
Oracle® Database
2 Day + Java Developer's Guide

21c
F31778-01
December 2020

Oracle Database 2 Day + Java Developer's Guide, 21c

F31778-01

Copyright © 2007, 2020, Oracle and/or its affiliates.

Contributors: Apoorva Srinivas

Contributing Authors: Tanmay Choudhury

Primary Author: Tulika Das

Contributors: Kuassi Mensah, Nirmala Sundarappa

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Related Documents vii

Conventions vii

1 Aims and Objectives of This Book

1.1 Architecture of the HR Web Application 1-1

1.2 Components and Repositories 1-2

1.3 Objectives and Tasks 1-3

2 Brief Introduction to JDBC, UCP, and Java in the Database

2.1 Java Database Connectivity Driver (JDBC) 2-1

2.2 Universal Connection Pool 2-2

2.3 Java in the Database (OJVM) 2-3

3 Overview of the HR Web Application

3.1 Functionalities of the HR Web Application 3-1

4 Getting Started with the Application

4.1 What You Need to Install 4-1

4.1.1 Oracle Database 4-1

4.1.2 Install the HR schema 4-2

4.1.3 J2SE or JDK 4-2

4.1.4 JDBC Drivers 4-2

4.1.5 Integrated Development Environment 4-3

4.1.6 Web Server 4-3

4.2 Verifying the Oracle Database Installation 4-3

4.3 Github Repository Details 4-4

4.4 Import the Application in IntelliJ 4-4

iii

4.5 Compile the Application in IntelliJ 4-5

4.6 Run the HR Web Application 4-9

5 List All Employees

5.1 Creating a Java Bean Entity for an Employee 5-2

5.2 Creating a Java Bean Interface for a JDBC Connection 5-3

5.3 Creating a Java Bean Implementation for a JDBC Connection 5-3

5.4 Creating a Servlet to Process the Request 5-5

5.5 Create an HTML Page to Display Results 5-8

5.6 Create a CSS File 5-10

6 Search by Employee ID

6.1 Jdbc Java Bean 6-1

6.2 Add the code to a Servlet to process the request 6-2

6.3 Create a New HTML for Search by Employee Id 6-3

7 Update an Employee Record

7.1 Declare a new method getEmployeeByFn(String) in EmployeeBean.java 7-1

7.2 Declare a new method updateEmployee(Employee) 7-2

7.3 Implement a New Method getEmployeebyFn() for Search by Employee name 7-2

7.4 Implement a new method updateEmployee(Employee) 7-3

7.5 Add the code to a Servlet to process the request 7-4

7.6 Create a New HTML for Search by Employee Id 7-5

8 Increment Salary

8.1 Declare a new method incrementSalary(int) 8-1

8.2 Implement a new method incrementSalary(int) 8-2

8.3 Add the Code to a Servlet 8-2

8.4 Create a new HTML for Increment Salary 8-3

9 Create Login and Logout Functionality

9.1 Create tomcat-users.xml 9-2

9.2 Create login.html 9-2

9.3 Create login-failed.html 9-3

9.4 Create web.xml 9-4

9.5 Create about.html 9-5

9.6 Create index.html 9-5

iv

9.7 Add the code to a Servlet to process the request 9-7

10

Best Practices

11

Troubleshooting and Debugging

Index

v

List of Tables

1-1 Architecture of the Web Application 1-2

1-2 Components Required for the Application 1-2

4-1 Github Repository Details 4-4

vi

Preface

This preface discusses the intended audience and conventions of the Oracle
Database 2 Day + Java Developer's Guide.. It also includes a list of related Oracle
documents that you can refer to for more information.

Audience
This guide is intended for application developers using Java to access and modify
data in Oracle Database. This guide illustrates how to perform these tasks using a
simple Java Database Connectivity (JDBC) application. This guide uses the Oracle
JDeveloper integrated development environment (IDE) to create the application. This
guide can be read by anyone with an interest in Java programming, but it assumes at
least some prior knowledge of the following:

• Java

• Oracle PL/SQL

• Oracle databases

Related Documents
For more information, see the following documents in the Oracle Database
documentation set:

• Oracle Database JDBC Developer’s Guide

• Oracle Database Java Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vii

1
Aims and Objectives of This Book

Java is a popular language among developers that is used to build various enterprise
solutions.

This guide will help you understand all Java products used to build a Java application.
You will learn how to model a Java Web application using MVC design pattern, Oracle
JDBC Thin driver, Universal Connection Pool (UCP), and Java in the Database (using
embedded OJVM).

In the next few chapters, you will create a Java web application — ‘HR Web
application’. This application helps the HR team of AnyCo Corporation to lookup or
modify details of a specific employee, or all employees, delete an employee, or apply a
salary raise to all employees.

The HR application has two users:

• hrstaff

• hradmin

Each user has a different set of roles and privileges.

This Chapter contains the following topics:

• Architecture of the Web Application

• Components of the Application

• Objectives and Tasks

1.1 Architecture of the HR Web Application
The HR Web application uses the MVC (Model, View, Controller) architecture and the
latest tools and technologies. A Model View Controllder (MVC) is a design pattern that
is easy-to-use. It separates the web application into three simple parts (Model-View-
Controller).

The Model stores the data or the information that the web application is meant to
operate on. It does not include any information about the user-interface.

The View contains all elements of the user interface (UI). This includes buttons,
display box, links, input box etc.

The Controller connects Model and View.

As a user, you will see the interface (View) that could be a JSP page to an HTML page
after you log into the application. The Controller (a Java Servlet) renders the correct
View to the user during logging in, or any other flow. When you request for data or an
update to the data, the Controller invokes the Model that represents the data in terms
of tables or views, and renders the data. The Model represents the user data usually
stored in an Oracle Database or any other database.

1-1

The Controller then passes on this data to the View to show it to the user in a
presentable format.

Figure 1-1 Pictorial Depiction of the Web Application

Java EE Container

Oracle
Database

Presentation
Layer

HTML
Javascript

JQuery
CSS

Business and
Data Logic

WebController
(Servlet)

GetRole
(Admin/Staff)

Java Servlet
(JDbcBeanImpl)JSON

responses

HTTP
request

(GET, POST)

JDBC, UCP
Connection

User
Browser

The following table describes the various components of the application:

Table 1-1 Architecture of the Web Application

Name Technologies Used Description

Model Oracle Database, Java Beans Represents the information
or the data on which the
application operates.

View HTML, JavaScript, JQuery,
CSS

User interface that renders
the model to the end user. It
includes all elements visible
to the user such as buttons,
links, input, etc.

Controller Java Servlet The controller processes and
responds to user actions. It
orchestrates the flow based on
user input. It also connects
Model and View and renders
an output to the user.

You will use HR schema and the Employees to understand the flows in the Web
application.

1.2 Components and Repositories
The following table lists and describes all the components required for the application.

Table 1-2 Components Required for the Application

Package Name Description

src Contains source files

Chapter 1
Components and Repositories

1-2

Table 1-2 (Cont.) Components Required for the Application

Package Name Description

target Contains class files

src/main/java/com/oracle/jdbc/samples -

/bean/JdbcBean.java Defines the employee details as attributes

/bean/JdbcBeanImpl.java Implementation class of the EmployeeBean

src/main/java/com/oracle/jdbc/samples -

entity/Employee.java Consists of all employee attributes and their
defined datatypes

/web/WebController.java Servlet that controls the application flow

/web/GetRole.java Creates HRStaff and HRAdmin roles for the
application

src/main/resources -

SalaryHikeSP.java Java class to be invoked from Java in the
database to process an increment in salary

SalaryHikeSP.sql SQL file with a procedure to increase the
salary of the employees based on their salary
range

src/main/webapp -

about.html Contains the details about the HR Web
application

login.html Contains the login page for the HR Web
application

login-failed.html Page to show when the login is unsuccessful

index.html Landing page of the HR Web application

listAll.html HTML page to display all employee records

listByName.html HTML page to display the result when
employees are searched by name

listById.html HTML page to display the result when
employees are searched by employee id

incrementSalary.html HTML page to display the result after an
increment is made to the salary

src/main/webapp -

css/app.cs Contains all style and font details used in the
HR Web application

src/main/webapp -

WEB-INF/web.xml Controller for the HR Web application

1.3 Objectives and Tasks
By the end of this book, you will be able to:

a. Understand the JDBC, UCP, Java in the database and run a simple Java program to
get familiar with these products.

c. You will learn how to use Universal Connection Pool (UCP) and Java in the
Database (OJVM).

b. Implement the functionality to list all employees, search and retrieve an employee
and update an employee record.

Chapter 1
Objectives and Tasks

1-3

An overview of each chapter is described as follows:

1. Introduction to JDBC, UCP and Java in the Database: This chapter familiarizes
you with the products, associated binaries and packages through a sample code.

2. Overview of the HR Web Application: This chapter discusses the HR Web
application in depth and familiarize you with the flows of the Web application,
packages and files that you create as a part of the web application.

3. Getting Started with the Application: In this chapter, you understand the
prerequisites for building the application and how to get the environment ready.
It starts with signing up for the Oracle Cloud Free Tier or installing the Oracle
Database on premise. Later, you install IntelliJ, an IDE to build the application. You
use Tomcat Java EE container to deploy and run the application.
The chapter also helps you download any other tools, such as Maven, that helps
you to build the application.

4. List All Employees: This chapter helps you to put all the components together
and build an initial functionality to connect to the Oracle Database, and retrieve
employee details from the database.

5. Search By Employee ID: This chapter provides details on how to implement the
‘Search by Employee ID’ functionality.

6. Update an Employee Record: In this chapter, you learn how to update employee
records. This is a two step process. Firstly, you search the employee’s records,
based on first name. Once you retrieve the required results, you can update the
salary, job ID, firstname, lastname and other details.

7. Delete an Employee Record: In this chapter, you learn how to delete an
employee record, in a two-step process.

8. Increase Salary to All Employees: In this chapter, you understand how to
provide an increment to the salary of the employees listed in the table, using ‘Java
in the database’.

9. Creating Application Users: This chapter shows how to create ‘hradmin’ and
‘hrstaff’ users in Tomcat and IntelliJ.

10. Summary: This chapter summarizes all that you have learnt so far. It also
provides appropriate references and links for enhancing your use of the web
application.

Chapter 1
Objectives and Tasks

1-4

2
Brief Introduction to JDBC, UCP, and Java
in the Database

The Oracle Database is a relational database that you can use to store, modify and
use data.

The Java Database Connectivity (JDBC) standard is used by Java applications to
access and manipulate data in relational databases.

JDBC is an industry-standard application programming interface (API) that lets
you access a RDBMS using SQL from Java. Each vendor implements the JDBC
Specification with its own extensions.

Maven is a build automation tool which is used to build and manage the Java project.

Universal Connection Pool (UCP) is a cache of database connection objects that
promote reuse of the connections, thus improving the performance.

Java in the Database (OJVM) helps group SQL operations with Java data logic and
load them into the database for in-place processing.

This chapter introduces you to the JDBC driver, Universal Connection Pool (UCP),
Java in the Database (OJVM) and Maven with the Oracle Database.

• Java Database Connectivity Driver (JDBC)

• Universal Connection Pool (UCP)

• Java in the Database (Oracle JVM)

• Maven

2.1 Java Database Connectivity Driver (JDBC)
JDBC is a database access protocol that enables you to connect to a database and
run SQL statements and queries on the database.

JDBC drivers implement and comply with the latest JDBC specifications. Java
applications need to have ojdbc8.jar compatible with JDK8 in their classpath.

This guide uses the following JDBC standard:

• Oracle JDBC Thin Driver

• Oracle JDBC Packages

Oracle JDBC Thin Driver

Oracle recommends using the JDBC Thin Driver for most requirements. The JDBC
Thin Driver will work on any system with a suitable Java Virtual Machine. (JVM). Some
other client drivers that Oracle provides are JDBC thin driver, Oracle Call Interface
(OCI) driver, server side thin driver, and server side internal driver.

2-1

The JDBC Thin Driver is a pure Java, Type IV driver. The JDBC driver version
(ojdbc8.jar) includes support for JDK 8.

JDBC Thin Driver communicates with the server using SQL*Net to access the
database.

See Also:

Oracle Database JDBC Developer’s Guide

Oracle JDBC Packages

The following core Java class libraries provide the JDBC APIs:

• java.sql

• javax.sql

Include the import statements at the beginning of your program to import the classes
which your application needs.

Using Maven Central

All supported releases of the Oracle JDBC drivers are available on Maven Central. So,
you can consider Maven Central as a distribution center for the Oracle JDBC drivers
and companion JAR files.

See Also:

Maven Central Guide

2.2 Universal Connection Pool
Connection pools help improve performance by reusing connection objects and
reducing the number of times that connection objects are created.

Oracle Universal Connection Pool (UCP) is a feature rich Java connection pool that
provides connection pool functionalities, along with high availability, scalability and
load balancing with the help of tighter integration with Oracle Database configurations.

A Java application or container must have ucp.jar in their classpath, along with the
ojdbc8.jar (JDK8), to be able to use UCP.

See Also:

Oracle Universal Connection Pool Developer’s Guide

Chapter 2
Universal Connection Pool

2-2

https://www.oracle.com/database/technologies/maven-central-guide.html

2.3 Java in the Database (OJVM)
Oracle Database has a Java Virtual Machine (JVM) that resides in the server. It helps
Java applications running in the Oracle JVM on the server to access data present on
the same system and same process.

Java in the Database is recommended for applications that are data-intensive. JVM
has the ability to use the underlying Oracle RDBMS libraries directly, without the use
of a network connection between the Java code and SQL data. This helps improve
performance and execution. For data access, Oracle Database uses server-side
internal driver when Java code runs on the server.

Chapter 2
Java in the Database (OJVM)

2-3

3
Overview of the HR Web Application

The HR Web Application is intended to give you access to information related to all
employees of AnyCo Corporation.

The two types of users that will be able to access this application are:

• HRStaff

• HRAdmin

The HRStaff and HRAdmin accounts have different privileges.

HRStaff has read only access to the application and does not have privileges to
update/delete an employee record. HRStaff can only List the employees and Search
by Employee ID.

The HRAdmin, has complete control on the application and has read and write
privileges. HRAdmin is the only user who has access to all functionalities of the
application such as update/delete an employee record, or provide salary increment for
all employees.

This chapter has the following sections:

• Functionalities of the HR Web Application

• Packages

3.1 Functionalities of the HR Web Application
Following is a list of functionalities to access information related to AnyCo Corporation:

Through the hrstaff, you can perform the following functions:

• List All Employees

Use the List All Employees option to retrieve employee information. This
function lists information such as Employee_ID, First_Name, Last_Name, Email,
Phone_Number, Job_Id, and Salary.

• Search By Employee ID

Use the Employee ID which is the primary key to search for a particular employee.

Through the hradmin user, you can perform the following functions:

The hradmin user has full control of the application and has both read and update
privileges.

• Update Employee Record

You can update employee records, using the Update Employee Record function.
First, search for employees, based on the name of the employee. You can then
update employee details in the record, such as first_name, last_name, email,
phone_number, job_id and salary using the UPDATE function.

3-1

Use the DELETE function to the delete the entire employee record from the
database.

• Increment Salary

Through the increment salary tab, you can alter (increase or decrease) the
percentage of salary for hike.

• About

This page provides an overview of the HR Application and explains the various
functionalities it offers.

Chapter 3
Functionalities of the HR Web Application

3-2

4
Getting Started with the Application

To develop a Java application that connects to the Oracle Database, you must ensure
that certain components are installed as required.

This chapter covers the following topics:

• What You Need to Install

• Verifying the Oracle Database 21c Installation

4.1 What You Need to Install
To develop the sample application, you need to install the following products and
components:

• Oracle Database

• J2SE or JDK

• Apache Maven

• IntelliJ

• Apache Tomcat

4.1.1 Oracle Database
To develop the Java web application, you need a working installation of Oracle
Database along with the HR schema. There are two ways you can install the Oracle
Database.

Option 1. Oracle Autonomous Database

The Oracle Database Cloud Services offer access to Oracle Cloud Free Tier which
provides services of two Autonomous Databases for an unlimited time. Oracle
Autonomous Database is an all-in-one cloud database solution for data marts, data
lakes, operational reporting, and batch data processing. Oracle uses machine learning
to completely automate all routine database tasks—ensuring higher performance,
reliability, security, and operational efficiency. You can get access to a working
Autonomous Database in just a few minutes. After signing up, you will have access
to your choice of Autonomous Transaction Processing or Autonomous Data
Warehouse databases.

We will be using Autonomous Transaction Processing to run the HR Application.

Note:

Refer to Provisioning an ATP Database instance video for instructions.

Option 2: Oracle Database Express Edition (XE) Available on OTN

4-1

https://www.oracle.com/cloud/free/?source=:ow:o:p:nav:070220DatabaseCloudHero&intcmp=:ow:o:p:nav:070220DatabaseCloudHero
https://www.youtube.com/watch?xd_co_f=24ac3171c2a3c8fa5b71580265459092&v=YSoyazzumCQ

As an alternate option, you can install Oracle Database Express Edition (XE) on
premise.

Note:

The Quick Start guide provides instructions on how to download and install
the Oracle Database Express Edition (XE) on your machine.

4.1.2 Install the HR schema
The HR web application uses the tables and data from the HR sample schema
provided by Oracle. You need to install the HR schema in your database.

Once you provision your Autonomous Database or install Oracle Databse XE, see
Installing HR Schema for detailed instructions to install the sample schema.

4.1.3 J2SE or JDK
To create and compile Java applications, you need the full Java 2 Platform,
Standard Edition, Software Development Kit (J2SE SDK), formerly known as the Java
Development Kit (JDK).

1. Download and install the Java SE. Refer http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

2. Set the PATH environment variable for JDK. Refer JDK Installation Instructions for
Windows for detailed instructions.

4.1.4 JDBC Drivers
You need to download certain JDBC drivers for running the HR application.

This guide uses Maven Central to download the necessary JDBC drivers required for
the application. Later in this guide, you learn to add the following dependency to your
project's pom.xml file:

<dependencies>
 <dependency>
 <groupId>com.oracle.database.jdbc<groupId>
 <artifactId>ojdbc8-production</artifactId>
 <version>19.7.0.0</version>
 <type>pom</type>
 </dependency>
</dependencies>

The ojdbc8-production pulls all the required JDBC jars from the Maven Central
Repository. For more information, see the Maven Central Guide.

Chapter 4
What You Need to Install

4-2

https://www.oracle.com/database/technologies/xe-downloads.html
https://www.oracle.com/database/technologies/appdev/xe/quickstart.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://docs.oracle.com/en/java/javase/14/install/installation-jdk-microsoft-windows-platforms.html#GUID-96EB3876-8C7A-4A25-9F3A-A2983FEC016A
https://docs.oracle.com/en/java/javase/14/install/installation-jdk-microsoft-windows-platforms.html#GUID-96EB3876-8C7A-4A25-9F3A-A2983FEC016A
https://www.oracle.com/database/technologies/maven-central-guide.html

4.1.5 Integrated Development Environment
For ease in developing the application, you can choose to develop your application in
an integrated development environment (IDE). This guide uses IntelliJ Idea community
version to create and update the files for this application.

Note:

To download and install IntelliJ Idea, see https://www.jetbrains.com/idea/.

4.1.6 Web Server
The sample application developed in this guide uses JavaServer Pages (JSP)
technology to display information and accept input from users. To deploy these pages,
you need a Web server with a servlet and JSP container.

This guide uses the Apache Tomcat server for deploying the JSP pages.

For more information on how to download and install Apache Tomcat, refer to http://
tomcat.apache.org/.

4.2 Verifying the Oracle Database Installation
Oracle Database installation is platform-specific. You must verify that the installation
was successful before you proceed to create the sample application.

Verify the Oracle Database XE Installation

1. Verify the Oracle Database XE installation by connecting to the database.

2. From the command prompt, connect to sqlplus.

>sqlplus system/<password>@xepdb1

SQL*Plus: Release 18.0.0.0.0 - Production on Wed Sep 9 16:01:34 2020
Version 18.4.0.0.0

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Connected to:
Oracle Database 18c Express Edition Release 18.0.0.0.0 - Production
Version 18.4.0.0.0
SQL>

3. As an optional step, you can run a sample Java application with Oracle Database
using JDBC. See Quick Start with JDBC.

Verify connecting to Oracle ATP Instance

Once you provision an ATP instance, verify the connection as follows:

Chapter 4
Verifying the Oracle Database Installation

4-3

https://www.jetbrains.com/idea/
http://tomcat.apache.org/
http://tomcat.apache.org/
https://www.oracle.com/database/technologies/develop-java-apps-using-jdbc.html

1. Download the Client Credentials. Login to your database instance and click on the
DB Connection tab. Select Instance Wallet for Wallet type and click Download
Wallet. Unzip the file to a secure directory on your local machine.

2. Follow instructions provided in the Java Connectivity with Autonomous Database
to connect using JDBC and UCP code samples.

4.3 Github Repository Details
The source files for the HR Web Application is available on GitHub.

Table 4-1 Github Repository Details

Name and Location Details

HRWebApp This repository contains the complete code
samples of the application.

4.4 Import the Application in IntelliJ
Import the application in IntelliJ as follows:

1. Open IntelliJ and select Open or Import.

Chapter 4
Github Repository Details

4-4

https://www.oracle.com/database/technologies/java-connectivity-to-atp.html
https://github.com/oracle/oracle-db-examples/tree/master/java/HRWebApp

2. Navigate to the location where the HRWebApp is downloaded. Select HRWebApp
and click OK.

3. A project with all the files required to build the HR Web application is displayed.

4.5 Compile the Application in IntelliJ
The HR Web Application easily compiles using Maven in IntelliJ.

The code requires a few updates before you compile the application.

The HRWebApp must be downloaded and opened in IntelliJ.

1. In the Project window on the left, double-click on pom.xml file.

Chapter 4
Compile the Application in IntelliJ

4-5

2. Add the following dependency under the <dependencies> tag in pom.xml file. See
JDBC Drivers for more information.

3. In the Project window, expand the src folder, expand main and then Java folder.
Under Java, expand com.oracle.jdbc.samples. In the bean folder, double-click
JdbcBeanImpl.

Chapter 4
Compile the Application in IntelliJ

4-6

4. Update the connection variable with the details of your database connection. For
example, to connect to the HR schema on the Oracle XE database instance
xepdb1 with port 1522 on your machine, edit the url parameter as follows:

Connection connection =

DriverManager.getConnection("jdbc:oracle:thin:@localhost:1522/
xepdb1", "hr", "hr");

5. In the File menu, select Save All to save the changes.

Chapter 4
Compile the Application in IntelliJ

4-7

6. In the Maven window on the right, double-click on clean to clean the
source code. The build progress is shown in the Run window at the

bottom.

7. Similarly, double-click on compile and package in the same order.

8. Once the source code is packaged successfully, a war file is generated. Locate the
JdbcWebSamples.war under the target folder.

Chapter 4
Compile the Application in IntelliJ

4-8

4.6 Run the HR Web Application
The HR Web application is run using the Tomcat server.

Deploy the .war file on the Apache server

1. Navigate to the HRWebApp folder on your local machine. Under the target folder,
locate JdbcWebSamples.war file.

2. Place JdbcWebSamples.war file under TOMCAT_HOME/webapps/.

3. Navigate to the HRWebApp folder on your local machine. Locate tomcat-
users.xml file.

4. Place tomcat-users.xml file under TOMCAT_HOME/conf/.

5. Start the tomcat server.

6. Once the tomcat is started, access the HR web application from a browser using
the URL http://localhost:8080/JdbcWebSamples/.

Verify the HR Web Application

1. Login to the application with either hradmin or hrstaff user.

Chapter 4
Run the HR Web Application

4-9

Note:

• For more information about the hradmin and hrstaff users, see
Overview of the HR Web Application and Create Login and Logout
Functionality.

• Refer tomcat-users.xml file for the username and password
information required to login to the HR Web Application.

2. HR Web Application has several functionalities. List All displays the employees'
details such as Employee_id, First_name, Last_Name, Email, Phone_number,
Job_id, Salary etc. The details are retrieved from the Employees table and
displayed on a web page. See the screenshot below that shows List All
functionality.

3. Similarly, verify the remaining functionalities such as Search by ID, Update
Employee Record and Increment Salary by giving appropriate inputs.

Chapter 4
Run the HR Web Application

4-10

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/tomcat-users.xml

5
List All Employees

The HR web Application has several functionalities. The List All tab in the application
displays the details of employees on the web page.

The employee details such as Employee_id, First_name, Last_Name, Email,
Phone_number, Job_id, Salary and so on, are retrieved from the Employees table
in the database.

In this chapter, you learn to create the basic structure of all the Java classes required
to run the HR Web application. You learn to add the code required to build the List All
functionality. You will learn how to:

1. Create JavaBean.java and declare a new method getEmployees in
JavaBean.java.

2. Create JavaBeanImpl.java and implement a new method getEmployees in
JavaBeanImpl.java.

3. Create WebController.java to process the request and response.

4. Create a HTML page listAll.html to display the results.

5. Create a CSS page app.css to be used by the HR Web Application.

Note:

The upcoming chapters of the guide explain the step-by-step instructions to
create the Java classes and methods that you require for each functionality
of the HR Web Application. Use these instructions as a reference. You can
download the complete source code from GitHub. See the Github Repository
Details.

5-1

5.1 Creating a Java Bean Entity for an Employee
The Employee class contains the getter and setter methods for all attributes of an
employee. For example, the First_name has a getter and a setter method like
getFirst_Name and setFirst_Name respectively.

Class Name: src/main/java/com/oracle/jdbc/samples/entity/Employee.java

Github Location: Employee.java

Steps to create Employee.java:

1. Declare the package for the class Employee.java.

package com.oracle.jdbc.samples.entity;

2. Import the following packages required for the Employee class.

import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Timestamp;

3. Declare an Employee class. Add a pair of parenthesis ({ }). Place the cursor in
between the parenthesis:

public class Employee {}

4. Declare the following variables for each one of the attributes of an employee.

private int Employee_Id;
private String First_Name;
private String Last_Name;
private String Email;
private String Phone_Number;
private String Job_Id;
private int Salary;

5. Create a constructor for the Employee class which takes ResultSet as the input
and throws a SQLException. In this constructor, set all the values for the attributes
of the Employee class.

public Employee(ResultSet resultSet) throws SQLException {
 this.Employee_Id = resultSet.getInt(1);
 this.First_Name = resultSet.getString(2);
 this.Last_Name = resultSet.getString(3);
 this.Email = resultSet.getString(4);
 this.Phone_Number = resultSet.getString(5);
 this.Job_Id = resultSet.getString(6);
 this.Salary = resultSet.getInt(7);
}

6. Create the Getter and Setter methods, that is, getX and setX methods to get and
set the values for all attributes of the Employee such as Employee_id, first_name,

Chapter 5
Creating a Java Bean Entity for an Employee

5-2

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/entity/Employee.java

last_name, salary, and so on. For example, the getter and setter methods for the
Employee_Id is as follows:

public int getEmployee_Id() {
 return Employee_Id;
}
 public void setEmployee_Id(int Employee_Id) {
 this.Employee_Id = Employee_Id;
 }

5.2 Creating a Java Bean Interface for a JDBC Connection
The JdbcBean.java class fetches a list of Employee objects.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java

Github Location: JdbcBean.java

Steps to create JdbcBean.java:

1. Declare the package for the class JdbcBean.java.

package com.oracle.jdbc.samples.bean;

2. Import Employee entity class as it contains the employee details.

import com.oracle.jdbc.samples.entity.Employee;

3. Declare an interface EmployeeBean class. Inside the EmployeeBean class, declare
a method getEmployees() that returns a list of Employee objects. Similarly,
you learn to declare the methods getEmployee(int), updateEmployee(int),
getEmployeeByFn(String) and incrementSalary(int) for other functionalities in
the next few chapters.

public interface EmployeeBean {
 public List<Employee> getEmployees();
}

5.3 Creating a Java Bean Implementation for a JDBC
Connection

The JdbcBeanImpl.java is an implementation class that implements all the methods
declared in the JdbcBean.java.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java

Github Location: JdbcBeanImpl.java

Steps to create JdbcBeanImpl.java:

Chapter 5
Creating a Java Bean Interface for a JDBC Connection

5-3

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java
https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java

1. Create a method getConnection() to establish a connection to the database.
Ensure that you update the connection string, the database username and the
database password to point to your database.

a. Declare the package for the JavaBean.java class. Import the Employee class
as it contains the employee details.

package com.oracle.jdbc.samples.bean;
import com.oracle.jdbc.samples.entity.Employee;

b. Import the other dependent classes as shown in the following code snippet. If
a particular class is not imported, then IntelliJ displays a message reminding
you to import the required package.

import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

import java.sql.PreparedStatement;
import oracle.jdbc.OracleStatement;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.driver.OracleDriver;
import oracle.jdbc.OracleTypes;
import java.sql.PreparedStatement;
import oracle.jdbc.OracleStatement;
import oracle.jdbc.OracleConnection;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

c. Declare the JavaBeanImpl class that implements JavaBean.

public class JavaBeanImpln implements JavaBean { }

d. Inside the JavaBeanImpl class, create a logger to log exceptions.

static final Logger logger =
Logger.getLogger("com.oracle.jdbc.samples.bean.JdbcBeanImpl");

e. Inside the JavaBeanImpl class, declare a static method getConnection(). The
getConection() method registers the driver and establishes the database
connection by passing the connection string, the database username and the
database password as shown in the following code snippet.

public static Connection getConnection() throws SQLException {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection connection
= DriverManager.getConnection("jdbc:oracle:thin:@//
myorclhost:5521/myorcldbservice", "hr", "hr");

Chapter 5
Creating a Java Bean Implementation for a JDBC Connection

5-4

 return connection;
}

2. Create a method getEmployees() to retrieve a list of employees from the
EMPLOYEES table. Update the SELECT query to be used by choosing the columns
that you want from the EMPLOYEES table.

a. Inside the JavaBeanImpl class, declare the method getEmployees().

b. Use try and catch blocks to establish a database connection and fetch the
employee details using a SQL SELECT statement.

c. Store the employee details in an array returnValue.

d. Catch the SQLException and log the message in logger.

public List<Employee> getEmployees() {
 List<Employee> returnValue = new ArrayList<>();
 try (Connection connection = getConnection()) {
 try (Statement statement = connection.createStatement()) {
 try (ResultSet resultSet = statement.executeQuery("
 SELECT Employee_Id, First_Name, Last_Name, Email,
Phone_Number, Job_Id, Salary
 FROM EMPLOYEES")) {
 while(resultSet.next()) {
 returnValue.add(new Employee(resultSet));
 }
 }
 }
 } catch (SQLException ex) {
logger.log(Level.SEVERE, null, ex);
 ex.printStackTrace();
 }

return returnValue;
}

Note:

This topic describes how to add the implementation method of List All
functionality. Similarly, you learn to add getEmployee, updateEmployee,
getEmployeeByFn and incrementSalary implementation methods for other
functionalities of the HR Web Application in the upcoming chapters.

5.4 Creating a Servlet to Process the Request
In this section, you learn to create a Servlet to process a request.

Class Name: src/main/java/com/oracle/jdbc/samples/web/WebController.java

Github Location: WebController.java

Chapter 5
Creating a Servlet to Process the Request

5-5

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/web/WebController.java

Description: This is the main servlet that controls all the flows of the application. For
every new functionality of the application, we will be adding the code to handle the
new requests and responses in doPost() and processResponse() respectively.

Steps to create a Servlet:

1. Declare the package for the WebController.java. Import Employee,
EmployeeBeanImpl and Google GSON for displaying the Employee results and
other dependent classes as shown below. If the particular class is not imported,
then IntelliJ will display a message reminding you to import the required package.

package com.oracle.jdbc.samples.web;
import com.oracle.jdbc.samples.entity.Employee;
import com.oracle.jdbc.samples.bean.EmployeeBean;
import com.oracle.jdbc.samples.bean.EmployeeBeanImpl;
import com.google.gson.Gson; import
com.google.gson.reflect.TypeToken;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.BufferedReader;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.logging.Logger;

2. Add the annotation to the Servlet.

@WebServlet(name = "WebController", urlPatterns = {"/
WebController"})

3. Declare the WebController class that extends HttpServlet. Initialize jdbcBean
of the type JdbcBeanImpl. This will be a global variable and available for all the
methods such as reportError(), processRequest(), and doGet() to use.

public class WebController extends HttpServlet {
 JdbcBean jdbcBean = new JdbcBeanImpl();
}

4. Create the reportError() method to capture and display the error on the web
page.

private void reportError(HttpServletResponse response, String
message)
throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8"); /*Set the
response content type to be “text/html” and charset=UTF-8*/

 /*Print the error message*/
 try (PrintWriter out = response.getWriter()) {

Chapter 5
Creating a Servlet to Process the Request

5-6

 out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet WebController</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>" + message + "</h1>");
 out.println("</body>");
 out.println("</html>");
 }
}

5. Create the processRequest method to create processes that requests for HTTP
GET and POST methods.

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
 Gson gson = new Gson();
 List<Employee> employeeList = null;

 if ((value = request.getParameter(LOGOUT)) != null) {

/* Get session and then invalidate it */

 HttpSession session = request.getSession(false);
 if (request.isRequestedSessionIdValid() && session != null) {
 session.invalidate();
 }
 handleLogOutResponse(request,response);
 response.setStatus(HttpServletResponse.SC_UNAUTHORIZED);
 }
else {
 /*Instantiate the employeeList object by invoking getEmployees
method of JavaBean*/
 employeeList = jdbcBean.getEmployees();
 }

if(employeeList != null) {
 response.setContentType("application/json"); /*Set the content
type to 'application/json' */

 /* Invoke the toJson(…) method and convert the employeeList to
JSON*/
 gson.toJson(employeeList,
 new TypeToken<ArrayList<Employee>>() {
 }.getType(),
 response.getWriter());
 }
/*Add an else condition to cover the error scenario when the
employeeList is empty*/
else {
 response.setStatus(HttpServletResponse.SC_NOT_FOUND);
 }

Chapter 5
Creating a Servlet to Process the Request

5-7

}

6. Create the handleLogOutResponse(request, response) method to edit the cookie
information when a user is logging out of the application.

private void handleLogOutResponse(HttpServletRequest request,
HttpServletResponse response) {
 Cookie[] cookies = request.getCookies();
 for (Cookie cookie : cookies) {
 cookie.setMaxAge(0);
 cookie.setValue(null);
 cookie.setPath("/");
 response.addCookie(cookie);
 }
}

7. Create the doGet method to get the employee details from the database and show
the results in JSON. JSON will be the output format of the results that is shown on
the HTML.

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
 processRequest(request, response);
}

8. Create the getServletInfo method to display generic information about the
servlet.

public String getServletInfo() {
 return "JdbcWebServlet: Reading Employees table using JDBC and
transforming it as a JSON.";
}

5.5 Create an HTML Page to Display Results
This section describes the steps to create a HTML page that displays the list of
employees retrieved from the database.

Class Name:src/main/webapp/listAll.html

Github Location: listAll.html

Steps to create the HTML page:

1. Create the title, stylesheet, and body for the HTML page.

<!DOCTYPE html>
<html lang="en">
<head>

Chapter 5
Create an HTML Page to Display Results

5-8

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/listAll.html

<meta charset="UTF-8">
<title>List all Employees</title>
<link rel="stylesheet" type="text/css" href="css/app.css" >
</head>

2. Inside the <script> tag, declare few variables for the URL and HTTPRequest.

<script>
var xmlhttp = new XMLHttpRequest();
var url = "WebController";

3. Define the action to be performed when the requests are sent, that is, when the
links for each one of the functionalities is selected.

xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 processResponse(xmlhttp.responseText);
 }
 }
xmlhttp.open("GET", url, true);
xmlhttp.send();

4. Create the function processResponse() to display JSON results on HTML page.

function processResponse(response) {
// Process the JSON response into an array.
var arr = JSON.parse(response);
var i;
var out - "<table>";
keys = Object.keys(arr[0]);
//Print headers
out += "<tr>"
for(i = 0; i < keys.length; ++i) {
 out += "<th>"+keys [i]+"</th>"
}
out += "</tr>";
// Print values
for(j = 0; j < arr.length; j++) {
 out += "<tr>"
 for(i = 0; i < keys.length; ++i) {
 out += "<td>"+arr[j][keys[i]]+"</td>"
 }
out += "</tr>"
}
out += "</table>";
document.getElementById("id-emp").innerHTML = out;
}

Chapter 5
Create an HTML Page to Display Results

5-9

5.6 Create a CSS File
The stylesheet has the color, font, and style specifications for all the UI elements such
as buttons, side navigation, main page, links, etc., on the web page.

Class Name: src/main/webapp/css/app.css

Github Location : app.css

Steps to use the CSS file:

1. Download the app.css file.

2. Include the stylesheet in all the HTML pages of the HR Web application by adding
the following line of code in the <head> section of the HTML page.

<link rel="stylesheet" type="text/css" href="css/app.css">

Chapter 5
Create a CSS File

5-10

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/css/app.css

6
Search by Employee ID

Search by Employee Id searches for a particular employee based on the given
employee Id.

The employee ID is the primary key in the EMPLOYEES table.
You enter a valid employee ID in the HR Web application and
submit to fetch the corresponding employee details from the database.

In this chapter, you learn to add code required to build the Search by Employee ID
functionality. You will learn how to:

1. Declare a new method getEmployee(int) in JavaBean.java.

2. Implement a new method getEmployee(int) in JavaBeanImpl.java.

3. Add new code to WebController.java to process the request and response.

4. Create a HTML page listById.html to display the results.

6.1 Jdbc Java Bean
Declare and implement a new method getEmployee(int) in JBedbcan.java and
JdbcBeanImpl.java respectively. This method takes the employee Id as an input
parameter and returns an object of type Employee.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java

Github Location: JdbcBean.java

Steps to declare the new method:

1. Open the JdbcBean.java file in IntelliJ. To create the JdbcBean.java class, refer to
Creating a Java Bean Interface for a JDBC Connection. Use the same class and
declare new methods for each one of the functionalities.

2. Add the following code snippet to declare the getEmployee(int) method which
takes the employee Id as input:

public List<Employee> getEmployee(int empId);

Class Name: src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java

6-1

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/entity/Employee.java

Github Location: JdbcBeanImpl.java

Steps to implement the new method:

1. Open the JdbcBeanImpl.java file in IntelliJ. To create the JdbcBeanImpl.java
class, refer to Creating a Java Bean Implementation for a JDBC Connection.
Use the same class and add new implementation methods for each one of the
functionalities.

2. Add the following code snippet to implement the getEmployee(int) method:

public List<Employee> getEmployee(int empId) {
 List<Employee> returnValue = new ArrayList<>();

/*Get the database connection*/
 try (Connection connection = getConnection()) {
/* Insert the SQL statement to fetch an employee using the employee
Id */
 try (PreparedStatement preparedStatement =
connection.prepareStatement(
 "SELECT Employee_Id, First_Name, Last_Name, Email,
Phone_Number, Job_Id, Salary FROM EMPLOYEES WHERE Employee_Id
= ?")) {
 preparedStatement.setInt(1, empId); /* Set the input
parameter */
 try (ResultSet resultSet =
preparedStatement.executeQuery()) {
 if(resultSet.next()) { /* Check if the resultSet has any
value */
 returnValue.add(new Employee(resultSet));
 }
 }
 }
 } catch (SQLException ex) { /* Catch the SQLException and log
the message in logger*/
logger.log(Level.SEVERE, null, ex);
 ex.printStackTrace();
 }

return returnValue; /* Return the List of Employees */
}

6.2 Add the code to a Servlet to process the request
Add the relevant code to WebController.java to search by employee Id.

Class Name: src/main/java/com/oracle/jdbc/samples/web/WebController.java

Github Location: WebController.java

Steps to add the code:

1. Open the WebController.java class. To create the WebController.java, refer
to Creating a Servlet to Process the Request. Use the same class and add the
required code.

Chapter 6
Add the code to a Servlet to process the request

6-2

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java
https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/web/WebController.java

2. Declare a variable ID_KEY to capture the employee id. This is a global
variable, hence, declare it outside the method processRequest() but within the
WebController class.

private static final String ID_KEY = "id";

3. The method processRequest() is already created in the ListAll feature. Now,
we add the code to implement Search by employee id functionality. Declare a
variable value of the String type to capture the input from the user.

String value = null;

4. Add an IF condition to handle the new functionality. Get the employee id entered
by the user and invoke the method getEmployee(int) to verify if the employee
record exists.

if ((value = request.getParameter(ID_KEY)) != null) {
 int empId = Integer.valueOf(value).intValue();
 employeeList = employeeBean.getEmployee(empId);
 } else {
 // Previously used getEmployees() method for Listall feature
 employeeList = employeeBean.getEmployees();
 }

6.3 Create a New HTML for Search by Employee Id
A HTML page that shows an input placeholder for the user to enter the employee id.
If the employee record is found, then the details of the employee is displayed on the
page, otherwise, an error message will be displayed.

Class Name:src/main/webapp/listById.html

Github Location: listById.html

Steps to create the HTML page:

1. Create the title, stylesheet, and body for the HTML page.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>List Employee by Id</title>
<!-- Specify the stylesheet here -->
<link rel="stylesheet" type="text/css" href="css/app.css" >
<!-- Bootstrap JS for the UI -->
<link rel="stylesheet"
href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap.min.css">
</head>

Chapter 6
Create a New HTML for Search by Employee Id

6-3

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/listById.html

2. Start the <body> tag and a <input> tag for capturing the employee id.

<body>
<div><label>Employee Id: </label>
<input id="empId" type="textfield"
onkeypress="return waitForEnter(event)"\>
</div>

<script>
function waitForEnter(e) {
 if (e.keyCode == 13) {
 var tb = document.getElementById("empId");
 fetchElementById(tb.value)
 return false;
 }
}
<script>
var xmlhttp = new XMLHttpRequest();
var url = "WebController";

3. Define the action when a request is sent, that is, when a link for any one of the
functionality is selected.

xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 processResponse(xmlhttp.responseText);
 }
 }
xmlhttp.open("GET", url, true);
xmlhttp.send();

4. Create the processResponse() function to display the JSON results on HTML
page.

function processResponse(response) {
//Process the JSON respnse into an array.
var arr = JSON.parse(response);
 var i;
var out = "<table>";
keys = Object.keys(arr[0]);

// Print Headers
out += "<tr>"
for(i = 0; i < keys.length; ++i) {
out += "<th>"+keys[i]+"</th>"
}
out += "</tr>";
// Print values
for(j = 0; j < arr.length; j++) {
out += "<tr>"
for(i = 0; i < keys.length; ++i) {
out += "<td>"+arr[j][keys[i]]+"</td>"

Chapter 6
Create a New HTML for Search by Employee Id

6-4

}
out += "</tr>"
}
out += "</table>";
document.getElementById("id-emp").innerHTML = out;
}

Chapter 6
Create a New HTML for Search by Employee Id

6-5

7
Update an Employee Record

The Update functionality modifies an employee record in the database according to
the user edits on the web page.

First, you must search for an employee in the records. Once
you retrieve the information related to the employee, you will
find the Edit button to modify details related to the employee.

In this chapter, you learn to add code required to build the Update functionality. You
will learn how to:

1. Declare a new method getEmployeeByFn(String) in JavaBean.java.

2. Declare a new method updateEmployee(int) in JavaBean.java.

3. Implement a new method getEmployeeByFn(String) in JavaBeanImpl.java.

4. Implement a new method updateEmployee(int) in JavaBeanImpl.java.

5. Add new code to WebController.java to process the request and response.

6. Create a HTML page listByName.html to display the results.

Note:

The hradmin user has the privilege to update an employee record. The
hrstaff user does not have the privilege to update an employee record.

7.1 Declare a new method getEmployeeByFn(String) in
EmployeeBean.java

To modify the details of an employee, the hradmin must first search for the employee
based on his/her first name. The getEmployeeByFn(String) method searches
employees based on their first name.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/EmployeeBean.java

Github Location: EmployeeBean.java

Steps to declare the new method:

7-1

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java

1. Open the JdbcBean.java file in IntelliJ. To create the JdbcBean.java class, refer to
Creating a Java Bean Interface for a JDBC Connection. Use the same class and
declare new methods for each one of the functionalities.

2. Declare a method getEmployeeByFn(String) that takes first name as an input
parameter.

public List<Employee> getEmployeeByFn(String fn);

7.2 Declare a new method updateEmployee(Employee)
The updateEmployee(Employee) method updates the attributes of an employee such
as first name, last name, salary, job_id and so on.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/JavaBean.java.

Github Location: EmployeeBean.java

Steps to declare a new method:

1. Open the JdbcBean.java file in IntelliJ. To create the JdbcBean.java class, refer to
Creating a Java Bean Interface for a JDBC Connection. Use the same class and
declare new methods for each one of the functionalities.

2. Declare a method updateEmployee(Employee) that takes Employee object as an
input parameter.

public Employee updateEmployee(int empId);

7.3 Implement a New Method getEmployeebyFn() for Search by
Employee name

The getEmployeeByFn(String) method takes the employee id as the input parameter
and returns an object of type Employee.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java

Github Location: EmployeeBeanImpl.java

Steps to implement the method:

1. Open the JdbcBeanImpl.java file in IntelliJ. To create the JdbcBeanImpl.java
class, refer to Creating a Java Bean Implementation for a JDBC Connection.
Use the same class and add new implementation methods for each one of the
functionalities.

2. Add the following code snippet to implement the getEmployeeByFn(String)
method:

public List<Employee> getEmployeeByFn(String fn) {
/* Declare an array to store the returned employee list */
 List<Employee> returnValue = new ArrayList<>();

/* Get the database connection */

Chapter 7
Declare a new method updateEmployee(Employee)

7-2

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java
https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java

 try (Connection connection = getConnection()) {
/* Insert the SQL statement to fetch an employee using the employee
first name */
try (PreparedStatement preparedStatement =
connection.prepareStatement(
"SELECT Employee_Id, First_Name, Last_Name, Email, Phone_Number,
Job_Id, Salary FROM EMPLOYEES WHERE First_Name LIKE ?")) {
 /* Set the input parameter as the first name */
 preparedStatement.setString(1, fn + '%');
 try (ResultSet resultSet = preparedStatement.executeQuery()) {
while(resultSet.next()) { /* Check if the
resultSet has any value */
 returnValue.add(new Employee(resultSet));
 }
 }
 }
 } catch (SQLException ex) { /* Catch the SQLException and log
the message in logger*/
logger.log(Level.SEVERE, null, ex);
 ex.printStackTrace();
 }

/* Return the list of employees from the method */
return returnValue;
}

7.4 Implement a new method updateEmployee(Employee)
The updateEmployee(Employee) method enables you to update the employee details
such as first_name, last_name, and so on in the employee record.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/
EmployeeBeanImpl.java

Github Location: EmployeeBeanImpl.java

Steps to Implement a new method:

1. Open the JdbcBeanImpl.java file in IntelliJ. To create the JdbcBeanImpl.java
class, refer to Creating a Java Bean Implementation for a JDBC Connection.
Use the same class and add new implementation methods for each one of the
functionalities.

2. Add the following code snippet to implement the updateEmployee(Employee)
method:

public String updateEmployee(Employee employee) throws SQLException
{
 /*Declare and initialize a variable to capture the number of
records updated*/
 int updateCount = 0;

/* Get the database connection*/
 try (Connection connection = getConnection()) {

Chapter 7
Implement a new method updateEmployee(Employee)

7-3

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java

 try (PreparedStatement preparedStatement =
connection.prepareStatement(
 /* Insert the SQL statement to select an employee based on the
employee id */
 "UPDATE employees SET FIRST_NAME = ?, LAST_NAME = ?, EMAIL
= ?, PHONE_NUMBER = ?,
 SALARY = ? WHERE EMPLOYEE_ID = ?")) {
 /*Set the new values entered by the user for each attribute
 and execute the prepapredStatement */
 preparedStatement.setString(1,
employee.getFirst_Name());
 preparedStatement.setString(2,
employee.getLast_Name());
 preparedStatement.setString(3, employee.getEmail());
 preparedStatement.setString(4,
employee.getPhone_Number());
 preparedStatement.setInt(5, employee.getSalary());
 preparedStatement.setInt(6,
employee.getEmployee_Id());
 updateCount = preparedStatement.executeUpdate();
 }
 }catch (SQLException ex) { /* Catch the SQLException and log
the message in the logger*/
 logger.log(Level.SEVERE, "Unable to update record", ex);
 throw new SQLException("Alert! Record could not be updated,
"+ex.getMessage(), ex);
 }

/* Log the message with the number of records updated to the logger
*/
 logger.fine("Update count: " +updateCount);
/* If none of the records were updated, enter an alert message */
 if (updateCount != 1) {
 logger.severe("Unable to update record");
 throw new SQLException("Alert! Record could not be updated");
 }
/* Return the success message if the record was updated */
 return "Success: Record updated";
}

7.5 Add the code to a Servlet to process the request
Add the relevant code to WebController.java to update an employee.

Class Name: src/main/java/com/oracle/jdbc/samples/web/WebController.java

Github Location: WebController.java

Steps to add the code:

1. Open the WebController.java class. To create the WebController.java, refer
to Creating a Servlet to Process the Request. Use the same class and add the
required code.

Chapter 7
Add the code to a Servlet to process the request

7-4

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/web/WebController.java

2. Declare a variable FN_KEY to capture first name of the employee. This is a global
variable, hence, declare it outside the method processRequest() but within the
WebController class.

private static final String FN_KEY = "firstName";

3. The method processRequest() is already created in the ListAll feature. Now, we
add the code to implement Update an Employee functionality. Add an ELSEIF
condition to handle the new functionality. Get the employee id entered by the user
and invoke the method getEmployee(int) to verify if the employee record exists.

if ((value = request.getParameter(ID_KEY)) != null) {
 int empId = Integer.valueOf(value).intValue();
 employeeList = employeeBean.getEmployee(empId);
 }
/* New code added below */
else if ((value = request.getParameter(FN_KEY)) != null) {
 employeeList = jdbcBean.getEmployeeByFn(value);
}
else {
 /* Previously used getEmployees() method for Listall feature
*/
 employeeList = employeeBean.getEmployees();
 }

7.6 Create a New HTML for Search by Employee Id
A HTML page that shows an input placeholder for the user to enter the employee first
name. If the employee record is found, then the details of the employee is displayed
on the page, otherwise, an error message will be displayed.

Class Name:src/main/webapp/listById.html

Github Location: listByName.html

Steps to create the HTML page:

1. Create the title, stylesheet, and body for the HTML page.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>List Employee by Id</title>
<!-- Specify the stylesheet here -->
<link rel="stylesheet" type="text/css" href="css/app.css" >
<!-- Bootstrap JS for the UI -->
<link rel="stylesheet"
href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.2/
jquery.min.js"></script>
</head>

Chapter 7
Create a New HTML for Search by Employee Id

7-5

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/listByName.html

2. Start the <body> tag and a <input> tag for capturing the employee id.

<body>
<div><label>Employee First Name: </label>
 <input id="firstName" type="textfield"
 onkeypress="return waitForEnter(event)"\> wildcard % is
included at the end automatically.</div>

<div id="id-emp"></div>
<div id="UpdateButton"> <button type="button" class="btn btn-info
btn-lg"
 onclick='javascipt:confirmUpdate()'>Update Record</button>
<button type="button"
 class="btn btn-default btn-lg"
onclick='javascipt:cancelUpdate()'>Cancel</button>
</div>

3. Define the action when a request is sent, that is, when a link for any one of the
functionality is selected.

$('#UpdateButton').hide();
// keys;

function waitForEnter(e) {
 if (e.keyCode == 13) {
 fetchElement($("#firstName").val());
 return false;
 }
}

function fetchElement(firstName) {
 var xmlhttp = new XMLHttpRequest();
 var url = "WebController?firstName=" +firstName;

 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 processResponse(xmlhttp.responseText);
 }
 }

 xmlhttp.open("GET", url, true);
 xmlhttp.send();
}

4. Create the processResponse() function to display the JSON results on HTML
page.

function processResponse(response) {
 var arr = JSON.parse(response);
 if (arr == null || arr.length == 0) {
 out = '<div class="alert alert-warning">Alert!'

Chapter 7
Create a New HTML for Search by Employee Id

7-6

 +' No records found for the given Fist_Name</div>'
 }
 else {
 var i;
 var out = "<table>";
 // keys is global so that it can be used later as well
 keys = Object.keys(arr[0]);

 // Print headers
 out += "<tr><th>Trash</th><th>Edit</th>"

 for(i = 0; i < keys.length; ++i) {
 out += "<th>"+keys[i]+"</th>"
 }
 out += "</tr>";

 // Print values
 for(j = 0; j < arr.length; j++) {
 pk = arr[j][keys[0]];
 out += '<tr><td><a href="javascript:confirmDelete(\'' +pk
+'\')">'
 +''
 +'</td>'
 +'<td>'
 +''
 +'</td>';
 // 0 is the primary key
 for(i = 0; i < keys.length; ++i) {
 // creating an id to each column
 out += "<td id='" +pk +'_' +keys[i] +"'> "+arr[j][keys[i]]
+"</td>";
 }
 out += "</tr>"
 }
 out += "</table>";
 }
 $('#id-emp').html(out);

}

5. Add the allowEditSalary(pk) function to make the field names editable once the
employee record is displayed.

function allowEditSalary(pk) {
 // If the edit button is pressed already
 if(typeof currentPK != 'undefined' && currentPK == pk) {
 console.log('Make column readonly');
 for(i = 1; i < keys.length; ++i) {
 var x = '#' +pk +"_" +keys[i];
 var value = $(x).text().trim();
 console.log(value);
 $(x).val(value);
 }
 $('#UpdateButton').hide();

Chapter 7
Create a New HTML for Search by Employee Id

7-7

 currentPK = '';
 }
 else{
 currentPK = pk;
 for(i = 1; i < keys.length; ++i) {
 var x = '#' +pk +"_" +keys[i];
 var value = $(x).text().trim();
 $(x).html("<input type='text' value='" +value +"' \>");
 }
 $('#UpdateButton').show();
 }
}

6. Add the confirmUpdate() and cancelUpdate() functions to define the confirm and
cancel actions respectively.

function confirmUpdate() {
 var res = confirm("Do you really want to Update");
 if(res == true) {
 console.log("Udating record");
 $('#UpdateButton').hide();
 }
 else {
 console.log("Record not updated");
 }
}

function cancelUpdate() {
 if(typeof currentPK != 'undefined') {
 console.log('Make column readonly');
 for(i = 1; i < keys.length; ++i) {
 var x = '#' +pk +"_" +keys[i];
 var value = $(x).text().trim();
 console.log("cancelUpdate: " +value);
 $(x).text(value);
 }
 $('#UpdateButton').hide();
 currentPK = '';
 }
}

Chapter 7
Create a New HTML for Search by Employee Id

7-8

8
Increment Salary

The Increment Salary functionality modifies the salaries of all employees by
incrementing the values according to the input percentage.

Enter a percentage for salary hike in the placeholder on the web page.
Click confirm to modify the salaries of all employees in the database
table. You can verify the changes by clicking on the List All tab.

In this chapter, you learn how to add code required to build the Increment Salary
functionality. You will learn how to:

1. Declare a new method incrementSalary(int) in JavaBean.java.

2. Implement a new method incrementSalary(int) in JavaBeanImpl.java.

3. Add new code to WebController.java to process the request and response.

4. Create a HTML page incrementSalary.html to display the results.

8.1 Declare a new method incrementSalary(int)
The incrementSalary(int) method updates the salary value of all employees by
incrementing the value according to a given percentage.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/JavaBean.java.

Github Location: JavaBean.java

Steps to declare a new method:

1. Open the JdbcBean.java file in IntelliJ. To create the JdbcBean.java class, refer to
Creating a Java Bean Interface for a JDBC Connection. Use the same class and
declare new methods for each one of the functionalities.

2. Declare a method incrementSalary(int) that takes an integer for percentage as
an input parameter.

public List<Employee> incrementSalary(int incrementPct);

8-1

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java

8.2 Implement a new method incrementSalary(int)
The incrementSalary(int) method enables you to increment the salary of all
employees according to a given percentage.

Class Name: src/main/java/com/oracle/jdbc/samples/bean/JavaBeanImpl.java

Github Location: JavaBeanImpl.java

Steps to Implement a new method:

1. Open the JdbcBeanImpl.java file in IntelliJ. To create the JdbcBeanImpl.java
class, refer to Creating a Java Bean Implementation for a JDBC Connection.
Use the same class and add new implementation methods for each one of the
functionalities.

2. Add the following code snippet to implement the incrementSalary(int) method:

public List<Employee> incrementSalary (int incrementPct) {
 List<Employee> returnValue = new ArrayList<>();

/* Get the database connection*/
 try (Connection connection = getConnection()) {
 try (CallableStatement callableStatement =
 connection.prepareCall("begin ? :=
refcur_pkg.incrementsalary(?); end;")) {
 callableStatement.registerOutParameter(1,
OracleTypes.CURSOR);
 callableStatement.setInt(2, incrementPct);
 callableStatement.execute();
 try (ResultSet resultSet = (ResultSet)
callableStatement.getObject(1)) {
 while (resultSet.next()) {
 returnValue.add(new Employee(resultSet));
 }
 }
 }
 } catch (SQLException ex) {
/* Catch the SQLException and log the message in the logger*/
 logger.log(Level.SEVERE, null, ex);
 ex.printStackTrace();
 }

return returnValue;
}

8.3 Add the Code to a Servlet
Add the relevant code to WebController.java to give a salary raise to all employees.

Class Name: src/main/java/com/oracle/jdbc/samples/web/WebController.java

Chapter 8
Implement a new method incrementSalary(int)

8-2

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java

Github Location: WebController.java

Steps to add the code:

1. Open the WebController.java class. To create the WebController.java, refer
to Creating a Servlet to Process the Request. Use the same class and add the
required code.

2. Declare the variables INCREMENT_PCT and to capture the salary increment
percentage. This is a global variable, hence, declare it outside the method
processRequest() but within the WebController class.

private static final String INCREMENT_PCT = "incrementPct";

3. Add the doPost(req, res) method as follows:

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
 Map<String,String[]> x = request.getParameterMap();
 String value = null;
 if ((value = request.getParameter(INCREMENT_PCT)) != null) {
 Gson gson = new Gson();
 response.setContentType("application/json");
 List<Employee> employeeList =
jdbcBean.incrementSalary(Integer.valueOf(value));
 gson.toJson(employeeList,
 new TypeToken<ArrayList<Employee>>() {
 }.getType(),
 response.getWriter());
 }
else {
 response.setStatus(HttpServletResponse.SC_NOT_FOUND);
 }
}

8.4 Create a new HTML for Increment Salary
The incrementSalary.html page displays an input box to enter the percentage for
calculating the salary increase.

Class Name: src/main/webapp/incrementSalary.html.

Github Location: incrementSalary.html

Steps to create the HTML page:

1. Create the title, stylesheet, and body of the HTML page.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Increment Salary</title>
<link rel="stylesheet" type="text/css" href="css/app.css" >

Chapter 8
Create a new HTML for Increment Salary

8-3

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/web/WebController.java
https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/incrementSalary.html

<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/
bootstrap/3.3.6/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.2/
jquery.min.js">script src="https://ajax.googleapis.com/ajax/libs/
jquery/1.12.2/jquery.min.js"></script>
</head>

2. Start the <body> tag and a <input> tag for capturing the percentage for salary
raise.

<body>
<div> Enter the percentage increase in
salary<inputid='incrementField' type="number" max="100" min="3">%
</div>
<div id="UpdateButton"> <button type="button" class="btn btn-info
btn-lg" onclick='javascipt:confirmUpdate()'> Increment Salaries</
button> <button type="button" class="btn btn-default btn-lg"
onclick='javascipt:cancelUpdate()'>Cancel</button></div>
<div id="status" class="none"></div>
<div id="id-emp"></div>
<script>
function showStatus(c, message) {
 $('#status').text(message);
 $('#status').attr('class', c);
 }

function confirmUpdate() {
 var increment = $('#incrementField').val();
 var res = confirm("Do you really want to Increment Salary by "
+increment +"%?");
 if(res == true) {
 console.log("Salary record");
 $('#UpdateButton').hide();
 showStatus("alert alert-info", "Updating records, processing
request");
 var xmlhttp = new XMLHttpRequest();
 var url = "WebController?op=incrementSalary&incrementPct="
+increment;
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 processResponse(xmlhttp.responseText);
 showStatus("alert alert-success", "Updating records,
successfully updated");
 }
 else {
 showStatus("alert alert-danger", "Updating records,
failure, could not update records");
 }
 }
 xmlhttp.open("POST", url, true);
 xmlhttp.send();
 showStatus("alert alert-info", "Updating records, request
sent");

 }

Chapter 8
Create a new HTML for Increment Salary

8-4

 else {
 console.log("Salary not updated");
 showStatus("alert alert-warning", "Updating records, attempt
cancelled");

 }
}

</script>

3. Create the function processRequest() to display the JSON results on HTML page.

unction processResponse(response) {
 var arr = JSON.parse(response);
 var i;
 var out = "<table>";
keys = Object.keys(arr[0]);

 /* Print headers */
 out += "<tr>"
for(i = 0; i < keys.length; ++i) {
 out += "<th>"+keys[i]+"</th>"
}
out += "</tr>";

/* Print values */
for(j = 0; j < arr.length; j++) {
out += "<tr>"
for(i = 0; i < keys.length; ++i) {
out += "<td>"+arr[j][keys[i]]+"</td>"
}
out += "</tr>"
}
out += "</table>";
document.getElementById("id-emp").innerHTML = out;
}

Chapter 8
Create a new HTML for Increment Salary

8-5

9
Create Login and Logout Functionality

The HR Web Application has two users, namely hradmin and hrstaff.

Once you login to the HR Application, you see the landing page, with details of the
web application. The hradmin and hrstaff have different privileges and access to
different features.

This chapter shows the required classes and additional code required to build the
Login and Logout functionality in the application.

• Create a XML file tomcat-users.xml for login functionality.

• Create a HTML page login.html to login the user.

• Create a HTML page login-failed.html to display the error message.

• Create a web.xml to authenticate the users during login.

• Create a HTML page about.html to show more details about the application.

• Create a landing page index.html and define the html pages for redirection.

• Add code to the servlet WebController.java to process logout.

9-1

9.1 Create tomcat-users.xml
Create an XML file tomcat-users.xml and list down the users you want to allow
access to. Specify both the username and password for each one of the users.

Class Name: /java/HRWebApp/tomcat-users.java

Github Location: tomcat-users.xml

Steps to create the xml file:

1. Create the file tomcat-users.xml.

<?xml version='1.0' encoding='utf-8'?> z
<tomcat-users xmlns="http://tomcat.apache.org/xml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd"
version="1.0">
<role rolename="manager"/>
<role rolename="staff"/>
<user username="hradmin" password="welcome" roles="manager,staff"/>
<user username="hrstaff" password="welcome" roles="staff"/>
</tomcat-users>

2. Place this file under TOMCAT_HOME/conf/tomcat-users.xml on your machine.

9.2 Create login.html
The login page is displayed when you invoke the main page of the web application.
The login page displays the fields to capture the username and password.

Class Name: src/main/webapp/login.html

Github Location: login.html

Steps to create the HTML page:

1. Create the title, head, and stylesheet for login.html.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Login to Jdbc Web Sample application</title>
<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/
bootstrap/3.3.6/css/bootstrap.min.css">
<style>
#cent {
 position:absolute;
 top:50%;
 left:50%;
 margin-top:-50px; /* this is half the height of your div*/
 margin-left:-100px; /*this is half of width of your div*/
 }
 td {

Chapter 9
Create tomcat-users.xml

9-2

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/tomcat-users.xml
https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/login.html

 height: 30px;
 }

</style>
</head>

2. Create the <body> and <form> to submit the login credentials entered by the user.

<body>
<div id="cent">
<form method="POST" action="j_security_check">
<table>
<tr>
<td colspan="2">Login to the Jdbc Web Sample application:</td>
</tr>
<td>Name:</td>
<td><input type="text" name="j_username" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input type="password" name="j_password"/></td>
</tr>
<tr>
<td colspan="2"><input type="submit" value="Go" /></td>
</tr>
</table>
</form>
</div>
</body>

9.3 Create login-failed.html
A html page to display the error messgae if the login is unsuccessful.

Class Name: src/main/webapp/login-failed.html

Github Location: login-failed.html

Steps to create the HTML page:

1. Create the login-failed.html as shown below.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Login Failed</title>
</head>
<body>
<p>
Sorry, login failed!
</p>
</body>
</html>

Chapter 9
Create login-failed.html

9-3

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/login-failed.html

9.4 Create web.xml
The web.xml file consists of descriptors to authenticate the users when the login page
is displayed to the user.

Class Name: src/main/webapp/WEB-INF/web.xml

Github Location: web.xml

Steps to create the xml file:

1. Use the following code to create the web.xml file.

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<display-name>Jdbc Web Sample</display-name>
<security-role>
<role-name>manager</role-name>
</security-role>
<security-role>
<role-name>staff</role-name>
</security-role>
<security-constraint>
<web-resource-collection>
<web-resource-name>Wildcard means whole app requires
authentication</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>
<security-constraint>
<web-resource-collection>
<web-resource-name>Wildcard means whole app requires
authentication</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>staff</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
 </security-constraint>
<login-config>

Chapter 9
Create web.xml

9-4

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/WEB-INF/web.xml

<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/login-failed.html</form-error-page>
</form-login-config>
</login-config>
</web-app>

9.5 Create about.html
The about.html file displays information about the HR Application, users and
functionalities.

Class Name: src/main/webapp/about.html

Github Location: about.html

Steps to use the HTML page: Download the about.html and use it in your application.

9.6 Create index.html
The index.html file consists of all details about the HR Web Application. It describes
in detail its users and functionalities.

Class Name: src/main/webapp/index.html

Github Location: index.html

Steps to create the HTML page:

1. Create the title, head, and stylesheet for index.html.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Employee table listing</title>
<link rel="stylesheet" type="text/css" href="css/app.css" >
<style>
iframe:focus {
outline: none;
}
iframe[seamless] {
display: block;
}
</style>
</head>
<body>

2. Create <body> and actions for the features through navigation links and logout.

<body>
<div id="sideNav" class="sidenav">

<a href="javascript:void(0)" class="closebtn" onclick="closeNav()"

Chapter 9
Create about.html

9-5

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/about.html
https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/about.html
https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/webapp/index.html

class="staff">×
List
All
<a href="javascript:switchSrc('listById.html')"
class="staff">Search By Id

<a href="javascript:switchSrc('listByName.html')"
class="manager">Update Employee Record
<a href="javascript:switchSrc('incrementSalary.html')"
class="manager">Increment Salary
About
</div>
<div id="main">
<div align="right">
<div
id="myrole"
 style="display:inline; color:#393318; display: block;
background-color:#eff0f1;position: absolute; top: 20px; right: 8%;"
 >myrole</div>
<a href="javascript:void(0)"
 onclick="logout()"
 class="staff"
 style="display: block; position: absolute; top: 20px; right:
1%">Logout
</div>
<div>

Java 2 Days HR Web Application
</div>
<div>
<iframe id="content"
src="about.html"
frameborder="0"
style="overflow:hidden; height:100%; width:100%"
height="100%"
width="100%"></iframe>
</div>
</div>
<script>
function openNav() {
 document.getElementById("sideNav").style.width = "256px";
 document.getElementById("main").style.marginLeft = "256px";
}

function closeNav() {
 document.getElementById("sideNav").style.width = "0";
 document.getElementById("main").style.marginLeft= "0";
}

function switchSrc(src) {
 document.getElementById('content').src = src;
}

function logout() {

Chapter 9
Create index.html

9-6

 var xmllogout = new XMLHttpRequest();
 xmllogout.open("GET", "WebController?logout=true", true, "_",
"_");
 xmllogout.withCredentials = true;
 // Invlalid credentials to fake logout
 xmllogout.setRequestHeader("Authorization", "Basic 00001");
 xmllogout.send();

 xmllogout.onreadystatechange = function() {
 window.location.replace("index.html");
 }

 return true;
}

var xmlhttp = new XMLHttpRequest();
var url = "getrole";

xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 role = xmlhttp.responseText;
 console.log("role: " +role);
 if (role == "staff") {
 console.log ("disabling manager");
 var x = document.getElementsByClassName('manager');
 for(i = 0; i < x.length; ++i) {
 x[i].style.display = 'none';
 }
 }
 document.getElementById('myrole').innerHTML = ' '+role+' ';
 }
}
xmlhttp.open("GET", url, true);
xmlhttp.send();
</script>
</body>

9.7 Add the code to a Servlet to process the request
Add the relevant code to WebController.java to login and logout of the application.

Class Name: src/main/java/com/oracle/jdbc/samples/web/WebController.java

Github Location: WebController.java

Steps to add the code:

1. Open the WebController.java class. To create the WebController.java, refer
to Creating a Servlet to Process the Request. Use the same class and add the
required code.

Chapter 9
Add the code to a Servlet to process the request

9-7

https://github.com/oracle/oracle-db-examples/blob/master/java/HRWebApp/src/main/java/com/oracle/jdbc/samples/web/WebController.java

2. Declare a variable LOGOUT to capture the status of the user. This is a global
variable, hence, declare it outside the method processRequest() but within the
WebController class.

private static final String LOGOUT = "logout";

3. The method processRequest() is already created in the ListAll feature. Now, we
add the code to implement Logout functionality. Create an if block to verify the
functionality you will invoke based on input. Check if the input value is LOGOUT.

if ((value = request.getParameter(LOGOUT)) != null) {
/* Getting session and then invalidating it */

 HttpSession session = request.getSession(false);
 if (request.isRequestedSessionIdValid() && session != null) {
 session.invalidate();
 }
handleLogOutResponse(request,response);
 response.setStatus(HttpServletResponse.SC_UNAUTHORIZED);
return;
}

4. If the input value is LOGOUT, invoke the method to handle the logout of user.

private void handleLogOutResponse(HttpServletRequest request,
HttpServletResponse response) {
 Cookie[] cookies = request.getCookies();
 for (Cookie cookie : cookies) {
 cookie.setMaxAge(0);
 cookie.setValue(null);
 cookie.setPath("/");
 response.addCookie(cookie);
 }
 }

Chapter 9
Add the code to a Servlet to process the request

9-8

10
Best Practices

1. Use Database Service on Cloud:

Use the Oracle Database Service on Cloud (DBCS) to create a database on cloud.
DBCS comes with an in-built HR schema and tables that you can use when you build
the HR web application.

Note:

Use Oracle Database 21c to use features and functionalities of the latest
Oracle Database.

2. JDBC Driver, UCP:

It is recommend that you use the latest 12.2.0.1 versions of JDBC drivers and UCP.

Note:

Download the latest JDBC drivers and UCP from 12.2.0.1 JDBC driver and
UCP

3. JDK 8

It is recommended that you use the latest version of Oracle JDBC driver 12.2.0.1, that
is compliant with JDK 8.

4. Auto-closeable statements

Starting JDK7, ‘Auto-closeable statements’ has been introduced, that close by default
without an explicit catch statement.

5. Use PreparedStatement instead of Statement objects:

Statement in JDBC must be localized to being used for DDL (ALTER, CREATE, GRANT
etc) since these commands cannot accept bind variables.

Use PreparedStatement or CallableStatement for any other type of statement. These
statements can accept bind variables.

10-1

http://www.oracle.com/technetwork/database/features/jdbc/jdbc-ucp-122-3110062.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-ucp-122-3110062.html

11
Troubleshooting and Debugging

1. Tomcat log file:

Check TOMCAT_HOME/logs/catalina.out for any errors after deploying the application.

2. Additional Logging:

Enable logging in Tomcat to find logging messages in the code.

Note:

Refer https://tomcat.apache.org/tomcat-8.0-doc/logging.html for more
information

Debugging UI Related Issues

1. Browser Version:

This application has been tested on Firefox (version 52) and Chrome (version 58)
successfully.

2. Browser Console:

Look for errors in the browser console to find and debug issues.
3. Monitor Network Traffic:
Track network traffic to find out the requests being made, and the responses to the
requests. A return status higher than 400 indicates errors. If you find errors in the
range of 400 t 500 inspect the Tomcat log files for debugging.
Inspect the JSON responses from various calls to the backend server.
4. Additional Logging:
Edit the packaged HTML files, and add console.log(...) to add extra logging.

11-1

https://tomcat.apache.org/tomcat-8.0-doc/logging.html

Index

C
Compile

Maven, 4-5

I
IDE, 4-3

IntelliJ, 4-3
installation

verifying on the database, 4-3
integrated development environment, 4-3
IntelliJ, 4-5

J
J2SE, 4-2

installing, 4-2

Java Database Connectivity, 2-1
JavaServer Pages, 4-3
JDBC, 2-1
JSP, 4-3

O
Oracle Database, 4-1

installation, 4-3
verifying, 4-3
verifying installation, 4-3

Oracle Database installation
platform-specific, 4-3

W
Web server, 4-3

servlet container, 4-3

Index-1

	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Conventions

	1 Aims and Objectives of This Book
	1.1 Architecture of the HR Web Application
	1.2 Components and Repositories
	1.3 Objectives and Tasks

	2 Brief Introduction to JDBC, UCP, and Java in the Database
	2.1 Java Database Connectivity Driver (JDBC)
	2.2 Universal Connection Pool
	2.3 Java in the Database (OJVM)

	3 Overview of the HR Web Application
	3.1 Functionalities of the HR Web Application

	4 Getting Started with the Application
	4.1 What You Need to Install
	4.1.1 Oracle Database
	4.1.2 Install the HR schema
	4.1.3 J2SE or JDK
	4.1.4 JDBC Drivers
	4.1.5 Integrated Development Environment
	4.1.6 Web Server

	4.2 Verifying the Oracle Database Installation
	4.3 Github Repository Details
	4.4 Import the Application in IntelliJ
	4.5 Compile the Application in IntelliJ
	4.6 Run the HR Web Application

	5 List All Employees
	5.1 Creating a Java Bean Entity for an Employee
	5.2 Creating a Java Bean Interface for a JDBC Connection
	5.3 Creating a Java Bean Implementation for a JDBC Connection
	5.4 Creating a Servlet to Process the Request
	5.5 Create an HTML Page to Display Results
	5.6 Create a CSS File

	6 Search by Employee ID
	6.1 Jdbc Java Bean
	6.2 Add the code to a Servlet to process the request
	6.3 Create a New HTML for Search by Employee Id

	7 Update an Employee Record
	7.1 Declare a new method getEmployeeByFn(String) in EmployeeBean.java
	7.2 Declare a new method updateEmployee(Employee)
	7.3 Implement a New Method getEmployeebyFn() for Search by Employee name
	7.4 Implement a new method updateEmployee(Employee)
	7.5 Add the code to a Servlet to process the request
	7.6 Create a New HTML for Search by Employee Id

	8 Increment Salary
	8.1 Declare a new method incrementSalary(int)
	8.2 Implement a new method incrementSalary(int)
	8.3 Add the Code to a Servlet
	8.4 Create a new HTML for Increment Salary

	9 Create Login and Logout Functionality
	9.1 Create tomcat-users.xml
	9.2 Create login.html
	9.3 Create login-failed.html
	9.4 Create web.xml
	9.5 Create about.html
	9.6 Create index.html
	9.7 Add the code to a Servlet to process the request

	10 Best Practices
	11 Troubleshooting and Debugging
	Index

