Oracle® Database
Testing Guide

23ai
FA7494-04
October 2024

ORACLE"

Oracle Database Testing Guide, 23ai

F47494-04

Copyright © 2008, 2024, Oracle and/or its affiliates.
Primary Authors: Sunil Surabhi, Roopesh Ashok Kumar
Contributing Authors: Prakash Jashnani

Contributors: Daniel Suherman, Ashish Agrawal, Waleed Ahmed, Helen Altmar, Lance Ashdown, Pete Belknap, Supiti
Buranawatanachoke, Romain Colle, Karl Dias, Kurt Engeleiter, Leonidas Galanis, Veeranjaneyulu Goli, Prabhaker
Gongloor, Prakash Gupta, Shantanu Joshi, Prathiba Kalirengan, Karen McKeen, Mughees Minhas, Konstantinos
Morfonios, Valarie Moore, Ravi Pattabhi, Bert Rich, Yujun Wang, Keith Wong, Qinyi Wu, Khaled Yagoub, Hailing Yu,
Yury Berezin

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xi
Documentation Accessibility Xii
Diversity and Inclusion Xii
Conventions Xi
1 Introduction to Oracle Database Testing
SQL Performance Analyzer 1-1
Database Replay 1-2
Part | SQL Performance Analyzer
2 Introduction to SQL Performance Analyzer
Capturing the SQL Workload 2-3
Setting Up the Test System 2-4
Creating a SQL Performance Analyzer Task 2-5
Measuring the Pre-Change SQL Performance 2-5
Making a System Change 2-7
Measuring the Post-Change SQL Performance 2-7
Comparing Performance Measurements 2-7
Fixing Regressed SQL Statements 2-8
3 Creating an Analysis Task
Creating an Analysis Task Using Enterprise Manager 3-1
Using the Parameter Change Workflow 3-3
Using the Optimizer Statistics Workflow 3-6
Using the Exadata Simulation Workflow 3-9
Using the Guided Workflow 3-12
Creating an Analysis Task Using APls 3-14
Configuring an Analysis Task Using APIs 3-15

ORACLE"

Configuring the Execution Plan Comparison Method of an Analysis Task Using APIs 3-15
Configuring an Analysis Task for Exadata Simulation Using APIs 3-16
Remapping Multitenant Container Database Identifiers in an Analysis Task Using APIs 3-17
Configuring Trigger Execution in an Analysis Task 3-17
Configuring a Date to be Returned by Calls in an Analysis Task 3-18
Configuring the Number of Rows to Fetch for an Analysis Task 3-19
Configuring the Degree of Parallelism for an Analysis Task 3-20
Validating SQL Result Sets Using SQL Performance Analyzer 3-21
4 Creating a Pre-Change SQL Trial
Creating a Pre-Change SQL Trial Using Enterprise Manager 4-2
Creating a Pre-Change SQL Trial Using APIs 4-4
5 Creating a Post-Change SQL Trial
Creating a Post-Change SQL Trial Using Oracle Enterprise Manager 5-2
Creating a Post-Change SQL Trial Using APIs 5-3
6 Comparing SQL Trials
Comparing SQL Trials Using Oracle Enterprise Manager 6-1
Analyzing SQL Performance Using Oracle Enterprise Manager 6-2
Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise Manager 6-3
Reviewing the SQL Performance Analyzer Report: General Information 6-5
Reviewing the SQL Performance Analyzer Report: Global Statistics 6-5
Reviewing the SQL Performance Analyzer Report: Global Statistics Details 6-7
About SQL Performance Analyzer Active Reports 6-8
Tuning Regressed SQL Statements Using Oracle Enterprise Manager 6-8
Creating SQL Plan Baselines 6-9
Running SQL Tuning Advisor 6-9
Comparing SQL Trials Using APIs 6-10
Analyzing SQL Performance Using APIs 6-10
Reviewing the SQL Performance Analyzer Report in Command-Line 6-12
General Information 6-13
Result Summary 6-14
Result Details 6-15
Comparing SQL Tuning Sets Using APIs 6-17
Tuning Regressed SQL Statements Using APIs 6-22
Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs 6-24
Creating SQL Plan Baselines Using APIs 6-26

ORACLE"

Using SQL Performance Analyzer Views 6-27
7 Using SPA Quick Check
About Configuring SPA Quick Check 7-1
Specifying Default Values for SPA Quick Check 7-2
Validating the Impact of an Initialization Parameter Change 7-2
Validating the Impact of Pending Optimizer Statistics 7-3
Validating the Impact of Implementing Key SQL Profiles 7-5
Validating Statistics Findings from Automatic SQL Tuning Advisor 7-6
8 Testing a Database Upgrade
Upgrading from Oracle9i Database and Oracle Database 10g Release 1 8-1
Enabling SQL Trace on the Production System 8-3
Creating a Mapping Table 8-4
Building a SQL Tuning Set 8-5
Testing Database Upgrades from Oracle9i Database and Oracle Database 10g Release
1 8-6
Testing Database Upgrades from Releases 9.x and 10.1 Using Cloud Control 8-7
Testing Database Upgrades from Releases 9.x and 10.1 Using APIs 8-9
Upgrading from Oracle Database 10g Release 2 and Newer Releases 8-10
Testing Database Upgrades from Oracle Database 10g Release 2 and Newer Releases 8-12
Testing Database Upgrades from Releases 10.2 and Higher Using Cloud Control 8-12
Testing Database Upgrades from Releases 10.2 and Higher Using APIs 8-15
Tuning Regressed SQL Statements After Testing a Database Upgrade 8-16
Part |l Database Replay
o Introduction to Database Replay
Workload Capture 9-2
Workload Preprocessing 9-3
Workload Replay 9-3
Analysis and Reporting 9-4
Workload Capture and Replay in a PDB 9-5
10 Capturing a Database Workload
Prerequisites for Capturing a Database Workload 10-1
Setting Up the Capture Directory 10-2
Workload Capture Options 10-2
ORACLE

Restarting the Database 10-3

Using Filters with Workload Capture 10-4
Workload Capture Restrictions 10-4
Enabling and Disabling the Workload Capture Feature 10-5
Enterprise Manager Privileges and Roles 10-6

Database Replay Viewer Role 10-6

Database Replay Operator Role 10-6
Capturing a Database Workload Using Enterprise Manager 10-7
Capturing Workloads from Multiple Databases Concurrently 10-12
Monitoring a Workload Capture Using Enterprise Manager 10-14

Monitoring an Active Workload Capture 10-15

Stopping an Active Workload Capture 10-15

Viewing a Completed Workload Capture 10-16
Importing a Workload External to Enterprise Manager 10-17
Creating Subsets from an Existing Workload 10-19
Copying or Moving a Workload to a New Location 10-20
Capturing a Database Workload Using APIs 10-21

Defining Workload Capture Filters 10-21

Starting a Workload Capture 10-22

Stopping a Workload Capture 10-25

Exporting AWR Data for Workload Capture 10-25

Importing AWR Data for Workload Capture 10-26
Encrypting and Decrypting an Existing Workload Capture Using APIs 10-26

Encrypting an Existing Workload Capture 10-27

Decrypting an Encrypted Workload Capture 10-27
Monitoring Workload Capture Using Views 10-28

11 Preprocessing a Database Workload

Preparing a Single Database Workload Using Enterprise Manager 11-1
Creating a Database Replay Task 11-2
Creating a Replay from a Replay Task 11-3
Preparing the Test Database 11-4
Preprocessing the Workload and Deploying the Replay Clients 11-6

Preprocessing a Database Workload Using APls 11-9
Running the Workload Analyzer Command-Line Interface 11-10

12 Replaying a Database Workload

Steps for Replaying a Database Workload 12-1

Setting Up the Replay Directory 12-2

Restoring the Database 12-2
ORACLE

Vi

Resolving References to External Systems
Connection Remapping
User Remapping
Specifying Replay Options
Specifying the Synchronization Method
Controlling Session Connection Rate
Controlling Request Rate Within a Session
Using Filters with Workload Replay
Setting Up Replay Clients
Calibrating Replay Clients
Starting Replay Clients
Displaying Host Information
Replaying a Database Workload Using Enterprise Manager

Setting Up the Replay Schedule and Parameters Using Enterprise Manager

Monitoring Workload Replay Using Enterprise Manager
Monitoring an Active Workload Replay
Viewing a Completed Workload Replay
Importing a Replay External to Enterprise Manager
Replaying a Database Workload Using APIs
Initializing Replay Data
Remapping Connections
Remapping Users
Setting Workload Replay Options
Defining Workload Replay Filters and Replay Filter Sets
Adding Workload Replay Filters
Deleting Workload Replay Filters
Creating a Replay Filter Set
Using a Replay Filter Set
Setting the Replay Timeout Action
Starting a Workload Replay
Pausing a Workload Replay
Resuming a Workload Replay
Cancelling a Workload Replay
Retrieving Information About Workload Replays
Loading Divergence Data for Workload Replay
Deleting Information About Workload Replays
Exporting AWR Data for Workload Replay
Importing AWR Data for Workload Replay
Monitoring Workload Replay Using APIs
Retrieving Information About Diverged Calls
Monitoring Workload Replay Using Views

ORACLE

12-2
12-3
12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-5
12-6
12-8
12-8
12-15
12-17
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-23
12-25
12-25
12-26
12-26
12-27
12-27
12-28
12-29
12-29
12-30
12-30
12-31
12-31
12-32
12-32
12-33
12-33
12-34

Vii

13 Analyzing Captured and Replayed Workloads

Using Workload Capture Reports 13-1
Accessing Workload Capture Reports Using Enterprise Manager 13-1
Generating Workload Capture Reports Using APIs 13-2
Reviewing Workload Capture Reports 13-3

Using Workload Replay Reports 13-3
Accessing Workload Replay Reports Using Enterprise Manager 13-4
Generating Workload Replay Reports Using APIs 13-7
Reviewing Workload Replay Reports 13-8

Replay Sessions 13-9
Synchronization 13-9
Tracked Commits 13-10
Session Failures 13-10

Using Replay Compare Period Reports 13-10
Generating Replay Compare Period Reports Using APIs 13-10
Reviewing Replay Compare Period Reports 13-11

General Information 13-12
Replay Divergence 13-12
Main Performance Statistics 13-12
Top SQL/Call 13-12
Hardware Usage Comparison 13-12
ADDM Comparison 13-13
ASH Data Comparison 13-13

Using SQL Performance Analyzer Reports 13-15

Generating SQL Performance Analyzer Reports Using APIs 13-15
14 Using Workload Intelligence

Overview of Workload Intelligence 14-1
About Workload Intelligence 14-1
Use Case for Workload Intelligence 14-2
Requirements for Using Workload Intelligence 14-2

Analyzing Captured Workloads Using Workload Intelligence 14-3
Creating a Database User for Workload Intelligence 14-3
Creating a Workload Intelligence Job 14-3
Generating a Workload Model 14-4
Identifying Patterns in a Workload 14-5
Generating a Workload Intelligence Report 14-6

Example: Workload Intelligence Results 14-7

ORACLE

viii

15 Using Consolidated Database Replay

Use Cases for Consolidated Database Replay
Database Consolidation Using Pluggable Databases
Stress Testing
Scale-Up Testing

Steps for Using Consolidated Database Replay

Capturing Database Workloads for Consolidated Database Replay

Supported Types of Workload Captures
Capture Subsets
Setting Up the Test System for Consolidated Database Replay

Preprocessing Database Workloads for Consolidated Database Replay
Replaying Database Workloads for Consolidated Database Replay

Defining Replay Schedules
Remapping Connections for Consolidated Database Replay
Remapping Users for Consolidated Database Replay
Preparing for Consolidated Database Replay
Replaying Individual Workloads
Reporting and Analysis for Consolidated Database Replay
Using Consolidated Database Replay with Enterprise Manager
Using Consolidated Database Replay with APIs
Generating Capture Subsets Using APls
Setting the Consolidated Replay Directory Using APIs
Defining Replay Schedules Using APIs
Creating Replay Schedules Using APIs
Adding Workload Captures to Replay Schedules Using APls
Adding Schedule Orders to Replay Schedules Using APIs
Saving Replay Schedules Using APIs
Running Consolidated Database Replay Using APls
Initializing Consolidated Database Replay Using APIs
Remapping Connection Using APls
Remapping Users Using APIs
Preparing for Consolidated Database Replay Using APIs
Starting Consolidated Database Replay Using APIs
About Query-Only Database Replay
Use Cases for Query-Only Database Replay
Performing a Query-Only Database Replay
Example: Replaying a Consolidated Workload with APIs

ORACLE

15-1
15-2
15-2
15-2
15-2
15-3
15-3
15-3
15-4
15-5
15-6
15-6
15-7
15-7
15-8
15-8
15-8
15-9
15-10
15-10
15-11
15-12
15-12
15-13
15-15
15-16
15-17
15-18
15-19
15-19
15-20
15-21
15-21
15-22
15-22
15-23

16 Using Workload Scale-Up

Overview of Workload Scale-Up 16-1
About Time Shifting 16-1
About Workload Folding 16-2
About Schema Remapping 16-2

Using Time Shifting 16-2

Using Workload Folding 16-4

Using Schema Remapping 16-7

Part Il workload Analysis
17 Using Workload Analysis

Accessing Workload Analysis in Enterprise Manager 17-1

Oracle Database Support for Workload Analysis 17-1

Overview of Workload Analysis 17-2

Using Automated Analysis 17-2
About Automated Analysis 17-2
Creating an Automated Analysis Task 17-3

Creating a Basic Automated Analysis Task 17-3
Creating an Advanced Automated Analysis Task 17-3
Reviewing the Results of Your Automated Analysis Tasks 17-5
Listing Your Automated Analysis Tasks 17-5
Reviewing Workload and Metric Summary 17-6

Using One-Time Analysis 17-6
About One-Time Analysis 17-6
Creating a One-Time Analysis Task 17-7
Reviewing the Results of Your One-Time Analysis Task 17-7
Reviewing the Analysis and Metric Summary 17-8

Reviewing the Automated Workload Analysis Task on the Database Home Page 17-8
Adding or Removing Tasks on the Home Page 17-8
Accessing the Automated Workload Analysis Task 17-9
Reviewing the Automated Workload Analysis Tasks 17-9

Reviewing the Workload Analysis Report 17-10
Accessing the Workload Analysis Report 17-11
Reviewing the Summary Report 17-11
Example: Workload Analysis Report 17-11

Overview of the Workload Analysis Report 17-11
Summary Section 17-13
Breakdown 17-13
Top SQL Statements by Workload Impact 17-14

ORACLE"

SQL Details 17-14

ORACLE" Xi

Preface

Preface

This preface contains the following topics:

e Audience
e Documentation Accessibility
e Diversity and Inclusion

e Conventions

Audience

This document provides information about how to assure the integrity of database changes
and manage test data using Oracle Real Application Testing. This document is intended for
database administrators, application designers, and programmers who are responsible for
performing real-world testing of Oracle Database.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions

The following text conventions are used in this document:

ORACLE Xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE Xiii

Introduction to Oracle Database Testing

The Oracle Real Application Testing option of Oracle Database help you to securely assure the
integrity of database changes and to manage test data.

Oracle Real Application Testing option enables you to perform real-world testing of Oracle
Database. By capturing production workloads and assessing the impact of system changes on
these workloads before production deployment, Oracle Real Application Testing minimizes the
risk of instabilities associated with system changes. SQL Performance Analyzer and Database
Replay are key components of Oracle Real Application Testing. Depending on the nature and
impact of the system change being tested, and on the type of system the test will be
performed, you can use either or both components to perform your testing.

This chapter contains the following sections:

* SQL Performance Analyzer

e Database Replay

Note:

The use of SQL Performance Analyzer and Database Replay requires the Oracle
Real Application Testing licensing option. For more information, see Oracle Database
Licensing Information User Manual.

SQL Performance Analyzer

System changes—such as a upgrading a database or adding an index—may cause changes
to execution plans of SQL statements, resulting in a significant impact on SQL performance. In
some cases, the system changes may cause SQL statements to regress, resulting in
performance degradation. In other cases, the system changes may improve SQL performance.
Being able to accurately forecast the potential impact of system changes on SQL performance
enables you to tune the system beforehand, in cases where the SQL statements regress, or to
validate and measure the performance gain in cases where the performance of the SQL
statements improves.

SQL Performance Analyzer automates the process of assessing the overall effect of a change
on the full SQL workload by identifying performance divergence for each SQL statement. A
report that shows the net impact on the workload performance due to the change is provided.
For regressed SQL statements, SQL Performance Analyzer also provides appropriate
execution plan details along with tuning recommendations. As a result, you can remedy any
negative outcome before the end users are affected. Furthermore, you can validate—with
significant time and cost savings—that the system change to the production environment will
result in net improvement.

You can use the SQL Performance Analyzer to analyze the impact on SQL performance of any
type of system changes, including:

« Database upgrade

ORACLE 1

Chapter 1
Database Replay

« Database consolidation testing for pluggable databases (PDBs) and manual schema
consolidation

« Configuration changes to the operating system or hardware
e Schema changes

e Changes to database initialization parameters

* Refreshing optimizer statistics

e Validating SQL tuning actions

¢ See Also:

e Introduction to SQL Performance Analyzer for information about using SQL
Performance Analyzer

Database Replay

ORACLE

Before system changes are made, such as hardware and software upgrades, extensive testing
is usually performed in a test environment to validate the changes. However, despite the
testing, the new system often experiences unexpected behavior when it enters production
because the testing was not performed using a realistic workload. The inability to simulate a
realistic workload during testing is one of the biggest challenges when validating system
changes.

Database Replay enables realistic testing of system changes by essentially re-creating the
production workload environment on a test system. Using Database Replay, you can capture a
workload on the production system and replay it on a test system with the exact timing,
concurrency, and transaction characteristics of the original workload. This enables you to fully
assess the impact of the change, including undesired results, new contention points, or plan
regressions. Extensive analysis and reporting is provided to help identify any potential
problems, such as new errors encountered and performance divergence.

Database Replay captures the workload of external database clients at the database level and
has negligible performance overhead. Capturing the production workload eliminates the need
to develop simulation workloads or scripts, resulting in significant cost reduction and time
savings. By using Database Replay, realistic testing of complex applications that previously
took months using load simulation tools can now be completed in days. This enables you to
rapidly test changes and adopt new technologies with a higher degree of confidence and at
lower risk.

You can use Database Replay to test any significant system changes, including:

« Database and operating system upgrades
» Database consolidation testing for PDBs and manual schema consolidation
* Authoring and experimenting with various scenarios using workload scale-up

» Configuration changes, such as conversion of a database from a single instance to an
Oracle Real Application Clusters (Oracle RAC) environment

e Storage, network, and interconnect changes

e Operating system and hardware migrations

1-2

Chapter 1
Database Replay

See Also:

e Introduction to Database Replay for information about using Database Replay

ORACLE 1-3

SQL Performance Analyzer

SQL Performance Analyzer enables you to assess the impact of system changes on the
response time of SQL statements.

Part | covers SQL Performance Analyzer and contains the following chapters:
e Introduction to SQL Performance Analyzer

e Creating an Analysis Task

e Creating a Pre-Change SQL Trial

e Creating a Post-Change SQL Trial

e Comparing SQL Trials

e Using SPA Quick Check

e Testing a Database Upgrade

ORACLE

Introduction to SQL Performance Analyzer

ORACLE

You can run SQL Performance Analyzer on a production system or a test system that closely
resembles the production system. Testing a system change on a production system will impact
the system's throughput because SQL Performance Analyzer must execute the SQL
statements that you are testing. Any global changes made on the system to test the
performance effect may also affect other users of the system. If the system change does not
impact many sessions or SQL statements, then running SQL Performance Analyzer on the
production system may be acceptable. However, for systemwide changes—such as a
database upgrade—using a production system is not recommended. Instead, consider running
SQL Performance Analyzer on a separate test system so that you can test the effects of the
system change without affecting the production system. Using a test system also ensures that
other workloads running on the production system will not affect the analysis performed by
SQL Performance Analyzer. Running SQL Performance Analyzer on a test system is the
recommended approach and the methodology described here. If you choose to run the SQL
Performance Analyzer on the production system, then substitute the production system for the
test system where applicable.

Analyzing the SQL performance effect of system changes using SQL Performance Analyzer
involves the following steps, as illustrated in Figure 2-1:

2-1

ORACLE

Chapter 2

Figure 2-1 SQL Performance Analyzer Workflow

Test

Production

Capture >
SQL

o o

1

1

1

1

1

1

1

1

1

| Execute Make Execute Compare Fix
' SQL Change SQL Perf Regressed
' | SQL
1

1

Oracle

Database

=) @ @

Storage

Oracle
Database

BERBE.

Capture the SQL workload that you intend to analyze and store it in a SQL tuning set, as
described in "Capturing the SQL Workload".

Storage

If you plan to use a test system separate from your production system, then perform the
following steps:

a. Set up the test system to match the production environment as closely as possible.
b. Transport the SQL tuning set to the test system.

On the test system, create a SQL Performance Analyzer task, as described in "Creating a
SQL Performance Analyzer Task".

Build the pre-change SQL trial by test executing or generating execution plans for the SQL
statements stored in the SQL tuning set, as described in "Measuring the Pre-Change SQL
Performance"

Perform the system change, as described in "Making a System Change"

Build the post-change SQL trial by re-executing the SQL statements in the SQL tuning set
on the post-change test system, as described in "Measuring the Post-Change SQL
Performance"

2-2

Chapter 2
Capturing the SQL Workload

7. Compare and analyze the pre-change and post-change versions of performance data, and
generate a report to identify the SQL statements that have improved, remained
unchanged, or regressed after the system change, as described in "Comparing
Performance Measurements"

8. Tune any regressed SQL statements that are identified, as described in "Fixing Regressed
SQL Statements".

9. Ensure that the performance of the tuned SQL statements is acceptable by repeating steps
6 through 8 until your performance goals are met.

For each comparison, you can use any previous SQL trial as the pre-change SQL trial and
the current SQL trial as the post-change SQL trial. For example, you may want to compare
the first SQL trial to the current SQL trial to assess the total change, or you can compare
the most recent SQL trial to the current SQL trial to assess just the most recent change.

Note:

Oracle Enterprise Manager provides automated workflows for steps 3 through 9 to
simplify this process.

Note:

Data visibility and privilege requirements may differ when using SQL Performance
Analyzer with pluggable databases (PDBS).

¢ See Also:

e "Setting Up the Test System"

* For information about how manageability features—including SQL Performance
Analyzer—work in a multitenant container database (CDB), see Oracle Database
Administrator’s Guide

Capturing the SQL Workload

ORACLE

Before running SQL Performance Analyzer, capture a set of SQL statements on the production
system that represents the SQL workload which you intend to analyze.

The captured SQL statements should include the following information:

e SQL text
* Execution environment

— SQL binds, which are bind values needed to execute a SQL statement and generate
accurate execution statistics

— Parsing schema under which a SQL statement can be compiled

— Compilation environment, including initialization parameters under which a SQL
statement is executed

2-3

Chapter 2
Setting Up the Test System

¢ Number of times a SQL statement was executed

Capturing a SQL workload has a negligible performance impact on your production system and
should not affect throughput. A SQL workload that contains more SQL statements will better
represent the state of the application or database. This will enable SQL Performance Analyzer
to more accurately forecast the potential impact of system changes on the SQL workload.
Therefore, you should capture as many SQL statements as possible. Ideally, you should
capture all SQL statements that are either called by the application or are running on the
database.

You can store captured SQL statements in a SQL tuning set and use it as an input source for
SQL Performance Analyzer. A SQL tuning set is a database object that includes one or more
SQL statements, along with their execution statistics and execution context. SQL statements
can be loaded into a SQL tuning set from different sources, including the cursor cache,
Automatic Workload Repository (AWR), SQL trace files, and existing SQL tuning sets.
Capturing a SQL workload using a SQL tuning set enables you to:

e Store the SQL text and any necessary auxiliary information in a single, persistent database
object

* Populate, update, delete, and select captured SQL statements in the SQL tuning set

* Load and merge content from various data sources, such as the Automatic Workload
Repository (AWR) or the cursor cache

e Export the SQL tuning set from the system where the SQL workload is captured and import
it into another system

* Reuse the SQL workload as an input source for other advisors, such as the SQL Tuning
Advisor and the SQL Access Advisor

See Also:

* Oracle Database 2 Day + Performance Tuning Guide for information about
creating SQL tuning sets using Oracle Enterprise Manager

* Oracle Database SQL Tuning Guide for information about creating SQL tuning
sets using APIs

Setting Up the Test System

ORACLE

After you have captured the SQL workload into a SQL tuning set on the production system,
you can conduct SQL Performance Analyzer analysis on the same database where the
workload was captured or on a different database. Because the analysis is resource-intensive,
it is recommended that you capture the workload on a production database and transport it to a
separate test database where the analysis can be performed. To do so, export the SQL tuning
set from the production system and import it into a separate system where the system change
will be tested.

There are many ways to create a test database. For example, you can use the DUPLICATE
command of Recovery Manager (RMAN), Oracle Data Pump, or transportable tablespaces.
Oracle recommends using RMAN because it can create the test database from pre-existing
backups or from the active production datafiles. The production and test databases can reside
on the same host or on different hosts.

2-4

Chapter 2
Creating a SQL Performance Analyzer Task

You should configure the test database environment to match the database environment of the
production system as closely as possible. In this way, SQL Performance Analyzer can more
accurately forecast the effect of the system change on SQL performance.

After the test system is properly configured, export the SQL tuning set from the production
system to a staging table, then import it from the staging table into the test system.

¢ See Also:

* Oracle Database Backup and Recovery User’s Guide for information about
duplicating databases using RMAN

* Oracle Database 2 Day + Performance Tuning Guide for information about
transporting SQL tuning sets using Oracle Enterprise Manager

* Oracle Database SQL Tuning Guide for information about transporting SQL
tuning sets using APIs

Creating a SQL Performance Analyzer Task

After the SQL workload is captured and transported to the test system, and the initial database
environment is properly configured, you can run SQL Performance Analyzer to analyze the
effects of a system change on SQL performance.

To run SQL Performance Analyzer, you must first create a SQL Performance Analyzer task. A
task is a container that encapsulates all of the data about a complete SQL Performance
Analyzer analysis. A SQL Performance Analyzer analysis comprises of at least two SQL trials
and a comparison. A SQL trial encapsulates the execution performance of a SQL tuning set
under specific environmental conditions. When creating a SQL Performance Analyzer task,
you will need to select a SQL tuning set as its input source. When building SQL trials using the
test execute or explain plan methods, the SQL tuning set will be used as the source for SQL
statements. The SQL Performance Analyzer analysis will show the impact of the environmental
differences between the two trials.

See Also:

e Creating an Analysis Task for information about how to create a SQL
Performance Analyzer task

Measuring the Pre-Change SQL Performance

ORACLE

Create a pre-change SQL trial before making the system change. You can use the following
methods to generate the performance data needed for a SQL trial with SQL Performance
Analyzer:

 Test execute

This method test executes SQL statements through SQL Performance Analyzer. This can
be done on the database running SPA Performance Analyzer or on a remote database.

* Explain plan

2-5

ORACLE

Chapter 2
Measuring the Pre-Change SQL Performance

This method generates execution plans only for SQL statements through SQL
Performance Analyzer. This can be done on the database running SPA Performance
Analyzer or on a remote database. Unlike the EXPLAIN PLAN statement, SQL trials using
the explain plan method take bind values into account and generate the actual execution
plan.

e Convert SQL tuning set

This method converts the execution statistics and plans stored in a SQL tuning set. This is
only supported for APIs.

The test execute method runs each of the SQL statements contained in the workload to
completion. During execution, SQL Performance Analyzer generates execution plans and
computes execution statistics for each SQL statement in the workload. Each SQL statement in
the SQL tuning set is executed separately from other SQL statements, without preserving their
initial order of execution or concurrency. This is done at least twice for each SQL statement, for
as many times as possible until the execution times out (up to a maximum of 10 times). The
first execution is used to warm the buffer cache. All subsequent executions are then used to
calculate the run-time execution statistics for the SQL statement based on their averages. The
actual number of times that the SQL statement is executed depends on how long it takes to
execute the SQL statement. Long-running SQL statement will only be executed a second time,
and the execution statistics from this execution will be used. Other (faster-running) SQL
statements are executed multiple times, and their execution statistics are averaged over these
executions (statistics from the first execution are not used in the calculation). By averaging
statistics over multiple executions, SQL Performance Analyzer can calculate more accurate
execution statistics for each SQL statement. To avoid a potential impact to the database, DDLs
are not supported. By default, only the query portion of DMLs is executed. Using APIs, you can
execute the full DML by using the EXECUTE_FULLDML task parameter. Parallel DMLs are not
supported and the query portion is not executed unless the parallel hints are removed.

Depending on its size, executing a SQL workload can be time and resource intensive. With the
explain plan method, you can choose to generate execution plans only, without collecting
execution statistics. This technique shortens the time to run the trial and lessens the effect on
system resources, but a comprehensive performance analysis is not possible because only the
execution plans will be available during the analysis. However, unlike generating a plan with
the EXPLAIN PLAN command, SQL Performance Analyzer provides bind values to the optimizer
when generating execution plans, which provides a more reliable prediction of what the plan
will be when the SQL statement is executed.

In both cases, you can execute the SQL workload remotely on a separate database using a
database link. SQL Performance Analyzer will establish a connection to the remote database
using the database link, execute the SQL statements on that database, collect the execution
plans and run-time statistics for each SQL statement, and store the results in a SQL trial on the
local database that can be used for later analysis. This method is useful in cases where you
want to:

e Test a database upgrade

e Execute the SQL workload on a system running another version of Oracle Database

» Store the results from the SQL Performance Analyzer analysis on a separate test system
e Perform testing on multiple systems with different hardware configurations

e Use the newest features in SQL Performance Analyzer even if you are using an older
version of Oracle Database on your production system

Once the SQL workload is executed, the resulting execution plans and run-time statistics are
stored in a SQL trial.

2-6

Chapter 2
Making a System Change

You can also build a SQL trial using the execution statistics and plan stored in a SQL tuning
set. While this method is only supported for APIs, it may be useful in cases where you have
another method to run your workload (such as Database Replay or another application testing
tool), and you do not need SQL Performance Analyzer to drive the workload on the test
system. In such cases, if you capture a SQL tuning set during your test runs, you can build
SQL trials from these SQL tuning sets using SQL Performance Analyzer to view a more
comprehensive analysis report. Unlike a standard SQL Performance Analyzer report—which
has only one execution plan in each trial and one set of execution statistics generated by
executing the SQL statement with one set of binds—you can generate a report that compares
SQL trials built from SQL tuning sets that show all execution plans from both trials with
potentially many different sets of binds across multiple executions.

¢ See Also:

e Creating a Pre-Change SQL Trial for information about how to measure the pre-
change performance

e Testing a Database Upgrade for information about executing a SQL workload on
a remote system to test a database upgrade

Making a System Change

Make the change whose effect on SQL performance you intend to measure. SQL Performance
Analyzer can analyze the effect of many types of system changes. For example, you can test a
database upgrade, new index creation, initialization parameter changes, or optimizer statistics
refresh. If you are running SQL Performance Analyzer on the production system, then consider
making a change using a private session to avoid affecting the rest of the system.

Measuring the Post-Change SQL Performance

After performing the system change, create a post-change SQL trial. It is highly recommended
that you create the post-change SQL trial using the same method as the pre-change SQL trial.
Once built, the post-change SQL trial represents a new set of performance data that can be
used to compare to the pre-change version. The results are stored in a new, or post-change,
SQL trial.

¢ See Also:

e Creating a Post-Change SQL Trial for information about how to measure the
post-change performance

Comparing Performance Measurements

ORACLE

SQL Performance Analyzer compares the performance of SQL statements before and after the
change and produces a report identifying any changes in execution plans or performance of
the SQL statements.

SQL Performance Analyzer measures the impact of system changes both on the overall
execution time of the SQL workload and on the response time of every individual SQL

2-7

Chapter 2
Fixing Regressed SQL Statements

statement in the workload. By default, SQL Performance Analyzer uses elapsed time as a
metric for comparison. Alternatively, you can choose the metric for comparison from a variety
of available SQL run-time statistics, including:

« CPUtime

e User /O time

- Buffer gets

e Physical /0

e Optimizer cost

e |/O interconnect bytes

e Any combination of these metrics in the form of an expression

If you chose to generate explain plans only in the SQL trials, then SQL Performance Analyzer
will use the optimizer cost stored in the SQL execution plans.

Once the comparison is complete, the resulting data is generated into a SQL Performance
Analyzer report that compares the pre-change and post-change SQL performance. The SQL
Performance Analyzer report can be viewed as an HTML, text, or active report. Active reports
provides in-depth reporting using an interactive user interface that enables you to perform
detailed analysis even when disconnected from the database or Oracle Enterprise Manager.

See Also:

» Comparing SQL Trials for information about comparing performance
measurements and reporting

Fixing Regressed SQL Statements

If the performance analysis performed by SQL Performance Analyzer reveals regressed SQL
statements, then you can make changes to remedy the problem. For example, you can fix
regressed SQL by running SQL Tuning Advisor or using SQL plan baselines. You can then
repeat the process of executing the SQL statements and comparing its performance to the first
execution. Repeat these steps until you are satisfied with the outcome of the analysis.

See Also:

e Comparing SQL Trials for information about fixing regressed SQL statements

ORACLE)8

Creating an Analysis Task

Once you have captured a SQL workload that you want to analyze into a SQL tuning set
(STS), you can run SQL Performance Analyzer to analyze the effects of a system change on
SQL performance. To run SQL Performance Analyzer, you must first create a SQL
Performance Analyzer task. A task is a container that encapsulates all of the data about a
complete SQL Performance Analyzer analysis. A SQL Performance Analyzer analysis
comprises of at least two SQL trials and a comparison. A SQL trial captures the execution
performance of a SQL tuning set under specific environmental conditions and can be
generated automatically using SQL Performance Analyzer by one of the following methods:

e Test executing SQL statements
e Generating execution plans for SQL statements
» Referring to execution statistics and plans captured in a SQL tuning set

When creating a SQL Performance Analyzer task, you will need to select a SQL tuning set as
its input source. The SQL tuning set will be used as the source for test executing or generating
execution plans for SQL trials. Thus, performance differences between trials are caused by
environmental differences.

This chapter describes how to create a SQL Performance Analyzer task and contains the
following topics:

« Creating an Analysis Task Using Enterprise Manager
» Creating an Analysis Task Using APIs
e Configuring an Analysis Task Using APIs

Note:

The primary interface for running SQL Performance Analyzer is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you can run
SQL Performance Analyzer using the DBMS SQLPA PL/SQL package.

See Also:

"Creating a SQL Performance Analyzer Task"

Creating an Analysis Task Using Enterprise Manager

ORACLE

There are several workflows available in Oracle Enterprise Manager for creating a SQL
Performance Analyzer task.

Before running SQL Performance Analyzer, capture the SQL workload to be used in the
performance analysis into a SQL tuning set on the production system, then transport it to the

3-1

ORACLE

Chapter 3
Creating an Analysis Task Using Enterprise Manager

test system where the performance analysis will be performed, as described in "Capturing the

SQL Workload".

To create an analysis task using Enterprise Manager:

1. From the Performance menu, select SQL, then SQL Performance Analyzer.

If the Database Login page appears, then log in as a user with administrator privileges.

The SQL Performance Analyzer Home page appears.

SQL Performance Analyzer
Page Refreshed May 1, 2012 5:29:47 PM PDT Refresh | ViewData | Real Time: 15 Second Refresh +

5QL Performance Analyzer allows you to testand to analyze the effects of changes on the execution performance of SQL contained in a SQL Tuning
Set,

SQL Performance Analyzer Workflows

Create and execute SQL Performance Analyzer Task experiments of different types using the following links.

Upgrade from Sior 10.1 Test and analyze the effects of database upgrade from i or 10.1 on SQL Tuning Set performance,

Upgrade from 10.2 or 11g Testand analyze the effects of database upgrade from 10.2 or 11g on SQL Tuning Set performance.

Parameter Change Test and compare an initislization parameter change on QL Tuning Set perfarmance.

Optimizer Statistics Test and analyze the effects of optimizer statistics changes on SQL Tuning Set performance.

Exadata Simulation Simulate the effects of & Exadata Storage Server installation on SQL Tuning Set performance.

Guided Warkflow Create 3 SQL Performance Analyzer Task and execute custom experiments using manually created SQL trials.

SQL Performance Analyzer Tasks

Last Current Step Last Run SQLs Steps

Select | Mame Owner

Modified Mame Type | Status Processed Completed

(& TIP For an explanation of the icons and symbals used in the following table, see the Icon Key

Mo SQL Performance Analyzer Tasks
available,

Under SQL Performance Analyzer Workflows, select the workflow for creating the desired

type of analysis task:

Upgrade from 9j or 10.1

Use the upgrade from 9i or 10.1 workflow to test a database upgrade from Oracle9i
Database or Oracle Database 10g Release 1 to Oracle Database 10g Release 2 and
newer releases, as described in "Upgrading from Oracle9i Database and Oracle
Database 10g Release 1".

Upgrade from 10.2 or 11g

Use the upgrade from 10.2 or 11g workflow to test a database upgrade from Oracle
Database 10g Release 2 or Oracle Database 11g to a later release, as described in
"Upgrading from Oracle Database 10g Release 2 and Newer Releases".

Parameter Change

Use the parameter change workflow to determine how a database initialization
parameter change will affect SQL performance, as described in "Using the Parameter
Change Workflow".

Optimizer Statistics

Use the optimizer statistics workflow to analyze how changes to optimizer statistics will
affect SQL performance, as described in "Using the Optimizer Statistics Workflow".

Exadata Simulation

Use the Exadata simulation workflow to simulate how using Oracle Exadata will affect
SQL performance, as described in "Using the Exadata Simulation Workflow".

Guided workflow

Use the guided workflow to compare SQL performance for all other types of system
changes, as described in "Using the Guided Workflow".

3-2

Using the Parameter Change Workflow

The parameter change workflow enables you to test the performance effect on a SQL workload
when you change the value of a single environment initialization parameter. For example, you
can compare SQL performance by setting the OPTIMIZER FEATURES ENABLE initialization
parameter to 10.2.0.4 and 12.1.0.1.
After you select a SQL tuning set and a comparison metric, SQL Performance Analyzer
creates a task and performs a trial with the initialization parameter set to the original value.
SQL Performance Analyzer then performs a second trial with the parameter set to the changed
value by issuing an ALTER SESSION statement. The impact of the change is thus contained
locally to the testing session. Any regression or change in performance is reported in a system-
generated SQL Performance Analyzer report.

ORACLE

Note:

Chapter 3
Creating an Analysis Task Using Enterprise Manager

To create an analysis task for other types of system changes, use the guided
workflow instead, as described in "Using the Guided Workflow".

To use the SQL Performance Analyzer parameter change workflow:

1.

On the SQL Performance Analyzer Home page, under SQL Performance Analyzer

Workflows, click Parameter Change.

The Parameter Change page appears.

Parameter Change

Task Information

* Task Name |

* 50QL Tuning Set | Q

Description |
Creation Method | Execute SQLs

Per-SQL Time Limit | 5 minutes |»

(& TIP Time limit is on elapsed time of test execution of SQL.

Parameter Change

* Parameter Name | Q,

* Base Value |

* Changed Value |

Trial Comparison
Comparison Metric| Elapsed Time A
Schedule

Time Zone | America/Los_Angeles v

® Immediately

O Later

July 1, 2012)

[=cample: May 1, 2012)

Time |2 %51 %|50 % O AME PM

Date

3-3

ORACLE

Chapter 3
Creating an Analysis Task Using Enterprise Manager

In the Task Name field, enter the name of the task.

In the SQL Tuning Set field, enter the name of the SQL tuning set that contains the SQL
workload to be analyzed.

Alternatively, click the search icon to search for a SQL tuning set using the Search and
Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.
In the Description field, optionally enter a description of the task.

In the Creation Method list, determine how the SQL trial is created and what contents are
generated by performing one of the following actions:

e Select Execute SQLs.

The SQL trial generates both execution plans and statistics for each SQL statement in
the SQL tuning set by actually running the SQL statements.

* Select Generate Plans.

The SQL trial invokes the optimizer to create execution plans only without actually
running the SQL statements.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during the trial by
performing one of the following actions:

* Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5 minutes and
gather performance data.

* Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to completion and
gather performance data. Collecting execution statistics provides greater accuracy in
the performance analysis but takes a longer time. Using this setting is not
recommended because the task may be stalled by one SQL statement for a prolonged
time period.

« Select Customize and enter the specified number of seconds, minutes, or hours.
In the Parameter Change section, complete the following steps:

a. Inthe Parameter Name field, enter the name of the initialization parameter whose
value you want to modify, or click the Search icon to select an initialization parameter
using the Search and Select: Initialization Parameters window.

b. Inthe Base Value field, enter the current value of the initialization parameter.
c. Inthe Changed Value field, enter the new value of the initialization parameter.
In the Comparison Metric list, select the comparison metric to use for the analysis:
» If you selected Generate Plans in Step 5, then select Optimizer Cost.
* If you selected Execute SQLs in Step 5, then select one of the following options:
— Elapsed Time
— CPU Time
— User /O Time
— Buffer Gets
— Physical IO

— Optimizer Cost

3-4

Chapter 3
Creating an Analysis Task Using Enterprise Manager

— 1lO Interconnect Bytes

To perform the comparison analysis by using more than one comparison metric, perform
separate comparison analyses by repeating this procedure using different metrics.

9. Inthe Schedule section:
a. Inthe Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start at a
time specified using the Date and Time fields.

10. Click Submit.
The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is displayed. To
refresh the status icon, click Refresh. After the task completes, the Status field changes to
Completed.

SQL Performance Analyzer Tasks

Delete | View Latest Report |
v Current Step Last Run SQLs Steps
Select | Mame Owner | Last Modified Name Type Status Processed Completed
& 5PA_PARAM_CHANGE 5Y5 L‘f; L 01254230 pyee g7 Compare Completed So6ofs0s 4of4

(¢ TIP For an explanation of the icons and symbals used in the following table, see the Icon Key

11. In the SQL Performance Analyzer Tasks section, select the task and click the link in the
Name column.

The SQL Performance Analyzer Task page appears.

SQL Performance Analyzer Task: SYS.SPA_PARAM_CHANGE
View Latest Report Page Refreshed May 1, 2012 5:14:01 PM PDT Refresh

The SQL Performance Analyzer Task is a container for experimental results of executing a spedfic SQL Tuning Set under changed environmental
conditions and assessing the impact of environmental changes on 5TS execution performance.

= SQL Tuning Set

v SQL Trials

A SQL Trial captures the execution performance of the SQL Tuning Set under specific environmental conditions.

Create SQL Trial

SQL Trial Name Description Created | SQL Executed | Status
INITIAL_SQL_TRIAL parameter db_file_multiblock_read_count set to 128 5/1/12 5:41PM Yes COMPLETED
SECOMND_SQL_TRIAL parameter db_file_multiblock_read_count set to 64 5112 5:42 PM Yes COMPLETED

w7 SQL Trial Comparisons

Compare SQL Trials to assess change impact of environmental differences on SQL Tuning Set execution costs.
Run SQL Trial Comparison

Trial 1 Name Trial 2 Name Compare Metric Created Status Comparison Report S0L Tune Report

INITIAL_SQL_TRIAL SECOMD_SQL_TRIAL Elapsed Time 5/1/12 5:42PM COMPLETED @6

This page contains the following sections:
e SQL Tuning Set

This section summarizes information about the SQL tuning set, including its name,
owner, description, and the number of SQL statements it contains.

ORACLE .

Chapter 3
Creating an Analysis Task Using Enterprise Manager

e SQL Trials

This section includes a table that lists the SQL trials used in the SQL Performance
Analyzer task.

* SQL Trial Comparisons
This section contains a table that lists the results of the SQL trial comparisons
12. Click the icon in the Comparison Report column.
The SQL Performance Analyzer Task Result page appears.

13. Review the results of the performance analysis, as described in "Reviewing the SQL
Performance Analyzer Report Using Oracle Enterprise Manager".

14. In cases when regression are identified, click the icon in the SQL Tune Report column to
view a SQL tuning report.

Using the Optimizer Statistics Workflow

ORACLE

The optimizer statistics workflow enables you to analyze the effects of optimizer statistics
changes on the performance of a SQL workload.

The

SQL Performance Analyzer tests the effect of new optimizer statistics by enabling pending
optimizer statistics in the testing session. The first SQL trial measures the baseline SQL tuning
set performance; the second SQL trial uses the pending optimizer statistics. You can then run
a comparison report for the two SQL trials.

To use the optimizer statistics workflow:

1. Onthe SQL Performance Analyzer Home page, under SQL Performance Analyzer
Workflows, click Optimizer Statistics.

The Optimizer Statistics page appears.

Optimizer Statistics

Task Information

* Task Name |

* 5QL Tuning Set | Q

Description |
Creation Method | Execute SQLs |+

Per-5QL Time Limit | 5 minutes |
(¥ TIP Time limit is on elapsed time of test execution of SQL.

Trial Comparison
Comparison Metric| Elapsed Time v
Schedule

Time Zone | America/Los_Angeles |+

(& Immediately

(O Later

Dste May 2, 2012 [y

{escample: May 2, 2017}

Time |12 v |32 ¥ |00 % | (D) AM (& PM

3-6

ORACLE

Chapter 3
Creating an Analysis Task Using Enterprise Manager

In the Task Name field, enter the name of the task.

In the SQL Tuning Set field, enter the name of the SQL tuning set that contains the SQL
workload to be analyzed.

Alternatively, click the search icon to search for a SQL tuning set using the Search and
Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.
In the Description field, optionally enter a description of the task.

In the Creation Method list, determine how the SQL trial is created and what contents are
generated by performing one of the following actions:

e Select Execute SQLs.

The SQL trial generates both execution plans and statistics for each SQL statement in
the SQL tuning set by actually running the SQL statements.

* Select Generate Plans.

The SQL trial invokes the optimizer to create execution plans only without actually
running the SQL statements.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during the trial by
performing one of the following actions:

* Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5 minutes and
gather performance data.

* Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to completion and
gather performance data. Collecting execution statistics provides greater accuracy in
the performance analysis but takes a longer time. Using this setting is not
recommended because the task may be stalled by one SQL statement for a prolonged
time period.

« Select Customize and enter the specified number of seconds, minutes, or hours.

In the Comparison Metric list, select the comparison metric to use for the comparison
analysis:

« Elapsed Time

« CPUTime

e UserllO Time

* Buffer Gets

e Physical 1/O

* Optimizer Cost

« 1/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you chose to generate execution
plans only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric, perform
separate comparison analyses by repeating this procedure with different metrics.

Ensure that pending optimizer statistics are collected, and select Pending optimizer
statistics collected.

In the Schedule section:

3-7

Chapter 3
Creating an Analysis Task Using Enterprise Manager

a. Inthe Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start at a
time specified using the Date and Time fields.

10. Click Submit.
The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is displayed. To
refresh the status icon, click Refresh. After the task completes, the Status field changes to
Completed.

SQL Performance Analyzer Tasks

Delete | View Latest Report |
v Current Step Last Run S0Ls Steps
Select | Name Owner | Last Modified MName Type Status Processed Completed
(&) SPA_OPTIMIZER STATS 5Y3 Llra]r & 2012 1463 gype aqp Compare Completed S5 of 506 4of4

11. In the SQL Performance Analyzer Tasks section, select the task and click the link in the
Name column.

The SQL Performance Analyzer Task page appears.

SQL Performance Analyzer Task: SYS.SPA_OPTIMIZER_STATS
View Latest Report Page Refreshed May 2, 2012 12:53:51 PM PDT Refresh

The SQL Performance Analyzer Task is a container for experimental results of executing a specific SQL Tuning Set under changed environmental
conditions and assessing the impact of environmental changes on 5TS execution performance.

= SQL Tuning Set

7 SOQL Trials

A SQL Trial captures the execution performance of the SQL Tuning Set under specific environmental conditions.

Create SQL Trial

SQL Trial Mame Description Created | SQL Executed | Status
IMITIAL_SQL_TRIAL parameter optimizer_use_pending_statistics set to FALSE 5/2/12 1:45PM ‘fes COMPLETED
SECOMD_SQL_TRIAL parameter optimizer_use_pending_statistics set to TRUE 5/2/12 1:45PM ‘fes COMPLETED

+ SQL Trial Comparisons

Compare SQL Trials to assess change impact of environmental differences on SOL Tuning Set execution costs,
Run SQL Trial Comparison

Trial 1 Name Trial 2 Name Compare Metric Created | Status | Comparison Repart SQL Tune Repart

INITIAL_SQL_TRIAL SECOND_SQL_TRIAL Elapsed Time 5/2/12 1:46FM COMPLETED ©&

This page contains the following sections:
* SQL Tuning Set

This section summarizes information about the SQL tuning set, including its name,
owner, description, and the number of SQL statements it contains.

e SQL Trials

This section includes a table that lists the SQL trials used in the SQL Performance
Analyzer task.

* SQL Trial Comparisons
This section contains a table that lists the results of the SQL trial comparisons

12. Click the icon in the Comparison Report column.

ORACLE -

Chapter 3
Creating an Analysis Task Using Enterprise Manager

The SQL Performance Analyzer Task Result page appears.

13. Review the results of the performance analysis, as described in "Reviewing the SQL
Performance Analyzer Report Using Oracle Enterprise Manager".

Any regressions found in performance can be fixed using SQL plan baselines and the SQL
Tuning Advisor. If the pending optimizer statistics produce satisfactory performance, you
can publish for use.

Using the Exadata Simulation Workflow

The Exadata simulation workflow enables you to simulate the effects of an Exadata Storage
Server installation on the performance of a SQL workload.

Oracle Exadata provides extremely large 1/0O bandwidth coupled with a capability to offload
SQL processing from the database to storage. This allows Oracle Database to significantly
reduce the volume of data sent through the 1/O interconnect, while at the same time offloading
CPU resources to the Exadata storage cells.

SQL Performance Analyzer can analyze the effectiveness of Exadata SQL offload processing
by simulating an Exadata Storage Server installation and measuring the reduction in I/O
interconnect usage for the SQL workload.

Running the Exadata simulation does not require any hardware or configuration changes to
your system. After you select a SQL tuning set, SQL Performance Analyzer creates a task and
performs an initial trial with the Exadata Storage Server simulation disabled. SQL Performance
Analyzer then performs a second trial with the Exadata Storage Server simulation enabled.
SQL Performance Analyzer then compares the two trials using the I/O Interconnect Bytes
comparison metric and generates a SQL Performance Analyzer report, which estimates the
amount of data that would not need to be sent from the Exadata storage cells to the database
if Oracle Exadata is being used. In both SQL trials, the SQL statements are executed to
completion and I/O interconnect bytes measurements are taken as the actual and simulated
Exadata values for the first and second trials, respectively. The measured change in I/O
interconnect bytes provides a good estimate of how much filtering can be performed in the
Exadata storage cells and, in turn, the amount of CPU that normally would be used to process
this data, but now can be offloaded from the database.

Note:

Using the Exadata simulation will not result in any plan changes. Execution plans do
not change in an Exadata Storage Server installation because the simulation focuses
on measuring the improvement in 1/O interconnect usage. Moreover, I/O interconnect
bytes will not increase, except when data compression is used (see next note),
because Oracle Exadata will only decrease the amount of data sent to the database.

ORACLE 29

ORACLE

4

Chapter 3
Creating an Analysis Task Using Enterprise Manager

Note:

Because /O interconnect bytes is the only metric used to measure the performance
change impact of using an Exadata Storage Server installation, it will not work
properly if Oracle Exadata is used with data compression. Since Exadata storage
cells also decompress data, the I/O interconnect bytes with Oracle Exadata (or the
second SQL trial) of a SQL statement may be greater than the 1/O interconnect bytes
without Oracle Exadata (or the first SQL trial) where the data is compressed. This
comparison will be misleading because the SQL statement will be reported as a
regression; when in fact, it is not.

Note:

The Exadata simulation workflow is used to simulate an Exadata Storage Server
installation on non-Exadata hardware. To test changes on Exadata hardware, use the
standard SQL Performance Analyzer workflows.

Note:

The Exadata simulation is supported for DSS and data warehouse workloads only.

To use the SQL Performance Analyzer Exadata simulation workflow:

1. Onthe SQL Performance Analyzer Home page, under SQL Performance Analyzer
Workflows, click Exadata Simulation.

The Exadata Simulation page appears.

Exadata Simulation

Task Information

Trial Comparison
Comparison Metric Ifo Interconneck Eytes

Schedule

* Task Mame |

*50L Turing Set | Q,

Description |
Creation Method Execute S0Ls
Per-50L Tirme Limit |5 minutes

(& TIP Time limit is on elapsed time of test execution of SQL.

Time Zone | America/los_Angeles v

® Immediately
OLater

Dare [May 2, 2012)
[example: May 2, 2012)

Time |1 %38 % |00 ¥ |0 aM G FM

3-10

8.

ORACLE

Chapter 3
Creating an Analysis Task Using Enterprise Manager

In the Task Name field, enter the name of the task.

In the SQL Tuning Set field, enter the name of the SQL tuning set that contains the SQL
workload to be analyzed.

Alternatively, click the search icon to search for a SQL tuning set using the Search and
Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.
In the Description field, optionally enter a description of the task.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during the trial by
performing one of the following actions:

e Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5 minutes and
gather performance data.

* Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to completion and
gather performance data. Collecting execution statistics provides greater accuracy in
the performance analysis but takes a longer time. Using this setting is not
recommended because the task may be stalled by one SQL statement for a prolonged
time period.

» Select Customize and enter the specified number of seconds, minutes, or hours.
In the Schedule section:
a. Inthe Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start at a
time specified using the Date and Time fields.

Click Submit.
The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is displayed. To
refresh the status icon, click Refresh. After the task completes, the Status field changes to
Completed.

SQL Performance Analyzer Tasks

Delete | View Latest Report |

Last Run
Status

Current Step
Mame

sQLs
Processed

Steps
Completed

Last Modified T

May 2, 2012 2:45:21
PM

Select | Mame Owner Type

(® SPA_EXADATA_SIM S5YS EXEC_214 Compare Completed 506 of 506 4of 4

In the SQL Performance Analyzer Tasks section, select the task and click the link in the
Name column.

The SQL Performance Analyzer Task page appears.

3-11

Chapter 3
Creating an Analysis Task Using Enterprise Manager

SQL Performance Analyzer Task: SYS.SPA_EXADATA_SIM
View Latest Report Page Refreshed May 2, 2012 1:52:41 PM PDT Refresh

The SQL Performance Analyzer Task is a container for experimental results of executing a spedific SQL Tuning Set under changed environmental
conditions and assessing the impact of environmental changes on 5TS execution performance.

= SQL Tuning Set

7 SOQL Trials

A SQL Trial captures the execution performance of the SQL Tuning Set under specific environmental conditions.

SQL Trial Mame Description Created SQL Executed Status
IMITIAL_SQL_TRIAL Exadata Storage Server simulation disabled 5/2/12 2144 PM ‘fes COMPLETED
SECOMD_SQL_TRIAL Exadata Storage Server simulation enabled 5/2/12 2144 PM ‘fes COMPLETED

w7 SOL Trial Comparisons

Compare SQL Trials to assess change impact of environmental differences on SQL Tuning Set execution costs,

Trial 1 Mame Trial 2 Mame Compare Metric Created Status Comparison Report

INITIAL_SQL_TRIAL SECOND_SQL_TRIAL 1/O Interconnect Bytes 5/2/12 2:45FM COMPLETED ©&

This page contains the following sections:
e SQL Tuning Set

This section summarizes information about the SQL tuning set, including its name,
owner, description, and the number of SQL statements it contains.

e SQL Trials

This section includes a table that lists the SQL trials used in the SQL Performance
Analyzer task.

e SQL Trial Comparisons
This section contains a table that lists the results of the SQL trial comparisons
9. Click the icon in the Comparison Report column.
The SQL Performance Analyzer Task Result page appears.

10. Review the results of the performance analysis, as described in "Reviewing the SQL
Performance Analyzer Report Using Oracle Enterprise Manager".

Any SQL performance improvement with the Exadata simulation between the first and
second trials is captured in the report. In general, you can expect a greater impact if the
SQL workload contains queries that scan a large number of rows or a small subset of table
columns. Conversely, a SQL workload that queries indexed tables or tables with fewer
rows will result in a lesser impact from the Exadata simulation.

Using the Guided Workflow

The guided workflow enables you to test the performance effect of any types of system
changes on a SQL workload. See "SQL Performance Analyzer" for a list of system changes
that can impact SQL performance.

Note:

To create an analysis task to test database initialization parameter changes, use the
simplified parameter change workflow instead, as described in "Using the Parameter
Change Workflow".

ORACLE 310

ORACLE

Chapter 3
Creating an Analysis Task Using Enterprise Manager

To use the SQL Performance Analyzer task guided workflow:

1.

2.

On the SQL Performance Analyzer Home page, under SQL Performance Analyzer
Workflows, click Guided Workflow.

The Guided Workflow page appears.

The guided workflow enables you to test the performance effect on a SQL workload when
you perform any type of system changes, as described in "SQL Performance Analyzer".

This page lists the required steps in the SQL Performance Analyzer task in sequential
order. Each step must be completed in the order displayed before the next step can begin.

Guided Workflow

Page Refreshed May 2, 2012 2:52:20 PMPDT _ Refiesh | yiey pats |Real Time: Manual Refresh v
The following guided workfiow contains the sequence of steps necessary to execute a successful two-trial SQL Performance Analyzer test,
Mote: Be sure that the Trial environment matches the tests you want to conduct.

Step Description | Executed | Status | Execute
1 Create SQL Performance Analyzer Task based on SQL Tuning Set = "’@

2 Create SQL Trial in Initial Environment =]

3 Create SQL Trial in Changed Environment =]

4 Compare Step 2 and Step 3 =]

5 View Trial Comparison Report =]

(& TIP For an explanation of the icons and symbals used in the following table, see the Icon Key

On the Guided Workflow page, click the Execute icon for the Step 1: Create SQL
Performance Analyzer Task based on SQL Tuning Set.

The Create SQL Performance Analyzer Task page appears.

Create SQL Performance Analyzer Task
The 5L Performance Analyzer Task is & container for the execution of trial experiments designed to test the effects of changes in execution
environment on the SQL performance of an 5TS.

* Name |

Owner SYS

Description |
(¢f TIP Use the description to characterize the intended SQL Performance Analyzer investigations.

SQL Tuning Set

The SQL Tuning Set is the basis for SQL Performance Analyzer Task experiments, The 5TS should represent a coherent set of SQL for the changes
being investigated (e.g. full workload for an upgrade test).
* Name | Q‘

(& TIP You can create a new STS here: Link to STS Creation Wizard

Cancel Create

In the Name field, enter the name of the task.
In the Description field, optionally enter a description of the task.

Under SQL Tuning Set, in the Name field, enter the name the SQL tuning set that contains
the SQL workload to be analyzed.

Alternatively, click the search icon to select a SQL tuning set from the Search and Select:
SQL Tuning Set window.

Click Create.
The Guided Workflow page appears.

3-13

Chapter 3
Creating an Analysis Task Using APIs

The Status icon of this step has changed to a check mark and the Execute icon for the
next step is now enabled.

7. Once the analysis task is created, you can build the pre-change performance data by
executing the SQL statements stored in the SQL tuning set, as described in Creating a
Pre-Change SQL Trial .

Creating an Analysis Task Using APIs

This section describes how to create a SQL Performance Analyzer task by using the
DBMS_SQLPA.CREATE ANALYSIS TASK function. A task is a database container for SQL
Performance Analyzer execution inputs and results.

Before proceeding, capture the SQL workload to be used in the performance analysis into a
SQL tuning set on the production system, then transport it to the test system where the
performance analysis will be performed, as described in "Capturing the SQL Workload".

To create an analysis task:

e Call the CREATE ANALYSIS TASK function using the following parameters:
— Set task name to specify an optional name for the SQL Performance Analyzer task.
— Set sqlset name to the name of the SQL tuning set.

— Setsqlset owner to the owner of the SQL tuning set. The default is the current
schema owner.

— Setbasic filter to the SQL predicate used to filter the SQL from the SQL tuning set.
— Setorder by to specify the order in which the SQL statements will be executed.

You can use this parameter to ensure that the more important SQL statements will be
processed and not skipped if the time limit is reached.

— Set top sql to consider only the top number of SQL statements after filtering and
ranking.

The following example illustrates a function call:

VARIABLE t name VARCHARZ2(100);
EXEC :t name := DBMS SQLPA.CREATE ANALYSIS TASK(sglset name => 'my sts', -
task name => 'my spa task');

Once the analysis task is created, you can build the pre-change performance data by
executing the SQL statements stored in the SQL tuning set, as described in Creating a Pre-
Change SQL Trial .

See Also:

e Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS SQLPA.CREATE ANALYSIS TASK function

ORACLE 314

Chapter 3
Configuring an Analysis Task Using APIs

Configuring an Analysis Task Using APIs

This section describes how to configure a SQL Performance Analyzer task once it has been
created. You can configure an analysis task by setting its parameters using the

DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure.

This section contains the following topics:

e Configuring the Execution Plan Comparison Method of an Analysis Task Using APIs

e Configuring an Analysis Task for Exadata Simulation Using APls

e Remapping Multitenant Container Database Identifiers in an Analysis Task Using APls
e Configuring Trigger Execution in an Analysis Task

e Configuring a Date to be Returned by Calls in an Analysis Task

e Configuring the Number of Rows to Fetch for an Analysis Task

e Configuring the Degree of Parallelism for an Analysis Task

e Validating SQL Result Sets Using SQL Performance Analyzer

Configuring the Execution Plan Comparison Method of an Analysis Task

Using APIs

ORACLE

You can configure the comparison method that determines when a SQL Performance Analyzer
task performs line-by-line comparison of execution plans. By default, a SQL Performance
Analyzer task performs line-by-line comparison of execution plans only if the plan hash value is
unknown.

To configure the execution plan comparison method of an analysis task:

e Usethe SET ANALYSIS TASK PARAMETER procedure to set the value of the
PLAN LINES COMPARISON parameter.

Table 3-1 lists the valid values for the PLAN LINES COMPARISON parameter.

Table 3-1 SQL Performance Analyzer Task Execution Plan Methods
]

Method Description
ALWAYS The analysis task always performs a line-by-line comparison of execution plans.
AUTO The analysis task performs a line-by-line comparison of execution plans only if the

computation of the plan hash value for the first SQL trial has changed or the
second SQL trial is unavailable.

NONE The analysis task performs a line-by-line comparison of execution plans only if the
plan hash value is unknown. This is the default value.

The following example shows how to set the execution plan method for an analysis task to
AUTO:

EXEC DBMS SQLPA.SET ANALYSIS TASK PARAMETER (task name => 'my spa task', -
parameter => 'PLZ—\NiLINE87COMPARISON', -
value => 'AUTO');

3-15

Chapter 3
Configuring an Analysis Task Using APIs

See Also:

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure

Configuring an Analysis Task for Exadata Simulation Using APIs

You can configure a SQL Performance Analyzer to run the Oracle Exadata simulation. For
information about how SQL Performance Analyzer simulates the effects of an Exadata Storage
Server installation on the performance of a SQL workload, see "Using the Exadata Simulation
Workflow".

To enable Exadata simulation for an analysis task:

+ Call the SET ANALYSIS TASK PARAMETER procedure before creating the post-change SQL
trial, as shown in the following example:

EXEC DBMS SQLPA.SET ANALYSIS TASK PARAMETER (task name => 'my spa task', -
parameter => 'CELL SIMULATION ENABLED', -
value => 'TRUE');

This will enable Exadata simulation when you create the post-change SQL trial, which can
then be compared to the pre-change SQL trial that was created with Exadata simulation
disabled.

Alternatively, you can run the Exadata simulation using the tcellsim.sgl script.

To run the Exadata simulation using tcellsim.sql:
1. Atthe SQL prompt, enter:
@SORACLE HOME/rdbms/admin/tcellsim.sql
2. Enter the name and owner of the SQL tuning set to use:

Enter value for sts name: MY STS
Enter value for sts owner: IMMCHAN

The script then runs the following four steps automatically:

e Creates a SQL Performance Analyzer task

» Test executes SQL statements with Exadata simulation disabled
» Test executes SQL statements with Exadata simulation enabled

e Compares performance and generates analysis report

¢ See Also:

* Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure

ORACLE 316

Chapter 3
Configuring an Analysis Task Using APIs

Remapping Multitenant Container Database Identifiers in an Analysis Task

Using APIs

You can store captured SQL statements in a SQL tuning set, and use it as an input source
when creating a SQL Performance Analyzer task. SQL Performance Analyzer then uses the
SQL tuning set as the source for test executing or generating execution plans for SQL trials.

If you use a SQL tuning set that was transported from a non-CDB to a multitenant container
database (CDB) as the input source, the CDB identifiers of the SQL statements in the SQL
tuning set must be remapped to make the STS usable in the CDB. Remapping CDB identifiers
associates each SQL statement in the SQL tuning set with a CDB identifier that can be
remapped to the corresponding pluggable databases (PDBs) within the CDB.

Typically, CDB identifiers should be remapped when the SQL tuning set is transported from a

non-CDB to a CDB. In this case, you can simply use the SQL tuning set as an input source for
SQL Performance Analyzer. However, if you are using a SQL tuning set whose CDB identifiers
have not been remapped, you can specify the remapping as a SQL Performance Analyzer task

property.
To remap CDB identifiers for an analysis task:

* Usethe SET ANALYSIS TASK PARAMETER procedure, as shown in the following example:

EXEC DBMS SQLPA.SET ANALYSIS TASK PARAMETER (task name => 'non cdb spal', -
parameter => 'CON DBID MAPPING', -
value => '1234:5678,1357:2468");

In this example, the CDB identifiers 1234 and 1357 are remapped to 5678 and 2468,
respectively.

After the CDB identifiers are remapped, SQL Performance Analyzer uses the new CDB
identifier when it finds a match for the old CDB identifier, and executes the SQL statements in
the appropriate PDB within the CDB.

¢ See Also:

e Oracle Database SQL Tuning Guide for information about transporting SQL
tuning sets

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure

Configuring Trigger Execution in an Analysis Task

ORACLE

You can configure whether or not triggers are executed in an analysis task. By default, triggers
are executed by SQL Performance Analyzer.

To configure trigger execution in an analysis task:

* Usethe SET ANALYSIS TASK PARAMETER procedure to set the value of the
EXECUTE_TRIGGERS parameter.

Table 3-2 lists the valid values for the EXECUTE TRIGGERS parameter.

3-17

Chapter 3
Configuring an Analysis Task Using APIs

Table 3-2 Valid Values for the EXECUTE_TRIGGERS Parameter

. __|
Value Description

FALSE Triggers are not executed by SQL Performance
Analyzer, even in the EXECUTE_FULLDML mode
of TEST EXECUTE. This is the default value.

TRUE All triggers are executed by SQL Performance
Analyzer.

The following example shows how to set the value of the EXECUTE TRIGGERS parameter to
FALSE, ensuring that triggers are not executed by SQL Performance Analyzer:

EXEC DBMS SQLPA.SET ANALYSIS TASK PARAMETER (task name => 'my spa task', -
parameter => 'EXECUTE TRIGGERS', -
value => 'FALSE');

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure

Configuring a Date to be Returned by Calls in an Analysis Task

ORACLE

You can configure how SQL statements that refer to SYSDATE in an analysis task are
handled.

When you set the REPLACE_SYSDATE WITH parameter, all calls to SYSDATE within the task
execution return a date specified by the parameter. This can be used when the input to a SPA
task is a SQL tuning set (STS).

To configure the date to be returned by calls to SYSDATE in an analysis task:

e Usethe SET ANALYSIS TASK PARAMETER procedure to set the value of the
REPLACE SYSDATE WITH parameter.

Table 3-3 lists the valid values for the REPLACE SYSDATE WITH parameter.

Table 3-3 Valid Values for the REPLACE_SYSDATE_ WITH Parameter
]

Value Description

CURRENT_SYSDATE All calls to SYSDATE within the task execution
return the current SYSDATE. This is the default.

SQLSET_SYSDATE For every SQL statement that has a SYSDATE call,

SQL Performance Analyzer will replace its value
with the value in the LAST EXEC START TIME
column of the DBA SQLSET STATEMENTS view for
that SQL statement.

3-18

Chapter 3
Configuring an Analysis Task Using APIs

Note:

The setting for this parameter does not affect calls to SYSDATE outside of the SQL
Performance Analyzer task execution.

The following example shows how to set the value of the REPLACE SYSDATE WITH parameter to
SQLSET SYSDATE, ensuring that calls to SYDATE within the task execution return the SYSDATE
in the SQL tuning set.

EXEC DBMS_SQLPA.SET ANALYSIS TASK PARAMETER(task name => 'my spa task', -
parameter => 'REPLACE SYSDATE WITH', -
value => 'SQLSET SYSDATE');

¢ See Also:
* Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure

» Oracle Database Reference for more information about the
DBA SQLSET STATEMENTS View.

Configuring the Number of Rows to Fetch for an Analysis Task

ORACLE

You can configure how many rows are fetched for the SQL statements in an analysis task.

To configure the number of rows to fetch in an analysis task:

* Usethe SET ANALYSIS TASK PARAMETER procedure to set the value of the
NUM ROWS TO FETCH parameter.

Table 3-4 lists the valid values for the NUM_ROWS_TO_ FETCH parameter.

Table 3-4 Valid Values for the NUM_ROWS_ TO_ FETCH Parameter
]

Value Description

ALL_ROWS Fetches all the rows for the SQL. This is the default
value.

AUTO The number of result rows is determined using the

value of the OPTIMIZER MODE parameter in the
optimizer environment captured in the SQL tuning
set. If the value of OPTIMIZER MODE was

ALL ROWS, then all result rows will be fetched. If its
value was FIRST ROWS n, then n result rows will
be fetched by SQL Performance Analyzer.

AVERAGE The number of result rows is calculated as the ratio
of total rows processed and total executions for
each SQL in the SQL tuning set.

A valid number The number of result rows will be equal to the
specified value, or fewer, if there were fewer rows
to fetch.

3-19

Chapter 3
Configuring an Analysis Task Using APIs

The following example shows how to set the value of the NUM_ROWS TO FETCH parameter to
ALL_ROWS, so that all the rows for the SQL are fetched.

EXEC DBMS SQLPA.SET ANALYSIS TASK PARAMETER (task name => 'my spa task', -
parameter => 'NUM ROWS TO FETCH', -
value => 'ALL ROWS');

See Also:
e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure

* Oracle Database Reference for more information about the OPTIMIZER MODE
database initialization parameter

Configuring the Degree of Parallelism for an Analysis Task

ORACLE

You can set the degree of parallelism and enable concurrent SQL execution.

To configure degree of parallelism for an analysis task:

* Usethe SET ANALYSIS TASK PARAMETER procedure to set the value of the
TEST EXECUTE DOP parameter.

The following table lists the valid values for the TEST EXECUTE DOP parameter.

Table 3-5 Valid Values for the TEST_EXECUTE_DOP parameter
|

Value Description

0 This is the default value. The task is executed
serially.

Greater than or equal to 2 Concurrent execution is enabled.

The following example shows how to set the value of the TEST EXECUTE DOP parameter to 4
and enable concurrent execution:

EXEC DBMS SQLPA.SET ANALYSIS TASK PARAMETER (task name => 'my spa task', -
parameter => 'TEST EXECUTE DOP', -
value => 4);

Note:

A concurrent execution is supported only by the EXPLAIN PLAN and TEST EXECUTE
execution types.

3-20

Chapter 3
Configuring an Analysis Task Using APIs

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure

Validating SQL Result Sets Using SQL Performance Analyzer

ORACLE

Comparison of SQL result sets is how supported when running two “test-execute” SQL
Performance Analyzer (SPA) trials.

The SQL result sets are validated and if the number of rows or values do not match, it is
recorded in the SQL Performance Analyzer report. The SQL result set validation is controlled
by the COMPARE RESULTSET parameter.

The SET ANALYSIS TASK PARAMETER procedure is used to set the value of the
COMPARE RESULTSET parameter.

The following table lists the valid values for the COMPARE RESULTSET parameter.

Table 3-6 Valid Values for the COMPARE_RESULTSET Parameter
]

Value Description
TRUE SQL result set comparison is performed.
FALSE SQL result set comparison is not performed.

The following example shows how to set the value of COMPARE RESULTSET parameter to TRUE.

EXEC DBMS SQLPA.SET ANALYSIS TASK PARAMETER (task name => 'my spa task', -
parameter => 'COMPAREiRESULTSET', -
value => 'TRUE');

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS SQLPA.SET ANALYSIS TASK PARAMETER procedure

3-21

Creating a Pre-Change SQL Trial

After creating a SQL Performance Analyzer task and selecting a SQL tuning set as the input
source, you need to establish the initial environment on the test system. Establishing the
database environment on the test system involves manually making any necessary
environmental changes that affect SQL optimization and performance. These changes may
include changing initialization parameters, gathering or setting optimizer statistics, and creating
indexes. It is recommended that you build a test system that is as similar to the production
system as possible. The dedicated workflows in Enterprise Manager simplifies this process by
creating both SQL trials automatically and performing the change restricted to the testing
session.

Note:

You can optionally run SQL trials on a remote system by providing access to a public
database link. When conducting remote SQL trials, the database version of the
remote database where the SQL statements are executed must be less than or equal
to the database version of the database to which it connects. Starting with Oracle
Database release 11.2.0.2, the remote database can be a read-only database, such
as an Oracle Active Data Guard instance.

Once the environment on the test system is properly configured, you can build the pre-change
version of performance data before performing the system change. You can build SQL trials
using SQL Performance Analyzer by using one of the following methods:

e Executing the SQL statements in the workload
e Generating execution plans for the SQL statements in the workload
e Loading performance data and execution plans from a SQL tuning set (APls only)

This chapter describes how to create the pre-change SQL trial and contains the following
topics:

e Creating a Pre-Change SQL Trial Using Enterprise Manager
e Creating a Pre-Change SQL Trial Using APIs

Note:

The primary interface for creating a pre-change SQL trial is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you can
create a pre-change SQL trial using the DBMS SQLPA PL/SQL package.

ORACLE i1

See Also:

e "Setting Up the Test System"

Chapter 4
Creating a Pre-Change SQL Trial Using Enterprise Manager

e "Measuring the Pre-Change SQL Performance"

Creating a Pre-Change SQL Trial Using Enterprise Manager

This section describes how to collect the pre-change SQL performance data using Oracle

ORACLE

Enterprise Manager.

Before creating a pre-change SQL trial, you need to create a SQL Performance Analyzer task,

as described in Creating an Analysis Task .

To create a pre-change SQL trial using Enterprise Manager:

1. On the Guided Workflow page, click the Execute icon for the Create SQL Trial in Initial

Environment step.

The Create SQL Trial page appears. A summary of the selected SQL tuning set containing

the SQL workload is displayed.

Create SQL Trial

SQL Trials capture execution performance of the SQL Tuning Set under a given optimizer environment.
SQL Performance Analyzer Task 5YS.SPA_GUIDED_WORKFLOW
SQL Tuning Set SYS.DOCTEST3

* QL Trial Name [SQL_TRIAL 1335

SQL Trial Description

Creation Method | Execute SQLs Locally v
Per-5QL Time Limit

(& TIP Time limit is on elapsed time of test execution of SQL,

Schedule
@ Immediately
O Later

Date |MaY 2, 2012)

(sxample: May 2, 2012)

Time OAM @ PM

Cancel

The SQL Tuning Set remains constant under the SQL Performance Analyzer Task
and its SQL is executed in isolation to create each SQL Trial, Performance
differences between trials are thus attributed to environmental differences
between trials.

Trial environment determines results

Environmental changes affecting SGL optimization and performance may need to
be made manually prior to execution of the Trial, These could include changing
initislization parameters, gathering or setting optimizer statistics and creating
indexes.

The Creation Method determines how the SQL Trial is created and what contents
are generated, as follows:

Executing SQLs generates both plans and statistics by actually running
the SQL statements,

Generating plans invokes the optimizer to create execution plans only
without running the SQL statements.

Remote execution and plan generation are done over a public database
link on the remote system,

Building from the SQL Tuning Set simply copies the plans and statistics
from the Tuning Set directly into the Trial.

NOTE: Be sure trial environment has been established prior to
submitting.

[Jvial environment established

2. Inthe SQL Trial Name field, enter the name of the SQL trial.
3. Inthe SQL Trial Description field, enter a description of the SQL trial.
4.

generated by performing one of the following actions:

e Select Execute SQLs Locally.

In the Creation Method list, determine how the SQL trial is created and what contents are

The SQL trial generates both execution plans and statistics for each SQL statement in
the SQL tuning set by actually running the SQL statements locally on the test system.

Select Execute SQLs Remotely.

The SQL trial generates both execution plans and statistics for each SQL statement in
the SQL tuning set by actually running the SQL statements remotely on another test
system over a public database link.

Select Generate Plans Locally.

4-2

Chapter 4
Creating a Pre-Change SQL Trial Using Enterprise Manager

The SQL trial invokes the optimizer to create execution plans locally on the test
system, after taking bind values and optimizer configuration into account, without
actually running the SQL statements.

* Select Generate Plans Remotely.

The SQL trial invokes the optimizer to create execution plans remotely on another test
system, after taking bind values and optimizer configuration into account, over a public
database link without actually running the SQL statements.

e Select Build From SQL Tuning Set.

The SQL trial copies the execution plans and statistics from the SQL tuning set directly
into the trial.

For more information about the different methods, see "Measuring the Pre-Change SQL
Performance".

5. Inthe Per-SQL Time Limit list, determine the time limit for SQL execution during the trial by
performing one of the following actions:

e Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5 minutes and
gather performance data.

e Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to completion and
gather performance data. Collecting execution statistics provides greater accuracy in
the performance analysis but takes a longer time. Using this setting is not
recommended because the task may be stalled by one SQL statement for a prolonged
period.

« Select Customize and enter the specified number of seconds, minutes, or hours.

6. Ensure that the database environment on the test system matches the production
environment as closely as possible, and select Trial environment established.

7. Inthe Schedule section:
a. Inthe Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start at a
time specified using the Date and Time fields.

8. Click Submit.
The Guided Workflow page appears when the execution begins.

The status icon of this step changes to a clock while the execution is in progress. To
refresh the status icon, click Refresh. Depending on the options selected and the size of
the SQL workload, the execution may take a long time to complete. After the execution is
completed, the Status icon will change to a check mark and the Execute icon for the next
step is enabled.

9. Once the pre-change performance data is built, you can make the system change and
build the post-change performance data by re-executing the SQL statements in the SQL
tuning set on the post-change test system, as described in Creating a Post-Change SQL
Trial .

ORACLE 45

Chapter 4
Creating a Pre-Change SQL Trial Using APIs

Creating a Pre-Change SQL Trial Using APIs

ORACLE

This section describes how to build the pre-change performance data by using the DBMS SQLPA
package.

Before creating a pre-change SQL trial, you need to create a SQL Performance Analyzer task,
as described in Creating an Analysis Task .

To create a pre-change SQL trial:
* Call the EXECUTE ANALYSIS TASK procedure using the following parameters:

— Set the task name parameter to the name of the SQL Performance Analyzer task that
you want to execute.

— Setthe execution type parameter in one of the following ways:

* Setto EXPLAIN PLAN to generate execution plans for all SQL statements in the
SQL tuning set without executing them.

* Setto TEST EXECUTE (recommended) to execute all statements in the SQL tuning
set and generate their execution plans and statistics. When TEST EXECUTE is
specified, the procedure generates execution plans and execution statistics. The
execution statistics enable SQL Performance Analyzer to identify SQL statements
that have improved or regressed. Collecting execution statistics in addition to
generating execution plans provides greater accuracy in the performance analysis,
but takes longer.

* Set to CONVERT SQLSET to refer to a SQL tuning set for the execution statistics and
plans for the SQL trial. Values for the execution parameters SQLSET NAME and
SQLSET OWNER should also be specified.

— Specify a name to identify the execution using the execution name parameter. If not
specified, then SQL Performance Analyzer automatically generates a name for the
task execution.

— Specify execution parameters using the execution params parameters. The
execution params parameters are specified as (name, value) pairs for the specified
execution. For example, you can set the following execution parameters:

* The time limit parameter specifies the global time limit to process all SQL
statements in a SQL tuning set before timing out.

* The local time limit parameter specifies the time limit to process each SQL
statement in a SQL tuning set before timing out.

* To perform a remote test execute, set the DATABASE LINK task parameter to the
global name of a public database link connecting to a user with the EXECUTE
privilege for the DBMS SQLPA package and the ADVISOR privilege on the test system.

* To fully execute DML statements—including acquiring row locks and modifying row
—set the EXECUTE_FULLDML parameter to TRUE. SQL Performance Analyzer will
issue a rollback after executing the DML statements to prevent persistent changes
from being made. The default value for this parameter is FALSE, which executes
only the query portion of the DML statement without modifying the data.

* To restore the relevant captured init.ora Settings during a test execute, set the
APPLY CAPTURED COMPILENV parameter to TRUE. This is not the default behavior
because typically you are running SQL trials to test changes when changing the
environment. However, this method may be used in cases when the init.ora

4-4

ORACLE

Chapter 4
Creating a Pre-Change SQL Trial Using APIs

settings are not being changed (such as creating an index). This method is not
supported for remote SQL trials.

The following example illustrates a function call made before a system change:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS TASK(task name => 'my spa task', -
execution type => 'TEST EXECUTE', -
execution name => 'my exec BEFORE change');

Once the pre-change performance data is built, you can make the system change and build
the post-change performance data by re-executing the SQL statements in the SQL tuning set
on the post-change test system, as described in Creating a Post-Change SQL Trial .

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS SQLPA.EXECUTE ANALYSIS TASK function

4-5

Creating a Post-Change SQL Trial

After computing the pre-change SQL performance data, you can perform the system change
on the test system. Before making the system change, ensure that you have executed the SQL
workload in the initial environment to generate the pre-change performance data. For example,
if you are testing how changing a database initialization parameter will affect SQL
performance, execute the SQL workload once before changing the database initialization
parameter to a new value. Depending on the type of change you are making, it may be
necessary to reconfigure the environment on the test system to match the new environment for
which you want to perform SQL performance analysis.

Note:

You can optionally run SQL trials on a remote system by providing access to a public
database link. When conducting remote SQL trials, the database version of the
remote database where the SQL statements are executed must be less than or equal
to the database version of the database to which it connects. Starting with Oracle
Database release 11.2.0.2, the remote database can be a read-only database, such
as an Oracle Active Data Guard instance.

"SQL Performance Analyzer" lists examples of possible system changes that can be analyzed
using SQL Performance Analyzer. For example, you may want to determine how a database
initialization parameter change or database upgrade will affect SQL performance. You may
also decide to change the system based on recommendations from an advisor such as
Automatic Database Diagnostic Monitor (ADDM), SQL Tuning Advisor, or SQL Access Advisor.

After you have made the system change, you can build the post-change version of
performance data by executing the SQL workload again. SQL Performance Analyzer will store
the results from executing the SQL statements in a post-change SQL trial.

This section describes how to create the post-change SQL trial and contains the following
topics:

e Creating a Post-Change SQL Trial Using Oracle Enterprise Manager
e Creating a Post-Change SQL Trial Using APls

Note:

The primary interface for creating a post-change SQL trial is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you can
create a post-change SQL trial using the DBMS SQLPA PL/SQL package.

ORACLE -

Chapter 5
Creating a Post-Change SQL Trial Using Oracle Enterprise Manager

See Also:

e "Making a System Change"

* "Measuring the Post-Change SQL Performance”

Creating a Post-Change SQL Trial Using Oracle Enterprise

Manager

ORACLE

This section describes how to collect the post-change SQL performance data using Oracle
Enterprise Manager.

Before making the system change creating a post-change SQL trial, you need to create a pre-
change SQL trial, as described in Creating a Pre-Change SQL Trial .

To create a post-change SQL trial using Enterprise Manager:

1.

On the Guided Workflow page, click the Execute icon for the Create SQL Trial in Changed
Environment step.

The Create SQL Trial page appears.
In the SQL Trial Name field, enter the name of the SQL trial.
In the SQL Trial Description field, enter a description of the SQL trial.

In the Creation Method list, determine how the SQL trial is created and what contents are
generated by performing one of the following actions:

e Select Execute SQLs Locally.

The SQL trial generates both execution plans and statistics for each SQL statement in
the SQL tuning set by actually running the SQL statements locally on the test system.

e Select Execute SQLs Remotely.

The SQL trial generates both execution plans and statistics for each SQL statement in
the SQL tuning set by actually running the SQL statements remotely on another test
system over a public database link.

e Select Generate Plans Locally.

The SQL trial invokes the optimizer to create execution plans locally on the test system
without actually running the SQL statements.

* Select Generate Plans Remotely.

The SQL trial invokes the optimizer to create execution plans remotely on another test
system over a public database link without actually running the SQL statements.

For each of these creation methods, the application schema and data should already exist
on the local or remote test system.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during the trial by
performing one of the following actions:

e Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5 minutes and
gather performance data.

5-2

Chapter 5
Creating a Post-Change SQL Trial Using APIs

e Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to completion and
gather performance data. Collecting execution statistics provides greater accuracy in
the performance analysis but takes a longer time. Using this setting is not
recommended because the task may be stalled by one SQL statement for a prolonged
time period.

« Select Customize and enter the specified number of seconds, minutes, or hours.

Ensure that the system change you are testing has been performed on the test system,
and select Trial environment established.

In the Schedule section:
a. Inthe Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start at a
time specified using the Date and Time fields.

Click Submit.
The Guided Workflow page appears when the execution begins.

The status icon of this step changes to a clock while the execution is in progress. To
refresh the status icon, click Refresh. Depending on the options selected and the size of
the SQL workload, the execution may take a long time to complete. After the execution is
completed, the Status icon will change to a check mark and the Execute icon for the next
step is enabled.

Once the post-change performance data is built, you can compare the pre-change SQL
trial to the post-change SQL trial by running a comparison analysis, as described in
Comparing SQL Trials .

Creating a Post-Change SQL Trial Using APIs

This section describes how to collect the post-change SQL performance data using the
DBMS SQLPA package.

ORACLE

Before making the system change creating a post-change SQL trial, you need to create a pre-
change SQL trial, as described in Creating a Pre-Change SQL Trial .

¢ Note:

If you are running the SQL statements remotely on another test system over a
database link, the remote user calling this procedure needs to have the EXECUTE
privilege for the DBMS SQLPA package.

To create a post-change SQL trial:

Call the EXECUTE_ANALYSIS TASK procedure using the parameters described in "Creating a
Pre-Change SQL Trial Using APIs".

Be sure to specify a different value for the execution name parameter. It is also highly
recommended that you create the post-change SQL trial using the same method as the
pre-change SQL trial by using the same value for the execution type parameter.

5-3

ORACLE

Chapter 5
Creating a Post-Change SQL Trial Using APIs

Note:

If you want to run an Oracle Exadata simulation, you should first set the
CELL SIMULATION ENABLED task parameter to TRUE.

The following example illustrates a function call made after a system change:

EXEC DBMS SQLPA.EXECUTE ANALYSIS TASK(task name => 'my spa task', -
execution type => 'TEST EXECUTE', -
execution name => 'my exec AFTER change');

Once the post-change performance data is built, you can compare the pre-change SQL trial to
the post-change SQL trial by running a comparison analysis, as described in Comparing SQL
Trials .

See Also:

e "Configuring an Analysis Task for Exadata Simulation Using APIs"

e Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS SQLPA.EXECUTE ANALYSIS TASK function

5-4

Comparing SQL Trials

After the post-change SQL performance data is built, you can compare the performance data
collected in the pre-change SQL trial to the post-change SQL trial by running a comparison
analysis using SQL Performance Analyzer. After the comparison analysis is completed, you
can generate a report to identify the SQL statements that have improved, remained
unchanged, or regressed due to the system change. The SQL Performance Analyzer report
calculates two chief impact measurements for the change in performance of each SQL
statement:

Impact on workload

This represents the percentage of impact that this change to the SQL statement has on the
cumulative execution time of the workload, after accounting for execution frequency. For
example, a change that causes a SQL statement's cumulative execution time to improve
from 101 seconds to 1 second—where the rest of the workload had a total execution time
of 99 seconds before the change—would have a 50% (2x) value for this measurement.

Impact on SQL

This represents the percentage of impact that this change to the SQL statement has on the
SQL statement's response time. For example, a change that causes a SQL statement's
response time to improve from 10 seconds to 1 second will have a 90% (10x) value for this
measurement.

This chapter describes how to compare and analyze the performance data from the pre-
change and post-change SQL trials and contains the following topics:

Comparing SQL Trials Using Oracle Enterprise Manager

Comparing SQL Trials Using APIs

Note:

The primary interface for comparing SQL trials is Oracle Enterprise Manager. If for
some reason Oracle Enterprise Manager is unavailable, you can compare SQL trials
using the DBMS_SQLPA PL/SQL package.

¢ See Also:

"Comparing Performance Measurements"

Comparing SQL Trials Using Oracle Enterprise Manager

Comparing SQL trials using Oracle Enterprise Manager involves the following steps:

ORACLE

Analyzing SQL Performance Using Oracle Enterprise Manager

Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise Manager

6-1

Chapter 6
Comparing SQL Trials Using Oracle Enterprise Manager

e Tuning Regressed SQL Statements Using Oracle Enterprise Manager

Analyzing SQL Performance Using Oracle Enterprise Manager

ORACLE

This section describes how to analyze SQL performance before and after the system change
using Oracle Enterprise Manager.

Before comparing SQL trials, you need to create a post-change SQL trial, as described in
Creating a Post-Change SQL Trial .

To analyze SQL performance using Enterprise Manager:
1. On the Guided Workflow page, click the Execute icon for Compare Step 2 and Step 3.
The Run SQL Trial Comparison page appears.

Run SQL Trial Comparison

Cancel Submit

Task Mame SYS.5PA_GUIDED_WORKFLOW Compare trials to assess change impact

- e -
SQL Tuning Set S5YS.DOCTEST3 SQL Performance Analyzer trial comparison allows you to assess the

impact on SQL Tuning Set perfarmance of changes made between two
Trial 1 Mame | SQL_TRIAL_1336002531305 % | trials.

Description Itis important to know the difference between Trial 1 and Trial 2
- . " execution environments in order to properly assign impacts to the
5QL Executed Yes changes between trialzs, Tracking environmental changes between trials
is currently a user responsibility.

Trizl 2Mame | SQL_TRIAL_1336002653572 ¥
oo | QL === - | The selected comparison metric is used as the basis for comparison, and
Description defaults to execute elapsed time when both trials contain test execution
SQL Executed Yes statistics. When execution statistics are not available, a less accurate
comparisan can be made using optimizer cost.

Comparison Metric | Elapsed Time hd |

Schedule

Time Zone |America_.-'Lus_hngeIes V|

@ Immediately
() Later

Date |May 2, 2012 B

(ecample: May 2, 2012)

Time O AM @ PM

In this example, the SQL_TRIAL 1241213421833 and SQL TRIAL 1241213881923 trials are
selected for comparison.

2. To compare trials other than those listed by default, select the desired trials in the Trial 1
Name and Trial 2 Name lists.

Note that you cannot compare a statistical trial with a trial that tests the explain plan only.

3. In the Comparison Metric list, select the comparison metric to use for the comparison
analysis:

* Elapsed Time

* CPUTime

* UserllO Time

* Buffer Gets

* Physical Il0

* Optimizer Cost

6-2

Chapter 6
Comparing SQL Trials Using Oracle Enterprise Manager

« 1/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you generated execution plans
only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric, perform
separate comparison analyses by repeating this procedure with different metrics.

4. Inthe Schedule section:
a. Inthe Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start at a
time specified using the Date and Time fields.

5. Click Submit.
The Guided Workflow page appears when the comparison analysis begins.

The status icon of this step changes to an arrow icon while the comparison analysis is in
progress. To refresh the status icon, click Refresh. Depending on the amount of
performance data collected from the pre-change and post-change executions, the
comparison analysis may take a long time to complete. After the comparison analysis is

completed, the Status icon changes to a check mark and the Execute icon for the next step

is enabled.

6. Once SQL Performance Analyzer has analyzed the pre-change and post-change
performance data, generate a SQL Performance Analyzer report that you can use for
further analysis.

On the Guided Workflow page, click the Execute icon for View Trial Comparison Report.

The SQL Performance Analyzer Task Report page appears. Review the report, as
described in "Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise
Manager".

Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise

Manager

ORACLE

When a SQL Performance Analyzer task is completed, the resulting data is generated into a
SQL Performance Analyzer report that compares the pre-change and post-change SQL
performance.

Figure 6-1 shows a sample SQL Performance Analyzer report. This sample report uses the
elapsed time comparison metric to compare the pre-change and post-change executions of a
SQL workload.

6-3

ORACLE

Chapter 6
Comparing SQL Trials Using Oracle Enterprise Manager

Figure 6-1 SQL Performance Analyzer Report

SQL Pertormance Analyzer Task Report: SYS.SPA_GUIDED_WORKFLOW
Save | Mail
5QL Tuning SetMName DOCTEST3 5QL Trizl 1 SQL_TRIAL_1336002531305
STS Owner 5YS SQL Trial 2 SQL_TRIAL_1336002653572
Total SQL Statements 450 Comparison Metric Elapsed Time
SQL Statements With Errars 11
Global Statistics
Projected Workload Elapsed Time SQL Statement Count Recommendations
Oracle offers two options to fix
£ L500 - 200 regressed SQL resulting from plan
4 5 changes:
= H
g L1000 S 250 Use the better execution plan from SQL
= = Trial 1by creating SQL Plan Baselines.
E soo g ¥ g 5Q
H 0 Create SQL Plan Baselines |
w o Improved Regressed Unchanged
= Change in Elapsed Time
2 o Explore alternate execution plans using
[SOLTrial 1 [S0L Trial 2 [Mew Plan [3ame Plan 5QL Tuning Adviser.
Improvement Impact 0%0» Run SQL Tuning Advisor
Regression Impact -2% {)
Overall Impact -2%
Top 10 SQL Statements Based on Impact on Workload
Elepsed Time (sec) |
SQLID Net Impact on Workload (%) | SQL Trial 1 SQL Trial 2 | MNet Impact on SQL (%) | New Plan
4 awnhwdspzeudu -1.650 0.007 0,023 -243.800 ¥
b vigixugg 0240 0.008 0.008 6.150 N
1t awnhwdspzeudu 0.450 0.023 0,006
{ bshngv59vsyhb -0.450 0.007 0.007
1t Sks 1cargOdz 1w 0.420 0.05% 0,051

Before you can view the SQL Performance Analyzer report, compare the pre-change version
of performance data with the post-change version, as described in "Comparing SQL Trials
Using Oracle Enterprise Manager"

To generate and review the SQL Performance Analyzer report:

1.

From the Performance menu, select SQL, then SQL Performance Analyzer.
If the Database Login page appears, then log in as a user with administrator privileges.

The SQL Performance Analyzer Home page appears. A list of existing SQL Performance
Analyzer tasks are displayed.

Under SQL Performance Analyzer Tasks, select the task for which you want to view a SQL
Performance Analyzer report and click View Latest Report.

The SQL Performance Analyzer Task Report page appears.

Review the general information about the performance analysis, as described in
"Reviewing the SQL Performance Analyzer Report: General Information".

Review general statistics, as described in "Reviewing the SQL Performance Analyzer
Report: Global Statistics".

Optionally, review the detailed statistics, as described in "Reviewing the SQL Performance
Analyzer Report: Global Statistics Details".

To generate an active report, click Save to generate and save the report, or Mail to
generate and mail the report as an HTML attachment.

Active reports include information about the top SQL statements from each category (such
as improved, regressed, and changed plans) with pre-change and post-change statistics,
explain plans, and task summary.

For more information, see "About SQL Performance Analyzer Active Reports".

6-4

Chapter 6
Comparing SQL Trials Using Oracle Enterprise Manager

Reviewing the SQL Performance Analyzer Report: General Information

The General Information section contains basic information and metadata about the workload
comparison performed by SQL Performance Analyzer.

To review general information:

1. Onthe SQL Performance Analyzer Task Report page, review the summary at the top of
the page.

DOCTEST3 SOL Trial 1 INITIAL_SQL_TRIAL
SYS 2 SECOMD_SQL_TRIAL
450 Compa c IO Interconmect Bytes
rs 11

This summary includes the following information:
e The name and owner of the SQL tuning set

e The total number of SQL statements in the tuning set and the number of SQL
statements that had errors, are unsupported, or timed out

e The names of the SQL trials and the comparison metric used
2. Optionally, click the link next to SQL Tuning Set Name.
The SQL Tuning Set page appears.

This page contains information—such as SQL ID and SQL text—about every SQL
statement in the SQL tuning set.

3. Click the link next to SQL Statements With Errors if errors were found.

The Errors table reports all errors that occurred while executing a given SQL workload. An
error may be reported at the SQL tuning set level if it is common to all SQL executions in
the SQL tuning set, or at the execution level if it is specific to a SQL statement or execution
plan.

4. Review the global statistics, as described in "Reviewing the SQL Performance Analyzer
Report: Global Statistics".

Reviewing the SQL Performance Analyzer Report: Global Statistics

The Global Statistics section reports statistics that describe the overall performance of the
entire SQL workload. This section is a very important part of the SQL Performance Analyzer
analysis, because it reports on the impact of the system change on the overall performance of
the SQL workload. Use the information in this section to understand the tendency of the
workload performance, and determine how it will be affected by the system change.

To review global statistics:

1. Review the chart in the Projected Workload Elapsed Time subsection.

Note:

The name of the subsection may vary based on the comparison metric that is
selected.

ORACLE g

Chapter 6
Comparing SQL Trials Using Oracle Enterprise Manager

The chart shows the two trials on the x-axis and the elapsed time (in seconds) on the y-
axis.

Projected Workload Elapsed Time

=
wvioo oo

Elapsed Time (sed
o

[30L Trial 1 [0L Trial 2

Improvement Impact 20% {*
Regression Impact -2% >

Overall Impact 17% 1t

The most important statistic is the overall impact, which is given as a percentage. The
overall impact is the difference between the improvement impact and the regression
impact. You can click the link for any impact statistic to obtain more details, as described in
"Reviewing the SQL Performance Analyzer Report: Global Statistics Details".

In this example, the improvement impact is 20%, while the regression impact is -2%, so the
overall impact of the system change is an improvement of approximately 18%. This means
that if all regressions are fixed in this example, the overall impact of the change will be an
improvement of 20%.

Note:

The overall impact percentage may sometimes be off by 1% compared to the
sum of the improvement impact and the regression impact. This discrepancy may
be caused by rounding or if the SQL and workload time limits are set at 1%,
which is the recommended value. This enables the analysis to focus on SQL
statements with higher impact by filtering out those that have a minimal impact.

2. Review the chart in the SQL Statement Count subsection.

The x-axis of the chart shows the number of SQL statements whose performance
improved, regressed, or remain unchanged after the system change. The y-axis shows the
number of SQL statements. The chart also indicates whether the explain plans changed for
the SQL statements.

SQL Statement Count

1,200

B00
1]
Improwved Fegressed Unchanged

Change in Elapsed Time
B Mew Plan [Same Flan

SOL Count

This chart enables you to quickly weigh the relative performance of the SQL statements.
You can click any bar in the chart to obtain more details about the SQL statements, as
described in "Reviewing the SQL Performance Analyzer Report: Global Statistics Details".

ORACLE 66

Chapter 6
Comparing SQL Trials Using Oracle Enterprise Manager

Only up to the top 100 SQL statements will be displayed, even if the actual number of SQL
statements exceeds 100.

In this example, all SQL statements were unchanged after the system change.

Reviewing the SQL Performance Analyzer Report: Global Statistics Details

ORACLE

You can use the SQL Performance Analyzer Report to obtain detailed statistics for the SQL
workload comparison. The details chart enables you to drill down into the performance of SQL
statements that appears in the report. Use the information in this section to investigate why the
performance of a particular SQL statement regressed.

Note:

The report displays only up to the top 100 SQL statements, even if the actual number
of SQL statements exceeds 100.

To review global statistics details:

1.

In the Projected Workload Elapsed Time subsection, click the impact percentage of the
SQL statements for which you want to view details. To view SQL statements whose
performance:

e Improved, click the percentage for Improvement Impact
e Regressed, click the percentage for Regression Impact
e Improved or regressed, click the percentage for Overall Impact

A table including the detailed statistics appears. Depending on the type of SQL statements
chosen, the following columns are included:

e SQLID
This column indicates the ID of the SQL statement.
e Net Impact on Workload (%)

This column indicates the impact of the system change relative to the performance of
the SQL workload.

e Elapsed Time
This column indicates the total time (in seconds) of the SQL statement execution.
e Net Impact on SQL (%)

This column indicates the local impact of the change on the performance of a
particular SQL statement.

* New Plan
This column indicates whether the SQL execution plan changed.

To view details about a particular SQL statement, click the SQL ID link for the SQL
statement that you are interested in.

The SQL Details page appears.

You can use this page to access the SQL text and obtain low-level details about the SQL
statement, such as its execution statistics and execution plan.

6-7

Chapter 6
Comparing SQL Trials Using Oracle Enterprise Manager

About SQL Performance Analyzer Active Reports

SQL Performance Analyzer active reports are HTML files that display all reporting data using a
Web-hosted interactive user interface. Similar to the SQL Performance Analyzer reports
available in Oracle Enterprise Manager, active reports include information about the top SQL
statements from each category (such as improved, regressed, and changed plans) with pre-
change and post-change statistics, explain plans, and task summary.

SQL Performance Analyzer active reports are more useful than traditional HTML or text reports
because they offer a similar user interface as Oracle Enterprise Manager, yet they can be
viewed even when the database is unavailable, or even after a database is dropped. Hence
active reports offer the advantages of traditional reporting and dynamic Oracle Enterprise
Manager analysis, but eliminates the disadvantages of both. Moreover, active reports contain
more information about the comparison analysis and provide more user interactive options. It is
strongly recommended that you use active reports instead of HTML or text reports.

The active report user interface components are very similar to those displayed in Oracle
Enterprise Manager. For descriptions of the user interface components, see the related
sections described in "Reviewing the SQL Performance Analyzer Report Using Oracle
Enterprise Manager".

Tuning Regressed SQL Statements Using Oracle Enterprise Manager

ORACLE

After reviewing the SQL Performance Analyzer report, you should tune any regressed SQL
statements that are identified after comparing the SQL performance. If there are large numbers
of SQL statements that appear to have regressed, you should try to identify the root cause and
make system-level changes to rectify the problem. In cases when only a few SQL statements
have regressed, consider using one of the following tuning methods to implement a point
solution for them:

e Creating SQL Plan Baselines
e Running SQL Tuning Advisor

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your results. Once
SQL Performance Analyzer shows that performance has stabilized, the testing is complete.
Implement the fixes from this step to your production system.

Starting with Oracle Database 11g Release 1, SQL Tuning Advisor performs an alternative
plan analysis when tuning a SQL statement. SQL Tuning Advisor searches the current system
for previous execution plans, including the plans from the first SQL trial. If the execution plans
from the first SQL trial differ from those of the second SQL trial, SQL Tuning Advisor will
recommend the plans from the first SQL trial. If these execution plans produce better
performance, you can create plan baselines using the plans from the first SQL trial.

Note:

SQL Performance Analyzer does not provide the option to create SQL plan baselines
or run SQL Tuning Advisor directly after after completing a remote SQL trial. In such
cases, you need to use APIs to manually transport the SQL tuning set and complete
the appropriate procedure on the remote database.

6-8

Chapter 6
Comparing SQL Trials Using Oracle Enterprise Manager

See Also:

* Oracle Database SQL Tuning Guide for information about alternative plan
analysis

Creating SQL Plan Baselines

Creating SQL plan baselines enables the optimizer to avoid performance regressions by using
execution plans with known performance characteristics. If a performance regression occurs
due to plan changes, a SQL plan baseline can be created and used to prevent the optimizer
from picking a new, regressed execution plan.

To create SQL plan baselines:

1. Onthe SQL Performance Analyzer Task Result page, under Recommendations, click
Create SQL Plan Baselines.

The Create SQL Plan Baselines page appears. The Regressed SQL Statements section
lists the regressed SQL statements that will be associated with the new SQL plan
baselines.

2. Under Job Parameters, specify the parameters for the job:

a. Inthe Job Name field, enter a name for the job.

b. Inthe Description field, optionally enter a description for the job.
3. Under Schedule, select:

* Immediately to start the job now.

« Later to schedule the job to start at a time specified using the Time Zone, Date, and
Time fields.

4. Click OK.

The SQL Performance Analyzer Task Result page appears. A message is displayed to
inform you that the job has been submitted successfully.

See Also:

* Oracle Database 2 Day + Performance Tuning Guide for information about
creating and managing SQL plan baselines

Running SQL Tuning Advisor

ORACLE

The SQL Tuning Advisor performs an in-depth analysis of regressed SQL statements and
attempts to fix the root cause of the problem.

To run SQL Tuning Advisor:

1. Onthe SQL Performance Analyzer Task Result page, under Recommendations, click Run
SQL Tuning Advisor.

The Schedule SQL Tuning Task page appears.

6-9

Chapter 6
Comparing SQL Trials Using APIs

2. Inthe Tuning Task Name field, enter a name for the SQL tuning task.
3. Inthe Tuning Task Description field, optionally enter a name for the SQL tuning task.
4. Under Schedule, select:

* Immediately to start the job now.

« Later to schedule the job to start at a time specified using the Time Zone, Date, and
Time fields.

5. Click OK.

The SQL Performance Analyzer Task Result page appears. A link to the SQL tuning report
appears under Recommendations.

6. To view the SQL tuning report, click the SQL Tune Report link.
The SQL Tuning Results page appears.

¢ See Also:

e Oracle Database 2 Day + Performance Tuning Guide for information about
running the SQL Tuning Advisor

Comparing SQL Trials Using APIs

Comparing SQL trials using APIs involves the following steps:

e Analyzing SQL Performance Using APIs

e Reviewing the SQL Performance Analyzer Report in Command-Line

e Comparing SQL Tuning Sets Using APIs

e Tuning Regressed SQL Statements Using APls

e Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs
e Creating SQL Plan Baselines Using APIs

e Using SQL Performance Analyzer Views

Before comparing SQL trials, you need to create a post-change SQL trial, as described in
Creating a Post-Change SQL Trial .

Analyzing SQL Performance Using APIs

After the post-change SQL performance data is built, you can compare the pre-change version
of performance data to the post-change version. Run a comparison analysis using the
DBMS SQLPA.EXECUTE ANALYSIS TASK procedure or function.

To compare the pre-change and post-change SQL performance data:
1. Call the EXECUTE ANALYSIS TASK procedure or function using the following parameters:
* Set the task name parameter to the name of the SQL Performance Analyzer task.

* Setthe execution type parameter to COMPARE PERFORMANCE. This setting will analyze
and compare two versions of SQL performance data.

ORACLE 610

ORACLE

Chapter 6
Comparing SQL Trials Using APIs

Specify a name to identify the execution using the execution name parameter. If not
specified, it will be generated by SQL Performance Analyzer and returned by the
function.

Specify two versions of SQL performance data using the execution params
parameters. The execution params parameters are specified as (name, value) pairs
for the specified execution. Set the execution parameters that are related to comparing
and analyzing SQL performance data as follows:

— Setthe execution namel parameter to the name of the first execution (before the
system change was made). This value should correspond to the value of the
execution name parameter specified in "Creating a Pre-Change SQL Trial Using
APIs".

— Setthe execution name2 parameter to the name of the second execution (after
the system change was made). This value should correspond to the value of the
execution name parameter specified in "Creating a Post-Change SQL Trial Using
APIs" when you executed the SQL workload after the system change. If the caller
does not specify the executions, then by default SQL Performance Analyzer will
always compare the last two task executions.

— Setthe comparison metric parameter to specify an expression of execution
statistics to use in the performance impact analysis. Possible values include the
following metrics or any combination of them: elapsed time (default), cpu_ time,
buffer gets, disk reads, direct writes, optimizer cost, and
io_interconnect bytes.

For other possible parameters that you can set for comparison, see the description of
the DBMS_SQLPA package in Oracle Database PL/SQL Packages and Types Reference.

The following example illustrates a function call:

EXEC DBMS_SQLPA.EXECUTE ANALYSIS TASK(task name => 'my spa task', -

execution type => 'COMPARE PERFORMANCE', -
execution name => 'my exec compare', -
execution params => dbms_advisor.arglist (-
'comparison metric', 'buffer gets'));

Call the REPORT ANALYSIS TASK function using the following parameters:

Set the task name parameter to the name of the SQL Performance Analyzer task.

Set the execution name parameter to the name of the execution to use. This value
should match the execution name parameter of the execution for which you want to
generate a report.

To generate a report to display the results of:

— Execution plans generated for the SQL workload, set this value to match the
execution name parameter of the desired EXPLAIN PLAN execution.

— Execution plans and execution statistics generated for the SQL workload, set this
parameter to match the value of the execution name parameter used in the
desired TEST EXECUTE execution.

— A comparison analysis, set this value to match the execution name parameter of
the desired ANALYZE PERFORMANCE execution.

If unspecified, SQL Performance Analyzer generates a report for the last execution.

Set the type parameter to specify the type of report to generate. Possible values
include TEXT (default), HTML, XML, and ACTIVE.

6-11

Chapter 6
Comparing SQL Trials Using APIs

Active reports provides in-depth reporting using an interactive user interface that
enables you to perform detailed analysis even when disconnected from the database
or Oracle Enterprise Manager. It is recommended that you use active reports instead
of HTML or text reports when possible.

For information about active reports, see "About SQL Performance Analyzer Active
Reports".

e Setthe level parameter to specify the format of the recommendations. Possible
values include TYPICAL (default), ALL, BASIC, CHANGED, CHANGED PLANS, ERRORS,
IMPROVED, REGRESSED, TIMEOUT, UNCHANGED, UNCHANGED PLANS, and UNSUPPORTED.

e Setthe section parameter to specify a particular section to generate in the report.
Possible values include SUMMARY (default) and ALL.

* Setthe top sql parameter to specify the number of SQL statements in a SQL tuning
set to generate in the report. By default, the report shows the top 100 SQL statements
impacted by the system change.

To generate an active report, run the following script:

set trimspool on

set trim on

set pages 0

set linesize 1000

set long 1000000

set longchunksize 1000000

spool spa active.html

SELECT DBMS_ SQLPA.REPORT ANALYSIS TASK(task name => 'my spa task',
type => 'active', section => 'all') FROM dual;

spool off

The following example illustrates a portion of a SQL script that you could use to create and
display a comparison summary report in text format:

VAR rep CLOB;

EXEC :rep := DBMS SQLPA.REPORT ANALYSIS TASK('my spa task', -
'text', 'typical', 'summary');

SET LONG 100000 LONGCHUNKSIZE 100000 LINESIZE 130

PRINT :rep

3. Review the SQL Performance Analyzer report, as described in "Reviewing the SQL
Performance Analyzer Report in Command-Line".

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLPA.EXECUTE ANALYSIS TASK and
DBMS SQOLPA.REPORT ANALYSIS TASK functions

Reviewing the SQL Performance Analyzer Report in Command-Line

The SQL Performance Analyzer report is divided into the following sections:
e General Information
* Result Summary

¢ Result Details

ORACLE 610

Chapter 6
Comparing SQL Trials Using APIs

This section uses a sample report to illustrate how to review the SQL Performance Analyzer
report. The sample report uses buffer gets as the comparison metric to compare the pre-
change and post-change executions of a SQL workload.

General Information

The General Information section contains basic information and metadata about the SQL
Performance Analyzer task, the SQL tuning set used, and the pre-change and post-change
executions. Example 6-1 shows the General Information section of a sample report.

In Example 6-1, the Task Information section indicates that the task name is my spa task. The
Workload Information section indicates that the task compares executions of the my sts SQL
tuning set, which contains 101 SQL statements. As shown in the Execution Information
section, the comparison execution is named my exec compare.

The Analysis Information sections shows that SQL Performance Analyzer compares two
executions of the my sts SQL tuning set, my exec BEFORE change and my exec AFTER change,
using buffer gets as a comparison metric.

Example 6-1 General Information

Task Name
Task Owner
Description

: my spa task
: APPS

Execution Information:

SQL Tuning Set Name : my sts
SQL Tuning Set Owner : APPS
Total SQL Statement Count : 101

Execution Name
Execution Type
Description
Scope

Status

: My exec_compare Started
: ANALYZE PERFORMANCE Last Updated

Global Time Limit
: COMPREHENSIVE Per-SQL Time Limit
: COMPLETED Number of Errors

Analysis Information:

: 05/21/2007 11:30:09

05/21/2007 11:30:10

: UNLIMITED
: UNUSED

0

Workload Impact

Threshold: 1%

Execution Name
Execution Type

: my exec BEFORE change
: TEST EXECUTE

After Change Execution:

Execution Name
Execution Type
Description

: my exec AFTER change
: TEST EXECUTE

Degree of Parallelism: 4

Scope

Status
Started

Last Updated

: COMPREHENSIVE

: COMPLETED
05/21/2007 11:25:56
05/21/2007 11:28:30

Global Time Limit : 1800
Per-SQL Time Limit : UNUSED

Number of Errors

0

Description :
Degree of Parallelism: 4
Scope : COMPREHENSIVE
Status : COMPLETED
Started 05/21/2007 11:22:06
Last Updated : 05/21/2007 11:24:01
Global Time Limit : 1800
Per-SQL Time Limit : UNUSED
Number of Errors)

ORACLE

6-13

Chapter 6
Comparing SQL Trials Using APIs

Result Summary

The Result Summary section summarizes the results of the SQL Performance Analyzer task.
The Result Summary section is divided into the following subsections:

e Overall Performance Statistics
» Performance Statistics of SQL Statements

e Errors

Overall Performance Statistics

The Overall Performance Statistics subsection displays statistics about the overall
performance of the entire SQL workload. This section is a very important part of the SQL
Performance Analyzer analysis because it shows the impact of the system change on the
overall performance of the SQL workload. Use the information in this section to understand the
change of the workload performance, and determine whether the workload performance will
improve or degrade after making the system change.

Example 6-2 shows the Overall Performance Statistics subsection of a sample report.

This example indicates that the overall performance of the SQL workload improved by 47.94%,
even though regressions had a negative impact of -10.08%. This means that if all of the
regressions are fixed in this example, the overall change impact will be 58.02%. After the
system change, 2 of the 101 SQL statements ran faster, while 1 ran slower. Performance of 98
statements remained unchanged.

Example 6-2 Overall Performance Statistics

Report Summary

Overall Impact : 47.94%
Improvement Impact : 58.02%
Regression Impact : -10.08%

SQL Statement Count

SQL Category SQL Count Plan Change Count

Overall 101 6
Improved 2 2
Regressed 1 1
Unchanged 98 3

Performance Statistics of SQL Statements

The Performance Statistics subsection highlights the SQL statements that are the most
impacted by the system change. The pre-change and post-change performance data for each
SQL statement in the workload are compared based on the following criteria:

« Execution frequency, or importance, of each SQL statement
* Impact of the system change on each SQL statement relative to the entire SQL workload

* Impact of the system change on each SQL statement

ORACLE 614

Chapter 6
Comparing SQL Trials Using APIs

* Whether the structure of the execution plan for each SQL statement has changed

Example 6-3 shows the Performance Statistics of SQL Statements subsection of a sample
report. The report has been altered slightly to fit on the page.

The SQL statements are sorted in descending order by the absolute value of the net impact on
the SQL workload, that is, the sort order does not depend on whether the impact was positive
or negative.

Example 6-3 Performance Statistics of SQL Statements

SQL Statements Sorted by their Absolute Value of Change Impact on the Workload

| | | Impact on | Execution | Metric | Metric | Impact | Plan |
| object id | sql id | Workload | Frequency | Before | After | on SQL | Change |
| 205 | 73s2sgy2svfrw | 29.01% | 100000 | 1681683 | 220590 | 86.88% | v \
| 206 | gg2a407mv2hsy | 29.01% | 949141 | 1681683 | 220590 | 86.88% | v \
| 204 | 2wtgxbjzéu2by | -10.08% | 478254 | 1653012 | 2160529 | -30.7% | v \

Errors

The Errors subsection reports all errors that occurred during an execution. An error may be
reported at the SQL tuning set level if it is common to all executions in the SQL tuning set, or at
the execution level if it is specific to a SQL statement or execution plan.

Example 6-4 shows an example of the Errors subsection of a SQL Performance Analyzer
report.

Example 6-4 Errors

47bjmcdtwehtn ORA-00942: table or view does not exist
brélbjpdtnf7y ORA-00920: invalid relational operator

Result Details

The Result Details section represents a drill-down into the performance of SQL statements that
appears in the Result Summary section of the report Use the information in this section to
investigate why the performance of a particular SQL statement regressed.

This section will contain an entry of every SQL statement processed in the SQL performance
impact analysis. Each entry is organized into the following subsections:

* SQL Details
e Execution Statistics

* Execution Plans

SQL Details
This section of the report summarizes the SQL statement, listing its information and execution
details.
Example 6-5 shows the SQL Details subsection of a sample report.

ORACLE

6-15

In Example 6-5, the report summarizes the regressed SQL statement whose ID is

2wtgxbjz6u2by and corresponding object ID is 204.

Example 6-5 SQL Details

SQL Details:

Object ID

Schema Name

SQL ID

Execution Frequency
SQL Text

Execution Statistics

: APPS

1 2wtgxbjzoulby
H

: SELECT /* my query 14 scott */ /*+ ORDERED INDEX (tl)

USE_HASH(tl) */ 'B' ||
pg_featurevalue 05 id,
pg_featurevalue 15 id,
pg_featurevalue 01 id,

t2.pg featurevalue 05 id
'r' || td4.elementrange id
'G' || t5.elementgroup id
'r' || té6.elementrange id .

Chapter 6

Comparing SQL Trials Using APIs

The Execution Statistics subsection compares execution statistics of the SQL statement from

the pre-change and post-change executions and then summarizes the findings.

Example 6-6 shows the Execution Statistics subsection of a sample report.

Example 6-6 Execution Statistics

Execution Statistics:

| I
| Stat Name

elapsed time
parse time
exec elapsed
exec_cpu

cost
reads
writes

Before Change:

1. The statement was first executed to
2. Statistics shown were averaged over

After Change:

1. The statement was first executed to
2. Statistics shown were averaged over

Findings (2):

I I

I I

I I

I I

| buffer gets | -10.
I I

| | -1825.
I I

I I

Impact on | Value | Value
| Workload | Before | After
-95.
-12.
-95.
-19.

54%] 36.484 | 143.161
37%| .004 | .062
89% | 36.48 | 143.099
73%] 36.467 | 58.345
08%] 1653012 | 2160529
L17%] 11224 | 2771
72%| 4091 | 455280
-1500%| 0 | 15
I 135 | 135

1. The performance of this SQL has regressed.
2. The structure of the SQL execution plan has changed.

ORACLE

| Impact | % Workload | % Workload
| on SQL | Before | After

I -292.39% | 32.68% | 94.73%
I -1450% | .85% | 11.79%
| -292.27% | 32.81% | 95.02%
I -59.99% | 32.89% | 88.58%
I -30.7% | 32.82% | 82.48%
I 75.31% | 16.16% | 4.66%
| -11028.82% | 16.55% | 96.66%
I -1500% | % | 100%
I I I

warm the buffer cache.
next 9 executions.

warm the buffer cache.
next 9 executions.

6-16

Chapter 6
Comparing SQL Trials Using APIs

Execution Plans

The Execution Plans subsection displays the pre-change and post-change execution plans for
the SQL statement. In cases when the performance regressed, this section also contains
findings on root causes and symptoms.

Example 6-7 shows the Execution Plans subsection of a sample report.

Example 6-7 Execution Plans

Execution Plan Before Change:

Plan Id 01
Plan Hash Value : 3412943215

| Id | Operation | Name | Rows | Bytes | Cost | Time
| 0 | SELECT STATEMENT | | 1] 126 | 11224 | 00:02:15
| 1 HASH GROUP BY | | 1] 126 | 11224 | 00:02:15
| 2| NESTED LOOPS | | 1] 126 | 11223 | 00:02:15
| * 3] HASH JOIN | | 1] 111 | 11175 | 00:02:15
| x4 TABLE ACCESS FULL | LU_ELEMENTGROUP REL | 1 11 | 162 | 00:00:02
| * 5] HASH JOIN | | 487 | 48700 | 11012 | 00:02:13
| 6 | MERGE JOIN | | 14 | 924 | 1068 | 00:00:13
| 7 SORT JOIN | | 5391 | 274941 | 1033 | 00:00:13
| *8 HASH JOIN | | 5391 | 274941 | 904 | 00:00:11
| *9 TABLE ACCESS FULL | LU_ELEMENTGROUP REL | 123 | 1353 | 175 | 00:00:03
| * 10 | HASH JOIN | | 5352 | 214080 | 729 | 00:00:09
| * 11 | TABLE ACCESS FULL | LU_ITEM 293 | 5355 | 128520 | 56 | 00:00:01
| * 12 | TABLE ACCESS FULL | ADM PG_FEATUREVALUE | 1629 | 26064 | 649 | 00:00:08
| %13 | FILTER | | | | | |
| * 14 | SORT JOIN | | 1] 15 | 36 | 00:00:01
| * 15 | TABLE ACCESS FULL | LU_ELEMENTRANGE REL | 1] 15 | 35 | 00:00:01
| 16 | INLIST ITERATOR | | | | |
| * 17 | TABLE ACCESS BY INDEX ROWID | FACT PD OUT ITM 293 | 191837 | 6522458 | 9927 | 00:02:00
| 18 | BITMAP CONVERSION TO ROWIDS | | | | |
| 19 | BITMAP INDEX SINGLE VALUE | FACT 274 PER_IDX | | | | |
| 20 | TABLE ACCESS FULL | LU_ELEMENTRANGE REL | 1] 15 | 49 | 00:00:01
Execution Plan After Change:

Plan Id 1 102

Plan Hash Value : 1923145679
| Id | Operation | Name | Rows | Bytes | Cost | Time
| 0 | SELECT STATEMENT | | 1] 126 | 2771 | 00:00:34
| 1] HASH GROUP BY | | 1] 126 | 2771 | 00:00:34
| 2| NESTED LOOPS | | 1] 126 | 2770 | 00:00:34
| * 3] HASH JOIN | | 1] 111 | 2722 | 00:00:33
| x4 HASH JOIN | | 1] 100 | 2547 | 00:00:31
| *5] TABLE ACCESS FULL | LU_ELEMENTGROUP_REL | 1] 11 | 162 | 00:00:02
| 6 | NESTED LOOPS | | | | |
| 7 NESTED LOOPS | | 484 | 43076 | 2384 | 00:00:29
| *8 HASH JOIN | | 14 | 770 | 741 | 00:00:09
| 9 | NESTED LOOPS | | 4 | 124 | 683 | 00:00:09
| * 10 | TABLE ACCESS FULL | LU_ELEMENTRANGE REL | 1] 15 | 35 | 00:00:01
| * 11 | TABLE ACCESS FULL | ADM PG_FEATUREVALUE | 4 | 64 | 649 | 00:00:08
| * 12 | TABLE ACCESS FULL | LU_ITEM 293 | 5355 | 128520 | 56 | 00:00:01
| 13 | BITMAP CONVERSION TO ROWIDS | | | | |
| * 14 | BITMAP INDEX SINGLE VALUE | FACT 274 ITEM IDX | | | | |
| * 15 | TABLE ACCESS BY INDEX ROWID | FACT PD OUT ITM 293 | 36 | 1224 | 2384 | 00:00:29
| * 16 | TABLE ACCESS FULL | LU_ELEMENTGROUP REL | 123 | 1353 | 175 | 00:00:03
| * 17 | TABLE ACCESS FULL | LU_ELEMENTRANGE REL | 1] 15 | 49 | 00:00:01

Comparing SQL Tuning Sets Using APIs

You can compare two SQL tuning sets using the DBMS SQLPA package. For example, while
using Database Replay, you may have captured a SQL tuning set on the production system
during workload capture, and another SQL tuning set on a test system during workload replay.
You can then use SQL Performance Analyzer to compare these SQL tuning sets, without
having to re-execute the SQL statements. This is useful in cases where you already have

ORACLE 6-17

ORACLE

Chapter 6
Comparing SQL Trials Using APIs

another utility to run your workload before and after making the system change, such as a
custom script.

When comparing SQL tuning sets, SQL Performance Analyzer uses the runtime statistics
captured in the SQL tuning sets to perform its comparison analysis, and reports on any new or
missing SQL statements that are found in one SQL tuning set, but not in the other. Any
changes in execution plans between the two SQL tuning sets are also reported. For each SQL
statement in both SQL tuning sets, improvement and regression findings are reported for each
SQL statement—calculated based on the average statistic value per execution—and for the
entire workload—calculated based on the cumulative statistic value.

To compare SQL tuning sets using APIs:

1.

Create a SQL Performance Analyzer task:

VAR aname varchar2 (30);
EXEC :aname := 'compare s2s';
EXEC :aname := DBMS SQLPA.CREATE ANALYSIS TASK(task name => :aname);

It is not necessary to associate a SQL tuning set to the task during creation.
Create the first SQL trial and convert the first SQL tuning set:

EXEC DBMSisQLPA.EXECUTEiANALYSIsiTASK(taskiname => :aname, -
execution type => 'convert sqglset', -
execution name => 'first trial', -
executioniparams => DBMSiADVISOR.ARGLIST(
'sqlset name', 'my first sts', -
'sqlset owner', 'APPS'));

Specify the name and owner of the SQL tuning set using the SOLSET NAME and

SQLSET OWNER task parameters. The content of the SQL tuning set will not be duplicated by
the SQL Performance Analyzer task. Instead, a reference to the SQL tuning set is
recorded in association to the new SQL trial, which in this example is "first trial".

Create a second SQL trial and associate it to the second SQL tuning second to which you
want to compare:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => :aname, -
execution type => 'convert sqglset', -
execution name => 'second trial', -
execution params => DBMS ADVISOR.ARGLIST (
'sqlset name', 'my second sts', -
'sqlset owner', 'APPS'));

Compare the performance data from the two SQL trials (or SQL tuning sets) by running a
comparison analysis:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name => taname, -
execution type => 'compare', -
execution name => 'comparison', -
execution params => DBMS ADVISOR.ARGLIST (
'workload impact threshold', 0, -
'sql impact threshold', 0));

In this example, the workload and per-SQL impact threshold are set to 0% for comparison
(the default value is 1%).

After the comparison analysis is complete, generate a SQL Performance Analyzer report
using the DBMS SQLPA.REPORT ANALYSIS TASK function.

For information about generating a SQL Performance Analyzer report using APIs, see
"Analyzing SQL Performance Using APIs".

6-18

Chapter 6
Comparing SQL Trials Using APIs

Once the report is generated, review it to identify any differences between the contents of the
two SQL tuning sets. Example 6-8 shows the Analysis Information and Report Summary
sections of a sample report generated by comparing two SQL tuning sets:

Example 6-8 Analysis Information and Report Summary

Analysis Information:

first trial
: CONVERT SQLSET
: COMPLETED

Execution Name
Execution Type
Status

Started

Last Updated

Before Change Workload:
SQL Tuning Set Name : my first sts
SQL Tuning Set Owner : APPS
Total SQL Statement Count : 5

Overall Impact 72.32%
Improvement Impact 47.72%
Regression Impact : -.02%
Missing-SQL Impact : 33.1%
New-SQL Impact -8.48%

SQL Statement Count
SQL Category SQL Count Plan Change Count
Overall 7
Common

Improved
Regressed
Different
Missing SQL
New SQL

N P W W
O O O O

second trial
: CONVERT SQLSET
: COMPLETED

Execution Name
Execution Type
Status

After Change Workload:
SQL Tuning Set Name : my second sts
SQL Tuning Set Owner : APPS
Total SQL Statement Count : 6

As shown in Example 6-8, this report contains two additional categories that are not found in
standard SQL Performance Analyzer reports; both categories are grouped under the heading

Different:

* Missing SQL

This category represents all SQL statements that are present in the first SQL tuning set,
but are not found in the second SQL tuning set. In this example, only one SQL statement is
missing. As shown in Example 6-9, this SQL statement has:

— Asqgl idvalue of gv7xb8tyd1v9l

— A performance impact on the workload of 33.1% based on the change

— No performance impact on the SQL statement based on the change because its "Total
Metric After" change value is missing

* New SQL

ORACLE

6-19

Chapter 6
Comparing SQL Trials Using APIs

This category represents all SQL statements that are present in the second SQL tuning
set, but are not found in the first SQL tuning set. In this example, only two SQL statements
are new in the second SQL tuning set. As shown in Example 6-9, these SQL statements

have:

sql_id values of 4c8nrgxhtb2sf and 9utadguSudmh4
A total performance impact on the workload of -8.48%

Missing "Total Metric Before" change values

Example 6-9 shows a table in the sample report that lists the missing and new SQL
statements, as well as other top SQL statements as determined by their impact on the

workload:

Example 6-9 Top 7 SQL Sorted by Absolute Value of Change Impact on the Workload

Top 7 SQL Sorted by Absolute Value of Change Impact on

the Workload

| Total Metric
| Before

| Impact on
| Workload

7933w9yadd9sj
gv7xb8tydlvIl
4c8nrgxhtb2st
22u3tvrtOyreég
fgdd0£d56qmt0
9utadgu5udmh4
4dtv43awxnmv3

812791
625582

302190
146128

| Total Metric | Impact | Plan |
| After | on SQL | Change |
| 36974 | 95% | y \
| | | n \
| 157782 | | n \
| 215681 | 28.63% | n \
| 106369 | 27.21% | n \
| 2452 | | n

| 3890 | -47.35% | n \

Once you have identified a SQL statement of interest, you can generate a report for the SQL
statement to perform more detailed investigation. For example, you may want to investigate
the SQL statement with the sql id value of 7gj3w9ya4d9sj and object id value of 4 because
it has the highest impact on the workload:

SELECT DBMS SQLPA.REPORT ANALYSIS TASK(task name => :aname, object id => 4) rep

FROM dual;

Example 6-10 shows a sample report generated for this SQL statement:

Example 6-10 Sample Report for SQL Statement

SQL Details:

Object ID
SQL ID
SQL Text

SQL Execution

: 4
: 7993w9yadd9si
: /* my csts_queryl */ select * FROM

emp wh

ere empno=2

| Value
| After

| Stat Name

| elapsed time
| cpu time

| buffer gets
| cost

| reads

| writes

| rows

ORACLE

Statistics (average):
| Impact on | Value
| Workload | Before
| 41.04% | .036945
| 13.74% | .004772
| 9.59% | 8
| 11.76% | 1
| 4.08% | 0
\ 0% | 0
\ \ 0

6-20

Chapter 6
Comparing SQL Trials Using APIs

| executions \ | 22 | 20 | \
| plan_count \ | 3| 2 |

1. The performance of this SQL has improved.
2. The structure of the SQL execution plan has changed.

Plan Execution Statistics (average):

| plan hash value | 440231712 571903972 3634526668 | 571903972 3634526668

|
|
| schema name | APPS1 APPS2 APPS2 | APPS2 APPS2 |
| executions |7 5 10 | 10 10
| cost | 2 1 2 |1 2 |
| elapsed time | .108429 .000937 .00491 | .000503 .003195 |
| cpu_time | .00957 .0012 .0032 | .0005 .0032
| buffer gets | 18 0 5 | 0 5
| reads | 0 0 0 | 0 0
| writes | 0 0 0 | 0 0
| rows | 0 0 0 | 0 0
Execution Plans Before Change:
Plan Hash Value 440231712
| Id | Operation | Name | Rows | Bytes | Cost | Time

| 0 | SELECT STATEMENT \ | | \ \ |
[1] PX COORDINATOR \ | | \ \ |
[2 PX SEND QC (RANDOM) | :TQ10000 | 1| 87 | 2 | 00:00:01 |
[3] PX BLOCK ITERATOR | | | \ | 00:00:01 |
|4 TABLE ACCESS FULL | | | \ | 00:00:01 |

- dynamic sampling used for this statement
Plan Hash Value : 571903972

| Id | Operation | Name | Rows | Bytes | Cost | Time |
| 0 | SELECT STATEMENT \ \ | | 1] I
|1] TABLE ACCESS BY INDEX ROWID | EMP | 1] 87 | 1 100:00:01]
|2 INDEX UNIQUE SCAN | MY EMP IDX | 1] | 0 | |

| 0 | SELECT STATEMENT \ \ |
1 | TABLE ACCESS FULL | EMP | 1 | 87 |

- dynamic sampling used for this statement
Executions Plan After Change:

Plan Hash Value : 571903972

ORACLE 601

Chapter 6
Comparing SQL Trials Using APIs

| Id | Operation | Name | Rows | Bytes | Cost | Time |
| 0 | SELECT STATEMENT | \ \ \ 1] \
[TABLE ACCESS BY INDEX ROWID | EMP | 1] 87 | 1 100:00:01]
|2 INDEX UNIQUE SCAN | MY EMP IDX | 1] | 0 |

Plan Hash Value 3634526668

| Id | Operation | Name | Rows | Bytes | Cost | Time

| 0 | SELECT STATEMENT | | | | 2 |

|1] TABLE ACCESS FULL | EMP | 1] 87 | 2 1 00:00:01

Note

The SQL Execution Statistics section shows the average runtime statistics (per execution) of
the SQL statement. The data in this table reveals that this SQL statement is present in both
SQL tuning sets, but that it has only three execution plans in the first SQL tuning set and two
execution plans in the second SQL tuning set. Furthermore, the SQL statement was executed
22 times in the first SQL tuning set, but only 20 times in the second SQL tuning set.

The Plan Execution Statistics section shows runtime statistics per execution plan (or plan hash
value). The Plans Before Change column lists plans and their associated execution statistics
for the first SQL tuning set; the Plans After Change columns lists these values for the second
SQL tuning set. Execution plans structures for both SQL tuning sets are shown at the end of
the report.

You can use these sections in the report to identify changes in execution plans between two
SQL tuning sets. This is important because changes in execution plans may be a result of test
changes that can have a direct impact to performance. When comparing two SQL tuning sets,
SQL Performance Analyzer reports execution plan changes when a SQL statement has:

e One planin both SQL tuning sets, but the plan structure is different
* More than one plan, and the number of plans in both SQL tuning sets are:

— The same, but at least one plan in the second SQL tuning set is different from all plans
in the first SQL tuning set

— Different

After evaluating the SQL statement and plan changes, determine if further action is required. If
the SQL statement has regressed, perform one of the following actions:

e Tune the regressed SQL statement, as described in "Tuning Regressed SQL Statements
Using APIs"

e Create SQL plan baselines, as described in "Creating SQL Plan Baselines Using APIs"

Tuning Regressed SQL Statements Using APIs

After reviewing the SQL Performance Analyzer report, you should tune any regressed SQL
statements that are identified after comparing the SQL performance. If there are large numbers
of SQL statements that appear to have regressed, you should try to identify the root cause and
make system-level changes to rectify the problem. In cases when only a few SQL statements
have regressed, consider using the SQL Tuning Advisor to implement a point solution for them,

ORACLE 699

ORACLE

Chapter 6
Comparing SQL Trials Using APIs

or creating SQL plan baselines to instruct the optimizer to select the original execution plan in
the future.

To tune regressed SQL statements using APIs:

e Create a SQL tuning task for the SQL Performance Analyzer execution by using the
CREATE TUNING TASK function in the DBMS SQLTUNE package:

BEGIN
DBMS SQLTUNE.CREATE TUNING TASK(
spa_task name => 'my spa task',
spa_task owner => 'immchan',
spa_compare exec => 'my exec compare');
DBMS_SQLTUNE.EXECUTE TUNING TASK(spa task name => 'my spa task');
END;
/

This example creates and executes a SQL tuning task to tune the SQL statements that
regressed in the compare performance execution named my exec compare of the SQL
Performance Analyzer task named my spa_task. In this case, it is important to use this
version of the CREATE TUNING TASK function call. Otherwise, SQL statements may be tuned
in the environment from the production system where they were captured, which will not
reflect the system change.

< Note:

If you chose to execute the SQL workload remotely on a separate database, you
should not use this version of the CREATE_TUNING TASK function call to tune
regressed SQL statements. Instead, you should tune any regressions identified
by the SQL trials on the remote database, because the application schema is not
on the database running SQL Performance Analyzer. Therefore, you need to run
SQL Tuning Advisor on the database where the schema resides and where the
change was made.

Table 6-1 lists the SQL Performance Analyzer parameters that can be used with the
DBMS SQLTUNE.CREATE TUNING TASK function.

Table 6-1 CREATE_TUNING_TASK Function SQL Performance Analyzer Parameters
]

Parameter Description
SPA TASK NAME Name of the SQL Performance Analyzer task.
SPA TASK_OWNER Owner of the specified SQL Performance Analyzer task. If unspecified, this

parameter will default to the current user.

SPA COMPARE EXEC Execution name of the compare performance trial for the specified SQL
Performance Analyzer task. If unspecified, this parameter defaults to the most
recent execution of the COMPARE PERFORMANCE type for the given SQL
Performance Analyzer task.

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your results. Once
SQL Performance Analyzer shows that performance has stabilized, implement the fixes from
this step to your production system.

6-23

Chapter 6
Comparing SQL Trials Using APIs

Starting with Oracle Database 11g Release 2, SQL Tuning Advisor performs an alternative
plan analysis when tuning a SQL statement. SQL Tuning Advisor reviews the execution history
of the SQL statement, including any historical plans stored in the Automatic Workload
Repository. If SQL Tuning Advisor finds alternate plans, it allows you to choose a specific plan
and create a plan baseline to ensure that the desired execution plan is used for that SQL
statement.

¢ See Also:

e "Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs"

e Oracle Database SQL Tuning Guide for information about using the SQL Tuning
Advisor

e Oracle Database SQL Tuning Guide for information about alternative plan
analysis

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLTUNE package

Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs

ORACLE

If you chose to execute the SQL workload remotely on a separate database, then you should
tune any regressions identified by the SQL trials on the remote database, instead of the
system where the SQL Performance Analyzer task resides.

To tune regressed SQL statements from a remote SQL trial using APIs:

1. On the system running SQL Performance Analyzer, create a subset of the regressed SQL
statements as a SQL tuning set:

DECLARE
sglset cur DBMS SQLTUNE.SQLSET CURSOR;
BEGIN
DBMS SQLTUNE.CREATE SQLSET ('SUB STS1', 'test purpose');

OPEN sglset cur FOR
SELECT value(p)
FROM table (

DBMS SQLTUNE.SELECT SQLPA TASK (
task name => 'SPA TASKL',
execution name => 'COMP',
level filter => 'REGRESSED')) p;

DBMS SQLTUNE.LOAD SQLSET ('SUB STS1', sqlset cur);

CLOSE sqglset _cur;
END;
/

Other than 'REGRESSED', you can use other filters to select SQL statements for the SQL
tuning set, such as 'CHANGED', 'ERRORS', Or 'CHANGED PLANS'. For more information, see
Oracle Database PL/SQL Packages and Types Reference.

2. Create a staging table to where the SQL tuning set will be exported:

BEGIN
DBMS SQLTUNE.CREATE STGTAB SQLSET (

6-24

ORACLE

Chapter 6
Comparing SQL Trials Using APIs

table name => 'STG TABl',

schema name => 'JOHNDOE',

tablespace name => 'TBS 1',

db_version => DBMS_SQLTUNE.STS STGTAB_ 11 1 VERSION);
END;

Use the db_version parameter to specify the appropriate database version to where the
SQL tuning set will be exported and tuned. In this example, the staging table will be
created with a format so that it can be exported to a system running Oracle Database 11g
Release 1, where it will later be tuned using SQL Tuning Advisor. For other database
versions, see Oracle Database PL/SQL Packages and Types Reference for that release.

Export the SQL tuning set into the staging table:

BEGIN
DBMS SQLTUNE.PACK STGTAB SQLSET (
sglset name => 'SUB STS1',
sglset owner => "JOHNDOE',
staging table name => 'STG TABl',
staging schema owner => 'JOHNDOE',
db version => DBMS SQLTUNE.STS STGTAB 11 1 VERSION);
END;
/

Move the staging table to the remote database (where the SQL workload was executed)
using the mechanism of choice (such as Oracle Data Pump or database link).

On the remote database, import the SQL tuning set from the staging table:

BEGIN
DBMS SQLTUNE.UNPACK STGTAB SQLSET (
sglset name => 'SUB STS1',
staging table name => 'STG TABl',
replace => TRUE);
END;
/

Tune the regressed SQL statements in the SQL tuning set by running SQL Tuning Advisor:

BEGIN
sts name := 'SUB STS1';
sts_owner := 'JOHNDOE';
tune task name := 'TUNE TASK1';

tname := DBMS SQLTUNE.CREATE TUNING TASK(sqlset name => sts name,
sglset owner => sts owner,
task name => tune task name);
EXEC DBMS_ SQLTUNE.SET TUNING TASK PARAMETER (:tname,
'"APPLY CAPTURED COMPILENV',
'"FALSE'") ;
exec_name := DBMS SQLTUNE.EXECUTE TUNING TASK (tname);
END;
/

6-25

Chapter 6
Comparing SQL Trials Using APIs

Note:

The APPLY CAPTURED COMPILENV parameter used in this example is only
supported by Oracle Database 11g Release 1 and newer releases. If you are
testing a database upgrade from an earlier version of Oracle Database, SQL
Tuning Advisor will use the environment variables stored in the SQL tuning set
instead.

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your results. Once
SQL Performance Analyzer shows that performance has stabilized, implement the fixes from
this step to your production system.

¢ See Also:

* Oracle Database SQL Tuning Guide for information about using the SQL Tuning
Advisor and transporting SQL tuning sets

* Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLTUNE package

Creating SQL Plan Baselines Using APIs

ORACLE

Creating SQL plan baselines for regressed SQL statements with plan changes is another
option to running the SQL Tuning Advisor. Doing so instructs the optimizer to use the original
execution plans for these SQL statements in the future.

To create SQL plan baselines for the original plans:

1. Create a subset of a SQL tuning set of only the regressed SQL statements.

2. Create SQL plan baselines for this subset of SQL statements by loading their plans using
the LOAD PLANS FROM SQLSET function of the DBMS SPM package, as shown in the following

example:

DECLARE
my plans PLS INTEGER;
BEGIN
my plans := DBMS SPM.LOAD PLANS FROM SQLSET (
sglset name => 'regressed sql');
END;
/

See Also:

* Oracle Database SQL Tuning Guide for information about using SQL plan
baselines

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SPM package

6-26

Chapter 6
Comparing SQL Trials Using APIs

Using SQL Performance Analyzer Views

You can query the following views to monitor SQL Performance Analyzer and view its analysis
results:

Note:

The information available in these views are also contained in the SQL Performance
Analyzer report. It is recommended that you use the SQL Performance Analyzer
report to view analysis results instead. Consider using these views only for
performing more advanced analysis of the results.

* The DBA ADVISOR TASKS and USER_ADVISOR TASKS views display descriptive information
about the SQL Performance Analyzer task that was created.

* The DBA ADVISOR EXECUTIONS and USER ADVISOR EXECUTIONS views display information
about task executions. SQL Performance Analyzer creates at least three executions to
analyze the SQL performance impact caused by a database change on a SQL workload.
The first execution collects a pre-change version of the performance data. The second
execution collects a post-change version of the performance data. The third execution
performs the comparison analysis.

e The DBA ADVISOR FINDINGS and USER ADVISOR FINDINGS views display the SQL
Performance Analyzer findings. SQL Performance Analyzer generates the following types
of findings:

— Problems, such as performance regression
— Symptoms, such as when the structure of an execution plan has changed
— Errors, such as nonexistence of an object or view

— Informative messages, such as when the structure of an execution plan in the pre-
change version is different than the one stored in the SQL tuning set

e The DBA ADVISOR SQLPLANS and USER ADVISOR_ SQLPLANS views display a list of all
execution plans.

e The DBA ADVISOR SQLSTATS and USER _ADVISOR SQLSTATS views display a list of all SQL
compilations and execution statistics.

* The V$ADVISOR PROGRESS view displays the operation progress of SQL Performance
Analyzer. Use this view to monitor how many SQL statements have completed or are
awaiting execution in a SQL trial. The sOFaAR column indicates the number of SQL
statements processed so far, and the TOTAL WORK column shows the total number of SQL
statements to be processed by the task execution.

You must have the SELECT CATALOG ROLE role to access the DBA views.

See Also:

* Oracle Database Reference for information about the DBA ADVISOR TASKS,
DBA ADVISOR EXECUTIONS, and DBA ADVISOR SQLPLANS views

ORACLE 6-27

Using SPA Quick Check

Oracle Enterprise Manager Cloud Control (Cloud Control) includes the SQL Performance
Analyzer Quick Check (SPA Quick Check) feature. On some Cloud Control database
management pages, SPA Quick Check can validate the impact of a system change to the
database workload before you make the change.

You can use SPA Quick Check to validate what the impact to your database workload will be
for the following changes:

e Changing the value of an initialization parameter
* Gathering pending optimizer statistics

* Implementing key SQL profiles

Note:

SPA Quick Check is available starting with Cloud Control Release 12.1.0.4 Bundle
Patch 8 and later.

SPA Quick Check is supported for any database running Oracle Database 10g
Release 2 (10.2) and later. However, not all the SPA Quick Check features are
supported in Oracle Database 10g Release 2 (10.2).

For example, optimizer pending statistics and Automatic SQL Tuning Advisor
features are available starting with Oracle Database 11g Release 1 (11.1), so SPA
Quick Check workflows for these features are only supported for databases running
Oracle Database 11g Release 1 (11.1) and later.

This chapter describes how to use SPA Quick Check and contains the following topics:

e "About Configuring SPA Quick Check"

* "Specifying Default Values for SPA Quick Check”

e "Validating the Impact of an Initialization Parameter Change"

e "Validating the Impact of Pending Optimizer Statistics"

e "Validating the Impact of Implementing Key SQL Profiles"

e "Validating Statistics Findings from Automatic SQL Tuning Advisor"

About Configuring SPA Quick Check

ORACLE

Before you can use SPA Quick Check to validate the impact of an initialization parameter
change or of gathering pending optimizer statistics, you must specify default settings for SPA
Quick Check.

You will specify a default SQL tuning set for SPA Quick Check to use as one of the settings,
and this SQL tuning set should include SQL statements used in the database application you
are trying to tune.

7-1

Chapter 7
Specifying Default Values for SPA Quick Check

Note:

It is not necessary to set default values for SPA Quick Check before using SPA Quick
Check to validate the impact of implementing one or more key SQL profiles.

Specifying Default Values for SPA Quick Check

You specify default settings for SPA Quick Check on the SQL Performance Analyzer Setup
page in Cloud Control.

To specify default settings for SPA Quick Check:

1. On the Database Home page in Cloud Control, from the Performance menu, select SQL,
then SQL Performance Analyzer Setup. If the Database Login page appears, enter
administrator privileges for the database, then click Login.

The SQL Performance Analyzer Setup page appears.

SQL Performance Analyzer Setup

This page is used to configure the settings for the 'validate with SQL Performance Analyzer' option avalable from certain database management pages. These aptions are used to validate the performance of the
database after changing database settings.

* 5QL Tuning Set SYSTEM.RUMLOAD Q

> ;) Trial Mode:
Trial Mode @ Optimal (Hybrid) @ Test Execute &) Explain Plan ria’ Hode:

Optimal (Hybrid): This is the recommended mode. It finds SQLs with plan changes first by
generating plan, then test-executes SQL statements with plan changes.

Test Execute: Test-execute every SQL statement and collect its execution plans and execution
statistics.

Explain Plan: Generate explain plan for every statement in the SQL workload.

Per-5QL Time Limit (Seconds) 300
Execute Full DML) Yes @ No
Workload Impact Threshald{%) 15
SQL Impact Thrashold (%) 12
‘Workload Impact Threshold(%), SQL Impact Threshold(%):
These settings control the threshold where SGL is reported as having regressed or improved. The
Workload Impact Threshold is the percent impact of the chosen metric on the entire workload.
The SQL Impact Threshold is the percent impact of the chosen metric on the individual SQL
statement. Only statements that exceed both percentages will be reported as regressed or
improved.

Disable Multiple Executions @) Yes &) No
Comparison Metric Buffer Gets [=]
Use Resource Consumer Group (7 Yes @ No
Resource Consumer Group
save Disable Multiple Executions:

By defauit, SPA executes short running SQL multiple times to eliminate buffer warm up effects.
This option disables those multiple executions.

2. Configure the settings for the SPA Quick Check feature, which is available on some Cloud
Control database management pages. The SQL tuning set that you specify should be
representative of the workload for the application that you want to tune.

3. Click Save to save the default SPA Quick Check settings you specified.

Validating the Impact of an Initialization Parameter Change

ORACLE

Before you change the value of a session-modifiable initialization parameter, you can validate
the impact of that change on your database workload by using SPA Quick Check. Session-
modifiable parameters are initialization parameters whose values can be changed using the
ALTER SESSION statement.

¢ Note:

You can use SPA Quick Check to validate the impact of an initialization parameter
change in databases running Oracle Database 10g Release 2 (10.2) and later.

To validate the impact of an initialization parameter change:

7-2

Chapter 7
Validating the Impact of Pending Optimizer Statistics

1. On the Database Home page in Cloud Control, from the Administration menu, select
Initialization Parameters.

The Initialization Parameters page appears.

2. Use the filter on the Initialization Parameters page to identify the session-modifiable
initialization parameter whose value you want to change, and click Go to display that
parameter in the table at the bottom of the page. Most of the parameters in the Optimizer
category are session-modifiable.

3. Inthe table, change the current value of the parameter to the new value whose impact you
would like to validate using SPA Quick Check.

4, Click Validate with SPA.

Logged in as I
Execute On Multiple Databases | Show SQL | Revert | Validate with SPA | SPA Validation Results | Apply |
Initialization Parameters
Current = SPFile

The parameter values listed here are currently used by the running instance(s). You can change static parameters in SPFile mode.

Mame Basic Modified Dynamic Category
Iopﬁmizer_mode I All : I All : I All : I Optimizer Iz‘ Go
Filter on 2 name or partizl name

["] &pply changes in current running instance(s) mode to SPFile. For static parameters, you must restart the database.

Save to File

Mame |He||3 |\.-'a|ue |Comments |T\,r|:re |Basic |Modiﬁed |Dynamic |Cahegory |

optimizer_mode (3} | FIRST_ROWS_100 [=| | String v Optimizer
Save to File

Execute On Multiple Databases | Show SQL | Revert | Validate with SPA | SPA Validation Results | Apply |

An Information message appears at the top of the page, and says that a SPA task for
validating the impact of the initialization parameter change has been submitted.

5. Click the link for the SPA task in the Information message.
The SQL Performance Analyzer Home page appears.

6. Inthe SQL Performance Analyzer Tasks section at the bottom of the page, select the task
for the initialization parameter job, and click View Latest Report.

The SQL Performance Analyzer Task Report page appears.

7. View the table at the bottom of the page to see what the result of changing the initialization
parameter's value would be on the most impactful SQL statements in the workload.

Validating the Impact of Pending Optimizer Statistics

Before you gather pending optimizer statistics, you can validate the impact of gathering those
statistics on your database workload by using SPA Quick Check.

Note:

You can use SPA Quick Check to validate the impact of gathering pending optimizer
statistics in databases running Oracle Database 11g Release 1 (11.1) and later.

ORACLE .

ORACLE

Chapter 7
Validating the Impact of Pending Optimizer Statistics

To validate the impact of gathering pending optimizer statistics:

1.

On the Database Home page in Cloud Control, from the Performance menu, select SQL,
and then Optimizer Statistics.

The Optimizer Statistics Console page appears.
In the Operations section, click Gather.
The Gather Optimize Statistics wizard appears.

In the Validate with SQL Performance Analyzer section at the bottom of the Gather
Optimizer Statistics: Scope page, enable the Validate impact of stats on SQL
performance prior to publishing (recommended) option. The database global statistics
gathering option PUBLISH will be set to FALSE temporarily during the process. Then click
Next.

) lnaexes

") Fixed Objects
In-memory structures)varizbles of the RDEMS that are exposed in the form of
aynamic :E_'D""-E noe tahkes,
") Dictionary Objects
Objects in "SYS, 'SYSTEM' and 2l non-user defined schemas,

(¥ TIP The Objects step will be skipped when Database, Fixed Objects or Dictionary
Objects is selected.

Options for Scope: Database
@) Use Orade-recommended option settings
Oracle will select 03:53 "D' wiich to gather optimzer statisthics Dased on the activity on the

objects, Alsa, Ovacle will use the best options for generating the statistics, The Customize Crptions step
will be skipped i you choose this option,

[View Orade-recommended option settings
~) Customize Options
Yiou c2n oustomize options an the Customize Options step
validate With SQL Performance Analyzer

alidate impact of stats on SQL performance prior to publishing (recommended). The
dat8base global statistics gathering option PUBLISH will be set to FALSE temporarily during
the process.

Cancel [Step 1of 5 Mext

Continue through the wizard, and on the Gather Optimizer Statistics: Scope page, click
Submit.

Along with gathering pending statistics, this starts a job that creates a SQL Performance
Analyzer task that validates the impact of gathering optimizer statistics for the database.

When the job starts, a Confirmation message appears on the Manage Optimizer Statistics
page that says that the Gather Optimizer Statistics job has been successfully submitted.
Click the link in that message.

The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks table at the bottom of the page, make sure that
the statistics gathering job has completed. It may take several minutes for the job to
complete. Then select the row for the Gather Optimizer Statistics job and click View Latest
Report.

The SQL Performance Analyzer Task Report page appears.

View the table at the bottom of the page to see what the result of publishing the pending
optimizer statistics would be on the most impactful SQL statements in the workload.

7-4

Chapter 7
Validating the Impact of Implementing Key SQL Profiles

Validating the Impact of Implementing Key SQL Profiles

Before you implement key SQL profiles for SQL statements, you can validate the impact of
using those profiles by using SPA Quick Check. You can validate the impact of key SQL
profiles on the Automatic SQL Tuning Result Summary page. Key SQL profiles are profiles
verified to yield at least a 3 times performance improvement, and which would have been
implemented automatically if auto-implementation had been enabled for Automatic SQL Tuning
Advisor.

ORACLE

Note:

You can use SPA Quick Check to validate the impact of implementing key SQL
profiles in databases running Oracle Database 11g Release 1 (11.1) and later.

To validate the impact of key SQL profiles:

1.

On the Database Home page in Cloud Control, from the Performance menu, select
Advisors Home.

The Advisor Central page appears.

In the Advisors section, click SQL Advisors.

The SQL Advisors page appears.

In the SQL Tuning Advisor section, click Automatic SQL Tuning Results.
The Automatic SQL Tuning Result Summary page appears.

The Key SQL Profiles field in the Task Status section lists the number of key SQL profiles
for the current automatic SQL tuning task. If a value of 0 appears in the field, there are no
key SQL profiles to use (or validate). If a value greater than 0 appears in the Key SQL
Profiles field, click the value to validate the impact of using the key SQL profile or profiles.

The Automatic SQL Tuning Result Details: SQLs with Key SQL Profile page appears.

The key SQL profiles appear in the Recommendations section. Click Validate All Profiles
with SPA.

7-5

Chapter 7
Validating Statistics Findings from Automatic SQL Tuning Advisor

Advisor Central > SQL Tuning Summary:SYS.5YS_AUTO_SQL_TUNING_TASK = Logged in as I

Automatic SQL Tuning Result Details: SQLs with Key SQL Profile
Begin Date Apr 10, 2015 10:00:02 PM GMT-07:00 End Date Apr 27, 2015 8:37:05 AM GMT-07:00

Task Status
Automatic SQL Tuning (SYS_AUTO_SQL_TUMING_TASK) is currently Enabled Configure
Automatic Implementation of SQL Profiles is currently Disabled Configure

Recommendations
Only profiles that significantly improve SQL performance were implemented.

View Recommendations | Implement All SQL Profiles | Validate All Profiles with SPA |

L

Parsing SQL
Select | 5QL Text Schema | SQLID Weekly DB Time Benefit(sec) ¥ | Per-Execution % Benefit |Statistics | Profile

SELECT l.log_id,

@ ljob_name, SYS cawd3rgfgkogm 382 33 (83%) »
l.owner, |....
SELECT CASE
WHEN SYSMAN 4sScka7navhwp 0.40 89 (89%)
metric, METRIC ...

Legend % Recommended (5 Implemented

A Confirmation statement appears at the top of the page that indicates that a SPA task for
validating the SQL profiles has been submitted.

6. Click the link for the SPA task in the Confirmation statement.

The SQL Performance Analyzer Home page appears, and the SPA task for validating the
key SQL profiles appears in the SQL Performance Analyzer Tasks table at the bottom of
the page.

7. Select the task and click View Latest Report.
The SQL Performance Analyzer Task Report page appears.

8. View the table at the bottom of the page to see what the result would be of implementing
the key SQL profiles recommended on the Automatic SQL Tuning Result Summary page
on the most impactful SQL statements in the workload.

Validating Statistics Findings from Automatic SQL Tuning Advisor

You can validate the impact of statistics findings from Automatic SQL Tuning Advisor using
SPA Quick Check.

Note:

You can use SPA Quick Check to validate the impact of validating statistics findings
from Automatic SQL Tuning Advisor in databases running Oracle Database 11g
Release 1 (11.1) and later.

To validate the impact of statistics findings from Automatic SQL Tuning Advisor:

1. On the Database Home page in Cloud Control, from the Performance menu, select
Advisors Home.

The Advisor Central page appears.

2. Inthe Advisors section, click SQL Advisors.

ORACLE .

ORACLE

Chapter 7
Validating Statistics Findings from Automatic SQL Tuning Advisor

The SQL Advisors page appears.
In the SQL Tuning Advisor section, click Automatic SQL Tuning Results.
The Automatic SQL Tuning Result Summary page appears.

If any statistics findings are available, they appear in the Statistics Finding Summary
section near the bottom of the page. To validate the impact of statistics findings in user
schemas, click Validate with SPA.

A Confirmation statement appears at the top of the page that indicates a SPA task for
validating the statistics findings has been submitted.

Click the link for the SPA task in the Confirmation statement.

The SQL Performance Analyzer Home page appears, and the SPA task for validating the
statistics findings appears in the SQL Performance Analyzer Tasks table at the bottom of
the page.

After all the steps in the task have completed successfully, and Completed appears in the
Last Run Status column of the table, select the task and click View Latest Report. It may
take several minutes for all of the steps in the task to complete.

The SQL Performance Analyzer Task Report page appears.

View the table at the bottom of the page to see what the result would be of implementing
the statistics on the Automatic SQL Tuning Result Summary page on the most impactful
SQL statements in the workload.

7-7

Testing a Database Upgrade

SQL Performance Analyzer supports testing database upgrades from Oracle9i and later
releases to Oracle Database 10g Release 2 or newer releases. The methodology used to test
a database upgrade from Oracle9i Database and Oracle Database 10g Release 1 is slightly
different from the one used to test a database upgrade from Oracle Database 10g Release 2
and later releases, so both methodologies are described here.

This chapter describes how to use SQL Performance Analyzer in a database upgrade and
contains the following sections:

e Upgrading from Oracle9i Database and Oracle Database 10g Release 1
e Upgrading from Oracle Database 10g Release 2 and Newer Releases

e Tuning Regressed SQL Statements After Testing a Database Upgrade

See Also:

* "SQL Performance Analyzer" for information about using SQL Performance
Analyzer in other cases

* Oracle Database Upgrade Guide for information on upgrade paths for Oracle
Database 12c

Upgrading from Oracle9i Database and Oracle Database 10g
Release 1

SQL Performance Analyzer supports testing database upgrades of Oracle9i Database and
Oracle Database 10g Release 1 to Oracle Database 11g Release 2 or higher releases. Use the
following steps and see Figure 8-1:

e Building a SQL tuning set from SQL trace files captured on the production system
e Executing the SQL tuning set on the upgraded database remotely over a database link
e Comparing the results to those captured on the production system

Because SQL Performance Analyzer only accepts a set of SQL statements stored in a SQL
tuning set as its input source, and SQL tuning sets are not supported for Oracle9i Database, a
SQL tuning set must be constructed so that it can be used as an input source for SQL
Performance Analyzer if you are upgrading from Oracle9i Database.

ORACLE -

ORACLE

Chapter 8
Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Figure 8-1 SQL Performance Analyzer Workflow for Database Upgrade from Oracle9i
or 10g Release 1 to Oracle Database 11g Release 2 or Higher

Oracle Database 9.2.0.8
or10.1.0.5 -
Production

2,

—

— [=], SQL Trace v .
E —£| (subset of sessions) — _I:_Il:tzzlng
I — —
No Data Necessary
Remote Test-execute
Build STS (db link)
Oracle ‘—3
Database SQL
122 | < 5 Plan + Stats
) Oracle Database
Compare Perf, View Report 11.2.0.3 or

higher - Test

Before the database upgrade can be tested, ensure that the following conditions are met:

e The production system which you are upgrading from is running Oracle9i (9.2.0.8) or
Oracle Database 10g Release 1 (10.1.0.5).

e The test system which you are upgrading to is running Oracle Database 11g Release 2 or
higher.

The database version can be release 11.2.0.3 or higher.

e The test system must resemble the production system as closely as possible because the
performance on both systems will be compared to each other.

e The hardware configurations on both systems must also be as similar as possible.

You will also need to set up a separate SQL Performance Analyzer system running Oracle
Database 12c¢ Release 2. You will be using this system to build a SQL tuning set and to run
SQL Performance Analyzer. Neither your production data or schema need to be available on
this system, since the SQL tuning set will be built using statistics stored in the SQL trace files
from the production system. SQL Performance Analyzer tasks will be executed remotely on the
test system to generate the execution plan and statistics for the SQL trial over a database link
that you specify. The database link must be a public database link that connects to a user with
the EXECUTE privilege for the DBMS SQLPA package and the ADVISOR privilege on the test
system. You should also drop any existing PLAN TABLE from the user's schema on the test
system.

Once the upgrade environment is configured as described, perform the steps as described in
the following procedure to use SQL Performance Analyzer in a database upgrade from
Oracle9i or Oracle Database 10g Release 1 to a newer release.

1. Enable the SQL Trace facility on the production system, as described in "Enabling SQL
Trace on the Production System”.

8-2

Chapter 8
Upgrading from Oracle9i Database and Oracle Database 10g Release 1

To minimize the performance impact on the production system and still be able to fully
capture a representative set of SQL statements, consider enabling SQL Trace for only a
subset of the sessions, for as long as required, to capture all important SQL statements at
least once.

On the production system, create a mapping table, as described in "Creating a Mapping
Table".

This mapping table will be used to convert the user and object identifier numbers in the
SQL trace files to their string equivalents.

Move the SQL trace files and the mapping table from the production system to the SQL
Performance Analyzer system, as described in "Creating a Mapping Table".

On the SQL Performance Analyzer system, construct a SQL tuning set using the SQL
trace files, as described in "Building a SQL Tuning Set".

The SQL tuning set will contain the SQL statements captured in the SQL trace files, along
with their relevant execution context and statistics.

On the SQL Performance Analyzer system, use SQL Performance Analyzer to create a
SQL Performance Analyzer task and convert the contents in the SQL tuning set into a pre-
upgrade SQL trial that will be used as a baseline for comparison, then remotely test
execute the SQL statements on the test system over a database link to build a post-
upgrade SQL trial, as described in "Testing Database Upgrades from Oracle9i Database
and Oracle Database 10g Release 1".

Compare SQL performance and fix regressed SQL.

SQL Performance Analyzer compares the performance of SQL statements read from the
SQL tuning set during the pre-upgrade SQL trial to those captured from the remote test
execution during the post-upgrade SQL trial. A report is produced to identify any changes
in execution plans or performance of the SQL statements.

If the report reveals any regressed SQL statements, you can make further changes to fix
the regressed SQL, as described in "Tuning Regressed SQL Statements After Testing a
Database Upgrade".

Repeat the process of executing the SQL tuning set and comparing its performance to a
previous execution to test any changes made until you are satisfied with the outcome of
the analysis.

Enabling SQL Trace on the Production System

Oracle9i uses the SQL Trace facility to collect performance data on individual SQL statements.
The information generated by SQL Trace is stored in SQL trace files. SQL Performance
Analyzer consumes the following information from these files:

ORACLE

SQL text and username under which parse occurred
Bind values for each execution

CPU and elapsed times

Physical reads and logical reads

Number of rows processed

Execution plan for each SQL statement (only captured if the cursor for the SQL statement
is closed)

Although it is possible to enable SQL Trace for an instance, it is recommended that you enable
SQL Trace for a subset of sessions instead. When the SQL Trace facility is enabled for an
instance, performance statistics for all SQL statements executed in the instance are stored into

8-3

Chapter 8
Upgrading from Oracle9i Database and Oracle Database 10g Release 1

SQL trace files. Using SQL Trace in this way can have a severe performance impact and may
result in increased system overhead, excessive CPU usage, and inadequate disk space. It is
required that trace level be set to 4 to capture bind values, along with the execution plans.

For production systems running Oracle Database 10g Release 1, use the

DBMS MONITOR.SESSION TRACE ENABLE procedure to enable SQL Trace transparently in another
session. You should also enable binds explicitly by setting the binds procedure parameter to
TRUE (its default value is FALSE).

After enabling SQL Trace, identify the SQL trace files containing statistics for a representative
set of SQL statements that you want to use with SQL Performance Analyzer. You can then
copy the SQL trace files to the SQL Performance Analyzer system. Once the SQL workload is
captured in the SQL trace files, disable SQL Trace on the production system.

¢ See Also:

e Oracle Database SQL Tuning Guide for additional considerations when using
SQL Trace, such as setting initialization parameters to manage SQL trace files

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS MONITOR package

Creating a Mapping Table

ORACLE

To convert the user and object identifier numbers stored in the SQL trace files to their
respective names, you need to provide a table that specifies each mapping. The SQL
Performance Analyzer system will read this mapping table when converting the trace files into
a SQL tuning set.

To create a mapping table:

¢ Run the following SQL statements on the production database:

CREATE TABLE mapping AS
SELECT object id id, owner, SUBSTR(object name, 1, 30) name FROM dba objects

WHERE object type NOT IN ('CONSUMER GROUP', 'EVALUATION CONTEXT', 'FUNCTION',
"INDEXTYPE', 'JAVA CLASS', 'JAVA DATA',
'JAVA RESOURCE', 'LIBRARY', 'LOB', 'OPERATOR',
"PACKAGE', 'PACKAGE BODY', 'PROCEDURE', 'QUEUE',
'"RESOURCE PLAN', 'SYNONYM', 'TRIGGER', 'TYPE',
"TYPE BODY')

UNION ALL
SELECT user id id, username owner, null name FROM dba users;

Once the mapping table is created, you can use Data Pump to transport it to the SQL
Performance Analyzer system.

¢ See Also:

* Oracle Database Utilities for information about using Data Pump

8-4

Chapter 8
Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Building a SQL Tuning Set

Once the SQL trace files and mapping table are moved to the SQL Performance Analyzer
system, you can build a SQL tuning set using the DBMS SQLTUNE package.

To build a SQL tuning set:

1. Copy the SQL trace files to a directory on the SQL Performance Analyzer system.
2. Create a directory object for this directory.

3. Use the DBMS SQLTUNE.SELECT SQL TRACE function to read the SQL statements from the
SQL trace files.

For each SQL statement, only information for a single execution is collected. The
execution frequency of each SQL statement is not captured. Therefore, when performing a
comparison analysis for a production system running Oracle Database 10g Release 1 and
older releases, you should ignore the workload-level statistics in the SQL Performance
Analyzer report and only evaluate performance changes on an execution level.

The following example reads the contents of SQL trace files stored in the sql_trace prod
directory object and loads them into a SQL tuning set.

DECLARE
cur sys refcursor;

BEGIN
DBMS SQLTUNE.CREATE SQLSET ('my sts 9i');
OPEN cur FOR

SELECT VALUE (P)

FROM table (DBMS SQLTUNE.SELECT SQL TRACE('sql trace prod', '%ora%')) P;
DBMS SQLTUNE.LOAD SQLSET ('my sts 9i', cur);
CLOSE cur;

END;
/

The syntax for the SELECT SQL TRACE function is as follows:

DBMS SQLTUNE.SELECT SQL TRACE (

directory IN VARCHAR2,

file name IN VARCHAR2 := NULL,

mapping table name IN VARCHAR2 := NULL,

mapping table owner IN VARCHAR2 := NULL,

select mode IN POSITIVE := SINGLE EXECUTION,

options IN BINARY INTEGER := LIMITED COMMAND TYPE,
pattern start IN VARCHAR2 := NULL,

parttern end IN VARCHAR2 := NULL,

result limit IN POSITIVE := NULL)

RETURN sys.sglset PIPELINED;

Table 8-1 describes the available parameters for the SELECT SQL TRACE function.

Table 8-1 DBMS_SQLTUNE.SELECT_SQL_TRACE Function Parameters

___|]
Parameter Description

directory Specifies the directory object pointing to the directory where the SQL
trace files are stored.

ORACLE oc

Chapter 8
Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Table 8-1 (Cont.) DBMS_SQLTUNE.SELECT_SQL_TRACE Function Parameters

. ___|
Parameter Description

file name Specifies all or part of the name of the SQL trace files to process. If
unspecified, the current or most recent trace file in the specified
directory will be used. % wildcards are supported for matching trace file
names.

mapping table name Specifies the name of the mapping table. If set to the default value of
NULL, mappings from the current database will be used. Note that the
mapping table name is not case-sensitive.

mapping table owner Specifies the schema where the mapping table resides. If set to NULL,
the current schema will be used.

select mode Specifies the mode for selecting SQL statements from the trace files.
The default value is SINGLE EXECUTION. In this mode, only statistics
for a single execution per SQL statement will be loaded into the SQL
tuning set. The statistics are not cumulative, as is the case with other
SQL tuning set data source table functions.

options Specifies the options for the operation. The default value is
LIMITED COMMAND TYPE, only SQL types that are meaningful to SQL
Performance Analyzer (such as SELECT, INSERT, UPDATE, and
DELETE) are returned from the SQL trace files.

pattern start Specifies the opening delimiting pattern of the trace file sections to
consider. This parameter is currently not used.

pattern end Specifies the closing delimiting pattern of the trace file sections to
process. This parameter is currently not used.

result limit Specifies the top SQL from the (filtered) source. The default value is
231 which represents unlimited.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS SQLTUNE package

Testing Database Upgrades from Oracle9i Database and Oracle Database
10g Release 1

ORACLE

Once the SQL tuning set is built, you can use SQL Performance Analyzer to build a pre-
upgrade SQL trial from the execution plans and run-time statistics in the SQL tuning set. After
the pre-upgrade SQL trial is built, perform a test execute or generate plans of SQL statements
in the SQL tuning set on the test system to build a post-upgrade SQL trial. SQL Performance
Analyzer test executes the SQL statements using a public database link that you specify by
connecting to the test system remotely and generating the execution plans and statistics for
the SQL trial. The database link should exist on the SQL Performance Analyzer system and
connect to a remote user with privileges to execute the SQL tuning set on the test system.
You can run SQL Performance Analyzer to test a database upgrade from Oracle9i Database or
Oracle Database 10g Release 1 using Oracle Enterprise Manager or APIs, as described in the
following sections:

e Testing Database Upgrades from Releases 9.x and 10.1 Using Cloud Control

8-6

Chapter 8
Upgrading from Oracle9i Database and Oracle Database 10g Release 1

» Testing Database Upgrades from Releases 9.x and 10.1 Using APIs

Testing Database Upgrades from Releases 9.x and 10.1 Using Cloud Control

To test a database upgrade from Oracle9i Database or Oracle Database 10g Release 1 using
SQL Performance Analyzer:

1. From the Performance menu, select SQL, then SQL Performance Analyzer.
If the Database Login page appears, then log in as a user with administrator privileges.
The SQL Performance Analyzer Home page appears.

2. Under SQL Performance Analyzer Workflows, click Upgrade from 9i or 10.1.

The Upgrade from 9i or higher releases page appears.

Upgrade from 9ior 10.1

Task Information

* Task Name |

* 50QL Tuning Set | Ck

Description |

Pre-upgrade Trial
Creation Method Build From SQL Tuning Set

Post-upgrade Trial

Creation Method | Execute SQLs %
Per-S0L Tirne Limit

(' TIP Time limit is on elapsed time of test execution of SQL.

* Database Link | Q Create Database Link

(¥ TIP Provide a PLELIC database link connecting to a remote user with
privileges to execute the Tuning Set SQL.

Trial Comparison

Comparisan Metric| Elapsed Time v |

Schedule

Time Zone |America_.-'Los_AngeIes V|

(& Immediately
() Later

nate |May 2, 2012 £

(escample: May 2, 2012)

Time O AM G PM

3. Under Task Information:

a. Inthe Task Name field, enter the name of the task.
b. Inthe SQL Tuning Set field, enter the name of the SQL tuning set that was built.

Alternatively, click the search icon to search for the SQL tuning set using the Search
and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.
c. Inthe Description field, optionally enter a description of the task.

4. In the Creation Method field, select:

ORACLE .

ORACLE

Chapter 8
Upgrading from Oracle9i Database and Oracle Database 10g Release 1

« Execute SQLs to generate both execution plans and statistics for each SQL statement
in the SQL tuning set by actually running the SQL statements remotely on the test
system over a public database link.

* Generate Plans to create execution plans remotely on the test system over a public
database link without actually running the SQL statements.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during the trial by
performing one of the following actions:

* Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5 minutes and
gather performance data.

* Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to completion and
gather performance data. Collecting execution statistics provides greater accuracy in
the performance analysis but takes a longer time. Using this setting is not
recommended because the task may be stalled by one SQL statement for a prolonged
time period.

« Select Customize and enter the specified number of seconds, minutes, or hours.

In the Database Link field, enter the global name of a public database link connecting to a
user with the EXECUTE privilege for the DBMS_SQLPA package and the ADVISOR privilege on
the test system.

Alternatively, click the search icon to search for and select a database link, or click Create
Database Link to create a database link using the Create Database Link page.

In the Comparison Metric list, select the comparison metric to use for the comparison
analysis:

« Elapsed Time

e CPUTime

e UserllO Time

* Buffer Gets

e Physical I/O

* Optimizer Cost

« 1/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you generated execution plans
only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric, perform
separate comparison analyses by repeating this procedure with different metrics.

Under Schedule:
a. Inthe Time Zone list, select your time zone code.

b. Select Inmediately to start the task now, or Later to schedule the task to start at a
time specified using the Date and Time fields.

Click Submit.

The SQL Performance Analyzer Home page appears.

8-8

10.

11.

12.

Chapter 8
Upgrading from Oracle9i Database and Oracle Database 10g Release 1

In the SQL Performance Analyzer Tasks section, the status of this task is displayed. To
refresh the status icon, click Refresh. After the task completes, the Status field changes to
Completed.

Under SQL Performance Analyzer Tasks, select the task and click the link in the Name
column.

The SQL Performance Analyzer Task page appears.
This page contains the following sections:
* SQL Tuning Set

This section summarizes information about the SQL tuning set, including its name,
owner, description, and the number of SQL statements it contains.

e SQL Trials

This section includes a table that lists the SQL trials used in the SQL Performance
Analyzer task.

* SQL Trial Comparisons

This section contains a table that lists the results of the SQL trial comparisons
Click the icon in the Comparison Report column.
The SQL Performance Analyzer Task Result page appears.

Review the results of the performance analysis, as described in "Reviewing the SQL
Performance Analyzer Report Using Oracle Enterprise Manager".

If regressed SQL statements are found following the database upgrade, tune them as
described in "Tuning Regressed SQL Statements After Testing a Database Upgrade".

Testing Database Upgrades from Releases 9.x and 10.1 Using APIs

ORACLE

This section describes how to test database upgrades from Oracle Database releases 9.x and
10.1 using APIs.

To test a database upgrade from releases 9.x and 10.1:

1.
2.

On the system running SQL Performance Analyzer, create an analysis task.

Build the pre-upgrade SQL trial from the execution plans and run-time statistics in the SQL
tuning set by calling the EXECUTE_ANALYSIS TASK procedure using the following
parameters:

* Setthe task name parameter to the name of the SQL Performance Analyzer task that
you want to execute.

* Setthe execution type parameter to CONVERT SQLSET to direct SQL Performance
Analyzer to treat the statistics in the SQL tuning set as a trial execution.

* Specify a name to identify the execution using the execution name parameter. If not
specified, then SQL Performance Analyzer automatically generates a name for the
task execution.

The following example executes the SQL Performance Analyzer task named my spa task
as a trial execution:

EXEC DBMS SQLPA.EXECUTE ANALYSIS TASK(task name => 'my spa task', -
execution type => 'CONVERT SQLSET', -
execution name => 'my trial 9i');

8-9

3.

Chapter 8
Upgrading from Oracle Database 10g Release 2 and Newer Releases

Build the post-upgrade SQL trial by performing an explain plan or test execute using the

EXECUTE ANALYSIS TASK procedure:

* Setthe execution type parameter to EXPLAIN PLAN Of TEST EXECUTE:

— If you choose to use EXPLAIN PLAN, only execution plans will be generated.
Subsequent comparisons will only be able to yield a list of changed plans without
making any conclusions about performance changes.

— If you choose to use TEST EXECUTE, the SQL workload will be executed to
completion. This effectively builds the post-upgrade SQL trial using the statistics
and execution plans generated from the test system. Using TEST EXECUTE is
recommended to capture the SQL execution plans and performance data at the
source, thereby resulting in a more accurate analysis.

» Setthe DATABASE LINK task parameter to the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS SQLPA package and the
ADVISOR privilege on the test system.

The following example performs a test execute of the SQL statements remotely over a

database link:

EXEC DBMS SQLPA.EXECUTE ANALYSIS TASK (task name => 'my spa task', -

execution type => 'TEST EXECUTE', -
execution name => 'my remote trial 10g', -
execution params => dbms_advisor.arglist ('database link',
'"LINK.A.B.C.BIZ.COM'));
¢ See Also:

"Creating an Analysis Task Using APIs"
"Creating a Pre-Change SQL Trial Using APIs"
"Creating a Post-Change SQL Trial Using APIs"

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS SQLPA.EXECUTE ANALYSIS TASK function

Upgrading from Oracle Database 10g Release 2 and Newer

Releases

ORACLE

You can use SQL Performance Analyzer to test the impact on SQL response time of a
database upgrade from Oracle Database 10g Release 2 or a newer release to any later
release by capturing a SQL tuning set on the production system, then executing it twice
remotely over a database link on a test system—first to create a pre-change SQL trial, then
again to create a post-change SQL trial.

Before the database upgrade can be tested, ensure that the following conditions are met:

The production system which you are upgrading from is running Oracle Database 10g
Release 2 or a newer release.

Initially, the test system should also be running the same release of Oracle Database.

The test system must contain an exact copy of the production data found on the production
system.

8-10

Chapter 8
Upgrading from Oracle Database 10g Release 2 and Newer Releases

* The hardware configuration must be as similar to the production system as possible.

You will also need to set up a separate SQL Performance Analyzer system running Oracle
Database 11g Release 2. You will be using this system to run SQL Performance Analyzer.
Neither your production data or schema need to be available on this system, since the SQL
tuning set will be built using statistics stored in the SQL trace files from the production system.
SQL Performance Analyzer tasks will be executed remotely on the test system to generate the
execution plan and statistics for the SQL trial over a database link that you specify. The
database link must be a public database link that connects to a user with the EXECUTE privilege
for the DBMS_SQLPA package and the ADVISOR privilege on the test system. You should also
drop any existing PLAN TABLE from the user's schema on the test system.

Once the upgrade environment is configured as described, perform the steps as described in
the following procedure to use SQL Performance Analyzer in a database upgrade from Oracle
Database 10g Release 2 or a newer release to any later release.

1. On the production system, capture the SQL workload that you intend to analyze and store
it in a SQL tuning set, as described in "Capturing the SQL Workload".

2. Set up the test system so that it matches the production environment as closely as
possible, as described in "Setting Up the Test System".

3. Transport the SQL tuning set to the SQL Performance Analyzer system.
For information about transporting SQL tuning sets using:
* Oracle Enterprise Manager, see Oracle Database 2 Day + Performance Tuning Guide
* APIs, see Oracle Database SQL Tuning Guide

4. On the SQL Performance Analyzer system, create a SQL Performance Analyzer task
using the SQL tuning set as its input source.

Remotely test execute the SQL statements in the SQL tuning set on the test system over a
database link to build a pre-upgrade SQL trial that will be used as a baseline for
comparison, as described in "Testing Database Upgrades from Oracle Database 10g
Release 2 and Newer Releases".

5. Upgrade the test system.

6. Remotely test execute the SQL statements a second time on the upgraded test system
over a database link to build a post-upgrade SQL trial, as described in "Testing Database
Upgrades from Oracle Database 10g Release 2 and Newer Releases".

7. Compare SQL performance and fix regressed SQL.

SQL Performance Analyzer compares the performance of SQL statements read from the
SQL tuning set during the pre-upgrade SQL trial to those captured from the remote test
execution during the post-upgrade SQL trial. A report is produced to identify any changes
in execution plans or performance of the SQL statements.

If the report reveals any regressed SQL statements, you can make further changes to fix
the regressed SQL, as described in "Tuning Regressed SQL Statements After Testing a
Database Upgrade".

Repeat the process of executing the SQL tuning set and comparing its performance to a
previous execution to test any changes made until you are satisfied with the outcome of
the analysis.

ORACLE 811

Chapter 8
Upgrading from Oracle Database 10g Release 2 and Newer Releases

Testing Database Upgrades from Oracle Database 10g Release 2 and
Newer Releases

Once the SQL tuning set is transported to the SQL Performance Analyzer system, you can use
SQL Performance Analyzer to build a pre-upgrade SQL trial by executing or generating plans
of SQL statements in the SQL tuning set on the test system. SQL Performance Analyzer test
executes the SQL statements using a database link that you specify by connecting to the test
system remotely and generating the execution plans and statistics for the SQL trial. The
database link should exist on the SQL Performance Analyzer system and connect to a remote
user with privileges to execute the SQL tuning set on the test system.

After the pre-upgrade SQL trial is built, you need to upgrade the test system. Once the
database has been upgraded, SQL Performance Analyzer will need to execute or generate
plans of SQL statements in the SQL tuning set a second time on the upgraded test system to
build a post-upgrade SQL trial. Alternatively, if hardware resources are available, you can use
another upgraded test system to execute the second remote SQL trial. This method can be
useful in helping you investigate issues identified by SQL Performance Analyzer.

You can run SQL Performance Analyzer to test a database upgrade from Oracle Database 10g
Release 2 or a newer release using Oracle Enterprise Manager or APls, as described in the
following sections:

» Testing Database Upgrades from Releases 10.2 and Higher Using Cloud Control
* Testing Database Upgrades from Releases 10.2 and Higher Using APIs

Testing Database Upgrades from Releases 10.2 and Higher Using Cloud Control

ORACLE

To test a database upgrade from Oracle Database 10g Release 2 or a newer release using
SQL Performance Analyzer:

1. From the Performance menu, select SQL, then SQL Performance Analyzer.
If the Database Login page appears, then log in as a user with administrator privileges.
The SQL Performance Analyzer Home page appears.

2. Under SQL Performance Analyzer Workflows, click Upgrade from 10.2 or 11g.

The Upgrade from 10.2 or higher releases page appears.

8-12

ORACLE

Chapter 8
Upgrading from Oracle Database 10g Release 2 and Newer Releases

Upgrade from 10.2 or 11g

Task Information

* 50QL Tuning Set | Ck

Pre-upgrade Trial

Post-upgrade Trial

(¢ TIP Same creation method and per-SGL time limit a5 in the pre-upgrade trial will be applied.
Trial Comparison

Comparison Metric| Elapsed Time -

Schedule

Time Zone | America/Los_Angeles %

* Task Name |

Description |

Creation Method | Execute SQLs |

Per-5QL Time Limit | 5 minutes |+
(¥ TIP Time limit is on elapsed time of test execution of SQL.

* Database Link | Q, Create Database Link

(¥ TIP Provide a PUBLIC database link connecting to a remote user with
privileges to execute the Tuning Set SQL.

Use the same system az in the pre-upgrade trial

* Database Link |

& Immediately
(O Later

Dete May 2, 2012 &y

[=xample: M=y 2, 2012)

Tme |5 %50 ¥[00 ¥ |OAM@PM

3. Under Task Information:

a.

b.

C.

In the Task Name field, enter the name of the task.
In the SQL Tuning Set field, enter the name of the SQL tuning set that was built.

Alternatively, click the search icon to search for the SQL tuning set using the Search
and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.

In the Description field, optionally enter a description of the task.

4. In the Creation Method field, select:

Execute SQLs to generate both execution plans and statistics for each SQL statement
in the SQL tuning set by actually running the SQL statements remotely on the test
system over a public database link.

Generate Plans to create execution plans remotely on the test system over a public
database link without actually running the SQL statements.

5. Inthe Per-SQL Time Limit list, determine the time limit for SQL execution during the trial by
performing one of the following actions:

Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5 minutes and
gather performance data.

Select Unlimited.

8-13

ORACLE

10.

Chapter 8
Upgrading from Oracle Database 10g Release 2 and Newer Releases

The execution will run each SQL statement in the SQL tuning set to completion and
gather performance data. Collecting execution statistics provides greater accuracy in
the performance analysis but takes a longer time. Using this setting is not
recommended because the task may be stalled by one SQL statement for a prolonged
time period.

« Select Customize and enter the specified number of seconds, minutes, or hours.

In the Database Link field, enter the global name of a public database link connecting to a
user with the EXECUTE privilege for the DBMS_SQLPA package and the ADVISOR privilege on
the pre-upgrade system.

Alternatively, click the search icon to search for and select a database link, or click Create
Database Link to create a database link using the Create Database Link page.

Under Post-upgrade Trial:

a. Select Use the same system as in the pre-upgrade trial to use the same system for
executing both the pre-upgrade and post-upgrade trials.

Oracle recommends using this option to avoid possible errors due to different system
configurations. When using this option, you will need to upgrade the test database to
the higher database version before the post-upgrade trial is executed.

b. Inthe Database Link field, enter the global name of a public database link connecting
to a user with the EXECUTE privilege for the DBMS SQLPA package and the ADVISOR
privilege on the post-upgrade system.

In the Comparison Metric list, select the comparison metric to use for the comparison
analysis:

e Elapsed Time

« CPUTime

* UserllO Time

* Buffer Gets

e Physical I/O

e Optimizer Cost

< 1/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you generated execution plans
only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric, perform
separate comparison analyses by repeating this procedure with different metrics.

Under Schedule:
a. Inthe Time Zone list, select your time zone code.

b. Select Inmediately to start the task now, or Later to schedule the task to start at a
time specified using the Date and Time fields.

Click Submit.
The SQL Performance Analyzer Home page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is displayed. To
refresh the status icon, click Refresh.

If you are using the same system to execute both the pre-upgrade and post-upgrade trials,
you will need to upgrade the database after the pre-upgrade trial step is completed. After

8-14

11.

12.

13.

Chapter 8
Upgrading from Oracle Database 10g Release 2 and Newer Releases

the database is upgraded, the post-upgrade trial can be executed. After the task
completes, the Status field changes to Completed.

Under SQL Performance Analyzer Tasks, select the task and click the link in the Name
column.

The SQL Performance Analyzer Task page appears.
This page contains the following sections:
* SQL Tuning Set

This section summarizes information about the SQL tuning set, including its name,
owner, description, and the number of SQL statements it contains.

e SQL Trials

This section includes a table that lists the SQL trials used in the SQL Performance
Analyzer task.

* SQL Trial Comparisons

This section contains a table that lists the results of the SQL trial comparisons
Click the icon in the Comparison Report column.
The SQL Performance Analyzer Task Result page appears.

Review the results of the performance analysis, as described in "Reviewing the SQL
Performance Analyzer Report Using Oracle Enterprise Manager".

If regressed SQL statements are found following the database upgrade, tune them as
described in "Tuning Regressed SQL Statements After Testing a Database Upgrade".

Testing Database Upgrades from Releases 10.2 and Higher Using APIs

ORACLE

This section describes how to test database upgrades from Oracle Database releases 10.2
and higher using APIs.

To test a database upgrade from releases 10.2 and higher:

1.
2.

On the system running SQL Performance Analyzer, create an analysis task.

Build the pre-upgrade SQL trial by performing an explain plan or test execute of SQL
statements in the SQL tuning set.

Call the EXECUTE ANALYSIS TASK procedure using the following parameters:

* Setthe task name parameter to the name of the SQL Performance Analyzer task that
you want to execute.

+ Setthe execution type parameter to EXPLAIN PLAN Of TEST EXECUTE:

— If you choose to use EXPLAIN PLAN, only execution plans will be generated.
Subsequent comparisons will only be able to yield a list of changed plans without
making any conclusions about performance changes.

— If you choose to use TEST EXECUTE, the SQL workload will be executed to
completion. This effectively builds the pre-upgrade SQL trial using the statistics
and execution plans generated from the test system. Using TEST EXECUTE is
recommended to capture the SQL execution plans and performance data at the
source, thereby resulting in a more accurate analysis.

» Specify a name to identify the execution using the execution name parameter. If not
specified, then SQL Performance Analyzer automatically generates a name for the
task execution.

8-15

Chapter 8
Tuning Regressed SQL Statements After Testing a Database Upgrade

* Setthe DATABASE LINK task parameter to the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS SQLPA package and the
ADVISOR privilege on the test system.

The following example executes the SQL Performance Analyzer task named my spa task
and performs a test execute of the SQL statements remotely over a database link:

EXEC DBMS SQLPA.EXECUTE ANALYSIS TASK(task name => 'my spa task', -
execution type => 'TEST EXECUTE', -
execution name => 'my remote trial 10g', -
execution params => dbms advisor.arglist('database link',
'"LINK.A.B.C.BIZ.COM'));

3. Build the post-upgrade SQL trial by performing an explain plan or test execute using the
EXECUTE ANALYSIS TASK procedure:

* Setthe execution type parameter to EXPLAIN PLAN or TEST EXECUTE:

— If you choose to use EXPLAIN PLAN, only execution plans will be generated.
Subsequent comparisons will only be able to yield a list of changed plans without
making any conclusions about performance changes.

— If you choose to use TEST EXECUTE, the SQL workload will be executed to
completion. This effectively builds the post-upgrade SQL trial using the statistics
and execution plans generated from the test system. Using TEST EXECUTE is
recommended to capture the SQL execution plans and performance data at the
source, thereby resulting in a more accurate analysis.

» Setthe DATABASE LINK task parameter to the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS SQLPA package and the
ADVISOR privilege on the test system.

The following example performs a test execute of the SQL statements remotely over a
database link:

EXEC DBMS SQLPA.EXECUTE ANALYSIS TASK(task name => 'my spa task', -
execution type => 'TEST EXECUTE', -
execution name => 'my remote trial 12c', -
execution params => dbms_advisor.arglist ('database link',
'LINK.A.B.C.BIZ.COM")) ;

¢ See Also:

e "Creating an Analysis Task Using APIs"
e "Creating a Pre-Change SQL Trial Using APIs"
e "Creating a Post-Change SQL Trial Using APIs"

e Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS SQLPA.EXECUTE ANALYSIS TASK function

Tuning Regressed SQL Statements After Testing a Database
Upgrade

In some cases, SQL Performance Analyzer may identify SQL statements whose performance
regressed after you upgrade the database on the test system.

ORACLE 816

ORACLE

Chapter 8
Tuning Regressed SQL Statements After Testing a Database Upgrade

You can tune the regressed SQL statements by using the SQL Tuning Advisor or SQL plan
baselines, as described in Comparing SQL Trials . This involves using APIs to build a subset of
a SQL tuning set with only the regressed SQL statements, transport this subset of regressed
SQL statements to the remote database, and running the SQL Tuning Advisor on the remote
database.

Oracle Enterprise Manager does not provide support for fixing regressions after running SQL
Performance Analyzer involving one or more remote SQL trials.

If you are upgrading from Oracle Database 10g Release 2 and newer releases, you can also
create SQL plan baselines to instruct the optimizer to select existing execution plans in the
future.

See Also:

e "Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs"
* "Creating SQL Plan Baselines Using APIs"

8-17

Database Replay

Database Replay enables you to replay a full production workload on a test system to assess
the overall impact of system changes.

Part Il covers Database Replay and contains the following chapters:

* Introduction to Database Replay

e Capturing a Database Workload

* Preprocessing a Database Workload

* Replaying a Database Workload

* Analyzing Captured and Replayed Workloads
* Using Workload Intelligence

* Using Consolidated Database Replay

* Using Workload Scale-Up

ORACLE

Introduction to Database Replay

You can use Database Replay to capture a workload on the production system and replay it on
a test system with the exact timing, concurrency, and transaction characteristics of the original
workload. This enables you to test the effects of a system change without affecting the
production system.

Database Replay supports workload capture on a system running Oracle Database 10g
Release 2 and newer releases. In order to capture a workload on a system running Oracle
Database 10g Release 2, the database version must be 10.2.0.4 or higher. Workload replay is
only supported on systems running Oracle Database 11g Release 1 and newer releases.

< Note:

To use the workload capture feature on a system running Oracle9i Database or an
earlier version of Oracle Database 10g, refer to My Oracle Support note ID 560977.1
at the URL below for information about the required patches, or contact Oracle
Support for more information:

https://support.oracle.com/rs?type=doc&id=560977.1

Analyzing the effect of system changes using Database Replay involves the following steps, as
illustrated in Figure 9-1:

ORACLE o1

https://support.oracle.com/rs?type=doc&id=560977.1

Figure 9-1 Database Replay Workflow

Production

Client Client Client

Middle Tier

000
-
-

000

—>

1L

&
&

Storage

N~

SQL

Chapter 9
Workload Capture

Test

Oracle
Database

SQL

]
1

Capture 1 Execute
1 Change

Storage

Execute Compare
SQL Performance

1. On the production system, capture the workload into capture files, as described in

"Workload Capture".

2. Copy the capture files to the test system and preprocess them, as described in "Workload

Preprocessing".

Eal

On the test system, replay the preprocessed files, as described in "Workload Replay".

Using the reports generated by Database Replay, perform detailed analysis of both the

workload capture and workload replay, as described in "Analysis and Reporting”.

Workload Capture

The first step in using Database Replay is to capture the production workload. Capturing a
workload involves recording all requests made by external clients to Oracle Database.

When workload capture is enabled, all external client requests directed to Oracle Database are
tracked and stored in binary files—called capture files—on the file system. You can specify the

ORACLE

9-2

Chapter 9
Workload Preprocessing

location where the capture files will be stored. Once workload capture begins, all external
database calls are written to the capture files. The capture files contain all relevant information
about the client request, such as SQL text, bind values, and transaction information.
Background activities and database scheduler jobs are not captured. These capture files are
platform independent and can be transported to another system.

¢ See Also:

e Capturing a Database Workload for information about how to capture a workload
on the production system

Workload Preprocessing

Once the workload has been captured, the information in the capture files must be
preprocessed. Preprocessing creates all necessary metadata needed for replaying the
workload. This must be done once for every captured workload before they can be replayed.
After the captured workload is preprocessed, it can be replayed repeatedly on a replay system
running the same version of Oracle Database. Typically, the capture files should be copied to a
test system for preprocessing. As workload preprocessing can be time consuming and
resource intensive, it is recommended that this step be performed on the test system where
the workload will be replayed.

¢ See Also:

e Preprocessing a Database Workload for information about how to preprocess a
captured workload

Workload Replay

After a captured workload has been preprocessed, it can be replayed on a test system. During
the workload replay phase, Oracle Database performs the actions recorded during the
workload capture phase on the test system by re-creating all captured external client requests
with the same timing, concurrency, and transaction dependencies of the production system.
Database Replay uses a client program called the replay client to re-create all external client
requests recorded during workload capture. Depending on the captured workload, you may
need one or more replay clients to properly replay the workload. A calibration tool is provided
to help determine the number of replay clients needed for a particular workload. Because the
entire workload is replayed—including DML and SQL queries—the data in the replay system
should be as logically similar to the data in the capture system as possible. This will minimize
replay divergence and enable a more reliable analysis of the replay.

¢ See Also:

e Replaying a Database Workload for information about how to replay a
preprocessed workload on the test system

ORACLE 0.3

Chapter 9
Analysis and Reporting

Analysis and Reporting

Once the workload is replayed, in-depth reporting is provided for you to perform detailed
analysis of both workload capture and replay.

The workload capture report and workload replay report provide basic information about the
workload capture and replay, such as errors encountered during replay and data divergence in
rows returned by DML or SQL queries. A comparison of several statistics—such as database
time, average active sessions, and user calls—between the workload capture and the
workload replay is also provided.

The replay compare period report can be used to perform a high-level comparison of one
workload replay to its capture or to another replay of the same capture. A divergence summary
with an analysis of whether any data divergence occurred and if there were any significant
performance changes is also provided. Furthermore, Automatic Database Diagnostic Monitor
(ADDM) findings are incorporated into these reports.

For advanced analysis, Automatic Workload Repository (AWR) reports are available to enable
detailed comparison of performance statistics between the workload capture and the workload
replay. The information available in these reports is very detailed, and some differences
between the workload capture and replay can be expected. Furthermore, Workload Intelligence
operates on data recorded during a workload capture to create a model that describes the
workload. This model can be used to identify significant patterns in templates that are executed
as part of the workload. For each pattern, you can view important statistics, such as the
number of executions of a given pattern and the database time consumed by the pattern

during its execution.

The SQL Performance Analyzer report can be used to compare a SQL tuning set from a
workload capture to another SQL tuning set from a workload replay, or two SQL tuning sets
from two workload replays. Comparing SQL tuning sets with Database Replay provides more
information than SQL Performance Analyzer test-execute because it considers and shows all
execution plans for each SQL statement, while SQL Performance Analyzer test-execute
generates only one execution plan per SQL statement for each SQL trial. Moreover, the SQL
statements are executed in a more authentic environment because Database Replay captures
all bind values and reproduces dynamic session state such as PL/SQL package state more
accurately. It is recommended that you run SQL Performance Analyzer test-execute first as a
sanity test to ensure SQL statements have not regressed and the test system is set up
properly before using Database Replay to perform load and currency testing.

Besides using replay divergence information to analyze replay characteristics of a given
system change, you should also use an application-level validation procedure to assess the
system change. Consider developing a script to assess the overall success of the replay. For
example, if 10,000 orders are processed during workload capture, you should validate that a
similar number of orders are also processed during replay.

After the replay analysis is complete, you can restore the database to its original state at the
time of workload capture and repeat workload replay to test other changes to the system.

See Also:

* Analyzing Captured and Replayed Workloads for information about how to
analyze data and performance divergence using Database Replay reports

ORACLE 0.4

Chapter 9
Workload Capture and Replay in a PDB

Workload Capture and Replay in a PDB

ORACLE

A workload capture can be enabled and a workload replay can be started at the pluggable
database (PDB) level.

Before Oracle Database Release 19c, workload capture and replay were strictly for container
database (CDB) administrators where capture and replay were started from CDB root. Starting
with Oracle Database Release 19c, a workload capture can be enabled for the current
pluggable database (PDB). A workload replay can also be started for the current PDB.

< Note:

Concurrent workload captures and replays are supported at the PDB level.

9-5

Capturing a Database Workload

This chapter describes how to capture a database workload on the production system. The first
step in using Database Replay is to capture the production workload.
This chapter contains the following sections:

e Prerequisites for Capturing a Database Workload

e Setting Up the Capture Directory

e Workload Capture Options

e Workload Capture Restrictions

e Enabling and Disabling the Workload Capture Feature

e Enterprise Manager Privileges and Roles

e Capturing a Database Workload Using Enterprise Manager
e Capturing Workloads from Multiple Databases Concurrently
e Monitoring a Workload Capture Using Enterprise Manager
e Importing a Workload External to Enterprise Manager

e Creating Subsets from an Existing Workload

e Copying or Moving a Workload to a New Location

e Capturing a Database Workload Using APIs

e Encrypting and Decrypting an Existing Workload Capture Using APls

e Monitoring Workload Capture Using Views

See Also:

"Workload Capture" for more information about how capturing a database workload
fits within the Database Replay architecture

Prerequisites for Capturing a Database Workload

Before starting a workload capture, you should have a strategy in place to restore the database
on the test system. Before a workload can be replayed, the logical state of the application data
on the replay system should be similar to that of the capture system when replay begins. To
accomplish this, consider using one of the following methods:

* Recovery Manager (RMAN) DUPLICATE command
e Snapshot standby
e Data Pump Import and Export

This will allow you to restore the database on the replay system to the application state as of
the workload capture start time.

ORACLE 101

Chapter 10
Setting Up the Capture Directory

If the database is protected by Database Vault, then you need to be authorized to use the
DBMS_WORKLOAD CAPTURE and DBMS WORKLOAD REPLAY packages in a Database Vault
environment before you can use Database Replay.

¢ See Also:

e Oracle Database Vault Administrator’s Guide for information about using
Database Replay in a Database Vault environment

* Oracle Database Backup and Recovery User’s Guide for information about
duplicating databases with RMAN

* Oracle Data Guard Concepts and Administration for information about managing
shapshot standby databases

* Oracle Database Utilities for information about using Data Pump

Setting Up the Capture Directory

Workload

ORACLE

Determine the location and set up a directory where the captured workload will be stored.
Before starting the workload capture, ensure that the directory is empty and has ample disk
space to store the workload. If the directory runs out of disk space during a workload capture,
the capture will stop. To estimate the amount of disk space that is required, you can run a test
capture on your workload for a short duration (such as a few minutes) to extrapolate how much
space you will need for a full capture. To avoid potential performance issues, you should also
ensure that the target replay directory is mounted on a separate file system.

For Oracle RAC, consider using a shared file system. Alternatively, you can set up one capture
directory path that resolves to separate physical directories on each instance, but you will need
to consolidate the files created in each of these directories into a single directory. For captures
on an Oracle RAC database, Enterprise Manager only supports Oracle RAC configured with a
shared file system. The entire content of the local capture directories on each instance (not
only the capture files) must be copied to the shared directory before it can be used for
preprocessing. For example, assume that you are:

¢ Running an Oracle RAC environment in Linux with two database instances named host1
and host?2

* Using a capture directory object named CAPDIR that resolves to /$ORACLE HOME/rdbms/
capture on both instances

* Using a shared directory that resides in /nfs/rac_capture
You will need to login into each host and run the following command:

cp -r /SORACLE HOME/rdbms/capture/* /nfs/rac capture

After this is done for both instances, the /nfs/rac_capture shared directory is ready to be
preprocessed or masked.

Capture Options

Proper planning before workload capture is required to ensure that the capture will be accurate
and useful when replayed in another environment.

Before capturing a database workload, carefully consider the following options:

10-2

Chapter 10
Workload Capture Options

* Restarting the Database

e Using Filters with Workload Capture

Restarting the Database

While this step is not required, Oracle recommends that the database be restarted before
capturing the workload to ensure that ongoing and dependent transactions are allowed to be
completed or rolled back before the capture begins. If the database is not restarted before the
capture begins, transactions that are in progress or have yet to be committed will not be fully
captured in the workload. Ongoing transactions will thus not be replayed properly, because
only the part of the transaction whose calls were captured will be replayed. This may result in
undesired replay divergence when the workload is replayed. Any subsequent transactions with
dependencies on the incomplete transactions may also generate errors during replay. On a
busy system, it is normal to see some replay divergence, but the replay can still be used to
perform meaningful analysis of a system change if the diverged calls do not make up a
significant portion of the replay in terms of DB time and other such key attributes.

Before restarting the database, determine an appropriate time to shut down the production
database before the workload capture when it is the least disruptive. For example, you may
want to capture a workload that begins at 8:00 a.m. However, to avoid service interruption
during normal business hours, you may not want to restart the database during this time. In
this case, you should consider starting the workload capture at an earlier time, so that the
database can be restarted at a time that is less disruptive.

Once the database is restarted, it is important to start the workload capture before any user
sessions reconnect and start issuing any workload. Otherwise, transactions performed by
these user sessions will not be replayed properly in subsequent database replays, because
only the part of the transaction whose calls were executed after the workload capture is started
will be replayed. To avoid this problem, consider restarting the database in RESTRICTED mode
using STARTUP RESTRICT, which will only allow the sYs user to login and start the workload
capture. By default, once the workload capture begins, any database instance that are in
RESTRICTED mode will automatically switch to UNRESTRICTED mode, and normal operations can
continue while the workload is being captured.

Only one workload capture can be performed at any given time. If you have a Oracle Real
Application Clusters (Oracle RAC) configuration, workload capture is performed for the entire
database. Once you enable capture for one of the Oracle RAC nodes, workload capture is
started on all database instances (the workload capture process is Oracle RAC aware).
Although it is not required, restarting all instances in a Oracle RAC configuration before
workload capture is recommended to avoid capturing ongoing transactions.

To restart all instances in a Oracle RAC configuration before workload capture:
1. Shut down all the instances.

2. Restart all the instances.

3. Start workload capture.
4,

Connect the application and start the user workload.

¢ See Also:

* Oracle Database Administrator’s Guide for information about restricting access to
an instance at startup

ORACLE 102

Chapter 10
Workload Capture Restrictions

Using Filters with Workload Capture

Workload

ORACLE

By default, all user sessions are recorded during workload capture. You can use workload
filters to specify which user sessions to include in or exclude from the workload during
workload capture. There are two types of workload filters: inclusion filters and exclusion filters.
You can use either inclusion filters or exclusion filters in a workload capture, but not both.
Inclusion filters enable you to specify user sessions that will be captured in the workload. This
is useful if you want to capture only a subset of the database workload.

Exclusion filters enable you to specify user sessions that will not be captured in the workload.
This is useful if you want to filter out session types that do not need to captured in the
workload, such as those that monitor the infrastructure—like Oracle Enterprise Manager (EM)
or Statspack—or other such processes that are already running on the test system. For
example, if the system where the workload will be replayed is running EM, replaying captured
EM sessions on the system will result in duplication of workload. In this case, you may want to
use exclusion filters to filter out EM sessions.

Capture Restrictions

Certain types of user sessions and client requests may sometimes be captured in a workload,
but they are not supported by Database Replay. Capturing these session and request types in
a workload may result in errors during workload replay.

The following types of user sessions and client requests are not supported by Database
Replay:

» Direct path load of data from external files using utilities such as SQL*Loader
* Non-PL/SQL based Advanced Queuing (AQ)
e Flashback queries
* Oracle Call Interface (OCI) based object navigations
* Non SQL-based object access
» Distributed transactions
Any distributed transactions that are captured will be replayed as local transactions.
e XA transactions
XA transactions are not captured or replayed. All local transactions are captured.
e JAVA XA transactions

If the workload uses the JavA XA package, JAVA XA function and procedure calls are
captured as normal PL/SQL workload. To avoid problems during workload replay, consider
dropping the JavA xa package on the replay system to enable the replay to complete
successfully.

e Database Resident Connection Pooling (DRCP)
e Workloads using OUT bhinds

e Multi-threaded Server (MTS) and shared server sessions with synchronization mode set to
OBJECT 1ID

e Migrated sessions

10-4

Chapter 10
Enabling and Disabling the Workload Capture Feature

The workload is captured for migrated sessions. However, user logins or session migration
operations are not captured. Without a valid user login or session migration, the replay
may cause errors because the workload may be replayed by a wrong user.

Typically, Database Replay refrains from capturing these types of non-supported user sessions
and client requests. Even when they are captured, Database Replay will not replay them.
Therefore, it is usually not necessary to manually filter out non-supported user sessions and
client requests. In cases where they are captured and found to cause errors during replay,
consider using workload capture filters to exclude them from the workload.

¢ See Also:

e "Using Filters with Workload Capture" for information about using workload
capture filters

e "Using Filters with Workload Replay" for information about using workload replay
filters

Enabling and Disabling the Workload Capture Feature

ORACLE

Database Replay supports capturing a database workload on a system running Oracle
Database 10g Release 2 that can be used to test database upgrades to Oracle Database 11g
and subsequent releases. By default, the workload capture feature is not enabled in Oracle
Database 10g Release 2 (10.2). You can enable or disable this feature by specifying the
PRE 11G_ENABLE CAPTURE initialization parameter.

Note:

It is only necessary to enable the workload capture feature if you are capturing a
database workload on a system running Oracle Database 10g Release 2.

If you are capturing a database workload on a system running Oracle Database 11g
Release 1 or a later release, it is not necessary to enable the workload capture
feature because it is enabled by default. Furthermore, the PRE_11G_ENABLE CAPTURE
initialization parameter is only valid with Oracle Database 10g Release 2 (10.2) and
cannot be used with subsequent releases.

To enable the workload capture feature on a system running Oracle Database 10g Release 2,
run the wrrenbl.sql script at the SQL prompt:

@SORACLE HOME/rdbms/admin/wrrenbl.sql

The wrrenbl.sql script calls the ALTER SYSTEM SQL statement to set the

PRE 11G_ENABLE CAPTURE initialization parameter to TRUE. If a server parameter file (spfile) is
being used, the PRE_11G ENABLE CAPTURE initialization parameter will be modified for the
currently running instance and recorded in the spfile, so that the new setting will persist when
the database is restarted. If a spfile is not being used, the PRE_11G_ENABLE CAPTURE
initialization parameter will only be modified for the currently running instance, and the new
setting will not persist when the database is restarted. To make the setting persistent without
using a spfile, you will need to manually specify the parameter in the initialization parameter file
(init.ora).

10-5

Chapter 10
Enterprise Manager Privileges and Roles

To disable workload capture, run the wrrdsbl.sql script at the SQL prompt:

@SORACLE HOME/rdbms/admin/wrrdsbl.sql

The wrrdsbl.sql script calls the ALTER SYSTEM SQL statement to set the

PRE 11G ENABLE CAPTURE initialization parameter to FALSE. If a server parameter file (spfile) is
being used, the PRE_11G_ENABLE CAPTURE initialization parameter will be modified for the
currently running instance and also recorded in the spfile, so that the new setting will persist
when the database is restarted. If a spfile is not being used, the PRE_11G_ENABLE CAPTURE
initialization parameter will only be modified for the currently running instance, and the new
setting will not persist when the database is restarted. To make the setting persistent without
using a spfile, you will need to manually specify the parameter in the initialization parameter file
(init.ora).

Note:

The PRE_11G_ENABLE CAPTURE initialization parameter can only be used with Oracle
Database 10g Release 2 (10.2). This parameter is not valid in subsequent releases.
After upgrading the database, you will need to remove the parameter from the server
parameter file (spfile) or the initialization parameter file (init.ora); otherwise, the
database will fail to start up.

Enterprise Manager Privileges and Roles

The Database Replay resource type privileges enable you to view or operate any Database
Replay entities. Additionally, you need the target operator privilege for the target from which the
workload was captured to access the entities associated with the workload. For a target that
does not exist anymore, the Enterprise Manager user who owns the entities or the Enterprise
Manager super user can still access the entities.

The two security roles discussed in the following sections make it easier to grant or revoke
privileges related to Database Replay entities.

Database Replay Viewer Role

Users who have the Database Replay Viewer role can view any Database Replay entity. By
default, no Enterprise Manager user is granted this role. However, the EM_ALL_VIEWER role
includes this role by default.

The Database Replay Viewer role consists of the Database Replay Viewer (resource type)
privilege.

Database Replay Operator Role

The Database Replay Operator role includes the Database Replay Viewer role and thus its
privileges. Users who have the Database Replay Operator role can also edit and delete any
Database Replay entity. By default, no Enterprise Manager user is granted this role. However,
the EM_ALL_OPERATOR role includes this role by default.

The Database Replay Operator role consists of the following privileges:

- Database Replay Operator (resource type privilege)
e Create new Named Credential (resource type privilege)

e Create new job (resource type privilege)

ORACLE 06

Chapter 10
Capturing a Database Workload Using Enterprise Manager

« Connect to any viewable target (target type privilege)
« Execute Command Anywhere (target type privilege)

To capture or replay a workload on a database target, an Enterprise Manager user needs all
the privileges granted by the Database Replay Operator role plus the target operator privilege
for the database target.

Capturing a Database Workload Using Enterprise Manager

This section describes how to capture a database workload using Enterprise Manager. The
primary tool for capturing database workloads is Oracle Enterprise Manager.

For information about the prerequisites, see "Prerequisites for Capturing a Database
Workload".

Q Tip:

If Oracle Enterprise Manager is unavailable, you can capture database workloads
using APIs, as described in "Capturing a Database Workload Using APIs".

To capture a database workload using Enterprise Manager:

1. From the Enterprise menu of the Enterprise Manager Cloud Control console, select
Quality Management, then Database Replay.

If the Database Login page appears, log in as a user with administrator privileges.

The Database Replay page appears.

Database Replay Page Refreshed Oct 1, 2013 3:51:21 PM PDT C

“/ Hide Overview

Database Replay