Oracle® Database
SQL Translation and Migration Guide

Release 23ai
F47005-04
April 2025

ORACLE"

Oracle Database SQL Translation and Migration Guide, Release 23ai
F47005-04

Copyright © 2011, 2025, Oracle and/or its affiliates.

Primary Author: Tulika Das

Contributors: Peter Castro, Christopher Jones, Shoaib Lari, Tom Laszewski, Aman Manglik, Robert Pang, Rajendra
Pingte, Jeff D. Smith, Andrei Souleimanian

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience Vii
Related Documents vii
Documentation Accessibility Vi
Conventions Vi
Changes in This Release for Oracle Database SQL Translation and
Migration Guide
1 Introduction to Tools and Products that Support Migration
1.1 Oracle Database Features for Migration Support 1-1
1.1.1 SQL Translation Framework 11
1.1.2 Support for Identity Columns 1-1
1.1.2.1 Creating Identity Columns 1-2
1.1.3 Implicit Statement Results 1-2
1.1.3.1 JDBC Support for Implicit Results 1-2
1.1.3.2 OCI Support for Implicit Results 1-3
1.1.3.3 ODBC Support for Implicit Results 1-4
1.1.4 Enhanced SQL to PL/SQL Bind Handling 1-5
1.1.4.1 Invoking a Subprogram with a Nested Table Parameter 1-6
1.1.5 Native SQL Support for Query Row Limits and Row Offsets 1-6
1.1.5.1 Limiting Bulk Selection 1-6
1.1.6 JDBC Driver Support for Application Migration 1-7
1.1.7 ODBC Driver Support for Application Migration 1-7
1.2 Other Oracle Products that Enable Migration 1-7
1.2.1 OEM Tuning and Performance Packs 1-7
1.2.2 Oracle GoldenGate 1-8
1.2.3 Oracle Database Gateways 1-8
1.2.4 Oracle SQL Developer 1-8
1.3 Migration Support for Other Database Vendors 1-8
1.3.1 Application Support in Third-Party Databases 1-8

ORACLE

1.3.2 Third-Party Database Version Support 1-9
2 SQL Translation Framework Overview
2.1 Architecture of SQL Translation Framework 2-2
2.2 How to Use SQL Translation Framework 2-2
2.3 When to Use SQL Translation Framework 2-3
3 SQL Translation Framework Configuration
3.1 Installing and Configuring SQL Translation Framework with Oracle SQL Developer 3-1
3.1.1 Overview of Oracle SQL Developer Migration Support 3-1
3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows 3-1
3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup 3-2
3.1.2.2 Starting Oracle SQL Developer 3-2
3.1.3 Creating a Connection to Oracle Database 3-2
3.1.4 Testing SQL Translation 3-3
3.1.5 Creating a Translation Profile and Installing SQL Translator 3-4
3.1.5.1 Installing SQL Translator 3-5
3.1.5.2 Creating a Translation Profile 3-7
3.1.6 Using the SQL Translator Profile 3-8
3.2 Installing and Configuring SQL Translation Framework from Command Line 3-9
3.2.1 Installing Oracle Sybase Translator 3-9
3.2.2 Setting up a SQL Translation Profile 3-9
3.2.3 Setting Up a Database Service to Use the SQL Translation Profile 3-10
3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters 3-10
3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile 3-11
3.3 Granting Necessary Permissions for Installing the SQL Translator 3-11
4 SQL Translation of JDBC and ODBC Applications
4.1 SQL Translation of JDBC Applications 4-1
4.1.1 SQL Translation Profile 4-1
4.1.2 Error Message Translation 4-1
4.1.3 Converting JDBC Standard Parameter Markers 4-2
4.1.4 Executing the Translated Oracle Dialect Query 4-2
4.1.5 Error Translation 4-3
4.1.6 Using JDBC Driver for SQL Translation 4-3
4.2 SQL Translation of ODBC Applications 4-4
4.2.1 SQL Translation profile 4-4
4.2.2 Error Message Translation 4-4

ORACLE

4.2.3 Translating Error Messages 4-5

5 Example: Application Migration Using SQL Translation Framework

5.1 Migrating a Sybase JDBC Application 5-1
5.1.1 Application Overview 5-1
5.1.2 Setting Up Migration 5-1
5.1.3 Capturing Migration 5-3
5.1.4 Setting Migration Preferences 5-6
5.1.5 Converting Migration 5-7
5.1.6 Generating a Migration 5-9
5.1.6.1 Creating a Target Oracle User 5-10

5.1.7 Moving the Data 5-10

5.2 Generating Migration Reports 5-11

6 API Reference for SQL Translation of JDBC Applications

6.1.1 Translation Properties 6-1
6.1.1.1 sqglTranslationProfile 6-1
6.1.1.2 sglErrorTranslationFile 6-2

6.1.2 OracleTranslatingConnection Interface 6-2
6.1.2.1 SqlTranslationVersion 6-3
6.1.2.2 createStatement() 6-3
6.1.2.3 prepareCall() 6-6
6.1.2.4 prepareStatement() 6-9
6.1.2.5 getSQLTranslationVersions() 6-12

6.1.3 Error Translation Configuration File 6-12

Glossary

Index

ORACLE

List of Tables

1-1 Supported Applications in Databases

1-2 Supported Database Versions for Migration Using Oracle SQL Developer
6-1 Translation Properties

6-2 OracleTranslatingConnection Enumeration

6-3 OracleTranslatingConnection Methods

ORACLE

1-9
1-9
6-1
6-2
6-3

Vi

Preface

Audience

This guide describes the installation, configuration, and administration tasks for all activities
related to migrating applications developed for non-Oracle databases, such as DB2, Sybase,
and legacy applications, to Oracle Database. This guide also provides migration scenarios that
users may implement in sequence.

This guide is for database administrators and application developers who are interested in
migrating from databases other than Oracle to an Oracle Database.

Related Documents

For more information, see the following documents in the Oracle Database documentation set:

e Oracle Database SQL Language Reference
e Oracle Database Administrator's Guide
e Oracle Database Development Guide

e Oracle Database Reference

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLS, code in
examples, text that appears on the screen, or text that you enter.

ORACLE viii

Changes in This Release for Oracle Database
SQL Translation and Migration Guide

ORACLE

This preface contains the changes in this book for Oracle Database 23ai.

Desupport of MySQL Client Library Driver for Oracle

The MySQL Client Library Driver for Oracle is desupported in Oracle Database 23ai.

The MySQL Client library driver, 1iboramysql, was deprecated in Oracle Database 21c. Itis
now desupported. There is no replacement. This desupport does not affect the ability of older
Oracle Database Client releases that use 1iboramysql to connect to the database. However,
the features available to use through these clients eventually can be limited.

Introduction to Tools and Products that
Support Migration

Before migrating your application to Oracle Database, you must be aware of several key points
that are described in Oracle Database Concepts.

When discussing the migration of a database-centered enterprise, it is useful to keep in mind
that the actual migration of database schema and data is only a part of the process. The
migration of a core business solution often involves several databases and applications that
work together to deliver the product and services that drive the revenue of an organization. For
more information about preparing a migration plan, see Oracle SQL Developer User's Guide.

1.1 Oracle Database Features for Migration Support

Oracle Database 12c introduced a large set of features that collectively enhance the migration
process of non-Oracle database applications to Oracle Database.

1.1.1 SQL Translation Framework

A key part of migrating non-Oracle databases to Oracle Database involves the conversion of
non-Oracle SQL statements to SQL statements that are acceptable to Oracle Database. The
conversion of the non-Oracle SQL statements of the applications is a manual and tedious
process. To minimize the effort, or to eliminate the necessity for converting these statements,
Oracle Database 12c introduced a new feature called SQL Translation Framework. SQL
Translation Framework receives these SQL statements from client applications, and then
translates them at run-time.

The SQL Translation Profile registers the SQL Translater inside the database so it can handle
the SQL translation for non-Oracle client application. If an error occurs while a SQL statement
is executed, then the SQL Translator can translate the Oracle error code and the ANST
SQLSTATE into the vendor-specific values expected by the application. The translated
statements are then saved in the SQL Translation Profile, to be examined and edited at the
user’s discretion.

The advantages of SQL Translation Framework follow:
e The translation of SQL statements, Oracle error codes, and ANST SQLSTATE is automatic.

* The translations are centralized and examinable.

e The user has the option to extract translations and insert them back into the application.

1.1.2 Support for Identity Columns

Oracle Database 12c implements ANSI-compliant IDENTITY columns. Migration from database
systems that use identity columns is simplified and can take advantage of this new
functionality.

ORACLE 1

Chapter 1
Oracle Database Features for Migration Support

This feature implements auto increment by enhancing DEFAULT or DEFAULT ON NULL semantics
for use by SEQUENCE.NEXTVAL and SYS GUID, supports built-in functions and implicit return of
default values.

1.1.2.1 Creating Identity Columns

Example 1-1 creates a table with an identity column, which is generated by default. When
explicit nulls are inserted into the identity column, the sequence generator creates values by
default. For further details, see Oracle Database SQL Language Reference.

Example 1-1 How to create an identity column

CREATE TABLE tl (cl NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY,
c2 VARCHAR2 (10));

INSERT INTO tl(c2) VALUES (‘abc');

INSERT INTO tl (cl, c2) VALUES (null, ‘xyz');

SELECT cl, c2 FROM tl;

1.1.3 Implicit Statement Results

Starting with Oracle Database 12¢ Release 2 (12.2), Oracle implicitly returns to the client
application the results of SQL statements executed within a stored procedure, bypassing the
explicit use REF CURSORS. This feature eliminates the overhead of re-writing the client-side
code.

Implicit statement results enable the user to write a stored procedure, where each intended
query (the statement after the FOR keyword) is part of the OPEN cursor variable. When code is
migrated to Oracle Database from other vendors environments, the PL/SQL layer adds the
equivalent capability and enables SELECT statements to pass the results to the client. The
stored procedures can then return the results directly to the client with the

DBMS_SQL.RETURN RESULT procedure. The SQL*Plus FORMAT command and its variations may
be invoked to customize the output.

For information about the DBMS SQL package, see Oracle Database PL/SQL Packages and
Types Reference. For information about how to use format output, SQL*Plus User's Guide and
Reference.

1.1.3.1 JDBC Support for Implicit Results

Starting with Oracle Database 12¢ Release 2 (12.2), JDBC applications provide support for
implicit results through the following new functions:

* getMoreResults
e getMoreResults (int)
* getResultSet

You can use these methods to retrieve and process the implicit results returned by PL/SQL
procedures or blocks, as demonstrated in Example 1-2.

For more information, see Oracle Database JDBC Developer's Guide

1.1.3.1.1 Processing Implicit Results in JDBC

Example 1-2 Retrieving and Processing Implicit Results from PL/SQL Blocks

Suppose you have a procedure called foo:

ORACLE 1o

Chapter 1
Oracle Database Features for Migration Support

create procedure foo as

cl sys refcursor;

c2 sys_refcursor;
begin

open cl for select * from hr.employees;

dbms_sqgl.return result(cl); --return to client

-- open 1 more cursor

open c2 for select * from hr.departments;

dbms_sgl.return result (c2); --return to client
end;

The following code demonstrates how to retrieve the implicit results returned by PL/SQL
procedures using the JDBC getMoreResults methods:

String sqgl = "begin foo; end;";

Connection conn = DriverManager.getConnection (jdbcURL, user, password);
try {

Statement stmt = conn.createStatement ();

stmt.executeQuery (sql);

while (stmt.getMoreResults/()

{
ResultSet rs = stmt.getResultSet();

System.out.println ("ResultSet");
while (rs.next())

/* get results */

1.1.3.2 OCI Support for Implicit Results

Starting with Oracle Database 12c¢ Release 2 (12.2), Oracle Call Interface (OCI) provides
support for implicit results through a new function, 0CIStmtGetNextResult (). Itis called
iteratively by C applications to retrieve each implicit result from stored procedures and
anonymous blocks. Implicit results consume rows directly from a stored procedure without
going through a RefCursor.

¢ See Also:

Oracle Call Interface Programmer's Guide

1.1.3.2.1 Processing Implicit Results in OCI

ORACLE

Example 1-3 shows how to use the 0CIStmtGetNextResult () function to retrieve and process

the implicit results returned by either a PL/SQL stored procedure or an anonymous block:
Example 1-3 Using OCIStmtGetNextResult() to Process Implicit Results

OCIStmt *stmthp;

ub4 rsetcnt;

void *result;

ub4 rtype;

char *sql = "begin foo; end;";

1-3

Chapter 1
Oracle Database Features for Migration Support

OCIHandleAlloc ((void *)envhp, (void **)é&stmthp,
OCI_HTYPE STMT, 0, (void **)0);

/* Prepare and execute the PL/SQL procedure. */
OCIStmtPrepare (stmthp, errhp, (oratext *)sqgl, strlen(sql),
OCI_NTV_SYNTAX, OCI_DEFAULT);

OCIStmtExecute (svchp, stmthp, errhp, 1, 0,
(const OCISnapshot *)O0,
(OCISnapshot *)0, OCI DEFAULT);

/* Now check if any implicit results are available. */
OCIAttrGet((void *)stmthp, OCI_HTYPE STMT, &rsetcnt, O,
OCI_ATTR IMPLICIT RESULT COUNT, errhp);

/* Loop and retrieve the implicit result-sets.
* ResultSets are returned in the same order as in the PL/SQL
* procedure/block.
*/
while (OCIStmtGetNextResult (stmthp, errhp, &result, &rtype,
OCI_DEFAULT) == OCI_SUCCESS)
{ /* Check the type of implicit ResultSet, currently
* only supported type is OCI_RESULT TYPE SELECT
*/ if (rtype == OCI_RESULT TYPE SELECT)
{ OCIStmt *rsethp = (OCIStmt *)result;
/* Perform normal OCI actions to define and fetch rows. */
} else
printf ("unknown result type %d\n", rtype);
/* The result set handle should not be freed by the user. */
} OCIHandleFree (stmthp, OCI_HTYPE STMT); /* All implicit result-sets are also freed.
*/

1.1.3.3 ODBC Support for Implicit Results

Starting with Oracle Database 12¢, ODBC applications provide support for implicit results
through a new function, SQLMoreResults (). ODBC driver is enhanced to make use of the
following new OCI APlIs that enhance the migration process:

e OCIStmtGetNextResult () function
* OCI ATTR IMPLICIT RESULT COUNT attribute
* OCI RESULT TYPE SELECT attribute

ODBC support for implicit results enables the migration of Sybase and SQL Server
applications that use multiple result sets bundled in the stored procedures. Oracle achieves
this by sending the statements or procedures to the server, where the non-Oracle SQL is
translated to Oracle syntax.

1.1.3.3.1 Processing Implicit Results in ODBC

ORACLE

Example 1-4 and Example 1-5 demonstrate how to retrieve implicit results in ODBC.

Example 1-4 Using ODBC to return implicit results with DBMS_SQL.RETURN_RESULT

create or replace procedure foo

is

cl sys refcursor;

c2 sys refcursor;

begin
open cl for select employee id, first name from employees where employee 1d=7369;
dbms sqgl.return result(cl);

1-4

Chapter 1
Oracle Database Features for Migration Support

open c2 for select department id, department name from departments where rownum <=2;
dbms_sgl.return result(c2);
end;

/

Example 1-5 Using ODBC to return implicit results with SQLMoreResults

SQLLEN enind, jind;

SQLUINTEGER eno = 0;

SQLCHAR empname [STR LEN] = "";

//Allocate HENV, HDBC, HSTMT handles

rc = SQLPrepare (hstmt, "begin foo(); end;", SQL NTS);

rc = SQLExecute (hstmt) ;

//Bind columns for the first SELECT query in the procedure foo()
rc = SQLBindCol (hstmt, 1, SQL C ULONG, é&eno, 0, &Jjind);

rc = SQLBindCol (hstmt, 2, SQL C CHAR, empname, sizeof (empname),
&enind) ;

//so on for all the columns that needs to be fetched as per the SELECT
//query in the procedure.

//Fetch all results for first SELECT query

while ((rc = SQLFetch (hstmt)) != SQL NO DATA)

{

//do something

}

//Bgain check if there are any results available by calling
//SQLMoreResults. SQLMoreResults will return SQL SUCCESS if any
//results are available else returns errors appropriately as explained
//in MSDN ODBC spec.

rc = SQLMoreResults (hstmt);

if(rc == SQL SUCCESS)

{

//If the columns for the second SELECT query are different the rebind
//the columns for the second SELECT SQL statement.

rc = SQLBindCol (hstmt, 1,..);

rc = SQLBindCol (hstmt, 2,..);

//Fetch the second result set

while ((rc = SQLFetch (hstmt)) != SQL NO DATA)
//do something

}

SQLFreeStmt (hstmt, SQL DROP) ;

SQLDisconnect (hdbc);

SQLFreeConnect (hdbc);
SQLFreekEnv (henv);

1.1.4 Enhanced SQL to PL/SQL Bind Handling

ORACLE

In earlier releases of Oracle Database, a SQL expression could not invoke a PL/SQL function
that had a formal parameter or return type that was not a SQL data type.

Starting with Oracle Database 12¢, a PL/SQL anonymous block, a SQL CALL statement, or a
SQL query can invoke a PL/SQL function that has parameters of the following types:

* Boolean
» Record declared in a package specification

e Collection declared in a package specification

1-5

Chapter 1
Oracle Database Features for Migration Support

The SQL TABLE operator is also enhanced, so that you can query on PL/SQL collections of
locally scoped types as an argument to TABLE operator. Here, the collections can be of nested
table types, VARRAY, or PL/SQL index table that are indexed by PLS INTEGER.

This feature extends the flexibility of the TABLE operator, and enables easy migration of non-
Oracle stored procedure code to PL/SQL.

1.1.4.1 Invoking a Subprogram with a Nested Table Parameter

Example 1-6 shows how to dynamically call a subprogram with a nested table formal
parameter. See Oracle Database PL/SQL Language Reference for more information on this
topic.

Example 1-6 Invoking a subprogram with a nested table formal parameter

CREATE OR REPLACE PACKAGE pkg AUTHID CURRENT USER AS
TYPE names IS TABLE OF VARCHAR2 (10);

PROCEDURE print names (x names);

END pkg;

/

CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print names (x names) IS
BEGIN

FOR i IN x.FIRST .. x.LAST LOOP
DBMS OUTPUT.PUT LINE (x(i));
END LOOP;
END;

END pkg;

/

DECLARE
fruits pkg.names;
dyn stmt VARCHARZ (3000);

BEGIN
fruits := pkg.names('apple', 'banana', 'cherry');
dyn stmt := 'BEGIN print names(:x); END;';
EXECUTE IMMEDIATE dyn_stmt USING fruits;

END;

1.1.5 Native SQL Support for Query Row Limits and Row Offsets

Starting with Oracle Database 12c¢, Oracle provides a row limiting clause that enables native
SQL support for query row limits and row offsets. If your application has queries that limit the
number of rows returned or offset the starting row of the results, this feature significantly
reduces SQL complexity for such queries.

1.1.5.1 Limiting Bulk Selection

ORACLE

Example 1-7 shows how to limit bulk selection with the FETCH FIRST clause. See Oracle
Database SQL Language Reference for more information on this topic.

Example 1-7 How to limit bulk selection

DECLARE
TYPE SallList IS TABLE OF employees.salary$TYPE;
sals SalList;

BEGIN

1-6

Chapter 1
Other Oracle Products that Enable Migration

SELECT salary BULK COLLECT INTO sals FROM employees
WHERE ROWNUM <= 50;

SELECT salary BULK COLLECT INTO sals FROM employees
SAMPLE (10);

SELECT salary BULK COLLECT INTO sals FROM employees
FETCH FIRST 50 ROWS ONLY;
END;
/

1.1.6 JDBC Driver Support for Application Migration

Many applications that you want to migrate to Oracle Database from other databases have
Java applications that use JDBC to connect to the database. To facilitate SQL translation,
Oracle Database 12c introduced a new set of JDBC APIs that are specific to SQL translation.

¢ See Also:

e "SQL Translation of JDBC Applications"
e API Reference for SQL Translation of JDBC Applications

e Complete documentation of the oracle.jdbc package in Oracle Database JDBC
Java API Reference

e http://www.oracle.com/technetwork/database/enterprise-edition/
jdbc-112010-090769.html for an updated list of JIDBC drivers

1.1.7 ODBC Driver Support for Application Migration

ODBC driver supports the migration of third-party applications to Oracle Databases by using
the SQL Translation Framework. This enables non-Oracle database SQL statements to run
against Oracle Database. See "How to Use SQL Translation Framework" before beginning to
migrate third-party ODBC application to Oracle Database.

To use this feature with an ODBC application, you must specify the service name, which was
created as part of SQL Translation Framework setup, as the serverName= entry in
the .odbc.ini file.

If you require support for translation of Oracle errors (ORA errors) to your the native database,
once your application starts running against Oracle Database, then you must enable the
SQLTranslateErrors=T entry in the .odbc.ini file. See "SQL Translation of ODBC
Applications" for more information on this topic.

1.2 Other Oracle Products that Enable Migration

Oracle recommends the use of several Oracle products as part of an overall migration strategy.

1.2.1 OEM Tuning and Performance Packs

For every type of migration, a few of the SQL statements used in the application must change,
and some indexes must be re-built. Oracle SQL Tuning and Performance Packs provide
guidance for the optimization step of the application migration.

ORACLE .

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

Chapter 1
Migration Support for Other Database Vendors

1.2.2 Oracle GoldenGate

Oracle GoldenGate is a comprehensive software package for enabling the replication of data in
heterogeneous data environments. The product set enables high availability solutions, real-
time data integration, transactional change data capture, data replication, transformations, and
verification between operational and analytical enterprise systems.

Oracle GoldenGate enables the exchange and manipulation of data at the transaction level
among multiple, heterogeneous platforms across the enterprise. Its modular architecture
provides the flexibility to extract and replicate selected data records, transactional changes,
and changes to DDL (data definition language) across a variety of topologies.

When you migrate very large databases, the actual process of copying data from one database
to another is time-consuming. During this time, the enterprise must continue delivering services
using the old solution, which changes some of the data. These run-time changes must be
captured and propagated to Oracle Database. Oracle GoldenGate captures these changes
and enables side-by-side testing to ensure that the new solution performs as planned.

1.2.3 Oracle Database Gateways

Oracle Database Gateways address the needs of disparate data access. In a heterogeneously
distributed environment, Gateways make it possible to integrate with any number of non-
Oracle systems from an Oracle application. They enable integration with data stores such as
IBM DB2, Microsoft SQL Server and Excel, transaction managers like IBM CICS and message
gueuing systems like IBM WebSphere MQ.

For more information about Oracle Database Gateways, see http://www.oracle.com/
technetwork/database/gateways/index.html

1.2.4 Oracle SQL Developer

Oracle SQL Developer, as described in Oracle SQL Developer User's Guide, has a large suite
of features that enable migration, including the following features:

e Support for database migration, such as schema, data, and server-side objects, from non-
Oracle databases to Oracle Database (Migration Wizard)

e Support for application migration, including SQL statement pre-processing and data type
translation support (Application Migration Assistant)

1.3 Migration Support for Other Database Vendors

Oracle provides migration support for applications running on various databases.

1.3.1 Application Support in Third-Party Databases

Table 1-1 provides information about the applications supported in several third-party
databases. Note that while translation framework is available for DB2 LUW, a translator for
DB2 is not available.

ORACLE 18

http://www.oracle.com/technetwork/database/gateways/index.html
http://www.oracle.com/technetwork/database/gateways/index.html

Chapter 1
Migration Support for Other Database Vendors

Table 1-1 Supported Applications in Databases

Application SQL DB2 LUW DB2 Sybase Teradata Informix
Server AS400 ASE

Oracle SQL Developer Yes Yes No Yes Yes No

Oracle Migration Workbench No No Yes No No Yes

SQL Translation Framework (SQL Yes Yes Yes Yes Yes Yes

Translation Profile)

SQL Translation Framework (SQL yes Partial No Yes No No
Translator)

1.3.2 Third-Party Database Version Support

This section lists the supported database versions for migration using Oracle SQL Developer.
The Table 1-2 table does not provide a comprehensive list. SQL translation may not work
properly for every database listed on the table.

Table 1-2 Supported Database Versions for Migration Using Oracle SQL Developer

RDBMS Supported Versions
SQL Server 7.0, 2000, 2005,2008
Sybase Adaptive Server (ASE) 12, 15

Access 97, 2000, 2002 and 2003
DB2 AS400 V4R3, VAR5

DB2 LUW 8,9

Teradata 12

Informix 7.3,9.1,9.2,9.3,94

ORACLE 19

SQL Translation Framework Overview

ORACLE

Various client-side applications, designed to work with non-Oracle Databases, cannot be used
with Oracle Database without significant alterations. This is because SQL dialect varies among
vendors of database technologies and different vendors use different syntaxes to express SQL
gueries and statements.

Starting with Oracle Database 12c, there is a new mechanism called SQL Translation
Framework. It translates the SQL statements of a client program from a foreign (non-Oracle)
SQL dialect into the SQL dialect used by the Oracle Database SQL compiler.

In addition to translating non-Oracle SQL statements, the SQL Translation Framework may be
used to substitute an Oracle SQL statement with another Oracle statement to address a
semantic or performance issue. In this way, you can address an application issue without
patching the client application.

The SQL translation framework consists of two basic components: SQL Translator, and SQL
Translation Profile.

The SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party vendors, which
can be installed in Oracle Database. It translates the SQL statements of a client program
before they are processed by the Oracle Database SQL compiler. If an error results from
translated SQL statement execution, then Oracle Database SQL compiler generates an Oracle
error message.

The SQL Translator automatically translates non-Oracle SQL to Oracle SQL, thereby enabling
the existing client-side application code to run largely unchanged against an Oracle Database.
This reduces the cost of migration to Oracle Database storage significantly. As a corollary, the
translation feature may be used in other scenarios, where it may be expedient to intervene
between the original SQL statement submitted by the client and its actual execution.

The SQL Translation Profile

The SQL Translation Profile is a database object that contains the set of captured non-Oracle
SQL statements, and their translations or translation errors. The SQL Translation Profile is
used to review, approve, and modify translations. A profile is associated to a single translator.
However, a translator can be used in one or more SQL Translation Profiles. Typically, there is
one SQL Translation Profile per application, otherwise applications can share translated
gueries. You can export profiles among various databases.

The following figure illustrates the run-time overview the SQL Translation Framework.

2-1

Chapter 2
Architecture of SQL Translation Framework

Figure 2-1 SQL Translation Framework at Runtime

SQL Translation
Framework

Oracle Database

Non-Oracle SQL SQL Translator
Results S
Application < Translation
Profile

2.1 Architecture of SQL Translation Framework

The key component of SQL Translation Framework is the SQL Translation Profile. The profile
is a collection of non-Oracle statements that are processed through the translator. The
application determines which profile to use when connecting to the Oracle Database. The
translator handles the actual translation work.

In most cases, the non-Oracle SQL statements and errors are translated by a SQL Translator
registered in the profile. The translator may be supplied by Oracle or by a third-party vendor. If
the translator does not have a translation for a particular SQL statement or error, then you may
register your own custom translation. You may also wish to register your own custom
translation to override the default translator and to customize your translation results.

2.2 How to Use SQL Translation Framework

ORACLE

Perform the following steps to use SQL Translation Framework:

1. Install a SQL Translator, either from Oracle or a third-party vendor, in Oracle Database.
2. Create a SQL Translation Profile and register the SQL Translator with the profile.

3. Create a Database service and specify the SQL Translation Profile as a service attribute to
which the application can connect.

Note that setting the SQL Translation Profile at the service level ensures that everything
running through that listener service is translated automatically.

The translator can also be activated at connection level by using the ALTER SESSION
statement or the LOGON triggers.

4. Link the application with an Oracle driver to connect the application to Oracle Database.
You must also change the connection settings to connect to the Database service with the
SQL Translation Profile.

5. Test all functionality of the application against Oracle Database. As the application runs,
the SQL Translation Profile translates SQL statements of the application from the third-
party SQL dialect to semantically-equivalent Oracle syntax and register them in the profile.

2-2

Chapter 2
When to Use SQL Translation Framework

If the translator does not have a translation for a particular SQL statement or error, then
you may register your own translation to fill its place.

6. Verify the custom translations and edit them, if required. Alternatively, register new ones to
ensure that the application performs as intended, until testing is complete.

Oracle recommends establishing a test environment and rigorously testing the application,
ideally through a regression test suite.

7. Set up the server-side application objects and data in the production Oracle Database for
deployment to a production environment.

8. Create a database service with the profile set as a service attribute and change the
connection settings of the application, so that it connects to the database service in the
production database. The application is expected to run as tested.

Oracle recommends that the application be monitored to guard against the possibility of errors
due to unavailability of translation of any SQL statement. You must first disable the automatic
translation of new and unseen SQL statements in the profile; when any such statement is
encountered, it raises an error that is logged. In cases of alerts for mis-translation, you must
make adjustments to the profile.

¢ See Also:

e The new DBMS SQL TRANSLATOR PL/SQL package and updated DBMS SOL and
DBMS_SERVICE PL/SQL packages in the Oracle Database PL/SQL Packages and
Types Reference.

* Updated GRANT and REVOKE statements and new system privileges in the Oracle
Database SQL Language Reference.

* Oracle Database PL/SQL Packages and Types Reference

* Oracle Database Administrator's Guide

2.3 When to Use SQL Translation Framework

ORACLE

Use SQL Translation to migrate a client application that uses SQL statements with vendor-
proprietary SQL syntax.

< Note:

Currently, SQL Translators are available only for Sybase and SQL Server, and there
is limited support for DB2.

SQL Translation Framework is designed for use with open API applications, such as ODBC or
JDBC, and applications that use SQL statements that may be translated into semantically-
equivalent Oracle syntax. These applications must relink to the Oracle ODBC or JDBC driver
and then execute through the translation service.

Following are the possible scenarios for the connection mechanism:

* If the application uses ODBC, JDBC, OLE DB or .NET driver, or data provider to connect to
the database, then the driver or data provider for Oracle must be replaced.

2-3

ORACLE

Chapter 2
When to Use SQL Translation Framework

No direct translator is available for DB2. For more information, refer to "Migration Support
for Other Database Vendors".

If the application uses IBM DRDA network protocol to connect to DB2, then the database
connection settings must be changed to connect to Oracle through DRDA Application
Server for Oracle.

If the application uses a vendor-proprietary C client API (the case of Sybase), then the API
calls must be replaced with appropriate Oracle OCI APIs.

2-4

SQL Translation Framework Configuration

The SQL Translation Framework may be installed and configured using Oracle SQL
Developer, or from the command line interface. In either case, the user must have the
necessary permissions to install SQL Translator.

3.1 Installing and Configuring SQL Translation Framework with
Oracle SQL Developer

You can use the DBA Navigator in Oracle SQL Developer 3.2 to install and manage the
translator and translation profile.

3.1.1 Overview of Oracle SQL Developer Migration Support

The SQL Translation framework is installed as part of Oracle Database installation. However, it
must be configured to recognize the non-Oracle SQL dialect of the application and you must

install at least one translator to fully utilize the framework.

Before using the SQL Translation feature, you must migrate your data, schema, stored
procedures, triggers, and views. Oracle implements database schema migration and data
migration through Oracle SQL Developer functionality. Oracle SQL Developer simplifies the
process of migrating a non-Oracle database to an Oracle Database through the use of
Migration Wizard. The Migration wizard provides convenient and comprehensive guidance
through the phases involved in migrating a database.

Oracle SQL Developer captures information from the source non-Oracle database and
displays it in a captured model, which is a representation of the structure of the source
database. This representation is stored in a migration repository, which is a collection of
schema objects that Oracle SQL Developer uses to store migration information.

The information in the repository is used to generate the converted model, which is a
representation of the structure of the destination database as it will be implemented in the

Oracle database. You can then use the information in the captured model and the converted
model to compare database objects, identify conflicts with Oracle reserved words, and manage
the migration progress. When you are ready to migrate, generate the Oracle schema objects,

and then migrate the data.

This section describes how to perform the subsequent tasks that enable automatic run-time
migration. These examples use SQL Translator with a JDBC application that runs against a
Sybase database; they can be easily adapted for other client/database configurations. Note
that Oracle SQL Developer is shipped with an installed Sybase translator.

See Oracle SQL Developer User's Guide for more information.

3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows

Oracle SQL Developer 3.2 is shipped with Oracle Database 11g JDBC drivers and there is no
client for Windows in this release. If you are using a Windows system, then you must enable

ORACLE

3-1

Chapter 3

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

Oracle SQL Developer 3.2 to use Oracle Database 12¢ JDBC driver, so that all the features of
the current release are enabled. Perform the following steps to achieve this:

* Rename the sqldeveloper\jdbc\1lib folder to sqldeveloper\jdbc\lib 11g.

e Create a new empty folder as sqldeveloper\jdbc\1lib.

e Unzip Oracle Database 12¢ JDBC JAR files into the new sgqldeveloper\jdbc\1ib folder.

See Oracle Database JDBC Developer's Guide for more information about Oracle

Database 12c¢ JDBC files.

3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup

Oracle SQL Developer automatically uses JDBC drivers found in any ORACLE HOME\client
directory. To override this behavior and make Oracle SQL Developer use JDBC drivers in the
sqldeveloper\jdbc\1lib directory, create a new sqldeveloper.bat file in the sqldeveloper

directory:

set ORACLE HOME=%CD%
start sgldeveloper.exe

3.1.2.2 Starting Oracle SQL Developer

Run the sqldeveloper.bat file to run Oracle SQL Developer.

To check the JDBC driver configuration:

1. Select About from Help menu.

2. Select Properties. It must display the configuration as shown in Figure 3-1:

Figure 3-1 Checking JDBC Configuration for Oracle SQL Developer

F

java.vm.version
jdbc.driver home

log.file.name
oracle.home
orade.ide.util.AddinPolicyUtils. OVERRIDE _FLAG
orade.jdbc.mapDateToTimestamp
oradle.translated.locales
oracle.xdkjava.compatibility. version

ke

a About Oracle SQL Developer

Orade SQL Developer (3.2.09)

[([Mbout | Version | Properties || Extensions Export ~
Name Value
java.vm.specification.name Java Virtual Machine Specification ~
java.vm.spedfication.vendor Orade Corporation
java.vm.spedfication.version 1.7
java.vm.vendor Oracle Corporation

23.0b21
[D:/sqldev/sqldev_3.2_prod_otn/sqldeveloper/
/D:/sqldev/sqldev_3.2_prod_otn/sqldeveloper fidbcflibfojdbct. jar
Yn
D:\sqldev\sqldev_3.2_prod_otn\sqldeveloper\sqldeveloper\extensic
D:\sqldev\sqldev_3.2_prod_otn\sqldeveloper

true

false

de,es, fr,it,ja ko,pt_BR,zh_CN,zh_TW

9.0.4

3.1.3 Creating a Connection to Oracle Database

ORACLE

Create a connection to the Database with the credentials as shown in Figure 3-2:

3-2

Chapter 3

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

Figure 3-2 Creating an Oracle Database Connection

|
]

Q New / Select Database Connection
Connection Name Connection Detais | Connection Name |jb/=lisls -3 WRT, M350 (1)
12c2_pdb1_vm_db... dbo_orade12g@jf... | Username |svsbem
12c2_pdb1_vm_mi... migrep@jflocalhost...
P ord sasenn
12c2_pdb1_vm_sy... [system@//localhos... cass [
12c2_vm_system system@)flocalhos... | [¥] S3ye Password
Oracdle Access
Connection Type [Basic ~| Role [defauit ¥
Hostname localhost
Port [5521
O s |
(%) Service name | orcl
[] 05 Authentication || Kerberos Authentication || Proxy Connection
Status :
Help Save .‘ [Clear 1 | Test] l Connect l [Cancel

You can use the following command to check the database you are connected to and the
JDBC driver being used:

show jdbc

Setting Up Migration Preferences

You must set up the migration preferences in the following way:

1.
2.

Figure 3-3 Setting Up Migration Preferences in Oracle SQL Developer

Select Preferences from the Tools menu.

Select Generation Options from Migration option on the left panel, as shown in

Figure 3-3.

=
&
&

LR

i}

3 Preferences
)

Emronment

‘Change Management Paran |

‘Code Editor

‘Compare snd Merge

Database

Data Mimer

Data Modeler

Debugger

Extengons

External Editor

File Types

Migration
Data Move Oplions
Igentfier Opbons
Transiators

Mouseover Popups

Sherteut Keys

UritTiest Parameters

Versoning

Web Browser and Proxy

WL Schemas

T

A

Migration: Generation Options

File Creation Options
(3) One Single Ele
() A File per Ofpect

General Options

[¥] Generate Comments

] Least Privilege Schema Migration

[] Generate Data Move Liser

[] Generate Faded Objects

[v] Generate Stored Procedure for Mgrate Biobs Offine
[#] Generate Separate Emulation User

(Sybase) To jrdex Organized Tables | NONE

[¥] Use all Orade Dagsbase 12¢ features in Migration:

==

3.1.4 Testing SQL Translation

Perform the following steps to determine whether Sybase SQL Translator is properly installed
or not:

ORACLE"

3-3

Chapter 3

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

1. Open Oracle SQL Developer.

2. From the Tools menu, select Migration, and then select Translation Scratch Editor.

a Oracle 5QL Developer

File Edit View Navigate Run Versioning QLGS Help Automation

& Migration
a Unit Test

g 9« xXEBE O O

{38 Java

JogeBiaep) Buiuois s ECE

,% Eﬁ ¥ % P Data Miner
[+-{[25 Edrbons E3 Database Copy...
a Database Diff...

Migrate...
b Repository Management »
Microsoft Access Exporter »

[Create Database Capture Scripts...

5 Translation Scratch Editor

a Database Export...
Monitor 5QL...
Monitor Sessions...

SQOL Worksheet

Alt-F10

External Tools...

3. Inthe Scratch Editor toolbar, select Sybase T_SQL To PL/SQL option, which is the

Sybase translator.

=5 Scratch Editor ©

& % | Sybase T-5QL To PL/SQL

(7 hd

Worksheet

Query Builder

4. Inthe left panel of the Scratch Editor, enter the following query in Sybase SQL dialect:

select top 10 * from dual

5. Click the Translate icon.

The translated query text is displayed in the right panel of the editor.

@A scratch Editor * |

]

&l & & sybase TSQLToPL/SQL ~@-|rbED9R BR S&ued B
Waorksheet Query Builder Worksheet Query Builder
1| 'select top 10 * from duall 1| 'SELECT +*
2 FROM dual WHERE ROTHUM = 10;
3
4

3.1.5 Creating a Translation Profile and Installing SQL Translator

Oracle SQL Developer is installed with Oracle Database 12c. It loads Java classes of the
Sybase Translator, approximately 15 MB, into Oracle Database. Due to the size and the
number of Java classes loaded, Oracle recommends you to install the translator locally, and

ORACLE"

not over a WAN.

If the translator is installed under a user profile that has a pre-existing migration repository, the
translator picks up the context of the database, such as name changes. Therefore, you must

create a new user with the following specifications:

3-4

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

* CONNECT, RESOURCE, and CREATE VIEW privileges

e Access to storage in the SYSTEM and/or USER tablespace

3.1.5.1 Installing SQL Translator

To install SQL Translator:
1. Log into the database using ADMIN privileges.

2. Atthe command line, enter the following commands.

GRANT CONNECT, RESOURCE, CREATE VIEW TO TranslUser identified by TranslUser;
ALTER USER TranslUser QUOTA UNLIMITED ON SYSTEM;

3. From the View menu, select DBA.

5 T
4

Fa@afl =~

, [i ime] e simpimimmsiic.dtems
LY [aelan] o wimlesaRsiiomia s 5 oEEe

kg

4
3
{

T
eprIzspimmmn

4. In the DBA Navigator, right-click Connections and select Add Connection.

fle E6t View Navigite Bun Verigeing Took Help Automation
o 90 XanO-0- &
[Breen X133 5 [))

ORACLE" 3-5

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

5.

6.
7.

In the Select Connection box, select the connection if you want to use an existing
connection. If you want to create a new connection, then add the information for
transluser discussed in step 2.

m

Select the connection you wish to use from the list, or create a new
connection.

Connection: |3 12c2_pdb1_vm_dbo_simpledemo12cw| ofp A
3 12c2_pdb1_vm_dbo_simpledemo12c

£3 12c2_pdb1_vm_system

Help Cancel

[Select this Connection

Click Connect.

In the DBA navigator, right-click the connection created in the preceding steps, and select
Install SQL Translator.

@ommomme

Fle Edit View Havigate Hum Versigning Toos Help Automation
G0 90 XBR O-O- &
Jl.'_'imwu:l:L'_j: [}

@[3 508 Traralabon Profies

The Install SQL Translator dialog box opens.

You must have special permissions to install the SQL Translator and create a SQL
Translation Profile. You will be prompted to provide the sys password, so that these
privileges can be granted. Refer to "Granting Necessary Permissions for Installing the SQL
Translator" for more information about these privileges.

Create a SQL Translation Profile, following steps described in "Creating a Translation
Profile ".

ORACLE"

3-6

Chapter 3

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

9. Verify that the user has sufficient privileges to run the translation profile.

You may have to login as sys user to grant additional privileges.

Confirm Running SQL

=5

GRAHT CREATE SOL TRANSLATION PROFILE TO Transiliser

[]

10. Install SQL Translator.

L SQL Translator Install

S0L Translator Install (Running)

@ |

[00:08] Loading file:C: \Wworkspace\ transigtor. file_name jar

[l
| @

| Run in Background | | Cancel Task

11. To ensure that both the Profile and Translator are properly installed, verify whether the
appropriate package and Java class files are present or not in the Connections pane.

[Connections * | lRe... x

* ()

FRTE
H--{B#) Editioning Views
]Ea Indexes
]@ Packages
-4l SYBASE_TSQL_TRANSLATOR

; ------ ﬂ translate_sql
P b translate_error

5---@ SYBASE_TSCL_TRANSLATOR Body

3.1.5.2 Creating a Translation Profile

To create a translation profile:

From the SQL Translator drop-down box, select Sybase or SQL Translator.

Check Create New Profile.

1
2
3. Enter SYBASE PROFILE in Profile Name field.
4

In Profile Schema, select the name of the user created in section "Creating a Translation
Profile and Installing SQL Translator".

5. Click Apply.

a Install QL Translator

SQL Translator

Create New Profile
SQL Profile
Profile Mame

Profile Schema

Help

Sybase SQL Translator

sybaseProfile

a S0 _Transilser

[Appy ||

Cancel

ORACLE

3-7

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3.1.6 Using the SQL Translator Profile

To test the SQL Translation Profile, use SQL Worksheet:

Right-click the SYBASE PROFILE node.
Select Open SQL Worksheet with Profile.

Enter a T-SQL statement that you want to translate.

fie Edit New MHevigute Run Verdgnisg [ouh Melp

BeEd P® NED OO & =3
Bseastonn = (e = £ e s m e * |rusea e+ [ermant meonmn |
+-BTS FURBR B0 BNed [De=rtrm]

&

Click sYBASE PROFILE and select the SQL Translation tab to inspect the profile and view
the translated statement.

Bicorractone * | impers 2 0 st m e » [PAR_pROmA & | 5t mmorar © =
*-BTH Drtals 5L Translstons Error Code Trarslators

[Fpm—— <SRN E B e e [T ——
* a 10T _pets v o semgueckema | 30 A T TRANZATIR TN

4 12l v migrep 1 BELECT TOF «ORA:LITERAL TYFE=INT ID=ir = FROB ALL CBJECTA SELECT = FRaH ALL OBJECTE FEICH FIRST «ORM:LITERAL I¥RE-1
- L33 pothl s il

I
B s
+EaD
[Covermg
= [10z pobt_vm_sho_smpiedemaiin

[Prajects - 1362 el vm_mgren
= i SmpleDemnii

ORACLE"

3-8

Chapter 3
Installing and Configuring SQL Translation Framework from Command Line

An alternative way to view the profile SQL in a better way when you double-click on it, the
fingerprint and template open in a Translation Scratch Editor as shown in the following

images:

Emm:mmmmm E@ﬁ
fle [dit Yiew Hovigate Bun Venigeig Jooh Help

GoEg 9™ Xm0 Q- & =

B romrectors = | [lReports =) et st moren * [EEVRASI_PRORE = | vy prorzr ® (o]
*'HY% Ootads SQU Translations Ermor Code Trarslatiors -
2 Comnecsons S 1FY 11 S . — =

IR 1362 st v o_smpledemaid | TRANRATID_TET

e [y p— 3 ALITESAL TYFE-IST ID=l> + FRCH ALL OJECTS | TRoseas oomcrs 4|
- i_! L3 _peal i _iryilin

Byous (5]

+a3

[P,

= [132 iy h_smgiecuna 130

{5 Gontan Databane
R
W 5 Databse Stas
G (0 Dot Pumes
5 R backun ko
PR E—
- 501 Tearslator Framework:
[500 Trarasonon o
(8 56 Trarwtarn "
[Broumivos - RG]
%

1Ry Praiecs - 162 b e
w0) St 13

[Be 14 Yew MHeigate Hun Venigaisg Jaoh Help
oEg 9® XG0 0 -0 &- ~—
Rcomectons = (lamats 1) fact s vm g © |forascn peoear « [Escrabohidienct| s prorns x a
*-UTR jon-m-»3] rEAmen 88 Bued @

Worisheet Gy Buder Werlaheet | Query Bubkder

Cornecns 3
& R 1305001 o0, smedemo 1% I SLECY TOF <0RAILITERAL TWTEINT IDek» ® FRSN ALL_OBECTS smE
& I 12 ol e e

® [122 o1 v ryatem

Boas = 4]

rod 2w

3.2 Installing and Configuring SQL Translation Framework from
Command Line

There are several processes that you must complete to successfully install and configure the
SQL Translation Framework from command line interface.

3.2.1 Installing Oracle Sybase Translator

To install Oracle Sybase Translator, Use Oracle SQL Developer as described in "Installing and
Configuring SQL Translation Framework with Oracle SQL Developer".

3.2.2 Setting up a SQL Translation Profile

Perform the following steps to set up a SQL Translation Profile through a command-line
interface:

ORACLE’ 29

Chapter 3
Installing and Configuring SQL Translation Framework from Command Line

Login as a system user.

> sqlplus system/<password>

Grant create privileges to the standard user.

This allows the standard user to create a SQL Translation Profile.
SQL> grant create sql translation profile to <user>;

Login as a standard user.

sqlplus <user>/<password>

Invoke the methods of DBMS SQL TRANSLATOR PL/SQL package to create and configure the
translation profile.

SQL> exec dbms_sqgl translator.create profile('sybase profile')
SQL> exec dbms_sql translator.set attribute('sybase profile',
dbms_sgl translator.attr translator,
'migration repo.sybase tsql translator')

Grant all privileges for the SQL Translation Profile to Oracle Sybase translation schema.

SQL> grant all on sql translation profile sybase profile to migration repo;

3.2.3 Setting Up a Database Service to Use the SQL Translation Profile

This section describes how to add a database service in a standard environment and in an
Oracle Real Application Clusters environment.

Setting Up a Database Service in a Standard Environment

To set up a database service in a standard environment:

1.
2.

Login as a DBA

Issue the following commands to use the DBMS SERVICE PL/SQL package to create and
invoke the database service:

SQL> declare
params dbms_service.svc_parameter array;

begin
params ('SQL TRANSLATION PROFILE') := 'user.sybase_profile’;
dbms_service.create service('sybase service', 'network name', params);
dbms service.start service('sybase service');

end;

/

3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters

ORACLE

To set up a database service in Oracle Real Application Clusters:

1.

Add the database service:

srvctl add service -db db name -service sybase service
-sql translation profile user.sybase profile

Start the database service:

srvctl start service -db db name -service sybase service

3-10

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile

Perform the following steps to test the translation:
1. Login as a standard user:
sqlplus user/password
2. Specify the SQL Translation Profile at the SQL prompt:
SQL> alter session set sql translation profile = sybase profile;
3. Force the database to treat SQL*Plus as a foreign SQL application:
SQL> alter session set events = '10601 trace name context forever, level 32';
4. Run a SQL query that uses Sybase SQL dialect. For example:
select top 3 * from emp;

5. The query returns the following results:

EMPNO ENAME JOB MGR HIREDATE SAL CcoMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESPERSON 7698 20-FEB-81 1600 300 30
7521 WARD SALESPERSON 7698 22-FEB-81 1250 500 30

3.3 Granting Necessary Permissions for Installing the SQL

Translator

ORACLE

This section discusses the privileges that you must have to install the SQL Translator. The
SYBASE PROFILE created here has the following two users:

* MIGREP, where the translator is installed
* TARGET USER, where the profile is installed
To grant privileges necessary for installing the SQL Translator:

1. Connect as sys to grant the required privileges:
connect sys/oracle as sysdba
2. Allow MIGREP to create a view and have access to unlimited quota:

GRANT connect, resource, create view to MIGREP;
ALTER USER MIGREP QUOTA UNLIMITED ON USERS;

3. Allow TARGET USER to create a view and have access to unlimited quota:

GRANT connect, resource, create view to TARGET USER;
ALTER USER MIGREP QUOTA UNLIMITED ON TARGET USER;

4. Allow MIGREP to load a SQL Translator:

BEGIN
DBMS JAVA.GRANT PERMISSION (UPPER('MIGREP'), 'SYS:java.lang.RuntimePermission',
'getClassLoader', '');
END;
/

5. Allow TARGET USER to create profiles:

3-11

ORACLE

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

GRANT CREATE SQL TRANSLATION PROFILE TO TARGET USER;
Allow TARGET USER to explicitly alter the session to use a profile:

GRANT ALTER SESSION TO TARGET USER;

This privilege is not granted in SQL Developer by default.
Allow the translator to make reference to the profile:

CONNECT TARGET USER/TARGET USER;
GRANT ALL ON SQL TRANSLATION PROFILE SYBASE PROFILE TO MIGREP;

Allow the profile to make reference to the translator:

CONNECT MIGREP/MIGREP;
GRANT EXECUTE ON SYBASE TSQL TRANSLATOR TO TARGET USER;

3-12

SQL Translation of JIDBC and ODBC
Applications

Oracle provides SQL Translation mechanisms for use with JDBC and ODBC applications.

4.1 SQL Translation of JDBC Applications

Consider the concepts necessary to understanding how to use SQL Translator with a JDBC
application.

4.1.1 SQL Translation Profile

A SQL Translation Profile is a database schema object that directs how SQL statements in
non-Oracle dialects are translated into Oracle SQL dialects. It also directs how Oracle error
codes and SQLSTATES are translated into the SQL dialect of other vendors.

When you want to migrate a client application written for a non-Oracle SQL database to
Oracle, you can create a SQL Translation Profile and configure it to translate the SQL
statements and errors for the application. At runtime, the application sets the profile for the
connection in Oracle Database to translate its SQL statements and errors. This profile is set
using the oracle.jdbc.sglTranslationProfile property.

When necessary, you can register custom translations of SQL statements and errors with the
SQL Translation Profile on the Server. When a SQL statement or error is translated, then first,
the custom translation is looked up and then, the translator is invoked only if no match is found.

See "Architecture of SQL Translation Framework" and "Setting up a SQL Translation Profile".

4.1.2 Error Message Translation

You may prefer receiving error messages in the form of messages that used to be thrown by
the native database. You must then use the error message translation file, which translates
error messages when there is no valid connection to the database. Once a connection to the
database is established, the JDBC driver bypasses this file completely and all errors are
handled by the translator on the server. Similar to query translation, you can also register
custom error translations on the server.

The error message translation file is not written by a specific component. You must provide the
file for translation and specify the name of the file. You can also provide the file path as the
value of the corresponding connection property.

The error message translation file is in XML format; it contains a series of error translations.
Each error translation contains the following information:

Translation Error Type
ORA error number positive integer
Oracle error message String
Translated error code positive integer

ORACLE i1

Chapter 4
SQL Translation of JDBC Applications

Translation Error Type

Translated SQL State positive integer

4.1.3 Converting JDBC Standard Parameter Markers

Before submitting the SQL statements for translation., the JDBC driver internally converts the
JDBC standard parameter markers (?) into Oracle style parameter markers of the
format :b<n>.

Here, the naming format for the parameter markers is :b<n>, where n is an incremental number
to specify the position of the (?) marker in the JDBC PreparedStatement.

Consider the UPDATE employees SET salary = salary * ? WHERE employee id = ?
PreparedStatement statement, where, the first parameter marker (?) will become :b1 and the
second parameter marker (2) will become :b2.

After conversion, the driver sends the following query to the server for translation:

UPDATE employees SET salary = salary * :bl WHERE employee id = :b2

Note that any query that contains "?" as a parameter marker fails during the connection
translation phase if you change the value of the processEscapes property to FALSE. For a
successful translation, you must retain the default value of the processEscapes property.

Converting parameter markers helps the driver to automatically reorder any parameter
changes that occurred at translation. At the time of conversion, any custom translation that
must be registered on the server should be registered from the Oracle style parameter marker
version; the server receives the statements. Note that, the custom translation must have the
same number of parameter markers in the Oracle style as in the original query.

For more information about supported JDBC APIs, API Reference for SQL Translation of JDBC
Applications .

4.1.4 Executing the Translated Oracle Dialect Query

ORACLE

After the JDBC standard parameter markers are converted into Oracle style parameter
markers, the driver makes a round-trip to the server for translating the query into Oracle
dialect. Once the translated query is received by the server, any reordering in the parameters
in handled transparently by the driver, and the query is executed as a normal query.

If a query cannot be translated due to the unavailability of translation, then the server can
either raise an error or return a NULL, based on the value of the

DBMS SQL TRANSLATOR.ATTR RAISE TRANSLATION ERROR profile attribute. If the server returns a
NULL, then the original untranslated query is assumed to be the query translated by the driver
and executed.

The driver keeps the translation in the local caches to save the future round-trip.

Note that the JDBC driver can support the translation errors (when the query cannot be
translated due to the unavailability of translation) set by either value of the

DBMS SQL TRANSLATOR.ATTR RAISE TRANSLATION ERROR attribute. However, the value must be
set on the server before the connection is established. Because a change in the value of this
attribute in the middle of a session may result in inconsistent behavior, Oracle recommends
that you do not flip the value of this attribute during a session. See Oracle Database PL/SQL
Packages and Types Reference for more information about the TRANSLATE SQL procedure.

4-2

Chapter 4
SQL Translation of JDBC Applications

4.1.5 Error Translation

If any SQLException is thrown during the query execution, the driver transparently makes a trip
to the server and translates the exception from Oracle codes to the original vendor-specific
code. So, the resulting SQLException has both vendor-specific code and SQLSTATE along with
the Oracle-specific SQLException as the cause.

Similar to query translation, custom error translations can also be registered on the server and
given priority over standard translation. The

DBMS_SQL TRANSLATOR.ATTR RAISE TRANSLATION ERROR attribute has the same effect on
custom error translation as on query translation.

Note that the errors are translated only after a connection to the server is established. So, for
errors that occur before the connection to the server is established, Error Message Translation
is used.

4.1.6 Using JDBC Driver for SQL Translation

Example 4-1 demonstrates how to use a JDBC driver for SQL translation. You must first grant
the CREATE SQL TRANSLATION PROFILE privilege to HR as follows:

conn system/manager;
grant create sql translation profile to HR;
exit

Now, connect to the database as HR and execute the following SQL statements:

drop table sample tab;

create table sample tab (cl number, c2 varchar2(100));

insert into sample tab values (1, 'A');

insert into sample tab values (1, 'A');

insert into sample tab values (1, 'A');

commit;

exec dbms sql translator.drop profile('FO0');

exec dbms sgl translator.create profile('FO0');

exec dbms sql translator.register sql translation('FOO','select row of select cl, c2
from sample tab

where cl=:bl and c2=:b2','select cl, c2 from sample tab where cl=:bl and c2=:b2');

Now, you can run the following program that translates SQL statements that use JDBC
standard parameter markers.

Example 4-1 Translating Non-Oracle SQL Statements to Oracle SQL Dialect Using
JDBC Driver

public class SQLTransPstmt
{

static String url="jdbc:oracle:thin:@localhost:5521:jvxl";

static String user="HR", pwd="hr";

static String PROFILE = "FOO";

static String primitiveSql = "select row of select cl, c2 from sample tab where cl=?
and c2=?";

// Note that this query contains JDBC style parameter markers
// But the preceding custom translation registered in SQL is using Oracle style markers

public static void main(String[] args) throws Exception

{

OracleDataSource ods = new OracleDataSource();

ORACLE 43

Chapter 4
SQL Translation of ODBC Applications

ods.setURL (url) ;

Properties props = new Properties();
props.put ("user", user);
props.put ("password", pwd);

// The Following connection property makes the connection translating
props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE, PROFILE) ;
ods.setConnectionProperties (props) ;

Connection conn = ods.getConnection();

System.out.println("connection for SQL translation: "+conn);

try{
// Any statements created using a translating connection are
// automatically translating. If you want to get a non-translating
// statement out of a translating connection please have a look at
// the oracle.jdbc.OracleTranslatingConnection Interface.
// Refer to "OracleTranslatingConnection Interface"
// for more information
PreparedStatement trStmt = conn.prepareStatement (primitiveSql);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next ()
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();

trStmt.close();
}catch (Exception e) {
e.printStackTrace();

}

conn.close();

4.2 SQL Translation of ODBC Applications

Consider the concepts necessary to understanding how to use SQL Translator with an ODBC
application.

4.2.1 SQL Translation profile

For ODBC applications, the SQL Translation Profile is set at the service level. So, you do not
require to set it in the .odbc. ini file.

4.2.2 Error Message Translation

You may prefer receiving error messages in the form of messages that used to be thrown by
the native database. In such cases, when the application is set to run on Oracle Database, you
must set the SQL.TranslateErrors=T entry in the .odbc. ini file to translate the ORA errors to
their native form.

ORACLE

4-4

Chapter 4
SQL Translation of ODBC Applications

4.2.3 Translating Error Messages

ORACLE

Example 4-2 demonstrates how to use the ODBC driver in SQL translation. The SQL
statement used in the example uses Sybase TOP N syntax.

Note that you must set the ServerName= entry in the .odbc. ini file with the Database service
name created in "How to Use SQL Translation Framework" section. Also, set the
'SQLTranslateErros=T entry in the .odbc.ini file, if you require translation of Oracle errors to
native database errors.

Example 4-2 Translating Non-Oracle SQL to Oracle SQL Dialect Using ODBC Driver

int main()

{

HENV m_henv; /* environment handle */

HDBC m_hdbc; /* connection handle */

HSTMT m_hstmt; /* statement handle */

int retCode; /* return code */

char dbdsn[100]; /* Initialize with the DSN name of connection */

const char szUID[10];/*Initialize with appropriate Username of DB */
const char szPWD[10]; /* Initialize with appropriate Password */

char queryl[100]="select top 3 coll from babel tab3 order by coll";
SQLLEN paramInd = SQL NTS;
SQLUINTEGER no = 0;

//Allocate HENV, HDBC, HSTMT handles
retCode = SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &m henv);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLAllocHandle failed \n");
printSQLError (1, m henv);

retCode = SQLSetEnvAttr (m henv, SQL ATTR ODBC VERSION, (void *) SQL OV ODBC3,
SQL IS INTEGER);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLSetEnvAttr failed\n");
printSQLError (1, m henv);

retCode = SQLAllocHandle (SQL HANDLE DBC, m henv, &m hdbc);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{

printf ("SQLAllocHandle failed\n");

printSQLError (2, m hdbc);

retCode = SQLConnect (m hdbc, (SQLCHAR *) dbdsn,SQL NTS,
(SQLCHAR *) szUID, SQL_NTS,
(SQLCHAR *) szPWD, SQL NTS);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLConnect failed to connect\n");
printSQLError (2, m hdbc);

retCode = SQLAllocHandle (SQL HANDLE STMT, m hdbc, &m hstmt);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)

4-5

ORACLE

Chapter 4
SQL Translation of ODBC Applications

printf ("SQLAllocHandle with SQL HANDLE STMT failed\n");
printSQLError (3, m hstmt);

/* Prepare and Execute the Sybase Top-N syntax SQL statements */

retCode = SQLPrepare (m _hstmt, (SQLCHAR *) queryl, SQL NTS);
if (retCode != SQL SUCCESS && retCode = SQL SUCCESS WITH INFO)
{

printf ("SQLPrepare failed\n");

printSQLError (3, m hstmt);

retCode=SQLExecute (m_hstmt) ;
if (retCode != SQL SUCCESS && retCode = SQL SUCCESS WITH INFO)
{

printf ("SQLExecute-failed\n");

printSQLError (3, m hstmt);

while (retCode = SQLFetch (m_hstmt) !=SQL NO DATA)
{
retCode=SQLGetData (m_hstmt,1,SQL C ULONG, &no, 0, ¶mlInd);
if (retCode != SQL SUCCESS && retCode = SQL SUCCESS WITH INFO)
{
printf ("SQLFetch failed\n");
printSQLError (3, m_hstmt);
}

printf ("Value is %d\n",no);

retCode = SQLCloseCursor (m_hstmt);
if (retCode != SQL SUCCESS && retCode = SQL SUCCESS WITH INFO)
printf ("SQLCloseCursor failed\n");

printf ("cleanup()\n");
retCode = SQLFreeHandle (SQL HANDLE STMT, m hstmt);
if (retCode != SQL SUCCESS && retCode = SQL SUCCESS WITH INFO)
{
printf ("SQLFreeHandle failed\n");
printSQLError (3, m hstmt);

retCode = SQLDisconnect (m_hdbc) ;
if (retCode != SQL SUCCESS && retCode = SQL SUCCESS WITH INFO)
{

printf ("SQLDisconnect failed\n");

printSQLError (2, m_hdbc);

retCode = SQLFreeHandle (SQL HANDLE DBC, m hdbc);
if (retCode != SQL SUCCESS && retCode = SQL SUCCESS WITH INFO)
{

printf ("SQLFreeHandle failed\n");

printSQLError (2, m_hdbc);

retCode = SQLFreeHandle (SQL HANDLE ENV, m henv);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)

{
printf ("SQLFreeHandle failed\n");

4-6

Chapter 4
SQL Translation of ODBC Applications

printSQLError (1, m henv);

ORACLE’ 4.7

Example: Application Migration Using SQL
Translation Framework

Consider an example of migrating a Sybase JDBC Application, and the information contained
in the migration reports: how it may be used to tune the migration for optimal results.

5.1 Migrating a Sybase JDBC Application

Figure 5-1 illustrates how an application that is coded to query a Sybase database may use
SQL Translation Framework to query information stored in Oracle Database instead.

Figure 5-1 Sybase Application Running Against Oracle Database

Oracle
Custom SQL Auto
Translations Translator
Sybase ODg:;3I;BC Sybase SQL
App Translation Profile

Driver

:

Custom Error-Code
Mappings

5.1.1 Application Overview

The Sybase database used in this example has three tables and five procedures and includes
the following features:

e IDENTITY columns

e INSERT statements into tables with IDENTITY columns

e VARCHAR columns with size greater than 4000 characters
e Multiple implicit result sets returned from procedures

A Java application connects to this Sybase database using JDBC.

5.1.2 Setting Up Migration

The migration process has four phases - Capture, Convert, Generate, and Data Move. It is
best practice to complete each phase of the migration process, review any issues on the
Summary page, and then continue to the next phase. The Migration Wizard enables you to

ORACLE -

ORACLE

Chapter 5
Migrating a Sybase JDBC Application

complete each step in turn and then return back to the wizard to complete further steps. To do
this, after completing each phase, select the Proceed to Summary Page check box and click
Next.

Perform the following steps to set up migration:

1. Download the JDBC driver JTDS 1.2.

2. Add JTDS as a third-party JDBC driver as follows:
a. Select Preferences from the Tools menu.

b. Select Third Party JDBC Driver from the Database option on the right panel, as
shown in Figure 5-2.

Figure 5-2 Setting JTDS JDBC Driver

.Q Preferences [E==]

L] Database: Third Party JDBC Drivers
#- Environment Third-party JOBC Driver Path
& Change Management Paran
& Code Editor
Compare and Merge
= Databass
Advanced

Autotrace Explan Plan
Drag And Drop

SQU Editor Code Templi
% SQU Formatter
User Defined Extension
& Utiites
Worksheet
& - Data Mimar
% Data Modeler
& (Debugger

Add Entry. .. EditEntry... Remave

Help oK Cancel

3. Click Add Entry.
The Select Path Entry box is displayed.

4. Select the jtds-1.2.jar file and click Select.

5. Click OK.

6. Connect to the Oracle Database where you want to migrate the information.

7. Verify that the connection is using Oracle Database 12c JDBC drivers, with the following
command:
show jdbc

8. Create a new user migrep in Oracle database, for the migration repository, with the
following command:

GRANT CONNECT, RESOURCE, CREATE VIEW to migrep INDENTIFIED BY migrep;
ALTER USER migrep QUOTA UNLIMITED to users;

9. Connect to the database as the migrep user and associate the migration repository with
the user, as shown in Figure 5-3.

5-2

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-3 Associating a User with Migration Repository

File

Edit View Movigate Run Verigming Jook Help
BeEag 9o Xm0 -O- &

122 pob L vm_system ® | G122 pe)_vm mgrep X
FHBaYA B0 fued

[Ghepors *]
F-BTH
Connectors [worisheet ey e
& (& 122 odbl vm mioren. I
&0
@012 ppconnect
Y- T .
x&“‘" Culetw
Sdd to Foider v
A
Gemenate DB Doc...
Remate Debug..
Gagher Scherna Statistacs...
Recompile Schema .
XML DB Protocol server configuration
BMansge Database
Dpen SO Workshest
Schema B

10. Create a connection to the Sybase database, in this example, simpledemol2c, as shown in

Figure 5-4.

Figure 5-4 Creating a Connection to the Sybase Database

Connection Name Connection Details | Connection Name |s\|base
12c2_pdb1_vm_mi... migrep@/flocalhost... | Username |sa
12c¢2_pdbl_wm_sy... system@/flocalhos... B g |
12c2_vm_system system@/localhos... |~
[v] Save Password
~ Orade | Access | SQLServer = Sybase
[] use Default Password
[] use Windows Authentication
Hostrame
Port
| Retrieve database | [bugtestcase2 -
Imaster ™
model
pubs2
Cous3

Connect

I

L)

5.1.3 Capturing Migration

Perform the following

1.
option, as shown

steps to capture migration:

in Figure 5-5.

Right-click on the simpledemol2c Sybase database and select the Migrate to Oracle

ORACLE"

5-3

Chapter 5

Migrating a Sybase JDBC Application

Figure 5-5 Starting Capture Phase of Migration Process

Fle Edt View Navigate Bum Versigning ook Help

BoEg e Xam O O & s
[Bcommections =] (Eaeoors x 0 2z st imspsten * | 122 ot miyen * | @hmbse = =
+-RTY PEWA BE R (05 oybce -
= I sibose || Worksheet Query Buider
[bugpestcase? T -
bugresicases

This opens the Migration Wizard, as shown in Figure 5-6.

Click Next.

Figure 5-6

Migration Wizard Introduction Screen

| This wizard enables th f third party database on to Orace,

hﬂhﬁewﬂhmhmﬂdﬂuﬂunm&ﬁ!wwhm
alve 1 to third party database to do an Online Migr

Migration invohves the following steps.

1. Priming an Orade connection with the Migration Repository.

2 Cremaﬂymﬁommnmsam&rhmmm
3. Capluring the source d: into the Migr

4, C g the captured meta .waﬁemmnmm

sariph.
7. Move the Data from the Source Database to the newly created Orade Database.
Following connection privilege prerequisites.

1. Repository Connection - Connect, Resource and Create View
2. Target Connection for DB Creation -

[] Skip this page on next launch.

Choose the Migration Repository, as shown in Figure 5-7.

Click Next.

ORACLE

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-7 Choosing the Migration Repository

Repasitory

W

E?Eﬁ%%?g

J

Seleit for the Myt gty Chci Truncate i reset e repestery b
| o oty e
| Gomectom: | E) 1ic2_peh_vm_magrep MG 4
] Trumcate
[] Proceed bo Summary Fage

3. Enter a project name and specify an output directory to place files, as shown in Figure 5-8.

Click Next.

Figure 5-8

|

Project is a contaner for the migration entites, All sorpts wil be saved to the sutput drect. .,

[Reseription:

Qutput Drectory: |C:\SmplaDamo 13 | [chooge... |

[| Broceed to Summary Fage

[ek | mext> | [mush | [cance |

Specifying Project Name and Output Directory

4. Select the database connection and the mode, as shown in Figure 5-9.

Click Next.

ORACLE"

5-5

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-9 Selecting the Database Connection and Mode

[Migration Wized - Stepd of 8
Source Database
&) Qrine () Offine.
A Brsiesd
| Choose the Third Party Database from which you are migrating.
. Source Database @ 'a' /
| s e -
s, Caotwe -
Avallable Source Platforms:
SCLServer
Sybase
Adkd the source platform with check for update or the ik below.
Ak Pt
Hep <Back | pext> Canced

5. Select the database, in this case, simpledemol2c, by moving it from Available Databases
to Selected Databases, as shown in Figure 5-10.

Click Proceed to Summary Page to review the Capture phase before moving to the next
phase of the migration process.

Click Next.

Figure 5-10 Selecting the Database to be Migrated

(3 Migeation Wizerd - Step 5 of 9
Capture
N Select the database for defirition capbure,
T Inroducoor Available Databases Selected Databases
,,l, Rtpostory bugtestcase? mphedema 12c
. bugtes tcases
A et demo 120
s Emrce Daabase. pubs2
Caphare pubs3
Trsp2000
& Comvert
i, Torget Dutabase)
v HovsData
w Summary %
| Proceed to Summary Page’
Helb <Back |[Bext> Erch Canced

The capture phase saves a snapshot of the selected database at this point of time. Only the
object definitions are captured, not the actual table data. This captured snapshot can be
viewed in the Migration Projects navigator.

Note that the snapshot is not a connection to the database, and it only enables you to browse
through the information saved in the Migration Repository.

5.1.4 Setting Migration Preferences

Before starting the conversion phase, you must set the migration preferences. Perform the
following steps to achieve this:

1. From the Tools menu, select Preferences, then Migration, and then Translators. Select
the Generate Compound Triggers option.

ORACLE -

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-11 Setting Migration Preferences

a Preferences)

] | Migration: Translators
e]| pefaitsouwcepateFomat [ddmmiyyy |
Change Management Paran Variable Narne Prefix ’u_—
Code Editor =
Compare and Merge In Parameter Prafis e
Database Query Assh it Jation |,
Data Miner
Data Modeler Display AST D
Debugger Generate Compound Triggers [¥]
Extensions
External Editor
+— File Types
(=~ Migration
Data Move Options
Generation Options
Identifier Options
Translators
- Mouseover Popups
Shortout Keys
~— UnitTest Parameters
- Version
Web Browser and Proxy
XML Schemas il

i | .

T

Eee

2. From the Tools menu, select Preferences, then Migration, and then Generation Options.
Select the Use all Oracle Database 12c features in Migration option.

Figure 5-12 Setting Migration Preferences

3 Preferences @
_ L)) | Migration: Generation Options
[Environment 2 File Creation Options
[#-- Change Management Paran -
- Code Editor Ok
Compare and Merge () A File per Object
[# - Database
- Data Miner General Options
[# Data Modeler [¥] Generate Comments
- Debugger
- Extensions [] Least Friviege Schema Migration
External Editer [7] Generate Data Move User
[File Types ["] Generate Faled Objects
= Migration ! [¥] Generate Stored Procedure for Migrate Blobs Offine
Ganerate Separate Emulation User
Identifier Options (Svbase) To [ndex Organized Tables [NonE -
Translators [¥] Use all Orade Database 12c features in Migration
- Mouseover Popups
Shortout Keys
- UnitTest Parameters
[Versioning
Web Browser and Proxy
. XML Schemas : >
.......... tEb J U(L M

5.1.5 Converting Migration

Perform the following steps to start convert phase of the migration process:

1. Right-click the Capture Model node and choose Convert, as shown in Figure 5-13.

ORACLE 5.7

Chapter 5
Migrating a Sybase JDBC Application

2.
3.

Figure 5-13 Starting Convert Phase of Migration Process

Fle Edt Yiew Mavigate Bum Versigning Took Help
RoEd 90 XE0R O-0- &- =
R Comnectors. = | [FlReports =) [oswees = B ooiens = =
+-RMYS BE .
= [sibase o (REATE FRICEDURE dbo. topltens
- bugtesteane
& (3 bugsestcases HESTH
w £ dematzc SELECT TOF 10 itess.naee, itess.descciption, itess.price, itess.isege FROM itess
& () master SELECT TOF 50 items.name, items,deacription, Ltems.price, itens.imoge INTO Fteap FROM it
w (3 moss VIDATE TOF 5 #resp SET masw = ‘665"
& () puts SELECT #tenp.mare, ftemp,descripiion, Ftenp.price, #teap.image FROM duenp
W (3 puta3
S [smpledemoiac * Adapt ferver has expanded all '*' elements in the following = SELECT TOF
e SELECT items.mane, 1tens,deScoiption, iTems.price, 1tems,image
2 {5 Taties FROM items
- [customers USTOH ALL ¥
& [items SELECT items.mane, items.description, items.price, items,image
[sales FROM 1tems) @5 X
& [vews W Bo
¢ - 3
'Z\Higration Projects
[Projects - 1202 et v _sugren &
&) SmpieDemo1 2
= 2002-09-10_10-a0-28 1
= B Caphraimestee e
B cono |
T
= (8 Tabies
& [0 amserers.
& £ items

The Migration Wizard is opened at the Convert phase, as shown in Figure 5-14.

Figure 5-14 Converting the Migrated Data

in) Speofyhmopm
S (Dat TrpeMecong | (CEcEERRGI]
)T\Rga_osihnry
,T\Proﬁ' t [#] Show only data types used in source model
Source Database Source Data Type Orade Data Type Type
)T\ TETIME DATE System
)T\QM ea System
e, Convert NUMBER[12] System
MONEY MUMBER[18,4] System
)T\W VARCHAR VARCHAR2 S
T Move Dats
& Summary
[AddMewRue || Edimue eRue |
[PO S PR Advanced Optons
[“Eﬂd("=!ﬂ¢>|[ﬁ'ish][cﬂcd]‘é

Select Proceed to Summary Page and click Next.
Click Finish.

During the convert phase, object names are resolved to valid Oracle names. Data types are
converted to Oracle Database types and T-SQL defined objects like stored procedures, views,
and so on are converted to Oracle PL/SQL. A converted model is created that can be browsed
in the Migration Projects navigator. The converted procedures can be reviewed in the
converted model.

ORACLE"

Chapter 5
Migrating a Sybase JDBC Application

Note that the converted model is not an actual Oracle database, but a prototype of an Oracle
Database. The information is still stored only in the Migration Repository tables.

5.1.6 Generating a Migration

The migration generation phase creates the objects in the target Oracle Database. A script is
created and it is run against a selected Oracle connection in the following two ways:

e Inoffline mode, the script is opened in a SQL Worksheet and you have to select the
connection and run it manually.

In online mode, you must provide the target connection in the wizard and the wizard runs
the script automatically.

The following steps demonstrate how to perform the generate phase of the migration process
in offline mode:

1. Right-click on Converted Database Objects in the Migration Projects panel and select
Generate Target.

2. Select offline as the database mode in the Migration Wizard, as shown in Figure 5-15.
Click Next.

Figure 5-15 Selecting the Database Mode

3 Migration Wizard - Step 7 of 9]
Target Database
Mode
Introduction
T Drine (3) Offine
2 Repository
,r Projec The offine migration saript will be generabed in the project output directory.
,r Spurce Database Generated Saript Directory:C:\SimpleDemo 1 2c\generated
Captre
/T\ fomat [l Drop T t Oib;
J=_Target Database L Crep Target Chjects
I
y MoveOota
W Summary
[+] Broceed to Summary Page Agvanced Ophons
Help <Back Enish | [Cancel |

3. Choose a connection in the target Oracle Database, as shown in Figure 5-16.

ORACLE -

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-16 Creating Oracle Database Connection for Target User
dbo_simpledemol2c

[B =
e [t View Moigate Fun Verigming Jooh el
BoEg 9o XE0D O-0- &- =3
(Bcomectorn | (omarn 1 (21| b SimpleOemal 2 201 1-09:10_10-40-sql © =
+-BTH 501 Workabeet. Pintory
& (R mbese bRl B BRod [ez ot _sem =
[bugrmscases —
i T— e S e
o e ST DD OFF;)
5 £ mart PROMFT Creating Seer ENUlATion ...
& I‘, medel CFEATE USEN Enulation IBENTIFIED BY Ewulation DEFRMAT TARLESFEE SYSTEM TENMMRAY TALESFMWE TENF
% £ pinz GRONT CRERTE SESSION, FESOURCE, (REATE VIEW, CREATE WATERIALIZID VIEW, CREATE SYMON ,(REATE FUSL
% £ o3 SET SOM OFF
5 [e IROMFT Czeating Wser dbo_sispledesallc ...
o4 o GEATE SR dbo_simpledenslic TBENTIFIED B dbo_sispledewslilc BEFMET TRELESPRCE SYSTER TERPORMN
o vables GRAIT CHEATE SESSIN, MESOUSNE, CEATE VIF, CMEATE MATERIALIZED VIEV, CHERTE SYMOSON,ALTEN SESSIC
= [ctomers conaret Ewlation/Emlakion:
[news
o [s S create or Trplace
G (B vens PROGEE (TILS 4%
LR EmOEEI0) ze !
=l | s VARCGRIILON 3
(@parancn Pragects Bl | owranas o VEROGRI{L0N 5+ SYBASE:
=
IENTITY WS L0) 7
a-'“":“"-“-?“"—-"‘-"'“’ TRASCOTNT WS {10} 1507
W @ Sepledomoric ViF_WURBER WBBER {10) 1 =01

FURSCTION BIGINTTOREX|F_EXTP. WRGER) FETU VRECHHEZ
FUSCTION BICINTTOSEN|F_EXPR RIN) RETUSS VRROUMED:

FUSCTION BIT_SOR(P_PAYL BAN B PA¥2 BON) RETWRN BEN

Heaagns - Log "

s vgryboneConne ing W 11T Jtv]_vm_mgresy S Lo edMacisFoidestiode | Lre Looomn 1L | et | | Wrcms: CRAF

The database objects are not created under the connection selected in this step. However,
this connection must have enough privileges to create other users and objects.

5.1.6.1 Creating a Target Oracle User

Create a connection to the newly created user (described in step 3), as shown in Figure 5-17.
At this point, the Sybase database objects are migrated to Oracle Database, but the data is not
migrated till now.

Figure 5-17 Targeting an Oracle User

(3 New / Sedect Database Connection
[commectonMame Connection Detals | Comnecton Name [12c2_pdbl_vm_dibo_smpledemo 1c]
|12c2_pdb1_vm_mi... migrepifocahost... | Lssmame [dbo_smpledemo 12
| omem——

(1202 v system system@/focabos... | T L 4
wybase sa8jsicd tpap. s, | [¥] Sawe Password

Stats :

5.1.7 Moving the Data

ORACLE"

Perform the following steps to move the data to Oracle Database:

1. Right-click the Converted Database Objects node and select Move Data, as shown in
Figure 5-18.

Click Next.

5-10

Chapter 5
Generating Migration Reports

Figure 5-18 Moving the Data from Sybase Database to Oracle Database

"
Qracte S Developer =
e fdit View MHovigste Bun Venigming Jooh Help
RoEg e Xan 0O & 53

Rcomectors 1 (e 1 2 {)reemee = (R oo paam x
e-BTSH Statn Summary | Arfyen | Captre tsmums | Comversen Savts | Corverson e | Twrget Stats | Target tesues [Cinta Quualty [Model Comparnl ' [2]
P L

§ e § censz |j coner|j cnewce | oatwaoe
[
TRLO_L0-40-20 Sybarelifiogin e ek geshn emh

;

Select online as the data move mode in the Move Data screen.

You can select off1line as the data move mode if the migration process involves large

amount of data.

Click Next. The Summary screen appears.

Click Finish.

You can browse the database objects to verify the data is moved to Oracle database.

See Also:
Oracle SQL Developer User's Guide

5.2 Generating Migration Reports

ORACLE"

Oracle SQL Developer provides a number of reports on the migration process to help identify
tasks and issues to resolve. Click or double-click on the migrated project in the Migration
Projects navigator. A report will appear on the right panel with a number of tabs and children

reports, as shown in Figure 5-19.

5-11

Chapter 5
Generating Migration Reports

Figure 5-19 Generating Migration Reports

[Oracte 5L Devetopar IE=nen |
Fo [dit Vw Mnigate Bun Versing Jooh Help
Foeg 9 . Xxam Q-0 &~
A Comnoctionn + | (hets *] [@miatons1x =
BT ., y Target Stae | |Eta ety
~ll # B Acore...
B et et e o _smoledemat § moxcrwee | moceueee B § coenes | coment|§ cenenar |§ catwece
S Tobks et | b sew Mgrarics v

T Eﬂm 2 siapleDemolls 2013-0F-10_L0-40-2% SybareliFlegin aoxist e =4 ="t

[

E

Y Progecss - 2222 et v reny
i [Sk 13

The Analysis report provides information about the size of the migrated database like the
number of objects, line sizes, and so on, as shown in Figure 5-20.

Figure 5-20 Migration Analysis Report

[N Ovachs S Divelopar : sk smiguerticmkdel cnresticans SIZL1c2 o] v rragred ‘Eﬁ
[l [dit View Mevigste Bon Verigsing Jooh Help
Fomg 9o XEh OO @& =3
Rcomectors + (tmon 1 [2) [[ESmpletematie » | =
+-arS Stats [ummary Acwives Trarget san T Sl
o o | B e
Sl 12 obt it peoistemstix | [RoECTAME [MOOENGHE (@ catamusrs § usens[f mames § vees [§ mocans | ocmouess [coen
TR Py S 1 3 3 5 3 :
¢ gw SimpleDemalle 1 1] o o 5
= @ sues Hsimstetnmoize 3212-08-20_so-4c-28 1 1 3 0 o s
= e
o e ¢ 3
& [Enwg vems S d |
e 50U Skoe Chart| ooy ey | 5 SowOntae | ke | tamn Charges | Dvpwcinoms | Tempo | [»
W il Paages [T
g reedires . —
o &
Ly
@
Ry progecs - 130 ocbia e pyen
i [Smphelione i3

The Target Status report provides information about the status of the migrated objects in the
Target database. First, select a target connection with enough privileges to view the status of
other schema objects and then select refresh. Objects that are present in the converted
model, but are missing from the target Oracle Database, are listed as missing. These objects
can be either valid or invalid.

ORACLE’ 510

Chapter 5
Generating Migration Reports

Figure 5-21 Target Status Report

B o e
Be [Wiew Boigite Ban Verdgnisg Tock Help
Se8g 90 B0 0-0 & .
B Zomecions ® [Reports (] 3| (=]
-RTS Stanus | Summary | I Icumerson stats Tavpes Saata | Target smses [Dta Quatty [Mosel Compar 41 2
== A e ——
51 1362 b1 e srpindemorx: || Tee |§ cemermee |§ o § van|§ s § reses f sooun
& () Taties Pitmeecl) [Fhede:EDORE MD_STORED_FROGKAMS 0 [8
H g;&m TRSE K TARES] °
& M ese ThiooEs D _TRIoGERS 3 [}
i [T (FROCEOERE K0_T30RED_FROGRANS dbe_pimpiedenaids] [}
* e e Tastrs dne,_sispledesside 3 o
® {H Esvenwg vers TRIGHR MO_TRIGGIRS bo_simpledenldn] 0
W L tenss
il Packages -
& (] Praceres
& & Funciors b Aetestdn -
= 0 Quewes B cescosEcT el soewwe [§ cexcowe [§ stans|

Soo_ripirsenaiic LUETCMERE I TRG

B Pregeets - 1262 publ_ve_grep
0[] SepleCemat

The Data Quality tab provides information about the number of rows in the target Oracle
Database compared with the source database. Perform the following steps to compare the
databases:

1. Select a converted model, a source connection, and a target connection.
2. Click Analyse.
3. Click Refresh.

This performs a count (*) function on each table in the source and the target database.

So, it is advisable not to perform this operation on production data.

ORACLE"

5-13

API| Reference for SQL Translation of JIDBC
Applications

Consider the APIs that are part of the oracle.jdbc package, specifically the elements of
oracle.jdbc that assist in SQL translation. To successfully migrate JDBC applications, it is

important to understand the translation properties, interfaces, and the error translation
mechanisms.

See Also:

e Complete documentation of the oracle.jdbc package in Oracle Database JDBC
Java API Reference

6.1.1 Translation Properties

The translation properties are listed in Table 6-1

Table 6-1 Translation Properties

Property Description
sqlTranslationProfile Specifies the name of the transaction profile
sqlErrorTranslationFile Specifies the path of the SQL error translation file

6.1.1.1 sqlTranslationProfile

ORACLE

The property oracle.jdbc.sqlTranslationProfile specifies the name of the transaction
profile.

Declaration

oracle.jdbc.sqlTranslationProfile

Constant

OracleConnection.CONNECTION PROPERTY SQL TRANSLATON PROFILE

The value of the constant is oracle.jdbc.sqlTranslationProfile. This is also the property
name.

Property Value

The value is a string. There is no default value.

6-1

Chapter 6
OracleTranslatingConnection Interface

Remarks

The property sqlTranslationProfile can be set as either a system property or a connection
property. The property is required to use SQL translation. If this property is set then all
statements created by the connection have SQL translation enabled unless otherwise
specified.

6.1.1.2 sqlErrorTranslationFile

The property oracle.jdbc.sqlErrorTranslationFile specifies the path of the SQL error
translation file.

Declaration

oracle.jdbc.sqlErrorTranslationFile

Constant

Oracle.connection.CONNECTION PROPERTY SQL ERROR TRANSLATION FILE.

Property Value

The value is a path name. It has no default value.

Exceptions

An error in establishing a connection results in a SQLException but without a valid connection.
However the SQL error translation file path is available either as a system property or
connection property and will be used to translate the error.

Remarks

This file is used only for translating errors which occur when connection establishment fails.
Once the connection is established this file is bypassed and is not considered even if it
contains the translation details for any error which occurs after the connection is established.
The property sqlErrorTranslationFile can be either a system property or a connection
property. The content of this file is used to translate Oracle SQLExceptions into foreign
SQLExceptions when there is no valid connection.

6.1.2 OracleTranslatingConnection Interface

This interface is only implemented by a Connection object that supports SQL Translation. The
main purpose of this interface is to get non-translating statements (including
preparedStatement and CallableStatement) from a translating connection.

The public interface oracle.jdbc.OracleTranslatingConnection defines the factory methods
for creating translating and non-translating Statement objects.

The OracleTranslatingConnection enumerations are listed in Table 6-2:

Table 6-2 OracleTranslatingConnection Enumeration

__|
Name Description

SqlTranslationVersion Provides the Keys to the map

ORACLE 60

Chapter 6
OracleTranslatingConnection Interface

The OracleTranslatingConnection methods are listed in Table 6-3:

Table 6-3 OracleTranslatingConnection Methods
|

Name Description

createStatement() Creates a Statement object with option to translate or not translate
SQL.

prepareCall() Creates a CallableStatement object with option to translate or not

translate SQL.

prepareStatement() Creates a PreparedStatement object with option to translate or not
translate SQL.

getSQLTranslationVersions() Returns a map of all the translation versions of the query during SQL
Translation.

6.1.2.1 SqlTranslationVersion

The sqlTranslationVersion enumerated values specify the keys to the
getSQLTranslationVersions() method.

Syntax

public enum SglTranslationVersion {
ORIGINAL_SQL,
JDBC_MARKER_CONVERTED,
TRANSLATED

}

The following table lists all the SqlTranslationVersion enumeration values with a description
of each enumerated value.

Member Name Description

ORIGINAL SQL Specifies the original vendor specific sql

Specifies that IDBC parameter markers (*?') is replaced with Oracle style
parameter markers (:b<n>'). Hence consecutive '?'s will be converted

to :bl, :b2, :b3 and so on. This change is required to take care of any
changes in the order of parameters during translation. This version is
sent to the server for translation. Hence any custom translations on the
server must be registered from this version and not the ORIGINAL SQL
version.

JDBC_MARKER CONVERTED

TRANSLATED Specifies the translated query returned from the server

6.1.2.2 createStatement()

ORACLE

This group of methods create a Statement object, and specify whether the statement supports
SQL translation. If the value of parameter translating is TRUE, then the returning statement
supports translation and is identical to the corresponding version in the java.sqgl.Connection
interface without the translating argument. If the value is FALSE, then the returning statement
does not support translation.

6-3

ORACLE

Chapter 6
OracleTranslatingConnection Interface

Syntax

Description

public Statement createStatement (
boolean translating)
throws SQLException;

public Statement createStatement (

int resultSetType, int
resultSetConcurrency, boolean translating)
throws SQLException;

public Statement createStatement (
int resultSetType,
int resultSetConcurrency,
int resultSetHoldability,
boolean translating)

throws SQLException;

Creates a Statement object with option to
translate or not translate SQL.

Creates a Statement object with the given type
and concurrency with option to translate or not
translate SQL.

Creates a Statement object with the given type,
concurrency, and holdability with option to
translate or not translate SQL.

Parameters
Parameter Description
resultSetType Specifies the int value representing the result set type.

resultSetConcurrency

resultSetHoldability

translating

Specifies the int value representing the result set concurrency type.

Specifies the int value representing the result set holdability type.

Specifies whether or not the statement supports translation.

Return Value

The createStatement () method returns a Statement object.

Exceptions

The createStatement () method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;

import oracle.jdbc.OracleTranslatingConnection;

import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sqgl translation profile to HR;

conn username/pwd;

6-4

ORACLE

Chapter 6
OracleTranslatingConnection Interface

drop table sample tab;

create table sample tab (cl number, c2 varchar2(100));

insert into sample tab values (1, 'A');

insert into sample tab values (2, 'B');

commit;

exec dbms_sql_translator.drop_profile('FOO');

exec dbms_sql_translator.create_profile('FOO');

exec dbms sgl translator.register sql translation('FOO','select row of (cl, c2) from
sample tab', 'select cl, c2 from sample tab');

Example 6-1 Using the createStatement() method

public class SQLTransStmt

{
static String url="jdbc:oracle:thin:@localhost:5521:0rcl";

static String user="username", pwd="pwd";
static String PROFILE = "FOO";

static String primitiveSqgl = "select row of (cl, c2) from sample tab";

public static void main(String[] args) throws Exception
{
OracleDataSource ods = new OracleDataSource();
ods.setURL (url) ;

Properties props = new Properties();

props.put ("user", user);

props.put ("password", pwd);

props.put (OracleConnection.CONNECTION PROPERTY SQL TRANSLATION PROFILE, PROFILE);
ods.setConnectionProperties (props) ;

Connection conn = ods.getConnection();

System.out.println("connection for SQL translation: "+conn);

tryf
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:

oracle.jdbc.OracleTranslatingConnection.createStatement (true)");
Statement trStmt = trConn.createStatement (true);
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery (primitiveSql);
while (trRs.next())
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));

trRs.close();
trStmt.close();

}catch (Exception e) {
e.printStackTrace();

}

tryf
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement (false)");
Statement trStmt = trConn.createStatement (false);
System.out.println ("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery (primitiveSql);
while (trRs.next())
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
System.out.println ("expected Exception: "+e.getMessage());

6-5

Chapter 6
OracleTranslatingConnection Interface

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call: oracle.jdbc.OracleTranslatingConnection.
createStatement (ResultSet.TYPE SCROLL SENSITIVE, ResultSet.CONCUR UPDATABLE, true)");
Statement trStmt = trConn.createStatement (ResultSet.TYPE SCROLL SENSITIVE,
ResultSet.CONCUR UPDATABLE, true);
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery(primitiveSql);
while (trRs.next())
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
System.out.println("move resultset back to 2nd row...");
trRs.absolute (2);
while (trRs.next())
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

}

try{

conn.setAutoCommit (false);

OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;

System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement (ResultSet.TYPE SCROLL SENSITIVE,
ResultSet.CONCUR UPDATABLE,
ResultSet.HOLD CURSORS OVER COMMIT, true)");

Statement trStmt = trConn.createStatement (ResultSet.TYPE SCROLL SENSITIVE,
ResultSet.CONCUR UPDATABLE, ResultSet.HOLD CURSORS OVER COMMIT, true);

System.out.println ("executeQuery for: "+primitiveSql);

ResultSet trRs = trStmt.executeQuery(primitiveSql);

trRs.last();

System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));

trRs.updateString (2, "Hello");

trRs.updateRow () ;

conn.commit () ;

System.out.println("accept the update and list all of the rows again...");

trRs.beforeFirst();

while (trRs.next())

System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

}

conn.close();

6.1.2.3 prepareCall()

This group of methods create a CallableStatement object, and specify whether the statement
supports SQL translation. If the value of parameter translating is TRUE, then the returning
statement supports translation. If the value is FALSE, then the returning statement does not
support translation.

ORACLE 66

ORACLE

Chapter 6
OracleTranslatingConnection Interface

Syntax Description

Creates a CallableStatement object with

public CallableStatement prepareCall (.
option to translate or not translate SQL

String sql,
boolean translating)
throws SQLException;

Creates a CallableStatement object with the
given type and concurrency with option to
translate or not translate SQL

public CallableStatement prepareCall (
String sql,
int resultSetType,
int resultSetConcurrency,
boolean translating)
throws SQLException;

Creates a CallableStatement object with the
given type, concurrency, and holdability with
option to translate or not translate SQL

public CallableStatement prepareCall (
String sql,
int resultSetType,
int resultSetConcurrency,
int resultSetHoldability,
boolean translating)
throws SQLException;

Parameters

Parameter Description

sql Specifies the String SQL statement value to be sent to the database;
may contain one or more parameters

resultSetType Specifies the int value representing the result set type

resultSetConcurrency Specifies the int value representing the result set concurrency type

resultSetHoldability Specifies the int value representing the result set holdability type

t . Specifies whether or not the statement supports translation
ranslating

Return Value

The prepareCall () method returns a CallableStatement object.

Exceptions

The prepareCall () method throws SQLException.

Example
Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;

import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

6-7

Chapter 6
OracleTranslatingConnection Interface

Run the following SQL statements:

conn system/manager;
grant create sqgl translation profile to HR;

conn username/pwd;

create or replace procedure sample proc (p num number, p vchar in out varchar2) AS
begin

p vchar := 'p num'||p num||', p vchar'||p vchar;
end;

/

exec dbms sql translator.drop profile('FO0');

exec dbms sqgl translator.create profile('FO0');

exec dbms sql translator.register sql translation('FOO', 'exec sample proc(:bl, :b2)',
'{call sample proc(:bl, :b2)}');

Example 6-2 Using the prepareCall() method

public class SQLTransCstmt
{
static String url="jdbc:oracle:thin:@localhost:5521:0rcl";
static String user="username", pwd="pwd";
static String PROFILE = "FOO";
static String primitiveSgl = "exec sample proc(:bl, :b2)";

public static void main(String[] args) throws Exception
{
OracleDataSource ods = new OracleDataSource();
ods.setURL (url) ;

Properties props = new Properties();

props.put ("user", user);

props.put ("password", pwd);

props.put (OracleConnection.CONNECTION PROPERTY SQL TRANSLATION PROFILE,
PROFILE) ;

ods.setConnectionProperties (props);

Connection conn = ods.getConnection();

System.out.println ("connection for SQL translation: "+conn);

tryf
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println(

"Call: oracle.jdbc.OracleTranslatingConnection.prepareCall (sql, true)");
CallableStatement trStmt = trConn.prepareCall (primitiveSql, true);
trStmt.setInt ("b1", 1);
trStmt.setString ("b2", "A");
trStmt.registerOutParameter ("b2", Types.VARCHAR) ;
System.out.println("execute for: "+primitiveSql);
trStmt.execute();

System.out.println("out param: "+trStmt.getString("b2"));

trStmt.close();
}catch (Exception e) {
e.printStackTrace();

}

tryf
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println(
"Call: oracle.jdbc.OracleTranslatingConnection.prepareCall (sql, false)");
CallableStatement trStmt = trConn.prepareCall (primitiveSql, false);

ORACLE 68

trStmt.setInt (1, 1);
trStmt.setString (2, "A");

Chapter 6
OracleTranslatingConnection Interface

System.out.println("execute for: "+primitiveSql);

ResultSet trRs = trStmt.executeQuery();

while (trRs.next())

System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));

trRs.close();

trStmt.close();
}catch (Exception e) {

System.out.println("expected Exception: "+e.getMessage());

}

conn.close();

6.1.2.4 prepareStatement()

This group of methods create a PreparedStatement object, and specify whether the statement
supports SQL translation. If the value of parameter translating is TRUE, then the returning
statement supports translation. If the value is FALSE, then the returning statement does not

ORACLE

support translation.

Syntax

Description

public PreparedStatement prepareStatement (
String sql,
boolean translating)

throws SQLException;

public PreparedStatement prepareStatement (
String sql,
int resultSetType,
int resultSetConcur,
boolean translating)
throws SQLException;

public PreparedStatement prepareStatement (
String sql,
int resultSetType,
int resultSetConcur,
int resultSetHold,
boolean translating)
throws SQLException;

Creates a PreparedStatement object with
option to translate or not translate SQL

Creates a PreparedStatement object with
the given type and concurrency with option
to translate or not translate SQL

Creates a PreparedStatement object with
the given type, concurrency, and holdability
with option to translate or not translate SQL

Parameter Description

sql Specifies the String SQL statement value to be sent to the database;
may contain one or more parameters

Specifies the int value representing the result set type

resultSetType
resultSetConcur Specifies the int value representing the result set concurrency type
resultSetHold Specifies the int value representing the result set holdability type

6-9

ORACLE

Chapter 6
OracleTranslatingConnection Interface

Parameter Description

N . Specifies whether or not the statement supports translation
ranslating

Return Value

The prepareStatement () method returns a PreparedStatement object.

Usage Notes

When the "?" placeholder is used with the prepareStatement () method, the driver internally
changes the "?" to Oracle-style parameters because the server side translator can only work
with Oracle-style markers. This is necessary to distinguish the bind variables. If not, any
change in the order of the bind variables will be indistinguishable. The replaced oracle style
markers follow the format :b<n> where <n> is an incremental number. For example, exec
sample proc(?,?) becomes exec sample proc (:bl,:b2).

To further exemplify, consider a scenario of a vendor format where the vendor query selecting
top three rows is SELECT * FROM employees WHERE first name=? AND employee id=? TOP 3.
The query has to be converted to oracle dialect. In this case the following translation is to be
registered on the server:

From:

SELECT * FROM employees WHERE first name=:bl AND employee id=:b2 TOP 3

To:

SELECT * FROM employees WHERE first name=:bl AND employee id=:b2 AND ROWNUM <= 3
See SqlTranslationVersion and "SQL Translation of JDBC Applications" for more information.

Exceptions

The prepareStatement () method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to USER;

conn username/pwd;

drop table sample tab;

create table sample tab (cl number, c2 varchar2(100));
insert into sample tab values (1, 'A');

insert into sample tab values (1, 'A');

insert into sample tab values (1, 'A');

commit;

6-10

exec
exec
exec
from

whe

Chapter 6
OracleTranslatingConnection Interface

dbms_sql_translator.drop_profile('FOO');
dbms_sql_translator.create_profile('FOO');
dbms sql translator.register sql translation('FOO', 'select row of select cl, c2
sample tab
re cl=:bl and c2=:b2', 'select cl, c2 from sample tab where cl=:bl and c2=:b2'");

Example 6-3 Using the prepareStatement() method

publ
{
st
st
st

ic class SQLTransPstmt

atic String url="jdbc:oracle:thin:@localhost:5521:0rcl";

atic String user="username", pwd="pwd";
atic String PROFILE = "FOO";

static String primitiveSql = "select row of select cl, c2 from sample tab
where cl=:bl and c2=:b2";

public static void main(String[] args) throws Exception

{

OracleDataSource ods = new OracleDataSource();
ods.setURL (url) ;

Properties props = new Properties();

props.put ("user", user);
props.put ("password", pwd);
props.put (OracleConnection.CONNECTION PROPERTY SQL TRANSLATION PROFILE,

PROFILE) ;

ods.setConnectionProperties (props);
Connection conn = ods.getConnection();

System.out.println ("connection for SQL translation: "+conn);

try{

OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (sql, true)");
PreparedStatement trStmt = trConn.prepareStatement (primitiveSql, true);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

try{

ORACLE

OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (sql, false)");
PreparedStatement trStmt = trConn.prepareStatement (primitiveSqgl, false);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println ("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();

trStmt.close();
}catch (Exception e) {

6-11

Chapter 6
Error Translation Configuration File

System.out.println ("expected Exception: "+e.getMessage());

}

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (
sql, ResultSet.TYPE SCROLL SENSITIVE, ResultSet.CONCUR UPDATABLE, true)");
PreparedStatement trStmt = trConn.prepareStatement (
primitiveSql, ResultSet.TYPE SCROLL SENSITIVE,
ResultSet.CONCUR READ ONLY, true);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));

System.out.println("trRs.beforeFirst and show resultSet again...");
trRs.beforeFirst();
while (trRs.next())
System.out.println ("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

}

conn.close();

}

6.1.2.5 getSQLTranslationVersions()

Returns a map of all the translation versions of the query during SQL Translation. In case of an
exception, and if suppressExceptions is true, then the translated version in the map is NULL.

Syntax

public Map<SglTranslationVersion, String> getSglTranslationVersions(
String sql,
boolean suppressExceptions)

throws SQL Exception;

Return Value

Map with all translation versions of a query. See SqlTranslationVersion enum for more details
about returning versions.

Exception

This method throws SQLException if there is a problem in query translation, provided
suppressExceptions is false.

6.1.3 Error Translation Configuration File

An XML configuration file (path) is provided as a value of the
oracle.jdbc.sqlErrorTranslationFile property. This file contains the translations
information for errors. These errors occur when a connection to the server cannot be

ORACLE 610

ORACLE

Chapter 6
Error Translation Configuration File

established and thus translation cannot happen on the server. Error messages are of the type
that define the state of the database that prevents the connection from being established.

The structure of the configuration XML file is defined in the DTD as follows:

<!DOCTYPE

<|ELEMENT
<|ELEMENT
<|ELEMENT
<|ELEMENT
<|ELEMENT
1>

where,

LocalTranslationProfile][

LocalTranslationProfile (Exception+)>
Exception (ORAError, ErrorCode, SQLState)>
ORAError (#PCDATA)>

ErrorCode (#PCDATA)>

SQLState (#PCDATA)>

° ORAError is an int value and specifies the error code for the oracle error.

* ErrorCode is an int value and specifies the vendor error code, that is, the translated code.

° SQLState is a String value and specifies the vendor SQL state.

6-13

Glossary

adapter

A real-time, proprietary tool used to enable access to data stored in one database from another
database. Adapters are commonly used to translate SQL, map data types, and facilitate the
integration of SQL statements, triggers, and stored procedures.

custom SQL translation

A scenario in which users can register their customer-specific translations of SQL statements
with the SQL Translation Profile. During the translation of non-Oracle statements, the profile
looks up the custom translations first. Then, if no match is found, it invokes the SQL Translator.

data integration

The exchange of data between different databases, either asynchronously in real-time
transactions or synchronously as batch processes.

data integration framework

A set of tools and processes used to enable data exchanges between different databases.
Traditional frameworks include many nightly processes such as large batch extractions and
feeds, and bulk loading of data. Newer frameworks can include small daily processes and
feeds occurring in near real time.

database schema migration

The process of identifying and converting tables, columns, and other objects in a non-Oracle
schema to conform to the naming, size, and other conventions required by Oracle Database.

error translation

A scenario in which users can register vendor-specific translations of error codes and
messages with the SQL Translation Profile. During SQL execution, client applications rely on
vendor-specific error codes and messages. When errors occur, the translated error codes and
messages are returned instead of the Oracle error codes and messages.

ORACLE Glossary-1

ORACLE

Glossary

migration

The process of modifying a non-Oracle application, including all of its components (such as
architecture, data, SQL code, and client) to use the Oracle RDBMS rather than a proprietary
database management system.

migration repository

A data store in Oracle Database that Oracle SQL Developer uses to manage the metadata for
the source and target schema models during a migration. Multiple migration repositories can
be used to migrate from several databases to Oracle Database at the same time.

Oracle Database Gateways

A set of Oracle products that support data integration with non-Oracle systems synchronously
using consistent APIs.

Oracle GoldenGate

An Oracle product that supports modular, transaction-level data integration between diverse
data sources that are stored in SQL Server, Sybase, DB2, Oracle, and other databases.

Oracle SQL*Loader

A fast, flexible, and free Oracle utility that supports loading data from flat files into Oracle
Database. It supports several data formats and many different encodings. It also supports
parallel data loading.

Oracle SQL Developer Migration Wizard

An Oracle tool that enables the migration of a third-party database to an Oracle database in
batch mode. Migration includes data, schemas, objects, triggers, and stored procedures.

SQL dialect

A variation or extension of SQL implemented by a database vendor. When migrating client
applications from third-party databases to Oracle, all non-Oracle SQL statements must be
translated into Oracle SQL. Because these non-Oracle SQL statements are embedded within
the source code of client applications, locating and translating them is a time-consuming,
manual task. This release enhances the Oracle database to accept non-Oracle SQL
statements from external vendors, and translate them automatically at run time before
execution.

SQL Translation Profile

A database schema object that directs how non-Oracle SQL statements are translated into
Oracle SQL dialects. This schema also contains translations of error codes, SQLSTATESs, and
error messages to be returned when errors occur during the SQL execution.

When migrating a client application with non-Oracle SQL statements to Oracle, the user
creates a SQL Translation Profile and configures it to translate the SQL statements and errors

Glossary-2

ORACLE

Glossary

for the application. At run time, the application sets the translation profile in the Oracle
database to translate its SQL statements and errors.

SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party vendors, which
can be installed in Oracle Database. It translates the SQL statements of a client program
before they are processed by the Oracle Database SQL compiler. If an error results from
translated SQL statement execution, then Oracle Database SQL compiler generates an Oracle
error message.

SQLSTATE

A status parameter defined by the ANSI SQL standard. It is a 5-character string that indicates
the status of a SQL operation. Some of these values are:

* 00xxx: Unqualified Successful Completion
e 01xxx: Warning

* 02xxx: No Data

e 07xxx: Dynamic SQL Error

* 08xxx: Connection Exception

e 09xxx: Triggered Action Exception

Glossary-3

Index

A

ATTR_RAISE_TRANSLATION_ERROR, 4-2

C

M

createStatement(), 6-3
creating identity columns, 1-2

E

enhanced SQL to PL/SQL bind handling, 1-5

F

features supporting migration, 1-1

G

methods
createStatement(), 6-3
getSQLTranslationVersions(), 6-12
prepareCall(), 6-6
prepareStatement(), 6-9

Migrating a Sybase JDBC application, 5-1
capturing migration, 5-3
converting migration, 5-6, 5-7
generating migration, 5-9
moving the data, 5-10
setting up migration, 5-1

migration support for other database vendors, 1-8

getSQLTranslationVersions(), 6-12

N

native SQL support for query row limits and row
offsets, 1-6

O

identity columns, 1-1

implicit statement results, 1-2

interface
OracleTranslatingConnection, 6-2

J

JDBC API, 6-1
configuration file, 6-12
SQLErrorTranslation.xml, 6-12
methods
createStatement(), 6-3
getSQLTranslationVersions(), 6-12
prepareCall(), 6-6
prepareStatement(), 6-9
OracleTranslatingConnection interface, 6-2
translation properties, 6-1
sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1
JDBC driver support for application migration, 1-7
JDBC support for implicit results, 1-2

ORACLE

OCI support for implicit results, 1-3

ODBC driver support for application migration, 1-7

ODBC support for implicit results, 1-4

OEM tuning and performance packs, 1-7

Oracle Database Gateways, 1-8

Oracle GoldenGate, 1-8

Oracle SQL developer
migration support, 3-1
set up, 3-2

Oracle SQL Developer, 1-8

OracleTranslatingConnection interface, 6-2
createStatement() method, 6-3
getSQLTranslationVersions() method, 6-12
prepareCall() method, 6-6
prepareStatement() method, 6-9

P

permissions for installing the SQL translator, 3-11
prepareCall(), 6-6

prepareStatement(), 6-9

products supporting migration, 1-7

Index-1

S

SQL translation framework, 1-1
architecture, 2-2
configuration, 3-1, 3-9
installation, 3-1, 3-9
SQL translation profile, 2-1
SQL translator, 2-1
use, 2-2
when to use, 2-3
SQL translation of JDBC aplications, 4-1
SQL translation of JDBC applications, 4-1
error message translation, 4-1
error translation, 4-3
execution of translated Oracle dialect query,
4-2
parameter marker conversion, 4-2

ORACLE

Index

SQL translation of JDBC applications (continued)
SQL translation profile, 4-1
SQL translation of ODBC applications, 4-1, 4-4
error message translation, 4-4
SQL translation profile, 4-4
SQL translation profile
set up, 3-9
SQLErrorTranslation.xml, 6-12
sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1
SqglTranslationVersion enumerated values, 6-3

T

translation properties
sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1

Index-2

	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Documentation Accessibility
	Conventions

	Changes in This Release for Oracle Database SQL Translation and Migration Guide
	1 Introduction to Tools and Products that Support Migration
	1.1 Oracle Database Features for Migration Support
	1.1.1 SQL Translation Framework
	1.1.2 Support for Identity Columns
	1.1.2.1 Creating Identity Columns

	1.1.3 Implicit Statement Results
	1.1.3.1 JDBC Support for Implicit Results
	1.1.3.1.1 Processing Implicit Results in JDBC

	1.1.3.2 OCI Support for Implicit Results
	1.1.3.2.1 Processing Implicit Results in OCI

	1.1.3.3 ODBC Support for Implicit Results
	1.1.3.3.1 Processing Implicit Results in ODBC

	1.1.4 Enhanced SQL to PL/SQL Bind Handling
	1.1.4.1 Invoking a Subprogram with a Nested Table Parameter

	1.1.5 Native SQL Support for Query Row Limits and Row Offsets
	1.1.5.1 Limiting Bulk Selection

	1.1.6 JDBC Driver Support for Application Migration
	1.1.7 ODBC Driver Support for Application Migration

	1.2 Other Oracle Products that Enable Migration
	1.2.1 OEM Tuning and Performance Packs
	1.2.2 Oracle GoldenGate
	1.2.3 Oracle Database Gateways
	1.2.4 Oracle SQL Developer

	1.3 Migration Support for Other Database Vendors
	1.3.1 Application Support in Third-Party Databases
	1.3.2 Third-Party Database Version Support

	2 SQL Translation Framework Overview
	2.1 Architecture of SQL Translation Framework
	2.2 How to Use SQL Translation Framework
	2.3 When to Use SQL Translation Framework

	3 SQL Translation Framework Configuration
	3.1 Installing and Configuring SQL Translation Framework with Oracle SQL Developer
	3.1.1 Overview of Oracle SQL Developer Migration Support
	3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows
	3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup
	3.1.2.2 Starting Oracle SQL Developer

	3.1.3 Creating a Connection to Oracle Database
	3.1.4 Testing SQL Translation
	3.1.5 Creating a Translation Profile and Installing SQL Translator
	3.1.5.1 Installing SQL Translator
	3.1.5.2 Creating a Translation Profile

	3.1.6 Using the SQL Translator Profile

	3.2 Installing and Configuring SQL Translation Framework from Command Line
	3.2.1 Installing Oracle Sybase Translator
	3.2.2 Setting up a SQL Translation Profile
	3.2.3 Setting Up a Database Service to Use the SQL Translation Profile
	3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters

	3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile

	3.3 Granting Necessary Permissions for Installing the SQL Translator

	4 SQL Translation of JDBC and ODBC Applications
	4.1 SQL Translation of JDBC Applications
	4.1.1 SQL Translation Profile
	4.1.2 Error Message Translation
	4.1.3 Converting JDBC Standard Parameter Markers
	4.1.4 Executing the Translated Oracle Dialect Query
	4.1.5 Error Translation
	4.1.6 Using JDBC Driver for SQL Translation

	4.2 SQL Translation of ODBC Applications
	4.2.1 SQL Translation profile
	4.2.2 Error Message Translation
	4.2.3 Translating Error Messages

	5 Example: Application Migration Using SQL Translation Framework
	5.1 Migrating a Sybase JDBC Application
	5.1.1 Application Overview
	5.1.2 Setting Up Migration
	5.1.3 Capturing Migration
	5.1.4 Setting Migration Preferences
	5.1.5 Converting Migration
	5.1.6 Generating a Migration
	5.1.6.1 Creating a Target Oracle User

	5.1.7 Moving the Data

	5.2 Generating Migration Reports

	6 API Reference for SQL Translation of JDBC Applications
	6.1.1 Translation Properties
	6.1.1.1 sqlTranslationProfile
	6.1.1.2 sqlErrorTranslationFile

	6.1.2 OracleTranslatingConnection Interface
	6.1.2.1 SqlTranslationVersion
	6.1.2.2 createStatement()
	6.1.2.3 prepareCall()
	6.1.2.4 prepareStatement()
	6.1.2.5 getSQLTranslationVersions()

	6.1.3 Error Translation Configuration File

	Glossary
	adapter
	custom SQL translation
	data integration
	data integration framework
	database schema migration
	error translation
	migration
	migration repository
	Oracle Database Gateways
	Oracle GoldenGate
	Oracle SQL*Loader
	Oracle SQL Developer Migration Wizard
	SQL dialect
	SQL Translation Profile
	SQL Translator
	SQLSTATE

	Index

