
Oracle® Database
JavaScript Developer's Guide

Release 23ai
F56885-13
May 2025

Oracle Database JavaScript Developer's Guide, Release 23ai

F56885-13

Copyright © 2022, 2025, Oracle and/or its affiliates.

Primary Author: Sarah Hirschfeld

Contributors: M. Bach, L. Braun-Lohrer, H. Kasture, A. Ulrich, G. Venzl, M. Brantner, L. Daynes, H. Guiroux, A.
Schubert, A. Burlison, M. Keppner, A. Kashuba, N. Sheikh, A.A. Baha, D. Adams

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Changes in This Release for JavaScript Developer's Guide

July 2024, Release Update 23.5 1-1

January 2025, Release Update 23.7 1-1

April 2025, Release Update 23.8 1-2

2 Introduction to Oracle Database Multilingual Engine for JavaScript

The Need for a Multilingual Engine 2-2

Overview of JavaScript 2-2

Overview of Multilingual Engine for JavaScript 2-3

JavaScript Implementation Details 2-4

Invoking JavaScript in the Database 2-5

Introduction to Dynamic Execution 2-5

Introduction to MLE Module Calls 2-6

About MLE Execution Contexts 2-8

About Restricted Execution Contexts 2-9

Introduction to Debugging JavaScript Code 2-10

3 MLE JavaScript Modules and Environments

Using JavaScript Modules in MLE 3-1

Managing JavaScript Modules in the Database 3-3

Naming JavaScript Modules 3-3

Creating JavaScript Modules in the Database 3-4

Storing JavaScript Code in Databases Using Single-Byte Character Sets 3-5

Code Analysis 3-5

Preparing JavaScript code for MLE Module Calls 3-6

Additional Options for Providing JavaScript Code to MLE 3-8

Specifying Module Version Information and Providing JSON Metadata 3-9

Drop JavaScript Modules 3-10

Alter JavaScript Modules 3-11

Overview of Built-in JavaScript Modules 3-11

Dictionary Views Related to MLE JavaScript Modules 3-12

USER_SOURCE 3-12

iii

USER_MLE_MODULES 3-13

Specifying Environments for MLE Modules 3-13

Creating MLE Environments in the Database 3-14

Naming MLE Environments 3-15

Creating an Empty MLE Environment 3-15

Creating an Environment as a Clone of an Existing Environment 3-16

Using MLE Environments for Import Resolution 3-16

Providing Language Options 3-19

Dropping MLE Environments 3-19

Modifying MLE Environments 3-20

Altering Language Options 3-20

Modifying Module Imports 3-20

Dictionary Views Related to MLE JavaScript Environments 3-21

USER_MLE_ENVS 3-21

USER_MLE_ENV_IMPORTS 3-21

4 Overview of Dynamic MLE Execution

About Dynamic JavaScript Execution 4-1

Dynamic Execution Workflow 4-2

Providing JavaScript Code Inline 4-2

Loading JavaScript Code from Files 4-3

Returning the Result of the Last Execution 4-6

5 Overview of Importing MLE JavaScript Modules

JavaScript Module Hierarchies 5-2

Resolving Import Names Using MLE Environments 5-2

Export Functionality 5-3

Named Exports 5-3

Default Exports 5-4

Private Identifiers 5-5

Import Functionality 5-5

Module Objects 5-5

Named Imports 5-6

Default Imports 5-7

6 MLE JavaScript Functions

Call Specifications for Functions 6-1

Creating a Call Specification for an MLE Module 6-1

Components of an MLE Call Specification 6-4

iv

MLE Module Clause 6-5

ENV Clause 6-5

SIGNATURE Clause 6-5

Creating an Inline MLE Call Specification 6-7

Components of an Inline MLE Call Specification 6-10

Accessing Built-in Modules Using JavaScript Global Variables 6-11

Choosing Inline Versus Module MLE Call Specifications 6-12

Runtime Isolation for an MLE Call Specification 6-12

Dictionary Views for Call Specifications 6-15

OUT and IN OUT Parameters 6-16

7 Calling PL/SQL and SQL from the MLE JavaScript SQL Driver

Introduction to the MLE JavaScript SQL Driver 7-1

Working with the MLE JavaScript Driver 7-2

Connection Management in the MLE JavaScript Driver 7-3

Introduction to Executing SQL Statements 7-3

Processing Comparison Between node-oracledb and mle-js-oracledb 7-6

Selecting Data Using the MLE JavaScript Driver 7-6

Direct Fetch: Arrays 7-7

Direct Fetch: Objects 7-8

Fetching Rows as ResultSets: Arrays 7-9

Fetching Rows as ResultSets: Iterating Over ResultSet Objects 7-10

Data Modification 7-11

Bind Variables 7-11

Using Bind-by-Name vs Bind-by-Position 7-12

Named Bind Variables 7-12

Positional Bind Variables 7-14

RETURNING INTO Clause 7-15

Batch Operations 7-16

PL/SQL Invocation from the MLE JavaScript SQL Driver 7-18

Error Handling in SQL Statements 7-20

Working with JSON Data 7-25

Using Large Objects (LOB) with MLE 7-30

Writing LOBs 7-30

Reading LOBs 7-31

API Differences Between node-oracledb and mle-js-oracledb 7-32

Synchronous API and Error Handling 7-32

Connection Handling 7-33

Transaction Management 7-34

Type Mapping 7-34

Unsupported Data Types 7-37

v

Miscellaneous Features Not Available with the MLE JavaScript SQL Driver 7-37

Introduction to the PL/SQL Foreign Function Interface 7-38

Object Resolution Using FFI 7-39

Provide Arguments to a Subprogram Using FFI 7-42

8 Working with SODA Collections in MLE JavaScript Code

High-Level Introduction to Working with SODA for In-Database JavaScript 8-2

SODA Objects 8-3

Using SODA for In-Database JavaScript 8-4

Getting Started with SODA for In-Database JavaScript 8-6

Creating a Document Collection with SODA for In-Database JavaScript 8-8

Opening an Existing Document Collection with SODA for In-Database JavaScript 8-9

Checking Whether a Given Collection Exists with SODA for In-Database JavaScript 8-9

Discovering Existing Collections with SODA for In-Database JavaScript 8-10

Dropping a Document Collection with SODA for In-Database JavaScript 8-11

Creating Documents with SODA for In-Database JavaScript 8-12

Inserting Documents into Collections with SODA for In-Database JavaScript 8-14

Saving Documents into Collections with SODA for In-Database JavaScript 8-15

SODA for In-Database JavaScript Read and Write Operations 8-15

Finding Documents in Collections with SODA for In-Database JavaScript 8-17

Replacing Documents in a Collection with SODA for In-Database JavaScript 8-22

Removing Documents from a Collection with SODA for In-Database JavaScript 8-24

Indexing the Documents in a Collection with SODA for In-Database JavaScript 8-25

Getting a Data Guide for a Collection with SODA for In-Database JavaScript 8-27

Handling Transactions with SODA for In-Database JavaScript 8-29

Creating Call Specifications Involving the SODA API 8-29

9 Post-Execution Debugging of MLE JavaScript Modules

Specifying Debugpoints 9-2

Debugpoint Locations 9-2

Debugpoint Actions 9-2

Debugpoint Conditions 9-4

Managing Debugpoints 9-4

Debugging Security Considerations 9-6

COLLECT DEBUG INFO Privilege for MLE Modules 9-6

Analyzing Debug Output 9-7

Textual Representation of Debug Output 9-7

Analyzing Debug Output Using Developer Tools 9-10

Error Handling in MLE 9-10

Errors in Callouts 9-13

vi

Accessing stdout and stderr from JavaScript 9-13

Accessing stdout and stderr for MLE Modules 9-13

Accessing stdout and stderr for Dynamic MLE 9-15

10

MLE Security

System and Object Privileges Required for Working with JavaScript in MLE 10-1

Necessary Privileges for the Execution of JavaScript Code 10-2

Necessary Privileges for Using the NoSQL API 10-2

Necessary Privileges for Creating MLE Schema Objects 10-3

Necessary Privileges for Creating MLE Modules and Environments in ANY Schema 10-3

Necessary Privileges for Post-Execution Debugging 10-4

Security Considerations for MLE 10-4

MLE_PROG_LANGUAGES Initialization Parameter 10-5

Execution Contexts 10-5

Runtime State Isolation 10-6

Database Security Model 10-8

Considerations for Using MLE Call Specifications and Modules from Different Schemas 10-9

Auditing MLE Operations in Oracle Database 10-10

JavaScript Security Best Practices 10-10

Using Bind Variables for Security and Performance 10-10

Generic Database and PL/SQL Specific Security Considerations 10-12

Supply Chain Security 10-13

Software Bill of Material 10-14

Using the Database to Store State 10-14

Disabling Multilingual Runtime 10-16

MLE Security Examples 10-16

Business Logic Stored in MLE Modules 10-16

Generic Data Processing Libraries 10-18

Generic Libraries in Business Logic 10-19

A MLE Type Conversions

MLE JavaScript Support for JSON A-4

MLE JavaScript Support for the VECTOR Data Type A-6

Index

vii

List of Examples

3-1 Creating a JavaScript Module in the Database 3-4

3-2 Create a Call Specification for a Public Function 3-6

3-3 Public and Private Functions in a JavaScript Module 3-7

3-4 Providing JavaScript Source Code Using a BFILE 3-8

3-5 Providing JavaScript Source Code Using a CLOB 3-8

3-6 Providing JavaScript Source Code Using SQLcl 3-9

3-7 Specification of a VERSION string in CREATE MLE MODULE 3-10

3-8 Addition of JSON Metadata to the MLE Module 3-10

3-9 Drop an MLE Module 3-10

3-10 Drop an MLE Module Using IF EXISTS 3-10

3-11 Alter an MLE Module 3-11

3-12 Externalize JavaScript Module Source Code 3-12

3-13 Find MLE Modules Defined in a Schema 3-13

3-14 Map Identifier to JavaScript Module 3-17

3-15 Import Module Functionality 3-17

3-16 List Available MLE Environments Using USER_MLE_ENVS 3-21

3-17 List Module Import Information Using USER_MLE_ENV_IMPORTS 3-21

4-1 Using the Q-Quote Operator to Provide JavaScript Code Inline with PL/SQL 4-2

4-2 Loading JavaScript code from a BFILE with DBMS_LOB.LOADCLOBFROMFILE() 4-3

4-3 Loading JavaScript Code from a BFILE by Referencing an MLE Module from DBMS_MLE 4-5

4-4 Returning the Result of the Last Execution 4-6

5-1 Use an MLE Environment to Map an Import Name to a Module 5-2

5-2 Function Export using Named Exports 5-3

5-3 Function Export Using Export Keyword Inline 5-4

5-4 Export a Class Using a Default Export 5-4

5-5 Named Export of Single Function 5-5

5-6 Module Object Definition 5-6

5-7 Named Imports Using Specified Identifiers 5-6

5-8 Named Imports with Aliases 5-7

5-9 Default Import 5-7

5-10 Default Import with Built-in Module 5-7

6-1 Creating MLE Call Specifications 6-2

6-2 Simple Inline MLE Call Specification 6-8

6-3 Inline MLE Call Specification Returning JSON 6-9

6-4 Execution Context Dependencies 6-13

6-5 Show JavaScript Call Specification Metadata 6-15

viii

6-6 OUT and IN OUT Parameters with JavaScript 6-16

7-1 Getting Started with the MLE JavaScript SQL Driver 7-3

7-2 Use Global Variables to Simplify SQL Execution 7-5

7-3 Selecting Data Using Direct Fetch: Arrays 7-7

7-4 Selecting Data Using Direct Fetch: Objects 7-8

7-5 Fetching Rows Using a ResultSet 7-9

7-6 Using the Iterable Protocol with ResultSets 7-10

7-7 Updating a Row Using the MLE JavaScript SQL Driver 7-11

7-8 Using Named Bind Variables 7-13

7-9 Using Positional Bind Variables 7-14

7-10 Using the RETURNING INTO Clause 7-15

7-11 Performing a Batch Operation 7-17

7-12 Calling PL/SQL from JavaScript 7-18

7-13 SQL Error Handling Inside a JavaScript Function 7-21

7-14 Error Handling Using JavaScript throw() Command 7-23

7-15 Inserting JSON Data into a Database Table 7-25

7-16 Use JavaScript to Manipulate JSON Data 7-28

7-17 Inserting a CLOB into a Table 7-30

7-18 Read an LOB 7-31

7-19 Using JavaScript Native Data Types vs Using Wrapper Types 7-35

7-20 Overriding the Global oracledb.fetchAsPlsqlWrapper Property 7-36

8-1 SODA with MLE JavaScript General Workflow 8-6

8-2 Opening an Existing Document Collection 8-9

8-3 Fetching All Existing Collection Names 8-10

8-4 Filtering the List of Returned Collections 8-10

8-5 Dropping a Collection 8-11

8-6 Creating SODA Documents 8-13

8-7 Inserting a SODA Document into a Collection 8-14

8-8 Inserting an Array of Documents into a Collection 8-15

8-9 Finding a Document by Key 8-17

8-10 Looking up Documents Using Multiple Keys 8-18

8-11 Using a QBE to Filter Documents in a Collection 8-19

8-12 Using skip() and limit() in a Pagination Query 8-20

8-13 Specifying Document Versions 8-21

8-14 Counting the Number of Documents Found 8-21

8-15 Replacing a Document in a Collection and Returning the Result Document 8-23

8-16 Removing a Document from a Collection Using a Document Key 8-24

ix

8-17 Removing JSON Documents from a Collection Using a Filter 8-24

8-18 Creating a B-Tree Index for a JSON Field with SODA for In-Database JavaScript 8-25

8-19 Creating a JSON Search Index with SODA for In-Database JavaScript 8-26

8-20 Dropping an Index with SODA for In-Database JavaScript 8-27

8-21 Generating a Data Guide for a Collection 8-27

8-22 Use SODA for In-Database JavaScript 8-29

9-1 JSON Template for Specifying Debugpoints 9-2

9-2 JSON Template for Specifying Watch Action 9-3

9-3 JSON Template for Specifying Snapshot Action 9-3

9-4 Watching a Variable in an MLE Module 9-4

9-5 Enabling Debugging of an MLE Module 9-5

9-6 Obtain Textual Representation of Debug Output 9-7

9-7 Throwing ORA-04161 Error and Querying the Stack Trace 9-11

9-8 Redirect stdout to CLOB and DBMS_OUTPUT for MLE Module 9-14

9-9 Redirect stdout to CLOB and DBMS_OUTPUT for Dynamic MLE 9-15

10-1 Runtime State Isolation Scenario 10-6

10-2 Using Bind Variables Rather than String Concatenation 10-11

10-3 Use DBMS_ASSERT to Verify Valid Input 10-11

10-4 Using Bind Variables Rather than String Concatenation 10-15

10-5 Use DBMS_ASSERT to Verify Valid Input 10-15

10-6 Business Logic Stored in MLE Modules 10-17

10-7 Generic Data Processing Libraries 10-18

10-8 Use Generic Libraries in Business Logic 10-19

A-1 Use VECTOR Data Type with MLE A-7

x

List of Figures

6-1 MLE Call Specification Syntax 6-4

6-2 signature_clause ::= 6-6

6-3 path_spec ::= 6-6

6-4 import_spec ::= 6-6

6-5 MLE Inline Call Specification Syntax 6-10

8-1 SODA for In-Database JavaScript Basic Workflow 8-2

8-2 SODA for In-Database JavaScript Simplified Workflow 8-3

xi

List of Tables

3-1 JavaScript Language Options 3-19

6-1 Components of an MLE Call Specification 6-4

6-2 Components of an Inline MLE Call Specification 6-10

8-1 Overview of Nonterminal Methods for Read Operations 8-16

8-2 Overview of Terminal Methods for Read Operations 8-16

8-3 Overview of Terminal Methods for Write Operations 8-16

A-1 Supported Mappings from SQL and PL/SQL Types to JavaScript Types A-2

A-2 Supported Mappings from JavaScript Types to SQL Types A-3

A-3 Mapping from JSON Attribute Types and Values to JavaScript Types and Values A-5

A-4 Mapping from JavaScript Types and Values to JSON Attributes and Values A-5

A-5 Mapping from VECTOR Data Type to JavaScript Types A-6

A-6 Mapping from JavaScript Types to VECTOR Data Type A-6

xii

1
Changes in This Release for JavaScript
Developer's Guide

This chapter lists the changes in Oracle Database JavaScript Developer's Guide for Oracle
Database 23ai:

• July 2024, Release Update 23.5

• January 2025, Release Update 23.7

• April 2025, Release Update 23.8

July 2024, Release Update 23.5
Included are some notable Oracle Database JavaScript Developer's Guide updates with
Oracle Database 23ai, Release Update 23.5:

Feature Description

MLE Support on Linux for Arm (aarch64) In addition to Linux x86-64, Multilingual Engine (MLE) is
supported on Linux for Arm (aarch64).

Overview of Multilingual Engine for JavaScript

Operator Overloading with OracleNumber Rather than using methods such as add and sub to perform
arithmetic operations with instances of the type
OracleNumber, arithmetic operators such as + and - are
now supported as well.

Examples using this new syntax can be found in Type
Mapping.

Server-Side JavaScript API Documentation

January 2025, Release Update 23.7
Included are some notable Oracle Database JavaScript Developer's Guide updates with
Oracle Database 23ai, Release Update 23.7:

Feature Description

Foreign Function Interface The Foreign Function Interface (FFI) allows you to handle
PL/SQL packages, functions, and procedures as JavaScript
objects, providing more direct access to objects created in
PL/SQL.

Introduction to the PL/SQL Foreign Function Interface

Server-Side JavaScript API Documentation

Fetch Type Handler The fetchTypeHandler property of mle-js-oracledb is
available to modify query result sets in JavaScript. Using the
fetch type handler you can, for example, change the data
types of the resulting row(s) of a SELECT statement.

Server-Side JavaScript API Documentation

1-1

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules

April 2025, Release Update 23.8
Included are some notable Oracle Database JavaScript Developer's Guide updates with
Oracle Database 23ai, Release Update 23.8:

Feature Description

Restricted JavaScript Execution Contexts The PURE keyword is used in the creation of MLE
environments and in inline call specifications to specify the
use of a restricted execution context. During PURE
execution, JavaScript code cannot access database state.

About Restricted Execution Contexts

Chapter 1
April 2025, Release Update 23.8

1-2

2
Introduction to Oracle Database Multilingual
Engine for JavaScript

Oracle Database supports a rich set of languages for writing user-defined functions and stored
procedures, including PL/SQL, Java, and C. With Oracle Database Multilingual Engine (MLE),
developers have the option to run JavaScript code through dynamic execution or with
persistent MLE modules stored directly in the database.

The landscape of programming languages is rapidly evolving, with more developers choosing
to use modern dynamic languages like JavaScript. Besides simpler syntax and support for
modern language features, a key factor in the popularity of these languages is the existence of
a rich module ecosystem. Developers often choose to use different languages to implement
different parts of a project, based on the availability of suitable modules for the given task.

Whether or not a new language reaches widespread adoption frequently depends on
community involvement. Once a language reaches some threshold of popularity, its ecosystem
often starts expanding rapidly, attracting more and more developers. Many times, a rich set of
features, libraries, and reusable code modules are created to support more widespread use.

The Oracle Database is renowned for its support of a rich ecosystem of programming
languages. The most common programmatic server-side interface to the Oracle Database is
PL/SQL. By using PL/SQL it is possible to keep business logic and data together, oftentimes
offering significant improvements to efficiency in addition to providing a unified processing
pattern for data, regardless of the client interface in use. With MLE, you can utilize PL/SQL to
implement JavaScript modules, offering an additional avenue to interact directly with the
database.

See Also:

Oracle Database Development Guide for more information about the programming
languages supported by the Oracle database.

Topics

• The Need for a Multilingual Engine
The benefits of using MLE to process data within the database are described.

• Overview of JavaScript
One of the most popular programming languages today, JavaScript runs on any machine
with a JavaScript engine. Developers prefer JavaScript mainly for the ease of scripting to
develop end-to-end applications and for fast execution.

• Overview of Multilingual Engine for JavaScript
MLE allows you to run and store JavaScript directly in the Oracle Database.

• Introduction to Debugging JavaScript Code
MLE allows you to debug your JavaScript code by conveniently and efficiently collecting
runtime state during program execution.

2-1

The Need for a Multilingual Engine
The benefits of using MLE to process data within the database are described.

When developers implement a Smart-DB approach, application logic and data coexist in the
same database. Applying this strategy, the database is used as a full-fledged processing
engine as opposed to simply a persistence layer or a simple REST API. Making use of the
database for processing data where it lives can provide numerous advantages in the form of
enhanced security, potential elimination of network round-trips, and better data quality thanks
to the use of referential integrity.

The database's optimizer also benefits from this approach. Using referential integrity
constraints allows it to know more about the data it's working with. Performance benefits can
also be realized when using set-based SQL and oftentimes, database servers are more
powerful than the machines serving the application's front-end, further speeding up processing
time.

The Smart-DB approach requires you to be familiar with the programming languages offered
by the database system to make the best use of the concept. The only other option is to use a
client-side driver to extract data from the database to a middleware system or client machine
for processing.

With the ever-increasing data volumes to be handled, especially for batch-processing,
transferring large quantities of data from the database to a client can be problematic for the
following reasons:

• The transfer of database information between servers is time consuming and can cause
significant network overhead

• Latencies are often significantly increased; the cumulative effect can be very noticeable,
especially for "chatty" applications

• Processing large data volumes in a middle-tier or client requires these environments to be
equipped with large amounts of DRAM and storage, adding cost

• Data transfer between machines, especially in cloud environments, is often subject to
regulatory control due to the inherent security risks and data protection requirements

Processing data within the database is a common strategy for mitigating against many of these
problems.

With the introduction of Oracle Database Multilingual Engine (MLE), JavaScript is added to the
database. The inclusion of JavaScript acknowledges the language's popularity and opens its
extensive ecosystem for server-side database development.

With MLE, you can use idioms and tools available in JavaScript's ecosystem, as well as deploy
and use modules from popular repositories such as Node Package Manager (NPM) right in the
database. Furthermore, you can move between application tiers, providing more flexibility to
teams dealing with varying workloads. The large pool of JavaScript talent can help staff
existing and upcoming projects.

Overview of JavaScript
One of the most popular programming languages today, JavaScript runs on any machine with
a JavaScript engine. Developers prefer JavaScript mainly for the ease of scripting to develop
end-to-end applications and for fast execution.

Chapter 2
The Need for a Multilingual Engine

2-2

JavaScript (JS) has come a long way since its inception as a browser-based solution for
interactive web pages. While its popularity for front-end development remains strong, it has
found its way into back-end development as well. For example, Node.js and Deno are very
popular in that space.

At its core, JavaScript is an interpreted language with support for many modern programming
styles. JavaScript is continually enhanced by a governing body known as ECMA International
with new standards released annually.

JavaScript features both a functional as well as an object oriented interface. Despite the name,
JavaScript is very different from Java, although its syntax intentionally mimics many constructs
known in other popular languages. The learning curve is eased by providing a familiar looking
syntax.

Soft factors such as a very large and active community as well as the language's rich set of
libraries make it an attractive choice for development.

With the introduction of Oracle Database Multilingual Engine (MLE), it is possible to execute
JavaScript directly in the Oracle database. Data-intensive applications can benefit from moving
processing logic from the middle-tier to the database.

See Also:

Developer.mozilla.org for more information about JavaScript

Overview of Multilingual Engine for JavaScript
MLE allows you to run and store JavaScript directly in the Oracle Database.

Using MLE enables users of the Oracle Database to run the following, written in JavaScript:

• Stored procedures

• Stored functions

• Code in a PL/SQL package namespace

• Anonymous, dynamic code snippets (in a way that is similar to DBMS_SQL)

MLE is supported when connecting to the database using a dedicated server connection on
Linux x86-64 or Linux for Arm (aarch64). Certain data types are not supported, listed in full at
Unsupported Data Types.

Note:

Shared server connections and those using Database Resident Connection Pool
(DRCP) cannot make use of MLE.

Topics

• JavaScript Implementation Details
The MLE implementation of JavaScript is compliant with ECMAScript 2023.

Chapter 2
Overview of Multilingual Engine for JavaScript

2-3

https://developer.mozilla.org/en-US/

• Invoking JavaScript in the Database
JavaScript can be invoked through dynamic execution or through call specifications, which
either reference MLE modules or inline JavaScript functions.

• Introduction to Dynamic Execution
Anonymous JavaScript code snippets can be executed via the DBMS_MLE PL/SQL package.

• Introduction to MLE Module Calls
It is possible to create JavaScript modules as schema objects that are stored persistently
in the database.

• About MLE Execution Contexts
An MLE execution context is a standalone, isolated runtime environment, designed to
contain all runtime state associated with the execution of JavaScript code. Runtime state
includes global variables as well as the state of the language environment.

• About Restricted Execution Contexts
The PURE keyword can be specified on MLE environments and JavaScript inline call
specifications to create restricted JavaScript execution contexts.

JavaScript Implementation Details
The MLE implementation of JavaScript is compliant with ECMAScript 2023.

Adhering to the ECMA standard, the JavaScript implementation as found in MLE is consciously
created as a pure implementation. Native JavaScript network and file I/O operations are not
supported in the same way that they are in Node.js and Deno for security reasons. The use of
network and file I/O is possible with MLE, however, you must employ PL/SQL APIs such as
UTL_HTTP and UTL_FILE.

The WEB API, Fetch, is not available by default in the global space but can be enabled by
importing mle-js-fetch.

Objects not included in the ECMA standard, including common objects used in front-end code
such as the Window object, are also not available with MLE. Nevertheless, MLE does provide
easy and efficient access to SQL, which is able to execute close to the data. Console output is
passed to DBMS_OUTPUT by default but can be redirected and stored in a user provided CLOB if
required.

Users require specific privileges before they can interact with MLE. These can broadly be
classified into:

• Permission to use MLE and run JavaScript code

• Execute dynamic JavaScript in the database

• Create JavaScript modules and externalize them via PL/SQL code

The database engine throws an error if you lack sufficient privileges required for the use of
JavaScript.

See Also:

System and Object Privileges Required for Working with JavaScript in MLE for more
information about privileges

Chapter 2
Overview of Multilingual Engine for JavaScript

2-4

Invoking JavaScript in the Database
JavaScript can be invoked through dynamic execution or through call specifications, which
either reference MLE modules or inline JavaScript functions.

Generally speaking, server-side JavaScript code can be invoked in two ways:

• Dynamically via the DBMS_MLE package

• Using PL/SQL code referencing functions exported in JavaScript modules (so-called MLE
module calls) or functions defined directly in the DDL

Regardless of which of the two methods is used, all JavaScript code runs in an execution
context. Its purpose is to encapsulate all runtime state associated with the processing of
JavaScript code. The MLE execution context corresponds to the ECMAScript execution
context for JavaScript.

Before you can execute any JavaScript in the database, you must ensure that MLE is not
disabled for your session, PDB, or CDB. For information about how to confirm this, see
MLE_PROG_LANGUAGES Initialization Parameter. In order to take full advantage of MLE,
you must have necessary privileges to execute the JavaScript language, execute dynamic
MLE, create MLE schema objects, and so on.

See Also:

• System and Object Privileges Required for Working with JavaScript in MLE

• Ecma-international.org for more information about the ECMAScript execution
context

Introduction to Dynamic Execution
Anonymous JavaScript code snippets can be executed via the DBMS_MLE PL/SQL package.

The procedure DBMS_MLE.eval() is used to execute dynamic MLE snippets. The procedure
takes the following arguments:

Argument Name Type Optional?

CONTEXT_HANDLE RAW(16) N

LANGUAGE_ID VARCHAR2(64) N

SOURCE CLOB N

RESULT CLOB Y

SOURCE_NAME VARCHAR2 Y

The argument SOURCE_NAME is optionally used to provide a name for the otherwise randomly-
named JavaScript code block.

JavaScript code can be provided inline with PL/SQL as shown in the following code:

SET SERVEROUTPUT ON;

Chapter 2
Overview of Multilingual Engine for JavaScript

2-5

https://www.ecma-international.org/ecma-262/5.1/#sec-10.3

DECLARE
 l_ctx DBMS_MLE.context_handle_t;
 l_jscode CLOB;
BEGIN
 l_ctx := DBMS_MLE.create_context;
 l_jscode := q'~
 console.log('Hello World, this is DBMS_MLE')
 ~';
 DBMS_MLE.eval(
 context_handle => l_ctx,
 language_id => 'JAVASCRIPT',
 source => l_jscode,
 source_name => 'My JS Snippet'
);
END;
/

Executing this example will result in the following being printed:

Hello World, this is DBMS_MLE

The code provided above demonstrates the following concepts of invoking JavaScript code
dynamically:

• An execution context must be explicitly created

• JavaScript code is provided as a Character Large Object (CLOB) or VARCHAR2 variable

• The context must be explicitly evaluated

Both PL/SQL and JavaScript are present when you execute JavaScript dynamically. The code
snippets provided are not reusable outside of their namespace. The output of the call to
console.log is passed to DBMS_OUTPUT for printing on the screen.

See Also:

• Overview of Dynamic MLE Execution for more details about dynamic execution
with MLE

• Returning the Result of the Last Execution for more information about the RESULT
argument of the procedure DBMS_MLE.eval()

Introduction to MLE Module Calls
It is possible to create JavaScript modules as schema objects that are stored persistently in the
database.

Once a JavaScript module has been defined, it can be used in SQL and PL/SQL as shown
below:

CREATE OR REPLACE MLE MODULE helloWorld_module
LANGUAGE JAVASCRIPT AS
function helloWorld() {

Chapter 2
Overview of Multilingual Engine for JavaScript

2-6

 console.log('Hello World, this is a JS module');
}
export { helloWorld }
/

Before the exported JavaScript function can be invoked, a call specification must be defined.
The code snippet below shows how to create a call specification for the JavaScript
helloWorld() function in PL/SQL:

CREATE OR REPLACE PROCEDURE helloWorld_proc
AS MLE MODULE helloWorld_module
SIGNATURE 'helloWorld()';
/

The call specification, referred to as an MLE module call, publishes the JavaScript function
helloWorld(). It can then be used just like any other PL/SQL procedure. The following snippet
shows how to invoke the function along with the results:

SET SERVEROUTPUT ON

BEGIN
 helloWorld_proc;
END;
/

Result:

Hello World, this is a JS module

In addition to custom-built JavaScript modules as shown in the provided code, it is possible to
load third-party JavaScript modules into the database. Note that Oracle recommends
performing a security screening of third-party code according to industry best practice.

See Also:

• MLE JavaScript Modules and Environments for details about MLE modules and
environments

• MLE Security for more information about MLE security features and
recommendations

Chapter 2
Overview of Multilingual Engine for JavaScript

2-7

About MLE Execution Contexts
An MLE execution context is a standalone, isolated runtime environment, designed to contain
all runtime state associated with the execution of JavaScript code. Runtime state includes
global variables as well as the state of the language environment.

Note:

An MLE execution context corresponds to an ECMAScript Execution Context for
JavaScript.

MLE uses execution contexts in two different scenarios:

• With dynamic MLE execution, where you can create and use dynamic MLE contexts
explicitly

• For calls from SQL and PL/SQL to functions exported by an MLE module

Dynamic Execution

Properties of dynamic MLE contexts are determined by the environment used at the moment
the execution context is created. You have explicit control over which execution context is used
for each dynamic MLE snippet, with each execution context running code on behalf of a single
user.

There is no limit to how many dynamic MLE execution contexts can be created in a session, or
how they are shared across different code snippets. Code snippets in JavaScript share all
global variables with other code snippets running in the same execution context.

MLE Modules

Contexts for MLE module calls from SQL or PL/SQL are created implicitly on demand. Here,
the properties are determined by the MLE environment referenced in the call specification at
the moment of context creation. The environment can be used to specify language options and
to make MLE modules available for import.

MLE modules never share an execution context with other modules or dynamic MLE snippets.
Additionally, separate execution contexts are used when code from the same MLE module is
executed on behalf of different users. MLE creates a dedicated execution context for each
combination of MLE module and environment. Two call specifications that specify either
different modules or different environments are executed in separate module contexts.

See Also:

• Specifying Environments for MLE Modules for more information about MLE
environments

• Execution Contexts for information about how execution contexts are used to
enforce runtime state isolation

Chapter 2
Overview of Multilingual Engine for JavaScript

2-8

https://262.ecma-international.org/5.1/#sec-10.3

About Restricted Execution Contexts
The PURE keyword can be specified on MLE environments and JavaScript inline call
specifications to create restricted JavaScript execution contexts.

In-database JavaScript code can leverage database functionality, such as SQL execution,
using APIs like the MLE JavaScript SQL Driver and SODA. PURE execution disallows access
to stateful database APIs inside JavaScript, meaning the execution is completely unprivileged.
In a PURE environment, JavaScript code cannot read or write any database state, such as
tables, procedures, and objects.

The only possible interaction with the database during PURE execution is through inputs and
outputs to JavaScript code. This can be in the form of data provided to MLE from the database
through user-defined function arguments for call specifications, as well as symbols exported
using DBMS_MLE.EXPORT_TO_MLE. Reference types, such as LOBs passed to MLE, can be
accessed (read or written) during PURE execution. Additionally, PURE execution does not
restrict access to supported data types.

In many situations, JavaScript user-defined functions are purely computational and don't
require access to powerful APIs such as the MLE JavaScript SQL driver or the Foreign
Function Interface (FFI). PURE execution serves as a method to isolate certain code, such as
third-party JavaScript libraries, from the database itself. This isolation can reduce the attack
surface of supply chain attacks, in which access to the database state is a security concern.
Using PURE execution also allows less-privileged developers to create these restricted user-
defined functions without requiring additional access or privileges to the database state or
network.

The following JavaScript APIs and global classes and functions are not available during PURE
execution:

• JavaScript APIs:

– mle-js-oracledb
– mle-js-plsql-ffi
– mle-js-fetch

• Global classes and functions:

– session
– soda
– plsffi
– oracledb
– require

JavaScript APIs that do not interact with database state, such as mle-js-plsqltypes and mle-
js-encodings remain accessible during PURE execution.

The PURE keyword can be specified in inline call specifications, in module call specifications,
and using DBMS_MLE. The following are examples of the syntax in each case:

• Module call specification:

CREATE OR REPLACE MLE MODULE pure_mod
LANGUAGE JAVASCRIPT AS
export function helloWorld() {

Chapter 2
Overview of Multilingual Engine for JavaScript

2-9

 console.log('Hello World, this is a JS module');
}
/

CREATE OR REPLACE MLE ENV pure_env
IMPORTS('pure_mod' MODULE pure_mod) PURE;

CREATE OR REPLACE PROCEDURE helloWorld
AS MLE MODULE pure_mod ENV pure_env SIGNATURE 'helloWorld';
/

• Inline call specification:

CREATE OR REPLACE PROCEDURE helloWorld
AS MLE LANGUAGE JAVASCRIPT PURE
{{
 console.log('Hello World, this is a JS inlined call specification');
}};
/

• Using DBMS_MLE:

SET SERVEROUTPUT ON;
DECLARE
 l_ctx dbms_mle.context_handle_t;
 l_snippet CLOB;
BEGIN
 -- to specify PURE execution with DBMS_MLE, use an environment
 -- that has been created with the PURE keyword
 l_ctx := dbms_mle.create_context(environment => 'PURE_ENV');
 l_snippet := q'~
 console.log('Hello World, this is dynamic MLE execution');
 ~';
 dbms_mle.eval(l_ctx, 'JAVASCRIPT', l_snippet);
 dbms_mle.drop_context(l_ctx);
EXCEPTION
 WHEN OTHERS THEN
 dbms_mle.drop_context(l_ctx);
 RAISE;
END;
/

Introduction to Debugging JavaScript Code
MLE allows you to debug your JavaScript code by conveniently and efficiently collecting
runtime state during program execution.

After your MLE code has finished executing, debug data collected can be used to analyze
program behavior and discover and fix bugs. This form of debugging is known as post-
execution debugging.

The post-execution debug option allows you to instrument your code with debugpoints.
Debugpoints allow for the logging of program state conditionally or unconditionally, including
values of individual variables as well as execution snapshots. Debugpoints are specified as

Chapter 2
Introduction to Debugging JavaScript Code

2-10

JSON documents separate from the application code. No change to the application code is
necessary for debugpoints to fire.

When activated, debug information is collected according to the debug specification and can
be fetched for later analysis by a wide range of tools thanks to its standard format.

See Also:

Post-Execution Debugging of MLE JavaScript Modules for more details about post-
execution debugging with MLE

Chapter 2
Introduction to Debugging JavaScript Code

2-11

3
MLE JavaScript Modules and Environments

A JavaScript module is a unit of MLE's language code stored in the database as a schema
object.

Storing code within the database is one of the main benefits of using JavaScript in MLE: rather
than having to manage a fleet of application servers each with their own copy of the
application, the database takes care of this for you.

In addition, Data Guard replication ensures that the same code is present in both production
and all physical standby databases. Configuration drift, a common problem bound to occur
when invoking the disaster recovery location, can be mitigated against.

A JavaScript module in MLE is equivalent to an ECMAScript 6 module. The terms MLE module
and JavaScript module are used interchangeably. The contents are specific to JavaScript and
can be managed using Data Definition Language (DDL) commands.

In traditional JavaScript environments, additional information is often passed to the runtime
using directives or configuration scripts. In MLE, this can be achieved using MLE
environments, an additional metadata structure complementing MLE modules. MLE
environments are also used for name resolution of JavaScript module imports. Name
resolution is crucial for maintaining code and separating it into various modules to be used with
MLE.

See Also:

Developer.mozilla.org for more information about JavaScript modules

Topics

• Using JavaScript Modules in MLE
JavaScript modules can be used in several different ways and can be managed using a set
of Data Definition Language (DDL) commands.

• Specifying Environments for MLE Modules
MLE environments are schema objects in the database. Their functionality and
management methods are described.

Using JavaScript Modules in MLE
JavaScript modules can be used in several different ways and can be managed using a set of
Data Definition Language (DDL) commands.

JavaScript code provided in MLE modules can be used in the following ways:

• JavaScript functions exported by an MLE modules can be published by creating a call
specification known as an MLE module call. This allows the function to be called directly
from SQL and PL/SQL.

3-1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

• Functionality exported by a JavaScript MLE module can be imported in other MLE
JavaScript modules.

• Code snippets in DBMS_MLE can import modules for dynamic invocation of JavaScript.

Before a user can create and execute MLE modules, several privileges must be granted.

See Also:

• Overview of Importing MLE JavaScript Modules for more information about
module calls

• Overview of Dynamic MLE Execution for more information about DBMS_MLE and
dynamic invocation of JavaScript code in the database

• System and Object Privileges Required for Working with JavaScript in MLE for
more information about MLE-specific privileges

Topics

• Managing JavaScript Modules in the Database
SQL allows the creation of MLE modules as schema objects, assuming the necessary
privileges are in place.

• Preparing JavaScript code for MLE Module Calls
JavaScript modules in MLE follow the ECMAScript 6 standard for modules. Functions and
variables expected to be consumed by users of the MLE module must be exported.

• Additional Options for Providing JavaScript Code to MLE
The JavaScript source code of an MLE module can be specified inline with PL/SQL but
can also be provided using a BFILE, BLOB, or CLOB, in which case the source file must
be UTF8 encoded.

• Specifying Module Version Information and Providing JSON Metadata
MLE modules may carry optional metadata in the form of a version string and free-form
JSON-valued metadata.

• Drop JavaScript Modules
The DROP MLE MODULE DDL statement is used for dropping an MLE module.

• Alter JavaScript Modules
Attributes of an MLE module can be assigned or altered using the ALTER MLE MODULE
statement.

• Overview of Built-in JavaScript Modules
MLE provides a set of built-in JavaScript modules that are available for import in any
execution context.

• Dictionary Views Related to MLE JavaScript Modules
The Data Dictionary includes details about JavaScript modules.

Chapter 3
Using JavaScript Modules in MLE

3-2

Managing JavaScript Modules in the Database
SQL allows the creation of MLE modules as schema objects, assuming the necessary
privileges are in place.

At a minimum, you need the CREATE MLE MODULE privilege to create or replace an MLE module
in your own schema. Additionally, you must have the execute privilege on the target JavaScript
language object.

See Also:

• System and Object Privileges Required for Working with JavaScript in MLE for
more information about MLE-specific privileges

• Oracle Database Security Guide for more details about privileges and roles in
Oracle Database

Topics

• Naming JavaScript Modules
Each JavaScript module name must be unique in the schema that it is created in. Unless a
fully qualified name is used, the current user's schema is used.

• Creating JavaScript Modules in the Database
JavaScript modules are created in the database using the CREATE MLE MODULE DDL
statement, specifying name and source code of the MLE module.

• Storing JavaScript Code in Databases Using Single-Byte Character Sets
Character set standards and things to remember when using a single-byte character set
with MLE.

• Code Analysis
JavaScript syntax errors are flagged when an MLE module is created but a linting tool of
your choice should still be used to perform analysis before executing the CREATE MLE
MODULE command.

Naming JavaScript Modules
Each JavaScript module name must be unique in the schema that it is created in. Unless a
fully qualified name is used, the current user's schema is used.

As with other schema object identifiers, the module name is case-sensitive if enclosed in
double quotation marks. If the enclosing quotation marks are omitted, the name is implicitly
converted to uppercase.

When choosing a unique name, note that MLE objects share the namespace with tables,
views, materialized views, sequences, private synonyms, PL/SQL packages, functions,
procedures, and cache groups.

Chapter 3
Using JavaScript Modules in MLE

3-3

Creating JavaScript Modules in the Database
JavaScript modules are created in the database using the CREATE MLE MODULE DDL statement,
specifying name and source code of the MLE module.

As soon as an MLE module has been created, it is persisted in the database dictionary. This is
one of the differences when compared with dynamic execution of JavaScript code using
DBMS_MLE.

CREATE MLE MODULE (without the OR REPLACE clause) throws an error if an MLE module with the
given name already exists. With CREATE OR REPLACE MLE MODULE, the existing module is
replaced if it exists, otherwise a new one is created. When an MLE module is replaced,
privileges to it do not need to be re-granted.

For those who are familiar with PL/SQL, note that this is exactly the same behavior
experienced with PL/SQL program units.

If you do not wish to replace an existing module in the event the module name is already in
use, you can use the IF NOT EXISTS clause rather than CREATE OR REPLACE. The syntax for
this variation is shown in Example 3-1. The IF NOT EXISTS and OR REPLACE clauses are
mutually exclusive.

See Also:

• Oracle Database SQL Language Reference for the complete CREATE MLE MODULE
syntax

• Oracle Database Development Guide for more information about using the IF
[NOT] EXISTS syntax

Example 3-1 Creating a JavaScript Module in the Database

This example demonstrates the creation of an MLE module and the export of a simple
JavaScript function.

CREATE MLE MODULE IF NOT EXISTS po_module LANGUAGE JAVASCRIPT AS

/**
* get the value of all line items in an order
* @param {array} lineItems - all the line items in a purchase order
* @returns {number} the total value of all line items in a purchase order
*/
export function orderValue(lineItems) {

 return lineItems
 .map(x => x.Part.UnitPrice * x.Quantity)
 .reduce(
 (accumulator, currentValue) => accumulator + currentValue, 0
);
}
/

Chapter 3
Using JavaScript Modules in MLE

3-4

The first line of this code block specifies the JavaScript module name as po_module. The
remaining lines define the actual JavaScript code. Note that in line with the ECMAScript
standard, the export keyword indicates the function to be exported to potential callers of the
module. MLE accepts code adhering to the ECMAScript 2023 standard.

Storing JavaScript Code in Databases Using Single-Byte Character Sets
Character set standards and things to remember when using a single-byte character set with
MLE.

JavaScript is encoded in Unicode. The Unicode Standard is a character encoding system that
defines every character in most of the spoken languages in the world. It was developed to
overcome limitations of other character-set encodings.

Oracle recommends creating databases using the AL32UTF8 character set. Using the
AL32UTF8 character set in the database ensures the use of the latest version of the Unicode
Standards and minimizes the potential for character-set conversion errors.

In case your database still uses a single-byte character set such as US7ASCII, WE8ISO8859-
n, or WE8MSWIN1252, you must be careful not to use Unicode features in MLE JavaScript
code. This is no different than handling other types of input data with such a database.

See Also:

Oracle Database Globalization Support Guide for more details about the Unicode
Standard

Code Analysis
JavaScript syntax errors are flagged when an MLE module is created but a linting tool of your
choice should still be used to perform analysis before executing the CREATE MLE MODULE
command.

When creating MLE modules in the database, you should use a well-established toolchain in
the same way other JavaScript projects are governed. In this sense, the call to CREATE MLE
MODULE can be considered a deployment step, similar to deploying a server application. Code
checking should be performed during a build step, for example by a continuous integration and
continuous deployment (CI/CD) pipeline, prior to deployment.

If a module is created using CREATE MLE MODULE that includes syntax errors in the JavaScript
code, the module will be created but it will exist in an invalid state. This check does not apply to
any SQL statements called within the module, so separate testing should still be performed to
ensure that the code works as expected.

It is considered an industry best practice to process code with a tool called a linter before
checking it into a source-code repository. As with any other development project, you are free
to choose the best option for yourself and your team. Some potential options include ESLint,
JSHint, JSLint, and others that perform static code analysis to flag syntax errors, bugs, or
otherwise problematic code. They can also be used to enforce a certain coding style. Many
integrated development environments (IDEs) provide linting as a built-in feature, invoking the
tool as soon as a file is saved to disk and flagging any issues.

Chapter 3
Using JavaScript Modules in MLE

3-5

In addition to executing linting dynamically, it is possible to automate the code analysis using
highly automated DevOps environments to invoke linting as part of a build pipeline. This step
usually occurs prior to submitting the JavaScript module to the database.

The aim is to trap as many potential issues as possible before they can produce problems at
runtime. Unit tests can help further mitigate these risks and their inclusion into the development
process have become an industry best practice. Regardless of the method you choose, the
code analysis step occurs prior to submitting the JavaScript module to the database.

Preparing JavaScript code for MLE Module Calls
JavaScript modules in MLE follow the ECMAScript 6 standard for modules. Functions and
variables expected to be consumed by users of the MLE module must be exported.

Those variables and functions not exported are considered private in the module. Example 3-3
demonstrates the use of both public and private functions in an MLE JavaScript module.

An ECMAScript module can import other ECMAScript modules using import statements or
dynamic import calls. This functionality is present in MLE as well. Complementary metadata to
MLE modules is provided in MLE environments.

Note that console output in MLE is facilitated using the console object. By default, anything
written to console.log() is routed to DBMS_OUTPUT and will end up on the screen.

JavaScript code like that in Example 3-1 cannot be accessed from SQL or PL/SQL without the
help of call specifications. For now, you can think of a call specification as a PL/SQL program
unit (function, procedure, or package) where its PL/SQL body is replaced with a reference to
the JavaScript module and function, as shown in Example 3-2. For more information about call
specifications, see MLE JavaScript Functions.

See Also:

Using MLE Environments for Import Resolution

Example 3-2 Create a Call Specification for a Public Function

This example uses the module po_module created in Example 3-1. A call specification for
orderValue(), the only function exported in po_module, can be written as follows:

CREATE OR REPLACE FUNCTION order_value(
 p_line_items JSON
) RETURN NUMBER AS
MLE MODULE po_module
SIGNATURE 'orderValue';
/

Once the function is created, it is possible to calculate the value of a given purchase order:

SELECT
 po.po_document.PONumber,
 order_value(po.po_document.LineItems[*]) order_value

Chapter 3
Using JavaScript Modules in MLE

3-6

FROM
 j_purchaseorder po;

Result:

PONUMBER ORDER_VALUE
---------- -----------
1600 279.3
672 359.5

Example 3-3 Public and Private Functions in a JavaScript Module

In addition to public (exported) functions, it is possible to add functions private to the module.
In this example, the calculation of the value is taken out of the map() function and moved to a
separate function (refactoring).

The first function in the following code, lineItemValue(), is considered private, whereas the
second function, orderValue(), is public. The export keyword is provided at the end of this
code listing but can also appear as a prefix for variables and functions, as seen in
Example 3-1. Both variations are valid JavaScript syntax.

CREATE OR REPLACE MLE MODULE po_module LANGUAGE JAVASCRIPT AS

/**
* calculate the value of a given line item. Factored out of the public
* function to allow for currency conversions in a later step
* @param {number} unitPrice - the price of a single article
* @param {number} quantity - the quantity of articles ordered
* @returns {number} the monetary value of the line item
*/
function lineItemValue(unitPrice, quantity) {
 return unitPrice * quantity;
}

/**
* get the value of all line items in an order
* @param {array} lineItems - all the line items in a purchase order
* @returns {number} the total value of all line items in a purchase order
*/
function orderValue(lineItems) {

 return lineItems
 .map(x => lineItemValue(x.Part.UnitPrice, x.Quantity))
 .reduce(
 (accumulator, currentValue) => accumulator +
currentValue, 0
);
}

export { orderValue }
/

Chapter 3
Using JavaScript Modules in MLE

3-7

Additional Options for Providing JavaScript Code to MLE
The JavaScript source code of an MLE module can be specified inline with PL/SQL but can
also be provided using a BFILE, BLOB, or CLOB, in which case the source file must be UTF8
encoded.

Creating MLE modules using the BFILE clause can cause problems with logical replication
such as GoldenGate. In order for the DDL command to succeed on the target database, the
same directory must exist on the target database. Furthermore, the same JavaScript file must
be present in this directory. Failure to adhere to these conditions will cause the call to create
the MLE module on the target database to fail.

A BLOB or a CLOB can also be used to create an MLE module as an alternative to using a
BFILE. Example 3-5 shows how to create a JavaScript module using a CLOB. If you prefer to
use a BLOB, the syntax is the same but the value of the BLOB will differ from that of a CLOB.

Another option available is to use the mle create-module command with SQLcl to load a
JavaScript file into the database. Because the module is being created directly from a
JavaScript file, there is no need to sandwich the JavaScript code between DDL statements.
This means regular programming steps such as linting, local unit testing, and the use of
formatting tools can be performed more conveniently. The use of SQLcl can be particularly well
suited for Continuous Integration (CI) pipelines.

Example 3-4 Providing JavaScript Source Code Using a BFILE

In this example, JS_SRC_DIR is a database directory object mapping to a location on the local
file system containing the module's source code in a file called myJavaScriptModule.js. When
loading the file from the directory location, MLE stores the source code in the dictionary.
Subsequent calls to the MLE module will not cause the source code to be refreshed from the
disk. If there is a new version of the module stored in myJavaScriptModule.js, it must be
deployed using another call to CREATE OR REPLACE MLE MODULE.

CREATE MLE MODULE mod_from_bfile
LANGUAGE JAVASCRIPT
USING BFILE(JS_SRC_DIR,'myJavaScriptModule.js');
/

Example 3-5 Providing JavaScript Source Code Using a CLOB

CREATE OR REPLACE MLE MODULE mod_from_clob_inline
LANGUAGE JAVASCRIPT USING CLOB (
 SELECT q'~
 export function clob_hello(who){
 return `hello, ${who}`;
}
~')
/

As an alternative, you also have the option of using JavaScript source code that is stored in a
table. This example variation assumes your schema features a table named javascript_src

Chapter 3
Using JavaScript Modules in MLE

3-8

containing the JavaScript source code in column src along with some additional metadata.
The following statement fetches the CLOB and creates the module.

CREATE OR REPLACE MLE MODULE mod_from_clob_table
LANGUAGE JAVASCRIPT USING CLOB (
 SELECT src
 FROM javascript_src
 WHERE
 id = 1 AND
 commit_hash = 'ac1fd40'
)
/

Staging tables like this can be found in environments where Continuous Integration (CI)
pipelines are used to deploy JavaScript code to the database.

Example 3-6 Providing JavaScript Source Code Using SQLcl

In this example, the module's source code is in a file called myJavaScriptModule.js, which is
located in a local file directory folder called tmp. The following command creates a module
called my_js_mod, replacing the module if it exists or creating one if it does not.

mle create-module -
 -language javascript -
 -replace -
 -filename /tmp/myJavaScriptModule.js -
 -module-name my_js_mod

For more information about SQLcl MLE commands and their syntax, see Oracle SQLcl User’s
Guide.

Specifying Module Version Information and Providing JSON Metadata
MLE modules may carry optional metadata in the form of a version string and free-form JSON-
valued metadata.

Both kinds of metadata are purely informational and do not influence the behavior of MLE.
They are stored alongside the module in the data dictionary.

The VERSION flag can be used as an internal reminder about what version of the code is
deployed. The information stored in the VERSION field allows developers and administrators to
identify the code in the version control system.

The format for JSON metadata is not bound to a schema; anything useful or informative can be
added by the developer. In case the MLE module is an aggregation of sources created by a
tool such as rollup.js or webpack, it can be useful to store the associated package-
lock.json file alongside the module.

The metadata field can be used to create a software bill of material (SBOM), allowing security
teams and administrators to track information about deployed packages, especially in the case
where third-party modules are used.

Tracking dependencies and vulnerabilities in the upstream repository supports easier
identification of components in need of update after security vulnerabilities have been reported.

Chapter 3
Using JavaScript Modules in MLE

3-9

See Also:

• Dictionary Views Related to MLE JavaScript Modules

• Software Bill of Material for more information about using the metadata field to
store a SBOM

Example 3-7 Specification of a VERSION string in CREATE MLE MODULE

CREATE OR REPLACE MLE MODULE version_mod
 LANGUAGE JAVASCRIPT
 VERSION '1.0.0.1.0'
AS
export function sq(num) {
 return num * num;
}
/

Example 3-8 Addition of JSON Metadata to the MLE Module

This example uses the module version_mod, created in Example 3-7.

ALTER MLE MODULE version_mod
SET METADATA USING CLOB
(SELECT
 '{
 "name": "devel",
 "lockfileVersion": 2,
 "requires": true,
 "packages": {}
 }'
)
/

Drop JavaScript Modules
The DROP MLE MODULE DDL statement is used for dropping an MLE module.

The DROP statement specifies the name, and optionally the schema of the module to be
dropped. If a schema is not specified, the schema of the current user is assumed.

Attempting to drop an MLE module that does not exist causes an error to be thrown. In cases
where this is not desirable, the IF EXISTS clause can be used. The DROP MLE MODULE
command is silently skipped if the indicated MLE module does not exist.

Example 3-9 Drop an MLE Module

DROP MLE MODULE unused_mod;

Example 3-10 Drop an MLE Module Using IF EXISTS

DROP MLE MODULE IF EXISTS unused_mod;

Chapter 3
Using JavaScript Modules in MLE

3-10

Alter JavaScript Modules
Attributes of an MLE module can be assigned or altered using the ALTER MLE MODULE
statement.

The ALTER MLE MODULE statement specifies the name, and optionally the schema of the module
to be altered. If the module name is not prefixed with a schema, the schema of the current user
is assumed.

Example 3-11 Alter an MLE Module

ALTER MLE MODULE change_mod
 SET METADATA USING CLOB(SELECT'{...}');

Overview of Built-in JavaScript Modules
MLE provides a set of built-in JavaScript modules that are available for import in any execution
context.

Built-in modules are not deployed to the database as user-defined MLE modules, but are
included as part of the MLE runtime. In particular, MLE provides the following three built-in
JavaScript modules:

• mle-js-oracledb is the JavaScript MLE SQL Driver.

• mle-js-bindings provides functionality to import and export values from the PL/SQL
engine.

• mle-js-plsqltypes provides definitions for the PL/SQL wrapper types. For example,
JavaScript types that wrap PL/SQL and SQL types like OracleNumber.

• mle-js-fetch provides a partial Fetch API polyfill, allowing developers to invoke external
resources.

• mle-encode-base64 contains code to work with base64-encoded data.

• mle-js-encodings provides functionality to handle text in UTF-8 and UTF-16 encodings.

• mle-js-plsql-ffi provides functionality to handle PL/SQL packages, functions, and
procedures as JavaScript objects.

These modules can be used to interact with the database and provide type conversions
between the JavaScript engine and database engine.

See Also:

Server-Side JavaScript API Documentation for more information about the built-in
JavaScript modules

Chapter 3
Using JavaScript Modules in MLE

3-11

https://oracle-samples.github.io/mle-modules

Dictionary Views Related to MLE JavaScript Modules
The Data Dictionary includes details about JavaScript modules.

Topics

• USER_SOURCE
Each JavaScript module's source code is externalized using the [USER | ALL | DBA |
CDB]_SOURCE dictionary views.

• USER_MLE_MODULES
Metadata pertaining to JavaScript MLE modules are found in [USER | ALL | DBA |
CDB]_MLE_MODULES.

USER_SOURCE
Each JavaScript module's source code is externalized using the [USER | ALL | DBA |
CDB]_SOURCE dictionary views.

Modules created with references to the file system using the BFILE operator show the code at
the time of the module's creation.

For more information about *_SOURCE, see Oracle Database Reference.

Example 3-12 Externalize JavaScript Module Source Code

SELECT
 line,
 text
FROM
 USER_SOURCE
WHERE
 name = 'PO_MODULE';

Example output:

 LINE TEXT
----- ---
 1 /**
 2 * calculate the value of a given line item. Factored out of the public
 3 * function to allow for currency conversions in a later step
 4 * @param {number} unitPrice - the price of a single article
 5 * @param {number} quantity - the quantity of articles ordered
 6 * @returns {number} the monetary value of the line item
 7 */
 8 function lineItemValue(unitPrice, quantity) {
 9 return unitPrice * quantity;
 10 }
 11
 12
 13 /**
 14 * get the value of all line items in an order
 15 * @param {array} lineItems - all the line items in a purchase order
 16 * @returns {number} the total value of all line items in a purchase

Chapter 3
Using JavaScript Modules in MLE

3-12

order
 17 */
 18 export function orderValue(lineItems) {
 19
 20 return lineItems
 21 .map(x => lineItemValue(x.Part.UnitPrice, x.Quantity))
 22 .reduce(
 23 (accumulator, currentValue) => accumulator +
currentValue, 0
 24);
 25 }

USER_MLE_MODULES
Metadata pertaining to JavaScript MLE modules are found in [USER | ALL | DBA |
CDB]_MLE_MODULES.

Any JSON metadata specified, version information, as well as language, name, and owner can
be found in this view.

For more information about *_MLE_MODULES, see Oracle Database Reference.

Example 3-13 Find MLE Modules Defined in a Schema

SELECT MODULE_NAME, VERSION, METADATA
FROM USER_MLE_MODULES
WHERE LANGUAGE_NAME='JAVASCRIPT'
/

Example output:

MODULE_NAME VERSION METADATA
------------------------------ ---------- -----------
MY_MOD01 1.0.0.1
MY_MOD02 1.0.1.1
MY_MOD03

Specifying Environments for MLE Modules
MLE environments are schema objects in the database. Their functionality and management
methods are described.

MLE environments complement MLE modules and allow you to do the following:

• Set language options to customize the JavaScript runtime in its execution context

• Enable specific MLE modules to be imported

• Manage name resolution and the import chain

Topics

• Creating MLE Environments in the Database
The SQL DDL supports the creation of MLE environments.

Chapter 3
Specifying Environments for MLE Modules

3-13

• Dropping MLE Environments
MLE environments that are no longer needed can be dropped using the DROP MLE ENV
command.

• Modifying MLE Environments
Existing MLE environments can be modified using the ALTER MLE ENV command.

• Dictionary Views Related to MLE JavaScript Environments
Details about MLE environments are available in these families of views: USER_MLE_ENVS
and USER_MLE_ENV_IMPORTS.

Creating MLE Environments in the Database
The SQL DDL supports the creation of MLE environments.

Just like MLE modules, MLE environments are schema objects in the database, persisted in
the data dictionary.

At a minimum, you must have the CREATE MLE MODULE privilege to create or replace an MLE
environment in your own schema.

See Also:

• System and Object Privileges Required for Working with JavaScript in MLE for
more information about the privileges necessary to create and execute
JavaScript code in MLE

• Oracle Database Security Guide for details about privileges and roles in Oracle
Database

Topics

• Naming MLE Environments
Each JavaScript environment's name must be unique in the schema it is created in. Unless
a fully qualified name is used, the current user's schema is used.

• Creating an Empty MLE Environment
The DDL statement CREATE MLE ENV can be used to create an MLE environment.

• Creating an Environment as a Clone of an Existing Environment
If needed, a new environment can be created as a point-in-time copy of an existing
environment.

• Using MLE Environments for Import Resolution
It is possible to import functionality exported by one JavaScript module into another using
the import statement.

• Providing Language Options
MLE allows the customization of JavaScript's runtime by setting language-specific options
in MLE environments.

Chapter 3
Specifying Environments for MLE Modules

3-14

Naming MLE Environments
Each JavaScript environment's name must be unique in the schema it is created in. Unless a
fully qualified name is used, the current user's schema is used.

As with other schema object identifiers, the name is case-sensitive if enclosed in double
quotation marks. If the enclosing quotation marks are omitted, the name is implicitly converted
to uppercase.

MLE environments cannot contain import mappings that conflict with the names of the MLE
built-in modules (mle-js-oracledb, mle-js-bindings, mle-js-plsqltypes, mle-js-fetch,
mle-encode-base64, mle-js-encodings, and mle-js-plsql-ffi). If you attempt to add such a
mapping using either the CREATE MLE ENV or ALTER MLE ENV DDL, the operation fails with an
error.

Creating an Empty MLE Environment
The DDL statement CREATE MLE ENV can be used to create an MLE environment.

In its most basic form, an environment can be created empty as shown in the following snippet:

CREATE MLE ENV myEnv;

Subsequent calls to ALTER MLE ENV can be used to add properties to the environment.

Just like with MLE modules, it is possible to append the OR REPLACE clause to instruct the
database to replace an existing MLE environment rather than throwing an error.

Furthermore, the IF NOT EXISTS clause can be used instead of the OR REPLACE clause to
prevent the creation of a new MLE environment in the case that one already exists with the
same name. In this case, the statement used to create the environment changes to the
following:

CREATE MLE ENV IF NOT EXISTS myEnv;

Note:

The IF NOT EXISTS and OR REPLACE clauses are mutually exclusive.

You can optionally include the PURE keyword to indicate that any JavaScript code using the
environment should be run in a restricted execution context that disallows access to the
database state. PURE execution provides an extra layer of security by isolating certain code,
such as third-party JavaScript libraries, from the database. Environments that are created
using the PURE keyword can be referenced by MLE modules and when using DBMS_MLE for
dynamic execution. The PURE keyword can be specified as follows:

CREATE OR REPLACE MLE ENV my_pure_env PURE;

Chapter 3
Specifying Environments for MLE Modules

3-15

See Also:

Modifying MLE Environments for information about editing existing environments

About Restricted Execution Contexts for information about the PURE keyword and
restricted contexts

Oracle Database SQL Language Reference for the full syntax of CREATE MLE ENV

Creating an Environment as a Clone of an Existing Environment
If needed, a new environment can be created as a point-in-time copy of an existing
environment.

The new environment inherits all settings from its source. Subsequent changes to the source
are not propagated to the clone. A clone can be created as shown in the following statement:

CREATE MLE ENV MyEnvDuplicate CLONE MyEnv

Using MLE Environments for Import Resolution
It is possible to import functionality exported by one JavaScript module into another using the
import statement.

The separation of code allows for finer control over changes and the ability to write more
reusable code. Simplified code maintenance is another positive effect of this approach.

Only those identifiers marked with the export keyword are eligible for importing.

Modules attempting to import functionality from other modules stored in the database require
MLE environments in order to perform name resolution. To create an MLE environment with
that information, the IMPORTS clause must be used. Example 3-14 demonstrates how a
mapping is created between the identifier po_module and JavaScript module PO_MODULE,
created in Example 3-1.

Multiple imports can be provided as a comma-separated list. In Example 3-14, the first
parameter in single quotation marks is known as the import name. The import name is used by
another module's import statement. In this case, 'po_module' is the import name and refers to
the module of the same name.

Note:

The import name does not have to match the module name. Any valid JavaScript
identifier can be used. The closer the import name matches the module name it
refers to, the easier it is to identify the link between the two.

The CREATE MLE ENV command fails if a module referenced in the IMPORTS clause does not
exist or is not accessible to you.

Built-in JavaScript modules can be imported directly without having to specify additional MLE
environments.

Chapter 3
Specifying Environments for MLE Modules

3-16

See Also:

Overview of Built-in JavaScript Modules for more information about built-in modules

Example 3-14 Map Identifier to JavaScript Module

CREATE OR REPLACE MLE ENV
 po_env
IMPORTS (
 'po_module' MODULE PO_MODULE
);

Example 3-15 Import Module Functionality

CREATE OR REPLACE MLE MODULE import_example_module
LANGUAGE JAVASCRIPT AS

import * as po from "po_module";
/**
* use po_module's getValue() function to calculate the value of
* a purchase order. In later chapters, when discussing the MLE
* JavaScript SQL driver the hard-coded value used as the PO will
* be replaced by calls to the database
* @returns {number} the value of all line items in the purchase order
*/
export function purchaseOrderValue() {

 const purchaseOrder = {
 "PONumber": 1600,
 "Reference": "ABULL-20140421",
 "Requestor": "Alexis Bull",
 "User": "ABULL",
 "CostCenter": "A50",
 "ShippingInstructions": {
 "name": "Alexis Bull",
 "Address": {
 "street": "200 Sporting Green",
 "city": "South San Francisco",
 "state": "CA",
 "zipCode": 99236,
 "country": "United States of America"
 },
 "Phone": [
 {
 "type": "Office",
 "number": "909-555-7307"
 },
 {
 "type": "Mobile",
 "number": "415-555-1234"
 }

Chapter 3
Specifying Environments for MLE Modules

3-17

]
 },
 "Special Instructions": null,
 "AllowPartialShipment": true,
 "LineItems": [
 {
 "ItemNumber": 1,
 "Part": {
 "Description": "One Magic Christmas",
 "UnitPrice": 19.95,
 "UPCCode": 13131092899
 },
 "Quantity": 9.0
 },
 {
 "ItemNumber": 2,
 "Part": {
 "Description": "Lethal Weapon",
 "UnitPrice": 19.95,
 "UPCCode": 85391628927
 },
 "Quantity": 5.0
 }
]
 };

 return po.orderValue(purchaseOrder.LineItems);
}
/

purchaseOrderValue

CREATE FUNCTION purchase_order_value
RETURN NUMBER AS
MLE MODULE import_example_module
ENV po_env
SIGNATURE 'purchaseOrderValue';
/

SELECT purchase_order_value;
/

Result:

PURCHASE_ORDER_VALUE

 279.3

Chapter 3
Specifying Environments for MLE Modules

3-18

Providing Language Options
MLE allows the customization of JavaScript's runtime by setting language-specific options in
MLE environments.

Any options specified in the MLE environment take precedence over the default settings.

Multiple language options can be provided as a comma-separated list of '<key>=<value>'
strings. The following snippet demonstrates how to enforce JavaScript's strict mode.

CREATE MLE ENV MyEnvOpt
 LANGUAGE OPTIONS 'js.strict=true';

Changes made to the language options of an environment are not propagated to execution
contexts that have already been created using the environment. For changes to take effect for
existing contexts, the contexts need to be dropped and recreated.

Note:

White space characters are not allowed between the key, equal sign, and value.

Topics

• JavaScript Language Options
A full list of JavaScript language options available to be used with MLE are included.

JavaScript Language Options
A full list of JavaScript language options available to be used with MLE are included.

Table 3-1 JavaScript Language Options

Language Option Accepted Value Type Default Description

js.strict boolean false Enforce strict mode.

js.console boolean true Provide console global
property.

js.polyglot-builtin boolean true Provide Polyglot global
property.

Dropping MLE Environments
MLE environments that are no longer needed can be dropped using the DROP MLE ENV
command.

The following snippet demonstrates a basic example of dropping an MLE module:

DROP MLE ENV myOldEnv;

Chapter 3
Specifying Environments for MLE Modules

3-19

As with MLE modules, the IF EXISTS clause prevents an error if the named MLE environment
does not exist, as shown in the following snippet:

DROP MLE ENV IF EXISTS myOldEnv;

Modifying MLE Environments
Existing MLE environments can be modified using the ALTER MLE ENV command.

It is possible to modify language options and the imports clause.

Topics

• Altering Language Options
You can modify language options provided to an MLE module.

• Modifying Module Imports
In the context of MLE module imports, the ALTER MLE ENV command allows you to add
additional imports as well as modify and drop existing imports.

Altering Language Options
You can modify language options provided to an MLE module.

Use the ALTER MLE ENV clause to modify language options, as shown in the following snippet:

ALTER MLE ENV MyEnvOpt
 SET LANGUAGE OPTIONS 'js.strict=false';

Modifying Module Imports
In the context of MLE module imports, the ALTER MLE ENV command allows you to add
additional imports as well as modify and drop existing imports.

Imports not specified during an environment's creation can be added to existing MLE
environments using the ADD IMPORTS clause. Import names, once defined, are static and must
be dropped before they can be added as desired. Assuming you have run a new CREATE MLE
DDL to replace IMPORT_EXAMPLE_MODULE from Example 3-1 with the module name
IMPORT_EXAMPLE_MODULE_V2, the following statement will run successfully:

ALTER MLE ENV po_env
ADD IMPORTS (
 'import_example' MODULE IMPORT_EXAMPLE_MODULE_V2
);

Any imports no longer needed can be dropped using the DROP IMPORTS clause:

ALTER MLE ENV po_env DROP IMPORTS('import_example');

The case of the import identifier must match that in the data dictionary's
USER_MLE_ENV_IMPORTS view.

Chapter 3
Specifying Environments for MLE Modules

3-20

Dictionary Views Related to MLE JavaScript Environments
Details about MLE environments are available in these families of views: USER_MLE_ENVS and
USER_MLE_ENV_IMPORTS.

In addition to the USER prefix, these views exist in all namespaces: CDB, DBA, ALL, and USER.

Topics

• USER_MLE_ENVS
The USER_MLE_ENVS view lists all MLE environments available to you along with the defined
language options.

• USER_MLE_ENV_IMPORTS
The [USER | ALL | DBA | CDB]_MLE_ENV_IMPORTS family of views lists imported modules.

USER_MLE_ENVS
The USER_MLE_ENVS view lists all MLE environments available to you along with the defined
language options.

For more information about *_MLE_ENVS, see Oracle Database Reference.

Example 3-16 List Available MLE Environments Using USER_MLE_ENVS

SELECT ENV_NAME, LANGUAGE_OPTIONS
FROM USER_MLE_ENVS
WHERE ENV_NAME='MYENVOPT'
/

Example SQL*Plus output:

ENV_OWNER ENV_NAME LANGUAGE_OPTIONS
-------------------- ---------- ----------------------
JSDEV01 MYENVOPT js.strict=true

USER_MLE_ENV_IMPORTS
The [USER | ALL | DBA | CDB]_MLE_ENV_IMPORTS family of views lists imported modules.

MLE environments are the key enablers for resolving names of imported modules.
Example 3-17 demonstrates a query against USER_MLE_ENV_IMPORTS to list IMPORT_NAME,
MODULE_OWNER, and MODULE_NAME.

For more information about *_MLE_ENV_IMPORTS, see Oracle Database Reference

Example 3-17 List Module Import Information Using USER_MLE_ENV_IMPORTS

SELECT IMPORT_NAME, MODULE_OWNER, MODULE_NAME
 FROM USER_MLE_ENV_IMPORTS
 WHERE ENV_NAME='MYFACTORIALENV';
/

Chapter 3
Specifying Environments for MLE Modules

3-21

SQL*Plus output:

IMPORT_NAME MODULE_OWNER MODULE_NAME
---------------------- ------------------------- ------------------
FACTORIAL_MOD DEVELOPER1 FACTORIAL_MOD

Chapter 3
Specifying Environments for MLE Modules

3-22

4
Overview of Dynamic MLE Execution

Dynamic MLE execution allows developers to invoke JavaScript snippets via the DBMS_MLE
package without storing the JavaScript code in the database.

As an alternative to executing JavaScript code using modules, MLE provides the option of
dynamic execution. With dynamic execution, no JavaScript code is stored in the data
dictionary. Instead, you can invoke snippets of JavaScript code via the DBMS_MLE package.

See Also:

• Server-Side JavaScript API Documentation for information about built-in module
mle-js-bindings, used to exchange values between PL/SQL and JavaScript

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_MLE package

Topics

• About Dynamic JavaScript Execution
Developers can run JavaScript dynamically either inline or by loading files via DBMS_MLE.
Dynamic MLE execution provides an additional method for using JavaScript to interact with
the Oracle Database, as an alternative to using MLE modules.

• Dynamic Execution Workflow
The steps required to perform dynamic MLE execution are described.

• Returning the Result of the Last Execution
Use the result argument to get the outcome of the last execution.

About Dynamic JavaScript Execution
Developers can run JavaScript dynamically either inline or by loading files via DBMS_MLE.
Dynamic MLE execution provides an additional method for using JavaScript to interact with the
Oracle Database, as an alternative to using MLE modules.

The DBMS_MLE package allows users to execute JavaScript code inside the Oracle Database
and seamlessly exchange data between PL/SQL and JavaScript. The JavaScript code itself
can execute PL/SQL through built-in JavaScript modules. JavaScript data types are
automatically mapped to Oracle Database data types and vice versa.

Developers can provide JavaScript code either as the value of a VARCHAR2 variable or, in case
of larger amounts of code, as a Character Large Object (CLOB). The JavaScript code is
passed to the DBMS_MLE package where it is evaluated and executed.

Considering that DBMS_MLE is a PL/SQL package, there is mix of JavaScript and PL/SQL when
dynamically executing code using DBMS_MLE, for example, in the following cases:

• Setup tasks such as providing the JavaScript code require an interaction with the PL/SQL
layer.

4-1

https://oracle-samples.github.io/mle-modules

• JavaScript code is executed by calling a function in DBMS_MLE.

• After JavaScript code completes execution, any errors that have been encountered are
passed back to PL/SQL.

Dynamic Execution Workflow
The steps required to perform dynamic MLE execution are described.

Before a user can create and execute JavaScript code using DBMS_MLE, several privileges must
be granted. For information about required privileges, see System and Object Privileges
Required for Working with JavaScript in MLE.

The execution workflow for JavaScript code using DBMS_MLE is as follows:

1. Create an execution context

2. Provide JavaScript code either using a VARCHAR2 or CLOB variable

3. Execute the code, optionally passing variables between the PL/SQL and MLE engines

4. Close the execution context

As with any code, it is considered an industry best practice to deal with unexpected conditions.
You can do this in the JavaScript code itself using standard JavaScript exception handling
features or in PL/SQL.

Topics

• Providing JavaScript Code Inline
Using a quoting operator is the favored method for providing JavaScript code inline when
performing dynamic execution.

• Loading JavaScript Code from Files
The method for using a BFILE operator to read in a CLOB is described.

Providing JavaScript Code Inline
Using a quoting operator is the favored method for providing JavaScript code inline when
performing dynamic execution.

A quoting operator, commonly referred to as a q-quote operator, is one option you can use to
load JavaScript code by embedding it directly within a PL/SQL block. The use of this
alternative quoting operator is suggested as the preferred method to provide JavaScript code
inline with PL/SQL code whenever possible.

Note that while the q-quote operator is the recommended method for dynamic execution,
delimiters such as {{...}} are used to enclose JavaScript code when using inline call
specifications. To learn more about these delimiter options, see Creating an Inline MLE Call
Specification.

Example 4-1 Using the Q-Quote Operator to Provide JavaScript Code Inline with
PL/SQL

DECLARE
 l_ctx dbms_mle.context_handle_t;
 l_snippet CLOB;
BEGIN
 l_ctx := dbms_mle.create_context();
 l_snippet := q'~

Chapter 4
Dynamic Execution Workflow

4-2

// the q-quote operator allows for much more readable code
console.log(`The use of the q-quote operator`);
console.log(`greatly simplifies provision of code inline`);
~';
 dbms_mle.eval(l_ctx, 'JAVASCRIPT', l_snippet);
 dbms_mle.drop_context(l_ctx);
EXCEPTION
 WHEN OTHERS THEN
 dbms_mle.drop_context(l_ctx);
 RAISE;
END;
/

Result:

The use of the q-quote operator
greatly simplifies provision of code inline

Loading JavaScript Code from Files
The method for using a BFILE operator to read in a CLOB is described.

If you plan to use a linter to conduct code analysis, providing JavaScript code in line with
PL/SQL may not be your best option for dynamic execution. Another method for providing
JavaScript code is to read a CLOB by means of a BFILE operator. This way PL/SQL and
JavaScript code can be cleanly separated.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about Large Objects

Example 4-2 Loading JavaScript code from a BFILE with
DBMS_LOB.LOADCLOBFROMFILE()

This example illustrates the use of a BFILE and DBMS_LOB.LOADCLOBFROMFILE().

The example assumes that you have read access to a directory named SRC_CODE_DIR. The
source code file hello_source.js resides in that directory. Its contents are as follows:

console.log('hello from hello_source');

DECLARE
 l_ctx dbms_mle.context_handle_t;
 l_js CLOB;
 l_srcode_file BFILE;
 l_dest_offset INTEGER := 1;
 l_src_offset INTEGER := 1;
 l_csid INTEGER := dbms_lob.default_csid;
 l_lang_context INTEGER := dbms_lob.default_lang_ctx;
 l_warn INTEGER := 0;

Chapter 4
Dynamic Execution Workflow

4-3

BEGIN
 l_ctx := dbms_mle.create_context();

 dbms_lob.createtemporary(lob_loc => l_js, cache => false);

 l_srcode_file := bfilename('SRC_CODE_DIR', 'hello_source.js');

 IF (dbms_lob.fileexists(file_loc => l_srcode_file) = 1) THEN
 dbms_lob.fileopen(file_loc => l_srcode_file);
 dbms_lob.loadclobfromfile(
 dest_lob => l_js,
 src_bfile => l_srcode_file,
 amount => dbms_lob.getlength(l_srcode_file),
 dest_offset => l_dest_offset,
 src_offset => l_src_offset,
 bfile_csid => l_csid,
 lang_context => l_lang_context,
 warning => l_warn
);
 IF l_warn = dbms_lob.warn_inconvertible_char THEN
 raise_application_error(
 -20001,
 'the input file contained inconvertible characters'
);
 END IF;

 dbms_lob.fileclose(l_srcode_file);
 dbms_mle.eval(
 context_handle => l_ctx,
 language_id => 'JAVASCRIPT',
 source => l_js
);

 dbms_mle.drop_context(l_ctx);
 ELSE
 raise_application_error(
 -20001,
 'The input file does not exist'
);
 END IF;

EXCEPTION
 WHEN OTHERS THEN
 dbms_mle.drop_context(l_ctx);
 RAISE;
END;
/

Result:

hello from hello_source

In some cases, you may need to mix dynamic MLE execution as shown in with MLE modules
persisted in the database, as shown in Example 4-3.

Chapter 4
Dynamic Execution Workflow

4-4

Example 4-3 Loading JavaScript Code from a BFILE by Referencing an MLE Module
from DBMS_MLE

The code for the JavaScript module is again stored in a file, as seen in Example 4-2. The
example assumes that you have read access to a directory named SRC_CODE_DIR and the file
name is greeting_source.js:

export function greeting(){
 return 'hello from greeting_source';
}

This example begins by creating an MLE module from BFILE using the contents of the
preceding file. Before the module can be used by DBMS_MLE, an environment must be created
first, allowing the dynamic portion of the JavaScript code to reference the module.

Dynamic MLE execution does not allow the use of the ECMAScript import keyword. MLE
modules must instead be dynamically imported using the async/await interface shown in this
example.

CREATE OR REPLACE MLE MODULE greet_mod
LANGUAGE JAVASCRIPT
USING BFILE(SRC_CODE_DIR, 'greeting_source.js');
/

CREATE OR REPLACE MLE ENV greet_mod_env
imports ('greet_mod' module greet_mod);

DECLARE
 l_ctx dbms_mle.context_handle_t;
 l_snippet CLOB;
BEGIN
 l_ctx := dbms_mle.create_context(
 environment => 'GREET_MOD_ENV'
);
 l_snippet := q'~
(async () => {
 let { greeting } = await import('greet_mod');
 const message = greeting();
 console.log(message);
})();
~';
 dbms_mle.eval(
 l_ctx,
 'JAVASCRIPT',
 l_snippet
);
 dbms_mle.drop_context(l_ctx);
EXCEPTION
 WHEN OTHERS THEN
 dbms_mle.drop_context(l_ctx);
 RAISE;
END;
/

Chapter 4
Dynamic Execution Workflow

4-5

Result:

hello from greeting_source

See Also:

Additional Options for Providing JavaScript Code to MLE for information about using
BFILEs with MLE modules to load JavaScript code

Returning the Result of the Last Execution
Use the result argument to get the outcome of the last execution.

A variant of the DBMS_MLE.eval() procedure takes an additional CLOB argument, result.
Such a call to DBMS_MLE.eval() appends the outcome of the execution of the last statement in
the provided dynamic MLE snippet to the CLOB provided as the result parameter.

This option is useful in the implementation of an interactive application, such as a Read-Eval-
Print-Loop (REPL) server, to mimic the behavior of a similar REPL session in Node.js.

Example 4-4 Returning the Result of the Last Execution

DECLARE
 l_ctx dbms_mle.context_handle_t;
 l_snippet CLOB;
 l_result CLOB;
BEGIN
 dbms_lob.createtemporary(
 lob_loc => l_result,
 cache => false,
 dur => dbms_lob.session
);

 l_ctx := dbms_mle.create_context();
 l_snippet := q'~
let i = 21;
i *= 2;
~';
 dbms_mle.eval(
 context_handle => l_ctx,
 language_id => 'JAVASCRIPT',
 source => l_snippet,
 result => l_result
);

 dbms_output.put_line('result: ' || l_result);
 dbms_mle.drop_context(l_ctx);
EXCEPTION
 WHEN OTHERS THEN
 dbms_mle.drop_context(l_ctx);
 RAISE;

Chapter 4
Returning the Result of the Last Execution

4-6

END;
/

Result:

result: 42

Chapter 4
Returning the Result of the Last Execution

4-7

5
Overview of Importing MLE JavaScript
Modules

One of the key benefits of MLE is the ability to store modules of JavaScript code in the Oracle
Database. The availability of modules supports self-contained and reusable code, key to
developing successful software projects.

MLE modules interact with each other through imports and exports. Specifically, if a module
wants to use a functionality provided by another module, the source module must be exported
and then imported into the calling module's scope.

Due to a difference in architecture, module imports behave slightly differently in the Oracle
Database when compared to other development environments. For example, JavaScript
source code used with Node.js is stored in a specific directory structure on disk. Alternatively,
MLE modules are stored together with the database, rather than in a file system, so must be
referenced in a different manner.

There are two options available for module imports in MLE:

• Importing module functionality into another module

• Importing module functionality into a code snippet to be executed via dynamic MLE (using
the DBMS_MLE PL/SQL package)

Note:

MLE supports a pure JavaScript implementation. Module exports and imports are
facilitated as ECMAScript modules using the export and import keywords. Other
JavaScript modularization technologies such as CommonJS and Asynchronous
Module Definition (AMD) are not available.

See Also:

MLE JavaScript Modules and Environments for more information on MLE modules

Topics

• JavaScript Module Hierarchies
The use of import names as opposed to file-system location to resolve to MLE modules is
described.

• Export Functionality
Commonly exported identifiers in native JavaScript modules include variables, constants,
functions, and classes.

• Import Functionality
The import keyword allows developers to import functionality that has been exported by a
source module.

5-1

JavaScript Module Hierarchies
The use of import names as opposed to file-system location to resolve to MLE modules is
described.

A typical Node.js or browser-based workflow requires a module import to be followed by its
location in the file system. For example, the following line is a valid module import statement in
Node.js:

import * as myMath from './myMath.mjs'

Used with Node.js, this statement would import myMath's contents into the current scope.

However, because MLE JavaScript modules are stored in the database, there are no file-
system paths to be used for identification. Rather, MLE uses import names instead that resolve
to the desired module.

Note:

As soon as a module import is detected by the JavaScript runtime engine, strict
mode is enforced.

Topics

• Resolving Import Names Using MLE Environments
Rather than file-system locations, MLE uses so-called import names instead. Import
names must be valid JavaScript identifiers, but otherwise can be chosen freely.

Resolving Import Names Using MLE Environments
Rather than file-system locations, MLE uses so-called import names instead. Import names
must be valid JavaScript identifiers, but otherwise can be chosen freely.

Example 5-1 Use an MLE Environment to Map an Import Name to a Module

This example shows how you might use an import name for code referencing functionality in
module named_exports_module, which is defined in Example 5-2.

MLE in Oracle Database requires a link between the import name, namedExports, and the
corresponding MLE module, named_exports_module, at runtime. Just as with import names,
you can choose any valid name for the MLE environment. A potential mapping is shown in the
following snippet. See Example 5-6 for a complete definition of module
mod_object_import_mod.

CREATE OR REPLACE MLE ENV named_exports_env
 imports ('namedExports' MODULE named_exports_module);
/

CREATE OR REPLACE MLE MODULE mod_object_import_mod LANGUAGE JAVASCRIPT AS

import * as myMath from "namedExports";

Chapter 5
JavaScript Module Hierarchies

5-2

function mySum() {...}
/

Export Functionality
Commonly exported identifiers in native JavaScript modules include variables, constants,
functions, and classes.

Topics

• Named Exports
The explicit use of identifiers in an export statement is referred to as using named exports
in JavaScript.

• Default Exports
As an alternative to named exports, a default export can be defined in JavaScript. A default
export differs syntactically from a named export. Contrary to the latter, a default export
does not require a set of curly brackets.

• Private Identifiers
Any identifier not exported from a module is considered private and cannot be referenced
outside the module's scope or in module call specifications.

Named Exports
The explicit use of identifiers in an export statement is referred to as using named exports in
JavaScript.

Example 5-2 demonstrates the export of multiple functions using named exports.

Example 5-2 Function Export using Named Exports

This code snippet creates a module called named_exports_module, defines two functions,
sum() and difference(), and then uses a named export to provide access for other modules
to import the listed functions.

CREATE OR REPLACE MLE MODULE named_exports_module LANGUAGE JAVASCRIPT AS

function sum(a, b) {
 return a + b;
}

function difference(a, b) {
 return a - b;
}

export {sum, difference};
/

Make note of the export{} statement at the end of the module. Named exports require the use
of curly brackets when listing identifiers. Any identifier placed between the curly brackets is
exported. Those not listed are not exported.

Rather than using the export statement towards the end of the module, it is also possible to
prefix an identifier with the export keyword inline. The following example shows how the same

Chapter 5
Export Functionality

5-3

module from the previous example can be rewritten with the export keyword provided inline
with the JavaScript code.

Example 5-3 Function Export Using Export Keyword Inline

This code snippet creates a module called inline_export_module and defines two functions,
sum() and difference(), which are both prefaced with the export keyword inline.

CREATE OR REPLACE MLE MODULE inline_export_module LANGUAGE JAVASCRIPT AS

export function sum(a, b) {
 return a + b;
}

export function difference(a, b) {
 return a - b;
}
/

Both named_exports_module from Example 5-2 and inline_export_module are semantically
identical. The method used to export the functions is the only syntactical difference.

Default Exports
As an alternative to named exports, a default export can be defined in JavaScript. A default
export differs syntactically from a named export. Contrary to the latter, a default export does
not require a set of curly brackets.

Note:

In line with the ECMAScript standard, only one default export is possible per module.

Example 5-4 Export a Class Using a Default Export

The following code snippet creates a module called default_export_module, defines a class
called myMath, and defaults the class using a default export.

CREATE OR REPLACE MLE MODULE default_export_module
LANGUAGE JAVASCRIPT AS

export default class myMath {

 static sum(operand1, operand2) {
 return operand1 + operand2;
 }

 static difference(operand1, operand2) {
 return operand1 - operand2;
 }
}
/

Chapter 5
Export Functionality

5-4

Private Identifiers
Any identifier not exported from a module is considered private and cannot be referenced
outside the module's scope or in module call specifications.

Example 5-5 Named Export of Single Function

The following code snippet creates a module called private_export_module, defines two
functions, sum() and difference(), and exports the function sum() via named export. The
function difference() is not included in the export statement, thus is only available within its
own module's scope.

CREATE OR REPLACE MLE MODULE private_export_module
LANGUAGE JAVASCRIPT AS

function sum(a, b) {
 return a + b;
}

function difference(a, b) {
 return a - b;
}

export { sum };
/

Import Functionality
The import keyword allows developers to import functionality that has been exported by a
source module.

Topics

• Module Objects
A module object supplies a convenient way to import everything that has been exported by
a module.

• Named Imports
The ECMAScript standard specifies named imports. Rather than using an import name,
you also have the option to specify identifiers.

• Default Imports
Unlike named imports, default imports don't require the use of curly braces. This
syntactical difference is also relevant to MLE's built-in modules.

Module Objects
A module object supplies a convenient way to import everything that has been exported by a
module.

The module object provides a means to access all identifiers exported by a module and is used
as a kind of namespace when referring to the imports.

Chapter 5
Import Functionality

5-5

Example 5-6 Module Object Definition

CREATE MLE ENV named_exports_env
 IMPORTS('namedExports' module named_exports_module);

CREATE OR REPLACE MLE MODULE mod_object_import_mod
LANGUAGE JAVASCRIPT AS

//the definition of a module object is demonstrated by the next line
import * as myMath from "namedExports"

function mySum(){
 const result = myMath.sum(4, 2);
 console.log(`the sum of 4 and 2 is ${result}`);
}

function myDifference(){
 const result = myMath.difference(4, 2);
 console.log(`the difference between 4 and 2 is ${result}`);
}

export {mySum, myDifference};
/

myMath identifies the module object and named_exports_module is the module name. Both
sum() and difference() are available under the myMath scope in mod_object_import_mod.

Named Imports
The ECMAScript standard specifies named imports. Rather than using an import name, you
also have the option to specify identifiers.

Example 5-7 Named Imports Using Specified Identifiers

CREATE OR REPLACE MLE MODULE named_imports_module
LANGUAGE JAVASCRIPT AS

import {sum, difference} from "namedExports";

function mySum(){
 const result = sum(4, 2);
 console.log(`the sum of 4 and 2 is ${result}`);
}

function myDifference(){
 const result = difference(4, 2);
 console.log(`the difference between 4 and 2 is ${result}`);
}

export {mySum, myDifference};
/

Namespace clashes can ensue if multiple modules export the same identifier. To avoid this
issue, you can provide an alias in the import statement.

Chapter 5
Import Functionality

5-6

Example 5-8 Named Imports with Aliases

CREATE OR REPLACE MLE MODULE named_imports_alias_module
LANGUAGE JAVASCRIPT AS

//note the use of aliases in the next line
import {sum as theSum, difference as theDifference} from "namedExports";

function mySum(){
 const result = theSum(4, 2);
 console.log(`the sum of 4 and 2 is ${result}`);
}

function myDifference(){
 const result = theDifference(4, 2);
 console.log(`the difference between 4 and 2 is ${result}`);
}

export {mySum, myDifference};
/

Instead of referencing the exported functions by their original names, the alias is used instead.

Default Imports
Unlike named imports, default imports don't require the use of curly braces. This syntactical
difference is also relevant to MLE's built-in modules.

Example 5-9 Default Import

This example demonstrates the default import of myMathClass.

CREATE OR REPLACE MLE ENV default_export_env
 IMPORTS('defaultExportModule' MODULE default_export_module);

CREATE MLE MODULE default_import_module LANGUAGE JAVASCRIPT AS

//note the lack of curly braces in the next line
import myMathClass from "defaultExportModule";

export function mySum(){
 const result = myMathClass.sum(4, 2);
 console.log(`the sum of 4 and 2 is ${result}`);
}
/

The same technique applies to the use of MLE's built-in modules such as the SQL driver.
Example 5-10 demonstrates the use of the SQL driver in JavaScript code.

Example 5-10 Default Import with Built-in Module

CREATE MLE MODULE default_import_built_in_mod
LANGUAGE JAVASCRIPT AS

//note that there is no need to use MLE environments with built-in modules

Chapter 5
Import Functionality

5-7

import oracledb from "mle-js-oracledb";

export function hello(){
 const options = {
 resultSet: false,
 outFormat: oracledb.OUT_FORMAT_OBJECT
 };
 const bindvars = [];

const conn = oracledb.defaultConnection();
const result = conn.execute('select user', bindvars, options);
console.log(`hello, ${result.rows[0].USER}`);
}
/

Unlike other examples using custom JavaScript modules, no MLE environment is required for
importing a built-in module.

See Also:

Server-Side JavaScript API Documentation for more information about the built-in
JavaScript modules

Chapter 5
Import Functionality

5-8

https://oracle-samples.github.io/mle-modules

6
MLE JavaScript Functions

This chapter introduces the use of call specifications to publish JavaScript functions so that
they can be called from SQL and PL/SQL. MLE's support of OUT and IN OUT parameters is also
discussed.

Topics

• Call Specifications for Functions
Call specifications for modules and inline MLE call specifications allow you to implement
JavaScript functionality.

• OUT and IN OUT Parameters

Call Specifications for Functions
Call specifications for modules and inline MLE call specifications allow you to implement
JavaScript functionality.

Functions exported by an MLE JavaScript module can be published by creating call
specifications. A JavaScript function published with a call specification can be called from
anywhere a PL/SQL function or procedure can be called.

Alternatively, inline MLE call specifications can be used to embed JavaScript code directly in
the DDL. This option can be advantageous when you want to quickly implement a simple
functionality using JavaScript.

Topics

• Creating a Call Specification for an MLE Module
MLE call specification creation uses the generic CREATE FUNCTION RETURNS AS or CREATE
PROCEDURE AS syntax, followed by MLE specific syntax.

• Creating an Inline MLE Call Specification
Inline MLE call specifications embed JavaScript code directly in the CREATE FUNCTION and
CREATE PROCEDURE DDLs.

• Choosing Inline Versus Module MLE Call Specifications
Each option provides its own advantages and disadvantages depending on your use case.

• Runtime Isolation for an MLE Call Specification

• Dictionary Views for Call Specifications
Metadata about JavaScript call specifications is available in the data dictionary using the
[USER | ALL | DBA | CDB]_MLE_PROCEDURES views. The family of views maps call
specifications (package, function, procedure) to JavaScript modules. This dictionary view is
closely modeled after the *_PROCEDURES views.

Creating a Call Specification for an MLE Module
MLE call specification creation uses the generic CREATE FUNCTION RETURNS AS or CREATE
PROCEDURE AS syntax, followed by MLE specific syntax.

6-1

Example 6-1 Creating MLE Call Specifications

This example walks you through the creation of an MLE module that exports two functions, and
the creation of call specifications to publish those functions.

CREATE OR REPLACE MLE MODULE jsmodule
LANGUAGE JAVASCRIPT AS

 export function greet(str){
 console.log(`Hello, ${str}`);
 }
 export function concat(str1, str2){
 return str1 + str2;
 }
/

The MLE module jsmodule exports two functions. The function greet() takes an input string
argument and prints a simple greeting, while the function concat() takes two strings as input
and returns the concatenated string as the result.

Because greet() does not return a value, you must create a PL/SQL procedure to publish it,
as follows:

CREATE OR REPLACE PROCEDURE
 GREET(str in VARCHAR2)
 AS MLE MODULE jsmodule
 SIGNATURE 'greet(string)';
/

The above call specification creates a PL/SQL procedure named GREET() in the schema of the
current user. Running the procedure executes the exported function greet() in the JavaScript
module jsmodule.

Note that it is not a requirement that the call specification has the same name (GREET) as the
function being published (greet).

The MLE specific clause MLE MODULE <module name> specifies the JavaScript MLE module
that exports the JavaScript function to be called.

The SIGNATURE clause specifies the name of the exported function to be called (in this case,
greet), as well as, optionally, the list of argument types in parentheses. JavaScript MLE
functions use TypeScript types in the SIGNATURE clause. In this example, the function accepts a
JavaScript string. The PL/SQL VARCHAR2 string is converted to a JavaScript string before
invoking the underlying JavaScript implementation. The SIGNATURE clause also allows the list of
argument types to be omitted, in which case only the MLE function name is expected and MLE
language types are inferred from the types given in the call specification's argument list.

The other exported function, concat(), can similarly be used to create a PL/SQL function:

CREATE OR REPLACE FUNCTION CONCATENATE(str1 in VARCHAR2, str2 in VARCHAR2)
 RETURN VARCHAR2
 AS MLE MODULE jsmodule
 SIGNATURE 'concat(string, string)';
/

Chapter 6
Call Specifications for Functions

6-2

The call specification in this case additionally specifies the PL/SQL return type of the created
function. The value returned by the JavaScript function concat() (of type string) is converted to
the type VARCHAR2.

The created procedure and function can be called as shown below with the result:

SQL> CALL GREET('Peter');
Hello, Peter

Call completed.

SQL> SELECT CONCATENATE('Hello, ','World!');

CONCATENATE('HELLO','WORLD!')

Hello, World!

Topics

• Components of an MLE Call Specification
The elements of an MLE call specification are listed along with descriptions.

• MLE Module Clause
The MLE MODULE clause specifies the MLE module that exports the underlying JavaScript
function for the call specification. The specified module must always be in the same
schema as the call specification being created.

• ENV Clause
The optional ENV clause specifies the MLE environment for module contexts in which this
call specification will be executed.

• SIGNATURE Clause
The SIGNATURE clause contains all the information necessary to map the MLE call
specification to a particular function exported by the specified MLE module.

Chapter 6
Call Specifications for Functions

6-3

Components of an MLE Call Specification
The elements of an MLE call specification are listed along with descriptions.

Figure 6-1 MLE Call Specification Syntax

CREATE

OR REPLACE FUNCTION

PROCEDURE

IF NOT EXISTS schema .

call_spec_name

(param_declaration

,

) RETURN datatype

invoker_rights_clause

deterministic_clause

parallel_enable_clause

result_cache_clause

AS

IS
MLE MODULE

schema .

module_name

ENV

env_schema .

env_name

SIGNATURE ’ function_name_in_module

(mle_param_declaration

,

)

’ ;

Table 6-1 Components of an MLE Call Specification

Element Name Description

OR REPLACE Specifies that the function should be replaced if it already exists.
This clause can be used to change the definition of an existing
function without dropping, recreating, and re-granting object
privileges previously granted on the function. Users who had
previously been granted privileges on a recreated function or
procedure can still access the function without being re-granted
the privileges.

IF NOT EXISTS Specifies that the function should be created if it does not already
exist. If a function by the same name does exist, the statement is
ignored without error and the original function body remains
unchanged. Note that SQL*Plus will display the same output
message regardless of whether the command is ignored or
executed, ensuring that your DDL scripts remain idempotent.

IF NOT EXISTS cannot be used in combination with OR
REPLACE.

schema Specifies the schema that will contain the call specification. If the
schema is omitted, the call specification is created in the schema
of the current user.

Chapter 6
Call Specifications for Functions

6-4

Table 6-1 (Cont.) Components of an MLE Call Specification

Element Name Description

call_spec_name Specifies the name of the call specification to be created. Call
specifications are created in the default namespace, unlike MLE
modules and environments, which use dedicated namespaces.

param_declaration Specifies the call specification's parameters. If no parameters are
specified, parentheses must be omitted.

RETURN datatype Only used for functions and specifies the data type of the return
value of the function. The return value can have any data type
supported by MLE. Only the data type is specified; length,
precision, or scale information must be omitted.

invoker_rights_clause Specifies whether a function is invoker's or definer's rights.
• AUTHID CURRENT_USER creates an invoker's rights function

or procedure.
• AUTHID DEFINER creates a definer's rights function or

procedure.
If the AUTHID clause is omitted, the call specification is created
with definer's rights by default. The AUTHID clause on MLE call
specifications has the exact same semantics as on PL/SQL
functions and procedures.

deterministic_clause Only used for functions and indicates that the function returns the
same result value whenever it is called with the same values for
its parameters. As with PL/SQL functions, this clause should not
be used for functions that access the database in any way that
might affect the return result of the function. The results of doing
so will not be captured if the database chooses not to re-execute
the function.

MLE Module Clause
The MLE MODULE clause specifies the MLE module that exports the underlying JavaScript
function for the call specification. The specified module must always be in the same schema as
the call specification being created.

An ORA-04103 error is thrown if the specified MLE module does not exist. Likewise, an
ORA-01031 error is raised if the specified module is in a different schema from the created call
specification.

ENV Clause
The optional ENV clause specifies the MLE environment for module contexts in which this call
specification will be executed.

An ORA-04105 error is thrown if the specified environment schema object does not exist.

If this clause is omitted, the default environment is used. The default environment is simply an
environment in its most basic state, with no module imports and no specified language options.

SIGNATURE Clause
The SIGNATURE clause contains all the information necessary to map the MLE call specification
to a particular function exported by the specified MLE module.

Specifically, it includes two pieces of information:

Chapter 6
Call Specifications for Functions

6-5

• The name of the exported function in the specified MLE module.

• The MLE language parameter types (as opposed to the PL/SQL parameter types) for the
function (Optional).

The SIGNATURE clause must be in the following form:

Figure 6-2 signature_clause ::=

SIGNATURE ’ path–spec

(language–type

,

)

’

Figure 6-3 path_spec ::=

import–spec

import–spec . JavaScript identifier

Figure 6-4 import_spec ::=

JavaScript identifier

default

The path specification describes the function to be called and can have the following two
forms:

• A path specification can consist only of an import specification.

– An import specification can be a JavaScript identifier that identifies a named export of
the module, which must be a function. Alternatively, an import specification can be the
reserved word, default. In this case, the default export of the module is used, which
must be a function.

• A path specification can be a composite form consisting of an import specification, followed
by a dot and a JavaScript identifier.

– In this case, the import specification must refer to an object that has a property whose
name matches the identifier listed after the dot. The value of the property needs to be
a function.

The language-type can either be a built-in JavaScript type (e.g. string or number) or a type
provided by MLE (e.g. OracleNumber or OracleDate) that is compatible with the corresponding
PL/SQL argument. Note that JSON data maps to the MLE ANY type. For an example covering
how to pass JSON from PL/SQL to MLE, see Working with JSON Data. For more information
about what types are provided by MLE through the built-in module mle-js-plsqltypes, see
Server-Side JavaScript API Documentation.

function-name can include any alphanumeric characters as well as underscores and periods.

When the call specification is a function, the type of the return value is not specified in the
SIGNATURE clause. Rather, the function can return any JavaScript type that is compatible with
the PL/SQL type specified in the call specification's RETURN clause.

Chapter 6
Call Specifications for Functions

6-6

https://oracle-samples.github.io/mle-modules

Note:

The parsing and resolution of the SIGNATURE clause happens lazily when the MLE
function is executed for the first time. It is only at this point that any resolution or
syntax errors in the SIGNATURE clause are reported, and not when the call
specification is created.

Simplified SIGNATURE Clause

CREATE FUNCTION and CREATE PROCEDURE DDL statements also accept a simplified form of the
SIGNATURE clause that only specifies the name of the exported function and leaves out the
JavaScript language types of the parameters. The default PL/SQL-MLE language type
mappings are used in this case.

This example demonstrates the creation of a call specification with a simplified SIGNATURE
clause.

CREATE OR REPLACE FUNCTION concat
 RETURN VARCHAR2
 AS MLE MODULE jsmodule
 SIGNATURE 'concat';
/

When the function concat is called from PL/SQL, the input VARCHAR2 parameters are converted
to JavaScript string (the default type mapping for VARCHAR2) before calling the underlying
JavaScript function.

See Also:

MLE Type Conversions for more information about type mappings

Creating an Inline MLE Call Specification
Inline MLE call specifications embed JavaScript code directly in the CREATE FUNCTION and
CREATE PROCEDURE DDLs.

If you want to quickly implement simple functionality using JavaScript, inline MLE call
specifications can be a good choice. With this option, you don't need to deploy a separate
module containing the JavaScript code. Rather, the JavaScript function is built into the
definition of the call specification itself.

The MLE LANGUAGE clause is used to specify that the function is implemented using JavaScript.
The JavaScript function body must be enclosed by a set of delimiters. Double curly braces are
commonly used for this purpose, however, you also have the option to choose your own. The
beginning and ending delimiter must match and they cannot be reserved words or a dot. For
delimiters such as {{...}}, <<...>>, and ((...)), the ending delimiter is the corresponding
closing symbol, not an exact match.

The string following the language name is treated as the body of a JavaScript function that
implements the functionality of the call specification. When the code is executed, PL/SQL
parameters are automatically converted to the default JavaScript type and passed to the

Chapter 6
Call Specifications for Functions

6-7

JavaScript function as parameters of the same name. Note that unquoted parameter names
are mapped to all-uppercase JavaScript names. The value returned by a JavaScript function is
converted to the return type of the PL/SQL call specification, just as with call specifications for
MLE modules.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_MLE subprograms for inline call specifications

Example 6-2 Simple Inline MLE Call Specification

CREATE OR REPLACE FUNCTION date_to_epoch (
 "theDate" TIMESTAMP WITH TIME ZONE
)
RETURN NUMBER
AS MLE LANGUAGE JAVASCRIPT
{{
 const d = new Date(theDate);

 //check if the input parameter turns out to be an invalid date
 if (isNaN(d)){
 throw new Error(`${theDate} is not a valid date`);
 }

 //Date.prototype.getTime() returns the number of milliseconds
 //for a given date since epoch, which is defined as midnight
 //on January 1, 1970, UTC
 return d.getTime();
}};
/

You can call the function created in the preceding inline call specification using the following
SQL statement:

SELECT
 date_to_epoch(
 TO_TIMESTAMP_TZ(
 '29.02.2024 11.34.22 -05:00',
 'dd.mm.yyyy hh24:mi:ss tzh:tzm'
)
) epoch_date;

Result:

EPOCH_DATE

1.7092E+12

Chapter 6
Call Specifications for Functions

6-8

Example 6-3 Inline MLE Call Specification Returning JSON

Note the use of double quotation marks in the function parameter name, strArgs, in
Example 6-2. The inclusion preserves the parameter's letter case. Without quotation marks,
the parameter name is mapped to an all-uppercase JavaScript name, as seen in this example.

CREATE OR REPLACE FUNCTION p_string_to_json(inputString VARCHAR2) RETURN JSON
AS MLE LANGUAGE JAVASCRIPT
{{
 if (INPUTSTRING === undefined) {
 throw `must provide a string in the form of key1=value1;...;keyN=valueN`;
 }

 let myObject = {};
 if (INPUTSTRING.length === 0) {
 return myObject;
 }

 const kvPairs = INPUTSTRING.split(";");
 kvPairs.forEach(pair => {
 const tuple = pair.split("=");
 if (tuple.length === 1) {
 tuple[1] = false;
 } else if (tuple.length != 2) {
 throw "parse error: you need to use exactly one '=' between key and
value and not use '=' in either key or value";
 }
 myObject[tuple[0]] = tuple[1];
 });

 return myObject;
}};
/

The function created in the preceding inline call specification can be called using the following
SQL statement:

SELECT p_string_to_json('Hello=Greeting');

Result:

P_STRING_TO_JSON('HELLO=GREETING')
--
{"Hello":"Greeting"}

• Components of an Inline MLE Call Specification
The elements of an inline MLE call specification are listed along with descriptions.

• Accessing Built-in Modules Using JavaScript Global Variables
Rather than importing MLE built-in modules in the same way as call specifications for MLE
modules, inline MLE call specifications utilize prepopulated JavaScript globals to access
built-in module functionality.

Chapter 6
Call Specifications for Functions

6-9

Components of an Inline MLE Call Specification
The elements of an inline MLE call specification are listed along with descriptions.

Figure 6-5 MLE Inline Call Specification Syntax

CREATE

OR REPLACE FUNCTION

PROCEDURE

IF NOT EXISTS schema .

call_spec_name

(param_declaration

,

) RETURN datatype

invoker_rights_clause

deterministic_clause

result_cache_clause

AS

IS
MLE LANGUAGE language_name

PURE

js_function_body_as_string_literal

Table 6-2 Components of an Inline MLE Call Specification

Element Name Description

OR REPLACE Specifies that the function should be replaced if it already exists.
This clause can be used to change the definition of an existing
function without dropping, recreating, and re-granting object
privileges previously granted on the function. Users who had
previously been granted privileges on a recreated function or
procedure can still access the function without being re-granted
the privileges.

IF NOT EXISTS Specifies that the function should be created if it does not already
exist. If a function by the same name does exist, the statement is
ignored without error and the original function body remains
unchanged. Note that SQL*Plus will display the same output
message regardless of whether the command is ignored or
executed, ensuring that your DDL scripts remain idempotent.

IF NOT EXISTS cannot be used in combination with OR
REPLACE.

schema Specifies the schema that will contain the call specification. If the
schema is omitted, the call specification is created in the schema
of the current user.

call_spec_name Specifies the name of the call specification to be created. Call
specifications are created in the default namespace, unlike MLE
modules and environments, which use dedicated namespaces.

param_declaration Specifies the call specification's parameters. If no parameters are
specified, parentheses must be omitted.

RETURN datatype Only used for functions and specifies the data type of the return
value of the function. The return value can have any data type
supported by MLE. Only the data type is specified; length,
precision, or scale information must be omitted.

Chapter 6
Call Specifications for Functions

6-10

Table 6-2 (Cont.) Components of an Inline MLE Call Specification

Element Name Description

invoker_rights_clause Specifies whether a function is invoker's or definer's rights.
• AUTHID CURRENT_USER creates an invoker's rights function

or procedure.
• AUTHID DEFINER creates a definer's rights function or

procedure.
If the AUTHID clause is omitted, the call specification is created
with definer's rights by default. The AUTHID clause on MLE call
specifications has the exact same semantics as on PL/SQL
functions and procedures.

deterministic_clause Only used for functions and indicates that the function returns the
same result value whenever it is called with the same values for
its parameters. As with PL/SQL functions, this clause should not
be used for functions that access the database in any way that
might affect the return result of the function. The results of doing
so will not be captured if the database chooses not to re-execute
the function.

MLE LANGUAGE Specifies the language of the following code, for example,
JavaScript. The string following the language name is interpreted
as MLE language code implementing the desired functionality. For
JavaScript, this embedded code is interpreted as the body of a
JavaScript function.

PURE The PURE keyword specifies that the function or procedure should
be created in a restricted execution context. During PURE
execution, access to database state is disallowed, providing an
additional layer of security for user-defined functions that do not
require access to database state. For more information, see
About Restricted Execution Contexts.

Accessing Built-in Modules Using JavaScript Global Variables
Rather than importing MLE built-in modules in the same way as call specifications for MLE
modules, inline MLE call specifications utilize prepopulated JavaScript globals to access built-
in module functionality.

Inline MLE call specifications cannot import MLE modules, both built-in and custom. Instead,
JavaScript global variables, such as the session variable, provide access to the functionality of
built-in modules like the JavaScript MLE SQL driver. For more information about the availability
of objects in the global scope, see Working with the MLE JavaScript Driver.

See Also:

Server-Side JavaScript API Documentation for more information about the built-in
JavaScript modules

Chapter 6
Call Specifications for Functions

6-11

https://oracle-samples.github.io/mle-modules

Choosing Inline Versus Module MLE Call Specifications
Each option provides its own advantages and disadvantages depending on your use case.

Inline MLE call specifications can simplify the development workflow and provide a way to
quickly implement simple JavaScript functionality, as there is no need to deploy a separate
module containing the JavaScript code. This is a convenient option if you only need to
implement a single JavaScript function. You can use JavaScript global variables to access the
functionality of MLE built-in modules but, because inline MLE call specifications are not
associated with an MLE environment, modules cannot be imported.

Call specifications for MLE modules offer more flexibility in terms of complexity and ability to
import functionality from other modules, built-in and custom. You also have the option to
override the default JavaScript type mapping, which is not possible with MLE inline call
specifications. Call specifications for MLE modules should be used for larger pieces of
JavaScript code as well as for code that you intend to reuse in other JavaScript code using
imports.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_MLE subprograms for MLE call specifications

Runtime Isolation for an MLE Call Specification
MLE uses execution contexts to maintain runtime state isolation. Call specifications are
associated with separate contexts when they do not share the same user, module, and
environment.
MLE execution contexts act as standalone, isolated runtime environments. All JavaScript code
that shares an execution context has full access to all of its runtime state (e.g. any global
variables previously defined). Otherwise, there is no way for code executing in one execution
context to see or modify runtime state in another execution context. Execution contexts for call
specifications are created transparently on the first call to any of the corresponding call
specifications. For more information, see About MLE Execution Contexts.

When executing call specifications in a session, MLE loads the module specified in the call
specification and calls the function(s) exported by that module. In order for the execution of two
call specifications to share the same execution context, they must export a function from the
same MLE module, use the same environment, and be executed by the same user. SQL or
PL/SQL calls on behalf of different users within the same session are never executed in the
same execution context.

The runtime representation of a module is stateful. State constitutes, for example, variables in
the JavaScript module as well as variables in the global scope accessible to code in the
module. Within the same session, MLE may employ multiple module contexts to execute call
specifications. If either the module or the environment referred to by a call specification
change, any execution context is invalidated and an error is thrown. Example 6-4
demonstrates this concept.

Session state is very important for data integrity. Not catching errors related to changed
session state (ORA-04106 for module changes and ORA-04107 for environment changes in
JavaScript, as well as ORA-04068 for PL/SQL packages) can result in silent data corruption.

Chapter 6
Call Specifications for Functions

6-12

Setting the initialization parameter SESSION_EXIT_ON_PACKAGE_STATE_ERROR to TRUE forces
sessions to be disconnected if the session state is invalidated. Because many applications
capture session disconnect, this option can help simplify the recovery from the invalidation of
existing session state. For more information about SESSION_EXIT_ON_PACKAGE_STATE_ERROR,
see Oracle Database Reference.

Note:

Storing state in packages and JavaScript modules is not recommended. Session
state is best handled by the database.

All definer's rights call specifications that publish functions from the same MLE module (and
use the same environment) will share the same execution context because all execution
happens on behalf of the definer. Conversely, there is a separate execution context per calling
user when a call specification is declared as invoker's rights.

For more information about how to build a call specification, see Components of an MLE Call
Specification.

See Also:

Oracle Database PL/SQL Language Reference for information about using
SESSION_EXIT_ON_PACKAGE_STATE_ERROR to specify behavior when PL/SQL package
state is invalidated

Example 6-4 Execution Context Dependencies

This example demonstrates the fact that if a module or environment changes, any associated
execution context(s) are invalidated.

CREATE OR REPLACE MLE MODULE count_module
LANGUAGE JAVASCRIPT AS

let myCounter = 0;

export function incrementCounter(){
 return ++myCounter;
}
/

CREATE OR REPLACE FUNCTION increment_and_get_counter
RETURN NUMBER
AS MLE MODULE count_module
SIGNATURE 'incrementCounter';
/

Session 1 creates its execution context by invoking the function increment_and_get_counter:

SQL> SELECT increment_and_get_counter;

INCREMENT_AND_GET_COUNTER

Chapter 6
Call Specifications for Functions

6-13

 1

SQL> SELECT increment_and_get_counter;

INCREMENT_AND_GET_COUNTER

 2

Another user invoking the function from a different session, we'll say session 2, creates
another execution context, separate from the first session's context:

SQL> SELECT increment_and_get_counter;

INCREMENT_AND_GET_COUNTER

 1

The user in session 1 recreates the MLE module with some new comments added to the
function:

CREATE OR REPLACE MLE MODULE count_module
LANGUAGE JAVASCRIPT AS

let myCounter = 0;

/**
* increments a counter before returning the value
* to the caller
*@returns {number} the value of the counter
*/
export function incrementCounter(){
 return ++myCounter;
}
/

This operation signals to all execution contexts referring to count_module that their session
state should be invalidated. Session 2 gets an error in response to the invalidation:

SQL> SELECT increment_and_get_counter;

SELECT increment_and_get_counter
*
ERROR at line 1:
ORA-04106: Module USER2.COUNT_MODULE referred to by INCREMENT_AND_GET_COUNTER
has been modified since the execution context was created.

The next invocation of the function in session 2 starts off with a reinitialized session state:

SQL> SELECT increment_and_get_counter;

INCREMENT_AND_GET_COUNTER

Chapter 6
Call Specifications for Functions

6-14

 1

Just as with PL/SQL packages, invoking the function from session 1 does not result in an error.
Nevertheless, the session state has been discarded as shown by a subsequent call to the
function:

SQL> SELECT increment_and_get_counter;

INCREMENT_AND_GET_COUNTER

 1

If the initialization parameter SESSION_EXIT_ON_PACKAGE_STATE_ERROR is set to TRUE in session
2, the ORA-04106 error is thrown and the connection to the database is cut:

ALTER SESSION SET SESSION_EXIT_ON_PACKAGE_STATE_ERROR = TRUE;
SELECT increment_and_get_counter;

Result:

SELECT increment_and_get_counter
 *
ERROR at line 1:
ORA-04106: Module USER2.COUNT_MODULE referred to by INCREMENT_AND_GET_COUNTER
has been modified since the execution context was created.

ERROR:
ORA-03114: not connected to ORACLE

Dictionary Views for Call Specifications
Metadata about JavaScript call specifications is available in the data dictionary using the [USER
| ALL | DBA | CDB]_MLE_PROCEDURES views. The family of views maps call specifications
(package, function, procedure) to JavaScript modules. This dictionary view is closely modeled
after the *_PROCEDURES views.

For more information about *_MLE_PROCEDURES, see Oracle Database Reference.

Example 6-5 Show JavaScript Call Specification Metadata

SELECT OBJECT_NAME, PROCEDURE_NAME, SIGNATURE, ENV_NAME, MODULE_NAME
 FROM USER_MLE_PROCEDURES;

SQL*Plus output:

OBJECT_NAME PROCEDURE_NAME SIGNATURE ENV_NAME MODULE_NAME
------------ --------------- ---------------------- ---------

CONCATENATE concat(string, string) JSMODULE
DO_NOTHING doNothing(string) JSMODULE

Chapter 6
Call Specifications for Functions

6-15

OUT and IN OUT Parameters
Use OUT and IN OUT parameters with MLE JavaScript functions.
MLE JavaScript functions support IN OUT and OUT parameters in addition to IN parameters,
just as they are supported in PL/SQL functions and procedures. These are declared as IN OUT
and OUT in the list of arguments of an MLE call specification.

Because JavaScript has no notion of output parameters, the JavaScript implementation
instead accepts objects that wrap the parameter value. Concretely, the shape of these wrapper
objects is described by the following generic TypeScript interfaces InOut and Out (for IN OUT
and OUT parameters, respectively):

Interface InOut<T> {
 Value : T;
}

Interface Out<T> {
 Value : T;
}

Note that OUT and IN OUT parameters are passed to JavaScript functions as JavaScript objects
whose only property, value, exposes the value of the argument. This means that, in order to
read, write, and use the value of an OUT or IN OUT argument, it must first be unwrapped by
accessing its value property. This is done in order to simulate a pass-by-reference
implementation, which does not exist in JavaScript. For example, the substitute() function in
Example 6-6 must first unwrap its IN OUT argument, sentence, by retrieving its value property
before calling match() on it. Attempting to call match() on sentence directly would fail, as
sentence is only the value wrapper. These wrapper classes are never needed in DBMS_MLE,
which does not make use of OUT and IN OUT parameters.

Example 6-6 OUT and IN OUT Parameters with JavaScript

Consider an MLE function, substitute(), that takes a VARCHAR2 IN OUT parameter, sentence,
and replaces all occurrences of the second parameter, replaceThis, with the third parameter,
withThat, then returns the number of occurrences of replaceThis in sentence.

CREATE OR REPLACE MLE MODULE in_out_example_mod
LANGUAGE JAVASCRIPT AS

export function substitute (sentence, replaceThis, withThat) {
 /*
 * substitute: substitutes `replaceThis` in `sentence` with
 * `replaceThat`
 *
 * parameters:
 * - sentence: the input sentence
 * - replaceThis: a word to be replaced in `sentence`
 * - withThat: the new word to be used instead of `replaceThis`
 */
 const occurrences =
 (sentence.value.match(replaceThis) || []).length;
 sentence.value = sentence.value.replace(replaceThis, withThat);

Chapter 6
OUT and IN OUT Parameters

6-16

 return occurrences;
}
/

CREATE OR REPLACE FUNCTION f_substitute(
 p_sentence IN OUT VARCHAR2,
 p_replaceThis IN VARCHAR2,
 p_withThat IN VARCHAR2
)
RETURN NUMBER
AS MLE MODULE in_out_example_mod
SIGNATURE 'substitute(InOut<string>, string, string)';
/

The SIGNATURE clause of the call specification lists the parameter type of the JavaScript
function's sentence parameter as InOut<string>. The input VARCHAR2 value is therefore
converted to a JavaScript string, that is then wrapped in an object and passed to the
JavaScript function substitute().

EXEC dbms_session.reset_package
SET SERVEROUTPUT ON

DECLARE
 l_sentence varchar2(100) := 'people are enjoying the rain';
 l_replaceThis varchar2(100) := 'rain';
 l_withThat varchar2(100) := 'sun';
 l_occurrences pls_integer;
BEGIN
 dbms_output.put_line('sentence before: ' || l_sentence);
 l_occurrences := f_substitute(
 l_sentence, l_replaceThis, l_withThat);
 if l_occurrences <> 0 then
 dbms_output.put_line('sentence after: ' || l_sentence);
 else
 dbms_output.put_line('no text replacement performed');
 end if;
END;
/

Result:

sentence before: people are enjoying the rain
sentence after: people are enjoying the sun

Chapter 6
OUT and IN OUT Parameters

6-17

7
Calling PL/SQL and SQL from the MLE
JavaScript SQL Driver

• Introduction to the MLE JavaScript SQL Driver

• Selecting Data Using the MLE JavaScript Driver

• Data Modification

• Bind Variables

• PL/SQL Invocation from the MLE JavaScript SQL Driver

• Error Handling in SQL Statements

• Working with JSON Data
The use of JSON data as part of a relational structure, more specifically the use of JSON
columns in (relational) tables, is described.

• Using Large Objects (LOB) with MLE

• API Differences Between node-oracledb and mle-js-oracledb
There are several differences between node-oracledb and mle-js-oracledb, including the
methods for handling connection management and type mapping.

• Introduction to the PL/SQL Foreign Function Interface
The Foreign Function Interface (FFI) is designed to provide straightforward access to
PL/SQL packages in a familiar, JavaScript-like fashion.

Introduction to the MLE JavaScript SQL Driver
The MLE JavaScript driver is closely modeled after the client-side Oracle SQL driver for
Node.js, node-oracledb.
This close relationship between the server-side and client-side drivers reduces the effort
required to port client-side JavaScript code from Node.js or Deno to the database.
Functionality that cannot be reasonably mapped to the server-side environment is omitted from
MLE and the MLE JavaScript driver and will throw errors.

This helps you identify those parts of the code requiring changes. Furthermore, the MLE
JavaScript implementation is a pure JavaScript implementation. Certain features not part of the
ECMAScript standard are unavailable in MLE, such as the window object as well as direct file
and network I/O.

The mle-js-oracledb SQL driver defaults to a synchronous operating model and partially
supports asynchronous execution via async/await.

7-1

Note:

Production code should adhere to industry best practices for error handling and
logging, which have been omitted from this chapter's examples for the sake of clarity.
Additionally, most examples feature the synchronous execution model due to its
greater readability.

Note:

If you are running your JavaScript code in a restricted execution context, you cannot
use the MLE JavaScript SQL driver. For more information about restricted execution
contexts, see About Restricted Execution Contexts.

See Also:

• API Differences Between node-oracledb and mle-js-oracledb

• Server-Side JavaScript API Documentation for more information about the built-
in JavaScript modules

Topics

• Working with the MLE JavaScript Driver
Generic workflow for working with the MLE JavaScript driver.

• Connection Management in the MLE JavaScript Driver

• Introduction to Executing SQL Statements

• Processing Comparison Between node-oracledb and mle-js-oracledb
The node-oracledb documentation recommends the use of the async/await interface. Due
to the nature of client-server interactions, most of the processing involved between node
and the database is executed asynchronously.

Working with the MLE JavaScript Driver
Generic workflow for working with the MLE JavaScript driver.

At a high level, working with the MLE JavaScript driver is very similar to using the client-side
node-oracledb driver, namely:

1. Get a connection handle to the existing database session.

2. Use the connection to execute a SQL statement.

3. Check the result object returned by the statement executed, as well as any database
errors that may have occurred.

4. In the case of select statements, iterate over the resulting cursor.

5. For statements manipulating data, decide whether to commit or roll the transaction back.

Applications that aren't ported from client-side Node.js or Deno can benefit from coding aids
available in the MLE JavaScript SQL driver, such as many frequently used variables available
in the global scope. These variables include the following:

Chapter 7
Introduction to the MLE JavaScript SQL Driver

7-2

https://oracle-samples.github.io/mle-modules

• oracledb for the OracleDb driver object

• session for the default connection object

• soda for the SodaDatabase object

• plsffi for the foreign function interface (FFI) object

Additionally, the following types are available:

• OracleNumber
• OracleClob
• OracleBlob
• OracleTimestamp
• OracleTimestampTZ
• OracleDate
• OracleIntervalDayToSecond
• OracleIntervalYearToMonth
The availability of these objects in the global scope reduces the need to write boilerplate code.
For details about global symbols available with the MLE JavaScript SQL driver, see Server-
Side JavaScript API Documentation.

Connection Management in the MLE JavaScript Driver
Considerations when dealing with connection management in the MLE JavaScript driver.
Connection management in the MLE JavaScript driver is greatly simplified compared to the
client driver. Because a database session will already exist when a JavaScript stored
procedure is invoked, you don't need to worry about establishing and tearing down
connections, connection pools, and secure credential management, to name just a few.

You need only be concerned with the getDefaultConnection() method from the mle-js-
oracledb module or use the global session object.

Introduction to Executing SQL Statements
A single SQL or PL/SQL statement can be executed by the Connection class's execute()
method. Query results can either be returned in a single JavaScript array or fetched in batches
using a ResultSet object.
Fetching as ResultSet offers more control over the fetch operation whereas using arrays
requires fewer lines of code and provides performance benefits unless the amount of data
returned is enormous.

Example 7-1 Getting Started with the MLE JavaScript SQL Driver

The following code demonstrates how to import the MLE JavaScript SQL driver into the current
module's namespace. This example is based on one provided in the node-oracledb
documentation, A SQL SELECT statement in Node.js.

CREATE OR REPLACE MLE MODULE js_sql_mod LANGUAGE JAVASCRIPT AS

import oracledb from "mle-js-oracledb";

/**

Chapter 7
Introduction to the MLE JavaScript SQL Driver

7-3

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules
https://node-oracledb.readthedocs.io/en/latest/user_guide/installation.html#example-a-sql-select-statement-in-node-js

 * Perform a lookup operation on the HR.DEPARTMENTS table to find all
 * departments managed by a given manager ID and print the result on
 * the console
 * @param {number} managerID the manager ID
*/

function queryExample(managerID) {

 if (managerID === undefined) {
 throw new Error (
 "Parameter managerID has not been provided to queryExample()"
);
 }
 let connection;

 try {
 connection = oracledb.defaultConnection();

 const result = connection.execute(`
 SELECT manager_id, department_id, department_name
 FROM hr.departments
 WHERE manager_id = :id`,
 [
 managerID
],
 {
 outFormat: oracledb.OUT_FORMAT_OBJECT
 }
);
 if (result.rows.length > 0) {
 for (let row of result.rows) {
 console.log(`The query found a row:
 manager_id: ${row.MANAGER_ID}
 department_id: ${row.DEPARTMENT_ID}
 department_name: ${row.DEPARTMENT_NAME}`);
 }
 } else {
 console.log(`no data found for manager ID ${managerID}`);
 }

 } catch (err) {
 console.error(`an error occurred while processing the query: $
{err.message}`);
 }
}

export { queryExample };
/

The only function present in the module, queryExample(), selects a single row from the HR
departments table using a bind variable by calling connection.execute(). The value of the
bind variable is passed as a parameter to the function. Another parameter passed to
connection.execute() indicates that each row returned by the query should be provided as a
JavaScript object.

Chapter 7
Introduction to the MLE JavaScript SQL Driver

7-4

If data has been found for a given managerID, it is printed on the screen. By default, the call to
console.log() is redirected to DBMS_OUTPUT. Should there be no rows returned a message
indicating this fact is printed on the console.

The call specification in the following snippet allows the code to be invoked in the database.

CREATE OR REPLACE PROCEDURE p_js_sql_query_ex(
 p_manager_id number)
AS MLE MODULE js_sql_mod
SIGNATURE 'queryExample(number)';
/

Provided the defaults are still in place, invoking p_js_sql_query_ex displays the following:

SQL> set serveroutput on
SQL> EXEC p_js_sql_query_ex(103)
The query found a row:
manager_id: 103
department_id: 60
department_name: IT

See Also:

Server-Side JavaScript API Documentation for more information about the built-in
JavaScript modules, including mle-js-oracledb

Example 7-2 Use Global Variables to Simplify SQL Execution

Example 7-1 can be greatly simplified for use with MLE. Variables injected into the global
scope can be referenced, eliminating the need to import the mle-js-oracledb module.
Additionally, because only a single function is defined in the module, an inline call specification
saves even more typing.

CREATE OR REPLACE PROCEDURE js_sql_mod_simplified(
 "managerID" number
) AS MLE LANGUAGE JAVASCRIPT
{{
if (managerID === undefined || managerID === null){
 throw new Error (
 "Parameter managerID has not been provided to js_sql_mod_simplified()"
);
}

const result = session.execute(`
 SELECT
 manager_id,
 department_id,
 department_name
 FROM
 hr.departments
 WHERE
 manager_id = :id`,

Chapter 7
Introduction to the MLE JavaScript SQL Driver

7-5

https://oracle-samples.github.io/mle-modules

 [managerID]
);

if(result.rows.length > 0){
 for(let row of result.rows){
 console.log(
 `The query found a row:
 manager_id: ${row.MANAGER_ID}
 department_id: ${row.DEPARTMENT_ID}
 department_name: ${row.DEPARTMENT_NAME}`
);
 }
} else {
 console.log(`no data found for manager ID ${managerID}`);
}
}};
/

js_sql_mod_simplified

SQL> set serveroutput on
SQL> exec js_sql_mod_simplified(100);

The query found a row:
manager_id: 100
department_id: 90
department_name: Executive

Processing Comparison Between node-oracledb and mle-js-oracledb
The node-oracledb documentation recommends the use of the async/await interface. Due to
the nature of client-server interactions, most of the processing involved between node and the
database is executed asynchronously.

The MLE JavaScript driver does not require asynchronous processing. Like the PL/SQL driver,
this is thanks to the driver's location within the database. The MLE JavaScript driver
understands the async/await syntax, however, it processes requests synchronously under the
hood.

Unlike the node-oracledb driver, the MLE JavaScript SQL driver returns rows as objects
(oracledb.OUT_FORMAT_OBJECT) rather than arrays (oracledb.OUTFORMAT_ARRAY) when using
the ECMAScript 2023 syntax. Code still relying on the deprecated require syntax remains
backwards compatible by returning rows as an array.

Note:

A promise-based interface is not provided with the MLE JavaScript driver.

Selecting Data Using the MLE JavaScript Driver
Data can be selected using Direct Fetches or ResultSet objects.

Chapter 7
Selecting Data Using the MLE JavaScript Driver

7-6

You can choose between arrays and objects as the output format. The default is to return data
through Direct Fetch using JavaScript objects.

Topics

• Direct Fetch: Arrays

• Direct Fetch: Objects

• Fetching Rows as ResultSets: Arrays

• Fetching Rows as ResultSets: Iterating Over ResultSet Objects

Direct Fetch: Arrays
Direct Fetches are the default in the MLE JavaScript driver.
Direct Fetches provide query results in result.rows. This is a multidimensional JavaScript
array if you specify the outFormat as oracledb.OUT_FORMAT_ARRAY. Iterating over the rows
allows you to access columns based on their position in the select statement. Changing the
column order in the select statement requires modifications in the parsing of the output.
Because this can lead to bugs that are hard to detect, the MLE JavaScript SQL driver returns
objects by default (oracledb.OUT_FORMAT_OBJECT), rather than arrays.

Example 7-3 demonstrates Direct Fetches using the synchronous execution model.

Example 7-3 Selecting Data Using Direct Fetch: Arrays

CREATE OR REPLACE PROCEDURE dir_fetch_arr_proc
AS MLE LANGUAGE JAVASCRIPT
{{
const result = session.execute(
 `SELECT
 department_id,
 department_name
 FROM
 hr.departments
 FETCH FIRST 5 ROWS ONLY`,
 [],
 {
 outFormat: oracledb.OUT_FORMAT_ARRAY
 }
);
for (let row of result.rows) {
 const deptID = String(row[0]).padStart(3, '0');
 const deptName = row[1];
 console.log(`department ID: ${deptID} - department name: ${deptName}`);
}
}};
/

BEGIN
 dir_fetch_arr_proc;
END;
/

Chapter 7
Selecting Data Using the MLE JavaScript Driver

7-7

Result:

department ID: 010 - department name: Administration
department ID: 020 - department name: Marketing
department ID: 030 - department name: Purchasing
department ID: 040 - department name: Human Resources
department ID: 050 - department name: Shipping

The execute() function returns a result object. Different properties are available for further
processing depending on the statement type (select, insert, delete, etc.).

For information about mle-js-oracledb, see Server-Side JavaScript API Documentation.

Direct Fetch: Objects
JavaScript objects are returned by default when using Direct Fetch.
To address potential problems with the ordering of columns in the select list, results are
returned as JavaScript objects rather than as arrays.

Example 7-4 Selecting Data Using Direct Fetch: Objects

CREATE OR REPLACE PROCEDURE dir_fetch_obj_proc
AS MLE LANGUAGE JAVASCRIPT
{{
const result = session.execute(
 `SELECT
 department_id,
 department_name
 FROM
 hr.departments
 FETCH FIRST 5 ROWS ONLY`,
 [],
 { outFormat: oracledb.OUT_FORMAT_OBJECT }
);

for (let row of result.rows) {
 const deptID = String(row.DEPARTMENT_ID).padStart(3, '0');
 const deptName = row.DEPARTMENT_NAME;
 console.log(`department ID: ${deptID} - department name: ${deptName}`);
}
}};
/

BEGIN
 dir_fetch_obj_proc();
END;
/

Result:

department ID: 010 - department name: Administration
department ID: 020 - department name: Marketing
department ID: 030 - department name: Purchasing

Chapter 7
Selecting Data Using the MLE JavaScript Driver

7-8

https://oracle-samples.github.io/mle-modules

department ID: 040 - department name: Human Resources
department ID: 050 - department name: Shipping

Unlike PL/SQL, JavaScript doesn't support the concept of named parameters. The execute()
method accepts the SQL statement, bindParams, and options, in that exact order. The query
doesn't use bind variables, thus an empty array matches the function's signature.

See Also:

Server-Side JavaScript API Documentation for more information about the mle-js-
oracledb built-in module

Fetching Rows as ResultSets: Arrays
You can use ResultSet objects as an alternative to using Direct Fetches.
In addition to using Direct Fetches, it is possible to use ResultSet objects. A ResultSet is
created when the option property resultSet is set to true. ResultSet rows can be fetched
using getRow() or getRows().

Because rows are fetched as JavaScript objects by default instead of as arrays, outFormat
must be defined as oracledb.OUT_FORMAT_ARRAY in order to fetch rows as a ResultSet.

Example 7-5 Fetching Rows Using a ResultSet

CREATE OR REPLACE PROCEDURE dir_fetch_rs_arr_proc
AS MLE LANGUAGE JAVASCRIPT
{{
const result = session.execute(
 `SELECT
 department_id,
 department_name
 FROM
 hr.departments
 FETCH FIRST 5 ROWS ONLY`,
 [],
 {
 resultSet: true,
 outFormat: oracledb.OUT_FORMAT_ARRAY
 }
);

const rs = result.resultSet;
let row;
while ((row = rs.getRow())){
 const deptID = String(row[0]).padStart(3, '0');
 const deptName = row[1];
 console.log(`department ID: ${deptID} - department name: ${deptName}`);
}
rs.close();
}};
/

Chapter 7
Selecting Data Using the MLE JavaScript Driver

7-9

https://oracle-samples.github.io/mle-modules

Note that the fetch operation specifically requested an array rather than an object. Objects are
returned by default.

EXEC dir_fetch_rs_arr_proc();

Result:

department ID: 010 - department name: Administration
department ID: 020 - department name: Marketing
department ID: 030 - department name: Purchasing
department ID: 040 - department name: Human Resources
department ID: 050 - department name: Shipping

Fetching Rows as ResultSets: Iterating Over ResultSet Objects
In addition to the ResultSet.getRow() and ResultSet.getRows() functions, the MLE
JavaScript driver's ResultSet implements the iterable and iterator protocols, simplifying the
process for iterating over the ResultSet.
Using either the iterable or iterator protocols is possible. Both greatly simplify working with
ResultSets. The iterable option is demonstrated in Example 7-6.

Note:

ResultSet objects must be closed once they are no longer needed.

Example 7-6 Using the Iterable Protocol with ResultSets

This example shows how to use the iterable protocol as an alternative to ResultSet.getRow().
Rather than providing an array of column values, the JavaScript objects are returned instead.

CREATE OR REPLACE PROCEDURE rs_iterable_proc
AS MLE LANGUAGE JAVASCRIPT
{{
const result = session.execute(
 `SELECT
 department_id,
 department_name
 FROM
 hr.departments
 FETCH FIRST 5 ROWS ONLY`,
 [],
 {
 resultSet: true
 }
);
const rs = result.resultSet;
for (let row of rs){
 const deptID = String(row.DEPARTMENT_ID).padStart(3, '0');
 const deptName = row.DEPARTMENT_NAME;
 console.log(`department ID: ${deptID} - department name: ${deptName}`);
}
rs.close();

Chapter 7
Selecting Data Using the MLE JavaScript Driver

7-10

}};
/

BEGIN
 rs_iterable_proc();
END;
/

Result:

department ID: 010 - department name: Administration
department ID: 020 - department name: Marketing
department ID: 030 - department name: Purchasing
department ID: 040 - department name: Human Resources
department ID: 050 - department name: Shipping

Data Modification
Modify data using the MLE JavaScript SQL driver.
In addition to selecting data, it is possible to insert, update, delete, and merge data using the
MLE JavaScript SQL driver. The same general workflow can be applied to these operations as
you would use when selecting data.

Example 7-7 Updating a Row Using the MLE JavaScript SQL Driver

CREATE OR REPLACE MLE MODULE row_update_mod LANGUAGE JAVASCRIPT AS
import oracledb from "mle-js-oracledb";
export function updateCommissionExampleEmpID145() {
 const conn = oracledb.defaultConnection();
 const result = conn.execute(
 `UPDATE employees
 SET commission_pct = commission_pct * 1.1
 WHERE employee_id = 145`
);
 return result.rowsAffected;
}
/

The result object's rowsAffected property can be interrogated to determine how many rows
have been affected by the update. The JavaScript function
updateCommissionExampleEmpID145() returns the number of rows affected to the caller. In this
instance, the function will return 1.

An alternative method to update data is to use the connection.executeMany() method. This
function works best when used with bind variables.

Bind Variables
Use bind variables to control data passed into or retrieved from the database.
SQL and PL/SQL statements may contain bind variables, indicated by colon-prefixed
identifiers. These parameters indicate where separately specified values are substituted in a
statement when executed, or where values are to be returned after execution.

Chapter 7
Data Modification

7-11

Three different kinds of bind variables exist in the Oracle database:

• IN bind variables

• OUT bind variables

• IN OUT bind variables

IN binds are values passed into the database. OUT binds are used to retrieve data from the
database. IN OUT binds are passed in and may return a different value after the statement
executes.

Using bind variables is recommended in favor of constructing SQL or PL/SQL statements
through string concatenation or template literals. Both performance and security can benefit
from the use of bind variables. When bind variables are used, the Oracle database does not
have to perform a resource and time consuming hard-parse operation. Instead, it can reuse the
cursor already present in the cursor cache.

Note:

Bind variables cannot be used in DDL statements such as CREATE TABLE, nor can
they substitute the text of a query, only data.

Topics

• Using Bind-by-Name vs Bind-by-Position
Bind variables are used in two ways: by name by position. You must pick one for a given
SQL command as the options are mutually exclusive.

• RETURNING INTO Clause

• Batch Operations

Using Bind-by-Name vs Bind-by-Position
Bind variables are used in two ways: by name by position. You must pick one for a given SQL
command as the options are mutually exclusive.

Topics

• Named Bind Variables

• Positional Bind Variables

Named Bind Variables
Binding by name requires the bind variable to be a string literal, prefixed by a colon.
In the case of named binds, the bindParams argument to the connection.execute() function
should ideally be provided with the following properties of each bind variable defined.

Property Description

dir The bind variable direction

val The value to be passed to the SQL statement

type The data type

Chapter 7
Bind Variables

7-12

Example 7-8 Using Named Bind Variables

CREATE OR REPLACE PROCEDURE named_binds_ex_proc(
 "deptName" VARCHAR2,
 "sal" NUMBER
)
AS MLE LANGUAGE JAVASCRIPT
{{
if (deptName === null || sal === null){
 throw new Error(
 `must provide deptName and sal to named_binds_ex_proc()`
);
}

const result = session.execute(
 `SELECT
 e.first_name ||
 '' ||
 e.last_name employee_name,
 e.salary
 FROM
 hr.employees e
 LEFT JOIN hr.departments d ON (e.department_id = d.department_id)
 WHERE
 nvl(d.department_name, 'n/a') = :deptName
 AND salary > :sal
 ORDER BY
 e.employee_id`,
 {
 deptName:{
 dir: oracledb.BIND_IN,
 val: deptName,
 type: oracledb.STRING
 },
 sal:{
 dir: oracledb.BIND_IN,
 val: sal,
 type: oracledb.NUMBER
 }
 }
);
console.log(`Listing employees working in ${deptName} with a salary > $
{sal}`);
for (let row of result.rows){
 console.log(`${row.EMPLOYEE_NAME.padEnd(25)} - ${row.SALARY}`);
}
}};
/

The bindParams argument to connection.execute() defines two named bind parameters:

• deptName
• sal

Chapter 7
Bind Variables

7-13

In this example, the function's input parameters match the names of the bind variables, which
improves readability but isn't a requirement. You can assign bind variable names as long as
the mapping in bindParams is correct.

Positional Bind Variables
Instead of using named bind parameters, you can alternatively provide bind-variable
information as an array.
The number of elements in the array must match the number of bind parameters in the SQL
text. Rather than mapping by name, the mapping of bind variable and value is based on the
position of the bind variable in the text and position of the item in the bind array.

Example 7-9 Using Positional Bind Variables

This example demonstrates the use of positional bind variables and represents a
reimplementation of Example 7-8

CREATE OR REPLACE PROCEDURE positional_binds_ex_proc(
 "deptName" VARCHAR2,
 "sal" NUMBER
)
AS MLE LANGUAGE JAVASCRIPT
{{
if (deptName === null || sal === null){
 throw new Error(
 `must provide deptName and sal to positional_binds_ex_proc()`
);
}

const result = session.execute(
 `SELECT
 e.first_name ||
 '' ||
 e.last_name employee_name,
 e.salary
 FROM
 hr.employees e
 LEFT JOIN hr.departments d ON (e.department_id = d.department_id)
 WHERE
 nvl(d.department_name, 'n/a') = :deptName
 AND salary > :sal
 ORDER BY
 e.employee_id`,
 [
 deptName,
 sal
]
);
console.log(`Listing employees working in ${deptName} with a salary > $
{sal}`);
for(let row of result.rows){
 console.log(`${row.EMPLOYEE_NAME.padEnd(25)} - ${row.SALARY}`);
}
}};
/

Chapter 7
Bind Variables

7-14

In this example, bindParams is an array rather than an object. The mapping between bind
variables in the SQL text to values is done by position. The first item in the bindParams array
maps to the first occurrence of a placeholder in the SQL text and so on.

RETURNING INTO Clause
The use of the RETURNING INTO clause is described.
The RETURNING INTO clause allows you to

• Fetch values changed during an update

• Return auto-generated keys during a single-row insert operation

• List rows deleted

Example 7-10 Using the RETURNING INTO Clause

This example shows how to retrieve the old and new values after an update operation. These
values can be used for further processing.

CREATE OR REPLACE PROCEDURE ret_into_ex_proc(
 "firstEmpID" NUMBER,
 "lastEmpID" NUMBER
)
AS MLE LANGUAGE JAVASCRIPT
{{
if (firstEmpID === null || lastEmpID === null){
 throw new Error(
 `must provide deptName and sal to ret_into_ex_proc()`
);
}

const result = session.execute(
 `UPDATE
 hr.employees
 SET
 last_name = upper(last_name)
 WHERE
 employee_id between :firstEmpID and :lastEmpID
 RETURNING
 old last_name
 new last_name
 INTO
 :oldLastName,
 :newLastName`,
 {
 firstEmpID: {
 dir: oracledb.BIND_IN,
 val: firstEmpID,
 type: oracledb.NUMBER
 },
 lastEmpID: {
 dir: oracledb.BIND_IN,
 val: lastEmpID,
 type: oracledb.NUMBER
 },
 oldLastName: {

Chapter 7
Bind Variables

7-15

 type: oracledb.STRING,
 dir: oracledb.BIND_OUT
 },
 newLastName: {
 type: oracledb.STRING,
 dir: oracledb.BIND_OUT
 }
 }
);

if (result.rowsAffected > 1){
 console.log(
 `update() completed successfully:
 - old values: ${JSON.stringify(result.outBinds.oldLastName)}
 - new values: ${JSON.stringify(result.outBinds.newLastName)}`
);
} else {
 throw new Error(
 `found no row to update in range ${firstEmpID} to ${lastEmpID}`
);
}
}};
/

This example features both IN and OUT bind variables:

• firstEmpID and lastEmpID specify the data range to be updated

• oldLastName is an array containing all the last names as they were before the update

• newLastName is another array containing the new values

Batch Operations
In addition to calling the connection.execute() function, it is possible to use
connection.executeMany() to perform batch operations.
Using connection.executeMany() is like calling connection.execute() multiple times but
requires less work. This is an efficient way to handle batch changes, for example, when
inserting or updating multiple rows. The connection.executeMany() method cannot be used
for queries.

connection.execute() expects an array containing variables to process by the SQL
statement. The bindData array in Example 7-11 contains multiple JavaScript objects, one for
each bind variable defined in the SQL statement. The for loop constructs the objects and adds
them to the bindData array.

In addition to the values to be passed to the batch operation, the MLE JavaScript SQL driver
needs to know about the values' data types. This information is passed as the bindDefs
property in the connection.executeMany() options parameter. Both old and new last names in
Example 7-11 are character strings with the changeDate defined as a date.

Just as with the connection.execute() function, connection.executeMany() returns the
rowsAffected property, allowing you to quickly identify how many rows have been batch
processed.

Chapter 7
Bind Variables

7-16

Example 7-11 Performing a Batch Operation

This example extends Example 7-9 by inserting the old and new last names into an audit table.

CREATE OR REPLACE PROCEDURE ret_into_audit_ex_proc(
 "firstEmpID" NUMBER,
 "lastEmpID" NUMBER
)
AS MLE LANGUAGE JAVASCRIPT
{{
if (firstEmpID === null || lastEmpID === null){
 throw new Error(
 `must provide deptName and sal to ret_into_audit_ex_proc()`
);
}

let result = session.execute(
 `UPDATE
 hr.employees
 SET
 last_name = upper(last_name)
 WHERE
 employee_id between :firstEmpID and :lastEmpID
 RETURNING
 old last_name,
 new last_name
 INTO
 :oldLastName,
 :newLastName`,
 {
 firstEmpID: {
 dir: oracledb.BIND_IN,
 val: firstEmpID,
 type: oracledb.NUMBER
 },
 lastEmpID: {
 dir: oracledb.BIND_IN,
 val: lastEmpID,
 type: oracledb.NUMBER
 },
 oldLastName: {
 type: oracledb.STRING,
 dir: oracledb.BIND_OUT
 };
 newLastName: {
 type: oracledb.STRING,
 dir: oracledb.BIND_OUT
 }
 }
);

if (result.rowsAffected > 1){
 // store the old data and new values in an audit table
 let bindData = [];
 const changeDate = new Date();
 for (let i = 0; i < result.outBinds.oldLastName.length, i++){

Chapter 7
Bind Variables

7-17

 bindDate.push(
 {
 oldLastName: result.outBinds.oldLastName[i],
 newLastName: result.outBinds.newLastName[i],
 changeDate: changeDate
 }
);
 }
 // use executeMany() with the newly populated array
 result = session.executeMany(
 `insert into EMPLOYEES_AUDIT_OPERATIONS(
 old_last_name,
 new_last_name,
 change_date
) values (
 :oldLastName,
 :newLastName,
 :changeDate
)`,
 bindData,
 {
 bindDefs: {
 oldLastName: {type: oracledb.STRING, maxSize: 30},
 newLastName: {type: oracledb.STRING, maxSize: 30},
 changeDate: {type: oracledb.DATE}
 }
 }
);

} else {
 throw new Error(
 `found no row to update in range ${firstEmpID} to ${lastEmpID}`
);
}
}};
/

After the initial update statement completes, the database provides the old and new values of
the last_name column affected by the update in the result object's outBinds property. Both
oldLastName and newLastName are arrays. The array length represents the number of rows
updated.

PL/SQL Invocation from the MLE JavaScript SQL Driver
Use the MLE JavaScript driver to call functions and procedures from PL/SQL.
Most of the Oracle Database's API is provided in PL/SQL. This is not a problem; you can easily
call PL/SQL from JavaScript. Invoking PL/SQL using the MLE JavaScript SQL driver is similar
to calling SQL statements.

Example 7-12 Calling PL/SQL from JavaScript

CREATE OR REPLACE MLE MODULE plsql_js_mod
LANGUAGE JAVASCRIPT AS
/**
 * Read the current values for module and action and return them as

Chapter 7
PL/SQL Invocation from the MLE JavaScript SQL Driver

7-18

 * a JavaScript object. Typically set before processing starts to
 * allow you to restore the values if needed.
 * @returns an object containing module and action
 */
function preserveModuleAction(){
 //Preserve old module and action. DBMS_APPLICATION_INFO provides
 // current module and action as OUT binds
 let result = session.execute(
 `BEGIN
 DBMS_APPLICATION_INFO.READ_MODULE(
 :l_module,
 :l_action
);
 END;`,
 {
 l_module: {
 dir: oracledb.BIND_OUT,
 type: oracledb.STRING
 },
 l_action: {
 dir: oracledb.BIND_OUT,
 type: oracledb.STRING
 }
 }
);

 // Their value can be assigned to JavaScript variables
 const currentModule = result.outBinds.l_module;
 const currentAction = result.outBinds.l_action;

 // ... and returned to the caller
 return {
 module: currentModule,
 action: currentAction
 }
}

/**
 * Set module and action using DBMS_APPLICATION_INFO
 * @param theModule the module name to set
 * @param theAction the name of the action to set
 */
function setModuleAction(theModule, theAction){
 session.execute(
 `BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(
 :module,
 :action
);
 END;`,
 [
 theModule,
 theAction
]
);
}

Chapter 7
PL/SQL Invocation from the MLE JavaScript SQL Driver

7-19

/**
 * The only public function in this module simulates some heavy
 * processing for which module and action are set using the built-in
 * DBMS_APPLICATION_INFO package.
 */
export function plsqlExample(){
 // preserve the values for module and action before we begin
 const moduleAction = preserveModuleAction();

 // set the new values to reflect the function's execution
 // within the module
 setModuleAction(
 'plsql_js_mod',
 'plsqlExample()'
)

 // Simulate some intensive processing... While this is ongoing
 // module and action in v$session should have changed to the
 // values set earlier. You can check using
 // SELECT module, action FROM v$session WHERE module = 'plsql_js_mod'
 session.execute(
 `BEGIN
 DBMS_SESSION.SLEEP(60);
 END;`
);

 // and finally reset the values to what they were before
 setModuleAction(
 moduleAction.module,
 moduleAction.action
);
}
/

This example is a little more elaborate than previous ones, separating common functionality
into their own (private) functions. You can see the use of OUT variables in
preserveModuleAction()'s call to DBMS_APPLICATION_INFO. The values can be retrieved using
result.outBinds.

After storing the current values of module and action in local variables, additional anonymous
PL/SQL blocks are invoked, first setting module and action before entering a 60-second sleep
cycle simulating complex data processing. Once the simulated data processing routine
finishes, the module and action are reset to their original values using named IN bind variables.
Using bind variables is more secure than string concatenation.

Setting module and action is an excellent way of informing the database about ongoing activity
and allows for better activity grouping in performance reports.

Error Handling in SQL Statements
JavaScript provides an exception framework like Java. Rather than returning an Error object
as a promise or callback as in node-oracledb, the MLE JavaScript driver resorts to throwing
errors. This concept is very familiar to PL/SQL developers.

Chapter 7
Error Handling in SQL Statements

7-20

Using try-catch-finally in JavaScript code is similar to the way PL/SQL developers use begin-
exception-end blocks to trap errors during processing.

Use the JavaScript throw() command if an exception should be re-thrown. This causes the
error to bubble-up the stack after it has been dealt with in the catch block. Example 7-14
demonstrates this concept.

Example 7-13 SQL Error Handling Inside a JavaScript Function

CREATE TABLE log_t (
 id NUMBER GENERATED ALWAYS AS IDENTITY
 CONSTRAINT pk_log_t PRIMARY KEY,
 err VARCHAR2(255),
 msg VARCHAR2(255)
);

CREATE OR REPLACE PACKAGE logging_pkg as
 PROCEDURE log_err(p_msg VARCHAR2, p_err VARCHAR2);
END logging_pkg;
/

CREATE OR REPLACE PACKAGE BODY logging_pkg AS
 PROCEDURE log_err(p_msg VARCHAR2, p_err VARCHAR2)
 AS
 PRAGMA autonomous_transaction;
 BEGIN
 INSERT INTO log_t (
 err,
 msg
) VALUES (
 p_err,
 p_msg
);
 COMMIT;
 END log_err;
END logging_pkg;
/

CREATE OR REPLACE MLE MODULE js_err_handle_mod
LANGUAGE JAVASCRIPT AS

/**
 *short demo showing how to use try/catch to catch an error
 *and proceeding normally. In the example, the error is
 *provoked
*/
export function errorHandlingDemo(){

 try{
 const result = session.execute(
 `INSERT INTO
 surelyThisTableDoesNotExist
 VALUES
 (1)`
);

Chapter 7
Error Handling in SQL Statements

7-21

 console.log(`there were ${result.rowsAffected} rows inserted`);

 } catch(err) {
 logError('this is some message', err);

 //tell the caller that something went wrong
 return false;
 }

 //further processing

 //return successful completion of the code
 return true;
}

/**
 *log an error using the logging_pkg created at the beginning
 *of this example. Think of it as a package logging errors in
 *a framework for later analysis.
 *@param msg an accompanying message
 *@param err the error encountered
*/
function logError(msg, err){
 const result = session.execute(
 `BEGIN
 logging_pkg.log_err(
 p_msg => :msg,
 p_err => :err
);
 END;`,
 {
 msg: {
 val: msg,
 dir: oracledb.BIND_IN
 },
 err: {
 val: err.message,
 dir: oracledb.BIND_IN
 }
 }
);
}
/

Create a function, js_err_handle_mod_f, using the module js_err_handle_mod as follows:

CREATE OR REPLACE FUNCTION js_err_handle_mod_f
RETURN BOOLEAN
AS MLE MODULE js_err_handle_mod
SIGNATURE 'errorHandlingDemo()';
/

Chapter 7
Error Handling in SQL Statements

7-22

Now you can call the function and use the return value to see whether the processing was
successful:

DECLARE
 l_success boolean := false;
BEGIN
 l_success := js_err_handle_mod_f;

 IF l_success THEN
 DBMS_OUTPUT.PUT_LINE('normal, successful completion');
 ELSE
 DBMS_OUTPUT.PUT_LINE('an error has occurred');
 END IF;
END;
/

In this case, the error is caught within the MLE module. The error is recorded by the
application, allowing the administrator to assess the situation and take corrective action.

Example 7-14 Error Handling Using JavaScript throw() Command

This example demonstrates the use of the JavaScript throw() command in the catch block.
Unlike the screen output shown for js_err_handle_mod in Example 7-13, a calling PL/SQL
block will have to catch the error and either treat it accordingly or raise it again.

CREATE OR REPLACE MLE MODULE js_throw_mod
LANGUAGE JAVASCRIPT AS

/**
 *a similar example as Example 7-13, however, rather than
 *processing the error in the JavaScript code, it is re-thrown up the call
stack.
 *It is now up to the called to handle the exception. The try/catch block is
not
 *strictly necessary but is used in this example as a cleanup step to remove
Global
 *Temporary Tables (GTTs) and other temporary objects that are no longer
required.
*/
export function rethrowError(){

 try{
 const result = session.execute(
 `INSERT INTO
 surelyThisTableDoesNotExist
 VALUES
 (1)`
);

 console.log(`there were ${result.rowsAffected} rows inserted`);

 } catch(err){
 cleanUpBatch();

 throw(err);
 }

Chapter 7
Error Handling in SQL Statements

7-23

 //further processing
}

function cleanUpBatch(){
 //batch cleanup operations
 return;
}
/

Using the following call specification, failing to catch the error will result in an unexpected error,
which can propagate up the call stack all the way to the end user.

CREATE OR REPLACE PROCEDURE rethrow_err_proc
AS MLE MODULE js_throw_mod
SIGNATURE 'rethrowError()';
/

BEGIN
 rethrow_err_proc;
END;
/

Result:

BEGIN
*
ERROR at line 1:
ORA-00942: table or view does not exist
ORA-04171: at rethrowError (USER1.JS_THROW_MOD:11:24)
ORA-06512: at "USER1.RETHROW_ERROR_PROC", line 1
ORA-06512: at line 2

End users should not see this type of error. Instead, a more user-friendly message should be
displayed. Continuing the example, a simple fix is to add an exception block:

BEGIN
 rethrow_err_proc;
EXCEPTION
 WHEN OTHERS THEN
 logging_pkg.log_err(
 'something went wrong',
 sqlerrm
);
 --this would be shown on the user interface;
 --for the sake of demonstration this workaround
 --is used to show the concept
 DBMS_OUTPUT.PUT_LINE(
 'ERROR: the process encountered an unexpected error'
);
 DBMS_OUTPUT.PUT_LINE(
 'please inform the administrator referring to application error
1234'
);

Chapter 7
Error Handling in SQL Statements

7-24

END;
/

Result:

ERROR: the process encountered an unexpected error
please inform the administrator referring to application error 1234

PL/SQL procedure successfully completed.

Working with JSON Data
The use of JSON data as part of a relational structure, more specifically the use of JSON
columns in (relational) tables, is described.

Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views. Unlike relational data, JSON data can
be stored in the database, indexed, and queried without any need for a schema.1

Oracle also provides a family of Simple Oracle Document Access (SODA) APIs for access to
JSON data stored in the database. SODA is designed for schemaless application development
without knowledge of relational database features or languages such as SQL and PL/SQL. It
lets you create and store collections of documents in Oracle Database, retrieve them, and
query them without needing to know how the documents are stored in the database.

JSON data is widely used for exchanging information between the application tier and the
database. Oracle REST Data Services (ORDS) is the most convenient tool for making REST
calls to the database. Example 7-15 demonstrates this concept.

Manipulating JSON is one of JavaScript's core capabilities. Incoming JSON documents don't
require parsing using JSON.parse(), they can be used straight away. Micro-service
architectures greatly benefit from the enhanced options offered by JavaScript in the database.

See Also:

• Working with SODA Collections in MLE JavaScript Code for a detailed discussion
of SODA and JavaScript in the database

• Oracle Database JSON Developer's Guide for information about the use of JSON
in Oracle Database

Example 7-15 Inserting JSON Data into a Database Table

This example assumes that a REST API has been published in ORDS, allowing users to POST
JSON data to the database. This way, administrators have the option to upload further

1 A JSON schema is not to be confused with the concept of a database schema: a database schema in Oracle Database is
a separate namespace for database users to create objects such as tables, indexes, views, and many others without
risking naming collisions.

Chapter 7
Working with JSON Data

7-25

departments into the departments table. Once the JSON data has been received, the MLE
module uses JSON_TABLE() to convert the JSON data structure into a relational model.

CREATE TABLE departments(
 department_id NUMBER NOT NULL PRIMARY KEY,
 department_name VARCHAR2(50) NOT NULL,
 manager_id NUMBER,
 location_id NUMBER
);

CREATE OR REPLACE FUNCTION REST_API_DEMO(
 "depts" JSON
) RETURN BOOLEAN
AS MLE LANGUAGE JAVASCRIPT
{{
 /**
 *insert a number of department records, provided as JSON,
 *into the departments table
 *@params {object} depts - an array of departments
 */

 if(depts.constructor !== Array){
 throw new Error('must provide an array of departments to this
function');
 }

 //convert JSON input to relational data and insert into a table
 const result = session.execute(`
 INSERT INTO departments(
 department_id,
 department_name,
 manager_id,
 location_id
)
 SELECT
 jt.*
 FROM json_table(:depts, '$[*]' columns
 department_id path '$.department_id',
 department_name path '$.department_name',
 manager_id path '$.manager_id',
 location_id path '$.location_id'
) jt`,
 {
 depts:{
 val: depts,
 type: oracledb.DB_TYPE_JSON
 }
 }
);

 if(result.rowsAffected !== depts.length){
 return false;
 } else {
 return true;
 }

Chapter 7
Working with JSON Data

7-26

}};
/

Using the following anonymous PL/SQL block to simulate the REST call, additional
departments can be inserted into the table:

DECLARE
 l_success boolean := false;
 l_depts JSON;
BEGIN
 l_depts := JSON('[
 {
 "department_id": 1010,
 "department_name": "New Department 1010",
 "manager_id": 200,
 "location_id": 1700
 },
 {
 "department_id": 1020,
 "department_name": "New Department 1020",
 "manager_id": 201,
 "location_id": 1800
 },
 {
 "department_id": 1030,
 "department_name": "New Department 1030",
 "manager_id": 114,
 "location_id": 1700
 },
 {
 "department_id": 1040,
 "department_name": "New Department 1040",
 "manager_id": 203,
 "location_id": 2400
 }]'
);

 l_success := REST_API_DEMO(l_depts);

 IF NOT l_success THEN
 RAISE_APPLICATION_ERROR(
 -20001,
 'an unexpected error occurred ' || sqlerrm
);
 END IF;
END;
/

The data has been inserted successfully as demonstrated by the following query:

SELECT *
FROM departments
WHERE department_id > 1000;

Chapter 7
Working with JSON Data

7-27

Result:

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID
------------- ------------------------------ ---------- -----------
 1010 New Department 1010 200 1700
 1020 New Department 1020 201 1800
 1030 New Department 1030 114 1700
 1040 New Department 1040 203 2400

Example 7-16 Use JavaScript to Manipulate JSON Data

Rather than using SQL functions like JSON_TABLE, JSON_TRANSFORM, and so on, it is
possible to perform JSON data manipulation in JavaScript as well.

This example is based on the J_PURCHASEORDER table as defined in Oracle Database JSON
Developer’s Guide. This table stores a JSON document containing purchase orders from
multiple customers. Each purchase order consists of one or more line items.

The following function, addFreeItem(), allows the addition of a free item to customers ordering
merchandise in excess of a threshold value.

CREATE OR REPLACE MLE MODULE purchase_order_mod
LANGUAGE JAVASCRIPT AS

/**
 *a simple function accepting a purchase order and checking whether
 *its value is high enough to merit the addition of a free item
 *
 *@param {object} po the purchase order to be checked
 *@param {object} freeItem which free item to add to the order free of charge
 *@param {number} threshold the minimum order value before a free item can be
added
 *@param {boolean} itemAdded a flag indicating whether the free item was
successfully added
 *@returns {object} the potentially updated purchaseOrder
 *@throws exception in case
 * -any of the mandatory parameters is null
 * -in the absence of line items
 * -if the free item has already been added to the order
 */
export function addFreeItem(po, freeItem, threshold, itemAdded){

 //ensure values for parameters have been provided
 if(po == null || freeItem == null || threshold == null){
 throw new Error(`mandatory parameter either not provided or null`);
 }

 //make sure there are line items provided by the purchase order
 if(po.LineItems === undefined) {
 throw new Error(
 `PO number ${po.PONumber} does not contain any line items`
);
 }

 //bail out if the free item has already been added to the purchase order
 if(po.LineItems.find(({Part}) => Part.Description ===

Chapter 7
Working with JSON Data

7-28

freeItem.Part.Description)){
 throw new Error(`${freeItem.Part.Description} has already been added
to order ${po.PONumber}`);
 }

 //In, Out, and InOut Parameters are implemented in JavaScript using
 //special interfaces
 itemAdded.value = false;

 //get the total order value
 const poValue = po.LineItems
 .map(x => x.Part.UnitPrice * c.Quantity)
 .reduce(
 (accumulator, currentValue) => accumulator + currentValue, 0
);

 //add a free item to the purchase order if its value exceeds
 //the threshold
 if(poValue > threshold){

 //update the ItemNumber
 freeItem.ItemNumber = (po.LineItems.length + 1)
 po.LineItems.push(freeItem);
 itemAdded.value = true;
 }

 return po;
}
/

As with every MLE module, you must create a call specification before you can use it in SQL
and PL/SQL. The following example wraps the call to add_free_item() into a package. The
function accepts a number of parameters, including an OUT parameter, requiring an extended
signature clause mapping the PL/SQL types to MLE types. The SQL data type JSON maps to
the MLE ANY type. Because there is no concept of an OUT parameter in JavaScript, the final
parameter, p_item_added, must be passed using the Out interface. For a more detailed
discussion about using bind parameters with JavaScript, see OUT and IN OUT Parameters.

CREATE OR REPLACE PACKAGE purchase_order_pkg AS

 FUNCTION add_free_item(
 p_po IN JSON,
 p_free_item IN JSON,
 p_threshold IN NUMBER,
 p_item_added OUT BOOLEAN
)
 RETURN JSON AS
 MLE MODULE purchase_order_mod
 SIGNATURE 'addFreeItem(any, any, number, Out<boolean>)';

 --additional code

END purchase_order_pkg;
/

Chapter 7
Working with JSON Data

7-29

Using Large Objects (LOB) with MLE
A PL/SQL wrapper type is used to handle CLOBs and BLOBs with the MLE JavaScript driver.
Handling large objects such as CLOBs (Character Large Object) and BLOBs (Binary Large
Object) with the MLE JavaScript driver differs from the node-oracledb driver. Rather than
using a Node.js Stream interface, a PL/SQL wrapper type is used. The wrapper types for
BLOBs and CLOBs are called OracleBlob and OracleClob, respectively. They are defined in
mle-js-plsqltypes. Most types are exposed in the global scope and can be referenced
without having to import the module.

Note:

BFILE, commonly counted among LOBs, is not supported.

See Also:

Server-Side JavaScript API Documentation for more information about mle-js-
plsqltypes and the other JavaScript built-in modules

Topics

• Writing LOBs
An example shows how to initialize and write to a CLOB that is finally inserted into a table.

• Reading LOBs
An example is used to show how to select a CLOB and then use the fetchInfo property to
read the contents of the CLOB as a string.

Writing LOBs
An example shows how to initialize and write to a CLOB that is finally inserted into a table.

Example 7-17 Inserting a CLOB into a Table

This example demonstrates how to insert a CLOB into a table. The table defines two columns:
an ID column to be used as a primary key and a CLOB column named "C".

CREATE TABLE mle_lob_example (
 id NUMBER GENERATED ALWAYS AS IDENTITY,
 CONSTRAINT pk_mle_blob_table PRIMARY KEY(id),
 c CLOB
);

CREATE OR REPLACE PROCEDURE insert_clob
AS MLE LANGUAGE JAVASCRIPT
{{
//OracleClob is exposed in the global scope and does not require
//importing 'mle-js-plsqltypes', similar to how oracledb is available
let theClob = OracleClob.createTemporary(false);

Chapter 7
Using Large Objects (LOB) with MLE

7-30

https://oracle-samples.github.io/mle-modules

theClob.open(OracleClob.LOB_READWRITE);
theClob.write(
 1,
 'This is a CLOB and it has been inserted by the MLE JavaScript SQL Driver'
);

const result = session.execute(
 `INSERT INTO mle_lob_example(c) VALUES(:theCLOB)`,
 {
 theCLOB:{
 type: oracledb.ORACLE_CLOB,
 dir: oracledb.BIND_IN,
 val: theCLOB
 }
 }
);

//it is best practice to close the handle to free memory
theCLOB.close();
}};
/

CLOBs and BLOBs are defined in mle-js-plsqltypes. Most commonly used types are
provided in the global scope, rendering the import of mle-js-plsqltypes unnecessary.

The first step is to create a temporary, uncached LOB locator. Following the successful
initialization of the LOB, it is opened for read and write operations. A string is written to the
CLOB with an offset of 1. Until this point, the LOB exists in memory. The call to
session.execute() inserts the CLOB in the table. Calling the close() method closes the
CLOB and frees the associated memory.

Reading LOBs
An example is used to show how to select a CLOB and then use the fetchInfo property to
read the contents of the CLOB as a string.

Reading an LOB from the database is no different from reading other columns. Example 7-18
demonstrates how to fetch the row inserted by procedure insert_clob, defined in
Example 7-17.

Example 7-18 Read an LOB

CREATE OR REPLACE FUNCTION read_clob(
 "p_id" NUMBER
) RETURN VARCHAR2
AS MLE LANGUAGE JAVASCRIPT
{{
const result = session.execute(
 `SELECT c
 FROM mle_lob_example
 WHERE id = :id`,
 {
 id:{
 type: oracledb.NUMBER,
 dir: oracledb.BIND_IN,
 val: p_id

Chapter 7
Using Large Objects (LOB) with MLE

7-31

 }
 },
 {
 fetchInfo:{
 "C": {type: oracledb.STRING}
 },
 outFormat: oracledb.OBJECT
 }
);
if (result.rows.length === 0){
 throw new Error(`No data found for ID ${id}`);
} else {
 for (let row of result.rows){
 return row.C;
 }
}
}};
/

The function read_clob receives an ID as a parameter. It is used in the select statement's
WHERE clause as a bind variable to identify a row containing the CLOB. The fetchInfo property
passed using session.execute() instructs the database to fetch the CLOB as a string.

API Differences Between node-oracledb and mle-js-oracledb
There are several differences between node-oracledb and mle-js-oracledb, including the
methods for handling connection management and type mapping.

See Also:

Server-Side JavaScript API Documentation for more information about JavaScript
built-in modules

Topics

• Synchronous API and Error Handling

• Connection Handling

• Transaction Management

• Type Mapping

• Unsupported Data Types

• Miscellaneous Features Not Available with the MLE JavaScript SQL Driver

Synchronous API and Error Handling
Compared to node-oracledb, the mle-js-oracledb driver operates in a synchronous mode,
throwing exceptions as they happen. If an asynchronous behavior is desired, calls to mle-js-
oracledb can be wrapped into async functions.

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

7-32

https://oracle-samples.github.io/mle-modules

During synchronous operations, API calls block until either a result or an error are returned.
Errors caused by SQL execution are reported as JavaScript exceptions, otherwise they return
the same properties as the node-oracledb Error object.

The following methods neither return a promise nor do they take a callback parameter. They
either return the result or throw an exception.

• connection.execute
• connection.executeMany
• connection.getStatementInfo
• connection.getSodaDatabase
• connection.commit
• connection.rollback
• resultset.close
• resultset.getRow
• resultset.getRows
The following method cannot be implemented in a synchronous way and is omitted in the MLE
JavaScript driver.

• connection.break
node-oracledb provides a LOB (Large Object) class to provide streaming access to LOB
types. The LOB class implements the asynchronous Node.js Stream API and cannot be
supported in the synchronous MLE JavaScript environment. Large objects are supported using
an alternative API in the MLE JavaScript driver. For these reasons, the following LOB-related
functionality is not supported.

• connection.createLob
• property oracledb.lobPrefetchSize
• constant oracledb.BLOB
• constant oracledb.CLOB
node-oracledb also implements asynchronous streaming of query results, another feature
that's based on the Node.js Stream API. A streaming API cannot be represented in a
synchronous interface as used by the MLE JavaScript driver, therefore the following
functionality is not available.

• connection.queryStream()
• resultSet.toQueryStream()

Connection Handling
The method of connection handling with the MLE JavaScript driver is described.
All SQL statements that are executed via the server-side MLE JavaScript driver are executed
in the current session that is running the JavaScript program. SQL statements are executed
with the privileges of the user on whose behalf JavaScript code is executed. As in the node-
oracledb API, JavaScript code using the MLE JavaScript driver must acquire a Connection
object to execute SQL statements. However, the only connection available is the implicit
connection to the current database session.

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

7-33

JavaScript code must acquire a connection to the current session using the MLE-specific
oracledb.defaultConnection() method. On each invocation, it returns a connection object
that represents the session connection. Creation of connections with the
oracledb.createConnection method of node-oracledb is not supported by the MLE
JavaScript driver; neither is the creation of a connection pool supported. Connection objects
are implicitly closed and so the call to connection.close() is not available with the MLE
JavaScript driver.

There is also no statement cursor caching with the MLE JavaScript driver and therefore there
is no stmtCacheSize property.

The Real Application Cluster (RAC) option offers additional features, designed to increase
availability of applications. These include Fast Application Notification (FAN) and Runtime Load
Balancing (RLB), neither of which are supported by the MLE JavaScript driver.

Transaction Management
With respect to transaction management, server-side MLE JavaScript code behaves exactly
like PL/SQL procedures and functions.
A JavaScript program is executed in the current transaction context of the calling SQL or
PL/SQL statement. An ongoing transaction can be controlled by executing COMMIT, SAVEPOINT,
or ROLLBACK commands. Alternatively, the methods connection.commit() and
connection.rollback() can be used.

MLE JavaScript SQL driver connections cannot be explicitly closed. Applications relying on
node-oracledb behavior where closing a connection performs a rollback of the transaction will
need adjusting. The MLE JavaScript SQL driver neither performs implicit commit nor rollback
of transactions.

The node-oracledb driver features an auto-commit flag, defaulting to false. The MLE
JavaScript SQL driver does not implement this feature. If specified, the connection.execute()
function ignores the parameter.

Type Mapping
The MLE JavaScript driver adheres to the behavior of node-oracledb with respect to
conversions between PL/SQL types and JavaScript types.
By default, PL/SQL types map to native JavaScript types (except for BLOBs and CLOBs).
Values fetched from query results are implicitly converted. See MLE Type Conversions for
more details about MLE type mappings.

As with node-oracledb, the conversion from non-character data types and vice versa is directly
impacted by the NLS session parameters. The MLE runtime locale has no impact on these
conversions.

To avoid loss of precision when converting between native JavaScript types and PL/SQL data
types, the MLE JavaScript driver introduces new wrapper types.

• oracledb.ORACLE_NUMBER
• oracledb.ORACLE_CLOB
• oracledb.ORACLE_BLOB
• oracledb.ORACLE_TIMESTAMP
• oracledb.ORACLE_TIMESTAMP_TZ
• oracledb.ORACLE_DATE

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

7-34

• oracledb.ORACLE_INTERVAL_YM
• oracledb.ORACLE_INTERVAL_DS
As with node-oracledb, the default mapping to JavaScript types may be overridden on a case-
by-case basis using the fetchInfo property on connection.execute(). Type constants like
oracledb.ORACLE_NUMBER may be used to override the type mapping for a specific NUMBER
column in order to avoid implicit conversion and loss of precision.

Additionally, the JavaScript MLE SQL driver provides a way to change the default mapping of
PL/SQL types globally. If the oracledb.fetchAsPlsqlWrapper property contains the
corresponding type constant, Oracle values are fetched as SQL wrapper types previously
described. As with the existing property oracledb.fetchAsString, this behavior can be
overridden using fetchInfo and oracledb.DEFAULT. Because MLE JavaScript does not
support a Buffer class, and instead uses Uint8Array, property oracledb.fetchAsBuffer from
node-oracledb does not exist in mle-js-oracledb, which instead uses
oracledb.fetchAsUint8Array.

Changing the type mapping to fetch JavaScript SQL wrapper types by default accounts for the
following scenarios:

• Oracle values are mainly moved between queries and DML statements, so that the type
conversions between PL/SQL and JavaScript types are an unnecessary overhead.

• It is crucial to avoid data loss.

Example 7-19 Using JavaScript Native Data Types vs Using Wrapper Types

This example demonstrates the effect of using JavaScript native data types for calculations. It
also compares the loss of precision using JavaScript native types versus using wrapper types.

CREATE OR REPLACE MLE MODULE js_v_wrapper_mod
LANGUAGE JAVASCRIPT AS

/**
 *There is a potential loss of precision when using native
 *JavaScript types to perform certain calculations. This
 *is caused by the underlying implementation as a floating
 *point number
*/

export function precisionLoss(){

 let summand1 = session
 .execute(`SELECT 0.1 summand1`)
 .rows[0].SUMMAND1;

 let summand2 = session
 .execute(`SELECT 0.2 summand2`)
 .rows[0].SUMMAND2;

 const result = summand1 + summand2;

 console.log(`precisionLoss() result: ${result}`);
}

/**
 *Use an Oracle data type to preserve precision. The above

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

7-35

 *example can be rewritten using the OracleNumber type as
 *follows
*/
export function preservePrecision(){

 //instruct the JavaScript SQL driver to return results as
 //Oracle Number. This could have been done for individual
 //statements using the fetchInfo property - the global
 //change applies to this and all future calls
 oracledb.fetchAsPlsqlWrapper = [oracledb.NUMBER];
 let summand1 = session
 .execute(`SELECT 0.1 S1`)
 .rows[0].S1;

 let summand2 = session
 .execute(`SELECT 0.2 S2`)
 .rows[0].S2;

 const result = summand1 + summand2;

 console.log(`preservePrecision() result: ${result}`);
}
/

When executing the above functions, the difference in precision becomes immediately obvious.

precisionLoss() result: 0.30000000000000004
preservePrecsion() result: .3

Rather than setting the global oracledb.fetchAsPlsqlWrapper property, it is possible to
override the setting per invocation of connection.execute(). Example 7-20 shows how
precisionPreservedGlobal() can be rewritten by setting precision inline.

For information about functions available for use with type OracleNumber, see Server-Side
JavaScript API Documentation.

Example 7-20 Overriding the Global oracledb.fetchAsPlsqlWrapper Property

This example extends Example 7-19 by showing how precisionPreservedGlobal() can be
rewritten by preserving precision inline. It demonstrates that rather than setting the global
oracledb.fetchAsPlsqlWrapper property, it is possible to override the setting per invocation of
connection.execute().

CREATE OR REPLACE PROCEDURE fetch_info_example
AS MLE LANGUAGE JAVASCRIPT
{{
 let summand1 = session
 .execute(
 `SELECT 0.1 S1`,
 [],
 {
 fetchInfo:{
 S1:{type: oracledb.ORACLE_NUMBER}
 }
 }

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

7-36

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules

)
 .rows[0].S1;

 let summand2 = session
 .execute(
 `SELECT 0.2 S2`,
 [],
 {
 fetchInfo:{
 S2:{type: oracledb.ORACLE_NUMBER}
 }
 }
)
 .rows[0].S2;

 const result = summand1 + summand2;

 console.log(`
 preservePrecision():
 summand1: ${summand1}
 summand2: ${summand2}
 result: ${result}
 `);
}};
/

Result:

preservePrecision():
summand1: .1
summand2: .2
result: .3

Unsupported Data Types
The MLE JavaScript driver does not currently support these data types:

• LONG
• LONG RAW
• XMLType
• BFILE
• REF CURSOR

Miscellaneous Features Not Available with the MLE JavaScript SQL Driver
Differences between what features are available with the MLE JavaScript driver and with node-
oracledb are described.
Error handling in the MLE JavaScript driver relies on the JavaScript exception framework
rather than using a callback/promise as node-oracledb does. The error thrown by the MLE
JavaScript SQL driver is identical to the Error object available with node-oracledb.

Chapter 7
API Differences Between node-oracledb and mle-js-oracledb

7-37

Several additional client-side features available in node-oracledb are not supported by the
server-side MLE environment. The MLE JavaScript driver omits the API for these features.

The following features are currently unavailable:

• Continuous Query Notification (CQN)

• Advanced Queuing is not supported natively, the PL/SQL API can be used as a
workaround

• Connection.subscribe()
• Connection.unsubscribe()
• All Continuous Query Notification constants in the oracledb class

• All Subscription constants in the oracledb class

Introduction to the PL/SQL Foreign Function Interface
The Foreign Function Interface (FFI) is designed to provide straightforward access to PL/SQL
packages in a familiar, JavaScript-like fashion.

Using the mle-js-plsql-ffi API, wrappers are created around PL/SQL packages and
procedures so that in subsequent calls, you can interact with them as if they were JavaScript
objects and functions. This approach can be used in certain cases as an alternative to using
the MLE JavaScript SQL driver.

A lot of database functionality is available in the form of PL/SQL packages; either built-in, those
installed by frameworks such as APEX, or user-defined PL/SQL code. The Foreign Function
Interface (FFI) allows you to access PL/SQL functionality in packages and procedures directly
from JavaScript code without executing SQL statements, providing a seamless integration of
existing PL/SQL functionality with server-side JavaScript applications. For example, database
procedures can be invoked as JavaScript functions, passing JavaScript values as function
arguments.

Consider the following JavaScript snippet that uses session.execute to employ the
DBMS_RANDOM package inside an anonymous PL/SQL block:

CREATE OR REPLACE FUNCTION get_random_number(
 p_lower_bound NUMBER,
 p_upper_bound NUMBER
) RETURN NUMBER
AS MLE LANGUAGE JAVASCRIPT
{{
 const result = session.execute(
 'BEGIN :randomNum := DBMS_RANDOM.VALUE(:low, :high); END;',
 {
 randomNum: {
 type: oracledb.NUMBER,
 dir: oracledb.BIND_OUT
 }, low: {
 type: oracledb.NUMBER,
 dir: oracledb.BIND_IN,
 val: P_LOWER_BOUND
 }, high: {
 type: oracledb.NUMBER,
 dir: oracledb.BIND_IN,
 val: P_UPPER_BOUND

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-38

 }
 }
);

 return result.outBinds.randomNum;
}};
/

SELECT get_random_number(1,100);

Using FFI, you can cut down on the boilerplate code needed to implement the previous
example. The following snippet achieves the same functionality as the previous one in a more
concise way:

CREATE OR REPLACE FUNCTION get_random_number(
 p_lower_bound NUMBER,
 p_upper_bound NUMBER
) RETURN NUMBER
AS MLE LANGUAGE JAVASCRIPT
{{
 const { resolvePackage } = await import ('mle-js-plsql-ffi');

 const dbmsRandom = resolvePackage('dbms_random');

 return dbmsRandom.value(P_LOWER_BOUND, P_UPPER_BOUND);
}};
/

SELECT get_random_number(1,100);

• Object Resolution Using FFI
A set of functions is available with the mle-js-plsql-ffi API, each returning a JavaScript
object that represents its database counterpart.

• Provide Arguments to a Subprogram Using FFI
Use the arg and argOf functions to handle IN OUT and OUT parameters with the Foreign
Function Interface (FFI).

See Also:

Server-Side JavaScript API Documentation for more information about the mle-js-
plsql-ffi API

Object Resolution Using FFI
A set of functions is available with the mle-js-plsql-ffi API, each returning a JavaScript
object that represents its database counterpart.

The following functions are available to resolve packages and top-level functions and
procedures:

• resolvePackage('<pkg_name>')

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-39

https://oracle-samples.github.io/mle-modules

• resolveProcedure('<proc_name>')
• resolveFunction('<func_name>')
If the object you want to resolve is in your own schema or has a public synonym, qualifying the
object name with the owning schema is optional. If the object is in a different schema, you must
have necessary permissions to access the object and must qualify its name with the owning
schema. As with the MLE JavaScript SQL driver, all operations are performed in your own
security context.

Note:

If the named database object does not exist or you do not have access to it, a
RangeError is raised. If the given name resolves to a database object that is not the
correct type, a TypeError is raised. Database links are not supported. Attempting to
resolve a name with a database link results in an Error.

Note:

The provided FFI functions follow the same case-sensitivity rules as PL/SQL,
meaning names are auto-capitalized by default. For quoted identifiers, you must use
JavaScript dictionary notation with a combination of double and single quotes to
indicate case-sensitivity:

// call a procedure with case-sensitive name
myPkg['"MyProc"']();

// read a global variable with a case-sensitive name
console.log(myPkg['"MyVar"']);

Once a database object has been resolved, you can perform the following operations on the
resulting object:

• Procedure: Execute

• Function: Execute

• Package:

– Execute procedure

– Execute function

– Read and write public package variables

– Read constants

With resolvePackage, variables, constants, procedures, and functions can be accessed
directly through property reads of the resulting object. If the package does not have the
member provided in the property read, a Reference error is thrown. When the accessed
member is a PL/SQL function or procedure, the JavaScript object returns the same type of

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-40

callable entity that is resolved for top level functions and procedures. Consider the following
snippets for examples of the syntax:

// resolve a package
const myPkg = resolvePackage('my_package');

// call a procedure and function in the package
myPkg.my_proc();
let result = myPkg.my_func();

// read a global variable and constant in the package
console.log(myPkg.my_var);
console.log(myPkg.my_const);

// write a global variable in the package
myPkg.my_var = 42;

For package variables and constants, only non-named types are supported. The following
types are not supported: PL/SQL record types, nested table types, associative arrays, vector
types, and ADTs.

When resolving a procedure or function, you receive a callable object. With functions, the
overrideReturnType instance method can optionally be used to specify the return type and
change other metadata. Consider the following example that uses overrideReturnType to
increase the maxSize attribute:

1. Start by creating a function that returns a string:

CREATE OR REPLACE FUNCTION ret_string(
 MULTIPLIER NUMBER
) RETURN VARCHAR2 AS
BEGIN
 return rpad('this string might be too long for the defaults ',
MULTIPLIER, 'x');
END;
/

2. Create another function, ret_string_ffi, that uses FFI to resolve the function
ret_string:

CREATE OR REPLACE FUNCTION ret_string_ffi(
 MULTIPLIER NUMBER
) RETURN VARCHAR2
AS MLE LANGUAGE JAVASCRIPT
{{
 const retStrFunc = plsffi.resolveFunction('ret_string');
 return retStrFunc(MULTIPLIER);
}};
/

3. The ret_string_ffi function will work as long as the multiplier value is small enough, as
in the following:

SELECT ret_string_ffi(50);

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-41

Result:

RET_STRING_FFI(50)

this string might be too long for the defaults xxx

4. With a larger multiplier value, the result can exceed the default buffer length of 200 bytes
and raise an error:

SELECT ret_string_ffi(900);

Result:

SELECT ret_string_ffi(900)
 *
ERROR at line 1:
ORA-04161: Error: Exception during subprogram execution (6502): ORA-06502:
PL/SQL: value or conversion error: character string buffer too small
ORA-04171: at :=> (<inline-src-js>:3:12)

5. You can solve this problem by using the overrideReturnType instance method to increase
the maxSize attribute of the returned message:

CREATE OR REPLACE FUNCTION ret_str_ffi_override(
 MULTIPLIER NUMBER
) RETURN VARCHAR2
AS MLE LANGUAGE JAVASCRIPT
{{
 const retStrFunc = plsffi.resolveFunction('ret_string');

 // overrideReturnType accepts either an oracledb type constant
 // such as oracledb.NUMBER, or a string containing the name of a
 // user defined database type. If more information is needed, as
 // in this example, a parameter of type ReturnInfo can be provided
 retStrFunc.overrideReturnType({
 maxSize: 1000
 });
 return retStrFunc(MULTIPLIER);
}};
/

6. Using the new ret_str_ffi_override function, a call with a larger multiplier will now work:

SELECT ret_str_ffi_override(900);

Provide Arguments to a Subprogram Using FFI
Use the arg and argOf functions to handle IN OUT and OUT parameters with the Foreign
Function Interface (FFI).

JavaScript and PL/SQL handle parameters differently. For instance, JavaScript doesn't allow
for named parameters in the same way that PL/SQL does. Neither does JavaScript have an
equivalent for OUT and IN OUT parameters, nor is there an option for overloading functions.

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-42

Last, but not least, JavaScript types are different from the database's built-in type system. To
be able to call PL/SQL from JavaScript, the FFI must accommodate these differences.

For more information about PL/SQL subprogram parameters, see Oracle Database PL/SQL
Language Reference.

The following procedure represents a case where:

• multiple parameters are defined.

• parameters provide a mix of IN, OUT, and IN OUT modes.

• the default maxSize for a VARCHAR2 OUT variable is insufficient

CREATE OR REPLACE PROCEDURE my_proc_w_args(
 p_arg1 IN NUMBER,
 p_arg2 IN NUMBER,
 p_arg3 IN OUT JSON,
 p_arg4 OUT TIMESTAMP,
 p_arg5 OUT VARCHAR2
) AS
BEGIN

 SELECT
 JSON_TRANSFORM(p_arg3,
 SET '$.lastUpdate' = systimestamp,
 SET '$.value' = p_arg1 + p_arg2
)
 into p_arg3;

 p_arg4 := systimestamp;

 -- the length of the string will exceed the default
 -- length of 200 characters for the out bind, mandating
 -- the use of maxSize in args().
 p_arg5 := rpad('x', 255, 'x');

END;
/

Parameters passed using the IN mode do not require any special treatment. The FFI provides
the arg() and argOf() functions to handle OUT and IN OUT parameters, respectively.
Remember that all parameters provided using the FFI are essentially bind parameters and thus
their behavior can be influenced using the same dir, val, type, and maxSize properties you
use if you call PL/SQL directly using session.execute().

The arg function generates an object that represents an argument. It optionally accepts the
same object as the MLE JavaScript SQL driver, including any combination of the dir, val,
type, and maxSize properties.

The argOf function generates an object that represents an argument of the given value.

Parameters can be passed in two different ways:

• As a list of positional arguments.

• Using an object to provide the arguments, simulating named parameters.

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-43

Based on the function created in the preceding example, my_proc_w_args, you can invoke the
function with the FFI using positional arguments as follows:

CREATE OR REPLACE PROCEDURE my_proc_w_args_positional(
 "arg1" NUMBER,
 "arg2" NUMBER
) AS MLE LANGUAGE JAVASCRIPT
{{
 const myProc = plsffi.resolveProcedure('my_proc_w_args');

 // arg3 is an IN OUT parameter of type JSON. my_proc_with_args
 // will modify it in place and return it to the caller
 const arg3 = plsffi.argOf({id: 10, value: 100});

 // arg4 is a pure OUT parameter
 const arg4 = plsffi.arg();

 // arg5 represents an OUT parameter as well but due to the
 // length of the return string, it must be provided with additional
 // metadata
 const arg5 = plsffi.arg({
 maxSize: 1024
 });

 myProc(arg1, arg2, arg3, arg4, arg5);

 console.log(`the updated JSON looks like this: $
{JSON.stringify(arg3.val)}`);
 console.log(`the calculation happened at ${arg4.val}`);
 console.log(`the length of the string returned is ${arg5.val.length}
characters`);
}};
/

The second option is to use named arguments, provided as a single, plain JavaScript object.
The FFI API then maps each property to the argument that matches the name of the property.

CREATE OR REPLACE PROCEDURE my_proc_w_args_named(
 "arg1" NUMBER,
 "arg2" NUMBER
) AS MLE LANGUAGE JAVASCRIPT
{{
 const myProc = plsffi.resolveProcedure('my_proc_w_args');

 // arg3 is an IN OUT parameter of type JSON. my_proc_with_args
 // will modify it in place and return it to the caller
 const arg3 = plsffi.argOf({id: 10, value: 100});

 // arg4 is a pure OUT parameter
 const arg4 = plsffi.arg();

 // arg5 represents an OUT parameter as well but due to the
 // length of the return string must be provided with additional
 // metadata
 const arg5 = plsffi.arg({

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-44

 maxSize: 1024
 });

 myProc({
 p_arg1: arg1,
 p_arg2: arg2,
 p_arg3: arg3,
 p_arg4: arg4,
 p_arg5: arg5
 });

 console.log(`the updated JSON looks like this: $
{JSON.stringify(arg3.val)}`);
 console.log(`the calculation happened at ${arg4.val}`);
 console.log(`the length of the string returned is ${arg5.val.length}
characters`);
}};
/

Note the edge case where you have a PL/SQL subprogram that has a single argument that is
represented in JavaScript as an object. Intuitively, you may want to pass it as a single
positional argument, however, in that case, the FFI will interpret it as a named arguments
object.

There are two ways around this exception:

• You can wrap your argument in an object as if you were calling the subprogram with
named arguments.

• You can wrap your argument with plsffi.argOf() and the FFI will recognize it as a single
positional argument.

Consider the following example that demonstrates these options:

-- PL/SQL subprogram we want to call
CREATE OR REPLACE PROCEDURE my_proc(my_arg JSON) AS
BEGIN
 -- Process my_arg
END;

-- JavaScript function that calls my_proc
CREATE OR REPLACE PROCEDURE my_javascript_proc
AS MLE LANGUAGE JAVASCRIPT
{{
 const myProc = plsffi.resolveProcedure('my_proc');
 const myArg = { prop1: 10, prop2: 'foo' };

 // Catch the exception that will happen if the FFI tries
 // to interpret this as a call with named arguments
 try {
 myProc(myArg);
 } catch (err) {
 console.log(`if uncaught, this would have been a ${err}`);
 }

 // Option 1: Make it into a real named argument call.
 myProc({ my_arg: myArg });

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-45

 // Option 2: Wrap with argOf() to let the FFI know that it's a
 // positional argument list call.
 myProc(plsffi.argOf(myArg));
}};

PL/SQL allows developers to overload signatures of functions and procedures that are defined
in PL/SQL packages. The FFI does not perform overload selection, however, it still needs to
decide what PL/SQL type to use for binding each argument. Unfortunately, it cannot make this
decision on its own in all cases. In particular, in the following instances:

• No JavaScript value was given for an argument that is needed to determine the correct
signature to call. Without a value, the FFI has no way of knowing the set of matching
PL/SQL types.

• When one JavaScript type is viable for multiple PL/SQL types.

Keep in mind that FFI uses SQL driver constants to represent standard types and strings
(containing the type name) for user defined types. SQL driver constants come in two flavors:

• Constants that start with DB_TYPE_* control how the JavaScript value is converted to a
PL/SQL value.

• All others are used to control how the returned PL/SQL value is converted to a JavaScript
value.

If you are specifying the type of your argument in order to help with type resolution, it is best to
use one of the DB_TYPE_* constants.

Consider the following PL/SQL package:

CREATE OR REPLACE package overload_pkg AS

 FUNCTION my_func(
 p_arg1 IN BINARY_FLOAT
) RETURN VARCHAR2;

 FUNCTION my_func(
 p_arg1 IN INTEGER
) RETURN VARCHAR2;
END;
/

CREATE OR REPLACE PACKAGE BODY overload_pkg AS

 FUNCTION my_func(
 p_arg1 IN BINARY_FLOAT
) RETURN VARCHAR2 AS
 BEGIN
 RETURN 'binary_float';
 END;

 FUNCTION my_func(
 p_arg1 IN INTEGER
) RETURN VARCHAR2 AS
 BEGIN
 RETURN 'integer';
 END;

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-46

END;
/

As you can see, my_proc is overloaded, accepting both a BINARY_FLOAT as well as an INTEGER.
In JavaScript, both of these types are represented as the number data type and as such,
multiple possible overloads are valid. If the FFI API cannot select the correct resolution, it is
possible to force a particular overloaded PL/SQL function by providing the PL/SQL type.

CREATE OR REPLACE PROCEDURE force_overload
AS MLE LANGUAGE JAVASCRIPT
{{
 const myPkg = plsffi.resolvePackage('overload_pkg');

 let result = 'not yet called';

 // Catch error ORA-04161: Error: Exception during subprogram execution
 // (4161): Multiple subprograms match the provided signature
 try {
 result = myPkg.my_func(42);
 } catch (err) {
 console.log(`if uncaught, this would have been a ${err}`);
 }

 // Solution: use argOf to make this work
 result = myPkg.my_func(plsffi.argOf(42, {type:
oracledb.DB_TYPE_BINARY_FLOAT}))
 console.log(`and the result is: ${result}`);
}};
/

An error can also occur if the type is user-defined. For example, all JavaScript objects are
considered viable for all PL/SQL records. In this case, it is enough to provide the name of the
desired type.

Chapter 7
Introduction to the PL/SQL Foreign Function Interface

7-47

8
Working with SODA Collections in MLE
JavaScript Code

Simple Oracle Document Access (SODA) is a set of NoSQL-style APIs that let you create and
store collections of documents (in particular JSON) in Oracle Database, retrieve them, and
query them, without needing to know Structured Query Language (SQL) or how the documents
are stored in the database.

SODA APIs exist for different programming languages and include support for MLE JavaScript.
SODA APIs are document-centric. You can use any SODA implementation to perform create,
read, update, and delete (CRUD) operations on documents of nearly any kind (including video,
image, sound, and other binary content). You can also use any SODA implementation to query
the content of JavaScript Object Notation (JSON) documents using pattern-matching: query-
by-example (QBE). CRUD operations can be driven by document keys or by QBEs.

This chapter covers JavaScript in the database, based on Multilingual Engine (MLE) as
opposed to the client-side node-oracledb driver. Whenever JavaScript is mentioned in this
chapter it implicitly refers to MLE JavaScript.

Note:

In order to use the MLE SODA API, the COMPATIBLE initialization parameter must be
set to 23.0.0.

See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA) for a
complete introduction to SODA

Topics

• High-Level Introduction to Working with SODA for In-Database JavaScript
The SODA API is part of the MLE JavaScript SQL driver. Interaction with collections and
documents requires you to establish a connection with the database first, before a SODA
database object can be obtained.

• SODA Objects
Objects used with the SODA API.

• Using SODA for In-Database JavaScript
How to access SODA for In-Database JavaScript is described, as well as how to use it to
perform create, read (retrieve), update, and delete (CRUD) operations on collections.

8-1

High-Level Introduction to Working with SODA for In-Database
JavaScript

The SODA API is part of the MLE JavaScript SQL driver. Interaction with collections and
documents requires you to establish a connection with the database first, before a SODA
database object can be obtained.

The SODA database is the top-level abstraction object when working with the SODA API.

Figure 8-1 demonstrates the standard control flow.

Figure 8-1 SODA for In-Database JavaScript Basic Workflow

Import the MLE JavaScript
 SQL Driver

import oracledb from “mle-js-oracledb”;

Create a Database
 Connection Handle

const connection = oracledb.defaultConnection();

Get a SODA Database
 Object

const connection = oracledb.defaultConnection();

Create or Open a Collection const col = db.createCollection(“MyJSONCollection”);

Work with SODA
 Documents

...
//Create a JSON document
const doc = {
 “employee_id”: 100,
 “job_id”: “AD_PRES”,
 “last_name”: “King”,
 “first_name”: “Steven”
 ...
};
//Insert the document into a collection
col.insertOne(doc);
...

Applications that aren't ported from client-side Node.js or Deno can benefit from coding aids
available in the MLE JavaScript SQL driver, such as a number of frequently used variables that
are available in the global scope. For a complete list of available global variables and types,
see Working with the MLE JavaScript Driver.

For SODA applications the most important global variable is the soda object, which represents
the SodaDatabase object. The availability of the soda object in the global scope reduces the
need for writing boilerplate code. In this case the workflow can be simplified, as in Figure 8-2.

Chapter 8
High-Level Introduction to Working with SODA for In-Database JavaScript

8-2

Figure 8-2 SODA for In-Database JavaScript Simplified Workflow

Create or open
a collection

// soda refers to the SodaDatabase and is
// available in the global scope
const collection = soda.createCollection('myCollection');

Work
with SODA
documents

const myDoc = {
 "employee_id": 100,
 "job_id": "AD_PRES",
 "last_name": "King",
 "first_name": "Steven",
 "email": "SKING",
 "manager_id": null,
 "department_id": 90
};
const result = collection.insertOneAndGet(myDoc);

Note:

If you are running your JavaScript code in a restricted execution context, you cannot
use the SODA API. For more information about restricted execution contexts, see
About Restricted Execution Contexts.

SODA Objects
Objects used with the SODA API.

The following objects are at the core of the SODA API:

• SodaDatabase: The top-level object for SODA operations. This is acquired from an Oracle
Database connection or directly available from the global scope as the soda object. A
SODA database is an abstraction, allowing access to SODA collections in that SODA
database, which then allow access to documents in those collections. A SODA database is
analogous to an Oracle Database user or schema. A collection is analogous to a table. A
document is analogous to a table row with one column for a unique document key, a
column for the document content, and other columns for various document attributes. With
the MLE JavaScript SQL driver, the soda object is available as a global variable, which
represents the SodaDatabase object and reduces the need for writing boilerplate code.

• SodaCollection: Represents a collection of SODA documents. By default, collections
allow JSON documents to be stored, and they add a default set of metadata to each
document. This is recommended for most users. However, optional metadata can set
various details about a collection, such as its database storage, whether it should track
version and time stamp document components, how such components are generated, and
what document types are supported. Most users do not need to provide custom metadata.

• SodaDocument: Represents a document. Typically, the document content will be JSON. The
document has properties including the content, a key, timestamps, and the media type. By
default, document keys are automatically generated.

Chapter 8
SODA Objects

8-3

When working with collections and documents stored therein, you will make use of the
following objects:

• SodaDocumentCursor: A cursor object representing the result of the getCursor() method
from a find() operation. It can be iterated over to access each SodaDocument.

• SodaOperation: An internal object used with find() to perform read and write operations
on documents. Chained methods set properties on a SodaOperation object which is then
used by a terminal method to find, count, replace, or remove documents. This is an internal
object that should not be directly accessed.

See Also:

Server-Side JavaScript API Documentation for information about using SODA objects
with mle-js-oracledb

Using SODA for In-Database JavaScript
How to access SODA for In-Database JavaScript is described, as well as how to use it to
perform create, read (retrieve), update, and delete (CRUD) operations on collections.

This section describes SODA for MLE JavaScript. Code snippets in this section are sometimes
abridged for readability. Care has been taken to ensure that JavaScript functions are listed in
their entirety, but they aren’t runnable on their own. Embedding the function definition into a
JavaScript module and importing the MLE JavaScript SQL driver will convert these code
examples to valid JavaScript code for Oracle Database 23ai.

Topics

• Getting Started with SODA for In-Database JavaScript
How to access SODA for In-Database JavaScript is described, as well as how to use it to
create a database collection, insert a document into a collection, and retrieve a document
from a collection.

• Creating a Document Collection with SODA for In-Database JavaScript
How to use SODA for In-Database JavaScript to create a new document collection is
explained.

• Opening an Existing Document Collection with SODA for In-Database JavaScript
You can use the method SodaDatabase.openCollection() to open an existing document
collection or to test whether a given name names an existing collection.

• Checking Whether a Given Collection Exists with SODA for In-Database JavaScript
You can use SodaDatabase.openCollection() to check for the existence of a given
collection. It returns null if the collection argument does not name an existing collection;
otherwise, it opens the collection having that name.

• Discovering Existing Collections with SODA for In-Database JavaScript
You can use SodaDatabase.getCollectionNames() to fetch the names of all existing
collections for a given SodaDatabase object.

• Dropping a Document Collection with SODA for In-Database JavaScript
You use SodaCollection.drop() to drop an existing collection.

• Creating Documents with SODA for In-Database JavaScript
Creation of documents by SODA for In-Database JavaScript is described.

Chapter 8
Using SODA for In-Database JavaScript

8-4

https://oracle-samples.github.io/mle-modules

• Inserting Documents into Collections with SODA for In-Database JavaScript
SodaCollection.insertOne() or a related call such as
sodaCollection.insertOneAndGet() offers convenient ways to add documents to a
collection. These methods create document keys automatically, unless the collection is
configured with client-assigned keys and the input document provides the key, which is not
recommended for must users.

• Saving Documents into Collections with SODA for In-Database JavaScript
You use SodaCollection.save() and saveAndGet() to save documents into collections.

• SODA for In-Database JavaScript Read and Write Operations
The primary way you specify read and write operations (other than insert and save) is to
use methods provided by the SodaOperation class. You can chain together SodaOperation
methods to specify read or write operations against a collection.

• Finding Documents in Collections with SODA for In-Database JavaScript
To find documents in a collection, you invoke SodaCollection.find(). It creates and
returns a SodaOperation object which is used via method chaining with nonterminal and
terminal methods.

• Replacing Documents in a Collection with SODA for In-Database JavaScript
To replace the content of one document in a collection with the content of another, you
start by looking up the document to be modified using its key. Because
SodaOperation.key() is a nonterminal operation, the easiest way to replace the contents
is to chain SodaOperation.key() to SodaOperation.replaceOne() or
SodaOperation.replaceOneAndGet().

• Removing Documents from a Collection with SODA for In-Database JavaScript
Removing documents from a collection is similar to replacing. The first step is to perform a
lookup operation, usually based on the document's key or by using a search expression in
SodaOperation.filter(). The call to SodaOperation.remove() is a terminal operation, in
other words the last operation in the chain.

• Indexing the Documents in a Collection with SODA for In-Database JavaScript
Indexes can speed up data access, regardless of whether you use the NoSQL style SODA
API or a relational approach. You index documents in a SODA collection using
SodaCollection.createIndex(). Its IndexSpec parameter is a textual JSON index
specification.

• Getting a Data Guide for a Collection with SODA for In-Database JavaScript
A data guide is a summary of the structural and type information contained in a set of
JSON documents. It records metadata about the fields used in those documents. They
provide great insights into JSON documents and are invaluable for getting an overview of a
data set.

• Handling Transactions with SODA for In-Database JavaScript
Unlike the client-side JavaScript SQL driver, the MLE JavaScript SQL driver does not
provide an autoCommit feature. You need to commit or roll your transactions back, either in
the PL/SQL layer in case of module calls, or directly in the JavaScript code by calling
connection.commit() or connection.rollback().

• Creating Call Specifications Involving the SODA API
Earlier in this chapter, in the section Getting Started with SODA for In-Database
JavaScript, an example showing how to invoke the MLE SODA API using an inline call
specification is included. The following short example demonstrates how to use SODA in
MLE modules.

Chapter 8
Using SODA for In-Database JavaScript

8-5

Getting Started with SODA for In-Database JavaScript
How to access SODA for In-Database JavaScript is described, as well as how to use it to
create a database collection, insert a document into a collection, and retrieve a document from
a collection.

Before you can get started working with SODA for MLE JavaScript, the account used for
storing collections (in this case, emily) must be granted the SODA_APP roles, either directly or
using the DB_DEVELOPER_ROLE:

grant soda_app to emily

Accessing SODA functionality requires the use of the MLE JavaScript SQL driver. Because the
database session exists by the time the code is invoked, no additional connection handling is
necessary. Example 8-1 demonstrates how to:

• Create a SODA collection,

• Insert a JSON document into it, and

• Iterate over all SODA Documents in the collection, printing their contents on screen

Each concept presented by Example 8-1 - creating collections, adding and modifying
documents, and dropping collections - is addressed in more detail later in this chapter.

Example 8-1 SODA with MLE JavaScript General Workflow

This example demonstrates the general workflow using SODA collections with MLE
JavaScript. Instead of using an MLE module, the example simplifies the process by
implementing an inline call specification.

CREATE OR REPLACE PROCEDURE intro_soda(
 "dropCollection" BOOLEAN
) AUTHID CURRENT_USER
AS MLE LANGUAGE JAVASCRIPT
{{

 // use the soda object, available in the global scope instead of importing
 // the mle-js-oracledb driver, getting the default connection and extracting
 // the SodaDatabase from it
 const col = soda.createCollection("MyCollection");

 // create a JSON document (based on the HR.EMPLOYEES table for the employee
with id 100)
 const doc = {
 "_id" : 100,
 "job_id" : "AD_PRES",
 "last_name" : "King",
 "first_name" : "Steven",
 "email" : "SKING",
 "manager_id" : null,
 "department_id" : 90
 };

 // insert the document into collection
 col.insertOne(doc);

Chapter 8
Using SODA for In-Database JavaScript

8-6

 // find all documents in the collection and print them on screen
 // use a cursor to iterate over all documents in the collection
 const c = col.find()
 .getCursor();

 let resultDoc;

 while (resultDoc = c.getNext()){
 const content = resultDoc.getContent();
 console.log(`
 --
 key: ${resultDoc.key}
 content (select fields):
 - _id: ${content._id}
 - job_id: ${content.job_id}
 - name: ${content.first_name} ${content.last_name}
 version: ${resultDoc.version}
 media type: ${resultDoc.mediaType}`
);
 }

 // it is very important to close the SODADocumentCursor to free resources
 c.close();

 // optionally drop the collection
 if (dropCollection){
 // there is no auto-commit, the outstanding transaction must be
 // finished before the collection can be dropped
 session.commit();
 col.drop();
 }
}};
/

You can try the code by executing the procedure using your favorite IDE. Here is an example
of the results of calling the intro_soda procedure:

BEGIN
 intro_soda(true);
END;
/

Result:

--
key: 03C202
content (select fields):
- _id: 100
- job_id: AD_PRES
- name: Steven King
version: 17EF0F3C102653DDE063DA464664399C
media type: application/json

Chapter 8
Using SODA for In-Database JavaScript

8-7

PL/SQL procedure successfully completed.

Creating a Document Collection with SODA for In-Database JavaScript
How to use SODA for In-Database JavaScript to create a new document collection is
explained.

Collections allow you to logically group documents. Before a collection can be created or
accessed, a few more steps must be completed unless you make use of the global soda
object. Begin by creating a connection object. The connection object is the starting point for all
SODA interactions in the MLE JavaScript module:

// get a connection handle to the database session
const connection = oracledb.defaultConnection();

Once the connection is obtained, you can use it to call Connection.getSodaDatabase(), a
prerequisite for creating the collection:

// get a SODA database
const db = connection.getSodaDatabase();

With the SODA database available, the final step is to create the collection. Note that collection
names are case-sensitive:

// Create a collection with the name "MyCollection".
// This creates a database table, also named "MyCollection",
// to store the collection. If a collection with the same name
// exists, it will be opened
const col = db.createCollection("MyCollection");

The preceding statement creates a collection that, by default, allows JSON documents to be
stored. If the collection name passed to SodaDatabase.createCollection() is that of an
existing collection, it will simply be opened. You can alternatively open a known, existing
collection using SodaDatabase.openCollection().

Unless custom metadata is provided to SodaDatabase.createCollection() (which is not
recommended), default collection metadata will be supplied. The default metadata has the
following characteristics:

• Each document in the collection has these components:

– Key

– Content

– Version

• The collection can store only JSON documents.

• Document keys and version information are generated automatically.

Optional collection metadata can be provided to the call to createCollection(), however, the
default collection configuration is recommended in most cases.

If a collection with the same name already exists, it is simply opened and its object is returned.
If custom metadata is passed to the method and does not match that of the existing collection,

Chapter 8
Using SODA for In-Database JavaScript

8-8

the collection is not opened and an error is raised. To match, all metadata fields must have the
same values.

See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA) for more
details about collection metadata, including custom metadata.

Opening an Existing Document Collection with SODA for In-Database
JavaScript

You can use the method SodaDatabase.openCollection() to open an existing document
collection or to test whether a given name names an existing collection.

Example 8-2 Opening an Existing Document Collection

This example opens the collection named collectionName. It is very important to check that
the collection object returned by SodaDatabase.openCollection() is not null. Rather than
throwing an error, the method will return a null value should the requested collection not exist.

export function openCollection(collectionName) {

 // perform a lookup. If a connection cannot be found by that
 // name no exception nor error are thrown, but the resulting
 // collection object will be null
 const col = soda.openCollection(collectionName);
 if (col === null) {
 throw new Error(`No such collection ${collectionName}`);
 }

 // do something with the collection
}

Checking Whether a Given Collection Exists with SODA for In-Database
JavaScript

You can use SodaDatabase.openCollection() to check for the existence of a given collection.
It returns null if the collection argument does not name an existing collection; otherwise, it
opens the collection having that name.

In Example 8-2, if collectionName does not name an existing collection then col is assigned
the value null.

Chapter 8
Using SODA for In-Database JavaScript

8-9

Discovering Existing Collections with SODA for In-Database JavaScript
You can use SodaDatabase.getCollectionNames() to fetch the names of all existing
collections for a given SodaDatabase object.

If the number of collections is very large, you can limit the number of names returned.
Additionally, the lookup can be limited to collections starting with a user-defined string as
demonstrated by Example 8-4.

Example 8-3 Fetching All Existing Collection Names

This example prints the names of all existing collections using the method
getCollectionNames().

export function printCollectionNames(){
 // loop over all collections in the current user's schema
 const allCollections = soda.getCollectionNames();
 for (const col of allCollections){
 console.log(`- ${col}`);
 }
}

Example 8-4 Filtering the List of Returned Collections

This example limits the results of getCollectionNames() by only printing the names of
collections that begin with a user-defined string, startWith.

export function printSomeCollectionNames(numHits, startWith) {

 // loop over all collections in the current schema, limited
 // to those that start with a specific character sequence and
 // a maximum number of hits returned
 const allCollections = soda.getCollectionNames(
 {
 limit: numHits,
 startsWith: startWith
 }
);
 for (const col of allCollections){
 console.log(`-${col}`);
 }
}

Chapter 8
Using SODA for In-Database JavaScript

8-10

Dropping a Document Collection with SODA for In-Database JavaScript
You use SodaCollection.drop() to drop an existing collection.

Caution:

Do not use SQL to drop the database table that underlies a collection. Dropping a
collection involves more than just dropping its database table. In addition to the
documents that are stored in its table, a collection has metadata, which is also
persisted in Oracle Database. Dropping the table underlying a collection does not
also drop the collection metadata.

Note:

Day-to-day use of a typical application that makes use of SODA does not require that
you drop and re-create collections. But if you need to do that for any reason then this
guideline applies.

Do not drop a collection and then re-create it with different metadata if there is any
application running that uses the collection in any way. Shut down any such
applications before re-creating the collection, so that all live SODA objects are
released.

There is no problem just dropping a collection. Any read or write operation on a
dropped collection raises an error. And there is no problem dropping a collection and
then re-creating it with the same metadata. But if you re-create a collection with
different metadata, and if there are any live applications using SODA objects, then
there is a risk that a stale collection is accessed, and no error is raised in this case.

In SODA implementations that allow collection metadata caching, such as SODA for
Java, this risk is increased if such caching is enabled. In that case, a (shared or local)
cache can return an entry for a stale collection object even if the collection has been
dropped.

Note:

Commit all writes to a collection before using SodaCollection.drop(). For the
method to succeed, all uncommitted writes to the collection must first be committed.
Otherwise, an exception is raised.

Example 8-5 Dropping a Collection

This example shows how to drop a collection.

export function openAndDropCollection(collectionName) {

 // look the collection up
 const col = soda.openCollection(collectionName);

Chapter 8
Using SODA for In-Database JavaScript

8-11

 if (col === null) {
 throw new Error (`No such collection ${collectionName}`);
 }

 // drop the collection - POTENTIALLY DANGEROUS
 col.drop();
}

Creating Documents with SODA for In-Database JavaScript
Creation of documents by SODA for In-Database JavaScript is described.

The SodaDocument class represents SODA documents. Although its focus is on JSON
documents, it supports other content types as well. A SodaDocument stores both the actual
document's contents as well as metadata.

JavaScript is especially well-suited to work with JSON by design, giving it an edge over other
programming languages.

Here is an example of a simple JSON document:

// Create a JSON document (based on the HR.EMPLOYEES table for employee 100)
const doc = {
 "_id": 100,
 "job_id": "AD_PRES",
 "last_name": "King",
 "first_name": "Steven",
 "email": "SKING",
 "manager_id": null,
 "department_id": 90
};

Note:

In SODA, JSON content must conform to RFC 4627.

SodaDocument objects can be created in three ways:

• As a result of sodaDatabase.createDocument(). This is a proto-SodaDocument object
usable for SODA insert and replace methods. The SodaDocument will have content and
media type components set.

• As a result of a read operation from the database, such as calling
sodaOperation.getOne(), or from sodaDocumentCursor.getNext() after a
sodaOperation.getCursor() call. These return complete SodaDocument objects containing
the document content and attributes, such as media type.

• As a result of sodaCollection.insertOneAndGet(), sodaOperation.replaceOneAndGet(),
or sodaCollection.insertManyAndGet() methods. These return SodaDocuments that
contain all attributes except the document content itself. They are useful for finding
document attributes such as system generated keys, and versions of new and updated
documents.

A document has these components:

Chapter 8
Using SODA for In-Database JavaScript

8-12

• Key

• Content

• Version

• Media type ("application/json" for JSON documents)

The document's content consists of all the fields representing the information the application
needs to store plus an _id field. This field is either provided by the user or injected by Oracle if
omitted. If omitted, Oracle adds a random value with a length of 12 bytes.

The document's key is a hex-encoded representation of the document's _id column. It is
automatically calculated and cannot be changed. The key is often used when building
operations such as finds, replaces, and removes, with key() and keys(...) methods. These
operations are discussed in later sections.

Example 8-6 Creating SODA Documents

export function createJSONDoc() {

 // define the document's contents
 const payload = {
 "_id ": 100,
 "job_id": "AD_PRES",
 "last_name": "King",
 "first_name": "Steven",
 "email": "SKING",
 "manager_id": null,
 "department_id": 90
 };

 // Create a SODA document.
 // Notice that neither key nor version are populated. They will be as soon
 // as the document is inserted into a collection and retrieved.
 const doc = soda.createDocument(payload);
 console.log(`
 --
 SODA Document using default key
 content (select fields):
 - _id ${doc.getContent()._id}
 - job_id ${doc.getContent().job_id}
 - first name ${doc.getContent().first_name}
 media type: ${doc.mediaType}
 version : ${doc.version}
 key ${doc.key}`
);
}

Creating SodaDocument instances as shown in this example is the exception rather than the
norm. In most cases, developers use SodaCollection.insertOne() or
SodeCollection.insertOneAndGet(). The use of SodaCollection.insertOne() is
demonstrated in Example 8-7. Multiple documents can be created using
sodaCollection.insertMany().

Chapter 8
Using SODA for In-Database JavaScript

8-13

Inserting Documents into Collections with SODA for In-Database JavaScript
SodaCollection.insertOne() or a related call such as sodaCollection.insertOneAndGet()
offers convenient ways to add documents to a collection. These methods create document
keys automatically, unless the collection is configured with client-assigned keys and the input
document provides the key, which is not recommended for must users.

SodaCollection.insertOne() simply inserts the document into the collection, whereas
SodaCollection.insertOneAndGet() additionally returns a result document. The resulting
document contains the document key and any other generated document components, except
for the actual document’s content (this is done to improve performance).

Both methods automatically set the document's version, unless the collection has been created
with custom metadata. Custom metadata might not include all the default metadata. When
querying attributes not defined by the collection a null value is returned.

Note:

If you want the input document to replace the existing document instead of causing
an exception, see Saving Documents into Collections with SODA for In-Database
JavaScript.

Example 8-7 Inserting a SODA Document into a Collection

This example demonstrates how to insert a document into a collection using
SodaCollection.insertOne().

export function insertOneExample() {

 // define the document's contents
 const payload = {
 "_id": 100,
 "job_id": "AD_PRES",
 "last_name": "King",
 "first_name": "Steven",
 "email": "SKING",
 "manager_id": null,
 "department_id": 90
 };

 // create or open the collection to hold the document
 const col = soda.createCollection("MyCollection");

 col.insertOne(payload);
}

Chapter 8
Using SODA for In-Database JavaScript

8-14

Example 8-8 Inserting an Array of Documents into a Collection

This example demonstrates the use of SodaCollection.insertMany() to insert multiple
documents with one command. The example essentially translates the relational table
HR.employees into a collection.

export function insertManyExample() {

 // select all records from the hr.employees table into an array
 // of JavaScript objects in preparation of a call to insertMany
 const result = session.execute(
 `SELECT
 employee_id "_id",
 first_name "firstName",
 last_name "lastName",
 email "email",
 phone_number "phoneNumber",
 hire_date "hireDate",
 job_id "jobId",
 salary "salary",
 commission_pct "commissionPct",
 manager_id "managerId",
 department_id "departmentId"
 FROM
 hr.employees`,
 [],
 { outFormat: oracledb.OUT_FORMAT_OBJECT }
);

 // create the collection and insert all employee records
 collection = soda.createCollection('employeesCollection');
 collection.insertMany(result.rows);

 // the MLE JavaScript SQL driver does not auto-commit
 session.commit();
}

Saving Documents into Collections with SODA for In-Database JavaScript
You use SodaCollection.save() and saveAndGet() to save documents into collections.

These methods are similar to methods insertOne() and insertOneAndGet() except that, if the
collection is configured with client-assigned document keys, and the input document provides a
key that already identifies a document in the collection, then the input document replaces the
existing document. In contrast, methods insertOne() and insertOneAndGet() throw an
exception in that case.

SODA for In-Database JavaScript Read and Write Operations
The primary way you specify read and write operations (other than insert and save) is to use
methods provided by the SodaOperation class. You can chain together SodaOperation
methods to specify read or write operations against a collection.

Nonterminal SodaOperation methods return the same object on which they are invoked,
allowing them to be chained together.

Chapter 8
Using SODA for In-Database JavaScript

8-15

A terminal SodaOperation method always appears at the end of a method chain to execute the
operation.

Note:

A SodaOperation object is an internal object. You should not directly modify its
properties.

Unless the SODA documentation for a method says otherwise, you can chain together any
nonterminal methods and you can end the chain with any terminal method. However, not all
combinations make sense. For example, it does not make sense to chain method version()
together with a method that does not uniquely identify the document, such as keys().

Table 8-1 Overview of Nonterminal Methods for Read Operations

Method Description

key() Find a document that has the specified document key.

keys() Find documents that have the specified document keys.

filter() Find documents that match a filter specification (a query-by-
example expressed in JSON).

version() Find documents that have the specified version. This is
typically used with key().

headerOnly() Exclude document content from the result.

skip() Skip the specified number of documents in the result.

limit() Limit the number of documents in the result to the specified
number.

Table 8-2 Overview of Terminal Methods for Read Operations

Method Description

getOne() Create and execute an operation that returns at most one
document. For example, an operation that includes an
invocation of nonterminal method key().

getCursor() Get a cursor over read operation results.

count() Count the number of documents found by the operation.

getDocuments() Gets an array of documents matching the query criteria.

Table 8-3 Overview of Terminal Methods for Write Operations

Method Description

replaceOne() Replace one document.

replaceOneAndGet() Replace one document and return the result document.

remove() Remove documents from a collection.

Chapter 8
Using SODA for In-Database JavaScript

8-16

See Also:

• Node-oracledb Documentation for more details about the SodaOperations class.

• SODA Restrictions (Reference) for information about SODA restrictions.

Finding Documents in Collections with SODA for In-Database JavaScript
To find documents in a collection, you invoke SodaCollection.find(). It creates and returns a
SodaOperation object which is used via method chaining with nonterminal and terminal
methods.

To execute the query, obtain a cursor for its results by invoking SodaOperation.getCursor().
Then use the cursor to visit each document in the result list. This is illustrated by Example 8-1
and other examples. It is important not to forget to close the cursor, to save resources.

However, this is not the typical workflow when searching for documents in a collection. It is
more common to chain multiple methods provided by the SodaOperation class together.

Example 8-9 Finding a Document by Key

This example shows how to look up a document by its key using the methods find(), key(),
and getOne().

export function findDocByKey(searchKey){

 const collectionName = 'MyCollection';

 // open the collection in preparation of a document lookup
 const col = soda.openCollection(collectionName);
 if (col === null){
 throw new Error(`${collectionName} does not exist`);
 }

 try{
 // perform a lookup of a document with the key provided as a
 // parameter to this function. Keys are like primary keys,
 // the lookup therefore can only return 1 document max
 const doc = col.find()
 .key(searchKey)
 .getOne();
 console.log(`
 document found for key ${searchKey}
 contents: ${doc.getContentAsString()}`
);
 } catch(err){
 throw new Error(
 `error retrieving document with key ${searchKey} (${err})`
);
 }
}

Chapter 8
Using SODA for In-Database JavaScript

8-17

https://oracle.github.io/node-oracledb/doc/api.html#sodaoperationclass

Note:

Keys need to be enclosed in quotation marks even if they should be in numeric
format.

In case the search for a given key fails, the database throws an ORA-01403 (no data found)
exception. It is good practice to handle exceptions properly. In this example, the caller of the
function has the responsibility to ensure the error is trapped and dealt with according to the
industry's best-known methods.

Example 8-10 Looking up Documents Using Multiple Keys

This example uses the methods find(), keys(), getCursor(), and getNext() to search for
multiple keys provided in an array.

See Example 8-8 for details about how to create employeesCollection, used in this example.

export function findDocByKeys(searchKeys){

 if(!Array.isArray(searchKeys)){
 throw new Error('please provide an array of search keys');
 }

 // open a collection in preparation of a document lookup
 const col = soda.openCollection('employeesCollection');
 if (col === null){
 throw new Error('employeesCollection does not exist');
 }

 try{
 // perform a lookup of a set of documents using
 // the "keys" array provided
 const docCursor =
 col.find()
 .keys(searchKeys)
 .getCursor();

 let doc
 while((doc = docCursor.getNext())){
 console.log(`
 document found for key ${doc.key}
 contents: ${doc.getContentAsString()}`
);
 }
 docCursor.close();
 } catch(err){
 // there is no error thrown if one/all of the keys aren't found
 // this error handler is generic
 throw new Error(
 `error retrieving documents with keys ${searchKeys} (${err})`
);
 }
}

Chapter 8
Using SODA for In-Database JavaScript

8-18

Rather than failing with an error, the find() operation simply doesn't return any data for a key
not found in a collection. If none of the keys are found, nothing is returned.

Example 8-11 Using a QBE to Filter Documents in a Collection

This example uses filter() to locate documents in a collection. The nonterminal
SodaOperation.filter() method provides a powerful way to filter JSON documents in a
collection, allowing for complex document queries and ordering of JSON documents. Filter
specifications can include comparisons, regular expressions, logical and spatial operators,
among others.

The search expression defined in filterCondition matches all employees with an employee
ID greater than 110 working in department 30.

See Example 8-8 for details about how to create employeesCollection, used in this example.

export function findDocByFiltering(){

 // open a collection in preparation of a document
 // lookup. This particular collection contains all the
 // rows from the HR.employees table converted to SODA
 // documents.
 const col = soda.openCollection('employeesCollection');
 if(col === null){
 throw new Error(`employeesCollection does not exist`);
 }

 // find all employees with an employee_id > 100 and
 // last name beginning with M
 const filterCondition = {
 "$and": [
 { "lastName": { "$upper": { "$startsWith": "M" } } },
 { "_id": { "$gt": 100 } }
]
 };

 try{

 // perform the lookup operation using the QBE defined earlier
 const docCursor = col.find()
 .filter(filterCondition)
 .getCursor();
 let doc;
 while ((doc = docCursor.getNext())){
 console.log(`

 document found matching the search criteria
 - key: ${doc.key}
 - _id: ${doc.getContent()._id}
 - name: ${doc.getContent().lastName}`
);
 }

 docCursor.close();
 } catch(err){
 throw new Error(`error looking up documents using a QBE: ${err}`);

Chapter 8
Using SODA for In-Database JavaScript

8-19

 }
}

See Also:

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for an
introduction to SODA filter specifications

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
reference information about SODA filter specifications

Example 8-12 Using skip() and limit() in a Pagination Query

If the number of rows becomes too large, you may choose to paginate and or limit the number
of documents returned. This example demonstrates using skip() and limit() in this type of
circumstance.

See Example 8-8 for details about how to create employeesCollection, used in this example.

export function paginationExample(){

 // open a collection in preparation of a document
 // lookup. This particular collection contains all the
 // rows from the HR.employees table converted to SODA
 // documents.
 const col = soda.openCollection('employeesCollection');
 if(col === null){
 throw new Error ('employeesCollection does not exist, aborting');
 }

 // find all employees with an employee_id > 100 and
 // last name beginning with E
 const filterCondition = {
 "$and": [
 { "lastName": { "$upper": { "$startsWith": "M" } } },
 { "_id": { "$gt": 100 } }
]
 };

 try{

 // perform the lookup operation using the QBE, skipping the first
 // 5 documents and limiting the result set to 10 documents
 const docCursor =
 col.find()
 .filter(filterCondition)
 .skip(5)
 .limit(10)
 .getCursor();
 let doc;
 while ((doc = docCursor.getNext())){
 console.log(`

Chapter 8
Using SODA for In-Database JavaScript

8-20

 document found matching the search criteria
 - key: ${doc.key}
 - employee id: ${doc.getContent().employeeId}`
);
 }

 docCursor.close();
 } catch(err){
 throw new Error(
 `error looking up documents by QBE (${err})`
);
 }
}

Example 8-13 Specifying Document Versions

This example uses the nonterminal version() method to specify a particular document
version. This is useful for implementing optimistic locking, when used with the terminal
methods for write operations.

See Example 8-8 for details about how to create employeesCollection, used in this example.

export function versioningExample(searchKey, version){

 // open a collection in preparation of a document
 // lookup. This particular collection contains all the
 // rows from the HR.employees table converted to SODA
 // documents.
 const col = soda.openCollection("employeesCollection");

 try{
 // perform a lookup of a document using the provided key and version
 const doc = col
 .find()
 .key(searchKey)
 .version(version)
 .getOne();
 console.log(`
 document found for key ${doc.key}
 contents: ${doc.getContentAsString()}`
);
 } catch(err){
 throw new Error(
 `${err} during lookup. Key: ${searchKey}, version: ${version}`
);
 }
}

If SODA cannot find the document matching the key and version tag, an ORA-01403: no data
found error is thrown.

Example 8-14 Counting the Number of Documents Found

This example shows how to count the number of documents found in a collection using the
find(), filter(), and count() methods. The filter() expression limits the result to all
employees working in department 30.

Chapter 8
Using SODA for In-Database JavaScript

8-21

See Example 8-8 for details about how to create employeesCollection, used in this example.

export function countingExample(){

 // open a collection in preparation of a document
 // lookup. This particular collection contains all the
 // rows from the HR.employees table converted to SODA
 // documents.
 const col = soda.openCollection("employeesCollection");
 if(col === null){
 throw new Error('employeesCollection does not exist');
 }

 try{

 // perform a lookup operation identifying all employees working
 // in department 30, limiting the result to headers only
 const filterCondition = {"departmentId": 30};
 const numDocs = col.find()
 .filter(filterCondition)
 .count();
 console.log(`there are ${numDocs} documents matching the filter`);
 } catch(err){
 throw new Error(
 `No document found in 'employeesCollection' matching the filter`
);
 }
}

Replacing Documents in a Collection with SODA for In-Database JavaScript
To replace the content of one document in a collection with the content of another, you start by
looking up the document to be modified using its key. Because SodaOperation.key() is a
nonterminal operation, the easiest way to replace the contents is to chain
SodaOperation.key() to SodaOperation.replaceOne() or
SodaOperation.replaceOneAndGet().

SodaOperation.replaceOne() merely replaces the document, whereas
SodaOperation.replaceOneAndGet() replaces it and provides the resulting new document to
the caller.

The difference between SodaOperation.replace() and SodaOperation.save() is that the
latter performs an insert in case the key doesn't already exist in the collection. The replace
operation requires an existing document to be found by the lookup via the
SodaOperation.key() method.

Note:

Some version-generation methods generate hash values of the document content. In
such a case, if the document content does not change then neither does the version.

Chapter 8
Using SODA for In-Database JavaScript

8-22

Example 8-15 Replacing a Document in a Collection and Returning the Result
Document

This example shows how to replace a document in a collection, returning a reference to the
changed document. Let's assume that employee 206 has been given a raise of 100 monetary
units. Using the SODA API you can update the salary as follows:

export function replaceExample(){

 // open employeesCollection in preparation of the update
 const col = soda.openCollection('employeesCollection');
 if (col === null){
 throw new Error("'employeesCollection does not exist");
 }

 try{
 // look up employeeId 206 using a QBE and get the document.
 // Since the documents are inserted into the collection based
 // on the HR.employees table, it is certain that there is at
 // most 1 document with employeeId 206
 const employeeDoc = col
 .find()
 .filter({"_id": 206})
 .getOne();

 // get the document's actual contents/payload
 employee = employeeDoc.getContent();

 // currently it is not possible to include the _id together with
 // the replacement payload. This means existing _id must be deleted.
 // The document, once replaced in the collection, will have its
 // _id injected from the target document
 delete employee_id;

 // increase the salary
 employee.salary += 100;

 // save the document back to the collection. Note that you need
 // to provide the document's key rather than a QBE or else an
 // ORA-40734: key for the document to replace must be specified
 // using the key attribute error will be thrown
 const resultDoc = col
 .find()
 .key(employeeDoc.key)
 .replaceOneAndGet(employee);

 // print some metadata (note that content is not returned for
 // performance reasons)
 console.log(`Document updated successfully:
 - key: ${resultDoc.key}
 - version: ${resultDoc.version}`);

 } catch(err){
 console.log(`error modifying employee 206's salary: ${err}`);
 }
}

Chapter 8
Using SODA for In-Database JavaScript

8-23

See Example 8-8 for details about how to create employeesCollection, used in this example.

Note:

Trying to read the changed contents will result in an error as the actual document's
contents aren't returned, for performance reasons.

Removing Documents from a Collection with SODA for In-Database
JavaScript

Removing documents from a collection is similar to replacing. The first step is to perform a
lookup operation, usually based on the document's key or by using a search expression in
SodaOperation.filter(). The call to SodaOperation.remove() is a terminal operation, in
other words the last operation in the chain.

Example 8-16 Removing a Document from a Collection Using a Document Key

This example removes the document whose document key is "100".

export function removeByKey(searchKey){

 // open MyCollection
 const col = soda.openCollection("MyCollection");
 if(col === null){
 throw new Error("'MyCollection' does not exist");
 }

 // perform a lookup of the document about to be removed
 // and ultimately remove it
 const result = col
 .find()
 .key(searchKey)
 .remove();
 if(result.count === 0){
 throw new Error(
 `failed to delete a document with key ${searchKey}`
);
 }
}

Example 8-17 Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose department_id is 70. It then
prints the number of documents removed.

export function removeByFilter(){

 // open the collection
 const col = soda.openCollection("MyCollection");
 if(col === null){
 throw new Error("'MyCollection' does not exist");
 }

Chapter 8
Using SODA for In-Database JavaScript

8-24

 // perform a lookup based on a filter expression and remove
 // the documents matching the filter
 const result = col
 .find()
 .filter({"_id": 100})
 .remove();

 console.log(`${result.count} documents deleted`);
}

Indexing the Documents in a Collection with SODA for In-Database
JavaScript

Indexes can speed up data access, regardless of whether you use the NoSQL style SODA API
or a relational approach. You index documents in a SODA collection using
SodaCollection.createIndex(). Its IndexSpec parameter is a textual JSON index
specification.

Existing indexes can be dropped using SodaCollection.dropIndex().

A JSON search index is used for full-text and ad hoc structural queries, and for persistent
recording and automatic updating of JSON data-guide information.

See Also:

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for an
overview of using SODA indexing

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
information about SODA index specifications

• Oracle Database JSON Developer’s Guide for information about JSON search
indexes

• Oracle Database JSON Developer’s Guide for information about persistent data-
guide information as part of a JSON search index

Example 8-18 Creating a B-Tree Index for a JSON Field with SODA for In-Database
JavaScript

This example creates a B-tree non-unique index for numeric field department_id of the JSON
documents in collection employeesCollection (created in Example 8-8).

export function createBTreeIndex(){

 // open the collection
 const col = soda.openCollection('employeesCollection');
 if(col === null){
 throw new Error("'employeesCollection' does not exist");
 }

 // define the index...
 const indexSpec = {

Chapter 8
Using SODA for In-Database JavaScript

8-25

 "name": "DEPARTMENTS_IDX",
 "fields": [
 {
 "path": "departmentId",
 "datatype": "number",
 "order": "asc"
 }
]
 };

 //... and create it
 try{
 col.createIndex(indexSpec);
 } catch(err){
 throw new Error(
 `could not create the index: ${err}`
)
 }
}

Example 8-19 Creating a JSON Search Index with SODA for In-Database JavaScript

This example shows how to create a JSON search index for indexing the documents in
collection employeesCollection (created in Example 8-8). It can be used for ad hoc queries
and full-text search (queries using QBE operator $contains). It automatically accumulates and
updates data-guide information about your JSON documents (aggregate structural and type
information). The index specification has only field name (no field fields unlike the B-tree index
in Example 8-18).

export function createSearchIndex(){

 // open the collection
 const col = soda.openCollection("employeesCollection");
 if(col === null){
 throw new Error("'employeesCollection' does not exist");
 }

 // define the index properties...
 cost indexSpec = {
 "name": "SEARCH_AND_DATA_GUIDE_IDX",
 "dataguide": "on",
 "search_on": "text_value"
 }

 //...and create it
 try{
 col.createIndex(indexSpec);
 } catch(err){
 throw new Error(
 `could not create the search and Data Guide index: ${err}`
);
 }
}

Chapter 8
Using SODA for In-Database JavaScript

8-26

If you only wanted to speed up ad hoc (search) indexing, you should specify a value of "off" for
field dataguide. The dataguide indexing feature can be turned off in the same way if it is not
required.

Example 8-20 Dropping an Index with SODA for In-Database JavaScript

This example shows how you can drop an existing index on a collection using
SodaCollection.dropIndex() and the force option.

See Example 8-8 for details about how to create employeesCollection, used in this example.

export function dropIndex(indexName){

 // open the collection
 const col = soda.openCollection("employeesCollection");
 if(col === null){
 throw new Error("'employeesCollection' does not exist");
 }

 // drop the index
 const result = col.dropIndex(indexName, {"force": true});
 if(!result.dropped){
 throw `Could not drop SODA index '${indexName}'`;
 }
}

SodaCollection.dropIndex() returns a result object containing a single field: dropped. Its
value is true if the index has been dropped, otherwise its value is false. The method
succeeds either way.

An optional parameter object can be supplied to the method. Setting force to true forces
dropping of a JSON index if the underlying Oracle Database domain index does not permit
normal dropping.

Getting a Data Guide for a Collection with SODA for In-Database JavaScript
A data guide is a summary of the structural and type information contained in a set of JSON
documents. It records metadata about the fields used in those documents. They provide great
insights into JSON documents and are invaluable for getting an overview of a data set.

You can create a data guide using SodaCollection.getDataGuide(). To get a data guide in
SODA, the collection must be JSON-only and have a JSON search index where the
"dataguide" option is "on". Data guides are returned from sodaCollection.getDataGuide()
as JSON content in a SodaDocument. The data guide is inferred from the collection as it
currently is. As a collection grows and documents change, a new data guide is returned each
subsequent time getDataGuide() is called.

Example 8-21 Generating a Data Guide for a Collection

This example gets a data guide for the collection employeesCollection (created in
Example 8-8) using the method getDataGuide() and then prints the contents as a string using
the method getContentAsString().

export function createDataGuide(){

 // open the collection

Chapter 8
Using SODA for In-Database JavaScript

8-27

 const col = soda.openCollection('employeesCollection');
 if(col === null){
 throw new Error("'employeesCollection' does not exist");
 }

 // generate a Data Guide (requires the Data Guide index)
 const doc = col.getDataGuide();
 console.log(doc.getContentAsString());
}

The data guide can provide interesting insights into a collection, including all the fields and
their data types. Although the Data Guide for employeesCollection may already be familiar to
readers of this chapter, unknown JSON documents can be analyzed conveniently this way. The
previous code block prints the following Data Guide to the screen:

{
 "type": "object",
 "o:length": 1,
 "properties": {
 "_id": {
 "type": "id",
 "o:length": 24,
 "o:preferred_column_name": "DATA$_id"
 },
 "email": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "DATA$email"
 },
 "jobId": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "DATA$jobId"
 },
 "salary": {
 "type": "number",
 "o:length": 8,
 "o:preferred_column_name": "DATA$salary"
 },
 "hireDate": {
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "DATA$hireDate"
 },
 "lastName": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "DATA$lastName"
 },
 "firstName": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "DATA$firstName"
 },
 "managerId": {

Chapter 8
Using SODA for In-Database JavaScript

8-28

 "type": "string",
 "o:length": 4,
 "o:preferred_column_name": "DATA$managerId"
 },
 "employeeId": {
 "type": "number",
 "o:length": 4,
 "o:preferred_column_name": "DATA$employeeId"
 },
 "phoneNumber": {
 "type": "string",
 "o:length": 16,
 "o:preferred_column_name": "DATA$phoneNumber"
 },
 "departmentId": {
 "type": "string",
 "o:length": 4,
 "o:preferred_column_name": "DATA$departmentId"
 },
 "commissionPct": {
 "type": "string",
 "o:length": 32,
 "o:preferred_column_name": "DATA$commissionPct"
 }
 }
}

Handling Transactions with SODA for In-Database JavaScript
Unlike the client-side JavaScript SQL driver, the MLE JavaScript SQL driver does not provide
an autoCommit feature. You need to commit or roll your transactions back, either in the PL/SQL
layer in case of module calls, or directly in the JavaScript code by calling
connection.commit() or connection.rollback().

Caution:

If any uncommitted operation raises an error, and you do not explicitly roll back the
transaction, the incomplete transaction might leave the relevant data in an
inconsistent state (uncommitted, partial results).

Creating Call Specifications Involving the SODA API
Earlier in this chapter, in the section Getting Started with SODA for In-Database JavaScript, an
example showing how to invoke the MLE SODA API using an inline call specification is
included. The following short example demonstrates how to use SODA in MLE modules.

Example 8-22 Use SODA for In-Database JavaScript

See Example 8-8 for details about how to create employeesCollection, used in this example.

CREATE OR REPLACE MLE MODULE end_to_end_demo
LANGUAGE JAVASCRIPT AS

Chapter 8
Using SODA for In-Database JavaScript

8-29

/**
 * Example for a private function used to open and return a SodaCollection
 *
 * @param {string} collectionName the name of the collection to open
 * @returns {SodaCollection} the collection handle
 * @throws Error if the collection cannot be opened
 */
function openAndCheckCollection(collectionName){

 const col = soda.openCollection(collectionName);
 if(col === null){
 throw new Error(`invalid collection name: ${collectionName}`);
 }

 return col;
}

/**
 * Top-level (public) function demonstrating how to use a QBE to
 * filter documents in a collection.
 *
 * @param {number} departmentId the numeric department ID
 * @returns {number} the number of employees found in departmentId
 */
export function simpleSodaDemo(departmentId){

 if(departmentId === undefined || isNaN(departmentId)){
 throw new Error('please provide a valid numeric department ID');
 }

 const col = openAndCheckCollection('employeesCollection');

 const numDocs = col.find()
 .filter({"departmentId": departmentId})
 .count();

 return numDocs;
}
/

After the module has been created you need to create the call specification. The module
features a single public function, so a standalone function should suffice:

CREATE OR REPLACE FUNCTION simple_soda_demo(
 "departmentId" NUMBER
) RETURN NUMBER
AUTHID current_user
AS MLE MODULE end_to_end_demo
SIGNATURE 'simpleSodaDemo';
/

Now everything is in place to call the function:

select simple_soda_demo(30);

Chapter 8
Using SODA for In-Database JavaScript

8-30

Result:

SIMPLE_SODA_DEMO(30)

 6

Chapter 8
Using SODA for In-Database JavaScript

8-31

9
Post-Execution Debugging of MLE JavaScript
Modules

The ability to easily debug code is central to a good developer experience. MLE provides the
option to perform post-execution debugging on your JavaScript source code in addition to
standard print debugging.

Post-execution debugging allows efficient collection of runtime state during program execution.
Once execution of the code has completed, the collected data can be used to analyze program
behavior and discover bugs that require attention. To perform post-execution debugging, you
provide a debug specification that identifies the debugging information to be collected. A debug
specification is a collection of debugpoints, each of which specify a location in the source code
where debug information should be collected, as well as what information to collect.
Debugpoints can be conditional or unconditional.

Note:

Post-execution debugging can only be applied to JavaScript code that is deployed as
MLE modules. This debugging feature cannot currently be used when deploying
code via dynamic execution.

Note:

MLE built-in modules such as the MLE JavaScript driver and MLE bindings cannot be
debugged via post-execution debugging. An attempt to debug a built-in module will
cause an ORA-04162 error to be raised.

For more information about MLE built-in modules, see Server-Side JavaScript API
Documentation.

Module debugpoints apply to all executions of the module code, including via MLE call
specifications, as well as via module import, whether from a dynamic MLE source or from
another MLE module. Once enabled, a debug specification is active either until it is disabled or
replaced by a new debug specification, or until the session ends.

Topics

• Specifying Debugpoints
Debugpoints are specified using a JSON document encoded in the database character set.

• Managing Debugpoints
Debugging can be enabled in a session by calling the procedure
dbms_mle.enable_debugging with a debug specification.

• Analyzing Debug Output
Output from debugpoints is stored in the Java Profiler Heap Dump version 1.0.2 format.

9-1

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules

• Error Handling in MLE
Errors encountered during the execution of MLE JavaScript code are reported as database
errors.

Specifying Debugpoints
Debugpoints are specified using a JSON document encoded in the database character set.

Each debugpoint has the following elements:

• A location in the source code where the information is collected

• An action that describes what information to collect

• An optional condition that controls when debug information should be collected

Example 9-1 JSON Template for Specifying Debugpoints

{
at: <location-spec>,
action: [<action-spec>, ...],
[condition: <condition-spec>]
}

• Debugpoint Locations
Debugpoint locations are specified via the line number in the source code of the
application being debugged.

• Debugpoint Actions
MLE post-execution debugging supports two kinds of actions: watch and snapshot.

• Debugpoint Conditions
Both watch and snapshot can be controlled via conditions specified in the condition field.

Debugpoint Locations
Debugpoint locations are specified via the line number in the source code of the application
being debugged.

The name of the MLE module to be debugged is specified via the name field and the location
within the module where debug information is to be collected is specified via the line field.
Example 9-4 provides an example JSON document with sample values.

Debugpoint Actions
MLE post-execution debugging supports two kinds of actions: watch and snapshot.

The watch action allows you to log the value of the variable named in the id field. The optional
depth field provides you with control over the depth to which values of composite type
variables are logged.

The snapshot action logs the stack trace at the point the snapshot action is invoked, along with
the values of the local variables in each stack frame. A higher cost of performance is required
by snapshot compared with watch but it provides a greater depth of information. As with the
watch action, the optional depth field can be used to control the depth of logging for each
variable. The depth parameter for the snapshot action applies to all variables captured by the
action.

Chapter 9
Specifying Debugpoints

9-2

More precisely, the depth parameter controls how deeply you traverse the object tree in order
to capture the value of a variable. For example, consider the following variable with nested
objects:

let x = {
a: {
 val: 42
},
b: 3.14
};

If the depth field is defined as 2, the object tree would be traversed and the value of the nested
object a would be captured, which in this case is 42. If depth is specified as 1, the traversal
would end at the first level, which would produce the following results:

x = {
"a": {
 "<unreachable>": true
};
"b": 3.14
}

The framesLimit field provides you with control over the number of stack frames to be logged.
The default is to log all stack frames. framesLimit only applies to snapshot. Take, for example,
a call hierarchy where a() calls b() and b() calls c(). If you take a snapshot in c(),
framesLimit=1 would only capture the bottom-most stack frame (in this case, c()),
framesLimit=2 would capture the bottom two (in this case, c() and b()), and so on.

Example 9-2 JSON Template for Specifying Watch Action

To watch a variable, type must be set to watch. The id parameter is used to identify the
variable or variables to watch and must be provided as either a string or an array of strings.
The depth parameter is optional and is defined by a number.

actions: [
 { type: "watch",
 id: <string[]> | <string>,
 [depth : <number>] }
]

Example 9-3 JSON Template for Specifying Snapshot Action

To use the snapshot action, the type parameter must be set to snapshot. The framesLimit
and depth fields are optionally provided as numbers.

actions: [
 { type: "snapshot",
 [framesLimit: <number>],
 [depth : <number>] }
]

Chapter 9
Specifying Debugpoints

9-3

Debugpoint Conditions
Both watch and snapshot can be controlled via conditions specified in the condition field.

The expression is evaluated in the context of the application at the location specified in the
debugpoint and the associated action is triggered only if the expression evaluates to true.

There are no restrictions on the type of expression that can be included in the condition field.
You must ensure that evaluating any expressions does not alter the behavior of the program
being debugged.

Example 9-4 Watching a Variable in an MLE Module

The following code specifies a debugpoint for a module, myModule1, with two associated
actions. A watch action for variable x with the logging depth restricted to 3, and a watch action
for variable y with no restrictions on logging depth. The debugpoint also has an associated
condition so that the debugpoint actions only trigger if the condition (x.id>100) is met.

{
 "at" : {
 "name" : "myModule1",
 "line" : 314
 },
 "actions" : [
 { "type": "watch", "id" : "x", "depth" : 3 },
 { "type": "watch", "id" : "y" }
],
 "condition" : "x.id > 100"
}

Managing Debugpoints
Debugging can be enabled in a session by calling the procedure dbms_mle.enable_debugging
with a debug specification.

In addition to an array of debugpoints, specified via the debugpoints field, a debug
specification includes a version identifier, specified via the version field. The version field
must be set to the value "1.0". Debug specifications can include debugpoints for multiple MLE
modules.

Note:

Debug specifications require module names to be provided in the same case that
they are stored in the dictionary. By default, module names are stored in uppercase
unless the name is enclosed in double-quotation marks during module creation.

The procedure dbms_mle.enable_debugging also accepts a BLOB sink to which the debug
output is written.

After the call to dbms_mle.enable_debugging, all debugpoints included in the debug
specification are active. Every time one of the debugpoints is hit, the associated debug
information is logged. The debug information is written out to the BLOB sink when control

Chapter 9
Managing Debugpoints

9-4

passes from MLE back to PL/SQL at the latest but could be written out in part or in full before
this point:

• For dynamic MLE evaluations, control passes from MLE to PL/SQL when the call to
dbms_mle.eval returns.

• For MLE call specifications, control passes from MLE to PL/SQL when the call to the MLE
call specification returns.

The installed debugpoints are active for all executions of the MLE modules regardless of which
user's privileges the MLE code executes with.

Calling dbms_mle.enable_debugging again in the same session replaces the existing set of
debugpoints. Debugpoints remain active until either the session ends or the user disables
debugging explicitly by calling dbms_mle.disable_debugging.

Example 9-5 Enabling Debugging of an MLE Module

The debug specification in this example references the module count_module, created at the
beginning of Example 6-4, and module in_out_example_mod, created in Example 6-6.

DECLARE
 debugspec json;
 sink blob;
BEGIN
 debugspec:= json('
 {
 "version": "1.0",
 "debugpoints": [
 {
 "at": {
 "name": "COUNT_MODULE",
 "line": 7
 },
 "actions": [
 { "type": "watch", "id": "myCounter", "depth": 1 }
],
 "condition": "myCounter > 0"
 },
 {
 "at": {
 "name": "IN_OUT_EXAMPLE_MOD",
 "line": 16
 },
 "actions": [
 { "type": "snapshot" }
],
 }
]
 }
 ');
 dbms_lob.createtemporary(sink, false);
 dbms_mle.enable_debugging(debugspec, sink);
 --run application to debug
END;
/

Chapter 9
Managing Debugpoints

9-5

• Debugging Security Considerations
Users must either own the MLE modules being debugged or have debugging privileges to
it. This is necessary because the debugging feature allows you to observe runtime state of
the MLE code.

• COLLECT DEBUG INFO Privilege for MLE Modules
The COLLECT DEBUG INFO object privilege for MLE modules controls whether a user who
does not own a module, but has EXECUTE privilege, can still perform debugging on said
module.

Debugging Security Considerations
Users must either own the MLE modules being debugged or have debugging privileges to it.
This is necessary because the debugging feature allows you to observe runtime state of the
MLE code.

Additionally, because the condition field allows you to execute arbitrary code, this could
potentially be used to alter the runtime behavior of the code being debugged. Concretely, you
can use post-execution debugging on an MLE module if,

• You own the MLE module, or

• You have the COLLECT DEBUG INFO object privilege on the MLE module.

Privileges are checked every time code in an MLE module with one or more active
debugpoints is executed. If you attempt to install debugpoints without the necessary privileges,
an ORA-04164 error will be raised.

If an ORA-04164 is encountered, either

• The user who installed the debugpoints must be granted the COLLECT DEBUG INFO privilege
on the module in question, or

• The debugpoints for the module must be disabled to continue executing code in the
module in that session.

COLLECT DEBUG INFO Privilege for MLE Modules
The COLLECT DEBUG INFO object privilege for MLE modules controls whether a user who does
not own a module, but has EXECUTE privilege, can still perform debugging on said module.

For instance, consider an MLE module, ModuleA, owned by user W. User W creates an invoker's
rights call specification for a function in ModuleA and grants EXECUTE on this call specification
on user V. For user V to have the ability to debug the code in ModuleA when calling this call
specification, user W must also grant them the COLLECT DEBUG INFO privilege on ModuleA.

User W could use the following statement to grant user V the privilege to debug ModuleA:

GRANT COLLECT DEBUG INFO ON ModuleA TO V;

The COLLECT DEBUG INFO privilege can subsequently be revoked if needed:

REVOKE COLLECT DEBUG INFO ON ModuleA FROM V;

Chapter 9
Managing Debugpoints

9-6

Analyzing Debug Output
Output from debugpoints is stored in the Java Profiler Heap Dump version 1.0.2 format.

Every time a debugpoint is hit during execution, the debug information is saved as a heap
dump segment. Once execution finishes, you have two options to analyze the debug output:

• Use the textual representation of the debug information obtained via the
dbms_mle.parse_debug_output function.

• Export the BLOB sink containing the debug output to an hprof file and use any of a
number of existing developer tools to analyze the information.

Topics

• Textual Representation of Debug Output
The function dbms_mle.parse_debug_output takes as input a BLOB containing the debug
information in the heap dump format and returns a JSON representation of the debug
information.

• Analyzing Debug Output Using Developer Tools
As an alternative to analyzing the textual representation of debug output, you also have the
option to utilize tools such as JDeveloper, NetBeans, and Oracle Database Actions.

Textual Representation of Debug Output
The function dbms_mle.parse_debug_output takes as input a BLOB containing the debug
information in the heap dump format and returns a JSON representation of the debug
information.

The output of dbms_mle.parse_debug_output is an array of DebugPointData objects.
DebugPointData represents the debug information logged every time a debugpoint is hit and
comprises of an array of Frame objects. Each Frame includes the location in source code where
the information was collected (the at field) and the names and values of local variables logged
at that location (the values field). Note that the keys of Frame.values are the names of the
variables logged and the values are the values of those variables.

Example 9-6 demonstrates how you can specify a debugpoint in a sample JavaScript program
and then use the function dbms_mle.parse_debug_output to produce a textual representation
of the debug output.

Example 9-6 Obtain Textual Representation of Debug Output

The debugging shown later in this example is performed on the JavaScript function fib defined
in the module fibunacci_module:

CREATE OR REPLACE MLE MODULE fibunacci_module
LANGUAGE JAVASCRIPT AS
export function fib(n) {

 if (n < 0) {
 throw Error("must provide a positive number to fib()");
 }
 if (n < 2) {
 return n;
 } else {

Chapter 9
Analyzing Debug Output

9-7

 return fib(n-1) + fib(n-2);
 }
}
/

CREATE OR REPLACE FUNCTION fib(p_value number)
RETURN NUMBER
AS MLE MODULE fibunacci_module
SIGNATURE 'fib(number)';
/

A debugpoint is placed at line 9 and then the DBMS_MLE.PARSE_DEBUG_OUTPUT function is used
to view the debug information:

SET SERVEROUTPUT ON;
DECLARE
 l_debugspec JSON;
 l_debugsink BLOB;
 l_debuginfo JSON;
 l_value NUMBER;
BEGIN
 l_debugspec := JSON ('
 {
 version : "1.0",
 debugpoints : [
 {
 "at" : {
 "name" : "FIBUNACCI_MODULE",
 "line" : 9
 },
 "actions" : [
 { "type" : "watch", "id" : "n" }
],
 },
]
 }
 ');
 -- create a temporary lob to store the raw
 -- debug output
 DBMS_LOB.CREATETEMPORARY(l_debugsink, false);

 DBMS_MLE.ENABLE_DEBUGGING(l_debugspec, l_debugsink);

 -- run the application code
 l_value := fib(4);

 DBMS_MLE.DISABLE_DEBUGGING;

 -- retrieve a textual representation of the debug
 -- output
 l_debuginfo := DBMS_MLE.PARSE_DEBUG_OUTPUT(l_debugsink);
 DBMS_OUTPUT.PUT_LINE(
 json_serialize(l_debuginfo pretty)
);

Chapter 9
Analyzing Debug Output

9-8

END;
/

Result:

[
 [
 {
 "at": {
 "name": "USER1.FIBUNACCI_MODULE",
 "line": 9
 },
 "values": {
 "n": 4
 }
 }
],
 [
 {
 "at": {
 "name": "USER1.FIBUNACCI_MODULE",
 "line": 9
 },
 "values": {
 "n": 3
 }
 }
],
 [
 {
 "at": {
 "name": "USER1.FIBUNACCI_MODULE",
 "line": 9
 },
 "values": {
 "n": 2
 }
 }
],
 [
 {
 "at": {
 "name": "USER1.FIBUNACCI_MODULE",
 "line": 9
 },
 "values": {
 "n": 2
 }
 }
]
]

Chapter 9
Analyzing Debug Output

9-9

Analyzing Debug Output Using Developer Tools
As an alternative to analyzing the textual representation of debug output, you also have the
option to utilize tools such as JDeveloper, NetBeans, and Oracle Database Actions.

Once execution has finished, you can use the tool of your choice to inspect the values of local
variables or to inspect the graph of variables at each point in time.

Integration with new tools can be developed as needed (e.g., Chrome Dev Tools) and UIs can
be designed that are tailored specifically to the MLE use case.

Note:

Oracle Database Actions supports MLE post-execution debugging starting with
Oracle Database 23ai, Release Update 23.1.2.

See Also:

Using Oracle SQL Developer Web for more information about using Database
Actions with MLE

Error Handling in MLE
Errors encountered during the execution of MLE JavaScript code are reported as database
errors.

The database error raised depends on the type of error encountered. For example, syntax
errors raise ORA-04160 while runtime errors (e.g., uncaught exceptions) raise ORA-04161. The
error message for each database error provides a brief description of the error encountered.
Additionally, the DBMS_MLE PL/SQL package provides procedures to query the MLE JavaScript
stack trace for the last error encountered in a dynamic MLE execution context or an MLE
module in the current session.

The same security checks are made when calling DBMS_MLE.get_ctx_error_stack() as when
calling DBMS_MLE.eval(). Thus, you cannot retrieve error stacks for MLE JavaScript code
executing in dynamic MLE execution contexts created by other users.

DBMS_MLE provides a similar function, DBMS_MLE.get_error_stack(), to access the MLE
JavaScript stack trace for application errors encountered during the execution of MLE
modules. The function takes the module name and optionally the environment name as
parameters, returning the stack trace for the most recent application error in a call specification
based on the given arguments. If the module name or environment name is not a valid
identifier, an ORA-04170 error is raised.

With MLE modules, it is only possible to retrieve the error stack for the module contexts
associated with the calling user. This restriction avoids potentially leaking sensitive information
between users via the error stack. A natural consequence of this restriction is that you cannot
retrieve stack traces for errors encountered when executing definer's rights MLE call
specifications owned by other users.

Chapter 9
Error Handling in MLE

9-10

Example 9-7 Throwing ORA-04161 Error and Querying the Stack Trace

Executing the following code will throw an ORA-04161 error:

CREATE OR REPLACE MLE MODULE catch_and_print_error_stack
LANGUAGE JAVASCRIPT AS

export function f(){
 g();
}

function g(){
 h();
}

function h(){
 throw Error("An error occurred in h()");
}
/

CREATE OR REPLACE PROCEDURE not_getting_entire_error_stack
AS MLE MODULE catch_and_print_error_stack
SIGNATURE 'f()';
/

BEGIN
 not_getting_entire_error_stack;
END;
/

Result:

BEGIN
*
ERROR at line 1:
ORA-04161: Error: An error occurred in h()
ORA-04171: at h (USER1.CATCHING_AND_PRINTING_ERROR_STACK:10:11)
ORA-06512: at "USER1.NOT_GETTING_THE_ENTIRE_ERROR_STACK", line 1
ORA-06512: at line 2
*/

You can query the stack trace for this error using the procedure DBMS_MLE.get_error_stack():

CREATE OR REPLACE PACKAGE get_entire_error_stack_pkg AS

 PROCEDURE get_entire_error_stack;

END get_entire_error_stack_pkg;
/

CREATE OR REPLACE PACKAGE BODY get_entire_error_stack_pkg AS

 PROCEDURE print_stack_trace(p_frames IN DBMS_MLE.error_frames_t) AS
 BEGIN
 FOR i in 1 .. p_frames.count LOOP

Chapter 9
Error Handling in MLE

9-11

 DBMS_OUTPUT.PUT_LINE(p_frames(i).func || '(' ||
 p_frames(i).source || ':' || p_frames(i).line || ')');
 END LOOP;
 END print_stack_trace;

 PROCEDURE do_the_work
 AS MLE MODULE catch_and_print_error_stack
 SIGNATURE 'f()';

 PROCEDURE get_entire_error_stack AS
 l_frames DBMS_MLE.error_frames_t;
 BEGIN
 do_the_work;
 EXCEPTION
 WHEN OTHERS THEN
 l_frames := DBMS_MLE.get_error_stack(
 'CATCH_AND_PRINT_ERROR_STACK'
);
 print_stack_trace(l_frames);
 raise;
 END;
END get_entire_error_stack_pkg;
/

BEGIN
 get_entire_error_stack_pkg.get_entire_error_stack;
END;
/

The preceding code prints out the MLE JavaScript exception stack trace before raising the
original error:

h(USER1.CATCH_AND_PRINT_ERROR_STACK:10)
g(USER1.CATCH_AND_PRINT_ERROR_STACK:6)
f(USER1.CATCH_AND_PRINT_ERROR_STACK:2)
BEGIN
*
ERROR at line 1:
ORA-04161: Error: An error occurred in h()
ORA-06512: at "USER1.GET_ENTIRE_ERROR_STACK_PKG", line 25
ORA-04171: at h (USER1.CATCH_AND_PRINT_ERROR_STACK:10:11)
ORA-06512: at "USER1.GET_ENTIRE_ERROR_STACK_PKG", line 11
ORA-06512: at "USER1.GET_ENTIRE_ERROR_STACK_PKG", line 18
ORA-06512: at line 2

• Errors in Callouts
Database errors raised during callouts to SQL and PL/SQL via the MLE SQL driver are
automatically converted to JavaScript exceptions.

• Accessing stdout and stderr from JavaScript
MLE provides functionality to access data written to standard output and error streams
from JavaScript code.

Chapter 9
Error Handling in MLE

9-12

Errors in Callouts
Database errors raised during callouts to SQL and PL/SQL via the MLE SQL driver are
automatically converted to JavaScript exceptions.

For most database errors, JavaScript code can catch and handle these exceptions as usual.
However, exceptions resulting from critical database errors cannot be caught. This includes:

• Internal database errors (ORA-0600)

• Fatal database errors (ORA-0603)

• Errors triggered due to resource limits being exceeded (ORA-04036)

• User interrupts (ORA-01013)

• System errors (ORA-7445)

Exceptions resulting from database errors that are either not caught or are re-signaled cause
the original database error to be raised in addition to an MLE runtime error (ORA-04161). You
can retrieve the JavaScript stack trace for such exceptions using
DBMS_MLE.get_error_stack() just like with other runtime errors.

Accessing stdout and stderr from JavaScript
MLE provides functionality to access data written to standard output and error streams from
JavaScript code.

Within a database session, these streams can be controlled individually for each database
user, MLE module, and dynamic MLE context. In each case, a stream can be:

• Disabled,

• Redirected to DBMS_OUTPUT, or

• Redirected to a user provided CLOB

• Accessing stdout and stderr for MLE Modules
The DBMS_MLE PL/SQL package provides the procedures set_stdout() and set_stderr()
to control the standard output and error streams for each MLE module context.

• Accessing stdout and stderr for Dynamic MLE
The procedures DBMS_MLE.set_ctx_stdout() and DBMS_MLE.set_ctx_stderr() are used
to redirect stdout and stderr for dynamic MLE contexts.

Accessing stdout and stderr for MLE Modules
The DBMS_MLE PL/SQL package provides the procedures set_stdout() and set_stderr() to
control the standard output and error streams for each MLE module context.

Alternatively, stdout can be redirected to DBMS_OUTPUT using the function
DBMS_MLE.set_stdout_to_dbms_output(). The DBMS_MLE package provides an analogous
function fore redirection stderr: DBMS_MLE.set_stderr_to_dbms_output().

stdout and stderr can be disabled for a module at any time by calling
DBMS_MLE.disable_stdout() and DBMS_MLE.disable_stderr() respectively.

By default, stdout and stderr are redirected to DBMS_OUTPUT.

Chapter 9
Error Handling in MLE

9-13

Note that the CURRENT_USER from an MLE function exported by the given MLE module may
change depending on the CURRENT_USER when the function was called and whether the function
is invoker's rights or definer's rights. A call to DBMS_MLE.set_stdout() or
DBMS_MLE.set_stderr() by a database user, say user1, only redirects the appropriate stream
when code in the MLE module executes with the privileges of user1.

In other words, one database user cannot ordinarily control the behavior of stdout and stderr
for execution of an MLE module's code on behalf of another user.

All of these procedures take a module name and optionally an environment name as first and
second arguments. This identifies the execution context whose output should be redirected.
Omitting the environment name targets contexts using the base environment. Additionally,
set_stdout and set_stderr take a user-provided CLOB as the last argument, specifying
where the output should be written to.

Example 9-8 Redirect stdout to CLOB and DBMS_OUTPUT for MLE Module

Consider the following JavaScript module:

CREATE OR REPLACE MLE MODULE hello_mod
LANGUAGE JAVASCRIPT AS
 export function hello() {
 console.log('Hello, World from MLE!');
 }
/

The following call specification makes the exported function hello() available for calling from
PL/SQL code.

CREATE OR REPLACE PROCEDURE MLE_HELLO_PROC
AS MLE MODULE hello_mod SIGNATURE 'hello';
/

The code below redirects stdout for the module hello_mod to a CLOB that can be examined
later:

SET SERVEROUTPUT ON;
DECLARE
 l_output_buffer CLOB;
BEGIN
 -- create a temporary LOB to hold the output
 DBMS_LOB.CREATETEMPORARY(l_output_buffer, false);

 -- redirect stdout to a CLOB
 DBMS_MLE.SET_STDOUT('HELLO_MOD', l_output_buffer);

 -- run the code
 MLE_HELLO_PROC();

 -- retrieve the output buffer
 DBMS_OUTPUT.PUT_LINE(l_output_buffer);
END;
/

Chapter 9
Error Handling in MLE

9-14

Executing the above produces the following output:

Hello, World from MLE!

Alternatively, stdout can be redirected to DBMS_OUTPUT using the function
DBMS_MLE.SET_STDOUT_TO_DBMS_OUTPUT():

SET SERVEROUTPUT ON;
BEGIN
 DBMS_MLE.SET_STDOUT_TO_DBMS_OUTPUT('HELLO_MOD');
 MLE_HELLO_PROC();
END;
/

This produces the same output as before:

Hello, World from MLE!

Accessing stdout and stderr for Dynamic MLE
The procedures DBMS_MLE.set_ctx_stdout() and DBMS_MLE.set_ctx_stderr() are used to
redirect stdout and stderr for dynamic MLE contexts.

The DBMS_MLE package similarly provides the procedures set_ctx_stdout_to_dbms_output()
and set_ctx_stderr_to_dbms_output() to redirect stdout and stderr for dynamic MLE
contexts to DBMS_OUTPUT.

A call to one of these functions redirects the appropriate stream for all dynamic MLE code
executing within the context. However, any calls to MLE functions via the MLE SQL driver use
the redirection effect for the MLE module that implement the function.

Example 9-9 Redirect stdout to CLOB and DBMS_OUTPUT for Dynamic MLE

SET SERVEROUTPUT ON;
DECLARE
 l_ctx DBMS_MLE.context_handle_t;
 l_snippet CLOB;
 l_output_buffer CLOB;
BEGIN
 -- allocate the execution context and the output buffer
 l_ctx := DBMS_MLE.create_context();
 DBMS_LOB.CREATETEMPORARY(l_output_buffer, false);

 -- redirect stdout to a CLOB
 DBMS_MLE.SET_CTX_STDOUT(l_ctx, l_output_buffer);

 -- a bit of JavaScript code printing to the console
 l_snippet := 'console.log("Hello, World from dynamic MLE!")';

 -- execute the code snippet
 DBMS_MLE.eval(l_ctx, 'JAVASCRIPT', l_snippet);

 -- drop the execution context and print the output
 DBMS_MLE.drop_context(l_ctx);

Chapter 9
Error Handling in MLE

9-15

 DBMS_OUTPUT.PUT_LINE(l_output_buffer);
END;
/

This produces the following output:

Hello, World from dynamic MLE!

Chapter 9
Error Handling in MLE

9-16

10
MLE Security

MLE utilizes a number of methods to support good security practices. This includes enforcing
runtime state isolation, system and object privileges, and providing monitoring options.

Topics

• System and Object Privileges Required for Working with JavaScript in MLE
Depending on the project's requirements, different privileges can be granted to users and
or roles, allowing them to interact with JavaScript in the database.

• Security Considerations for MLE
Besides the use of account privileges, MLE employs several other methods to ensure a
high level of security.

• JavaScript Security Best Practices
Details concerning the best practices when using features of MLE with JavaScript are
described.

• MLE Security Examples
Example scenarios are used to demonstrate security features used by MLE. The examples
use a varying degree of separation between MLE modules, environments, and the
necessary grants to enable the utilized functionality.

System and Object Privileges Required for Working with
JavaScript in MLE

Depending on the project's requirements, different privileges can be granted to users and or
roles, allowing them to interact with JavaScript in the database.

Administrators should review application requirements carefully and only grant the minimum
number of privileges necessary to users. This is especially true for system privileges, which are
very powerful and should only be granted to trusted users.

The minimum privilege required to work with MLE JavaScript code is the right to execute
JavaScript code in the database. MLE distinguishes between dynamic MLE execution based
on DBMS_MLE and MLE execution using MLE modules and environments.

Creating stored code in JavaScript requires additional privileges to create JavaScript schema
objects in your own schema.

The most powerful privileges available in MLE allow super-users to create, alter, and drop MLE
schema objects in any schema, not just their own. As with all privileges in Oracle Database,
those with ANY in their name are most powerful and should only be granted to trusted users if
deemed absolutely necessary.

10-1

Note:

Object privileges on modules and environments do not grant access to an
application, for example, the combination of source code and user context defined by
a call specification (or through DBMS_MLE). This is achieved by granting access to the
procedure or function object of the call specification.

See Also:

• Necessary Privileges for Creating MLE Modules and Environments in ANY
Schema for more about handling system privileges

• Oracle Database Security Guide for more information about privileges in the
Oracle Database

Topics

• Necessary Privileges for the Execution of JavaScript Code

• Necessary Privileges for Using the NoSQL API

• Necessary Privileges for Creating MLE Schema Objects

• Necessary Privileges for Creating MLE Modules and Environments in ANY Schema

• Necessary Privileges for Post-Execution Debugging

Necessary Privileges for the Execution of JavaScript Code
Before you can execute any JavaScript code in your own schema, the following object grant
must have been issued to your user account:

GRANT EXECUTE ON JAVASCRIPT TO <role | user>

The EXECUTE ON JAVASCRIPT privilege does not include dynamic execution of JavaScript using
DBMS_MLE. If you wish to make use of DBMS_MLE, an additional privilege is required:

GRANT EXECUTE DYNAMIC MLE TO <role | user>

Necessary Privileges for Using the NoSQL API
In cases where MLE JavaScript code references the Simple Oracle Document Access
(SODA), the SODA_APP role must be granted to the user or role:

GRANT SODA_APP <role | user>

Chapter 10
System and Object Privileges Required for Working with JavaScript in MLE

10-2

Necessary Privileges for Creating MLE Schema Objects
If you wish to create MLE modules and environments in your own schema, further system
privileges are required:

GRANT CREATE MLE TO <role | user>

In case any MLE module is to be exposed to the database's SQL and PL/SQL layers in the
form of call specifications, you also require the right to create PL/SQL procedures:

GRANT CREATE PROCEDURE TO <role | user>

It is highly likely that you will require further system privileges, depending on your use case, to
create additional schema objects such as tables, indexes, and sequences. Beginning with
Oracle Database 23ai, the DB_DEVELOPER_ROLE role allows administrators to grant the
necessary privileges to developers in their local development databases quickly. The role can
be granted as shown in the following snippet:

GRANT DB_DEVELOPER_ROLE TO <role | user>

See Also:

Oracle Database Security Guide for more information about the DB_DEVELOPER_ROLE
role

Necessary Privileges for Creating MLE Modules and Environments in ANY
Schema

Additional privileges can be granted to power users and administrators, allowing them to
create, alter, and drop MLE schema objects in any schema.

GRANT CREATE ANY MLE TO <role | user>
GRANT DROP ANY MLE TO <role | user>
GRANT ALTER ANY MLE TO <role | user>

As with all privileges in Oracle Databases featuring ANY in their name, these are very powerful
and should only be granted after a thorough investigation to trusted users. For this reason, only
the DBA role and the SYS account have been granted these privileges. The use of these system
privileges is audited by the ORA_SECURECONFIG audit policy.

To create MLE call specifications in schemas other than your own requires the right to CREATE
ANY PROCEDURE to be granted as well:

GRANT CREATE ANY PROCEDURE TO <role | user>

Chapter 10
System and Object Privileges Required for Working with JavaScript in MLE

10-3

Just like the previously listed system privileges, CREATE ANY PROCEDURE is audited by the same
audit policy, ORA_SECURECONFIG.

See Also:

Oracle Database Security Guide for more information about the ORA_SECURECONFIG
audit policy

Necessary Privileges for Post-Execution Debugging
It is possible to allow other database users to collect debug information for MLE modules they
don't own. By default, MLE owners can use post-execution debugging on their own MLE
modules without specific grants. It is possible to grant the ability to collect debug information to
a different role or user, allowing them to use post-execution debugging of JavaScript code on
your behalf as the module owner:

GRANT COLLECT DEBUG INFO ON <module> TO <role | user>

Note:

You can elect to grant the execute privilege on MLE module calls created as PL/SQL
code with definer's rights to users in other schemas. In this case, there is no need to
grant other users any additional privileges.

Note:

Object privileges on modules and environments do not grant access to an
application, for example, the combination of source code and user context defined by
a call specification (or through DBMS_MLE). This is achieved by granting access to the
procedure or function object of the call specification.

See Also:

Post-Execution Debugging of MLE JavaScript Modules for more information on post-
execution debugging

Security Considerations for MLE
Besides the use of account privileges, MLE employs several other methods to ensure a high
level of security.

Topics

• MLE_PROG_LANGUAGES Initialization Parameter

Chapter 10
Security Considerations for MLE

10-4

• Execution Contexts

• Runtime State Isolation

• Database Security Model

• Considerations for Using MLE Call Specifications and Modules from Different Schemas

• Auditing MLE Operations in Oracle Database

MLE_PROG_LANGUAGES Initialization Parameter
A new initialization parameter, MLE_PROG_LANGUAGES, allows administrators to enable and
disable Multilingual Engine completely or selectively enable certain languages. It takes the
values ALL, JAVASCRIPT, or OFF and it can be set at multiple levels:

• Container Database (CDB)

• Pluggable Database (PDB)

• Database session

If the parameter is set to OFF at CDB level, it cannot be enabled at PDB or session level. The
same logic applies for PDB and session level: if MLE is disabled at the PDB level, it cannot be
enabled at session level.

Note:

In Oracle Database 23ai, MLE supports JavaScript as its sole language. Setting the
parameter to ALL or JAVASCRIPT has the same effect.

Note:

Setting MLE_PROG_LANGUAGES to OFF prevents the execution of JavaScript code in the
database, it does not prevent the creation or modification of existing code.

See Also:

Oracle Database Reference for more information about MLE_PROG_LANGUAGES

Execution Contexts
When executing JavaScript code in the database, MLE uses execution contexts to isolate
runtime state such as global variables and other important information. Execution contexts are
created implicitly when using modules and environments and explicitly when using DBMS_MLE.

Regardless of the choice of JavaScript invocation, execution contexts are designed to prevent
information leak.

The scope of JavaScript state never exceeds the lifetime of a database session. As soon as
the session ends, either gracefully or forcefully, session state is discarded. If state needs to be

Chapter 10
Security Considerations for MLE

10-5

preserved between sessions, you must persist it by storing it in a schema. If needed, state can
be discarded by calling DBMS_SESSION.reset_package().

As an additional security measure, you can optionally specify the use of a restricted execution
context, which disallows access to the database state. The PURE keyword is used in the
creation of environments and in inline call specifications to indicate the use of a restricted
context. An environment created using PURE can be referenced in module call specifications
and using DBMS_MLE. PURE execution serves as a method to isolate certain code, such as
third-party JavaScript libraries, from the database itself. This isolation can reduce the attack
surface of supply chain attacks, in which access to the database state is a security concern.

See Also:

• About Restricted Execution Contexts for more information about the PURE
keyword and restricted contexts

• Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS_SESSION

Runtime State Isolation
An MLE call specification is a PL/SQL unit referencing a function in an MLE module with an
optional MLE environment attached. When you invoke a call specification in a session, the
corresponding MLE module is loaded, the optional environment is applied, and the function
specified in the call specification's signature clause is executed.

Before execution can begin, a corresponding execution context must be created (implicitly).
Whether a new execution context is created or an existing context is reused depends on
multiple factors, specifically:

• The MLE module referenced in the call specification

• The corresponding MLE environment

• The database user executing the call specification

Separate execution contexts are created to prevent information leak as well as undesired side
effects such as global variables in a module being overwritten by accident.

With each invocation of a call specification, additional execution contexts are created. This is
done so that modules cannot interfere with one another.

The main criteria for creating execution contexts in a user session are the MLE module name
and the corresponding MLE environment. Call specifications referring to different combinations
of MLE module and environment lead to different individual execution contexts being created.

Further separation between execution contexts is performed based on the user invoking the
call specification.

Example 10-1 Runtime State Isolation Scenario

This example provides a sample scenario for runtime state isolation. Database user USER1
creates the following MLE schema objects:

CREATE OR REPLACE MLE MODULE isolationMod LANGUAGE JAVASCRIPT AS

Chapter 10
Security Considerations for MLE

10-6

let id; // global variable

export function doALotOfWork() {
 // a dummy function simulating a lot of work
 // the focus is on modifying a global variable

 id = 10;
}

export function getId() {

 return (id === undefined ? -1 : id)
}
/

CREATE OR REPLACE MLE ENV isolationEnv;

CREATE OR REPLACE PACKAGE context_isolation_package AS

 -- initialise runtime state
 procedure doALotOfWork as
 mle module isolationMod
 signature 'doALotOfWork()';

 -- access a global variable (part of session state)
 function getId return number as
 mle module isolationMod
 signature 'getId()';

 -- same function signature as before but referencing an environment
 function getIdwEnv return number as
 mle module isolationMod
 env isolationEnv
 signature 'getId()';
END;
/

When USER1, the owner of the MLE module, environment, and call specification (package),
calls context_isolation_package.doALotOfWork(), the global variable (id) is initialized to 10.

BEGIN
 context_isolation_package.doALotOfWork();
END;
/

Because context_isolation_package.getId() references the same MLE module and the
same (default) environment as context_isolation_package.doALotOfWork(), the user's
session has access to the global variable:

SELECT CONTEXT_ISOLATION_PACKAGE.getId;

 GETID

 10

Chapter 10
Security Considerations for MLE

10-7

When the combination of user, MLE module, and environment change, a new execution
context is created. Although context_isolation_package.getIdwEnv() references the same
MLE module as getID() and the user doesn't change, the function cannot retrieve the value of
the global variable from the previously created execution context:

SELECT CONTEXT_ISOLATION_PACKAGE.getIdwEnv;

 GETIDWENV

 -1

A value of -1 indicates that the global variable in the JavaScript module was found to be
uninitialized.

If USER1, as the owner of the MLE call specification, grants the execute privilege on the
package to another user, let's say USER2, a different execution context is created for USER2
even though the same function is called:

GRANT EXECUTE ON CONTEXT_ISOLATION_PACKAGE TO user2;

When USER2 tries to read the value of the ID, a new context is created and the return value
indicating an uninitialized context is returned:

SELECT user1.CONTEXT_ISOLATION_PACKAGE.getid;

 GETID

 -1

In this example, module and environment are identical between USER1 and USER2 as per the
call specification. However, the fact that the function is called by a different user causes a new
execution context to be created.

Database Security Model
The fewer privileges granted to program units, accounts, and roles, the less likely it is for them
to be misused. As with every application, the principle of granting only the minimum number of
necessary privileges should be followed. This is especially true in higher-tier environments like
production. Technologies such as Privilege Analysis can be used to track down unnecessary
privileges, allowing you to revoke them after careful regression testing.

Each MLE call specification is created within its own security context. The context includes
information such as:

• The value of the AUTHID clause (definer or invoker)

• Whether or not privileges are inherited in invoker's rights calls

• Code Based Access Control

• Current user

• The qualified schema name

• Enabled Roles and Privileges in the absence of code based access control (CBAC) and
invoker's rights

Chapter 10
Security Considerations for MLE

10-8

The combination of these attributes forms the security context of a code unit such as a MLE
call specification or module. Note that no such security context exists for the JavaScript code
stored in an MLE module.

PL/SQL allows you to easily change these attributes for each PL/SQL unit. A procedure can be
executed with the invoker's rights or the definer's rights, roles can be attached to PL/SQL units,
and cross-schema (execute) grants are commonplace. With each execution of a PL/SQL unit
the security context may potentially change. This applies equally to MLE call specifications.

The situation is different with JavaScript code: the security context does not change for
JavaScript-to-JavaScript calls. JavaScript functions do not have any notion of associated
invoker's or definer's rights, or roles granted on the function itself. All of these apply only to
(PL/SQL) call specifications.

JavaScript executed using DBMS_MLE is a little more strict when it comes to its security context.
The combination of currently active user, roles/privileges, and schema in effect are recorded at
the time the execution context is created by calling DBMS_MLE.create_context(). This
combination must not change until the JavaScript code is executed and the context is
removed, or else an error is thrown.

See Also:

Oracle Database Security Guide for more information about Privilege Analysis

Considerations for Using MLE Call Specifications and Modules from
Different Schemas

The same consideration that is used for other database applications written in, for example,
PL/SQL apply for MLE JavaScript code as well. If a user is granted access to execute code
from a schema other than their own, care needs to be taken to ensure the extent to which the
code can use privileges of the calling user is appropriate.

Unlike PL/SQL, MLE JavaScript code stored in an MLE module is not associated with a
particular set of roles, or any other notion of determining the security context in which the
JavaScript code executes. From a high-level view, there are two important cases for cross-
schema use of privileges:

1. USER1 invokes a call specification located in USER2's schema. The AUTHID clause of the call
specification in USER2's schema determines whether the code owned by USER2's schema
executes with the privileges of the invoker (USER1) or definer (USER2). In case of an
invoker's rights call specification, potentially attached roles (CBAC) and the setting of
INHERIT PRIVILEGES determine the active roles and privileges in addition to those granted
by USER1 by roles or direct grants.

2. USER1 creates a call specification CallSpec_A for a module Module_A owned by USER1.
CallSpec_A imports a JavaScript module Module_B owned by a different schema, USER2.
The JavaScript code in Module_B is imported into an execution context created for USER1's
call specification CallSpec_A. The JavaScript code in Module_B executes with the same
privileges as any other JavaScript code in this execution such as in Module_A. USER1 must
ensure that the code in Module_B is trustworthy and appropriate to execute with these
privileges.

Chapter 10
Security Considerations for MLE

10-9

See Also:

Oracle Database Security Guide for more information about roles in definer's rights
and invoker's rights PL/SQL units

Auditing MLE Operations in Oracle Database
Auditing is the monitoring and recording of configured database actions. As with any other
auditable operations in Oracle Database, the use of MLE-related system privileges can be
recorded.

Oracle provides the ORA_SECURECONFIG audit policy with the database. Starting with Oracle
Database 23ai, the audit policy includes the use of the following MLE system privileges:

• CREATE ANY MLE
• ALTER ANY MLE
• DROP ANY MLE
Administrators and security teams need to create and enable additional security policies if
auditing the creation of MLE schema objects, including MLE modules, environments, and call
specifications, is desired.

See Also:

Oracle Database Security Guide for more information about auditing in Oracle
Database

JavaScript Security Best Practices
Details concerning the best practices when using features of MLE with JavaScript are
described.

Topics

• Using Bind Variables for Security and Performance

• Generic Database and PL/SQL Specific Security Considerations

• Supply Chain Security

• Software Bill of Material

• Using the Database to Store State

• Disabling Multilingual Runtime

Using Bind Variables for Security and Performance
The MLE JavaScript SQL driver allows you to use string concatenation to build SQL
commands, including the predicates used in queries and DML statements. It is strongly
recommended to avoid this bad practice as it is a major source for SQL injection attacks. Not

Chapter 10
JavaScript Security Best Practices

10-10

only is the use of bind variables in SQL statements more secure than string concatenation but
it is also more efficient as it allows the database to reuse the cursor in the shared pool.

If it is not possible to avoid the creation of dynamic SQL, ensure that you validate input to your
code and scan for malicious content. The built-in DBMS_ASSERT package provides a wealth of
functions designed to mitigate against SQL injection attacks. It does not offer complete
protection but its use is very much recommended as it allows you to verify the following:

• The input string is a qualified SQL name

• The input string is an existing schema name

• The input string is a simple SQL name

• The input parameter string is a qualified SQL identifier of an existing SQL object

The use of bind variables for better security and scalability is not limited to a single
programming language such as JavaScript, it equally applies to every development project
using Oracle Database.

See Also:

• Server-Side JavaScript API Documentation for information about using bind
variables with mle-js-oracledb

• Oracle Database Development Guide for more details regarding bind variables
and their impact on performance and security

Example 10-2 Using Bind Variables Rather than String Concatenation

In this example, the SELECT statement accepts a bind variable rather than concatenation the
input variable, managerID, to the SQL command.

CREATE OR REPLACE MLE MODULE select_bind LANGUAGE JAVASCRIPT AS

import oracledb from "mle-js-oracledb";

export function numEmployeesByManagerID(managerID) {

 const conn = oracledb.defaultConnection(managerID);
 const result = conn.execute(
 `SELECT count(*) FROM employees WHERE manager_id = :1`,
 [managerID]
);

 return result.rows[0][0];
}
/

Example 10-3 Use DBMS_ASSERT to Verify Valid Input

In this example, the function createTempTable() creates a private temporary table to hold
intermediate results from a batch process. The function takes a single argument: the name of

Chapter 10
JavaScript Security Best Practices

10-11

https://oracle-samples.github.io/mle-modules

the temporary table to be created (minus the prefix). The function checks if the parameter
passed to it is a valid SQL name.

CREATE OR REPLACE MLE MODULE dbms_assert_module LANGUAGE JAVASCRIPT AS

import oracledb from "mle-js-oracledb";

export function createTempTable(tableName) {
 const conn = oracledb.defaultConnection();
 let result;
 let validTableName;

 try {
 result = conn.execute(
 `SELECT dbms_assert.qualified_sql_name(:tableName)`,
 [tableName]
);
 validTableName = result.rows[0][0];
 } catch (err) {
 throw (`'${tableName}' is not a valid table name`);
 return;
 }

 result = conn.execute(
 `CREATE PRIVATE TEMPORARY TABLE ora\$ptt_${validTableName} (id number)`
);
}
/

If the table name passed to the function passes the test, it is then used to create a private
temporary table using the default private_temp_table_prefix.

Generic Database and PL/SQL Specific Security Considerations
Because all JavaScript code is accessed eventually via a PL/SQL call specification, it is
important to understand the implications of using PL/SQL as well. The following concepts are
of particular importance:

• The difference between invoker's rights and definer's rights

• Code Based Access Control (CBAC)

• The impact of INHERIT PRIVILEGES in invoker's rights code

• Role grants and direct grants, both object as well as system privileges

You should always aim to only require the minimum security privileges (object and system) for
JavaScript code to execute. This is especially important when you consider the use of external
third-party JavaScript code.

Administrators should consider the use of encryption for both data at rest as well as data in
motion.

Chapter 10
JavaScript Security Best Practices

10-12

See Also:

• Oracle Database Security Guide for more information about generic database-
related security aspects

• Oracle Database Transparent Data Encryption Guide for information about
encrypting data at rest using Transparent Data Encryption (TDE)

Supply Chain Security
Access to the rich community ecosystem is one of the advantages of using JavaScript in
Oracle Database. Rather than creating functionality in-house and potentially duplicating effort,
existing JavaScript can be used instead. While this is a convenient method for developing
applications, it comes with certain risks.

In past years, the term supply chain attach has been used to describe the fact that certain
popular open-source JavaScript modules have been abandoned by the original maintainers.
Bad actors have taken some of these projects, becoming maintainers but only to inject
malicious code into the source. The next time a project references such a compromised
module, they incorporate the malicious code.

The same principles applied to client-side development apply to server-side development with
MLE. Developers and security teams must be aware that code in the application executes with
potentially elevated privileges. These can be abused by malicious code to compromise
confidentiality, integrity, and availability properties of the application. For that reason, extra care
must be taken to ensure third-party code is trustworthy and that the minimum number of
privileges is granted to it. Many companies have a dedicated security team for vetting open-
source modules prior to granting their approval to use them. At the very least, you should audit
the JavaScript code that you are about to include in your project and document the result.

It is possible to lock a given version of an open-source module using a mechanism like the
package-lock.json file so as not to get caught out if a new version of a module is distributed.
Automatically pulling the latest version of an external code dependency is bad practice and
should always be avoided.

In the case of JavaScript in MLE, JavaScript code executes with the database privileges that
are in effect for the associated execution context. JavaScript code can retrieve and modify data
stored in the database according to these privileges. Malicious code can leverage these
privileges to modify the database in an inappropriate manner.

As a consequence, be sure to grant the privileges to create MLE modules carefully and only
grant these in environments where they are essential. If possible, avoid granting the [CREATE |
ALTER | MODIFY] ANY system privileges at all.

You should also review the INHERIT PRIVILEGES settings in the context of invoker's rights
procedures. Once the settings for INHERIT PRIVILEGES are reviewed and secured according to
industry best practice, consider the use of invoker's rights for MLE call specifications.

Additional higher levels of security for invoker's rights procedures can be achieved by
implementing code based access control (CBAC). Using CBAC, developers can associate
roles to PL/SQL units without having to elevate the privileges of the schema or invoker.

Chapter 10
JavaScript Security Best Practices

10-13

See Also:

Oracle Database Security Guide for details about the INHERIT PRIVILEGES privilege

Software Bill of Material
Every project relying on external code in projects is strongly encouraged to maintain a record
of all software components (including versions) that are bundled in a deployed application
artifact.

The software bill of material (SBOM) is the key tool to use when reacting swiftly to a newly
published vulnerability is of utmost importance. Exploits are almost guaranteed to be used
immediately after a vulnerability has been published. Knowing exactly which version of a third-
party library is in use allows you to save crucial time in preparing a response.

In addition to storing the actual code, MLE modules feature a metadata field that can be used
to store arbitrary metadata with the module. In particular, it can be used to store an SBOM that
describes all JavaScript libraries bundled in the module. The field is not interpreted by the MLE
runtime. Content and format are entirely up to you.

See Also:

MLE JavaScript Modules and Environments for more information about creating MLE
modules and providing metadata to them

Using the Database to Store State
Applications written using MLE JavaScript code should not deviate from established patterns
such as storing application state in tables. This allows you to make the best use of the rich
number of security features available for Oracle Database.

In particular, you should not rely on JavaScript state that exceeds the boundaries of one stored
procedure or function call.

Oracle Database has great support for JSON, offering both a relational as well as a NoSQL
API. The database's JSON API is a natural candidate for MLE JavaScript code to store state.
Storing state in Oracle Database provides a better programming model than application state,
especially when it come to data persistence and transactional consistency.

See Also:

Oracle Database JSON Developer’s Guide for information about using JSON with
Oracle Database

Chapter 10
JavaScript Security Best Practices

10-14

Example 10-4 Using Bind Variables Rather than String Concatenation

In this example, the SELECT statement accepts a bind variable rather than concatenation the
input variable, managerID, to the SQL command.

CREATE OR REPLACE MLE MODULE select_bind LANGUAGE JAVASCRIPT AS

import oracledb from "mle-js-oracledb";

export function numEmployeesByManagerID(managerID) {

 const conn = oracledb.defaultConnection(managerID);
 const result = conn.execute(
 `SELECT COUNT(*) FROM employees WHERE manager_id = :1`,
 [managerID]
);

 return result.rows[0][0];
}
/

Example 10-5 Use DBMS_ASSERT to Verify Valid Input

In this example, the function createTempTable() creates a private temporary table to hold
intermediate results from a batch process. The function takes a single argument: the name of
the temporary table to be created (minus the prefix). The function checks if the parameter
passed to it is a valid SQL name.

CREATE OR REPLACE MLE MODULE dbms_assert_module LANGUAGE JAVASCRIPT AS

import oracledb from "mle-js-oracledb";

export function createTempTable(tableName) {
 const conn = oracledb.defaultConnection();
 let result;
 let validTableName;

 try {
 result = conn.execute(
 `SELECT dbms_assert.qualified_sql_name(:tableName)`,
 [tableName]
);
 validTableName = result.rows[0][0];
 } catch (err) {
 throw (`'${tableName}' is not a valid table name`);
 return;
 }

 result = conn.execute(
 `CREATE PRIVATE TEMPORARY TABLE ora\$ptt_${validTableName} (id number)`
);
}
/

Chapter 10
JavaScript Security Best Practices

10-15

If the table name passed to the function passes the test, it is then used to create a private
temporary table using the default private_temp_table_prefix.

Disabling Multilingual Runtime
In the case where a security vulnerability is detected in JavaScript code, you can prevent
JavaScript code from execution by disabling the JavaScript runtime. Setting the initialization
parameter MLE_PROG_LANGUAGES to OFF does not stop the database from accepting new code
(such behavior prevents the implementation of a code fix) but it does stop anyone from
executing JavaScript code.

Applications should be written with that option in mind. Once the MLE runtime is disabled, an
error is thrown. Rather than showing the raw error to the end user, a more accessible error
message should be created.

Although JavaScript does not have a specific lockdown feature, using the MLE_PROG_LANGUAGES
parameter allows you to disable the MLE runtime at the session, PDB (lockdown profiles
operate at this level), or CDB level. The COMMON_SCHEMA_ACCESS feature bundle in the lockdown
profile can be used to disable MLE DDL.

MLE Security Examples
Example scenarios are used to demonstrate security features used by MLE. The examples use
a varying degree of separation between MLE modules, environments, and the necessary
grants to enable the utilized functionality.

Note that the examples are not fully usable on their own. The actual JavaScript code is not as
important as the application's structure, such as:

• The schemas in which the code is located

• The call specification's syntax

• The roles and privileges granted

Topics

• Business Logic Stored in MLE Modules
In this scenario, a user provides functionality implemented in JavaScript that is bound to a
particular schema and relies on being executed as a particular user with certain privileges.

• Generic Data Processing Libraries
In this scenario, generic JavaScript functionality is logically grouped inside a database
schema. The JavaScript code is neither functionally nor logically tied to any existing
database objects. In other words, the processing logic is stateless.

• Generic Libraries in Business Logic
This scenario utilizes business logic contained in a single schema and extends
functionality using generic libraries.

Business Logic Stored in MLE Modules
In this scenario, a user provides functionality implemented in JavaScript that is bound to a
particular schema and relies on being executed as a particular user with certain privileges.

This scenario covers the typical case of a back-end application centered around a single
schema containing all necessary tables, indices, etc. Most importantly, the business logic is
implemented as stored code in the database.

Chapter 10
MLE Security Examples

10-16

The JavaScript implementation in the form of MLE modules and an MLE environment is
encapsulated in a single schema. Access to the functionality is only exposed using MLE call
specifications based on one or multiple modules. Users of the application are granted execute
privileges on (PL/SQL) call specifications only. No further privileges on MLE modules and
environment are granted, nor are they necessary.

Consequently, the owner of the MLE modules controls access to the application through the
AUTHID clause attached to the MLE call specifications. The pseudo-code in Example 10-6
demonstrates this scenario.

Example 10-6 Business Logic Stored in MLE Modules

In this example, the application schema is referred to as APP_OWNER. Note how MLE modules
and environments are restricted to the APP_OWNER schema.

-- MLE Module containing helper functions commonly used by the application
CREATE MLE MODULE app_owner.helper_module LANGUAGE JAVASCRIPT AS

export function setDebugLevel(level) {
 // ... JavaScript code ...
}

// ... additional functionality ...
/

-- An MLE Environment allowing other MLE Modules to import the helper module
CREATE MLE ENV app_owner.helper_module_env IMPORTS (
 'helperModule' module helper_module
);

-- The main application module imports the helper module for common tasks
CREATE MLE MODULE app_owner.orders_module LANGUAGE JAVASCRIPT AS

import { setDebugLevel } from "helperModule";

export function newOrder() {

setDebugLevel("INFO");
 // ... JavaScript code ...
}

export function delivery() {
 setDebugLevel("WARN");
 // ... JavaScript code ...
}

// ... additional functionality ...
/

-- The call specification is all the end users need to be granted
-- access to. The execute privilege to this definer's rights procedure
-- (created and executed with the app_owner’s database privileges)
-- is all that needs granting to the application role.

CREATE app_owner.package orders_pkg AS

 PROCEDURE new_order AUTHID DEFINER AS

Chapter 10
MLE Security Examples

10-17

 MLE MODULE orders_module
 ENV helper_module_env
 SIGNATURE 'newOrder()';

 PROCEDURE delivery AUTHID DEFINER AS
 MLE MODULE orders_module
 ENV helper_module_env
 SIGNATURE 'delivery()';

END order_pkg;
/

GRANT EXECUTE ON app_owner.package orders_pkg TO app_role;

Generic Data Processing Libraries
In this scenario, generic JavaScript functionality is logically grouped inside a database schema.
The JavaScript code is neither functionally nor logically tied to any existing database objects.
In other words, the processing logic is stateless.

As there is no relation to any database schema objects such as tables or views, object grants
are of no concern. The JavaScript code purely transforms functional arguments. Examples for
such libraries include machine learning code, image manipulation like scaling, cropping,
changes of resolution, etc. Other use cases include input validation or JSON processing.

The main purpose of the MLE modules deployed in such a fashion is to provide you with a
common set of JavaScript tools that can be used in your own applications. Therefore, there
aren't any pre-defined MLE call specifications provided. Instead, the schema containing these
modules grants the execute privilege on MLE modules. It is up to the grantee to define MLE
call specifications matching the use case. If necessary, MLE environments can be created
alongside the MLE modules with respective grants to developers wishing to use the
functionality created. Example 10-7 illustrates this scenario.

Example 10-7 Generic Data Processing Libraries

-- Common functionality potentially referenced by multiple applications
-- is grouped in a database schema. This particular MLE Module provides
-- input validation
CREATE MLE MODULE library_owner.input_validator_module
 LANGUAGE JAVASCRIPT USING BFILE(js_src_dir, 'input_validator.js');
/

-- Another MLE module provides common machine learning functionality
CREATE MLE MODULE library_owner.commom_ml_module
 LANGUAGE JAVASCRIPT USING BFILE(js_src_dir, 'commom_ml_lib.js');
/

-- Rather than a Call Specification as demonstrated in Example 10-6,
-- this time the MLE Modules themselves are exported for use
-- in a different schema: frontend_app
GRANT EXECUTE ON library_owner.input_validator_module TO frontend_app;
GRANT EXECUTE ON library_owner.commom_ml_module TO frontend_app;

-- frontend_app makes explicit use of a select few functions exported
-- by the MLE modules
CREATE PACKAGE input_validator_pkg AS

Chapter 10
MLE Security Examples

10-18

 FUNCTION checkEMail(p_email VARCHAR2) RETURN BOOLEAN AS
 MLE MODULE library_owner.input_validator_module
 SIGNATURE 'checkEmail(string)';

 FUNCTION checkZIPCode(p_zipcode VARCHAR2) RETURN BOOLEAN AS
 MLE MODULE library_owner.input_validator_module
 SIGNATURE 'checkZIPCode(string)';

 -- additional functionality ...
END;
/

The grouping of common, stateless JavaScript code is not limited to a single schema. Further
separation by feature, functionality, or maintainer is possible as well.

Generic Libraries in Business Logic
This scenario utilizes business logic contained in a single schema and extends functionality
using generic libraries.

This example extends the scenarios demonstrated by Example 10-6 and Example 10-7. It is
conceivable that the domain-specific business logic might require extension by common
functionality such as logging or debugging. The latter can be written generically so that other
applications can include it as well. There are numerous advantages to that approach including,
but not limited to a unified framework for auxiliary functions.

In Example 10-8, the business logic in the APP_OWNER's schema, defined in Example 10-6, is
extended with the previously introduced validation and machine learning functionality from
Example 10-7.

There is no "best way" to work with MLE modules and environments in the database. It always
depends on your particular use case. The included examples simply provide some background
on how application logic can be grouped or separated, depending on a project's needs.

Example 10-8 Use Generic Libraries in Business Logic

-- Centrally managed JavaScript code library in the LIBRARY_OWNER schema
CREATE MLE MODULE library_owner.commom_ml_module
 LANGUAGE JAVASCRIPT USING BFILE(js_src_dir, 'commom_ml_lib.js');
/

-- The grant makes the module available to APP_OWNER
GRANT EXECUTE ON library_owner.commom_ml_module TO app_owner;

-- Business logic in schema APP_OWNER makes use of the common ML library
CREATE MLE MODULE app_owner.helper_module LANGUAGE JAVASCRIPT AS

export function setDebugLevel(level) {
 // ... JavaScript code ...
}

// ... additional functionality ...
/

-- A generic MLE environment references both APP_OWNER's as well as

Chapter 10
MLE Security Examples

10-19

-- LIBRARY_OWNER's MLE modules
CREATE MLE ENV app_owner.all_dependencies_env imports (
 'helperModule' module helper_module
 'commonML' module library_owner.commom_ml_module
);

-- The main application module imports the helper module for common tasks
-- as well as the common machine learning module provided by LIBRARY_OWNER
CREATE MLE MODULE app_owner.orders_module LANGUAGE JAVASCRIPT AS

import { setDebugLevel } from "helperModule";
import { churnRate } from "commonML";

export function newOrder() {

 setDebugLevel("INFO");
 // ... JavaScript code ...
}

export function delivery() {
 setDebugLevel("WARN");
 // ... JavaScript code ...
}

export function estimateChurnRate() {

 // This function was imported from the common ML library
 // (an MLE module not stored in APP_OWNERs schema)
 const cr = churnRate();

 // ... JavaScript code ...
}

// ... additional functionality ...
/

-- the call specification is all the end-users need to be granted
-- access to. The execute privilege to this definer rights procedure
-- (created and executed with the app_owner’s database privileges)
-- is all that needs granting to the application role.

CREATE app_owner.package orders_pkg AS

 PROCEDURE new_order AUTHID DEFINER AS
 MLE MODULE orders_module
 ENV all_dependencies_env
 SIGNATURE 'newOrder()';

 PROCEDURE delivery AUTHID DEFINER AS
 MLE MODULE orders_module
 ENV all_dependencies_env
 SIGNATURE 'delivery()';

 FUNCTION estimateChurnRate AUTHID DEFINER AS
 MLE MODULE orders_module
 ENV all_dependencies_env

Chapter 10
MLE Security Examples

10-20

 SIGNATURE 'estimateChurnRate()';

END order_pkg;
/

Chapter 10
MLE Security Examples

10-21

A
MLE Type Conversions

Supported conversions between JavaScript and PL/SQL, SQL, and JSON data types.

JavaScript target types include both native JavaScript types as well as SQL wrapper types.
Supported SQL types are converted to the analogous JavaScript type by default where such a
natural counterpart exists. If a conversion is attempted and there is no corresponding
JavaScript type, conversion to a native JavaScript type is not supported and values are instead
converted to the corresponding SQL wrapper type by default.

Note:

MLE does not provide functionality to prevent information loss that might occur
between conversions from a customized database character representation to the
built-in string representation of JavaScript (UTF-16).

See Also:

• Server-Side JavaScript API Documentation for information about using mle-js-
bindings to change the default mappings when exchanging values between
PL/SQL and JavaScript

• Server-Side JavaScript API Documentation for information on how to use mle-
js-plsqltypes to create SQL wrapper types, such as OracleNumber

• Server-Side JavaScript API Documentation for information on using mle-js-
oracledb to override the default conversions (as seen in Table A-1) when
fetching column values from a SELECT statement

Date Conversions

JavaScript Date represents an instant (i.e., a single moment in time). Conversions can occur
between the instant type Date and PL/SQL types DATE and TIMESTAMP that do not have time
zone information. Conversions between instants on the JavaScript side and DATE and
TIMESTAMP on the other side are handled as follows:

• When converting a Date to a TIMESTAMP or DATE, the instant is converted to a timezone-
aware datatime value in the current session time zone. The local datatime portion of this
value is stored in the target DATE or TIMESTAMP value.

• To convert a TIMESTAMP or DATE to a timezone-aware Date, the source datetime value is
interpreted to be in the session time zone and is converted into an instant according to the
session time zone.

A-1

https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules
https://oracle-samples.github.io/mle-modules

Table A-1 Supported Mappings from SQL and PL/SQL Types to JavaScript Types

SQL Type JavaScript Types
(Bold Font Signifies Default)

NUMBER number
OracleNumber

BINARY_FLOAT number
BINARY_DOUBLE number
BINARY_INTEGER1 number
BOOLEAN boolean
VARCHAR2 string
NVARCHAR2 string
CHAR string
NCHAR string
CLOB OracleCLOB

string
NCLOB OracleCLOB

string
BLOB OracleBLOB

Uint8Array (TypedArray)

RAW Uint8Array (TypedArray)

DATE Date
OracleDate

TIMESTAMP Date
OracleTimestamp

TIMESTAMP WITH TIME ZONE Date
OracleTimestampTZ

TIMESTAMP WITH LOCAL TIME ZONE Date
OracleTimestampTZ

INTERVAL YEAR TO MONTH OracleIntervalYearToMonth
INTERVAL DAY TO SECOND OracleIntervalDayToSecond
NULL2 null
JSON any (object, array, null)3

1 Note that BINARY_INTEGER is a PL/SQL type and not supported in SQL. MLE only supports BINARY_INTEGER on PL/SQL interfaces.
2 Although not technically a type, MLE converts a SQL NULL value into a JavaScript null value and vice versa. This is so that JavaScript

can indicate to the database that a value passed into the database is absent (for example, the return value of a function or an IN bind in a
SQL statement).

3 See MLE JavaScript Support for JSON for details

Appendix A

A-2

Table A-2 Supported Mappings from JavaScript Types to SQL Types

JavaScript Type SQL Type

number
boolean
OracleNumber

NUMBER

number BINARY_FLOAT
number BINARY_DOUBLE
number
boolean

BINARY_INTEGER

number
OracleNumber
boolean

BOOLEAN

string VARCHAR2
string CHAR
string NCHAR
string NVARCHAR2
string
OracleCLOB

CLOB

string
OracleCLOB

NCLOB

string UROWID
Uint8Array
OracleBlob

BLOB

UintArray RAW
Date
OracleDate

DATE

Date
OracleTimestamp

TIMESTAMP

Date
OracleTimestampTZ

TIMESTAMP WITH (LOCAL) TIME ZONE

OracleIntervalYearToMonth INTERVAL YEAR TO MONTH
OracleIntervalDayToSecond INTERVAL DAY TO SECOND
null NULL (any supported SQL type)

Appendix A

A-3

Table A-2 (Cont.) Supported Mappings from JavaScript Types to SQL Types

JavaScript Type SQL Type

number
string
boolean
null
undefined
Date
Uint8Array
OracleNumber
OracleDate
OracleTimestamp
OracleTimestampTZ
OracleIntervalYearToMonth
OracleIntervalDayToSecond
object1

JSON2

1 JavaScript objects and arrays that do not match one of the classes listed above
2 See MLE JavaScript Support for JSON for details

• MLE JavaScript Support for JSON
Supported conversions between JavaScript and the JSON data type.

• MLE JavaScript Support for the VECTOR Data Type
Oracle Multilingual Engine (MLE) supports conversions between JavaScript TypedArrays
and SQL vectors with formats INT8, FLOAT32, and FLOAT64. Data exchanges between
JavaScript and the VECTOR data type are supported by the MLE JavaScript SQL driver,
MLE call specifications, and MLE JavaScript bindings.

MLE JavaScript Support for JSON
Supported conversions between JavaScript and the JSON data type.

Values of the SQL JSON type can be converted to and from JavaScript values. The type
mapping between the SQL JSON type and JavaScript values is aligned with type mappings
employed by the node-oracledb driver.

Note:

For more information about node-oracledb and the JSON data type, see the node-
oracledb documentation.

Values of the SQL JSON type are converted to JavaScript values as follows:

• If the JSON value is an object, it is converted to an equivalent JavaScript object by
converting all fields of the input object.

Appendix A
MLE JavaScript Support for JSON

A-4

https://oracle.github.io/node-oracledb/doc/api.html#-20-oracle-database-json-data-type
https://oracle.github.io/node-oracledb/doc/api.html#-20-oracle-database-json-data-type

• If the JSON value is an array, it is converted to an equivalent JavaScript array by converting
all elements of the input array.

• If the JSON value is a scalar value, it is converted to an equivalent value according to the
type mapping in Table A-3.

Table A-3 Mapping from JSON Attribute Types and Values to JavaScript Types and Values

JSON Attribute Type or Value JavaScript Type or Value

null null
false false
true true
NUMBER Number
VARCHAR2 String
RAW Uint8Array
CLOB String
BLOB UintArray
DATE Date
TIMESTAMP Date
INVERVAL YEAR TO MONTH OracleIntervalYearToMonth
INTERVAL DAY TO SECOND OracleIntervalDayToSecond
BINARY_DOUBLE Number
BINARY_FLOAT Number
Arrays Array

Objects A plain JavaScript Object

Values of a JavaScript type are converted to the SQL JSON type as follows:

• If the JavaScript value matches one of the scalar types in the first column of Table A-4, it is
converted to a JSON value of the corresponding type.

• If the JavaScript value is an array, it is converted to a JSON array by converting all
elements of the array. Note that Uint8Array values are treated as scalars as opposed to
arrays, so Uint8Array values are converted to the type RAW, not to a JSON array.

• If the JavaScript value is an object that is neither an array nor matches any of the
JavaScript types/ classes listed in Table A-4, it is converted to a JSON object. Each field of
the object is converted according to the appropriate mappings.

Table A-4 Mapping from JavaScript Types and Values to JSON Attributes and Values

JavaScript Type or Value JSON Attribute Type or Value

null null
undefined null
string VARCHAR2
true true
false false
Uint8Array RAW
Number NUMBER
Date DATE

Appendix A
MLE JavaScript Support for JSON

A-5

Table A-4 (Cont.) Mapping from JavaScript Types and Values to JSON Attributes and Values

JavaScript Type or Value JSON Attribute Type or Value

OracleNumber NUMBER
OracleDate DATE
OracleTimestamp TIMESTAMP
OracleTimestampTZ TIMESTAMP WITH TIME ZONE
OracleIntervalYearToMonth INVERVAL YEAR TO MONTH
OracleIntervalDayToSecond INTERVAL DAY TO SECOND
Array Array

Object Object

MLE JavaScript Support for the VECTOR Data Type
Oracle Multilingual Engine (MLE) supports conversions between JavaScript TypedArrays and
SQL vectors with formats INT8, FLOAT32, and FLOAT64. Data exchanges between JavaScript
and the VECTOR data type are supported by the MLE JavaScript SQL driver, MLE call
specifications, and MLE JavaScript bindings.

The VECTOR data type can appear as an IN, OUT, and IN OUT bind argument, as well as a return
type. The SIGNATURE clause of an MLE call specification supports the following JavaScript
types:

• Float32Array
• Float64Array
• Int8Array

Table A-5 Mapping from VECTOR Data Type to JavaScript Types

SQL Type JavaScript Type

VECTOR(*, float32) Float32Array (TypedArray)

VECTOR(*, float64) Float64Array (TypedArray)

VECTOR(*, int8) Int8Array (TypedArray)

VECTOR(*) Float64Array1 (TypedArray)

1 When no vector format is specified, Float64Array is used by default

Table A-6 Mapping from JavaScript Types to VECTOR Data Type

JavaScript Type SQL Type

Float32Array VECTOR(*, float32)
Float64Array VECTOR(*, float64)
Int8Array VECTOR(*, int8)
Array VECTOR(*, float64)

Appendix A
MLE JavaScript Support for the VECTOR Data Type

A-6

See Also:

• Oracle Database AI Vector Search User's Guide for more information about the
VECTOR data type and Oracle AI Vector Search capabilities

Example A-1 Use VECTOR Data Type with MLE

This example demonstrates support of the VECTOR data type used in arguments and as return
type in MLE call specifications.

SET SERVEROUTPUT ON;
CREATE OR REPLACE MLE MODULE vec_mod
LANGUAGE JAVASCRIPT AS

/**
 * Add two vectors
 * @param v1 the first vector
 * @param v2 the second vector
 * @returns the resulting vector after adding v1 and v2
 */
export function addVectors(v1, v2){
 return v1.map((element, index) => element + v2[index]);
}

/**
 * Subtract two vectors
 * @param v1 the first vector
 * @param v2 the second vector
 * @returns the resulting vector after subtracting v2 from v1
 */
export function subtractVectors(v1, v2){
 return v1.map((element, index) => element - v2[index]);
}
/

CREATE OR REPLACE PACKAGE mle_vec_pkg AS

 FUNCTION addVectors(
 input_vector1 IN VECTOR,
 input_vector2 IN VECTOR
)
 RETURN VECTOR
 AS MLE MODULE vec_mod
 SIGNATURE 'addVectors';

 FUNCTION subtractVectors(
 input_vector1 IN VECTOR,
 input_vector2 IN VECTOR
)
 RETURN VECTOR
 AS MLE MODULE vec_mod
 SIGNATURE 'subtractVectors';

Appendix A
MLE JavaScript Support for the VECTOR Data Type

A-7

END mle_vec_pkg;
/

SELECT mle_vec_pkg.addVectors(
 VECTOR('[1, 2]'),
 VECTOR('[3, 4]')
) AS result;

Result:

RESULT

[4.0E+000,6.0E+000]

SELECT mle_vec_pkg.subtractVectors(
 VECTOR('[3, 4]'),
 VECTOR('[1, 2]')
) AS result;

Result:

RESULT

[2.0E+000,2.0E+000]

Appendix A
MLE JavaScript Support for the VECTOR Data Type

A-8

Index

A
async/await interface, 6-11

B
bind variables

IN, 7-11
IN OUT, 7-11
OUT, 7-11

built-in modules, 7-32
accessing, 6-11
mle-encode-base64, 3-11
mle-js-bindings, 3-11
mle-js-encodings, 3-11
mle-js-fetch, 3-11
mle-js-oracledb, 3-11
mle-js-plsql-ffi, 3-11
mle-js-plsqltypes, 3-11

C
call specification, 2-6, 6-1, 6-12

creating, 6-1
elements of, 6-4

collections
creating, 8-8
dropping, 8-11
opening, 8-9

during creation, 8-8
committing operations (transactions), 8-29
creating a collection, 8-8
creating documents, 8-12

D
Data Guard, 3-1
data guide for a collection, getting, 8-27
DBMS_MLE, 2-5

EVAL procedure
arguments of, 2-5

DBMS_MLE PL/SQL package, 4-1
debugging

See post-execution debugging
debugpoints, 2-10

elements of, 9-2

debugpoints (continued)
specifying, 9-2

deleting a collection
See dropping a collection

dictionary views
USER_MLE_ENVS view, 3-21
USER_MLE_ENVS_IMPORTS view, 3-21
USER_MLE_MODULES view, 3-13
USER_SOURCE view, 3-12

Direct Fetch, 7-6
arrays, 7-7
objects, 7-8

documents
creating, 8-12
finding in collections, 8-17
inserting into collections, 8-14
removing from a collection, 8-24
replacing in collections, 8-22
saving into collections, 8-15

DRCP (database resident connection pool), 2-3
dropping a collection, 8-11
dynamic execution, 2-5, 4-1

workflow, 4-2

E
ECMAScript

available features, 7-1
execution context, 2-8
standard, 2-2, 2-4, 3-6

environment, 3-1
execution context, 2-5, 2-8, 10-5

F
FFI (Foreign Function Interface), 7-38
finding documents in collections, 8-17
Foreign Function Interface, 7-38

G
global variables, 6-11

H
handling transactions, 8-29

Index-1

I
indexing documents in a collection, 8-25
initialization parameters

MAX_STRING_SIZE, 2-3
MLE_PROG_LANGUAGES, 10-5

inline call specification, 6-1, 6-12
creating, 6-7
elements of, 6-10

inserting documents into collections, 8-14

J
JavaScript, 2-2

global variables, 6-11
implementation of, 2-4
invoking, 2-5
loading from files, 4-3
providing inline, 4-2

L
language options, 3-19

js.console, 3-19
js.polyglot-builtin, 3-19
js.strict, 3-19

M
MAX_STRING_SIZE initialization parameter, 2-3
methods

count(), 8-15, 8-17
create_context(), 10-8
createCollection(), 8-8
createIndex(), 8-25
drop(), 8-11
dropIndex(), 8-25
eval(), 2-5
execute(), 7-3
filter(), 8-15, 8-17
find(), 8-17
getCollectionNames(), 8-10
getContentAsString, 8-27
getCursor(), 8-15, 8-17
getDataGuide, 8-27
getOne(), 8-15, 8-17
hasNext(), 8-17
headerOnly(), 8-15, 8-17
key(), 8-15, 8-17
keys(), 8-15, 8-17
limit(), 8-15, 8-17
openCollection(), 8-9
read and write, 8-15
remove(), 8-15, 8-24

methods (continued)
replaceOne(), 8-15, 8-22
replaceOneAndGet(), 8-15, 8-22
reset_package(), 10-5
save(), 8-15
saveAndGet(), 8-15
skip(), 8-15, 8-17
terminal and nonterminal, 8-15
version(), 8-15, 8-17

MLE, 2-1–2-3
call specification, 6-1
environment, 3-1
inline call specification, 6-1
module, 3-3, 5-1

See also module
MLE JavaScript SQL driver, 3-11, 7-1

selecting data, 7-6
MLE LANGUAGE clause, 6-7
MLE_PROG_LANGUAGES initialization

parameter, 10-5
mle-js-fetch, 2-4
mle-js-oracledb

See MLE JavaScript SQL driver
module, 3-3

creating, 3-4
importing, 3-6, 5-1
managing, 3-3
naming, 3-3

module call, 2-6
Multilingual Engine

See MLE

N
node package manager, 2-2
nonterminal method

definition, 8-17
NPM (node package manager), 2-2

O
opening a collection

during creation, 8-8
opening existing collections, 8-9
ORA_SECURECONFIG audit policy, 10-10

P
post-execution debugging, 2-10, 9-2
privileges, 2-4, 10-8

ALTER ANY MLE, 10-3
COLLECT DEBUG INFO, 10-4
CREATE ANY MLE, 10-3
CREATE ANY PROCEDURE, 10-3
CREATE MLE, 10-3
CREATE PROCEDURE, 10-3

Index

Index-2

privileges (continued)
DB_DEVELOPER_ROLE, 10-3
DROP ANY MLE, 10-3
EXECUTE DYNAMIC MLE, 10-2
EXECUTE ON JAVASCRIPT, 10-2
INHERIT PRIVILEGES, 10-13
SODA_APP, 10-2

PURE keyword, 2-9

R
read methods, 8-15
removing documents from a collection, 8-24
replacing documents in collections, 8-22
restricted execution context, 2-9, 10-5
ResultSet object, 7-3, 7-6

S
saving documents into collections, 8-15
SBOM, 10-14
Simple Oracle Document Access (SODA), 8-1
single-byte character set, 3-5

Smart-DB approach, 2-2
SODA, 8-1
software bill of material (SBOM), 10-14

T
terminal method

definition, 8-17
transaction handling, 8-29

U
Unicode Standard, 3-5
USER_MLE_ENV_IMPORTS view, 3-21
USER_MLE_ENVS view, 3-21
USER_MLE_MODULES view, 3-13
USER_SOURCE view, 3-12

W
write methods, 8-15

Index

Index-3

	Contents
	List of Examples
	List of Figures
	List of Tables
	1 Changes in This Release for JavaScript Developer's Guide
	July 2024, Release Update 23.5
	January 2025, Release Update 23.7
	April 2025, Release Update 23.8

	2 Introduction to Oracle Database Multilingual Engine for JavaScript
	The Need for a Multilingual Engine
	Overview of JavaScript
	Overview of Multilingual Engine for JavaScript
	JavaScript Implementation Details
	Invoking JavaScript in the Database
	Introduction to Dynamic Execution
	Introduction to MLE Module Calls
	About MLE Execution Contexts
	About Restricted Execution Contexts

	Introduction to Debugging JavaScript Code

	3 MLE JavaScript Modules and Environments
	Using JavaScript Modules in MLE
	Managing JavaScript Modules in the Database
	Naming JavaScript Modules
	Creating JavaScript Modules in the Database
	Storing JavaScript Code in Databases Using Single-Byte Character Sets
	Code Analysis

	Preparing JavaScript code for MLE Module Calls
	Additional Options for Providing JavaScript Code to MLE
	Specifying Module Version Information and Providing JSON Metadata
	Drop JavaScript Modules
	Alter JavaScript Modules
	Overview of Built-in JavaScript Modules
	Dictionary Views Related to MLE JavaScript Modules
	USER_SOURCE
	USER_MLE_MODULES

	Specifying Environments for MLE Modules
	Creating MLE Environments in the Database
	Naming MLE Environments
	Creating an Empty MLE Environment
	Creating an Environment as a Clone of an Existing Environment
	Using MLE Environments for Import Resolution
	Providing Language Options
	JavaScript Language Options

	Dropping MLE Environments
	Modifying MLE Environments
	Altering Language Options
	Modifying Module Imports

	Dictionary Views Related to MLE JavaScript Environments
	USER_MLE_ENVS
	USER_MLE_ENV_IMPORTS

	4 Overview of Dynamic MLE Execution
	About Dynamic JavaScript Execution
	Dynamic Execution Workflow
	Providing JavaScript Code Inline
	Loading JavaScript Code from Files

	Returning the Result of the Last Execution

	5 Overview of Importing MLE JavaScript Modules
	JavaScript Module Hierarchies
	Resolving Import Names Using MLE Environments

	Export Functionality
	Named Exports
	Default Exports
	Private Identifiers

	Import Functionality
	Module Objects
	Named Imports
	Default Imports

	6 MLE JavaScript Functions
	Call Specifications for Functions
	Creating a Call Specification for an MLE Module
	Components of an MLE Call Specification
	MLE Module Clause
	ENV Clause
	SIGNATURE Clause

	Creating an Inline MLE Call Specification
	Components of an Inline MLE Call Specification
	Accessing Built-in Modules Using JavaScript Global Variables

	Choosing Inline Versus Module MLE Call Specifications
	Runtime Isolation for an MLE Call Specification
	Dictionary Views for Call Specifications

	OUT and IN OUT Parameters

	7 Calling PL/SQL and SQL from the MLE JavaScript SQL Driver
	Introduction to the MLE JavaScript SQL Driver
	Working with the MLE JavaScript Driver
	Connection Management in the MLE JavaScript Driver
	Introduction to Executing SQL Statements
	Processing Comparison Between node-oracledb and mle-js-oracledb

	Selecting Data Using the MLE JavaScript Driver
	Direct Fetch: Arrays
	Direct Fetch: Objects
	Fetching Rows as ResultSets: Arrays
	Fetching Rows as ResultSets: Iterating Over ResultSet Objects

	Data Modification
	Bind Variables
	Using Bind-by-Name vs Bind-by-Position
	Named Bind Variables
	Positional Bind Variables

	RETURNING INTO Clause
	Batch Operations

	PL/SQL Invocation from the MLE JavaScript SQL Driver
	Error Handling in SQL Statements
	Working with JSON Data
	Using Large Objects (LOB) with MLE
	Writing LOBs
	Reading LOBs

	API Differences Between node-oracledb and mle-js-oracledb
	Synchronous API and Error Handling
	Connection Handling
	Transaction Management
	Type Mapping
	Unsupported Data Types
	Miscellaneous Features Not Available with the MLE JavaScript SQL Driver

	Introduction to the PL/SQL Foreign Function Interface
	Object Resolution Using FFI
	Provide Arguments to a Subprogram Using FFI

	8 Working with SODA Collections in MLE JavaScript Code
	High-Level Introduction to Working with SODA for In-Database JavaScript
	SODA Objects
	Using SODA for In-Database JavaScript
	Getting Started with SODA for In-Database JavaScript
	Creating a Document Collection with SODA for In-Database JavaScript
	Opening an Existing Document Collection with SODA for In-Database JavaScript
	Checking Whether a Given Collection Exists with SODA for In-Database JavaScript
	Discovering Existing Collections with SODA for In-Database JavaScript
	Dropping a Document Collection with SODA for In-Database JavaScript
	Creating Documents with SODA for In-Database JavaScript
	Inserting Documents into Collections with SODA for In-Database JavaScript
	Saving Documents into Collections with SODA for In-Database JavaScript
	SODA for In-Database JavaScript Read and Write Operations
	Finding Documents in Collections with SODA for In-Database JavaScript
	Replacing Documents in a Collection with SODA for In-Database JavaScript
	Removing Documents from a Collection with SODA for In-Database JavaScript
	Indexing the Documents in a Collection with SODA for In-Database JavaScript
	Getting a Data Guide for a Collection with SODA for In-Database JavaScript
	Handling Transactions with SODA for In-Database JavaScript
	Creating Call Specifications Involving the SODA API

	9 Post-Execution Debugging of MLE JavaScript Modules
	Specifying Debugpoints
	Debugpoint Locations
	Debugpoint Actions
	Debugpoint Conditions

	Managing Debugpoints
	Debugging Security Considerations
	COLLECT DEBUG INFO Privilege for MLE Modules

	Analyzing Debug Output
	Textual Representation of Debug Output
	Analyzing Debug Output Using Developer Tools

	Error Handling in MLE
	Errors in Callouts
	Accessing stdout and stderr from JavaScript
	Accessing stdout and stderr for MLE Modules
	Accessing stdout and stderr for Dynamic MLE

	10 MLE Security
	System and Object Privileges Required for Working with JavaScript in MLE
	Necessary Privileges for the Execution of JavaScript Code
	Necessary Privileges for Using the NoSQL API
	Necessary Privileges for Creating MLE Schema Objects
	Necessary Privileges for Creating MLE Modules and Environments in ANY Schema
	Necessary Privileges for Post-Execution Debugging

	Security Considerations for MLE
	MLE_PROG_LANGUAGES Initialization Parameter
	Execution Contexts
	Runtime State Isolation
	Database Security Model
	Considerations for Using MLE Call Specifications and Modules from Different Schemas
	Auditing MLE Operations in Oracle Database

	JavaScript Security Best Practices
	Using Bind Variables for Security and Performance
	Generic Database and PL/SQL Specific Security Considerations
	Supply Chain Security
	Software Bill of Material
	Using the Database to Store State
	Disabling Multilingual Runtime

	MLE Security Examples
	Business Logic Stored in MLE Modules
	Generic Data Processing Libraries
	Generic Libraries in Business Logic

	A MLE Type Conversions
	MLE JavaScript Support for JSON
	MLE JavaScript Support for the VECTOR Data Type

	Index

