
Oracle® Database
SQL Translation and Migration Guide

Release 23ai
F47005-04
April 2025

Oracle Database SQL Translation and Migration Guide, Release 23ai

F47005-04

Copyright © 2011, 2025, Oracle and/or its affiliates.

Primary Author: Tulika Das

Contributors: Peter Castro, Christopher Jones, Shoaib Lari, Tom Laszewski, Aman Manglik, Robert Pang, Rajendra
Pingte, Jeff D. Smith, Andrei Souleimanian

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Related Documents vii

Documentation Accessibility vii

Conventions vii

 Changes in This Release for Oracle Database SQL Translation and
Migration Guide

1 Introduction to Tools and Products that Support Migration

1.1 Oracle Database Features for Migration Support 1-1

1.1.1 SQL Translation Framework 1-1

1.1.2 Support for Identity Columns 1-1

1.1.2.1 Creating Identity Columns 1-2

1.1.3 Implicit Statement Results 1-2

1.1.3.1 JDBC Support for Implicit Results 1-2

1.1.3.2 OCI Support for Implicit Results 1-3

1.1.3.3 ODBC Support for Implicit Results 1-4

1.1.4 Enhanced SQL to PL/SQL Bind Handling 1-5

1.1.4.1 Invoking a Subprogram with a Nested Table Parameter 1-6

1.1.5 Native SQL Support for Query Row Limits and Row Offsets 1-6

1.1.5.1 Limiting Bulk Selection 1-6

1.1.6 JDBC Driver Support for Application Migration 1-7

1.1.7 ODBC Driver Support for Application Migration 1-7

1.2 Other Oracle Products that Enable Migration 1-7

1.2.1 OEM Tuning and Performance Packs 1-7

1.2.2 Oracle GoldenGate 1-8

1.2.3 Oracle Database Gateways 1-8

1.2.4 Oracle SQL Developer 1-8

1.3 Migration Support for Other Database Vendors 1-8

1.3.1 Application Support in Third-Party Databases 1-8

iii

1.3.2 Third-Party Database Version Support 1-9

2 SQL Translation Framework Overview

2.1 Architecture of SQL Translation Framework 2-2

2.2 How to Use SQL Translation Framework 2-2

2.3 When to Use SQL Translation Framework 2-3

3 SQL Translation Framework Configuration

3.1 Installing and Configuring SQL Translation Framework with Oracle SQL Developer 3-1

3.1.1 Overview of Oracle SQL Developer Migration Support 3-1

3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows 3-1

3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup 3-2

3.1.2.2 Starting Oracle SQL Developer 3-2

3.1.3 Creating a Connection to Oracle Database 3-2

3.1.4 Testing SQL Translation 3-3

3.1.5 Creating a Translation Profile and Installing SQL Translator 3-4

3.1.5.1 Installing SQL Translator 3-5

3.1.5.2 Creating a Translation Profile 3-7

3.1.6 Using the SQL Translator Profile 3-8

3.2 Installing and Configuring SQL Translation Framework from Command Line 3-9

3.2.1 Installing Oracle Sybase Translator 3-9

3.2.2 Setting up a SQL Translation Profile 3-9

3.2.3 Setting Up a Database Service to Use the SQL Translation Profile 3-10

3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters 3-10

3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile 3-11

3.3 Granting Necessary Permissions for Installing the SQL Translator 3-11

4 SQL Translation of JDBC and ODBC Applications

4.1 SQL Translation of JDBC Applications 4-1

4.1.1 SQL Translation Profile 4-1

4.1.2 Error Message Translation 4-1

4.1.3 Converting JDBC Standard Parameter Markers 4-2

4.1.4 Executing the Translated Oracle Dialect Query 4-2

4.1.5 Error Translation 4-3

4.1.6 Using JDBC Driver for SQL Translation 4-3

4.2 SQL Translation of ODBC Applications 4-4

4.2.1 SQL Translation profile 4-4

4.2.2 Error Message Translation 4-4

iv

4.2.3 Translating Error Messages 4-5

5 Example: Application Migration Using SQL Translation Framework

5.1 Migrating a Sybase JDBC Application 5-1

5.1.1 Application Overview 5-1

5.1.2 Setting Up Migration 5-1

5.1.3 Capturing Migration 5-3

5.1.4 Setting Migration Preferences 5-6

5.1.5 Converting Migration 5-7

5.1.6 Generating a Migration 5-9

5.1.6.1 Creating a Target Oracle User 5-10

5.1.7 Moving the Data 5-10

5.2 Generating Migration Reports 5-11

6 API Reference for SQL Translation of JDBC Applications

6.1.1 Translation Properties 6-1

6.1.1.1 sqlTranslationProfile 6-1

6.1.1.2 sqlErrorTranslationFile 6-2

6.1.2 OracleTranslatingConnection Interface 6-2

6.1.2.1 SqlTranslationVersion 6-3

6.1.2.2 createStatement() 6-3

6.1.2.3 prepareCall() 6-6

6.1.2.4 prepareStatement() 6-9

6.1.2.5 getSQLTranslationVersions() 6-12

6.1.3 Error Translation Configuration File 6-12

Glossary

Index

v

List of Tables

1-1 Supported Applications in Databases 1-9

1-2 Supported Database Versions for Migration Using Oracle SQL Developer 1-9

6-1 Translation Properties 6-1

6-2 OracleTranslatingConnection Enumeration 6-2

6-3 OracleTranslatingConnection Methods 6-3

vi

Preface

This guide describes the installation, configuration, and administration tasks for all activities
related to migrating applications developed for non-Oracle databases, such as DB2, Sybase,
and legacy applications, to Oracle Database. This guide also provides migration scenarios that
users may implement in sequence.

Audience
This guide is for database administrators and application developers who are interested in
migrating from databases other than Oracle to an Oracle Database.

Related Documents
For more information, see the following documents in the Oracle Database documentation set:

• Oracle Database SQL Language Reference

• Oracle Database Administrator's Guide

• Oracle Database Development Guide

• Oracle Database Reference

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

Changes in This Release for Oracle Database
SQL Translation and Migration Guide

This preface contains the changes in this book for Oracle Database 23ai.

Desupport of MySQL Client Library Driver for Oracle

The MySQL Client Library Driver for Oracle is desupported in Oracle Database 23ai.
The MySQL Client library driver, liboramysql, was deprecated in Oracle Database 21c. It is
now desupported. There is no replacement. This desupport does not affect the ability of older
Oracle Database Client releases that use liboramysql to connect to the database. However,
the features available to use through these clients eventually can be limited.

ix

1
Introduction to Tools and Products that
Support Migration

Before migrating your application to Oracle Database, you must be aware of several key points
that are described in Oracle Database Concepts.

When discussing the migration of a database-centered enterprise, it is useful to keep in mind
that the actual migration of database schema and data is only a part of the process. The
migration of a core business solution often involves several databases and applications that
work together to deliver the product and services that drive the revenue of an organization. For
more information about preparing a migration plan, see Oracle SQL Developer User's Guide.

1.1 Oracle Database Features for Migration Support
Oracle Database 12c introduced a large set of features that collectively enhance the migration
process of non-Oracle database applications to Oracle Database.

1.1.1 SQL Translation Framework
A key part of migrating non-Oracle databases to Oracle Database involves the conversion of
non-Oracle SQL statements to SQL statements that are acceptable to Oracle Database. The
conversion of the non-Oracle SQL statements of the applications is a manual and tedious
process. To minimize the effort, or to eliminate the necessity for converting these statements,
Oracle Database 12c introduced a new feature called SQL Translation Framework. SQL
Translation Framework receives these SQL statements from client applications, and then
translates them at run-time.

The SQL Translation Profile registers the SQL Translater inside the database so it can handle
the SQL translation for non-Oracle client application. If an error occurs while a SQL statement
is executed, then the SQL Translator can translate the Oracle error code and the ANSI
SQLSTATE into the vendor-specific values expected by the application. The translated
statements are then saved in the SQL Translation Profile, to be examined and edited at the
user’s discretion.

The advantages of SQL Translation Framework follow:

• The translation of SQL statements, Oracle error codes, and ANSI SQLSTATE is automatic.

• The translations are centralized and examinable.

• The user has the option to extract translations and insert them back into the application.

1.1.2 Support for Identity Columns
Oracle Database 12c implements ANSI-compliant IDENTITY columns. Migration from database
systems that use identity columns is simplified and can take advantage of this new
functionality.

1-1

This feature implements auto increment by enhancing DEFAULT or DEFAULT ON NULL semantics
for use by SEQUENCE.NEXTVAL and SYS_GUID, supports built-in functions and implicit return of
default values.

1.1.2.1 Creating Identity Columns
Example 1-1 creates a table with an identity column, which is generated by default. When
explicit nulls are inserted into the identity column, the sequence generator creates values by
default. For further details, see Oracle Database SQL Language Reference.

Example 1-1 How to create an identity column

CREATE TABLE t1 (c1 NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 c2 VARCHAR2(10));
INSERT INTO t1(c2) VALUES (‘abc');
INSERT INTO t1 (c1, c2) VALUES (null, ‘xyz');
SELECT c1, c2 FROM t1;

1.1.3 Implicit Statement Results
Starting with Oracle Database 12c Release 2 (12.2), Oracle implicitly returns to the client
application the results of SQL statements executed within a stored procedure, bypassing the
explicit use REF CURSORs. This feature eliminates the overhead of re-writing the client-side
code.

Implicit statement results enable the user to write a stored procedure, where each intended
query (the statement after the FOR keyword) is part of the OPEN cursor variable. When code is
migrated to Oracle Database from other vendors environments, the PL/SQL layer adds the
equivalent capability and enables SELECT statements to pass the results to the client. The
stored procedures can then return the results directly to the client with the
DBMS_SQL.RETURN_RESULT procedure. The SQL*Plus FORMAT command and its variations may
be invoked to customize the output.

For information about the DBMS_SQL package, see Oracle Database PL/SQL Packages and
Types Reference. For information about how to use format output, SQL*Plus User's Guide and
Reference.

1.1.3.1 JDBC Support for Implicit Results
Starting with Oracle Database 12c Release 2 (12.2), JDBC applications provide support for
implicit results through the following new functions:

• getMoreResults
• getMoreResults(int)
• getResultSet
You can use these methods to retrieve and process the implicit results returned by PL/SQL
procedures or blocks, as demonstrated in Example 1-2.

For more information, see Oracle Database JDBC Developer's Guide

1.1.3.1.1 Processing Implicit Results in JDBC
Example 1-2 Retrieving and Processing Implicit Results from PL/SQL Blocks

Suppose you have a procedure called foo:

Chapter 1
Oracle Database Features for Migration Support

1-2

 create procedure foo as
 c1 sys_refcursor;
 c2 sys_refcursor;
begin
 open c1 for select * from hr.employees;
 dbms_sql.return_result(c1); --return to client
 -- open 1 more cursor
 open c2 for select * from hr.departments;
 dbms_sql.return_result (c2); --return to client
end;

The following code demonstrates how to retrieve the implicit results returned by PL/SQL
procedures using the JDBC getMoreResults methods:

String sql = "begin foo; end;";
...
Connection conn = DriverManager.getConnection(jdbcURL, user, password);
 try {
 Statement stmt = conn.createStatement ();
 stmt.executeQuery (sql);

 while (stmt.getMoreResults())
 {
 ResultSet rs = stmt.getResultSet();
 System.out.println("ResultSet");
 while (rs.next())
 {
 /* get results */
 }
 }
 }

1.1.3.2 OCI Support for Implicit Results
Starting with Oracle Database 12c Release 2 (12.2), Oracle Call Interface (OCI) provides
support for implicit results through a new function, OCIStmtGetNextResult(). It is called
iteratively by C applications to retrieve each implicit result from stored procedures and
anonymous blocks. Implicit results consume rows directly from a stored procedure without
going through a RefCursor.

See Also:

Oracle Call Interface Programmer's Guide

1.1.3.2.1 Processing Implicit Results in OCI
Example 1-3 shows how to use the OCIStmtGetNextResult() function to retrieve and process
the implicit results returned by either a PL/SQL stored procedure or an anonymous block:

Example 1-3 Using OCIStmtGetNextResult() to Process Implicit Results

OCIStmt *stmthp;
 ub4 rsetcnt;
 void *result;
 ub4 rtype;
 char *sql = "begin foo; end;";

Chapter 1
Oracle Database Features for Migration Support

1-3

 OCIHandleAlloc((void *)envhp, (void **)&stmthp,
 OCI_HTYPE_STMT, 0, (void **)0);

 /* Prepare and execute the PL/SQL procedure. */
 OCIStmtPrepare(stmthp, errhp, (oratext *)sql, strlen(sql),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0,
 (const OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);

 /* Now check if any implicit results are available. */
 OCIAttrGet((void *)stmthp, OCI_HTYPE_STMT, &rsetcnt, 0,
 OCI_ATTR_IMPLICIT_RESULT_COUNT, errhp);

 /* Loop and retrieve the implicit result-sets.
 * ResultSets are returned in the same order as in the PL/SQL
 * procedure/block.
 */
 while (OCIStmtGetNextResult(stmthp, errhp, &result, &rtype,
 OCI_DEFAULT) == OCI_SUCCESS)
{ /* Check the type of implicit ResultSet, currently
 * only supported type is OCI_RESULT_TYPE_SELECT
*/ if (rtype == OCI_RESULT_TYPE_SELECT)
{ OCIStmt *rsethp = (OCIStmt *)result;
 /* Perform normal OCI actions to define and fetch rows. */
 } else
 printf("unknown result type %d\n", rtype);
 /* The result set handle should not be freed by the user. */
 } OCIHandleFree(stmthp, OCI_HTYPE_STMT); /* All implicit result-sets are also freed.
*/

1.1.3.3 ODBC Support for Implicit Results
Starting with Oracle Database 12c, ODBC applications provide support for implicit results
through a new function, SQLMoreResults(). ODBC driver is enhanced to make use of the
following new OCI APIs that enhance the migration process:

• OCIStmtGetNextResult() function

• OCI_ATTR_IMPLICIT_RESULT_COUNT attribute

• OCI_RESULT_TYPE_SELECT attribute

ODBC support for implicit results enables the migration of Sybase and SQL Server
applications that use multiple result sets bundled in the stored procedures. Oracle achieves
this by sending the statements or procedures to the server, where the non-Oracle SQL is
translated to Oracle syntax.

1.1.3.3.1 Processing Implicit Results in ODBC
Example 1-4 and Example 1-5 demonstrate how to retrieve implicit results in ODBC.

Example 1-4 Using ODBC to return implicit results with DBMS_SQL.RETURN_RESULT

create or replace procedure foo
is
c1 sys_refcursor;
c2 sys_refcursor;
begin
 open c1 for select employee_id, first_name from employees where employee_id=7369;
 dbms_sql.return_result(c1);

Chapter 1
Oracle Database Features for Migration Support

1-4

 open c2 for select department_id, department_name from departments where rownum <=2;
 dbms_sql.return_result(c2);
end;
/

Example 1-5 Using ODBC to return implicit results with SQLMoreResults

SQLLEN enind,jind;
SQLUINTEGER eno = 0;
SQLCHAR empname[STR_LEN] = "";
//Allocate HENV, HDBC, HSTMT handles
rc = SQLPrepare(hstmt, "begin foo(); end;", SQL_NTS);
rc = SQLExecute(hstmt);
//Bind columns for the first SELECT query in the procedure foo()
rc = SQLBindCol (hstmt, 1, SQL_C_ULONG, &eno, 0, &jind);
rc = SQLBindCol (hstmt, 2, SQL_C_CHAR, empname, sizeof (empname),
&enind);
…
//so on for all the columns that needs to be fetched as per the SELECT
//query in the procedure.
//Fetch all results for first SELECT query
while ((rc = SQLFetch (hstmt)) != SQL_NO_DATA)
{
//do something
}
//Again check if there are any results available by calling
//SQLMoreResults. SQLMoreResults will return SQL_SUCCESS if any
//results are available else returns errors appropriately as explained
//in MSDN ODBC spec.
rc = SQLMoreResults (hstmt);
if(rc == SQL_SUCCESS)
{
//If the columns for the second SELECT query are different the rebind
//the columns for the second SELECT SQL statement.
rc = SQLBindCol (hstmt, 1,…);
rc = SQLBindCol (hstmt, 2,…);
…
//Fetch the second result set
while ((rc = SQLFetch (hstmt)) != SQL_NO_DATA)
//do something
}
SQLFreeStmt(hstmt,SQL_DROP);
SQLDisconnect (hdbc);

SQLFreeConnect (hdbc);
SQLFreeEnv (henv);

1.1.4 Enhanced SQL to PL/SQL Bind Handling
In earlier releases of Oracle Database, a SQL expression could not invoke a PL/SQL function
that had a formal parameter or return type that was not a SQL data type.

Starting with Oracle Database 12c, a PL/SQL anonymous block, a SQL CALL statement, or a
SQL query can invoke a PL/SQL function that has parameters of the following types:

• Boolean
• Record declared in a package specification

• Collection declared in a package specification

Chapter 1
Oracle Database Features for Migration Support

1-5

The SQL TABLE operator is also enhanced, so that you can query on PL/SQL collections of
locally scoped types as an argument to TABLE operator. Here, the collections can be of nested
table types, VARRAY, or PL/SQL index table that are indexed by PLS_INTEGER.

This feature extends the flexibility of the TABLE operator, and enables easy migration of non-
Oracle stored procedure code to PL/SQL.

1.1.4.1 Invoking a Subprogram with a Nested Table Parameter
Example 1-6 shows how to dynamically call a subprogram with a nested table formal
parameter. See Oracle Database PL/SQL Language Reference for more information on this
topic.

Example 1-6 Invoking a subprogram with a nested table formal parameter

CREATE OR REPLACE PACKAGE pkg AUTHID CURRENT_USER AS

 TYPE names IS TABLE OF VARCHAR2(10);

 PROCEDURE print_names (x names);
END pkg;
/
CREATE OR REPLACE PACKAGE BODY pkg AS
 PROCEDURE print_names (x names) IS
 BEGIN
 FOR i IN x.FIRST .. x.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(x(i));
 END LOOP;
 END;
END pkg;
/
DECLARE
 fruits pkg.names;
 dyn_stmt VARCHAR2(3000);
BEGIN
 fruits := pkg.names('apple', 'banana', 'cherry');

 dyn_stmt := 'BEGIN print_names(:x); END;';
 EXECUTE IMMEDIATE dyn_stmt USING fruits;
END;

1.1.5 Native SQL Support for Query Row Limits and Row Offsets
Starting with Oracle Database 12c, Oracle provides a row limiting clause that enables native
SQL support for query row limits and row offsets. If your application has queries that limit the
number of rows returned or offset the starting row of the results, this feature significantly
reduces SQL complexity for such queries.

1.1.5.1 Limiting Bulk Selection
Example 1-7 shows how to limit bulk selection with the FETCH FIRST clause. See Oracle
Database SQL Language Reference for more information on this topic.

Example 1-7 How to limit bulk selection

DECLARE
 TYPE SalList IS TABLE OF employees.salary%TYPE;
 sals SalList;
BEGIN

Chapter 1
Oracle Database Features for Migration Support

1-6

 SELECT salary BULK COLLECT INTO sals FROM employees
 WHERE ROWNUM <= 50;

 SELECT salary BULK COLLECT INTO sals FROM employees
 SAMPLE (10);

 SELECT salary BULK COLLECT INTO sals FROM employees
 FETCH FIRST 50 ROWS ONLY;
END;
/

1.1.6 JDBC Driver Support for Application Migration
Many applications that you want to migrate to Oracle Database from other databases have
Java applications that use JDBC to connect to the database. To facilitate SQL translation,
Oracle Database 12c introduced a new set of JDBC APIs that are specific to SQL translation.

See Also:

• "SQL Translation of JDBC Applications"

• API Reference for SQL Translation of JDBC Applications

• Complete documentation of the oracle.jdbc package in Oracle Database JDBC
Java API Reference

• http://www.oracle.com/technetwork/database/enterprise-edition/
jdbc-112010-090769.html for an updated list of JDBC drivers

1.1.7 ODBC Driver Support for Application Migration
ODBC driver supports the migration of third-party applications to Oracle Databases by using
the SQL Translation Framework. This enables non-Oracle database SQL statements to run
against Oracle Database. See "How to Use SQL Translation Framework" before beginning to
migrate third-party ODBC application to Oracle Database.

To use this feature with an ODBC application, you must specify the service name, which was
created as part of SQL Translation Framework setup, as the ServerName= entry in
the .odbc.ini file.

If you require support for translation of Oracle errors (ORA errors) to your the native database,
once your application starts running against Oracle Database, then you must enable the
SQLTranslateErrors=T entry in the .odbc.ini file. See "SQL Translation of ODBC
Applications" for more information on this topic.

1.2 Other Oracle Products that Enable Migration
Oracle recommends the use of several Oracle products as part of an overall migration strategy.

1.2.1 OEM Tuning and Performance Packs
For every type of migration, a few of the SQL statements used in the application must change,
and some indexes must be re-built. Oracle SQL Tuning and Performance Packs provide
guidance for the optimization step of the application migration.

Chapter 1
Other Oracle Products that Enable Migration

1-7

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

1.2.2 Oracle GoldenGate
Oracle GoldenGate is a comprehensive software package for enabling the replication of data in
heterogeneous data environments. The product set enables high availability solutions, real-
time data integration, transactional change data capture, data replication, transformations, and
verification between operational and analytical enterprise systems.

Oracle GoldenGate enables the exchange and manipulation of data at the transaction level
among multiple, heterogeneous platforms across the enterprise. Its modular architecture
provides the flexibility to extract and replicate selected data records, transactional changes,
and changes to DDL (data definition language) across a variety of topologies.

When you migrate very large databases, the actual process of copying data from one database
to another is time-consuming. During this time, the enterprise must continue delivering services
using the old solution, which changes some of the data. These run-time changes must be
captured and propagated to Oracle Database. Oracle GoldenGate captures these changes
and enables side-by-side testing to ensure that the new solution performs as planned.

1.2.3 Oracle Database Gateways
Oracle Database Gateways address the needs of disparate data access. In a heterogeneously
distributed environment, Gateways make it possible to integrate with any number of non-
Oracle systems from an Oracle application. They enable integration with data stores such as
IBM DB2, Microsoft SQL Server and Excel, transaction managers like IBM CICS and message
queuing systems like IBM WebSphere MQ.

For more information about Oracle Database Gateways, see http://www.oracle.com/
technetwork/database/gateways/index.html

1.2.4 Oracle SQL Developer
Oracle SQL Developer, as described in Oracle SQL Developer User's Guide, has a large suite
of features that enable migration, including the following features:

• Support for database migration, such as schema, data, and server-side objects, from non-
Oracle databases to Oracle Database (Migration Wizard)

• Support for application migration, including SQL statement pre-processing and data type
translation support (Application Migration Assistant)

1.3 Migration Support for Other Database Vendors
Oracle provides migration support for applications running on various databases.

1.3.1 Application Support in Third-Party Databases
Table 1-1 provides information about the applications supported in several third-party
databases. Note that while translation framework is available for DB2 LUW, a translator for
DB2 is not available.

Chapter 1
Migration Support for Other Database Vendors

1-8

http://www.oracle.com/technetwork/database/gateways/index.html
http://www.oracle.com/technetwork/database/gateways/index.html

Table 1-1 Supported Applications in Databases

Application SQL
Server

DB2 LUW DB2
AS400

Sybase
ASE

Teradata Informix

Oracle SQL Developer Yes Yes No Yes Yes No

Oracle Migration Workbench No No Yes No No Yes

SQL Translation Framework (SQL
Translation Profile)

Yes Yes Yes Yes Yes Yes

SQL Translation Framework (SQL
Translator)

yes Partial No Yes No No

1.3.2 Third-Party Database Version Support
This section lists the supported database versions for migration using Oracle SQL Developer.

The Table 1-2 table does not provide a comprehensive list. SQL translation may not work
properly for every database listed on the table.

Table 1-2 Supported Database Versions for Migration Using Oracle SQL Developer

RDBMS Supported Versions

SQL Server 7.0, 2000, 2005,2008

Sybase Adaptive Server (ASE) 12, 15

Access 97, 2000, 2002 and 2003

DB2 AS400 V4R3, V4R5

DB2 LUW 8, 9

Teradata 12

Informix 7.3, 9.1, 9.2, 9.3, 9.4

Chapter 1
Migration Support for Other Database Vendors

1-9

2
SQL Translation Framework Overview

Various client-side applications, designed to work with non-Oracle Databases, cannot be used
with Oracle Database without significant alterations. This is because SQL dialect varies among
vendors of database technologies and different vendors use different syntaxes to express SQL
queries and statements.

Starting with Oracle Database 12c, there is a new mechanism called SQL Translation
Framework. It translates the SQL statements of a client program from a foreign (non-Oracle)
SQL dialect into the SQL dialect used by the Oracle Database SQL compiler.

In addition to translating non-Oracle SQL statements, the SQL Translation Framework may be
used to substitute an Oracle SQL statement with another Oracle statement to address a
semantic or performance issue. In this way, you can address an application issue without
patching the client application.

The SQL translation framework consists of two basic components: SQL Translator, and SQL
Translation Profile.

The SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party vendors, which
can be installed in Oracle Database. It translates the SQL statements of a client program
before they are processed by the Oracle Database SQL compiler. If an error results from
translated SQL statement execution, then Oracle Database SQL compiler generates an Oracle
error message.

The SQL Translator automatically translates non-Oracle SQL to Oracle SQL, thereby enabling
the existing client-side application code to run largely unchanged against an Oracle Database.
This reduces the cost of migration to Oracle Database storage significantly. As a corollary, the
translation feature may be used in other scenarios, where it may be expedient to intervene
between the original SQL statement submitted by the client and its actual execution.

The SQL Translation Profile

The SQL Translation Profile is a database object that contains the set of captured non-Oracle
SQL statements, and their translations or translation errors. The SQL Translation Profile is
used to review, approve, and modify translations. A profile is associated to a single translator.
However, a translator can be used in one or more SQL Translation Profiles. Typically, there is
one SQL Translation Profile per application, otherwise applications can share translated
queries. You can export profiles among various databases.

The following figure illustrates the run-time overview the SQL Translation Framework.

2-1

Figure 2-1 SQL Translation Framework at Runtime

SQL Translation

Framework

Non-Oracle SQL

Results
Application

Oracle Database

SQL Translator

SQL

Translation

Profile

2.1 Architecture of SQL Translation Framework
The key component of SQL Translation Framework is the SQL Translation Profile. The profile
is a collection of non-Oracle statements that are processed through the translator. The
application determines which profile to use when connecting to the Oracle Database. The
translator handles the actual translation work.

In most cases, the non-Oracle SQL statements and errors are translated by a SQL Translator
registered in the profile. The translator may be supplied by Oracle or by a third-party vendor. If
the translator does not have a translation for a particular SQL statement or error, then you may
register your own custom translation. You may also wish to register your own custom
translation to override the default translator and to customize your translation results.

2.2 How to Use SQL Translation Framework
Perform the following steps to use SQL Translation Framework:

1. Install a SQL Translator, either from Oracle or a third-party vendor, in Oracle Database.

2. Create a SQL Translation Profile and register the SQL Translator with the profile.

3. Create a Database service and specify the SQL Translation Profile as a service attribute to
which the application can connect.

Note that setting the SQL Translation Profile at the service level ensures that everything
running through that listener service is translated automatically.

The translator can also be activated at connection level by using the ALTER SESSION
statement or the LOGON triggers.

4. Link the application with an Oracle driver to connect the application to Oracle Database.
You must also change the connection settings to connect to the Database service with the
SQL Translation Profile.

5. Test all functionality of the application against Oracle Database. As the application runs,
the SQL Translation Profile translates SQL statements of the application from the third-
party SQL dialect to semantically-equivalent Oracle syntax and register them in the profile.

Chapter 2
Architecture of SQL Translation Framework

2-2

If the translator does not have a translation for a particular SQL statement or error, then
you may register your own translation to fill its place.

6. Verify the custom translations and edit them, if required. Alternatively, register new ones to
ensure that the application performs as intended, until testing is complete.

Oracle recommends establishing a test environment and rigorously testing the application,
ideally through a regression test suite.

7. Set up the server-side application objects and data in the production Oracle Database for
deployment to a production environment.

8. Create a database service with the profile set as a service attribute and change the
connection settings of the application, so that it connects to the database service in the
production database. The application is expected to run as tested.

Oracle recommends that the application be monitored to guard against the possibility of errors
due to unavailability of translation of any SQL statement. You must first disable the automatic
translation of new and unseen SQL statements in the profile; when any such statement is
encountered, it raises an error that is logged. In cases of alerts for mis-translation, you must
make adjustments to the profile.

See Also:

• The new DBMS_SQL_TRANSLATOR PL/SQL package and updated DBMS_SQL and
DBMS_SERVICE PL/SQL packages in the Oracle Database PL/SQL Packages and
Types Reference.

• Updated GRANT and REVOKE statements and new system privileges in the Oracle
Database SQL Language Reference.

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Administrator's Guide

2.3 When to Use SQL Translation Framework
Use SQL Translation to migrate a client application that uses SQL statements with vendor-
proprietary SQL syntax.

Note:

Currently, SQL Translators are available only for Sybase and SQL Server, and there
is limited support for DB2.

SQL Translation Framework is designed for use with open API applications, such as ODBC or
JDBC, and applications that use SQL statements that may be translated into semantically-
equivalent Oracle syntax. These applications must relink to the Oracle ODBC or JDBC driver
and then execute through the translation service.

Following are the possible scenarios for the connection mechanism:

• If the application uses ODBC, JDBC, OLE DB or .NET driver, or data provider to connect to
the database, then the driver or data provider for Oracle must be replaced.

Chapter 2
When to Use SQL Translation Framework

2-3

• No direct translator is available for DB2. For more information, refer to "Migration Support
for Other Database Vendors".

If the application uses IBM DRDA network protocol to connect to DB2, then the database
connection settings must be changed to connect to Oracle through DRDA Application
Server for Oracle.

• If the application uses a vendor-proprietary C client API (the case of Sybase), then the API
calls must be replaced with appropriate Oracle OCI APIs.

Chapter 2
When to Use SQL Translation Framework

2-4

3
SQL Translation Framework Configuration

The SQL Translation Framework may be installed and configured using Oracle SQL
Developer, or from the command line interface. In either case, the user must have the
necessary permissions to install SQL Translator.

3.1 Installing and Configuring SQL Translation Framework with
Oracle SQL Developer

You can use the DBA Navigator in Oracle SQL Developer 3.2 to install and manage the
translator and translation profile.

3.1.1 Overview of Oracle SQL Developer Migration Support
The SQL Translation framework is installed as part of Oracle Database installation. However, it
must be configured to recognize the non-Oracle SQL dialect of the application and you must
install at least one translator to fully utilize the framework.

Before using the SQL Translation feature, you must migrate your data, schema, stored
procedures, triggers, and views. Oracle implements database schema migration and data
migration through Oracle SQL Developer functionality. Oracle SQL Developer simplifies the
process of migrating a non-Oracle database to an Oracle Database through the use of
Migration Wizard. The Migration wizard provides convenient and comprehensive guidance
through the phases involved in migrating a database.

Oracle SQL Developer captures information from the source non-Oracle database and
displays it in a captured model, which is a representation of the structure of the source
database. This representation is stored in a migration repository, which is a collection of
schema objects that Oracle SQL Developer uses to store migration information.

The information in the repository is used to generate the converted model, which is a
representation of the structure of the destination database as it will be implemented in the
Oracle database. You can then use the information in the captured model and the converted
model to compare database objects, identify conflicts with Oracle reserved words, and manage
the migration progress. When you are ready to migrate, generate the Oracle schema objects,
and then migrate the data.

This section describes how to perform the subsequent tasks that enable automatic run-time
migration. These examples use SQL Translator with a JDBC application that runs against a
Sybase database; they can be easily adapted for other client/database configurations. Note
that Oracle SQL Developer is shipped with an installed Sybase translator.

See Oracle SQL Developer User's Guide for more information.

3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows
Oracle SQL Developer 3.2 is shipped with Oracle Database 11g JDBC drivers and there is no
client for Windows in this release. If you are using a Windows system, then you must enable

3-1

Oracle SQL Developer 3.2 to use Oracle Database 12c JDBC driver, so that all the features of
the current release are enabled. Perform the following steps to achieve this:

• Rename the sqldeveloper\jdbc\lib folder to sqldeveloper\jdbc\lib_11g.

• Create a new empty folder as sqldeveloper\jdbc\lib.

• Unzip Oracle Database 12c JDBC JAR files into the new sqldeveloper\jdbc\lib folder.

See Oracle Database JDBC Developer's Guide for more information about Oracle
Database 12c JDBC files.

3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup
Oracle SQL Developer automatically uses JDBC drivers found in any ORACLE_HOME\client
directory. To override this behavior and make Oracle SQL Developer use JDBC drivers in the
sqldeveloper\jdbc\lib directory, create a new sqldeveloper.bat file in the sqldeveloper
directory:

set ORACLE_HOME=%CD%
start sqldeveloper.exe

3.1.2.2 Starting Oracle SQL Developer
Run the sqldeveloper.bat file to run Oracle SQL Developer.

To check the JDBC driver configuration:

1. Select About from Help menu.

2. Select Properties. It must display the configuration as shown in Figure 3-1:

Figure 3-1 Checking JDBC Configuration for Oracle SQL Developer

3.1.3 Creating a Connection to Oracle Database
Create a connection to the Database with the credentials as shown in Figure 3-2:

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-2

Figure 3-2 Creating an Oracle Database Connection

You can use the following command to check the database you are connected to and the
JDBC driver being used:

show jdbc

Setting Up Migration Preferences

You must set up the migration preferences in the following way:

1. Select Preferences from the Tools menu.

2. Select Generation Options from Migration option on the left panel, as shown in
Figure 3-3.

Figure 3-3 Setting Up Migration Preferences in Oracle SQL Developer

3.1.4 Testing SQL Translation
Perform the following steps to determine whether Sybase SQL Translator is properly installed
or not:

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-3

1. Open Oracle SQL Developer.

2. From the Tools menu, select Migration, and then select Translation Scratch Editor.

3. In the Scratch Editor toolbar, select Sybase T_SQL To PL/SQL option, which is the
Sybase translator.

4. In the left panel of the Scratch Editor, enter the following query in Sybase SQL dialect:

select top 10 * from dual
5. Click the Translate icon.

The translated query text is displayed in the right panel of the editor.

3.1.5 Creating a Translation Profile and Installing SQL Translator
Oracle SQL Developer is installed with Oracle Database 12c. It loads Java classes of the
Sybase Translator, approximately 15 MB, into Oracle Database. Due to the size and the
number of Java classes loaded, Oracle recommends you to install the translator locally, and
not over a WAN.

If the translator is installed under a user profile that has a pre-existing migration repository, the
translator picks up the context of the database, such as name changes. Therefore, you must
create a new user with the following specifications:

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-4

• CONNECT, RESOURCE, and CREATE VIEW privileges

• Access to storage in the SYSTEM and/or USER tablespace

3.1.5.1 Installing SQL Translator
To install SQL Translator:

1. Log into the database using ADMIN privileges.

2. At the command line, enter the following commands.

GRANT CONNECT, RESOURCE, CREATE VIEW TO TranslUser identified by TranslUser;
ALTER USER TranslUser QUOTA UNLIMITED ON SYSTEM;

3. From the View menu, select DBA.

4. In the DBA Navigator, right-click Connections and select Add Connection.

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-5

5. In the Select Connection box, select the connection if you want to use an existing
connection. If you want to create a new connection, then add the information for
transluser discussed in step 2.

6. Click Connect.

7. In the DBA navigator, right-click the connection created in the preceding steps, and select
Install SQL Translator.

The Install SQL Translator dialog box opens.

You must have special permissions to install the SQL Translator and create a SQL
Translation Profile. You will be prompted to provide the SYS password, so that these
privileges can be granted. Refer to "Granting Necessary Permissions for Installing the SQL
Translator" for more information about these privileges.

8. Create a SQL Translation Profile, following steps described in "Creating a Translation
Profile ".

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-6

9. Verify that the user has sufficient privileges to run the translation profile.

You may have to login as SYS user to grant additional privileges.

10. Install SQL Translator.

11. To ensure that both the Profile and Translator are properly installed, verify whether the
appropriate package and Java class files are present or not in the Connections pane.

3.1.5.2 Creating a Translation Profile
To create a translation profile:

1. From the SQL Translator drop-down box, select Sybase or SQL Translator.

2. Check Create New Profile.

3. Enter SYBASE_PROFILE in Profile Name field.

4. In Profile Schema, select the name of the user created in section "Creating a Translation
Profile and Installing SQL Translator".

5. Click Apply.

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-7

3.1.6 Using the SQL Translator Profile
To test the SQL Translation Profile, use SQL Worksheet:

1. Right-click the SYBASE_PROFILE node.

2. Select Open SQL Worksheet with Profile.

3. Enter a T-SQL statement that you want to translate.

4. Click SYBASE_PROFILE and select the SQL Translation tab to inspect the profile and view
the translated statement.

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-8

An alternative way to view the profile SQL in a better way when you double-click on it, the
fingerprint and template open in a Translation Scratch Editor as shown in the following
images:

3.2 Installing and Configuring SQL Translation Framework from
Command Line

There are several processes that you must complete to successfully install and configure the
SQL Translation Framework from command line interface.

3.2.1 Installing Oracle Sybase Translator
To install Oracle Sybase Translator, Use Oracle SQL Developer as described in "Installing and
Configuring SQL Translation Framework with Oracle SQL Developer".

3.2.2 Setting up a SQL Translation Profile
Perform the following steps to set up a SQL Translation Profile through a command-line
interface:

Chapter 3
Installing and Configuring SQL Translation Framework from Command Line

3-9

1. Login as a system user.

> sqlplus system/<password>
2. Grant create privileges to the standard user.

This allows the standard user to create a SQL Translation Profile.

 SQL> grant create sql translation profile to <user>;
3. Login as a standard user.

sqlplus <user>/<password>
4. Invoke the methods of DBMS_SQL_TRANSLATOR PL/SQL package to create and configure the

translation profile.

SQL> exec dbms_sql_translator.create_profile('sybase_profile')
SQL> exec dbms_sql_translator.set_attribute('sybase_profile',
 dbms_sql_translator.attr_translator,
 'migration_repo.sybase_tsql_translator')

5. Grant all privileges for the SQL Translation Profile to Oracle Sybase translation schema.

SQL> grant all on sql translation profile sybase_profile to migration_repo;

3.2.3 Setting Up a Database Service to Use the SQL Translation Profile
This section describes how to add a database service in a standard environment and in an
Oracle Real Application Clusters environment.

Setting Up a Database Service in a Standard Environment

To set up a database service in a standard environment:

1. Login as a DBA

2. Issue the following commands to use the DBMS_SERVICE PL/SQL package to create and
invoke the database service:

SQL> declare
 params dbms_service.svc_parameter_array;
begin
 params('SQL_TRANSLATION_PROFILE') := 'user.sybase_profile';
 dbms_service.create_service('sybase_service', 'network_name', params);
 dbms_service.start_service('sybase_service');
end;
/

3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters
To set up a database service in Oracle Real Application Clusters:

1. Add the database service:

srvctl add service -db db_name -service sybase_service
-sql_translation_profile user.sybase_profile

2. Start the database service:

srvctl start service -db db_name -service sybase_service

Chapter 3
Installing and Configuring SQL Translation Framework from Command Line

3-10

3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile
Perform the following steps to test the translation:

1. Login as a standard user:

sqlplus user/password
2. Specify the SQL Translation Profile at the SQL prompt:

SQL> alter session set sql_translation_profile = sybase_profile;
3. Force the database to treat SQL*Plus as a foreign SQL application:

SQL> alter session set events = '10601 trace name context forever, level 32';
4. Run a SQL query that uses Sybase SQL dialect. For example:

select top 3 * from emp;
5. The query returns the following results:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
--
7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESPERSON 7698 20-FEB-81 1600 300 30
7521 WARD SALESPERSON 7698 22-FEB-81 1250 500 30

3.3 Granting Necessary Permissions for Installing the SQL
Translator

This section discusses the privileges that you must have to install the SQL Translator. The
SYBASE_PROFILE created here has the following two users:

• MIGREP, where the translator is installed

• TARGET_USER, where the profile is installed

To grant privileges necessary for installing the SQL Translator:

1. Connect as SYS to grant the required privileges:

connect sys/oracle as sysdba
2. Allow MIGREP to create a view and have access to unlimited quota:

GRANT connect, resource, create view to MIGREP;
ALTER USER MIGREP QUOTA UNLIMITED ON USERS;

3. Allow TARGET_USER to create a view and have access to unlimited quota:

GRANT connect, resource, create view to TARGET_USER;
ALTER USER MIGREP QUOTA UNLIMITED ON TARGET_USER;

4. Allow MIGREP to load a SQL Translator:

BEGIN
 DBMS_JAVA.GRANT_PERMISSION(UPPER('MIGREP'), 'SYS:java.lang.RuntimePermission',
'getClassLoader', '');
END;
/

5. Allow TARGET_USER to create profiles:

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

3-11

GRANT CREATE SQL TRANSLATION PROFILE TO TARGET_USER;
6. Allow TARGET_USER to explicitly alter the session to use a profile:

GRANT ALTER SESSION TO TARGET_USER;

This privilege is not granted in SQL Developer by default.

7. Allow the translator to make reference to the profile:

CONNECT TARGET_USER/TARGET_USER;
GRANT ALL ON SQL TRANSLATION PROFILE SYBASE_PROFILE TO MIGREP;

8. Allow the profile to make reference to the translator:

CONNECT MIGREP/MIGREP;
GRANT EXECUTE ON SYBASE_TSQL_TRANSLATOR TO TARGET_USER;

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

3-12

4
SQL Translation of JDBC and ODBC
Applications

Oracle provides SQL Translation mechanisms for use with JDBC and ODBC applications.

4.1 SQL Translation of JDBC Applications
Consider the concepts necessary to understanding how to use SQL Translator with a JDBC
application.

4.1.1 SQL Translation Profile
A SQL Translation Profile is a database schema object that directs how SQL statements in
non-Oracle dialects are translated into Oracle SQL dialects. It also directs how Oracle error
codes and SQLSTATES are translated into the SQL dialect of other vendors.

When you want to migrate a client application written for a non-Oracle SQL database to
Oracle, you can create a SQL Translation Profile and configure it to translate the SQL
statements and errors for the application. At runtime, the application sets the profile for the
connection in Oracle Database to translate its SQL statements and errors. This profile is set
using the oracle.jdbc.sqlTranslationProfile property.

When necessary, you can register custom translations of SQL statements and errors with the
SQL Translation Profile on the Server. When a SQL statement or error is translated, then first,
the custom translation is looked up and then, the translator is invoked only if no match is found.

See "Architecture of SQL Translation Framework" and "Setting up a SQL Translation Profile".

4.1.2 Error Message Translation
You may prefer receiving error messages in the form of messages that used to be thrown by
the native database. You must then use the error message translation file, which translates
error messages when there is no valid connection to the database. Once a connection to the
database is established, the JDBC driver bypasses this file completely and all errors are
handled by the translator on the server. Similar to query translation, you can also register
custom error translations on the server.

The error message translation file is not written by a specific component. You must provide the
file for translation and specify the name of the file. You can also provide the file path as the
value of the corresponding connection property.

The error message translation file is in XML format; it contains a series of error translations.
Each error translation contains the following information:

Translation Error Type

ORA error number positive integer

Oracle error message String

Translated error code positive integer

4-1

Translation Error Type

Translated SQL State positive integer

4.1.3 Converting JDBC Standard Parameter Markers
Before submitting the SQL statements for translation., the JDBC driver internally converts the
JDBC standard parameter markers (?) into Oracle style parameter markers of the
format :b<n>.

Here, the naming format for the parameter markers is :b<n>, where n is an incremental number
to specify the position of the (?) marker in the JDBC PreparedStatement.

Consider the UPDATE employees SET salary = salary * ? WHERE employee_id = ?
PreparedStatement statement, where, the first parameter marker (?) will become :b1 and the
second parameter marker (?) will become :b2.

After conversion, the driver sends the following query to the server for translation:

UPDATE employees SET salary = salary * :b1 WHERE employee_id = :b2

Note that any query that contains "?" as a parameter marker fails during the connection
translation phase if you change the value of the processEscapes property to FALSE. For a
successful translation, you must retain the default value of the processEscapes property.

Converting parameter markers helps the driver to automatically reorder any parameter
changes that occurred at translation. At the time of conversion, any custom translation that
must be registered on the server should be registered from the Oracle style parameter marker
version; the server receives the statements. Note that, the custom translation must have the
same number of parameter markers in the Oracle style as in the original query.

For more information about supported JDBC APIs, API Reference for SQL Translation of JDBC
Applications .

4.1.4 Executing the Translated Oracle Dialect Query
After the JDBC standard parameter markers are converted into Oracle style parameter
markers, the driver makes a round-trip to the server for translating the query into Oracle
dialect. Once the translated query is received by the server, any reordering in the parameters
in handled transparently by the driver, and the query is executed as a normal query.

If a query cannot be translated due to the unavailability of translation, then the server can
either raise an error or return a NULL, based on the value of the
DBMS_SQL_TRANSLATOR.ATTR_RAISE_TRANSLATION_ERROR profile attribute. If the server returns a
NULL, then the original untranslated query is assumed to be the query translated by the driver
and executed.

The driver keeps the translation in the local caches to save the future round-trip.

Note that the JDBC driver can support the translation errors (when the query cannot be
translated due to the unavailability of translation) set by either value of the
DBMS_SQL_TRANSLATOR.ATTR_RAISE_TRANSLATION_ERROR attribute. However, the value must be
set on the server before the connection is established. Because a change in the value of this
attribute in the middle of a session may result in inconsistent behavior, Oracle recommends
that you do not flip the value of this attribute during a session. See Oracle Database PL/SQL
Packages and Types Reference for more information about the TRANSLATE_SQL procedure.

Chapter 4
SQL Translation of JDBC Applications

4-2

4.1.5 Error Translation
If any SQLException is thrown during the query execution, the driver transparently makes a trip
to the server and translates the exception from Oracle codes to the original vendor-specific
code. So, the resulting SQLException has both vendor-specific code and SQLSTATE along with
the Oracle-specific SQLException as the cause.

Similar to query translation, custom error translations can also be registered on the server and
given priority over standard translation. The
DBMS_SQL_TRANSLATOR.ATTR_RAISE_TRANSLATION_ERROR attribute has the same effect on
custom error translation as on query translation.

Note that the errors are translated only after a connection to the server is established. So, for
errors that occur before the connection to the server is established, Error Message Translation
is used.

4.1.6 Using JDBC Driver for SQL Translation
Example 4-1 demonstrates how to use a JDBC driver for SQL translation. You must first grant
the CREATE SQL TRANSLATION PROFILE privilege to HR as follows:

conn system/manager;
grant create sql translation profile to HR;
exit

Now, connect to the database as HR and execute the following SQL statements:

drop table sample_tab;
create table sample_tab (c1 number, c2 varchar2(100));
insert into sample_tab values (1, 'A');
insert into sample_tab values (1, 'A');
insert into sample_tab values (1, 'A');
commit;
exec dbms_sql_translator.drop_profile('FOO');
exec dbms_sql_translator.create_profile('FOO');
exec dbms_sql_translator.register_sql_translation('FOO','select row of select c1, c2
from sample_tab
where c1=:b1 and c2=:b2','select c1, c2 from sample_tab where c1=:b1 and c2=:b2');

Now, you can run the following program that translates SQL statements that use JDBC
standard parameter markers.

Example 4-1 Translating Non-Oracle SQL Statements to Oracle SQL Dialect Using
JDBC Driver

public class SQLTransPstmt
{
 static String url="jdbc:oracle:thin:@localhost:5521:jvx1";
 static String user="HR", pwd="hr";
 static String PROFILE = "FOO";
 static String primitiveSql = "select row of select c1, c2 from sample_tab where c1=?
and c2=?";

// Note that this query contains JDBC style parameter markers
// But the preceding custom translation registered in SQL is using Oracle style markers

 public static void main(String[] args) throws Exception
 {
 OracleDataSource ods = new OracleDataSource();

Chapter 4
SQL Translation of JDBC Applications

4-3

 ods.setURL(url);

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", pwd);

 // The Following connection property makes the connection translating
 props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE, PROFILE);
 ods.setConnectionProperties(props);
 Connection conn = ods.getConnection();
 System.out.println("connection for SQL translation: "+conn);

 try{
 // Any statements created using a translating connection are
 // automatically translating. If you want to get a non-translating
 // statement out of a translating connection please have a look at
 // the oracle.jdbc.OracleTranslatingConnection Interface.
 // Refer to "OracleTranslatingConnection Interface"
 // for more information
 PreparedStatement trStmt = conn.prepareStatement(primitiveSql);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();

 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 conn.close();
 }
}

4.2 SQL Translation of ODBC Applications
Consider the concepts necessary to understanding how to use SQL Translator with an ODBC
application.

4.2.1 SQL Translation profile
For ODBC applications, the SQL Translation Profile is set at the service level. So, you do not
require to set it in the .odbc.ini file.

4.2.2 Error Message Translation
You may prefer receiving error messages in the form of messages that used to be thrown by
the native database. In such cases, when the application is set to run on Oracle Database, you
must set the SQLTranslateErrors=T entry in the .odbc.ini file to translate the ORA errors to
their native form.

Chapter 4
SQL Translation of ODBC Applications

4-4

4.2.3 Translating Error Messages
Example 4-2 demonstrates how to use the ODBC driver in SQL translation. The SQL
statement used in the example uses Sybase TOP N syntax.

Note that you must set the ServerName= entry in the .odbc.ini file with the Database service
name created in "How to Use SQL Translation Framework" section. Also, set the
'SQLTranslateErros=T entry in the .odbc.ini file, if you require translation of Oracle errors to
native database errors.

Example 4-2 Translating Non-Oracle SQL to Oracle SQL Dialect Using ODBC Driver

int main()
{
 HENV m_henv; /* environment handle */
 HDBC m_hdbc; /* connection handle */
 HSTMT m_hstmt; /* statement handle */
 int retCode; /* return code */
 char dbdsn[100]; /* Initialize with the DSN name of connection */
 const char szUID[10];/*Initialize with appropriate Username of DB */
 const char szPWD[10]; /* Initialize with appropriate Password */

 char query1[100]="select top 3 col1 from babel_tab3 order by col1";
 SQLLEN paramInd = SQL_NTS;
 SQLUINTEGER no = 0;

 //Allocate HENV, HDBC, HSTMT handles
 retCode = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &m_henv);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLAllocHandle failed \n");
 printSQLError (1, m_henv);
 }

 retCode = SQLSetEnvAttr (m_henv, SQL_ATTR_ODBC_VERSION, (void *) SQL_OV_ODBC3,
 SQL_IS_INTEGER);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLSetEnvAttr failed\n");
 printSQLError (1, m_henv);
 }

 retCode = SQLAllocHandle (SQL_HANDLE_DBC, m_henv, &m_hdbc);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLAllocHandle failed\n");
 printSQLError (2, m_hdbc);
 }

 retCode = SQLConnect (m_hdbc, (SQLCHAR *) dbdsn,SQL_NTS,
 (SQLCHAR *) szUID, SQL_NTS,
 (SQLCHAR *) szPWD, SQL_NTS);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLConnect failed to connect\n");
 printSQLError (2, m_hdbc);
 }

 retCode = SQLAllocHandle (SQL_HANDLE_STMT, m_hdbc, &m_hstmt);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)

Chapter 4
SQL Translation of ODBC Applications

4-5

 {
 printf ("SQLAllocHandle with SQL_HANDLE_STMT failed\n");
 printSQLError (3, m_hstmt);
 }

 /* Prepare and Execute the Sybase Top-N syntax SQL statements */

 retCode = SQLPrepare (m_hstmt, (SQLCHAR *) query1, SQL_NTS);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLPrepare failed\n");
 printSQLError (3, m_hstmt);
 }

 retCode=SQLExecute(m_hstmt);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLExecute-failed\n");
 printSQLError (3, m_hstmt);
 }

 while (retCode = SQLFetch(m_hstmt)!=SQL_NO_DATA)
 {
 retCode=SQLGetData(m_hstmt,1,SQL_C_ULONG, &no, 0, ¶mInd);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLFetch failed\n");
 printSQLError (3, m_hstmt);
 }
 printf("Value is %d\n",no);
 }

 retCode = SQLCloseCursor (m_hstmt);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 printf ("SQLCloseCursor failed\n");

 printf ("cleanup()\n");
 retCode = SQLFreeHandle (SQL_HANDLE_STMT, m_hstmt);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLFreeHandle failed\n");
 printSQLError (3, m_hstmt);
 }

 retCode = SQLDisconnect (m_hdbc);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLDisconnect failed\n");
 printSQLError (2, m_hdbc);
 }

 retCode = SQLFreeHandle (SQL_HANDLE_DBC, m_hdbc);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLFreeHandle failed\n");
 printSQLError (2, m_hdbc);
 }

 retCode = SQLFreeHandle (SQL_HANDLE_ENV, m_henv);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLFreeHandle failed\n");

Chapter 4
SQL Translation of ODBC Applications

4-6

 printSQLError (1, m_henv);
 }
}

Chapter 4
SQL Translation of ODBC Applications

4-7

5
Example: Application Migration Using SQL
Translation Framework

Consider an example of migrating a Sybase JDBC Application, and the information contained
in the migration reports: how it may be used to tune the migration for optimal results.

5.1 Migrating a Sybase JDBC Application
Figure 5-1 illustrates how an application that is coded to query a Sybase database may use
SQL Translation Framework to query information stored in Oracle Database instead.

Figure 5-1 Sybase Application Running Against Oracle Database

Sybase SQL

Translation Profile

Custom Error-Code

Mappings

Oracle

Custom SQL

Translations

Auto

Translator

Sybase SQL

Translation Profile

Custom Error-Code

Mappings

App Tables

and

Stored

Procs

Oracle

ODBC/JDBC

Driver

Sybase

App

5.1.1 Application Overview
The Sybase database used in this example has three tables and five procedures and includes
the following features:

• IDENTITY columns

• INSERT statements into tables with IDENTITY columns

• VARCHAR columns with size greater than 4000 characters

• Multiple implicit result sets returned from procedures

A Java application connects to this Sybase database using JDBC.

5.1.2 Setting Up Migration
The migration process has four phases - Capture, Convert, Generate, and Data Move. It is
best practice to complete each phase of the migration process, review any issues on the
Summary page, and then continue to the next phase. The Migration Wizard enables you to

5-1

complete each step in turn and then return back to the wizard to complete further steps. To do
this, after completing each phase, select the Proceed to Summary Page check box and click
Next.

Perform the following steps to set up migration:

1. Download the JDBC driver JTDS 1.2.

2. Add JTDS as a third-party JDBC driver as follows:

a. Select Preferences from the Tools menu.

b. Select Third Party JDBC Driver from the Database option on the right panel, as
shown in Figure 5-2.

Figure 5-2 Setting JTDS JDBC Driver

3. Click Add Entry.

The Select Path Entry box is displayed.

4. Select the jtds-1.2.jar file and click Select.

5. Click OK.

6. Connect to the Oracle Database where you want to migrate the information.

7. Verify that the connection is using Oracle Database 12c JDBC drivers, with the following
command:

show jdbc
8. Create a new user migrep in Oracle database, for the migration repository, with the

following command:

GRANT CONNECT,RESOURCE,CREATE VIEW to migrep INDENTIFIED BY migrep;
ALTER USER migrep QUOTA UNLIMITED to users;

9. Connect to the database as the migrep user and associate the migration repository with
the user, as shown in Figure 5-3.

Chapter 5
Migrating a Sybase JDBC Application

5-2

Figure 5-3 Associating a User with Migration Repository

10. Create a connection to the Sybase database, in this example, simpledemo12c, as shown in
Figure 5-4.

Figure 5-4 Creating a Connection to the Sybase Database

5.1.3 Capturing Migration
Perform the following steps to capture migration:

1. Right-click on the simpledemo12c Sybase database and select the Migrate to Oracle
option, as shown in Figure 5-5.

Chapter 5
Migrating a Sybase JDBC Application

5-3

Figure 5-5 Starting Capture Phase of Migration Process

This opens the Migration Wizard, as shown in Figure 5-6.

Click Next.

Figure 5-6 Migration Wizard Introduction Screen

2. Choose the Migration Repository, as shown in Figure 5-7.

Click Next.

Chapter 5
Migrating a Sybase JDBC Application

5-4

Figure 5-7 Choosing the Migration Repository

3. Enter a project name and specify an output directory to place files, as shown in Figure 5-8.

Click Next.

Figure 5-8 Specifying Project Name and Output Directory

4. Select the database connection and the mode, as shown in Figure 5-9.

Click Next.

Chapter 5
Migrating a Sybase JDBC Application

5-5

Figure 5-9 Selecting the Database Connection and Mode

5. Select the database, in this case, simpledemo12c, by moving it from Available Databases
to Selected Databases, as shown in Figure 5-10.

Click Proceed to Summary Page to review the Capture phase before moving to the next
phase of the migration process.

Click Next.

Figure 5-10 Selecting the Database to be Migrated

The capture phase saves a snapshot of the selected database at this point of time. Only the
object definitions are captured, not the actual table data. This captured snapshot can be
viewed in the Migration Projects navigator.

Note that the snapshot is not a connection to the database, and it only enables you to browse
through the information saved in the Migration Repository.

5.1.4 Setting Migration Preferences

Before starting the conversion phase, you must set the migration preferences. Perform the
following steps to achieve this:

1. From the Tools menu, select Preferences, then Migration, and then Translators. Select
the Generate Compound Triggers option.

Chapter 5
Migrating a Sybase JDBC Application

5-6

Figure 5-11 Setting Migration Preferences

2. From the Tools menu, select Preferences, then Migration, and then Generation Options.
Select the Use all Oracle Database 12c features in Migration option.

Figure 5-12 Setting Migration Preferences

5.1.5 Converting Migration
Perform the following steps to start convert phase of the migration process:

1. Right-click the Capture Model node and choose Convert, as shown in Figure 5-13.

Chapter 5
Migrating a Sybase JDBC Application

5-7

Figure 5-13 Starting Convert Phase of Migration Process

The Migration Wizard is opened at the Convert phase, as shown in Figure 5-14.

Figure 5-14 Converting the Migrated Data

2. Select Proceed to Summary Page and click Next.

3. Click Finish.

During the convert phase, object names are resolved to valid Oracle names. Data types are
converted to Oracle Database types and T-SQL defined objects like stored procedures, views,
and so on are converted to Oracle PL/SQL. A converted model is created that can be browsed
in the Migration Projects navigator. The converted procedures can be reviewed in the
converted model.

Chapter 5
Migrating a Sybase JDBC Application

5-8

Note that the converted model is not an actual Oracle database, but a prototype of an Oracle
Database. The information is still stored only in the Migration Repository tables.

5.1.6 Generating a Migration
The migration generation phase creates the objects in the target Oracle Database. A script is
created and it is run against a selected Oracle connection in the following two ways:

• In offline mode, the script is opened in a SQL Worksheet and you have to select the
connection and run it manually.

• In online mode, you must provide the target connection in the wizard and the wizard runs
the script automatically.

The following steps demonstrate how to perform the generate phase of the migration process
in offline mode:

1. Right-click on Converted Database Objects in the Migration Projects panel and select
Generate Target.

2. Select offline as the database mode in the Migration Wizard, as shown in Figure 5-15.

Click Next.

Figure 5-15 Selecting the Database Mode

3. Choose a connection in the target Oracle Database, as shown in Figure 5-16.

Chapter 5
Migrating a Sybase JDBC Application

5-9

Figure 5-16 Creating Oracle Database Connection for Target User
dbo_simpledemo12c

The database objects are not created under the connection selected in this step. However,
this connection must have enough privileges to create other users and objects.

5.1.6.1 Creating a Target Oracle User
Create a connection to the newly created user (described in step 3), as shown in Figure 5-17.
At this point, the Sybase database objects are migrated to Oracle Database, but the data is not
migrated till now.

Figure 5-17 Targeting an Oracle User

5.1.7 Moving the Data
Perform the following steps to move the data to Oracle Database:

1. Right-click the Converted Database Objects node and select Move Data, as shown in
Figure 5-18.

Click Next.

Chapter 5
Migrating a Sybase JDBC Application

5-10

Figure 5-18 Moving the Data from Sybase Database to Oracle Database

2. Select online as the data move mode in the Move Data screen.

You can select offline as the data move mode if the migration process involves large
amount of data.

3. Click Next. The Summary screen appears.

4. Click Finish.

You can browse the database objects to verify the data is moved to Oracle database.

See Also:

Oracle SQL Developer User's Guide

5.2 Generating Migration Reports
Oracle SQL Developer provides a number of reports on the migration process to help identify
tasks and issues to resolve. Click or double-click on the migrated project in the Migration
Projects navigator. A report will appear on the right panel with a number of tabs and children
reports, as shown in Figure 5-19.

Chapter 5
Generating Migration Reports

5-11

Figure 5-19 Generating Migration Reports

The Analysis report provides information about the size of the migrated database like the
number of objects, line sizes, and so on, as shown in Figure 5-20.

Figure 5-20 Migration Analysis Report

The Target Status report provides information about the status of the migrated objects in the
Target database. First, select a target connection with enough privileges to view the status of
other schema objects and then select refresh. Objects that are present in the converted
model, but are missing from the target Oracle Database, are listed as missing. These objects
can be either valid or invalid.

Chapter 5
Generating Migration Reports

5-12

Figure 5-21 Target Status Report

The Data Quality tab provides information about the number of rows in the target Oracle
Database compared with the source database. Perform the following steps to compare the
databases:

1. Select a converted model, a source connection, and a target connection.

2. Click Analyse.

3. Click Refresh.

This performs a count(*) function on each table in the source and the target database.
So, it is advisable not to perform this operation on production data.

Chapter 5
Generating Migration Reports

5-13

6
API Reference for SQL Translation of JDBC
Applications

Consider the APIs that are part of the oracle.jdbc package, specifically the elements of
oracle.jdbc that assist in SQL translation. To successfully migrate JDBC applications, it is
important to understand the translation properties, interfaces, and the error translation
mechanisms.

See Also:

• Complete documentation of the oracle.jdbc package in Oracle Database JDBC
Java API Reference

6.1.1 Translation Properties
The translation properties are listed in Table 6-1

Table 6-1 Translation Properties

Property Description

sqlTranslationProfile Specifies the name of the transaction profile

sqlErrorTranslationFile Specifies the path of the SQL error translation file

6.1.1.1 sqlTranslationProfile
The property oracle.jdbc.sqlTranslationProfile specifies the name of the transaction
profile.

Declaration

oracle.jdbc.sqlTranslationProfile

Constant

OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATON_PROFILE

The value of the constant is oracle.jdbc.sqlTranslationProfile. This is also the property
name.

Property Value

The value is a string. There is no default value.

6-1

Remarks

The property sqlTranslationProfile can be set as either a system property or a connection
property. The property is required to use SQL translation. If this property is set then all
statements created by the connection have SQL translation enabled unless otherwise
specified.

6.1.1.2 sqlErrorTranslationFile
The property oracle.jdbc.sqlErrorTranslationFile specifies the path of the SQL error
translation file.

Declaration

oracle.jdbc.sqlErrorTranslationFile

Constant

Oracle.connection.CONNECTION_PROPERTY_SQL_ERROR_TRANSLATION_FILE.

Property Value

The value is a path name. It has no default value.

Exceptions

An error in establishing a connection results in a SQLException but without a valid connection.
However the SQL error translation file path is available either as a system property or
connection property and will be used to translate the error.

Remarks

This file is used only for translating errors which occur when connection establishment fails.
Once the connection is established this file is bypassed and is not considered even if it
contains the translation details for any error which occurs after the connection is established.
The property sqlErrorTranslationFile can be either a system property or a connection
property. The content of this file is used to translate Oracle SQLExceptions into foreign
SQLExceptions when there is no valid connection.

6.1.2 OracleTranslatingConnection Interface
This interface is only implemented by a Connection object that supports SQL Translation. The
main purpose of this interface is to get non-translating statements (including
preparedStatement and CallableStatement) from a translating connection.

The public interface oracle.jdbc.OracleTranslatingConnection defines the factory methods
for creating translating and non-translating Statement objects.

The OracleTranslatingConnection enumerations are listed in Table 6-2:

Table 6-2 OracleTranslatingConnection Enumeration

Name Description

SqlTranslationVersion Provides the Keys to the map

Chapter 6
OracleTranslatingConnection Interface

6-2

The OracleTranslatingConnection methods are listed in Table 6-3:

Table 6-3 OracleTranslatingConnection Methods

Name Description

createStatement() Creates a Statement object with option to translate or not translate
SQL.

prepareCall() Creates a CallableStatement object with option to translate or not
translate SQL.

prepareStatement() Creates a PreparedStatement object with option to translate or not
translate SQL.

getSQLTranslationVersions() Returns a map of all the translation versions of the query during SQL
Translation.

6.1.2.1 SqlTranslationVersion
The SqlTranslationVersion enumerated values specify the keys to the
getSQLTranslationVersions() method.

Syntax

 public enum SqlTranslationVersion {
 ORIGINAL_SQL,
 JDBC_MARKER_CONVERTED,
 TRANSLATED
 }

The following table lists all the SqlTranslationVersion enumeration values with a description
of each enumerated value.

Member Name Description

ORIGINAL_SQL Specifies the original vendor specific sql

JDBC_MARKER_CONVERTED Specifies that JDBC parameter markers ('?') is replaced with Oracle style
parameter markers (':b<n>'). Hence consecutive '?'s will be converted
to :b1, :b2, :b3 and so on. This change is required to take care of any
changes in the order of parameters during translation. This version is
sent to the server for translation. Hence any custom translations on the
server must be registered from this version and not the ORIGINAL_SQL
version.

TRANSLATED Specifies the translated query returned from the server

6.1.2.2 createStatement()
This group of methods create a Statement object, and specify whether the statement supports
SQL translation. If the value of parameter translating is TRUE, then the returning statement
supports translation and is identical to the corresponding version in the java.sql.Connection
interface without the translating argument. If the value is FALSE, then the returning statement
does not support translation.

Chapter 6
OracleTranslatingConnection Interface

6-3

Syntax Description

public Statement createStatement(
 boolean translating)
throws SQLException;

Creates a Statement object with option to
translate or not translate SQL.

public Statement createStatement(
 int resultSetType, int
resultSetConcurrency, boolean translating)
throws SQLException;

Creates a Statement object with the given type
and concurrency with option to translate or not
translate SQL.

public Statement createStatement(
 int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability,
 boolean translating)
throws SQLException;

Creates a Statement object with the given type,
concurrency, and holdability with option to
translate or not translate SQL.

Parameters

Parameter Description

resultSetType Specifies the int value representing the result set type.

resultSetConcurrency Specifies the int value representing the result set concurrency type.

resultSetHoldability Specifies the int value representing the result set holdability type.

translating Specifies whether or not the statement supports translation.

Return Value

The createStatement() method returns a Statement object.

Exceptions

The createStatement() method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to HR;

conn username/pwd;

Chapter 6
OracleTranslatingConnection Interface

6-4

drop table sample_tab;
create table sample_tab (c1 number, c2 varchar2(100));
insert into sample_tab values (1, 'A');
insert into sample_tab values (2, 'B');
commit;
exec dbms_sql_translator.drop_profile('FOO');
exec dbms_sql_translator.create_profile('FOO');
exec dbms_sql_translator.register_sql_translation('FOO','select row of (c1, c2) from
sample_tab','select c1, c2 from sample_tab');

Example 6-1 Using the createStatement() method

public class SQLTransStmt
{
 static String url="jdbc:oracle:thin:@localhost:5521:orcl";
 static String user="username", pwd="pwd";
 static String PROFILE = "FOO";
 static String primitiveSql = "select row of (c1, c2) from sample_tab";

 public static void main(String[] args) throws Exception
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", pwd);
 props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE, PROFILE);
 ods.setConnectionProperties(props);
 Connection conn = ods.getConnection();
 System.out.println("connection for SQL translation: "+conn);

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement(true)");
 Statement trStmt = trConn.createStatement(true);
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery(primitiveSql);
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement(false)");
 Statement trStmt = trConn.createStatement(false);
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery(primitiveSql);
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 System.out.println("expected Exception: "+e.getMessage());
 }

Chapter 6
OracleTranslatingConnection Interface

6-5

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call: oracle.jdbc.OracleTranslatingConnection.
createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE, true)");
 Statement trStmt = trConn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE, true);
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery(primitiveSql);
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 System.out.println("move resultset back to 2nd row...");
 trRs.absolute(2);
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 try{
 conn.setAutoCommit(false);
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE,
 ResultSet.HOLD_CURSORS_OVER_COMMIT, true)");
 Statement trStmt = trConn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE, ResultSet.HOLD_CURSORS_OVER_COMMIT, true);
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery(primitiveSql);
 trRs.last();
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.updateString(2, "Hello");
 trRs.updateRow();
 conn.commit();
 System.out.println("accept the update and list all of the rows again...");
 trRs.beforeFirst();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 conn.close();
 }
}

6.1.2.3 prepareCall()
This group of methods create a CallableStatement object, and specify whether the statement
supports SQL translation. If the value of parameter translating is TRUE, then the returning
statement supports translation. If the value is FALSE, then the returning statement does not
support translation.

Chapter 6
OracleTranslatingConnection Interface

6-6

Syntax Description

public CallableStatement prepareCall(
 String sql,
 boolean translating)
throws SQLException;

Creates a CallableStatement object with
option to translate or not translate SQL

public CallableStatement prepareCall(
 String sql,
 int resultSetType,
 int resultSetConcurrency,
 boolean translating)
throws SQLException;

Creates a CallableStatement object with the
given type and concurrency with option to
translate or not translate SQL

public CallableStatement prepareCall(
 String sql,
 int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability,
 boolean translating)
throws SQLException;

Creates a CallableStatement object with the
given type, concurrency, and holdability with
option to translate or not translate SQL

Parameters

Parameter Description

sql Specifies the String SQL statement value to be sent to the database;
may contain one or more parameters

resultSetType Specifies the int value representing the result set type

resultSetConcurrency Specifies the int value representing the result set concurrency type

resultSetHoldability Specifies the int value representing the result set holdability type

translating Specifies whether or not the statement supports translation

Return Value

The prepareCall() method returns a CallableStatement object.

Exceptions

The prepareCall() method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Chapter 6
OracleTranslatingConnection Interface

6-7

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to HR;

conn username/pwd;

create or replace procedure sample_proc (p_num number, p_vchar in out varchar2) AS
begin
 p_vchar := 'p_num'||p_num||', p_vchar'||p_vchar;
end;
/

exec dbms_sql_translator.drop_profile('FOO');
exec dbms_sql_translator.create_profile('FOO');
exec dbms_sql_translator.register_sql_translation('FOO', 'exec sample_proc(:b1, :b2)',
'{call sample_proc(:b1, :b2)}');

Example 6-2 Using the prepareCall() method

public class SQLTransCstmt
{
 static String url="jdbc:oracle:thin:@localhost:5521:orcl";
 static String user="username", pwd="pwd";
 static String PROFILE = "FOO";
 static String primitiveSql = "exec sample_proc(:b1, :b2)";

 public static void main(String[] args) throws Exception
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", pwd);
 props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE,
 PROFILE);
 ods.setConnectionProperties(props);
 Connection conn = ods.getConnection();
 System.out.println("connection for SQL translation: "+conn);

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println(
 "Call: oracle.jdbc.OracleTranslatingConnection.prepareCall(sql, true)");
 CallableStatement trStmt = trConn.prepareCall(primitiveSql, true);
 trStmt.setInt("b1", 1);
 trStmt.setString("b2", "A");
 trStmt.registerOutParameter("b2", Types.VARCHAR);
 System.out.println("execute for: "+primitiveSql);
 trStmt.execute();
 System.out.println("out param: "+trStmt.getString("b2"));

 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println(
 "Call: oracle.jdbc.OracleTranslatingConnection.prepareCall(sql, false)");
 CallableStatement trStmt = trConn.prepareCall(primitiveSql, false);

Chapter 6
OracleTranslatingConnection Interface

6-8

 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("execute for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();

 trStmt.close();
 }catch (Exception e) {
 System.out.println("expected Exception: "+e.getMessage());
 }

 conn.close();
 }
}

6.1.2.4 prepareStatement()
This group of methods create a PreparedStatement object, and specify whether the statement
supports SQL translation. If the value of parameter translating is TRUE, then the returning
statement supports translation. If the value is FALSE, then the returning statement does not
support translation.

Syntax Description

public PreparedStatement prepareStatement(
 String sql,
 boolean translating)
throws SQLException;

Creates a PreparedStatement object with
option to translate or not translate SQL

public PreparedStatement prepareStatement(
 String sql,
 int resultSetType,
 int resultSetConcur,
 boolean translating)
throws SQLException;

Creates a PreparedStatement object with
the given type and concurrency with option
to translate or not translate SQL

public PreparedStatement prepareStatement(
 String sql,
 int resultSetType,
 int resultSetConcur,
 int resultSetHold,
 boolean translating)
throws SQLException;

Creates a PreparedStatement object with
the given type, concurrency, and holdability
with option to translate or not translate SQL

Parameter Description

sql Specifies the String SQL statement value to be sent to the database;
may contain one or more parameters

resultSetType Specifies the int value representing the result set type

resultSetConcur Specifies the int value representing the result set concurrency type

resultSetHold Specifies the int value representing the result set holdability type

Chapter 6
OracleTranslatingConnection Interface

6-9

Parameter Description

translating Specifies whether or not the statement supports translation

Return Value

The prepareStatement() method returns a PreparedStatement object.

Usage Notes

When the "?" placeholder is used with the prepareStatement() method, the driver internally
changes the "?" to Oracle-style parameters because the server side translator can only work
with Oracle-style markers. This is necessary to distinguish the bind variables. If not, any
change in the order of the bind variables will be indistinguishable. The replaced oracle style
markers follow the format :b<n> where <n> is an incremental number. For example, exec
sample_proc(?,?) becomes exec sample_proc(:b1,:b2).

To further exemplify, consider a scenario of a vendor format where the vendor query selecting
top three rows is SELECT * FROM employees WHERE first_name=? AND employee_id=? TOP 3.
The query has to be converted to oracle dialect. In this case the following translation is to be
registered on the server:

From:

SELECT * FROM employees WHERE first_name=:b1 AND employee_id=:b2 TOP 3

To:

SELECT * FROM employees WHERE first_name=:b1 AND employee_id=:b2 AND ROWNUM <= 3

See SqlTranslationVersion and "SQL Translation of JDBC Applications" for more information.

Exceptions

The prepareStatement() method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to USER;

conn username/pwd;
drop table sample_tab;
create table sample_tab (c1 number, c2 varchar2(100));
insert into sample_tab values (1, 'A');
insert into sample_tab values (1, 'A');
insert into sample_tab values (1, 'A');
commit;

Chapter 6
OracleTranslatingConnection Interface

6-10

exec dbms_sql_translator.drop_profile('FOO');
exec dbms_sql_translator.create_profile('FOO');
exec dbms_sql_translator.register_sql_translation('FOO','select row of select c1, c2
from sample_tab
 where c1=:b1 and c2=:b2','select c1, c2 from sample_tab where c1=:b1 and c2=:b2');

Example 6-3 Using the prepareStatement() method

public class SQLTransPstmt
{
 static String url="jdbc:oracle:thin:@localhost:5521:orcl";
 static String user="username", pwd="pwd";
 static String PROFILE = "FOO";
 static String primitiveSql = "select row of select c1, c2 from sample_tab
 where c1=:b1 and c2=:b2";

 public static void main(String[] args) throws Exception
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", pwd);
 props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE,
 PROFILE);
 ods.setConnectionProperties(props);
 Connection conn = ods.getConnection();
 System.out.println("connection for SQL translation: "+conn);

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
 oracle.jdbc.OracleTranslatingConnection.prepareStatement(sql, true)");
 PreparedStatement trStmt = trConn.prepareStatement(primitiveSql, true);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
 oracle.jdbc.OracleTranslatingConnection.prepareStatement(sql, false)");
 PreparedStatement trStmt = trConn.prepareStatement(primitiveSql, false);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();

 trStmt.close();
 }catch (Exception e) {

Chapter 6
OracleTranslatingConnection Interface

6-11

 System.out.println("expected Exception: "+e.getMessage());
 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
 oracle.jdbc.OracleTranslatingConnection.prepareStatement(
 sql, ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE, true)");
 PreparedStatement trStmt = trConn.prepareStatement(
 primitiveSql, ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY, true);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));

 System.out.println("trRs.beforeFirst and show resultSet again...");
 trRs.beforeFirst();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 conn.close();
 }
}

6.1.2.5 getSQLTranslationVersions()
Returns a map of all the translation versions of the query during SQL Translation. In case of an
exception, and if suppressExceptions is true, then the translated version in the map is NULL.

Syntax

public Map<SqlTranslationVersion, String> getSqlTranslationVersions(
 String sql,
 boolean suppressExceptions)
throws SQL Exception;

Return Value

Map with all translation versions of a query. See SqlTranslationVersion enum for more details
about returning versions.

Exception

This method throws SQLException if there is a problem in query translation, provided
suppressExceptions is false.

6.1.3 Error Translation Configuration File
An XML configuration file (path) is provided as a value of the
oracle.jdbc.sqlErrorTranslationFile property. This file contains the translations
information for errors. These errors occur when a connection to the server cannot be

Chapter 6
Error Translation Configuration File

6-12

established and thus translation cannot happen on the server. Error messages are of the type
that define the state of the database that prevents the connection from being established.

The structure of the configuration XML file is defined in the DTD as follows:

<!DOCTYPE LocalTranslationProfile[

<!ELEMENT LocalTranslationProfile (Exception+)>
<!ELEMENT Exception (ORAError, ErrorCode, SQLState)>
<!ELEMENT ORAError (#PCDATA)>
<!ELEMENT ErrorCode (#PCDATA)>
<!ELEMENT SQLState (#PCDATA)>
]>

where,

• ORAError is an int value and specifies the error code for the oracle error.

• ErrorCode is an int value and specifies the vendor error code, that is, the translated code.

• SQLState is a String value and specifies the vendor SQL state.

Chapter 6
Error Translation Configuration File

6-13

Glossary

adapter
A real-time, proprietary tool used to enable access to data stored in one database from another
database. Adapters are commonly used to translate SQL, map data types, and facilitate the
integration of SQL statements, triggers, and stored procedures.

custom SQL translation
A scenario in which users can register their customer-specific translations of SQL statements
with the SQL Translation Profile. During the translation of non-Oracle statements, the profile
looks up the custom translations first. Then, if no match is found, it invokes the SQL Translator.

data integration
The exchange of data between different databases, either asynchronously in real-time
transactions or synchronously as batch processes.

data integration framework
A set of tools and processes used to enable data exchanges between different databases.
Traditional frameworks include many nightly processes such as large batch extractions and
feeds, and bulk loading of data. Newer frameworks can include small daily processes and
feeds occurring in near real time.

database schema migration
The process of identifying and converting tables, columns, and other objects in a non-Oracle
schema to conform to the naming, size, and other conventions required by Oracle Database.

error translation
A scenario in which users can register vendor-specific translations of error codes and
messages with the SQL Translation Profile. During SQL execution, client applications rely on
vendor-specific error codes and messages. When errors occur, the translated error codes and
messages are returned instead of the Oracle error codes and messages.

Glossary-1

migration
The process of modifying a non-Oracle application, including all of its components (such as
architecture, data, SQL code, and client) to use the Oracle RDBMS rather than a proprietary
database management system.

migration repository
A data store in Oracle Database that Oracle SQL Developer uses to manage the metadata for
the source and target schema models during a migration. Multiple migration repositories can
be used to migrate from several databases to Oracle Database at the same time.

Oracle Database Gateways
A set of Oracle products that support data integration with non-Oracle systems synchronously
using consistent APIs.

Oracle GoldenGate
An Oracle product that supports modular, transaction-level data integration between diverse
data sources that are stored in SQL Server, Sybase, DB2, Oracle, and other databases.

Oracle SQL*Loader
A fast, flexible, and free Oracle utility that supports loading data from flat files into Oracle
Database. It supports several data formats and many different encodings. It also supports
parallel data loading.

Oracle SQL Developer Migration Wizard
An Oracle tool that enables the migration of a third-party database to an Oracle database in
batch mode. Migration includes data, schemas, objects, triggers, and stored procedures.

SQL dialect
A variation or extension of SQL implemented by a database vendor. When migrating client
applications from third-party databases to Oracle, all non-Oracle SQL statements must be
translated into Oracle SQL. Because these non-Oracle SQL statements are embedded within
the source code of client applications, locating and translating them is a time-consuming,
manual task. This release enhances the Oracle database to accept non-Oracle SQL
statements from external vendors, and translate them automatically at run time before
execution.

SQL Translation Profile
A database schema object that directs how non-Oracle SQL statements are translated into
Oracle SQL dialects. This schema also contains translations of error codes, SQLSTATEs, and
error messages to be returned when errors occur during the SQL execution.

When migrating a client application with non-Oracle SQL statements to Oracle, the user
creates a SQL Translation Profile and configures it to translate the SQL statements and errors

Glossary

Glossary-2

for the application. At run time, the application sets the translation profile in the Oracle
database to translate its SQL statements and errors.

SQL Translator
The SQL Translator is a software component, provided by Oracle or third-party vendors, which
can be installed in Oracle Database. It translates the SQL statements of a client program
before they are processed by the Oracle Database SQL compiler. If an error results from
translated SQL statement execution, then Oracle Database SQL compiler generates an Oracle
error message.

SQLSTATE
A status parameter defined by the ANSI SQL standard. It is a 5-character string that indicates
the status of a SQL operation. Some of these values are:

• 00XXX: Unqualified Successful Completion

• 01XXX: Warning

• 02XXX: No Data

• 07XXX: Dynamic SQL Error

• 08XXX: Connection Exception

• 09XXX: Triggered Action Exception

Glossary

Glossary-3

Index

A
ATTR_RAISE_TRANSLATION_ERROR, 4-2

C
createStatement(), 6-3
creating identity columns, 1-2

E
enhanced SQL to PL/SQL bind handling, 1-5

F
features supporting migration, 1-1

G
getSQLTranslationVersions(), 6-12

I
identity columns, 1-1
implicit statement results, 1-2
interface

OracleTranslatingConnection, 6-2

J
JDBC API, 6-1

configuration file, 6-12
SQLErrorTranslation.xml, 6-12

methods
createStatement(), 6-3
getSQLTranslationVersions(), 6-12
prepareCall(), 6-6
prepareStatement(), 6-9

OracleTranslatingConnection interface, 6-2
translation properties, 6-1

sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1

JDBC driver support for application migration, 1-7
JDBC support for implicit results, 1-2

M
methods

createStatement(), 6-3
getSQLTranslationVersions(), 6-12
prepareCall(), 6-6
prepareStatement(), 6-9

Migrating a Sybase JDBC application, 5-1
capturing migration, 5-3
converting migration, 5-6, 5-7
generating migration, 5-9
moving the data, 5-10
setting up migration, 5-1

migration support for other database vendors, 1-8

N
native SQL support for query row limits and row

offsets, 1-6

O
OCI support for implicit results, 1-3
ODBC driver support for application migration, 1-7
ODBC support for implicit results, 1-4
OEM tuning and performance packs, 1-7
Oracle Database Gateways, 1-8
Oracle GoldenGate, 1-8
Oracle SQL developer

migration support, 3-1
set up, 3-2

Oracle SQL Developer, 1-8
OracleTranslatingConnection interface, 6-2

createStatement() method, 6-3
getSQLTranslationVersions() method, 6-12
prepareCall() method, 6-6
prepareStatement() method, 6-9

P
permissions for installing the SQL translator, 3-11
prepareCall(), 6-6
prepareStatement(), 6-9
products supporting migration, 1-7

Index-1

S
SQL translation framework, 1-1

architecture, 2-2
configuration, 3-1, 3-9
installation, 3-1, 3-9
SQL translation profile, 2-1
SQL translator, 2-1
use, 2-2
when to use, 2-3

SQL translation of JDBC aplications, 4-1
SQL translation of JDBC applications, 4-1

error message translation, 4-1
error translation, 4-3
execution of translated Oracle dialect query,

4-2
parameter marker conversion, 4-2

SQL translation of JDBC applications (continued)
SQL translation profile, 4-1

SQL translation of ODBC applications, 4-1, 4-4
error message translation, 4-4
SQL translation profile, 4-4

SQL translation profile
set up, 3-9

SQLErrorTranslation.xml, 6-12
sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1
SqlTranslationVersion enumerated values, 6-3

T
translation properties

sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1

Index

Index-2

	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Documentation Accessibility
	Conventions

	Changes in This Release for Oracle Database SQL Translation and Migration Guide
	1 Introduction to Tools and Products that Support Migration
	1.1 Oracle Database Features for Migration Support
	1.1.1 SQL Translation Framework
	1.1.2 Support for Identity Columns
	1.1.2.1 Creating Identity Columns

	1.1.3 Implicit Statement Results
	1.1.3.1 JDBC Support for Implicit Results
	1.1.3.1.1 Processing Implicit Results in JDBC

	1.1.3.2 OCI Support for Implicit Results
	1.1.3.2.1 Processing Implicit Results in OCI

	1.1.3.3 ODBC Support for Implicit Results
	1.1.3.3.1 Processing Implicit Results in ODBC

	1.1.4 Enhanced SQL to PL/SQL Bind Handling
	1.1.4.1 Invoking a Subprogram with a Nested Table Parameter

	1.1.5 Native SQL Support for Query Row Limits and Row Offsets
	1.1.5.1 Limiting Bulk Selection

	1.1.6 JDBC Driver Support for Application Migration
	1.1.7 ODBC Driver Support for Application Migration

	1.2 Other Oracle Products that Enable Migration
	1.2.1 OEM Tuning and Performance Packs
	1.2.2 Oracle GoldenGate
	1.2.3 Oracle Database Gateways
	1.2.4 Oracle SQL Developer

	1.3 Migration Support for Other Database Vendors
	1.3.1 Application Support in Third-Party Databases
	1.3.2 Third-Party Database Version Support

	2 SQL Translation Framework Overview
	2.1 Architecture of SQL Translation Framework
	2.2 How to Use SQL Translation Framework
	2.3 When to Use SQL Translation Framework

	3 SQL Translation Framework Configuration
	3.1 Installing and Configuring SQL Translation Framework with Oracle SQL Developer
	3.1.1 Overview of Oracle SQL Developer Migration Support
	3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows
	3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup
	3.1.2.2 Starting Oracle SQL Developer

	3.1.3 Creating a Connection to Oracle Database
	3.1.4 Testing SQL Translation
	3.1.5 Creating a Translation Profile and Installing SQL Translator
	3.1.5.1 Installing SQL Translator
	3.1.5.2 Creating a Translation Profile

	3.1.6 Using the SQL Translator Profile

	3.2 Installing and Configuring SQL Translation Framework from Command Line
	3.2.1 Installing Oracle Sybase Translator
	3.2.2 Setting up a SQL Translation Profile
	3.2.3 Setting Up a Database Service to Use the SQL Translation Profile
	3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters

	3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile

	3.3 Granting Necessary Permissions for Installing the SQL Translator

	4 SQL Translation of JDBC and ODBC Applications
	4.1 SQL Translation of JDBC Applications
	4.1.1 SQL Translation Profile
	4.1.2 Error Message Translation
	4.1.3 Converting JDBC Standard Parameter Markers
	4.1.4 Executing the Translated Oracle Dialect Query
	4.1.5 Error Translation
	4.1.6 Using JDBC Driver for SQL Translation

	4.2 SQL Translation of ODBC Applications
	4.2.1 SQL Translation profile
	4.2.2 Error Message Translation
	4.2.3 Translating Error Messages

	5 Example: Application Migration Using SQL Translation Framework
	5.1 Migrating a Sybase JDBC Application
	5.1.1 Application Overview
	5.1.2 Setting Up Migration
	5.1.3 Capturing Migration
	5.1.4 Setting Migration Preferences
	5.1.5 Converting Migration
	5.1.6 Generating a Migration
	5.1.6.1 Creating a Target Oracle User

	5.1.7 Moving the Data

	5.2 Generating Migration Reports

	6 API Reference for SQL Translation of JDBC Applications
	6.1.1 Translation Properties
	6.1.1.1 sqlTranslationProfile
	6.1.1.2 sqlErrorTranslationFile

	6.1.2 OracleTranslatingConnection Interface
	6.1.2.1 SqlTranslationVersion
	6.1.2.2 createStatement()
	6.1.2.3 prepareCall()
	6.1.2.4 prepareStatement()
	6.1.2.5 getSQLTranslationVersions()

	6.1.3 Error Translation Configuration File

	Glossary
	adapter
	custom SQL translation
	data integration
	data integration framework
	database schema migration
	error translation
	migration
	migration repository
	Oracle Database Gateways
	Oracle GoldenGate
	Oracle SQL*Loader
	Oracle SQL Developer Migration Wizard
	SQL dialect
	SQL Translation Profile
	SQL Translator
	SQLSTATE

	Index

