Oracle® Database

SecureFiles and Large Objects Developer's
Guide

23ai
F47573-06
February 2025

ORACLE"

Oracle Database SecureFiles and Large Objects Developer's Guide, 23ai
F47573-06

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Authors: Sylaja Kannan, Tulika Das, Janis Greenberg

Contributing Authors: Geeta Arora, Rhonda Day, Tanmay Choudhury, Amith Kumar

Contributors: Bharath Aleti, Parthasarathy Raghunathan, Bharath Aleti, Thomas H. Chang, Maria Chien, Subramanyam
Chitti, Amit Ganesh, Kevin Jernigan, Vikram Kapoor, Balaji Krishnan, Jean de Lavarene, Geoff Lee, Scott Lynn, Jack
Melnick, Atrayee Mullick, Eric Paapanen, Ravi Rajamani, Kam Shergill, Ed Shirk, Srinivas Vemuri

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xv
Documentation Accessibility XV
Related Documents XVi
Conventions XVi
1 Introduction to Large Objects and SecureFiles
1.1 What Are Large Objects? 1-1
1.2 Where Should We Use LOBs? 1-2
1.3 LOB Classifications 1-2
1.3.1 Large Object Data Types 1-3
1.3.2 Types of LOBs 1-3
1.3.3 LOBs in Object Data Types 1-5
1.3.4 Oracle Data Types Stored in LOBs 1-5
1.4 LOB Locator and LOB Value 1-5
1.4.1 Using LOBs Without Locators 1-5
1.4.2 Using LOBs with Locators 1-6
1.5 LOB Restrictions 1-6
1.6 How to Navigate This Book 1-8

2 Persistent LOBs

2.1 Creating a Table with LOB Columns 2-2
2.2 Inserting and Updating LOB Values in Tables 2-4
2.2.1 Inserting and Updating with a Buffer 2-4
2.2.2 Inserting and Updating by Selecting a LOB From Another Table 2-5
2.2.3 Inserting and Updating with a NULL or Empty LOB 2-6
2.2.4 Inserting and Updating with a LOB Locator 2-7
2.2.4.1 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable 2-7
2.2.4.2 JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable 2-8
2.2.4.3 OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable 2-9

2.2.4.4 Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind
Variable 2-9

ORACLE il

2.2.45 Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator Bind

Variable 2-10

2.3 Selecting LOB Values from Tables 2-11

2.3.1 Selecting a LOB into a Character Buffer or a Raw Buffer 2-11

2.3.2 Selecting a LOB into a LOB Variable for Read Operations 2-12

2.3.3 Selecting a LOB into a LOB Variable for Write Operations 2-12

2.4 Performing DML and Query Operations on LOBs in Nested Tables 2-13
2.5 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations

on LOBs 2-15

2.6 Sharding with LOBs 2-16

3 Temporary LOBs

3.3 Transforming LOBs 3-1
3.1 Before You Begin 3-2
3.1.1 Creating Temporary LOBs 3-3
3.1.2 Handling Temporary LOBs on the Client Side 3-3
3.2 Temporary LOB APIs in Different Programmatic Interfaces 3-4
3.2.1 PL/SQL APIs for Temporary LOBs 3-6
3.2.2 JDBC API for Temporary LOBs 3-7
3.2.3 OCI APIs for Temporary LOBs 3-8
3.2.4 ODP.NET API for Temporary LOBs 3-10
3.2.5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs 3-10

4 Value LOBs

4.1 About Value LOBs 4-1
4.2 When to Use Value LOBs 4-2
4.3 Creating a Value LOB 4-2
4.3.1 Creating Value LOBs Using DDL 4-3
4.3.2 Creating Value LOBs Using SQL Operators 4-5
4.3.3 Creating Value LOBs Using LOB_VALUE Operator 4-5
4.3.4 Creating Value LOB in Views 4-6
4.4 Value LOBs in Queries 4-7
4.5 Performing DML Operations on LOBs with QUERY AS VALUE 4-8
4.6 Value LOB APIs in Different Programmatic Interfaces 4-9
4.6.1 Prefetching of Value LOBs 4-9
4.6.2 Value LOB API Support 4-10
4.6.3 PL/SQL APIs for Value LOBs 4-10
4.6.4 OCI APIs for Value LOBs 4-11
4.6.5 Interoperability with Older Clients 4-13
4.7 Restrictions on Value LOBs 4-13
ORACLE

5 BFILEs

5.1 DIRECTORY Objects 5-1
5.1.1 DIRECTORY Name Specification 5-2
5.1.2 Security on Directory Objects 5-3

5.2 BFILE Locators 5-4

5.3 BFILE APIs 5-9
5.3.1 Sanity Checking 5-10
5.3.2 Opening and Closing a BFILE 5-10
5.3.3 Reading from a BFILE 5-10
5.3.4 Working with Multiple BFILE Locators 5-11

5.4 BFILE APIs in Different Programmatic Interfaces 5-14
5.4.1 PL/SQL APIs for BFILEs 5-15
5.4.2 JDBC API for BFILEs 5-18
5.4.3 OCI API for BFILEs 5-21
5.4.4 ODP.NET API for BFILEs 5-25
5.4.5 OCCI API for BFILEs 5-26
5.4.6 Pro*C/C++ and Pro*COBOL API for BFILES 5-27

6 SQL Semantics for LOBs

6.1 SQL Functions and Operators Supported for Use with LOBs 6-1
6.2 Detailed Semantics of SQL Operations on LOBs 6-5
6.2.1 Return Datatype for SQL Operations on LOBs 6-5
6.2.2 NULL vs EMPTY LOB: Semantic Difference between LOBs and VARCHAR?2 6-5
6.2.3 WHERE Clause Usage with LOBs 6-6
6.2.4 CLOBs and NCLOBs Do Not Follow Session Collation Settings 6-6
6.2.5 Codepoint Semantics 6-7
6.3 Restrictions on SQL Operations on LOBs 6-8

7 PL/SQL Semantics for LOBs

7.1 Implicit Conversion with LOBs 7-1
7.1.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL 7-3
7.1.2 Implicit Conversions Between CLOB and VARCHAR?2 7-4
7.1.3 Implicit Conversions Between BLOB and RAW 7-6
7.1.4 Guidelines and Restrictions for Implicit Conversions with LOBs 7-6
7.1.5 Detailed Examples for Implicit Conversions with LOBs 7-7
7.2 Explicit Data Type Conversion Functions 7-10
7.3 Temporary LOBs Created by SQL and PL/SQL Built-in Functions 7-11
ORACLE

8 Data Interface for LOBs

8.1 Overview of the Data Interface for LOBs 8-1
8.2 Benefits of Using the Data Interface for LOBs 8-2
8.3 Data Interface for LOBs in Java 8-3
8.4 Data Interface for LOBs in OCI 8-6
8.4.1 Binding a LOB in OCI 8-7
8.4.2 Defining a LOB in OCI 8-7
8.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs 8-8
8.4.4 Getting LOB Length 8-8
8.4.5 Using OCI Functions to Perform INSERT or UPDATE on LOB Columns 8-8
8.4.5.1 Performing Simple INSERT or UPDATE Operations in One Piece 8-9

8.4.5.2 Using Piecewise INSERT and UPDATE Operations with Polling 8-9

8.4.5.3 Performing Piecewise INSERT and UPDATE Operations with Callback 8-11

8.4.5.4 Performing Array INSERT and UPDATE Operations 8-13

8.4.6 Using OCI Data Interface to Fetch LOB Data 8-14
8.4.6.1 Performing Simple Fetch Operations in One Piece 8-14

8.4.6.2 Performing a Piecewise Fetch with Polling 8-15

8.4.6.3 Performing a Piecewise with Callback 8-16

8.4.6.4 Performing an Array Fetch Operation 8-19

8.4.7 PL/SQL and C Binds from OCI 8-20

O Locator Interface for LOBs

9.1 Before You Begin 9-1
9.1.1 Getting a LOB Locator 9-2
9.1.2 LOB Open and Close Operations 9-3
9.1.3 Read and Write at Chunk Boundaries 9-4
9.1.4 Prefetching LOB Data and Length 9-4
9.1.5 Determining Character Set ID 9-4
9.1.6 LOBAPIs 9-4

9.2 PL/SQL API for LOBs 9-7
9.3 JDBC API for LOBs 9-14
9.4 OCI API for LOBs 9-18
9.4.1 Efficiently Reading LOB Data in OCI 9-26
9.4.2 Efficiently Writing LOB Data in OCI 9-31

9.5 ODP.NET API for LOBs 9-34
9.6 OCCI API for LOBs 9-35
9.7 Pro*C/C++ and Pro*COBOL API for LOBs 9-37

ORACLE

Vi

10 Distributed LOBs

10.1 Working with Remote LOBs in SQL and PL/SQL 10-1
10.2 Using the Data Interface on Remote LOBs 10-4
10.2.1 Remote Data Interface Example in PL/SQL 10-8
10.2.2 Remote Data Interface Examples in JDBC 10-9
10.2.3 Remote Data Interface Example in OCI 10-11
10.2.4 Restrictions for Data Interface on Remote LOBs 10-12
10.3 Working with Remote Locators 10-12
10.3.1 Using Local and Remote Locators as Bind with Queries and DML on Remote
Tables 10-13
10.3.2 Using Remote Locator 10-14
10.3.3 Using Remote Locators with OCILOB API 10-16
10.3.4 Restrictions when using remote LOB locators 10-17
11 Performance Guidelines
11.1 LOB Performance Guidelines 11-1
11.1.1 Al LOBs 11-2
11.1.2 Performance Guidelines While Using Persistent LOBs 11-3
11.1.3 Temporary LOBs 11-3
11.1.4 Value LOBs 11-6
11.2 Moving Data to LOBs in a Threaded Environment 11-6
11.3 LOB Access Statistics 11-6
12 Persistent LOBs: Advanced DDL
12.1 Creating a New LOB Column 12-1
12.1.1 CREATE TABLE BNF 12-3
12.1.2 ENABLE or DISABLE STORAGE IN ROW 12-4
12.1.3 CACHE, NOCACHE, and CACHE READS 12-5
12.1.4 LOGGING and FILESYSTEM_LIKE_LOGGING 12-6
12.1.5 The RETENTION Parameter 12-6
12.1.6 SecureFiles Compression, Deduplication, and Encryption 12-7
12.1.6.1 Advanced LOB Compression 12-8
12.1.6.2 Advanced LOB Deduplication 12-10
12.1.6.3 SecureFiles Encryption 12-11
12.1.7 BasicFile Specific Parameters 12-12
12.1.8 Restriction on First Extent of a LOB Segment 12-14
12.1.9 Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs 12-14
12.2 Altering an Existing LOB Column 12-16
12.2.1 ALTER TABLE BNF 12-16
12.2.2 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB 12-18

ORACLE"

Vii

12.2.3 ALTER TABLE SecureFiles LOB Features 12-18

12.2.3.1 ALTER TABLE with Advanced LOB Compression 12-19
12.2.3.2 ALTER TABLE with Advanced LOB Deduplication 12-19
12.2.3.3 ALTER TABLE with SecureFiles Encryption 12-20

12.3 Creating an Index on LOB Column 12-20
12.3.1 Function-Based Indexing on LOB Columns 12-21
12.3.2 Domain Indexing on LOB Columns 12-22
12.3.2.1 Extensible Optimizer 12-23
12.3.2.2 Text Indexes on LOB Columns 12-23

12.4 LOBs in Partitioned Tables 12-24
12.4.1 Partitioning a Table Containing LOB Columns 12-24
12.4.2 Default LOB Storage Attributes 12-26
12.4.3 Partition Maintenance Operation 12-26
12.4.4 Creating an Index on a Table Containing Partitioned LOB Columns 12-27
12.5 LOBs in Index Organized Tables 12-28

13 Advanced Design Considerations

13.1 Read-Consistent Locators 13-1
13.1.1 A Selected Locator Becomes a Read-Consistent Locator 13-2
13.1.2 Example of Updating LOBs and Read-Consistency 13-2
13.1.3 Example of Updating LOBs Through Updated Locators 13-4
13.1.4 Example of Updating a LOB Using SQL DML and DBMS_LOB 13-5
13.1.5 Example of Using One Locator to Update the Same LOB Value 13-6
13.1.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable 13-8
13.1.7 Example of Deleting a LOB Using Locator 13-10
13.1.8 Ensuring Read Consistency 13-11

13.2 LOB Locators and Transaction Boundaries 13-11
13.2.1 About LOB Locators and Transaction Boundaries 13-12
13.2.2 Read and Write Operations on a LOB Using Locators 13-12
13.2.3 Selecting the Locator Outside of the Transaction Boundary 13-13
13.2.4 Selecting the Locator Within a Transaction Boundary 13-14
13.2.5 LOB Locators Cannot Span Transactions 13-14
13.2.6 Example of Locator Not Spanning a Transaction 13-15

13.3 LOBs in the Object Cache 13-16

13.4 Guidelines for Creating Terabyte sized LOBs 13-16
13.4.1 Creating a Tablespace and Table to Store Terabyte LOBs 13-17

14 Managing LOBs: Database Administration

14.4 LOB Migration with Data Pump 14-1
14.1 Initialization Parameter for SecureFiles LOBs 14-1
ORACLE

viii

14.2 Database Character Set Considerations 14-2
14.3 Database Utilities for Loading Data into LOBs 14-2
14.3.1 Loading LOBs with SQL*Loader 14-3
14.3.2 Loading BFILEs with SQL*Loader 14-6
14.3.3 Loading LOBs with External Tables 14-7
14.3.3.1 Overview of LOBs and External Tables 14-8
14.5 BFILEs Management 14-10
14.5.1 Guidelines for DIRECTORY Usage 14-10
14.5.2 Rules for Using Directory Objects and BFILEs 14-11
14.5.3 Setting Maximum Number of Open BFILESs 14-11
14.6 Managing LOB Signatures 14-11
15 Migrating Columns to SecureFile LOBs
15.1 Migration Considerations 15-1
15.2 Migration Methods 15-2
15.2.1 Migrating LOBs with SecureFiles Migration Utility 15-2
15.2.2 Migrating LOBs with Online Redefinition 15-7
15.2.3 Migrating LOBs with Data Pump 15-10
15.3 Other Considerations While Migrating LONG Columns to LOBs 15-11
15.3.1 Migrating Applications from LONGs to LOBs 15-11
15.3.2 Alternate Methods for LOB Migration 15-15
16 Automatic SecureFiles Shrink
16.1 About Manual SecureFiles Shrink 16-1
16.2 About Automatic SecureFiles Shrink 16-2
16.3 Automatic SecureFiles Shrink Features 16-2
16.4 SecureFiles Shrink and Undo Retention 16-4
16.5 Enable Automatic SecureFiles Shrink 16-4
16.6 Disable Automatic SecureFiles Shrink 16-4
16.7 Targets and Limits 16-4
16.7.1 Automatic SecureFiles Shrink Targets 16-5
16.7.1.1 Pre-Allocation Threshold 16-5
16.7.1.2 Automatic SecureFiles Shrink Trickle Threshold 16-6
16.7.2 LOB Segment Idle Time Limit 16-6
16.8 Selection Criteria for SecureFiles LOB Segments to Shrink 16-6
16.9 Automatic SecureFiles Shrink Task 16-7
16.10 Checking Progress 16-8
ORACLE

17 Introducing the Database File System

17.1 Why a Database File System? 17-1
17.2 What Is Database File System (DBFS)? 17-1
17.2.1 About DBFS 17-2
17.2.2 DBFS Server 17-2
17.2.3 DBFS Client Access Methods 17-3
18 Using DBFS

18.1 Enabling Advanced SecureFiles LOB Features for DBFS 18-1
18.7 Dropping a File System 18-3
18.2 Installing DBFS 18-3
18.3 Creating a DBFS File System 18-3
18.3.1 Privileges Required to Create a DBFS File System 18-4
18.3.2 Creating a Non-Partitioned File System 18-4
18.3.3 Creating a Partitioned File System 18-5
18.4 Accessing DBFS File System 18-5
18.4.1 DBFS Client Prerequisites 18-6
18.4.2 Multiple Mount Points on DBFS Client 18-6
18.4.2.1 MUMV for CDB Variant 18-7
18.4.2.2 MUMV for Cross-Database Variant 18-7

18.4.3 Manager File System 18-8
18.4.3.1 Adding a DBFS Mount Point 18-8
18.4.3.2 Listing DBFS Mount Points 18-10
18.4.3.3 Unmounting a DBFS Mount Point 18-10
18.4.3.4 Configuration Parameters of DBFS Client 18-10
18.4.3.5 Diagnosability of DBFS Client 18-11

18.4.4 DBFS Client Command-Line Interface Operations 18-11
18.4.4.1 About the DBFS Client Command-Line Interface 18-11
18.4.4.2 Listing a Directory 18-12
18.4.4.3 Copying Files and Directories 18-12
18.4.4.4 Removing Files and Directories 18-13

18.4.5 DBFS Mounting Interface (Linux and Solaris Only) 18-13
18.4.5.1 Installing FUSE on Solaris 11 SRU7 and Later 18-14
18.4.5.2 Solaris-Specific Privileges 18-14
18.4.5.3 About the Mount Command for Solaris and Linux 18-14
18.4.5.4 Mounting a File System with a Wallet 18-15
18.4.5.5 Mounting a File System with Password at Command Prompt 18-16
18.4.5.6 Unmounting a File System 18-16
18.4.5.7 Mounting DBFS Through fstab Utility for Linux 18-16
18.4.5.8 Mounting DBFS Through the vfstab Utility for Solaris 18-17

ORACLE

18.4.5.9 Restrictions on Mounted File Systems 18-18
18.4.5.10 Restrictions on Types of Files Stored at DBFS Mount Points 18-18

18.4.6 File System Security Model 18-18
18.4.6.1 About the File System Security Model 18-19
18.4.6.2 Enabling Shared Root Access 18-19
18.4.6.3 About DBFS Access Among Multiple Database Users 18-19
18.4.6.4 Establishing DBFS Access Sharing Across Multiple Database Users 18-20

18.4.7 HTTP, WebDAV, and FTP Access to DBFS 18-23
18.4.7.1 Internet Access to DBFS Through XDB 18-24
18.4.7.2 Web Distributed Authoring and Versioning (WebDAV) Access 18-24
18.4.7.3 FTP Access to DBFS 18-24
18.4.7.4 HTTP Access to DBFS 18-25

18.5 Maintaining DBFS 18-25
18.5.1 Using Oracle Wallet with DBFS Client 18-26
18.5.2 DBFS Diagnostics 18-27
18.5.3 Preventing Data Loss During Failover Events 18-27
18.5.4 Bypassing Client-Side Write Caching 18-28
18.5.5 Backing up DBFS 18-28
18.5.5.1 DBFS Backup at the Database Level 18-28
18.5.5.2 DBFS Backup Through a File System Utility 18-28

18.5.6 Small File Performance of DBFS 18-29
18.6 Shrinking and Reorganizing DBFS Filesystems 18-29
18.6.1 About Changing DBFS File Systems 18-29
18.6.2 Advantages of Online Filesystem Reorganization 18-30
18.6.3 Determining Availability of Online Filesystem Reorganization 18-30
18.6.4 Required Permissions for Online Filesystem Reorganization 18-31
18.6.5 Invoking Online Filesystem Reorganization 18-31

19 DBFS SecureFiles Store

19.1 Setting Up a SecureFiles Store 19-1
19.1.1 About Managing Permissions 19-1
19.1.2 Creating or Setting Permissions 19-2
19.1.3 Accessing SecureFiles Store 19-2
19.1.4 Reinitializing SecureFiles Store File Systems 19-2
19.1.5 Comparison of SecureFiles LOBs to BasicFiles LOBs 19-2
19.2 Using a DBFS SecureFiles Store File System 19-3
19.2.1 DBFS Content APl Working Example 19-3
19.2.2 Dropping SecureFiles Store File Systems 19-4
19.3 About DBFS SecureFiles Store Package, DBMS_DBFS_SFS 19-5
19.4 Database File System (DBFS)— POSIX File Locking 19-5
19.4.1 About Advisory Locking 19-6

ORACLE

Xi

19.4.2 About Mandatory Locking 19-6

19.4.3 File Locking Support 19-7
19.4.4 Compatibility and Migration Factors of Database Filesystem—File Locking 19-7
19.4.5 Examples of Database File System—File Locking 19-7
19.4.6 DBFS Locking Behavior 19-9
19.4.7 Scheduling File Locks 19-9

19.4.7.1 Greedy Scheduling 19-10

19.4.7.2 Fair Scheduling 19-10

20 DBFS Hierarchical Store

20.1 About the Hierarchical Store Package DBMS_DBFS_HS 20-1
20.2 Setting up the Store 20-1
20.2.1 Creating, Registering, and Mounting the Store 20-2
20.3 Using the Hierarchical Store 20-2
20.3.1 Using Hierarchical Store as a File System 20-3
20.3.2 Using Hierarchical Store as an Archive Solution For SecureFiles LOBs 20-3
20.3.3 Dropping a Hierarchical Store 20-3
20.3.4 Compression to Use with the Hierarchical Store 20-3
20.3.5 Program Example Using Tape 20-4
20.3.6 Program Example Using Amazon S3 20-8
20.4 The DBMS_DBFS_ HS Package 20-13
20.4.1 Constants for DBMS_DBFS_HS Package 20-13
20.4.2 Methods for DBMS_DBFS_HS Package 20-13
20.5 Views for DBFS Hierarchical Store 20-14
20.5.1 DBA Views 20-14
20.5.2 User Views 20-15

271 Database File System Links

21.1 About Database File System Links 21-1
21.2 Ways to Create Database File System Links 21-3
21.3 Database File System Links Copy 21-4
21.4 The DBMS_LOB Package Used with DBFS 21-4
21.5 DBMS_LOB Constants Used with DBFS 21-4
21.6 DBMS_LOB Subprograms Used with DBFS 21-5
21.7 Copying a Linked LOB Between Tables 21-7
21.8 Online Redefinition and DBFS Links 21-7
21.9 Transparent Read 21-7
ORACLE

Xii

272 DBFS Content API

22.1
22.2
22.3

Overview of DBFS Content API
Stores and DBFS Content API
Getting Started with DBMS_DBFS_CONTENT Package

22.3.1 DBFS Content API Role
22.3.2 Path Name Constants and Types
22.3.3 Path Properties

22.3.4 Content IDs

22.3.5 Path Name Types

22.3.6 Store Features

22.3.7 Lock Types

22.3.8 Standard Properties
22.3.9 Optional Properties
22.3.10 User-Defined Properties
22.3.11 Property Access Flags
22.3.12 Exceptions

22.3.13 Property Bundles
22.3.14 Store Descriptors

22.4

Administrative and Query APIs

22.4.1 Registering a Content Store

22.4.2 Unregistering a Content Store

22.4.3 Mounting a Registered Store

22.4.4 Unmounting a Previously Mounted Store

22.4.5 Listing all Available Stores and Their Features
22.4.6 Listing all Available Mount Points
22.4.7 Looking Up Specific Stores and Their Features

22.5
22.6
22.7
22.8
22.9
22.10
22.11
22.12
22.13
22.14
22.15
22.16
22.17
22.18
22.19

ORACLE

Querying DBFS Content API Space Usage
DBFS Content API Session Defaults
DBFS Content API Interface Versioning
DBFS Content API Creation Operations
DBFS Content API Deletion Operations
DBFS Content API Path Get and Put Operations
DBFS Content APl Rename and Move Operations
Directory Listings
DBFS Content API Directory Navigation and Search
DBFS Content API Locking Operations
DBFS Content API Access Checks
DBFS Content API Abstract Operations
DBFS Content API Path Normalization
DBFS Content API Statistics Support
DBFS Content API Tracing Support

22-2
22-3
22-3
22-4
22-4
22-4
22-5
22-5
22-6
22-6
22-7
22-7
22-7
22-7
22-8
22-8
22-9
22-9
22-10
22-10
22-10
22-11
22-11
22-12
22-12
22-12
22-13
22-13
22-14
22-15
22-15
22-16
22-16
22-17
22-17
22-18
22-18
22-19
22-19
22-20

Xiii

22.20 Resource and Property Views 22-21

23 Creating Your Own DBFS Store

23.1 Overview of DBFS Store Creation and Use 23-1
23.2 DBFS Content Store Provider Interface (DBFS Content SPI) 23-2
23.3 Creating a Custom Store Provider 23-3
23.3.1 Installation and Setup 23-4
23.3.2 TBFS Use 23-4
23.3.3 TBFS Internals 23-4
23.3.4 Example Scripts 23-5
23.3.4.1 Driver Script 23-6
23.3.4.2 Creating a Test User, Tablespace and Table to Backup Filesystem 23-6
23.3.4.3 Providing SPI Specification 23-6
23.3.4.4 SPI Implementation of tbfs 23-15
23.3.4.5 Registering and Mounting the DBFS 23-29

24 DBFS Access Using OFS

24.1 About OFS 24-1
24.2 About Oracle File Server Process 24-2
OFS Configuration Parameters 24-3
24.4 OFS Client Interface 24-4
24.4.1 DBMS_FS Package 24-4
24.4.2 Views for OFS 24-5
24.5 Managing DBFS Locally Using FUSE 24-6
2451 Configuring FUSE 24-6
24.5.2 Accessing OFS in Cloud 24-7
Accessing DBFS and OFS with an NFS Account 24-8
24.6.1 Accessing OFS with an NFS Account 24-8
24.6.2 Prerequisites to Access Storage Through NFS Server 24-8
24.6.3 NFS Security 24-8
24.6.3.1 About Kerberos 24-9
24.6.3.2 Configuring Kerberos Server 24-9

A Comparing the LOB Interfaces

ORACLE Xiv

Preface

This guide describes database features that support application development using
SecureFiles and Large Object (LOB) data types and Database File System (DBFS). The
information in this guide applies to all platforms, and does not include system-specific
information.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

Oracle Database SecureFiles and Large Objects Developer's Guide is intended for
programmers who develop new applications using LOBs and DBFS, and those who have
previously implemented this technology and now want to take advantage of new features.

Efficient and secure storage of multimedia and unstructured data is increasingly important, and
this guide is a key resource for this topic within the Oracle Application Developers
documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer's Guide contains information that
describes the SecureFiles LOB and BasicFiles LOB features and functionality of Oracle
Database 12c Release 2 (12.2).

Prerequisites for Using LOBs

Oracle Database includes all necessary resources for using LOBs in an application; however,
there are some restrictions as described in the "LOB Rules and Restrictions" section.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

ORACLE v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information, see the following manuals:

e Oracle Database 2 Day Developer's Guide

e Oracle Database Development Guide

* Oracle Database Utilities

e Oracle XML DB Developer’s Guide

e Oracle Database PL/SQL Packages and Types Reference

e Oracle Database Data Cartridge Developer's Guide

e Oracle Call Interface Developer's Guide

e Oracle C++ Call Interface Developer's Guide

e Pro*C/C++ Developer's Guide

e Pro*COBOL Developer's Guide

e Oracle Database Developer's Guide to the Oracle Precompilers
* Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Java
The Oracle Java documentation set includes the following:

e Oracle Database JDBC Developer’s Guide
e Oracle Database Java Developer’s Guide

Basic References

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN)

http://www.oracle.com/technetwork/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

XVi

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Changes In Oracle Database

The following are the changes in SecureFiles and Large Objects Developer's Guide for Oracle
Database 23ai.

New Features in Release 23ai

Deprecated Features in Release 23ai

New Features in Release 23ali

The following are the new features in the SecureFiles and Large Objects Developer's Guide for
Oracle Database Release 23ai.

Automatic SecureFiles Shrink
Automatic SecureFiles Shrink automatically selects suitable SecureFiles LOB segments
and shrinks the selected segment in the background.

Distributed and Sharded Environments Support Additional Types of LOBs
Earlier, persistent LOBs and temporary LOBs were supported in distributed and sharded
environments.

Estimate the Space Saved with Deduplication
Before you enable deduplication, use the GET LOB DEDUPLICATION RATIO function to
estimate the space that you can save by enabling this feature for existing LOBs.

Improved Performance of LOB Writes
You can experience improved LOB read and write performance.

Maximum Size of Inline LOBs is 8000
Actual LOB values are stored either in the table row (inline) or outside of the table row (out-
of-line).

Migrate BasicFile LOBs Using the SecureFiles Migration Utility
Use the SecureFiles Migration Utility to simplify the migration and compression of
BasicFiles LOB segments to SecureFiles LOB segments.

Rename LOB Segments
From release 23ai onwards, you can use the ALTER TABLE RENAME LOB Statement to
rename LOB segments, and partitions, as well as subpartitions, in partitioned tables.

Tune Performance for Parallel File System Operations
Tune performance in environments that contain many PDBs and require multiple DBMS_FS
requests to be processed in parallel.

Value LOBs Optimize Reading LOB Values in a SQL Query
Value LOBs, are a subset of Temporary LOBs, which are valid for a SQL fetch duration.

Automatic SecureFiles Shrink

ORACLE

Automatic SecureFiles Shrink automatically selects suitable SecureFiles LOB segments and
shrinks the selected segment in the background.

With Automatic SecureFiles Shrink, the shrink operation happens transparently in small and
gradual steps over time while allowing DDL and DML statements to execute concurrently. In
the manual method, you must decide on which LOB segments to shrink using tools like

17

New Features in Release 23ai

Segment Advisor, and use a DDL statement to execute the shrink operation. The manual
method may not be feasible for very large LOB segments because it is time-consuming.

Automatic SecureFiles Shrink simplifies administrator duties and saves time due to the
automation of this process. See Automatic SecureFiles Shrink.

Distributed and Sharded Environments Support Additional Types of LOBs

Earlier, persistent LOBs and temporary LOBs were supported in distributed and sharded
environments.

You can now work with inline LOBs, value LOBs, and all temporary LOBs in distributed and
sharded environments. Avail good performance, scalability, and garbage collection when you
work with temporary LOBs. See Distributed LOBs.

Estimate the Space Saved with Deduplication

Before you enable deduplication, use the GET LOB DEDUPLICATION RATIO function to estimate
the space that you can save by enabling this feature for existing LOBs.

This enables you to take an informed decision to enable deduplication. See ALTER TABLE
with Advanced LOB Deduplication.

Improved Performance of LOB Writes

You can experience improved LOB read and write performance.
The following enhancements improve the LOB read and write performance:

e Multiple LOBs in a single transaction are buffered simultaneously. This improves
performance when you use switch between LOBs while writing within a single transaction.

* Various enhancements, such as acceleration of compressed LOB append and
compression unit caching, improve the performance of reads and writes to compressed
LOBs.

e The input-output buffer is resized based on the input data for large writes to LOBs with the
NOCACHE option. This improves the performance for large direct writes, such as writes to
file systems on DBFS and OFS.

Maximum Size of Inline LOBs is 8000

Actual LOB values are stored either in the table row (inline) or outside of the table row (out-of-
line).

Now, the maximum size of the inline LOB is 8000. Earlier, the maximum size was 4000. This
provides better input-output performance while processing LOB columns. You can experience
the improved performance while running operations, such as full table scans, range scans, and
DML. See Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs.

Migrate BasicFile LOBs Using the SecureFiles Migration Utility

ORACLE

Use the SecureFiles Migration Utility to simplify the migration and compression of BasicFiles
LOB segments to SecureFiles LOB segments.

Earlier it was challenging to decide which BasicFile LOBs to migrate to SecureFile LOBs, and
whether or not to compress the LOBSs, especially considering that organizations often have

18

New Features in Release 23ai

many databases, with a large numbers of schemas, tables, and segments. SecureFiles
Migration Utility automates several steps that were earlier performed manually. It also
generates several reports that help you decide which BasicFile LOBs you want to migrate and
compress. This is the recommended method to migrate BasicFile LOB data to SecureFile
storage. See Migrating LOBs with SecureFiles Migration Utility.

Rename LOB Segments

From release 23ai onwards, you can use the ALTER TABLE RENAME LOB statement to rename
LOB segments, and partitions, as well as subpartitions, in partitioned tables.

Example 1 Command Syntax

ALTER TABLE RENAME LOB (<column name>) <oldsegment name> to <newsegment name>;

ALTER TABLE RENAME LOB (<column name>) partition <oldsegment name> to
newsegment name;

ALTER TABLE RENAME LOB (<column name>) subpartition <oldsegment name> to
newsegment name;

Ensure that new name that you provide for the segment is unique within the database. In case
of any conflicts, the database returns ORA-64223 or ORA-64223. To check the names of the
existing segments, you can query LOB views, such as all lobs, all lobs partition, or

all lob subpartitions.

See ALTER TABLE BNF.

Tune Performance for Parallel File System Operations

Tune performance in environments that contain many PDBs and require multiple DBMS FS
requests to be processed in parallel.

You can update the number OFS_THREADS to increase the number of DBMS_FS requests that are
executed in parallel. This increases the number of worker threads executing the make, mount,
unmount, and destroy operations on Oracle file systems in the Oracle database.

Increase in the value of OFS_THREADS, results in a significant reduction of time taken to execute
parallel file system requests in environments that contain multiple PDBs. You can query the
V$SOFS_THREADS view to list all the running OFS threads and to retrieve details about the
different OFS threads. See Views for OFS.

Value LOBs Optimize Reading LOB Values in a SQL Query

ORACLE

Value LOBs, are a subset of Temporary LOBs, which are valid for a SQL fetch duration.

Use Value LOBs to optimize reading LOB values in the context of a SQL query. Many
applications use LOBSs to store medium-sized objects, about a few mega-bytes in size, and just
want to read the LOB value in the context of a SQL query.

Value LOBs are autonomous, read-only and more performant. A value LOB, in most instances,
provides faster performance than a reference LOB. Oracle highly recommends that you use
value LOBs if your application fetches a LOB for read purposes as part of a SQL query and
consumes the LOB data before the next fetch is performed on the cursor.

19

Deprecated Features in Release 23ai

A value LOB gets automatically freed when the next fetch for a cursor is performed. This
prevents accumulation of temporary LOBs, which translates to better performance and
scalability of the query. In the case of temporary LOBs, it has always been the user's
responsibility to free the temporary LOB when their application is done processing it.

A SQL function for JSON can also return a value LOB. See Value LOBs.
Deprecated Features in Release 23ai

The following are the deprecated features in the SecureFiles and Large Objects Developer's
Guide for Oracle Database Release 23ai.

» Deprecation of the mkstore Wallet Management Tool
» Deprecation of Enterprise User Security (EUS)
« Deprecation of Oracle JDBC Proprietary BLOB/CLOB Open and Close Methods

Deprecation of the mkstore Wallet Management Tool

The mkstore wallet management command line tool is deprecated with Oracle Database 23ai,
and can be removed in a future release.

Deprecation of Enterprise User Security (EUS)

Enterprise User Security (EUS) is deprecated with Oracle Database 23ai.

Deprecation of Oracle JDBC Proprietary BLOB/CLOB Open and Close
Methods

The Oracle JDBC methods open (), close (), and isClosed() in OracleBlob, OracleClob, and
OracleBfile are deprecated for removal in Oracle Database 23ai.

Oracle is deprecating these methods, which are replaced with openLob (), closeLob () and
isClosedLob (). The method close () conflicts with the interface type
java.lang.Autocloseable. Removing the proprietary method close () makes it possible for
java.lang OracleBlob, java.lang.OracleClob, and java.lang.OracleBfile to extend the
Autocloseable interface at some future time. The open () and isClosed () methods will be
removed and replaced in a future release to maintain rational names for these methods.

ORACLE 20

Introduction to Large Objects and SecureFiles

Large Objects are used to hold large amounts of data inside Oracle Database, SecureFiles
provides performance comparable to file system performance, and DBFS provides file system
interface to files stored in Oracle Database.

What Are Large Objects?
Large Objects (LOBSs), SecureFiles LOBs, and Database File System (DBFS) work
together with various database features to support application development.

Where Should We Use LOBs?
Large objects are suitable for semistructured and unstructured data.

LOB Classifications

LOBs store a variety of data such as audio, video, documents, and so on. Based on the
type of data stored in the LOB or memory management mechanism used, there are
different classifications.

LOB Locator and LOB Value
A LOB instance has a locator and a value. A LOB locator is a reference, or a pointer, to
where the LOB value is physically stored. The LOB value is the data stored in the LOB.

LOB Restrictions
You have to keep a few restrictions in mind while working with LOB data.

How to Navigate This Book

This section elaborates how to navigate this book using a flow chart that provides
information about the relevant chapters you must read for understanding various concepts
or performing various tasks.

1.1 What Are Large Objects?

Large Objects (LOBSs), SecureFiles LOBs, and Database File System (DBFS) work together

ORACLE

with various database features to support application development.

Large Objects

The maximum size for a single LOB can range from 8 terabytes to 128 terabytes depending on
how your database is configured. Storing data in LOBs enables you to access and manipulate
the data efficiently in your application.

SecureFile LOBs

SecureFile LOBs are LOBs that are created in a tablespace managed with Automatic Segment
Space Management (ASSM). SecureFiles is the default storage mechanism for LOBs in
database tables. Oracle strongly recommends SecureFiles for storing and managing LOBs.

Database File System (DBFS)

Database File System (DBFS) provides a file system interface to files that are stored in an
Oracle Database.

Files stored in an Oracle Database are usually stored as SecureFiles LOBs, and path nhames,
directories, and other file system information is stored in the database tables. SecureFiles

1-1

Chapter 1
Where Should We Use LOBs?

LOBs is the default storage method for DBFS, but BasicFiles LOBs can be used in some
situations.

With DBFS, you can make references from SecureFiles LOB locators to files stored outside the
database. These references are called DBFS Links or Database File System Links.

1.2 Where Should We Use LOBs?

Large objects are suitable for semistructured and unstructured data.

Large object features enable you to store the following types of data in the database and also
in the operating system files that are accessed from the database.

e Semistructured data

Semistructured data has a logical structure that is not typically interpreted by the database,
for example, an XML document that your application or an external service processes.
Oracle Database provides features such as Oracle XML DB, Oracle Multimedia, and
Oracle Spatial and Graph to help your application work with semistructured data.

e Unstructured data

Unstructured data is easily not broken down into smaller logical structures and is not
typically interpreted by the database or your application, such as a photographic image
stored as a binary file.

Data unsuited for LOBs

e Simple Structured Data
Simple structured data can be organized into relational tables that are structured based on

business rules.

e Complex Structured Data
Complex structured data is suited for the object-relational features of the Oracle Database
such as collections, references, and user-defined types.

Maximum Size of a LOB

The maximum permissible LOB size for your configuration depends on the block size setting of
the tablespace. It is calculated as (4 gigabytes - 1)*(space usable for data in the LOB
block). For example, if a LOB is stored in a tablespace of block size 8K, then the approximate
maximum LOB size is about 32 terabytes.

1.3 LOB Classifications

ORACLE

LOBs store a variety of data such as audio, video, documents, and so on. Based on the type of
data stored in the LOB or memory management mechanism used, there are different
classifications.

* Large Object Data Types
Oracle Database provides a set of large object data types as SQL data types, where the
term LOB generally refers to the set.

e Types of LOBs
This section describes the three types of LOB data that Oracle supports.

e LOBs in Object Data Types
Typically, there is no difference in the use of a LOB instance in a LOB column or in an
object data type, as its member.

1-2

Chapter 1
LOB Classifications

e Oracle Data Types Stored in LOBs
Many data types provided with Oracle Database are stored as or created with LOB types.

1.3.1 Large Object Data Types

Oracle Database provides a set of large object data types as SQL data types, where the term
LOB generally refers to the set.

In general, the descriptions given for the data types in this table and related sections, also
apply to the corresponding data types provided for other programmatic environments.

The following table describes each large object data type that the database supports and
describes the kind of data that uses it.

Table 1-1 Types of Large Object Data

]
SQL Data Type Description

BLOB Binary Large Object
Stores any kinds of data in binary format. Used for images, audio, and video.

CLOB Character Large Object
Stores string data in the database character set format. Used for large strings or
documents that use the database character set exclusively. Characters in the
database character set are in a fixed width format.

NCLOB National Character Set Large Object
Stores string data in National Character Set format, typically large strings or
documents. Supports characters of varying width format.

BFILE External Binary File

A binary file stored outside of the database in the host operating system file
system, but accessible from database tables. BFILEs can be accessed from your
application on a read-only basis. Use BFILES to store static data, such as image
data, that is not manipulated in applications.

Any kind of data, that is, any operating system file, can be stored in a BFILE. For
example, you can store character data in a BFILE and then load the BFILE data
into a CLOB, specifying the character set upon loading.

1.3.2 Types of LOBs

ORACLE

This section describes the three types of LOB data that Oracle supports.

Persistent LOBs

A persistent LOB is a LOB instance that exists in a table row in the database. Persistent LOBs
participate in database transactions. You can recover persistent LOBs in the event of
transaction or media failure, and any changes to a persistent LOB value can be committed or
rolled back. In other words, all the Atomicity, Consistency, Isolation, and Durability (ACID)
properties that apply to database objects apply to persistent LOBs. Persistent LOBs can be of
data types BLOB, CLOB and NCLOB.

Temporary LOBs

A temporary LOB instance is created when you instantiate a LOB only within the scope of your
local application. Temporary LOBs are transient, just like other local variables in an application.
A temporary LOB becomes persistent when you insert it into a table row. Temporary LOBs can
be of data types BLOB, CLOB and NCLOB.

1-3

Chapter 1
LOB Classifications

A Value LOB is a special kind of read-only temporary LOB with optimizations for better
performance and manageability compared to a reference LOB. Many applications use LOBs to
store medium-sized objects, about a few mega-bytes in size, and just want to read the LOB
value in the context of a SQL query. Oracle recommends that you use Value LOBs for
applications which use LOBs as a larger VARCHAR or RAW data type.

BFILEs

BFILES are data objects stored in operating system files, outside the database tablespaces.
Data stored in a table column of type BFILE is physically located in an operating system file,
not in the database.

BFILES are read-only data types. The database allows read-only byte stream access to data
stored in BFILES. You cannot write to or update a BFILE from within your application.

You typically use BFILES to hold:

« Binary data that does not change while your application is running, such as graphics

« Data that is loaded into other large object types, such as a BLOB or CLOB, where the data
can then be manipulated

- Data that is appropriate for byte-stream access, such as multimedia

Any storage device accessed by your operating system can hold BFILE data, including hard
disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFILES provided the
operating system supports stream-mode access to the operating system files.

< Note:

All the information related to BFILESs is exclusively documented either in BFILES or in
Managing LOBs: Database Administration.
The following picture summarizes the relationship between different kinds of LOBs.
I
|
]
I
|

LOB Universe
Persistent LOBs : Temporary LOBs

Read only LOBs

Value LOBs

ORACLE 4

Chapter 1
LOB Locator and LOB Value

1.3.3 LOBs in Object Data Types

Typically, there is no difference in the use of a LOB instance in a LOB column or in an object
data type, as its member.

In this guide, the term LOB attribute refers to a LOB instance that is a member of an object
data type. Unless otherwise specified, discussions that apply to LOB columns also apply to
LOB attributes.

1.3.4 Oracle Data Types Stored in LOBs

Many data types provided with Oracle Database are stored as or created with LOB types.
The following list mentions a few data types that you can store with LOB types:

° VARCHAR?2 or RAW data types of size greater than 4000 bytes

e JSON data type

° XMLType stored as BINARY XML or CLOB

* VARRAY stored as LOB

1.4 LOB Locator and LOB Value

A LOB instance has a locator and a value. A LOB locator is a reference, or a pointer, to where
the LOB value is physically stored. The LOB value is the data stored in the LOB.

A LOB locator can be assigned to any LOB instance of the same type, such as BLOB, CLOB,
NCLOB, or BFILE. When you use a LOB in an operation such as passing a LOB as a parameter,
you are actually passing a LOB locator. For the most part, you can work with a LOB instance in
your application without being concerned with the semantics of LOB locators. There is no
requirement to dereference LOB locators, as is required with pointers in some programming
languages.

There are two different techniques to access and modify LOBs:

e Using LOBs Without Locators
LOBs can be used in many operations similar to how VARCHAR2 or RAW data types are
used. Such LOB operations can be performed without the use of LOB locators.

e Using LOBs with Locators
You can use the LOB locator to access and modify LOB values by passing the LOB locator
to the LOB APIs supplied with the database. These operations support efficient piecewise
read and write to LOBs.

1.4.1 Using LOBs Without Locators

ORACLE

LOBs can be used in many operations similar to how VARCHAR2 or RAW data types are
used. Such LOB operations can be performed without the use of LOB locators.

LOB operations that are similar to VARCHAR2 and RAW types include:

e SQL and PLSQL built-in functions and implicit assignments

1-5

Chapter 1
LOB Restrictions

See Also:

— SQL Semantics for LOBs
— PL/SQL Semantics for LOBs

Data interface on LOBs that enables you to insert or select entire LOB data in a LOB
column without using a LOB locator as follows:

— Use a bind variable associated with a LOB column to insert character data into a CLOB,
or RAW data into a BLOB. For example, in PLSQL you can insert a VARCHAR?2 buffer into a
CLOB column, and in OCI you can bind a buffer of type SOLT CHAR to a CLOB column.

— Define an output buffer in your application that holds character data selected from a
CLOB or RAW data selected from a BLOB. For example, in PLSQL you can select the CLOB
output of a query into a VARCHAR? buffer, and in OCI you can define a CLOB query result
item to a buffer of type SQLT CHAR.

¢ See Also:

Data Interface for LOBs

1.4.2 Using LOBs with Locators

You can use the LOB locator to access and modify LOB values by passing the LOB locator to
the LOB APIs supplied with the database. These operations support efficient piecewise read
and write to LOBs.

You should use this mode if your application needs to perform random or piecewise read or
write calls to LOBs, which means it needs to specify the offset or amount of the operation to
read or write a part of the LOB value.

¢ See Also:

Locator Interface for LOBs

1.5 LOB Restrictions

You have to keep a few restrictions in mind while working with LOB data.

ORACLE

LOB columns are subject to the following rules and restrictions:

You cannot specify a LOB as a primary key column.

You cannot specify LOB columns in the ORDER BY clause of a query, the GROUP BY clause of
a query, or an aggregate function.

You cannot specify a LOB column in @ SELECT... DISTINCT Or SELECT... UNIQUE statement or
in a join. However, you can specify a LOB attribute of an object type column in a SELECT...
DISTINCT statement, a query that uses the UNION, or a MINUS set operator if the object type
of the column has a MAP or ORDER function defined on it.

1-6

Chapter 1
LOB Restrictions

* Clusters cannot contain LOBs, either as key or nonkey columns.
« Even though compressed VARRAY data types are supported, they are less performant.

e The following data structures are supported only as temporary instances. You cannot store
these instances in database tables:

— VARRAY of any LOB type
— VARRAY of any type containing a LOB type, such as an object type with a LOB attribute

— ANYDATA of any LOB type

ANYDATA of any type containing a LOB
e The first (INITIAL) extent of a LOB segment must contain at least three database blocks.

e The minimum extent size is 14 blocks. For an 8K block size (the default), this is equivalent
to 112K.

* When creating an AFTER UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause. For a table on which you have defined an AFTER UPDATE DML trigger, if
you use OCI functions or the DBMS LOB package to change the value of a LOB column or
the LOB attribute of an object type column, the database does not fire the DML trigger.

e You cannot specify a LOB column as part of an index key. However, you can specify a LOB
column in the indextype specification of a functional or domain index. In addition, Oracle
Text lets you define an index on a CLOB column.

* In SQL Loader, a field read from a LOB cannot be used as an argument to a clause.

* Case-insensitive searches on CLOB columns often do not succeed. If you perform the
following case-insensitive search on a CLOB column:

ALTER SESSION SET NLS COMP=LINGUISTIC;
ALTER SESSION SET NLS SORT=BINARY CI;
SELECT * FROM ci test WHERE LOWER(clob col) LIKE 'aa%';

The select fails without the L.OWER function. You can perform case-insensitive searches with
Oracle Text or the DBMS LOB.INSTR() function.

¢ See Also:

* Restrictions on SQL Operations on LOBs

* Guidelines and Restrictions for Implicit Conversions with LOBs
* Restrictions for Data Interface on Remote LOBs

* Restrictions when using remote LOB locators

» Restrictions on Mounted File Systems

* Restrictions on Types of Files Stored at DBFS Mount Points

* Restrictions on Index Organized Tables with LOB Columns

* Restrictions on Migrating LOBs with Data Pump

ORACLE e

Chapter 1
How to Navigate This Book

1.6 How to Navigate This Book

ORACLE

This section elaborates how to navigate this book using a flow chart that provides information
about the relevant chapters you must read for understanding various concepts or performing
various tasks.

DEFS Chapters
15. Introducing the Database File System
16. Using DEFS
BFILEs Which storage DBFS 17. DBFS Se.curEFiI.es stare
BFILEs Chapters dases 1E. DBFS Hlera!':hu:al storg
4. BFILEs application 10. Database File System Links
13. Managing LOBs: Database need? 20. DBFs .CD"tEm‘API
Administration 24, Creating Your Own DBFS Store

22. DBFS Access using OFS

LOBs J

Intreductory Chapters
2. Persistent LOBs
3. Temparary LOBs

|

Sequential access; Random Access;
ReasdWrite entire LOB

Access LOBs like VARCHARS Read /Write piecewise

5. 50L Semantics for LOBs What's Use LOB Locator
. — —_—

©. PL/S0OL Semantics for LOBs my access . Locator LOBs

7. Data Interface for LOBs pattern? T

Remote Access;

Sequential or Randem

Access LOBs like WARCHARS, or
Use LOB Locator
3. Distributed LOBs

v
+* Keep in mind **
10. Performance

¥

advanced features (as needed)

11 Persistent LOBs: Advanced DDL

12. Advanced Design Considerations

13. Managing LOBs . Database Administration
14. Migrating Columns to SecureFile LOBs

1-8

Persistent LOBS

ORACLE

A persistent LOB is a LOB instance that exists in a table row in the database. Persistent LOBs
can be stored as SecureFiles or BasicFiles.

The term LOB can represent LOBs of either SecureFiles or BasicFiles type, unless the storage
type is explicitly indicated. It can be either by name for both storage types, or by reference to
archiving or linking, which only applies to the SecureFiles storage type. Oracle strongly
recommends SecureFiles for storing and managing LOBs.

SecureFiles LOB storage is the default in the CREATE TABLE Statement, if no storage type is
explicitly specified. All new LOB columns use SecureFiles LOB storage by default, which is the
recommended method for storing and managing LOBs. SecureFiles LOB storage is designed
to provide great performance and scalability to meet or exceed the performance of traditional
network file system. However, you must use BasicFiles LOB storage for LOB storage in
tablespaces that are not managed with Automatic Segment Space Management (ASSM).
SecureFiles LOBs can only be created in tablespaces managed with Automatic Segment
Space Management (ASSM).

e Creating a Table with LOB Columns
You can use the CREATE TABLE statement or an ALTER TABLE ADD column statement to
create a new LOB column. This section introduces basic DDL operations on LOBs to get
you started quickly.

e Inserting and Updating LOB Values in Tables
Oracle Database provides various methods to insert and update the data available in LOB
columns of database tables.

e Selecting LOB Values from Tables
You can select a LOB into a Character Buffer, a RAW Buffer, or a LOB variable for
performing read and write operations.

e Performing DML and Query Operations on LOBs in Nested Tables
This section describes the INSERT, UPDATE, and SELECT operations on LOBs in Nested
Tables. To update LOBs in a nested table, you must lock the row containing the LOB
explicitly.

e Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on
LOBs
Oracle supports parallel execution of the following operations when performed on
partitioned tables with SecureFiles LOBs or BasicFiles LOBs.

e Sharding with LOBs
LOBs can be used in a sharded environment. This section discusses the interfaces to
support LOBs in sharded tables.

2-1

Chapter 2
Creating a Table with LOB Columns

2.1 Creating a Table with LOB Columns

You can use the CREATE TABLE statement or an ALTER TABLE ADD column statement to create a
new LOB column. This section introduces basic DDL operations on LOBs to get you started
quickly.

Following is an example of creating a table with columns of various LOB types, including LOBs
in Object Types and nested tables:

CREATE USER pm identified by password;
GRANT CONNECT, RESOURCE to pm IDENTIFIED BY pm;
CONNECT pm/pm

-- Create an object type with a LOB
CREATE TYPE adheader typ AS OBJECT (
header name VARCHARZ2 (256),

creation date DATE,
header text VARCHAR (1024),
logo BLOB) ;

CREATE TYPE textdoc typ AS OBJECT (
document typ VARCHAR2 (32),
formatted doc BLOB);

-- Create a nested table type of Object type containing a LOB
CREATE TYPE Textdoc ntab AS TABLE of textdoc typ;

-- Create a table of Object type, and specify a default value for LOB column
CREATE TABLE adheader tab of adheader typ (
logo DEFAULT EMPTY BLOB(),
CONSTRAINT header name CHECK (header name IS NOT NULL),
header text DEFAULT NULL);
-- Create a table with columns of different LOB types,
-- and of object type with LOBs, and nested table containing LOB
CREATE TABLE print media
(product id NUMBER(6),
ad_id NUMBER (6),
ad composite BLOB,
ad_sourcetext CLOB,
ad finaltext CLOB,
ad fltextn NCLOB,
ad testdocs ntab textdoc tab,
ad photo BLOB,
ad graphic BFILE,
ad_header adheader typ,
press release LONG) NESTED TABLE ad textdocs ntab STORE AS textdocs nestedtab;

CREATE UNIQUE INDEX printmedia pk
ON print media (product id, ad id);

ORACLE "5

ORACLE

Figure 2-1 print_media table

Chapter 2
Creating a Table with LOB Columns

PRINT_MEDIA Table

‘ Column name] [Column Type J
product_id NUMBER (6)
ad_id NUMBER (6)
ad_composite BLOB
ad_sourcetext CLOB
ad_finaltext CLOB
ad_fltextn NCLOB
ad_textdocs_ntab NESTED TABLE
ad_photo BLOB
ad_graphic BFILE
ad_header USER DEFINED TYPE
press_release LONG

You can also perform advanced DDL operations, like the following, on LOBs:

« Specify LOB storage parameters: You can override the default LOB storage settings by

specifying parameters like SECUREFILE/BASICFILE, TABLESPACE where the LOB data will be
stored, ENABLE/DISABLE STORAGE IN ROW, RETENTION, caching, logging, etc. You can also
specify SecureFile specific parameters like COMPRESSION, DEDUPLICATION and ENCRYPTION.

Alter an existing LOB column: You can use the ALTER TABLE MODIFY LOB syntax to change
any LOB storage parameters that don't require LOB data movement and the ALTER TABLE
MOVE LOB syntax to change any LOB storage parameters that require LOB data movement.

Create indexes on LOB columns: You can build a functional or a domain index on a LOB
column. You cannot build a B-tree or bitmap index on a LOB column.

Partition a table containing LOB columns: All partitioning schemes supported by Oracle are
fully supported on LOBs.

Use LOBs in Index-Organized tables.

2-3

Chapter 2
Inserting and Updating LOB Values in Tables

See Also:

Persistent LOBs: Advanced DDL

2.2 Inserting and Updating LOB Values in Tables

Oracle Database provides various methods to insert and update the data available in LOB
columns of database tables.

e Inserting and Updating with a Buffer
You can insert a character string directly into a CLOB or NCLOB column. Similarly, you can
insert a raw buffer into a BLOB column. This is the most efficient way to insert data into a
LOB.

* Inserting and Updating by Selecting a LOB From Another Table
You can insert into a LOB column of a table by selecting data from a LOB column of the
same table or a different table. You can also insert data into a LOB column of a table by
selecting a LOB returned by a SQL operator or a PL/SQL function.

e Inserting and Updating with a NULL or Empty LOB
You can set a persistent LOB, that is, a LOB column in a table or a LOB attribute in an
object type that you defined, to be NULL or empty.

* Inserting and Updating with a LOB Locator
If you are using a Programmatic Interface, which has a LOB variable that was previously
populated by a persistent or temporary LOB locator, then you can insert a row by
initializing the LOB bind variable.

2.2.1 Inserting and Updating with a Buffer

ORACLE

You can insert a character string directly into a CLOB or NCLOB column. Similarly, you can insert
a raw buffer into a BLOB column. This is the most efficient way to insert data into a LOB.

The following code snippet inserts a character string into a CLOB column:

/* Store records in the archive table Online media: */
INSERT INTO Online media (product id, product text) VALUES (3060, 'some text
about this CRT Monitor');

The following code snippet updates the value in a CLOB column with character buffer:

UPDATE Online media set product text = 'some other text' where product id =
3060;

¢ See Also:

Data Interface for LOBs for more information about INSERT and UPDATE operations

2-4

Chapter 2
Inserting and Updating LOB Values in Tables

2.2.2 Inserting and Updating by Selecting a LOB From Another Table

ORACLE

You can insert into a LOB column of a table by selecting data from a LOB column of the same
table or a different table. You can also insert data into a LOB column of a table by selecting a
LOB returned by a SQL operator or a PL/SQL function.

Ensure that you meet the following conditions while selecting data from columns that are part
of more than one table:

e The LOB data type is the same for both the columns in the tables
* Implicit conversion is allowed between the two LOB data types used in both the columns

When a BLOB, CLOB, or NCLOB is copied from one row to another in the same table or a different
table, the actual LOB value is copied, not just the LOB locator.

The following code snippet demonstrates inserting a LOB column from by selecting a LOB
from another table. The columns online media.product text and
print media.ad sourcetext are both CLOB types.

/* Insert values into Print media by selecting from Online media: */

INSERT INTO Print media (product id, ad id, ad sourcetext)

(SELECT product id, 11001, product text FROM Online media WHERE product id =
3060) ;

/* Insert values into Print media by selecting a SQL function returning a
CLOB */

INSERT INTO Print media (product id, ad id, ad sourcetext)

(SELECT product id, 11001, substr(product text, 5) FROM Online media WHERE
product id = 3060);

/* Updating a row by selecting a LOB from another table (persistent LOBs) */

UPDATE Print media SET ad sourcetext = (SELECT product text FROM online media
WHERE product id = 3060);
WHERE product id = 3060 AND ad id = 11001;

/* Updating a row by selecting a SQL function returning a CLOB */

UPDATE Print media SET ad sourcetext = (SELECT substr(product text, 5) FROM
online media WHERE product id = 3060);
WHERE product id = 3060 AND ad id = 11001;

The following code snippet demonstrates updating a LOB column from by selecting a LOB
from another table.

/* Updating a row by selecting a LOB from another table (persistent LOBs) */
UPDATE Print media SET ad sourcetext = (SELECT product text FROM online media
WHERE product id = 3060);

WHERE product id = 3060 AND ad id = 11001;

/* Updating a row by selecting a SQL function returning a CLOB */

UPDATE Print media SET ad sourcetext = (SELECT substr(product text, 5) FROM
online media WHERE product id = 3060)

WHERE product id = 3060 AND ad id = 11001;

2-5

Chapter 2
Inserting and Updating LOB Values in Tables

¢ See Also:

e Oracle Database SQL Language Reference for more information on INSERT

e Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ)
Operations on LOBs for information about how to make the INSERT AS SELECT
operation run in parallel

2.2.3 Inserting and Updating with a NULL or Empty LOB

ORACLE

You can set a persistent LOB, that is, a LOB column in a table or a LOB attribute in an object
type that you defined, to be NULL or empty.

Inserting a NULL LOB value

A persistent LOB set to NULL has no locator. A NULL value is stored in the row in the table,
not a locator. This is the same process as for scalar data types. To INSERT a NULL value into
a LOB column, simply use a statement like:

INSERT INTO print media(product id, ad id, ad sourcetext) VALUES (1, 1, NULL);

This is useful in situations where you want to use a SELECT statement, such as the following, to
determine whether or not the LOB holds a NULL value:

SELECT COUNT (*) FROM print media WHERE ad graphic IS NULL;

Caution:

You cannot call DBMS_LOB functions or LOB APIs in other Programmatic Interfaces on
a NULL LOB, so you must then use a SQL UPDATE statement to reset the LOB
column to a non-NULL (or empty) value.

Inserting an EMPTY LOB value

Before you can write data to a persistent LOB using an API like DBMS LOB.WRITE oOr
OCILobWrite2, the LOB column must be non-NULL, that is, it must contain a locator that points
to an empty or a populated LOB value.

You can initialize a BLOB column value by using the EMPTY BLOB () function as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the EMPTY CLOB ()
function. Use the RETURNING clause in the INSERT and UPDATE statement, to minimize the
number of round trips while writing the LOB using APIs.

Following PL/SQL block initializes a CLOB column with an empty LOB using the EMPTY CLOB ()
function and also updates the LOB value in a column with an empty CLOB using the
EMPTY CLOB () function.

DECLARE
c CLOB;

2-6

Chapter 2
Inserting and Updating LOB Values in Tables

amt INTEGER := 11;
buf VARCHAR(11l) := 'Hello there';
BEGIN
/* Insert empty clob() */
INSERT INTO Print media(product id, ad id, ad sourcetext) VALUES (1, 1,
EMPTY CLOB()) RETURNING ad source INTO c;
/* The following statement updates the persistent LOB directly */
DBMS LOB.WRITE (c, amt, 1, buf);

/* Update column to an empty clob() */

UPDATE Print media SET ad sourcetext = EMPTY CLOB() WHERE product id = 2
AND ad id = 2 RETURNING ad source INTO c;

/* The following statement updates the persistent LOB directly */

DBMS LOB.WRITE(c, amt, 1, buf);
END;
/

2.2.4 Inserting and Updating with a LOB Locator

If you are using a Programmatic Interface, which has a LOB variable that was previously
populated by a persistent or temporary LOB locator, then you can insert a row by initializing the
LOB bind variable.

You can populate a LOB variable with a persistent LOB or a temporary LOB by either selecting
one out from the database using SQL or by creating a temporary LOB. This section provides
information about how to achieve this in various programmatic environments.

* PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using PL/SQL APIs.

« JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using JDBC APIs:

e OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using OCI APIs:

* Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using Pro*C/C++ APIs:

* Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using Pro*COBOL APIs:

2.2.4.1 PL/SQL.: Inserting a Row by Initializing a LOB Locator Bind Variable

ORACLE

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using PL/SQL APIs.

/* inserting a row through an insert statement */

CREATE OR REPLACE PROCEDURE insertLOBiproc (Lob_loc IN BLOB) IS

BEGIN
/* Insert the BLOB into the row */
DBMS OUTPUT.PUT LINE('------------ LOB INSERT EXAMPLE ------------ "),
INSERT INTO print media (product id, ad id, ad photo)

2-7

Chapter 2
Inserting and Updating LOB Values in Tables

VALUES (3106, 60315, Lob loc);
END;

2.2.4.2 JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using JDBC APIs:

// Core JDBC classes:

import java.sqgl.DriverManager;
import java.sql.Connection;

import java.sqgl.Statement;

import java.sql.PreparedStatement;
import java.sgl.ResultSet;

import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class linsert
{
public static void main (String args [])
throws Exception

// Load the Oracle JDBC driver
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
// Connect to the database:
Connection conn =
DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "password");

// It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();
try
{
ResultSet rset = stmt.executeQuery (
"SELECT ad photo FROM Print media WHERE product id = 3106 AND ad id = 13001");
if (rset.next())
{
// retrieve the LOB locator from the ResultSet
BLOB adphoto blob = ((OracleResultSet)rset).getBLOB (1);
OraclePreparedStatement ops =
(OraclePreparedStatement) conn.prepareStatement (
"INSERT INTO Print media (product id, ad id, ad photo) VALUES (2268, "
+ "21001, 2)");
ops.setBlob(l, adphoto blob);
ops.execute () ;
conn.commit ()
conn.close();

’

}
catch (SQLException e)
{

e.printStackTrace();

ORACLE)8

Chapter 2
Inserting and Updating LOB Values in Tables

2.2.4.3 OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using OCI APIs:

/* Insert the Locator into table using Bind Variables. */
#include <oratypes.h>
#include <lobdemo.h>
void insertLOB proc (OCILobLocator *Lob loc, OCIEnv *envhp,
OCIError *errhp, OCISvcCtx *svchp, OCIStmt *stmthp)
{

int product id;
OCIBind *bndhp3;
0OCIBind *bndhp2;
OCIBind *bndhpl;
text *insstmt =

(text *) "INSERT INTO Print media (product id, ad id, ad sourcetext) \
VALUES (:1, :2, :3)";

printf ("----------- OCI Lob Insert Demo -------------- \n") ;
/* Insert the locator into the Print media table with product id=3060 */
product id = (int)3060;

/* Prepare the SQL statement */

checkerr (errhp, OCIStmtPrepare (stmthp, errhp, insstmt, (ubd)
strlen((char *) insstmt),
(ub4) OCI NTV SYNTAX, (ub4)OCI DEFAULT));

/* Binds the bind positions */

checkerr (errhp, OCIBindByPos (stmthp, &bndhpl, errhp, (ub4) 1,
(void *) g&product id, (sb4) sizeof (product id),
SQLT INT, (void *) 0, (ub2 *)0, (ub2 *)0,

(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT));

checkerr (errhp, OCIBindByPos (stmthp, &bndhpl, errhp, (ub4d) 2,
(void *) &product id, (sb4) sizeof (product id),
SQLT INT, (void *) 0, (ub2 *)0, (ub2 *)0,

(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT));

checkerr (errhp, OCIBindByPos (stmthp, &bndhp2, errhp, (ub4d) 3,
(void *) &Lob loc, (sb4) 0, SQLT CLOB,
(void *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT));

/* Execute the SQL statement */

checkerr (errhp, OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI DEFAULT));

2.2.4.4 Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind

Variable

ORACLE

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using Pro*C/C++ APIs:

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

2-9

Chapter 2
Inserting and Updating LOB Values in Tables

void Sample Error ()
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf ("$.*s\n", sqlca.sqlerrm.sqlerrml, sglca.sqlerrm.sqglerrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit (1);

void insertUseBindVariable proc(Rownum, Lob loc)
int Rownum, Rownum2;
OCIBlobLocator *Lob loc;

EXEC SQL WHENEVER SQLERROR DO Sample Error();
EXEC SQL INSERT INTO Print media (product id, ad id, ad photo)
VALUES (:Rownum, :Rownum2, :Lob loc);
}
void insertBLOB_proc ()
{
OCIBlobLocator *Lob loc;

/* Initialize the BLOB Locator: */
EXEC SQL ALLOCATE :Lob loc;

/* Select the LOB from the row where product id = 2268 and ad 1d=21001: */
EXEC SQL SELECT ad photo INTO :Lob loc
FROM Print media WHERE product id = 2268 AND ad id = 21001;

/* Insert into the row where product id = 3106 and ad id = 13001: */
insertUseBindVariable proc (3106, 13001, Lob loc);

/* Release resources held by the locator: */
EXEC SQL FREE :Lob loc;

void main ()

{
char *samp = "pm/password";
EXEC SQL CONNECT :pm;
insertBLOB proc();
EXEC SQL ROLLBACK WORK RELEASE;

2.2.4.5 Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator Bind

Variable

ORACLE

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using Pro*COBOL APIs:

You can insert a row by initializing a LOB locator bind variable in COBOL (Pro*COBOL).

IDENTIFICATION DIVISION.
PROGRAM-ID. INSERT-LOB.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 BLOB1l SQL-BLOB.

01 USERID PIC X(11) VALUES "PM/password".
EXEC SQL INCLUDE SQLCA END-EXEC.

2-10

Chapter 2
Selecting LOB Values from Tables

PROCEDURE DIVISION.
INSERT-LOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL CONNECT :USERID END-EXEC.
* Initialize the BLOB locator
EXEC SQL ALLOCATE :BLOBl1 END-EXEC.
* Populate the LOB
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL
SELECT AD PHOTO INTO :BLOB1 FROM PRINT MEDIA
WHERE PRODUCT _ID = 2268 AND AD _ID = 21001 END-EXEC.

* Insert the value with PRODUCT ID of 3060
EXEC SQL
INSERT INTO PRINT MEDIA (PRODUCT ID, AD PHOTO)
VALUES (3060, 11001, :BLOB1)END-EXEC.

* Free resources held by locator
END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY " ".
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY " ".
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

2.3 Selecting LOB Values from Tables

You can select a LOB into a Character Buffer, a RAW Buffer, or a LOB variable for performing
read and write operations.

e Selecting a LOB into a Character Buffer or a Raw Buffer
You can directly select a CLOB or NCLOB value into a character buffer or a BLOB value.
This is called the Data Interface, and is the most efficient way for selecting from a LOB
column.

e Selecting a LOB into a LOB Variable for Read Operations
You can select a persistent or temporary LOB into a LOB variable, and then use APIs to
perform various read operations on it.

e Selecting a LOB into a LOB Variable for Write Operations
To perform a write operation using a LOB locator, you must lock the row in the table in
order to prevent other database users from writing to the LOB during a transaction.

2.3.1 Selecting a LOB into a Character Buffer or a Raw Bulffer

You can directly select a CLOB or NCLOB value into a character buffer or a BLOB value. This
is called the Data Interface, and is the most efficient way for selecting from a LOB column.

ORACLE 11

Chapter 2
Selecting LOB Values from Tables

See Also:

¢ Data Interface for LOBs
e PL/SQL Semantics for LOBs

2.3.2 Selecting a LOB into a LOB Variable for Read Operations

You can select a persistent or temporary LOB into a LOB variable, and then use APIs to
perform various read operations on it.

Following code selects a LOB Locator into a variable:

DECLARE
perslob CLOB;
templob CLOB;
amt INTEGER := 11;
buf VARCHAR(100);
BEGIN
SELECT ad_source, substr(ad source, 3) INTO perslob, templob FROM
Print media WHERE product id = 1 AND ad id = 1;
DBMS LOB.READ (perslob, amt, buf);
DBMS LOB.READ (templob, amt, buf);
END;
/

¢ See Also:

A Selected Locator Becomes a Read-Consistent Locator

e LOB Locators and Transaction Boundaries

2.3.3 Selecting a LOB into a LOB Variable for Write Operations

To perform a write operation using a LOB locator, you must lock the row in the table in order to
prevent other database users from writing to the LOB during a transaction.

You can use one of the following mechanisms for this operation:

e Performing an INSERT or an UPDATE operation with a RETURNING clause.

¢ See Also:

Inserting and Updating with a NULL or Empty LOB

ORACLE 510

Chapter 2
Performing DML and Query Operations on LOBs in Nested Tables

e Performing a SELECT for an UPDATE operation. The following code snippet shows how to
select a LOB value to perform a write operation using UPDATE.

DECLARE
c CLOB;
amt INTEGER := 9;
buf VARCHAR(100) := 'New Value';
BEGIN
SELECT ad_sourcetext INTO ¢ FROM Print media WHERE product id = 1 AND
ad id = 1 FOR UPDATE;
DBMS LOB.WRITE(c, amt, 1, buf);
END;
/

* Using an OCl pin or lock function in OCI programs.

2.4 Performing DML and Query Operations on LOBs in Nested

Tables

ORACLE

This section describes the INSERT, UPDATE, and SELECT operations on LOBs in Nested Tables.
To update LOBs in a nested table, you must lock the row containing the LOB explicitly.

To lock the row containing the LOB, you must specify the FOR UPDATE clause in the subquery
prior to updating the LOB value. The following example shows how to perform DML and query
operations on LOBs in nested tables.

< Note:

Locking the row of a parent table does not lock the row of a nested table containing
LOB columns.

Example 2-1 Performing DML and Query Operations on LOBs in Nested Tables

CONNECT pm/pm;

-- INSERT a row into the NT column of print media with actual data for lob
INSERT INTO print media (product id, ad id, ad textdocs ntab)
VALUES
(1, 1, textdoc tab(textdoc typ('txt', to blob('BABABABABABA')),
textdoc typ('pdf', to blob('AAAAAAARAAAAA'))));

-- INSERT a row into the NT column of print media with empty lob for the lob
INSERT INTO print media (product id, ad id, ad textdocs ntab)
VALUES
(2, 2, textdoc_tab(textdoc typ('txt', empty blob()),
textdoc typ('pdf', empty blob())));

2-13

ORACLE

Chapter 2
Performing DML and Query Operations on LOBs in Nested Tables

SET SERVEROUTPUT ON

-— INSERT-RETURNING, then write to the LOBs
DECLARE
txt textdoc_tab;
BEGIN
INSERT INTO print media p(product id, ad id, ad textdocs ntab) VALUES
(3, 3, textdoc_tab(textdoc typ('txt', empty blob()),
textdoc typ('pdf', empty blob())))
RETURNING p.ad textdocs ntab into txt;

for elem in 1 .. txt.count loop
DBMS LOB.WRITEAPPEND (txt (elem).formatted doc, 2, hextoraw(elem||'FF'"));
end loop;
END;

/
SELECT ad textdocs ntab FROM print media WHERE product id = 3;

-— SELECT on NT lob, then read
DECLARE
txt textdoc_tab;
pos INTEGER;
amt INTEGER;
buf RAW(40);
BEGIN
SELECT ad textdocs ntab INTO txt FROM print media WHERE product id = 1;

for elem in 1 .. txt.count loop
amt := 40;
pos := 1;

DBMS LOB.READ (txt (elem).formatted doc, amt, pos, buf);
DBMS_OUTPUT.PUT_LINE(buf);
end loop;
END;
/

-- SELECT for update on the NT lob, then write
DECLARE
txt textdoc_ tab;
pos INTEGER;
amt INTEGER;
buf RAW(40);
BEGIN
SELECT ad textdocs ntab INTO txt FROM print media
WHERE product id = 1 FOR UPDATE;

for elem in 1 .. txt.count loop
DBMS LOB.WRITEAPPEND (txt (elem).formatted doc, 2, hextoraw(elem||'FF'"));
end loop;
END;

/

2-14

Chapter 2
Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on LOBs

SELECT ad textdocs ntab FROM print media WHERE product id = 1;

2.5 Performing Parallel DDL, Parallel DML (PDML), and Parallel
Query (PQ) Operations on LOBs

Oracle supports parallel execution of the following operations when performed on partitioned
tables with SecureFiles LOBs or BasicFiles LOBs.

ORACLE

CREATE TABLE AS SELECT

INSERT AS SELECT

Multitable INSERT

SELECT

DELETE

UPDATE

MERGE (conditional UPDATE and INSERT)
ALTER TABLE MOVE

SQL Loader

Import/Export

Additionally, Oracle supports parallel execution of the following operations when performed on
non-partitioned tables with only SecureFile LOBs:

CREATE TABLE AS SELECT

INSERT AS SELECT

Multitable INSERT

SELECT

DELETE

UPDATE

MERGE (conditional UPDATE and INSERT)
ALTER TABLE MOVE

SQL Loader

Restrictions on parallel operations with LOBs

Parallel insert direct load (PIDL) is disabled if a table also has a BasicFiles LOB column, in
addition to a SecureFiles LOB column.

PDML is disabled if LOB column is part of a constraint.
PDML does not work when there are any domain indexes defined on the LOB column.
Parallelism must be specified only for top-level non-partitioned tables.

Use the ALTER TABLE MOVE statement with LOB storage clause, to change the storage
properties of LOB columns instead of the ALTER TABLE MODIFY statement. The ALTER
TABLE MOVE statement is more efficient because it executes in parallel and does not
generate undo logs.

2-15

Chapter 2
Sharding with LOBs

¢ See Also:

Oracle Database Administrator's Guide section "Managing Processes for Parallel
SQL Execution"

Oracle Database SQL Language Reference section "ALTER TABLE"

2.6 Sharding with LOBs

LOBs can be used in a sharded environment. This section discusses the interfaces to support
LOBs in sharded tables.

ORACLE

The following interfaces are supported:

Query and DML statements
— Cross shard queries involving LOBs are supported.

— DML statements involving more than one shard are not supported. This behavior is
similar to scalar columns.

— DML statements involving a single shard are supported from coordinator.
— Locator selected from a shard can be passed as bind value to the same shard.

OCILob

All non-BFILE related OCILob APIs in a sharding environment are supported, with some
restrictions.

On the coordinator, the 0OCI_ATTR LOB REMOTE attribute of a LOB descriptor returns TRUE if
the LOB was obtained from a sharded table.

Restrictions: For APIs that take two locators as input, OCILobAppend, OCILobCompare for
example, both of the locators should be obtained from the same shard. If locators are from
different shards an error is given.

DBMS LOB

All non-BFILE related DBMS_LOB APIs in a sharding environment are supported, with
some restrictions. On the coordinator, DBMS LOB.isremote returns TRUE if the LOB was
obtained from a sharded table.

Restrictions: For APIs that take two locators as input, DBMS_LOB.append and
DBMS LOB.compare for example, both of the locators should be obtained from the same
shard. If the locators are from different shards an error given.

¢ See Also:
Sharded Tables

2-16

Temporary LOBs

Temporary LOBs are transient, just like other local variables in an application. This chapter

discusses operations that are specific to temporary LOBs.

- Before You Begin

Ensure that you go through the topics in this section before you start working with

temporary LOBs.

e Temporary LOB APIs in Different Programmatic Interfaces

This section lists the temporary LOB specific APIs in different Programmatic Interfaces.

e Transforming LOBs

Value LOBs are a subset of read-only temporary LOBs, which are a subset of temporary

LOBs.

3.3 Transforming LOBs

Value LOBs are a subset of read-only temporary LOBs, which are a subset of temporary LOBs.

The following table summarizes how you can transform different kinds of LOBs. The column on
the left is the source LOB which you want to transform. The column headings are the target
LOBs, the final state of the LOB after the transformation. For example, to transform read-only

temporary LOBs to value LOBs, you can use
LOB_VALUE (lob _producing plsql function(...)).

Source LOB Value LOBs Read-only Temporary LOBs Temporary LOBs Persistent LOBs
Value LOBs Not applicable e Pass from SQL to PLSQL. Not directly possible Not directly possible
If passed from PLSQL out
to JDBC, OCI etc, it stays

a read-only temporary
LOB.
. Send to older JDBC, OCI
etc clients
Read-only LOB_VALUE (1lob_p Not applicable Not directly possible Not directly possible
Temporary LOBs roducing plsql
function(...))
Temporary LOBs LOB_VALUE (tempo Open in READ mode Not applicable Not directly possible
rary lob)
Persistent LOBs ¢ SELECT from Not directly possible Use SQL operators, Not applicable
column such as to_clob () or
declared as substr ()
QUERY AS
VALUE

* LOB_VALUE(p
ersistent_lob)

ORACLE

3-1

Chapter 3
Before You Begin

The following example shows how you can transform temporary LOBs and read-only
temporary LOBs to value LOBs. Also, how you can transform a value LOB to a read-only
temporary LOB.

DROP TABLE t;

CREATE TABLE t (c clob) lob(c) query as value;
INSERT INTO t VALUES ('I am a CLOB');

CREATE OR REPLACE FUNCTION Vbl2rdo (c clob) RETURN clob IS
BEGIN

RETURN c;
END;

/
-- Transform value LOB to read-only temporary LOB
var tc clob;
BEGIN
SELECT ¢ INTO :tc FROM t;
END;
/

print :tc
SELECT Vbl2rdo(c) FROM t;

-- Transform read-only temporary LOB to value LOB
SELECT lob value(:tc) FROM dual;

-- Transform temporary LOB to value LOB
SELECT lob value(to clob('I am a temporary LOB')) FROM dual;

The following example shows how you can transform a persistent LOB to a temporary LOB
and a value LOB.

DROP TABLE t2;
CREATE TABLE t2 (c CLOB);
INSERT INTO t2 VALUES ('I am a CLOB');

-- Transform persistent LOB to value LOB
SELECT Lob value(c) FROM t2;

-- Transform persistent LOB to temporary LOB
SELECT To_clob(c) FROM t2;

3.1 Before You Begin

ORACLE

Ensure that you go through the topics in this section before you start working with temporary
LOBs.

e Creating Temporary LOBs
This section describes how a temporary LOB gets created or generated in a client
program.

3-2

Chapter 3
Before You Begin

e Handling Temporary LOBs on the Client Side
You must consider the aspects discussed in this section while handling the temporary
LOBs that are generated by the client programs.

3.1.1 Creating Temporary LOBs

This section describes how a temporary LOB gets created or generated in a client program.
You can create temporary LOB instances in one of the following ways:

* Declare a variable of the given LOB data type and pass it to the temporary LOB creation
API. For example, in PL/SQL it is DBMS_LOB.CREATETEMPORARY, and in OCl it is
OCILobCreateTemporary().

* Invoke a SQL or PL/SQL built-in function that produces a temporary LOB, for example, the
SUBSTR function.

* Invoke a PL/SQL stored procedure or function that returns a temporary LOB as an 0UT
bind variable or a return value.

The temporary LOB instance exists in your application until it goes out of scope, your session
terminates, or you explicitly free the instance.

Temporary LOBs reside in either the PGA memory or the temporary tablespace, depending on
their size. Ensure that the PGA memory and the temporary tablespace have space that is large
enough for the temporary LOBs used by your application.

< Note:

» Oracle highly recommends that you release the temporary LOB instances to free
the system resources. Failure to do so may cause accumulation of temporary
LOBs and can considerably slow down your system.

« Starting with Oracle Database Release 21c, you do not need to check whether a
LOB is temporary or persistent before releasing the temporary LOB. If you call
the DBMS LOB.FREETEMPORARY procedure or the OCILobFreeTemporary () function
on a LOB, it will perform either of the following operations:

— For atemporary LOB, it will release the LOB.

— For a persistent LOB, it will do nothing (no-op).

See Also:

Performance Guidelines

3.1.2 Handling Temporary LOBs on the Client Side

You must consider the aspects discussed in this section while handling the temporary LOBs
that are generated by the client programs.

Preventing Temporary LOB Accumulation

ORACLE 23

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

Every time a client program such as JDBC or OCI obtains a LOB locator from SQL or PL/SQL,
and you suspect that it is producing a temporary LOB, then free the LOB as soon as your
application has consumed the LOB. If you do not free the temporary LOB, then it will lead to
accumulation of temporary LOBs, which can considerably slow down your system.

Note:

A temporary LOB duration is always upgraded to SESSION, when it is shipped to the
client side.

For example, to prevent temporary LOB accumulation, an OCI application must call the
OCILobFreeTemporary () function in the following scenarios:

e After getting a locator from a define during a SELECT statement or an OUT bind variable from
a PL/SQL procedure or function. It is desirable that you free the temporary LOB as soon as
you finish performing the required operations on it. If not, then you must free it before
reusing the variable for fetching the next row or for another purpose.

« Before performing a pointer assignment, like <varl = var2>, free the old temporary LOB
in the variable <vari>.

LOB Assignment

You must take special care when assigning the 0CILobLocator pointers in an OCI program
while using the assignment (=) operator. Pointer assignments create a shallow copy of the
LOB. After the pointer assignment, the source and the target LOBs point to the same copy of
data. This means that if you call the 0CILobFreeTemporary () function on either one of them,
then both variables will point to non-existent LOBSs.

These semantics are different from using the LOB APIs, such as the 0CILobLocatorAssign ()
function to perform assignments. When you use these APIs, the locators logically point to
independent copies of data after assignment. This means that eventually the
OCILobFreeTemporary () function must be called on each LOB descriptor separately, so that it
frees all LOBs involved in the operation.

For temporary LOBSs, before performing pointer assignments, you must ensure that you free
any temporary LOB in the target LOB locator by calling the 0CIFreeTemporary () function. In
contrast, when the 0CILobLocatorAssign () function is used, the original temporary LOB in the
target LOB locator variable, if any, is freed automatically before the assignment happens.

3.2 Temporary LOB APIs in Different Programmatic Interfaces

This section lists the temporary LOB specific APIs in different Programmatic Interfaces.

Most of the examples in the following sections use the print media table. Following is the
structure of the print media table.

ORACLE 34

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

PRINT_MEDIA Table

‘ Column name

] [Column Type J

product_id

ad_id
ad_composite
ad_sourcetext
ad_finaltext
ad_fltextn
ad_textdocs_ntab
ad_photo
ad_graphic
ad_header

press_release

NUMBER (6)
NUMBER (6)

BLOB

CLOB

CLOB

NCLOB

NESTED TABLE
BLOB

BFILE

USER DEFINED TYPE

LONG

e PL/SQL APIs for Temporary LOBs
This section describes the PL/SQL APIs used with temporary LOBSs.

e JDBC API for Temporary LOBs

This section describes the PL/SQL APIs used with temporary LOBSs.

e OCI APIs for Temporary LOBs

This section describes the OCI APIs used with temporary LOBs.

° ODP.NET API for Temporary LOBs
This section describes the ODP.NET APIs used with temporary LOBs.

e Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs
This section describes the Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs.

¢ See Also:

Comparing the LOB Interfaces

ORACLE"

3-5

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3.2.1 PL/SQL APIs for Temporary LOBs

ORACLE

This section describes the PL/SQL APIs used with temporary LOBSs.

¢ See Also:
DBMS_LOB

Table 3-1 DBMS_LOB Functions and Procedures for Temporary LOBs
|

Function | Procedure Description

CREATETEMPORARY Creates a Temporary LOB

ISTEMPORARY Checks if a LOB locator refers to a temporary LOB
FREETEMPORARY Frees a temporary LOB

Example 3-1 PL/SQL API for Temporary LOBs

DECLARE
blobl BLOB;
clobl CLOB;
clob2 CLOB;
nclobl NCLOB;
BEGIN
-- create a temp LOB using CREATETEMPORARY and fill it with data
DBMS LOB.CREATETEMPORARY (blobl, TRUE, DBMS LOB.SESSION) ;
writeDataToLOB proc (blobl);

-- create a temp LOB using SQL built-in function
SELECT substr(ad sourcetext, 5) INTO clobl FROM print media WHERE
product id=1 AND ad id=1;

-- create a temp LOB using a PLSQL built-in function
nclobl := TO NCLOB(clobl);

-- create a temp LOB using a PLSQL procedure. Assume foo creates a temp lob
and it's parameter is IN/OUT
foo(clob2);

-- Other APIs
CALL LOB APIS(blobl, clobl, clob2, nclobl);

-- free temp LOBs
DBMS LOB.FREETEMPORARY (blobl)
DBMS LOB.FREETEMPORARY (clobl)
DBMS LOB.FREETEMPORARY (clob2)
DBMS LOB.FREETEMPORARY (nclobl

12

)
END;

/

show errors;

3-6

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3.2.2 JDBC API for Temporary LOBs

This section describes the PL/SQL APIs used with temporary LOBSs.

¢ See Also:
Working with LOBs and BFILEs

Table 3-2 jdbc.sql.Clob and java.sql.Blob APIs for Temporary LOBs
|

Methods Description

createTemporary Creates a temporary LOB

isTemporary Checks if a LOB locator refers to a temporary LOB
freeTemporary Frees a temporary LOB

Example 3-2 JDBC API for Temporary LOBs

public class listempc

{
public static void main (String args [])
throws Exception

{

Connection conn = LobDemoConnectionFactory.getConnection();

// SELECT TEMPORARY LOB USING SQL
Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery
("SELECT SUBSTR (ad sourcetext, 5) FROM Print media WHERE product id
= 3106 AND ad id = 1");
if (rset.next())

{
Clob clob = rset.getClob (1);
System.out.println("Is lob temporary: " + ((CLOB)clob).isTemporary());

call other apis to read write from lob(clob);
clob.free();
}

stmt.close();

// CREATE TEMPORARY LOB VIA API
Clob clob = conn.createClob();

System.out.println("Is clob temporary: " +
((oracle.jdbc.OracleClob)clob) .isTemporary());

call other apis to read write from lob(clob);

// ALWAYS FREE THE TEMPORARY LOB WHEN DONE WITH IT
clob.free();

conn.close();

ORACLE .,

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3.2.3 OCI APIs for Temporary LOBs

ORACLE

This section describes the OCI APIs used with temporary LOBSs.

¢ See Also:
LOB and BFILE Operations

Table 3-3 OCI APIs for Temporary LOBs

. ___
Function | Procedure Description

OCILobCreateTemporary () Creates a Temporary LOB

OCILobIsTemporary () Checks if a LOB locator refers to a temporary LOB

OCILobFreeTemporary () Frees a temporary LOB

Example 3-3 OCI APIs for Temporary LOBs

void temp lob operations()

{
OCILobLocator *temp clobl;
OCILobLocator *temp clob2;

OCIStmt *stmhp = (OCIStmt *) 0;

OCIDefine *dfnhpl;

ubl bufp [BUFLEN] ;

ubd amtp = 0;

ub8 bamtp = 0;

ub8 camtp = 0;

ub2 retll, rcodel;

sb4 ind ptrl = 0;

boolean istemp = FALSE;

char *sel stmt = "SELECT SUBSTR(ad sourcetext, 5) FROM Print media

WHERE product id = 3106 AND ad id = 1";

/* allocate lob descriptors */

checkerr (errhp, OCIDescriptorAlloc((dv01d *) envhp, (dvoid **) &temp clobl,
(ub4) OCI DTYPE LOB, (size t) O,
(dv01d **) 0));

checkerr (errhp, OCIDescriptorAlloc((dv01d *) envhp, (dvoid **) &temp clob2,
(ub4) OCI DTYPE LOB, (size t) O,
(dv01d **) 0));

/* statement handle */

checkerr (errhp, OCIHandleAlloc((dvoid *)envhp, (
(ub4) OCI HTYPE STMT, (size t) 0,

checkerr (errhp, OCIHandleAlloc((dvoid *)stmhp, (
(ub4) OCI HTYPE DEFINE, (size_t) 0,

dvoid **) &stmhp,
(dvoid **) 0));

dvoid **) &dfnhpl,

(dvoid **) 0));

[F e SELECT TEMPORARY LOB USING SQL

3-8

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

checkerr (errhp, OCIStmtPrepare (stmhp, errhp, (text *) sel stmt,
(ub4) strlen(sel stmt), OCI NTV SYNTAX, OCI DEFAULT));

checkerr (errhp, OCIDefineByPos (stmhp, &dfnhpl, errhp, (ub4) 1, &temp clobl,
(sb4) -1, SQLT CLOB, &ind ptrl, &retll, é&rcodel,
(ub4) OCI_DEFAULT));

checkerr (errhp, OCIStmtExecute(svchp, stmhp, errhp, (ub4) 0, (ub4) 0,
(OCISnapshot *) NULL, (OCISnapshot *) NULL,
OCI DEFAULT));
checkerr (errhp, OCIStmtFetch (stmhp, errhp, 1, OCI_FETCH NEXT, OCI DEFAULT)) ;

checkerr (errhp, OCILobWriteAppendZ (svchp, errhp, temp clobl,
(oraub8 *)&bamtp, (oraub8 *) &camtp, bufp, (oraub8)BUFLEN,
OCI_ONE PIECE, (dvoid*)0, (OCICallbackLobWrite2)0, (ub2)O0,
(ubl) SQLCS IMPLICIT));

[F e CREATE TEMPORARY LOB USING API

checkerr (errhp, OCILobCreateTemporary(svchp, errhp, temp clobZ2,
(ub2) 0, OCI_DEFAULT, OCI TEMP CLOB,
FALSE, OCI DURATION SESSION));

/* write into bufp */
strcpy ((char *)bufp, (const char *)"Demo program for testing temp lobs");
bamtp = amtp = (ub4) strlen((char *)bufp);

/* write bufp contents to temp lob */

checkerr (errhp, OCILobWriteZ2 (svchp, errhp, temp clob2, &amtp, 1,
(dvoid *)bufp, (ub4)bamtp , OCI ONE PIECE, (dvoid *)O0,
(OCICallbackLobWrite) 0, (ub2) 0, (ubl) SQLCS IMPLICIT));

*/
checkerr (errhp, OCILobIsTemporary(envhp, errhp, temp clobl, &istemp));
if (istemp)
checkerr (errhp, OCILobFreeTemporary(svchp, errhp, temp clobl));

checkerr (errhp, OCILobIsTemporary(envhp, errhp, temp clob2, &istemp));
if (istemp)
checkerr (errhp, OCILobFreeTemporary(svchp, errhp, temp clob2));

/* Free lob descriptors */

checkerr (errhp, OCIDescriptorFree ((dvoid *)temp clobl, (ub4)
OCI_DTYPE LOB));

checkerr (errhp, OCIDescriptorFree ((dvoid *)temp clob2, (ub4)
OCI_DTYPE LOB));
}

ORACLE 29

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3.2.4 ODP.NET API for Temporary LOBs

This section describes the ODP.NET APIs used with temporary LOBs.

¢ See Also:

Temporary LOBs

Table 3-4 ODP.NET methods for Temporary LOBs in the OracleClob and OracleBlob

Classes
__|]
Methods Description

Add () Creates a temporary LOB

IsTemporary () Checks if a LOB locator refers to a temporary LOB
Dispose () or Close () Frees a temporary LOB

3.2.5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs

This section describes the Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs.

¢ See Also:

e Pro*C/C++ Programmer's Guide
e Pro*COBOL Programmer's Guide

Table 3-5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a Temporary LOB

DESCRIBE [ISTEMPORARY] Checks if a LOB locator refers to a temporary LOB
FREE TEMPORARY Frees a temporary LOB

ORACLE 310

Value LOBs

Value LOBs, are a subset of Temporary LOBs, that are autonomous, read-only and more
performant.

About Value LOBs
Use Persistent and Temporary LOBs, henceforth referred to as Reference LOBs, for
applications which require reads and writes on the LOB.

When to Use Value LOBs
Many applications use LOBs to store medium-sized objects, about a few mega-bytes in
size, and just want to read the LOB value in the context of a SQL query.

Creating a Value LOB

A value LOB is a read-only temporary LOB that is generated by a SQL statement and is
auto-freed at the next SQL fetch. Use value LOBs only for scenarios where a LOB fetched
from SQL is only read before the next fetch is performed.

Value LOBs in Queries
Whether a query fetches a Value or a Reference LOB is a compile-time decision, and can
be obtained by using a describe on the query.

Performing DML Operations on LOBs with QUERY AS VALUE

The QUERY AS VALUE property is applicable only for SQL queries, so it does not affect
any DML on the table. Therefore any DMLs such as INSERT or UPDATE work identically for
LOB columns declared as QUERY AS VALUE or QUERY AS REFERNCE.

Value LOB APIs in Different Programmatic Interfaces
This section lists the value LOB specific APIs in different programmatic interfaces.

Restrictions on Value LOBs
Keep the following restrictions in mind while working with value LOBs.

4.1 About Value LOBs

Use Persistent and Temporary LOBs, henceforth referred to as Reference LOBSs, for
applications which require reads and writes on the LOB.

ORACLE

Many applications use LOBs to store medium-sized objects, about a few mega-bytes in size,
and just want to read the LOB value in the context of a SQL query. Oracle recommends that
you use Value LOBs for applications which use LOBs as a larger VARCHAR or RAW data type.

Value LOBs have the following characteristics:

A Value LOB is a special kind of read-only temporary LOB with optimizations for better
performance and manageability compared to a reference LOB.

All LOB read APIs are supported on value LOBs, but none of the write APIs are supported.
LOB read APIs allow the data to be read piecewise and support random access by
allowing the user to specify the amount and the offset of the operation.

A value LOB gets automatically freed when the next fetch for a cursor is performed. In the
case of temporary LOB, it has always been the user's responsibility to free the temporary
LOB when their application is done processing it.

4-1

Chapter 4
When to Use Value LOBs

Several SQL operators such as substr, to_clob() create temporary LOBs, but it is the
responsibility of the user to free these temporary LOBs. If you don't free the temporary
LOBs, it can considerably slow down your system. With Value LOBs, a user can use LOBs
similar to the VARCHAR32k data type without the responsibility to free them. Oracle
Database automatically frees the LOBs as soon as the next set of rows are fetched in
SQL. Since the concept of fetch duration exists only for SQL, value LOBs exist only in the
context of a SQL query.

A value LOB can be arbitrary sized, similar to a reference LOB.

As all LOB read APIs are supported on value LOBSs, there is no limit on the LOB size.
However, value LOBs are best suited for documents of size up to a few megabytes, which
can be prefetched to the client.

A value LOB, in most instances, has faster performance than a reference LOB. Oracle
highly recommends that you use value LOBs if your application fetches a LOB for read
purposes as part of a SQL query and consumes the LOB data before the next fetch is

performed on the cursor.

PL/SQL doesn't have the concept of value LOBs.

Value LOBs exist in the SQL query, as well as on the client side programmatic interfaces,
such as JDBC, OCI, and ODP.NET. In PL/SQL, a temporary LOB is automatically freed
when a user overwrites the variable containing that LOB. Hence any value LOBs passed
from SQL to PL/SQL are converted to read-only temporary LOBs, and have the duration of
the variable that holds the LOB. For more information, see PL/SQL APIs for Value LOBs.

4.2 When to Use Value LOBs

Many applications use LOBs to store medium-sized objects, about a few mega-bytes in size,
and just want to read the LOB value in the context of a SQL query.

Oracle recommends that you use Value LOBs for applications which use LOBs as a larger
VARCHAR or RAW data type. All the LOB reads are performed before the next set of SQL rows are
fetched. This implies that if you want to access the value LOB content after fetching the next
set of SQL rows, then you must read and save the value LOB content on the client side.

Oracle recommends that you use Persistent and Temporary LOBs in the following scenarios:

for applications which require reads and writes to the LOB
where the LOB is expected to last for a longer duration

when you can't fully read and cache the LOB content at the client side, but rely on the LOB
locator to read LOB data from server

Caution:

Before transforming a reference LOB column to a Value LOB column, ensure that
your business use case requires the usage of Value LOBs.

4.3 Creating a Value LOB

A value LOB is a read-only temporary LOB that is generated by a SQL statement and is auto-
freed at the next SQL fetch. Use value LOBs only for scenarios where a LOB fetched from
SQL is only read before the next fetch is performed.

ORACLE

4-2

Chapter 4
Creating a Value LOB

A value LOB is always a temporary LOB irrespective of its origin. When the next fetch is
performed on the cursor,Oracle server automatically frees the value LOBs from the previous
fetch. So the value LOBs from the previous fetch won't be accessible. A value LOB can be
seen as disposable LOB: once it is read, it is not needed anymore, and it is freed. This
prevents accumulation of temporary LOBs, which translates to better performance and
scalability of the query.

You can create a value LOB in a SQL query in the following ways:
* Creating Value LOBs Using DDL

e Creating Value LOBs Using SQL Operators

e Creating Value LOB in Views

e Creating Value LOBs Using LOB_VALUE Operator

Most of the examples in the following sections use the agents table. Following is the structure
of the agents table.

Column Name Column Type
ID NUMBER

NAME VARCHARZ (100)
VALUELOB CLOB VALUE
REFERENCELOB CLOB

Cv BLOB

PHOTO BLOB VALUE

e Creating Value LOBs Using DDL
If your application is written in a way that all LOBs from a particular table follow the Value
LOB use case, then use the query as value syntax for the LOB column as part of the
CREATE TABLE Or ALTER TABLE Sstatements.

e Creating Value LOBs Using SQL Operators
Any SQL operator that has a LOB input and a LOB output will produce a value LOB if the
input is a value LOB, as shown in the following examples:

e Creating Value LOBs Using LOB_VALUE Operator
You can convert any persistent or temporary LOB to a Value LOB by using the LOB VALUE
operator, as shown in the following examples.

e Creating Value LOB in Views
LOB columns with QUERY AS VALUE property can be part of a view. You can create them
in two ways.

4.3.1 Creating Value LOBs Using DDL

ORACLE

If your application is written in a way that all LOBs from a particular table follow the Value LOB
use case, then use the query as value syntax for the LOB column as part of the CREATE
TABLE Or ALTER TABLE Statements.

This fetches all LOB locators from the specified column as value without changing the rest of
the application. The default for create tables is query as reference which fetches a LOB
locator as a Reference LOB which can be persistent or temporary.

Example

4-3

Chapter 4
Creating a Value LOB

The following example creates a table with the name agent with columns of various LOB types,
including valuelob and photo which are value LOBSs:

create table agents (id number, name varchar2(100), valuelob clob,
referencelob clob, cv blob)

lob(valuelob) query as value;

alter table agents add (photo blob) lob(photo) query as value;

The following example shows how you can switch the query property of a LOB column
between value or reference using the ALTER TABLE MODIFY LOB clause.

alter table agents modify lob(cv) query as value;

Note:

The query as value Or query as reference property only impacts how a LOB is
selected out in a query. It does not change how the LOB is physically stored in the
table.

When describing a table, a columns defined with query as value will contain the VALUE
keyword with the data type.

SQL> desc agents;

Name Null? Type

ID NUMBER

NAME VARCHARZ (100)
VALUELOB CLOB VALUE
REFERENCELOB CLOB

Cv BLOB

PHOTO BLOB VALUE

The following example shows when you run a query on a column defined with the query as
value property, it returns a value LOB.

select valuelob from agents;

Note:

The query as value property is applicable only to LOB locators, hence it does not
affect the data interface on LOBs. In other words, there is no difference between how
the data interface works with LOBs declared with query as reference and query as
value.

ORACLE 4

Chapter 4
Creating a Value LOB

4.3.2 Creating Value LOBs Using SQL Operators

Any SQL operator that has a LOB input and a LOB output will produce a value LOB if the input
is a value LOB, as shown in the following examples:

-- Produces a value LOB
SELECT SUBSTR (valuelob, 5, 5) from agents;

-- Produces a value LOB
SELECT to _blob(valuelob, 0) from agents;

-- Produces a value LOB
SELECT CONCAT (valuelob, valuelob) from agents;

Any SQL operator that has a LOB input and a LOB output will produce an old fashioned
temporary LOB if the input is a reference LOB, or if the input is not a LOB type, as shown in
the following examples:

-- Produces a reference Temporary LOB
SELECT SUBSTR (referencelob, 5, 5) from agents;

-- Produces a reference Temporary LOB
SELECT to_blob(substr(referencelob,5,5), 0) from agents;

-- Produces a reference Temporary LOB as name is varchar type
SELECT to_clob(name) from agents;

If a SQL operator takes in 2 LOBSs, then it is an error if one of them is a value lob and the other
is not, as shown in the following example:

-- Raises an error
SELECT CONCAT (valuelob, referencelob) from agents;

4.3.3 Creating Value LOBs Using LOB_VALUE Operator

ORACLE

You can convert any persistent or temporary LOB to a Value LOB by using the LOB_VALUE
operator, as shown in the following examples.

-- Produces a value LOB
SELECT lob value (referencelob) from agents;

-- Produces a value LOB
SELECT lob value (substr(referencelob, 2, 10)) from agents;

-- Produces a value LOB
SELECT lob value(to clob(name)) from agents;

The LOB VALUE () operator is useful when a LOB column in a table cannot be set as QUERY AS
VALUE because different queries on that column may need to select the LOB as Reference or
Value. Use this operator to convert Reference LOBs to Value LOBs to take advantage of the
performance benefits offered by Value LOBs.

4-5

Chapter 4
Creating a Value LOB

PL/SQL functions do not produce Value LOBs. To get a Value LOB from PL/SQL functions, use
the LOB_VALUE () operator on the output of a PL/SQL function, as shown in the following
example.

-- Produces a value LOB
SELECT LOB VALUE (lob_producing plsgl function(...)) from table;

Note:

The reverse conversion of a Value LOB to a Reference LOB is not permitted.

4.3.4 Creating Value LOB in Views

ORACLE

LOB columns with QUERY AS VALUE property can be part of a view. You can create them in
two ways.

If view column refers to a value LOB column, view column will be a value LOB as well. The
following example shows how valuelob v column is a value LOB as part of a view.

-- valuelob v column is a value LOB column
create view agents v as
select id id v, valuelob valuelob v from agents;

If view column uses a SQL/LOB operator that returns value LOB, it will be value LOB.

-- valuelob v2 column is a value LOB
create view agents v2 as
select id id v2, substr(valuelob, 5, 5) valuelob v2Z from agents;
-- valuelob v3 column is a value LOB
create view agents v3 as
select id id v3, lob value(referencelob) valuelob v3 from agents;
-- valuelob v4 column is a value LOB
create view agents v4 as
select id id v4, lob value (substr(referencelob, 5, 5)) valuelob v4 from
agents;

The describe command of SQLPLUS shows if a LOB column for a view is value LOB:

SQL> desc agents_v;

Name Null? Type

ID V NUMBER

NAME V VARCHAR2 (100)
VALUELOB V CLOB VALUE

SQL> desc agents _v2;
Name Null? Type

ID V2 NUMBER

4-6

Chapter 4
Value LOBs in Queries

NAME V2 VARCHARZ (100)
VALUELOB V2 CLOB VALUE

4.4 Value LOBs in Queries

ORACLE

Whether a query fetches a Value or a Reference LOB is a compile-time decision, and can be
obtained by using a describe on the query.

Wherever a SQL function for JSON returns a LOB value, it returns a reference LOB by default.
However, the returning clause can specify that the LOB be value-based. For example:

JSON_SERIALIZE (data returning CLOB VALUE)
Example: Explain plan for Value LOBs
The explain plan output shows "/* LOB_BY_VALUE */" hint for value LOB in the plan.

SQL> explain plan for select valuelob, substr(valuelob, 5, 5) from agents;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 1| 2002 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| AGENTS | 1 | 2002 | 2 (0)| 00:00:01 |

1 - "VALUELOB" /*+ LOB_BY VALUE */ [LOB,4000]

Example: Explain plan for Reference LOBs without LOB_BY_VALUE

SQL> explain plan for select referencelob, substr(referencelob, 5, 5) from
agents;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 1| 2002 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| AGENTS | 1| 2002 | 2 (0)| 00:00:01 |

1 - "REFERENCELOB" [LOB, 4000]

In certain situations, the Oracle server automatically determines that a LOB should be selected
as a Value LOB.

4-7

Chapter 4
Performing DML Operations on LOBs with QUERY AS VALUE

Example: Explain plan showing automatic conversion to Value LOB

SQL> explain plan for select length(referencelob) from agents;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 1| 2002 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| AGENTS | 1| 2002 | 2 (0)| 00:00:01 |

1 - "REFERENCELOB" /*+ LOB BY VALUE */ [LOB,4000]

¢ See Also:
Example 4-3.

4.5 Performing DML Operations on LOBs with QUERY AS

VALUE

ORACLE

The QUERY AS VALUE property is applicable only for SQL queries, so it does not affect any
DML on the table. Therefore any DMLs such as INSERT or UPDATE work identically for LOB
columns declared as QUERY AS VALUE or QUERY AS REFERNCE.

DML RETURNING

If a user performs a DML with a RETURNING clause for the LOB locator, the returned LOB

locator will be a reference LOB irrespective of the QUERY AS property of the LOB column.

Hence a user can INSERT an empty lob () with RETURNING clause, and use the returning
locator to write into the persistent LOB, as shown in the following example:

-- insert with returning clause
declare
c clob;
begin
-- returns a reference to the persistent LOB
insert into agents values (1, 'My Name', empty clob(), NULL, NULL, NULL)
returning valuelob into c;
-- updates the persistent LOB
dbms lob.writeappend(c, length('I am a value LOB'), 'I am a value LOB');
end;

/

4-8

4.6 Value

Chapter 4
Value LOB APIs in Different Programmatic Interfaces

SELECT FOR UPDATE

Along the same lines, if the user selects out a locator with the FOR UPDATE clause, the intention
is to update the persistent LOB stored in the LOB column. So the returned LOB locator will be
a reference LOB irrespective of the QUERY AS property of the LOB column, as shown in the
following example.

-- Select for update
declare
c clob;
begin
-- returns a reference to the persistent LOB
select valuelob into c¢ from agents where id = 1 for update;
-- This updates the persistent LOB
dbms_lob.writeappend(c, length('!!!"), "!Il");
end;

/

LOB APIs in Different Programmatic Interfaces

This section lists the value LOB specific APIs in different programmatic interfaces.

e Prefetching of Value LOBs
Setting a large LOB prefetch size on the client side avoids round trips to server and leads
to a drastically improved performance for value LOBs.

e Value LOB API Support
Once a LOB variable is initialized with either a persistent or a temporary LOB locator,
subsequent read operations on the LOB can be performed using APIs such as the
DBMS LOB package subprograms.

e PL/SQL APIs for Value LOBs
This section describes the PL/SQL APIs used with value LOBs.

« OCI APIs for Value LOBs
This section describes the OCI APIs used with value LOBs.

e Interoperability with Older Clients
When you send a value LOB to a client that's at version 21c or earlier, the value LOB is
converted to a read-only temporary reference LOB.

4.6.1 Prefetching of Value LOBs

ORACLE

Setting a large LOB prefetch size on the client side avoids round trips to server and leads to a
drastically improved performance for value LOBs.

The default LOB prefetch size for value LOBs in JDBC, OCIl and ODP.NET is 32k.

Note:

In OCI, setting a LOB prefetch size of O will be interpreted by Oracle as a prefetch
size of 32k for value LOBs, and 0 for reference LOBs. Any other setting of LOB
prefetch size is honored for both value and reference LOBs.

4-9

Chapter 4
Value LOB APIs in Different Programmatic Interfaces

Oracle recommends setting the LOB prefetch size large enough to accommodate at least 80%
of your LOB read size for value LOBs.

¢ See Also:
Prefetching LOB Data and Length

4.6.2 Value LOB API Support

Once a LOB variable is initialized with either a persistent or a temporary LOB locator,
subsequent read operations on the LOB can be performed using APIs such as the DBMS LOB
package subprograms.

See Also:
LOB APIs
The operations supported on value LOBs are divided into the following categories:

Table 4-1 Operations supported by value LOB APIs
]

Category Value LOB Behavior

Sanity Checking Supported

Open/Close Open is allowed in read-only mode. If read-write is specified, an error is
thrown.

Read Operations Supported

Modify Operations Not supported, since value LOBs are read-only.

Operations involving multiple OCILobLocatorAssign () is not supported.

locators OCILobIsEqual () will always return FALSE because
OCILobLocatorAssign is not supported.
OCILobAppend (), OCILobCopy2 (),and OCILobLoadFromFile2 ():
These operations support a Value LOB as the source LOB. The
destination LOB has to be selected FOR UPDATE, which converts it to a
reference LOB, hence permitting the operation to go through. The
destination LOB cannot be a value LOB.

Operations specific to Not supported, since value LOBs are temporary LOBs and not

SecureFiles Securefiles.

Operations specific to CreateTemporary cannot produce a value LOB.

temporary LOBs FreeTemporary and IsTemporary are supported but not required,

since value LOBs are freed automatically.

4.6.3 PL/SQL APIs for Value LOBs

ORACLE

This section describes the PL/SQL APIs used with value LOBs.

Value LOBs exist in the SQL query, as well as on the client-side programmatic interfaces such
as JDBC, OCl and ODP.NET. In PL/SQL, a temporary LOB is freed automatically when a user
overwrites the variable containing that LOB. Hence any value LOBs passed from SQL to

4-10

Chapter 4
Value LOB APIs in Different Programmatic Interfaces

PL/SQL are converted to read-only temporary LOBs, and have the duration of the variable that
holds the LOB. When the variable goes out of scope, the temporary LOB is freed automatically.

In other words, there are no value LOBs in PL/SQL. All LOBs in PL/SQL are reference LOBs. If
a Value LOB is sent from SQL to PL/SQL, it becomes a read-only temporary LOB. This LOB
supports the APIs listed in Table 4-1. If this LOB is passed from PL/SQL to a client, such as
JDBC or OCI, then it continues to be a read-only temporary LOB. This means it follows the
same API support as in Table 4-1, but it will not be freed automatically when the next fetch is
performed on the cursor. It will be the user's responsibility to free this LOB when they are done
with it.

Example 4-1 PLISQL API for Value LOBs

The following example shows how you can create a value LOB by using the LOB VALUE
operator on the output of a PL/SQL function.

SELECT LOB VALUE (lob_producing plsql function(...)) from table;

OUT Binds

Since OUT binds are not part of a SQL query, they cannot return a value LOB. When you
attempt to return a value LOB as an oUT bind variable, the value LOB is converted to a read-
only temporary LOB. It is the responsibility of the application developer to free the LOB after
using it since it is a reference LOB. Note that the LOB_VALUE operator does not work on OUT
binds.

4.6.4 OCI APIs for Value LOBs

This section describes the OCI APIs used with value LOBs.

Example 4-2 Explicit Describe returning OCI_ATTR_LOB_IS_VALUE on the Table
Using OCIDescribeAny

void explicitDescribe ()
{
/* Assume: create table lobtab (c clob) lob(c) query as value */
ubl isValueLob = 0;
OCIParam *colhd;
OCIParam *paramp = NULL;
OCIParam *1stHandle = NULL;
text *table = "lobtab";
OCIDescribe *dschp = NULL;

OCIHandleAlloc (envhp, (void **)é&dschp, OCI HTYPE DESCRIBE, 0, NULL);
checkerr (errhp, OCIDescribeAny(svchp, errhp, (void *)table, strlen(table),
OCI_OTYPE NAME, 0, OCI PTYPE TABLE, dschp));

checkerr (errhp, OCIAttrGet ((dvoid *) dschp, (ub4) OCI HTYPE DESCRIBE,
(dvoid *)¶mp, (ub4*)0, (ub4)OCI ATTR PARAM, errhp));

/* Get the number of columns */
checkerr (errhp, OCIAttrGet ((void *)paramp, OCI DTYPE PARAM, (void
*)&noofcols,
(ub4 *)0, OCI_ATTR NUM COLS, errhp));

/* Get the column list. */

ORACLE 411

Chapter 4
Value LOB APIs in Different Programmatic Interfaces

checkerr (errhp, OCIAttrGet (paramp, OCI DTYPE PARAM, &lstHandle, O,
OCI_ATTR LIST COLUMNS, errhp));

/* Go through the column list */
for (int 1 = 1; 1 <= noofcols; 1i++)
{
/* Get parameter for column i */
checkerr (errhp, OCIParamGet (lstHandle, OCI_DTYPE PARAM,
(OCIError *)errhp, (void**)é&colhd, (ub4)i),
(text *)"param get");

isValueLob = 0;
checkerr (errhp, OCIAttrGet (colhd, OCI DTYPE PARAM,
& (isValuelLob), 0,
OCI_ATTR LOB IS VALUE,
(OCIError *)errhp),
(text*)"attr get");

printf ("Is value lob = %d\n",isValuelLob); /* Expected output: Is value
lob = 1 */
}

Example 4-3 Implicit Describe returning OCI_ATTR_LOB_IS_VALUE on a Query's
Column Handle

text *select sql = (text *)"select valuelob from agents"; /*
generates value LOB */

OCILobLocator *lobl;

Boolean isVallLob = 0;

OCIParam *colhd;

/* Prepare select statement */
checkerr (errhp, OCIStmtPrepare (stmthp, errhp, select sql, /* select valuelob
from agents */

(ub4) strlen((char *) select sql), ...);

/* Execute select statement */
checkerr (errhp, OCIStmtExecute (svchp, stmthp, errhp, ...);

/* Implicit Describe: Get parameter for select item #1 */
checkerr (errhp, OCIParamGet (stmthp, OCI HTYPE STMT,

(OCIError *)errhp,

(void**) &colhd, (ub4)1),

(text *)"param valuelob column");

/* Check if colhd (valulob column) returns value LOB */
checkerr (errhp, OCIAttrGet (colhd, OCI DTYPE PARAM,
& (isValueLob), 0,
OCI_ATTR LOB IS VALUE,
(OCIError *)errhp),
(text *)"attr get");

ORACLE 415

Chapter 4
Restrictions on Value LOBs

Example 4-4 Checking for OCI_ATTR_LOB_IS_VALUE after fetching a LOB Locator

void CheckValue (OCILobLocator *lobl)
{

boolean isValLob = 0;

/* Check if lobl is value LOB */
OCIAttrGet (lobl, OCI_DTYPE LOB, &isValLob, sizeof (boolean),
OCI_ATTR LOB IS VALUE, errhp);

Example 4-5 Checking for OCI_ATTR_LOB_IS_READONLY after fetching a LOB
Locator

Recall that there are no Value LOBs in PL/SQL. If a Value LOB is sent from SQL to PL/SQL, it
becomes a Read-Only Temporary LOB. This LOB will follow the same API support as in

Table 4-1. If this LOB is passed from PL/SQL to a client like JDBC or OCI, then it will continue
to be a Read-Only Temporary LOB. The example below shows how to check the read-only
property of a LOB locator by using the 0OCI ATTR LOB IS READONLY attribute.

void CheckReadOnly (OCILobLocator *lobl)

{
boolean isReadOnly = 0;

/* Check if lobl is read-only */
OCIAttrGet (lobl, OCI DTYPE LOB, &isReadOnly, sizeof (boolean),
OCI_ATTR LOB IS READONLY, errhp);

4.6.5 Interoperability with Older Clients

When you send a value LOB to a client that's at version 21c or earlier, the value LOB is
converted to a read-only temporary reference LOB.

This means it will follow the same API support as in <the category table in 4.4.2>, but it will not
be freed automatically when the next fetch is performed on the cursor. It will be the user's
responsibility to free this LOB when they are done with it.

4.7 Restrictions on Value LOBs

ORACLE

Keep the following restrictions in mind while working with value LOBs.

e Value LOBs are read-only LOBs, so you are not permitted to perform modify operations on
them.

* Locator assignment operations, such as 0CILobLocatorAssign () are not supported on
value LOBs.

e Value LOBs is not supported with the following operation in JDBC:
— Client-side result cache

e Value LOBs are not supported with the following operations in OCI:
— Scrollable cursors

— Client-side result cache

4-13

Chapter 4
Restrictions on Value LOBs

* Value LOBs cannot be combined with reference LOBs in the same operation in a query, for
example:

select concat(valuelob, referencelob) from agents; -- Error expected

ORACLE 41

BFILES

BFILES are data objects stored in operating system files, outside the database tablespaces.
Data stored in a table column of type BFILE is physically located in an operating system file,
not in the database. The BFILE column stores a reference to the operating system file.

BFILES are read-only data types. The database allows read-only byte stream access to data
stored in BFILES. You cannot write to or update a BFILE from within your application.

You create BFILES to hold the following types of data:
* Binary data that does not change while your application is running, such as graphics.

» Data that is loaded into other large object types, such as a BLOB or CLOB, where the data
can be manipulated.

« Data that is appropriate for byte-stream access, such as multimedia.

Any storage device accessed by your operating system can hold BFILE data, including hard
disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFILES provided the
operating system supports stream-mode access to the operating system files.

+ DIRECTORY Objects
A BFILE locator is initialized by using the function BFILENAME (DIRECTORY, FILENAME). This
section describes how to initialize the DIRECTORY Object.

e BFILE Locators
For BFILES, the value is stored in a server-side operating system file, in other words,
BFILES are external to the database. The BFILE locator that refers to the file is stored in the
database row.

e BFILE APIs
This section discusses the different operations supported through BFILES.

e BFILE APIs in Different Programmatic Interfaces
This section lists all the APIs from different Programmatic Interfaces supported by Oracle
Database.

5.1 DIRECTORY Objects

ORACLE

A BFILE locator is initialized by using the function BFILENAME (DIRECTORY, FILENAME). This
section describes how to initialize the DIRECTORY Object.

A DIRECTORY object specifies a logical alias name for a physical directory on the database
server file system under which the file to be accessed is located. You can access a file in the
server file system only if you have the required access privilege on the DIRECTORY object. You
can also use Oracle Enterprise Manager Cloud Control to manage the DIRECTORY objects.

The DIRECTORY object provides the flexibility to manage the locations of the files, instead of
forcing you to hard-code the absolute path names of physical files in your applications.

A DIRECTORY object name is used in conjunction with the BFILENAME function, in SQL and PL/
SQL, or the 0CILobFileSetName () function in OCI, for initializing a BFILE locator.

5-1

Chapter 5
DIRECTORY Objects

* DIRECTORY Name Specification
You must have CREATE ANY DIRECTORY system privilege to create directories.

e Security on Directory Objects
This section describes the security on DIRECTORY objects.

¢ See Also:

° CREATE DIRECTORY in Oracle Database SQL Language Reference

* See Oracle Database Administrator's Guide for the description of Oracle
Enterprise Manager Cloud Control

5.1.1 DIRECTORY Name Specification

ORACLE

You must have CREATE ANY DIRECTORY system privilege to create directories.

The naming convention for DIRECTORY objects is the same as that for tables and indexes. That
is, normal identifiers are interpreted in uppercase, but delimited identifiers are interpreted as is.
For example, the following statement:

CREATE OR REPLACE DIRECTORY scott dir AS '/usr/home/scott';

creates or redefines a DIRECTORY object whose name is 'SCOTT DIR' (in uppercase). But if a
delimited identifier is used for the DIRECTORY name, as shown in the following statement
CREATE DIRECTORY "Mary Dir" AS '/usr/home/mary';

then the DIRECTORYdirectory object name is 'Mary Dir'. Use 'SCOTT DIR'and 'Mary Dir'when

calling BFILENAME. For example:

BFILENAME ('SCOTT DIR', 'afile')
BFILENAME ('Mary Dir', 'afile')

WARNING:

The database does not verify that the directory and path name you specify actually
exist. You must ensure to specify a valid directory name in your operating system. If
your operating system uses case-sensitive path names, then be sure that you specify
the directory name in the correct format. There is no requirement to specify a
terminating slash (for example, /tmp/ is not necessary, simply use /tmp).

Directory specifications cannot contain ".." anywhere in the path (for
example: ../../abc/def or abc/../def or abc/def/hij. .

On Windows Platform

On Windows platforms the directory hames are case-insensitive. Therefore the following two
statements refer to the same directory:

CREATE DIRECTORY "big cap dir" AS "g:\data\source";

CREATE DIRECTORY "small cap dir" AS "G:\DATA\SOURCE";

5-2

Chapter 5
DIRECTORY Objects

5.1.2 Security on Directory Objects

ORACLE

This section describes the security on DIRECTORY objects.
The DIRECTORY object model has two distinct levels of security:

¢ SQL DDL: CREATE or DROP a DIRECTORY object

e SQL DML: READ system and object privileges on DIRECTORY objects

DBA Privileges: CREATE / DROP DIRECTORY

The DIRECTORY object is a system owned object. Oracle Database supports the following
system privileges, which are granted only to DBA:

e CREATE ANY DIRECTORY: For creating or altering the DIRECTORY object creation

° DROP ANY DIRECTORY: For deleting the DIRECTORY object

WARNING:

Because CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges potentially
expose the server file system to all database users, the DBA should be prudent in
granting these privileges to normal database users to prevent security breach.

See Also:

Oracle Database SQL Language Reference for information about system owned
objects, CREATE DIRECTORY and DROP DIRECTORY

USER Privileges: READ Permission on the Directory

READ permission on the DIRECTORY object enables you to read files located under that directory.
The creator of the DIRECTORY object automatically earns the READ privilege.

If you have been granted the READ permission with GRANT option, then you may in turn grant
this privilege to other users or roles and then add them to your privilege domains.

Note:

The READ permission is defined only on the DIRECTORY object, not on individual files.
Hence there is no way to assign different privileges to files in the same directory.

The physical directory that it represents may or may not have the corresponding operating
system privileges (read in this case) for the Oracle Server process.

It is the responsibility of the DBA to ensure the following:

e That the physical directory exists

* Read permission for the Oracle Server process is enabled on the file, the directory, and the
path leading to it

5-3

Chapter 5
BFILE Locators

e The directory remains available, and read permission remains enabled, for the entire
duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may read from files
in the directory. These privileges are checked and enforced by the PL/SQL DBMS LOB package
and OCI APIs at the time of the actual file operations.

¢ See Also:

e Guidelines for DIRECTORY Usage

* Oracle Database SQL Language Reference for information about the GRANT,
REVOKE and AUDIT system and object privileges that provide security for BFILES.

Catalog Views on DIRECTORY Objects

Catalog views are provided for DIRECTORY objects to enable users to view object names and
corresponding paths and privileges. Following are the supported views:

* ALL DIRECTORIES (OWNER, DIRECTORY NAME, DIRECTORY PATH)
This view describes all directories accessible to the user.

* DBA DIRECTORIES(OWNER, DIRECTORY NAME, DIRECTORY PATH)
This view describes all directories specified for the entire database.

5.2 BFILE Locators

ORACLE

For BFILES, the value is stored in a server-side operating system file, in other words, BFILES
are external to the database. The BFILE locator that refers to the file is stored in the database
row.

To associate an operating system file to a BFILE, first create a DIRECTORY object that is an alias
for the full path name to the operating system file. Then, you can initialize an instance of BFILE
type, using the BFILENAME function in SQL or PL/SQL, or 0OCILobFileSetName ()in OCI. You can
use this BFILE instance in one of the following ways:

* If your need for a particular BFILE is temporary and limited within the module on which you
are working, then you can assign this BFILE instance to a PL/SQL or OCI local variable of
type BFILE. Subsequently, you can use the BFILE related APIs on this variable without
having to associate this with a column in the database. The BFILE API operations on a
temporary instance are executed on the client side, without any round-trips to the server.

e You can insert a persistent reference to a BFILE in the BFILE column using an INSERT or
UPDATE statement. Before using SQL to insert or update a row with a BFILE, you must
initialize the BFILE variable to either NULL or a DIRECTORY object name and file name.

Note:

The ocIsetAttr () function does not allow you to set a BFILE locator to NULL. To
insert a NULL BFILE in OCI, you must set the bind value to NULL.

5-4

ORACLE

Chapter 5
BFILE Locators

It is possible to have multiple BFILE columns in the same record or different records referring to
the same file. For example, the following UPDATE statements set the BFILE column of the row
with key value = 21in lob table to point to the same file as the row with key value = 22.

UPDATE lob table SET f lob = (SELECT f lob FROM lob table WHERE key value =
22) WHERE
key value = 21;

¢ See Also:
Loading BFILEs with SQL*Loader

BFILEs in Objects

If you are using BFILES in objects, you must first set the BFILE value, and then flush the object
to the database. So, you must first call the 0CIObjectNew () function, followed by the
OCILobFileSetName () function and the 0CIObjectFlush () function respectively.

BFILEs in Shared Server (Multithreaded Server) Mode

The database does not support session migration for BFILE data types in shared server
(multithreaded server) mode. This implies that in shared server sessions, BFILE operations are
bound to one shared server, they cannot migrate from one server to another, and open BFILE
instances can persist beyond the end of a call to a shared server.

Examples of Creating Directory Objects and BFILE Locators

Many examples in the following sections use the print media table. Following is the structure
of the table:

5-5

ORACLE"

Figure 5-1 print_media table

Chapter 5
BFILE Locators

PRINT_MEDIA Table

{ Column name

J [Column Type J

product_id

ad_id
ad_composite
ad_sourcetext
ad_finaltext
ad_fltextn
ad_textdocs_ntab
ad_photo
ad_graphic
ad_header

press_release

NUMBER (6)
NUMBER (6)

BLOB

CLOB

CLOB

NCLOB

NESTED TABLE
BLOB

BFILE

USER DEFINED TYPE

LONG

Example 5-1 Inserting BFILEs in SQL and PL/SQL

conn system/manager

-- The DBA creates DIRECTORY object and grants READ to the user
create or replace directory MYDIR as '/your/directory/path/here’;
GRANT read ON DIRECTORY MYDIR TO pm;

conn pm/pm

-- Use BFILENAME to create a BFILE locator for INSERT

INSERT INTO print media

(product id, ad id, ad composite, ad sourcetext, ad graphic)

VALUES

(1, 1, empty blob(), empty clob(), BFILENAME ('MYDIR','filel.txt'));

-- After this statement, 2 rows point to the same BFILE

5-6

Chapter 5
BFILE Locators

INSERT INTO print_media

(product id, ad id, ad composite, ad sourcetext, ad graphic)
select 2, ad id, ad composite, ad sourcetext, ad graphic from

print media;

-- Update the 2nd row to point to a different file
UPDATE print media SET ad graphic = BFILENAME ('MYDIR','file2.txt') WHERE
product id =2;

-- Insert a 3rd row with invalid file name

INSERT INTO print_media

(product id, ad id, ad composite, ad sourcetext, ad graphic)
VALUES

(3, 3, empty blob(), empty clob(),

BFILENAME ('MYDIR', 'file does not exist.txt'));

-- Insert a NULL for BFILE

INSERT INTO print_media

(product id, ad id, ad composite, ad sourcetext, ad graphic)
VALUES

(4, 4, empty blob(), empty clob(), NULL);

-- Inserting in PLSQL using a BFILE variable
DECLARE
f BFILE;
BEGIN
f := BFILENAME ('MYDIR', 'file5.txt'");
INSERT INTO print media (product id, ad id, ad composite, ad sourcetext,
ad_graphic)
VALUES (5, 5, NULL, NULL, £f);
END;
/
SELECT product id, ad id, ad graphic FROM print media ORDER BY 1,2;

Example 5-2 Inserting BFILEs in OCI

STATIC TEXT *insstmt = "INSERT INTO print media (product id, ad id,
ad _graphic) VALUES (:1, :1, :2)";
sword insert bfile()
{
OCILobLocator *f = (OCILobLocator *)O0;

OCIStmt *stmthp;

OCIBind *bndpl = (OCIBind *) 0;
OCIBind *bndp2 = (OCIBind *) 0;
ubd id;

CHECK_ERROR (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
OCI _HTYPE STMT, (size t) 0, (dvoid **) 0));

/*************** Allocate deSCriptOr ***********************/

CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &f,
(ub4)OCI_DTYPE FILE, (size t) 0,
(dvoid **) 0));

ORACLE .

Chapter 5
BFILE Locators

/***‘k****** Execute insstmt to insert f ********************/

id = 6;

CHECK_ERROR (OCILobFileSetName (envhp, errhp, &f,
(text*)"MYDIR", sizeof ("MYDIR") -1,
(text*)"file6.txt",
sizeof ("file6.txt") -1));

CHECK_ERROR (OCIStmtPrepare (stmthp, errhp, insstmt,
(ub4) strlen((char *) insstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

CHECK_ERROR (OCIBindByPos (stmthp, &bndpl, errhp, (ub4) 1, (dvoid *) &id,
(sb4) sizeof(id), SQLT INT, (dvoid *) 0, (ub2
*) 0,
(ub2 *)0, (ub4) 0, (ub4*) 0, (ub4d)
OCI DEFAULT));

CHECK_ERROR (OCIBindByPos (stmthp, &bndp2, errhp, (ub4) 2, (dvoid *) &f4,
(sb4) -1, SQLT BFILE, (dvoid *) 0, (ub2 *) 0,
(ub2 *)0, (ub4) 0, (ub4*) 0, (ub4d)
OCI_DEFAULT));

CHECK_ERROR (OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot *) NULL, (OCISnapshot *)
NULL,
OCI DEFAULT));

/********** Execute insstmt tO insert NULL ********************/
id = 7;
CHECK_ERROR (OCIStmtPrepare (stmthp, errhp, insstmt,
(ub4) strlen((char *) insstmt),
(ub4) OCI NTV_SYNTAX, (ub4) OCI_DEFAULT));

CHECK_ERROR (OCIBindByPos (stmthp, &bndpl, errhp, (ub4) 1, (dvoid *) &id,
(sb4) sizeof(id), SQLT INT, (dvoid *) 0, (ub2
*) 0,
(ub2 *)0, (ub4) 0, (ub4*) 0, (ub4d)
OCI DEFAULT));

CHECK_ERROR (OCIBindByPos (stmthp, &bndp2, errhp, (ub4) 2, (dvoid *) NULL,
(sb4) -1, SQLT BFILE, (dvoid *) 0, (ub2 *) O,
(ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCI DEFAULT));

CHECK_ERROR (OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot *) NULL, (OCISnapshot *)
NULL,
OCI DEFAULT));

ORACLE -

5.3 BFILE APIs

This section discusses the different operations supported through BFILES.

ORACLE

Chapter 5
BFILE APIs

Once you initialize a BFILE variable either by using the BFILENAME function or an equivalent
API, or by using a SELECT operation on a BFILE column, you can perform read operations on
the BFILE using APIs such as DBMS LOB. Note that BFILE is a read-only data type. So, you
cannot update or delete the operating system files, accessed using BFILES, through the BFILE

APls.

The operations performed on BFILES are divided into following categories:

Table 5-1 Operations on BFILEs
|

Category Operation Example function Iprocedure
in DBMS_LOB package
Sanity Checking Check if the BFILE exists onthe FILEEXISITS
server
Get the DIRECTORY object name FILEGETNAME
and file name
Set the name of a BFILE in a BFILENAME
locator without checking if the
directory or file exists
Open / Close Open afile OPEN
Check if the file was opened ISOPEN
using the input BFILE locators
Close the file CLOSE
Close all previously opened files FILECLOSEALL
Read Operations Get the length of the BFILE GETLENGTH
Read data from the BFILE READ
starting at the specified offset
Return part of the BFILE value SUBSTR
starting at the specified offset
using SUBSTR
Return the matching position of a INSTR
pattern in a BFILE using INSTR
Operations involving multiple Assign BFILE locator src to dst := src
locators BFILE locator dst
Load BFILE data into a LOB LOADCLOBFROMFILE,
LOADBLOBFROMFILE
Compare all or part of the value ~ COMPARE

of two BFILES

e Sanity Checking

Sanity Checking functions on BFILEs enable you to retrieve information about the BFILEs.

e Opening and Closing a BFILE
You must OPEN a BFILE before performing any operations on it, and CLOSE it before you

terminate your program.

* Reading from a BFILE

You can perform many different read operations on the BFILE data, including reading its
length, reading part of the data, or reading the whole data.

5-9

Chapter 5
BFILE APIs

* Working with Multiple BFILE Locators
Some BFILE operations accept two locators, at least one of which is a BFILE locator. For
the assignment and the comparison operations involving BFILES, both the locators must
be of BFILE type.

5.3.1 Sanity Checking

Sanity Checking functions on BFILEs enable you to retrieve information about the BFILEs.

Recall that the BFILENAME () and OCILobFileSetName () functions do not verify that the
directory and path name you specify actually exist. You can use the sanity checking functions
to verify that a BFILE exists and to extract the directory and file names from a BFILE locator.

5.3.2 Opening and Closing a BFILE

You must OPEN a BFILE before performing any operations on it, and CLOSE it before you
terminate your program.

A BFILE locator operates like a file descriptor available as part of the standard input/output
library of most conventional programming languages. This implies that once you define and
initialize a BFILE locator, and open the file pointed to by this locator, all subsequent operations
until the closure of the file must be done from within the same program block using the locator
or local copies of it. The BFILE locator variable can be used as a parameter to other
procedures, member methods, or external function callouts. However, it is recommended that
you open and close a file from the same program block at the same nesting level.

You must close all the open BFILE instances even in cases, where an exception or unexpected
termination of your application occurs. In these cases, if a BFILE instance is not closed, then it
is still considered open by the database. Ensure that your exception handling strategy does not
allow BFILE instances to remain open in these situations.

You can close all open BFILES together by using a procedure like DBMS LOB.FILECLOSEALL Or
OCILobFileCloseAll().

5.3.3 Reading from a BFILE

ORACLE

You can perform many different read operations on the BFILE data, including reading its length,
reading part of the data, or reading the whole data.

When reading from a large BFILE, you can use the streaming read mode in JDBC or OCI. In
JDBC, you can achieve this by using the getBinaryStream() method. In OCI, you can achieve
it in the way as described in the following section.

Streaming Read in OCI

The most efficient way to read large amounts of BFILE data is by using the 0CILobRead?2 ()
function with the streaming mechanism enabled, and using polling or callback. To do so,
specify the starting point of the read using the of fset parameter as follows:

ub8 char amt 0;
ub8 byte amt = 0;
ub4 offset = 1000;

OCILobRead2 (svchp, errhp, locp, &byte amt, &char amt, offset, bufp, bufl,
OCI ONE PIECE, 0, 0, 0, 0);

5-10

Chapter 5
BFILE APIs

When using polling mode, be sure to look at the value of the byte amt parameter after each
OCILobRead? () call to see how many bytes were read into the buffer, because the buffer may
not be entirely full.

When using callbacks, the lenp parameter, which is input to the callback, indicates how many
bytes are filled in the buffer. Be sure to check the lenp parameter during your callback
processing because the entire buffer may not be filled with data.

Amount Parameter

* When calling the DBMS_LOB.READ API, the size of the amount parameter can be larger than
the size of the data. However, this parameter should be less than or equal to the size of the
buffer. In PL/SQL, the buffer size is limited to 32K.

* When calling the 0CILobRead?2 () function, you can pass a value of UB8MAXVAL for the
byte amt parameter to read to the end of the BFILE.

5.3.4 Working with Multiple BFILE Locators

ORACLE

Some BFILE operations accept two locators, at least one of which is a BFILE locator. For the
assignment and the comparison operations involving BFILES, both the locators must be of
BFILE type.

Loading a LOB with BFILE data involves special considerations that we will discuss in the
following sections:

Loading a LOB with BFILE Data

In PLSQL, the DBMS LOB.LOADFROMFILE procedure is deprecated in favor of

DBMS LOB.LOADBLOBFROMFILE and DBMS LOB.LOADCLOBFROMFILE. Specifically, when you use
DBMS LOB.LOADCLOBFROMFILE procedure to load a CLOB or NCLOB instance, it will perform the
character set conversions.

Specifying the Amount of BFILE Data to Load

The value you pass for the amount parameter to functions listed in the table below must be
one of the following:

e An amount less than or equal to the actual size (in bytes) of the BFILE you are loading.

e The maximum allowable LOB size (in bytes). Passing this value, loads the entire BFILE.
You can use this technique to load the entire BFILE without determining the size of the
BFILE before loading. To get the maximum allowable LOB size, use the technique
described in the following table:

Table 5-2 Maximum LOB Size for Load from File Operations
]

Environment Function To pass maximum LOB size,
get value of:
DBMS LOB DBMS LOB.LOADBLOBFROMFILE DBMS LOB.LOBMAXSIZE
DBMS LOB DBMS LOB.LOADCLOBFROMFILE DBMS LOB.LOBMAXSIZE
OCI OCILobLoadFromFile2 () UB8MAXVAL
OCI OCILobLoadFromFile () (For UB4MAXVAL
LOBs less than 4 gigabytes in
size.)

Loading a BLOB with BFILE Data

5-11

ORACLE

Chapter 5
BFILE APIs

The DBMS LOB.LOADBLOBFROMFILE procedure loads a BLOB with data from a BFILE. It can be
used to load data into any persistent or temporary BLOB instance. This procedure returns the
new source and the destination offsets of the BLOB, which you can then pass into subsequent
calls, when used in a loop.

Loading a CLOB with BFILE Data

The DBMS LOB.LOADCLOBFROMFILE procedure loads a CLOB or NCLOB with character data from a
BFILE. It can be used to load data into a persistent or temporary CLOB or NCLOB instance. You
can specify the character set ID of the BFILE when calling this procedure and ensure that the
character set is properly converted from the BFILE data character set to the destination CLOB or
NCLOB character set. This procedure returns the new source and destination offsets of the
CLOB or NCLOB, which you can then passe into subsequent calls, when used in a loop.

The following example illustrates:

* Howtouse default csid(0).

* How to load the entire file without calling get1ength for the BFILE.
e How to find out the actual amount loaded using return offsets.

This example assumes that ad_source is a BFILE in UTF8 character set format and the
database character set is UTF8.

CREATE OR REPLACE PROCEDURE loadCLOBl_proc (dst_loc IN OUT CLOB) IS
src_loc BFILE := BFILENAME ('MEDIA DIR', 'monitor 3060.txt') ;
amt NUMBER : DBMS_LOB.LOBMAXSIZE;
src_offset NUMBER := 1 ;
dst offset NUMBER :=1 ;
lang_ctx NUMBER : DBMS_LOB.DEFAULT_LANG_CTX;

warning NUMBER;
BEGIN
DBMS_OUTPUT.PUT_LINE(' ———————————— LOB LOADCLOBFORMFILE EXAMPLE

DBMS LOB.FILEOPEN (src_loc, DBMS LOB.FILE READONLY);

/* The default csid can be used when the BFILE encoding is in the same
charset
* as the destination CLOB/NCLOB charset
*/
DBMS LOB.LOADCLOBFROMFILE (dst loc,src_loc, amt, dst offset,
src_offset,
DBMS LOB.DEFAULT CSID, lang ctx,warning) ;
DBMS OUTPUT.PUT LINE(' Amount specified ' || amt) ;
DBMS OUTPUT.PUT LINE(' Number of bytes read from source: ' ||
(src_offset-1));
DBMS OUTPUT.PUT LINE (' Number of characters written to destination: ' ||
(dst _offset-1));
IF (warning = DBMS_LOB.WARN_INCONVERTIBLE_CHAR)
THEN
DBMS OUTPUT.PUT LINE ('Warning: Inconvertible character');
END IF;
DBMS_LOB.FILECLOSEALL() ;
END;
/

The following example illustrates:

5-12

Chapter 5
BFILE APIs

* How to get the character set ID from the character set name using the NLS_CHARSET ID
function.

* How to load a stream of data from a single BFILE into different LOBs using the returned
offset value and the language context lang ctx.

e How to read a warning message

This example assumes that ad file ext 01 is aBFILE in JAL6TSTSET format and the database
national character set is AL16UTF16.

CREATE OR REPLACE PROCEDURE loadCLOB2 proc (dst locl IN OUT NCLOB,dst loc2 IN
OUT NCLOB) IS

src_loc BFILE := BFILENAME ('MEDIA DIR', 'monitor 3060.txt');

amt NUMBER := 100;

src_offset NUMBER := 1;

dst offset NUMBER := 1;

src_osin NUMBER;

cs_id NUMBER := NLS CHARSET ID('JAL6TSTSET'); /* 998 */
lang ctx NUMBER := dbms lob.default lang ctx;
warning NUMBER;
BEGIN
DBMS OUTPUT.PUT LINE('------------ LOB LOADCLOBFORMFILE EXAMPLE

DBMS LOB.FILEOPEN (src_loc, DBMS LOB.FILE READONLY);
DBMS OUTPUT.PUT LINE(' BFILE csid is ' || cs_id) ;

/* Load the first 1KB of the BFILE into dst locl */

DBMS_OUTPUT.PUT LINE (' —=======—-——mmmmmmmmmmomm ") g
DBMS OUTPUT.PUT LINE(' First load ') ;
DBMS_OUTPUT.PUT LINE (' —=======—-——mmmmmmmmmmmmm ") g

DBMS LOB.LOADCLOBFROMFILE (dst locl, src loc, amt, dst offset, src offset,
cs_id, lang ctx, warning);

/* the number bytes read may or may not be 1k */

DBMS OUTPUT.PUT LINE(' Amount specified ' || amt) ;

DBMS OUTPUT.PUT LINE(' Number of bytes read from source: ' ||
(src_offset-1));

DBMS OUTPUT.PUT LINE (' Number of characters written to destination: ' ||
(dst_offset-1));

if (warning = dbms lob.warn inconvertible char)

then

DBMS OUTPUT.PUT LINE ('Warning: Inconvertible character');
end if;

/* load the next 1KB of the BFILE into the dst loc2 */

DBMS_OUTPUT.PUT LINE(' —========——————————————————- ")
DBMS OUTPUT.PUT LINE (' Second load ') ;
DBMS_OUTPUT.PUT LINE(' —========——————————————————- ")

/* Notice we are using the src offset and lang ctx returned from the
previous
* load. We do not use value 1001 as the src offset here because sometimes

ORACLE - 13

Chapter 5
BFILE APIs in Different Programmatic Interfaces

the

* actual amount read may not be the same as the amount specified.

*/

src_osin := src offset;

dst offset := 1;

DBMS LOB.LOADCLOBFROMFILE (dst loc2, src loc, amt, dst offset, src offset,
cs_id, lang ctx, warning);

DBMS OUTPUT.PUT LINE (' Number of bytes read from source: ' ||
(src_offset-src osin));

DBMS OUTPUT.PUT LINE (' Number of characters written to destination: ' ||
(dst_offset-1));

if (warning = DBMS LOB.WARN INCONVERTIBLE CHAR)

then

DBMS OUTPUT.PUT LINE ('Warning: Inconvertible character');
end if;
DBMS LOB.FILECLOSEALL() ;

END;

5.4 BFILE APIs in Different Programmatic Interfaces

ORACLE

This section lists all the APIs from different Programmatic Interfaces supported by Oracle
Database.

Note:

The PL/SQL DBMS LOB package provides a rich set of operations on BFILES. If you
are using a different Programmatic Interface where some of these operations are not
provided, then call the corresponding PL/SQL DBMS_LOB procedure or function.

PL/SQL APIs for BFILEs
This section describes the PL/SQL APIs that you can use with BFILEs.

JDBC API for BFILEs
This section describes the JDBC APIs that you can use to work with BFILES.

OCI API for BFILEs
This section describes the OCI APIs that you can use with BFILEs.

ODP.NET API for BFILEs
This section describes the ODP.NET APIs that you can use with BFILEs.

OCCI API for BFILEs
This section describes the OCCI APIs that you can use with BFILES.

Pro*C/C++ and Pro*COBOL API for BFILEs
This section describes Pro*C/C++ and Pro*COBOL APIs APIs you can use for BFILEs.

¢ See Also:

Comparing the LOB Interfaces

5-14

Chapter 5
BFILE APlIs in Different Programmatic Interfaces

5.4.1 PL/SQL APIs for BFILES

This section describes the PL/SQL APIs that you can use with BFILESs.

¢ See Also:
DBMS_LOB

Table 5-3 DBMS_LOB functions and procedures for BFILEs
|

Category Function/ Procedure Description
Sanity Checking FILEEXISTS Checks if the BFILE exists on the
server
FILEGETNAME Gets the DIRECTORY object name
and file name
BFILENAME Sets the name of a BFILE in a
locator without checking if the
directory or file exists
Open/Close OPEN, FILEOPEN Opens a file. Use OPEN instead of

FILEOPEN.

ISOPEN, FILEISOPEN

Checks if the file was opened
using the input BFILE locators.
Use ISOPEN instead of
FILEISOPEN.

CLOSE, FILECLOSE

Closes the file. Use CLOSE
instead of FILECLOSE.

FILECLOSEALL Closes all previously opened files.
Read Operations GETLENGTH Gets the length of the BFILE
READ Reads data from the BFILE
starting at the specified offset.
SUBSTR Returns part of the BFILE value
starting at the specified offset.
INSTR Returns the matching position of
the nth occurrence of the pattern
in the BFILE.
Operations involving multiple := (operator) Assigns a BFILE locator to
locators another
LOADCLOBFROMFILE Loads character data from a file
into a LOB
LOADBLOBFROMFILE Loads binary data from a file into
alLOB
LOADFROMFILE Loads BFILE data into a LOB
(deprecated)
COMPARE Compares the value of two

BFILES.

ORACLE

5-15

ORACLE

Chapter 5
BFILE APIs in Different Programmatic Interfaces

Example 5-3 PL/SQL API for BFILEs

declare
f BFILE;
£2 BFILE;
b BLOB;
c CLOB;
dest offset NUMBER;
src_offset NUMBER;
lang NUMBER;
warn NUMBER;
buffer RAW (128) ;
amt NUMBER;
len NUMBER;
pos NUMBER;
filename VARCHARZ2 (128) ;
dirname VARCHARZ2 (128) ;
BEGIN

/* Select out a BFILE locator */

SELECT ad graphic INTO f FROM print media WHERE product id = 1 AND ad id =

/* __ *k/
[H Sanity Checking -------=---------o—- */
/* __ *k/
[Fmmmm Determining Whether a BFILE Exists ---------------- */

if DBMS LOB.FILEEXISTS(f) = 1 then
DBMS OUTPUT.PUT LINE('F exists!');

else
DBMS OUTPUT.PUT LINE ('F does not exist :(');
return;
end if;
[rmmmm— Getting Directory Object Name and File Name of a BFILE ----%*/

DBMS LOB.FILEGETNAME (f, dirname, filename);

DBMS OUTPUT.PUT LINE('F: directory: '|| dirname ||' filename: '||
/* __ */
[H e Open/Close —=======—=—=-—=--—————— o */
/* __ */
[H e Opening a BFILE —-=-=-=-=-=---—-—-—-—ome */
DBMS LOB.OPEN(f, DBMS LOB.LOB READONLY);
[Fmmmm e Determining Whether a BFILE Is Open --------------- */
if DBMS LOB.ISOPEN(f) = 1 then

DBMS OUTPUT.PUT LINE('F is open!');
else

DBMS OUTPUT.PUT LINE('F is not open :(');
end if;
[H e Closing a BFILE —-======—=—=—=—-——-———oomo */

DBMS LOB.CLOSE (f);

filename);

5-16

Chapter 5
BFILE APIs in Different Programmatic Interfaces

[Fmmm Closing All Open BFILEs with FILECLOSEALL ----------- */
DBMS LOB.FILECLOSEALL;

J* */
[Hmm e BFILE operations --------=--=------oo-o——— */
* */

DBMS LOB.OPEN(f, dbms lob.lob readonly);

[F e Getting the Length of a BFILE -------------—--—- */

len := DBMS LOB.GETLENGTH(f);

DBMS OUTPUT.PUT LINE ('dbms lob.getlength: '||len);

[H e Reading BFILE Data -------=-—-=-—--—--—--- */

amt := 15;

DBMS LOB.READ(f, amt, 1, buffer);

DBMS_OUTPUT.PUT LINE('dbms lob.read: '||UTL RAW.CAST TO VARCHAR2 (buffer));
[Fmmm Reading a Portion of BFILE Data Using SUBSTR ----------- */
buffer := DBMS LOB.SUBSTR(f, 15, 3);

DBMS OUTPUT.PUT LINE ('dbms lob.substr: '||UTL RAW.CAST TO VARCHARZ (buffer));
[F==mmm= Checking If a Pattern Exists in a BFILE Using INSTR ------- */
pos := DBMS LOB.INSTR(f, utl raw.cast to raw('BFILE'), 1, 1);

if pos != 0 then
DBMS OUTPUT.PUT LINE('dbms lob.instr: "BFILE" word exists in position '

|| pos);
else
DBMS OUTPUT.PUT LINE('dbms lob.instr: "BFILE" word does not exist in
file');
end if;
2 — */
[Fmmmmmmm e Operations involving 2 locators —------------—-—-—--- */
2 — */
[Fmmm e Assigning a BFILE Locator —-—-—--—-—==——-=-——--—————- */
f2 := f; -- where f2 is also a bfile variable
amt := 15;

DBMS LOB.READ(f2, amt, 1, buffer);
DBMS OUTPUT.PUT LINE ('assign: dbms lob.read: '||
UTL RAW.CAST TO VARCHAR2 (buffer));

[F e Loading a LOB with BFILE Data -------—-=--—---—----=- */
/* Select out BLOB and CLOB for update so we can write to them */
select ad composite, ad sourcetext into b, c

from print media where product id = 1 and ad id = 1 for update;

/* Load BLOB from BFILE */
dest offset := 1;

src_offset :=1;

DBMS LOB.LOADBLOBFROMFILE (b, f, dbms lob.lobmaxsize, dest offset,
src_offset);

ORACLE 5-17

Chapter 5
BFILE APIs in Different Programmatic Interfaces

/* Load CLOB from BFILE, for this operation is necessary to know the charset
* id of BFILE to read it correctly */

dest offset := 1;

src_offset 1;

lang = 0;

/* Specifying the amount as DBMS LOB.LOBMAXSIZE to copy till end of file */
DBMS LOB.LOADCLOBFROMFILE (c, f, DBMS LOB.LOBMAXSIZE, dest offset,

src_offset,

NLS CHARSET ID('utf8'), lang, warn);

[rmm e Comparing All or Parts of Two BFILES ------------- */
SELECT ad graphic INTO f2 FROM print media WHERE product id = 2 AND ad id =
1;
DBMS LOB.OPEN (f2, dbms lob.lob readonly);
if DBMS LOB.COMPARE (f, f2, 10, 1, 1) = 0 then
DBMS OUTPUT.PUT LINE('dbms lob.compare: They are equals!!');
else
DBMS OUTPUT.PUT LINE ('dbms lob.compare: They are not equals :(');
end if;

-- Close just £
DBMS LOB.CLOSE (f);

-- Close the rest of bfiles opended
DBMS LOB.FILECLOSEALL;

END;
/

5.4.2 JDBC API for BFILES

This section describes the JDBC APIs that you can use to work with BFILES.

In JDBC, the oracle.jdbc.OracleBfile interface provides methods for performing operations
on BFILE data in the database. It encapsulates the BFILE locators, so you do not deal with
locators, but instead use methods and properties provided to perform operations and get state
information.

To retrieve the locator for the most current row, you must call the getBFILE () method on the
OracleResultSet each time a move operation is made, depending on whether the instance is
a BFILE.

See Also:
Working with LOBs and BFILEs

Table 5-4 JDBC APIs for BFILEs
]

Category Function/ Procedure Description
Sanity Checking boolean fileExists() Checks if the BFILE exists on the
server

ORACLE - 18

Chapter 5

BFILE APIs in Different Programmatic Interfaces

Table 5-4 (Cont.) JDBC APIs for BFILEs

Category Function/ Procedure Description
public java.lang.String Gets the file name
getName ()
public java.lang.String Gets the DIRECTORY object name
getDirAlias ()
Open/Close public void openFile () Opens afile.

public boolean
isFileOpen ()

Checks if the file was opened
using the input BFILE locators. .

public void closeFile()

Closes the file. Use CLOSE
instead of FILECLOSE.

Read Operations

long length()

Gets the length of the BFILE

public java.io.InputStream
getBinaryStream()

Reads the BFILE as a binary
stream.

byte[] getBytes(long, int)

Gets the contents of the BFILE
as an array of bytes, given an
offset

int getBytes(long, int,
byte[])

Reads a subset of the BFILE into
a byte array

long
position(oracle.jdbc.Oracl
eBfile, long)

Finds the first appearance of the
given BFILE contents within the
LOB, from the given offset.

long position (bytel[],
long)

Finds the first appearance of the
given byte array within the BFILE,
from the given offset

Operations involving multiple
locators

[use equal sign]

Assigns a BFILE locator to
another

Example 5-4 JDBC API for BFILEs

static void run query() throws Exception {

try(
OracleConnection con
Statement stmt
) {

ResultSet rs =
OracleBfile f =
OracleBfile f2 =
OracleBfile £3 =

in =
output =
buffer(] =
pos;

InputStream
String

byte

long

filename =
dirname
len =

String
String
long

ORACLE

= getConnection();
= con.createStatement();

null;
null;
null;
null;
null;

null;
new byte[15];

null;

= null;

0;

5-19

ORACLE

Chapter 5

BFILE APIs in Different Programmatic Interfaces

rs = stmt.executeQuery("select ad graphic from print media where

product id = 1");

rs.next ();
f = (OracleBfile) ((OracleResultSet)rs).getBfile(1l);
rs.close();

rs = stmt.executeQuery("select ad graphic from print media where

product id = 2");

rs.next ();
f2 = (OracleBfile) ((OracleResultSet)rs).getBfile(1l);
rs.close();

stmt.close();

/* __ */
[Fmmmm e Sanity Checking -------------—-—-—-—-—-—-—- */
/* __ */
[Fmmm e Determining Whether a BFILE Exists ---------------- */
if (f.fileExists())

System.out.println("F exists!");
else

System.out.println("F does not exist :(");
VREEEEEE Getting Directory Object Name and File Name of a BFILE ----*/
dirname = f.getDirAlias();
filename = f.getName();
System.out.println("Directory: " + dirname + " Filename: " + filename);
/* __ */
[Fmmmm e Open/Close —=—=—=—=—=—=-——-———-—————o—o o */
/* __ */
[Hmm e Opening a BFILE ——==-===——=——-———-——————— */
f.open (LargeObjectAccessMode.MODE READONLY) ;
[Fmmm e Determining Whether a BFILE Is Open --------------- */
if (f£.isOpen())

System.out.println("F is open!");
else

System.out.println("F is not open :(");
[Hmm e Closing a BFILE —======—==——=——--——-—————— */
f.close();
/* __ */
[Fmm e BFILE operations -—----=----------ooo———— */
/* __ */
f.open (LargeObjectAccessMode.MODE READONLY) ;
[Fmmm e Getting the Length of a BFILE —------------——--- */

len = f.length();
System.out.println("F Length: "+len);

5-20

Chapter 5
BFILE APIs in Different Programmatic Interfaces

in = f.getBinaryStream();
in.read (buffer);
in.close();

output = new String(buffer);
System.out.println("Buffer: " + output);

/*---- Checking If a Pattern Exists in a BFILE Using POSITION ------ */
pos = f.position("BFILE".getBytes(), 1);

if (pos != -1)

System.out.println ("\"BFILE\" word exists in position: " + pos);
else

System.out.println ("\"BFILE\" word doesn't exist :(");
/* __ */
[Fmmmmmmm e Operations involing 2 locators ----------------—----- */
/* __ */
[Fmmm e Assigning a BFILE Locator --—---—-=-——-=----——————- */
£f3 = £;

in f3.getBinaryStream() ;
in.read (buffer);

in.close();

output = new String(buffer);
System.out.println("assign: Buffer: " + output);

[Fmmm e Comparing All or Parts of Two BFILES ------------- */
f2.open (LargeObjectAccessMode.MODE READONLY) ;
pos = f.position(£f2, 1);

if (pos != -1)

System.out.println("f2 exists in position " + pos);
else

System.out.println("£f2 doesn't exist in position");

f.close();
f2.close();
f3.close()

12

5.4.3 OCI API for BFILES

This section describes the OCI APIs that you can use with BFILEs.

¢ See Also:
LOB and BFILE Operations

ORACLE -

Chapter 5
BFILE APIs in Different Programmatic Interfaces

Table 5-5 OCI APIs for BFILEs

Category Function/ Procedure Description
Sanity Checking OCILobFileExists () Checks if the BFILE exists on the
server
OCILobFileGetName () Gets the DIRECTORY object name
and the file name
OCILobFileSetName () Sets the name of a BFILE in a

locator without checking if the
directory or file exists

OCILobLocatorIsInit () Checks whether a LOB Locator is
initialized
Open/Close OCILobOpen() and Opens a file. Use OciLobOpen ()
OCILobFileOpen () instead of OCILobFileOpen ().
OCILobIsOpen() and Checks if the file was opened
OCILobFileIsOpen () using the input BFILE locators.
Use OCILobIsOpen () instead of
OciLobFileIsOpen().
OCILobClose () and Closes the file. Use
OCILobFileClose() OciLobClose () instead of
OciLobFileClose().
OCILobFileCloseAll() Closes all previously opened files.
Read Operations OCILobGetLength2 () Gets the length of the BFILE
OCILobRead?2 () Reads data from the BFILE
starting at the specified offset.
OCILobArrayRead () Reads data using multiple
locators in one round trip.
Operations involving multiple OCILobLocatorAssign () Assigns a BFILE locator to
locators another
OCILobLoadFromFile?2 () Loads BFILE data from a file into
alLOB

Example 5-5 OCI API for BFILEs

static text *selstmt = (text *) "select ad graphic, ad composite,
ad_sourcetext from print media where product id = 1 and ad id = 1 for update"
sword run_query ()
{

OCILobLocator *f = (OCILobLocator *)O0;

OCILobLocator *f2 = (OCILobLocator *)O0;

OCILobLocator *b
OCILobLocator *c

(OCILobLocator *)O0;
(OCILobLocator *)O0;

OCIStmt *stmthp;

OCIDefine *defnlp = (OCIDefine *) 0;
OCIDefine *defn2p = (OCIDefine *) 0;
OCIDefine *defn3p = (OCIDefine *) 0;
ub4 bfilelen;

ubl lbuf[128];

ORACLE = oo

Chapter 5
BFILE APIs in Different Programmatic Interfaces

ub8 amt = 15;
boolean flag = FALSE;
ubd id = 10;

text filename[128];
ub? filename len;
text dirname[128];
ub2 dirname len;

CHECK_ERROR (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
OCI_HTYPE STMT, (size t) 0, (dvoid **) 0));

/***********‘k‘k* Allocate deSCIlptorS ***********************/

CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &f,
(ub4)OCI_DTYPE FILE, (size t) 0,
(dvoid **) 0));

CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &f2,
(ub4)OCI_DTYPE FILE, (size t) 0,
(dvoid **) 0));

CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &b,
(ub4) OCI_DTYPE LOB, (size t) 0,
(dvoid **) 0));

CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &c,
(ub4) OCI_DTYPE LOB, (size t) 0,
(dvoid **) 0));

/***‘k****** Execute Selstmt tO get f, b’ C ***********************/
CHECK_ERROR (OCIStmtPrepare (stmthp, errhp, selstmt,

(ub4) strlen((char *) selstmt),

(ub4) OCI NTV_SYNTAX, (ub4) OCI DEFAULT));

CHECK _ERROR (OCIDefineByPos (stmthp, &defnlp, errhp, (ub4) 1, (dvoid *) &f,
(sbd) -1, SQLT BFILE, (dvoid *) 0, (ub2 *) O,
(ub2 *)0, (ub4) OCI_DEFAULT));

CHECK_ERROR (OCIDefineByPos (stmthp, &defnZp, errhp, (ub4) 2, (dvoid *) &b,
(sb4) -1, SQLT BLOB, (dvoid *) 0, (ub2 *) 0,
(ub2 *)0, (ub4) OCI_DEFAULT));

CHECK_ERROR (OCIDefineByPos (stmthp, &defn3p, errhp, (ub4) 3, (dvoid *) &c,
(sb4) -1, SQLT CLOB, (dvoid *) 0, (ub2 *) 0,
(ub2 *)0, (ub4) OCI_DEFAULT));

CHECK_ERROR (OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot *) NULL, (OCISnapshot *)

NULL,
OCI DEFAULT));
J* */
[Hmmmmm e Sanity Checking ---------------—-—-—-—-—-—- */
J* */
[Fmmm e Determining Whether a BFILE Exists ---------------- */

CHECK_ERROR (OCILobFileExists(svchp, errhp, f, &flag));
printf ("OCILobFileExists: %s\n", (flag)?"TRUE":"FALSE");

ORACLE - o3

ORACLE

Chapter 5
BFILE APIs in Different Programmatic Interfaces

[* === Getting Directory Object Name and File Name of a BFILE ----%/
CHECK_ERROR (OCILobFileGetName (envhp, errhp, f, (text*)dirname,

&dirname len,

(text*) filename, &filename len));

printf ("OCILobFileGetName: Directory: $%$.*s Filaname: %.*s \n",
dirname len, dirname, filename len, filename);

J* */
[Fmmmm oo Open/Close —=—=—=—=—=—=-——--—-———-—o—o oo */
J* */
[Hmmm e Opening a BFILE ——===—==——-——————-————— e */

CHECK_ERROR (OCILobFileOpen (svchp, errhp, £, OCI _FILE READONLY));
printf ("OCILobFileOpen: Works\n");

[F e Determining Whether a BFILE Is Open --------------- */
CHECK_ERROR (OCILobFileIsOpen (svchp, errhp, f, &flag));
printf ("OCILobFilelIsOpen: %s\n", (flag)?"TRUE":"FALSE");

[Hmmm e Closing a BFILE ——==—==—==——————=————————— */
CHECK_ERROR (OCILobFileClose (svchp, errhp, f));

[Fmmm Closing All Open BFILEs with FILECLOSEALL ----------- */
CHECK_ERROR (OCILobFileCloseAll (svchp, errhp));

J* */
[Hmm e BFILE operations --------=-—---—---mo-o——— */
J* */

CHECK_ERROR (OCILobFileOpen (svchp, errhp, £, OCI_FILE READONLY));
printf ("OCILobFileOpen: Works\n");

[Fmmm e Getting the Length of a BFILE ----—-------——--—- */
CHECK_ERROR (OCILobGetLength (svchp, errhp, b, &bfilelen));
printf ("OCILobGetLength: loblen: %d \n", bfilelen);

[H Reading BFILE Data --------—=--—--————--—- */
CHECK_ERROR (OCILobRead2(svchp, errhp, f, &amt,
NULL, (oraub8)1, lbuf,
(oraub8)sizeof (1buf), OCI _ONE PIECE , (dvoid*)O0,
NULL, (ub2)0, (ubl)SQLCS IMPLICIT));
printf ("OCILobRead2: buf: %.*s amt: %$lu\n", amt, lbuf, amt);

J* */
[Fmmmmmmm e Operations involing 2 locators --------------—------ */
J* */
[Fmmm e Assigning a BFILE Locator —-—-—--—-=-=——-=-—---——-——- */

CHECK_ERROR (OCILobLocatorAssign(svchp, errhp, f, &f2));
printf ("OCILobLocatorAssign: Works! \n");

amt = 15;
CHECK_ERROR (OCILobRead2 (svchp, errhp, f2, &amt,
NULL, (oraub8)1, lbuf,
(oraub8)sizeof (1buf), OCI _ONE PIECE , (dvoid*)O0,

5-24

Chapter 5
BFILE APlIs in Different Programmatic Interfaces

NULL, (ub2)0, (ubl)SQLCS IMPLICIT));
printf ("OCILobLocatorAssign: OCILobRead2: buf: %.*s amt: %$lu\n", amt, lbuf,

amt) ;
[rmm - Loading a LOB with BFILE Data ---------—-—————=--= */
/* Load BLOB from BFILE. Specify amount = UB8MAXVAL to copy till end of
bfile */

CHECK_ERROR (OCILobLoadFromFileZ2 (svchp, errhp, b, f, UBSMAXVAL, 1,1));
printf ("OCILobLoadFromFile2: BLOB case Works\n");

/* Load CLOB from BFILE. Specify amount = UB8MAXVAL to copy till end of
bfile.
* Note that there is no character set conversion here. */
CHECK_ERROR (OCILobLoadFromFileZ2 (svchp, errhp, c, f, UBSMAXVAL, 1,1));
printf ("OCILobLoadFromFile2: CLOB case Works\n");

/* Close just f */
CHECK_ERROR (OCILobFileClose (svchp, errhp, f));

/* Close the rest of bfiles opened */
CHECK_ERROR (OCILobFileCloseAll (svchp, errhp));

OCIDescriptorFree((dvoid *) b, (ub4) SQLT BLOB);
OCIDescriptorFree((dvoid *) c, (ub4) SQLT CLOB);
OCIDescriptorFree((dvoid *) £, (ub4) SQLT BFILE);
OCIDescriptorFree ((dvoid *) f2, (ub4) SQLT BFILE);

CHECK_ERROR (OCIHandleFree((dvoid *) stmthp, OCI HTYPE STMT));

5.4.4 ODP.NET API for BFILES

This section describes the ODP.NET APIs that you can use with BFILEs.

¢ See Also:

OracleBFile Class

Table 5-6 ODP.NET methods in OracleBfileClass

Category Function/Description Description
Sanity Checking FileExists Checks if the BFILE exists on the
server
FileName Sets or gets the file name
DirectoryName Sets or gets the DIRECTORY
object name
Open/Close OpenFile Opens a file. Use OPEN instead of
FILEOPEN.
IsOpen Checks if the file was opened

using the input BFILE locators.
Use ISOPEN instead of
FILEISOPEN.

ORACLE .

Chapter 5
BFILE APIs in Different Programmatic Interfaces

Table 5-6 (Cont.) ODP.NET methods in OracleBfileClass

Category Function/Description Description
CloseFile Closes the file.
Read Operations Length Get the length of the BFILE
Value Returns the entire LOB data as a
string for CLOB and a byte array
for BLOB
Read Reads data from the BFILE
starting at the specified offset.
Search Returns the matching position of
the nth occurrence of the pattern
in the BFILE.
Operations involving multiple Compare Compares the values of two
locators BFILEs
IsEqual Check if two LOBSs point to the

same LOB data

5.4.5 OCCI API for BFILEs

ORACLE

This section describes the OCCI APIs that you can use with BFILES.

In OCCI, the Bfile class enables you to instantiate a Bfile object in your C++ application. You
must then use methods of the Bfile class, such as the setName () method, to initialize the
Bfile object, which associates the object properties with an object of type BFILE in a BFILE
column of the database.

¢ See Also:
Bfile Class

Amount Parameter for OCCI LOB copy() Methods

The copy () method on Clob and Blob enables you to load data from a BFILE. You can pass
one of the following values for the amount parameter to this method:

e An amount smaller than the size of the BFILE to load a portion of the data
* An amount equal to the size of the BFILE to load all of the data

e The UBSMAXVAL constant to load all of the BFILE data

You cannot specify an amount larger than the length of the BFILE.

Amount Parameter for OCCI read() Operations

The read () method on an Clob, Blob, Or Bfile object, reads data from a BFILE. You can pass
one of these values for the amount parameter to specify the amount of data to read:

e An amount smaller than the size of the BFILE to load a portion of the data
e An amount equal to the size of the BFILE to load all of the data

* An amount equal to zero (0) to read until the end of the BFILE in streaming mode

5-26

Chapter 5

BFILE APlIs in Different Programmatic Interfaces

You cannot specify an amount larger than the length of the BFILE.

Table 5-7 OCCI Methods for BFILEs
]

Category Function/ Procedure Description
Sanity Checking fileExists() Checks if the BFILE exists on the
server
getFileName () Gets the file name
getDirAlias() Gets the DIRECTORY object name
setName () Sets the name of a BFILE in a
locator without checking if the
directory or file exists.
isInitialized() Checks whether a BFILE is
initialized.
Open/Close open () Opens a file.
isOpen () Checks if the file was opened
using the input BFILE locators.
close() Closes the file.
Read Operations length() Gets the length of the BFILE
read () Reads data from the BFILE
starting at the specified offset.
Operations involving multiple (operator) = Assigns a BFILE locator to
locators another. Use the assignment
operator (=) or the copy
constructor.

Blob.copy() or Clob.copy() LoadsBFILEdataintoalLOB

5.4.6 Pro*C/C++ and Pro*xCOBOL API for BFILES

This section describes Pro*C/C++ and Pro*COBOL APIs APIs you can use for BFILEs.

¢ See Also:

e Pro*C/C++ Programmer's Guide
¢ Pro*COBOL Programmer's Guide

Table 5-8 Pro*C/C++ and Pro*COBOL APIs for BFILEs
]

Category Function/ Procedure Description
Sanity Checking DESCRIBE [FILEEXISTS] Checks if the BFILE exists on the
server
DESCRIBE [DIRECTORY, FILENAM Gets the directory object name
E] and file name
FILE SET Sets the name of a BFILE in a

locator without checking if the
directory or file exists

Open/Close OPEN Opens afile.

ORACLE 5-27

ORACLE

Chapter 5

BFILE APIs in Different Programmatic Interfaces

Table 5-8 (Cont.) Pro*C/C++ and Pro*COBOL APIs for BFILEs

Category Function/ Procedure

Description

DESCRIBE [ISOPEN]

Checks if the file was opened
using the input BFILE locators.

CLOSE Closes the file.
FILE CLOSE ALL Closes all previously opened files.
Read Operations DESCRIBE [LENGTH] Gets the length of the BFILE
READ Reads data from the BFILE
starting at the specified offset.
Operations involving multiple ASSIGN Assigns a BFILE locator to

locators

another

LOAD FROM FILE

Loads BFILE data into a LOB

5-28

SQL Semantics for LOBs

You can use various SQL mechanisms to operate on LOBs.

You can access CLOB and NCLOB data types using SQL VARCHAR2 semantics, such as SQL
string operators and functions. These techniques allow you to use LOBs directly in SQL code
and provide an alternative to using LOB-specific APIs for some operations, and are beneficial
in the following situations:

When performing operations on LOBs that are relatively small in size, i.e., up to about
100K bytes

After migrating your database from LONG columns to LOB data types, so that any SQL
string functions contained in your existing PL/SQL application continue to work

SQL semantics are not recommended in the following situations, you must use LOB APIs
instead:

When using advanced features such as random access and piece-wise fetch.

When performing operations on LOBs that are relatively large in size (greater than 1MB),
because using SQL semantics can impact performance.

Note:

SQL semantics are used with persistent and temporary LOBs, and do not apply to
BFILEs.

SQL Functions and Operators Supported for Use with LOBs

Many SQL operators and functions that take VARCHAR2 columns as arguments, also accept
LOB columns. The following list summarizes those categories of SQL functions and
operators that are supported for use with LOBs.

Detailed Semantics of SQL Operations on LOBs
This section explains semantics of SQL operations on LOBs in details.

Restrictions on SQL Operations on LOBs
There are many SQL operations that are not supported on LOB columns. This section lists
those operations.

6.1 SQL Functions and Operators Supported for Use with LOBS

Many SQL operators and functions that take VARCHAR2 columns as arguments, also accept
LOB columns. The following list summarizes those categories of SQL functions and operators
that are supported for use with LOBs.

ORACLE

SQL Operations/ Functions Support

Concatenation Supported

Comparison Some comparison functions are not supported for
LOBs

6-1

Chapter 6

SQL Functions and Operators Supported for Use with LOBs

SQL Operations/ Functions Support

Character functions Supported

Conversion Some conversion functions are not supported for
LOBs

Aggregate functions Not supported

Unicode functions Not supported

¢ See Also:

Working with Remote LOBs in SQL and PL/SQL

The following table provides the details on each of the operations that accept VARCHAR? types

as operands or arguments, or return a VARCHAR?

value.

e The SQL column identifies the built-in functions and operators that are supported for CLOB
and NCLOB data types. The LENGTH function is also supported for the BLOB data type.

e The PL/SQL column identifies the PL/SQL built-in functions and operators that are

supported on LOBs.

* Functions designated as CNV in the SQL or PL/SQL column in the table are performed by
converting the CLOB to a character data type, such as VARCHAR?2. In the SQL environment,
only the first 4K bytes of the CLOB are converted and used in the operation. In the PL/SQL
environment, only the first 32K bytes of the CLOB are converted and used in the operation.

Table 6-1 SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example | Comments SQL PL/SQL

Concatenation | |, CONCAT () Select clobCol || clobCol2 from tab; Yes Yes

Comparison =,!=>>=<,<=<>, "= 1if clobCol=clobCol2 then... No Yes

Comparison IN, NOT IN if clobCol NOT IN (clobl, clob2, clob3) No Yes
then...

Comparison SOME, ANY, ALL if clobCol < SOME (select clobCol2 No N/A
from...) then...

Comparison BETWEEN if clobCol BETWEEN clobCol2 and clobCol3 No Yes
then...

Comparison LIKE [ESCAPE] if clobCol LIKE '&pattern%' then... Yes Yes

Comparison IS [NOT] NULL where clobCol IS NOT NULL Yes Yes

Character INITCAP, NLS INITCAP select INITCAP(clobCol) from... CNV CNV

Functions

Character LOWER, NLS_LOWER, UPPER, .. .where LOWER (clobColl) = LOWER(clobCol2) Yes Yes

Functions NLS UPPER

Character LPAD, RPAD select RPAD(clobCol, 20, ' La') from... Yes Yes

Functions

Character TRIM, LTRIM, RTRIM ...where RTRIM(LTRIM(clobCol, 'ab'), 'xy') Yes Yes

Functions L

ORACLE

6-2

Table 6-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs
|

Chapter 6
SQL Functions and Operators Supported for Use with LOBs

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Character REPLACE select REPLACE (clobCol, 'orig', 'new') Yes Yes
Functions from...
Character SOUNDEX ...where SOUNDEX (clobCOl) = CNV CNV
Functions SOUNDEX ('SMYTHE ")
Character SUBSTR ...where substr(clobCol, 1,4) = like Yes Yes
Functions 'THIS'
Character TRANSLATE select TRANSLATE (clobCol, '123abc','NC') CNV CNV
Functions from...
Character ASCII select ASCII(clobCol) from... CNV CNV
Functions
Character INSTR ...where instr(clobCol, 'book') = 11 Yes Yes
Functions
Character LENGTH ...where length(clobCol) != 7; Yes Yes
Functions
Character NLSSORT ...where NLSSORT (clobCol, 'NLS SORT = CNV CNV
Functions German') > NLSSORT ('S','NLS SORT =
German')
Character INSTRB, SUBSTRB, These functions are supported only for CLOBs that use Yes Yes
Functions LENGTHB single-byte character sets. (LENGTHB is supported for
BLOBs and CLOBS.)
Character REGEXP LIKE This function searches a character column for a Yes Yes
Functions - pattern. Use this function in the WHERE clause of a
Regular query to return rows matching the regular expression
Expressions you specify.
Character REGEXP_REPLACE This function searches for a pattern in a character Yes Yes
Functions - column and replaces each occurrence of that pattern
Regular with the pattern you specify.
Expressions
Character REGEXP_INSTR This function searches a string for a given occurrence Yes Yes
Functions - of a regular expression pattern. You specify which
Regular occurrence you want to find and the start position to
Expressions search from. This function returns an integer indicating
the position in the string where the match is found.
Character REGEXP_SUBSTR This function returns the actual substring matching the Yes Yes
Functions - regular expression pattern you specify.
Regular
Expressions
Conversion CHARTOROWID CHARTOROWID (clobCol) CNV CNV
Conversion COMPOSE COMPOSE ('string') CNV CNV
Returns a Unicode string given a string in the data type
CHAR, VARCHARZ2, CLOB, NCHAR, NVARCHARZ, NCLOB.
Conversion DECOMPOSE DECOMPOSE ('str' [CANONICAL | CNV CNV
COMPATIBILITY])
Valid for Unicode character arguments.
Conversion HEXTORAW HEXTORAW (CLOB) No CNV
ORACLE

6-3

Table 6-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs
|

Chapter 6
SQL Functions and Operators Supported for Use with LOBs

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Conversion CONVERT select CONVERT (clobCol, '"WESDEC', '"WESHP'") Yes CNV
from...
Conversion TO_DATE TO_DATE (clobCol) CNV CNV
Conversion TO_NUMBER TO_NUMBER (clobCol) CNV CNV
Conversion TO_TIMESTAMP TO_TIMESTAMP (clobCol) No CNV
Conversion TO MULTI BYTE TO MULTI BYTE (clobCol) CNV CNV
TO SINGLE BYTE TO_SINGLE BYTE (clobCol)
Conversion TO_CHAR TO_CHAR (clobCol) Yes Yes
Conversion TO_NCHAR TO_NCHAR (clobCol) Yes Yes
Conversion TO_LOB INSERT INTO... SELECT TO_LOB(longCol)... N/A N/A
Note that TO LOB can only be used to create or insert
into a table with LOB columns as SELECT FROM a table
with a LONG column.
Conversion TO_CLOB TO_CLOB (varchar2Col) Yes Yes
Conversion TO NCLOB TO NCLOB (varchar2Clob) Yes Yes
Aggregate COUNT select count(clobCol) from... No N/A
Functions
Aggregate MAX, MIN select MAX(clobCol) from... No N/A
Functions
Aggregate GROUPING select grouping(clobCol) from... group by No N/A
Functions cube (clobCol);
Other Functions GREATEST, LEAST select GREATEST (clobColl, clobCol2) No CNV
from...
Other Functions DECODE select DECODE (clobCol, conditionl, valuel, CNV CNV
defaultValue) from...
Other Functions NVL select NVL(clobCol, 'NULL') from... Yes Yes
Other Functions DUMP select DUMP (clobCol) from... No N/A
Other Functions VSIZE select VSIZE (clobCol) from... No N/A
Unicode INSTR2, SUBSTRZ, These functions use UCS2 code point semantics. No CNV
LENGTH2, LIKE2
Unicode INSTR4, SUBSTR4, These functions use UCS4 code point semantics. No CNV
LENGTH4, LIKE4
Unicode INSTRC, SUBSTRC, These functions use complete character semantics. No CNV
LENGTHC, LIKEC
ORACLE

6-4

Chapter 6
Detailed Semantics of SQL Operations on LOBs

See Also:

e Oracle Database SQL Language Reference for syntax details on SQL functions
for regular expressions.

e Oracle Database Development Guide for information on using regular
expressions with the database.

6.2 Detailed Semantics of SQL Operations on LOBs

This section explains semantics of SQL operations on LOBs in details.

e Return Datatype for SQL Operations on LOBs
The return data type of SQL functions on LOBs is dependent on the input parameters.

¢ NULL vs EMPTY LOB: Semantic Difference between LOBs and VARCHAR2
For the VARCHAR? data type, a string of length zero is indistinguishable from a NULL value
for the column.

« WHERE Clause Usage with LOBs
SQL functions with LOBs as arguments, except functions that compare LOB values, are
allowed in predicates of the WHERE clause.

e« CLOBs and NCLOBs Do Not Follow Session Collation Settings
Learn about various operators on CLOBs and NCLOBS and compare the operations on
VARCHAR?2 and NVARCHAR?2 variables with respect to LOBs in this section.

* Codepoint Semantics
Codepoint semantics of the INSTR, SUBSTR, LENGTH, and LIKE functions differ depending on

the data type of the argument passed to the function.

6.2.1 Return Datatype for SQL Operations on LOBs

The return data type of SQL functions on LOBs is dependent on the input parameters.

The return type of a function or operator that takes a LOB or VARCHAR? is the same as the data
type of the argument passed to the function or operator. Functions that take more than one
argument, such as CONCAT, return a LOB data type if one or more arguments is a LOB.

Example 6-1 CONCAT function returning CLOB

CONCAT (CLOB, VARCHAR2)CLOB

Any LOB instance returned by a SQL function is a temporary LOB instance. LOB instances in
tables (persistent LOBs) are not modified by SQL functions, even when the function is used in
the SELECT list of a query.

6.2.2 NULL vs EMPTY LOB: Semantic Difference between LOBs and
VARCHAR?2

ORACLE

For the VARCHAR? data type, a string of length zero is indistinguishable from a NULL value for the
column.

For the column of a LOB data type, there are three possible states:

1. NULL: This means the column has no LOB locator.

6-5

Chapter 6
Detailed Semantics of SQL Operations on LOBs

2. Zero-length value: This can be achieved by inserting an EMPTY LOB into the column, or by
using an API such as DBMS_LOB.TRIM() to trim the length to zero. In either case, there is a
valid LOB locator in the column, but the LOB value length is zero.

3. Non-zero length value.

Due to this difference, the LENGTH function differs depending on whether the argument passed
is a LOB or a character string:

e For a character string of length zero, the LENGTH function returns NULL.

» For a CLOB of length zero, or an empty locator such as that returned by EMPTY CLOB(), the
LENGTH and DBMS_LOB.GETLENGTH functions return O.

Similarly, when used with LOBs, the IS NULL and IS NOT NULL operators determine whether a
LOB locator is stored in the row:

* When you pass an initialized LOB of length zero to the IS NULL function, FALSE is returned.
These semantics are compliant with the SQL 92 standard.

* When you pass a VARCHAR? of length zero to the IS NULL function, TRUE is returned.

6.2.3 WHERE Clause Usage with LOBs

SQL functions with LOBs as arguments, except functions that compare LOB values, are
allowed in predicates of the WHERE clause.

The LENGTH function, for example, can be included in the predicate of the WHERE clause:

CREATE TABLE t (n NUMBER, c CLOB);
INSERT INTO t VALUES (1, 'abc');

SELECT * FROM t WHERE c IS NOT NULL;
SELECT * FROM t WHERE LENGTH(c) > 0;
SELECT * FROM t WHERE c¢ LIKE '%a%';
SELECT * FROM t WHERE SUBSTR(c, 1, 2) LIKE '$b%';
SELECT * FROM t WHERE INSTR(c, 'b') = 2;

6.2.4 CLOBs and NCLOBs Do Not Follow Session Collation Settings

ORACLE

Learn about various operators on CLOBs and NCLOBS and compare the operations on VARCHAR2
and NVARCHAR? variables with respect to LOBs in this section.

Standard operators that operate on CLOBs and NCLOBS without first converting them to VARCHAR?
or NVARCHAR?2, are marked as 'Yes' in the SQL or PL/SQL columns of Table 7-1. These
operators do not behave linguistically, except for REGEXP functions. Binary comparison of the
character data is performed irrespective of the NLS COMP and NLS_SORT parameter settings.

These REGEXP functions are the exceptions, where, if CLOB or NCLOB data is passed in, the
linguistic comparison is similar to the comparison of VARCHAR2 and NVARCHAR? values.

° REGEXP_LIKE

°* REGEXP_REPLACE
° REGEXP_INSTR

° REGEXP_SUBSTR

° REGEXP_COUNT

6-6

https://docs.oracle.com/en/database/oracle/oracle-database/20/adlob/SQL-semantics-and-LOBs.html#GUID-D8F66A2A-4D17-49C3-ADB2-BE384510DD6D__G1016221

Chapter 6
Detailed Semantics of SQL Operations on LOBs

Note:
CLOBs and NCLOBs support the default USING NLS_COMP option.

¢ See Also:

Oracle Database Reference for more information about NLS COMP

6.2.5 Codepoint Semantics

Codepoint semantics of the INSTR, SUBSTR, LENGTH, and LIKE functions differ depending on the
data type of the argument passed to the function.

These functions use different codepoint semantics depending on whether the argument is a
VARCHAR? oOr a CLOB type as follows:

* When the argument is a CLOB, UCS2 codepoint semantics are used for all character sets.

* When the argument is a character type, such as VARCHAR?2, the default codepoint semantics
are used for the given character set:

— UCS2 codepoint semantics are used for ALL6UTF16 and UTF8 character sets.
— UCS4 codepoint semantics are used for all other character sets, such as AL32UTFS8.

* If you are storing character data in a CLOB or NCLOB, then note that the amount and offset
parameters for any APIs that read or write data to the CLOB or NCLOB are specified in UCS2
codepoints. In some character sets, a full character consists one or more UCS2 codepoints
called a surrogate pair. In this scenario, you must ensure that the amount or offset you
specify does not cut into a full character. This avoids reading or writing a partial character.

e Oracle Database helps to detect half surrogate pair on read or write boundaries in case of
SQL functions and in case of read/write through LOB APIs. The behavior is as follows:

— If the starting offset is in the middle of a surrogate pair, an error is raised for both read
and write operations.

— If the read amount reads only a partial character, increment or decrement the amount
by 1 to read complete characters.

¢ Note:
The output amount may vary from the input amount.
— If the write amount overwrites a partial character, an error is raised to prevent the

corruption of existing data caused by overwriting of a partial character in the
destination CLOB or NCLOB.

ORACLE .

< Note:

Chapter 6
Restrictions on SQL Operations on LOBs

This check only applies to the existing data in the CLOB or NCLOB. You must
make sure that the incoming buffer for the write operation starts and ends in
complete characters.

6.3 Restrictions on SQL Operations on LOBs

There are many SQL operations that are not supported on LOB columns. This section lists

those operations.

Table 6-2 Unsupported Usage of LOBs in SQL

SQL Operations Not Supported

Example of unsupported usage

SELECT DISTINCT
SELECT clause
ORDER BY
SELECT clause
GROUP BY

UNION, INTERSECT, MINUS

(Note that UNION ALL works for LOBSs.)

Join queries

Index columns

SELECT DISTINCT clobCol from...
SELECT... ORDER BY clobCol

SELECT avg (num) FROM...
GROUP BY clobCol

SELECT clobColl from tabl UNION SELECT clobCol2 from
tab2;

SELECT... FROM... WHERE tabl.clobCol = tab2.clobCol
CREATE INDEX clobIndx ON tab(clobCol)...

ORACLE

Related Topics
* BFILE APIs

This section discusses the different operations supported through BFILES.

6-8

PL/SQL Semantics for LOBs

This chapter covers topics related to PL/SQL semantics for LOBs.

e Implicit Conversion with LOBs
This section describes the implicit conversion process in PL/SQL from one LOB type to
another LOB type or from a LOB type to a non-LOB type.

« Explicit Data Type Conversion Functions
This section describes the explicit conversion functions in SQL and PL/SQL to convert
other data types to and from CLOB, NCLOB, and BLOB data types.

e Temporary LOBs Created by SQL and PL/SQL Built-in Functions
When a LOB is returned from a SQL or PL/SQL built-in function, then the result returned is
a temporary LOB. Similarly, a LOB returned from a user-defined PL/SQL function or
procedure, as a value or an OUT parameter, may be a temporary LOB.

7.1 Implicit Conversion with LOBs

ORACLE

This section describes the implicit conversion process in PL/SQL from one LOB type to
another LOB type or from a LOB type to a non-LOB type.

Most of the in the following sections use print media table. Following is the structure of
print media table:

7-1

ORACLE

Figure 7-1 print_media table

Chapter 7
Implicit Conversion with LOBS

PRINT_MEDIA Table

‘ Column name] [Column Type J
product_id NUMBER (6)
ad_id NUMBER (6)
ad_composite BLOB
ad_sourcetext CLOB
ad_finaltext CLOB
ad_fltextn NCLOB
ad_textdocs_ntab NESTED TABLE
ad_photo BLOB
ad_graphic BFILE
ad_header USER DEFINED TYPE
press_release LONG

Implicit Conversion Between CLOB and NCLOB Data Types in SQL

This section describes support for implicit conversions between CLOB and NCLOB data

types.

Implicit Conversions Between CLOB and VARCHAR2

This section describes support for implicit conversions between CLOB and VARCHAR? data

types.

Implicit Conversions Between BLOB and RAW

This section describes support for implicit conversions between BLOB and RAW data

types.

Guidelines and Restrictions for Implicit Conversions with LOBs
This section describes the techniques that you use to access LOB columns or attributes
using the Data Interface for LOBs.

Detailed Examples for Implicit Conversions with LOBs
The example in this section demonstrates using multiple VARCHAR and RAW binds in INSERT
and UPDATE operations.

7-2

Chapter 7
Implicit Conversion with LOBs

7.1.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL

ORACLE

This section describes support for implicit conversions between CLOB and NCLOB data types.

The database enables you to perform operations such as cross-type assignment and cross-
type parameter passing between CLOB and NCLOB data types. The database performs implicit
conversions between these types when necessary to preserve properties such as character
set formatting.

Note that, when implicit conversions occur, each character in the source LOB is changed to the
character set of the destination LOB, if needed. In this situation, some degradation of
performance may occur if the data size is large. When the character set of the destination and
the source are the same, there is no degradation of performance.

After an implicit conversion between CLOB and NCLOB types, the destination LOB is implicitly
created as a temporary LOB. This new temporary LOB is independent from the source LOB. If
the implicit conversion occurs as part of a define operation in a SELECT statement, then any
modifications to the destination LOB do not affect the persistent LOB in the table that the LOB
was selected from as shown in the following example:

SQL> -- check lob length before update
SQL> SELECT DBMS LOB.GETLENGTH(ad sourcetext) FROM Print media
2 WHERE product i1d=3106 AND ad id = 13001;

DBMS LOB.GETLENGTH (AD SOURCETEXT)

SQL> DECLARE
2 clobl CLOB;
amt NUMBER:
BEGIN
-- select a clob column into a clob, no implicit convesion
SELECT ad sourcetext INTO clobl FROM Print media
WHERE product i1d=3106 and ad id=13001 FOR UPDATE;
-- Trim the selected lob to 10 bytes
DBMS LOB.TRIM(clobl, amt);
END;
/

10;

= O W 0w J o U B W

=

PL/SQL procedure successfully completed.

SQL> -- Modification is performed on clobl which points to the

SQL> -- clob column in the table

SQL> SELECT DBMS LOB.GETLENGTH (ad sourcetext) FROM Print media
2 WHERE product i1d=3106 AND ad id = 13001;

DBMS LOB.GETLENGTH (AD SOURCETEXT)

SQL>

SQL> ROLLBACK;

Rollback complete.

SQL> -- check lob length before update

SQL> SELECT DBMS LOB.GETLENGTH(ad sourcetext) FROM Print media
2 WHERE product i1d=3106 AND ad id = 13001;

7-3

Chapter 7
Implicit Conversion with LOBS

DBMS LOB.GETLENGTH (AD SOURCETEXT)

SQL>
SQL> DECLARE
2 nclobl NCLOB;

3 amt NUMBER:=10;

4 BEGIN

5

6 -- select a clob column into a nclob, implicit conversion occurs
7 SELECT ad_sourcetext INTO nclobl FROM Print media

8 WHERE product i1d=3106 AND ad id=13001 FOR UPDATE;

9
10 DBMS LOB.TRIM(nclobl, amt); -- Trim the selected lob to 10 bytes
11 END;
12/

PL/SQL procedure successfully completed.

SQL> -- Modification to nclobl does not affect the clob in the table,
SQL> -- because nclobl is a independent temporary LOB

SQL> SELECT DBMS LOB.GETLENGTH (ad sourcetext) FROM Print media
2 WHERE product i1d=3106 AND ad id = 13001;

DBMS LOB.GETLENGTH (AD SOURCETEXT)

¢ See Also:

Oracle Database SQL Language Reference for details on implicit conversions
supported for all data types.

7.1.2 Implicit Conversions Between CLOB and VARCHAR?2

ORACLE

This section describes support for implicit conversions between CLOB and VARCHAR?2 data types.

Implicit conversions from CLOB to VARCHAR2 and from VARCHAR?2 to CLOB data types are
supported in PL/SQL.

See Also:

SQL Semantics for LOBs for details on LOB support in SQL statements.

Note:

While this section uses VARCHAR?2 data type as an example for simplicity, other
character types like CHAR can also participate in implicit conversions with CLOBS.

7-4

ORACLE

Chapter 7
Implicit Conversion with LOBs

Assigning a CLOB to a VARCHAR2 in PL/ISQL

When assigning a CLOB to a VARCHAR?, the data stored in the CLOB column is retrieved and
stored into the VARCHAR? buffer. If the buffer is not large enough to contain all the CL.0B data,
then a truncation error is thrown and no data is written to the buffer. This is consistent with
VARCHAR?2 semantics. After successful completion of this assignment operation, the VARCHAR?
variable holds the data as a regular character buffer. This operation can be performed in the
following ways:

e SELECT persistent or temporary CLOB data into a character buffer variable such as CHAR or
VARCHAR?2. In a single SELECT statement, you can have more than one of such defines.

e Assign a CLOB to a VARCHAR?2 Or CHAR variable.

e Pass CLOB data types to built-in SQL and PL/SQL functions and operators that accept
VARCHAR2 arguments, such as the INSTR function and the SUBSTR function.

e Pass CLOB data types to user-defined PL/SQL functions that accept VARCHAR?2 data types.

The following example illustrates the way CLOB data is accessed when the CLOBs are treated as
VARCHAR2S:

DECLARE
myStoryBuf VARCHARZ (32000) ;
myLob CLOB;
BEGIN
-- Select a LOB into a VARCHAR2 variable
SELECT ad_sourcetext INTO myStoryBuf FROM print media WHERE ad id = 12001;
DBMS OUTPUT.PUT LINE (myStoryBuf);
-- Assign a LOB to a VARCHAR2 variable
SELECT ad sourcetext INTO myLob FROM print media WHERE ad id = 12001;
myStoryBuf := myLob;
DBMS OUTPUT.PUT LINE (myStoryBuf);
END;
/

Assigning a VARCHAR2 to a CLOB in PL/SQL
A VARCHAR?2 can be assigned to a CLOB in the following scenarios:

e INSERT or UPDATE character data stored in VARCHAR2 or CHAR variables into a CL.OB column.
Multiple such binds are allowed in a single INSERT or UPDATE statement.

e Assign a VARCHAR2 or CHAR variable to a CLOB variable.

e Pass VARCHAR? data types to user-defined PL/SQL functions that accept LOB data types.

DECLARE
myLOB CLOB;
BEGIN
-- Select a VARCHAR2 into a LOB variable
SELECT 'ABCDE' INTO myLOB FROM print media WHERE ad id = 11001;
-- myLOB is a temporary LOB.
-- Use myLOB as a lob locator
DBMS OUTPUT.PUT LINE('Is temp? '||DBMS LOB.ISTEMPORARY (myLOB)) ;

-- Insert a VARCHAR2 into a lob column
INSERT INTO print media(product id, ad id, AD SOURCETEXT) VALUES (1000, 1,

7-5

Chapter 7
Implicit Conversion with LOBs

'ABCDE"') ;

-- Assign a VARCHAR2 to a LOB variable
myLob := 'XYZ';

END;

/

7.1.3 Implicit Conversions Between BLOB and RAW

This section describes support for implicit conversions between BLOB and RAW data types.

Most discussions related to PL/SQL semantics for implicit conversion between cL0OB and
VARCHAR? data types also apply to the implicit conversion process between BLOB and RAW data
types, unless mentioned otherwise. However, to provide concise description, most examples in
this chapter do not explicitly mention BLOR and RAW data types. The following operations
involving BLOB data types support implicit conversions:

e INSERT or UPDATE bhinary data stored in RAW variables into a BLOB column. Multiple such
binds are allowed in a single INSERT or UPDATE Statement.

e SELECT persistent or temporary BLOB data into a binary buffer variable such as raw. Multiple
such defines are allowed in a single SELECT statement.

* Assign a BLOB to a RAW variable, or assign a RAW to a BLOB variable.

e Pass BLOB data types to built-in or user-defined PL/SQL functions defined to accept the RAW
data type or pass the RaW data type to built-in or user-defined PL/SQL functions defined to
accept the BLOB data types.

7.1.4 Guidelines and Restrictions for Implicit Conversions with LOBSs

ORACLE

This section describes the techniques that you use to access LOB columns or attributes using
the Data Interface for LOBs.

Data from CLOB and BLOB columns or attributes can be referenced by regular SQL statements,
such as INSERT, UPDATE, and SELECT.

There is no piecewise INSERT, UPDATE, or fetch routine in PL/SQL. Therefore, the amount of
data that can be accessed from a LOB column or attribute is limited by the maximum character
buffer size in PL/SQL, which is 32767 bytes. For this reason, only LOBs less than 32 kilo bytes
in size can be accessed by PL/SQL applications using the data interface for persistent LOBs.

If you must access a LOB with a size more than 32 kilobytes -1 bytes, using the data
interface, then you must make JDBC or OCI calls from the PL/SQL code to use the APIs for
piecewise insert and fetch.

Use the following guidelines for using the Data Interface to access LOB columns or attributes:
* SELECT operations

LOB columns or attributes can be selected into character or binary buffers in PL/SQL. If
the LOB column or attribute is longer than the buffer size, then an exception is raised
without filling the buffer with any data. LOB columns or attributes can also be selected into
LOB locators.

* INSERT operations

7-6

Chapter 7
Implicit Conversion with LOBs

You can INSERT into tables containing LOB columns or attributes using regular INSERT
statements in the VALUES clause. The field of the LOB column can be a literal, a character
data type, a binary data type, or a LOB locator.

e UPDATE operations

LOB columns or attributes can be updated as a whole by UPDATE... SET statements. In the
SET clause, the new value can be a literal, a character data type, a binary data type, or a
LOB locator.

e There are restrictions for binds of more than 4000 bytes:

— If atable has both LoNG and LOB columns, then you can bind more than 4000 bytes of
data to either the LONG or LOB columns, but not both in the same statement.

— Inan INSERT AS SELECT operation, binding of any length data to LOB columns is not
allowed.

— If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data consists of
a SQL operator, then Oracle Database limits the size of the result to at most 4000
bytes. For example, the following statement inserts only 4000 bytes because the result
of LPAD is limited to 4000 bytes:

INSERT INTO print media (ad sourcetext) VALUES (lpad('a', 5000, 'a'));

— The database does not do implicit hexadecimal to RAW or RAW to hexadecimal
conversions on data that is more than 4000 bytes in size. You cannot bind a buffer of
character data to a binary data type column, and you cannot bind a buffer of binary
data to a character data type column if the buffer is over 4000 bytes in size. Attempting
to do so results in your column data being truncated at 4000 bytes.

For example, you cannot bind a VARCHAR? buffer to a BLOB column if the buffer is more
than 4000 bytes in size. Similarly, you cannot bind a rRaw buffer to a cL.OB column if the
buffer is more than 4000 bytes in size.

7.1.5 Detailed Examples for Implicit Conversions with LOBS

ORACLE

The example in this section demonstrates using multiple VARCHAR and RAW binds in INSERT and
UPDATE operations.

Example 7-1 Using Character and RAW Binds in INSERT and UPDATE Operations

The following example demonstrates using Character and RawW binds for LOB columns in
INSERT and UPDATE operations

DECLARE
bigtext VARCHARZ2 (32767) ;
smalltext VARCHAR2 (2000);
bigraw RAW (32767);

BEGIN
bigtext := LPAD('a', 32767, 'a');
smalltext := LPAD('a', 2000, 'a');
bigraw := utl raw.cast to raw (bigtext);

/* Multiple long binds for LOB columns are allowed for INSERT: */
INSERT INTO print media (product id, ad id, ad sourcetext, ad composite)
VALUES (2004, 1, bigtext, bigraw);

/* Single long bind for LOB columns is allowed for INSERT: */
INSERT INTO print media (product id, ad id, ad sourcetext)

7-7

ORACLE

Chapter 7
Implicit Conversion with LOBS

VALUES (2005, 2, smalltext);

bigtext := LPAD('b', 32767, 'b');
smalltext := LPAD('b', 20, 'a');
bigraw := utl raw.cast to raw (bigtext);

/* Multiple long binds for LOB columns are allowed for UPDATE: */
UPDATE print media SET ad sourcetext = bigtext, ad composite = bigraw,
ad finaltext = smalltext;

/* Single long bind for LOB columns is allowed for UPDATE: */
UPDATE print media SET ad sourcetext = smalltext, ad finaltext = bigtext;

/* The following is NOT allowed because we are trying to insert more than
4000 bytes of data in a LONG and a LOB column: */
INSERT INTO print media(product id, ad id, ad sourcetext, press release)
VALUES (2030, 3, bigtext, bigtext);

/* Insert of data into LOB attribute is allowed */
INSERT INTO print media(product id, ad id, ad header)
VALUES (2049, 4, adheader typ(null, null, null, bigraw));

/* The following is not allowed because we try to perform INSERT AS
SELECT data INTO LOB */

INSERT INTO print media (product id, ad id, ad sourcetext)
SELECT 2056, 5, bigtext FROM dual;

END;
/

Example 7-2 Multiple Defines for LOBs in SELECT

The following example demonstrates performing a SELECT operation to retrieve multiple
persistent or temporary CLOBs from a SQL query into a VARCHAR? variable, or a BLOB to a RAW
variable.

DECLARE
ad src buffer
ad comp buffer
BEGIN
/* This retrieves the LOB columns if they are up to 32000 bytes,
* otherwise it raises an exception */
SELECT ad sourcetext, ad composite INTO ad src buffer, ad comp buffer FROM
print media
WHERE product i1d=2004 AND ad id=5;

VARCHAR2 (32000) ;
RAW (32000) ;

/* This retrieves the temporary LOB produced by SUBSTR if it is up to 32000
bytes,
* otherwise it raises an exception */
SELECT substr(ad sourcetext, 2) INTO ad src buffer FROM print media
WHERE product i1d=2004 AND ad id=5;END;

Example 7-3 Implicit Conversions between BLOB and RAW

Implicit assignment works for variables declared explicitly and for variables declared by
referencing an existing column type using the $TYPE attribute as show in the following example.

7-8

Chapter 7
Implicit Conversion with LOBs

The example assumes that column long col in table t has been migrated from a LONG to a

CLOB column.
CREATE TABLE t (long col LONG); -- Alter this table to change LONG column to
LOB
DECLARE
a VARCHARZ (100) ;
b t.long col%type; -- This variable changes from LONG to CLOB
BEGIN
SELECT * INTO b FROM t;
a := b; -- This changes from "VARCHAR2 := LONG to VARCHAR2 := CLOB
b := a; -- This changes from "LONG := VARCHAR2 to CLOB := VARCHAR2
END;

Example 7-4 Calling PL/SQL and C Procedures from PL/SQL

You can call a PL/SQL or C procedure from PL/SQL. You can pass a CLOB as an actual
parameter, where a VARCHAR? is the formal parameter, or you can pass a VARCHAR2 as an actual
parameter, where a CLOB is the formal parameter. The same holds good for BLOBS and RAWS.
One example of when these cases can arise is when either the formal or the actual parameter
is an anchored type, that is, the variable is declared using the table name.column name$type
syntax. PL/SQL procedures or functions can accept a CLOB or a VARCHAR?2 as a formal
parameter. This holds for both built-in and user-defined procedures and functions.

The following example demonstrates implicit conversion during procedure calls:

CREATE OR REPLACE PROCEDURE foo (vvv IN VARCHAR2, ccc INOUT CLOB) AS
BEGIN
END;
/
DECLARE
vvv VARCHAR2[32000] := rpad('varchar', 32000, 'varchar')
ccc CLOB := rpad('clob', 32000, 'clob')
BEGIN
foo(vvv, ccc); -- No implicit conversion needed here
foo(ccc, vvv); -- Implicit conversion for both parameters done here

END;
/

Example 7-5 Implicit Conversion with PL/SQL built-in functions

The following example illustrates the use of CLOBs in PL/SQL built-in functions.

DECLARE
my ad CLOB;
revised ad CLOB;
myGist VARCHAR2 (100):= 'This is my gist.';
revisedGist VARCHAR2 (100);
BEGIN
INSERT INTO print media (product id, ad id, ad sourcetext)
VALUES (2004, 5, 'Source for advertisement 1');

-- select a CLOB column into a CLOB variable

ORACLE .

Chapter 7
Explicit Data Type Conversion Functions

SELECT ad sourcetext INTO my ad FROM print media
WHERE product id=2004 AND ad id=5;

-- perform VARCHAR2 operations on a CLOB variable
revised ad := UPPER(SUBSTR(my ad, 1, 20));

-- revised ad is a temporary LOB
-- Concat a VARCHAR2 at the end of a CLOB
revised ad := revised ad || myGist;

-- The following statement raises an error if my ad is
-- longer than 100 bytes
myGist := my ad;

END;

/

7.2 Explicit Data Type Conversion Functions

This section describes the explicit conversion functions in SQL and PL/SQL to convert other
data types to and from CLOB, NCLOB, and BLOB data types.

ORACLE

TO CLOB(): Converts from VARCHAR2, NVARCHAR?2, of NCLOB t0 a CLOB
TO_NCLOB () : Converts from VARCHAR2, NVARCHAR2, Or CLOB to an NCLOB

TO BLOB (varchar|clob, destcsid, [mime type]): Converts the object from its current
character set to the given character set in destcsid. The resultant object is BLOB. Following
are various ways in which you can use the conversion function:

— TO_BLOB(character, destcsid)

— TO_BLOB(character, destcsid, mime type)
— TO BLOB(clob, destcsid)

— TO _BLOB(clob, destcsid, mime type)

If the destcsidis 0, then it converts to the database character set ID. The parameter
mime type is applicable only to INSERT and UPDATE statements on Secure File LOB
columns. If the mime type parameter is used in SELECT statements or in temporary or
BasicFile L.OBs, then it is ignored.

TO BLOB (varchar): Converts the input to RaW before converting to BLOB. In other words,
TO_BLOB (HEXTORAW (varchar)) and TO BLOB (varchar) are equivalent.

Note:
TO BLOB (CLOB) is not supported.
TO_CHAR(): Converts a CLOB to a CHAR type. When you use this function to convert a
character LOB into the database character set, if the LOB value to be converted is larger

than the target type, then the database returns an error. Implicit conversions also raise an
error if the LOB data does not fit.

TO_NCHAR () : Converts an NCLOB to an NCHAR type. When you use this function to convert a
character LOB into the national character set, if the LOB value to be converted is larger

7-10

Chapter 7
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

than the target type, then the database returns an error. Implicit conversions also raise an
error if the LOB data does not fit.

e CAST does not directly support any of the LOB data types. When you use CAST to convert a
CLOB value into a character data type, an NCLOB value into a national character data type,
or a BLOB value into a RAW data type, the database implicitly converts the LOB value to
character or raw data and then explicitly casts the resulting value into the target data type.
If the resulting value is larger than the target type, then the database returns an error.

7.3 Temporary LOBs Created by SQL and PL/SQL Built-in
Functions

When a LOB is returned from a SQL or PL/SQL built-in function, then the result returned is a
temporary LOB. Similarly, a LOB returned from a user-defined PL/SQL function or procedure,
as a value or an OUT parameter, may be a temporary LOB.

In PL/SQL, a temporary LOB has the same lifetime (duration) as the local PL/SQL program
variable in which it is stored. It can be passed to subsequent SQL or PL/SQL VARCHAR?2
functions or queries as a PL/SQL local variable. The temporary LOB goes out of scope at the
end of the program block at which time, the LOB is freed. These are the same semantics as
those for PL/SQL VARCHAR? variables. At any time, nonetheless, you can use a

DBMS LOB.FREETEMPORARY () call to release the resources taken by the local temporary LOBs.

Note:

If a SQL or PL/SQL function returns a temporary LOB, or if a LOB is an OUT
parameter for a PL/SQL function or procedure, then you must free it as soon as you
are done with it. Failure to do so may cause temporary LOB accumulation and can
considerably slow down your system.

The following example illustrates implicit creation of temporary LOBs using SQL built-in
functions:

DECLARE
vcl VARCHAR2 (32000) ;
1bl CLOB;
1b2 CLOB;
BEGIN
SELECT clobColl INTO vcl FROM tab WHERE colID=1;
-- 1bl is a temporary LOB
SELECT clobCol2 || clobCol3 INTO lbl FROM tab WHERE colID=2;
1b2 := vcl|| 1bl;
-- 1b2 is a still temporary LOB, so the persistent data in the database
-- 1is not modified. An update is necessary to modify the table data.
UPDATE tab SET clobColl = 1b2 WHERE colID = 1;

DBMS LOB.FREETEMPORARY (1b2); -- Free up the space taken by 1lb2
<... some more queries ...>
END; -- at the end of the block, 1bl is automatically freed

ORACLE 7-11

ORACLE

Chapter 7
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

Here is another example of implicit creation of temporary LOBs using PL/SQL built-in
functions.

1 DECLARE

2 myStory CLOB;

3 revisedStory CLOB;

4 myGist VARCHARZ (100);

5 revisedGist VARCHAR2 (100);

6 BEGIN

7 -- select a CLOB column into a CLOB variable

8 SELECT Story INTO myStory FROM print media WHERE product i1d=10;

9 -- perform VARCHAR2 operations on a CLOB variable

10 revisedStory := UPPER(SUBSTR (myStory, 100, 1));

11 -- revisedStory is a temporary LOB

12 -- Concat a VARCHAR2 at the end of a CLOB

13 revisedStory := revisedStory || myGist;

14 -- The following statement raises an error because myStory is
15 -- longer than 100 bytes

16 myGist := myStory;

17 END;

/

Note that in the preceding example:

* Inline number 7, a temporary CLOB is implicitly created and is pointed to by the
revisedStory CLOB locator.

* Inline number 13, myGist is appended to the end of the temporary LOB, which has the
same effect as the following code snippet:

DBMS LOB.WRITEAPPEND (revisedStory, myGist, length(myGist));
In some scenarios, implicitly created temporary LOBs in PL/SQL statements can change the
representation of previously defined LOB locators. The following code snippet explains this

scenario:

Change in Locator-Data Linkage

1 DECLARE

2 myStory CLOB;

3 amt number:=100;

4 buffer VARCHAR2 (100) :="'some data';

5 BEGIN

6 -- select a CLOB column into a CLOB variable

7 SELECT Story INTO myStory FROM print media WHERE product 1d=10;

8 DBMS LOB.WRITE (myStory, amt, 1, buf);

9 -- write to the persistent LOB in the table

10

11 myStory:= UPPER (SUBSTR (myStory, 100, 1));

12 -- perform VARCHAR2 operations on a CLOB variable, temporary LOB created.
13 -- Changes are not reflected in the database table from this point on.
14

15 UPDATE print media SET Story = myStory WHERE product id = 10;

16 -- an update is necessary to synchronize the data in the table.

17 END;

In the preceding example, myStory represents a persistent LOB column in the print media
table. The DBMS LOB.WRITE procedure writes the data directly to the table without an UPDATE
statement in the code.

7-12

Chapter 7
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

Subsequently in line number 11, a temporary LOB is created and assigned to myStory because
myStory is now used like a local VARCHAR? variable. The LOB locator myStory now points to the
newly-created temporary LOB.

Therefore, modifications to myStory are no longer reflected in the database. To propagate the
changes to the database table now, you must use an UPDATE statement. Note that for the
previous persistent LOB, the UPDATE statement is not required.

¢ See Also:

Working with Remote LOBs in SQL and PL/SQL for PL/SQL functions that support
remote LOBs and BFILEs

ORACLE 7-13

Data Interface for LOBS

This chapter discusses how to perform DML and Query operations on LOBs. These operations
are similar to the ones performed on traditional Character and RAW data types.

¢ Qverview of the Data Interface for LOBs
The data interface for LOBs includes a set of Java and OCI APIs that are extended to work
with the LOB data types.

* Benefits of Using the Data Interface for LOBs
This section discusses the benefits of the using the Data Interface for LOBs.

* Data Interface for LOBs in Java
This section discusses the usage of data interface for LOBs in Java.

¢ Data Interface for LOBs in OCI
This section discusses OCI functions included in the data interface for LOBs. These OCI
functions work for LOB data types exactly the same way as they do for the VARCHAR data

type.

8.1 Overview of the Data Interface for LOBS

ORACLE

The data interface for LOBs includes a set of Java and OCI APIs that are extended to work
with the LOB data types.

These APIs, originally designed for use with legacy data types such as VARCHAR2, RAW, LONG,
and LONG RAW, can also be used with the corresponding LOB data types shown in the following
table. The table shows the legacy data types in the bind or define type column and the
corresponding supported LOB data type in the LOB column type column. You can use the data
interface for LOBs to store and manipulate character data and binary data in a LOB column
just as if it were stored in the corresponding legacy data type. The data interface supports data
size up to two gigabytes minus one (2 GB - 1), the maximum size of an sb4 data type.

¢ Note:

The data interface works for persistent and temporary LOBs and LOBs that are
attributes of objects. In this chapter LOB columns means LOB columns and LOB
attributes.

While most of this discussion focuses on character data types, the same concepts apply to the
full set of character and binary data types listed in the following table. CLOB also means NCLOB
in the table.

Table 8-1 Corresponding LONG and LOB Data Types in OCI
|

Bind or Define Type LOB Column Type Used For Storing
SQLT AFC(n) CLOB Character data
SQLT CHR CLOB Character data

8-1

Chapter 8
Benefits of Using the Data Interface for LOBs

Table 8-1 (Cont.) Corresponding LONG and LOB Data Types in OCI
]

Bind or Define Type LOB Column Type Used For Storing
SQLT LNG CLOB Character data
SQLT VCS CLOB Character data
SQLT BIN BLOB Binary data

SQLT LBI BLOB Binary data

SQLT LVB BLOB Binary data

8.2 Benefits of Using the Data Interface for LOBs

This section discusses the benefits of the using the Data Interface for LOBs.
Following are the benefits of using the Data Interface for LOBs:

* If your application uses LONG data types, then you can use the same application with LOB
data types with little or no modification of your existing application required. To do so, just
convert LONG columns in your tables to LOB columns.

¢ See Also:

Migrating Columns to SecureFile LOBs

e The Data Interface gives you the best performance if you know the maximum size of your
LOB data, and you intend to read or write the entire LOB. A piecewise INSERT or fetch
using the data interface makes only 1 round-trip the server, as opposed to using LOB API
which makes separate round-trips to get the locator and to read/write data.

* You can read LOB data in one oCIStmtFetch () call, instead of fetching the LOB locator
first and then calling 0CILobRead?2 (). This improves performance when you want to read
LOB data starting at the beginning.

* You can use array bind and define interfaces to insert and select multiple rows with LOBs
in one round trip. Irrespective of whether the LOB data is inserted or fetched using single
piece, piecewise or callbacks, it is inserted or fetched in a single round trip for multiple
rows when using array binds or defines.

¢ Caution:

If your application needs to perform random or piecewise read or write calls to LOBS,
which means it needs to specify the offset or amount of the operation, then use the
LOB APIs instead of the Data Interface.

¢ See Also:

Locator Interface for LOBs

ORACLE -

Chapter 8
Data Interface for LOBs in Java

Most of the examples in the following sections use the print media table. Following is the

structure of the print media table.

Figure 8-1 print_media Table

PRINT_MEDIA Table

‘ Column name

] [Column Type J

product_id

ad_id
ad_composite
ad_sourcetext
ad_finaltext
ad_fltextn
ad_textdocs_ntab
ad_photo
ad_graphic
ad_header

press_release

NUMBER (6)
NUMBER (6)

BLOB

CLOB

CLOB

NCLOB

NESTED TABLE
BLOB

BFILE

USER DEFINED TYPE

LONG

8.3 Data Interface for LOBs in Java

This section discusses the usage of data interface for LOBs in Java.

ORACLE"

You can read and write CLOB and BLOB data using the same streaming mechanism as for LONG

and LONG RAW data.

For read operations, use the defineColumnType (nn, Types.LONGVARCHAR) method or the
defineColumnType (nn, Types.LONGVARBINARY) method on the persistent or temporary LOBs
returned by the SELECT statement. This produces a direct stream on the data that is similar to

VARCHAR?2 or RAW column.

8-3

ORACLE

Chapter 8
Data Interface for LOBs in Java

Note:

1. If you use VARCHAR or RAW as the defineColumnType, then the selected value will
be truncated to size 32k.

2. Standard JDBC methods such as getString or getBytes on ResultSet and
CallableStatement are not part of the Data Interface as they use the LOB
locator underneath.

To insert character data into a LOB column in a PreparedStatement, you may use
setBinaryStream(), setCharacterStream(), Or setAsciiStream() for a parameter which is a
BLOB or CLOB. These methods use the stream interface to create a LOB in the database from
the data in the stream. If the length of the data is known, for better performance, use the
versions of setBinaryStream() Or setCharacterStream functions which accept the length
parameter. The data interface also supports standard JDBC methods such as setString or
setBytes On PreparedStatement to write LOB data. It is easier to code, and in many cases
faster, to use these APIs for LOB access. All these techniques reduce database round trips
and result in improved performance in many cases.

The following code snippets work with all JDBC drivers:
Bind:
This is for the non-streaming mode:
String sql = "insert into print media (product id, ad id, ad_final text)" +
" values (:1, :2, :3)";
PreparedStatement pstmt = conn.prepareStatement (sql);
pstmt.setInt(1, 2);
pstmt.setInt(2, 20);

pstmt.setString(3, "Java string");
int rows = pstmt.executeUpdate();

Note:

Oracle supports the non-streaming mode for strings of size up to 2 GB, but your
machine's memory may be a limiting factor.

For the streaming mode, the same code as the preceding works, except that the setString()
statement is replaced by one of the following:

pstmt.setCharacterStream(3, new LabeledReader (), 1000000);
pstmt.setAsciiStream(3, new LabeledAsciilnputStream(), 1000000);

Note:

You can use the streaming interface to insert Gigabyte sized character and binary
data into a LOB column.

8-4

ORACLE

Chapter 8
Data Interface for LOBs in Java

Here, LabeledReader () and LabeledAsciiInputStream() produce character and ASCII
streams respectively. If ad_finaltext were a BLOB column instead of a CLOB, then the
preceding example works if the bind is of type RAW:

pstmt.setBytes(3, <some byte[] array>);
pstmt.setBinaryStream(3, new LabeledInputStream(), 1000000);

Here, LabeledInputStream() produces a binary stream.
Define:

For non-streaming mode:

OracleStatement stmt = (OracleStatement) (conn.createStatement());
stmt.defineColumnType(1, Types.VARCHAR);
ResultSet rst = stmt.executeQuery("select ad finaltext from print media");
while(rst.next())
{
String s = rst.getString(1);
System.out.println(s);
}

Note:

If the LOB size is greater than 32767 bytes, the data is truncated and no error is
thrown.

For streaming mode:

OracleStatement stmt = (OracleStatement) (conn.createStatement());
stmt.defineColumnType(1, Types.LONGVARCHAR) ;
ResultSet rst = stmt.executeQuery("select ad finaltext from print media");
while(rs.next()) {
Reader reader = rs.getCharacterStream(1);
int data = 0;
data = reader.read();
while(-1 !'= data){
System.out.print ((char) (data));
data = reader.read();

}

reader.close();

}

Note:

Specifying the datatype as LONGVARCHAR lets you select the entire LOB. If the define
type is set as VARCHAR instead of LONGVARCHAR, the data will be truncated at 32k.

If ad finaltext were a BLOB column instead of a CLOB, then the preceding examples work if
the define is of type LONGVARBINARY:

OracleStatement stmt = (OracleStatement)conn.createStatement();

stmt.defineColumnType (1, Types.INTEGER);

8-5

Chapter 8
Data Interface for LOBs in OCI

stmt.defineColumnType (2, Types.LONGVARBINARY);

ResultSet rset = stmt.executeQuery ("SELECT ID, LOBCOL FROM LOBTAB");
while (rset.next())
{
/* using getBytes() */
/*
byte[] b = rset.getBytes ("LOBCOL") ;
System.out.println("ID: " + rset.getInt("ID") + " length: " +
b.length);
*/

/* using getBinaryStream() */

InputStream byte stream = rset.getBinaryStream("LOBCOL");

byte [] b = new byte [100000];

int b len = byte stream.read(b);

System.out.println("ID: " + rset.getInt("ID") + " length: " +

b len);

byte stream.close();

¢ See Also:

Working with Large Objects and SecureFiles

8.4 Data Interface for LOBs in OCI

ORACLE

This section discusses OCI functions included in the data interface for LOBs. These OCI
functions work for LOB data types exactly the same way as they do for the VARCHAR data type.

Using these functions, you can perform INSERT, UPDATE and fetch operations in OCI on LOBs.
These techniques are the same as the ones that you use on the other data types for storing
character or binary data.

Note:

You can use array bind and define interfaces to insert and select multiple rows with
LOBs in one round trip.

e Binding a LOB in OCI
This section describes the operations that you can use for binding the LOB data types in
OCI.

* Defining a LOB in OCI
The OCI functions discussed in this section associate a LOB type with a data type and an
output buffer.

8-6

Chapter 8
Data Interface for LOBs in OCI

e Multibyte Character Sets Used in OCI with the Data Interface for LOBs
This section discusses the functionality of Data Interface for LOBs when the OCI client
uses a multibyte character set.

e Getting LOB Length
This section describes how an OCI application can fetch the LOB length.

e Using OCI Functions to Perform INSERT or UPDATE on LOB Columns
This section discusses the various techniques you can use to perform INSERT or UPDATE
operations on LOB columns or attributes using the data interface.

e Using OCI Data Interface to Fetch LOB Data
This section discusses techniques you can use to fetch data from persistent or temporary
LOBs in OCI using the data interface.

e PL/SQL and C Binds from OCI
Learn about PL/SQL and C Binds from OCI with respect to LOBs in this section.

¢ See Also:

Runtime Data Allocation and Piecewise Operations in OCI

8.4.1 Binding a LOB in OCI

This section describes the operations that you can use for binding the LOB data types in OCI.
e Regular, piecewise, and callback binds for INSERT and UPDATE operations

* Array binds for INSERT and UPDATE operations

e Parameter passing across PL/SQL and OCI boundaries

Piecewise operations can be performed by polling or by providing a callback. To support these
operations, the following OCI functions accept the LONG and LOB data types listed in Table 8-1.

* OCIBindByName () and OCIBindByPos ()

These functions create an association between a program variable and a placeholder in
the SQL statement or a PL/SQL block for INSERT and UPDATE operations.

* OCIBindDynamic ()

You use this call to register callbacks for dynamic data allocation for INSERT and UPDATE
operations

e 0OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo ()

These calls are used to get or set piece information for piecewise operations.

8.4.2 Defining a LOB in OCI

ORACLE

The OCI functions discussed in this section associate a LOB type with a data type and an
output buffer.

The data interface for LOBs enables the following OCI functions to accept the LONG and LOB
data types listed in Table 8-1.

You can use the following functions

* OCIDefineByPos ()

8-7

Chapter 8
Data Interface for LOBs in OCI

This call associates an item in a SELECT list with the type and output data buffer.
. OCIDefineDynamic ()

This call registers user callbacks for SELECT operations if the 0CI_DYNAMIC FETCH mode
was selected in 0CIDefineByPos () function call. You can use the
OCIDataServerLengthGet () function to retrieve LOB length while using dynamic define
callback.

When you use these functions with LOB types, the LOB data, and not the locator, is selected
into your buffer. Note that in OCI, you cannot specify the amount you want to read using the
data interface for LOBs. You can only specify the buffer length of your buffer. The database
only reads whatever amount fits into your buffer and the data is truncated.

8.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs

This section discusses the functionality of Data Interface for LOBs when the OCI client uses a
multibyte character set.

When the client character set is in a multibyte format, functions included in the data interface
operate the same way with LOB datatypes as they do for VARCHAR?2 data types as follows:

* For a piecewise fetch in a multibyte character set, a multibyte character could be cut in the
middle, with some bytes at the end of one buffer and remaining bytes in the next buffer.

* For a regular fetch, if the buffer cannot hold all bytes of the last character, then Oracle
returns as many bytes as fit into the buffer, hence returning partial characters.

8.4.4 Getting LOB Length

This section describes how an OCI application can fetch the LOB length.

To fetch the LOB data length, use the 0CIServerDataLengthGet () OCI function. When you
access a LOB column using the Data Interface, the server first sends the LOB data length,
followed by LOB data. The server first communicates the length of the LOB data, before any
conversions are made. The OCI client stores the retrieved LOB length in define handle. The
OCI application can use the 0CIServerDataLengthGet () function to access the LOB length.

You can access the LOB length in all fetch modes, that is, single piece, piecewise, and
callback. You can also access it inside the callback without incurring a round-trip to the server.
However, you should not use it before the fetch operation. In case of piecewise or callback
operations, you should use it right after the first piece is fetched.

8.4.5 Using OCI Functions to Perform INSERT or UPDATE on LOB
Columns

This section discusses the various technigues you can use to perform INSERT or UPDATE
operations on LOB columns or attributes using the data interface.

The operations described in this section assume that you have initialized the OCI environment
and allocated all necessary handles.

e Performing Simple INSERT or UPDATE Operations in One Piece
This section lists the steps to perform simple INSERT or UPDATE operations in one piece,
using the data interface for LOBs.

ORACLE a8

Chapter 8
Data Interface for LOBs in OCI

Using Piecewise INSERT and UPDATE Operations with Polling
This section lists the steps to perform piecewise INSERT or UPDATE operations with
polling, using the data interface for LOBs.

Performing Piecewise INSERT and UPDATE Operations with Callback
This section lists the steps to perform piecewise INSERT or UPDATE operations with
callback, using the data interface for LOBs.

Performing Array INSERT and UPDATE Operations
To perform array INSERT or UPDATE operations using the data interface for LOBs, use any
of the techniques discussed in this section.

8.4.5.1 Performing Simple INSERT or UPDATE Operations in One Piece

This section lists the steps to perform simple INSERT or UPDATE operations in one piece, using
the data interface for LOBs.

3.

Call oCIStmtPrepare () to prepare the statement in OCI_DEFAULT mode.

Call 0CIBindByName () or OCIBindbyPos () in OCI_DEFAULT mode to bind a placeholder for
LOB as character data or binary data.

Call ocIstmtExecute () to do the actual INSERT or UPDATE operation.

Following is an example of binding character data for INSERT and UPDATE operations on a LOB
column.

void simple insert()

{

/* Insert of data into LOB attributes is allowed. */

ubl buffer[8000];
text *insert sql = (text *)"INSERT INTO Print media (ad header) \
VALUES (adheader typ(NULL, NULL, NULL,:1))";

OCIStmtPrepare (stmthp, errhp, insert sql, strlen((char*)insert sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);

OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);

OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (const OCISnapshot*) O,

(OCISnapshot*)0, OCI DEFAULT);

8.4.5.2 Using Piecewise INSERT and UPDATE Operations with Polling

This section lists the steps to perform piecewise INSERT or UPDATE operations with polling,
using the data interface for LOBs.

ORACLE

1.

2

Call ocIStmtPrepare () to prepare the statement in OCI_DEFAULT mode.

Call 0CIBindByName () Or OCIBindbyPos () in OCI_DATA AT EXEC mode to bind a LOB as
character data or binary data.

Call ocIstmtExecute () in default mode. Do each of the following in a loop while the value
returned from OCIStmtExecute () is OCI_NEED DATA. Terminate your loop when the value
returned from OCIStmtExecute () iS OCI_SUCCESS.

e CallocIistmtGetPiecelInfo () to retrieve information about the piece to be inserted.

e CallocIistmtSetPiecelInfo () to set information about piece to be inserted.

8-9

Chapter 8
Data Interface for LOBs in OCI

The following example illustrates using piecewise INSERT with polling using the data interface
for LOBs.

void piecewise insert()
{
text *sqglstmt = (text *)"INSERT INTO Print media(Product id, Ad id,\
Ad sourcetext) VALUES (:1, :2, :3)";
ub2 rcode;
ubl piece, 1i;
word product id = 2004;
word ad_id = 2;
ub4 buflen;
char buf[5000];

OCIStmtPrepare (stmthp, errhp, sqglstmt, (ub4)strlen((char *)sglstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bndhp[0], errhp, (ub4) 1,
(dvoid *) &product id, (sb4) sizeof (product id), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bndhpll], errhp, (ub4) 2,
(dvoid *) &ad _id, (sb4) sizeof(ad id), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bndhpl2], errhp, (ub4) 3,
(dvoid *) 0, (sb4) 15000, SQLT LNG,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DATA AT EXEC);

i=0;
while (1)
{
1++;
retval = OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI DEFAULT);
switch (retval)
{
case OCI_NEED DATA:
memset ((void *)buf, (int)'A'+i, (size t)5000);
buflen = 5000;
if (1 == 1) piece = OCI_FIRST PIECE;
else if (i == 3) piece = OCI_LAST PIECE;
else piece = OCI_NEXT PIECE;

if (OCIStmtSetPiecelInfo((dvoid *)bndhp[2],
(ub4) OCI_HTYPE BIND, errhp, (dvoid *)buf,
&buflen, piece, (dvoid *) 0, &rcode))
{
printf ("ERROR: OCIStmtSetPiecelInfo: %d \n", retval);
break;

break;
case OCI_SUCCESS:
break;

ORACLE 810

Chapter 8
Data Interface for LOBs in OCI

default:
printf("oci exec returned %d \n", retval);
report error (errhp);
retval = OCI_SUCCESS;

} /* end switch */

if (retval == OCI_ SUCCESS)
break;

} /* end while(1l) */

8.4.5.3 Performing Piecewise INSERT and UPDATE Operations with Callback

This section lists the steps to perform piecewise INSERT or UPDATE operations with callback,
using the data interface for LOBs.

ORACLE

1.
2

3.
4.

Call ocIStmtPrepare () to prepare the statement in OCI DEFAULT mode.

Call 0CIBindByName () or OCIBindbyPos () in OCI_DATA AT EXEC mode to bind a
placeholder for the LOB column as character data or binary data.

Call ocIBindDynamic () to specify the callback.

Call ocistmtExecute () in default mode.

You do not need to supply an output callback for pure IN binds in OCI to SQL/PLSQL
operation. Starting from Oracle Database 21c Release, you do not need to supply an input
callback for pure oUT binds in OCI to SQL/PLSQL operation.

The following example illustrates binding character data to LOB columns using a piecewise
INSERT with callback:

void callback insert()

{

word buflen = 15000;

word product id = 2004;

word ad id = 3;

text *sqglstmt = (text *) "INSERT INTO Print media(Product id, Ad id,\
Ad sourcetext) VALUES (:1, :2, :3)";

word pos = 3;

OCIStmtPrepare (stmthp, errhp, sglstmt, (ub4)strlen((char *)sglstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT)

OCIBindByPos (stmthp, &bndhp[0], errhp, (ub4) 1,

(dvoid *) é&product id, (sb4) sizeof (product id), SQLT INT,

(dvoid *) 0, (ub2 *)0, (ub2 *)0,

(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bndhp[l], errhp, (ub4) 2,

(dvoid *) &ad id, (sb4) sizeof(ad id), SQLT INT,

(dvoid *) 0, (ub2 *)0, (ub2 *)0,

(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bndhp[2], errhp, (ub4) 3,

(dvoid *) 0, (sb4) buflen, SQLT CHR,

(dvoid *) 0, (ub2 *)0, (ub2 *)0,

(ub4) 0, (ub4 *) 0, (ub4) OCI DATA AT EXEC);

OCIBindDynamic (bndhp[2], errhp, (dvoid *) (dvoid *) &pos,
insert cbk, (dvoid *) 0, (OCICallbackOutBind) 0);

8-11

Chapter 8
Data Interface for LOBs in OCI

OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(const OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI DEFAULT) ;
} /* end insert data() */

/* Inbind callback to specify input data. */
static sb4 insert cbk(dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,
dvoid **bufpp, ub4 *alenpp, ubl *piecep, dvoid **indpp)

{

static int a = 0;

word J;

ubd inpos = *((ub4 *)ctxp);

char buf[5000];

switch (inpos)
{
case 3:
memset ((void *)buf, (int) 'A'+a, (size t) 5000);
*bufpp = (dvoid *) buf;
*alenpp = 5000 ;
at+;
break;
default: printf ("ERROR: invalid position number: %d\n", inpos);
}

*indpp = (dvoid *) 0;
*piecep = OCI ONE PIECE;
if (inpos == 3)
{
if (a<=1)
{
*piecep = OCI FIRST PIECE;
printf ("Insert callback: 1lst piece\n");
}
else if (a<3)
{
*piecep = OCI NEXT PIECE;
printf ("Insert callback: %d'th piece\n", a);
}
else {
*piecep = OCI LAST PIECE;
printf ("Insert callback: %d'th piece\n", a);
a=0;

}
return OCI_CONTINUE;

}

ORACLE 810

Chapter 8
Data Interface for LOBs in OCI

8.4.5.4 Performing Array INSERT and UPDATE Operations

ORACLE

To perform array INSERT or UPDATE operations using the data interface for LOBs, use any of the
techniques discussed in this section.

Use the INSERT or UPDATE operations in conjunction with 0CIBindArrayOfStruct (), or by
specifying the number of iterations (iter), with iter value greater than 1, in the
ocistmtExecute () call. Irrespective of whether the LOB data is inserted using single piece,

piecewise or callbacks, it is inserted in a single round trip for multiple rows when using array
binds.

The following example illustrates binding character data for LOB columns using an array
INSERT operation:

void array insert()
{

ubd 1i;

word buflen;

word arrbufl[5];

word arrbuf2[5];

[5]1[5000];
= (text *)"INSERT INTO Print media (Product id, Ad id,\

Ad sourcetext) VALUES (:PID, :AID, :SRCTXT)";

text arrbuf3
text *insstmt

OCIStmtPrepare (stmthp, errhp, insstmt,
(ub4)strlen((char *)insstmt), (ub4) OCI NTV SYNTAX,
(ub4) OCI DEFAULT) ;

OCIBindByName (stmthp, &bndhp[0], errhp,
(text *) ":PID", (sb4) strlen((char *) ":PID"),
(dvoid *) &arrbufl[0], (sb4) sizeof(arrbufl[0]), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) 0,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);

OCIBindByName (stmthp, &bndhp[l], errhp,
(text *) ":AID", (sb4) strlen((char *) ":AID"),
(dvoid *) &arrbuf2[0], (sb4) sizeof (arrbuf2[0]), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) 0,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);

OCIBindByName (stmthp, &bndhp[2], errhp,
(text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
(dvoid *) arrbuf3[0], (sb4) sizeof (arrbuf3[0]), SQLT CHR,
(dvoid *) 0, (ub2 *) 0, (ub2 *) O,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);

OCIBindArrayOfStruct (bndhp[0], errhp sizeof (arrbufl[0]),
indsk, rlsk, rcsk);

OCIBindArrayOfStruct (bndhp[l], errhp, sizeof(arrbuf2[0]),
indsk, rlsk, rcsk);

OCIBindArrayOfStruct (bndhp[2], errhp, sizeof(arrbuf3[0]),
indsk, rlsk, rcsk);

for (i=0; i<5; i++)

{

8-13

Chapter 8
Data Interface for LOBs in OCI

arrbufl[i] = 2004;
arrbuf2[i] = i+4;
memset ((void *)arrbuf3[i], (int)'A'+i, (size t)5000);
}
OCIStmtExecute (svchp, stmthp, errhp, (ub4) 5, (ub4) O,
(const OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI DEFAULT) ;

8.4.6 Using OCI Data Interface to Fetch LOB Data

This section discusses techniques you can use to fetch data from persistent or temporary
LOBs in OCI using the data interface.

* Performing Simple Fetch Operations in One Piece
Follow the steps listed in this section for performing a simple fetch operation on LOBs in
one piece, using the data interface for LOBs.

* Performing a Piecewise Fetch with Polling
Follow the steps listed in this section to perform a piecewise fetch operation on a LOB
column with polling, using the data interface for LOBSs.

» Performing a Piecewise with Callback
Follow the steps listed in this section to perform a piecewise fetch operation on a LOB
column with callback, using the data interface for LOBs.

» Performing an Array Fetch Operation
Use any of the techniques discussed in this section to perform an array fetch operation in
OCI, using the data interface for LOBSs.

8.4.6.1 Performing Simple Fetch Operations in One Piece

ORACLE

Follow the steps listed in this section for performing a simple fetch operation on LOBs in one
piece, using the data interface for LOBs.

1. CallocIstmtPrepare () to prepare the SELECT Statement in OCI_DEFAULT mode.

2. Call ocIDefineByPos () to define a select list position in OCI_DEFAULT mode to define a
LOB as character data or binary data.

3. CallocIistmtExecute () to run the SELECT statement.
4. CallocistmtFetch() to do the actual fetch.

The following example illustrates selecting a persistent LOB or temporary LOB using a simple
fetch:

void simple fetch()
{
word retval;
text buf[15000];
/*
This statement returns a persistent LOB, but can be modified to return a
temporary LOB
using the query 'SELECT SUBSTR(Ad sourcetext,5) FROM Print media WHERE
Product id = 2004’
*/
text *selstmt = (text *) "SELECT Ad sourcetext FROM Print media WHERE\

8-14

Chapter 8
Data Interface for LOBs in OCI

Product id = 2004";

OCIStmtPrepare (stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

retval = OCIStmtExecute (svchp, stmthp, errhp, (ub4) 0, (ub4) O,
(const OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT) ;
while (retval == OCI SUCCESS || retval == OCI SUCCESS WITH INFO)
{
OCIDefineByPos (stmthp, &defhp, errhp, (ub4) 1, (dvoid *) buf,
(sb4) sizeof (buf), (ub2) SQLT CHR, (dvoid *) 0,
(ub2 *) 0, (ub2 *) 0, (ub4) OCI DEFAULT) ;
retval = OCIStmtFetch (stmthp, errhp, (ub4) 1,
(ub4) OCI FETCH NEXT, (ub4) OCI_DEFAULT) ;
if (retval == OCI SUCCESS || retval == OCI_SUCCESS WITH INFO)
printf ("buf = %.*s\n", 15000, buf);

8.4.6.2 Performing a Piecewise Fetch with Polling

ORACLE

Follow the steps listed in this section to perform a piecewise fetch operation on a LOB column
with polling, using the data interface for LOBs.

1.
2

Call oCcIStmtPrepare () to prepare the SELECT statement in OCI_DEFAULT mode.

Call oCIDefinebyPos () to define a select list position in OCI_DYNAMIC FETCH mode to
define the LOB column as character data or binary data.

Call ocistmtExecute () to run the SELECT statement.

Call ocistmtFetch () in default mode. Optionally, you can use 0CIServerDatalLengthGet ()
to get the LOB length and use it to allocate the buffer to hold the LOB data. Do each of the
following in a loop while the value returned from 0CIStmtFetch () iS OCI_NEED DATA.
Terminate your loop when the value returned from OCIStmtFetch () iS OCI_SUCCESS.

e CallocistmtGetPieceInfo () to retrieve information about the piece to be fetched.

e Call ocistmtSetPieceInfo () to set information about piece to be fetched.

The following example illustrates selecting a LOB column into a character buffer using a
piecewise fetch with polling:

void piecewise fetch()

{

text buf[15000];

ub4 buflen=5000;

word retval;

text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print media
WHERE Product id = 2004 AND Ad id = 2";

OCIStmtPrepare (stmthp, errhp, selstmt,
(ub4) strlen((char *)selstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);

OCIDefineByPos (stmthp, &dfnhp, errhp, (ub4) 1,
(dvoid *) NULL, (sb4) 100000, SQLT LNG,

8-15

Chapter 8
Data Interface for LOBs in OCI

(dvoid *) 0, (ub2 *) O,
(ub2 *) 0, (ubd) OCI_DYNAMIC_FETCH);

retval = OCIStmtExecute (svchp, stmthp, errhp, (ub4) 0, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT);

retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,

(ub2) OCI FETCH NEXT, (ub4) OCI DEFAULT);

while (retval != OCI _NO DATA && retval != OCI_SUCCESS)

{

}

ubl piece;
ub4 iter;
ub4 idx;

genclr ((void *)buf, 5000);
switch (retval)
{
case OCI NEED DATA:
OCIStmtGetPieceInfo (stmthp, errhp, &hdlptr, &hdltype,
&in _out, &iter, &idx, é&piece);
buflen = 5000;
OCIStmtSetPiecelnfo (hdlptr, hdltype, errhp,
(dvoid *) buf, &buflen, piece,
(CONST dvoid *) &indpl, (ub2 *) 0);
retval = OCI NEED DATA;
break;
default:
printf ("ERROR: piece-wise fetching, %d\n", retval);
return;
} /* end switch */
retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
(ub2) OCI FETCH NEXT, (ub4) OCI_DEFAULT) ;
printf ("Data : %.5000s\n", buf);
/* end while */

8.4.6.3 Performing a Piecewise with Callback

ORACLE

Follow the steps listed in this section to perform a piecewise fetch operation on a LOB column
with callback, using the data interface for LOBs.

1.
2

o o > W

Call ocIStmtPrepare () to prepare the statement in OCI_DEFAULT mode.

Call oCIDefinebyPos () to define a select list position in OCI_DYNAMIC FETCH mode to
define the LOB column as character data or binary data.

Call ocistmtExecute () to run the SELECT statement.
Call ocIDefineDynamic () to specify the callback.
Call ocistmtFetch () in default mode.

Inside the callback, you can optionally use 0CIServerDataLengthGet () to getthe LOB
length during the first fetch. You can use this value to allocate the buffer to hold LOB data

8-16

ORACLE

Chapter 8
Data Interface for LOBs in OCI

The following example illustrates selecting a LOB column into a LOB buffer when using a
piecewise fetch with callback:

char buf[5000];
void callback fetch()
{
word outpos = 1;
text *sglstmt = (text *) "SELECT Ad sourcetext FROM Print media WHERE
Product id = 2004 AND Ad id = 3";

OCIStmtPrepare (stmthp, errhp, sglstmt, (ub4)strlen((char *)sglstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIDefineByPos (stmthp, &dfnhp[0], errhp, (ub4) 1,
(dvoid *) 0, (sb4)3 * sizeof(buf), SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) OCI DYNAMIC FETCH);

OCIDefineDynamic (dfnhp[0], errhp, (dvoid *) &outpos,
(OCICallbackDefine) fetch cbk);

OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
)

(const OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI DEFAULT);
buf[4999] = '"\0'; -
printf ("Select callback: Last piece: %s\n", buf);
}
K *x/
/* Fetch callback to specify buffers. */
2 — */

static sb4 fetch cbk(dvoid *ctxp, OCIDefine *dfnhp, ub4 iter, dvoid **bufpp,
ub4 **alenpp, ubl *piecep, dvoid **indpp, ub2 **rcpp)
{
static int a = 0;
ub4 outpos = *((ub4 *)ctxp);
ub4 len = 5000;
switch (outpos)
{
case 1:
a ++;
*pbufpp = (dvoid *) buf;
*alenpp = &len;
break;
default:
*pbufpp = (dvoid *) 0;
*alenpp = (ub4 *) 0;
printf ("ERROR: invalid position number: %d\n", outpos);
}
*indpp = (dvoid *) O0;
*rcpp = (ub2 *) 0;

buf[len] = "\0';
if (a<=1)
{
*piecep = OCI_FIRST PIECE;
printf ("Select callback: Oth piece\n");

8-17

Chapter 8
Data Interface for LOBs in OCI

}
else if (a<3)
{
*piecep = OCI_NEXT PIECE;
printf("Select callback: %d'th piece: %s\n", a-1, buf);
}
else {
*piecep = OCI_LAST PIECE;
printf("Select callback: %d'th piece: %s\n", a-1, buf);
a = 0;
}
return OCI_CONTINUE;

This example illustrates selecting a LOB column into a character buffer when using a
piecewise fetch with callback, along with fetching the length of LOB data.

#define MAX BUF SZ 1048576 /* Max allocation size = 1M */
char *buffer = NULL;
ub8 buf len = 0;

/* Define callback function */

sb4 DefineCbk(void *cbctx, OCIDefine *defnhp, ub4 iter,
void **bufp, ub4 **alenp, ubl *piecep,
void **indp, ub2 **rcodep)

static sword piece = 1;
boolean isValidLen FALSE;
buf len = 0;

if (piece == 1)
{
OCIServerDataLengthGet (defnhp, &isValidLen, (ub8 *) &buf len,
(OCIError *)cbctx, 0);

if (buf len > MAX BUF SZ)
buf len = MAX BUF SZ;

buffer = (char *)malloc(buf len);
*bufp = buffer;
*alenp = (ub4 *) &buf len;

}

else

{
printf ("Data = %s\n",buffer);
buf len = MAX BUF SZ;

}

piecet+;

return OCI_CONTINUE;

void define callback()

{
text *sqlstmt = (text *)"select lobcol from lob table";

ORACLE 818

Chapter 8
Data Interface for LOBs in OCI

OCIStmtPrepare (stmthp, errhp, sqglstmt, (ub4)strlen(sglstmt),
(ub4) OCI NTV_ SYNTAX, (ub4) OCI_DEFAULT) ;
OCIDefineByPos (stmthp, &defhpl, errhp, (ub4)1l, (dvoid *)O0,
(sb4) (10 ~* MAX BUF SZ), SQLT STR, (dvoid *) 0,
(ub2 *) 0, (ub2 *) 0, (ub4)OCI_DYNZ—\MIC_FETCH);
OCIDefineDynamic (defhpl,errhp, errhp,
(OCICallbackbDefine)DefineCbk) ;
OCIStmtExecute (svchp, stmthp, errhp, (ub4) 0, (ub4) O,
(CONST OCISnapshot *) 0, (OCISnapshot *) 0,
(ub4) OCI DEFAULT) ;
OCIStmtFetch (stmthp, errhp, 1, OCI_FETCH NEXT, OCI DEFAULT);

buffer[buf len] = '\0';
printf (" Data = %$s\n",buffer);
if (buffer)

free(buffer);

8.4.6.4 Performing an Array Fetch Operation

ORACLE

Use any of the techniques discussed in this section to perform an array fetch operation in OCI,
using the data interface for LOBs.

Use the techniques discussed below, in conjunction with 0CIDefineArrayOfStruct (), or by
specifying the number of iterations (iter), with the value of iter greater than 1, in the
ocIstmtExecute () call. Irrespective of whether the LOB data is fetched using single piece,
piecewise or callbacks, it is fetched in a single round trip for multiple rows when using array
defines.

The following example illustrates selecting a LOB column into a character buffer using an array
fetch:

void array fetch()

{

word i;

text arrbuf[5] [5000];

text *selstmt = (text *) "SELECT Ad sourcetext FROM Print media WHERE
Product id = 2004 AND Ad id >=4";

OCIStmtPrepare (stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
(ub4) OCI_NTV SYNTAX, (ub4) OCI_DEFAULT);

OCIStmtExecute (svchp, stmthp, errhp, (ub4) 0, (ub4) O,
(const OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI DEFAULT);

OCIDefineByPos (stmthp, &defhpl, errhp, (ub4) 1,
(dvoid *) arrbuf[0], (sb4) sizeof (arrbuf(0]),
(ub2) SQLT CHR, (dvoid *) 0,
(ub2 *) 0, (ub2 *) 0, (ub4) OCI DEFAULT);

OCIDefineArrayOfStruct (dfnhpl, errhp, sizeof (arrbuf[0]), indsk,
rlsk, rcsk);

retval = OCIStmtFetch(stmthp, errhp, (ub4) 5,
(ub4) OCI_FETCH NEXT, (ub4) OCI_DEFAULT);

8-19

Chapter 8
Data Interface for LOBs in OCI

if (retval == OCI_SUCCESS || retval == OCI_SUCCESS WITH INFO)
{
printf ("%.5000s\n", arrbuf[0])
printf ("%.5000s\n", arrbuf[1l])
printf ("%.5000s\n", arrbuf([2]);
([31)
([4])

printf ("%.5000s\n", arrbuf ;
printf ("%.5000s\n", arrbuf ;

8.4.7 PL/SQL and C Binds from OCI

Learn about PL/SQL and C Binds from OCI with respect to LOBs in this section.

When you call a PL/SQL procedure from OCI, and have an IN or OUT or IN OUT bind, you
should be able to:

* Bind a variable as SQLT CHR or SQLT LNG where the formal parameter of the PL/SQL
procedure is SQLT CLOB, or

* Bind a variable as SQLT BIN or SQLT LBI where the formal parameter is SQLT BLOB

The following two cases work:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner

Here is an example of calling PL/SQL out-binds in the "begin foo(:1); end;" Manner:

text *sqlstmt = (text *)"BEGIN get lob(:c); END; " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner

Here is an example of calling PL/SQL out-binds in the "call foo(:1);" manner:

text *sqglstmt = (text *)"CALL get lob(:c);" ;

In both these cases, the rest of the program has these statements:

OCIStmtPrepare (stmthp, errhp, sqglstmt, (ub4)strlen((char *)sglstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
curlen = 0;

OCIBindByName (stmthp, &bndhp[3], errhp,
(text *) ":c", (sb4) strlen((char *) ":c"),
(dvoid *) bufb5, (sb4) LONGLEN, SQLT CHR,
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 1, (ub4 *) &curlen, (ub4) OCI DATA AT EXEC);

The PL/SQL procedure, get 1lob(), is as follows:

procedure get lob(c INOUT CLOB) is -- This might have been column$type
BEGIN
. /* The procedure body could be in PL/SQL or C*/
END;

ORACLE 820

Locator Interface for LOBs

The Locator Interface for LOBs refers to a set of APIs in different programmatic interfaces,
which enables you to perform operations on persistent and temporary LOBs using the LOB
locator.

These operations typically take an offset, or an amount parameter, or both, as input argument
to facilitate efficient random and piecewise operations on the LOB.

* Before You Begin
Learn about the concepts that you should know before using the programmatic interfaces
to work on LOBs, using the LOB locator.

 PL/SQL API for LOBs
The DBMS_LOB package enables you to access and make changes to LOBs in PL/SQL.

« JDBC API for LOBs
JDBC supports standard Java interfaces java.sgl.Clob and java.sqgl.Blob for CLOBS and
BLOBS respectively.

* OCI API for LOBs
Oracle Call Interface (OCI) LOB functions enable you to access and make changes to
LOBs in C.

* ODP.NET API for LOBs
Oracle Data Provider for .NET (ODP.NET) is an ADO.NET provider for the Oracle
Database.

* OCCI API for LOBs
OCCI provides a seamless interface to manipulate objects of user-defined types as C++
class instances.

* Pro*C/C++ and Pro*xCOBOL API for LOBs
This section describes the mapping of Pro*C/C++ and Pro*COBOL locators to locator
pointers to access a LOB value.

See Also:

BFILE APIs for operations involving the BFILE data type.

9.1 Before You Begin

ORACLE

Learn about the concepts that you should know before using the programmatic interfaces to
work on LOBs, using the LOB locator.

e Getting a LOB Locator
All LOB APIs need a valid LOB locator to be passed as an input. This section discusses
various methods to populate LOB variables using a LOB locator.

9-1

Chapter 9
Before You Begin

LOB Open and Close Operations
The LOB APIs include operations that enable you to explicitly open and close a LOB
instance.

Read and Write at Chunk Boundaries
To improve performance, you should perform LOB reads and writes using offsets and
amount that are a multiple of the value returned by GETCHUNKSIZE function.

Prefetching LOB Data and Length

In most clients like JDBC, OCI and ODP.NET, the number of server round trips can be
reduced by prefetching part of the data and metadata (length and chunk size) along with
the LOB locator during the fetch. This applies to persistent LOBs, temporary LOBs, and
BFILES.

Determining Character Set ID

Some LOB APIs such as DBMS LOB.LOADCLOBFROMFILE, OCILobRead2 () and
OCILobWrite2 () take in a character set ID as an input. To determine the character set ID,
you must know the character set name.

LOB APIs

Once a LOB variable is initialized with either a persistent or a temporary LOB locator,
subsequent read operations on the LOB can be performed using APIs such as the
DBMS LOB package subprograms.

9.1.1 Getting a LOB Locator

All LOB APIs need a valid LOB locator to be passed as an input. This section discusses
various methods to populate LOB variables using a LOB locator.

ORACLE

All LOB APIs need a valid LOB locator to be passed as an input. Use one of the following
methods to populate a LOB variable in your application with a LOB locator:

Persistent LOBs: First create a table with a LOB column, then insert a value into the LOB
column and select out the LOB locator. To modify an existing LOB using a LOB locator, you
must lock the row in the table in order to prevent other database users from writing to the
LOB during a transaction.

¢ See Also:

— Persistent LOBs for information on how to create a a table with a LOB
column and populate it.

— Selecting a LOB into a LOB Variable for Read Operations for information on
how to select a LOB locator for LOB read operations.

— Selecting a LOB into a LOB Variable for Write Operations for information on
how to lock the row for LOB modify operations.

Temporary LOBs: You can create a temporary LOB by using an API like
DBMS_LOB.CREATETEMPORARY or by invoking a SQL or PL/SQL function that returns a
temporary LOB.

See Also:

Temporary LOBs

9-2

Chapter 9
Before You Begin

9.1.2 LOB Open and Close Operations

ORACLE

The LOB APIs include operations that enable you to explicitly open and close a LOB instance.

You can open and close a persistent or temporary LOB instance of any type: BLOB, CLOB or
NCLOB. You open a LOB to achieve one or both of the following results:

e Open the LOB in read-only mode

This ensures that the LOB (both the LOB locator and LOB value) cannot be changed in
your session until you explicitly close the LOB. For example, you can open the LOB to
ensure that the LOB is not changed by some other part of your program while you are
using the LOB in a critical operation. After you perform the operation, you can then close
the LOB.

e Open the LOB in read-write mode

Opening a LOB in read-write mode defers any index maintenance on the LOB column until
you close the LOB. Opening a LOB in read-write mode is only useful if there is a functional
or domain index on the LOB column, and you do not want the database to perform index
maintenance every time you write to the LOB. This technique can improve the
performance of your application if you are doing several write operations on the LOB while
it is open. Note that any index on the LOB column is not valid until you explicitly close the
LOB.

If you do not explicitly open the LOB instance, then every modification to the LOB implicitly
opens and closes the LOB instance. The database performs index maintenance for any
functional and domain indexes on the LOB column on each implicit close of the LOB. This
means that the indexes on the LOB are updated as soon as any modification to the LOB
instance is made. These indexes are always valid and can be used at any time.

The open state of a LOB is associated with the LOB instance, not the LOB locator. The locator
does not save any information indicating whether the LOB instance that it points to is open.

You must close any LOB instance that you explicitly open in the following places:

- Between DML statements that start a transaction, including SELECT ... FOR UPDATE and
COMMIT.

* Within an autonomous transaction block.

» Before the end of a session (when there is no transaction in progress in the session).

If you do not explicitly close the LOB instance, then it is implicitly closed at the end of the
session and no index triggers are fired, which means that any indexes on the LOB column are
not updated. In this situation, you must rebuild your indexes on the LOB column.

Committing a transaction on the open LOB instance causes an error. When this error occurs,
the LOB instance is closed implicitly, any modifications to the LOB instance are saved, and the
transaction is committed, but any indexes on the LOB column are not updated. In this situation,
you must rebuild your indexes on the LOB column.

If you subsequently rollback the transaction, then the LOB instance is rolled back to its
previous state, but the LOB instance is no longer explicitly open.

Keep track of the open or closed state of LOBs that you explicitly open. The following actions
cause an error:

» Explicitly opening a LOB instance that has been explicitly open earlier.

« Explicitly closing a LOB instance that is has been explicitly closed earlier.

9-3

Chapter 9
Before You Begin

This occurs whether you access the LOB instance using the same locator or different locators.

9.1.3 Read and Write at Chunk Boundaries

To improve performance, you should perform LOB reads and writes using offsets and amount
that are a multiple of the value returned by GETCHUNKSIZE function.

If it is appropriate for your application, then you should batch reads and writes until you have
enough for an entire chunk instead of issuing several LOB read or write calls that operate on
the same LOB chunk.

9.1.4 Prefetching LOB Data and Length

In most clients like JDBC, OCI and ODP.NET, the number of server round trips can be reduced
by prefetching part of the data and metadata (length and chunk size) along with the LOB
locator during the fetch. This applies to persistent LOBs, temporary LOBSs, and BFILES.

For small to medium sized LOBs, Oracle recommends setting the prefetch length such that
about majority of your LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the statement or
the column level.

9.1.5 Determining Character Set ID

Some LOB APIs such as DBMS LOB.LOADCLOBFROMFILE, OCILobRead?2 () and OCILobWrite?2 ()
take in a character set ID as an input. To determine the character set ID, you must know the
character set name.

A user can select from the VSNLS VALID VALUES view, which lists the names of the character
sets that are valid as database and national character sets. Then call the function

NLS CHARSET ID with the desired character set name as the one string argument. The
character set ID is returned as an integer.

Although UTF16 is not allowed as a database or national character set, LOB APIs support it for
database conversion purposes. Use character set ID = 1000 for UTF16, or in OCI, you can
use OCI UTF161ID.

¢ See Also:

e OClUnicodeToCharSet() for information on the 0CIUnicodeToCharSet () function
and details on OCI syntax in general.

e Overview of Globalization Support for detailed information about implementing
applications in different languages.

9.1.6 LOB APIs

ORACLE

Once a LOB variable is initialized with either a persistent or a temporary LOB locator,
subsequent read operations on the LOB can be performed using APIs such as the DBMS LOB
package subprograms.

The operations supported on LOBs are divided into the following categories:

9-4

Table 9-1 Operations supported by LOB APIs
]

Chapter 9
Before You Begin

Category Operation Example function/procedure in
DBMS_LOB or OCILob
Sanity Checking Check if the LOB variable has OCILobLocatorIsInit
been initialized
Find out if the BLOB or CLOB ISSECUREFILE
locator is a SecureFile
Open/Close Open aLOB OPEN
Check is a LOB is open ISOPEN
Close the LOB CLOSE
Read Operations Get the length of the LOB GETLENGTH

Get the LOB storage limit for the
database configuration

GET STORAGE LIMIT

Get the optimum read or write GETCHUNKSIZE

size

Read data from the LOB starting READ

at the specified offset

Return part of the LOB value SUBSTR

starting at the specified offset

using SUBSTR

Return the matching position of a INSTR

pattern in a LOB using INSTR
Modify Operations Write data to the LOB at a WRITE

specified offset

Write data to the end of the LOB WRITEAPPEND

Erase part of a LOB, starting ata ERASE

specified offset

Trim the LOB value to the TRIM

specified shorter length
Operations involving multiple Check whether the two LOB OCILobIsEqual
locators locators are the same

Compare all or part of the value ~ COMPARE

of two LOBs

Append a LOB value to another ~ APPEND

LOB

Copy all or part of a LOB to COPY

another LOB

Assign LOB locator srcto LOB dst:=src,

locator dst OCILobLocatorAssign

Converts a BLOB to a CLOB or a CONVERTTOBLOB,

CLOB to a BLOB CONVERTTOCLOB

Load BFILE data into a LOB LOADCLOBFROMFILE,

LOADBLOBFROMFILE

Operations Specific to Returns options (deduplication, GETOPTIONS
SecureFiles compression, encryption) for

SecureFiles.

Sets LOB features (deduplication SETOPTIONS

and compression) for SecureFiles

Gets the content string for a GETCONTENTTYPE

SecureFiles.

ORACLE

9-5

ORACLE

Table 9-1 (Cont.) Operations supported by LOB APIs
]

Chapter 9
Before You Begin

Category Operation Example function/procedure in
DBMS_LOB or OCILob
Sets the content string for a SETCONTENTTYPE
SecureFiles.
Delete the data from the LOB at FRAGMENT DELETE
the given offset for the given
length
Insert the given data (< FRAGMENT INSERT
32KBytes) into the LOB at the
given offset
Move the given amount of bytes ~ FRAGMENT MOVE
from the given offset to the new
given offset
Replace the data at the given FRAGMENT REPLACE
offset with the given data (<
32kBytes)
¢ See Also:

¢ Note:

e Temporary LOBs
* BFILEs

e Comparing the LOB Interfaces

The DBMS_LOB package provides a rich set of operations on LOBs. If you are using a
different programmatic interface, where some of these operations are not provided,
then call the corresponding PL/SQL procedure or function in DBMS LOB package.

Most of the code examples in the following sections use the print media table with the

following structure:

9-6

9.2 PL/SQL API for LOBs

ORACLE"

Figure 9-1 print_media table

Chapter 9
PL/SQL API for LOBs

PRINT_MEDIA Table

‘ Column name

] [Column Type J

product_id

ad_id
ad_composite
ad_sourcetext
ad_finaltext
ad_fltextn
ad_textdocs_ntab
ad_photo
ad_graphic
ad_header

press_release

NUMBER (6)
NUMBER (6)

BLOB

CLOB

CLOB

NCLOB

NESTED TABLE
BLOB

BFILE

USER DEFINED TYPE

LONG

The DBMS_LOB package enables you to access and make changes to LOBs in PL/SQL.

¢ See Also:

DBMS_LOB for more information on DBMS_LOB package.

Guidelines for Offset and Amount Parameters in DBMS_LOB Operations

The following guidelines apply to the offset and amount parameters used in the DBMS_LOB

PL/SQL package procedures:

9-7

Chapter 9
PL/SQL API for LOBs

* For character data in all formats, either in fixed-width or variable-width, the amount and
offset parameters are in characters. This applies to operations on CLOB and NCLOB data

types.

e For binary data, the offset and amount parameters are in bytes. This applies to operations
on BLOB data types.

* When using the DBMS LOB.READ procedure, the amount parameter should be less than or
equal to the size of the buffer, which is limited to 32K. However, the amount parameter can
be larger than the size of the LOB data.

Table 9-2 DBMS_LOB functions and procedures for LOBs
]

Category Function/Procedure Description
Sanity Checking ISSECUREFILE Find out if the BLOB or CLOB
locator is a SecureFile
Open/Close OPEN Open aLOB
ISOPEN Check if a LOB is open
CLOSE Close the LOB
Read Operations GETLENGTH
GET STORAGE LIMIT
GETCHUNKSIZE
READ
SUBSTR
INSTR
Modify Operations WRITE Write data to the LOB at a
specified offset
WRITEAPPEND Write data to the end of the LOB
ERASE Erase part of a LOB, starting at a
specified offset
TRIM Trim the LOB value to the
specified shorter length
Operations involving multiple COMPARE Compare all or part of the value
locators of two LOBs
APPEND Append a LOB value to another
LOB
COPY Copy all or part of a LOB to
another LOB
dst :=src Assign LOB locator src to LOB
locator dst
CONVERTTOBLOB, Converts a BLOB to a CLOB or a
CONVERTTOCLOB CLOB to a BLOB
LOADCLOBFROMFILE, LOADBLOBF Load BFILE data into a LOB
ROMFILE
Operations specific to GETOPTIONS Returns options (deduplication,
SecureFiles compression, encryption) for
SecureFiles.
SETOPTIONS Sets LOB features (deduplication
and compression) for SecureFiles
GETCONTENTTYPE Gets the content string for a
SecureFiles.

ORACLE 0.8

ORACLE

Chapter 9
PL/SQL API for LOBs

Table 9-2 (Cont.) DBMS_LOB functions and procedures for LOBs
]

Category

Function/Procedure

Description

SETCONTENTTYPE

Sets the content string for a
SecureFiles.

FRAGMENT DELETE

Delete the data from the LOB at
the given offset for the given
length

FRAGMENT INSERT

Insert the given data (<
32KBytes) into the LOB at the
given offset

FRAGMENT MOVE

Move the given amount of bytes
from the given offset to the new
given offset

FRAGMENT REPLACE

Replace the data at the given
offset with the given data (<
32kBytes)

Example 9-1 PL/SQL API for LOBs

DECLARE

retval INTEGER;

clobl CLOB;

clob2 CLOB;

clob3 CLOB;

blobl BLOB;

buf VARCHAR?2 (32767) ;
buflen INTEGER := 32760;
loblenl INTEGER;

-- Following are the variables that you need for the convertToBlob and
convertToClob functions

amt NUMBER := 0;
src NUMBER := 1 ;
dst NUMBER := 1 ;
lang NUMBER := 0;
warn NUMBER;

BEGIN

SELECT ad sourcetext INTO clobl FROM print media
WHERE product id = 1 AND ad id = 1;

-- the select statement is defined with FOR UPDATE so that we can write

to it

SELECT ad finaltext INTO clobZ FROM print media
WHERE product id = 1 AND ad id =1 FOR UPDATE;
/* Note that all the writes to clob2 will get reflected in the column */

/* __ */
[Fmmmm e Sanity Checking -------------—-—-—-—-—-—-—- */
/* __ */

if DBMS_LOB.ISSECUREFILE(clobl) = TRUE then
DBMS_OUTPUT.PUT_LINE('CLOBl is SECUREFILE');
else

9-9

Chapter 9
PL/SQL API for LOBs

DBMS OUTPUT.PUT LINE('CLOBl is BASICFILE');

end if;

JF */
[Fmmmmm oo Open —=—-=---mmm s */
JF */

/* Open clobl for READs and clob2 for WRITES */
DBMS_LOB.OPEN(ClObl, DBMS LOB.LOB READONLY) ;
DBMS_LOB.OPEN(ClObZ, DBMS LOB.LOB READWRITE) ;

JF */
[Fmm Reading from a LOB ——======—==——=-——-————————— */
JF */

DBMS OUTPUT.PUT LINE('storage limit : ' ||
dbms_lob.get storage limit(clobl));
DBMS OUTPUT.PUT LINE('chunk size : ' || dbms lob.getchunksize (clobl));

loblenl := DBMS LOB.GETLENGTH (clobl);
DBMS OUTPUT.PUT LINE('length : ' || loblenl);

DBMS LOB.READ (clobl, buflen, 1, buf);

DBMS OUTPUT.PUT LINE('read : LOB data : ' || buf);
DBMS OUTPUT.PUT LINE('New buflen : ' || buflen);
DBMS OUTPUT.PUT LINE('substr : ' || dbms lob.substr(clobl, 30, 1));

DBMS_OUTPUT.PUT_LINE('instr HE
DBMS LOB.INSTR(clobl, 'review of the document', 1,

3))i
* */
[Fmm Modifying a LOB —========—==—————————m— o */
J* */

DBMS LOB.WRITE (clob2, buflen, 10, buf);
DBMS_LOB.WRITEAPPEND(clob2, buflen, buf);
buflen := 10;

DBMS_LOB.ERASE(clobZ, buflen, 10);
DBMS_LOB.TRIM(clobZ, 50) ;

/* Print the LOB just modified */

buflen := 32760;

DBMS LOB.READ(clob2, buflen, 1, buf);

DBMS OUTPUT.PUT LINE('read : LOB data : ' || buf);
DBMS OUTPUT.PUT LINE('New buflen : ' || buflen);

/* BError because clobl is open in READ mode */
-- DBMS LOB.WRITE (clobl, buflen, 10, buf);

¥ o */
[Fmmmmmmm e Operations involving 2 locators -------------—-—-—---- */
o o */

retval := DBMS LOB.COMPARE (clobl, clob2, 100, 1, 1);
if (retval < 0) then

DBMS OUTPUT.PUT LINE('clobl is smaller');
elsif (retval = 0) then

DBMS OUTPUT.PUT LINE('both clobs are equal');

ORACLE 510

ORACLE

(

(

('
dbms_lob.getlength(clob2)) ;

(|l

dbms lob getlength(blo bl

(

('

DBMS LOB.GETLENGTH (blob

DBMS LOB.GETLENGTH (clob

Chapter 9
PL/SQL API for LOBs

else
DBMS OUTPUT.PUT LINE('clobl is larger');
end if;

DBMS OUTPUT.PUT LINE ('length before append: ' ||

DBMS LOB.GETLENGTH (clob2)) ;

DBMS LOB.APPEND(clob2, clobl);

DBMS OUTPUT.PUT LINE('length after append: ' || DBMS LOB.GETLENGTH(clob2));
DBMS_OUTPUT.PUT_LINE(' ——————————— LOB COPY operation -------- ')

DBMS LOB.COPY (clob2, clobl, loblenl, 100, 1);

DBMS OUTPUT.PUT LINE('length after copy: ' || DBMS LOB.GETLENGTH (clob2));
2 */
[Fmmmmmmm o Convert CLOB to a BLOB -—-—-—=-—=—=—=-—-—-—-—-— */

2 */
DBMS_LOB.CREATETEMPORARY (blobl, false);

dst := 1;

src := 1;

amt := 5;

DBMS_LOB.CONVERTTOBLOB(blobl, clob2, amt, dst, src, DBMS LOB.DEFAULT CSID,
lang, warn);

' Source offset returned "'"|| src) ;

' Destination offset returned ' || dst) ;
Length of CLOB Y

DBMS_OUTPUT.PUT LINE
DBMS_OUTPUT.PUT LINE
DBMS_OUTPUT.PUT LINE
DBMS OUTPUT.PUT LINE(' Length of BLOB N
))
|l

DBMS OUTPUT.PUT LINE Warning returned ' || warn);

DBMS OUTPUT.PUT LINE OUTPUT BLOB contents = ' || rawtohex(blobl));
2 */
[Fmmmm e Convert BLOB to a CLOB -—-—=-—=--=-==-—=—-—-—-—- */
2 */
DBMS_LOB.CREATETEMPORARY(clob3, false);

dst := 1;

src := 1;

amt := 4;

DBMS_LOB.CONVERTTOCLOB(clob3, blobl, amt, dst, src, DBMS LOB.DEFAULT CSID,
lang, warn);
' Source offset returned "'"|| src) ;
' Destination offset returned ' || dst) ;
Length of BLOB Yl
))
' Length of CLOB Y
))
1

DBMS OUTPUT.PUT LINE
DBMS OUTPUT.PUT LINE
DBMS OUTPUT.PUT LINE

(
(
('
bl
DBMS OUTPUT.PUT LINE (
3
(
(
(

DBMS OUTPUT.PUT LINE Warning returned ' || warn);

DBMS OUTPUT.PUT LINE ' INPUT BLOB contents = ' || rawtohex(blobl));
DBMS OUTPUT.PUT LINE(' OUTPUT CLOB contents = ' || clob3);

2 */
[Fmmmm oo Close ——=—=—=—=----—mmmm oo */
2 */
DBMS_OUTPUT.PUT LINE('------------- CLOSE ------—====—=-- ")

DBMS LOB.CLOSE (clob2);

9-11

ORACLE

Chapter 9
PL/SQL API for LOBs

if (DBMS LOB.ISOPEN(clobl) = 1) then
DBMS LOB.CLOSE (clobl);
END if;

COMMIT;
END;
/

Example 9-2 PL/SQL APIs for SecureFile specific operations
conn pm/pm

-- alter the table to make lob storage as securefile
-- assume tablespace tbs 1 is ASSM
alter table print media move

lob(ad composite) store as securefile
lob (ad_sourcetext) store as securefile
lob(ad finaltext) store as securefile
lob (ad_photo) store as securefile

(deduplicate compress tablespace tbs 1)
(compress tablespace tbs 1)

(compress tablespace tbs 1)

(tablespace tbs 1);

SET SERVEROUTPUT ON

DECLARE

clobl CLOB;

blobl BLOB;

result BINARY_INTEGER;

/* --- variables for setcontenttype, getcontenttype ----*/

get media type VARCHAR2 (128) ;
set media type VARCHAR2 (128) ;

/* --- variables for delta operations -------- */
amount INTEGER;

offset INTEGER;

buffer VARCHAR? (30) ;

readbuf VARCHAR2 (50) ;

read amt INTEGER;

src_offset INTEGER;

dest offset INTEGER;

amount old INTEGER;
BEGIN

-- fetch clob, blob values

SELECT ad_sourcetext, ad composite
INTO clobl, blobl

FROM print media

WHERE product_id = 2056 FOR UPDATE;

S — x/
[Fmmm e Get Options =—=-=-=-—=—-—---—---momomo - */
S x/

-- check whether compress option is enabled
result := DBMS_LOB.GETOPTIONS(Clobl, DBMS_LOB.OPT_COMPRESS);
DBMS OUTPUT.PUT LINE ('Get compress option on ad sourcetext: '||result);

-- check whether compress + deduplicate is enabled

9-12

Chapter 9
PL/SQL API for LOBs

result := DBMS LOB.GETOPTIONS (blobl, DBMS LOB.OPT DEDUPLICATE +
DBMS LOB.OPT COMPRESS) ;
DBMS OUTPUT.PUT LINE ('Get compress + deduplicate option on ad composite: '||

result);

/* __ */
[Hmmm e Set Options —---—-—=-=-—=—------—-—-———o—o - */
/* __ */

-- turn off compression

DBMS LOB.SETOPTIONS (clobl, DBMS LOB.OPT COMPRESS, DBMS LOB.COMPRESS OFF);
-- getoptions should be 0 now

result := DBMS LOB.GETOPTIONS(clobl, DBMS LOB.OPT COMPRESS) ;

DBMS OUTPUT.PUT LINE ('Compress option on clobl: '||result);

-- turn off deduplication

DBMS LOB.SETOPTIONS (blobl, DBMS LOB.OPT DEDUPLICATE,

DBMS LOB.DEDUPLICATE OFF);

-- getoptions should be 0 now

result := DBMS LOB.GETOPTIONS (blobl, DBMS LOB.OPT DEDUPLICATE);

DBMS OUTPUT.PUT LINE ('Deduplicate option on blobl: '||result);

/* __ */
[Fmmmmm e Getcontenttype, Setcontenttype -------------—--—-—-—-—- */
/* __ */

-- get contenttype -- should be null as content type is not set yet
DBMS OUTPUT.PUT LINE(CHR(10)]||'clobl contenttype: ' ||
dbms_lob.getcontenttype (clobl));

set media type := 'text/plain';
DBMS_LOB.SETCONTENTTYPE(Clobl, set_media_type);

DBMS OUTPUT.PUT LINE('Clobl contenttype: ' ||
dbms_lob.getcontenttype (clobl));

-- setcontenttype for blob

DBMS OUTPUT.PUT LINE('blobl contenttype: ' ||
dbms_lob.getcontenttype (blobl));

set media type := 'photo/jpeg';

DBMS LOB.SETCONTENTTYPE (blobl, set media type);

get media type := DBMS LOB.GETCONTENTTYPE (blobl);

DBMS OUTPUT.PUT LINE ('Blobl contenttype: ' || get media type);

/* __ */

[r e Fragment Operations —---------—————————————- */

[rmm e Print Before Fragment Operations -------------- */
read amt := 40;

DBMS LOB.READ(clobl, read amt, 1, readbuf);

DBMS OUTPUT.PUT LINE(CHR(10)||'Clobl before fragment insert: '|| readbuf);

DBMS OUTPUT.PUT LINE (CHR(10)||'Length of clobl before fragment operations:
"|'| dbms_lob.getlength(clobl));

[Hmmmmmmm e Fragment Delete -----------—-—-—-—-—-—o—ommo */
amount := 100;
offset := 10;

DBMS LOB.FRAGMENT DELETE (clobl, amount, offset);

ORACLE 013

Chapter 9
JDBC API for LOBs

[H e Fragment Insert —-—-—-—--———=-——-=-——-——-———————— */
amount = 29;

offset =1

buffer = "#Verify lob Delta operations#';

DBMS LOB.FRAGMENT INSERT (clobl, amount, offset, buffer);

[Fmmm e Fragment Move ——=—==—=—=—--———-——-——mm */
amount = 29;

src_offset = 100;

dest offset := 1;

-- fragment move
DBMS LOB.FRAGMENT MOVE (clobl, amount, src offset, dest offset);

[Hmmm e Fragment Replace -----—=—--=--=--———-———-—-—- */
amount 1= 25;

amount old := 29;

offset 1= 100;

buffer = 'SVerify fragment replaces$';

DBMS LOB.FRAGMENT REPLACE (clobl, amount old, amount, offset,buffer);

COMMIT;

[F e e Verify After Fragment Operations -------------- */
read amt := 40;

DBMS LOB.READ(clobl, read amt, 1, readbuf);

DBMS OUTPUT.PUT LINE(CHR(10)||'Clobl after delta insert: '|| readbuf);

DBMS OUTPUT.PUT LINE(CHR(10)||'Length of clobl after fragment operations:
"|'| dbms_lob.getlength(clobl));

EXCEPTION

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(sqlerrm);

END;

/

9.3 JDBC API for LOBs

JDBC supports standard Java interfaces java.sgl.Clob and java.sqgl.Blob for CLOBS and
BLOBS respectively.

In JDBC, you do not deal with locators but instead use methods and properties in the Java
APIs to perform operations on LOBs.

When BLOB and CLOB objects are retrieved as a part of an ResultSet, these objects represent
LOB locators of the currently selected row. If the current row changes due to a move operation,
for example, rset.next (), then the retrieved locator still refers to the original LOB row. You
must call getBLOB (), getCLOB (), Or getBFILE () on the ResultSet each time a move operation
is made depending on whether the instance is a BLOB, CLOB Or BFILE.

ORACLE 014

ORACLE

Chapter 9
JDBC API for LOBs

See Also:
Working with LOBs and BFILEs

Prefetching of LOB Data

When using the JDBC client, the number of server round trips can be reduced by prefetching
part of the data and metadata (length and chunk size) along with the LOB locator during the
fetch. This applies to persistent LOBs, temporary LOBs, and BFILES. For small to medium
sized LOBs, Oracle recommends setting the prefetch length such that about majority of your
LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the statement or
the column level. The prefetch size values can be:

* -1to disable prefetching
e 0to enable prefetching for metadata only

e any value greater than 0 which represents the number of bytes for BLOBS and characters
for CLOBS, to be prefetched along with the locator during fetch operations.

Use prop.setProperty to set the prefetch size for the session. The default session prefetch
size is 32k for the JDBC Thin Driver.

prop.setProperty("oracle.jdbc.defaultLobPrefetchSize","64000");

You can overwrite the session level default prefetch size at the statement level as follows:

((OracleStatement) stmt) .setLobPrefetchSize (100000) ;

You can use the following code snippet to fetch the prefetch size of a statement:

int pf = ((OracleStatement)stmt).getLobPrefetchSize() ;

You can overwrite the session level default prefetch size at the column level as follows:

((OracleStatement) stmt) .defineColumnType (1, OracleTypes.CLOB, /
lobPrefetchSize/
32000) ;

Note:
About Prefetching LOB Data

Table 9-3 JDBC methods for LOBs
]

Category Function | Procedure Description
Miscellaneous empty lob() Creates an empty LOB
isSecureFile() Finds out if the BLOB or CLOB

locator is a SecureFile

9-15

Table 9-3 (Cont.) IDBC methods for LOBs

Chapter 9
JDBC API for LOBs

Category Function |/ Procedure Description
Open/Close open () Open aLOB
isOpen () Check if a LOB is open
close() Close the LOB
Read Operations length () Get the length of the LOB
getChunkSize () Get the optimum read/write size
getBytes () Read data from the BLOB
starting at the specified offset
getBinaryStream() Streams the BLOB as a binary
stream
getChars () Read data from the CLOB
starting at the specified offset
getCharacterStream() Streams the CLOB as a character
stream
getAsciiStream() Streams the CLOB as an ASCII
stream
getSubString() Return part of the LOB value
starting at the specified offset
position() Return the matching position of a
pattern in a LOB
Modify Operations setBytes () Write data to the BLOB at a
specified offset
setBinaryStream() Sets a binary stream that can be
used to write to the BLOB value
setString() Write data to the CLOB at a
specified offset
setCharacterStream() Sets a character stream that can
be used to write to the CLOB
value
setAsciiStream() Sets an ASCII stream that can be
used to write to the CLOB value
truncate () Trim the LOB value to the
specified shorter length
Operations involving multiple dst = src Assign LOB locator src to LOB

locators

locator dst

Example 9-3 JDBC API for LOBs

static void jdbc_lob apis() throws Exception ({

System.out.println ("Persistent LOBs Test in JDBC "+

try(
Connection con = getConnection();

Statement stmt = con.createStatement();
)
{
ResultSet rs = null;
Clob «cl = null;

ORACLE

TYPE) ;

9-16

ORACLE

Chapter 9
JDBC API for LOBs

Clob «c2 = null;
Reader in = null;
long pos = 0;
long len = 0;

rs = stmt.executeQuery("select ad sourcetext from print media where
product id = 1");

rs.next();

cl = rs.getCLOB(1);

OracleClob cll = (OracleClob)cl;

rs.close();

/* __ */
[Fmmmm e Sanity Checking -------------—-—-—-—-—-—-—- */
/* __ */

if (cll.isSecureFile())

System.out.println("Cl is a Securefile LOB");
else

System.out.println("Cl is a Basicfile LOB");

/* __ */
[Fmmmm e Open/Close —=—=—=—=—=—=-——-—————————m—o o */
/* __ */
[Fmmmm e Opening a CLOB —-—-====-=-—————-—————————e */

cll.open(LargeObjectAccessMode.MODE READONLY) ;

[Fmmm e Determining Whether a CLOB Is Open ---------------- */
if (cll.isOpenf())

System.out.println("Cll is open!");
else

System.out.println("Cll is not open");

/* ___ */
[Fmm e Reading from a LOB ---=-====——-——-———-——om */
/* ___ */
[Fmmmm e Get CLOB Length -------------—-—-—-—o—o—o */
len = cl.length();

System.out.println("CLOB length = " + len);

[F e Reading CLOB Data =—-—=—=—=====—=———————————- */

char[] readBuffer = new char[6];

in = cl.getCharacterStream();

in.read(readBuffer,0,5);

in.close();

String lobContent = new String(readBuffer);
System.out.println("Buffer with LOB contents: " + lobContent);

e Substr of a CLOB --------—=—=—=—=—=——-—-—= */

String subs = cl.getSubString(2, 5);
System.out.println("LOB substring: " + subs);

9-17

Chapter 9
OCI API for LOBs

[Fmmmm e Search for a pattern -----------—------—- */
pos = cl.position("aaa", 1);

System.out.println("Pattern matched at position = " + pos);

/* __ */
[Fmm e Modifying a LOB —======——=————————— - —— */
/* __ */

rs = stmt.executeQuery("select ad sourcetext from print media where
product id = 1 for update");

rs.next();

c2 = rs.getClob(l);

OracleClob c22 = (OracleClob)c2;

[Fmmmmm e Write to a CLOB -—-—=—=—===-—-—————————-—-—- */
c22.open (LargeObjectAccessMode.MODE READWRITE) ;
c2.setString (3, "modified");

String msubs = c2.getSubString(l, 15);

System.out.println("Modified LOB substring: " + msubs);

c2.truncate (20);

len = c2.length();

System.out.println("Truncated LOB len = " + len);
c22.close();

9.4 OCI API for LOBs

ORACLE

Oracle Call Interface (OCI) LOB functions enable you to access and make changes to LOBs in
C.

¢ See Also:
LOB and BFILE Operations

Prefetching LOB Data in OCI

When using the OCI client, the number of server round trips can be reduced by prefetching
part of the data and metadata (length and chunk size) along with the LOB locator during the
fetch. This applies to persistent LOBs, temporary LOBs, and BFILES. For small to medium
sized LOBs, Oracle recommends setting the prefetch length such that about majority of your
LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the statement or
the column level.

9-18

ORACLE

Chapter 9
OCI API for LOBs

Use the ocIAttrSet () function to set the prefetch size for the session. The default session
prefetch size is 0.

default lobprefetch size = 32000;
OCIAttrSet (authp, OCI_HTYPE SESSION, &default lobprefetch size , 0,
OCI_ATTR DEFAULT LOBPREFETCH SIZE, errhp));

You can overwrite the session level default prefetch size at the column level. For this, you
should first set the column level attribute 0OCI ATTR LOBPREFETCH LENGTH to TRUE and then set
the column level prefetch size attribute OCI_ATTR LOBPREFETCH SIZE in the define handle to
override the session level default lob prefetch size. The following code snippet demonstrates
how to set the prefetch size at session level:

prefetch length = TRUE;
status = OCIAttrSet (defhp, OCI HTYPE DEFINE, &prefetch length, 0,
OCI ATTR LOBPREFETCH LENGTH, errhp);

lpf size = 32000;
OCIAttrSet (defhp, OCI_HTYPE DEFINE, &lpf size, sizeof (ub4),
OCI_ATTR LOBPREFETCH SIZE, errhp);

You can use the following code snippet to get the prefetch size of a define:

ub4 get 1pf size = 0;
OCIAttrGet (defhp, OCI_HTYPE DEFINE, &éget lpf size,
0,0CI_ATTR LOBPREFETCH SIZE, errhp);

See Also:

User Session Handle Attributes

Fixed-width and Varying-width Character Set Rules for OCI

In OCI, for fixed-width client-side character sets, the following rules apply:

* CLOBS and NCLOBS: offset and amount parameters are always in characters
° BLOBS and BFILES: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

e Offset parameter:

Regardless of whether the client-side character set is varying-width, the offset parameter is
always as follows:

— CLOBs and NCLOBS: in characters
— BLOBs and BFILES: in bytes
* Amount parameter:
The amount parameter is always as follows:
— When referring to a server-side LOB: in characters

— When referring to a client-side buffer: in bytes

9-19

Chapter 9
OCI API for LOBs

* OCILobGetLength2():

Regardless of whether the client-side character set is varying-width, the output length is as
follows:

— CLOBs and NCLOBS: in characters
— BLOBs and BFILES: in bytes
e OCILobRead2():
With client-side character set of varying-width, C1.0Bs and NCLOBS:

— Input amount is in characters. Input amount refers to the number of characters to read
from the server-side CLOB or NCLOB.

— Output amount is in bytes. Output amount indicates how many bytes were read into
the buffer bufp.

* OCILobWrite2(): With client-side character set of varying-width, CLOBs and NCLOBS:

— Input amount is in bytes. The input amount refers to the number of bytes of data in
the input buffer bufp.

— Output amount is in characters. The output amount refers to the number of characters
written into the server-side CLOB or NCLOB.

« Amount Operation for OCILob Operations: For operations such as 0CILobCopy2 (),
OCILobErase2 (), OCILobLoadFromFile2 (), and OCILobTrim2 (), the amount parameter is in
characters for CLOBs and NCLOBSs irrespective of the client-side character set because all
these operations refer to the amount of LOB data on the server.

See Also:

Overview of Globalization Support

Amount Parameter
When using the 0CILobRead2 () and OCILobWrite2 () functions, in order to read or write the
entire LOB. you can set the input amount parameter as follows:

Table 9-4 Special Amount Parameter Setting to Read/Write the entire LOB
]

OCILobRead2 OCILobWrite2
piece = OCI_ONE PIECE Set amount to UB8MAXVAL to
read the entire LOB
Streaming with Polling Set amount to 0 to read entire Set amount to 0 to continue
data in a loop writing buffer size amount until
OCI _LAST PIECE
Streaming with Callback Set amount 0 to ensure that the Set amount to 0 to ensure that
callback is called until the entire the callback is called until
data is read OCI_LAST PIECE is returned by
the callback

ORACLE 9.20

Table 9-5 OCI Attributes on the OCILobLocator

ATTRIBUTE

OCIAttrSet

Chapter 9
OCI API for LOBs

OCIAttrGet

OCI_ATTR LOBEMPTY

Sets the descriptor to be empty
LOB

N/A

OCI_ATTR LOB REMOTE N/A set to TRUE if the lob locator is
from a remote database, set to
FALSE otherwise

OCI _ATTR LOB TYPE N/A holds the LOB type (CLOB /
BLOB / BFILE)

OCI ATTR LOB IS VALUE N/A set to TRUE if it is from a value
LOB, otherwiseFALSE

OCI _ATTR LOB IS READONLY N/A set to TRUE if it is a read-only

LOB, otherwise FALSE

OCI ATTR LOBPREFETCH LENGT
H

When set to TRUE the attribute
will enable prefetching and will
prefetch the LOB length and the
chunk size while performing
select operation of LOB locator

set to TRUE if prefetching is
turned on for the locator.

OCI ATTR LOBPREFETCH SIZE

Overrides the default prefetch
size for LOBs. Has a prerequisite
of the

OCI_ATTR LOBPREFETCH LENGT
H attribute to be set to TRUE.

Returns the prefetch size of the
locator.

Table 9-6 OCI Functions for LOBs
]

Category Function/Procedure Description
Sanity Checking OCILobLocatorIsInit () Checks whether a LOB locator is
initialized.
Open/Close OCILobOpen () Open aLOB
OCILobIsOpen() Check if a LOB is open
OCILobClose () Close the LOB
Read Operations OCILobGetLength?2 () Get the length of the LOB

OCILobGetStoragelLimit ()

Get the LOB storage limit for the
database configuration

OCILobGetChunkSize () Get the optimum read / write size

OCILobRead? () Read data from the LOB starting
at the specified offset

OCILobArrayRead () Reads data using multiple
locators in one round trip.

OCILobCharSetId() Returns the character set ID of a
LOB.

OCILobCharSetForm() Returns the character set form of
aLOB.

Modify Operations OCILobWrite?2 () Write data to the LOB at a

specified offset

OCILobArrayWrite () Writes data using multiple
locators in one round trip.

OCILobWriteAppend?2 () Write data to the end of the LOB

ORACLE

9-21

ORACLE

Table 9-6 (Cont.) OCI Functions for LOBs
]

Chapter 9
OCI API for LOBs

Category Function/Procedure Description
OCILobErase?2 () Erase part of a LOB, starting at a
specified offset
OCILobTrim2 () Trim the LOB value to the
specified shorter length
Operations involving multiple OCILobIsEqual () Checks whether two LOB
locators locators refer to the same LOB.
OCILobAppend () Append a LOB value to another
LOB
OCILobCopy2 () Copy all or part of a LOB to
another LOB
OCILobLocatorAssign () Assign one LOB to another
OCILobLoadFromFile?2 () Load BFILE data into a LOB
Operations specific to OCILObGetOptions () Returns options (deduplication,
SecureFiles compression, encryption) for
SecureFiles.
OCILObSetOptions () Sets LOB features (deduplication
and compression) for SecureFiles
OCILobGetContentType () Gets the content string for a
SecureFiles
OCILobSetContentType () Sets a content string in a

SecureFiles

Example 9-4 OCI API for LOBs

/* Define SQL statements to be used in program. */

#define LOB NUM QUERIES 2

static text *selstmt[LOB_NUM QUERIES] = {

(text *) "select ad sourcetext from print media where product id

0 */

l", /*

(text *) "select ad sourcetext from print media where product id = 2 for

update",
bi

sword run_query (ub4
{
OCILobLocator *cl =
OCILobLocator *c2

(
(
(
(

OCIStmt *stmthp;
OCIDefine *defnlp =
OCIDefine *defn2p =
OCIBind *bndpl =
OCIBind *bndp2 =
ub8 loblen;
ubl 1buf[128];
ubl inbuf[9]
ubl inbuf len
ub8 amt = 15;

index, ub2 dty)

(OCILobLocator *)O0;
(OCILobLocator *)O0;

OCIDefine *) 0
OCIDefine *) O0;
OCIBind *) 0
OCIBind *) 0

’
= "modified";

:8;

9-22

ORACLE

Chapter 9
OCI API for LOBs

ub8 bamt = 0;

ubd csize = 0;

ub8 slimit = 0;
boolean flag = FALSE;
boolean boolval = TRUE;
ub4 id = 10;

CHECK_ERROR (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
OCI_HTYPE STMT, (size t) 0, (dvoid **) 0));

/************** Allocate descriptors ***********************/

CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &cl,
(ub4)OCI_DTYPE FILE, (size t) 0,
(dvoid **) 0));

CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &c2,
(ub4)OCI_DTYPE FILE, (size t) 0,

/***‘k****** Execute SelStmt[O] to get cl ***********************/
CHECK_ERROR (OCIStmtPrepare (stmthp, errhp, selstmt[0],

(ub4) strlen((char *) selstmt[0]),

(ub4) OCI NTV_SYNTAX, (ub4) OCI DEFAULT));

CHECK_ERROR (OCIDefineByPos (stmthp, &defnlp, errhp, (ub4) 1, (dvoid *) &cl,
(sbd) -1, SQLT CLOB, (dvoid *) 0, (ub2 *) O,
(ub2 *)0, (ubd) OCI_DEFAULT));

CHECK_ERROR (OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot *) NULL, (OCISnapshot *)

NULL,

OCI DEFAULT));

/***‘k****** Execute Selstmt[l] to get c2 **********************/
CHECK_ERROR (OCIStmtPrepare (stmthp, errhp, selstmt[1],

(ub4) strlen((char *) selstmt[1l]),

(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

CHECK_ERROR (OCIDefineByPos (stmthp, &defnlp, errhp, (ub4) 1, (dvoid *) &c2,
(sbd) -1, SQLT CLOB, (dvoid *) 0, (ub2 *) O,
(ub2 *)0, (ub4) OCI_DEFAULT));

CHECK_ERROR (OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot *) NULL, (OCISnapshot *)

NULL,

OCI DEFAULT));
¥ o */
[Hmmmmm e Sanity Checking -------------—-—-—-—-—--—-—- */
JF o */

CHECK_ERROR (OCILobLocatorIsInit (envhp, errhp, (OCILobLocator *) cl,
&boolval));
if (boolval)
printf ("LOB locator is initialized! \n");

9-23

ORACLE

Chapter 9
OCI API for LOBs

else
printf ("LOB locator is NOT initialized \n");

¥ o */
[Fmmmm oo Open/Close —=—=—=—=—=—=-——--—-———-—o—o oo */
JF */
[Fmmmm oo Opening a CLOB —---—=—===-=--—————-—-—-—-—- */

CHECK_ERROR (OCILobOpen (svchp, errhp, cl, (ubl)OCI LOB READONLY));
printf ("OCILobOpen: Works\n");

[rmm e Determining Whether a CLOB Is Open ------—--—----—-- */
CHECK_ERROR (OCILobIsOpen (svchp, errhp, cl, &boolval));

printf ("OCILobIsOpen: %$s\n", (boolval)?"TRUE":"FALSE");

[Fmmmm oo Closing a LOB —-—-—=—=—=—=-—=-——--—-———-—-—- */
CHECK_ERROR (OCILobClose (svchp, errhp, cl));
printf ("OCILobClose: Works\n");

¥ o */
e ittt LOB Read Operations —-----—----=-—-—--—-—-—-—- */
JF o */

printf ("OCILobFileOpen: Works\n");

[Fmmmmmmm e Getting the Length of a LOB -----------—-—=—--—- */
CHECK_ERROR (OCILobGetLength2 (svchp, errhp, cl, &loblen));
printf ("OCILobGetLength2: loblen: %d \n", loblen);

[Fmmmmmmm e Getting the Storage Limit of a LOB ------------- */
CHECK_ERROR (OCILobGetStoragelLimit (svchp, errhp, cl, é&slimit));
printf ("OCILobGetStorageLimit: storage limit: %$1d \n", slimit);

[Hmmmmm e Getting the Chunk Size of a LOB ----------------- */
CHECK_ERROR (OCILobGetChunkSize (svchp, errhp, cl, &csize));
printf ("OCILobGetChunkSize: storage limit: %d \n", csize);

[Fmmmm e Reading LOB Data —----------—=—=—=—=—---- */
CHECK_ERROR (OCILobRead2 (svchp, errhp, cl, &amt,
NULL, (oraub8)1, lbuf,
(oraub8)sizeof (1buf), OCI _ONE PIECE , (dvoid*)O0,
NULL, (ub2)0, (ubl)SQLCS IMPLICIT));
printf ("OCILobRead2: buf: %.*s amt: %$lu\n", amt, lbuf, amt);

J* */
[Hmm e Modifying @ LOB =—==========——-————— oo */
J* */
[Fmmm e Writing Data to LOB ——===-=--==—--——---———— */
amt = 8;

CHECK_ERROR (OCILobWriteZ2 (svchp, errhp, c2, &bamt, &amt, 1,
(dvoid *) inbuf, (ub8)inbuf len, OCI ONE PIECE, (dvoid *)0,
(OCICallbackLobWrite?2)O0,
(ub2) 0, (ubl) SQLCS_IMPLICIT));

9-24

Chapter 9
OCI API for LOBs

/* Bppend 8 characters */

amt = 8;

CHECK_ERROR (OCILobWriteAppend2 (svchp, errhp, c2, &bamt, &amt,
(dvoid *) inbuf, (ub8)inbuf len, OCI ONE PIECE, (dvoid *)0,
(OCICallbackLobWrite?2)O0,
(ub2) 0, (ubl) SQLCS IMPLICIT));

[Hmmmmm e Erase part of LOB contents ---------------- */
/* Erase 5 characters */
amt = 5;

CHECK_ERROR (OCILobEraseZ2(svchp, errhp, c2, &amt, 2));

amt = 1000;
CHECK_ERROR (OCILobTrim2 (svchp, errhp, c2, amt));
printf ("OCILobTrim2 Works! \n");

¥ o */
[Fmmmmmmm e Operations involving 2 locators -------------—------ */
JF */
[Fmmmmmmm e Check Equality of LOB locators -—-------—-—=------- */

CHECK _ERROR (OCILobIsEqual (envhp, cl, c2, &boolval))
printf ("OCILobIsEqual %$s\n", (boolval)?"TRUE":"FALSE");

[Fmmmmmmm e Append contents of a LOB to another LOB ---------- */
CHECK_ERROR (OCILobAppend (svchp, errhp, c2, cl));
printf ("OCILobAppend: Works! \n");

[Fmmmm e LOB COopy —=—====—=—=—=—=-—-—--—-———————o - */

/* Copy 10 characters from offset 1 of source to offset 2 of destination*/
CHECK_ERROR (OCILobCopy2 (svchp, errhp, c2, cl, 10, 2, 1));

printf ("OCILobCopy2: Works! \n");

[Hmmmmmmm e LOB Locator Assign ——-—----=--==-—=-—-———-—-————- */
CHECK_ERROR (OCILobLocatorAssign(svchp, errhp, cl, &c2));
printf ("OCILobLocatorAssign: Works! \n");

/* Free the LOB descriptors which were allocated */
OCIDescriptorFree((dvoid *) cl, (ub4) SQLT CLOB);
OCIDescriptorFree((dvoid *) c2, (ub4) SQLT CLOB);

CHECK_ERROR (OCIHandleFree((dvoid *) stmthp, OCI HTYPE STMT));

» Efficiently Reading LOB Data in OCI
This section describes how to read the contents of a LOB into a buffer.

» Efficiently Writing LOB Data in OCI
This section describes how to write the contents of a buffer to a LOB.

ORACLE 0 05

Chapter 9
OCI API for LOBs

9.4.1 Efficiently Reading LOB Data in OCI

ORACLE

This section describes how to read the contents of a LOB into a buffer.

Streaming Read in OCI

The most efficient way to read large amounts of LOB data is to use 0CILobRead?2 () with the
streaming mechanism enabled using polling or callback. To do so, specify the starting point of
the read using the of fset parameter as follows:

ub8 char amt = 0;
ub8 byte amt = 0;
ub4 offset = 1000;

OCILobRead2 (svchp, errhp, locp, &byte amt, &char amt, offset, bufp, bufl,
OCI_ONE PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byte amt parameter after each
OCILobRead? () call to see how many bytes were read into the buffer because the buffer may
not be entirely full.

When using callbacks, the 1enp parameter, which is input to the callback, indicates how many
bytes are filled in the buffer. Be sure to check the 1enp parameter during your callback
processing because the entire buffer may not be filled with data.

See Also:

Oracle Call Interface Programmer's Guide

LOB Array Read

This section describes how to read LOB data for multiple locators in one round trip, using
OCILobArrayRead().

For an OCI application example, assume that the program has a prepared SQL statement
such as:

SELECT lobl FROM lob table;

where lobl is the LOB column and lob array is an array of define variables corresponding to
a LOB column:

OCILobLocator * lob array([10];

for (i=0; 1<10, i++) /* initialize array of locators */
lob_array[i] = OCIDescriptorAlloc(..., OCI DTIYPE LOB, ...);

OCIDefineByPos (..., 1, (dvoid *) lob array, ... SQLT CLOB, ...);

/* Execute the statement with iters = 10 to do an array fetch of 10 locators. */
OCIStmtExecute (<service context>, <statement handle>, <error handle>,

10, /* iters */

0, /* row offset */

9-26

ORACLE

NULL, /* snapshot IN */
NULL, /* snapshot out */
OCI_DEFAULT /* mode */);

ub4 array iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char amtp([10];
oraub8 offset[10];

for (1=0; 1<10; 1i++4)
{
bufp[i] = (char *)malloc(1000);
bufl[i] = 1000;
offset[1] = 1;
char amtp[i] = 1000; /* Single byte fixed width char set. */
}
/* Read the 1st 1000 characters for all 10 locators in one
* round trip. Note that offset and amount need not be
* same for all the locators. */
OCILobArrayRead (<service context>, <error handle>,
garray iter, /* array size */
lob array, /* array of locators */
NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCI_ONE PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */
SQLCS_IMPLICIT);/* character set form */
for (i=0; i<10; i++)
{
/* Fill bufp[i] buffers with data to be written */
strncpy (bufp[i], "Test Data------ ", 15);
bufl[i] = 1000;
offset[1] = 50;
char amtp[i] = 15; /* Single byte fixed width char set. */

/* Write the 15 characters from offset 50 to all 10
* locators in one round trip. Note that offset and
* amount need not be same for all the locators. */

*/

OCILobArrayWrite (<service context>, <error handle>,

garray iter, /* array size */

lob_array, /* array of locators */
NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */

(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */

OCI_ONE PIECE, /* piece information */

Chapter 9
OCI API for LOBs

9-27

ORACLE

Chapter 9
OCI API for LOBs

NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS_IMPLICIT);/* character set form */

LOB Array Read with Streaming

LOB array APIs can be used to read/write LOB data in multiple pieces. This can be done by
using polling method or a callback function.Here data is read/written in multiple pieces
sequentially for the array of locators. For polling, the API would return to the application after
reading/writing each piece with the array iter parameter (OUT) indicating the index of the
locator for which data is read/written. With a callback, the function is called after reading/writing
each piece with array iter as IN parameter.

Note that:

e ltis possible to read/write data for a few of the locators in one piece and read/write data for
other locators in multiple pieces. Data is read/written in one piece for locators which have
sufficient buffer lengths to accommodate the whole data to be read/written.

* Your application can use different amount value and buffer lengths for each locator.

e Your application can pass zero as the amount value for one or more locators indicating
pure streaming for those locators. In the case of reading, LOB data is read to the end for
those locators. For writing, data is written until 0CI_LAST PIECE is specified for those
locators.

LOB Array Read with Callback

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte buffer size.
Each locator needs 10 pieces to read all the data. The callback function is called 100 (10*10)
times to return the pieces sequentially.

/* Fetch the locators */

ub4 array iter = 10;
char *bufp[10];

oraub8 bufl[10];

oraub8 char amtp[10];
oraub8 offset[10];
sword st;

for (i=0; 1<10; i++)
{

bufp[i] = (char *)malloc(1000);

bufl[i] = 1000;

offset[i] = 1;

char amtp[i] = 10000; /* Single byte fixed width char set. */

}

st = OCILobArrayRead(<service context>, <error handle>,
garray iter, /* array size */
lob_array, /* array of locators */
NULL, /* array of byte amounts */
char amtp, /* array of char amounts */
offset, /* array of offsets */

(void **)bufp, /* array of read buffers */

bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
ctx, /* callback context */
cbk read lob, /* callback function */

9-28

ORACLE

Chapter 9
OCI API for LOBs

0, /* character set ID - default */
SQLCS IMPLICIT);

/* Callback function for LOB array read. */
sb4 cbk read lob(dvoid *ctxp, ub4 array iter, CONST dvoid *bufxp, oraub8 len,
ubl piece, dvoid **changed bufpp, oraub8 *changed lenp)
{
static ub4 piece count = 0;
piece count++;
switch (piece)
{
case OCI_LAST PIECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the %d th piece(last piece) for %dth locator \n\n",
piece count, array iter);
piece count = 0;
break;
case OCI FIRST PIECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the 1st piece for %dth locator\n",
array iter);
/* --Optional code to set changed bufpp and changed lenp if the buffer needs
to be changed dynamically --*/

break;
case OCT_NEXT PIECE:
/*--- buffer processing code goes here ---*/

(void) printf("callback read the %d th piece for %dth locator\n",
piece count, array iter);
/* --Optional code to set changed bufpp and changed lenp if the buffer
must be changed dynamically --*/
break;
default:
(void) printf("callback read error: unkown piece = %d.\n", piece);
return OCI_ERROR;

}
return OCI_CONTINUE;

LOB Array Read in Polling Mode

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte buffer size.
Each locator needs 10 pieces to read the complete data. 0OCILobArrayRead () must be called
100 (10*10) times to fetch all the data.First we call 0CILobArrayRead () with OCI_FIRST PIECE
as piece parameter. This call returns the first 1K piece for the first locator.Next
OCILobArrayRead () is called in a loop until the application finishes reading all the pieces for
the locators and returns OCI_SUCCESS. In this example it loops 99 times returning the pieces for
the locators sequentially.

/* Fetch the locators */

/* array iter parameter indicates the number of locators in the array read.
* It is an IN parameter for the 1lst call in polling and is ignored as IN

* parameter for subsequent calls. As OUT parameter it indicates the locator
* index for which the piece is read.

*/

ub4 array iter = 10;
char “*bufp[10];

oraub8 bufl[10];

oraub8 char amtp([10];

9-29

Chapter 9
OCI API for LOBs

oraub8 offset[10];

sword st;

for (1=0; 1i<10; 1i++4)

{
bufp([i] (char *)malloc (1000);
bufl[i] = 1000;
offset[i] = 1;

char amtp[i] 10000;

/* Single byte fixed width char set. */

st

OCILobArrayRead (<service context>, <error handle>,
&array iter, /* array size */

lob_array, /* array of locators */
NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS_IMPLICIT); /* character set form */

/* First piece for the first locator is read here.
* bufp[0] => Buffer pointer into which data is read.

* char_amtp[O] => Number of characters read in current buffer
*

*/

While
{

(st

OCI_NEED DATA)

st

OCILobArrayRead (<service context>, <error handle>,
garray iter, /* array size */
lob array, /* array of locators */
NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */

(void **)bufp, /* array of read buffers */

bufl, /* array of buffer lengths */

OCI_NEXT PIECE, /*
NULL, /*
NULL, /*
0, /*
SQLCS_IMPLICIT);

piece information */
callback context */
callback function */
character set ID - default */

array iter returns the index of the current array element for which
data is read. for example, aray iter 1 implies first locator,
array iter 2 implies second locator and so on.

lob_array[array iter - 1]=> Lob locator for which data is read.
bufplarray iter - 1] => Buffer pointer into which data is read.
char_amtp[array_iter - 1] => Number of characters read in current buffer

EE S A T

/* Consume the data here */

ORACLE

9-30

9.4.2 Efficiently Writing LOB Data in OCI

This section describes how to write the contents of a buffer to a LOB.

Streaming Write in OCI

Chapter 9
OCI API for LOBs

The most efficient way to write large amounts of LOB data is to use 0CILobWrite2 () with the
streaming mechanism enabled, and using polling or a callback. If you know how much data is
written to the LOB, then specify that amount when calling oCILobWrite2 (). This ensures that
LOB data on the disk is contiguous. Apart from being spatially efficient, the contiguous
structure of the LOB data makes reads and writes in subsequent operations faster.

LOB Array Write with Callback

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer size. A
total of 100 pieces must be written (10 pieces for each locator). The first piece is provided by
the oCILobArrayWrite () call. The callback function is called 99 times to get the data for

subsequent pieces to be written.

/* Fetch the locators */

ub4 array iter = 10;
char “*bufp[10];

oraub8 bufl[10];

oraub8 char amtp([10];
oraub8 offset[10];
sword sSt;

for (i=0; i<10; i++)
{

bufp[i] = (char *)malloc(1000);
bufl[i] = 1000;
offset[i] = 1;
char amtp[i] = 10000; /* Single byte fixed width char set. */
}
st = OCILobArrayWrite (<service context>, <error handle>,
garray iter, /* array size */
lob array, /* array of locators */
NULL, /* array of byte amounts */
char_ amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of write buffers */
bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
ctx, /* callback context */
cbk write lob /* callback function */
0, /* character set ID - default */

SQLCS IMPLICIT);

/* Callback function for LOB array write. */
sb4 cbk write lob(dvoid *ctxp, ub4 array iter, dvoid *bufxp, oraub8 *lenp,
ubl *piecep, ubl *changed bufpp, oraub8 *changed lenp)

{
static ub4 piece count = 0;
piece count++;

ORACLE

9-31

ORACLE

Chapter 9
OCI API for LOBs

printf (" %dth piece written for %dth locator \n\n", piece_count, array iter);

/*-- code to fill bufxp with data goes here. *lenp should reflect the size and
* should be less than or equal to MAXBUFLEN -- */

/* --Optional code to set changed bufpp and changed lenp if the buffer must

* pe changed dynamically --*/

if (this is the last data buffer for current locator)
*piecep = OCI_LAST PIECE;

else 1if (this is the first data buffer for the next locator)
*piecep = OCI_FIRST PIECE;
piece count = 0;

else
*piecep = OCI_NEXT PIECE;

return OCI_CONTINUE;
}

LOB Array Write in Polling Mode

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer size.
OCILobArrayWrite () has to be called 100 (10 times 10) times to write all the data. The function
is used in a similar manner to OCILobWrite2 ().

/* Fetch the locators */

/* array iter parameter indicates the number of locators in the array read.

* It is an IN parameter for the lst call in polling and is ignored as IN

* parameter for subsequent calls. As an OUT parameter it indicates the locator
* index for which the piece is written.

*/

ub4 array iter = 10;
char “*bufp[10];

oraub8 bufl[10];

oraub8 char amtp([10];
oraub8 offset[10];
sword st;

int i, 3

for (1=0; 1<10; i++)

{
bufp[i] = (char *)malloc(1000);
bufl[i] = 1000;
/* Fill bufp here. */

offset[i] = 1;

char amtp[i] 10000; /* Single byte fixed width char set. */

for (1 =1; 1 <= 10; 1i++)

{

/* Fill up bufp[i-1] here. The first piece for ith locator would be written from
bufp[i-1] */

st = OCILobArrayWrite (<service context>, <error handle>,
&array iter, /* array size */
lob array, /* array of locators */
NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */

9-32

Chapter 9
OCI API for LOBs

ORACLE

offset, /* array of offsets */
(void **)bufp, /* array of write buffers */
bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS_IMPLICIT); /*

for

{
/* Fill up bufp[i-1] here.

(3 =2; 3 <10; j++4)

character set form */

The jth piece for ith locator would be written from

bufp[i-1] */
st = OCILobArrayWrite (<service context>, <error handle>,
garray iter, /* array size */
lob array, /* array of locators */
NULL, /* array of byte amounts */
char amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of write buffers */
bufl, /* array of buffer lengths */
OCI_NEXT PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */
SQLCS IMPLICIT);
/* array iter returns the index of the current array element for which
* data is being written. for example, aray iter = 1 implies first locator,
* array iter = 2 implies second locator and so on. Here i = array iter.
*
* lob array[array iter - 1] => Lob locator for which data is written.
* bufplarray iter - 1] => Buffer pointer from which data is written.
* char amtp[array iter - 1] => Number of characters written in
* the piece just written
*/

/* Fill up bufpl[i-1] here. The last piece

bufp(i -1] */

st = OCILobArrayWrite (<service context>,
&array iter, /* ar

lob_array, /* ar

NULL, /* ar

char amtp, /* ar

offset, /* ar

(void **)bufp, /* ar

bufl, /* ar

OCI_LAST PIECE, /

NULL, /

NULL, /

0, /

SQLCS IMPLICIT);

for ith locator would be written from

<error handle>,

ray size */

ray of locators */

ray of byte amounts */
ray of char amounts */
ray of offsets */

ray of write buffers */
ray of buffer lengths */
* piece information */
callback context */
callback function */
character set ID - default */

*
*

*

9-33

Chapter 9
ODP.NET API for LOBs

9.5 ODP.NET API for LOBs

Oracle Data Provider for .NET (ODP.NET) is an ADO.NET provider for the Oracle Database.

ODP.NET offers fast and reliable access to Oracle data and features from any .NET Core
or .NET Framework application. ODP.NET also uses and inherits classes and interfaces
available in the Microsoft .NET Class Library. The ODP.NET supports the following LOBs as
native data types with .NET: BLOB, CLOB, NCLOB, and BFILE.

See Also:

e LOB Support
e Obtaining LOB Data

Table 9-7 ODP.NET methods in OracleClob and OracleBlob classes
]

Category Function/Procedure Description
Open/Close BeginChunkWrite Open a LOB
EndChunkWrite Close a LOB
IsInChunkWriteMode Check if a LOB is open
Read Operations Length Get the length of the LOB
OptimumChunkSize Get the optimum read/write size
Value Returns the entire LOB data as a
string for CLOB and a byte array
for BLOB
Read Read data from the LOB starting
at the specified offset
Search Return the matching position of a
pattern in a LOB using INSTR
Modify Operations Write Write data to the LOB at a
specified offset
Erase Erase part of a LOB, starting at a
specified offset
SetLength Trim the LOB value to the
specified shorter length
Operations involving multiple Compare Compare all or part of the value
locators of two LOBs
IsEqual Check if two LOBSs point to the

same LOB data

Append Append a LOB value to another
LOB, or append a byte array,
string, or character array to an

existing LOB

CopyTo Copy all or part of a LOB to
another LOB

Clone Assign LOB locator src to LOB
locator dst

ORACLE 0.34

Chapter 9
OCCI API for LOBs

9.6 OCCI API for LOBs

OCCI provides a seamless interface to manipulate objects of user-defined types as C++ class
instances.

Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle database.
OCCIl is organized as an easy-to-use set of C++ classes that enable a C++ program to connect
to a database, run SQL statements, insert/update values in database tables, retrieve results of
a query, run stored procedures in the database, and access metadata of database schema
objects.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCI and OCCI together to
build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

e OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the
functionality of OCI that JDBC does not provide.

e OCCI provides compiled performance. With compiled programs, the source code is written
as close to the computer as possible. Because JDBC is an interpreted API, it cannot
provide the performance of a compiled API. With an interpreted program, performance
degrades as each line of code must be interpreted individually into code that is close to the
computer.

e OCCI provides memory management with smart pointers. You do not have to be
concerned about managing memory for OCCI objects. This results in robust higher
performance application code.

* Navigational access of OCCI enables you to intuitively access objects and call methods.
Changes to objects persist without writing corresponding SQL statements. If you use the
client side cache, then the navigational interface performs better than the object interface.

e With respect to ODBC, the OCCI API is simpler to use. Because ODBC is built on the C
language, OCCI has all the advantages C++ provides over C. Moreover, ODBC has a
reputation as being difficult to learn. The OCCI, by contrast, is designed for ease of use.

You can use OCCI to perform random and piecewise operations on LOBs, which means that
you specify the offset or amount of the operation to read or write a part of the LOB value.

OCCI provides these classes that allow you to use different types of LOB instances as objects
in your C++ application:

e Clob class to access and modify data stored in persistent CLOBS and NCLOBS

* Blob class to access and modify data stored in persistent BLOBS

¢ See Also:

Syntax information on these classes and details on OCCI in general is available in
theOracle C++ Call Interface Developer's Guide.

Clob Class

The Clob driver implements a CLOB object using an SQL LOB locator. This means that a CLOB
object contains a logical pointer to the SQL CLOB data rather than the data itself.

ORACLE 0.35

ORACLE

Chapter 9
OCCI API for LOBs

The cLOB interface provides methods for getting the length of an SQL cL0oB value, for
materializing a CLOB value on the client, and getting a substring. Methods in the Resultset and
Statement interfaces such as getClob () and setClob () allow you to access SQL CLOB values.
Blob Class

Methods in the ResultSet and Statement interfaces, such as getBlob () and setBlob (), allow
you to access SQL BLOB values. The Blob interface provides methods for getting the length of
a SQL BLOB value, for materializing a BLOB value on the client, and for extracting a part of the
BLOB.

Fixed-Width Character Set Rules

In OCCI, for fixed-width client-side character sets, these rules apply:

e Clob: offset and amount parameters are always in characters

* Blob: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

» Offset parameter: Regardless of whether the client-side character set is varying-width, the
offset parameter is always as follows:

— Clob():in characters
— Blob():in bytes
e Amount parameter: The amount parameter is always as indicated:
— Clob:in characters, when referring to a server-side LOB
— Blob: in bytes, when referring to a client-side buffer

* length(): Regardless of whether the client-side character set is varying-width, the output
length is as follows:

— Clob.length():in characters
— Blob.length():in bytes

e Clob.read() and Blob.read(): With client-side character set of varying-width, cL.0Bs and
NCLOBS:

— Input amount is in characters. Input amount refers to the number of characters to read
from the server-side CLOB or NCLOB.

— Output amount is in bytes. Output amount indicates how many bytes were read into
the OCCI buffer parameter, buffer.

* Clob.write() and Blob.write(): With client-side character set of varying-width, CLOBs and
NCLOBS:

— Input amount is in bytes. Input amount refers to the number of bytes of data in the
OCCI input buffer, buffer.

— Output amount is in characters. Output amount refers to the number of characters
written into the server-side CLOB or NCLOB.

Amount Parameter for Other OCCI Operations: For the OCCI LOB operations
Clob.copy(), Clob.erase(), Clob.trim() irrespective of the client-side character set, the
amount parameter is in characters for CLOBs and NCLOBS. All these operations refer to the
amount of LOB data on the server.

9-36

Chapter 9
Pro*C/C++ and Pro*COBOL API for LOBs

¢ See also:

Oracle Database Globalization Support Guide

Table 9-8 OCCI Methods for LOBs
]

Category Function/Procedure Description
Sanity Checking Clob/Blob.isInitialized Checks whether a LOB locator is
initialized.
Open/Close Clob/Blob.Open () Open a LOB
Clob/Blob.isOpen () Check if a LOB is open
Clob/Blob.Close () Close the LOB
Read Operations Blob/Clob.length() Get the length of the LOB
Blob/Clob.getChunkSize () Get the optimum read or write
size
Blob/Clob.read() Read data from the LOB starting
at the specified offset
Clob.getCharSetId() Return the character set ID of a
LOB
Clob.getCharSetForm() Return the character set form of a
LOB.
Modify Operations Blob/Clob.write() Write data to the LOB at a
specified offset
Blob/Clob.trim() Trim the LOB value to the
specified shorter length
Operations involving multiple Clob/Blob.operator == Checks whether two LOB
locators and != locators refer to the same LOB.
Blob/Clob.append () Append a LOB value to another
LOB
Blob/Clob.copy () Copy all or part of a LOB to

another LOB, or load from a
BFILE into a LOB

Clob/Blob.operator = Assign one LOB to another
Operations specific to securefiles Blob/Clob.getOptions () Returns options (deduplication,
compression, encryption) for
SecureFiles.
Blob/Clob.setOptions () Sets LOB features (deduplication

and compression) for SecureFiles

Blob/Clob.getContentType () Gets the content string for a
SecureFiles

Blob/Clob.setContentType () Sets a content string in a
SecureFiles

9.7 Pro*C/C++ and Pro*COBOL API for LOBs

This section describes the mapping of Pro*C/C++ and Pro*COBOL locators to locator pointers
to access a LOB value.

Embedded SQL statements enable you to access data stored in BLOBS, CLOBS, and NCLOBS.

ORACLE 9-37

See Also:

code.

Chapter 9

Pro*C/C++ and Pro*COBOL API for LOBs

Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's Guide for detailed
documentation, including syntax, host variables, host variable types and example

Unlike locators in PL/SQL, locators in Pro*C/C++ and Pro*COBOL are mapped to locator
pointers which are then used to refer to the LOB value. To successfully complete an embedded
SQL LOB statement you must do the following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the database
tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable.

3. Use this variable in the embedded SQL LOB statement to access and manipulate the LOB

value.

Table 9-9 Pro*C/IC++ and Pro*COBOL Embedded SQL Statements for LOBs
]

Category Function/Procedure Description
Open/Close OPEN OpenalLOB
DESCRIBE [ISOPEN] Check is a LOB is open
CLOSE Close the LOB

Read Operations

DESCRIBE [LENGTH]

Get the length of the LOB

DESCRIBE [CHUNKSIZE]

Get the optimum read or write
size

READ Read data from the LOB starting
at a specified offset
Modify Operations WRITE Write data to the LOB at a

specified offset

WRITE APPEND

Write data to the end of the LOB

ERASE Erase part of a LOB, starting at a
specified offset
TRIM Trim the LOB value to the
specified shorter length
Operations involving multiple APPEND Append a LOB value to another
locators LOB
COPY Copy all or part of a LOB to
another LOB
ASSIGN Assign one LOB to another

LOAD FROM FILE

Load BFILE data into a LOB

ORACLE

9-38

Distributed LOBs

This section describes the ways in which you can work with LOB data in remote tables.

Distributed LOBs are LOBs that are fetched from one server to another, and may optionally be
returned to the client. Distributed LOBs can be persistent or temporary LOBs for both reference
and value LOB columns.

In sharding, a table is horizontally partitioned with subsets of rows in a table stored in different
sharded databases. The client connects to the coordinator database, which in turn works with
shards to provide a consolidated view of a table. Sharded LOBs are an extension of Distributed
LOBs. LOB data between different shards is transported as distributed LOBs and the result is
provided to the client through the coordinator database.

All Persistent LOBs and Temporary LOBs originating from JSON support Distributed and
Sharded LOBs.

* Working with Remote LOBs in SQL and PL/SQL
This section describes the SQL and PL/SQL functions that are supported on remote LOBs.

* Using the Data Interface on Remote LOBs
The data interface enables you to bind and define a CHARACTER buffer for a CLOB column
and a rRaW buffer for a BLOB column. This interface is supported for remote LOB columns
too.

* Working with Remote Locators
You can select a persistent LOB locator from a remote table into a local variable and this
can be done in any programmatic interface like PL/SQL, JDBC or OCI. The remote
columns can be of type BLOB, CLOB Or NCLOB.

¢ See Also:
Sharding with LOBs

10.1 Working with Remote LOBs in SQL and PL/SQL

ORACLE

This section describes the SQL and PL/SQL functions that are supported on remote LOBs.

SQL Functions

All the SQL built-in functions and user-defined functions that are supported on local LOBs and
BFILEs, are also supported on remote LOBs and BFILEs, as long as the final value returned
by the nested functions is not a LOB type. This includes functions for remote persistent and
temporary LOBs and for BFILES.

Most of the examples in the following sections use print media table. Following is the
structure of the table:

10-1

Chapter 10
Working with Remote LOBs in SQL and PL/SQL

PRINT_MEDIA Table

{ Column name

J [Column Type J

product_id

ad_id
ad_composite
ad_sourcetext
ad_finaltext
ad_fltextn
ad_textdocs_ntab
ad_photo
ad_graphic
ad_header

press_release

NUMBER (6)
NUMBER (6)

BLOB

CLOB

CLOB

NCLOB

NESTED TABLE
BLOB

BFILE

USER DEFINED TYPE

LONG

Built-in SQL functions, which are executed on a remote site, can be part of any SQL statement,
like SELECT, INSERT, UPDATE, and DELETE. For example:

SELECT LENGTH (ad_sourcetext) FROM print media@remote site -- CLOB
SELECT LENGTH (ad fltextn) FROM print media@remote site; -- NCLOB
SELECT LENGTH (ad_composite) FROM print media@remote site; -- BLOB
SELECT product id from print media@remote site WHERE LENGTH (ad sourcetext) >

3;

UPDATE print medial@remote site SET product id = 2 WHERE LENGTH (ad sourcetext)

> 3;

SELECT TO_CHAR (foo@dbs2(...)) FROM dual@dbs2;
-- where fool@dbs2 returns a temporary LOB

ORACLE"

10-2

ORACLE

Chapter 10
Working with Remote LOBs in SQL and PL/SQL

PL/SQL functions

Built-in and user-defined PL/SQL functions that are executed on the remote site and operate
on remote LOBs and BFILEs are allowed, as long as the final value returned by nested
functions is not a LOB.

SELECT product id FROM print media@dbs2 WHERE foo@dbs2(ad sourcetext, 'aa') >
0;
-- foo is a user-define function returning a NUMBER

DELETE FROM print media€@dbs2 WHERE DBMS LOB.GETLENGTH@dbs2 (ad graphic) = 0;

Restrictions on Remote User Defined Functions
The SQL and PL/SQL functions fall under the following non-comprehensive list of categories:

e SQL functions that are not supported on LOBs
The SQL functions like the DECODE function, which are not supported for LOBSs, are not
supported on remote LOBs as well.

* Functions that accept exactly one LOB argument (where all the other arguments are of
non-LOB data types) and does not return a LOB
The functions, like the LENGTH function, are supported. For example:

SELECT LENGTH (ad composite) FROM print media@remote site;
SELECT LENGTH (ad header.logo) FROM print media@remote site; -- LOB in
object
SELECT product id from print media@remote site WHERE LENGTH(ad sourcetext)
> 3;

+ Functions that return a LOB

These functions may return the original LOB or produce a temporary LOB. These functions
can be performed on the remote site, as long as the result returned to the local site is not a
LOB.

— Functions returning a temporary LOB are: REPLACE, SUBSTR, CONCAT, ||, TRIM, LTRIM,
RTRIM, LOWER, UPPER, NLS LOWER, NLS UPPER, LPAD, and RPAD.

— Functions returning the original LOB locator are: NVL, DECODE, and CASE.
For example, the following statements are supported:
SELECT TO_CHAR (CONCAT (ad_sourcetext, ad sourcetext)) FROM

print media€remote site;
SELECT TO_ CHAR(SUBSTR(ad fltextnfs, 1, 3)) FROM print media@remote site;

But the following statements are not supported:

SELECT CONCAT (ad_sourcetext, ad sourcetext) FROM print medialremote site;
SELECT SUBSTR (ad_sourcetext, 1, 3) FROM print media@remote site;

e Functions that take in more than one LOB argument:

These are: INSTR, LIKE, REPLACE, CONCAT, ||, SUBSTR, TRIM, LTRIM, RTRIM, LPAD, and RPAD.
All these functions are relevant only for CLOBsS and NCLOBS.

10-3

Chapter 10
Using the Data Interface on Remote LOBs

These functions are supported only if all the LOB arguments are on the same dblink. For
example, the following is supported:

SELECT TO_CHAR (CONCAT (ad_sourcetext, ad sourcetext)) FROM

print media@remote site; -- CLOB
SELECT TO CHAR (CONCAT (ad_fltextn, ad fltextn)) FROM
print media@remote site; -- NCLOB

But the following is not supported

SELECT TO_CHAR (CONCAT (a.ad sourcetext, b.ad sourcetext)) FROM
print media@dbl a, print media@db2 b WHERE a.product id = b.product id;

PL/SQL functions operating on LOBs:
A function in one dblink cannot operate on LOB data in another dblink. For example, the
following statement is not supported:

SELECT a.product id FROM print media@dbsl a, print media@dbs2 b WHERE
CONTAINS@dbsl (b.ad sourcetext, 'aa') >0;

Multiple LOBs in a query block:
One query block cannot contain tables and functions at different db1inks. For example, the
following statement is not supported

SELECT a.product id FROM print media@dbs2 a, print media@dbs3 b
WHERE CONTAINS@dbs2 (a.ad sourcetext, 'aa') > 0 AND
fooldbs3 (b.ad sourcetext) > 0;

-- foo is a user-defined function in dbs3

LOB operators and columns are supported if they are in a SELECT list and where clause in a
join query.

Oracle-provided PL/SQL functions and procedures can return LOB locators.

Only remote LOBs support SQL operators returning temporary LOBs.

Only the views supplied by Oracle, support returning LOBSs.

10.2 Using the Data Interface on Remote LOBs

ORACLE

The data interface enables you to bind and define a CHARACTER buffer for a CLOB column and a
RAW buffer for a BLOB column. This interface is supported for remote LOB columns too.

The advantage of using the data interface over using LOB locators is that it makes only one
round-trip to the remote server to fetch the LOB data. If used in as part of an array bind or
define, it will use only one round-trip for the entire array operation.

The examples discussed in the book use the print media table created in the following two
schemas: dbs1 and dbs2. The CLOB column of the print media table used in the examples
shown is ad_finaltext. The examples provided for PL/SQL, OCI, and Java in the following
sections use binds and defines for this one column, but multiple columns can also be
accessed. Following is the functionality supported:

You can bind and define a CLOB as VARCHAR2 and a BLOB as RAN.

Array binds and defines are supported.

10-4

ORACLE

Chapter 10
Using the Data Interface on Remote LOBs

. PL/SQL
. JDBC
. ocCl

. Remote LOBs

PL/SQL

This section describes how to use the remote data interface with LOBs in PL/SQL.

The data interface only supports data of size less than 32KB in PL/SQL. The following snippet
shows a PL/SQL example:

CONNECT pm/pm
declare
my ad varchar(6000) := lpad('b', 6000, 'b');
BEGIN
INSERT INTO print media@dbs2 (product id, ad_id, ad finaltext)
VALUES (10000, 10, my ad);
-- Reset the buffer value
my ad := 'a';
SELECT ad finaltext INTO my ad FROM print_media@dbs2
WHERE product id = 10000;
END;
/

If ad finaltext were a BLOB column instead of a CLOB, my ad has to be of type Raw. If the LOB
is greater than 32KB - 1 in size, then PL/SQL raises a truncation error and the contents of the
buffer are undefined.

JDBC

This section demonstrates how to use the remote data interface with LOBs in JDBC.
The following code snippets work with all JDBC drivers:
Bind:

This is for the non-streaming mode:

String sql = "insert into print media@dbs2 (product_id, ad id, ad final text)" +
" values (:1, :2, :3)";
PreparedStatement pstmt = conn.prepareStatement (sql);
pstmt.setInt(1, 2);
pstmt.setInt(2, 20);
pstmt.setString(3, "Java string");
int rows = pstmt.executeUpdate();

Note: Oracle supports the non-streaming mode for strings of size up to 2 GB. However, the
memory size of your computer may be a limiting factor.

For the streaming mode, the same code as the preceding works, except that the setString()
statement is replaced by one of the following:

pstmt.setCharacterStream(3, new LabeledReader (), 1000000);
pstmt.setAsciiStream(3, new LabeledAsciilnputStream(), 1000000);

10-5

Chapter 10
Using the Data Interface on Remote LOBs

Note: You can use the streaming interface to insert Gigabyte sized character and binary data
into a LOB column.

Here, LabeledReader () and LabeledAsciiInputStream() produce character and ASCII
streams respectively. If ad_finaltext were a BLOB column instead of a CLOB, then the
preceding example works if the bind is of type RAW:

pstmt.setBytes(3, <some byte[] array>);

pstmt.setBinaryStream(3, new LabeledInputStream(), 1000000);

Here, LabeledInputStream() produces a binary stream.
Define:

For non-streaming mode:

OracleStatement stmt = (OracleStatement) (conn.createStatement());
stmt.defineColumnType (1, Types.VARCHAR);
ResultSet rst = stmt.executeQuery("select ad finaltext from print media@dbs2");
while(rst.next())

{
String s = rst.getString(1);
System.out.println(s);

}

Note: If the LOB size is greater than 32767 bytes, the data is truncated and no error is thrown.

For streaming mode:

OracleStatement stmt = (OracleStatement) (conn.createStatement());
stmt.defineColumnType (1, Types.LONGVARCHAR) ;
ResultSet rs = stmt.executeQuery("select ad finaltext from print media@dbs2");
while(rs.next ()) {
Reader reader = rs.getCharacterStream(1);
int data = 0;
data = reader.read();
while(-1 != data) {
System.out.print ((char) (data));
data = reader.read();

}

reader.close();

Note: Specifying the datatype as LONGVARCHAR lets you select the entire LOB. If the define type
is set as VARCHAR instead of LONGVARCHAR, the data will be truncated at 32k.

If ad finaltext were a BLOB column instead of a CLOB, then the preceding examples work if
the define is of type LONGVARBINARY:

OracleStatement stmt = (OracleStatement)conn.createStatement();

stmt.defineColumnType (1, Types.INTEGER);
stmt.defineColumnType (2, Types.LONGVARBINARY);

ResultSet rset = stmt.executeQuery("SELECT ID, LOBCOL FROM LOBTAB@EMYSELE");

while (rset.next ()
{
/* using getBytes() */
/*
byte[] b = rset.getBytes ("LOBCOL") ;

ORACLE 06

ORACLE

Chapter 10
Using the Data Interface on Remote LOBs

System.out.println("ID: " + rset.getInt("ID") + " length: " + b.length);
*/

/* using getBinaryStream() */

InputStream byte stream = rset.getBinaryStream("LOBCOL");

byte [] b = new byte [100000];

int b_len = byte stream.read(b);

System.out.println("ID: " + rset.getInt("ID") + " length: " + b len);

byte stream.close();

OCI

This section demonstrates how to use the remote data interface with LOBs in OCI.

The data interface only supports data of size less than 2 gigabytes (the maximum value
possible of a variable declared as sb4) for OCI. The following pseudocode can be enhanced to
be a part of an OCI program:

text *sql = (text *)"insert into print media@dbs2
(product id, ad id, ad finaltext)
values (:1, :2, :3)";
OCIStmtPrepare(...);
OCIBindByPos(...); /* Bind data for positions 1 and 2
* which are independent of LOB */
OCIBindByPos (stmthp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) charbufl, (sb4) len charbufl, SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)0, 0, 0, OCI_DEFAULT);
OCIStmtExecute(...);

text *sql = (text *)"select ad finaltext from print media@dbs2
where product id = 10000";
OCIStmtPrepare(...);
OCIDefineByPos (stmthp, &dfnhp[2], errhp, (ub4) 1,
(dvoid *) charbuf2, (sb4) len charbuf2, SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI DEFAULT);
OCIStmtExecute(...);

For a BLOB column, you must use the SQLT BIN type. For example, if you define the
ad_finaltext column as a BLOB column instead of a CLOB column, then you must bind and
define the column data using the SQLT BIN type. If the LOB is greater than 2GB - 1 bytes in
size, then OCI raises a truncation error and the contents of the buffer are undefined.

Remote LOBs

This section discusses the restrictions on the usage of Data Interface on Remote LOBs.
Certain syntax is not supported for remote LOBs.

* Queries involving more than one database are not supported:

SELECT tl.lobcol, a2.lobcol FROM tl, t2.lobcol@dbs2 a2 WHERE
LENGTH (t1.lobcol) = LENGTH(a2.lobcol);

Neither is this query (in a PL/SQL block):

10-7

Chapter 10
Using the Data Interface on Remote LOBs

SELECT tl.lobcol INTO varchar bufl FROM tl@dbsl
UNION ALL
SELECT t2.lobcol INTO varchar buf2 FROM t2@dbs2;

Only binds and defines for data going into remote persistent LOB columns are supported,
so that parameter passing in PL/SQL where CHAR data is bound or defined for remote
LOBs is not allowed because this could produce a remote temporary LOB, which are not
supported. These statements all produce errors:

SELECT foo() INTO varchar buf FROM tablel@dbs2; -- foo returns a LOB
SELECT foo()@dbs INTO char val FROM DUAL; -- foo returns a LOB

SELECT XMLType () .getclobval INTO varchar buf FROM tablel@dbs2;
If the remote object is a view such as

CREATE VIEW v AS SELECT foo() a FROM ... ; -- foo returns a LOB
/* The local database then tries to get the CLOB data and returns an error */
SELECT a INTO varchar buf FROM v@dbs2;

This returns an error because it produces a remote temporary LOB, which is not
supported.
RETURNING INTO does not support implicit conversions between CHAR and CLOB.

PL/SQL parameter passing is not allowed where the actual argument is a LOB type and
the remote argument is a VARCHAR2, NVARCHAR?2, CHAR, NCHAR, Of RAW.

Remote Data Interface Example in PL/SQL
This section describes how to use the remote data interface with LOBs in PL/SQL.

Remote Data Interface Examples in JDBC
This section demonstrates how to use the remote data interface with LOBs in JDBC.

Remote Data Interface Example in OCI
This section demonstrates how to use the remote data interface with LOBs in OCI.

Restrictions for Data Interface on Remote LOBs
This section discusses the restrictions on the usage of Data Interface on Remote LOBs.

See Also:

e Oracle Database JDBC Developer's Guide

* Data Interface for LOBs

10.2.1 Remote Data Interface Example in PL/SQL

ORACLE

This section describes how to use the remote data interface with LOBs in PL/SQL.

The data interface only supports data of size less than 32KB in PL/SQL. The following shippet
shows a PL/SQL example:

CONNECT pm/pm
declare

10-8

Chapter 10
Using the Data Interface on Remote LOBs

my ad varchar(6000) := lpad('b', 6000, 'b');
BEGIN
INSERT INTO print media@dbs2 (product id, ad_id, ad finaltext)
VALUES (10000, 10, my ad);
-— Reset the buffer value
my ad := 'a';
SELECT ad finaltext INTO my ad FROM print media@dbs2
WHERE product id = 10000;
END;
/

If ad finaltext were a BLOB column instead of a CLOB, my ad has to be of type Raw. If the LOB
is greater than 32KB - 1 in size, then PL/SQL raises a truncation error and the contents of the
buffer are undefined.

10.2.2 Remote Data Interface Examples in JDBC

ORACLE

This section demonstrates how to use the remote data interface with LOBs in JDBC.
The following code snippets work with all JDBC drivers:
Bind:

This is for the non-streaming mode:

String sql = "insert into print media@dbs2 (product id, ad id, ad final text)" +
" values (:1, :2, :3)";
PreparedStatement pstmt = conn.prepareStatement (sql);
pstmt.setInt(1, 2);
pstmt.setInt(2, 20);
pstmt.setString(3, "Java string");
int rows = pstmt.executeUpdate();

¢ Note:

Oracle supports the non-streaming mode for strings of size up to 2 GB. However, the
memory size of your computer may be a limiting factor.

For the streaming mode, the same code as the preceding works, except that the setString()
statement is replaced by one of the following:

pstmt.setCharacterStream(3, new LabeledReader (), 1000000);
pstmt.setAsciiStream(3, new LabeledAsciiInputStream(), 1000000);

< Note:

You can use the streaming interface to insert Gigabyte sized character and binary
data into a LOB column.

Here, LabeledReader () and LabeledAsciilInputStream() produce character and ASCII
streams respectively. If ad finaltext were a BLOB column instead of a CLOB, then the
preceding example works if the bind is of type RAW:

10-9

ORACLE

Chapter 10
Using the Data Interface on Remote LOBs

pstmt.setBytes(3, <some byte[] array>);

pstmt.setBinaryStream(3, new LabeledInputStream(), 1000000);

Here, LabeledInputStream() produces a binary stream.
Define:

For non-streaming mode:

OracleStatement stmt = (OracleStatement) (conn.createStatement());
stmt.defineColumnType (1, Types.VARCHAR);
ResultSet rst = stmt.executeQuery("select ad finaltext from print media@dbs2");
while(rst.next())
{
String s = rst.getString(1);
System.out.println(s);
}

Note:

If the LOB size is greater than 32767 bytes, the data is truncated and no error is
thrown.

For streaming mode:

OracleStatement stmt = (OracleStatement) (conn.createStatement());
stmt.defineColumnType (1, Types.LONGVARCHAR) ;
ResultSet rs = stmt.executeQuery("select ad finaltext from print media@dbs2");
while(rs.next ()) {
Reader reader = rs.getCharacterStream(1);
int data = 0;
data = reader.read();
while(-1 != data){
System.out.print ((char) (data));
data = reader.read();

}

reader.close();

Note:

Specifying the datatype as LONGVARCHAR lets you select the entire LOB. If the define
type is set as VARCHAR instead of LONGVARCHAR, the data will be truncated at 32k.

If ad finaltext were a BLOB column instead of a CLOB, then the preceding examples work if
the define is of type LONGVARBINARY:
OracleStatement stmt = (OracleStatement)conn.createStatement();

stmt.defineColumnType (1, Types.INTEGER);
stmt.defineColumnType (2, Types.LONGVARBINARY);

ResultSet rset = stmt.executeQuery("SELECT ID, LOBCOL FROM LOBTAB@EMYSELE");

while (rset.next ()

10-10

Chapter 10
Using the Data Interface on Remote LOBs

/* using getBytes() */
/~k
byte[] b = rset.getBytes ("LOBCOL") ;
System.out.println("ID: " + rset.getInt("ID") + " length: " + b.length);
*/
/* using getBinaryStream() */
InputStream byte stream = rset.getBinaryStream("LOBCOL");
byte [] b = new byte [100000];
int b_len = byte stream.read(b);

System.out.println("ID: " + rset.getInt("ID") + " length: " + b len);

byte stream.close();

¢ See Also:
Oracle Database JDBC Developer's Guide

10.2.3 Remote Data Interface Example in OCI

ORACLE

This section demonstrates how to use the remote data interface with LOBs in OCI.

The data interface only supports data of size less than 2 gigabytes (the maximum value
possible of a variable declared as sb4) for OCI. The following pseudocode can be enhanced to
be a part of an OCI program:

text *sql = (text *)"insert into print_media@dbs2
(product id, ad id, ad finaltext)
values (:1, :2, :3)";
OCIStmtPrepare(...);
OCIBindByPos(...); /* Bind data for positions 1 and 2
* which are independent of LOB */
0CIBindByPos (stmthp, é&bndhp[2], errhp, (ub4) 3,
(dvoid *) charbufl, (sb4) len_charbufl, SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)0, 0, 0, OCI DEFAULT);
OCIStmtExecute(...);

text *sql = (text *)"select ad finaltext from print_media@dbs2
where product id = 10000";
OCIStmtPrepare(...);
OCIDefineByPos (stmthp, &dfnhp[2], errhp, (ub4) 1,
(dvoid *) charbuf2, (sb4) len_charbuf2, SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI DEFAULT);
OCIStmtExecute(...);

For a BLOB column, you must use the SQLT BIN type. For example, if you define the

ad finaltext column as a BLOB column instead of a CLOB column, then you must bind and
define the column data using the SQLT BIN type. If the LOB is greater than 2GB - 1 bytes in
size, then OCI raises a truncation error and the contents of the buffer are undefined.

10-11

Chapter 10
Working with Remote Locators

10.2.4 Restrictions for Data Interface on Remote LOBS

This section discusses the restrictions on the usage of Data Interface on Remote LOBs.
Certain syntax is not supported for remote LOBs.

* Queries involving more than one database are not supported:

SELECT tl.lobcol, a2.lobcol FROM tl, t2.lobcol@dbs2 a2 WHERE
LENGTH (tl.lobcol) = LENGTH (a2.lobcol);

Neither is this query (in a PL/SQL block):

SELECT tl.lobcol INTO varchar bufl FROM tl@dbsl
UNION ALL
SELECT t2.lobcol INTO varchar buf2 FROM t2@dbs2;

° RETURNING INTO does not support implicit conversions between CHAR and CLOB.

* PL/SQL parameter passing is not allowed where the actual argument is a LOB type and
the remote argument is a VARCHAR2, NVARCHAR?2, CHAR, NCHAR, Of RAW.

10.3 Working with Remote Locators

ORACLE

You can select a persistent LOB locator from a remote table into a local variable and this can
be done in any programmatic interface like PL/SQL, JDBC or OCI. The remote columns can be
of type BLOB, CLOB or NCLOB.

The following SQL statement is the basis for all the examples with remote LOB locator in this
chapter.

CREATE TABLE lob tab (cl NUMBER, c2 CLOB);

In the following example, the table 1ob tab (with columns c2 of type CLOB and c1 of type
number) defined in the remote database is accessible using database link do2 and a local CLOB
variable lob varl.

SELECT c2 INTO lob varl FROM lob tab@db2 WHERE cl=1;
SELECT c2 INTO lob varl FROM lob tab@db2 WHERE cl=1 for update;

In PL/SQL, the function doms_lob.isremote can be used to check if a particular LOB belongs
to a remote table. Similarly, in 0CI, you can use the 0OCI_ATTR LOB REMOTE attribute of
OCILobLocator to check if a particular LOB belongs to a remote table. For example,

IF (dbms lob.isremote(lob varl)) THEN
dbms_output.put line(‘LOB locator is remote)
ENDIF;

* Using Local and Remote Locators as Bind with Queries and DML on Remote Tables
This section discusses the bind values for queries and DML statements.

* Using Remote Locator
This section demonstrates the usage of remote locator in PL/SQL and with OCILOB API
with examples.

10-12

Chapter 10
Working with Remote Locators

» Using Remote Locators with OCILOB API
Most 0CILOB APIs support operations on remote LOB locators. The following list of 0CTILOB
functions returns an error when a remote LOB locator is passed to them:

e Restrictions when using remote LOB locators
Remote LOB locators have the following restrictions:
¢ See Also:

- ISREMOTE Function
- OCI_ATTR_LOB_REMOTE Attribute

10.3.1 Using Local and Remote Locators as Bind with Queries and DML on
Remote Tables

ORACLE

This section discusses the bind values for queries and DML statements.

For the Queries and DMLs (INSERT, UPDATE, DELETE) with bind values, the following four cases
are possible. The first case involves local tables and locators and is the standard LOB
functionality, while the other three cases are part of the distributed LOBs functionality and have
restrictions listed at the end of this section.

* Local table with local locator as bind value.

* Local table with remote locator as bind value

* Remote table with local locator as bind value

* Remote table with remote locator as bind value

Queries of the following form which use a remote LOB locator as a bind value are supported:

SELECT name FROM lob tab@db2 WHERE length(cl)=length(:lob vl);

In the above query, c1 is an LOB column and 1ob vl is a remote locator.

DMLs of the following forms using a remote LOB locator are supported. Here, the bind values
can be local, remote persistent, or temporary LOB locators.

UPDATE lob tab@db2 SET cl=:lob vl;
INSERT into lOb_tab@db2 VALUES (:1, :2);

You can pass a remote locator to most built-in SQL functions such as LENGTH, INSTR, SUBSTR,
and UPPER. For example:

Var lobl CLOB;
BEGIN
SELECT c2 INTO lobl FROM lob_tab@de WHERE cl=1;
END;
/
SELECT LENGTH(:1lobl) FROM DUAL;

10-13

Chapter 10
Working with Remote Locators

Note:

DMLs with returning clause are not supported on remote tables for both scalar and
LOB columns.

10.3.2 Using Remote Locator

ORACLE

This section demonstrates the usage of remote locator in PL/SQL and with OCILOB API with
examples.

- PL/SQL

« OCILOB API

PL/SQL

A remote locator can be passed as a parameter to built in PL/SQL functions like LENGTH, INSTR,
SUBSTR, UPPER and so on which accepts LOB as input. For example,

DECLARE

substr data VARCHARZ (4000);

remote loc CLOB;
BEGIN

SELECT c2 into remote loc

FROM lob_tab@de WHERE cl=1;

substr data := substr(remote loc, position, length)
END;

All DBMS LOB APIs other than the APIs targeted for BFILEs support operations on remote LOB
locators.

The following example shows how to pass remote locator as input to dbms 1lob operations.

DECLARE
lob CLOB;
buf VARCHAR2 (120) := 'TST';
amt NUMBER(2) ;
len NUMBER(2);
BEGIN
amt :=30;
SELECT c2 INTO lob FROM lob_tab@db2 WHERE cl1=3 FOR UPDATE;
DBMS LOB.WRITE (lob, amt, 1, buf);
amt :=30;
DBMS LOB.READ(lob, amt, 1, buf);
len := DBMS LOB.GETLENGTH (lob);
DBMS OUTPUT.PUT LINE (buf);
DBMS OUTPUT.PUT LINE (amt);
DBMS OUTPUT.PUT LINE('get length output = ' [| len);
END;
/

10-14

ORACLE

Chapter 10
Working with Remote Locators

OCILOB API

Most 0CILOB APIs support operations on remote LOB locators. The following list of 0CTILOB
functions returns an error when a remote LOB locator is passed to them:

e OCILobLocatorAssign
* OCILobArrayRead()
* OCILobArrayWrite()

e OCILobLoadFromFile2 ()

The following example shows how to pass a remote locator to 0OCILOB API.

void select read remote lob()
{
text *select sql = (text *)"SELECT c2 lob tab@dbsl where cl=1";
ub4 amtp = 10;
ub4 nbytes = 0;
ub4 loblen=0;
OCILobLocator * one lob;
text strbuf[40];

/* initialize single locator */
OCIDescriptorAlloc(envhp, (dvoid **) &one lob,
(ub4) OCI DTYPE LOB,
(size t) 0, (dvoid **) 0)

OCIStmtPrepare (stmthp, errhp, select sql, (ubd)strlen((char*)select sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);

OCIDefineByPos (stmthp, &defp, errhp, (ub4) 1,
(dvoid *) &one lob,

(sb4) -1,

(ub2) SQLT CLOB,

(dvoid *) 0, (ub2 *) O,

(ub2 *) 0, (ub4) OCI DEFAULT));

/* fetch the remote locator into the local variable one lob */

OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI DEFAULT);

/* Get the length of the remote LOB */
OCILobGetLength (svchp, errhp,
(OCILobLocator *) one lob, (ub4 *)&loblen)

printf ("LOB length = %d\n", loblen);
memset ((void*)strbuf, (int)'\0', (size t)40);

/ * Read the data from the remote LOB */

OCILobRead (svchp, errhp, one lob, é&amtp,
(ub4) 1, (dvoid *) strbuf, (ub4)é& nbytes, (dvoid *)0,
(OCICallbackLobRead) 0,
(ub2) 0, (ubl) SQLCS_IMPLICIT));

printf ("LOB content = %s\n", strbuf);

10-15

Chapter 10
Working with Remote Locators

See Also:

OCI Programmer’s Guide, for the complete list of 0CILOB APIs

10.3.3 Using Remote Locators with OCILOB API

ORACLE

Most 0CIL.0B APIs support operations on remote LOB locators. The following list of 0CTILOB
functions returns an error when a remote LOB locator is passed to them:

e OCILobLocatorAssign
* OCILobArrayRead()
* OCILobArrayWrite()

. OCILobLoadFromFile?2 ()

The following example shows how to pass a remote locator to 0CILOB API.

void select read remote lob()
{
text *select sql =
ub4 amtp = 10;
ub4 nbytes = 0;
ub4 loblen=0;
OCILobLocator * one lob;
text strbufl40];

(text *)"SELECT c2 lob tab@dbsl where cl=1";

/* initialize single locator */

OCIDescriptorAlloc (envhp, (dvoid **) é&one lob,
(ub4) OCI DTYPE LOB,
(size t) 0, (dvoid **) 0)

OCIStmtPrepare (stmthp, errhp, select sql, (ub4)strlen((char*)select sql),

(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIDefineByPos (stmthp, &defp, errhp, (ub4) 1,
(dvoid *) &one lob,
(sb4) -1,
(ub2) SQLT CLOB,
(dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, (ub4) OCI DEFAULT));

/* fetch the remote locator into the local variable one lob */
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI DEFAULT);

/* Get the length of the remote LOB */

10-16

Chapter 10
Working with Remote Locators

OCILobGetLength (svchp, errhp,
(OCILobLocator *) one lob, (ub4 *)é&loblen)

printf ("LOB length = %d\n", loblen);
memset ((void*)strbuf, (int)'\0', (size t)40);

/ * Read the data from the remote LOB */

OCILobRead (svchp, errhp, one lob, &amtp,
(ub4) 1, (dvoid *) strbuf, (ub4)é& nbytes, (dvoid *)0,
(OCICallbackLobRead) 0,
(ub2) 0, (ubl) SQLCS_IMPLICIT));

printf ("LOB content = %s\n", strbuf);

¢ See Also:

OCI Programmer’s Guide, for the complete list of 0CI1.0B APIs

10.3.4 Restrictions when using remote LOB locators

ORACLE

Remote LOB locators have the following restrictions:

e You cannot select a remote temporary LOB locator into a local variable using the SELECT
statement. For example,

select substr(c2, 3, 1) from lob tab@db2 where cl=1
The preceding query returns an error.

* Remote LOB functionality is not supported for Index Organized tables (I0T). An attempt to
get a locator from a remote 10T table will result in an error.

« Both the local database and the remote database have to be of Database release 12.2 or
higher version.

* With distributed LOBs functionality, the tables that you use in the from clause or where
clause should be collocated on the same database. If you use remote locators as bind
variables in the where clauses, then they should belong to the same remote database. You
cannot have one locator from one database (say, DB1) and another locator from another
database (say, DB2) to be used as bind variables.

» Collocated tables or locators use the same database link. It is possible to have two
different DB Links pointing to the same database. In the following example, both dblinkl
and dblink2 point to the same remote database, but with different authentication methods.
Oracle Database does not support such operations.

INSERT into tabl@dblinkl SELECT * from tab2@dblink2;

* Any DBMS LOB or OCILob APIs that accept two locators must obtain both the LOB locators
through the same database link. Operations, as specified in the following example, are not
supported:

SELECT ad sourcetext INTO clobl FROM print media@dbl WHERE product id =
10011;

10-17

ORACLE

Chapter 10
Working with Remote Locators

SELECT ad sourcetext INTO clob2 FROM print media@db2 WHERE product id =
10011;
DBMS LOB.COPY (clobl, clob2, length(clob2));

Bind values should be of the same LOB type as the column LOB type. For example, you
must bind NCLOB locators to NCLOB columns and CLOB locators to CLOB columns. Implicit
conversion between NCLOB and CLOB types is not supported in case of remote LOBs.

DML statements with Array Binds are not supported when the bind operation involves a
remote locator, or if the table involved is a remote table.

You cannot select a BFILE column from a remote table into a local variable.

10-18

Performance Guidelines

This section discusses performance guidelines for applications that use LOB data types.

Note:

From release 23ai onwards, you can experience improved read and write
performance for LOBs due to the following enhancements:

* Multiple LOBs in a single transaction are buffered simultaneously. This improves
performance when you use mixed workload in a transaction. Mixed workload
refers to switching between LOBs while writing within a single transaction. Let's
consider that you write to LOB1, then you write to LOB2, and then you want to
write again to LOBL1 in a single transaction. LOB1 and LOB2 are buffered
simultaneously, which provides better throughput and minimizes space
fragmentation.

» Various enhancements, such as acceleration of compressed LOB append and
compression unit caching, improve the performance of reads and writes to
compressed LOBs.

* The input-output buffer is adaptively resized based on size of the input data for
large writes to LOBs with the NOCACHE option. This improves the performance
for large direct writes, such as writes to file systems on DBFS and OFS.

LOB Performance Guidelines
This section provides performance guidelines while using LOBs through Data Interface or
LOB APIs.

Moving Data to LOBs in a Threaded Environment
Learn about the recommended procedure to follow while moving data to LOBs in this
section.

LOB Access Statistics
Three session-level statistics specific to LOBs are available to users: LOB reads, LOB
writes, and LOB writes unaligned.

11.1 LOB Performance Guidelines

This section provides performance guidelines while using LOBs through Data Interface or LOB
APIs.

ORACLE

LOBs can be accessed using the Data Interface or through the LOB APIs.

All LOBs
Learn about the guidelines to achieve good performance while using LOBs in this section.

Performance Guidelines While Using Persistent LOBs
In addition to the performance guidelines applicable to all LOBs described earlier, here are
some performance guidelines while using persistent LOBs.

11-1

Chapter 11
LOB Performance Guidelines

e Temporary LOBs
In addition to the performance guidelines applicable to all LOBs described earlier, following
are some guidelines for using temporary LOBSs:

* Value LOBs
Value LOBs are temporary LOBs. Hence all Temporary LOB storage guidelines apply to
Value LOBs as well.

11.1.1 All LOBs

Learn about the guidelines to achieve good performance while using LOBs in this section.

The following guidelines will help you get the the best performance when using LOBs, and
minimize the number of round trips to the server:

e To minimize I/O:

— Read and write data at block boundaries. This optimizes I/O in many ways, e.g., by
minimizing UNDO generation. For temporary LOBs and securefile LOBs, usable data
area of the tablespace block size is returned by the following APIs:
DBMS_LOB.GETCHUNKSIZE in PLSQL, and 0CILobGetChunkSize () in OCI. When writing
in a loop, design your code so that one write call writes everything that needs to go in
a database block, thus ensuring that consecutive writes don't write to the same block.

— Read and write large pieces of data at a time.

— The 2 recommendations above can be combined by reading and writing in large whole
number multiples of database block size returned by the DBMS LOB.GETCHUNKSIZE/
OCILobGetChunkSize () API.

e To minimize the number of round trips to the server:

— If you know the maximum size of your lob data, and you intend to read or write the
entire LOB, use the Data Interface as outlined below. You can allocate the entire size
of lob as a single buffer, or use piecewise / callback mechanisms.

* For read operations, define the LOB as character/binary type using the
OCIDefineByPos () function in OCI and the DefineColumnType () function in JDBC.

* For write operations, bind the LOB as character/binary type using the
0CIBindByPos () function in OCI and the setString() or setBytes () methods in
JDBC.

— Otherwise, use the LOB APIs as follows:

* Use LOB prefetching for reads. Define the LOB prefetch size such that it can
accommodate majority of the LOB values in the column.

* Use piecewise or callback mechanism while using 0CILobRead2 or OCILobWrite?
operations to minimize the roundtrips to the server.

ORACLE 115

Chapter 11
LOB Performance Guidelines

See Also:

Data Interface for Persistent LOBs

11.1.2 Performance Guidelines While Using Persistent LOBs

In addition to the performance guidelines applicable to all LOBs described earlier, here are
some performance guidelines while using persistent LOBs.

Maximize writing to a single LOB in consecutive calls within a transaction. Interleaving
DML statements prevent caching from reaching its maximum efficiency.

Avoid taking savepoints or committing too frequently. This neutralizes the advantage of
caching while writing.

Note:

Oracle recommends Securefile LOBs for storing persistent LOBs, hence this chapter
focuses only on Securefile storage. All mentions of "LOBs" in the persistent LOB
context is for Securefile LOBs unless otherwise mentioned.

11.1.3 Temporary LOBs

In addition to the performance guidelines applicable to all LOBs described earlier, following are
some guidelines for using temporary LOBSs:

ORACLE

Temporary LOBs reside in the PGA memory or the temporary tablespace, depending on
the size. Please ensure that you have a large enough PGA memory and temporary
tablespace for the temporary LOBs used by your application.

Use a separate temporary tablespace for temporary LOB storage instead of the default
system tablespace. This avoids device contention when copying data from persistent LOBs
to temporary LOBs.

If you use SQL or PL/SQL semantics for LOBs in your applications, then many temporary

LOBs are created silently. Ensure that PGA memory and temporary tablespace for storing
these temporary LOBs is large enough for your applications. In particular, these temporary
LOBs are silently created when you use the following:

— SQL functions on LOBs

— PL/SQL built-in character functions on LOBs

— Variable assignments from VARCHAR2/RAW t0 CLOBS/BLOBS, respectively.
— Perform a LONG-to-LOB migration

Free up temporary LOBs returned from SQL queries and PL/SQL programs

In PL/SQL, C (OCl), Java and other programmatic interfaces, SQL query results or
PL/SQL program executions return temporary LOBs for operation/function calls on LOBs.
For example:

SELECT substr (CLOB Column, 4001, 32000) FROM ...

11-3

ORACLE

Chapter 11
LOB Performance Guidelines

If the query is executed in PL/SQL, then the returned temporary LOBs are automatically
freed at the end of a PL/SQL program block. You can also explicitly free the temporary
LOBs at any time. In OCI and Java, the returned temporary LOB must be explicitly freed.

Without proper deallocation of the temporary LOBs returned from SQL queries, you may
observe performance degradation.

In PL/SQL, use NOCOPY to pass temporary LOB parameters by reference whenever
possible.

¢ See Also:

Oracle Database PL/SQL Language Referencefor more information on passing
parameters by reference and parameter aliasing

Temporary LOBs created with the CACHE parameter set to true move through the buffer
cache and avoid the disk access.

Oracle provides v$temporary lobs view to monitor the use of temporary LOBs across all
open sessions. Here is an example:

SQL> select * from v$temporary lobs;

SID CACHE LOBS NOCACHE LOBS ABSTRACT LOBS CON_ID

141 2 3 4 0
146 0 0 1 0
148 0 0 1 0

Following is the interpretation of output:
— The s1D column is the session ID.

— The CACHE LOBS column shows that session 141 currently has 2 temporary lobs in the
temporary tablespace with CACHE turned on.

— The NOCACHE_LOBS column shows that session 141 currently has 3 temporary lobs in
the temporary tablespace with CACHE turned off.

— The ABSTRACT LOBS column shows that session 141 currently has 4 temporary lobs in
the PGA memory.

— The coN_ID column is the pluggable database container ID.

For optimal performance, temporary LOBs use reference on read, copy on write
semantics. When a temporary LOB locator is assigned to another locator, the physical LOB
data is not copied. Subsequent READ operations using either of the LOB locators refer to
the same physical LOB data. On the first WRITE operation after the assignment, the
physical LOB data is copied in order to preserve LOB value semantics, that is, to ensure
that each locator points to a unique LOB value.

In PL/SQL, reference on read, copy on write semantics are illustrated as follows:

LOCATOR1 BLOB;
LOCATOR2 BLOB;
DBMS LOB.CREATETEMPORARY (LOCATORI, TRUE,DBMS LOB.SESSION) ;

-- LOB data is not copied in this assignment operation:

11-4

Chapter 11
LOB Performance Guidelines

LOCATOR2 := LOCATOR;

-- These read operations refer to the same physical LOB copy:
DBMS LOB.READ (LOCATORL, ...);

DBMS LOB.GETLENGTH (LOCATORZ, ...);

-- A physical copy of the LOB data is made on WRITE:
DBMS LOB.WRITE (LOCATORZ, ...);

In OCI, to ensure value semantics of LOB locators and data, 0CILobLocatorAssign () is
used to copy temporary LOB locators and the LOB Data. 0OCILobLocatorAssign () does
not make a round trip to the server. The physical temporary LOB copy is made when LOB
updates happen in the same round trip as the LOB update API as illustrated in the
following:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOCl, ... TRUE,OCI DURATION SESSION);

/* No round-trip is incurred in the following call. */
OCILobLocatorAssign(... LOCl, LOC2);

/* Read operations refer to the same physical LOB copy. */
OCILobRead2 (... LOCL ...)

/* One round-trip is incurred to make a new copy of the
* LOB data and to write to the new LOB copy.
*/

OCILobWrite2 (... LOC1 ...)

/* LOC2 does not see the same LOB data as LOCl. */
OCILobRead2 (... LOC2 ...)

If LOB value semantics are not intended, then you can use C pointer assignment so that
both locators point to the same data as illustrated in the following code snippet:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOCl, ... TRUE,OCI DURATION SESSION);

/* Pointer is copied. LOCl and LOC2 refer to the same LOB data. */
LOC2 = LOC1;

/* Write to LOC2. */
OCILobWrite2 (...LOC2...)

/* LOCl sees the change made to LOC2. */
OCILobRead2(...LOCl...)

e Use OCI_OBJECT mode for temporary LOBs

To improve the performance of temporary LOBs on LOB assignment, use OCI_OBJECT
mode for 0CILobLocatorAssign (). In 0OCI_OBJECT mode, the database tries to minimize the
number of deep copies to be done. Hence, after 0CILobLocatorAssign () is done on a
source temporary LOB in 0CI_0OBJECT mode, the source and the destination locators point
to the same LOB until any modification is made through either LOB locator.

ORACLE 15

Chapter 11
Moving Data to LOBs in a Threaded Environment

11.1.4 Value LOBs

Value LOBs are temporary LOBs. Hence all Temporary LOB storage guidelines apply to Value
LOBs as well.

On the client side, Oracle recommends that you set the LOB prefetch size large enough to
accommodate at least 80% of your LOB read size for Value LOBs.

11.2 Moving Data to LOBs in a Threaded Environment

Learn about the recommended procedure to follow while moving data to LOBs in this section.

There are two possible procedures that you can use to move data to LOBs in a threaded
environment, one of which should be avoided.

Recommended Procedure

The recommended procedure is as follows:

1. INSERT an empty LOB, RETURNING the LOB locator.

2. Move data into the LOB using this locator.

3. COMMIT. This releases the ROW locks and makes the LOB data persistent.

Alternatively, you can use Data Interface to insert character data or raw data directly for the
LOB columns or LOB attributes.

Procedure to Avoid

The following sequence requires a new connection when using a threaded environment,
adversely affects performance, and is not recommended:

Create an empty (non-NULL) LOB

Perform INSERT using the empty LOB

1
2
3. SELECT-FOR-UPDATE of the row just entered
4. Move data into the LOB

5

COMMIT. This releases the rROW locks and makes the LOB data persistent.

11.3 LOB Access Statistics

ORACLE

Three session-level statistics specific to LOBs are available to users: LOB reads, LOB writes,
and LOB writes unaligned.

Session statistics are accessible through the VSMYSTAT, V$SESSTAT, and V$SYSSTAT dynamic
performance views. To query these views, the user must be granted the privileges

SELECT CATALOG ROLE, SELECT ON SYS.V_ $MYSTAT view, and SELECT ON SYS.V_ $STATNAME
view.

LOB reads is defined as the number of LOB API read operations performed in the session/
system. A single LOB API read may correspond to multiple physical/logical disk block reads.

LOB writes is defined as the number of LOB API write operations performed in the session/
system. A single LOB API write may correspond to multiple physical/logical disk block writes.

11-6

ORACLE

Chapter 11
LOB Access Statistics

LOB writes unaligned is defined as the number of LOB API write operations whose start offset
or buffer size is not aligned to the LOB block boundary. Writes aligned to block boundaries are
the most efficient write operations. The usable LOB block size of a LOB is available through
the LOB API (for example, using PL/SQL, by DBMS LOB.GETCHUNKSIZE ()).

It is important to note that session statistics are aggregated across operations to all LOBs
accessed in a session; the statistics are not separated or categorized by objects (that is, table,
column, segment, object numbers, and so on). Oracle recommends that you reconnect to the
database for each demonstration to clear the vSMYSTAT. This enables you to see how the lob
statistics change for the specific operation you are testing, without the potentially obscuring
effect of past LOB operations within the same session.

See also:

Oracle Database Reference, appendix E, "Statistics Descriptions"

This example demonstrates how LOB session statistics are updated as the user performs read
or write operations on LOBs.

rem
rem Set up the user
rem

CONNECT / AS SYSDBA;

SET ECHO ON;

GRANT SELECT CATALOG ROLE TO pm;

GRANT SELECT ON sys.v_Smystat TO pm;
GRANT SELECT ON sys.v_$statname TO pm;

rem
rem Create a simplified view for statistics queries
rem

CONNECT pm/pm;
SET ECHO ON;

DROP VIEW mylobstats;

CREATE VIEW mylobstats

AS

SELECT SUBSTR(n.name,1,20) name,
m.value value

FROM vSmystat m,
véstatname n

WHERE m.statistic# = n.statistic#

AND n.name LIKE 'lob%';

rem
rem Create a test table
rem

DROP TABLE t;
CREATE TABLE t (i NUMBER, c CLOB)
lob(c) STORE AS (DISABLE STORAGE IN ROW) ;

rem
rem Populate some data

rem

rem This should result in unaligned writes, one for

11-7

ORACLE

Chapter 11
LOB Access Statistics

rem each row/lob populated.
rem

CONNECT pm/pm

SELECT * FROM mylobstats;

INSERT INTO t VALUES (1, 'a');

INSERT INTO t VALUES (2, rpad('a',4000,'a'"));
COMMIT;

SELECT * FROM mylobstats;

rem
rem Get the lob length

rem

rem Computing lob length does not read lob data, no change
rem in read/write stats.

rem

CONNECT pm/pm;

SELECT * FROM mylobstats;
SELECT LENGTH (c) FROM t;
SELECT * FROM mylobstats;

rem
rem Read the lobs

rem

rem Lob reads are performed, one for each lob in the table.
rem

CONNECT pm/pm;

SELECT * FROM mylobstats;
SELECT * FROM t;

SELECT * FROM mylobstats;

rem
rem Read and manipulate the lobs (through temporary lobs)
rem

rem The use of complex operators like "substr()" results in

rem the implicit creation and use of temporary lobs. operations
rem on temporary lobs also update lob statistics.
rem

CONNECT pm/pm;

SELECT * FROM mylobstats;

SELECT substr(c, length(c), 1) FROM t;
SELECT substr(c, 1, 1) FROM t;

SELECT * FROM mylobstats;

rem
rem Perform some aligned overwrites

rem

rem Only lob write statistics are updated because both the
rem byte offset of the write, and the size of the buffer
rem being written are aligned on the lob block size.

rem

CONNECT pm/pm;
SELECT * FROM mylobstats;

DECLARE
loc CLOB;
buf LONG;
chunk NUMBER;
BEGIN

11-8

ORACLE

END;
/

Chapter 11
LOB Access Statistics

SELECT ¢ INTO loc FROM t WHERE i =1
FOR UPDATE;

chunk := DBMS LOB.GETCHUNKSIZE (loc);
chunk = chunk * floor(32767/chunk); /* integer multiple of chunk */
buf := rpad('b', chunk, 'b');

-- aligned buffer length and offset

DBMS LOB.WRITE (loc, chunk, 1, buf);

DBMS LOB.WRITE (loc, chunk, l+chunk, buf);
COMMIT;

SELECT * FROM mylobstats;

rem
rem
rem
rem
rem
rem
rem

Perform some unaligned overwrites

Both lob write and lob unaligned write statistics are
updated because either one or both of the write byte offset
and buffer size are unaligned with the lob's chunksize.

CONNECT pm/pm;
SELECT * FROM mylobstats;
DECLARE

loc CLOB;
buf LONG;

BEGIN

END;
/

SELECT ¢ INTO loc FROM t WHERE i =1
FOR UPDATE;

buf := rpad('b', DBMS LOB.GETCHUNKSIZE (loc), 'b');

-- unaligned buffer length
DBMS LOB.WRITE (loc, DBMS LOB.GETCHUNKSIZE (loc)-1, 1, buf);

-- unaligned start offset
DBMS LOB.WRITE (loc, DBMS LOB.GETCHUNKSIZE (loc), 2, buf);

-- unaligned buffer length and start offset
DBMS LOB.WRITE (loc, DBMS LOB.GETCHUNKSIZE (loc)-1, 2, buf);

COMMIT;

SELECT * FROM mylobstats;
DROP TABLE t;
DROP VIEW mylobstats;

CONNECT / AS SYSDBA

REVOKE SELECT CATALOG ROLE FROM pm;
REVOKE SELECT ON sys.v_$mystat FROM pm;
REVOKE SELECT ON sys.v_$statname FROM pm;

QUIT;

11-9

Persistent LOBs: Advanced DDL

This chapter describes advanced LOB DDL features to make your application more scalable.

Note:

Unless otherwise stated, all features in this chapter apply to both SecureFile and
Basicfile LOBs. However, Oracle strongly recommends SecureFiles for storing and
managing LOBSs.

e Creating a New LOB Column
You can provide the LOB storage characteristics when creating a LOB column using the
CREATE TABLE statement or the ALTER TABLE ADD COLUMN statement.

e Altering an Existing LOB Column
You can use the ALTER TABLE statement to change the storage characteristics of a LOB
column.

e Creating an Index on LOB Column
The contents of a LOB are often specific to the application, so an index on the LOB column
will usually deal with application logic. You can create a function-based or a domain index
on a LOB column to improve the performance of queries accessing data stored in LOB
columns. You cannot build a B-tree or bitmap index on a LOB column.

e LOBs in Partitioned Tables
Partitioning can simplify the manageability of large database objects. This section
discusses various aspects of LOBs in partitioned tables.

e LOBs in Index Organized Tables
Index Organized Tables (I0Ts) support LOB and BFILE columns.

12.1 Creating a New LOB Column

You can provide the LOB storage characteristics when creating a LOB column using the
CREATE TABLE statement or the ALTER TABLE ADD COLUMN statement.

For most users, default values for these storage characteristics are sufficient. However, if you
want to fine-tune LOB storage, then consider the guidelines discussed in this section.

When defining LOBs in a table, you can explicitly indicate the tablespace and storage
characteristics for each persistent LOB column. It is common to use separate tablespaces for
large LOBs. SecureFiles is the default storage for LOBSs, so the SECUREFILE keyword is
optional, but is shown for clarity in the following example. The example assumes that
TABLESPACE lobtbsl is managed with ASSM, because SecureFile LOBs can only be created
in tablespaces managed with Automatic Segment Space Management (ASSM).:

CREATE TABLE lobtabl (n NUMBER, c CLOB)
lob (c) STORE AS SECUREFILE sfsegname
(TABLESPACE lobtbsl
ENABLE STORAGE IN ROW

ORACLE 191

ORACLE

Chapter 12
Creating a New LOB Column

CACHE LOGGING

RETENTION AUTO

COMPRESS

STORAGE (MAXEXTENTS 5)
)

To create a BasicFiles LOB, replace the SECUREFILE keyword with the BASICFILE keyword in
the preceding example, and remove the COMPRESS keyword, which is specific to SecureFiles.

The data dictionary views USER_LOBS, ALL_LOBS, and DBA_LOBS provide information specific to a
LOB column.

Note:

Oracle recommends Securefile LOBs for storing persistent LOBs, so this chapter
focuses only on Securefile storage. All mentions of LOBs in the persistent LOB
context is for Securefile LOBs, unless mentioned otherwise.

Note:

There are no tablespace or storage characteristics that you can specify for BFILES as
they are not stored in the database.

Assighing a LOB Data Segment Name

As shown in the previous example, specifying a name for the LOB data segment (sfsegname in
the example) makes for a much more intuitive working environment. When querying the LOB
data dictionary views USER_LOBS, ALL LOBS, and DBA_LOBS, you see the LOB data segment that
you chose instead of system-generated names.

e CREATE TABLE BNF
The CREATE TABLE statement works with LOB storage using parameters that are specific to
SecureFiles, BasicFiles LOB storage, or both.

« ENABLE or DISABLE STORAGE IN ROW
LOB columns store locators that reference the location of the actual LOB value. This
section describes how to enable or disable storage in a table row.

¢« CACHE, NOCACHE, and CACHE READS
This section discusses the guidelines to follow while creating tables that contain LOBs.

 LOGGING and FILESYSTEM_LIKE_LOGGING
You can apply the LOGGING parameter to LOBs in the same manner as you apply it for
other table operations.

e The RETENTION Parameter
The RETENTION parameter for SecureFile LOBs specifies how the database manages the
old versions of the LOB data blocks.

e SecureFiles Compression, Deduplication, and Encryption
In addition to the features supported by BasicFiles, SecureFiles LOB storage supports the
following three features that are not available with the BasicFiles LOB storage option:
compression, deduplication, and encryption.

12-2

Chapter 12
Creating a New LOB Column

* BasicFile Specific Parameters
This section discusses the storage parameters specific to BasicFiles.

* Restriction on First Extent of a LOB Segment
This section discusses the first extent requirements on SecureFiles and BasicFiles.

* Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs
The table in this section summarizes the parameters of the CREATE TABLE statement that
relate to Securefile LOB storage.

12.1.1 CREATE TABLE BNF

ORACLE

The CREATE TABLE statement works with LOB storage using parameters that are specific to
SecureFiles, BasicFiles LOB storage, or both.

The following is the syntax for CREATE TABLE in Backus Naur (BNF) notation, parts of which
have been simplified to keep the focus on LOB-specific parameters.

¢ See Also:

e Oracle Database SQL Language Reference

Example 12-1 BNF for CREATE TABLE

CREATE ... TABLE [schema.]table ...;

<column definition> ::= column [datatype]...
<datatype> ::= ... | BLOB | CLOB | NCLOB | BFILE |
<column properties> ::= ... | LOB storage clause |

LOB partition storage |...

<LOB storage clause> ::=
LOB
{ (LOB_item [, LOB item]...)
STORE AS [SECUREFILE | BASICFILE] (LOB storage parameters)
| (LOB item)
STORE AS [SECUREFILE | BASICFILE]
{ LOB_segname (LOB storage parameters)
| LOB_ segname
| (LOB_storage parameters)
}
}

<LOB storage parameters> ::=

{ TABLESPACE tablespace
| { LOB parameters [storage clause]
}

| storage clause

}
[TABLESPACE tablespace
| { LOB parameters [storage clause]

}

12-3

Chapter 12
Creating a New LOB Column

I,
<LOB parameters> ::=
[ENABLE STORAGE IN ROW [{4000]8000}]
| DISABLE STORAGE IN ROW
| CHUNK integer
| PCTVERSION integer
| RETENTION [{ MAX | MIN integer | AUTO | NONE }]
| FREEPOOLS integer
| LOB deduplicate clause
| LOB compression clause
| LOB encryption clause
| { CACHE | NOCACHE | CACHE READS } [logging clause] } }
]
<LOB retention clause> ::=
{RETENTION [MAX | MIN integer | AUTO | NONE]}
<LOB deduplicate clause> ::=
{ DEDUPLICATE
| KEEP DUPLICATES
}
<LOB compression clause> ::=
{ COMPRESS [HIGH | MEDIUM | LOW]
| NOCOMPRESS
}
<LOB encryption clause> ::=
{ ENCRYPT [USING 'encrypt algorithm']
[IDENTIFIED BY password]
| DECRYPT
}
<LOB partition storage> ::=
{PARTITION partition
{ LOB storage clause | varray col properties }...
[(SUBPARTITION subpartition
{ LOB partitioning storage | varray col properties }...
)
]
}
<LOB partitioning storage> ::=
{LOB (LOB item) STORE AS [BASICFILE | SECUREFILE]
[LOB_segname [(TABLESPACE tablespace | TABLESPACE SET tablespace set)]
(TABLESPACE tablespace | TABLESPACE SET tablespace set)

|
]
}

12.1.2 ENABLE or DISABLE STORAGE IN ROW

ORACLE

LOB columns store locators that reference the location of the actual LOB value. This section
describes how to enable or disable storage in a table row.

Actual LOB values are stored either in the table row (inline) or outside of the table row (out-of-
line), depending on the column properties you specify when you create the table and the size
of the LOB. The ENABLE | DISABLE STORAGE IN ROW clause is used to indicate whether the
LOB should be stored inline or out-of-line. The default is ENABLE STORAGE IN ROW because it
provides a performance benefit for small LOBs.

12-4

Chapter 12
Creating a New LOB Column

ENABLE STORAGE IN ROW

If ENABLE STORAGE IN ROW is set, the minimum inline size is 4000 and the maximum is 8000.
This includes the control information and the LOB value. The default inline size for LOBs is
4000.

If the LOB is stored IN ROW,

» Exadata pushdown is enabled for LOBSs, including when using securefile compression and
encryption.

* In-Memory is enabled for LOBs without securefile compression and encryption.

LOBs larger than approximately 32k are stored out-of-line. However, the control information is
still stored in the row, thus enabling us to read the out-of-line LOB data faster.

VARCHAR2(32K) and VARRAYs stored as LOBs do not support the increased inlining syntax.

DISABLE STORAGE IN ROW

In some cases, DISABLE STORAGE IN ROW is a better choice becase storing the LOB in the row
increases the size of the row. This impacts performance if you are doing a lot of base table
processing, such as full table scans, multi-row accesses (range scans), or many UPDATE/
SELECT to columns other than the LOB columns.

12.1.3 CACHE, NOCACHE, and CACHE READS

ORACLE

This section discusses the guidelines to follow while creating tables that contain LOBs.

Use the cache options according to the guidelines in the following table:

Table 12-1 Using CACHE, NOCACHE, and CACHE READS Options
|

Cache Mode Frequency of Read Buffer Cache Behavior

NOCACHE (default) Once or occasionally LOB values are never brought
into the buffer cache.

CACHE READS Frequently LOB values are brought into the

buffer cache only during read
operations and not during write
operations.

CACHE Read the LOB soon after write LOB pages are placed in the
buffer cache during both read and
write operations. For storing
semi-structured data consider
turning on CACHE option.

Caution:

If your application frequently writes to LOBs, then using the CACHE option can
potentially age other non-LOB pages out of the buffer cache prematurely.

12-5

Chapter 12
Creating a New LOB Column

12.1.4 LOGGING and FILESYSTEM_LIKE_LOGGING

You can apply the LOGGING parameter to LOBs in the same manner as you apply it for other
table operations.

The default value of this parameter is LOGGING. For SecureFiles, the FILESYSTEM LIKE LOGGING
parameter is equivalent to the NOLOGGING option.

If you set the LOGGING option, then Oracle Database determines the most efficient way to
generate the REDO and UNDO logs for the change. Oracle recommends that you keep the
LOGGING parameter turned on.

The FILESYSTEM LIKE LOGGING or the NOLOGGING option is useful for bulk loads and inserts.
When loading data into the LOB, if you do not care about the REDO logs and can restart a failed
load, then set the LOB data segment storage characteristics to FILESYSTEM LIKE LOGGING.
This provides good performance for the initial load of data. Once you have completed loading
data, Oracle recommends that you use the ALTER TABLE statement to modify the LOB storage
characteristics for the LOB data segment for normal LOB operations. For example, set the
cache option to CACHE or CACHE READS, along with the LOGGING option.

See Also:

Precedence of FORCE LOGGING Settings for more information about overriding the
logging behavior at the database level

Note:

For BasicFiles, specifying the CACHE NOLOGGING option results in an error.

12.1.5 The RETENTION Parameter

ORACLE

The RETENTION parameter for SecureFile LOBs specifies how the database manages the old
versions of the LOB data blocks.

Unlike other data types, the old versions of the LOB data blocks for SecureFile LOBs are
stored in the LOB segment itself and are used to support consistent read operations. Without
the corresponding old versions of the LOB data blocks, reading of a LOB at an earlier SCN
may fail with ORA-1555. Set the RETENTION parameter as per the following guidelines:

Table 12-2 RETENTION parameter behavior

|
RETENTION Parameter value Behavior

MAX Allows the old versions of the LOB data blocks to
fill the entire LOB segment. This minimizes the
likelihood of an ORA-1555, if space usage is not a
concern. With this setting, the old versions of the
LOB data blocks may cause the LOB segment to
grow. If you do not set the MAXSIZE attribute, then
MAX behaves like AUTO.

12-6

Chapter 12
Creating a New LOB Column

Table 12-2 (Cont.) RETENTION parameter behavior

|
RETENTION Parameter value Behavior

MIN Limits the retention of old versions of the LOB data
blocks to n seconds. With this setting, you must
also specify the retention duration in number of
seconds as n. The old versions of the LOB data
blocks may also cause the LOB segment to grow.

AUTO Oracle Database manages the space as efficiently
as possible, weighing both time and space needs.
NONE Set this value if no old version of the LOB data

blocks is required for consistent read purposes.
This is the most efficient setting in terms of space
utilization.

not set (sets to DEFAULT) Uses the UNDO_RETENTION setting can be set
dynamically or manually. If the UNDO_RETENTION
parameter is set to a positive value, then it is
equivalent to setting the RETENTION parameter to
MIN with the same value for retention duration. If
the UNDO_RETENTION parameter is set to zero (0),
then it is equivalent to setting the RETENTION
parameter to NONE.

The SHRINK feature for SecureFile LOBs partially deletes old versions of the LOB data blocks
to free extents, regardless of the RETENTION parameter setting. Therefore, it is recommended to
have the SHRINK feature only when the RETENTION parameter is set to NONE.

The following SQL code snippet helps you determine the RETENTION parameter for a LOB
segment.

SELECT RETENTION TYPE, RETENTION VALUE FROM USER LOBs WHERE ...;

12.1.6 SecureFiles Compression, Deduplication, and Encryption

In addition to the features supported by BasicFiles, SecureFiles LOB storage supports the
following three features that are not available with the BasicFiles LOB storage option:
compression, deduplication, and encryption.

Oracle recommends that you enable compression, deduplication, and encryption through the
CREATE TABLE statement.

Caution:

Enabling table or column level compression or encryption does not compress or
encrypt the LOB data. To compress or encrypt the LOB data, use SecureFiles
compression or encryption by specifying it in the LOB _storage clause.

ORACLE 12-7

Chapter 12
Creating a New LOB Column

Note:

You can enable the compression, deduplication, and encryption features using the
ALTER TABLE statement. However, if you enable these features using the ALTER
TABLE statement, then all the data in the SecureFiles LOB storage is read, modified,
and written. This can cause the database to lock the table during a potentially lengthy
operation. There are online capabilities in the ALTER TABLE statement that can help
you avoid this issue.

Topics

Advanced LOB Compression
Advanced LOB Compression transparently analyzes and compresses SecureFiles LOB
data to save disk space and improve performance.

Advanced LOB Deduplication

Advanced LOB Deduplication enables Oracle Database to automatically detect duplicate
LOB data within a LOB column or partition, and conserve space by storing only one copy
of the data.

SecureFiles Encryption

In SecureFiles Encryption, the data is encrypted using Transparent Data Encryption (TDE),
which allows the data to be stored securely, and still allows for random read and write
access.

12.1.6.1 Advanced LOB Compression

Advanced LOB Compression transparently analyzes and compresses SecureFiles LOB data to
save disk space and improve performance.

ORACLE

License Requirement: You must have a license for the Oracle Advanced Compression Option
to implement Advanced LOB Compression.

Before you enable compression, use the DBMS COMPRESSION.GET COMPRESSION RATIO function
to estimate the space that you can save by enabling this feature for existing LOBs. This allows
you to take an informed decision to enable compression.

Consider the following issues when using the CREATE TABLE statement with Advanced LOB
Compression:

Advanced LOB Compression is performed on the server and enables random reads and
writes to LOB data. Compression utilities on the client, like utl compress, cannot provide
random access.

Advanced LOB Compression does not enable table or index compression. Conversely,
table and index compression do not enable Advanced LOB Compression.

The Low, MEDIUM, and HIGH options provide varying degrees of compression. The higher
the compression, the higher the latency incurred. The HIGH setting incurs more work, but
compresses the data better. The default is MEDIUM.

The LoW compression option uses an extremely lightweight compression algorithm that
removes the majority of the CPU cost that is typical with file compression. Compressed
SecureFiles LOBs at the Low level provide a very efficient choice for SecureFiles LOB
storage. SecureFiles LOBs compressed at Low generally consume less CPU time and less
storage than BasicFiles LOBs, and typically help the application run faster because of a
reduction in disk 1/0.

12-8

ORACLE

Chapter 12
Creating a New LOB Column

« Compression can be specified at the partition level. The CREATE TABLE
lob_storage clause enables specification of compression for partitioned tables on a per-
partition basis.

* The DBMS LOB.SETOPTIONS procedure can enable and disable compression on individual
SecureFiles LOBs.

e Advanced LOB compression may convert an out-of-line LOB, to an inline LOB, by moving
the data from a LOB segment into the table segment (inlined in column).

The following examples demonstrate how to issue CREATE TABLE statements for specific
compression scenarios:

Example 12-2 Creating a SecureFiles LOB Column with LOW Compression

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
COMPRESS LOW
CACHE
NOLOGGING
)i

Example 12-3 Creating a SecureFiles LOB Column with MEDIUM (default)
Compression

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
COMPRESS
CACHE
NOLOGGING
);

Example 12-4 Creating a SecureFiles LOB Column with HIGH Compression

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
COMPRESS HIGH
CACHE
);

Example 12-5 Creating a SecureFiles LOB Column with Disabled Compression

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
NOCOMPRESS
CACHE
)

Example 12-6 Creating a SecureFiles LOB Column with Compression on One Partition

CREATE TABLE t1 (REGION VARCHAR2 (20), a BLOB)
LOB(a) STORE AS SECUREFILE (
CACHE

)
PARTITION BY LIST (REGION) (

PARTITION pl VALUES ('x', 'y')

LOB(a) STORE AS SECUREFILE (
COMPRESS
) 14
PARTITION p2 VALUES (DEFAULT)

12-9

Chapter 12
Creating a New LOB Column

12.1.6.2 Advanced LOB Deduplication

ORACLE

Advanced LOB Deduplication enables Oracle Database to automatically detect duplicate LOB
data within a LOB column or partition, and conserve space by storing only one copy of the
data.

License Requirement: You must have a license for the Oracle Advanced Compression Option
to implement Advanced LOB Deduplication.

Consider these issues when using CREATE TABLE and Advanced LOB Deduplication.

« |dentical LOBs are good candidates for deduplication. Copy operations can avoid data
duplication by enabling deduplication.

* Duplicate detection happens within a LOB segment. Duplicate detection does not span
partitions or subpartitions for partitioned and subpartitioned LOB columns.

« Deduplication can be specified at a partition level. The CREATE TABLE lob storage clause
enables specification for partitioned tables on a per-partition basis.

* The DBMS LOB.SETOPTIONS procedure can enable or disable deduplication on individual
LOBs.

Sample Commands

The following examples demonstrate how to issue CREATE TABLE statements for specific
deduplication scenarios:

Example 12-7 Creating a SecureFiles LOB Column with Deduplication

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
DEDUPLICATE
CACHE
)

Example 12-8 Creating a SecureFiles LOB Column with Disabled Deduplication

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
KEEP DUPLICATES
CACHE
);

Example 12-9 Creating a SecureFiles LOB Column with Deduplication on One Partition

CREATE TABLE tl1 (REGION VARCHAR2 (20), a BLOB)
LOB(a) STORE AS SECUREFILE (
CACHE
)
PARTITION BY LIST (REGION) (
PARTITION pl VALUES ('x', 'y')
LOB(a) STORE AS SECUREFILE (
DEDUPLICATE
) ’
PARTITION p2 VALUES (DEFAULT)
)i

12-10

Chapter 12
Creating a New LOB Column

Example 12-10 Creating a SecureFiles LOB column with Deduplication Disabled on
One Partition

CREATE TABLE tl (REGION VARCHAR2 (20), ID NUMBER, a BLOB)
LOB(a) STORE AS SECUREFILE (
DEDUPLICATE
CACHE
)
PARTITION BY RANGE (REGION)
SUBPARTITION BY HASH(ID) SUBPARTITIONS 2 (
PARTITION pl VALUES LESS THAN (51)
lob(a) STORE AS a t2 pl
(SUBPARTITION t2 pl sl lob(a) STORE AS a t2 pl sl,
SUBPARTITION t2 pl s2 lob(a) STORE AS a t2 pl s2),
PARTITION p2 VALUES LESS THAN (MAXVALUE)
lob(a) STORE AS a t2 p2 (KEEP DUPLICATES)
(SUBPARTITION t2 p2 sl lob(a) STORE AS a t2 p2 sl,
SUBPARTITION t2 p2 s2 lob(a) STORE AS a t2 p2 s2)
)i

12.1.6.3 SecureFiles Encryption

ORACLE

In SecureFiles Encryption, the data is encrypted using Transparent Data Encryption (TDE),
which allows the data to be stored securely, and still allows for random read and write access.

License Requirement: You must have a license for the Oracle Advanced Security Option to
implement SecureFiles Encryption.

Consider the following issues when using CREATE TABLE statement with SecureFiles
Encryption:

e Securefile Encryption encrypts the data stored in the SecureFile LOB column, irrespective
of whether the data is stored in-row or out-of-line in the LOB segment. Note that table or
column level encryption will not encrypt the data stored out-of-line in the LOB segment.

e SecureFile Encryption relies on a wallet, or Hardware Security Model (HSM), to hold the
encryption key. The wallet setup is the same as that described for Transparent Data
Encryption (TDE) and Tablespace Encryption, so complete that before using SecureFile
encryption.

¢ See Also:

"Oracle Database Advanced Security Guide for information about creating and
using Oracle wallet with TDE.

* The encrypt algorithmindicates the name of the encryption algorithm. Valid algorithms
are: AES192 (default), AES128, and AES256.

e The column encryption key is derived from PASSWORD, if specified.
e The default for LOB encryption is SALT. NO SALT is not supported.

e SecureFile Encryption is only supported at the table level on a per-column basis, and not
at the per-partition level. Hence all partitions within a LOB column are encrypted.

e DECRYPT keeps the LOBs in clear text.

* Key management controls the ability to encrypt or decrypt.

12-11

Chapter 12
Creating a New LOB Column

e TDE is not supported by the traditional import and export utilities or by transportable-
tablespace-based export. Use the Data Pump expdb and impdb utilities with encrypted
columns instead.

The following examples demonstrate how to issue CREATE TABLE statements for specific
encryption scenarios:

Example 12-11 Creating a SecureFiles LOB Column with a Specific Encryption
Algorithm

CREATE TABLE tl (a CLOB ENCRYPT USING 'AES128')
LOB(a) STORE AS SECUREFILE (
CACHE
);

Example 12-12 Creating a SecureFiles LOB column with encryption for all partitions

CREATE TABLE tl (REGION VARCHAR2 (20), a BLOB)
LOB(a) STORE AS SECUREFILE (
ENCRYPT USING 'AES128'
NOCACHE
FILESYSTEM LIKE LOGGING
)
PARTITION BY LIST (REGION) (
PARTITION pl VALUES ('x', 'y'),
PARTITION p2 VALUES (DEFAULT)
)

Example 12-13 Creating a SecureFiles LOB Column with Encryption Based on a
Password Key

CREATE TABLE tl (a CLOB ENCRYPT IDENTIFIED BY foo)
LOB(a) STORE AS SECUREFILE (
CACHE
)

The following example has the same result because the encryption option can be set in the
LOB_encryption clause section of the statement:

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
CACHE
ENCRYPT
IDENTIFIED BY foo
)

Example 12-14 Creating a SecureFiles LOB Column with Disabled Encryption

CREATE TABLE tl1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
CACHE DECRYPT
);

12.1.7 BasicFile Specific Parameters

This section discusses the storage parameters specific to BasicFiles.

The following storage parameters are specific to BasicFiles:

ORACLE 1910

ORACLE

Chapter 12
Creating a New LOB Column

Caution:

Oracle strongly recommends that you use SecureFile LOBs for all your LOB needs.

PCTVERSION

When a BasicFiles LOB is modified, a new version of the BasicFiles LOB page is produced in
order to support consistent read operations of prior versions of the BasicFiles LOB value. The
PCTVERSION parameter is the percentage of all used BasicFiles LOB data space that can be
occupied by old versions of BasicFiles LOB data pages. As soon as old versions of BasicFiles
LOB data pages start to occupy more than the pPCTVERSTON amount of used BasicFiles LOB
space, Oracle Database tries to reclaim the old versions and reuse them. The PCTVERSION
parameter has the following preset values:

e Default: 10%
e Minimum: O
e Maximum: 100

If your application requires several BasicFiles LOB updates that are concurrent with heavy
reads of BasicFiles LOB columns, then consider using a higher value for the PCTVERSION
parameter, such as 20%. If persistent BasicFiles LOB instances in your application are created
and written just once and are primarily read-only afterward, then updates are infrequent. In this
case, consider using a lower value for the PCTVERSION parameter, such as 5% or lower. If
existing BasicFiles LOBs are known to be read-only, then you can safely set the PCTVERSION
parameter to 0% because there will never be any pages needed for old versions of data.

Note:

The PCTVERSION parameter and the RETENTION parameter are mutually exclusive for
BasicFiles LOBs, that is, you can specify either the PCTVERSION parameter or the
RETENTION parameter, but not both.

CHUNK

A chunk is one or more Oracle blocks. You can specify the chunk size for the BasicFiles LOB
when creating the table that contains the LOB. This corresponds to the data size used by
Oracle Database when accessing or modifying the LOB value. Part of the chunk is used to
store system-related information and the rest stores the LOB value. The APIs that you use to
retrieve the chunk size, return the amount of space used in the LOB chunk to store the LOB
value. You can use the following APIs to retrieve the chunk size:

e The DBMS LOB.GETCHUNKSIZE procedure in PL/SQL
* The 0CILobGetChunkSize () function in OCI

Once you specify the value of the CHUNK parameter (when the LOB column is created), you
cannot change it without moving the LOB. You can set the CHUNK parameter to the data size
most frequently accessed or written. It is more efficient to access LOBs in big chunks. If you
explicitly specify storage characteristics for the LOB, then make sure that you set the INITIAL
parameter and the NEXT parameter for the LOB data segment storage to a size that is larger
than the CHUNK size.

12-13

Chapter 12
Creating a New LOB Column

For SecureFiles, the CHUNK size is an advisory size and is provided for backward compatibility
purposes.

FREEPOOLS

Specifies the number of FREELIST groups for BasicFiles LOBSs, if the database is in automatic
undo mode. Under Release 12c compatibility, this parameter is ignored when SecureFiles
LOBs are created.

FREELISTS or FREELIST GROUPS

Specifies the number of process freelists or freelist groups, respectively, allocated to the
segment; NULL for partitioned tables. Under Release 12c¢ compatibility, these parameters are
ignored when SecureFiles LOBs are created.

12.1.8 Restriction on First Extent of a LOB Segment

This section discusses the first extent requirements on SecureFiles and BasicFiles.

First Extent of a SecureFile LOB Segment

A SecureFile LOB segment can only be created in Locally Managed Tablespace with
Automatic Segment Space Management (ASSM). The number of blocks required in the first
extent depends on the release. Before 21c, the first extent requires at least 16 blocks. After
21c, the number is 32 if the compatible parameter is greater than or equal to 20.1.0.0.0.
Segments created in the previous release will continue to work in the new release. However,
they will not be automatically upgraded.

The actual size of the first extent depends on the database block_size. If the tablespace is
configured to use uniform extent, the extent must be bigger than the aforementioned number.
For example, with block size = 8k, the uniform extent size must be at least 128K pre-21c, or
256K on 21c with compatible parameter set. If the tablespace is configured to use uniform
extent that is less than this number, the LOB segment creation will fail.

First Extent of a BasicFile LOB Segment

A BasicFile LOB segment can be created in Dictionary Managed or Locally Managed
Tablespaces. The segment requires at least 3 blocks in the first extent. This translates into
different extent sizes based on the database block_size. If the tablespace is configured to use
uniform extent that contains fewer than 3 blocks, the LOB segment creation will fail.

12.1.9 Summary of CREATE TABLE LOB Storage Parameters for Securefile
LOBs

The table in this section summarizes the parameters of the CREATE TABLE statement that relate
to Securefile LOB storage.

ORACLE 1514

Chapter 12
Creating a New LOB Column

Table 12-3 Parameters of CREATE TABLE Statement Related to LOBs

. ___|
Parameter Description

SECUREFILE Specifies SecureFiles LOBs storage.

Starting with Oracle Database 12c, the SecureFiles LOB storage
type, specified by the parameter SECUREFILE, is the default.

A SecureFiles LOB can only be created in a tablespace managed
with Automatic Segment Space Management (ASSM).

BASICFILE Specifies BasicFiles LOB storage, the original architecture for
LOBs.
You must explicitly specify the parameter BASICFILE to use the
BasicFiles LOB storage type.

For BasicFiles LOBs, specifying any of the SecureFiles LOB
options results in an error.

RETENTION Specifies the retention policy for storing old versions of LOB data to
support consistent read. Possible values are: MAX, MIN, AUTO and
NONE.

MAXSIZE Specifies the upper limit of storage space that a LOB may use. The

default size is 4000, but this can go up to 8000.
If this amount of space is consumed, new LOB data blocks are
taken from the pool of old versions of LOB data blocks as needed,
regardless of time requirements.
CACHE, NOCACHE, CACHE READS Specifies when the LOB data in brought into the buffer cache.
e NOCACHE: Never brought into buffer cache.
¢ CACHE READS: Only during reads.
e CACHE: During reads and writes.
The default is NOCACHE.

LOGGING, NOLOGGING, or Specifies whether to generate REDO and UNDO for changes to the
FILESYSTEM LIKE LOGGING LOB:
* LOGGING: Generate REDO and UNDO for the change
¢ FILESYSTEM LIKE LOGGING/NOLOGGING: Log only the
metadata.
The default is LOGGING.

COMPRESS or NOCOMPRESS The COMPRESS option turns on Advanced LOB Compression, and
NOCOMPRESS turns it off.

The default is NOCOMPRESS.

DEDUPLICATE or The DEDUPLICATE option enables Advanced LOB Deduplication; it

KEEP DUPLICATES specifies that SecureFiles LOB data that is identical in two or more
rows in a LOB column, partition or subpartition must share the
same data blocks. The database combines SecureFiles LOBs with
identical content into a single copy, reducing storage and
simplifying storage management. The opposite of this option is
KEEP_DUPLICATES.

The default is KEEP_DUPLICATES.

ENCRYPT or DECRYPT The ENCRYPT option turns on SecureFiles Encryption, and encrypts
all SecureFiles LOB data using Oracle Transparent Data Encryption
(TDE). The DECRYPT options turns off SecureFiles Encryption.

The default is DECRYPT.

ORACLE 1918

Chapter 12
Altering an Existing LOB Column

12.2 Altering an Existing LOB Column

You can use the ALTER TABLE statement to change the storage characteristics of a LOB
column.

e ALTER TABLE BNF
This section has the syntax for ALTER TABLE in Backus Naur (BNF) notation, parts of which
have been simplified to keep the focus on LOB-specific parameters.

 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB
This section compares the storage characteristics while using ALTER TABLE MODIFY and
ALTER TABLE MOVE LOB.

e ALTER TABLE SecureFiles LOB Features
This section discusses the features of SecureFile LOBs that work with the ALTER TABLE
statement.

12.2.1 ALTER TABLE BNF

This section has the syntax for ALTER TABLE in Backus Naur (BNF) notation, parts of which
have been simplified to keep the focus on LOB-specific parameters.

See Also:

ALTER TABLE for more information on usage of ALTER TABLE statement.

ALTER TABLE [schema.]table ... [... | column clauses |
move table clause] ...;

<column clauses> ::= ... | [modify LOB storage clause |
rename lob storage clause]

<modify LOB storage clause> ::= MODIFY LOB (LOB item)
(modify LOB parameters)
<modify LOB parameters> ::=
{ storage clause

| PCTVERSION integer

| FREEPOOLS integer

| REBUILD FREEPOOLS

| LOB retention clause

| LOB deduplicate clause

| LOB compression clause

| { ENCRYPT encryption spec | DECRYPT }

| { CACHE
| { NOCACHE | CACHE READS } [logging clause]
| allocate extent clause
| shrink clause
| deallocate unused clause

<rename_ lob storage clause> ::= RENAME LOB(LOB_ item) <LOB RENAME PARAMETERS>
<LOB_RENAME PARAMETERS> ::= [PARTITION | SUBPARTITION |] <OLD_SEGMENT NAME>

ORACLE 1916

Chapter 12
Altering an Existing LOB Column

TO <NEW_SEGMENT NAME>
<move table clause> ::= MOVE ...[... | LOB storage clause | ...]

<LOB storage clause> ::=
LOB
{ (LOB item [, LOB item]...)
STORE AS [SECUREFILE | BASICFILE] (LOB storage parameters)
| (LOB item)
STORE AS [SECUREFILE | BASICFILE]
{ LOB segname (LOB storage parameters)
LOB segname
(LOB storage parameters)

|
|
}

<LOB storage parameters> ::=
{ TABLESPACE tablespace
| { LOB parameters [storage clause]
}
| storage clause
}
[TABLESPACE tablespace
| { LOB parameters [storage clause]

}

<LOB parameters> ::=
[ENABLE STORAGE IN ROW [{4000]8000}]
| DISABLE STORAGE IN ROW
| CHUNK integer
| PCTVERSION integer
| RETENTION [{ MAX | MIN integer | AUTO | NONE }]
| FREEPOOLS integer
| LOB deduplicate clause
| LOB compression clause
| LOB encryption clause
| { CACHE | NOCACHE | CACHE READS } [logging clause] } }
]

<LOB retention clause> ::=
{RETENTION [MAX | MIN integer | AUTO | NONE]}

<LOB deduplicate clause>
{ DEDUPLICATE
| KEEP DUPLICATES
}

<LOB_compression clause>
{ COMPRESS [HIGH | MEDIUM | LOW]
| NOCOMPRESS
}

<LOB encryption clause> ::=
{ ENCRYPT [USING 'encrypt algorithm']
[IDENTIFIED BY password]

ORACLE 12-17

Chapter 12
Altering an Existing LOB Column

| DECRYPT

}

12.2.2 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB

This section compares the storage characteristics while using ALTER TABLE MODIFY and ALTER
TABLE MOVE LOB.

There are two kinds of changes to existing storage characteristics:

1.

Some changes to storage characteristics merely apply to the way the data is accessed and
do not require moving the entire existing LOB data. For such changes, use the ALTER
TABLE MODIFY LOB syntax, which uses the modify LOB storage clause from the ALTER
TABLE BNF. Examples of changes that do not require moving the entire existing LOB data
are: RETENTION, PCTVERSION, CACHE, NOCACHELOGGING, NOLOGGING, Or STORAGE settings,
shrinking the space used by the LOB data, and deallocating unused segments.

¢ See Also:
ALTER TABLE

Some changes to storage characteristics require changes to the way the data is stored,
hence requiring movement of the entire existing LOB data. For such changes use the
ALTER TABLE MOVE LOB syntax instead of the ALTER TABLE MODIFY LOB syntax because
the former performs parallel operations on SecureFiles LOBs columns, making it a
resource-efficient approach. The ALTER TABLE MOVE LOB Syntax can process any arbitrary
LOB storage clause represented by the LOB storage clause in the ALTER TABLE BNF, and
will move the LOB data to a new location.

Examples of changes that require moving the entire existing LOB data are: TABLESPACE,
ENABLE/DISABLE STORAGE IN ROW, CHUNK, COMPRESSION, DEDUPLICATION and ENCRYPTION
settings.

As an alternative to ALTER TABLE MOVE LOB, you can use online redefinition to enable one
or more of these features. As with ALTER TABLE, online redefinition of SecureFiles LOB
columns can be executed in parallel.

See Also:

e ALTER TABLE for more information about ALTER TABLE Statement.

» DBMS_REDEFINITION for more information about DBMS REDEFINITION package.

12.2.3 ALTER TABLE SecureFiles LOB Features

This section discusses the features of SecureFile LOBs that work with the ALTER TABLE
statement.

ORACLE

ALTER TABLE with Advanced LOB Compression

When used with the ALTER TABLE statement, advanced LOB compression syntax alters the
compression mode of the LOB column. The examples in this section demonstrate how to
issue ALTER TABLE statements for specific compression scenarios.

12-18

Chapter 12
Altering an Existing LOB Column

 ALTER TABLE with Advanced LOB Deduplication
When used with the ALTER TABLE statement, advanced LOB deduplication syntax alters
the deduplication mode of the LOB column.

e ALTER TABLE with SecureFiles Encryption
The examples in this section demonstrate how to issue ALTER TABLE statements for to
enable SecureFiles encryption.

12.2.3.1 ALTER TABLE with Advanced LOB Compression

When used with the ALTER TABLE statement, advanced LOB compression syntax alters the

compression mode of the LOB column. The examples in this section demonstrate how to issue
ALTER TABLE statements for specific compression scenarios.

Example: Altering a SecureFiles LOB Column to Enable LOW Compression

ALTER TABLE tl1 MOVE LOB(a) STORE AS SECUREFILE (COMPRESS LOW)

Example: Altering a SecureFiles LOB Column to Disable Compression

ALTER TABLE tl MOVE LOB(a) STORE AS SECUREFILE (NOCOMPRESS)

Example: Altering a SecureFiles LOB Column to Enable HIGH Compression

ALTER TABLE tl MOVE LOB(a) STORE AS SECUREFILE (COMPRESS HIGH) ;

Example: Altering a SecureFiles LOB Column to Enable Compression on One partition

ALTER TABLE tl1 MOVE PARTITION pl LOB(a) STORE AS SECUREFILE (COMPRESS HIGH);

12.2.3.2 ALTER TABLE with Advanced LOB Deduplication

ORACLE

When used with the ALTER TABLE statement, advanced LOB deduplication syntax alters the
deduplication mode of the LOB column.

Before you enable deduplication, you can use the GET LOB_DEDUPLICATION RATIO function to
estimate the space that you can save by enabling this feature for an existing LOB. You can
also use this function to estimate the space that you can save by enabling deduplication,
before migrating a BasicFiles LOB to SecureFiles LOB. This enables you to take an informed
decision to enable deduplication. See GET_LOB_DEDUPLICATION_RATIO Function in
PL/SQL Packages and Types Reference.

Disclaimer: The deduplication ratio is an approximate value, which is calculated based on the
sampled rows in the LOB column. The actual space that you save when you enable
deduplication for the complete table may be different.

The examples in this section demonstrate how to issue ALTER TABLE statements for specific
deduplication scenarios.

Example: Altering a SecureFiles LOB Column to Disable Deduplication

ALTER TABLE tl MOVE LOB(a) STORE AS SECUREFILE (KEEP_DUPLICATES) ;

12-19

Chapter 12
Creating an Index on LOB Column

Example: Altering a SecureFiles LOB Column to Enable Deduplication

ALTER TABLE tl1 MOVE LOB(a) STORE AS SECUREFILE (DEDUPLICATE) ;

Example: Altering a SecureFiles LOB Column to Enable Deduplication on One Patrtition

ALTER TABLE tl MOVE PARTITION pl LOB(a) STORE AS SECUREFILE (DEDUPLICATE) ;

12.2.3.3 ALTER TABLE with SecureFiles Encryption

The examples in this section demonstrate how to issue ALTER TABLE statements for to
enable SecureFiles encryption.

Consider the following points when using the ALTER TABLE statement with SecureFiles
Encryption:

e The ALTER TABLE statement enables and disables SecureFiles Encryption. Using the REKEY
option with the ALTER TABLE statement also enables you to encrypt LOB columns with a
new key or algorithm.

e The DECRYPT option converts encrypted columns to clear text form.

¢ See Also:

'CREATE TABLE' Usage Notes for SecureFiles Encryption

Following examples demonstrate how to issue ALTER TABLE statements for specific encryption
scenarios:

Example: Altering a SecureFiles LOB Column by Encrypting Based on AES256 encryption

ALTER TABLE tl MOVE LOB(a) STORE AS SECUREFILE (ENCRYPT USING 'AES256');

Example: Altering a SecureFiles LOB Column by Encrypting Based on a Password Key

ALTER TABLE tl MOVE LOB(a)
STORE AS SECUREFILE (ENCRYPT USING 'AES256' IDENTIFIED BY foo);

Example: Altering a SecureFiles LOB Column by Regenerating the Encryption key

ALTER TABLE tl1 REKEY USING 'AES256';

12.3 Creating an Index on LOB Column

ORACLE

The contents of a LOB are often specific to the application, so an index on the LOB column will
usually deal with application logic. You can create a function-based or a domain index on a
LOB column to improve the performance of queries accessing data stored in LOB columns.
You cannot build a B-tree or bitmap index on a LOB column.

Function-based and domain indexes are automatically updated when a DML operation is
performed on the LOB column, or when a LOB is updated using an API like DBMS_LOB.

You can use the LOB Open/Close API to defer index maintenance to after a bunch of write
operations. Opening a LOB in read-write mode defers any index maintenance on the LOB

12-20

Chapter 12
Creating an Index on LOB Column

column until you close the LOB. This is useful when you do not want the database to perform
index maintenance every time you write to the LOB. This technique can improve the
performance of your application if you are doing several write operations on the LOB while it is
open. Any index on the LOB column is not valid until you explicitly close the LOB.

* Function-Based Indexing on LOB Columns
A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the variety of
ways in which you can access data.

e Domain Indexing on LOB Columns
Indexes created by using Extensible Indexing interfaces are known as Domain indexes.

¢ See Also:

Before You Begin

12.3.1 Function-Based Indexing on LOB Columns

ORACLE

A function-based index is an index built on an expression. It extends your indexing capabilities
beyond indexing on a column. A function-based index increases the variety of ways in which
you can access data.

See Also:

When to Use Function-Based Indexes

The following example demonstrates the creation of a function-based index on a LOB column
using a SQL function:

-- Function-Based Index using a SQL function
CREATE INDEX ad sourcetext idx sgl ON
print media(to char (substr(ad sourcetext,1,10)));

The following example demonstrates the creation of a function-based index on a LOB column
using a PL/SQL function:

-- Function-Based Index using a PL/SQL function

-- LOB can be an input but cannot be the return type of hte function
CREATE OR REPLACE FUNCTION Retlst2Char (CLobInput CLOB) RETURN CHAR
DETERMINISTIC IS

First2Char CHAR(2) ;

NoOfChar INTEGER ;
BEGIN

NoOfChar := 2 ;

DBMS LOB.Read (CLobInput, NoOfChar, 1, First2Char) ;

RETURN First2Char ;
END ;
/

12-21

Chapter 12
Creating an Index on LOB Column

CREATE INDEX ad sourcetext idx plsql on
print media(Retlst2Char (ad sourcetext));

12.3.2 Domain Indexing on LOB Columns

Indexes created by using Extensible Indexing interfaces are known as Domain indexes.

The database provides extensible indexing interfaces, a feature which enables you to define
new index types as required. This is based on the concept of cooperative indexing where a
data cartridge and the database build and maintain indexes for data types such as text and
spatial.

The cartridge is responsible for defining the index structure, maintaining the index content
during load and update operations, and searching the index during query processing. The
index structure can be stored in Oracle as heap-organized, or an index-organized table, or
externally as an operating system file.

To support this structure, the database provides an indextype. The purpose of an indextype is
to enable efficient search and retrieval functions for complex domains such as text, spatial, and
image by means of a data cartridge. An indextype is analogous to the sorted or bit-mapped
index types that are built-in within the Oracle Server. The difference is that an indextype is
implemented by the data cartridge developer, whereas the Oracle kernel implements built-in
indexes. Once a new indextype has been implemented by a data cartridge developer, end
users of the data cartridge can use it just as they would built-in index types.

When the database system handles the physical storage of domain indexes, data cartridges:

« Define the format and content of an index. This enables cartridges to define an index
structure that can accommodate a complex data object. For instance, an inverted index for
text documents or a quad-tree for spatial features.

e Build, delete, and update a domain index. The cartridge handles building and maintaining
the index structures.

* Access and interpret the content of an index. This capability enables the data cartridge to
become an integral component of query processing. That is, the content-related clauses
for database queries are handled by the data cartridge.

By supporting domain indexes, the database significantly reduces the effort needed to develop
high-performance solutions that access complex data types such as LOBs.

e Extensible Optimizer
Extensible Optmizer enables collection of statistics on user-defined functions and domain
indexes.

e Text Indexes on LOB Columns
If the contents of your LOB column correspond to that of a document type, users are
allowed to index such a column using Oracle Text indexes.

¢ See Also:

Oracle Database Data Cartridge Developer's Guide

ORACLE 1995

Chapter 12
Creating an Index on LOB Column

12.3.2.1 Extensible Optimizer

Extensible Optmizer enables collection of statistics on user-defined functions and domain
indexes.

The SQL optimizer cannot collect statistics over LOB columns nor can it estimate the cost and
selectivity of predicates involving LOB columns. Instead, the Extensible Optimizer functionality
allows authors of user-defined functions and domain indexes to create statistics collection,
selectivity, and cost functions. This information is used by the optimizer in choosing a query
plan. The cost-based optimizer is thus extended to use the user-supplied information.

The Extensible Indexing interfaces enable you to define new operators, indextypes, and
domain indexes. For such user-defined operators and domain indexes, the Extensible
Optimizer interfaces allows users to control the three main components used by the optimizer
to select an execution plan: statistics, selectivity, and cost. This allows the cartridge developer
to tune the Extensible Optimizer for efficient execution of queries involving predicates or
indexes over complex data types such as LOBs.

¢ See Also:

Extensible Optimizer

12.3.2.2 Text Indexes on LOB Columns

If the contents of your LOB column correspond to that of a document type, users are allowed to
index such a column using Oracle Text indexes.

For example, consider the following table DOCUMENT TABLE storing text-based documents on a
CLOB column:

CREATE TABLE document table (
docno NUMBER,
document CLOB) ;

You can index the contents of the DOCUMENT column with one of the Oracle Text indexing
options to speed up text-based queries. The following example will create a SEARCH index
used for text-search queries over the DOCUMENT column.

CREATE INDEX document_index ON document table (document) INDEXTYPE IS
CTXSYS.CONTEXT;

CREATE SEARCH INDEX document index ON document table (document);

Note:

You can create an Oracle Text index on other formats as well. Examples of other
formats include PDF, JSON, or XML.

ORACLE 1993

Chapter 12
LOBs in Partitioned Tables

See Also:

Creating Oracle Text Indexes

12.4 LOBs in Partitioned Tables

Partitioning can simplify the manageability of large database objects. This section discusses
various aspects of LOBs in partitioned tables.

Very large tables and indexes can be decomposed into smaller and more manageable pieces
called partitions, which are entirely transparent to an application. You can partition tables that
contain LOB columns. All partitioning schemes supported by Oracle are fully supported on
LOBs.

¢ See Also:

Partitions_ Views_ and Other Schema Objects
Partitioning for All Databases

LOBs can take advantage of all of the benefits of partitioning including the following:

e LOB segments can be spread between several tablespaces to balance I/O load and to
make backup and recovery more manageable.

e LOBs in a partitioned table become easier to maintain.

e LOBs can be partitioned into logical groups to speed up operations on LOBs that are
accessed as a group.

The following section describes some of the ways you can manipulate LOBs in partitioned
tables.

e Partitioning a Table Containing LOB Columns
All partitioning schemes supported by Oracle are fully supported on LOBs. This section
discusses the partitioning of tables with LOB columns.

* Default LOB Storage Attributes
This section discusses the default LOB storage attributes.

» Partition Maintenance Operation
This section discusses maintenance operations on partitioned tables with LOB columns.

e Creating an Index on a Table Containing Partitioned LOB Columns
To improve the performance of queries, you can create local or global indexes on
partitioned LOB columns.

12.4.1 Partitioning a Table Containing LOB Columns

ORACLE

All partitioning schemes supported by Oracle are fully supported on LOBs. This section
discusses the partitioning of tables with LOB columns.

You can partition a table containing LOB columns using any of the following techniques:

e When the table is created using the PARTITION BY ... clause of the CREATE TABLE
statement.

12-24

Chapter 12
LOBs in Partitioned Tables

e Adding a partition to an existing table using the ALTER TABLE ... ADD PARTITION clause.

The data dictionary views USER_LOB_PARTITIONS, ALL LOB_PARTITIONS and
DBA LOB PARTITIONS provide partition specific information for a LOB column.

Different partitions can have different inline sizes. This is useful if you want to EXCHANGE a new
table into a partition of an existing table. If a partition level inline size is not specified, the
column’s table level default is used. In the case of composite partitioning, the sub-partition-
level inline size takes precedence over the partition-level inline size, which takes precedence
over the table-level inline size. During new partition creation, if inline size values are not
specified, the table level defaults are used. Inline size values are never NULL.

Example 12-15 A partitioned table with LOB columns:

CREATE TABLE print media

(product id NUMBER (6) ,
ad_id NUMBER (6) ,
ad_sourcetext CLOB)

LOB (ad sourcetext) STORE AS SECUREFILE (TABLESPACE tbs 2)
PARTITION BY RANGE(prOduct_id)
(PARTITION P1 VALUES LESS THAN (1000)
LOB (ad sourcetext) STORE AS BASICFILE (TABLESPACE tbs 1),
PARTITION P2 VALUES LESS THAN (2000)
LOB (ad sourcetext) STORE AS (TABLESPACE tbs 2 COMPRESS HIGH),
PARTITION P3 VALUES LESS THAN (3000));

See Also:

Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs

Example 12-16 A partitioned table with different inline sizes for LOB columns

CREATE TABLE print media

(product id NUMBER (6) ,
ad content BLOB,
ad_sourcetext CLOB)

LOB (ad content) STORE AS SECUREFILE (ENABLE STORAGE IN ROW)
LOB (ad sourcetext) STORE AS SECUREFILE (ENABLE STORAGE IN ROW 8000)
TABLESPACE tbs 1
PARTITION BY RANGE (product id)
(PARTITION P1 VALUES LESS THAN (1000)
LOB (ad sourcetext) STORE AS SECUREFILE (ENABLE STORAGE IN ROW 4000),
PARTITION P2 VALUES LESS THAN (2000)
LOB (ad sourcetext) STORE AS (ENABLE STORAGE IN ROW 8000 COMPRESS
HIGH),
PARTITION P3 VALUES LESS THAN (3000)
LOB (ad content) STORE AS (DISABLE STORAGE IN ROW));

ORACLE 1908

Chapter 12
LOBs in Partitioned Tables

12.4.2 Default LOB Storage Attributes

This section discusses the default LOB storage attributes.

In the above example, the default storage attribute for LOB column ad_sourcetext is
mentioned as "STORE AS SECUREFILE (TABLESPACE tbs 2)". This means that if no LOB
storage clause is provided for any partition, this default will be used. In this example, partition
P3 uses tablespace tbs 2 since no LOB storage is specified. Similarly, SECUREFILE is the
default storage and is used by partitions P2 and P3, but partition P1 overrides it to specify
BasicFile storage.

The dictionary views USER_PART LOBS, ALL PART LOBS and DBA PART LOBS provide information
on default LOB storage options for a LOB column in a table.

The table level default LOB storage attribute can be changed, as shown in the example below:

ALTER TABLE print media MODIFY DEFAULT ATTRIBUTES LOB (ad sourcetext)
(TABLESPACE tbs 1);

The change in the default attribute will not affect the existing partitions. Any new patrtitions
created without LOB storage clause will inherit the default values for that column.

12.4.3 Partition Maintenance Operation

This section discusses maintenance operations on partitioned tables with LOB columns.

All partitioning maintenance operations are supported with LOB columns. Here are some
examples:

Example 12-17 Adding Partition containing LOBs

ALTER TABLE print media ADD PARTITION P4 VALUES LESS THAN (4000)
LOB (ad sourcetext) STORE AS SECUREFILE (TABLESPACE tbs 2);

Example 12-18 Modifying Partition Containing LOBs

ALTER TABLE print media MODIFY PARTITION P3 LOB(ad sourcetext)
(RETENTION AUTO) ;

Example 12-19 Moving Partition Containing LOBs

ALTER TABLE print media MOVE PARTITION Pl LOB(ad sourcetext)
STORE AS (TABLESPACE tbs 3 COMPRESS LOW);

The example above moves a LOB partition into a different tablespace, which can be useful if
the tablespace is no longer large enough to hold the partition. Move partition can also be used
to perform other operations that require moving the LOB data, such as performing a COMPRESS
operation on the LOB, or changing the ENABLE / DISABLE STORAGE IN ROW option.

ORACLE 1996

Chapter 12
LOBs in Partitioned Tables

Example 12-20 Splitting Partitions Containing LOBs

You can split a partition containing LOBSs into two using the ALTER TABLE ... SPLIT
PARTITION clause. Doing so permits you to place one or both new partitions in a new
tablespace. For example:

ALTER TABLE print media SPLIT PARTITION P1 AT(500) into
(PARTITION P1A LOB(ad sourcetext) STORE AS (TABLESPACE tbs 1),
PARTITION P1B LOB(ad sourcetext) STORE AS (TABLESPACE tbs 2)) UPDATE INDEXES;

Example 12-21 Merging Partitions Containing LOBs

Merging patrtitions is useful for reclaiming unused partition space. For example:

ALTER TABLE print media MERGE PARTITIONS P1A, P1B INTO PARTITION P1;

Example 12-22 Exchange Partition containing LOB column with non-partitioned table

Exchanging partitions with a table that has partitioned LOB columns using the ALTER

TABLE ... EXCHANGE PARTITION clause. Exchange partition is a powerful tool to change new
data / partitions to a hewer storage format without the costly operation of migrating old data.
You can exchange partition with LOB data having different storage option, e.g. partition p1 of
BasicFile data in Example 11-15 can be exchanged with non-partitioned table with LOB column
stored in SecureFile Compressed form:

CREATE TABLE print media nonpart
(product id NUMBER(6),
ad_id NUMBER (6),
ad_sourcetext CLOB)
LOB (ad sourcetext) STORE AS SECUREFILE (COMPRESS HIGH);

ALTER TABLE print media EXCHANGE PARTITION pl WITH TABLE print media nonpart;

12.4.4 Creating an Index on a Table Containing Partitioned LOB Columns

To improve the performance of queries, you can create local or global indexes on partitioned
LOB columns.

Only function-based and domain indexes are supported on LOB columns. Other types of
indexes, such as unique indexes are not supported with LOBs.

For example:

CREATE INDEX ad sourcetext idx sgl on print media
(to_char (substr(ad sourcetext,1,10)))
GLOBAL;

CREATE INDEX ad sourcetext idx sql on print media
(to_char (substr(ad sourcetext,1,10)))
LOCAL;

ORACLE 12-27

Chapter 12
LOBs in Index Organized Tables

12.5 LOBs in Index Organized Tables

ORACLE

Index Organized Tables (I0Ts) support LOB and BFILE columns.

For the most part, SQL DDL, DML, and piecewise operations on LOBs in IOTs produce the
same results as those for normal tables. The only exception is the default semantics of LOBs
during creation. The main differences are:

* Tablespace Mapping: By default, or unless specified otherwise, the LOB data and index
segments are created in the tablespace in which the primary key index segments of the
index organized table are created.

* Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index organized
table created without an overflow segment are stored out of line. In other words, if an index
organized table is created without an overflow segment, then the LOBs in this table have
their default storage attributes as DISABLE STORAGE IN ROW. If you forcibly try to specify an
ENABLE STORAGE IN ROW clause for such LOBSs, then SQL raises an error.

On the other hand, if an overflow segment has been specified, then LOBs in index
organized tables exactly mimic their semantics in conventional tables.

Example of Index Organized Table (I0T) with LOB Columns
Consider the following example:

CREATE TABLE iotlob tab (cl INTEGER PRIMARY KEY, c2 BLOB, c3 CLOB, c4
VARCHAR2 (20))
ORGANIZATION INDEX
TABLESPACE iot ts
PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
PCTTHRESHOLD 50 INCLUDING c2
OVERFLOW
TABLESPACE ioto ts
PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
STORE AS lobseg (TABLESPACE lob ts DISABLE STORAGE IN ROW
CHUNK 16384 PCTVERSION 10 CACHE STORAGE (INITIAL 2M)
INDEX lobidx cl (TABLESPACE lobidx ts STORAGE (INITIAL 4K)));

Executing these statements results in the creation of an index organized table iotlob tab with
the following elements:

* A primary key index segment in the tablespace iot ts,

* Anoverflow data segment in tablespace ioto ts

e Columns starting from column c3 being explicitly stored in the overflow data segment
* BLOB (column C2) data segments in the tablespace lob ts

* BLOB (column c2) index segments in the tablespace lobidx ts

e CLOB (column c3) data segments in the tablespace iot ts

* CLOB (column c3) index segments in the tablespace iot ts

* CLOB (column c3) stored in line by virtue of the IOT having an overflow segment

* BLOB (column c2) explicitly forced to be stored out of line

12-28

ORACLE

Chapter 12
LOBs in Index Organized Tables

Note:

If no overflow had been specified, then both C2 and C3 would have been stored
out of line by default.

LOBs in Partitioned Index-Organized Tables
LOB columns and attributes can be stored in partitioned index-organized tables.

Index-organized tables can have LOBs stored as follows; however, partition maintenance
operations, such as MOVE, SPLIT, and MERGE are not supported with:

* VARRAY data types stored as LOB data types.
* Abstract data types with LOB attributes.
* Nested tables with LOB types.

Restrictions on Index Organized Tables with LOB Columns

The ALTER TABLE MOVE operation cannot be performed on an index organized table with a
LOB column in parallel. Instead, use the NOPARALLEL clause to move the LOB column for such
tables. For example:

ALTER TABLE tl MOVE LOB(a) STORE AS (<tablespace users>) NOPARALLEL;

12-29

Advanced Design Considerations

13.1 Read

ORACLE

This section discusses the design considerations for more advanced application development
issues.

Read-Consistent Locators
Oracle Database provides the same read consistency mechanisms for LOBs as for all
other database reads and updates of scalar quantities.

LOB Locators and Transaction Boundaries
LOB locators can be used in both transactions as well as transaction IDs.

LOBs in the Object Cache
When you copy one object to another in the object cache with a LOB locator attribute, only
the LOB locator is copied.

Guidelines for Creating Terabyte sized LOBs
To create terabyte LOBs in supported environments, use the following guidelines to make
use of all available space in the tablespace for LOB storage.

-Consistent Locators

Oracle Database provides the same read consistency mechanisms for LOBs as for all other
database reads and updates of scalar quantities.

Read consistency has some special applications to LOB locators that you must understand.
The following sections discuss read consistency and include examples which should be looked
at in relationship to each other.

A Selected Locator Becomes a Read-Consistent Locator
A read-consistent locator contains the snapshot environment as of the point in time of the
SELECT operation.

Example of Updating LOBs and Read-Consistency

Read-consistent locators provide the same LOB value regardless of when the SELECT
occurs. The following example demonstrates the relationship between read-consistency
and UPDATE operation.

Example of Updating LOBs Through Updated Locators
Learn about updating LOBs through Locators in this section.

Example of Updating a LOB Using SQL DML and DBMS_LOB
Using the print media table in the following example, a CLOB locator is created as
clob_selected.

Example of Using One Locator to Update the Same LOB Value
You may avoid many pitfalls if you use only one locator to update a given LOB value.
Learn about it in this section.

Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
Learn about updating a LOB with a PL/SQL bind variable in this section.

Example of Deleting a LOB Using Locator
Learn about deleting a LOB with a PL/SQL bind variable in this section.

13-1

Chapter 13
Read-Consistent Locators

* Ensuring Read Consistency
This script in this section can be used to ensure that hot backups can be taken of tables
that have NOLOGGING or FILESYSTEM LIKE LOGGING LOBs and have a known recovery point
without read inconsistencies.

¢ See Also:

* Oracle Database Concepts for general information about read consistency

13.1.1 A Selected Locator Becomes a Read-Consistent Locator

A read-consistent locator contains the snapshot environment as of the point in time of the
SELECT operation.

A selected locator, regardless of the existence of the FOR UPDATE clause, becomes a read-
consistent locator, and remains a read-consistent locator until the LOB value is updated
through that locator.

This has some complex implications. Suppose you have created a read-consistent locator (1.1)
by way of a SELECT operation. In reading the value of the persistent LOB through 1.1, note the
following:

* The LOB is read as of the point in time of the SELECT statement even if the SELECT
statement includes a FOR UPDATE.

- If the LOB value is updated through a different locator (1.2) in the same transaction, then 1.1
does not see the 1.2 updates.

e L1 does not see committed updates made to the LOB through another transaction.

» If the read-consistent locator 1.1 is copied to another locator 1.2 (for example, by a PL/SQL
assignment of two locator variables — 1.2:= L1), then L2 becomes a read-consistent
locator along with 1.1 and any data read is read as of the point in time of the SELECT for L1.

You can use the existence of multiple locators to access different transformations of the LOB
value. However, in doing so, you must keep track of the different values accessed by different
locators.

13.1.2 Example of Updating LOBs and Read-Consistency

ORACLE

Read-consistent locators provide the same LOB value regardless of when the SELECT occurs.
The following example demonstrates the relationship between read-consistency and UPDATE
operation.

Using the print media table and PL/SQL, three CLOB instances are created as potential
locators: clob selected, clob update, and clob copied.

Observe these progressions in the code, from times t1 through t6:

* At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob selected.

* In the second operation (at t2), the value in ad_sourcetext is associated with the locator
clob_updated. Because there has been no change in the value of ad_sourcetext between
tl and t2, both clob selected and clob updated are read-consistent locators that

13-2

ORACLE

Chapter 13
Read-Consistent Locators

effectively have the same value even though they reflect snapshots taken at different
moments in time.

* The third operation (at t3) copies the value in clob selected to clob copied. At this
juncture, all three locators see the same value. The example demonstrates this with a
series of DBMS_LOB.READ () calls.

* Attime t4, the program uses DBMS LOB.WRITE () to alter the value in clob updated, and a
DBMS LOB.READ () reveals a new value.

* However, a DBMS LOB.READ () of the value through clob selected (at t5) reveals that it is a
read-consistent locator, continuing to refer to the same value as of the time of its SELECT.

* Likewise, a DBMS_LOB.READ () of the value through clob copied (at t6) reveals that it is a
read-consistent locator, continuing to refer to the same value as clob_selected.

Example 13-1

INSERT INTO print media VALUES (2056, 20020, EMPTY BLOB(),
"abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num var INTEGER;
clob selected CLOB;
clob updated CLOB;
clob copied CLOB;
read amount INTEGER;
read offset INTEGER;
write amount INTEGER;
write offset INTEGER;
buffer VARCHAR2 (20) ;

BEGIN
-- At time tl:

SELECT ad sourcetext INTO clob selected
FROM Print media
WHERE ad _id = 20020;

-- At time t2:

SELECT ad sourcetext INTO clob updated
FROM Print media
WHERE ad_id = 20020
FOR UPDATE;

-- At time t3:

clob copied := clob selected;

-- After the assignment, both the clob copied and the

-- clob selected have the same snapshot as of the point in time
-- of the SELECT into clob selected

-- Reading from the clob selected and the clob copied does

-- return the same LOB value. clob updated also sees the same
-- LOB value as of its select:

read amount := 10;

read offset := 1;

DBMS LOB.READ(clob selected, read amount, read offset, buffer);
DBMS OUTPUT.PUT LINE('clob selected value: ' || buffer);

-- Produces the output 'abcd'

read amount := 10;
DBMS LOB.READ(clob copied, read amount, read offset, buffer);

13-3

Chapter 13
Read-Consistent Locators

DBMS_OUTPUT.PUT_LINE('clob_copied value: ' || buffer);
-- Produces the output 'abcd'

read amount := 10;
DBMS LOB.READ(clob updated, read amount, read offset, buffer);
DBMS OUTPUT.PUT LINE('clob updated value: ' || buffer);

-- Produces the output 'abcd'

-- At time t4:
write amount := 3;
write offset := 5;
buffer := 'efg';

DBMS LOB.WRITE (clob updated, write amount, write offset, buffer);

read amount := 10;
DBMS LOB.READ(clob updated, read amount, read offset, buffer);
DBMS OUTPUT.PUT LINE('clob updated value: ' || buffer);

-- Produces the output 'abcdefg'

-- At time t5:

read amount := 10;

DBMS LOB.READ(clob selected, read amount, read offset, buffer);
DBMS OUTPUT.PUT LINE('clob selected value: ' || buffer);

-- Produces the output 'abcd'

-- At time té6:
read amount := 10;
DBMS LOB.READ(clob copied, read amount, read offset, buffer);
DBMS_OUTPUT.PUT_LINE('clob_copied value: ' || buffer);
-- Produces the output 'abcd'
END;
/

13.1.3 Example of Updating LOBs Through Updated Locators

Learn about updating LOBs through Locators in this section.

When you update the value of the persistent LOB through the LOB locator (L1), L1 is updated
to contain the current snapshot environment.

This snapshot is as of the time after the operation was completed on the LOB value through
locator 1.1. 11 is then termed an updated locator. This operation enables you to see your own
changes to the LOB value on the next read through the same locator, L1.

Note:

The snapshot environment in the locator is not updated if the locator is used to
merely read the LOB value. It is only updated when you modify the LOB value
through the locator using the PL/SQL DBMS LOB package or the OCI LOB APIs.

Any committed updates made by a different transaction are seen by L1 only if your transaction
is a read-committed transaction and if you use L1 to update the LOB value after the other
transaction committed.

ORACLE 124

Chapter 13
Read-Consistent Locators

Note:

When you update a persistent LOB value, the modification is always made to the
most current LOB value.

Updating the value of the persistent LOB through any of the available methods, such as OCI
LOB APIs or PL/SQL DBMS LOB package, updates the LOB value and then reselects the locator
that refers to the new LOB value.

Note:

Once you have selected out a LOB locator by whatever means, you can read from
the locator but not write into it.

Note that updating the LOB value through SQL is merely an UPDATE statement. It is
up to you to do the reselect of the LOB locator or use the RETURNING clause in the
UPDATE statement so that the locator can see the changes made by the UPDATE
statement. Unless you reselect the LOB locator or use the RETURNING clause, you
may think you are reading the latest value when this is not the case. For this reason
you should avoid mixing SQL DML with 0CI and DBMS LOB piecewise operations.

¢ See Also:
Oracle Database PL/SQL Language Reference

13.1.4 Example of Updating a LOB Using SQL DML and DBMS_LOB

Using the print media table in the following example, a CLOB locator is created as
clob_selected.

ORACLE

Note the following progressions in the example, from times t1 through t3:

At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob selected.

In the second operation (at t2), the value in ad_sourcetext is modified through the SQL
UPDATE statement, without affecting the clob_selected locator. The locator still sees the
value of the LOB as of the point in time of the original SELECT. In other words, the locator
does not see the update made using the SQL UPDATE statement. This is illustrated by the
subsequent DBMS LOB.READ () call.

The third operation (at t3) re-selects the LOB value into the locator clob selected. The
locator is thus updated with the latest snapshot environment which allows the locator to
see the change made by the previous SQL UPDATE statement. Therefore, in the next

DBMS LOB.READ (), an error is returned because the LOB value is empty, that is, it does not
contain any data.

13-5

INSERT INTO Print media VALUES (3247, 20010, EMPTY BLOB(),

'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;
DECLARE
num var INTEGER;
clob selected CLOB;
read amount INTEGER;
read offset INTEGER;
buffer VARCHARZ2 (20) ;
BEGIN
-- At time tl:

SELECT ad sourcetext INTO clob selected
FROM Print media
WHERE ad_id = 20010;

read amount := 10;

read offset := 1;

dbms_lob.read(clob selected, read amount, read offset, buffer);
dbms_output.put_line('clob_selected value: ' || buffer);

-- Produces the output 'abcd'

-- At time t2:
UPDATE Print media SET ad sourcetext = empty clob()
WHERE ad_id = 20010;
-- although the most current LOB value is now empty,
-- clob_selected still sees the LOB value as of the point
-- in time of the SELECT

read amount := 10;
dbms_lob.read(clob selected, read amount, read offset, buffer);
dbms_output.put_line('clob_selected value: ' || buffer);

-- Produces the output 'abcd'

-- At time t3:

SELECT ad_sourcetext INTO clob selected FROM Print media WHERE
ad_id = 20010;

-- the SELECT allows clob selected to see the most current

—-- LOB value

read amount := 10;
dbms_lob.read(clob selected, read amount, read offset, buffer);
-- ERROR: ORA-01403: no data found

END;

/

Chapter 13
Read-Consistent Locators

13.1.5 Example of Using One Locator to Update the Same LOB Value

You may avoid many pitfalls if you use only one locator to update a given LOB value. Learn
about it in this section.

ORACLE

Note:

Avoid updating the same LOB with different locators.

13-6

ORACLE

Chapter 13
Read-Consistent Locators

In the following example, using table print media, two CLOBS are created as potential locators:
clob updated and clob copied.

Note these progressions in the example at times t1 through t5:

At the time of the first SELECT INTO (at t1), the value in ad sourcetext is associated with
the locator clob_updated.

The second operation (at time t2) copies the value in clob updatedto clob copied. At
this time, both locators see the same value. The example demonstrates this with a series
of DBMS_LOB.READ () calls.

At time t3, the program uses DBMS_LOB.WRITE () to alter the value in clob_updated, and a
DBMS LOB.READ () reveals a new value.

However, a DBMS_LOB.READ () of the value through clob copied (at time t4) reveals that it
still sees the value of the LOB as of the point in time of the assignment from clob updated
(at £2).

Itis not until clob updated is assigned to clob copied (t5) that clob copied sees the
modification made by clob updated.

INSERT INTO PRINT MEDIA VALUES (2049, 20030, EMPTY BLOB(),

'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num var INTEGER;
clob updated CLOB;
clob copied CLOB;
read amount INTEGER;
read offset INTEGER;
write amount INTEGER;
write offset INTEGER;
buffer VARCHARZ2 (20) ;

BEGIN

-- At time tl:

SELECT ad sourcetext INTO clob updated FROM PRINT MEDIA
WHERE ad id = 20030
FOR UPDATE;

-- At time t2:

clob copied := clob updated;

-- after the assign, clob copied and clob updated see the same
-- LOB value

read amount := 10;

read offset := 1;

dbms lob.read(clob updated, read amount, read offset, buffer);
dbms output.put line('clob updated value: ' || buffer);

-- Produces the output 'abcd'

read amount := 10;
dbms lob.read(clob copied, read amount, read offset, buffer);
dbms output.put line('clob copied value: ' || buffer);

-- Produces the output 'abcd'

-- At time t3:
write amount := 3;
write offset := 5;

13-7

Chapter 13
Read-Consistent Locators

buffer := 'efg';

doms lob.write(clob updated, write amount, write offset,
buffer);

read amount := 10;

dbms_lob.read(clob updated, read amount, read offset, buffer);

dbms_output.put_line('clob_updated value: ' || buffer);

-- Produces the output 'abcdefg'

-- At time t4:

read amount := 10;

dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);

-- Produces the output 'abcd'

-- At time t5:
clob copied := clob updated;

read amount := 10;
dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);
-- Produces the output 'abcdefg'
END;

/

13.1.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind

Variable

ORACLE

Learn about updating a LOB with a PL/SQL bind variable in this section.

When a LOB locator is used as the source to update another persistent LOB (as in a SQL
INSERT or UPDATE statement, the DBMS LOB.COPY routine, and so on), the snapshot environment
in the source LOB locator determines the LOB value that is used as the source.

If the source locator (for example 1.1) is a read-consistent locator, then the LOB value as of the
time of the SELECT of L1 is used. If the source locator (for example 1.2) is an updated locator,
then the LOB value associated with the 1.2 snapshot environment at the time of the operation is
used.

In the following example, three CLOBS are created as potential locators: clob selected,
clob_updated, and clob_copied.

Note these progressions in the example at times t1 through t5:

* Atthe time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob updated.

* The second operation (at t2) copies the value in clob_updated to clob_copied. At this
juncture, both locators see the same value.

* Then (at t3), the program uses DBMS LOB.WRITE () to alter the value in clob updated, and
a DBMS LOB.READ () reveals a new value.

* However, a DBMS LOB.READ () of the value through clob copied (at t4) reveals that
clob_copied does not see the change made by clob updated.

* Therefore (at t5), when clob copied is used as the source for the value of the INSERT
statement, the value associated with clob_copied (for example, without the new changes

13-8

ORACLE

Chapter 13
Read-Consistent Locators

made by clob_updated) is inserted. This is demonstrated by the subsequent

DBMS_LOB.READ () of the value just inserted.

INSERT INTO PRINT MEDIA VALUES (2056, 20020, EMPTY BLOB(),
'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num var INTEGER;
clob selected CLOB;
clob updated CLOB;
clob copied CLOB;
read amount INTEGER;
read offset INTEGER;
write amount INTEGER;
write offset INTEGER;
buffer VARCHAR?2 (20) ;

BEGIN
-- At time tl:

SELECT ad_sourcetext INTO clob updated FROM PRINT MEDIA
WHERE ad_id = 20020
FOR UPDATE;

read amount := 10;

read offset := 1;

dbms_lob.read(clob updated, read amount, read offset, buffer);
dbms output.put line('clob updated value: ' || buffer);

-- Produces the output 'abcd'

-- At time t2:
clob copied := clob updated;

-- At time t3:
write amount := 3;
write offset := 5;
buffer := 'efg';

dbms lob.write(clob updated, write amount, write offset, buffer);

read amount := 10;
dbms_lob.read(clob updated, read amount, read offset, buffer);
dbms output.put line('clob updated value: ' || buffer);

-- Produces the output 'abcdefg'
-- note that clob copied does not see the write made before
-- clob updated

-- At time t4:

read amount := 10;

dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);

-- Produces the output 'abcd'

-- At time t5:

-- the insert uses clob copied view of the LOB value which does
-- not include clob updated changes

INSERT INTO PRINT MEDIA VALUES (2056, 20022, EMPTY BLOB(),

clob copied, EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL)

RETURNING ad sourcetext INTO clob selected;

13-9

Chapter 13
Read-Consistent Locators

read amount := 10;
dbms_lob.read(clob selected, read amount, read offset, buffer);
dbms_output.put_line('clob_selected value: ' || buffer);
-- Produces the output 'abcd'
END;

/

13.1.7 Example of Deleting a LOB Using Locator

ORACLE

Learn about deleting a LOB with a PL/SQL bind variable in this section.

The following example illustrates that LOB content through a locator selected at a given point
of time is available even though the LOB is deleted in the same transaction.

In the following example, using table print media, two CLOBS are created as potential
locators:clob selected and clob_copied.

Note these progressions in the example at times t1 through t3:

* Atthe time of the first SELECT INTO (at t1), the value inad_sourcetext for ad_id value
20020 is associated with the locator clob_selected. The value in ad_sourcetext for ad id
value 20021 is associated with the locator clob copied.

* The second operation (at t2) deletes the row with ad_id value 20020. However, a
DBMS LOB.READ () of the value through clob selected (at t1) reveals that it is a read-
consistent locator, continuing to refer to the same value as of the time of its SELECT.

* The third operation (at t3), copies the LOB data read through clob selected into the LOB
clob copied. DBMS LOB.READ () of the value through clob selected and clob copied are
now the same and refer to the same value as of the time of SELECT of clob_selected.

INSERT INTO PRINT MEDIA VALUES (2056, 20020, EMPTY BLOB(),
'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

INSERT INTO PRINT MEDIA VALUES (2057, 20021, EMPTY BLOB(),
'cdef', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

DECLARE
clob selected CLOB;
clob copied CLOB;
buffer VARCHARZ2 (20);
read amount INTEGER := 20;
read offset INTEGER := 1;

BEGIN
-- At time tl:
SELECT ad sourcetext INTO clob selected
FROM PRINT MEDIA
WHERE ad_id = 20020
FOR UPDATE;

SELECT ad_sourcetext INTO clob copied
FROM PRINT MEDIA
WHERE ad_id = 20021
FOR UPDATE;

dbms_lob.read(clob selected, read amount, read offset,buffer);
dbms_output.put line(buffer);
-- Produces the output 'abcd'

dbms lob.read(clob copied, read amount, read offset,buffer);

13-10

Chapter 13
LOB Locators and Transaction Boundaries

dbms_output.put line(buffer);
-- Produces the output 'cdef'

-- At time t2: Delete the CLOB associated with clob selected
DELETE FROM PRINT MEDIA WHERE ad id = 20020;

dbms_lob.read(clob selected, read amount, read offset,buffer);
dbms_output.put line(buffer);
-- Produces the output 'abcd'

-- At time t3:

-- Copy using clob selected

dbms_lob.copy(clob copied, clob selected, 4000, 1, 1);

dbms lob.read(clob copied, read amount, read offset,buffer);
dbms_output.put line(buffer);

-- Produces the output 'abcd'

END;
/

13.1.8 Ensuring Read Consistency

This script in this section can be used to ensure that hot backups can be taken of tables that
have NOLOGGING or FILESYSTEM LIKE LOGGING LOBs and have a known recovery point without
read inconsistencies.

ALTER DATABASE FORCE LOGGING;
SELECT CHECKPOINT CHANGE# FROM VSDATABASE; --Start SCN

SCN (System Change Number) is a stamp that defines a version of the database at the time
that a transaction is committed.

Perform the backup.

Run the next script:

ALTER SYSTEM CHECKPOINT GLOBAL;
SELECT CHECKPOINT CHANGE# FROM VS$DATABASE; --End SCN
ALTER DATABASE NO FORCE LOGGING;

Back up the archive logs generated by the database. At the minimum, archive logs between
start SCN and end SCN (including both SCN points) must be backed up.

To restore to a point with no read inconsistency, restore to end SCN as your incomplete
recovery point. If recovery is done to an SCN after end SCN, there can be read inconsistency
in the NOLOGGING LOBs.

For SecureFiles, if a read inconsistency is found during media recovery, the database treats
the inconsistent blocks as holes and fills BLOBs with 0's and cL.0oBs with fill characters.

13.2 LOB Locators and Transaction Boundaries
LOB locators can be used in both transactions as well as transaction IDs.

e About LOB Locators and Transaction Boundaries
Learn about LOB locators and transaction boundaries in this section.

ORACLE 1311

Chapter 13
LOB Locators and Transaction Boundaries

Read and Write Operations on a LOB Using Locators
You can always read LOB data using the locator irrespective of whether or not the locator
contains a transaction ID. Learn about various aspects of it in this section.

Selecting the Locator Outside of the Transaction Boundary
This section has two scenarios that describe techniques for using locators in non-
serializable transactions when the locator is selected outside of a transaction.

Selecting the Locator Within a Transaction Boundary
This section has two scenarios that describe techniques for using locators in non-
serializable transactions when the locator is selected within a transaction.

LOB Locators Cannot Span Transactions
LOB locators that are used to write data cannot span transactions. However, the locator
can be used to read the LOB value unless you are in a serializable transaction.

Example of Locator Not Spanning a Transaction
The example of locator not spanning a transaction uses the print media table.

¢ See Also:

Locator Interface for LOBs for more information about LOB locators

13.2.1 About LOB Locators and Transaction Boundaries

Learn about LOB locators and transaction boundaries in this section.

Note the following regarding LOB locators and transactions:

Locators contain transaction IDs when:

You Begin the Transaction, Then Select Locator: If you begin a transaction and
subsequently select a locator, then the locator contains the transaction ID. Note that you
can implicitly be in a transaction without explicitly beginning one. For example, SELECT...
FOR UPDATE implicitly begins a transaction. In such a case, the locator contains a
transaction ID.

Locators Do Not Contain Transaction IDs When...

— You are Outside the Transaction, Then Select Locator: By contrast, if you select a
locator outside of a transaction, then the locator does not contain a transaction ID.

— When Selected Prior to DML Statement Execution: A transaction ID is not assigned
until the first DML statement executes. Therefore, locators that are selected prior to
such a DML statement do not contain a transaction ID.

13.2.2 Read and Write Operations on a LOB Using Locators

You can always read LOB data using the locator irrespective of whether or not the locator
contains a transaction ID. Learn about various aspects of it in this section.

ORACLE

Cannot Write Using Locator:

If the locator contains a transaction ID, then you cannot write to the LOB outside of that
particular transaction.

Can Write Using Locator:

13-12

Chapter 13
LOB Locators and Transaction Boundaries

If the locator does not contain a transaction 1D, then you can write to the LOB after
beginning a transaction either explicitly or implicitly.

e Cannot Read or Write Using Locator With Serializable Transactions:

If the locator contains a transaction ID of an older transaction, and the current transaction
is serializable, then you cannot read or write using that locator.

e Can Read, Not Write Using Locator With Non-Serializable Transactions:

If the transaction is non-serializable, then you can read, but not write outside of that
transaction.

The examples Selecting the Locator Outside of the Transaction Boundary, Selecting the
Locator Within a Transaction Boundary, LOB Locators Cannot Span Transactions, and
Example of Locator Not Spanning a Transaction show the relationship between locators and
non-serializable transactions

13.2.3 Selecting the Locator Outside of the Transaction Boundary

ORACLE

This section has two scenarios that describe techniques for using locators in hon-serializable
transactions when the locator is selected outside of a transaction.

First Scenario:

1. Select the locator with no current transaction. At this point, the locator does not contain a
transaction id.

Begin the transaction.

Use the locator to read data from the LOB.
Commit or rollback the transaction.

Use the locator to read data from the LOB.

Begin a transaction. The locator does not contain a transaction id.

N o g & w DN

Use the locator to write data to the LOB. This operation is valid because the locator did not
contain a transaction id prior to the write. After this call, the locator contains a transaction
id.

Second Scenario:

1. Select the locator with no current transaction. At this point, the locator does not contain a
transaction id.

2. Begin the transaction. The locator does not contain a transaction id.
3. Use the locator to read data from the LOB. The locator does not contain a transaction id.

4. Use the locator to write data to the LOB. This operation is valid because the locator did not
contain a transaction id prior to the write. After this call, the locator contains a transaction
id. You can continue to read from or write to the LOB.

Commit or rollback the transaction. The locator continues to contain the transaction id.
Use the locator to read data from the LOB. This is a valid operation.

Begin a transaction. The locator contains the previous transaction id.

® N o o

Use the locator to write data to the LOB. This write operation fails because the locator
does not contain the transaction id that matches the current transaction.

13-13

Chapter 13
LOB Locators and Transaction Boundaries

13.2.4 Selecting the Locator Within a Transaction Boundary

This section has two scenarios that describe techniques for using locators in hon-serializable
transactions when the locator is selected within a transaction.

First Scenario:
1. Select the locator within a transaction. At this point, the locator contains the transaction id.
2. Begin the transaction. The locator contains the previous transaction id.

3. Use the locator to read data from the LOB. This operation is valid even though the
transaction id in the locator does not match the current transaction.

¢ See Also:

"Read-Consistent Locators" for more information about using the locator to read
LOB data.

4. Use the locator to write data to the LOB. This operation fails because the transaction id in
the locator does not match the current transaction.

Second Scenario:

1. Begin a transaction.

2. Select the locator. The locator contains the transaction id because it was selected within a
transaction.

3. Use the locator to read from or write to the LOB. These operations are valid.
4, Commit or rollback the transaction. The locator continues to contain the transaction id.

5. Use the locator to read data from the LOB. This operation is valid even though there is a
transaction id in the locator and the transaction was previously committed or rolled back.

6. Use the locator to write data to the LOB. This operation fails because the transaction id in
the locator is for a transaction that was previously committed or rolled back.

13.2.5 LOB Locators Cannot Span Transactions

ORACLE

LOB locators that are used to write data cannot span transactions. However, the locator can be
used to read the LOB value unless you are in a serializable transaction.

Modifying a persistent LOB value through the LOB locator using DBMS LOB, OCI, or SQL
INSERT Or UPDATE statements changes the locator from a read-consistent locator to an updated
locator.

The INSERT or UPDATE Statement automatically starts a transaction and locks the row. Once this
has occurred, the locator cannot be used outside the current transaction to modify the LOB
value. In other words, LOB locators that are used to write data cannot span transactions.
However, the locator can be used to read the LOB value unless you are in a serializable
transaction.

In the following code example, a CLOB locator called clob updated is created and following
operations are performed:

13-14

Chapter 13

LOB Locators and Transaction Boundaries

* At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_updated.

» The second operation (at t2), uses the DBMS LOB.WRITE function to alter the value in

clob updated, and a DBMS_ LOB.READ reveals a new value.

* The commit statement (at t3) ends the current transaction.

* Therefore (at t4), the subsequent DBMS_LOB.WRITE operation fails because the

clob_updated locator refers to a different (already committed) transaction. This is noted by
the error returned. You must re-select the LOB locator before using it in further DBMS LOB
(and OCI) modify operations.

13.2.6 Example of Locator Not Spanning a Transaction

ORACLE

The example of locator not spanning a transaction uses the print media table.

INSERT INTO PRINT MEDIA VALUES (2056, 20010, EMPTY BLOB(),
'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num_var
clob updated
read amount
read offset
write amount
write offset

INTEGER;
CLOB;

INTEGER;
INTEGER;
INTEGER;
INTEGER;

buffer VARCHARZ (20) ;
BEGIN
-- At time tl:

SELECT ad sourcetext
INTO clob updated
FROM PRINT MEDIA
WHERE ad_id = 20010
FOR UPDATE;

read amount :=
read offset :=

10;
1;

dbms lob.read(clob updated, read amount, read offset, buffer);
dbms output.put line('clob updated value: ' || buffer);
-- This produces the output 'abcd'

-- At time t2:
write amount
write offset

= 3;
= 5;

buffer := 'efg';

dbms lob.write(clob updated, write amount, write offset, buffer);
read amount :=

10;

dbms lob.read(clob updated, read amount, read offset, buffer);
dbms output.put line('clob updated value: ' || buffer);
-- This produces the output 'abcdefg'

-- At time t3:
COMMIT;

-- At time t4:

dbms lob.write(clob updated , write amount, write offset, buffer);

-- ERROR: ORA-22990: LOB locators cannot span transactions

13-15

Chapter 13
LOBs in the Object Cache

END;

13.3 LOBs in the Object Cache

When you copy one object to another in the object cache with a LOB locator attribute, only the
LOB locator is copied.

This means that the LOB attribute in these two different objects contain exactly the same
locator that refers to one and the same LOB value. Only when you flush the target LOB, a
separate physical copy of the LOB value is made, which is distinct from the source LOB value.

¢ See Also:

Example of Updating LOBs and Read-Consistency for a description of what version
of the LOB value is seen by each object if a write operation is performed through one
of the locators.

Therefore, in cases where you want to modify the LOB that was the target of the copy, you
must flush the target object, refresh the target object, and then write to the LOB through the
locator attribute.

Consider the following object cache issues for LOB and BFILE attributes:

Persistent LOB attributes: Creating an object in the object cache, sets the LOB attribute to
empty.

When you create an object in the object cache that contains a persistent LOB attribute, the
LOB attribute is implicitly set to empty. You may not use this empty LOB locator to write
data to the LOB. You must first flush the object, thereby inserting a row into the table and
creating an empty LOB, that is, a LOB with zero (0) length. Once you refresh the object in
the object cache, using the 0CI_PIN LATEST function, the real LOB locator is read into the
attribute, and you can then call the OCI LOB APIs to write data to the LOB.

BFILE attributes: Creating an object in the object cache, sets the BFILE attribute to NULL.

When creating an object with a BFILE attribute, the BFILE is set to NULL. You must update it
with a valid DIRECTORY object name and file name before reading from the BFILE.

13.4 Guidelines for Creating Terabyte sized LOBs

To create terabyte LOBs in supported environments, use the following guidelines to make use
of all available space in the tablespace for LOB storage.

ORACLE

Single Data File Size Restrictions:

There are restrictions on the size of a single data file for each operating system. Hence,
add more data files to the tablespace when the LOB grows larger than the maximum
allowed file size of the operating system on which your Oracle Database runs.

Set MAXEXTENTS to a Suitable Value or UNLIMITED:

The MAXEXTENTS parameter limits the number of extents allowed for the LOB column. A
large number of extents are created incrementally as the LOB size grows. Therefore, the
parameter should be set to a value that is large enough to hold all the LOBs for the
column. Alternatively, you could set it to UNLIMITED.

13-16

Chapter 13
Guidelines for Creating Terabyte sized LOBs

* Use a Large Extent Size:

For every new extent created, Oracle generates undo information for the header and other
metadata for the extent. If the number of extents is large, then the rollback segment can be
saturated. To get around this, choose a large extent size, say 100 megabytes, to reduce
the frequency of extent creation, or commit the transaction more often to reuse the space
in the rollback segment.

e Creating a Tablespace and Table to Store Terabyte LOBs
The following example illustrates how to create a tablespace and table to store terabyte
LOBs.

13.4.1 Creating a Tablespace and Table to Store Terabyte LOBs

ORACLE

The following example illustrates how to create a tablespace and table to store terabyte LOBs.

CREATE TABLESPACE lobtbsl DATAFILE '/your/own/data/directory/lobtbs 1.dat'
SIZE 2000M REUSE ONLINE NOLOGGING DEFAULT STORAGE (MAXEXTENTS UNLIMITED) ;
ALTER TABLESPACE lobtbsl ADD DATAFILE
'/your/own/data/directory/lobtbs 2.dat' SIZE 2000M REUSE;

CREATE TABLE print media backup

(product id NUMBER(6),

ad_id NUMBER(6),

ad composite BLOB,

ad sourcetext CLOB,

ad finaltext CLOB,

ad fltextn NCLOB,

ad textdocs ntab textdoc tab,

ad photo BLOB,

ad graphic BLOB,

ad header adheader typ)

NESTED TABLE ad textdocs ntab STORE AS textdocs nestedtabb

LOB (ad_sourcetext) STORE AS (TABLESPACE lobtbsl CHUNK 32768 PCTVERSION 0
NOCACHE NOLOGGING
STORAGE (INITIAL 1000M NEXT 1000M MAXEXTENTS
UNLIMITED)) ;

13-17

Managing LOBs: Database Administration

14.410B

You must perform various administrative tasks to set up, maintain, and use a database that
contains LOBs.

Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to Relocating a
PDB Using CREATE PLUGGABLE DATABASE.

e Initialization Parameter for SecureFiles LOBs
As a database administrator, you can configure the conditions that control or allow creation
of SecureFiles LOBs or BasicFiles LOBs. Typically, you set up the DB_SECUREFILE
parameter in the init.ora file for this purpose.

» Database Character Set Considerations
The database character set cannot be changed from a single-byte to a multibyte character
set if there are populated user-defined CLOB columns in the database tables.

e Database Utilities for Loading Data into LOBs
Certain utilities are recommended for bulk loading data into LOB columns as part of the
database set up or maintenance tasks.

e LOB Migration with Data Pump

* BFILEs Management
This section describes various administrative tasks to manage databases that contain
BFILES.

* Managing LOB Signatures
This section describes how to configure LOB signatures.

Migration with Data Pump

See Migrating LOBs with Data Pump.

14.1 Initialization Parameter for SecureFiles LOBs

ORACLE

As a database administrator, you can configure the conditions that control or allow creation of
SecureFiles LOBs or BasicFiles LOBs. Typically, you set up the DB _SECUREFILE parameter in
the init.ora file for this purpose.

The DB_SECUREFILE initialization parameter is dynamic and can be modified with the ALTER
SYSTEM statement in the following way:

ALTER SYSTEM SET DB SECUREFILE = 'ALWAYS';

14-1

Chapter 14
Database Character Set Considerations

The valid values for this parameter are described in the following table:

Value

Description

NEVER

Prevents SecureFiles LOBs from being created. If
NEVER is specified, then any LOBs that are
specified as SecureFiles LOBs are created as
BasicFiles LOBs. If storage options are not
specified, then the BasicFiles LOB defaults are
used. All SecureFiles LOB-specific storage options
and features such as compress, encrypt, and
deduplicate throw an exception.

IGNORE

Always create BasicFile LOBs, and ignore any
errors that the SecureFile LOB options might
cause. If IGNORE is specified, then the
SECUREFILE keyword and all SecureFiles LOB
options are ignored.

PERMITTED

Allows SecureFiles LOBs to be created, if specified
by users. Otherwise, BasicFiles LOBs are created.

PREFERRED (default)

Attempts to create a SecureFiles LOB unless
BasicFiles LOB is explicitly specified for the LOB or
the parent LOB (if the LOB is in a partition or sub-
partition).

ALWAYS

Attempts to create SecureFiles LOBs, but creates
any LOBs not in ASSM tablespaces as BasicFiles
LOBs, unless the SECUREFILE parameter is
explicitly specified. Any BasicFiles LOB storage
options specified are ignored, and the SecureFiles
LOB defaults are used for all storage options not
specified.

FORCE

Attempts to create all LOBs as SecureFiles LOBs
even if users specify BASICFILE. This option is not
recommended. Instead, PREFERRED or ALWAYS
should be used.

14.2 Database Character Set Considerations

The database character set cannot be changed from a single-byte to a multibyte character set
if there are populated user-defined cL.OB columns in the database tables.

The national character set cannot be changed between AL16UTF16 and UTFS if there are
populated user-defined NCLOB columns in the database tables.

¢ See Also:

Choosing a Character Set

14.3 Database Utilities for Loading Data into LOBS

Certain utilities are recommended for bulk loading data into LOB columns as part of the

database set up or maintenance tasks.

ORACLE

14-2

Chapter 14
Database Utilities for Loading Data into LOBS

The following utilities are recommended for bulk loading data into LOB columns as part of
database setup or maintenance tasks:

e SQL*Loader
e External Tables

e Oracle Data Pump

¢ Loading LOBs with SQL*Loader
Learn about conventional and direct-path loads, when Oracle recommends that you use
direct-path loads, and what rules and guidelines you should follow to avoid issues.

e Loading BFILEs with SQL*Loader
This section describes how to load data from files in the file system into a BFILE column
using SQL*Loader.

e Loading LOBs with External Tables
External tables are particularly useful for loading large numbers of records from a single
file, so that each record appears in its own row in the table.

14.3.1 Loading LOBs with SQL*Loader

ORACLE

Learn about conventional and direct-path loads, when Oracle recommends that you use direct-
path loads, and what rules and guidelines you should follow to avoid issues.

There are two options for loading large object (LOB) data:

A conventional path load executes SQL INSERT statements to populate tables in an Oracle
Database.

A direct-path load eliminates much of the Oracle Database overhead by formatting Oracle
data blocks, and writing the data blocks directly to the database files. Additionally, a direct-path
load does not compete with other users for database resources, so it can usually load data at
near disk speed. Be aware that there are also other restrictions, security, and backup
implications for direct path loads, which you should review.

For each of these options of loading large object data (LOBs), you can use the following
techniques to load data into LOBs:

e Loading LOB data from primary data files.

When you load data from a primary data file, the data for the LOB column is part of the
record in the file that you are loading.

e Loading LOB data from a secondary data file using LOB files.

When you load data from a secondary data file, the data for a LOB column is in a different
file from the primary data file. Instead of the data itself, the primary data file contains
information about the location of the content of the LOB data in other files.

Recommendations for Using SQL*Loader to Load LOBs

Oracle recommends that you keep the following guidelines and rules in mind when loading
LOBs using SQL*Loader:

* Tables that you want to load must already exist in the database. SQL*Loader never creates
tables. It loads existing tables that either contain data, or are empty.

* When you load data from LOB files, specify the maximum length of the field corresponding
to a LOB-type column. If the maximum length is specified, then SQL*Loader uses this
length as a hint to help optimize memory usage. You should ensure that the maximum
length you specify does not underestimate the true maximum length.

14-3

Chapter 14
Database Utilities for Loading Data into LOBs

* If you use conventional path loads, then be aware that failure to load a particular LOB does
not result in the rejection of the record containing that LOB; instead, the record ends up
containing an empty LOB.

e If you use direct-path loads, then be aware that loading LOBs can take up substantial
memory. If the message sQL*Loader 700 (out of memory) appears when loading LOBs,
then internal code is probably batching up more rows in each load call than can be
supported by your operating system and process memory. One way to work around this
problem is to use the ROWS option to read a smaller number of rows in each data save.

Only use direct path loads to load XML documents that are known to be valid into XMLtype
columns that are stored as CLOBS. Direct path load does not validate the format of XML
documents as the are loaded as CLOBs.

With direct-path loads, errors can be critical. In direct-path loads, the LOB could be empty
or truncated. LOBs are sent in pieces to the server for loading. If there is an error, then the
LOB piece with the error is discarded and the rest of that LOB is not loaded. As a result, if
the entire LOB with the error is contained in the first piece, then that LOB column is either
empty or truncated.

You can also use the Direct Path API to load LOBs.

Privileges Required for Using SQL*Loader to Load LOBs
The following privileges are required for using SQL*Loader to load LOBs:
* You must have INSERT privileges on the table that you want to load.

* You must have DELETE privileges on the table that you want to load, if you want to use the
REPLACE or TRUNCATE option to empty out the old data before loading the new data in its
place.

Example 14-1 Loading LOB from a primary data file using Delimited Fields

Review this example to see how to load LOB data in delimited fields. Note the callouts "1" and
"2" in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat' "str '|'""
INTO TABLE person_table
FIELDS TERMINATED BY ','
(name CHAR (25),
1 "RESUME" CHAR (507) ENCLOSED BY '<startlob>' AND '<endlob>"')

Data File (sample.dat)

Julia Nayer,<startlob> Julia Nayer
500 Example Parkway
jnayer@example.com ... <endlob>
2 |Bruce Ernst,

ORACLE i

ORACLE

Chapter 14
Database Utilities for Loading Data into LOBS

Note:
The callouts, in bold, to the left of the example correspond to the following notes:

1. <startlob> and <endlob> are the enclosure strings. With the default byte-length
semantics, the maximum length for a LOB that can be read using CHAR (507) is
507 bytes. If character-length semantics were used, then the maximum would be
507 characters. For more information, refer to character-length semantics.

2. If the record separator ' | ' had been placed right after <endlob> and followed
with the newline character, then the newline would have been interpreted as part
of the next record. An alternative would be to make the newline part of the record
separator (for example, ' |\n' or, in hexadecimal notation, X' 7C0A").

Example 14-2 Loading a LOB from secondary data file, using Delimited Fields:
In this example, note the callout "1" in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
(name CHAR (20),
1 "RESUME" LOBFILE (CONSTANT 'jgresume') CHAR(2000)
TERMINATED BY "<endlob>\n")

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jgresume.txt)

Johny Quest

500 Oracle Parkway
. <endlob>
Speed Racer

400 Oracle Parkway
. <endlob>

14-5

Chapter 14
Database Utilities for Loading Data into LOBs

Note:
The callout, in bold, to the left of the example corresponds to the following note:

1. Because a maximum length of 2000 is specified for CHAR, SQL*Loader knows
what to expect as the maximum length of the field, which can result in memory
usage optimization. If you choose to specify a maximum length, then you should
be sure not to underestimate its value. The TERMINATED BY clause specifies the
string that terminates the LOBs. Alternatively, you can use the ENCLOSED BY
clause. The ENCLOSED BY clause allows a bit more flexibility with the relative
positioning of the LOBSs in the LOBFILE, because the LOBs in the LOBFILE do not
need to be sequential.

Related Topics
e Oracle Call Interface Direct Path Load Interface
¢ Loading Objects, LOBs, and Collections with SQL*Loader

14.3.2 Loading BFILEs with SQL*Loader

This section describes how to load data from files in the file system into a BFILE column using
SQL*Loader.

Note:

e The BFILE data type stores unstructured binary data in operating system files
outside the database. A BFILE column or attribute stores a file locator that points
to a server-side external file containing the data.

e A particular file to be loaded as a BFILE does not have to actually exist at the
time of loading. SQL*Loader assumes that the necessary DIRECTORY objects
have been created.

See Also:
DIRECTORY Obijects for more information

A control file field corresponding to a BFILE column consists of the column name followed by
the BFILE directive.

The BFILE directive takes as arguments a DIRECTORY object name followed by a BFILE hame.
Both of these can be provided as string constants, or they can be dynamically sourced through
some other field.

¢ See Also:

Oracle Database Utilities for details on SQL*Loader syntax

ORACLE e

Chapter 14
Database Utilities for Loading Data into LOBS

The following two examples illustrate the loading of BFILES.

Note:
You need to set up the following data structures for certain examples to work:
CONNECT pm/pm

CREATE OR REPLACE DIRECTORY adgraphic photo as '/tmp';
CREATE OR REPLACE DIRECTORY adgraphic dir as '/tmp';

In the following example, only the file name is specified dynamically. The directory name,
adgraphic photo, is in quotation marks. Therefore, the string is used as is, and is not
capitalized.

Control file:

LOAD DATA

INFILE sample9.dat

INTO TABLE Print media

FIELDS TERMINATED BY ','

(product id INTEGER EXTERNAL (6),

FileName FILLER CHAR(30),

ad graphic BFILE (CONSTANT "adgraphic photo", FileName))

Data file:

007, modem 2268.Jjpg,
008, monitor 3060.jpg,
009, keyboard 2056.3jpg,

In the following example, the BFILE and the DIRECTORY objects are specified dynamically.

Control file:

LOAD DATA

INFILE samplel0O.dat

INTO TABLE Print media
FIELDS TERMINATED BY ','

(

product_id INTEGER EXTERNAL (6),

ad graphic BFILE (DirName, FileName),
FileName FILLER CHAR(30),

DirName FILLER CHAR(30)

)

Data file:

007, monitor 3060.jpg, ADGRAPHIC PHOTO,
008, modem_2268.Jjpg, ADGRAPHIC PHOTO,
009, keyboard 2056.]jpg, ADGRAPHIC DIR,

14.3.3 Loading LOBs with External Tables

ORACLE

External tables are particularly useful for loading large numbers of records from a single file, so
that each record appears in its own row in the table.

14-7

Chapter 14
Database Utilities for Loading Data into LOBs

Note:

Loading LOBs with External Tables

e Overview of LOBs and External Tables
Learn the benefits of using external tables with your database to read and write data, and
to understand how to create them.

14.3.3.1 Overview of LOBs and External Tables

Learn the benefits of using external tables with your database to read and write data, and to
understand how to create them.

External tables enable you to treat the contents of external files as if they are rows in a table in
your Oracle Database. After you create an external table, you can then use SQL statements to
read rows from the external table, and insert them into another table.

To perform these operations, Oracle Database uses one of the following access drivers:

* The ORACLE LOADER access driver reads text files and other file formats, similar to SQL
Loader.

* The ORACLE DATAPUMP access driver creates binary files that store data returned by a
query. It also returns rows from files in binary format.

When you create an external table, you specify column and data types for the external table.
The access driver has a list of columns in the data file, and maps the contents of the field in the
data file to the column with the same name in the external table. The access driver takes care
of finding the fields in the data source, and converting these fields to the appropriate data type
for the corresponding column in the external table. After you create an external table, you can
load the target table by using an INSERT AS SELECT Statement.

One of the advantages of using external tables to load data over SQL Loader is that external
tables can load data in parallel. The easiest way to do this is to specify the PARALLEL clause as
part of CREATE TABLE for both the external table and the target table.

Example 14-3

This example creates a table, CANDIDATE, that can be loaded by an external table. When it is
loaded, it then creates an external table, CANDIDATE XT. Next, it executes an INSERT statement
to load the table. The INSERT statement includes the +APPEND hint, which uses direct load to
insert the rows into the table CANDIDATES. The PARALLEL parameter tells SQL that the tables
can be accessed in parallel.

The PARALLEL parameter setting specifies that there can be four (4) parallel query processes
reading from CANDIDATE XT, and four parallel processes inserting into CANDIDATE. Note that
LOBs that are stored as BASICFILE cannot be loaded in parallel. You can only load SECUREFILE
LOBS in parallel. The variable additional-external-table-info indicates where additional
external table information can be inserted.

CREATE TABLE CANDIDATES
(candidate id NUMBER,

first name VARCHAR2 (15),

ORACLE i

Chapter 14
Database Utilities for Loading Data into LOBS

last name VARCHAR2 (20),
resume CLOB,

picture BLOB

) PARALLEL 4;

CREATE TABLE CANDIDATE XT

(candidate id NUMBER,

first name VARCHAR2 (15),
last name VARCHAR2 (20) ,
resume CLOB,

picture BLOB

) PARALLEL 4;

ORGANIZATION EXTERNAL additional-external-table-info PARALLEL 4;

INSERT /*+APPEND*/ INTO CANDIDATE SELECT * FROM CANDIDATE XT;

File Locations for External Tables Created By Access Drivers

Al files created or read by ORACLE LOADER and ORACLE DATAPUMP reside in directories pointed
to by directory objects. Either the DBA or a user with the CREATE DIRECTORY privilege can
create a directory object that maps a new to a path on the file system. These users can grant
READ, WRITE or EXECUTE privileges on the created directory object to other users. A user granted
READ privilege on a directory object can use external tables to read files from directory for the
directory object. Similarly, a user with WRITE privilege on a directory object can use external
tables to write files to the directory for the directory object.

Example 14-4 Creating Directory Object

The following example shows how to create a directory object and grant READ and WRITE
access to user HR:

create directory HR DIR as /usr/hr/files/exttab;

grant read, write on directory HR DIR to HR;

Note:

When using external tables in an Oracle Real Application Clusters (Oracle RAC)
environment, you must make sure that the directory pointed to by the directory object
maps to a directory that is accessible from all nodes.

ORACLE 4o

Chapter 14
BFILEs Management

14.5 BFILEs Management

This section describes various administrative tasks to manage databases that contain BFILES.

Guidelines for DIRECTORY Usage
Learn about the guidelines for efficient management of DIRECTORY objects.

Rules for Using Directory Objects and BFILEs
You can create a directory object or BFILE objects if these conditions are met.

Setting Maximum Number of Open BFILEs
Only limited number of BFILES can be open simultaneously in each session. Learn to
define this number in this section.

14.5.1 Guidelines for DIRECTORY Usage

Learn about the guidelines for efficient management of DIRECTORY objects.

ORACLE

The main goal of the DIRECTORY feature is to enable a simple, flexible, non-intrusive, yet secure
mechanism for the DBA to manage access to large files in the server file system. But to realize
this goal, it is very important that the DBA follow these guidelines when using DIRECTORY
objects:

Do not map a DIRECTORY object to a data file directory. A DIRECTORY object should not be
mapped to physical directories that contain Oracle data files, control files, log files, and
other system files. Tampering with these files (accidental or otherwise) could corrupt the
database or the server operating system.

Only the DBA should have system privileges. The system privileges such as CREATE ANY
DIRECTORY Or DROP ANY DIRECTORY(granted to the DBA initially) should be used carefully
and not granted to other users indiscriminately. In most cases, only the database
administrator should have these privileges.

Use caution when granting the DIRECTORY privilege. Privileges on DIRECTORY objects
should be granted to different users carefully. The same holds for the use of the WITH
GRANT OPTION clause when granting privileges to users.

Do not drop or replace DIRECTORY objects when database is in operation. If this were to
happen, then operations from all sessions on all files associated with this DIRECTORY object
fail. Further, if a DROP or REPLACE command is executed before these files could be
successfully closed, then the references to these files are lost in the programs, and system
resources associated with these files are not be released until the session(s) is shut down.

The only recourse left to PL/SQL users, for example, is to either run a program block that
calls DBMS LOB.FILECLOSEALL and restart their file operations, or exit their sessions
altogether. Hence, it is imperative that you use these commands with prudence, and
preferably during maintenance downtimes.

Use caution when revoking a user's privilege on DIRECTORY objects. Revoking a user's
privilege on a DIRECTORY object using the REVOKE statement causes all subsequent
operations on dependent files from the user's session to fail. The user must either re-
acquire the privileges to close the file, or run a FILECLOSEALL in the session and restart the
file operations.

In general, using DIRECTORY objects for managing file access is an extension of system
administration work at the operating system level. With some planning, files can be logically
organized into suitable directories that have READ privileges for the Oracle process.

14-10

Chapter 14
Managing LOB Signatures

DIRECTORY oObjects can be created with READ privileges that map to these physical directories,
and specific database users granted access to these directories.

See Also:

Security on Directory Objects

14.5.2 Rules for Using Directory Objects and BFILES

You can create a directory object or BFILE objects if these conditions are met.

When you create a directory object or BFILE objects, ensure that the following conditions are
met:

e The operating system file must not be a symbolic or hard link.

e The operating system directory path named in the Oracle DIRECTORY object must be an
existing operating system directory path.

e The operating system directory path named in the Oracle DIRECTORY object should not
contain any symbolic links in its components.

14.5.3 Setting Maximum Number of Open BFILES

Only limited number of BFILES can be open simultaneously in each session. Learn to define
this number in this section.

The initialization parameter, SESSION MAX OPEN FILES, defines an upper limit on the number of
simultaneously open files in a session.

The default value for this parameter is 10. Using this default, you can open a maximum of 10
files at the same time in each session. To alter this limit, the database administrator must
change the parameter value in the init.ora file. For example:

SESSION MAX OPEN FILES=20

If the number of unclosed files reaches the SESSION MAX OPEN FILES value, then you cannot
open additional files in the session. To close all open files, use the DBMS LOB.FILECLOSEALL
call.

See Also:
DIRECTORY Objects

14.6 Managing LOB Signatures

This section describes how to configure LOB signatures.

You can configure signature-based security for large object (LOB) locators using the
LOB_SIGNATURE ENABLE initialization parameter.

ORACLE Rt

ORACLE

Chapter 14
Managing LOB Signatures

To enable signature, set the LOB_SIGNATURE ENABLE initialization parameter at init.ora, or
using the following ALTER SYSTEM command. Also ensure that you have set the
compatibility to 12.2.0.2 or above.

ALTER SYSTEM SET LOB_SIGNATURE ENABLE = [TRUE|FALSE];
The following ALTER statement helps to encrypt, re-key, and delete the signature keys.

ALTER DATABASE DICTIONARY [ENCRYPT|REKEY|DELETE] CREDENTIALS;

For more information, refer to the Oracle Database Security Guide.

See Also:

Oracle Database Security Guide

14-12

Migrating Columns to SecureFile LOBs

Oracle recommends that you migrate your existing columns that use the LONG or LONG RAW
datatype or BasicFile LOB storage to the SecureFile LOB storage. This chapter covers various
techniques to help with this migration.

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were deprecated in
Oracle8i Release 8.1.6. For succeeding releases, the LONG data type was provided for
backward compatibility with existing applications. In new applications developed with later
releases, Oracle strongly recommends that you use CLOB and NCLOB data types for large
amounts of character data.

¢ Note:

All discussions in this chapter are valid for migrating the LONG datatype to CLOB or
NCLOB, and the LONG RAW datatype to BLOB. Most of the text in this chapter talks just
about the LONG datatype for brevity.

e Migration Considerations
This section discusses various factors to be considered while migrating LOB data types or
storage.

e Migration Methods
This section describes various methods you can use to migrate LONG or BasicFile LOB
data to SecureFile storage.

e Other Considerations While Migrating LONG Columns to LOBs
This section describes some more considerations when migrating LONG columns to LOBs.

15.1 Migration Considerations

ORACLE

This section discusses various factors to be considered while migrating LOB data types or
storage.

Space requirements

Most migration techniques copy the contents of the table into a new space, and free the old
space at the end of the operation. This temporarily doubles the space requirements. If space is
limited, then you can perform the BasicFile to SecureFile migration one partition at a time.

Preventing Generation of REDO Data When Migrating

Migrating LONG datatype or BasicFiles LOB columns to SecureFile generates redo data, which
can slow down the performance during the migration.

Redo changes for a column being converted to SecureFiles LOB are logged only if the storage
characteristics of the LOB column indicate LOGGING. The logging setting (LOGGING or
NOLOGGING) for the LOB column is inherited from the tablespace in which the LOB is created.

15-1

Chapter 15
Migration Methods

You can prevent redo space generation during migration to SecureFiles LOB by following the
following steps:

1. Specify the NOLOGGING storage parameter for any new SecureFiles LOB columns.
2. Turn LOGGING on when the migration is complete.

3. Make a backup of the tablespaces containing the table and the LOB column.

15.2 Migration Methods

This section describes various methods you can use to migrate LONG or BasicFile LOB data
to SecureFile storage.

Topics

e Migrating LOBs with SecureFiles Migration Utility
This is the recommended method to migrate BasicFile LOB data to SecureFile storage.
This utility encapsulates all the functionality offered by Online Redefinition and saves you
the time and effort involved in manually running a series of API calls.

e Migrating LOBs with Online Redefinition
Use Online redefinition to migrate LONG or BasicFile LOB data to SecureFile storage by
running several API calls.

e Migrating LOBs with Data Pump
Oracle Data Pump can either recreate tables as they are in your source database, or
recreate LOB columns as SecureFile LOBs.

15.2.1 Migrating LOBs with SecureFiles Migration Utility

ORACLE

This is the recommended method to migrate BasicFile LOB data to SecureFile storage. This
utility encapsulates all the functionality offered by Online Redefinition and saves you the time
and effort involved in manually running a series of API calls.

Advantages

* No need to take the table or partition offline.

e Perform the migration at the database, schema, table or LOB segment level.

e After migrating the data, you can also use the SecureFiles Migration Utility to compress the
SecureFile LOBs.

Disadvantages

e Additional storage equal to the entire table or partition required and all LOB segments must
be available.

e Global indexes must be rebuilt.
To migrate BasicFile LOB data to SecureFile storage using the SecureFiles migration utility:
1. Run the following command as is to create a table.

create table migration config (ctime date, data clob , constraint cl
check(data is json));

2. Make a single entry in the table to specify the schema, table, and columns that you want to

migrate. Enter first as the value for run_type as this is the first time you are running the
script. For others, provide values based on your environment.

15-2

ORACLE

Chapter 15
Migration Methods

Example Command

The following example shows a example single entry that specifies the objects that you
want to migrate.

insert into migration config values

(systimestamp,
'{"schema name" : ["TEST2"],
"table_name" : ["TESTI.TAB_DEFERRED_SEGCREATIONI",

"TEST1.TAB NON LOB1",

"TEST1.BASICIA", "TEST1.BASIC3A"],

"column name" : ["TEST1.TAB PARTS1.a",
"TEST1.BASIC123.a", "TEST1.BASIC1