTBOUND
	Configuring XStream Out in a CDB
	Configuring XStream Out with Local Capture in a CDB
	Configuring XStream Out with Downstream Capture in CDBs

	5 Managing XStream Out
	About Managing XStream Out
	Managing an Outbound Server
	Starting an Outbound Server
	Stopping an Outbound Server
	Setting an Apply Parameter for an Outbound Server
	Changing the Connect User for an Outbound Server

	Managing the Capture Process for an Outbound Server
	Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process
	Starting a Capture Process
	Stopping a Capture Process
	Setting a Capture Process Parameter
	Changing the Capture User of an Outbound Server's Capture Process
	Changing the Start SCN or Start Time of an Outbound Server's Capture Process
	Changing the Start SCN of an Outbound Server's Capture Process
	Changing the Start Time of an Outbound Server's Capture Process

	Setting the First SCN for a Capture Process

	Managing Rules for an XStream Out Configuration
	Adding Rules to an XStream Out Configuration
	Adding Schema Rules and Table Rules to an XStream Out Configuration
	Adding Subset Rules to an Outbound Server's Positive Rule Set
	Adding Rules With Custom Conditions to XStream Out Components

	Removing Rules from an XStream Out Configuration
	Removing Schema Rules and Table Rules From an XStream Out Configuration
	Removing Subset Rules from an Outbound Server's Positive Rule Set
	Removing Rules Using the REMOVE_RULE Procedure

	Managing Declarative Rule-Based Transformations
	Adding Declarative Rule-Based Transformations
	Adding a Declarative Rule-Based Transformation That Renames a Table
	Adding a Declarative Rule-Based Transformation That Adds a Column

	Overwriting Existing Declarative Rule-Based Transformations
	Removing Declarative Rule-Based Transformations

	Dropping Components in an XStream Out Configuration
	Removing an XStream Out Configuration

	6 Monitoring XStream Out
	About Monitoring XStream Out
	Monitoring Session Information About XStream Out Components
	Monitoring the History of Events for XStream Out Components
	Monitoring an Outbound Server
	Displaying General Information About an Outbound Server
	Displaying Status and Error Information for an Outbound Server
	Displaying Information About an Outbound Server's Current Transaction
	Displaying Statistics for an Outbound Server
	Displaying the Processed Low Position for an Outbound Server
	Determining the Process Information for an Outbound Server
	Displaying the Apply Parameter Settings for an Outbound Server

	Monitoring the Capture Process for an Outbound Server
	Displaying Change Capture Information About Each Capture Process
	Displaying the Registered Redo Log Files for Each Capture Process
	Displaying Redo Log Files That Are Required by Each Capture Process
	Displaying SCN Values for Each Redo Log File Used by Each Capture Process
	Listing the Parameter Settings for Each Capture Process
	Determining the Applied SCN for Each Capture Process
	Displaying the Redo Log Scanning Latency for Each Capture Process
	Displaying the Extra Attributes Captured by a Capture Process

	Monitoring XStream Rules
	Monitoring Declarative Rule-Based Transformations
	Displaying Information About ADD COLUMN Transformations
	Displaying Information About RENAME TABLE Transformations

	7 Troubleshooting XStream Out
	Diagnosing Problems with XStream Out
	Viewing Alerts
	Checking the Trace File and Alert Log for Problems
	Capture Process Trace Files
	Logminer Trace Files
	Outbound Server Trace File
	Client Application Trace Files

	Problems and Solutions for XStream Out
	An OCI Client Application Cannot Attach to the Outbound Server
	Changes Are Failing to Reach the Client Application in XStream Out
	The Capture Process Is Missing Required Redo Log Files
	LCRs Streaming from an Outbound Server Are Missing Extra Attributes
	The XStream Out Client Application Is Unresponsive

	How to Get More Help with XStream Out

	Part III XStream In
	8 XStream In Concepts
	Introduction to XStream In
	The Inbound Server
	Overview of Inbound Servers
	Data Types Applied by Inbound Servers
	LCR Processing Options for Inbound Servers
	Procedure DML Handlers
	Error Handlers
	DDL Handlers
	Precommit Handlers

	Inbound Servers and RESTRICTED SESSION
	Inbound Server Components
	Considerations for Inbound Servers
	The Error Queue for an Inbound Server

	Position of LCRs and XStream In
	XStream In and Performance Considerations
	Optimizing XStream In Performance for Large Transactions
	Optimizing Transaction Apply Scheduling

	XStream In and Security
	The XStream In Client Application and Security
	XStream In Component-Level Security
	Privileges Required by the Apply User for an Inbound Server

	XStream In and Other Oracle Database Components
	XStream In and Oracle Real Application Clusters
	XStream In and Flashback Data Archive
	XStream In and Transportable Tablespaces
	XStream In and a Multitenant Environment

	9 Configuring XStream In
	Preparing for XStream In
	Configure an XStream Administrator
	Granting Additional Privileges to the XStream Administrator

	Set the Relevant Initialization Parameters
	Configure the Streams pool
	If Required, Specify Supplemental Logging at the Source Database

	Configuring XStream In

	10 Managing XStream In
	About Managing XStream In
	Starting an Inbound Server
	Stopping an Inbound Server
	Setting an Apply Parameter for an Inbound Server
	Changing the Apply User for an Inbound Server
	Managing XStream In Conflict Detection and Resolution
	About DML Conflicts in an XStream Environment
	Conflict Types in an XStream Environment
	Update Conflicts in an XStream Environment
	Uniqueness Conflicts in an XStream Environment
	Delete Conflicts in an XStream Environment
	Foreign Key Conflicts in an XStream Environment

	Conflicts and Transaction Ordering in an XStream Environment
	Conflict Detection in an XStream Environment
	About Conflict Detection in an XStream Environment
	Control Over Conflict Detection for Non-Key Columns
	Rows Identification During Conflict Detection in an XStream Environment

	Conflict Avoidance in an XStream Environment
	Use a Primary Database Ownership Model
	Avoid Specific Types of Conflicts
	Avoid Uniqueness Conflicts in an XStream Environment
	Avoid Delete Conflicts in an Oracle Replication Environment
	Avoid Update Conflicts in an XStream Environment

	Conflict Resolution in an XStream Environment
	About Conflict Resolution in an XStream Environment
	Prebuilt DML Conflict Handlers
	Types of Prebuilt DML Conflict Handlers
	Column Lists
	Resolution Columns
	Data Convergence
	Collision Handling Without a DML Conflict Handler
	Custom Conflict Handlers

	Managing DML Conflict Handlers
	Setting a DML Conflict Handler
	Removing a DML Conflict Handler

	Stopping Conflict Detection for Non-Key Columns

	Managing Apply Errors
	Inbound Server Error Handling
	About Error Handlers
	Setting and Unsetting an Error Handler

	Retrying Apply Error Transactions
	Retrying a Specific Apply Error Transaction
	Retrying a Specific Apply Error Transaction Without a User Procedure
	Retrying a Specific Apply Error Transaction With a User Procedure

	Retrying All Error Transactions for an Inbound Server

	Deleting Apply Error Transactions
	Deleting a Specific Apply Error Transaction
	Deleting All Error Transactions for an Inbound Server

	Managing Eager Errors Encountered by an Inbound Server

	Conflict and Error Handling Precedence
	Dropping Components in an XStream In Configuration

	11 Monitoring XStream In
	Displaying Session Information for Inbound Servers
	Displaying General Information About an Inbound Server
	Monitoring the History of Events for XStream In Components
	Displaying the Status and Error Information for an Inbound Server
	Displaying Apply Parameter Settings for an Inbound Server
	Displaying the Position Information for an Inbound Server
	Displaying Information About DML Conflict Handlers
	Displaying Information About Error Handlers
	Checking for Apply Errors
	Displaying Detailed Information About Apply Errors
	Step 1: Grant Explicit SELECT Privilege on the ALL_APPLY_ERROR View
	Step 2: Create a Procedure that Prints the Value in an ANYDATA Object
	Step 3: Create a Procedure that Prints a Specified LCR
	Step 4: Create a Procedure that Prints All the LCRs in the Error Queue
	Step 5: Create a Procedure that Prints All the Error LCRs for a Transaction

	12 Troubleshooting XStream In
	Diagnosing Problems with XStream In
	Viewing Alerts
	Checking the Trace File and Alert Log for Problems

	Problems and Solutions for XStream In
	XStream In Cannot Identify an Inbound Server
	Inbound Server Encounters an ORA-03135 Error
	Changes Are Failing to Reach the Client Application in XStream In

	How to Get More Help with XStream In

	Part IV Appendixes
	A Sample XStream Client Application
	About the Sample XStream Client Application
	Sample XStream Client Application for the Oracle Call Interface API
	Sample XStream Client Application for the Java API

	B XStream Out Restrictions
	Capture Process Restrictions
	Unsupported Data Types for Capture Processes
	Unsupported Changes for Capture Processes
	Unsupported Schemas for Capture Processes
	Unsupported Table Types for Capture Processes
	Unsupported DDL Changes for Capture Processes
	Changes Ignored by a Capture Process
	NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
	UNRECOVERABLE Clause for Direct Path Loads

	Supplemental Logging Data Type Restrictions
	Operational Requirements for Downstream XStream Out with XStream Out
	Capture Processes Do Not Support Oracle Label Security

	Propagation Restrictions
	Connection Qualifiers and Propagations

	Outbound Server Restrictions
	Unsupported Data Types for Outbound Servers
	Types of DDL Changes Ignored by an Outbound Server
	Apply Process Features That Are Not Applicable to Outbound Servers

	XStream Out Rule Restrictions
	Restrictions for Subset Rules

	XStream Out Rule-Based Transformation Restrictions
	Unsupported Data Types for Declarative Rule-Based Transformations

	XStream Out Limitations for Extended Data Types

	C XStream In Restrictions
	Inbound Server Restrictions
	Unsupported Data Types for Inbound Servers
	Unsupported Data Types for Apply Handlers
	Types of DDL Changes Ignored by an Inbound Server
	Current Schema User Must Exist at Destination Database
	Inbound Servers Do Not Support Oracle Label Security

	XStream In Rule Restrictions
	Restrictions for Subset Rules

	XStream In Rule-Based Transformation Restrictions
	Unsupported Data Types for Declarative Rule-Based Transformations

	XStream In Limitations for Extended Data Types

