
Oracle®
Universal Connection Pool Developer's Guide

Release 23ai
F47026-11
April 2025

Oracle Universal Connection Pool Developer's Guide, Release 23ai

F47026-11

Copyright © 1999, 2025, Oracle and/or its affiliates.

Primary Author: Tulika Das

Contributing Authors: Tanmay Choudhury, Joseph Ruzzi, Tong Zhou, Yuri Dolgov, Paul Lo, Kuassi Mensah, Jean DE
LAVARENE, Nirmala Sundarappa, Saurabh K Verma, Frances Zhao

Contributors: Rajkumar Irudayaraj

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions ix

 Changes in This Release for Oracle Universal Connection Pool
Developer's Guide

Changes in Oracle Database 23ai xi

1 Introduction to UCP

1.1 Overview of Connection Pool 1-1

1.2 Benefits of Using a Connection Pool 1-1

1.3 Overview of Universal Connection Pool 1-2

1.3.1 Conceptual Architecture 1-2

1.3.2 Connection Pool Properties 1-3

1.3.3 Connection Pool Manager 1-3

1.3.4 High Availability and Performance Scenarios 1-3

2 Getting Started

2.1 Requirements for using UCP 2-1

2.2 Basic Connection Steps in UCP 2-1

2.2.1 Authentication in UCP 2-2

2.2.2 Authentication Using IAM Database Access Tokens in Oracle Cloud
Infrastructure 2-2

2.3 UCP API Overview 2-3

2.4 UCP System Properties 2-3

2.5 Basic Connection Example Using UCP 2-4

2.6 Minimal Pool configuration 2-5

iii

3 Getting Database Connections in UCP

3.1 About Borrowing Connections from UCP 3-1

3.1.1 Overview of Borrowing Connections from UCP 3-1

3.1.1.1 Connection Creation Using Background Threads 3-2

3.1.2 Using the Pool-Enabled Data Source 3-2

3.1.3 Using the Pool-Enabled XA Data Source 3-4

3.1.4 Setting Connection Properties 3-4

3.1.5 Using JNDI to Borrow a Connection 3-5

3.1.6 About Connection Initialization Callback 3-6

3.1.6.1 Overview of Connection Initialization Callback 3-6

3.1.6.2 Creating an Initialization Callback 3-6

3.1.6.3 Registering an Initialization Callback 3-7

3.1.6.4 Removing or Unregistering an Initialization Callback 3-7

3.2 Setting Connection Pool Properties for UCP 3-7

3.3 Overview of Validating Connections in UCP 3-8

3.3.1 Validating When Borrowing 3-8

3.3.2 Minimizing Connection Validation with setSecondsToTrustIdleConnection()
Method 3-9

3.3.3 Checking If a Connection Is Valid 3-9

3.4 Returning Borrowed Connections to UCP 3-10

3.5 Removing Connections from UCP 3-11

3.6 UCP Integration with Third-Party Products 3-11

4 Connection Creation Consumer

4.1 Implementing a Connection Creation Consumer 4-1

5 Optimizing Universal Connection Pool Behavior

5.1 Optimizing Connection Pools 5-1

5.2 About Controlling the Pool Size in UCP 5-2

5.2.1 Setting the Initial Pool Size 5-2

5.2.2 Setting the Minimum Pool Size 5-2

5.2.3 Setting the Maximum Pool Size 5-3

5.2.4 Setting the Minimum Idle Connection Number 5-3

5.3 About Optimizing Real-World Performance with Static Connection Pools 5-4

5.4 Stale Connections in UCP 5-5

5.4.1 What is Connection Reuse? 5-5

5.4.1.1 Setting the Maximum Connection Reuse Time 5-5

5.4.1.2 Setting the Maximum Connection Reuse Count 5-6

5.4.2 Setting the Connection Validation Timeout 5-6

5.4.3 Setting the Abandon Connection Timeout 5-7

iv

5.4.4 Setting the Time-To-Live Connection Timeout 5-7

5.4.5 Setting the Connection Wait Timeout 5-8

5.4.6 Setting the Inactive Connection Timeout 5-8

5.4.7 Setting the Query Timeout 5-9

5.4.8 Setting the Timeout Check Interval 5-9

5.5 About Harvesting Connections in UCP 5-9

5.5.1 Overview of Harvesting Connections in UCP 5-10

5.5.2 Setting a Connection to Harvestable 5-10

5.5.3 Setting the Harvest Trigger Count 5-10

5.5.4 Setting the Harvest Maximum Count 5-11

5.6 About Caching SQL Statements in UCP 5-11

5.6.1 Overview of Statement Caching in UCP 5-11

5.6.2 Enabling Statement Caching in UCP 5-12

5.7 UCP Best Practices 5-12

6 Labeling Connections in UCP

6.1 Overview of Labeling Connections in UCP 6-1

6.2 Implementation of a Labeling Callback in UCP 6-2

6.2.1 When to Use a Labeling Callback in UCP 6-2

6.2.2 Creating a Labeling Callback in UCP 6-2

6.2.2.1 Example of Labeling Callback in UCP 6-3

6.2.3 Registering a Labeling Callback in UCP 6-4

6.2.4 Removing a Labeling Callback in UCP 6-5

6.3 Integration of UCP with DRCP 6-5

6.4 Applying Connection Labels in UCP 6-5

6.5 Borrowing Labeled Connections from UCP 6-6

6.6 Checking Unmatched Labels in UCP 6-6

6.7 Removing a Connection Label in UCP 6-7

7 Controlling Reclaimable Connection Behavior

7.1 AbandonedConnectionTimeoutCallback Interface 7-1

7.2 TimeToLiveConnectionTimeoutCallback Interface 7-1

8 Using the Connection Pool Manager

8.1 Overview of Using the UCP Manager 8-1

8.1.1 About Connection Pool Manager 8-1

8.1.2 Creating a Connection Pool Manager for UCP 8-1

8.1.3 Life Cycle States of a Connection 8-1

8.1.3.1 Creating a Connection Pool 8-2

v

8.1.3.2 Starting a Connection Pool 8-3

8.1.3.3 Stopping a Connection Pool 8-3

8.1.3.4 Destroying a Connection Pool 8-3

8.1.4 Maintenance of Universal Connection Pool 8-4

8.1.4.1 Refreshing a Connection Pool 8-4

8.1.4.2 Recycling a Connection Pool 8-4

8.1.4.3 Purging a Connection Pool 8-5

8.2 Overview of JMX-Based Management in UCP 8-5

8.2.1 UniversalConnectionPoolManagerMBean 8-6

8.2.2 UniversalConnectionPoolMBean 8-6

9 Shared Pool Support for Multitenant Data Sources

9.1 Overview of Shared Pool Support 9-1

9.2 Prerequisites for Supporting Shared Pool 9-5

9.3 Configuring the Shared Pool 9-6

9.4 UCP APIs for Shared Pool Support 9-7

9.5 Sample XML Configuration File for Shared Pool 9-8

10

Using Oracle RAC Features

10.1 Overview of Oracle RAC Features 10-1

10.2 About Fast Connection Failover 10-2

10.2.1 Overview of Fast Connection Failover 10-2

10.2.2 What is Fast Connection Failover? 10-4

10.2.2.1 What the Application Sees 10-4

10.2.2.2 How FCF Works 10-4

10.2.3 Fast Connection Failover Prerequisites 10-5

10.2.4 Example of Fast Connection Failover Configuration 10-5

10.2.5 Enabling Fast Connection Failover 10-6

10.2.6 What is ONS? 10-7

10.2.6.1 Overview of ONS Configuration File 10-7

10.2.6.2 Remote Configuration of ONS 10-9

10.2.6.3 Configuration of Client-Side ONS Daemon 10-10

10.2.7 Configuring the Connection URL 10-12

10.3 About Run-Time Connection Load Balancing 10-13

10.3.1 Overview of Run-Time Connection Load Balancing 10-13

10.3.2 Setting Up Run-Time Connection Load Balancing 10-14

10.4 About Connection Affinity 10-15

10.4.1 Overview of Connection Affinity 10-15

10.4.1.1 Transaction-Based Affinity 10-16

10.4.1.2 Web Session Affinity 10-16

vi

10.4.1.3 Oracle RAC Data Affinity 10-16

10.4.2 Setting Up Connection Affinity 10-17

10.4.2.1 Creating a Connection Affinity Callback 10-18

10.4.2.2 Registering a Connection Affinity Callback 10-19

10.4.2.3 Removing a Connection Affinity Callback 10-19

10.4.2.4 Strict Affinity Mode 10-19

10.5 Global Data Services 10-20

10.5.1 Overview of Global Data Services 10-20

10.5.2 Configuring an Application for Using GDS 10-20

11

UCP Asynchronous Extension

11.1 Overview of UCP Asynchronous Extension 11-1

11.2 Example: UCP Asynchronous Extension 11-2

11.3 Asynchronous Connection Labeling 11-3

11.4 Example: Asynchronous Connection Labeling 11-4

12

Ensuring Application Continuity

12.1 Overview of Ensuring Application Continuity with UCP 12-1

12.2 Configuring the Data Source for Application Continuity 12-1

12.3 Using Connection Labeling for Application Continuity 12-2

12.4 Using Connection Initialization Callback for Application Continuity 12-2

13

Shared Pool for Sharded Databases

13.1 Overview of UCP Shared Pool for Database Sharding 13-1

13.2 About Handling Connection Requests for a Sharded Database 13-2

13.2.1 How to Checkout Connections from a Pool with a Sharding Key 13-3

13.2.2 About Configuring the Number of Connections Per Shard 13-4

13.2.3 About Connecting to the Shard Catalog or Co-ordinator for Multishard Queries 13-4

13.3 Sharding Data Source for Transparent Access to Sharded Databases 13-5

13.3.1 Support for Single Shard Transactions 13-7

13.4 Middle-Tier Routing Using UCP 13-9

13.4.1 Middle-Tier Routing with UCP Example 13-9

13.5 Sharding with JTA/XA Transaction in WebLogic Server 13-10

14

Diagnosing a Connection Pool

14.1 Pool Statistics 14-1

14.2 Dynamic Monitoring Service Metrics 14-1

14.3 Overview of Logging and Tracing in UCP 14-2

vii

14.3.1 Logging and Tracing Settings 14-2

14.3.2 Diagnosability System Properties and Command Line 14-3

14.3.3 Logging Configuration File 14-3

14.3.4 Tracing the Error Codes to Watch 14-4

14.3.5 MBeans for UCP Diagnosability 14-6

14.4 About Viewing Oracle RAC Statistics 14-6

14.4.1 Fast Connection Failover Statistics 14-7

14.4.2 Run-Time Connection Load Balance Statistics 14-7

14.4.3 Connection Affinity Statistics 14-7

14.5 Exceptions and Error Codes 14-8

A Error Codes Reference

A.1 General Structure of UCP Error Messages A-1

A.2 Connection Pool Layer Error Messages A-2

A.3 JDBC Data Sources and Dynamic Proxies Error Messages A-6

B UCP Exception Error Codes

Index

viii

Preface

The Oracle Universal Connection Pool (UCP) is a full-featured connection pool for managing
database connections. Java applications that are database-intensive, use the connection pool
to improve performance and better utilize system resources.

The instructions in this guide detail how to use the UCP API and cover a wide range of use
cases. The guide does not provide detailed information about using Oracle JDBC Drivers,
Oracle Database, or SQL except as required to understand UCP.

Audience
This guide is primarily written for Application Developers and System Architects who want to
learn how to use UCP to create and manage database connections for their Java applications.
Users must be familiar with Java and JDBC to use this guide. Knowledge of Oracle Database
concepts (such as Oracle RAC and ONS) is required when using some UCP features.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information about using Java with the Oracle Database, see the following documents
in the Oracle Database documentation set:

• Oracle Database JDBC Developer's Guide

• Oracle Database 2 Day + Java Developer's Guide

• Oracle Database Java Developer's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

x

Changes in This Release for Oracle Universal
Connection Pool Developer's Guide

This preface contains:

• Changes in Oracle Database 23ai

Changes in Oracle Database 23ai
Following are the changes in the Oracle Universal Connection Pool Developer's Guide for this
release of Oracle Database.

New Features
This section lists the new features in this release.

• Support for Background Threads

See Connection Creation Using Background Threads

• Support for Asynchronous Database Access

See UCP Asynchronous Extension

• Support for Failover or Resharding Event Handling in UCP

#unique_22

• Support for XA Transactions with Sharded Databases

See Sharding with JTA/XA Transaction in WebLogic Server

• Support for Connection Creation Consumer

See Connection Creation Consumer

• Enhanced Diagnosability

See Diagnosing a Connection Pool

• New SYSTEM_PROPERTY_TIMERS_AFFECT_ALL_CONNECTIONS for Improved Maximum
Connection Reuse Time
See Setting the Maximum Connection Reuse Time

• Ability to Set Minimum Number of Idle Connections
See Setting the Minimum Idle Connection Number

xi

1
Introduction to UCP

The following sections are included in this chapter:

• Overview of Connection Pool

• Overview of Universal Connection Pool

1.1 Overview of Connection Pool
A connection pool is a cache of database connection objects. The objects represent physical
database connections that can be used by an application to connect to a database. At run
time, the application requests a connection from the pool. If the pool contains a connection that
can satisfy the request, it returns the connection to the application. If no connections are found,
a new connection is created and returned to the application. The application uses the
connection to perform some work on the database and then returns the object back to the pool.
The connection is then available for the next connection request.

Connection pools promote the reuse of connection objects and reduce the number of times
that connection objects are created. Connection pools significantly improve performance for
database-intensive applications because creating connection objects is costly both in terms of
time and resources. Tasks such as network communication, reading connection strings,
authentication, transaction enlistment, and memory allocation all contribute to the amount of
time and resources it takes to create a connection object. In addition, because the connections
are already created, the application waits less time to get the connection.

Connection pools often provide properties that are used to optimize the performance of a pool.
The properties control behaviors such as the minimum and maximum number of connections
allowed in the pool or the amount of time a connection can remain idle before it is returned to
the pool. The best configured connection pools balance quick response times with the memory
spent maintaining connections in the pool. It is often necessary to try different settings until the
best balance is achieved for a specific application.

1.2 Benefits of Using a Connection Pool
Applications that are database-intensive, generally benefit the most from connection pools. As
a policy, applications should use a connection pool whenever database usage is known to
affect application performance.

A connection pool provides the following benefits:

• Reduces the number of times new connection objects are created.

• Promotes connection object reuse.

• Quickens the process of getting a connection.

• Reduces the amount of effort required to manually manage connection objects.

• Minimizes the number of stale connections.

• Controls the amount of resources spent on maintaining connections.

1-1

1.3 Overview of Universal Connection Pool
UCP provides a connection pool implementation for caching JDBC connections. Java
applications that are database-intensive use the connection pool to improve performance and
better utilize system resources.

A UCP JDBC connection pool can use any JDBC driver to create physical connections that are
then maintained by the pool. The pool can be configured and provides a full set of properties
that are used to optimize pool behavior based on the performance and availability
requirements of an application. For more advanced applications, UCP provides a pool
manager that can be used to manage a pool instance.

The pool also leverages many high availability and performance features available through an
Oracle Real Application Clusters (Oracle RAC) database. These features include Fast
Connection Failover (FCF), Run-time connection Load Balancing (RLB), and Connection
Affinity.

Note:

Starting from Oracle Database 11g Release 2, FCF is also supported by Oracle
Restart on a single instance database. Oracle Restart is also known as Oracle Grid
Infrastructure for Independent Servers.

See Also:

Oracle Database Administrator’s Guide for more information about Oracle Restart.

1.3.1 Conceptual Architecture
Applications use a UCP pool-enabled data source to get connections from a UCP JDBC
connection pool instance. The PoolDataSource data source is used for getting regular
connections (java.sql.Connection), and the PoolXADataSource data source is used for
getting XA (eXtended API) connections (javax.sql.XAConnection). The same pool features
are included in both XA and non-XA UCP JDBC connection pools.

The pool-enabled data source relies on a connection factory class to create the physical
connections that are maintained by the pool. An application can choose to use any factory
class that is capable of creating Connection or XAConnection objects. The pool-enabled data
sources provide a method for setting the connection factory class, as well as methods for
setting the database URL and database credentials that are used by the factory class to
connect to a database.

Applications borrow a connection handle from the pool to perform work on a database. Once
the work is completed, the connection is closed and the connection handle is returned to pool
and is available to be used again. The following figure shows the conceptual view of the
interaction between an application and a UCP JDBC connection pool.

Chapter 1
Overview of Universal Connection Pool

1-2

Figure 1-1 Conceptual View of a UCP JDBC Connection Pool

Related Topics

• Getting Database Connections in UCP

1.3.2 Connection Pool Properties
UCP JDBC Connection pool properties are configured through methods available on the pool-
enabled data source. The pool properties are used to control the pool size, handle stale
connections, and make autonomous decisions about how long connections can remain
borrowed before they are returned to the pool. The optimal settings for the pool properties
depend on the application and hardware resources. Typically, there is a trade-off between the
time it takes for an application to get a connection versus the amount of memory it takes to
maintain a certain pool size. In many cases, experimentation is required to find the optimal
balance to achieve the desired performance for a specific application.

Related Topics

• Optimizing Universal Connection Pool Behavior

1.3.3 Connection Pool Manager
UCP includes a connection pool manager that is used by applications that require
administrative control over a connection pool. The manager is used to explicitly control the life
cycle of a pool and to perform maintenance on a pool. The manager also provides the
opportunity for an application to expose the pool and its manageability through an
administrative console.

Related Topics

• Using the Connection Pool Manager

1.3.4 High Availability and Performance Scenarios
A UCP JDBC connection pool provides many features that are used to ensure high connection
availability and performance. Many of these features, such as refreshing a pool or validating

Chapter 1
Overview of Universal Connection Pool

1-3

connections, are generic and work across driver and database implementations. Some of
these features, such as run-time connection load balancing, and connection affinity, require the
use of an Oracle JDBC driver and an Oracle RAC database.

Related Topics

• Using Oracle RAC Features

Chapter 1
Overview of Universal Connection Pool

1-4

2
Getting Started

The following sections are included in this chapter:

• Requirements for using UCP

• Basic Connection Steps in UCP

• UCP API Overview

• UCP System Properties

• Basic Connection Example Using UCP

• Minimal Pool configuration

2.1 Requirements for using UCP
This section describes the design-time and run-time requirements of UCP.

• JRE 8 or higher

• A JDBC driver or a connection factory class capable of returning a java.sql.Connection
and javax.sql.XAConnection object

Note:

Oracle drivers from releases 11.2.0.4 or higher are supported. Advanced Oracle
Database features, such as Oracle RAC and Fast Connection Failover, require
the Oracle Notification Service library (ons.jar) that is included with the Oracle
Client software.

• The ucp.jar library included in the classpath of the application

• The ojdbc8.jar library or the ojdbc11.jar library is included in the classpath of the
application

Note:

Even if you use UCP with a third-party database and driver, you must use the
Oracle ojdbc8.jar library or the ojdbc11.jar library because UCP has
dependencies on this library.

• A database that supports SQL. Advanced features, such as Oracle RAC and Fast
Connection Failover, require an Oracle Database.

2.2 Basic Connection Steps in UCP
UCP provides a pool-enabled data source that is used by applications to borrow connections
from a UCP JDBC connection pool. A connection pool is not explicitly defined for the most

2-1

basic use case. Instead, a default connection pool is implicitly created when the connection is
borrowed.

The following steps describe how to get a connection from a UCP pool-enabled data source in
order to access a database. The complete example is provided in Example 2-1:

1. Use the UCP data source factory (oracle.ucp.jdbc.PoolDataSourceFactory) to get an
instance of a pool-enabled data source using the getPoolDataSource method. The data
source instance must be of the type PoolDataSource. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
2. Set the connection properties that are required to get a physical connection to a database.

These properties are set on the data source instance and include: the URL, the user name,
and password to connect to the database and the connection factory used to get the
physical connection. These properties are specific to a JDBC driver and database. For
example:

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
pds.setUser("<user>");
pds.setPassword("<password>");

3. Set any pool properties in order to override the connection pool's default behavior. the pool
properties are set on the data source instance. For example:

pds.setInitialPoolSize(5);
4. Get a connection using the data source instance. The returned connection is a logical

handle to a physical connection in the data source's connection pool. For example:

Connection conn = pds.getConnection();
5. Use the connection to perform some work on the database:

Statement stmt = conn.createStatement ();
stmt.execute("SELECT * FROM foo");

6. Close the connection and return it to the pool.

conn.close();

2.2.1 Authentication in UCP
UCP provides transparent authentication, that is, the PoolDataSource behaves in the same
way as the JDBC driver data source, while authenticating a connection.

UCP supports all the following authentication methods that the JDBC thin or the JDBC OCI
driver suggests, and delegates any authentication action to the underlying driver:

• Authentication through passwords stored in Oracle Wallets

• Authentication using Kerberos

• Authentication through SSL certificates

• Authentication using Lightweight Directory Access Protocol (LDAP)

2.2.2 Authentication Using IAM Database Access Tokens in Oracle Cloud
Infrastructure

In Oracle Database release 21.4 (21.4.0.0.1), the JDBC Thin drivers can access Oracle
Autonomous Database on Shared Exadata Infrastructure, using a database access token

Chapter 2
Basic Connection Steps in UCP

2-2

generated by the Identity and Access Management (IAM) Cloud Service. UCP supports this
authentication type using the PoolDataSource.setTokenSupplier(Supplier) method.

See Also:

Support for IAM Token-Based Authentication in Oracle Cloud Infrastructure

2.3 UCP API Overview
This section provides a quick overview of the most commonly used packages of the UCP API.

See Also:

Oracle Universal Connection Pool Java API Reference for complete details on the
API.

oracle.ucp.jdbc

This package includes various interfaces and classes that are used by applications to work
with JDBC connections and a connection pool. Among the interfaces found in this package, the
PoolDataSource and PoolXADataSource data source interfaces are used by an application to
get connections as well as get and set connection pool properties. Data source instances
implementing these two interfaces automatically create a connection pool.

oracle.ucp.admin

This package includes interfaces for using a connection pool manager as well as MBeans that
allow users to access connection pool and the connection pool manager operations and
attributes using JMX operations. Among the interfaces, the UniversalConnectionPoolManager
interface provides methods for creating and maintaining connection pool instances.

oracle.ucp

This package includes both required and optional callback interfaces that are used to
implement connection pool features. For example, the ConnectionAffinityCallback interface
is used to create a callback that enables or disables connection affinity and can also be used
to customize connection affinity behavior. This package also contains statistics classes, UCP
specific exception classes, and the logic to use the UCP directly, without using data sources.

2.4 UCP System Properties
For a detailed list of the UCP system properties, refer to the UCP Java API Reference.

See Also:

Oracle Universal Connection Pool Java API Reference

Chapter 2
UCP API Overview

2-3

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/index.html

2.5 Basic Connection Example Using UCP
The following example is a program that connects to a database to do some work and then
exits. The example is simple and in some cases not very practical; however, it does
demonstrate the basic steps required to get a connection from a UCP pooled-enabled data
source in order to access a database.

Example 2-1 Basic Connection Example

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

public class BasicConnectionExample {
 public static void main(String args[]) throws SQLException {
 try
 {
 //Create pool-enabled data source instance.

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

 //set the connection properties on the data source.

 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
 pds.setUser("<user>");
 pds.setPassword("<password>");

 //Override any pool properties.

 pds.setInitialPoolSize(5);

 //Get a database connection from the datasource.

 Connection conn = pds.getConnection();

 System.out.println("\nConnection obtained from " +
 "UniversalConnectionPool\n");

 //do some work with the connection.
 Statement stmt = conn.createStatement();
 stmt.execute("select * from foo");

 //Close the Connection.

 conn.close();
 conn=null;

 System.out.println("Connection returned to the " +
 "UniversalConnectionPool\n");

 }
 catch(SQLException e)
 {
 System.out.println("BasicConnectionExample - " +
 "main()-SQLException occurred : "
 + e.getMessage());
 }

Chapter 2
Basic Connection Example Using UCP

2-4

 }
}

2.6 Minimal Pool configuration
You can configure a pool minimally and make use of the default values.

If you want to start a new pool data source, then instantiate it and set the following mandatory
properties:

• The connection factory class, which is usually a JDBC driver data source, for example,
oracle.jdbc.pool.OracleDataSource

• The peer database URL

• User name

• Password

All the other pool data source properties are optional. With this minimal configuration, the
default pool size is as follows:

• Minimal pool size is 1

• Maximum pool size is Integer.MAX_VALUE (2147483647 by default)

• Initial pool size is 0

With the minimal configuration, the pool data source performs some minimal validation while
borrowing the connections. The default value of the setSecondsToTrustIdleConnection(int)
method is set to 120 seconds and all the timeouts are disabled.

See Also:

Overview of Validating Connections in UCP

Chapter 2
Minimal Pool configuration

2-5

3
Getting Database Connections in UCP

The following sections are included in this chapter:

• About Borrowing Connections from UCP

• Setting Connection Pool Properties for UCP

• Overview of Validating Connections in UCP

• Returning Borrowed Connections to UCP

• Removing Connections from UCP

• UCP Integration with Third-Party Products

3.1 About Borrowing Connections from UCP
An application borrows connections using a pool-enabled data source. This section describes
the following concepts about borrowing connections:

• Overview of Borrowing Connections from UCP

• Using the Pool-Enabled Data Source

• Using the Pool-Enabled XA Data Source

• Setting Connection Properties

• Using JNDI to Borrow a Connection

• About Connection Initialization Callback

Note:

The instructions in this section use a pool-enabled data source to implicitly create
and start a connection pool.

3.1.1 Overview of Borrowing Connections from UCP
The UCP API provides two pool-enabled data sources, one for borrowing regular connections
and one for borrowing XA connections. These data sources provide access to UCP JDBC
connection pool functionality, and include a set of getConnection methods that are used to
borrow connections. The same pool features are included in both XA and non-XA UCP JDBC
connection pools.

UCP JDBC connection pools maintain both available connections and borrowed connections.
A connection is reused from the pool if an application requests to borrow a connection that
matches an available connection. A new connection is created if no available connection in the
pool matches the requested connection. The number of available connections and borrowed
connections are subjected to pool properties such as pool size, timeout intervals, and
validation rules.

3-1

3.1.1.1 Connection Creation Using Background Threads
Starting with Oracle Database Release 23ai, new connections are created using background
threads instead of user threads.

A borrow request may trigger a new connection creation, when both the following conditions
are met:

• When there is no connection available in the pool at the time of the request

• If there is enough room to grow the pool

The borrow request may be satisfied by either of the following, whichever event happens first:

• A brand new connection created by the background thread

• A connection that was just returned to the pool

If the connection borrow request cannot be satisfied within the ConnectionWaitTimeout (CWT)
period, then a UniveralConnectionPoolException is thrown, with the UCP-29 error code.

This behavior is different from Oracle Database Release 19c or 21c in the following ways:

• If the CWT is equal to zero or a very small value, then a borrow request has a higher
chance to throw an exception because there is not enough time to create a new JDBC
connection. A borrow request with a zero CWT period can return a connection only if there
is one immediately available in the pool.

• A UCP exception thrown by the connection request does not always include the JDBC
exception as a cause. To troubleshoot such situations, where the driver cannot connect to
the Database, you can implement the ConnectionCreationInformation callback.

• Unlike the previous releases, the CWT is not adjusted with the value of the
CONNECT_TIMEOUT parameter.

The current default behavior is to use background threads for creating connections, instead of
the user threads, which results in enhanced efficiency. If required, you can switch back to the
old behavior in the following ways:

• Setting the new system property oracle.ucp.createConnectionInBorrowThread to true
• Using the setCreateConnectionInBorrowThread(boolean) method to set the

createConnectionInBorrowThread flag to true

3.1.2 Using the Pool-Enabled Data Source
UCP provides a pool-enabled data source (oracle.ucp.jdbc.PoolDataSource) that is used to
get connections to a database. The oracle.ucp.jdbc.PoolDataSourceFactory factory class
provides a getPoolDataSource() method that creates the pool-enabled data source instance.
For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

The pool-enabled data source requires a connection factory class in order to get an actual
physical connection. The connection factory is typically provided as part of a JDBC driver, and
it can also be a data source itself. A UCP JDBC connection pool can use any JDBC driver to
create physical connections that are then maintained by the pool. The
setConnectionFactoryClassName(String) method is used to define the connection factory for
the pool-enabled data source instance. The following example uses the
oracle.jdbc.pool.OracleDataSource connection factory class included with the Oracle JDBC

Chapter 3
About Borrowing Connections from UCP

3-2

driver. If you use a JDBC driver provided by a different vendor, then refer to the corresponding
vendor documentation for an appropriate connection factory class.

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

In addition to the connection factory class, a pool-enabled data source requires the URL, user
name, and password that are used to connect to a database. A pool-enabled data source
instance includes methods to set each of these properties. The following example uses an
Oracle JDBC Thin driver URL syntax. If you use a JDBC driver provided by a different vendor,
then refer to the corresponding vendor documentation for the appropriate URL syntax.

pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
pds.setUser("user");
pds.setPassword("password");

See Also:

Oracle Database JDBC Developer’s Guide for detailed Oracle URL syntax usage.

A pool-enabled data source provides the following getConnection methods:

• getConnection(): Returns a connection that is associated with the user name and the
password that were used to connect to the database.

• getConnection(String username, String password): Returns a connection that is
associated with the specified user name and password.

• getConnection(java.util.Properties labels): Returns a connection that matches a
specified label.

• getConnection(String username, String password, java.util.Properties labels):
Returns a connection that is associated with a specified user name and password, and that
matches a specified label.

An application uses the getConnection methods to borrow a connection handle from the pool
that is of the type java.sql.Connection. If a connection handle is already in the pool that
matches the requested connection (same URL, user name, and password), then it is returned
to the application. Otherwise, a new connection is created and a new connection handle is
returned to the application. The following examples demonstrate how to borrow a connection
for Oracle Database and MySQL Database respectively:

Oracle Example

The following example demonstrates borrowing a connection using the JDBC Thin driver:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
pds.setUser("<user>");
pds.setPassword("<password>");

Connection conn = pds.getConnection();

MySQL Example

The following example demonstrates borrowing a connection using the Connector/J JDBC
driver from MySQL:

Chapter 3
About Borrowing Connections from UCP

3-3

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("com.mysql.cj.jdbc.MysqlDataSource");
pds.setURL("jdbc:mysql://host:3306/dbname");
pds.setUser("<user>");
pds.setPassword("<password>");

Connection conn = pds.getConnection();

3.1.3 Using the Pool-Enabled XA Data Source
UCP provides a pool-enabled XA data source (oracle.ucp.jdbc.PoolXADataSource) that is
used to get XA connections that can be enlisted in a distributed transaction. UCP JDBC XA
pools have the same features as non-XA UCP JDBC pools. The
oracle.ucp.jdbc.PoolDataSourceFactory factory class provides a getPoolXADataSource()
method that creates the pool-enabled XA data source instance. For example:

PoolXADataSource pds = PoolDataSourceFactory.getPoolXADataSource();

A pool-enabled XA data source instance, like a non-XA data source instance, requires the
connection factory, URL, user name, and password in order to get an actual physical
connection. These properties are set in the same way as a non-XA data source instance (see
above). However, an XA-specific connection factory class is required to get XA connections.
The XA connection factory is typically provided as part of a JDBC driver and can be a data
source itself. The following example uses Oracle's
oracle.jdbc.xa.client.OracleXADataSource XA connection factory class included with the
JDBC driver. If a different vendor's JDBC driver is used, refer to the vendor's documentation for
an appropriate XA connection factory class.

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
pds.setUser("user");
pds.setPassword("password");

Lastly, a pool-enabled XA data source provides a set of getXAConnection methods that are
used to borrow a connection handle from the pool that is of the type javax.sql.XAConnection.
The getXAConnection methods are the same as the getConnection methods previously
described. The following example demonstrates borrowing an XA connection.

PoolXADataSource pds = PoolDataSourceFactory.getPoolXADataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
pds.setUser("<user>");
pds.setPassword("<password>");

XAConnection conn = pds.getXAConnection();

Related Topics

• Labeling Connections in UCP

3.1.4 Setting Connection Properties
Oracle's connection factories support properties that configure connections with specific
features. UCP pool-enabled data sources provide the setConnectionProperties(Properties)
method, which is used to set properties on a given connection factory. The following example
demonstrates setting connection properties for Oracle's JDBC driver. If you are using a JDBC

Chapter 3
About Borrowing Connections from UCP

3-4

driver from a different vendor, then refer to the vendor-specific documentation to check whether
setting properties in this manner is supported and what properties are available:

Properties connProps = new Properties();
connProps.put("fixedString", false);
connProps.put("remarksReporting", false);
connProps.put("restrictGetTables", false);
connProps.put("includeSynonyms", false);
connProps.put("defaultNChar", false);
connProps.put("AccumulateBatchResult", false);

pds.setConnectionProperties(connProps);

The UCP JDBC connection pool does not remove connections that are already created if
setConnectionProperties is called after the pool is created and in use.

See Also:

Oracle Database JDBC Java API Reference for a detailed list of supported properties
to configure the connection. For example, to set the auto-commit mode, you can use
the OracleConnection.CONNECTION_PROPERTY_AUTOCOMMIT property.

3.1.5 Using JNDI to Borrow a Connection
A connection can be borrowed from a connection pool by performing a JNDI look up for a pool-
enabled data source and then calling getConnection() on the returned object. The pool-
enabled data source must first be bound to a JNDI context and a logical name. This assumes
that an application includes a Service Provider Interface (SPI) implementation for a naming
and directory service where object references can be registered and located.

The following example uses Sun's file system JNDI service provider, which can be downloaded
from the JNDI software download page:

http://www.oracle.com/technetwork/java/index.html
The example demonstrates creating an initial context and then performing a lookup for a pool-
enabled data source that is bound to the name MyPooledDataSource. The object returned is
then used to borrow a connection from the connection pool.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:/tmp");

ctx = new InitialContext(env);

PoolDataSource jpds = (PoolDataSource)ctx.lookup(MyPooledDataSource);
Connection conn = jpds.getConnection();

In the example, MyPoolDataSource must be bound to the context. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
pds.setUser("<user>");

Chapter 3
About Borrowing Connections from UCP

3-5

http://www.oracle.com/technetwork/java/index.html

pds.setPassword("<password>");

ctx.bind(MyPooledDataSource, pds);

3.1.6 About Connection Initialization Callback
The Connection Initialization Callback enables applications and frameworks to initialize
connections retrieved from Universal Connection Pool. It is executed at every connection
checkout from the pool, as well as at each successful reconnection during failover.

This section discusses initialization callbacks in the following sections:

• Overview of Connection Initialization Callback

• Creating an Initialization Callback

• Registering an Initialization Callback

• Removing or Unregistering an Initialization Callback

3.1.6.1 Overview of Connection Initialization Callback
If an application cannot use connection labeling because it cannot be changed, then the
connection initialization callback is provided for such an application.

When registered, the initialization callback is executed every time a connection is borrowed
from the pool and at each successful reconnection following a recoverable error. Using the
same callback at both run time and replay ensures that exactly the same initialization, which
was used when the original session was established, is reestablished at run time. If the
callback invocation fails, then replay is disabled on that connection.

3.1.6.2 Creating an Initialization Callback
To create a UCP connection initialization callback, an application implements the
oracle.ucp.jdbc.ConnectionInitializationCallback interface. This interface has the
following method:

void initialize(java.sql.Connection connection) throws SQLException;

Note:

• One callback is created for every connection pool.

• This callback is not used if a labeling callback is registered for the connection
pool.

Example

The following example demonstrates how to create a simple initialization callback:

import oracle.ucp.jdbc.ConnectionInitializationCallback;
class MyConnectionInitializationCallback implements ConnectionInitializationCallback
{
 public MyConnectionInitializationCallback()
 {
 ...
 }

Chapter 3
About Borrowing Connections from UCP

3-6

 public void initialize(java.sql.Connection connection) throws SQLException
 {
 // Reset the state for the connection, if necessary (like ALTER SESSION)
 }
}

3.1.6.3 Registering an Initialization Callback
UCP provides the registerConnectionInitializationCallback method in the
oracle.ucp.jdbc.PoolDataSource interface for registering a connection initialization callback.

public void registerConnectionInitializationCallback (ConnectionInitializationCallback
cbk) throws SQLException;

One callback may be registered on each connection pool instance.

3.1.6.4 Removing or Unregistering an Initialization Callback
UCP provides the unregisterConnectionInitializationCallback method in the
oracle.ucp.jdbc.PoolDataSource interface for unregistering a connection initialization
callback.

public void unregisterConnectionInitializationCallback() throws SQLException;

See Also:

Oracle Universal Connection Pool Java API Reference for more information

3.2 Setting Connection Pool Properties for UCP
UCP JDBC connection pools are configured using connection pool properties. The properties
have get and set methods that are available through a pool-enabled data source instance.
The methods are a convenient way to programmatically configure a pool. If no pool properties
are set, then a connection pool uses default property values.

The following example demonstrates configuring connection pool properties. The example sets
the connection pool name and the maximum/minimum number of connections allowed in the
pool.

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);

UCP JDBC connection pool properties may be set in any order and can be dynamically
changed at run time. For example, setMaxPoolSize could be changed at any time and the pool
recognizes the new value and adapts accordingly.

Related Topics

• Optimizing Universal Connection Pool Behavior

Chapter 3
Setting Connection Pool Properties for UCP

3-7

3.3 Overview of Validating Connections in UCP
Connections can be validated using pool properties when the connection is borrowed, and also
programmatically using the ValidConnection interface. Both approaches are detailed in this
section. Invalid connections can affect application performance and availability.

3.3.1 Validating When Borrowing
A connection can be validated by executing a SQL statement on a connection when the
connection is borrowed from the connection pool. Two connection pool properties are used in
conjunction in order to enable connection validation:

• setValidateConnectionOnBorrow(boolean): Specifies whether or not connections are
validated when the connection is borrowed from the connection pool. The method enables
validation for every connection that is borrowed from the pool. A value of false means no
validation is performed. The default value is false.

• setSQLForValidateConnection(String): Specifies the SQL statement that is executed
on a connection when it is borrowed from the pool.

Note:

The setSQLForValidateConnection property is not recommended when using an
Oracle JDBC driver. UCP performs an internal ping when using an Oracle JDBC
driver. The mechanism is faster than executing an SQL statement and is overridden if
this property is set. Instead, set the setValidateConnectionOnBorrow property to
true and do not include the setSQLForValidateConnection property.

The following example demonstrates validating a connection when borrowing the connection
from the pool. The example uses Connector/J JDBC driver from MySQL:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("com.mysql.jdbc.jdbc2.optional.
 MysqlDataSource");
pds.setURL("jdbc:mysql://host:3306/mysql");
pds.setUser("<user>");
pds.setPassword("<password>");

pds.setValidateConnectionOnBorrow(true);
pds.setSQLForValidateConnection("select * from mysql.user");

Connection conn = pds.getConnection();

See Also:

Minimizing Connection Request Delay

Chapter 3
Overview of Validating Connections in UCP

3-8

3.3.2 Minimizing Connection Validation with
setSecondsToTrustIdleConnection() Method

In UCP, when you set the value of the setValidateConnectionOnBorrow(boolean) method to
true, then each connection is validated during the checkout. This validation may incur
significant overhead in applications that checkout database connections frequently.

To minimize the impact of frequent connection validation, you can now set the
setSecondsToTrustIdleConnection(int) method with an appropriate value to trust recently-
used or recently-tested database connections. Setting this value skips the connection
validation test and improves application performance significantly.

The following table describes the methods available in Oracle Database Release 23ai for using
this feature:

Method Description

setSecondsToTrustIdleConnection(int
secondsToTrustIdleConnection)

Sets the time in seconds to trust a recently-used or
recently-tested database connection and skip the
validation test during connection checkout.

getSecondsToTrustIdleConnection() Retrieves the value that was set using the
setSecondsToTrustIdleConnection(int)
method.

When you set the setSecondsToTrustIdleConnection(int) method to a positive value, then
the connection validation is skipped, if the connection was used within the time specified in the
secondsToTrustIdleConnection(int) method. The default value is 0 seconds, which means
that the feature is disabled.

Note:

The setSecondsToTrustIdleConnection(int) method works only if the
setValidateConnectionOnBorrow(boolean) method is set to true. If you set the
setSecondsToTrustIdleConnection(int) method to a non-zero value, without
setting the setValidateConnectionOnBorrow(boolean) method to true, then UCP
throws the following exception:

Invalid seconds to trust idle connection value or usage.

3.3.3 Checking If a Connection Is Valid
The oracle.ucp.jdbc.ValidConnection interface provides two methods: isValid and
setInvalid. The isValid method returns whether or not a connection is usable and the
setInvalid method is used to indicate that a connection should be removed from the pool
instance.

The isValid method is used to check if a connection is still usable after an SQL exception has
been thrown. This method can be used at any time to check if a borrowed connection is valid.

Chapter 3
Overview of Validating Connections in UCP

3-9

The method is particularly useful in combination with a retry mechanism, such as the Fast
Connection Failover actions that are triggered after a down event of Oracle RAC.

Note:

• The isValid method checks with the pool instance and Oracle JDBC driver to
determine whether a connection is still valid. The isValid method results in a
round-trip to the database only if both the pool and the driver report that a
connection is still valid. The round-trip is used to check for database failures that
are not immediately discovered by the pool or the driver.

• Starting from Oracle Database Release 18c, there is a new variant of the
isValid method that sends an empty packet to the database unlike the older
version of the method that uses a ping-pong protocol and makes a full round-trip
to the database.

See Also:

Oracle Database JDBC Developer’s Guide

The isValid method is also helpful when used in conjunction with the connection timeout and
connection harvesting features. These features may return a connection to the pool while a
connection is still held by an application. In such cases, the isValid method returns false,
allowing the application to get a new connection.

The following example demonstrates using the isValid method:

try { conn = poolDataSouorce.getConnection ...}catch (SQLException sqlexc)
{
 if (conn == null || !((ValidConnection) conn).isValid())

 // take the appropriate action

...
conn.close();
}

For XA applications, before calling the isValid() method, you must cast any XAConnection
that is obtained from PoolXADataSource to a ValidConnection. If you cast a Connection that is
obtained by calling the XAConnection.getConnection() method to ValidConnecion, then it
may throw an exception.

Related Topics

• Using Oracle RAC Features

Related Topics

• Removing Connections from UCP

3.4 Returning Borrowed Connections to UCP
Borrowed connections that are no longer being used should be returned to the pool so that
they can be available for the next connection request. The close method closes connections

Chapter 3
Returning Borrowed Connections to UCP

3-10

and automatically returns them to the pool. The close method does not physically remove the
connection from the pool.

Borrowed connections that are not closed will remain borrowed; subsequent requests for a
connection result in a new connection being created if no connections are available. This
behavior can cause many connections to be created and can affect system performance.

The following example demonstrates closing a connection and returning it to the pool:

Connection conn = pds.getConnection();

//do some work with the connection.

conn.close();
conn=null;

3.5 Removing Connections from UCP
The setInvalid method of the ValidConnection interface indicates that a connection should
be removed from the connection pool when it is closed. The method is typically used when a
connection is no longer usable, such as after an exception or if the isValid method of the
ValidConnection interface returns false. The method can also be used if an application
deems the state on a connection to be bad. The following example demonstrates using the
setInvalid method to close and remove a connection from the pool:

Connection conn = pds.getConnection();
...

((ValidConnection) conn).setInvalid();
...

conn.close();
conn=null;

3.6 UCP Integration with Third-Party Products
Third-party products, such as middleware platforms or frameworks, can use UCP to provide
connection pooling functionality for their applications and services. UCP integration includes
the same connection pool features that are available to stand-alone applications and offers the
same tight integration with the Oracle Database.

Two data source classes are available as integration points with UCP: PoolDataSourceImpl for
non-XA connection pools and PoolXADataSourceImpl for XA connection pools. Both classes
are located in the oracle.ucp.jdbc package. These classes are implementations of the
PoolDataSource and PoolXADataSource interfaces, respectively, and contain default
constructors.

See Also:

Oracle Universal Connection Pool Java API Reference for more information on the
implementation classes.

These implementations explicitly create connection pool instances and can return connections.
For example:

Chapter 3
Removing Connections from UCP

3-11

PoolXADataSource pds = new PoolXADataSourceImpl();

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
pds.setUser("user");
pds.setPassword("password");

XAConnection conn = pds.getXAConnection();

Third-party products can instantiate these data source implementation classes. In addition, the
methods of these interfaces follow the JavaBean design pattern and can be used to set
connection pool properties on the class using reflection. For example, a UCP data source that
uses an Oracle JDBC connection factory and database might be defined as follows and loaded
into a JNDI registry:

<data-sources>
 <data-source
 name="UCPDataSource"
 jndi-name="jdbc/UCP_DS"
 data-source-class="oracle.ucp.jdbc.PoolDataSourceImpl">
 <property name="ConnectionFactoryClassName"
 value="oracle.jdbc.pool.OracleDataSource"/>
 <property name="URL" value="jdbc:oracle:thin:@//localhost:1521:oracle"/>
 <property name="User" value"user"/>
 <property name="Password" value="password"/>
 <property name="ConnectionPoolName" value="MyPool"/>
 <property name="MinPoolSize" value="5"/>
 <property name="MaxPoolSize" value="50"/>
 </data-source>
</data-sources>

When using reflection, the name attribute matches (case sensitive) the name of the setter
method used to set the property. An application could then use the data source as follows:

Connection connection = null;
try {
 InitialContext context = new InitialContext();
 DataSource ds = (DataSource) context.lookup("jdbc/UCP_DS");
 connection = ds.getConnection();
 ...

Chapter 3
UCP Integration with Third-Party Products

3-12

4
Connection Creation Consumer

Starting with Oracle Database Release 23ai, you can make UCP callback the caller application
on every connection creation.

4.1 Implementing a Connection Creation Consumer
In the current release of Oracle Database, you can register a new connection creation
consumer for a specific PoolDataSource object, which is called back on every database
connection creation attempt, whether it is successful or unsuccessful.

Every connection creation operation triggers the acceptance of that consumer. For example, it
can be triggered for a connection borrow request or it can be triggered with some UCP worker
threads trying to keep up with a minimum pool size property, replacing a bad connection.

This section describes how to implement the connection creation consumer.

Note:

Once a registered consumer gets executed in a thread that creates a connection for
the pool, you must implement it without blocking calls and intensive computations.

Example 4-1 Registering a Consumer

The following code snippet shows how to register a consumer:

import oracle.ucp.ConnectionCreationInformation;
import java.util.function.Consumer;
... rest of imports ...

 ...
 final PoolDataSource pds = new PoolDataSourceFactory.getPoolDataSource();
 ... configure pds ...
 final Consumer<ConnectionCreationInformation> consumer = p -> { ... };
 pds.registerConnectionCreationConsumer(consumer);
 ...

Once a consumer is registered, every connection creation operation triggers an accept call of a
registered consumer.

Example 4-2 Unegistering a Consumer

The following code snippet shows how to unregister a consumer:

import oracle.ucp.ConnectionCreationInformation;
import java.util.function.Consumer;
... rest of imports ...

 ...

4-1

 final PoolDataSource pds = new PoolDataSourceFactory.getPoolDataSource();
 ... configure pds ...
 final Consumer<ConnectionCreationInformation> consumer = p -> { ... };
 pds.registerConnectionCreationConsumer(consumer);
 ...
 pds.unregisterConnectionCreationConsumer();
 ...

Once a consumer is unregistered, there are no more consumer acceptance calls for every
connection creation request in a pool.

Example 4-3 Connection Creation Status Verification

The following code snippet shows how to verify whether a connection creation was successful
or unsuccessful:

...
final Consumer<ConnectionCreationInformation> consumer = p -> {
 if (p.getStatus() == ConnectionCreationInformation.Status.SUCCESSFUL) {
 ... handle successful connection creation code path...
 }

 if (p.getStatus() == ConnectionCreationInformation.Status.FAILURE) {
 ... handle unsuccessful connection creation code path...
 }

 ... };

Example 4-4 Handling Failed Connection Creation

If the connection creation operation fails, then an accepted consumer throws the
corresponding SQLException vendor error code. The following code snippet shows how to
handle the error:

...
final Consumer<ConnectionCreationInformation> consumer = p -> {
 if (p.getStatus() == ConnectionCreationInformation.Status.FAILURE) {
 final int errorCode = p.getErrorCode();
 ... do some error code path...
 }

 ... };

Example 4-5 Retrieving Information About Successful Connections

The following code snippet shows how to retrieve information about successfully created
connections:

...
final Consumer<ConnectionCreationInformation> consumer = p -> {
 if (p.getStatus() == ConnectionCreationInformation.Status.SUCCESSFUL) {

Chapter 4
Implementing a Connection Creation Consumer

4-2

 // Net Connection ID for an appropriate connection.
 final String netConnId = getNetConnectionId();

 // database instance (if applicable) name, on which connection was
created.
 final String instanceName = getInstanceName();

 // database service (if applicable) name, on which connection was created.
 final String serviceName = getServiceName();

 // database host (if applicable) name, on which connection was created.
 final String hostName = getHostName();

 // database unique ID for created connection.
 final String dnUniqId = getDatabaseUniqId();

 // database instance (if applicable) unique ID for created connection.
 final String instanceId = getInstanceId();

 // Security information for created connection.
 final SecurityInformation securityInfo = getSecurityInformation();

 ... rest of successful connection creation code path ...
 }
 ... };

Chapter 4
Implementing a Connection Creation Consumer

4-3

5
Optimizing Universal Connection Pool
Behavior

This chapter describes the following concepts:

• Optimizing Connection Pools

• About Controlling the Pool Size in UCP

• About Optimizing Real-World Performance with Static Connection Pools

• Stale Connections in UCP

• About Harvesting Connections in UCP

• About Caching SQL Statements in UCP

5.1 Optimizing Connection Pools
This section provides instructions for setting connection pool properties in order to optimize
pooling behavior. Upon creation, UCP JDBC connection pools are pre-configured with a default
setup. The default setup provides a general, all-purpose connection pool. However, different
applications may have different database connection requirements and may want to modify the
default behavior of the connection pool. Behaviors, such as pool size and connection timeouts
can be configured and can improve overall connection pool performance as well as connection
availability. In many cases, the best way to tune a connection pool for a specific application is
to try different property combinations using different values until optimal performance and
throughput is achieved.

Setting Connection Pool Properties

Connection pool properties are set either when getting a connection through a pool-enabled
data source or when creating a connection pool using the connection pool manager.

The following example demonstrates setting connection pool properties though a pool-enabled
data source:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);
...

The following example demonstrates setting connection pool properties when creating a
connection pool using the connection pool manager:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);
...

mgr.createConnectionPool(pds);

5-1

5.2 About Controlling the Pool Size in UCP
UCP JDBC connection pools include a set of properties that are used to control the size of the
pool. The properties allow the number of connections in the pool to increase and decrease as
demand increases and decreases. This dynamic behavior helps conserve system resources
that are otherwise lost on maintaining unnecessary connections.

This section describes the following topics:

• Setting the Initial Pool Size

• Setting the Minimum Pool Size

• Setting the Maximum Pool Size

• Setting the Minimum Idle Connection Number

5.2.1 Setting the Initial Pool Size
The initial pool size property specifies the number of available connections that are created
when the connection pool is initially created or re-initialized. This property is typically used to
reduce the ramp-up time incurred by priming the pool to its optimal size.

A value of 0 indicates that no connections are pre-created. The default value is 0. The following
example demonstrates configuring an initial pool size:

pds.setInitialPoolSize(5);

If the initial pool size property is greater than the maximum pool size property, then only the
maximum number of connections are initialized.

If the initial pool size property is less than the minimum pool size property, then only the initial
number of connections are initialized and maintained until enough connections are created to
meet the minimum pool size value.

If during the pool initialization process, connections cannot be created up to the value specified
in the initPoolSize property, then the pool attempts to create the remaining connections to
fulfill the initial pool size. If the pool does not have the physical ability to do so, then the pool
initialization process ends and it keeps trying to maintain the designated minimum and
maximum connection limits for the rest of its life cycle.

5.2.2 Setting the Minimum Pool Size
The minimum pool size property specifies the minimum amount of available connections and
borrowed connections that a pool maintains. A connection pool always tries to return to the
minimum pool size specified unless the minimum amount is yet to be reached. For example, if
the minimum limit is set to 10 and only 2 connections are ever created and borrowed, then the
number of connections maintained by the pool remains at 2 because this number is less than
the minimum pool size.

This property allows the number of connections in the pool to decrease as demand decreases.
At the same time, the property ensures that system resources are not wasted on maintaining
connections that are unnecessary.

The default value is 0. The following example demonstrates configuring a minimum pool size:

pds.setMinPoolSize(2);

Chapter 5
About Controlling the Pool Size in UCP

5-2

5.2.3 Setting the Maximum Pool Size
The maximum pool size property specifies the maximum number of available and borrowed (in
use) connections that a pool maintains. If the maximum number of connections are borrowed,
no connections will be available until a connection is returned to the pool.

This property allows the number of connections in the pool to increase as demand increases.
At the same time, the property ensures that the pool does not grow to the point of exhausting
the resources of a system, which ultimately affects the performance and availability of an
application.

A value of 0 indicates that no connections are maintained by the pool. An attempt to get a
connection results in an exception. The default value is to allow the pool to continue to create
connections up to Integer.MAX_VALUE (2147483647 by default). The following example
demonstrates configuring a maximum pool size:

pds.setMaxPoolSize(100);

5.2.4 Setting the Minimum Idle Connection Number
The minimum idle connection number property specifies the minimum number of idle
connections that the connection pool maintains.

If the number of available connections is less than the number of minimum idle connections
specified, then new connections are created in the background and made available in the pool.
The range of valid values for this property ranges from 0 to Integer.MAX_VALUE. The default
value is 0. It is illegal to set this property to a value greater than the maximum pool size.

The following code snippet shows how to use this property:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("<URL>");
pds.setUser("<user_name>");
pds.setPassword("<password>");
pds.setInitialPoolSize(5);
pds.setMinPoolSize(5);
pds.setMinIdle(5);
pds.setMaxPoolSize(10);
Connection conn = pds.getConnection();
conn.close();

See Also:

Oracle Universal Connection Pool Java API Reference for more information about
this property

Chapter 5
About Controlling the Pool Size in UCP

5-3

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/index.html

5.3 About Optimizing Real-World Performance with Static
Connection Pools

Most on-line transaction processing (OLTP) performance problems that the Real-World
Performance group investigates relate to the connection strategy used by the application. For
this reason, designing a sound connection strategy is crucial for system performance,
especially in enterprise environments that must scale to meet increasing demand.

Most applications use a dynamic pool of connections to the database, configured with a
minimum number of connections to keep open on the database and a maximum number of
connections that can be made to the database. When an application needs a connection to the
database, then it requests one from the pool. If there are no connections available, then the
application creates a new connection, if it has not reached the maximum number of
connections already. If a connection has not been used for a specified duration of time, then
the application closes the connection, if there are more than the minimum number of
connections available.

This configuration conserves system resources by only maintaining the number of connections
actively needed by the application. In the real world, this configuration enables connection
storms and database system CPU oversubscription, quickly destabilizing a system. A
connection storm can occur when there are lots of activities on the application server requiring
database connections. If there are not enough connections to the database to serve all of the
requests, then the application server opens new connections. Creating a new connection to the
database is a resource intensive activity, and when lots of connections are made in a short
period of time, it can overwhelm the CPU resources on the database system.

So, for creating a static connection pool, the number of connections to the database system
must be based on the CPU cores available on the system. Oracle recommends 1-10
connections per CPU core. The ideal number varies depending on the application and the
system hardware. However, the value is somewhere within that range. the Real-World
Performance group recommends creating a static pool of connections to the database by
setting the minimum and maximum number of connections to the same value. This prevents
connection storms by keeping the number of database connections constant to a predefined
value.

For example, if a database server has 2 CPUs, 12 cores per CPU, and 2 threads per core,
then there are 24 cores available and the number of connections to the database should be
between 24 and 240. The number of threads is not taken into consideration as only the CPU
cores are able to execute instructions. This number is cumulative for all applications
connecting to the system and for all databases, if there is more than one database on the
system. If there are two application servers, then the maximum number of connections (for
example, 240 in this case) should be divided between them. If there are two databases running
on the system, then the maximum number of connections that is, 240 connections needs to be
divided between them.

See Also:

• https://www.youtube.com/watch?v=Oo-tBpVewP4

• https://www.youtube.com/watch?v=XzN8Rp6glEo

Chapter 5
About Optimizing Real-World Performance with Static Connection Pools

5-4

https://www.youtube.com/watch?v=Oo-tBpVewP4
https://www.youtube.com/watch?v=XzN8Rp6glEo

5.4 Stale Connections in UCP
Stale connections are connections that remain either available or borrowed, but are no longer
being used. Stale connections that remain borrowed may affect connection availability.

In addition, stale connections may impact system resources that are used to maintain unused
connections for extended periods of time. The pool properties discussed in this section are
used to control stale connections.

This section describes the following topics:

• What is Connection Reuse?

• Setting the Connection Validation Timeout

• Setting the Abandon Connection Timeout

• Setting the Time-To-Live Connection Timeout

• Setting the Connection Wait Timeout

• Setting the Inactive Connection Timeout

• Setting the Query Timeout

• Setting the Timeout Check Interval

Note:

It is good practice to close all connections that are no longer required by an
application. Closing connections helps minimize the number of stale connections that
remain borrowed.

5.4.1 What is Connection Reuse?
The connection reuse feature allows connections to be gracefully closed and removed from a
connection pool after a specific amount of time or after the connection has been used a
specific number of times. This feature saves system resources that are otherwise wasted on
maintaining unusable connections.

5.4.1.1 Setting the Maximum Connection Reuse Time
The maximum connection reuse time allows connections to be gracefully closed and removed
from the pool after a connection has been in use for a specific amount of time. The timer for
this property starts when a connection is physically created. Borrowed connections are closed
only after they are returned to the pool and the reuse time is exceeded.

This feature is typically used when a firewall exists between the pool tier and the database tier
and is setup to block connections based on time restrictions. The blocked connections remain
in the pool even though they are unusable. In such scenarios, the connection reuse time is set
to a smaller value than the firewall timeout policy.

Chapter 5
Stale Connections in UCP

5-5

Note:

The maximum connection reuse time is different from the time-to-live connection
timeout. The main difference between the maximum connection reuse time and the
time-to-live is that time-to-live can cancel a connection, but maximum connection
reuse time never does that. The maximum connection reuse time handler gets
applied only in the following cases:

• Prior to a connection borrow

• Immediately after a connection is returned back to a pool

• On periodic basis, with every timeoutCheckInterval

The maximum connection reuse time value is represented in seconds. The default value is 0,
which indicates that this feature is disabled. The following example demonstrates configuring a
maximum connection reuse time:

pds.setMaxConnectionReuseTime(300);

Starting from Oracle Database Release 23ai, you can use the new system property
oracle.ucp.timersAffectAllConnections to change the behavior of the maximum connection
reuse time processing. The default value of this property is FALSE, which means that during
periodical appropriate time processing, a pool is scanned down to a minimum pool size and the
pool never closes connections below the minimum pool size. If the
SYSTEM_PROPERTY_TIMERS_AFFECT_ALL_CONNECTIONS system property is set to TRUE, then the
periodic poll checks all available connection for the maximum connection reuse time criteria, so
the pool size may go below the minimum pool size, replacing the applicable connections.

Related Topics

• Setting the Time-To-Live Connection Timeout

5.4.1.2 Setting the Maximum Connection Reuse Count
The maximum connection reuse count allows connections to be gracefully closed and removed
from the connection pool after a connection has been borrowed a specific number of times.
This property is typically used to periodically recycle connections in order to eliminate issues
such as memory leaks.

A value of 0 indicates that this feature is disabled. The default value is 0. The following
example demonstrates configuring a maximum connection reuse count:

pds.setMaxConnectionReuseCount(100);

5.4.2 Setting the Connection Validation Timeout
The connection validation timeout specifies the duration within which a borrowed connection
from the pool is validated. This is the maximum time for a connection validation operation. If
the validation is not completed during this period, then the connection is treated as invalid.

The connection validation timeout value represents seconds. The default value is set to 15.
The following example demonstrates configuring a connection validation timeout:

pd.setConnectionValidationTimeout(55);

Chapter 5
Stale Connections in UCP

5-6

5.4.3 Setting the Abandon Connection Timeout
The abandoned connection timeout (ACT) enables borrowed connections to be reclaimed back
into the connection pool after a connection has not been used for a specific amount of time.
Abandonment is determined by monitoring calls to the database.

The abandoned connection timeout feature helps maximize connection reuse and conserves
system resources that are otherwise lost on maintaining borrowed connections that are no
longer in use.

Note:

Before reclaiming connections for reuse, UCP either cancels or rolls back the
connections that have local transactions pending.

The ACT value represents seconds. A value of 0 indicates that the feature is disabled. The
default value is set to 0. The following example demonstrates configuring an abandoned
connection timeout:

pds.setAbandonedConnectionTimeout(10);

Every connection is reaped after a specific period of time. Either it is reaped when ACT
expires, or, if it is immune from ACT, then it is reaped after the immunity expires. If you set ACT
on a pool, then the following connection reaping policies apply:

• If a statement is executed without calling the Statement.setQueryTimeout method on that
statement, then the connection is reaped if ACT is exceeded, even though the connection
is waiting for the server to respond to the query.

• If a statement is executed with calling the Statement.setQueryTimeout method, then the
connection is reaped after the query timeout and ACT have expired. The connection is not
reaped while waiting on the query timeout. The expiration of the query timeout is an event
that resets the ACT timer. If the ACT expires while waiting for the cancel action that occurs
at the expiration of the query time out, then the connection is reaped.

• The default query timeout in the UCP is set to zero (0) for an appropriate pool data source,
using the PoolDataSource.setQueryTimeout method, if the ACT is set to 0. If the ACT is
greater than zero (0), then the default query timeout is set to 60 seconds.

• If a connection has two statements: s1 with a query timeout and s2 without a query
timeout, then ACT does not reap the connection while s1 waits for the query timeout, but
reaps the connection if s2 hangs.

Note that the two statements execute sequentially based on JDBC requirement.

5.4.4 Setting the Time-To-Live Connection Timeout
The time-to-live connection timeout enables borrowed connections to remain borrowed for a
specific amount of time before the connection is reclaimed by the pool. This timeout feature
helps maximize connection reuse and helps conserve systems resources that are otherwise
lost on maintaining connections longer than their expected usage.

Chapter 5
Stale Connections in UCP

5-7

Note:

UCP either cancels or rolls back connections that have local transactions pending
before reclaiming connections for reuse.

The time-to-live connection timeout value represents seconds. A value of 0 indicates that the
feature is disabled. The default value is set to 0. The following example demonstrates
configuring a time-to-live connection timeout:

pds.setTimeToLiveConnectionTimeout(18000)

5.4.5 Setting the Connection Wait Timeout
The connection wait timeout specifies how long an application request waits to obtain a
connection if there are no longer any connections in the pool. A connection pool runs out of
connections if all connections in the pool are being used (borrowed) and if the pool size has
reached it's maximum connection capacity as specified by the maximum pool size property.
The request receives an SQL exception if the timeout value is reached. The application can
then retry getting a connection. This timeout feature improves overall application usability by
minimizing the amount of time an application is blocked and provides the ability to implement a
graceful recovery.

The connection wait timeout value represents seconds. A value of 0 indicates that the feature
is disabled. The default value is set to 3 seconds. The following example demonstrates
configuring a connection wait timeout:

pds.setConnectionWaitTimeout(10);

5.4.6 Setting the Inactive Connection Timeout
The inactive connection timeout specifies how long an available connection can remain idle
before it is closed and removed from the pool.

This timeout property is only applicable to available connections and does not affect borrowed
connections. This property helps conserve resources that are otherwise lost on maintaining
connections that are no longer being used. The inactive connection timeout (together with the
maximum pool size) enables a connection pool to grow and shrink as application load
changes.

The inactive connection timeout value is represented in seconds. A value of 0 indicates that the
feature is disabled. The default value is set to 0. The following example demonstrates
configuring an inactive connection timeout:

pds.setInactiveConnectionTimeout(60);

Starting from Oracle Database Release 23ai, you can use the new system property
oracle.ucp.timersAffectAllConnections to change the behavior of the Inactive Connection
Timeout and Maximum Connection Reuse Time properties. If you set this system property to
TRUE, then the periodic poll checks all the available connections for the maximum connection
reuse time and inactive connection timeout criteria, and closes all the connections that satisfy
the criteria. This may make the pool size go below the minimum pool size, resulting in the
creation of new connections by the pool to maintain the minimum pool size limit.

Chapter 5
Stale Connections in UCP

5-8

See Also:

Setting the Maximum Connection Reuse Time for more information about the
oracle.ucp.timersAffectAllConnections property

5.4.7 Setting the Query Timeout

In Oracle Database 12c Release 2 (12.2.0.1), UCP introduced the queryTimeout property. This
property specifies the number of seconds UCP waits for a Statement object to execute. If the
limit is exceeded, then a DatabaseException is thrown. Use the setQueryTimeout method for
setting this property in the following way:

...
PoolDataSourceImpl pds = new PoolDataSourceImpl();
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL(<url>);
pds.setUser("scott");
pds.setPassword(<password>);
pds.setConnectionPoolName("my_pool");
pds.setQueryTimeout(60); // 60 seconds to wait on query
...

5.4.8 Setting the Timeout Check Interval
The timeout check interval property controls how frequently the timeout properties (abandoned
connection timeout, time-to-live connection timeout, and inactive connection timeout) are
enforced. Connections that have timed-out are reclaimed when the timeout check cycle runs.
This means that a connection may not actually be reclaimed by the pool at the moment that the
connection times-out. The lag time between the connection timeout and actually reclaiming the
connection may be considerable depending on the size of the timeout check interval.

The timeout check interval property represents seconds. The default value is set to 30. The
following example demonstrates configuring a property check interval:

pds.setTimeoutCheckInterval(60);

See Also:

Oracle Database Net Services Administrator's Guide for more information about
Oracle Net Services

5.5 About Harvesting Connections in UCP
The connection harvesting feature allows a specified number of borrowed connections to be
reclaimed when the connection pool reaches a specified number of available connections. This
section describes the following concepts:

• Overview of Harvesting Connections in UCP

Chapter 5
About Harvesting Connections in UCP

5-9

• Setting a Connection to Harvestable

• Setting the Harvest Trigger Count

• Setting the Harvest Maximum Count

5.5.1 Overview of Harvesting Connections in UCP
This feature helps ensure that a certain number of connections are always available in the pool
and helps maximize performance. The feature is particularly useful if an application caches
connection handles. Caching is typically performed for performance reasons because it
minimizes re-initialization of state necessary for connections to participate in a transaction.

For example, a connection is borrowed from the pool, initialized with necessary session state,
and then held in a context object. Holding connections in this manner may cause the
connection pool to run out of available connections. The connection harvest feature reclaims
the borrowed connections, if appropriate, and allows the connections to be reused.

Connection harvesting is controlled using the HarvestableConnection interface and configured
or enabled using two pool properties: Connection Harvest Trigger Count and Connection
Harvest Maximum Count. The interface and properties are used together when implementing
the connection harvest feature.

5.5.2 Setting a Connection to Harvestable
The setConnectionHarvestable(boolean) method of the
oracle.ucp.jdbc.HarvestableConnection interface controls whether or not a connection will
be harvested. This method is used as a locking mechanism when connection harvesting is
enabled. For example, the method is set to false on a connection when the connection is
being used within a transaction and must not be harvested. After the transaction completes,
the method is set to true on the connection and the connection can be harvested if required.

Note:

All connections are harvestable, by default, when the connection harvest feature is
enabled. If the feature is enabled, the setConnectionHarvestable method should
always be used to explicitly control whether a connection is harvestable.

The following example demonstrates using the setConnectionHarvestable method to indicate
that a connection is not harvestable when the connection harvest feature attempts to harvest
connections:

Connection conn = pds.getConnection();

((HarvestableConnection) conn).setConnectionHarvestable(false);

5.5.3 Setting the Harvest Trigger Count
The connection harvest trigger count specifies the available connection threshold that triggers
connection harvesting. For example, if the connection harvest trigger count is set to 10, then
connection harvesting is triggered when the number of available connections in the pool drops
to 10.

Chapter 5
About Harvesting Connections in UCP

5-10

A value of Integer.MAX_VALUE (2147483647 by default) indicates that connection harvesting is
disabled. The default value is Integer.MAX_VALUE.

The following example demonstrates enabling connection harvesting by configuring a
connection harvest trigger count.

pds.setConnectionHarvestTriggerCount(2);

5.5.4 Setting the Harvest Maximum Count
The connection harvest maximum count property specifies how many borrowed connections
should be returned to the pool once the harvest trigger count has been reached. The number
of connections actually harvested may be anywhere from 0 to the connection harvest
maximum count value. Least recently used connections are harvested first which allows very
active user sessions to keep their connections the most.

The harvest maximum count value can range from 0 to the maximum connection property
value. The default value is 1. An SQLException is thrown if an out-of-range value is specified.

The following example demonstrates configuring a connection harvest maximum count.

pds.setConnectionHarvestMaxCount(5);

Note:

• If connection harvesting and abandoned connection timeout features are enabled
at the same time, then the timeout processing does not reclaim the connections
that are designated as nonharvestable.

• If connection harvesting and time-to-live connection timeout features are enabled
at the same time, then the timeout processing reclaims the connections that are
designated as nonharvestable.

Related Topics

• Controlling Reclaimable Connection Behavior

5.6 About Caching SQL Statements in UCP
This section describes how to cache SQL statements in UCP, in the following sections:

• Overview of Statement Caching in UCP

• Enabling Statement Caching in UCP

5.6.1 Overview of Statement Caching in UCP
Statement caching makes working with statements more efficient. Statement caching improves
performance by caching executable statements that are used repeatedly and makes it
unnecessary for programmers to explicitly reuse prepared statements. Statement caching
eliminates overhead due to repeated cursor creation, repeated statement parsing and creation
and reduces overhead of communication between applications and the database. Statement
caching and reuse is transparent to an application. Each statement cache is associated with a
physical connection. That is, each physical connection will have its own statement cache.

Chapter 5
About Caching SQL Statements in UCP

5-11

The match criteria for cached statements are as follows:

• The SQL string in the statement must be the same (case-sensitive) to one in the cache.

• The statement type must be the same (prepared or callable) to the one in the cache.

• The scrollable type of result sets produced by the statement must be the same (forward-
only or scrollable) as the one in the cache.

Statement caching is implemented and enabled differently depending on the JDBC driver
vendor. The instructions in this section are specific to Oracle's JDBC driver. Statement caching
on other vendors' drivers can be configured by setting a connection property on a connection
factory. Refer to the JDBC vendor's documentation to determine whether statement caching is
supported and if it can be set as a connection property. UCP does support JDBC 4.0 (JDK16)
APIs to enable statement pooling if a JDBC vendor supports it.

Related Topics

• Setting Connection Properties

5.6.2 Enabling Statement Caching in UCP
The maximum number of statements property specifies the number of statements to cache for
each connection. The property only applies to the Oracle JDBC driver. If the property is not set,
or if it is set to 0, then statement caching is disabled. By default, statement caching is disabled.
When statement caching is enabled, a statement cache is associated with each physical
connection maintained by the connection pool. A single statement cache is not shared across
all physical connections.

The following example demonstrates enabling statement caching:

pds.setMaxStatements(10);

Determining the Statement Cache Size

The cache size should be set to the number of distinct statements the application issues to the
database. If the number of statements that an application issues to the database is unknown,
use the JDBC performance metrics to assist with determining the statement cache size.

Statement Cache Size Resource Issues

Each connection is associated with its own statement cache. Statements held in a connection's
statement cache may hold on to database resources. It is possible that the number of opened
connections combined with the number of cached statements for each connection could
exceed the limit of open cursors allowed for the database. This issue may be avoided by
reducing the number of statements allowed in the cache, or by increasing the limit of open
cursors allowed by the database.

5.7 UCP Best Practices
Universal Connection Pool has an extensive collection of tools and APIs to analyze connection
leaks and tune up pool properties for optimizing its operation. This section describes these
tools and APIs.

The All connections in the Universal Connection Pool are in use exception indicates
the shortage of connections in the pool at a given time, which means that the pool is unable to
meet the connection borrowing requests of an application. This can happen due to the
following reasons:

Chapter 5
UCP Best Practices

5-12

• An application borrows connections and holds them for a long time without usage, never
returning them to the pool. Connection leakage can also happen when an application
borrows connections, holds them without usage, and finally returns them to the pool after a
very long time. These are the classical connection leakage use cases. You must eliminate
non-productive connection borrowings that last for long or infinite periods of time.

• The pool has insufficient capacity for processing the whole flow of connection borrowing
requests. In this case, the connection supply of the pool is not enough to perform the
expected job and this results in the exception. You must increase the pool capacity in such
a case.

Following is a list of useful tools and APIs that you must be aware of prior to debugging and
tuning up UCP:

• Abandoned Connection Timeout (ACT): This API enables setting up a timeout for a
connection that is borrowed but unused.

See Also:

Setting the Abandon Connection Timeout

• Time-To-Live Connection Timeout (TTL): This API too enables setting up a timeout for a
connection that is borrowed but unused. However, it also furnishes information about the
borrowed connections that are busy with associated on-going processes. It also enables to
reclaim these busy connections back to a pool and restores the capacity of the pool, in
case of very long processes.

See Also:

Setting the Time-To-Live Connection Timeout

• Connection Harvesting Mechanism: This is a special API that enables UCP to always
keep certain number of connections available for borrowing and in turn, helps in avoiding
the All connections in the Universal Connection Pool are in use exception.

See Also:

About Harvesting Connections in UCP

• Connection Wait Timeout (CWT): This is an important property when you try to tune up
UCP to avoid the All connections in the Universal Connection Pool are in use
exception. When an application attempts to borrow a connection out of a pool and there
are no available connections at that time, UCP waits for an available connection to appear
for the amount of time that is equal to the value of CWT. By default, CWT is set for 3
seconds. In many applications, you can increase this timeout to enable a pool to wait for
longer for an available connection to appear, without getting the All connections in the
Universal Connection Pool are in use exception.

See Also:

Setting the Connection Wait Timeout

Chapter 5
UCP Best Practices

5-13

• Maximum Pool Size (MaxPoolSize): This property affects the pool capacity and helps to
avoid the All connections in the Universal Connection Pool are in use exception.
Oracle recommends to have a small pool size, typically a small number multiplied by the
number of cores on a database server. It is better to increase the CWT than making
MaxPoolSize very high.

See Also:

Setting the Maximum Pool Size

• Inactive Connection Timeout (ICT) in combination with MaxPoolSize: ICT is the
timeout property that enables UCP to automatically close available connections that did not
have a chance to be borrowed for a particular amount of time, which is specified by the
value of ICT. This way, the UCP can avoid connections if the working set of the pool is too
big to perform a given throughput. For the pool to auto-tune the required number of
connections in the working set of the pool, you can set the MaxPoolSize parameter to a big
value and set the ICT accordingly.

Note:

Setting the Inactive Connection Timeout

• Pool Size Auto Tuner: This tool enables UCP to automatically tune up pool size for better
throughput.

• Pool Statistical Metrics: This is a set of statistics that helps to determine the activities and
statistics of a pool, for example, the number of available connections, the number of
borrowed connections, and the Average Connection Wait Time (ACWT). ACWT can find a
proper value of CWT property for pool tuning. If ACWT is big, then it indicates that the UCP
is close to over-using its capacity.

See Also:

Pool Statistics

• Pool Logging: UCP has an extensive and flexible logging system. Logging enables you to
determine events related to connection opening, connection closing, connection borrowing,
and wait time of return and borrow requests.

See Also:

Overview of Logging and Tracing in UCP

Chapter 5
UCP Best Practices

5-14

6
Labeling Connections in UCP

This chapter discusses the following topics:

• Overview of Labeling Connections in UCP

• Implementation of a Labeling Callback in UCP

• Applying Connection Labels in UCP

• Borrowing Labeled Connections from UCP

• Checking Unmatched Labels in UCP

• Integration of UCP with DRCP

• Removing a Connection Label in UCP

6.1 Overview of Labeling Connections in UCP
Applications often initialize connections retrieved from a connection pool before using the
connection. The initialization varies and could include simple state re-initialization that requires
method calls within the application code or database operations that require round trips over
the network. The cost of such initialization may be significant.

Labeling connections enables an application to attach arbitrary name/value pairs to a
connection. The application can request a connection with the desired label from the
connection pool. By associating particular labels with particular connection states, an
application can retrieve an already initialized connection from the pool and avoid the time and
cost of re-initialization. The connection labeling feature does not impose any meaning on user-
defined keys or values; the meaning of user-defined keys and values is defined solely by the
application.

Note:

If you are using connection labeling, then you cannot set the RESET_STATE service
attribute to LEVEL1 or LEVEL2.

Some of the examples for connection labeling include, role, NLS language settings, transaction
isolation levels, stored procedure calls, or any other state initialization that is expensive and
necessary on the connection before work can be executed by the resource.

Connection labeling is application-driven and requires the use of two interfaces. The
oracle.ucp.jdbc.LabelableConnection interface is used to apply and remove connection
labels, as well as retrieve labels that have been set on a connection. The
oracle.ucp.ConnectionLabelingCallback interface is used to create a labeling callback that
determines whether or not a connection with a requested label already exists. If no
connections exist, the interface allows current connections to be configured as required. The
methods of these interfaces are described in detail throughout this chapter.

6-1

6.2 Implementation of a Labeling Callback in UCP
UCP uses Database Resident Connection Pooling (DRCP) tagging infrastructure to support
labeling in UCP, whether you work with single labels or multiple labels. However, the behavior
with multiple labels can be a little different when you use the UCP and DRCP combination
instead of only UCP.

This section discusses the following topics:

• When to Use a Labeling Callback in UCP

• Creating a Labeling Callback in UCP

• Registering a Labeling Callback in UCP

• Removing a Labeling Callback in UCP

See Also:

"Integration of UCP with DRCP"

6.2.1 When to Use a Labeling Callback in UCP
A labeling callback is used to define how the connection pool selects labeled connections and
allows the selected connection to be configured before returning it to an application.
Applications that use the connection labeling feature must provide a callback implementation.

A labeling callback is used when a labeled connection is requested but there are no
connections in the pool that match the requested labels. The callback determines which
connection requires the least amount of work in order to be re-configured to match the
requested label and then enables the connection labels to be updated before returning the
connection to the application. This section describes the following topics:

6.2.2 Creating a Labeling Callback in UCP
To create a labeling callback, an application implements the
oracle.ucp.ConnectionLabelingCallback interface. One callback is created per connection
pool. The interface provides the following two methods:

• The cost Method

• The configure Method

The cost Method

This method projects the cost of configuring connections considering label-matching
differences. Upon a connection request, the connection pool uses this method to select a
connection with the least configuration cost.

public int cost(Properties requestedLabels, Properties currentLabels);

Chapter 6
Implementation of a Labeling Callback in UCP

6-2

The configure Method

This method is called by the connection pool on the selected connection before returning it to
the application. The method is used to set the state of the connection and apply or remove any
labels to/from the connection.

public boolean configure(Properties requestedLabels, Connection conn);

The connection pool iterates over each connection available in the pool. For each connection,
it calls the cost method. The result of the cost method is an integer which represents an
estimate of the cost required to reconfigure the connection to the required state. The larger the
value, the costlier it is to reconfigure the connection. The connection pool always returns
connections with the lowest cost value. The algorithm is as follows:

• If the cost method returns 0 for a connection, then the connection is a match. The
connection pool does not call the configure method on the connection found and returns
the connection as it is.

• If the cost method returns a value greater than 0, then the connection pool iterates until it
finds a connection with a cost value of 0 or runs out of available connections.

• If the pool has iterated through all available connections and the lowest cost of a
connection is Integer.MAX_VALUE (2147483647 by default), then no connection in the pool
is able to satisfy the connection request. The pool creates and returns a new connection. If
the pool has reached the maximum pool size (it cannot create a new connection), then the
pool either throws an SQL exception or waits if the connection wait timeout attribute is
specified.

• If the pool has iterated through all available connections and the lowest cost of a
connection is less than Integer.MAX_VALUE, then the configure method is called on the
connection and the connection is returned. If multiple connections are less than
Integer.MAX_VALUE, the connection with the lowest cost is returned.

Note:

A cost of 0 does not imply that requestedLabels equals currentLabels.

6.2.2.1 Example of Labeling Callback in UCP
The following example demonstrates a simple labeling callback implementation that
implements both the cost and configure methods. The callback is used to find a labeled
connection that is initialized with a specific transaction isolation level.

class MyConnectionLabelingCallback
 implements ConnectionLabelingCallback {

 public MyConnectionLabelingCallback()
 {
 }

 public int cost(Properties reqLabels, Properties currentLabels)
 {
 // Case 1: exact match
 if (reqLabels.equals(currentLabels))
 {
 System.out.println("## Exact match found!! ##");

Chapter 6
Implementation of a Labeling Callback in UCP

6-3

 return 0;
 }

 // Case 2: some labels match with no unmatched labels
 String iso1 = (String) reqLabels.get("TRANSACTION_ISOLATION");
 String iso2 = (String) currentLabels.get("TRANSACTION_ISOLATION");
 boolean match =
 (iso1 != null && iso2 != null && iso1.equalsIgnoreCase(iso2));
 Set rKeys = reqLabels.keySet();
 Set cKeys = currentLabels.keySet();
 if (match && rKeys.containsAll(cKeys))
 {
 System.out.println("## Partial match found!! ##");
 return 10;
 }

 // No label matches to application's preference.
 // Do not choose this connection.
 System.out.println("## No match found!! ##");
 return Integer.MAX_VALUE;
 }

 public boolean configure(Properties reqLabels, Object conn)
 {
 try
 {
 String isoStr = (String) reqLabels.get("TRANSACTION_ISOLATION");
 ((Connection)conn).setTransactionIsolation(Integer.valueOf(isoStr));
 LabelableConnection lconn = (LabelableConnection) conn;

 // Find the unmatched labels on this connection
 Properties unmatchedLabels =
 lconn.getUnmatchedConnectionLabels(reqLabels);

 // Apply each label <key,value> in unmatchedLabels to conn
 for (Map.Entry<Object, Object> label : unmatchedLabels.entrySet())
 {
 String key = (String) label.getKey();
 String value = (String) label.getValue();
 lconn.applyConnectionLabel(key, value);
 }
 }
 catch (Exception exc)
 {
 return false;
 }
 return true;
 }
}

6.2.3 Registering a Labeling Callback in UCP
A pool-enabled data source provides the
registerConnectionLabelingCallback(ConnectionLabelingCallback callback) method for
registering labeling callbacks. Only one callback may be registered on a connection pool. The
following example demonstrates registering a labeling callback that is implemented in the
MyConnectionLabelingCallback class:

MyConnectionLabelingCallback callback = new MyConnectionLabelingCallback();
pds.registerConnectionLabelingCallback(callback);

Chapter 6
Implementation of a Labeling Callback in UCP

6-4

6.2.4 Removing a Labeling Callback in UCP
A pool-enabled data source provides the removeConnectionLabelingCallback() method for
removing a labeling callback. The following example demonstrates removing a labeling
callback.

pds.removeConnectionLabelingCallback(callback);

6.3 Integration of UCP with DRCP
Natively, DRCP supports connection tagging, which is a single label without weights. So,
labeling with a single label works transparently if you use UCP with DRCP.

Note:

Oracle recommends that the maximum pool size of UCP should not be bigger than
the size of DRCP. If the UCP pool size is bigger than the DRCP size, then you must
set the setValidateConnectionOnBorrow property to off. Otherwise, UCP keeps
invalidating and closing the connections that are not associated with DRCP at that
moment, and keeps creating fresh connections.

See Also:

Overview of Validating Connections in UCP

Multiple label UCP connections work, but they have the following behavior changes:

• The cost method in the ConnectionLabelingCallback API is not invoked if you use UCP
with DRCP using connection labeling

• UCP can invoke the configure method in the ConnectionLabelingCallback API more
with DRCP configuration than without DRCP configuration.

See Also:

Oracle Database JDBC Developer's Guide for more information about DRCP

6.4 Applying Connection Labels in UCP
Labels are applied on a borrowed connection using the applyConnectionLabel method from
the LabelableConnection interface. This method is typically called from the configure method
of the labeling callback. Any number of connection labels may be cumulatively applied on a
borrowed connection. Each time a label is applied to a connection, the supplied key/value pair
is added to the collection of labels already applied to the connection. Only the last applied
value is retained for any given key.

Chapter 6
Integration of UCP with DRCP

6-5

Note:

A labeling callback must be registered on the connection pool before a label can be
applied on a borrowed connection; otherwise, an exception is thrown.

The following example demonstrates initializing a connection with a transaction isolation level
and then applying a label to the connection:

String pname = "property1";
String pvalue = "value";
Connection conn = pds.getConnection();

// initialize the connection as required.

conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

((LabelableConnection) conn).applyConnectionLabel(pname, pvalue);

In order to remove a given key from the set of connection labels applied, apply a label with the
key to be removed and a null value. This may be used to clear a particular key/value pair from
the set of connection labels.

Related Topics

• Implementation of a Labeling Callback in UCP

6.5 Borrowing Labeled Connections from UCP
A pool-enabled data source provides two getConnection methods that are used to borrow a
labeled connection from the pool. The methods are shown below:

public Connection getConnection(java.util.Properties labels)
 throws SQLException;

public Connection getConnection(String user, String password,
 java.util.Properties labels)
 throws SQLException;

The methods require that the label be passed to the getConnection method as a Properties
object. The following example demonstrates getting a connection with the label property1,
value.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);

Connection conn = pds.getConnection(label);

6.6 Checking Unmatched Labels in UCP
A connection may have multiple labels that each uniquely identifies the connection based on
some desired criteria. The getUnmatchedConnectionLabels method is used to verify which
connection labels matched from the requested labels and which did not. The method is used
after a connection with multiple labels is borrowed from the connection pool and is typically

Chapter 6
Borrowing Labeled Connections from UCP

6-6

used by a labeling callback. The following example demonstrates checking for unmatched
labels.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);

Connecion conn = pds.getConnection(label);
Properties unmatched = ((LabelableConnection)
 connection).getUnmatchedConnectionLabels (label);

6.7 Removing a Connection Label in UCP
The removeConnectionLabel method is used to remove a label from a connection. This
method is used after a labeled connection is borrowed from the connection pool. The following
example demonstrates removing a connection label.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);
Connection conn = pds.getConnection(label);
((LabelableConnection) conn).removeConnectionLabel(pname);

Chapter 6
Removing a Connection Label in UCP

6-7

7
Controlling Reclaimable Connection Behavior

This chapter describes the following interfaces:

• AbandonedConnectionTimeoutCallback Interface

• TimeToLiveConnectionTimeoutCallback Interface

7.1 AbandonedConnectionTimeoutCallback Interface
The AbandonedConnectionTimeoutCallback callback interface is used for the abandoned
connection timeout feature. This feature enables applications to provide customized handling
of abandoned connections.The callback object either uses one of its logical connection proxies
or it is registered with each pooled connection. This enables applications to perform
customized handling, when a particular connection is deemed abandoned by the pool. The
handleTimedOutConnection method is invoked when a borrowed connection is deemed
abandoned by the Universal Connection Pool. Applications can perform one of the following
operations on the connection:

• Completely override the pool-handling process

• Invoke additional handling actions

• Assume the default pool-handling

The JDBC applications can invoke cancel, close, and rollback methods on the abandoned
connection within the handleTimedOutConnection method.

Note:

If you try to register more than one AbandonedConnectionTimeoutCallback interface
on the same connection, then it results in an exception. This exception can be a
UniversalConnectionPoolException at the pool layer or a java.sql.SQLException,
specific to the type of the UCP Adapter like JDBC, JCA and so on.

7.2 TimeToLiveConnectionTimeoutCallback Interface
The TimeToLiveConnectionTimeoutCallback callback interface used for the time-to-live (TTL)
connection timeout feature. This enables applications to provide customized handling for TTL
timed-out connections.

The callback object either uses one of its logical connection proxies or it is registered with each
pooled connection. This enables applications to perform customized handling, when the TTL of
the particular connection times out.

The handleTimedOutConnection method is invoked when a borrowed connection is found to
be TTL timed-out by the Universal Connection Pool. Applications can perform one of the
following operations on the connection:

7-1

• Completely override the pool-handling process

• Invoke additional handling actions

• Assume the default pool-handling

The JDBC applications can invoke cancel, close, and rollback methods on the abandoned
connection within the handleTimedOutConnection method.

Note:

If you try to register more than one TimeToLiveConnectionTimeoutCallback interface
on the same connection, then it results in an exception. This exception can be a
UniversalConnectionPoolException at the pool layer or a java.sql.SQLException,
specific to the type of the UCP Adapter like JDBC, JCA, and so on.

Chapter 7
TimeToLiveConnectionTimeoutCallback Interface

7-2

8
Using the Connection Pool Manager

The following sections are included in this chapter:

• Overview of Using the UCP Manager

• Overview of JMX-based Management

8.1 Overview of Using the UCP Manager
The Universal Connection Pool (UCP) manager creates and maintains UCP instances. A pool
instance is registered with the pool manager every time a new pool is created. This section
covers the following topics:

• About Connection Pool Manager

• Creating a Connection Pool Manager for UCP

• Life Cycle States of a Connection

• Maintenance of Universal Connection Pool

8.1.1 About Connection Pool Manager
Applications use a connection pool manager to explicitly create and manage UCP JDBC
connection pools. Applications use the manager because it offers full life cycle control, such as
creating, starting, stopping, and destroying a connection pool. Applications also use the
manager to perform routine maintenance on the connection pool, such as refreshing, recycling,
and purging connections in a pool. Lastly, applications use the connection pool manager
because it offers a centralized integration point for administrative tools and consoles.

8.1.2 Creating a Connection Pool Manager for UCP
A connection pool manager is an instance of the UniversalConnectionPoolManager interface,
which is located in the oracle.ucp.admin package. The manager is a Singleton instance that
is used to manage multiple connection pools per JVM. The interface includes methods for
interacting with a connection pool manager. UCP includes an implementation that is used to
get a connection pool manager instance. The following example demonstrates creating a
connection pool manager instance using the implementation:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

8.1.3 Life Cycle States of a Connection
Applications use the connection pool manager to explicitly control the life cycle of connection
pools. The manager is used to create, start, stop, and destroy connection pools. Life cycle
methods are included as part of the UniversalConnectionPoolManager interface.

8-1

Understanding Life Cycle States

The life cycle states of a connection pool affects what manager operations can be performed
on a connection pool. Applications that explicitly control the life cycle of a pool must ensure
that the manager's operations are used only when the pool is in an appropriate state. Life cycle
constraints are discussed throughout this section.

The following list describes the life cycle states of a pool:

• Starting : Indicates that the connection pool's start method has been called and it is in the
process of starting up.

• Running : Indicates that the connection pool has been started and is ready to give out
connections.

• Stopping : Indicates that the connection pool is in the process of stopping.

• Stopped : Indicates that the connection pool is stopped.

• Failed : Indicates that the connection pool has encountered failures during starting,
stopping, or execution.

8.1.3.1 Creating a Connection Pool
The CreateConnectionPool method of the Connection Manager creates and registers a
connection pool. The manager uses a connection pool adapter to create the pool and relies on
a pool-enabled data source to configure the pool properties. An application must not implicitly
start a connection pool before using the createConnectionPool method to explicitly create the
same pool.

The following example demonstrates creating a connection pool instance using the manager:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setConnectionPoolName("mgr_pool");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
pds.setUser("<user>");
pds.setPassword("<password>");

mgr.createConnectionPool((UniversalConnectionPoolAdapter)pds);

An application does not have to use the manager to create a pool in order for the pool to be
managed. A pool that is implicitly created (that is, automatically created when using a pool-
enabled data source) and configured with a pool name, is automatically registered and
managed by the pool manager. Oracle recommends implicit pool creation.

Pool Naming Convention

A connection pool name must be defined as part of the configuration. The pool name provides
a way to refer to specific pools when interacting with the manager. A connection pool name
must be unique and cannot be used by more than one connection pool. The manager throws a
pool already exists exception if a connection pool already exists with the same name.

Compatibility with JBoss

JBoss users can use the JBoss-specific silent reload functionality by setting the
oracle.ucp.destroyOnReload JVM system property to true. When the

Chapter 8
Overview of Using the UCP Manager

8-2

oracle.ucp.destroyOnReload property is set to true, then the JBoss-specific behavior
automatically destroys an old pool instance prior to creating a new one with the same name. If
this system property is not set or set to false, then UCP throws a pool already exists
exception.

8.1.3.2 Starting a Connection Pool
The manager's startConnectionPool method starts a connection pool using the pool name as
a parameter to determine which pool to start. The pool name is defined as a pool property on a
pool-enabled data source.

The following example demonstrates starting a connection pool:

mgr.startConnectionPool("mgr_pool");

An application must always create a connection pool using the manager's
createConnectionPool method prior to starting the pool. In addition, a life cycle state
exception occurs if an application attempts to start a pool that has been previously started or if
the pool is in a state other than stopped or failed.

8.1.3.3 Stopping a Connection Pool
The manager's stopConnectionPool method stops a connection pool using the pool name as a
parameter to determine which pool to stop. The pool name is defined as a pool property on the
pool-enabled data source. Stopping a connection pool closes all available and borrowed
connections.

The following example demonstrates stopping a connection pool:

mgr.stopConnectionPool("mgr_pool");

An application can use the manager to stop a connection pool that was started implicitly or
explicitly. An error occurs if an application attempts to stop a pool that does not exist or if the
pool is in a state other than started or starting.

8.1.3.4 Destroying a Connection Pool
The destroyConnectionPool method of the UCP Manager stops a connection pool and
removes it from the connection pool manager. A pool name is used as a parameter to
determine which pool to destroy. The pool name is defined as a pool property on the pool-
enabled data source.

Caution:

You must destroy the pool objects explicitly, before they get out of scope, for
example, if an object is an automatic variable and its scope is about to be ended.
This is especially important when your application deals with multiple pool objects. If
you do not destroy the pool objects explicitly, then they can cause leakage of
resources like connections, statements, result sets, heap memory, and so on.

The following example demonstrates destroying a connection pool:

mgr.destroyConnectionPool("mgr_pool");

Chapter 8
Overview of Using the UCP Manager

8-3

An application cannot start a connection pool that has been destroyed and must explicitly
create and start a new connection pool.

8.1.4 Maintenance of Universal Connection Pool
Applications use the connection pool manager to perform maintenance on a connection pool.
Maintenance includes refreshing, recycling, and purging a connection pool. The maintenance
methods are included as part of the UniversalConnectionPoolManager interface.

Maintenance is typically performed to remove and replace invalid connections and ensures a
high availability of valid connections. Invalid connections typically cannot be used to connect to
a database but are still maintained by the pool. These connections waste system resources
and directly affect a pool's maximum connection limit. Ultimately, too many invalid connections
negatively affects an applications performance.

Note:

Applications can check whether or not a connection is valid when borrowing the
connection from the pool. If an application consistently has a high number of invalid
connections, additional testing should be performed to determine the cause.

Related Topics

• Overview of Validating Connections in UCP

8.1.4.1 Refreshing a Connection Pool
Refreshing a connection pool replaces every connection in the pool with a new connection.
Any connections that are currently borrowed are marked for removal and refreshed after the
connection is returned to the pool. The manager's refreshConnectionPool method refreshes a
connection pool using the pool name as a parameter to determine which pool to refresh. The
pool name is defined as a pool property on the pool-enabled data source.

The following example demonstrates refreshing a connection pool:

mgr.refreshConnectionPool("mgr_pool");

8.1.4.2 Recycling a Connection Pool
Recycling a connection pool replaces only invalid connection in the pool with a new connection
and does not replace borrowed connections. The manager's recycleConnectionPool method
recycles a connection pool using the pool name as a parameter to determine which pool to
recycle. The pool name is defined as a pool property on the pool-enabled data source.

The setSQLForValidateConnection property must be set when using non-Oracle drivers. UCP
uses this property to determine whether or not a connection is valid before recycling the
connection.

The following example demonstrates recycling a connection pool:

mgr.recycleConnectionPool("mgr_pool");

Related Topics

• Overview of Validating Connections in UCP

Chapter 8
Overview of Using the UCP Manager

8-4

8.1.4.3 Purging a Connection Pool
Purging a connection pool removes every connection (available and borrowed) from the
connection pool and leaves the connection pool empty. Subsequent requests for a connection
result in a new connection being created. The manager's purgeConnectionPool method
purges a connection pool using the pool name as a parameter to determine which pool to
purge. The pool name is defined as a pool property on the pool-enabled data source.

The following example demonstrates purging a connection pool:

mgr.purgeConnectionPool("mgr_pool");

Note:

Connection pool properties, such as minPoolSize and initialPoolSize, may not be
enforced after a connection pool is purged.

8.2 Overview of JMX-Based Management in UCP
JMX (Java Management Extensions) is a Java technology that supplies tools for managing and
monitoring applications, system objects, devices, service-oriented networks, and JVM (Java
Virtual Machine). In JMX, a given resource is instrumented by one or more Java objects known
as MBeans (Managed Beans). An MBean is composed of an MBean interface and a class. The
MBean interface lists the methods for all exposed attributes and operations. The class
implements this interface and provides the functionality of the instrumented resource.

The MBeans are registered in a core managed object server, known as an MBean server,
which acts as a management agent and can run on most devices enabled for the Java
programming language. A JMX agent consists of an MBean server, in which MBeans are
registered, and a set of services for handling MBeans.

See Also:

• https://docs.oracle.com/javase/tutorial/jmx/mbeans/standard.html

• Oracle Universal Connection Pool Java API Reference

UCP provides the following two MBeans for pool management support:

• UniversalConnectionPoolManagerMBean

• UniversalConnectionPoolMBean

Chapter 8
Overview of JMX-Based Management in UCP

8-5

https://docs.oracle.com/javase/tutorial/jmx/mbeans/standard.html

Note:

All MBean attributes and operations are available only when the
UniversalConnectionPoolManager.isJmxEnabled method returns true. The default
value of this flag is true. This default value can be altered by calling the
UniversalConnectionPoolManager.setJmxEnabled method. When an MBeanServer
is not available, the jmxFlag is automatically set to false.

8.2.1 UniversalConnectionPoolManagerMBean
The UniversalConnectionPoolManagerMBean is a manager MBean that includes all the
functionalities of a conventional connection pool manager. The
UniversalConnectionPoolManagerMBean provides the following functionalities:

• Registering and unregistering pool MBeans

• Pool management operations like starting the pool, stopping the pool, refreshing the pool,
and so on

• Starting and stopping DMS statistics

• Logging

8.2.2 UniversalConnectionPoolMBean
The UniversalConnectionPoolMBean is a pool MBean that covers dynamic configuration of
pool properties and pool statistics. The UniversalConnectionPoolMBean provides the following
functionalities:

• Configuring pool property attributes like size, timeouts, and so on

• Pool management operations like refreshing the pool, recycling the pool, and so on

• Monitoring pool statistics and life cycle states

Chapter 8
Overview of JMX-Based Management in UCP

8-6

9
Shared Pool Support for Multitenant Data
Sources

Starting from Oracle Database 12c Release 2 (12.2.0.1), multiple data sources of multitenant
data sources can share a common pool of connections in UCP and repurpose the connections
in the common connection pool, whenever needed.

This section describes the following concepts related to the Shared Pool feature:

Note:

• Only the JDBC Thin driver supports the Shared Pool feature, and not the JDBC
OCI driver.

• For using this feature, you must use an XML configuration file.

• This feature works with Application Containers as well. Refer to the Oracle
Multitenant Administrator’s Guide for more information about Application
Containers.

• Overview of Shared Pool Support

• Prerequisites for Supporting Shared Pool

• Configuring the Shared Pool

• APIs for Shared Pool Support

• Sample XML Configuration File for Shared Pool

Related Topics

• Sample XML Configuration File for Shared Pool

9.1 Overview of Shared Pool Support
UCP supports multiple data sources, connected to the same database, to share the same
connection pool. This common connection pool is called as the Shared Pool.

In UCP, the pool instances have a one-to-one mapping with the data sources. Every data
source creates its own connection pool instance and that instance is not accessible or shared
by another data source, even if they internally create and cache connections to the same
database and service. In this architecture, a lot of isolated connection pools are created, which
causes a scalability problem because a database can scale up to only a certain number of
connections.

The Shared Pool optimizes system resources for a scalable deployment of multitenant Java
applications in Oracle Database Multitenant environment. This feature provides more flexibility
in situations when there is an uneven load on each data source. When individual pool per data
sources are created, then it is impossible to move around idle resources from an idle
connection pool to a loaded one. However, when a Shared Pool is used, connections can be

9-1

utilized in an efficient way by sharing and repurposing connections between the data sources.
So, this feature reduces the total number of database connections, and improves resource
usage, diagnosability, manageability, and scaling at the database servers.

Following are the two scenarios in which you can implement this feature:

• Single Multitenant Data Source Using Shared Pool

• One Data Source per Tenant Using Shared Pool

Single Multitenant Data Source Using Shared Pool

With this configuration, multiple tenants use the common data source and a common pool to
serve connections with different services applicable to each of the tenants, as illustrated in the
following diagram:

Figure 9-1 Single Multitenant Data Source Using Shared Pool

The following code snippet explains how this feature works:

 PoolDataSource multiTenantDS = PoolDataSourceFactory.getPoolDataSource();

 //common user for the CDB
 multiTenantDS.setUser("c##common_user");
 multiTenantDS.setPassword("password");

 //Points to the root service of the CDB

multiTenantDS.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"
 + "(HOST=myhost)(PORT=5521))
(CONNECT_DATA=(SERVICE_NAME=root.oracle.com)))");

 // password enabled role for tenant-1
 Properties tenant1Roles = new Properties();
 tenant1Roles.put("tenant1-role", "tenant1-password");

 //Create Connection to Tenant-1 and apply the tenant specific PDB roles.
 Connection tenant1Connection =
 multiTenantDS.createConnectionBuilder()

Chapter 9
Overview of Shared Pool Support

9-2

 .serviceName("tenant1Svc.oracle.com")
 .pdbRoles(tenant1Roles)
 .build();

 // password enabled role for tenant-2
 Properties tenant2Roles = new Properties();
 tenant1Roles.put("tenant2-role", "tenant2-password");

 //Create Connection to Tenant-2 and apply the tenant specific PDB roles.
 Connection tenant2Connection =
 multiTenantDS.createConnectionBuilder()
 .serviceName("tenant2Svc.oracle.com")
 .pdbRoles(tenant2Roles)
 .build();

One Data Source per Tenant Using Shared Pool

With this configuration, multitenant applications have separate data sources per tenant and a
common Shared Pool for connections. This results in the individual data sources being
configured with tenant specific service information and sharing a common pool, as illustrated in
the following diagram:

Figure 9-2 One Data Source per Tenant Using Shared Pool

The following code snippet explains how this feature works:

 // Get the datasource instance, named as "pds1" in XML configuration
file(initial-shared-pool-config.xml)
 File initialFile = new File("./UCPConfig.xml");
 InputStream targetStream = new FileInputStream(initialFile);
 PoolDataSource pds1 = PoolDataSourceFactory.getPoolDataSource("pds1", is);
 Connection pds1Conn = pds1.getConnection();

 // Get the datasource instance, named as "pds2" in XML configuration
file(initial-shared-pool-config.xml)
 PoolDataSource pds2 = PoolDataSourceFactory.getPoolDataSource("pds2");
 Connection pds2Conn = pds2.getConnection();

Chapter 9
Overview of Shared Pool Support

9-3

 // Reconfigure datasource(pds1) using the new properties
 Properties newProps = new Properties();
 newProps.put("serviceName", <newServiceName>);
 pds1.reconfigureDataSource(newProps);

 // Configure a new datasource(pds3) to running pool using the new data
source properties
 Properties dataSourceProps = new Properties();
 dataSourceProps.put("serviceName", <serviceName>);
 dataSourceProps.put("connectionPoolName", <poolName>);
 dataSourceProps.put("dataSourceName", <dataSourceName>);
 PoolDataSource pds3 =
PoolDataSourceFactory.getPoolDataSource(dataSourceProps);

 // Reconfigure connection pool("pool1") using the new properties

 Properties newPoolProps = new Properties();
 newPoolProps.put("initialPoolSize", <newInitialPoolSizeValue>);
 newPoolProps.put("maxPoolSize", <newMaxPoolSizeValue>);
 UniversalConnectionPoolManager ucpMgr =
UniversalConnectionPoolManagerImpl.getUniversalConnectionPoolManager();
 ucpMgr.reconfigureConnectionPool("pool1", newPoolProps);

You can also implement this feature in the following way:

 // UCP XML configuration file path in case of Unix
 String file_URI = "file:/user/app/sharedpool/initial-shared-pool-
config.xml";

 // UCP XML configuration file path in case of Windows
 String file_URI = "file:/D:/user/app/sharedpool/initial-shared-pool-
config.xml";

 // Java system property to specify XML configuration file location
 System.setProperty("oracle.ucp.jdbc.xmlConfigFile",<file_URI>);

 // Get the datasource instance, named as "pds1" in XML configuration
file(initial-shared-pool-config.xml)
 PoolDataSource pds1 = PoolDataSourceFactory.getPoolDataSource("pds1");
 Connection pds1Conn = pds1.getConnection();

 // Get the datasource instance, named as "pds2" in XML configuration
file(initial-shared-pool-config.xml)
 PoolDataSource pds2 = PoolDataSourceFactory.getPoolDataSource("pds2");
 Connection pds2Conn = pds2.getConnection();

 // Reconfigure datasource(pds1) using the new properties
 Properties newProps = new Properties();
 newProps.put("serviceName", <newServiceName>);
 pds1.reconfigureDataSource(newProps);

 // Configure a new datasource(pds3) to running pool using the new data
source properties

Chapter 9
Overview of Shared Pool Support

9-4

 Properties dataSourceProps = new Properties();
 dataSourceProps.put("serviceName", <serviceName>);
 dataSourceProps.put("connectionPoolName", <poolName>);
 dataSourceProps.put("dataSourceName", <dataSourceName>);
 PoolDataSource pds3 =
PoolDataSourceFactory.getPoolDataSource(dataSourceProps);

 // Reconfigure connection pool("pool1") using the new properties

 Properties newPoolProps = new Properties();
 newPoolProps.put("initialPoolSize", <newInitialPoolSizeValue>);
 newPoolProps.put("maxPoolSize", <newMaxPoolSizeValue>);
 UniversalConnectionPoolManager ucpMgr =
UniversalConnectionPoolManagerImpl.getUniversalConnectionPoolManager();
 ucpMgr.reconfigureConnectionPool("pool1", newPoolProps);

Note:

• UCP uses a service switch for implementing this feature. However, the service
switch in Shared Pools is supported only for homogenous services. There is no
support for heterogeneous services (heterogeneity in terms of service attributes
like Transaction Guard and Application Continuity) in Shared Pools.

• For the XML configuration file used in the code snippets, refer to the “XML
Configuration File Required for Shared Pool Support” section.

9.2 Prerequisites for Supporting Shared Pool
This section describes the prerequisites for multitenant data sources to use the Shared Pool.

• You must provide the initial configuration of Shared Pools through an XML configuration
file. You can specify the initial XML configuration file for UCP through the input stream of
the XML file, in the following way:

PoolDDataSourceFactory.getPoolDataSource(String pds, InputStream is);

You can also specify the initial XML configuration file for UCP through the system property
oracle.ucp.jdbc.xmlConfigFile, but it is an obsolete way of configuring the XML file and
you must avoid using this option. The location of the initial XML configuration file should be
specified as a URI. For example, file:/user_directory/ucp.xml.

The configuration.xsd schema file is included in the ucp.jar file for reference. Refer to
this file while creating a UCP XML configuration file.

• During the reconfiguration of a shared pool, updated pool properties should be provided
through reconfiguration APIs.

• Always use application service for the services used for Shared Pool, and for the individual
tenant data source specific services. Connections are not repurposed or reused when an
Administrative service or default PDB services are used.

• The various services accessed through the Shared Pool must be homogenous, that is,
they should have similar properties with respect to Application Continuity (AC) and so on.

Chapter 9
Prerequisites for Supporting Shared Pool

9-5

• The Shared Pool must be configured with a single user, and this user should be a common
user configured on the CDB. The common user should have the following privileges -
CREATE SESSION, ALTER SESSION, and SET CONTAINER. The common user should also have
the execute permission on the DBMS_SERVICE_PRVT package.

Note:

– If the common user needs specific roles or password-enabled roles per
tenant, then these roles should be specified in the respective tenant data
source properties.

– The advantage of the SET CONTAINER statement is that the pool does not
have to create a new connection to a PDB, if there is an existing connection
to a different PDB. The pool can use the existing connection and can connect
to the desired PDB through the SET CONTAINER statement.

• Connection repurposing among various tenant connections in the Shared Pool happens
only when the total number of the connections in the pool reaches the connection
repurpose threshold (if configured on the pool) and the minimum pool size.

• The URL specified for the Shared Pool in the XML configuration file must have the LONG
format, with service name explicitly specified. Short format or Easy Connection URL is not
supported.

9.3 Configuring the Shared Pool
This section describes how to configure the Shared Pool.

The following sections describe the Shared Pool configuration:

• Initial Configuration of the Pool

• Reconfiguration of the Pool

Initial Configuration of the Pool

For the initial configuration of the pool, get a data source instance by using the XML
configuration file and then, using that data source, get a connection from a Shared Pool.

 // Get the datasource instance, named as "pds1" in XML configuration
file(initial-shared-pool-config.xml)
 File initialFile = new File("./UCPConfig.xml");
 InputStream targetStream = new FileInputStream(initialFile);
 PoolDataSource pds1 = PoolDataSourceFactory.getPoolDataSource("pds1", is);
 Connection pds1Conn = pds1.getConnection();

Reconfiguration of the Pool

• The following code snippet shows how to reconfigure the data source that you obtained
during the initial configuration of the pool:

 // Reconfigure datasource(pds1) using the new properties
 Properties newProps = new Properties();

Chapter 9
Configuring the Shared Pool

9-6

 newProps.put("serviceName", <newServiceName>);
 pds1.reconfigureDataSource(newProps);

• The following code snippet shows how to add a new data source to an already running
Shared Pool:

// Configure a new datasource(pds3) to running pool using the new data
source properties
 Properties dataSourceProps = new Properties();
 dataSourceProps.put("serviceName", <serviceName>);
 dataSourceProps.put("connectionPoolName", <poolName>);
 dataSourceProps.put("dataSourceName", <dataSourceName>);
 PoolDataSource pds3 =
PoolDataSourceFactory.getPoolDataSource(dataSourceProps);

• The following code snippet shows how to reconfigure the connection pool:

// Reconfigure connection pool("pool1") using the new properties

 Properties newPoolProps = new Properties();
 newPoolProps.put("initialPoolSize", <newInitialPoolSizeValue>);
 newPoolProps.put("maxPoolSize", <newMaxPoolSizeValue>);
 UniversalConnectionPoolManager ucpMgr =
UniversalConnectionPoolManagerImpl.getUniversalConnectionPoolManager();
 ucpMgr.reconfigureConnectionPool("pool1", newPoolProps);

9.4 UCP APIs for Shared Pool Support

New Methods in PoolDataSource Interface

The following methods have been introduced in the oracle.ucp.jdbc.PoolDataSource
interface:

• reconfigureDataSource(Properties configuration)
• getMaxConnectionsPerService()
• getServiceName()
• getPdbRoles()
• getConnectionRepurposeThreshold()
• setConnectionRepurposeThreshold(int threshold)

New Methods in PoolDataSourceFactory Class

The following methods have been introduced in the oracle.ucp.jdbc.PoolDataSourceFactory
class:

• getPoolDataSource(String dataSourceName)
• getPoolDataSource(Properties configuration)
• getPoolXADataSource(String dataSourceName)
• getPoolXADataSource(Properties configuration)

Chapter 9
UCP APIs for Shared Pool Support

9-7

New Method in oracle.ucp.admin.UniversalConnectionPoolManager Interface

The following method has been introduced in the
oracle.ucp.admin.UniversalConnectionPoolManager interface:

reconfigureConnectionPool(String poolName , Properties configuration)

New Method in oracle.ucp.admin.UniversalConnectionPool Interface

The following method has been introduced in the
oracle.ucp.admin.UniversalConnectionPool interface:

• isShareable()
• getMaxConnectionsPerService()
• setMaxConnectionsPerService(int maxConnectionsPerService)

See Also:

Oracle Universal Connection Pool Java API Reference for more information about
these methods.

9.5 Sample XML Configuration File for Shared Pool

initial-shared-pool-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<ucp-properties>
 <connection-pool
 connection-pool-name="pool1"
 connection-factory-class-name="oracle.jdbc.pool.OracleDataSource"
 url="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=host_name)
(PORT=1521)(PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))"
 user="C##CommonUser"
 password=password
 initial-pool-size="10"
 min-pool-size="5"
 max-pool-size="20"
 connection-repurpose-threshold="13"
 max-connections-per-service="15"
 validate-connection-on-borrow="true"
 sql-for-validate-connection="select 1 from dual"
 shared="true"
 >

 <connection-property name="oracle.jdbc.ReadTimeout" value="2000"/>
 <connection-property name="oracle.net.OUTBOUND_CONNECT_TIMEOUT"
value="2000"/>

 <data-source
 data-source-name="pds1"

Chapter 9
Sample XML Configuration File for Shared Pool

9-8

 service=pdb1_service_name
 description="pdb1 data source"/>

 <data-source
 data-source-name="pds2"
 service=pdb2_service_name
 description="pdb2 data source"/>

 </connection-pool>
</ucp-properties>

Chapter 9
Sample XML Configuration File for Shared Pool

9-9

10
Using Oracle RAC Features

The following sections are included in this chapter:

• Overview of Oracle RAC Features

• About Fast Connection Failover

• About Run-Time Connection Load Balancing

• About Connection Affinity

• Global Data Services

10.1 Overview of Oracle RAC Features
UCP JDBC connection pools provide a tight integration with various Oracle Real Application
Clusters (Oracle RAC) Database features. The features include Fast Connection Failover
(FCF), Run-Time Connection Load Balancing, and Connection Affinity. These features require
the use of an Oracle JDBC driver, Oracle RAC database, and the Oracle Notification Service
library (ons.jar) that is included with the Oracle Client software.

Applications use Oracle RAC features to maximize connection performance and availability
and to mitigate down-time due to connection problems. Applications have different availability
and performance requirements and should implement Oracle RAC features accordingly.

Note:

Starting from Oracle Database 11g Release 1 (11.2), FCF is also supported by
Oracle Restart on a single instance database. Oracle Restart was previously known
as Single-Instance High Availability (SIHA).

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide for more
information about these technologies

• Oracle Database Administrator's Guide for more information about Oracle
Restart

Generic High Availability and Performance Features

The UCP APIs and connection pool properties include many high availability and performance
features that do not require an Oracle RAC database. These features work well with both
Oracle and non-Oracle connections and are discussed throughout this guide. For example:
validating connections on borrow; setting timeout properties; setting maximum reuse
properties; and connection pool manager operations are all used to ensure a high-level of
connection availability and optimal performance.

10-1

Note:

Generic high availability and performance features work slightly better when using
Oracle connections because UCP leverages Oracle JDBC internal APIs.

Database Version Compatibility for Oracle RAC

The following table lists supported Database versions for various Oracle RAC features:

Table 10-1 Oracle RAC Version Compatibility

Feature Supported Database Version

Fast Connection Failover Oracle Database 10.1.x and later versions

Run-time Connection Load-
Balancing

Oracle Database 10.2.x and later versions

Web Session Affinity Oracle Database 11.1.x and later versions

Transaction-Based Affinity Oracle Database 10.2.x and later versions (Oracle Database 11.1.x
recommended)

Oracle JDBC Driver Version Compatibility for Oracle RAC

Oracle JDBC driver 10.1.x and later versions are supported with Oracle RAC features.

10.2 About Fast Connection Failover
This section contains the following subsections:

• Overview of Fast Connection Failover

• What is Fast Connection Failover

• Fast Connection Failover Prerequisites

• Example of Fast Connection Failover Configuration

• Enabling Fast Connection Failover

• What is ONS

• Configuring the Connection URL

10.2.1 Overview of Fast Connection Failover
The Fast Connection Failover (FCF) feature is a Fast Application Notification (FAN) client
implemented through the connection pool. The feature requires the use of an Oracle JDBC
driver and high availability (HA) database configurations like Oracle RAC, Single Restart, or
Active Data Guard.

Note:

This section describes only the steps that an application must perform when using
FCF with Oracle RAC.

Chapter 10
About Fast Connection Failover

10-2

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for more
information

FCF is useful in the following scenarios:

• Unplanned Outages: FCF rapidly detects non-functioning connections, and then
terminates and removes them from the pool. Connection removal relies on terminating the
sever-socket connections rapidly to prevent the system from becoming non-responsive.
Borrowed and in-use connections are interrupted only for unplanned outages.

• Planned Outages: FCF does not interrupt and close the borrowed or in-use connections
until work is done and control of the connection is returned to the pool.

• Irrecoverable Connection Errors and Exceptions: FCF encapsulates irrecoverable
connection errors and exceptions into the isValid API for robust and efficient retries.

• Addition of New Nodes to the Cluster: FCF recognizes the new nodes that join an
Oracle RAC cluster and places new connections on that node appropriately for delivering
maximum quality of service to applications at run time. This facilitates middle-tier
integration of Oracle RAC node joins and work-request routing from the application tier.

• Run-Time Work Requests: FCF distributes run-time work requests to all active Oracle
RAC instances.

Unplanned Shutdown Scenarios

FCF supports unplanned shutdown scenarios by detecting and removing stale connections to
an Oracle RAC cluster. Stale connections include connections that do not have a service
available on any instance in an Oracle RAC cluster due to service-down and node-down
events. Borrowed connections and available-but-stale connections are detected, and their
network connection is severed before removing them from the pool. These removed
connections are not replaced by the pool. Instead, the application must retry connections
before performing any work with a connection.

Note:

Borrowed connections are immediately terminated and closed during unplanned
shutdown scenarios. Any on-going transactions immediately receive an exception.

Planned Shutdown Scenarios

FCF supports planned shutdown scenarios where an Oracle RAC service can be gracefully
shutdown. In such scenarios, stale borrowed connections are marked, and are terminated and
removed after they are returned to the pool. Any on-going transactions do not see any
difference and proceed to complete.

The primary difference between unplanned and planned shutdown scenarios is how borrowed
connections are handled. Stale connections that are idle in the pool (not borrowed) are
removed in the same manner as the unplanned shutdown scenario.

UCP also supports graceful connection draining from any planned-down Oracle RAC instance.
Affected borrowed connections are removed smoothly over a grace period, instead of
immediate removal upon their return to the pool. This helps in avoiding throughput impact and

Chapter 10
About Fast Connection Failover

10-3

logon storms during any service relocation. In the FAN events, UCP uses the value of the
drain_timeout1 parameter as the grace period, when doing graceful draining.

Oracle RAC Instance Rejoin and New Instance Scenarios

FCF supports scenarios where an Oracle RAC cluster adds instances that provide a service of
interest. The instance may be new to the cluster or may have been restarted after a down
event. In both cases, UCP recognizes the new instance and creates connections to the node
as required.

Related Topics

• Checking If a Connection Is Valid

• Enabling Fast Connection Failover

10.2.2 What is Fast Connection Failover?
After Fast Connection Failover is enabled, the mechanism is automatic; no application
intervention is needed. This section discusses how a connection failover is presented to an
application and what steps the application takes to recover, in the following sections:

• What the Application Sees

• How FCF Works

10.2.2.1 What the Application Sees
By the time an Oracle RAC service failure is propagated to the JDBC application, the database
already rolls back the local transaction. The cache manager then cleans up all invalid
connections. When an application holding an invalid connection tries to do work through that
connection, it is possible to receive SQLException, ORA-17008, Closed Connection.

When an application receives a Closed Connection error message, it should do the following:

1. Retry the connection request. This is essential, because the old connection is no longer
open.

2. Replay the transaction. All work done before the connection was closed has been lost.

Note:

The application should not try to roll back the transaction. The transaction was
already rolled back in the database by the time the application received the
exception.

10.2.2.2 How FCF Works
Under Fast Connection Failover, each connection in the cache maintains a mapping to a
service, instance, database, and host name.

When a database generates an Oracle RAC event, that event is forwarded to the JVM in which
JDBC is running. A daemon thread inside the JVM receives the Oracle RAC event and passes

1 The drain_time parameter specifies the time in seconds, during which a service drains.

Chapter 10
About Fast Connection Failover

10-4

it on to the Connection Cache Manager. The Connection Cache Manager then throws SQL
exceptions to the applications affected by the Oracle RAC event.

A typical failover scenario may work like the following:

1. A database instance fails, leaving several stale connections in the cache.

2. The Oracle RAC mechanism in the database generates an Oracle RAC event which is
sent to the JVM containing JDBC.

3. The daemon thread inside the JVM finds all the connections affected by the Oracle RAC
event, notifies them of the closed connection through SQL exceptions, and rolls back any
open transactions.

4. Each individual connection receives a SQL exception and must retry.

10.2.3 Fast Connection Failover Prerequisites
Fast Connection Failover is available under the following circumstances:

• The Universal Connection Pool is enabled.

Fast Connection Failover works in conjunction with the JDBC connection caching
mechanism. This helps applications manage connections to ensure high availability.

• The application uses service names to connect to the database.

The application cannot use service identifiers.

• The underlying database has Oracle Database 12c Release 1 (12.1) or later Real
Application Clusters (Oracle RAC) capability or Oracle Data Guard configured with either
single instance Databases or Oracle RAC.

If failover events are not propagated, then connection failover cannot occur.

• Oracle Notification Service (ONS) is configured and available on the node where JDBC is
running.

JDBC depends on ONS to propagate database events and notify JDBC of them.

• The Java Virtual Machine (JVM) in which your JDBC instance is running must have
oracle.ons.oraclehome set to point to your ORACLE_HOME.

10.2.4 Example of Fast Connection Failover Configuration
The following example demonstrates a connection pool that uses the FCF feature. FCF is
configured through a pool-enabled data source. The example includes enabling FCF,
configuring the Oracle Notification Service (ONS) and configuring a connection URL. These
topics are discussed after the example.

The isValid method of the oracle.ucp.jdbc.ValidConnection interface is typically used in
conjunction with the FCF feature and is used to check if a borrowed connection is still usable
after an SQL exception has been thrown due to an Oracle RAC down event. For example:

try { conn = pds.getConnection; ...}catch (SQLException sqlexc)
{
 if (conn == null || !((ValidConnection) conn).isValid())

 // take the appropriate action

...
conn.close();
}

Chapter 10
About Fast Connection Failover

10-5

Example 10-1 Fast Connection Failover Configuration Example

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("FCFSamplePool");
pds.setFastConnectionFailoverEnabled(true);
pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=
/oracle11/onswalletfile");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@(DESCRIPTION= "+
 "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode1) (PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode2) (PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");
...

Related Topics

• Checking If a Connection Is Valid

10.2.5 Enabling Fast Connection Failover
The FCF pool property is used to enable and disable FCF. FCF is disabled by default. The
following example demonstrates enabling FCF as shown in Example 10-1.

pds.setFastConnectionFailoverEnabled(true);

Note:

Starting from Oracle Database 12c Release 1 (12.1.0.2), UCP supports the
oracle.ucp.PlannedDrainingPeriod system property. It specifies the grace time
period (in integer seconds) over which the pool smoothly drains the borrowed
connections affected by a planned shut down. Draining starts when the same
Database service becomes available on another instance different from the one that
is going down.

When this property is not set, or set to 0, then the pool closes any affected borrowed
connection immediately when it is returned to the pool.

Querying Fast Connection Failover Status

An application determines if Fast Connection Failover is enabled by calling
OracleDataSource.getFastConnectionFailoverEnabled, which returns true if failover is
enabled, false otherwise.

Note:

FCF must also be enabled to use run-time connection load balancing and connection
affinity. These features are discussed later in this chapter.

Chapter 10
About Fast Connection Failover

10-6

10.2.6 What is ONS?
FCF relies on the Oracle Notification Service (ONS) to propagate database events between
the connection pool and the Oracle RAC database. At run time, the connection pool must be
able to setup an ONS environment. ONS (ons.jar) is included as part of the Oracle Client
software. ONS can be configured using either remote configuration or client-side ONS daemon
configuration. Remote configuration is the preferred configuration for standalone client
applications. This section discusses the following topics:

• Overview of ONS Configuration File

• Remote Configuration of ONS

• Configuration of Client-Side ONS Daemon

10.2.6.1 Overview of ONS Configuration File
ONS configuration is controlled by the ONS configuration file, ORACLE_HOME/opmn/conf/
ons.config. This file tells the ONS daemon how it should behave. Configuration information
within ons.config is defined in simple name and value pairs.

Some parameters in the ons.config file are required and some are optional. Table 10-2 lists
the required ONS configuration parameters and Table 10-3 lists the optional ONS configuration
parameters. ONS must be refreshed after updating the ons.config file.

Table 10-2 Required ONS Configuration Parameters

Parameter Explanation

localport Specifies the port that ONS binds to on the local host interface to talk to local
clients.

For example, localport=4100
remoteport Specifies the port that ONS binds to on all interfaces for talking to other ONS

daemons.

For example, remoteport=4200
nodes Specifies a list of other ONS daemons to talk to. Node values are given as a

comma-delimited list of either host names or IP addresses plus ports. The port
value that is given is the remote port that each ONS instance is listening on. In
order to maintain an identical file on all nodes, the host:port of the current ONS
node can also be listed in the nodes list. It will be ignored when reading the list.

For example, nodes=myhost.example.com:4200,123.123.123.123:4200
The nodes listed in the nodes line correspond to the individual nodes in the Oracle
RAC instance. Listing the nodes ensures that the middle-tier node can
communicate with the Oracle RAC nodes. At least one middle-tier node and one
node in the Oracle RAC instance must be configured to see one another. As long
as one node on each side is aware of the other, all nodes are visible. You need not
list every single cluster and middle-tier node in the ONS configuration file of each
Oracle RAC node. In particular, if one ONS configuration file cluster node is aware
of the middle tier, then all nodes in the cluster are aware of it.

Chapter 10
About Fast Connection Failover

10-7

Table 10-3 Optional ONS Configuration Parameters

Parameter Description

logcomp Specifies the ONS components to log. The format is as follows:

<component>[<subcomponent>,...];<component>[<subcomponent>,...];...

If no subcomponents need to be specified, then do not include the brackets ([])
after the component name. To exclude messages from a subcomponent, precede
the subcomponent name with an exclamation mark (!). For example, to exclude
messages from the topology subcomponent, you use the following format:

[all,!topology]

Note that before specifying a subcomponent from which you want to exclude
messages, you must first ensure that the subcomponent includes the messages.

Following are the valid values for components:

• internal
• ons
If you specify the component as internal, then there are no valid values for
subcomponent. If you specify the component as ons, then you can specify the
following values for subcomponent:

• all: Specifies all messages

• ons: ONS local information

• listener: ONS listener information

• discover: ONS discover (server or multicast) information

• servers: ONS remote servers currently up and connected to the cluster

• topology: ONS current cluster wide server connection topology

• server: ONS remote server connection information

• client: ONS client connection information

• connect: ONS generic connection information

• subscribe: ONS client subscription information

• message: ONS notification receiving and processing information

• deliver: ONS notification delivery information

• special: ONS special notification processing

• internal: ONS internal resource information

• secure: ONS SSL operation information

• workers: ONS worker threads

The following example shows that you want to log messages for all the
subcomponents under ons, except the secure subcomponent:

logcomp=ons[all,!secure]

logfile Specifies a log file that ONS should use for logging messages. The default value
for log file is $ORACLE_HOME/opmn/logs/ons.log.

For example, logfile=/private/oraclehome/opmn/logs/myons.log

Chapter 10
About Fast Connection Failover

10-8

Table 10-3 (Cont.) Optional ONS Configuration Parameters

Parameter Description

walletfile Specifies the wallet file used by the Oracle Secure Sockets Layer (SSL) to store
SSL certificates. If a wallet file is specified to ONS, then it uses SSL when
communicating with other ONS instances and require SSL certificate
authentication from all ONS instances that try to connect to it. This means that if
you want to turn on SSL for one ONS instance, then you must turn it on for all
instances that are connected. This value should point to the directory where your
ewallet.p12 file is located.

For example, walletfile=/private/oraclehome/opmn/conf/ssl.wlt/
default

useocr Specifies the value, reserved for use on the server-side, to indicate ONS whether it
should store all Oracle RAC nodes and port numbers in Oracle Cluster Registry
(OCR) instead of the ONS configuration file or not. A value of useocr=on is used
to store all Oracle RAC nodes and port numbers in Oracle Cluster Registry (OCR).

Do not use this option on the client-side.

allowgroup Specifies the ONS setting to indicate the user group connecting to the localport.
When set to true, ONS allows users within the same OS group to connect to its
local port. When set to false, ONS only allows the same user running the ONS
daemon to access its local port. The default value of this parameter is false.
When using remote ONS configuration, there is no need to set this parameter.

The ons.config file allows blank lines and comments on lines that begin with the number sign
(#).

10.2.6.2 Remote Configuration of ONS
UCP supports remote configuration of ONS through the ONSConfiguration pool property. The
ONSConfiguration pool property value is a string that closely resembles the content of the
ons.config file. The string contains a list of name=value pairs separated by a new line
character (\n). You can set this pool property in the following two ways:

• The name can be one of the following: nodes, walletfile, or walletpassword. The
parameter string should at least specify the ONS configuration nodes attribute as a list of
host:port pairs separated by a comma. SSL is used when the walletfile attribute is
specified as an Oracle wallet file.

The following example demonstrates an ONS configuration string as shown in
Example 10-1:

...
pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=/oracle11/
onswalletfile");
...

• The name can be only propertiesfile. The value is the location of an ONS-specific Java
properties file. This file must contain the oracle.ons.nodes property, and one or both of
the following ONS Java properties:

– oracle.ons.walletfile
– oracle.ons.walletpassword

The following example illustrates such an ONSConfiguration string:

pds.setONSConfiguration("propertiesfile=/usr/ons/ons.properties");

Chapter 10
About Fast Connection Failover

10-9

The following is an example of the content of the Java properties ons.properties file:

oracle.ons.nodes=racnode1:4200,racnode2:4200
oracle.ons.walletfile=/oracle11/onswalletfile

Note:

The parameters in the configuration string must match those for the Oracle RAC
Database. In addition, if you are using Oracle Application Server, then you must
configure ONS using procedures that are applicable to the server.

For standalone Java applications, you must configure ONS using the
setONSConfiguration method. However, if your application meets the following
requirements, then you no longer need to call the setONSConfiguration method for
enabling FCF:

• Your application is using Oracle Database 12c Release 1 (12.1) or later UCP and
Oracle RAC Database 12c Release 1 (12.1) or later

• Your application does not require ONS wallet or keystore

10.2.6.3 Configuration of Client-Side ONS Daemon
Client-side ONS daemon configuration is typical of applications that run on a middle-tier server
such as the Oracle Application Server. Clients in this scenario directly configure ONS by
updating the ons.config file. The location of the file may be different depending on the
platform. Example 10-2 demonstrates an ons.config file for Example 10-1:

Note:

For client-side ONS daemon configuration, if the operating system (OS) user that
starts the connection pool and the OS user that starts the client-side daemon are
different, then they both must belong to the same OS group. Also, the value of the
allowgroup parameter must be set to true in the ons.config file.

After configuring ONS, you start the ONS daemon with the onsctl command. You must make
sure that an ONS daemon is running at all times.

Using the onsctl Command

After configuring, use ORACLE_HOME/opmn/bin/onsctl to start, stop, reconfigure, and monitor
the ONS daemon. Table 10-4 is a summary of the commands that onsctl supports.

Table 10-4 onsctl Commands

Command Effect Output

start Starts the ONS daemon onsctl: ons started
stop Stops the ONS daemon onsctl: shutting down ons daemon...
ping Verifies whether or not the ONS

daemon is running
ons is running ...

Chapter 10
About Fast Connection Failover

10-10

Table 10-4 (Cont.) onsctl Commands

Command Effect Output

reconfig Triggers a reload of the ONS
configuration without shutting
down the ONS daemon

help Prints a help summary message
for onsctl

detailed Prints a detailed help message for
onsctl

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Note:

• The Java Virtual Machine (JVM), in which your JDBC instance is running, must
have the oracle.ons.oraclehome system property set to the location of
ORACLE_HOME before starting the application. For example:

java -Doracle.ons.oraclehome=$ORACLE_HOME ...
• Oracle recommends remote configuration of ONS for UCP.

Chapter 10
About Fast Connection Failover

10-11

Note:

In Oracle RAC 12.1.0.2.0, by default, server installation requires the value of the
walletfile ONS parameter to be set, and enforces the use of SSL for all ONS
connections.

If you have a UCP application that is already using the walletfile parameter in the
ONS remote configuration string or local configuration file, then the only requirement
is that, for the same topology, the wallet file on the client side must have the same
content as the wallet file on the server side. You can make a copy of the server-side
file and make it available on the client side.

For UCP applications that are using Oracle RAC features without setting the
walletfile parameter, you must perform one of the following:

• Add the walletfile parameter setting to the ONS remote configuration string or
local configuration file, as shown in Example 10-1. Keep in mind that, for the
same topology, the wallet file on the client side must have the same content as
the wallet file on the Oracle RAC server side.

• Run the following command to remove the walletfile parameter setting from
both client and server ONS configuration string and the local configuration file:

srvctl modify nodeapps -clientdata
For secure communication, the ONS auto-configuration in Oracle RAC 12.1.x no
longer works when Oracle RAC 12.1.0.2.0 is first installed or patched. Applications
have to use explicit ONS configuration (remote or local) instead, and make one of the
changes previously discussed.

Example 10-2 Example of a Sample ons.config File

This is an example ons.config file
#
The first three values are required
localport=4100
remoteport=4200
nodes=racnode1.example.com:4200,racnode2.example.com:4200

10.2.7 Configuring the Connection URL
The connection URL of a connection factory must use the service name syntax when using
FCF. The service name is used to map the connection pool to the service. In addition, the
factory class must be an Oracle factory class. The following example demonstrates configuring
the connection URL as shown in Example 10-1:

...
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@//host:port/service_name");
...

Note:

An exception is thrown if a service identifier (SID) is specified for the connection URL
when FCF is enabled.

Chapter 10
About Fast Connection Failover

10-12

The following examples demonstrate valid connection URL syntax when connecting to an
Oracle RAC database. Examples for both the Oracle JDBC thin and Oracle OCI driver are
included. Notice that the URL can be used to explicitly enable load balancing among Oracle
RAC nodes:

Valid Connection URL Usage

pds.setURL("jdbc:oracle:thin@//host:port/service_name");

pds.setURL("jdbc:oracle:thin@//cluster-alias:port/service_name");

pds.setURL("jdbc:oracle:thin:@(DESCRIPTION= "+
 "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:thin:@(DESCRIPTION= "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:oci:@TNS_ALIAS");

pds.setURL("jdbc:oracle:oci:@(DESCRIPTION= "+
 "(LOAD_BALANCE=on) "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521)) "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:oci:@(DESCRIPTION= "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

10.3 About Run-Time Connection Load Balancing
This section contains the following subsections:

• Overview of Run-Time Connection Load Balancing

• Setting Up Run-Time Connection Load Balancing

10.3.1 Overview of Run-Time Connection Load Balancing
In an Oracle Real Application Clusters environment, a connection could belong to any instance
that provides the relevant service. In the best case, all instances perform equally well and
randomly retrieving a connection from the cache is appropriate.

However, when one instance performs better than others, random selection of a connection is
inefficient. The run-time connection load balancing feature enables routing of work requests to
an instance that offers the best performance, minimizing the need to relocate work.

UCP JDBC connection pools leverage the load balancing functionality provided by an Oracle
RAC database. Run-time connection load balancing requires the use of an Oracle JDBC driver
and an Oracle RAC database.

Chapter 10
About Run-Time Connection Load Balancing

10-13

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Run-time connection load balancing is useful when:

• Traditional balancing of workload is not optimal

• Requests must be routed to make optimal use of resources in a clustered database

• Capacity within the cluster differs and is expected to change over time

• The need to avoid sending work to slow, hung, and non-functioning nodes is required

UCP uses the Oracle RAC Load Balancing Advisory. The advisory is used to balance work
across Oracle RAC instances and is used to determine which instances offer the best
performance. Applications transparently receive connections from instances that offer the best
performance. Connection requests are quickly diverted from instances that have slowed, are
not responding, or that have failed.

Run-time connection load balancing provides the following benefits:

• Manages pooled connections for high performance and scalability

• Receives continuous recommendations on the percentage of work to route to database
instances

• Adjusts distribution of work based on different back-end node capacities such as CPU
capacity or response time

• Reacts quickly to changes in cluster reconfiguration, application workload, overworked
nodes, or hangs

• Receives metrics from the Oracle RAC Load Balance Advisory. Connections to well
performing instances are used most often. New and unused connections to under-
performing instances will gravitate away over time. When distribution metrics are not
received, connection are selected using a random choice.

10.3.2 Setting Up Run-Time Connection Load Balancing
Run-time connection load balancing requires that FCF is enabled and configured properly.

In addition, you must configure the Oracle RAC Load Balancing Advisory with service-level
goals for each service for which load balancing is enabled:

• The service goal must be set to one of the following:

– DBMS_SERVICE.SERVICE_TIME
– DBMS_SERVICE.THROUGHPUT
The service goal can be set using the goal parameter, and the connection balancing goal
can be set using the clb_goal parameter.

• The connection balancing goal must be set to SHORT. For example,

EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'sjob' -, goal =>
 DBMS_SERVICE.GOAL_THROUGHPUT -, clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

Or

Chapter 10
About Run-Time Connection Load Balancing

10-14

EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'sjob' -, goal =>
 DBMS_SERVICE.GOAL_SERVICE_TIME -, clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

The connection balancing goal can also be set by calling the DBMS_SERVICE.create_service
procedure.

Note:

You can set the connection balancing goal to LONG. However, this is mostly useful for
closed workloads, that is, when the rate of completing work is equal to the rate of
starting new work.

Related Topics

• About Fast Connection Failover

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

10.4 About Connection Affinity
This section contains the following subsections:

• Overview of Connection Affinity

• Setting Up Connection Affinity

10.4.1 Overview of Connection Affinity
UCP JDBC connection pools leverage affinity functionality provided by an Oracle RAC
database. Connection affinity requires the use of an Oracle JDBC driver and an Oracle RAC
database version 11.1.0.6 or higher.

Connection affinity is a performance feature that enables a connection pool to select
connections that are directed at a specific Oracle RAC instance. The pool uses run-time
connection load balancing (if configured) to select an Oracle RAC instance to create the first
connection and then subsequent connections are created with an affinity to the same instance.

See Also:

• "Strict Affinity Mode"

• Oracle Real Application Clusters Administration and Deployment Guide for more
information about setting up an Oracle RAC database.

UCP JDBC connection pools support the following three types of connection affinity:

• Transaction-Based Affinity

Chapter 10
About Connection Affinity

10-15

• Web Session Affinity

• Oracle RAC Data Affinity

10.4.1.1 Transaction-Based Affinity

Transaction-based affinity is an affinity to an Oracle RAC instance that can be released by
either the client application or a failure event. Applications typically use this type of affinity
when long-lived affinity to an Oracle RAC instance is desired or when the cost (in terms of
performance) of being redirected to a new Oracle RAC instance is high. Distributed
transactions are a good example of transaction-based affinity. XA connections that are enlisted
in a distributed transaction keep an affinity to the Oracle RAC instance for the duration of the
transaction. In this case, an application would incur a significant performance cost if a
connection is redirect to a different Oracle RAC instance during the distributed transaction.

10.4.1.2 Web Session Affinity

Web session affinity is an affinity to an Oracle RAC instance that can be released by either the
instance, a client application, or a failure event. The Oracle RAC instance uses a hint to
communicate to a connection pool whether affinity has been enabled or disabled on the
instance. An Oracle RAC instance may disable affinity based on many factors, such as
performance or load. If an Oracle RAC instance can no longer support affinity, the connections
in the pool are refreshed to use a new instance and affinity is established once again.

Applications typically use this type of affinity when short-lived affinity to an Oracle RAC
instance is expected or if the cost (in terms of performance) of being redirected to a new
Oracle RAC instance is minimal. For example, a mail client session might use Web session
affinity to an Oracle RAC instance to increase performance and is relatively unaffected if a
connection is redirected to a different instance.

10.4.1.3 Oracle RAC Data Affinity
Data affinity describes the concept of ensuring that a group of related cache entries is
contained within a single cache partition.

Starting from Oracle Database Release 18c, UCP supports Oracle RAC Data Affinity. When
you enable Data Affinity on the Oracle RAC database, data on the affinitized tables are
partitioned in such a way that a particular partition or subset of rows for a table is affinitized to a
particular Oracle RAC database instance. The affinity leads to higher performance and
scalability for the applications due to improved cache locality and reduced internode
synchronization and block pings among the RAC instances.

See Also:

Enabling a Custom Partition Assignment Strategy

To use the Oracle RAC Data Affinity feature, the clients accessing the database through UCP
must provide the data affinity key in their connection requests. UCP has the following
capabilities when pooling connections for an affinity enabled RAC database:

1. UCP learns the topology that contains the data affinity of the data partitions across Oracle
RAC instances at pool start up.

Chapter 10
About Connection Affinity

10-16

https://docs.oracle.com/middleware/1212/coherence/COHDG/api_dataaffinity.htm#COHDG5577

2. UCP connection requests that need to leverage the Oracle RAC Data Affinity feature
provides the data affinity key using the sharding key builder and use the connection builder
as follows:

 PoolDataSource pds = new PoolDataSourceImpl();
 // configure the datasource with the database connection properties

/* Builds the RAC data affinity key using the sharding key builder API
and gets a connection from the pool using UCP connection builder */
 OracleShardingKey dataAffinityKey = pds.createShardingKeyBuilder()
 .subkey(1000, OracleType.NUMBER)
 .build();

 Connection connection = pds.createConnectionBuilder()
 .shardingKey(dataAffinityKey)
 .build();

Note:

You can still make connection requests to Oracle RAC Data Affinity-enabled
without providing the data affinity key. However, in this case, you will not see the
benefits of Oracle RAC Data Affinity feature.

3. UCP determines the affinitized instance for the shard key provided in the request and
checks if a connection for that instance exists in the pool. If the connection exists, then it is
used to serve the request. If a matching connection does not exist in the pool, then a
fallback to Run-Time Load Balancing chooses a connection for the request and serves it. If
a new connection needs to be created to serve the request, then the request is routed to
the affinitized instance corresponding to the provided shard (data affinity) key.

4. UCP keeps its topology of the data partitions in sync with the server side when there are
HA events or when there is a change in the affinity of data partitions on Oracle RAC.

10.4.2 Setting Up Connection Affinity
Perform the following steps to set up connection affinity:

• Enable FCF.

See Also:

"About Fast Connection Failover"

• Enable run-time connection load balancing.

See Also:

"About Run-Time Connection Load Balancing"

• Create a connection affinity callback.

Chapter 10
About Connection Affinity

10-17

• Register the callback.

Note:

Transaction-based affinity is strictly scoped between the application/middle-tier and
UCP. Therefore, transaction-based affinity requires only the
setFastConnectionFailoverEnabled property be set to true and does not require
complete FCF configuration.

In addition, transaction-based affinity does not technically require run-time connection
load balancing. However, it can help with performance and is usually enabled
regardless. If run-time connection load balancing is not enabled, the connection pool
randomly picks connections.

This section contains the following subsections:

• Creating a Connection Affinity Callback

• Registering a Connection Affinity Callback

• Removing a Connection Affinity Callback

10.4.2.1 Creating a Connection Affinity Callback
Connection affinity requires the use of a callback. The callback is an implementation of the
ConnectionAffinityCallback interface which is located in the oracle.ucp package. The
callback is used by the connection pool to establish and retrieve a connection affinity context
and is also used to set the affinity policy type (transaction-based or Web session).

The following example demonstrates setting an affinity policy in a callback implementation. The
example also demonstrates manually setting an affinity context. typically, the connection pool
sets the affinity context inside an application. However, the ability to manually set an affinity
context is provided for applications that want to customize affinity behavior and control the
affinity context directly.

public class AffinityCallbackSample
 implements ConnectionAffinityCallback {

 Object appAffinityContext = null;
 ConnectionAffinityCallback.AffinityPolicy affinityPolicy =
 ConnectionAffinityCallback.AffinityPolicy.TRANSACTION_BASED_AFFINITY;

 //For Web session affinity, use WEBSESSION_BASED_AFFINITY;

 public void setAffinityPolicy(AffinityPolicy policy)
 {
 affinityPolicy = policy;
 }

 public AffinityPolicy getAffinityPolicy()
 {
 return affinityPolicy;
 }

 public boolean setConnectionAffinityContext(Object affCxt)
 {
 synchronized (lockObj)
 {

Chapter 10
About Connection Affinity

10-18

 appAffinityContext = affCxt;
 }
 return true;
 }

 public Object getConnectionAffinityContext()
 {
 synchronized (lockObj)
 {
 return appAffinityContext;
 }
 }
}

10.4.2.2 Registering a Connection Affinity Callback
A connection affinity callback is registered on a connection pool using the
registerConnectionAffinityCallback method. The callback is registered when creating the
connection pool. Only one callback can be registered per connection pool.

The following example demonstrates registering a connection affinity callback implementation:

ConnectionAffinityCallback callback = new MyCallback();

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("AffinitySamplePool");
pds.registerConnectionAffinityCallback(callback);
...

10.4.2.3 Removing a Connection Affinity Callback
A connection affinity callback is removed from a connection pool using the
removeConnectionAffinityCallback method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("AffinitySamplePool");
pds.removeConnectionAffinityCallback();
...

10.4.2.4 Strict Affinity Mode
By default, affinity is only a hint. A connection pool selects a new Oracle RAC instance for
connections if it does not find a connection on a desired instance. You can change this
behavior by switching the strict affinity mode on. The strict affinity mode throws a UCP
exception if a connection on a desired instance is not found.

Use the following pool properties to switch on the strict affinity mode:

• The useStrictWebSessionAffinity property

Set the useStrictWebSessionAffinity property to true or false for switching the strict
Web session affinity mode on or off respectively.

• The useStrictXAAffinity property

Set the useStrictXAAffinity property to true or false for switching the strict transaction-
based affinity mode on or off respectively.

These properties can be handled through the UniversalConnectionPoolMBean.

Chapter 10
About Connection Affinity

10-19

Related Topics

• UniversalConnectionPoolMBean

10.5 Global Data Services
This section describes the new Global Data Services (GDS) feature that can be used with
Universal Connection Pool:

• Overview of Global Data Services

• Configuring an Application for Using GDS

10.5.1 Overview of Global Data Services
Global Data Services (GDS) feature is available since Oracle Database 12c Release 1 (12.1).
Through this feature, Fast Connection Failover, Run-time Connection Load-Balancing, and
Connection Affinity features that were available only in Oracle RAC, were extended to a set of
replicated databases offering common services.

The set of databases may include Oracle RAC and single-instance Oracle databases
interconnected through Data Guard, GoldenGate, or any other replication technology. A
database service that can be provided by multiple databases is called a global service, so that
it can be distinguished from the traditional service that can be provided only by a single
database. This combination enables services to be deployed anywhere within this globally
distributed configuration, supporting load balancing, high availability, database affinity, and so
on.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide

10.5.2 Configuring an Application for Using GDS
UCP connects to Global Data Services in the same way that it connects to local services on an
Oracle RAC. The service name in the connection string should be the name of the global
service. The endpoint should be the endpoint of a GDS listener instead of the endpoint for the
local, remote, or SCAN listener of a database.

A client must specify its region in the REGION parameter of the connection string. This is a new
requirement for GDS. The region name is required because, in case of GDS, Run-time Load
Balancing advisory is customized for particular regions. Following is an example of a typical
connection string:

(DESCRIPTION=
 (ADDRESS=(GDS_protocol_address_information))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

Like with local services, UCP can specify multiple GDS listeners in the same connection string
for listener failover, load balancing, or both.

Chapter 10
Global Data Services

10-20

Note:

SCAN is not supported for GDS listeners, therefore endpoint for each listener must
be specified.

(DESCRIPTION=
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (FAILOVER=ON)
 (ADDRESS=(GDS_protocol_address_information))
 (ADDRESS=(GDS_protocol_address_information)))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

The REGION parameter is optional if only global service managers from the local region are
specified in the client connection string. This is the case when there is only one region in the
GDS configuration, or can be the case when there are multiple regions. But, it is not feasible to
change the connection string of the an existing client designed to work with a single database.
If the REGION parameter is not specified, then the client's region is assumed to be the region of
the global service manager used to connect to the global service.

Note:

Unless the REGION parameter is specified in the connection string, you can use a
pre-12c thin JDBC client only with a GDS configuration that has a single region.

All GDS listeners in the preceding example belong to the same region where UCP is running,
that is the local region. To provide high availability, when all GDSs in the local region are
unavailable, you can specify the GDS listeners for the buddy region in additional ADDRESS_LIST
descriptors.

(DESCRIPTION=
 (FAILOVER=on)
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(global_protocol_address_information))
 (ADDRESS=(global_protocol_address_information)))
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(global_protocol_address_information))
 (ADDRESS=(global_protocol_address_information)))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

You do not need manual ONS configuration because UCP automatically retrieves the ONS
connection information that is optimally customized for the UCP region from GDS.

Chapter 10
Global Data Services

10-21

Note:

• To enable automatic ONS configuration for GDS, you must enable Fast
Connection Failover (FCF) on UCP.

• Automatic ONS configuration works only with Oracle GDS and Oracle RAC. It
does not work with single-instance Oracle Databases.

Automatic ONS configuration does not support ONS wallet or keystore
parameters. If your application requires any of these parameters, then you must
configure ONS explicitly in either of the following two ways:

– Calling the PoolDataSource.setONSConfiguration(String) method

– Adding the ONS wallet or keystore parameters in the local ONS configuration
file

Chapter 10
Global Data Services

10-22

11
UCP Asynchronous Extension

Starting from Oracle Database Release 23ai, UCP provides asynchronous extension. The
asynchronous extension is a set of methods that extend the UCP standard to offer
asynchronous database access.

The asynchronous extension is integrated into UCP in such a way that you can use all the
features of UCP with this extension, with some changes in your source code. This chapter
describes the changes that you must make to your code for using UCP in an asynchronous
way.

Note:

This feature is supported starting with JDK 11.

This chapter covers the following topics:

11.1 Overview of UCP Asynchronous Extension
The UCP asynchronous extension uses non-blocking mechanisms for creating connection
objects, so your application immediately receives either a CompletableFuture or a Publisher
of a connection to be borrowed.

You must perform the following to achieve this:

1. Instantiate a Connection Builder.

2. Create a connection asynchronously with UCPConnectionBuilder using either a
CompletableFuture<Connection> or a Publisher<Connection>.

The asynchronous extension also lets you borrow XA connections with a
UCPXAConnectionBuilder using either a CompletableFuture<XAConnection> or a
Publisher<XAConnection>.

When an asynchronous method is called, it performs as much work as possible on the calling
thread, without blocking on a network read or write. An asynchronous method call returns
immediately after a request is about to be written to the network, without waiting for a
response. When I/O readiness is detected for a network channel, the polling thread arranges
for a worker thread to handle the event. The worker thread reads from the network and then
notifies a CompletableFuture or a Publisher that an operation is complete. Upon notification,
the CompletableFuture or Publisher arranges worker threads that emit a signal to each of its
Subscribers.

The java.util.concurrent.Executor interface manages the worker threads, while the default
Executor is the java.util.concurrent.ForkJoinPool.commonPool method. If you do not
implement the executor() code in your application source code, then the asynchronous
borrow operation runs with the default ForkJoinPool executor. For setting an arbitrary executor
to serve an asynchronous borrow, you can use the executor(executor) call.

11-1

See Also:

Overview of JDBC Reactive extensions

11.2 Example: UCP Asynchronous Extension
This section lists a few examples that demonstrate how to use UCP asynchronous extension.

Example 11-1 Creating a Connection Asynchronously with
CompletableFuture<Connection>

...
final PoolDataSource pds = new PoolDataSourceImpl();
[//Initialize PoolDataSource object in the standard way]

final CompletionStage<Connection> connectionStage =
 pds.createConnectionBuilder()
 .user(<user name>)
 .password(<password>)
 .executor(executor)
 .buildAsyncOracle();

final CompletionStage<String> queryStage =
 connectionStage.thenApply(connection -> {
 [//Perform operations on the connection]
 });
...

Example 11-2 Creating a Connection Asynchronously with Publisher<Connection>

...
final PoolDataSource pds = new PoolDataSourceImpl();
[//Initialize PoolDataSource object in the standard way]

final Publisher<Connection> connectionPublisher =
 pds.createConnectionBuilder()
 .user(<user name>)
 .password(<password>)
 .executor(executor)
 .buildConnectionPublisherOracle();

[//Perform standard activities on the Publisher]
...

Example 11-3 Creating an XA Connection Asynchronously with
UCPXAConnectionBuilder

...
final PoolXADataSource pds = new PoolXADataSourceImpl();
[//Initialize PoolXADataSource object in the standard way]

final CompletionStage<XAConnection> connectionStage =

Chapter 11
Example: UCP Asynchronous Extension

11-2

 pds.createXAConnectionBuilder()
 .user(<user name>)
 .password(<password>)
 .executor(executor)
 .buildAsyncOracle();

final CompletionStage<String> queryStage =
 connectionStage.thenApply(xaConnection -> {
 [//Perform operations on the XAConnection]
 });
...

Example 11-4 Creating an XA Connection Asynchronously with
Publisher<XAConnection>

...
final PoolXADataSource pds = new PoolXADataSourceImpl();
[//Initialize PoolXADataSource object in the standard way]

final Publisher<XAConnection> xaConnectionPublisher =
 pds.createXAConnectionBuilder()
 .user(<user name>)
 .password(<password>)
 .executor(executor)
 .buildConnectionPublisherOracle();

[//Perform standard activities on the Publisher]
...

11.3 Asynchronous Connection Labeling
You can take advantage of the UCP connection labeling feature even in the asynchronous
mode. For achieving this, you must override the default version of the new
oracle.ucp.ConnectionLabelingCallback.configureAsync() method.

configureAsync: Asynchronous Version of the Configure Method

For standard connection labeling, you use the configure method in your application. For using
connection labeling in the asynchronous mode, you must use the configureAsync method.
The definition of the configureAsync method is as follows:

default CompletionStage<Boolean> configureAsync(Properties requestedLabels,
Object connection) {
 throw new NoSuchMethodError();

See Also:

• Labeling Connections in UCP

• Oracle Universal Connection Pool Java API Reference

Chapter 11
Asynchronous Connection Labeling

11-3

11.4 Example: Asynchronous Connection Labeling
This section contains an examples that demonstrates how to use UCP asynchronous
extension with connection labeling.

Example 11-5 Creating a Connection Asynchronously with Connection Labeling

package tests.ucp.async.labeling;

import oracle.ucp.ConnectionLabelingCallback;
import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceImpl;

import java.sql.Connection;
import java.util.Properties;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.CompletionStage;

public class AsyncLabelingExample {
 public static void main(String ... args) throws Exception {
 final PoolDataSource pds = new PoolDataSourceImpl();

 // Set the pool data source properties

 final ConnectionLabelingCallback labelingCallback = new
ConnectionLabelingCallback() {
 @Override
 public int cost(Properties requestedLabels, Properties currentLabels) {
 // some cost manipulations, same as in synchronous case
 return 0; // or some other integer, depending on the cost computation
logic
 }

 @Override
 public boolean configure(Properties requestedLabels, Object connection)
{
 // some connection configuration manipulations for synchronous case,
 // not used in asynchronous case, so it can be skipped.
 return true;
 }

 @Override
 public CompletionStage<Boolean> configureAsync(Properties
requestedLabels, Object connection) {
 final var cf = new CompletableFuture<Boolean>();

 // Perform some asynchronous connection configuration
 doSomeConfigAction((Connection)connection).whenComplete((p, e) -> {
 if (null == e) {
 cf.complete(p);
 } else {
 cf.completeExceptionally(e);
 }
 });

Chapter 11
Example: Asynchronous Connection Labeling

11-4

 return cf;
 }

 private CompletableFuture<Boolean> doSomeConfigAction(Connection conn) {
 final var cf = new CompletableFuture<Boolean>();

 // ...
 // configure the connection asynchronously
 // ... complete CompletableFuture with result or exception ...

 return cf;
 }
 };

 pds.registerConnectionLabelingCallback(labelingCallback);

 // some labeling code

 }
}

Chapter 11
Example: Asynchronous Connection Labeling

11-5

12
Ensuring Application Continuity

This chapter discusses the following concepts related to the Application Continuity feature of
Oracle Database:

• Overview of Ensuring Application Continuity with UCP

• Configuring the Data Source for Application Continuity

• Using Connection Labeling for Application Continuity

• Using Connection Initialization Callback for Application Continuity

12.1 Overview of Ensuring Application Continuity with UCP
Oracle Database 12c Release 1 (12.1) introduced the Application Continuity feature that
provides a general purpose, application-independent infrastructure. Application Continuity
enables recovery of work from an application perspective, after the occurrence of a planned or
unplanned outage that can be related to system, communication, or hardware following a
repair, a configuration change, or a patch application.

For using Application Continuity, you must first configure your data source. After that, use one
of the following two features for implementing Application Continuity in your applications using
Universal Connection Pool (UCP):

• Using Connection Labeling for Application Continuity

• Using Connection Initialization Callback for Application Continuity

Related Topics

• Configuring the Data Source for Application Continuity

• Using Connection Labeling for Application Continuity

• Using Connection Initialization Callback for Application Continuity

12.2 Configuring the Data Source for Application Continuity
To utilize the Application Continuity (AC) feature on a UCP data source, applications must
specify an Oracle JDBC driver data source with AC support, as the connection factory class.
The data source depends on the Oracle JDBC driver version that you use.

• For Oracle JDBC driver 23ai, all the driver data sources support Application Continuity.
Oracle recommends that you use oracle.jdbc.datasource.impl.OracleDataSource,
although either of the older data sources, that is,
oracle.jdbc.replay.OracleDataSourceImpl or oracle.jdbc.pool.OracleDataSource,
also works.

• For using Oracle JDBC driver 19c or an older driver, you must use the
oracle.jdbc.replay.OracleDataSourceImpl to support Application Continuity.

12-1

See Also:

About Configuring Oracle JDBC for Application Continuity for Java

12.3 Using Connection Labeling for Application Continuity
Connection labeling enables an application to attach arbitrary name/value pairs to a
connection. The application can request a connection with the desired label from the
connection pool.

Connection labeling sets the initial state for each connection request. If the application uses
connection labeling or benefits from labeling connections, then a labeling callback should be
registered for Application Continuity to initialize clean connections at failover.

Every time Application Continuity gets a new connection from the underlying data source, the
labeling callback executes. The callback executes during normal connection check-out and
also during replay. So, the state that is created at run time is exactly re-created during replay.
The initialization must be idempotent.

It is legal for the callback to execute a transaction as long as the transaction completes (either
it commits or rolls back) at the end of callback invocation. Application Continuity repeats any
action coded within the callback implementation, including such transaction. If an outage
occurs during the execution of a UCP labeling callback, then Application Continuity may
execute the callback more than once as part of the replay attempt. Again, it is important for the
callback actions to be idempotent.

Related Topics

• Labeling Connections in UCP

12.4 Using Connection Initialization Callback for Application
Continuity

If an application cannot use connection labeling because it cannot be changed, then the
connection initialization callback is provided for such an application.

When registered, the initialization callback is executed every time a connection is borrowed
from the pool and at each successful reconnection following a recoverable error..

Related Topics

• About Connection Initialization Callback

Chapter 12
Using Connection Labeling for Application Continuity

12-2

13
Shared Pool for Sharded Databases

Sharding is a data tier architecture in which data is horizontally partitioned across independent
databases.

This chapter describes UCP Shared Pool for sharded databases in the following sections:

• Overview of UCP Shared Pool for Database Sharding

• About Handing Connection Requests for a Sharded Database

• Sharding Data Source for Transparent Access to Sharded Databases

• Middle-Tier Routing Using UCP

• Sharding with JTA/XA Transaction in WebLogic Server

13.1 Overview of UCP Shared Pool for Database Sharding
Starting from Oracle Database 12c Release 2 (12.2.0.1), Universal Connection Pool (UCP)
supports database sharding. UCP recognizes the sharding keys specified and connects to the
specific shard. Sharding uses Global Data Services (GDS), where GDS routes a client request
to an appropriate database, based on various parameters such as availability, load, network
latency, and replication lag.

See Also:

• Oracle Database JDBC Developer’s Guide

• Oracle Database Administrator’s Guide

Use Case of UCP Shared Pool for Database Sharding

This section describes a use case of UCP Shared Pool for database sharding. In the use case,
the applications connecting to sharded database use UCP to store connections to different
shards and chunks of the sharded GDS database within the same Shared Pool. The
applications must provide the sharding key to UCP during the connection request. Based on
the sharding key, the pool routes the connection request to the correct shard. The data
distribution across the shards and chunks in the database is transparent to the user. UCP
transparently handles resharding and chunk movements, minimizing the impact on the end
users.

The following diagram illustrates this use case:

13-1

Figure 13-1 Universal Connection Pool (UCP) Using Sharded Database Architecture

Related Topics

• Global Data Services

13.2 About Handling Connection Requests for a Sharded
Database

This section describes how connection requests are made on a pool for sharded databases.

• How to Checkout Connections from a Pool with a Known Sharding key

• About Configuring the Number of Connections Per Shard

• About Connecting to the Shard Catalog or Co-ordinator for Multishard Queries

Chapter 13
About Handling Connection Requests for a Sharded Database

13-2

13.2.1 How to Checkout Connections from a Pool with a Sharding Key
When a connection is borrowed from UCP, then the shard aware application can provide the
sharding key and the super sharding key using the new connection builder present in the
PoolDataSource class.

If sharding keys do not exist or do not map to the data types specified by the database
metadata, then an IllegalArgumentException is thrown. The following code snippet shows
how to checkout a connection with sharding keys:

Example 13-1 Checking Out a Connection with Sharding Keys

import java.sql.Connection;
import java.sql.JDBCType;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.ShardingKey;

import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;

public class UCPShardingExample {

 public static void main(String[] args) throws SQLException {
 String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)
(PORT=<gsm_port>)(PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=myGSMservice)))";
 String user="db_user_name";
 String pwd = "db_password";

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setURL(url);
 pds.setUser(user);
 pds.setPassword(pwd);
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setInitialPoolSize(5);
 pds.setMinPoolSize(5);
 pds.setMaxPoolSize(20);

 int empId = 1234;
 // Employee ID is the sharding key column in sharded table

 ShardingKey shardingKey = pds.createShardingKeyBuilder()
 .subkey(empId, JDBCType.INTEGER)
 .build();

 // Borrow a connection to direct shard using sharding key
 try(Connection connection = pds.createConnectionBuilder()
 .shardingKey(shardingKey)
 .build()) {

 PreparedStatement pst =
connection.prepareStatement("select * from employee where emp_id=?");
 pst.setInt(1, 1234);
 ResultSet rs = pst.executeQuery();

Chapter 13
About Handling Connection Requests for a Sharded Database

13-3

 // retrieve the employee details using resultset
 rs.close();
 pst.close();
 }
 }

 }

Note:

You must specify a sharding key during the connection checkout. Otherwise, an error
or exception is thrown back to the application.

13.2.2 About Configuring the Number of Connections Per Shard

When UCP is used to pool connections for a sharded database, the pool contains connections
to different shards. So, when connections are pulled, to ensure a fair usage of the pool
capacity across all shards connected, UCP uses the MaxConnectionsPerShard parameter. This
is a global parameter, which applies to every shard in the sharded database, and is used to
limit the total number of connections to any shard below the specified limit.

The following table describes the APIs for setting and retrieving this parameter:

Method Description

poolDatasource.setMaxConnectionsPerShar
d(<max_connections_per_shard_limit>)

Sets the maximum number of connections per
shard.

poolDatasource.getMaxConnectionsPerShar
d()

Retrieves the value that was set using the
setMaxConnectionsPerShard(<max_connecti
ons_per_shard_limit>) method.

Note:

You cannot use the MaxConnectionsPerShard parameter in a sharded database with
Oracle Golden Gate configuration.

13.2.3 About Connecting to the Shard Catalog or Co-ordinator for
Multishard Queries

When connecting to the Shard Catalog or Co-ordinator for running multishard queries, it is
recommended that a separate pool be created using a new PoolDataSource instance. You can
run multishard queries on connections retrieved from a data source that is created on the
coordinator service. The connection request for the coordinator should not have sharding keys
in the connection builder API.

Chapter 13
About Handling Connection Requests for a Sharded Database

13-4

13.3 Sharding Data Source for Transparent Access to Sharded
Databases

Oracle Database Release 21c introduced a new JDBC data source that enables Java
connectivity to a sharded database without the need for an application to furnish a sharding
key.

If you use the sharding data source, then you do not have to identify and build the sharding key
and the super sharding key to establish a connection to the sharded database, as discussed in
the earlier How to Checkout Connections from a Pool with a Sharding Key section. The
sharding data source also eliminates the need to maintain a separate data source for
multishard queries.

This data source scales out to sharded databases transparently if you set the connection
property oracle.jdbc.useShardingDriverConnection to true.

See Also:

Oracle Database JDBC Developer's Guide

The following code snippet shows how to use the sharded data source:

Example 13-2 Using the Sharded Data Source

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Properties;

import javax.sql.DataSource;

import oracle.jdbc.internal.OracleConnection;
import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;

public class ShardingDataSourceUCP {
 public static void main(String[] args) throws SQLException {
 ShardingDataSourceUCP sample = new ShardingDataSourceUCP();
 DataSource ucpDataSource = sample.getDataSource();
 // Get the details of following customers
 int[] customerIds = new int[] {
 100,
 101,
 102,
 103,
 104,
 105
 };

 for (int id: customerIds) {
 try (Connection conn = ucpDataSource.getConnection()) {

Chapter 13
Sharding Data Source for Transparent Access to Sharded Databases

13-5

 sample.displayCustomerDetails(conn, id);
 System.out.println(((OracleConnection)
conn).getPercentageQueryExecutionOnDirectShard());
 }
 }
 }

 private void displayCustomerDetails(Connection conn, int id) throws
SQLException {
 try (PreparedStatement pstmt = conn.prepareStatement("SELECT * FROM
CUSTOMER where ID = ?")) {
 pstmt.setInt(1, id);
 try (ResultSet rs = pstmt.executeQuery()) {
 while (rs.next()) {
 // Print the customer details
 }
 }
 }
 }

 private DataSource getDataSource() throws SQLException {
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setURL("<gsmURL>");
 pds.setUser("<userName>");
 pds.setPassword("<password>");

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 Properties prop = new Properties();
 // Connection property to enable sharding datasource feature, when
this property
 // is set you don't need to pass sharding key to UCP pool while
borrowing the connection

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_USE_SHARDING_DRIVER_CONN
ECTION, "true");
 pds.setConnectionProperties(prop);
 return pds;
 }
}

See Also:

• The UCPConnectionBuilder Interface

• The PoolDataSource Interface

• The PoolXADataSource Interface

Chapter 13
Sharding Data Source for Transparent Access to Sharded Databases

13-6

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/oracle/ucp/jdbc/UCPConnectionBuilder.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/oracle/ucp/jdbc/PoolDataSource.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjuar/oracle/ucp/jdbc/PoolXADataSource.html

13.3.1 Support for Single Shard Transactions
The sharding data source enables you to limit your transactions to one single shard.

To enable single shard transaction support, you must set
CONNECTION_PROPERTY_ALLOW_SINGLE_SHARD_TRANSACTION_SUPPORT. If this property is not set,
then by default, all the transactions are started on the Shard Catalog. If you set the value of
this property to true, then you must ensure that all the transactions span over a single shard
only.

See Also:

• Oracle Database JDBC Java API Reference

• Oracle Database JDBC Developer's Guide

Example 13-3 Enabling Single Shard Transactions

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Properties;

import javax.sql.DataSource;

import oracle.jdbc.internal.OracleConnection;
import oracle.jdbc.pool.OracleDataSource;

public class SingleShardTransactionUCP {
 public static void main(String[] args) throws SQLException {
 SingleShardTransactionUCP sample = new SingleShardTransactionUCP();
 DataSource ucpDS = sample.getDataSource();

 // Insert and update the details of following customers in a single
transaction
 int[] customerIds = new int[] {
 100,
 101,
 102,
 103,
 104,
 105
 };

 for (int id: customerIds) {
 try (Connection conn = ucpDS.getConnection()) {
 conn.setAutoCommit(false);
 sample.insertCustomerDetails(conn, id);
 sample.displayCustomerDetails(conn, id);
 sample.updateCustomerDetails(conn, id);
 sample.displayCustomerDetails(conn, id);

Chapter 13
Sharding Data Source for Transparent Access to Sharded Databases

13-7

https://docs.oracle.com/en/database/oracle/oracle-database/23/jajdb/oracle/jdbc/OracleConnection.html#CONNECTION_PROPERTY_ALLOW_SINGLE_SHARD_TRANSACTION_SUPPORT

 conn.commit();
 System.out.println(((OracleConnection)
conn).getPercentageQueryExecutionOnDirectShard());
 }

 }
 }

 private void insertCustomerDetails(Connection conn, int id) throws
SQLException {
 String sql = "insert into CUSTOMER values(?, ?, ?, ?)";
 try (PreparedStatement ps = conn.prepareStatement(sql)) {
 ps.setInt(1, id);
 ps.setString(2, name);
 ps.setString(3, email);
 ps.setString(4, phoneNumber);
 ps.executeUpdate();
 }
 }

 private void updateCustomerDetails(Connection conn, int id) throws
SQLException {
 String sql = "UPDATE CUSTOMER SET name = ?, email = ?, phoneNumber
= ? WHERE customerId = ?";
 try (PreparedStatement ps = conn.prepareStatement(sql)) {
 ps.setString(1, name);
 ps.setString(2, email);
 ps.setString(3, phoneNumber);
 ps.setInt(4, id);
 ps.executeUpdate();
 }
 }

 private void displayCustomerDetails(Connection conn, int id) throws
SQLException {
 try (PreparedStatement pstmt = conn.prepareStatement("SELECT * FROM
CUSTOMER where ID = ?")) {
 pstmt.setInt(1, id);
 try (ResultSet rs = pstmt.executeQuery()) {
 while (rs.next()) {
 //Print the customer details
 }
 }
 }
 }

 private DataSource getDataSource() throws SQLException {
 OracleDataSource ds = new OracleDataSource();
 ds.setURL(< gsmURL >);
 ds.setUser(< userName >);
 ds.setPassword(< password >);
 Properties prop = new Properties();
 //Connection property to enable sharding datasource feature

prop.setProperty(OracleConnection.CONNECTION_PROPERTY_USE_SHARDING_DRIVER_CONN
ECTION, "true");

Chapter 13
Sharding Data Source for Transparent Access to Sharded Databases

13-8

 //Connection property to enable single shard transaction support. If
this property is not set,
 // by default all the transactions are started on catalog DB. When
setting this property value
 // to "true", applications must ensure that all the transactions span
over a single shard only.

prop.setProperty(oracle.jdbc.OracleConnection.CONNECTION_PROPERTY_ALLOW_SINGLE
_SHARD_TRANSACTION_SUPPORT, "true");
 ds.setConnectionProperties(prop);
 return ds;
 }
}

13.4 Middle-Tier Routing Using UCP
Since Oracle Database Release 18c, Oracle Universal Connection Pool (UCP) supports the
Middle-Tier Routing feature. This feature helps the Oracle customers, who use the Sharding
feature, to have a dedicated middle tier from the client applications to the sharded database.

Typically, the middle-tier connection pools route database requests to specific shards. During
such a routing, each middle-tier connection pool establishes connections to each shard,
creating too many connections to the database. The Middle-Tier Routing feature solves this
problem by having a dedicated middle tier (Web Server or Application Server) for each Data
Center or Cloud, and routing client requests directly to the relevant middle tier, where the shard
containing the client data (corresponding to the client sharding key) resides.

13.4.1 Middle-Tier Routing with UCP Example
The following example explains the usage of the middle-tier routing API of UCP.

Example 13-4 Example of Middle-Tier Routing Using UCP

import java.sql.SQLException;
import java.util.Properties;
import java.util.Random;
import java.util.Set;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.ucp.UniversalConnectionPoolException;
import oracle.ucp.routing.ShardInfo;
import oracle.ucp.routing.oracle.OracleShardRoutingCache;

/**
 * The code example illustrates the usage of the middle-tier routing feature
of UCP.
 * The API accepts sharding key as input and returns the set of ShardInfo
 * instances mapped to the sharding key. The ShardInfo instance encapsulates
 * unique shard name and priority. The unique shard name then can be mapped
 * to a middle-tier server that connects to a specific shard.
 *
 */
public class MidtierShardingExample {

Chapter 13
Middle-Tier Routing Using UCP

13-9

 private static String user = "testuser1";
 private static String password = "testuser1";

 // catalog DB URL
 private static String url = "jdbc:oracle:thin:@//hostName:1521/
catalogServiceName";
 private static String region = "regionName";

 public static void main(String args[]) throws Exception {
 testMidTierRouting();
 }

 static void testMidTierRouting() throws UniversalConnectionPoolException,
 SQLException {

 Properties dbConnectProperties = new Properties();
 dbConnectProperties.setProperty(OracleShardRoutingCache.USER, user);
 dbConnectProperties.setProperty(OracleShardRoutingCache.PASSWORD,
password);
 // Mid-tier routing API accepts catalog DB URL
 dbConnectProperties.setProperty(OracleShardRoutingCache.URL, url);

 // Region name is required to get the ONS config string
 dbConnectProperties.setProperty(OracleShardRoutingCache.REGION, region);

 OracleShardRoutingCache routingCache = new OracleShardRoutingCache(
 dbConnectProperties);

 final int COUNT = 10;
 Random random = new Random();

 for (int i = 0; i < COUNT; i++) {
 int key = random.nextInt();
 OracleShardingKey shardKey = routingCache.getShardingKeyBuilder()
 .subkey(key, OracleType.NUMBER).build();
 OracleShardingKey superShardKey = null;

 Set<ShardInfo> shardInfoSet = routingCache.getShardInfoForKey(shardKey,
 superShardKey);

 for (ShardInfo shardInfo : shardInfoSet) {
 System.out.println("Sharding Key=" + key + " Shard Name="
 + shardInfo.getName() + " Priority=" + shardInfo.getPriority());
 }
 }

 }
}

13.5 Sharding with JTA/XA Transaction in WebLogic Server
Starting from Oracle Database 23ai Release, you can use sharding with JTA/XA transactions,
when you configure UCP as a native data source in WebLogic Server. This feature broadens

Chapter 13
Sharding with JTA/XA Transaction in WebLogic Server

13-10

UCP middle-tier coverage to include more applications, like the ones that require container-
managed JTA/XA transactions or sharding.

Java Transaction API (JTA) specifies standard Java interfaces between a transaction manager
and the parties involved in a distributed transaction system: the resource manager, the
application server, and the transactional applications. Now, Java Enterprise applications that
use UCP native data source sharding APIs, to obtain connections to Oracle sharded
databases, can participate in JTA/XA transactions managed by WebLogic Transaction
Manager (TM).

For any XA transaction with all supplied sharding keys parameter in the connection requests,
which lead to the same Oracle sharded database instance, the XA transaction goes through
successfully and commits the changes. For an XA transaction, leading to different Oracle
sharded database instances, UCP native data source raises an exception to the WebLogic
Transaction Manager and the transaction is rolled back.

See Also:

Oracle WebLogic Server documentation for more information

Chapter 13
Sharding with JTA/XA Transaction in WebLogic Server

13-11

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/intro/adminconsole.html

14
Diagnosing a Connection Pool

The following parameters are used for diagnosing Universal Connection Pool (UCP):

• Pool Statistics

• Dynamic Monitoring Service Metrics

• Overview of Logging and Tracing in UCP

• About Viewing Oracle RAC Statistics

• Exceptions and Error Codes

14.1 Pool Statistics
Universal Connection Pool (UCP) provides a set of run-time statistics for the connection pool.
These statistics can be divided into the following two categories:

• Noncumulative

These statistics apply only to the current running connection pool instance.

• Cumulative

These statistics are collected across multiple pool start/stop cycles.

The oracle.ucp.UniversalConnectionPoolStatistics interface provides methods that are
used to query the connection pool statistics. The methods of this interface can be called from a
pool-enabled data source and pool-enabled XA data source, using the
oracle.ucp.jdbc.PoolDataSource.getStatistics method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...
...
int totalConnsCount = pds.getStatistics().getTotalConnectionsCount();
System.out.println("The total connetion count in the pool is "+ totalConnsCount +".");

The oracle.ucp.jdbc.PoolDataSource.getStatistics method can also be called by itself to
return all connection pool statistics as a String.

14.2 Dynamic Monitoring Service Metrics
UCP supports all the pool statistics to be in the form of Dynamic Monitoring Service (DMS)
metrics. You must include the dms.jar file in the class path of the application to collect and
utilize these DMS metrics.

UCP supports DMS metrics collection in both the pool manager interface and the pool
manager MBean. You can use the
UnversalConnectionPoolManager.startMetricsCollection method to start collecting DMS
metrics for the specified connection pool instance, and use the
UnversalConnectionPoolManager.stopMetricsCollection method to stop DMS metrics
collection. The metrics update interval can be specified using the

14-1

UnversalConnectionPoolManager.setMetricUpdateInterval method. The pool manager
MBean exports similar operations.

14.3 Overview of Logging and Tracing in UCP
Two major aspects of UCP diagnosability are logging and tracing.

Logging is writing log records into a console, a file, or any other log handler that is defined by
standard logging properties. The name of a logger is the same as a pool data source name. A
pool data source name is set with an appropriate property. You can leave it unnamed as well,
in which case, all diagnostics goes in the common logger. The name of the common logger is
oracle.ucp. Logging implements the Java Logging API, java.util.logging.

Tracing is the special logging use case, where a log record is written into an in-memory ring
buffer until an event triggers UCP Diagnosability to dump that buffer into a corresponding
logger. UCP has the following two categories of trace buffers:

Note:

A pool data source and a UCP have a one-to-one mapping.

• A category that consists of one common buffer, which is used for tracing logs from the
static methods that are not directly related to a pool with a designated name. The common
buffer is permanent for the complete life span of the associated UCP.

• A category that contains as many buffers as the number of named Pool Data Source
(PDS) objects, where every buffer is mapped to a single named PDS. Every trace from that
PDS goes into the corresponding buffer. Its life starts from a pool start up and ends with a
pool destruction.

14.3.1 Logging and Tracing Settings
When you enable logging, you should not enable tracing because the log records get
immediately dumped into a logger in such a case, and there is no need to duplicate log records
into a trace buffer. So, if logging is on, regardless of the tracing setting, tracing gets disabled
automatically.

Note:

By default, tracing is on and logging is off.

The following table summarizes this functionality:

Logging Setting Tracing Setting Logging Functionality Tracing Functionality

off off Disabled Disabled

on off Enabled Disabled

off on Disabled Enabled

on on Enabled Disabled

Chapter 14
Overview of Logging and Tracing in UCP

14-2

14.3.2 Diagnosability System Properties and Command Line
You can set the initial diagnosability properties as JVM system properties.
You can achieve this in the following ways:

• Using the Oracle JVM command line

• In your application source code

• Using Java Management Extensions (JMX)

Property Name Description

oracle.ucp.diagnostic.enableTrace Is the flag to enable tracing. The default value of
this property is true.

oracle.ucp.diagnostic.enableLogging Is the flag to enable debug logging. The default
value of this property is false.

oracle.ucp.diagnostic.bufferSize Specifies the in-memory trace buffer size. The
default value is 1024.

oracle.ucp.diagnostic.loggingLevel Specifies the default logging level that is used if no
other value is specified for a logger in a logging
configuration file. The default value of this property
is INFO.

java.util.logging.config.file Specifies the logging property file name to load.
The default value is ConsoleHandler for all
loggers.

oracle.ucp.diagnostic.errorCodesToWatch
List

Provides the list of exceptions and error codes that
triggers dumping of all traces into their loggers.

14.3.3 Logging Configuration File
The logging configuration file lets you configure your logging settings as described in the
java.util.logging package. If you want to set different levels for different loggers, then you
must set those in the logging configuration file.
Perform the following for configuring the common logger:

• Specify the logger as oracle.ucp.

• Set an appropriate logging level.

• Specify where and how to write the logs. For example, whether the logs should be written
to the console or to a file. In case of a file, specify the file name, formatter, and so on.

Perform the following for configuring a logger that is specific to a pool data source object:

• Set a level for the logger with the name of that pool data source.

• Set an appropriate logging level.

Note:

If you do not specify the level for a logger, then a default level, which is set in the
ucp.diagnostic.loggingLevel, is used.

Chapter 14
Overview of Logging and Tracing in UCP

14-3

Example 14-1 Logging Configuration File

The following is an example of the UCP diagnosability logging configuration file:

oracle.ucp.level=FINE
handlers = java.util.logging.FileHandler
java.util.logging.FileHandler.pattern = ./test.log
java.util.logging.FileHandler.limit = 0
java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter
pool-name1=FINEST
pool-name2=SEVERE

Logging Level

Logging levels in the UCP Diagnosability framework are the same as the ones available in the
java.util.logging package, but UCP also supports a numeric logging level in the range from
Integer.MIN_VALUE to Integer.MAX_VALUE. The following table lists all the valid logging levels:

Logging Level Value

OFF Integer.MAX_VALUE
SEVERE 1000
WARNING 900
INFO 800
CONFIG 700
FINE 500
FINER 400
FINEST 300
ALL Integer.MIN_VALUE

14.3.4 Tracing the Error Codes to Watch
The error codes to watch are applicable only for tracing. If tracing is disabled, then the error
codes to watch setting is ignored.
There are two event types that trigger the trace buffers to be dumped into an appropriate
logger:

• Any log message with a SEVERE log level.

• A few subset of exceptions or errors, for example, the subclasses of the
java.lang.Throwable class, which are thrown by the JDBC driver or UCP. These errors or
exceptions are then caught internally and logged with the WARNING level. The subset of
these exceptions are defined with the ucp.diagnostic.errorCodesToWatchList property.

A WARNING log message, which contains a subclass of java.lang.Throwable, can cause
dumping of a trace buffer into a logger, if the exception is found in a list of error codes. If an
exception contains a stack of errors or exceptions, then UCP traverses through that stack with
an attempt to find a matching exception and the corresponding error code, if applicable. The
format of the list of error code is as follows:

["<subclass1>.<Exception1>:111,222,333",
"<subclass2>.<Exception2>:444,555,666", "<subclass3>.<Exception3>"]

Chapter 14
Overview of Logging and Tracing in UCP

14-4

where, subclass1.Exception1, subclass2.Exception2, and subclass3.Exception3 are the
java.lang.Throwable subclasses.

For example, if you see an error code like the following:

["oracle.ucp.UniversalConnectionPoolException:45054,45065,45067",
"java.sql.SQLException:12521,12514,12757,12523",
"java.lang.IllegalStateException", "java.lang.NullPointerException"]

It means that the tracing is triggered in the following sequence:

1. oracle.ucp.UniversalConnectionPoolException with the vendor error codes 45054,
45065, and 45067

2. java.sql.SQLException with the vendor error codes 12521, 12514, 12757, and 12523

3. IllegalStateException
4. NullPointerException
Only fully-qualified java.lang.Throwable subclass names can cause dumping of a trace buffer
into a logger. For example, java.sql.NullPointerException is a valid name, while NullP,
NullPointerException, [“12154"], [“ORA-“], or [“ORA-12154"] is not. If specified wrongly,
then the subclass name causes parsing and/or class resolution errors logged, along with a
WARNING. Any number conversion error too can cause a parsing error logged, along with a
WARNING.

In case of parse and class resolution failures, every WARNING log record, with any exception,
causes dumping a trace buffer. This is regardless of exception types and designated error
codes. Once error codes are ignored in logging mode, they are not parsed anymore.

Comma-separated lists of error codes are used only in case of the following two classes and
their subclasses:

• java.sql.SQLException and its subclasses like java.sql.SQLRecoverableException or
java.sql.SQLSyntaxError

• oracle.ucp.UniversalConnectionPoolException and its subclasses like
NoAvailableConnectionsException

If you specify comma-separated lists of error codes with other exception types, then those
error codes are ignored. With an empty list of error codes for the two exceptions and their
subclasses mentioned earlier, all error codes are applicable. The UCP Diagnosability has a
default error codes list. Refer to "UCP Exception Error Codes" for the list of
oracle.ucp.UniversalConnectionPoolException error codes.

If you want the trace buffer to be dumped by any WARNING message with an exception, then
you can perform it in the following way:

Example 14-2 To dump traces by any exception

"["java.lang.Throwable"]"

Chapter 14
Overview of Logging and Tracing in UCP

14-5

14.3.5 MBeans for UCP Diagnosability
UCP provides two MBeans for UCP diagnosability.

• ucp.admin: It contains attributes amd operations for the whole JVM. It manages the buffer
associated with all the pool data sources, and also the common in-memory buffer. You can
change the initial values of the following MBean attributes to set it:

– enableTrace
– enableLogging
– loggingLevel
– bufferSize
– errorCodesToWatchList
– loggingConfigFileName
Also, there is an operation named dumpInMemoryTrace. Launching this operation, you can
dump contents of all in-memory buffers into their appropriate loggers.

• ucp.admin.UniversalConnectionPoolMBean: It contains a tree of existing pool insntances,
where every instance has its own attribute to modify an appropriate property of that
specific pool. The attributes are the following:

– enableTrace
– enableLogging
– loggingLevel
– inMemoryTraceSize

14.4 About Viewing Oracle RAC Statistics
UCP provides a set of Oracle RAC run-time statistics that are used to determine how well a
connection pool is utilizing Oracle RAC features and are also used to help determine whether
the connection pool has been configured properly to use the Oracle RAC features. The
statistics report FCF processing information, run-time connection load balance success/failure
rate, and affinity context success/failure rate.

The OracleJDBCConnectionPoolStatistics interface that is located in the
oracle.ucp.jdbc.oracle package provides methods that are used to query the connection
pool for Oracle RAC statistics. The methods of this interface can be called from a pool-enabled
and pool-enabled XA data source using the data source's getStatistics method. For
example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...

Long rclbS = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getSuccessfulRCLBBasedBorrowCount();
System.out.println("The RCLB success rate is "+rclbS+".");

The data source's getStatistics method can also be called by itself and returns all
connection pool statistics as a String and includes the Oracle RAC statistics.

Chapter 14
About Viewing Oracle RAC Statistics

14-6

14.4.1 Fast Connection Failover Statistics
The getFCFProcessingInfo method provides information on recent Fast Connection Failover
(FCF) attempts in the form of a String. The FCF information is typically used to help diagnose
FCF problems. The information includes the outcome of each FCF attempt (successful or
failed), the relevant Oracle RAC instances, the number of connections that were cleaned up,
the exception that triggered the FCF attempt failure, and more. The following example
demonstrates using the getFCFProcessingInfo method:

Sting fcfInfo = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFCFProcessingInfo();
System.out.println("The FCF information: "+fcfInfo+".");

Following is a sample output string from the getFCFProcessingInfo() method:

 Oct 28, 2008 12:34:02 SUCCESS <Reason:planned> <Type:SERVICE_UP> \
 <Service:"svvc1"> <Instance:"inst1"> <Db:"db1"> \
 Connections:(Available=6 Affected=2 FailedToProcess=0 MarkedDown=2 Closed=2) \
 (Borrowed=6 Affected=2 FailedToProcess=0 MarkedDown=2 MarkedDeferredClose=0
Closed=2) \
 TornDown=2 MarkedToClose=2 Cardinality=2
 ...
 Oct 28, 2008 12:09:52 SUCCESS <Reason:unplanned> <Type:SERVICE_DOWN> \
 <Service:"svc1"> <Instance:"inst1"> <Db:"db1"> \
 Connections:(Available=6 Affected=2 FailedToProcess=0 MarkedDown=2 Closed=2) \
 (Borrowed=6 Affected=2 FailedToProcess=0 MarkedDown=2 MarkedDeferredClose=0
Closed=2)
 ...
 Oct 28, 2008 11:14:53 FAILURE <Type:HOST_DOWN> <Host:"host1"> \
 Connections:(Available=6 Affected=4 FailedToProcess=0 MarkedDown=4 Closed=4) \
 (Borrowed=6 Affected=4 FailedToProcess=0 MarkedDown=4 MarkedDeferredClose=0
Closed=4)

If you enable logging, then the preceding information will also be available in the UCP logs and
you will be able to verify the FCF outcome.

14.4.2 Run-Time Connection Load Balance Statistics
The run-time connection load balance statistics are used to determine if a connection pool is
effectively utilizing the run-time connection load balancing feature of Oracle RAC. The statistics
report how many requests successfully used the run-time connection load balancing algorithms
and how many requests failed to use the algorithms. The
getSuccessfulRCLBBasedBorrowCount method and the getFailedRCLBBasedBorrowCount
method, respectively, are used to get the statistics. The following example demonstrates using
the getFailedRCLBBasedBorrowCount method:

Long rclbF = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFailedRCLBBasedBorrowCount();
System.out.println("The RCLB failure rate is: "+rclbF+".");

A high failure rate may indicate that the Oracle RAC Load Balancing Advisory or connection
pool is not configured properly.

14.4.3 Connection Affinity Statistics
The connection affinity statistics are used to determine if a connection pools is effectively
utilizing connection affinity. The statistics report the number of borrow requests that succeeded

Chapter 14
About Viewing Oracle RAC Statistics

14-7

in matching the affinity context and how many requests failed to match the affinity context. The
getSuccessfulAffinityBasedBorrowCount method and the
getFailedAffinityBasedBorrowCount method, respectively, are used to get the statistics. The
following example demonstrates using the getFailedAffinityBasedBorrowCount method:

Long affF = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFailedAffinityBasedBorrowCount();
System.out.println("The connection affinity failure rate is: "+affF+".");

14.5 Exceptions and Error Codes
Many UCP methods throw the UniversalConnectionPoolException, with exception chaining
supported. You can call the printStackTrace method on the thrown exception, to identify the
root cause of the exception. The UniversalConnectionPoolException includes standard
Oracle error codes that are in the range of 45000 and 45499. The getErrorCode method can
be used to retrieve the error code for an exception.

Chapter 14
Exceptions and Error Codes

14-8

A
Error Codes Reference

This appendix briefly discusses the general structure of Universal Connection Pool (UCP) error
messages, UCP error messages for the connection pool layer, and UCP error messages for
JDBC data sources and dynamic proxies. The appendix is organized as follows:

• General Structure of UCP Error Messages

• Connection Pool Layer Error Messages

• JDBC Data Sources and Dynamic Proxies Error Messages

Both the message lists are sorted by the error message number.

A.1 General Structure of UCP Error Messages
The general UCP error message structure enables run-time information to be appended to the
end of a message, following a colon, as follows:

<error_message>:<extra_info>

For example, a closed statement error might be displayed as follows:

Closed Statement:next

This indicates that the exception was thrown during a call to the next method (of a result set
object).

In some cases, the user can find the same information in a stack trace.

A-1

A.2 Connection Pool Layer Error Messages
This section lists UCP error messages for the connection pool layer.

Note:

Starting with Oracle Database Release 21c, the All connections in the
Universal Connection Pool are in use exception, which typically means the
exhaustion of a pool's working set, is extended. The exception now displays
messages similar to the following message, which include a short statistics that
improves UCP diagnosability:

All connections in the Universal Connection Pool are in use (5, 5, 5,
0, 0, 0, 10, 150, 5, 3)

Where, the numbers after the exception message mean the following:

• The first number is the number of borrowed connections in a pool

• The second number is the number of total connections in a pool

• The third number is the cumulative number of connection created since a pool's
start up

• The fourth number is the cumulative number of connections closed since a pool's
start up

• The fifth number is the cumulative number of abandoned connections, that is,
connection processed by the abandonment timer mechanism

• The sixth number is the number of labeled connections in a pool

• The seventh number is the number of pending connection borrowing requests

• The eighth number is the number of connections to create over an existing set
until the max pool size is reached

• The ninth number is the total number of connections at its peak since a pool's
start up

• The tenth number is the number of borrowed connections at its peak since a
pool's start up

Table A-1 Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45001 Universal Connection Pool internal error

UCP-45002 No available connections in the Universal Connection Pool

UCP-45003 Universal Connection Pool already exists

UCP-45004 Invalid connection retrieval information

UCP-45005 Callback already registered

UCP-45006 Invalid Universal Connection Pool configuration

Appendix A
Connection Pool Layer Error Messages

A-2

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45051 Inactive connection timeout timer scheduling failed

UCP-45052 Abandoned connection timeout timer scheduling failed

UCP-45053 Time-to-live connection timeout timer scheduling failed

UCP-45054 The Universal Connection Pool cannot be null

UCP-45055 Error when removing an available connection

UCP-45057 The AvailableConnections object cannot be null

UCP-45058 The Failoverable object cannot be null

UCP-45059 MaxPoolsize is set to 0. There are no connections to return

UCP-45060 Invalid life cycle state. Check the status of the Universal Connection Pool

UCP-45061 Universal Connection Pool is not started. Start the Universal Connection Pool
before accessing

UCP-45062 The collection of available connections can only be set when the Universal
Connection Pool is in the initialization state

UCP-45063 Universal Connection Pool has been shutdown while attempting to get a
connection

UCP-45064 All connections in the Universal Connection Pool are in use

UCP-45065 Connection borrowing returned null

UCP-45091 Connection labeling callback already registered

UCP-45092 Borrowing labeled connection with no labeling callback registered

UCP-45093 Requested no-label connection but borrowing labeled connection

UCP-45097 Connection harvesting timer scheduling failed

UCP-45100 ConnectionFactoryAdapter returned null

UCP-45103 ConnectionFactoryAdapter must be an instance of
DataSourceConnectionFactoryAdapter

UCP-45104 ConnectionFactoryAdapter object cannot be null

UCP-45105 ConnectionFactoryAdapter must be an instance of
ConnectionPoolDataSourceConnectionFactoryAdapter

UCP-45106 ConnectionFactoryAdapter must be an instance of
XADataSourceConnectionFactoryAdapter

UCP-45150 UniversalPooledConnection cannot be null

UCP-45152 UniversalPooledConnectionStatus object cannot be null

UCP-45153 The connection label key cannot be null or an empty string

UCP-45154 The connection labeling operation cannot be invoked on closed connections

UCP-45155 Connection harvesting callback already registered

UCP-45156 Abandoned connection timeout callback already registered

UCP-45157 Time-to-live connection timeout callback already registered

UCP-45201 The connection label key cannot be null or an empty string

UCP-45202 The cloning of the ConnectionRetrievalInfo object failed

UCP-45203 The Connection Request Info is null

Appendix A
Connection Pool Layer Error Messages

A-3

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45251 ConnectionPoolDataSource cannot be null

UCP-45252 Invalid ConnectionRetrievalInfo object

UCP-45253 SQLException occurred while getting PooledConnection from
ConnectionPoolDataSource

UCP-45254 Invalid connection type. Must be a javax.sql.PooledConnection
UCP-45255 SQLException while closing PooledConnection
UCP-45256 Data source cannot be null

UCP-45257 Cannot get Connection from Data source

UCP-45258 Invalid connection type. Must be a java.sql.Connection
UCP-45259 The connection to proxy must be an instance of java.sql.Connection
UCP-45260 XADatasource cannot be null

UCP-45261 SQLException occurred while getting XAConnection from XADataSource
UCP-45262 Invalid connection type. Must be a javax.sql.XAConnection
UCP-45263 SQLException occurred while closing XAConnection
UCP-45264 The connection cannot be null

UCP-45265 The connection to proxy must be an instance of overstatement
UCP-45266 The statement to proxy must be an instance of ultraconservative
UCP-45267 The connection to proxy must be an instance of javax.sql.XAConnection
UCP-45268 The Driver argument cannot be null

UCP-45269 The URL argument cannot be null

UCP-45301 Unable to get a connection for fail over information

UCP-45302 Unable to execute SQL query to get fail over information

UCP-45303 SQLException occurred while getting fail over information

UCP-45304 The event type cannot be null

UCP-45305 The event type is invalid. Event type must be database/event/host or
database/event/service

UCP-45306 The fail over event type is invalid. It must be an Intergovernmental
UCP-45307 The affinity context is invalid. It must be an Interconnection
UCP-45308 Exception occurred while enabling fail over with remote ONS subscription

UCP-45350 Universal Connection Pool already exists in the Universal Connection Pool
Manager. Universal Connection Pool cannot be added to the Universal Connection
Pool Manager

UCP-45351 Universal Connection Pool not found in Universal Connection Pool Manager.
Register the Universal Connection Pool with Universal Connection Pool Manager

UCP-45352 Cannot get Universal Connection Pool Manager instance

UCP-45353 Cannot get Universal Connection Pool Manager M Bean instance

UCP-45354 M Bean Object Name is not in the right format. Use the right format to construct
Object Name for M Bean

UCP-45355 M Bean exception occurred while registering or unregistering the MBean

Appendix A
Connection Pool Layer Error Messages

A-4

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45356 MBean already exits in the MBeanServer. Use a different name to register MBean

UCP-45357 Exception occurred when trying to register an object in the MBean server that is
not a JMX compliant MBean

UCP-45358 The specified MBean does not exist in the repository

UCP-45359 Invalid target object type is specified. Check the managed resource

UCP-45360 Invalid MBean Descriptor is specified. Check the Universal Connection Pool
Manager MBean Descriptor

UCP-45361 Runtime exception occurred while building MBeanInfo for Universal Connection
Pool Manager MBean

UCP-45362 Runtime exception occurred while building constructors information for Universal
Connection Pool Manager MBean

UCP-45363 Runtime exception occurred while building attributes information for Universal
Connection Pool Manager MBean

UCP-45364 Runtime exception occurred while building operations information for Universal
Connection Pool Manager MBean

UCP-45365 Universal Connection Pool must be an instance of ConnectionConnectionPool
or OracleConnectionConnectionPool

UCP-45366 Invalid MBean Descriptor is specified. Check the JDBC Universal Connection Pool
MBean Descriptor

UCP-45367 Runtime exception occurred while building MBeanInfo for JDBC Universal
Connection Pool MBean

UCP-45368 Runtime exception occurred while building constructors information for JDBC
Universal Connection Pool MBean

UCP-45369 Runtime exception occurred while building attributes information for JDBC
Universal Connection Pool MBean

UCP-45370 Runtime exception occurred while building operations information for JDBC
Universal Connection Pool MBean

UCP-45371 Runtime exception occurred while building attributes information for Universal
Connection Pool MBean

UCP-45372 Runtime exception occurred while building operations information for Universal
Connection Pool MBean

UCP-45373 Invalid MBean Descriptor is specified. Check the Universal Connection Pool
MBean Descriptor

UCP-45374 Runtime exception occurred while building MBeanInfo for Universal Connection
Pool MBean

UCP-45375 Cannot stop the UCP metric collection. Exception occurred while trying to stop the
metric collection or while destroying the nouns or sensors.

UCP-45376 Metrics update timer task scheduling failed

UCP-45377 Problem occurred while updating UCP metric sensors

UCP-45378 Universal Connection Pool is not an instance of OracleJDBCConnectionPool
and cannot access ONSConfiguration property

UCP-45379 Cannot set the connection pool name in Universal Connection Pool MBean. Check
the connection pool name to avoid duplicates

UCP-45380 MBean object is null

Appendix A
Connection Pool Layer Error Messages

A-5

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45381 MBean object name is null

UCP-45382 MBean display name is null

UCP-45383 Invalid adapter for pool creation in Universal Connection Pool Manager

UCP-45384 Invalid adapter for pool creation in Universal Connection Pool Manager MBean

UCP-45385 Error during pool creation in Universal Connection Pool Manager

UCP-45386 Error during pool creation in Universal Connection Pool Manager MBean

UCP-45401 Waiting threads LO watermark cannot be negative

UCP-45402 Waiting threads HI watermark cannot be negative

UCP-45403 Total worker threads limit cannot be negative

UCP-45404 Queue poll timeout cannot be negative

UCP-45405 The waiting threads HI watermark cannot be lower than the LO watermark

UCP-45406 The limit of total worker threads cannot be higher than the limit of waiting threads

UCP-45407 The error number is out of range

UCP-45408 Invalid operation because the logger is null

A.3 JDBC Data Sources and Dynamic Proxies Error Messages
This section lists the UCP error messages for JDBC data sources and dynamic proxies error
messages.

Table A-2 JDBC Data Sources and Dynamic Proxies Error Messages

Error Message
Number

Message

UCP-0 Unable to start the UCP

UCP-1 Unable to build the UCP

UCP-2 Invalid minimum pool size

UCP-3 Invalid maximum pool size

UCP-4 Invalid inactive connection timeout

UCP-5 Invalid connection wait timeout

UCP-6 Invalid time-to-live connection timeout

UCP-7 Invalid abandoned connection timeout

UCP-8 Invalid timeout check interval

UCP-9 Failed to enable Failover

UCP-10 Failed to set the maxStatements value

UCP-11 Failed to set the SQL string for validation

UCP-12 Invalid connection harvest trigger count

UCP-13 Invalid connection harvest max count

UCP-14 UCP is created already. Can not create the UCP again

Appendix A
JDBC Data Sources and Dynamic Proxies Error Messages

A-6

Table A-2 (Cont.) JDBC Data Sources and Dynamic Proxies Error Messages

Error Message
Number

Message

UCP-15 Exception occurred while destroying the UCP

UCP-16 Operation only applies to Oracle connection pools

UCP-17 Exception occurred while setting ONS configuration string

UCP-18 Failed to register labeling callback

UCP-19 Failed to remove labeling callback

UCP-20 Failed to register affinity callback

UCP-21 Failed to remove affinity callback

UCP-22 Invalid UCP configuration

UCP-23 Unable to create factory class instance with provided factory class name

UCP-24 Unable to set the User

UCP-25 Unable to set the Password

UCP-26 Unable to set the URL

UCP-27 The factory class must be an instance of DataSource
UCP-28 Cannot create connections. There are no available connections

UCP-29 Exception occurred while getting connection

UCP-30 UCP is not started

UCP-31 The connection is closed

UCP-32 Error occurred when applying label

UCP-33 Error occurred when removing the connection label

UCP-34 Error occurred when getting labels

UCP-35 Error occurred when getting unmatched labels

UCP-36 Error occurred when setting connection harvestable

UCP-37 Error occurred when registering harvesting callback

UCP-38 Error occurred when removing harvesting callback

UCP-39 Error occurred when registering abandoned-connection callback

UCP-40 Error occurred when removing abandoned-connection callback

UCP-41 Error occurred when registering time-to-live-connection callback

UCP-42 Error occurred when removing time-to-live-connection callback

UCP-43 The result set is closed

UCP-44 The statement is closed

UCP-45 Cannot set the connection pool name. Check the connection pool name to avoid
duplicates

UCP-46 The SQL string is null

UCP-47 Error occurred when setting connection to be invalid

UCP-48 Unable to set the Connection properties

UCP-49 Unable to set the Database server name

UCP-50 Unable to set the Database port number

UCP-51 Unable to set the Database name

Appendix A
JDBC Data Sources and Dynamic Proxies Error Messages

A-7

Table A-2 (Cont.) JDBC Data Sources and Dynamic Proxies Error Messages

Error Message
Number

Message

UCP-52 Unable to set the data source name

UCP-53 Unable to set the data source description

UCP-54 Unable to set the data source network protocol

UCP-55 Unable to set the data source role name

UCP-56 Invalid max connection reuse time

UCP-57 Invalid max connection reuse count

UCP-58 The method is disabled

UCP-59 Unable to set the connection factory properties

Appendix A
JDBC Data Sources and Dynamic Proxies Error Messages

A-8

B
UCP Exception Error Codes

This appendix contains a list of useful oracle.ucp.UniversalConnectionPoolException error
codes.

/*
 * Universal Connection Pool error code range is 45000 - 45499 in RDBMS.
 * An error number is an offset from the base error code 45000.
 *
 * The error numbers are organized first by package; and then within
 * each package, by main components. These are indicated with the
 * use of particular sub strings within the error numbers' field names.
 *
 * When adding a new error number, if it needs to be mapped to a
 * specific pool exception subclass, define the error number to be
 * smaller than UCP_RANGED_MAPPING_BASE. Otherwise, define it to be
 * larger than UCP_RANGED_MAPPING_BASE, so that it can be mapped to
 * a generic UniversalConnectionPoolException.
 */
public static final int UCP_ERROR_CODE_BASE = 45000;
public static final int UCP_MAX_ERRORS = 500;

public static final int UCP_SUCCESS = 0;
public static final int UCP_GENERIC_ERROR = 1;

// Error numbers that are mapped to specific pool exceptions
public static final int UCP_NO_AVAILABLE_CONNECTIONS = 2;
public static final int UCP_POOL_ALREADY_EXISTS = 3;
public static final int UCP_INVALID_RETRIEVAL_CREDENTIALS = 4;
public static final int UCP_CALLBACK_ALREADY_REGISTERED = 5;
public static final int UCP_INVALID_POOL_CONFIGURATION = 6;

/*
 * All error numbers >= this number will be mapped to a generic
 * UniversalConnectionPoolException. Error numbers smaller than this
 * have specific mappings to a UniversalConnectionPoolException subclass.
 */
public static final int UCP_RANGED_MAPPING_BASE = 50;

// POOL (oracle.ucp.common) - use _COMMON_POOL_

// Error number 50 is available for use
public static final int UCP_COMMON_POOL_INACTIVE_TIMER_SCHEDULE = 51;
public static final int UCP_COMMON_POOL_ABANDONED_TIMER_SCHEDULE = 52;
public static final int UCP_COMMON_POOL_TTL_TIMER_SCHEDULE = 53;
public static final int UCP_COMMON_POOL_NULL = 54;
public static final int UCP_COMMON_POOL_RM_AVAIL_CONN = 55;
public static final int UCP_COMMON_POOL_NO_VALID_CONNECTION = 56;
public static final int UCP_COMMON_POOL_AVAILABLECONNECTIONS_NULL = 57;
public static final int UCP_COMMON_POOL_FAILOVERABLE_NULL = 58;

B-1

public static final int UCP_COMMON_POOL_NOCONNECTIONS = 59;
public static final int UCP_COMMON_POOL_INVALID_LIFECYCLE_STATE = 60;
public static final int UCP_COMMON_POOL_NOTSTARTED = 61;
public static final int UCP_COMMON_POOL_SETAVAILABLECONNECTIONS = 62;
public static final int UCP_COMMON_POOL_SHUTDOWN = 63;
public static final int UCP_COMMON_POOL_ALLCONNECTIONS_INUSE = 64;
public static final int UCP_COMMON_POOL_ABOUT_TO_SHUTDOWN = 65;
public static final int UCP_COMMON_POOL_INSUFFICIENT_INITIAL_CONNECTIONS = 66;
public static final int UCP_COMMON_POOL_UNABLE_TO_CREATE_CONNECTION = 67;
public static final int SQL_AC_INIT_CALLBACK_ERROR = 68;
// Error numbers 69 - 90 are available for use
public static final int UCP_COMMON_POOL_LABELING_CBK_REGISTERED = 91;
public static final int UCP_COMMON_POOL_NO_LABELING_CBK = 92;
public static final int UCP_COMMON_POOL_LABEL_BORROW_MISMATCH = 93;
// Error numbers 94 - 96 are available for use
public static final int UCP_COMMON_POOL_HARVEST_TIMER_SCHEDULE = 97;

// Connection factory adapter - use _COMMON_CFA_
public static final int UCP_COMMON_CFA_RETURNED_NULL = 100;
// Error numbers 101 - 102 are available for use
public static final int UCP_COMMON_CFA_INSTANCE_ERROR1 = 103;
public static final int UCP_COMMON_CFA_NULL = 104;
public static final int UCP_COMMON_CFA_INSTANCE_ERROR2 = 105;
public static final int UCP_COMMON_CFA_INSTANCE_ERROR3 = 106;

// Universal pooled connection - use _COMMON_UPC_
public static final int UCP_COMMON_UPC_NULL = 150;
public static final int UCP_COMMON_UPC_WRONG_SQL = 151;
public static final int UCP_COMMON_UPC_STATUS_NULL = 152;
public static final int UCP_COMMON_UPC_LABEL_KEY_EMPTY = 153;
public static final int UCP_COMMON_UPC_CLOSED = 154;
public static final int UCP_COMMON_UPC_HARVESTING_CBK_REGISTERED = 155;
public static final int UCP_COMMON_UPC_ABANDONED_CBK_REGISTERED = 156;
public static final int UCP_COMMON_UPC_TTL_CBK_REGISTERED = 157;
public static final int UCP_COMMON_UPC_BAD = 158;

// Connection retrieval info - use _CRI_

// Error number 200 is available for use
public static final int UCP_COMMON_CRI_LABEL_KEY_EMPTY = 201;
public static final int UCP_COMMON_CRI_NOLABEL_CLONE_FAILURE = 202;
public static final int UCP_COMMON_CRI_NULL = 203;
public static final int UCP_COMMON_SERVICE_MISMATCH = 204;

// JDBC POOL (oracle.ucp.jdbc) - use _JDBC_

// Error number 250 is available for use
public static final int UCP_JDBC_CONNECTIONPOOLDATASOURCE_NULL = 251;
public static final int UCP_JDBC_INVALID_CONNECTIONRETRIEVALINFO_OBJECT = 252;
public static final int UCP_JDBC_CONNECTIONPOOLDATASOURCE_SQLEXCEPTION = 253;
public static final int UCP_JDBC_INVALID_CONNECTIONTYPE = 254;
public static final int UCP_JDBC_CONNECTIONCLOSE_EXCEPTION = 255;
public static final int UCP_JDBC_DATASOURCE_NULL = 256;
public static final int UCP_JDBC_GETCONNECTION_EXCEPTION = 257;
public static final int UCP_JDBC_INVALID_PROXY_CONNECTIONTYPE = 258;
public static final int UCP_JDBC_PROXY_CONNECTION_EXCEPTION = 259;

Appendix B

B-2

public static final int UCP_JDBC_NOT_XADATASOURCE_NULL = 260;
public static final int UCP_JDBC_XADATASOURCE_SQLEXCEPTION = 261;
public static final int UCP_JDBC_INVALID_XACONNECTIONTYPE = 262;
public static final int UCP_JDBC_XACONNECTIONCLOSE_EXCEPTION = 263;
public static final int UCP_JDBC_CONNECTION_NULL = 264;
public static final int UCP_JDBC_PROXY_STATEMENT_EXCEPTION = 265;
public static final int UCP_JDBC_PROXY_RESULTSET_EXCEPTION = 266;
public static final int UCP_JDBC_PROXY_XACONNECTION_EXCEPTION = 267;
public static final int UCP_JDBC_DRIVER_NULL = 268;
public static final int UCP_JDBC_URL_NULL = 269;
public static final int UCP_JDBC_POOL_INIT_CBK_REGISTERED = 270;
public static final int UCP_JDBC_POOL_INIT_CBK_FAILURE = 271;
public static final int UCP_JDBC_INVALID_USE_OF_SHARED_POOL = 272;
public static final int UCP_JDBC_NON_SHARED_POOL_INVALID_CONFIG_EXCEPTION =
273;
public static final int UCP_JDBC_UNABLE_TO_SET_QUERY_TIMEOUT = 274;
public static final int UCP_JDBC_DUPLICATE_POOL_NAME = 275;
public static final int UCP_JDBC_DUPLICATE_DATASOURCE_NAME = 276;
public static final int UCP_JDBC_MISSING_SHARD_KEY_CONNECTION_REQUEST = 277;
public static final int UCP_JDBC_INVALID_CONNECTION_REQUEST_PARAMETER = 278;
public static final int UCP_JDBC_CANNOT_RECONFIGURE_MAX_PER_SERVICE = 279;
public static final int UCP_JDBC_INVALID_GLOBAL_SERVICE_NAME = 280;

// Oracle JDBC POOL (oracle.ucp.jdbc.oracle) - use _JDBC_ORACLE_

// Error number 300 is available for use
public static final int UCP_JDBC_ORACLE_FOVR_CONN_NULL = 301;
public static final int UCP_JDBC_ORACLE_FOVR_CONN_QUERY = 302;
public static final int UCP_JDBC_ORACLE_FOVR_CONN_SQLEXC = 303;
public static final int UCP_JDBC_ORACLE_EVENTTYPE_NULL = 304;
public static final int UCP_JDBC_ORACLE_INVALID_EVENTTYPE = 305;
public static final int UCP_JDBC_ORACLE_INVALID_FAILOVER_EVENTTYPE = 306;
public static final int UCP_JDBC_ORACLE_INVALID_AFFINITY_CXT = 307;
public static final int UCP_JDBC_ORACLE_REMOTE_ONS_PRIVILEGE = 308;
public static final int UCP_JDBC_ORACLE_BEGINREQUEST_FAILURE = 309;
public static final int UCP_JDBC_ORACLE_ENDREQUEST_FAILURE = 310;
public static final int UCP_JDBC_ORACLE_NO_AVAIL_CONN_FOR_STRICT_AFFINITY =
311;
public static final int UCP_JDBC_ORACLE_REMOTE_ONS_INIT = 312;
public static final int UCP_JDBC_ORACLE_AUTO_ONS_CONFIG = 313;
public static final int UCP_JDBC_ORACLE_INVALID_RAC_DATA_AFFINITY_CONFIG =
314;

// Admin (oracle.ucp.admin) - use _ADMIN_
public static final int UCP_ADMIN_MGR_POOL_ALREADY_EXISTS = 350;
public static final int UCP_ADMIN_MGR_POOL_DOESNOT_EXIST = 351;
public static final int UCP_ADMIN_MGR_CANNOT_GETINSTANCE = 352;
public static final int UCP_ADMIN_MGRMBEAN_CANNOT_GETINSTANCE = 353;
public static final int UCP_ADMIN_MBEAN_MALFORM_OBJECTNAME = 354;
public static final int UCP_ADMIN_MBEAN_REG_UNREG_EXCEPTION = 355;
public static final int UCP_ADMIN_MBEAN_INSTANCE_EXISTS = 356;
public static final int UCP_ADMIN_MBEAN_NOT_COMPLIANT = 357;
public static final int UCP_ADMIN_MBEAN_INSTANCE_NOTFOUND = 358;
public static final int UCP_ADMIN_MBEAN_INVALID_TARGET = 359;
public static final int UCP_ADMIN_MGRMBEAN_DESCRIPTOR_EXCEPTION = 360;
public static final int UCP_ADMIN_MGRMBEAN_MBEANINFO_EXCEPTION = 361;

Appendix B

B-3

public static final int UCP_ADMIN_MGRMBEAN_CONINFO_EXCEPTION = 362;
public static final int UCP_ADMIN_MGRMBEAN_ATTRINFO_EXCEPTION = 363;
public static final int UCP_ADMIN_MGRMBEAN_OPERINFO_EXCEPTION = 364;
public static final int UCP_ADMIN_JDBCPOOLMBEAN_INSTANCE = 365;
public static final int UCP_ADMIN_JDBCPOOLMBEAN_DESCRIPTOR_EXCEPTION = 366;
public static final int UCP_ADMIN_JDBCPOOLMBEAN_MBEANINFO_EXCEPTION = 367;
public static final int UCP_ADMIN_JDBCPOOLMBEAN_CONINFO_EXCEPTION = 368;
public static final int UCP_ADMIN_JDBCPOOLMBEAN_ATTRINFO_EXCEPTION = 369;
public static final int UCP_ADMIN_JDBCPOOLMBEAN_OPERINFO_EXCEPTION = 370;
public static final int UCP_ADMIN_COMMONPOOLMBEAN_ATTRINFO_EXCEPTION = 371;
public static final int UCP_ADMIN_COMMONPOOLMBEAN_OPERINFO_EXCEPTION = 372;
public static final int UCP_ADMIN_COMMONPOOLMBEAN_DESCRIPTOR_EXCEPTION = 373;
public static final int UCP_ADMIN_COMMONPOOLMBEAN_MBEANINFO_EXCEPTION = 374;
public static final int UCP_ADMIN_STOP_METRIC_COLLECTION = 375;
public static final int UCP_ADMIN_METRIC_UPDATE_TIMER = 376;
public static final int UCP_ADMIN_METRIC_UPDATE_SENSORS = 377;
public static final int UCP_ADMIN_JDBCPOOLMBEAN_ORACLEPOOL_NULL = 378;
public static final int UCP_ADMIN_COMMONPOOLMBEAN_CANNOT_SET_POOLNAME = 379;
public static final int UCP_ADMIN_MBEAN_NULL = 380;
public static final int UCP_ADMIN_MBEAN_OBJNAME_NULL = 381;
public static final int UCP_ADMIN_MBEAN_DISPLAYNAME_NULL = 382;
public static final int UCP_ADMIN_MGR_INVALID_ADAPTER = 383;
public static final int UCP_ADMIN_MGRMBEAN_INVALID_ADAPTER = 384;
public static final int UCP_ADMIN_MGR_POOL_CREATION = 385;
public static final int UCP_ADMIN_MGRMBEAN_POOL_CREATION = 386;

public static final int UCP_POOL_CONFIGURATION_INVALID_XML = 387;
public static final int UCP_POOL_RECONFIGURATION_INVALID_XML = 388;
public static final int UCP_POOL_MAX_PER_SHARD_LIMIT_EXCEEDED = 389;

// Utilities (oracle.ucp.util) - use _UTIL_ or _WTP_

// Utilities - Worker Thread Pool (WTP) - use _WTP_

// Error number 400 is available for use
public static final int UCP_WTP_MIN_WAITING_THREADS_NEGATIVE = 401;
public static final int UCP_WTP_MAX_WAITING_THREADS_NEGATIVE = 402;
public static final int UCP_WTP_MAX_TOTAL_THREADS_NEGATIVE = 403;
public static final int UCP_WTP_QUEUE_POLL_TIMEOUT_NEGATIVE = 404;
public static final int UCP_WTP_WAITING_THREADS_MIN_GT_MAX = 405;
public static final int UCP_WTP_TOTAL_THREADS_LT_WAITING = 406;

public static final int UCP_UTIL_ERROR_OUT_OF_RANGE = 407;
public static final int UCP_UTIL_NULL_LOGGER = 408;

// Error numbers for WLS JTA support
public static final int UCP_WLS_XA_AFFINITY_VIOLATION = 420;

Appendix B

B-4

Index

A
abandon connection timeout property, 5-7
AbandonedConnectionTimeoutCallback, 7-1
admin package, 2-3
affinity

transaction-based, 10-16
web session, 10-15

application continuity
connection initialization callback, 12-2
connection labeling, 12-2
data source configuration, 12-1

Application Continuity, 12-1
applyConnectionLabel, 6-5
applying connection labels, 6-5

B
basic connection example, 2-4
benefits of connection pools, 1-1
benefits of FCF, 10-3
benefits of run-time connection load balancing,

10-14
borrowing connections

basic steps, 2-2
conceptual architecture, 1-2
labeled, 6-6
overview, 3-1
using JNDI, 3-5
using the pool-enabled data source, 3-2
using the pool-enabled XA data source, 3-4

C
caching statements, 5-11
callback

connection affinity, 10-18
labeling, 6-2

checking unmatched labels, 6-6
closing connections, 3-10
conceptual architecture, 1-2
configure method, 6-2
Configuring ONS, 10-7

client-side daemon configuration, 10-10
Remote Configuration, 10-9

connection affinity
create callback, 10-18
overview, 10-15
register callback, 10-19
remove callback, 10-19
setting up, 10-17
statistics, 14-7
transaction-based, 10-16
web session, 10-15

Connection Creation Consumer, 4-1
connection factory, 2-2

conceptual architecture, 1-2
requirements, 2-1
setting, 3-2, 3-4

connection labels
apply, 6-5
check unmatched, 6-6
implement callback, 6-2
overview, 6-1
removing, 6-7

Connection object, 1-2
connection pool

benefits, 1-1
create explicitly, 8-2
create implicitly, 2-1, 3-1
destroy, 8-3
general overview, 1-1
maintenance, 8-4
purge, 8-5
recycle, 8-4
refresh, 8-4
remove connection from, 3-11
start, 8-3
stop, 8-3
understanding lifecycle, 8-1

connection pool manager,
create, 8-1
create pool explicitly, 8-2
destroy pool, 8-3
overview, 1-3, 8-1
purge pool, 8-5
recycle pool, 8-4
refresh pool, 8-4
start pool, 8-3
stop pool, 8-3

Index-1

connection pool properties,
abandon connection timeout, 5-7
connection wait timeout, 5-8
harvest maximum count, 5-11
harvest trigger count, 5-10
inactive connection timeout, 5-8
inactive connection timeout property, 5-8
initial pool size, 5-2
maximum connection reuse count, 5-6
maximum connection reuse time, 5-5
maximum pool size, 5-3
maximum statements, 5-12
minimum pool size, 5-2
optimizing, 5-1
overview, 1-3
setInactiveConnectionTimeout, 5-8
setting, 3-7, 5-1
time-to-live connection timeout, 5-7
timeout check interval, 5-9
timeout properties

inactive, 5-8
validate on borrow, 3-8

connection properties, 3-4
connection reuse properties, setting, 5-5
connection steps, basic, 2-2

example, 2-4
connection URL, 10-12
connection wait timeout property, 5-8
ConnectionAffinityCallback interface, 10-18
ConnectionLabelingCallback interface, 6-1, 6-2
connections

basic steps, 2-2
borrowing, 3-1
borrowing labeled, 6-6
borrowing using JNDI, 3-5
checking if valid, 3-9
closing, 3-10
controlling stale, 5-5
harvesting, 5-9
labeling, 6-1
removing from the pool, 3-11
run-time load balancing, 10-13
using affinity, 10-15
validate on borrow, 3-8

cost method, 6-2
create connection pool

explicit, 8-2
implicit, 2-2

D
data source

PoolDataSource, 1-2, 3-2
PoolXADataSource, 1-2, 3-4

database requirements, 2-1
destroyConnectionPool, 8-3

destroying a connection pool, 8-3

E
enable FCF property, 10-6
errors

connection pool layer messages, A-2
general UCP message structure, A-1
JDBC data sources and dynamic proxies

messages, A-6
example

basic connection, 2-4
connection affinity callback, 10-18
FCF, 10-5
labeling callback, 6-3

F
fast connection failover

prerequisites, 10-5
Fast Connection Failover

See FCF
FCF,

configure connection URL, 10-12
configure ONS, 10-7
enable, 10-6
example, 10-5
statistics, 14-7

G
GDS, 10-20
getAffinityPolicy, 10-18
getConnection methods, 3-3, 6-6
getPoolDataSource, 3-2
getPoolXADataSource, 3-4
getStatistics, 14-6
getting a connection, 3-3
getting an XA connection, 3-4
getUniversalConnectionPoolManager, 8-1
getUnmatchedConnectionLabels, 6-6
getXAConnection methods, 3-4
Global Data Services, 10-20

H
harvest connections, 5-9
harvest maximum count property, 5-11
harvest trigger count property, 5-10
HarvestableConnection interface, 5-10
high availability, 1-3, 10-1

I
initial pool size property, 5-2

Index

Index-2

integration
third-party, 3-11

isValid, 3-9

J
JDBC connection pool

See UCP
JDBC driver

connection properties, 3-4
requirements, 2-1

jdbc package, 2-3
JNDI, 3-5
JRE requirements, 2-1

L
LabelableConnection interface, 6-1, 6-5
labeled connections

apply label, 6-5
borrowing, 6-6
check unmatched, 6-6
implement callback, 6-2
overview, 6-1
remove label, 6-7

labeling callback
create, 6-2
example, 6-3
register, 6-4
removing, 6-5
run-time algorithm, 6-3

lifecycle of connection pools, 8-1
lifecycle states, 8-2
Load Balance Advisory, 10-13
load balancing, 10-13

M
manager, connection pool, 8-1
maximum connection reuse count property, 5-6
maximum connection reuse time property, 5-5
maximum pool size property, 5-3
maximum statements property, 5-12
method, 3-4
Minimal Pool configuration, 2-5
minimum pool size property, 5-2

O
ONS, 10-7
ons.config file, 10-7
optimizing a connection pool, 5-1
Oracle Client software, 10-7
Oracle Client software requirements, 2-1
Oracle Notification Service

See ONS

Oracle RAC
connection affinity, 10-15
features overview, 10-1
run-time connection load balancing, 10-13
statistics, 14-6

Oracle RAC Load Balance Advisory, 10-13
overview

connection pool manager, 8-1
connection pool properties, 5-1
connection pools, general, 1-1
connection steps, 2-2
high availability and performance features,

1-3
labeling connections, 6-1
Oracle RAC features, 10-1
UCP, 1-2

P
password, 2-2, 3-3, 3-4
pool manager

See connection pool manager
pool properties

See connection pool properties
pool size, controlling

initial size, 5-2
maximum, 5-3
minimum, 5-2

pool-enabled data source
create instance, 3-2

pool-enabled XA data source
create instance, 3-4

PoolDataSource interface, 1-2, 3-2
PoolDataSourceFactory class, 3-2, 3-4
PoolDataSourceImpl, 3-11
PoolXADataSource interface, 1-2, 3-4
PoolXADataSourceImpl, 3-11
purgeConnectionPool, 8-5
purging a connection pool, 8-5

R
Real Application Clusters

See Oracle RAC, 1-2
recycleConnectionPool, 8-4
recycling a connection pool, 8-4
refreshConnectionPool, 8-4
refreshing a connection pool, 8-4
registerConnectionAffinityCallback, 10-19
registerConnectionLabelingCallback, 6-4
removeConnectionAffinityCallback, 10-19
removeConnectionLabel, 6-7
removeConnectionLabelingCallback, 6-5
removing connection labels, 6-7
removing connections from the pool, 3-11

Index

Index-3

reuse properites
maximum count, 5-6

reuse properties
maximum time, 5-5

run-time connection load balancing
overview, 10-13
setting up, 10-14
statistics, 14-7

S
SERVICE_TIME, 10-14
setAbandonedConnectionTimeout, 5-7
setAffinityPolicy, 10-18
setConnectionAffinityContext, 10-18
setConnectionFactoryClassName, 3-2, 3-4
setConnectionHarvestable, 5-10
setConnectionHarvestMaxCount, 5-11
setConnectionHarvestTriggerCount, 5-10
setConnectionProperties, 3-4
setConnectionWaitTimeout, 5-8
setFastConnectionFailoverEnabled, 10-6
setInitialPoolSize, 5-2
setInvalid, 3-9, 3-11
setMaxConnectionReuseCount, 5-6
setMaxConnectionReuseTime, 5-5
setMaxPoolSize, 5-3
setMaxStatements, 5-12
setMinPoolSize, 5-2
setONSConfiguration, 10-7
setPassword, 3-3, 3-4
setSQLForValidateConnection, 3-8
setTimeoutCheckInterval, 5-9
setTimeToLiveConnectionTimeout, 5-7
setURL, 3-3, 3-4
setUser, 3-3, 3-4
setValidateConnectionOnBorrow, 3-8
SHORT, 10-14
SQL statement caching, 5-11
stale connections, 5-5
startConnectionPool, 8-3
starting a connection pool, 8-3
statement caching, 5-11
statistics

connection affinity, 14-7
FCF, 14-7
Oracle RAC, 14-6
run-time connection load balancing, 14-7

stopConnectionPool, 8-3
stopping a connection pool, 8-3
system properties, 2-3

T
third-party integration, 3-11
THROUGHPUT, 10-14
time-to-live connection timeout property, 5-7
timeout check interval property, 5-9
timeout properties

abandon, 5-7
check interval, 5-9
time-to-live, 5-7
wait, 5-8

TimeToLiveConnectionTimeoutCallback, 7-1
transaction-based affinity, 10-16

U
UCP,

basic connection steps, 2-1
conceptual architecture, 1-2
Oracle RAC features, 10-1
overview, 1-2

UCP for JDBC
connection pool properties, 3-7, 5-1

UCP manager
See connection pool manager

ucp package, 2-3
universal connection pool

See UCP
UniversalConnectionPoolManager interface, 8-1
UniversalConnectionPoolManagerImpl, 8-1
unmatched labels, 6-6
URL, 2-2, 3-3, 3-4, 10-12
username, 2-2, 3-3, 3-4

V
validate connections

on borrow, 3-8
programmatically, 3-9

ValidConnection interface, 3-9, 3-11

W
web session affinity, 10-15

X
XA connections, 1-2, 3-4
XAConnection object, 1-2

Index

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Universal Connection Pool Developer's Guide
	Changes in Oracle Database 23ai
	New Features

	1 Introduction to UCP
	1.1 Overview of Connection Pool
	1.2 Benefits of Using a Connection Pool
	1.3 Overview of Universal Connection Pool
	1.3.1 Conceptual Architecture
	1.3.2 Connection Pool Properties
	1.3.3 Connection Pool Manager
	1.3.4 High Availability and Performance Scenarios

	2 Getting Started
	2.1 Requirements for using UCP
	2.2 Basic Connection Steps in UCP
	2.2.1 Authentication in UCP
	2.2.2 Authentication Using IAM Database Access Tokens in Oracle Cloud Infrastructure

	2.3 UCP API Overview
	2.4 UCP System Properties
	2.5 Basic Connection Example Using UCP
	2.6 Minimal Pool configuration

	3 Getting Database Connections in UCP
	3.1 About Borrowing Connections from UCP
	3.1.1 Overview of Borrowing Connections from UCP
	3.1.1.1 Connection Creation Using Background Threads

	3.1.2 Using the Pool-Enabled Data Source
	3.1.3 Using the Pool-Enabled XA Data Source
	3.1.4 Setting Connection Properties
	3.1.5 Using JNDI to Borrow a Connection
	3.1.6 About Connection Initialization Callback
	3.1.6.1 Overview of Connection Initialization Callback
	3.1.6.2 Creating an Initialization Callback
	3.1.6.3 Registering an Initialization Callback
	3.1.6.4 Removing or Unregistering an Initialization Callback

	3.2 Setting Connection Pool Properties for UCP
	3.3 Overview of Validating Connections in UCP
	3.3.1 Validating When Borrowing
	3.3.2 Minimizing Connection Validation with setSecondsToTrustIdleConnection() Method
	3.3.3 Checking If a Connection Is Valid

	3.4 Returning Borrowed Connections to UCP
	3.5 Removing Connections from UCP
	3.6 UCP Integration with Third-Party Products

	4 Connection Creation Consumer
	4.1 Implementing a Connection Creation Consumer

	5 Optimizing Universal Connection Pool Behavior
	5.1 Optimizing Connection Pools
	5.2 About Controlling the Pool Size in UCP
	5.2.1 Setting the Initial Pool Size
	5.2.2 Setting the Minimum Pool Size
	5.2.3 Setting the Maximum Pool Size
	5.2.4 Setting the Minimum Idle Connection Number

	5.3 About Optimizing Real-World Performance with Static Connection Pools
	5.4 Stale Connections in UCP
	5.4.1 What is Connection Reuse?
	5.4.1.1 Setting the Maximum Connection Reuse Time
	5.4.1.2 Setting the Maximum Connection Reuse Count

	5.4.2 Setting the Connection Validation Timeout
	5.4.3 Setting the Abandon Connection Timeout
	5.4.4 Setting the Time-To-Live Connection Timeout
	5.4.5 Setting the Connection Wait Timeout
	5.4.6 Setting the Inactive Connection Timeout
	5.4.7 Setting the Query Timeout
	5.4.8 Setting the Timeout Check Interval

	5.5 About Harvesting Connections in UCP
	5.5.1 Overview of Harvesting Connections in UCP
	5.5.2 Setting a Connection to Harvestable
	5.5.3 Setting the Harvest Trigger Count
	5.5.4 Setting the Harvest Maximum Count

	5.6 About Caching SQL Statements in UCP
	5.6.1 Overview of Statement Caching in UCP
	5.6.2 Enabling Statement Caching in UCP

	5.7 UCP Best Practices

	6 Labeling Connections in UCP
	6.1 Overview of Labeling Connections in UCP
	6.2 Implementation of a Labeling Callback in UCP
	6.2.1 When to Use a Labeling Callback in UCP
	6.2.2 Creating a Labeling Callback in UCP
	6.2.2.1 Example of Labeling Callback in UCP

	6.2.3 Registering a Labeling Callback in UCP
	6.2.4 Removing a Labeling Callback in UCP

	6.3 Integration of UCP with DRCP
	6.4 Applying Connection Labels in UCP
	6.5 Borrowing Labeled Connections from UCP
	6.6 Checking Unmatched Labels in UCP
	6.7 Removing a Connection Label in UCP

	7 Controlling Reclaimable Connection Behavior
	7.1 AbandonedConnectionTimeoutCallback Interface
	7.2 TimeToLiveConnectionTimeoutCallback Interface

	8 Using the Connection Pool Manager
	8.1 Overview of Using the UCP Manager
	8.1.1 About Connection Pool Manager
	8.1.2 Creating a Connection Pool Manager for UCP
	8.1.3 Life Cycle States of a Connection
	8.1.3.1 Creating a Connection Pool
	8.1.3.2 Starting a Connection Pool
	8.1.3.3 Stopping a Connection Pool
	8.1.3.4 Destroying a Connection Pool

	8.1.4 Maintenance of Universal Connection Pool
	8.1.4.1 Refreshing a Connection Pool
	8.1.4.2 Recycling a Connection Pool
	8.1.4.3 Purging a Connection Pool

	8.2 Overview of JMX-Based Management in UCP
	8.2.1 UniversalConnectionPoolManagerMBean
	8.2.2 UniversalConnectionPoolMBean

	9 Shared Pool Support for Multitenant Data Sources
	9.1 Overview of Shared Pool Support
	9.2 Prerequisites for Supporting Shared Pool
	9.3 Configuring the Shared Pool
	9.4 UCP APIs for Shared Pool Support
	9.5 Sample XML Configuration File for Shared Pool

	10 Using Oracle RAC Features
	10.1 Overview of Oracle RAC Features
	10.2 About Fast Connection Failover
	10.2.1 Overview of Fast Connection Failover
	10.2.2 What is Fast Connection Failover?
	10.2.2.1 What the Application Sees
	10.2.2.2 How FCF Works

	10.2.3 Fast Connection Failover Prerequisites
	10.2.4 Example of Fast Connection Failover Configuration
	10.2.5 Enabling Fast Connection Failover
	10.2.6 What is ONS?
	10.2.6.1 Overview of ONS Configuration File
	10.2.6.2 Remote Configuration of ONS
	10.2.6.3 Configuration of Client-Side ONS Daemon

	10.2.7 Configuring the Connection URL

	10.3 About Run-Time Connection Load Balancing
	10.3.1 Overview of Run-Time Connection Load Balancing
	10.3.2 Setting Up Run-Time Connection Load Balancing

	10.4 About Connection Affinity
	10.4.1 Overview of Connection Affinity
	10.4.1.1 Transaction-Based Affinity
	10.4.1.2 Web Session Affinity
	10.4.1.3 Oracle RAC Data Affinity

	10.4.2 Setting Up Connection Affinity
	10.4.2.1 Creating a Connection Affinity Callback
	10.4.2.2 Registering a Connection Affinity Callback
	10.4.2.3 Removing a Connection Affinity Callback
	10.4.2.4 Strict Affinity Mode

	10.5 Global Data Services
	10.5.1 Overview of Global Data Services
	10.5.2 Configuring an Application for Using GDS

	11 UCP Asynchronous Extension
	11.1 Overview of UCP Asynchronous Extension
	11.2 Example: UCP Asynchronous Extension
	11.3 Asynchronous Connection Labeling
	11.4 Example: Asynchronous Connection Labeling

	12 Ensuring Application Continuity
	12.1 Overview of Ensuring Application Continuity with UCP
	12.2 Configuring the Data Source for Application Continuity
	12.3 Using Connection Labeling for Application Continuity
	12.4 Using Connection Initialization Callback for Application Continuity

	13 Shared Pool for Sharded Databases
	13.1 Overview of UCP Shared Pool for Database Sharding
	13.2 About Handling Connection Requests for a Sharded Database
	13.2.1 How to Checkout Connections from a Pool with a Sharding Key
	13.2.2 About Configuring the Number of Connections Per Shard
	13.2.3 About Connecting to the Shard Catalog or Co-ordinator for Multishard Queries

	13.3 Sharding Data Source for Transparent Access to Sharded Databases
	13.3.1 Support for Single Shard Transactions

	13.4 Middle-Tier Routing Using UCP
	13.4.1 Middle-Tier Routing with UCP Example

	13.5 Sharding with JTA/XA Transaction in WebLogic Server

	14 Diagnosing a Connection Pool
	14.1 Pool Statistics
	14.2 Dynamic Monitoring Service Metrics
	14.3 Overview of Logging and Tracing in UCP
	14.3.1 Logging and Tracing Settings
	14.3.2 Diagnosability System Properties and Command Line
	14.3.3 Logging Configuration File
	14.3.4 Tracing the Error Codes to Watch
	14.3.5 MBeans for UCP Diagnosability

	14.4 About Viewing Oracle RAC Statistics
	14.4.1 Fast Connection Failover Statistics
	14.4.2 Run-Time Connection Load Balance Statistics
	14.4.3 Connection Affinity Statistics

	14.5 Exceptions and Error Codes

	A Error Codes Reference
	A.1 General Structure of UCP Error Messages
	A.2 Connection Pool Layer Error Messages
	A.3 JDBC Data Sources and Dynamic Proxies Error Messages

	B UCP Exception Error Codes
	Index

