
Oracle® Database
2 Day Developer's Guide

21
F32609-02
May 2023

Oracle Database 2 Day Developer's Guide, 21

F32609-02

Copyright © 1996, 2023, Oracle and/or its affiliates.

Primary Author: Chuck Murray

Contributors: Eric Belden, Bjorn Engsig, Nancy Greenberg, Pat Huey, Christopher Jones, Sharon Kennedy,
Thomas Kyte, Simon Law, Bryn Llewellen, Sheila Moore, Richard Butner

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Related Documents xii

Conventions xiii

1 Introduction to 2 Day Oracle Database Development

About This Document 1-1

About Oracle Database 1-2

About Schema Objects 1-2

About Oracle Database Access 1-3

About SQL*Plus 1-3

About SQL Developer 1-4

About Structured Query Language (SQL) 1-5

About Procedural Language/SQL (PL/SQL) 1-5

About Other Client Programs, Languages, and Development Tools 1-5

About Sample Schema HR 1-10

2 Connecting to Oracle Database and Exploring It

Connecting to Oracle Database from SQL*Plus 2-1

Connecting to Oracle Database from SQL Developer 2-2

Connecting to Oracle Database as User HR 2-4

Unlocking the HR Account 2-4

Connecting to Oracle Database as User HR from SQL*Plus 2-5

Connecting to Oracle Database as User HR from SQL Developer 2-6

Exploring Oracle Database with SQL*Plus 2-6

Viewing HR Schema Objects with SQL*Plus 2-7

Viewing EMPLOYEES Table Properties and Data with SQL*Plus 2-8

Exploring Oracle Database with SQL Developer 2-9

Tutorial: Viewing HR Schema Objects with SQL Developer 2-10

Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL Developer 2-11

iii

Selecting Table Data 2-12

About Queries 2-12

Running Queries in SQL Developer 2-13

Tutorial: Selecting All Columns of a Table 2-13

Tutorial: Selecting Specific Columns of a Table 2-14

Displaying Selected Columns Under New Headings 2-15

Selecting Data that Satisfies Specified Conditions 2-16

Sorting Selected Data 2-18

Selecting Data from Multiple Tables 2-19

Using Operators and Functions in Queries 2-21

Using Arithmetic Operators in Queries 2-21

Using Numeric Functions in Queries 2-21

Using the Concatenation Operator in Queries 2-22

Using Character Functions in Queries 2-23

Using Datetime Functions in Queries 2-24

Using Conversion Functions in Queries 2-25

Using Aggregate Functions in Queries 2-27

Using NULL-Related Functions in Queries 2-29

Using CASE Expressions in Queries 2-30

Using the DECODE Function in Queries 2-32

3 About DML Statements and Transactions

About Data Manipulation Language (DML) Statements 3-1

About the INSERT Statement 3-1

About the UPDATE Statement 3-4

About the DELETE Statement 3-5

About Transaction Control Statements 3-5

Committing Transactions 3-6

Rolling Back Transactions 3-8

Setting Savepoints in Transactions 3-10

4 Creating and Managing Schema Objects

About Data Definition Language (DDL) Statements 4-1

Creating and Managing Tables 4-1

About SQL Data Types 4-2

Creating Tables 4-2

Tutorial: Creating a Table with the Create Table Tool 4-3

Creating Tables with the CREATE TABLE Statement 4-4

Ensuring Data Integrity in Tables 4-4

iv

About Constraints 4-5

Tutorial: Adding Constraints to Existing Tables 4-6

Tutorial: Adding Rows to Tables with the Insert Row Tool 4-10

Tutorial: Changing Data in Tables in the Data Pane 4-11

Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool 4-12

Managing Indexes 4-13

Tutorial: Adding an Index with the Create Index Tool 4-14

Tutorial: Changing an Index with the Edit Index Tool 4-15

Tutorial: Dropping an Index 4-15

Dropping Tables 4-16

Creating and Managing Views 4-16

Creating Views 4-17

Tutorial: Creating a View with the Create View Tool 4-17

Creating Views with the CREATE VIEW Statement 4-18

Changing Queries in Views 4-19

Tutorial: Changing View Names with the Rename Tool 4-19

Dropping a View 4-20

Creating and Managing Sequences 4-20

Tutorial: Creating a Sequence 4-21

Dropping Sequences 4-22

Creating and Managing Synonyms 4-23

Creating Synonyms 4-23

Dropping Synonyms 4-24

5 Developing Stored Subprograms and Packages

About Stored Subprograms 5-1

About Packages 5-1

About PL/SQL Identifiers 5-2

About PL/SQL Data Types 5-3

Creating and Managing Standalone Subprograms 5-4

About Subprogram Structure 5-4

Tutorial: Creating a Standalone Procedure 5-5

Tutorial: Creating a Standalone Function 5-7

Changing Standalone Subprograms 5-8

Tutorial: Testing a Standalone Function 5-9

Dropping Standalone Subprograms 5-10

Creating and Managing Packages 5-11

About Package Structure 5-11

Tutorial: Creating a Package Specification 5-12

Tutorial: Changing a Package Specification 5-13

v

Tutorial: Creating a Package Body 5-14

Dropping a Package 5-15

Declaring and Assigning Values to Variables and Constants 5-15

Tutorial: Declaring Variables and Constants in a Subprogram 5-16

Ensuring that Variables, Constants, and Parameters Have Correct Data Types 5-17

Tutorial: Changing Declarations to Use the %TYPE Attribute 5-18

Assigning Values to Variables 5-19

Assigning Values to Variables with the Assignment Operator 5-20

Assigning Values to Variables with the SELECT INTO Statement 5-21

Controlling Program Flow 5-22

About Control Statements 5-22

Using the IF Statement 5-23

Using the CASE Statement 5-24

Using the FOR LOOP Statement 5-25

Using the WHILE LOOP Statement 5-27

Using the Basic LOOP and EXIT WHEN Statements 5-28

Using Records and Cursors 5-30

About Records 5-30

Tutorial: Declaring a RECORD Type 5-31

Tutorial: Creating and Invoking a Subprogram with a Record Parameter 5-32

About Cursors 5-34

Using a Declared Cursor to Retrieve Result Set Rows One at a Time 5-35

Tutorial: Using a Declared Cursor to Retrieve Result Set Rows One at a Time 5-36

About Cursor Variables 5-37

Using a Cursor Variable to Retrieve Result Set Rows One at a Time 5-38

Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time 5-39

Using Associative Arrays 5-42

About Collections 5-42

About Associative Arrays 5-43

Declaring Associative Arrays 5-43

Populating Associative Arrays 5-45

Traversing Dense Associative Arrays 5-46

Traversing Sparse Associative Arrays 5-47

Handling Exceptions (Runtime Errors) 5-48

About Exceptions and Exception Handlers 5-48

When to Use Exception Handlers 5-49

Handling Predefined Exceptions 5-50

Declaring and Handling User-Defined Exceptions 5-51

vi

6 Using Triggers

About Triggers 6-1

Creating Triggers 6-2

About OLD and NEW Pseudorecords 6-3

Tutorial: Creating a Trigger that Logs Table Changes 6-3

Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is
Inserted 6-4

Creating an INSTEAD OF Trigger 6-5

Tutorial: Creating Triggers that Log LOGON and LOGOFF Events 6-6

Changing Triggers 6-7

Disabling and Enabling Triggers 6-7

Disabling or Enabling a Single Trigger 6-8

Disabling or Enabling All Triggers on a Single Table 6-8

About Trigger Compilation and Dependencies 6-9

Dropping Triggers 6-9

7 Working in a Global Environment

About Globalization Support Features 7-1

About Language Support 7-1

About Territory Support 7-2

About Date and Time Formats 7-2

About Calendar Formats 7-3

About Numeric and Monetary Formats 7-4

About Linguistic Sorting and String Searching 7-5

About Length Semantics 7-5

About Unicode and SQL National Character Data Types 7-5

About Initial NLS Parameter Values 7-6

Viewing NLS Parameter Values 7-7

Changing NLS Parameter Values 7-8

Changing NLS Parameter Values for All SQL Developer Connections 7-8

Changing NLS Parameter Values for the Current SQL Function Invocation 7-9

About Individual NLS Parameters 7-10

About Locale and the NLS_LANG Parameter 7-11

About the NLS_LANGUAGE Parameter 7-11

About the NLS_TERRITORY Parameter 7-13

About the NLS_DATE_FORMAT Parameter 7-15

About the NLS_DATE_LANGUAGE Parameter 7-17

About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters 7-18

About the NLS_CALENDAR Parameter 7-19

About the NLS_NUMERIC_CHARACTERS Parameter 7-20

vii

About the NLS_CURRENCY Parameter 7-21

About the NLS_ISO_CURRENCY Parameter 7-23

About the NLS_DUAL_CURRENCY Parameter 7-24

About the NLS_SORT Parameter 7-24

About the NLS_COMP Parameter 7-26

About the NLS_LENGTH_SEMANTICS Parameter 7-28

Using Unicode in Globalized Applications 7-29

Representing Unicode String Literals in SQL and PL/SQL 7-29

Avoiding Data Loss During Character-Set Conversion 7-30

8 Building Effective Applications

Building Scalable Applications 8-1

About Scalable Applications 8-1

Using Bind Variables to Improve Scalability 8-1

Using PL/SQL to Improve Scalability 8-4

How PL/SQL Minimizes Parsing 8-4

About the EXECUTE IMMEDIATE Statement 8-4

About OPEN FOR Statements 8-5

About the DBMS_SQL Package 8-5

About Bulk SQL 8-6

About Concurrency and Scalability 8-8

About Sequences and Concurrency 8-9

About Latches and Concurrency 8-9

About Nonblocking Reads and Writes and Concurrency 8-10

About Shared SQL and Concurrency 8-10

Limiting the Number of Concurrent Sessions 8-10

Comparing Programming Techniques with Runstats 8-10

About Runstats 8-11

Setting Up Runstats 8-11

Using Runstats 8-14

Real-World Performance and Data Processing Techniques 8-14

About Iterative Data Processing 8-15

About Set-Based Processing 8-18

Recommended Programming Practices 8-19

Use Instrumentation Packages 8-19

Statistics Gathering and Application Tracing 8-20

Use Existing Functionality 8-20

Cover Database Tables with Editioning Views 8-23

Recommended Security Practices 8-23

viii

9 Developing a Simple Oracle Database Application

About the Application 9-1

Purpose of the Application 9-1

Structure of the Application 9-1

Schema Objects of the Application 9-1

Schemas for the Application 9-2

Naming Conventions in the Application 9-3

Creating the Schemas for the Application 9-4

Granting Privileges to the Schemas 9-5

Granting Privileges to the app_data Schema 9-6

Granting Privileges to the app_code Schema 9-6

Granting Privileges to the app_admin Schema 9-6

Granting Privileges to the app_user and app_admin_user Schemas 9-7

Creating the Schema Objects and Loading the Data 9-7

Creating the Tables 9-7

Creating the Editioning Views 9-10

Creating the Triggers 9-10

Creating the Trigger to Enforce the First Business Rule 9-11

Creating the Trigger to Enforce the Second Business Rule 9-12

Creating the Sequences 9-13

Loading the Data 9-14

Adding the Foreign Key Constraint 9-16

Granting Privileges on the Schema Objects to Users 9-16

Creating the employees_pkg Package 9-17

Creating the Package Specification for employees_pkg 9-18

Creating the Package Body for employees_pkg 9-19

Tutorial: Showing How the employees_pkg Subprograms Work 9-21

Granting the Execute Privilege to app_user and app_admin_user 9-24

Tutorial: Invoking get_job_history as app_user or app_admin_user 9-24

Creating the admin_pkg Package 9-25

Creating the Package Specification for admin_pkg 9-25

Creating the Package Body for admin_pkg 9-26

Tutorial: Showing How the admin_pkg Subprograms Work 9-28

Granting the Execute Privilege to app_admin_user 9-29

Tutorial: Invoking add_department as app_admin_user 9-30

10

Deploying an Oracle Database Application

About Development and Deployment Environments 10-1

About Installation Scripts 10-1

About DDL Statements and Schema Object Dependencies 10-1

ix

About INSERT Statements and Constraints 10-2

Creating Installation Scripts 10-3

Creating Installation Scripts with the Cart 10-3

Creating an Installation Script with the Database Export Wizard 10-4

Editing Installation Scripts that Create Sequences 10-6

Editing Installation Scripts that Create Triggers 10-6

Creating Installation Scripts for the Sample Application 10-7

Creating Installation Script schemas.sql 10-8

Creating Installation Script objects.sql 10-9

Creating Installation Script employees.sql 10-13

Creating Installation Script admin.sql 10-16

Creating Master Installation Script create_app.sql 10-18

Deploying the Sample Application 10-18

Checking the Validity of an Installation 10-19

Archiving the Installation Scripts 10-20

Index

x

List of Tables

5-1 Cursor Attribute Values 5-35

7-1 Initial Values of NLS Parameters in SQL Developer 7-6

xi

Preface

This is the preface to the Oracle Database 2 Day Developer’s Guide.

This document explains basic concepts behind application development with Oracle
Database. It provides instructions for using the basic features of topics through
Structured Query Language (SQL), and the Oracle server-based procedural extension
to the SQL database language, Procedural Language/Structured Query Language
(PL/SQL).

Audience
This document is intended for anyone who wants to learn about Oracle Database
application development, and is primarily an introduction to application development
for developers who are new to Oracle Database.

This document assumes that you have a general understanding of relational database
concepts and an understanding of the operating system environment that you will use
to develop applications with Oracle Database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
When you are comfortable with the concepts and tasks in Oracle Database 2 Day
Developer’s Guide, Oracle recommends that you consult these other Oracle Database
development documents.

• Oracle Application Express App Builder User's Guide

• Oracle Database 2 Day + Java Developer's Guide

For more information, see:

• Oracle Database Concepts

• Oracle Database Development Guide

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Language Reference

Conventions
Oracle Database 2 Day Developer’s Guide uses these text conventions.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiii

1
Introduction to 2 Day Oracle Database
Development

An Oracle Database developer is responsible for creating or maintaining the database
components of an application that uses the Oracle technology stack. Oracle Database
developers either develop applications or convert existing applications to run in the Oracle
Database environment.

See Also:

Oracle Database Concepts for more information about the duties of Oracle
Database developers

About This Document
This document is the entry into the Oracle Database documentation set for application
developers.

This document does the following:

• Explains the basic concepts behind development with Oracle Database

• Shows, with tutorials and examples, how to use basic features of SQL and PL/SQL

• Provides references to detailed information about subjects that it introduces

• Shows how to develop and deploy a simple Oracle Database application

Introduction to 2 Day Oracle Database Development (this chapter) describes the reader for
whom this document is intended, outlines the organization of this document, introduces
important Oracle Database concepts, and describes the sample schema used in the tutorials
and examples in this document.

Connecting to Oracle Database and Exploring It explains how to connect to Oracle Database,
how to view schema objects and the properties and data of Oracle Database tables, and how
to use queries to retrieve data from an Oracle Database table.

About DML Statements and Transactions introduces data manipulation language (DML)
statements and transactions. DML statements add, change, and delete Oracle Database
table data. A transaction is a sequence of one or more SQL statements that Oracle Database
treats as a unit: either all of the statements are performed, or none of them are.

Creating and Managing Schema Objects introduces data definition language (DDL)
statements, which create, change, and drop schema objects.

Developing Stored Subprograms and Packages introduces stored subprograms and
packages, which can be used as building blocks for many different database applications.

1-1

Using Triggers introduces triggers, which are stored PL/SQL units that automatically
execute ("fire") in response to specified events.

Working in a Global Environment introduces globalization support—National Language
Support (NLS) parameters and Unicode-related features of SQL and PL/SQL.

Building Effective Applications explains how to build scalable applications and use
recommended programming and security practices.

Developing a Simple Oracle Database Application shows how to develop a simple
Oracle Database application.

Deploying an Oracle Database Application explains how to deploy an Oracle Database
application—that is, how to install it in one or more environments where other users
can run it—using the application developed in Developing a Simple Oracle Database
Application as an example.

About Oracle Database
Oracle Database groups related information into logical structures called schemas.
The logical structures contain schema objects.

When you connect to the database by providing your user name and password, you
specify the schema and indicate that you are its owner. In Oracle Database, the user
name and the name of the schema to which the user connects are the same.

About Schema Objects
Every object in an Oracle Database belongs to only one schema, and has a unique
name with that schema.

Some of the objects that schemas can contain are:

• Tables

Tables are the basic units of data storage in Oracle Database. Tables hold all user-
accessible data. Each table contains rows that represent individual data records.
Rows are composed of columns that represent the fields of the records.

• Indexes

Indexes are optional objects that can improve the performance of data retrieval
from tables. Indexes are created on one or more columns of a table, and are
automatically maintained in the database.

• Views

You can create a view that combines information from several different tables into
a single presentation. A view can rely on information from both tables and other
views.

• Sequences

When all records of a table must be distinct, you can use a sequence to generate
a serial list of unique integers for numeric columns, each of which represents the
ID of one record.

• Synonyms

Chapter 1
About Oracle Database

1-2

Synonyms are aliases for schema objects. You can use synonyms for security and
convenience; for example, to hide the ownership of an object or to simplify SQL
statements.

• Stored subprograms

Stored subprograms (also called schema-level subprograms) are procedures and
functions that are stored in the database. They can be invoked from client applications
that access the database.

Triggers are stored subprograms that are automatically run by the database when
specified events occur in a particular table or view. Triggers can restrict access to specific
data and perform logging.

• Packages

A package is a group of related subprograms, along with the explicit cursors and
variables they use, stored in the database as a unit, for continued use. Like stored
subprograms, package subprograms can be invoked from client applications that access
the database.

Typically, the objects that an application uses belong to the same schema.

See Also:

• Oracle Database Concepts for a comprehensive introduction to schema objects

• Creating and Managing Tables

• Managing Indexes

• Creating and Managing Views

• Creating and Managing Sequences

• Creating and Managing Synonyms

• Developing Stored Subprograms and Packages

• Using Triggers

About Oracle Database Access
You can access Oracle Database only through a client program, such as SQL*Plus or SQL
Developer.

The client program's interface to Oracle Database is Structured Query Language (SQL).
Oracle provides an extension to SQL called Procedural Language/SQL (PL/SQL).

About SQL*Plus
SQL*Plus (pronounced sequel plus) is an interactive and batch query tool that is installed
with every Oracle Database installation. It has a command-line user interface that acts as the
client when connecting to the database.

SQL*Plus has its own commands and environment. In the SQL*Plus environment, you can
enter and run SQL*Plus commands, SQL statements, PL/SQL statements, and operating
system commands to perform tasks such as:

Chapter 1
About Oracle Database

1-3

• Formatting, performing calculations on, storing, and printing query results

• Examining tables and object definitions

• Developing and running batch scripts

• Performing database administration

You can use SQL*Plus to generate reports interactively, to generate reports as batch
processes, and to output the results to text file, to screen, or to HTML file for browsing
on the Internet. You can generate reports dynamically using the HTML output facility.

You can use SQL*Plus in SQL Developer. For details, see Oracle SQL Developer
User's Guide.

See Also:

• "Connecting to Oracle Database from SQL*Plus"

• SQL*Plus User's Guide and Reference for information about SQL*Plus

About SQL Developer
SQL Developer (pronounced sequel developer) is a graphical user interface for
Oracle Database, that is available in the default installation of Oracle Database and by
free download from the Oracle Technology Network.

SQL Developer serves as a modern integrated development environment (IDE) for
SQL and PL/SQL, and provides a graphical interface for managing database objects.
You can also create reports, design data models, migrate third-party databases to
Oracle, REST-enable tables and views, and deploy and manage Oracle REST Data
Services. The SQL Worksheet allows you to enter and run SQL statements, PL/SQL
statements, and SQL*Plus commands and scripts.

Note:

SQL Developer often offers several ways to do a task, but this document
does not explain every possible way.

See Also:

• "Connecting to Oracle Database from SQL Developer"

• Oracle SQL Developer User's Guide for information about SQL
Developer

Chapter 1
About Oracle Database

1-4

About Structured Query Language (SQL)
Structured Query Language (SQL) (pronounced sequel) is the set-based, high-level
computer language with which all programs and users access data in Oracle Database.

SQL is a declarative, or nonprocedural, language; that is, it describes what to do, but not
how. You specify the desired result set (for example, the names of current employees), but
not how to get it.

See Also:

• Oracle Database Concepts for a complete overview of SQL

• Oracle Database SQL Language Reference for complete information about
SQL

About Procedural Language/SQL (PL/SQL)
Procedural Language/SQL (PL/SQL) (pronounced P L sequel) is a native Oracle Database
extension to SQL. It bridges the gap between declarative and imperative program control by
adding procedural elements, such as conditional control and loops.

In PL/SQL, you can declare constants and variables, procedures and functions, types and
variables of those types, and triggers. You can handle exceptions (runtime errors). You can
create PL/SQL units—procedures, functions, packages, types, and triggers—that are stored
in the database for reuse by applications that use any of the Oracle Database programmatic
interfaces.

The basic unit of a PL/SQL source program is the block, which groups related declarations
and statements. A block has an optional declarative part, a required executable part, and an
optional exception-handling part.

See Also:

• Oracle Database Concepts for a complete overview of PL/SQL

• Oracle Database PL/SQL Language Reference for complete information about
PL/SQL

About Other Client Programs, Languages, and Development Tools
Several other client programs, languages, and tools are available.

Note:

Some of the products on the preceding list do not ship with Oracle Database and
must be downloaded separately.

Chapter 1
About Oracle Database

1-5

See Also:

• Oracle Database Concepts for more information about tools for Oracle
Database developers

• Oracle Database Development Guide for information about choosing a
programming environment

Oracle Application Express
Oracle Application Express is an application development and deployment tool that
enables you to quickly create secure and scalable web applications even if you have
limited previous programming experience. The embedded Application Builder tool
assembles an HTML interface or a complete application that uses schema objects,
such as tables or stored procedures, into a collection of pages that are linked through
tabs, buttons, or hypertext links.

See Also:

Oracle Application Express App Builder User's Guide for more information
about Oracle Application Express

Oracle Java Database Connectivity (JDBC)
Oracle Java Database Connectivity (JDBC) is an API that enables Java to send SQL
statements to an object-relational database, such as Oracle Database. Oracle
Database JDBC provides complete support for the JDBC 3.0 and JDBC RowSet
(JSR-114) standards, advanced connection caching for both XA and non-XA
connections, exposure of SQL and PL/SQL data types to Java, and fast SQL data
access.

See Also:

For more information about JDBC:

• Oracle Database Concepts

• Oracle Database Development Guide

• Oracle Database 2 Day + Java Developer's Guide

Hypertext Preprocessor (PHP)
The Hypertext Preprocessor (PHP) is a powerful interpreted server-side scripting
language for quick web application development. PHP is an open source language
that is distributed under a BSD-style license. PHP is designed for embedding database
access requests directly into HTML pages.

Chapter 1
About Oracle Database

1-6

Oracle Call Interface (OCI)
Oracle Call Interface (OCI) is the native C language API for accessing Oracle Database
directly from C applications.

The OCI Software Development Kit is installed as part of the Oracle Instant Client, which
enables you to run applications without installing the standard Oracle client or having an
ORACLE_HOME. Your applications work without change, using significantly less disk space.

See Also:

• Oracle Database Development Guide for more information about OCI

• Oracle Call Interface Programmer's Guide for complete information about OCI

Oracle C++ Call Interface (OCCI)
Oracle C++ Call Interface (OCCI) is the native C++ language API for accessing Oracle
Database directly from C++ applications. Like OCI, OCCI supports both relational and object-
oriented programming paradigms.

The OCCI Software Development Kit is also installed as part of the Oracle Instant Client,
which enables you to run applications without installing the standard Oracle client or having
an ORACLE_HOME. Your applications work without change, using significantly less disk space.

See Also:

• Oracle Database Development Guide for more information about OCCI

• Oracle C++ Call Interface Programmer's Guide for complete information about
OCCI

Open Database Connectivity (ODBC)
Open Database Connectivity (ODBC) is a set of database access APIs that connect to the
database, prepare, and then run SQL statements on the database. An application that uses
an ODBC driver can access nonuniform data sources, such as spreadsheets and comma-
delimited files.

The Oracle ODBC driver conforms to ODBC 3.51 specifications. It supports all core APIs and
a subset of Level 1 and Level 2 functions. Microsoft supplies the Driver manager component
for the Windows platform.

Like OCI, OCCI, and JDBC, ODBC is part of the Oracle Instant Client installation.

Chapter 1
About Oracle Database

1-7

See Also:

• Oracle Database Concepts

• Oracle Services for Microsoft Transaction Server Developer's Guide for
Microsoft Windows for information about using the Oracle ODBC driver
with Windows

• Oracle Database Administrator's Reference for Linux and UNIX-Based
Operating Systems for information about using Oracle ODBC driver on
Linux

Pro*C/C++ Precompiler
The Pro*C/C++ precompiler lets you embed SQL statements in a C or C++ source file.
The precompiler accepts the source program as input, translates the embedded SQL
statements into standard Oracle runtime library calls, and generates a modified source
program that you can compile, link, and run.

See Also:

• Oracle Database Concepts for more information about Oracle
precompilers

• Oracle Database Development Guide for more information about the
Pro*C/C++ precompiler

• Pro*C/C++ Programmer's Guide for complete information about the
Pro*C/C++ precompiler

Pro*COBOL Precompiler
The Pro*COBOL precompiler lets you embed SQL statements in a COBOL source file.
The precompiler accepts the source program as input, translates the embedded SQL
statements into standard Oracle runtime library calls, and generates a modified source
program that you can compile, link, and run.

See Also:

• Oracle Database Concepts for more information about Oracle
precompilers

• Oracle Database Development Guide for more information about the
Pro*COBOL precompiler

• Pro*COBOL Programmer's Guide for complete information about the
Pro*COBOL precompiler

Chapter 1
About Oracle Database

1-8

Microsoft .NET Framework
The Microsoft .NET Framework is a multilanguage environment for building, deploying, and
running applications and XML web services.

The main components of the Microsoft .NET Framework are:

• Common Language Runtime (CLR)

The Common Language Runtime (CLR) is a language-neutral development and runtime
environment that provides services that help manage running applications.

• Framework Class Libraries (FCL)

The Framework Class Libraries (FCL) provide a consistent, object-oriented library of
prepackaged functionality.

Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for .NET (ODP.NET) provides fast and efficient ADO.NET data access
from .NET applications to Oracle Database. ODP.NET allows developers to take advantage
of advanced Oracle Database functionality that exists in Oracle Database, including
SecureFiles, XML DB, and Advanced Queuing.

Oracle Developer Tools for Visual Studio (ODT)

Oracle Developer Tools for Visual Studio (ODT) is a set of application tools that integrate with
the Visual Studio environment. These tools provide graphic user interface access to Oracle
functionality, enable the user to perform a wide range of application development tasks, and
improve development productivity and ease of use. Oracle Developer Tools supports the
programming and implementation of .NET stored procedures using Visual Basic, C#, and
other .NET languages.

.NET Stored Procedures

Oracle Database Extensions for .NET is a database option for Oracle Database on Windows.
It makes it possible to build and run .NET stored procedures or functions with Oracle
Database for Microsoft Windows using Visual Basic .NET or Visual C#.

After building .NET procedures and functions into a .NET assembly, you can deploy them in
Oracle Database using the Oracle Deployment Wizard for .NET, a component of the Oracle
Developer Tools for Visual Studio.

Oracle Providers for ASP.NET

Oracle Providers for ASP.NET offer ASP.NET developers an easy way to store state common
to web applications within Oracle Database. These providers are modeled on existing
Microsoft ASP.NET providers, sharing similar schema and programming interfaces to
provide .NET developers a familiar interface. Oracle supports the Membership, Profile, Role,
and other providers.

Chapter 1
About Oracle Database

1-9

See Also:

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Oracle Database Extensions for .NET Developer's Guide for Microsoft
Windows

• Oracle Database Development Guide

Oracle Provider for OLE DB (OraOLEDB)
Oracle Provider for OLE DB (OraOLEDB) is an open standard data access
methodology that uses a set of Component Object Model (COM) interfaces for
accessing and manipulating different types of data. These interfaces are available from
various database providers.

See Also:

Oracle Provider for OLE DB Developer's Guide for Microsoft Windows for
more information about OraOLEDB

About Sample Schema HR
The HR sample schema can be installed with Oracle Database. This schema contains
information about employees—departments, locations, work histories, and related
information. Like all schemas, HR has tables, views, indexes, procedures, functions,
and other attributes. The examples and tutorials in this document use the schema.

See Also:

• Oracle Database Sample Schemas for a complete description of the HR
schema

• "Connecting to Oracle Database as User HR" for instructions for
connecting to Oracle Database as the user HR

Chapter 1
About Sample Schema HR

1-10

2
Connecting to Oracle Database and Exploring
It

You can connect to Oracle Database only through a client program, such as SQL*Plus or
SQL Developer. When connected to the database, you can view schema objects, view the
properties and data of Oracle Database tables, and use queries to retrieve data from Oracle
Database tables.

After connecting to Oracle Database through a client program, you enter and run commands
in that client program. For details, see the documentation for your client program.

Connecting to Oracle Database from SQL*Plus
SQL*Plus is a client program from which you can access Oracle Database. This topic shows
how to start SQL*Plus and connect to Oracle Database.

Note:

For steps 3 and 4 of the following procedure, you need a user name and password.

To connect to Oracle Database from SQL*Plus:

1. If you are on a Windows system, display a Windows command prompt.

2. At the command prompt, type sqlplus and then press the key Enter.

3. At the user name prompt, type your user name and then press the key Enter.

4. At the password prompt, type your password and then press the key Enter.

Note:

For security, your password is not visible on your screen.

The system connects you to an Oracle Database instance.

You are in the SQL*Plus environment. At the SQL> prompt, you can enter and run
SQL*Plus commands, SQL statements, PL/SQL statements, and operating system
commands.

To exit SQL*Plus, type exit and press the key Enter.

2-1

Note:

Exiting SQL*Plus ends the SQL*Plus session, but does not shut down
the Oracle Database instance.

Example 2-1 starts SQL*Plus, connects to Oracle Database, runs a SQL SELECT
statement, and exits SQL*Plus. User input is bold.

Example 2-1 Connecting to Oracle Database from SQL*Plus

> sqlplus
SQL*Plus: Release 12.1.0.1.0 Production on Thu Dec 27 07:43:41 2012

Copyright (c) 1982, 2012, Oracle. All rights reserved.

Enter user-name: your_user_name
Enter password: your_password

Connected to:
Oracle Database 12c Enterprise Edition Release - 12.1.0.1.0 64bit Production

SQL> select count(*) from employees;

 COUNT(*)

 107

SQL> exit

Disconnected from Oracle Database 12c Enterprise Edition Release - 12.1.0.1.0 64bit Production
>

See Also:

• "Connecting to Oracle Database as User HR from SQL*Plus"

• "About SQL*Plus" for a brief description of SQL*Plus

• SQL*Plus User's Guide and Reference for more information about
starting SQL*Plus and connecting to Oracle Database

Connecting to Oracle Database from SQL Developer
SQL Developer is a client program with which you can access Oracle Database.

You are encouraged to use the currently available release of SQL Developer, which
you can download from:

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/
This section assumes that SQL Developer is installed on your system, and shows how
to start it and connect to Oracle Database. If SQL Developer is not installed on your
system, then see Oracle SQL Developer User's Guide for installation instructions.

Chapter 2
Connecting to Oracle Database from SQL Developer

2-2

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/

Note:

For the following procedure:

• If you're using a SQL Developer kit that does not include the JDK, then the first
time you start SQL Developer on your system, you must provide the path to the
Java Development Kit.

• When prompted, you need to enter a user name and password.

To connect to Oracle Database from SQL Developer:

1. Start SQL Developer.

For instructions, see Oracle SQL Developer User's Guide.

If this is the first time you have started SQL Developer on your system, you are prompted
to enter the path to the Java Development Kit (JDK) installation (for example, C:\Program
Files\Java\jdk1.8.0_65). Either type the path after the prompt or browse to it, and then
press the key Enter.

2. In the Connections frame, click the icon New Connection.

3. In the New/Select Database Connection window:

a. Type the appropriate values in the fields Connection Name, Username, and
Password.

For security, the password characters that you type appear as asterisks.

Near the Password field is the check box Save Password. By default, it is deselected.
Oracle recommends accepting the default.

b. If the Oracle pane is not showing, click the tab Oracle.

c. In the Oracle pane, accept the default values.

(The default values are: Connection Type, Basic; Role, default, Hostname, localhost;
Port, 1521; SID option, selected; SID field, xe.)

d. Click the button Test.

The connection is tested. If the connection succeeds, the Status indicator changes
from blank to Success.

e. If the test succeeded, click the button Connect.

The New/Select Database Connection window closes. The Connections frame shows
the connection whose name you entered in the Connection Name field in step 3.

You are in the SQL Developer environment.

To exit SQL Developer, select Exit from the File menu.

Chapter 2
Connecting to Oracle Database from SQL Developer

2-3

Note:

Exiting SQL Developer ends the SQL Developer session, but does not shut
down the Oracle Database instance. The next time you start SQL Developer,
the connection you created using the preceding procedure still exists. SQL
Developer prompts you for the password that you supplied in step 3 (unless
you selected the check box Save Password).

See Also:

• "Connecting to Oracle Database as User HR from SQL Developer"

• "About SQL Developer" for a brief description of SQL Developer

• Oracle SQL Developer User's Guide for more information about using
SQL Developer to create connections to Oracle Database

Connecting to Oracle Database as User HR
To complete the tutorials and examples in this document, you must install the hr
sample schema and connect to Oracle Database as the user HR.

The user HR owns the hr sample schema that the examples and tutorials in this
document use.

See Also:

• Installing the Sample Schemas in Database Sample Schemas for
information about how to install the hr schema

Unlocking the HR Account
You must unlock the HR account and reset its password before you can connect to
Oracle Database as the user HR.

By default, when the HR schema is installed, the HR account is locked and its
password is expired.

Note:

For the following procedure, you need the name and password of a user who
has the ALTER USERsystem privilege.

Chapter 2
Connecting to Oracle Database as User HR

2-4

To unlock the HR account and reset its password:

1. Using SQL*Plus, connect to Oracle Database as a user with the ALTER USER system
privilege.

2. At the SQL> prompt, unlock the HR account and reset its password:

Caution:

Choose a secure password. For guidelines for secure passwords, see Oracle
Database Security Guide.

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;

The system responds:

User altered.

The HR account is unlocked and its password is password.

Now you can connect to Oracle Database as user HR with the password password.

See Also:

• Oracle SQL Developer User's Guide for information about accessing SQL*Plus
within SQL Developer

Connecting to Oracle Database as User HR from SQL*Plus
You can use SQL*Plus to connect to Oracle Database as the HR user.

Note:

If the HR account is locked, see "Unlocking the HR Account" and then return to this
section.

To connect to Oracle Database as user HR from SQL*Plus:

Note:

For this task, you need the password for the HR account.

1. If you are connected to Oracle Database, close your current connection.

Chapter 2
Connecting to Oracle Database as User HR

2-5

2. Follow the directions in "Connecting to Oracle Database from SQL*Plus", entering
the user name HR at step 3 and the password for the HR account at step 4.

You are now connected to Oracle Database as the user HR.

See Also:

SQL*Plus User's Guide and Reference for an example of using SQL*Plus to
create an HR connection

Connecting to Oracle Database as User HR from SQL Developer
You can use SQL Developer to connect to Oracle Database as the HR user.

Note:

If the HR account is locked, see "Unlocking the HR Account" and then return
to this section.

To connect to Oracle Database as user HR from SQL Developer:

Note:

For this task, you need the password for the HR account.

Follow the directions in "Connecting to Oracle Database from SQL Developer",
entering the following values at steps 3:

• For Connection Name, enter hr_conn.

(You can enter a different name, but the tutorials in this document assume that you
named the connection hr_conn.)

• For Username, enter HR.

• For Password, enter the password for the HR account.

You are now connected to Oracle Database as the user HR.

Exploring Oracle Database with SQL*Plus
If the hr sample schema is installed and you are connected to Oracle Database from
SQL*Plus as the user HR, you can view HR schema objects and the properties of the
EMPLOYEES table.

Chapter 2
Exploring Oracle Database with SQL*Plus

2-6

Note:

If you are not connected to Oracle Database as user HR from SQL*Plus, see
"Connecting to Oracle Database as User HR from SQL*Plus" and then return to this
section.

Viewing HR Schema Objects with SQL*Plus
With SQL*Plus, you can view the objects that belong to the HR schema by querying the static
data dictionary view USER_OBJECTS.

Example 2-2 shows how to view the names and data types of the objects that belong to the
HR schema.

Example 2-2 Viewing HR Schema Objects with SQL*Plus

COLUMN OBJECT_NAME FORMAT A25
COLUMN OBJECT_TYPE FORMAT A25

SELECT OBJECT_NAME, OBJECT_TYPE FROM USER_OBJECTS
ORDER BY OBJECT_TYPE, OBJECT_NAME;

Result is similar to:

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------------
COUNTRY_C_ID_PK INDEX
DEPT_ID_PK INDEX
DEPT_LOCATION_IX INDEX
EMP_DEPARTMENT_IX INDEX
EMP_EMAIL_UK INDEX
EMP_EMP_ID_PK INDEX
EMP_JOB_IX INDEX
EMP_MANAGER_IX INDEX
EMP_NAME_IX INDEX
JHIST_DEPARTMENT_IX INDEX
JHIST_EMPLOYEE_IX INDEX
JHIST_EMP_ID_ST_DATE_PK INDEX
JHIST_JOB_IX INDEX
JOB_ID_PK INDEX
LOC_CITY_IX INDEX
LOC_COUNTRY_IX INDEX
LOC_ID_PK INDEX
LOC_STATE_PROVINCE_IX INDEX
REG_ID_PK INDEX
ADD_JOB_HISTORY PROCEDURE
SECURE_DML PROCEDURE
DEPARTMENTS_SEQ SEQUENCE
EMPLOYEES_SEQ SEQUENCE
LOCATIONS_SEQ SEQUENCE
COUNTRIES TABLE
DEPARTMENTS TABLE
EMPLOYEES TABLE
JOBS TABLE
JOB_HISTORY TABLE
LOCATIONS TABLE
REGIONS TABLE

Chapter 2
Exploring Oracle Database with SQL*Plus

2-7

SECURE_EMPLOYEES TRIGGER
UPDATE_JOB_HISTORY TRIGGER
EMP_DETAILS_VIEW VIEW

34 rows selected.

See Also:

• Oracle Database Reference for information about USER_OBJECTS

• "Selecting Table Data" for information about using queries to view table
data

• "About Sample Schema HR" for general information about the schema
HR

Viewing EMPLOYEES Table Properties and Data with SQL*Plus
You can a SQL*Plus command, the SQL SELECTstatement, and static data dictionary
views to view the properties and data of the HR.EMPLOYEES table.

You can use the SQL*Plus command DESCRIBE to view the properties of the columns
of the EMPLOYEES table in the HR schema and the SQL statement SELECT to view
the data. To view other properties of the table, use static data dictionary views (for
example, USER_CONSTRAINTS, USER_INDEXES, and USER_TRIGGERS).

Example 2-3 shows how to view the properties of the EMPLOYEES table in the HR
schema.

Example 2-3 Viewing EMPLOYEES Table Properties with SQL*Plus

DESCRIBE EMPLOYEES

Result:

 Name Null? Type
 --- -------- -------------

 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

Example 2-4 shows how to view some data in the EMPLOYEES table in the HR
schema.

Example 2-4 Viewing EMPLOYEES Table Data with SQL*Plus

COLUMN FIRST_NAME FORMAT A20
COLUMN LAST_NAME FORMAT A25

Chapter 2
Exploring Oracle Database with SQL*Plus

2-8

COLUMN PHONE_NUMBER FORMAT A20

SELECT LAST_NAME, FIRST_NAME, PHONE_NUMBER FROM EMPLOYEES
ORDER BY LAST_NAME;

Result is similar to:

LAST_NAME FIRST_NAME PHONE_NUMBER
------------------------- -------------------- --------------------
Abel Ellen 011.44.1644.429267
Ande Sundar 011.44.1346.629268
Atkinson Mozhe 650.124.6234
Austin David 590.423.4569
Baer Hermann 515.123.8888
Baida Shelli 515.127.4563
Banda Amit 011.44.1346.729268
Bates Elizabeth 011.44.1343.529268
...
Urman Jose Manuel 515.124.4469
Vargas Peter 650.121.2004
Vishney Clara 011.44.1346.129268
Vollman Shanta 650.123.4234
Walsh Alana 650.507.9811
Weiss Matthew 650.123.1234
Whalen Jennifer 515.123.4444
Zlotkey Eleni 011.44.1344.429018

107 rows selected.

See Also:

• SQL*Plus User's Guide and Reference for information about DESCRIBE
• "Selecting Table Data" for information about using queries to view table data

• Oracle Database Reference for information about static data dictionary views

Exploring Oracle Database with SQL Developer
If the hr sample schema is installed and you are connected to Oracle Database from SQL
Developer as the user HR, you can view HR schema objects and the properties of the
EMPLOYEES table.

Chapter 2
Exploring Oracle Database with SQL Developer

2-9

Tutorial: Viewing HR Schema Objects with SQL Developer
This tutorial shows how to use SQL Developer to view the objects that belong to the
HR schema—that is, how to browse the HR schema.

Note:

If you are not connected to Oracle Database as user HR from SQL
Developer, see "Connecting to Oracle Database as User HR from SQL
Developer" and then return to this tutorial.

To browse the HR schema:

1. In the Connections frame, to the left of the hr_conn icon, click the plus sign (+).

If you are not connected to the database, the Connection Information window
opens. If you are connected to the database, the hr_conn information expands
(see the information that follows "Click OK" in step 2).

2. If the Connection Information window opens:

a. In the User Name field, enter hr.

b. In the Password field, enter the password for the user HR.

c. Click OK.

The hr_conn information expands: The plus sign becomes a minus sign (-), and
under the hr_conn icon, a list of schema object types appears—Tables, Views,
Indexes, and so on. (If you click the minus sign, the hr_conn information collapses:
The minus sign becomes a plus sign, and the list disappears.)

See Also:

• Oracle SQL Developer User's Guide for more information about the SQL
Developer user interface

• "About Sample Schema HR" for general information about schema HR

Chapter 2
Exploring Oracle Database with SQL Developer

2-10

Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL
Developer

This tutorial shows how to use SQL Developer to view the properties and data of the
EMPLOYEES table in the HR schema.

Note:

If you are not browsing the HR schema, see "Tutorial: Viewing HR Schema Objects
with SQL Developer" and then return to this tutorial.

To view the properties and data of the EMPLOYEES table:

1. In the Connections frame, expand Tables.

Under Tables, a list of the tables in the HR schema appears.

2. Select the table EMPLOYEES.

In the right frame of the Oracle SQL Developer window, in the Columns pane, a list of all
columns of this table appears. To the right of each column are its properties—name, data
type, and so on. (To see all column properties, move the horizontal scroll bar to the right.)

3. In the right frame, click the tab Data.

The Data pane appears, showing a numbered list of all records in this table. (To see more
records, move the vertical scroll bar down. To see more columns of the records, move the
horizontal scroll bar to the right.)

4. In the right frame, click the tab Constraints.

The Constraints pane appears, showing a list of all constraints on this table. To the right
of each constraint are its properties—name, type, search condition, and so on. (To see all
constraint properties, move the horizontal scroll bar to the right.)

5. Explore the other properties by clicking on the appropriate tabs.

To see the SQL statement for creating the EMPLOYEES table, click the SQL tab. The
SQL statement appears in a pane named EMPLOYEES. To close this pane, click the x to
the right of the name EMPLOYEES.

See Also:

Oracle SQL Developer User's Guide for more information about the SQL Developer
user interface

Chapter 2
Exploring Oracle Database with SQL Developer

2-11

Selecting Table Data

Note:

To do the tutorials and examples in this section, the hr sample schema must
be installed and you must be connected to Oracle Database as the user HR
from SQL Developer. For instructions, see "Connecting to Oracle Database
as User HR from SQL Developer".

About Queries
A query, or SQL SELECT statement, selects data from one or more tables or views.

The simplest form of query has this syntax:

SELECT select_list FROM source_list

The select_list specifies the columns from which the data is to be selected, and the
source_list specifies the tables or views that have these columns.

A query nested within another SQL statement is called a subquery.

In the SQL*Plus environment, you can enter a query (or any other SQL statement)
after the SQL> prompt.

In the SQL Developer environment, you can enter a query (or any other SQL
statement) in the Worksheet.

Note:

When the result of a query is displayed, records can be in any order, unless
you specify their order with the ORDER BY clause. For more information,
see "Sorting Selected Data".

See Also:

• Oracle Database SQL Language Reference for more information about
queries and subqueries

• Oracle Database SQL Language Reference for more information about
the SELECT statement

• SQL*Plus User's Guide and Reference for more information about the
SQL*Plus command line interface

• Oracle SQL Developer User's Guide for information about using the
Worksheet in SQL Developer

Chapter 2
Selecting Table Data

2-12

Running Queries in SQL Developer
This section explains how to run queries in SQL Developer, using the Worksheet.

Note:

The Worksheet is not limited to queries; you can use it to run any SQL statement.

To run queries in SQL Developer:

1. If the right frame of SQL Developer shows the hr_conn pane:

a. If the Worksheet subpane does not show, click the tab Worksheet.

b. Go to step 4.

2. Click the icon SQL Worksheet.

3. If the Select Connection window opens:

a. If the Connection field does not have the value hr_conn, select that value from the
menu.

b. Click OK.

A pane appears with a tab labeled hr_conn and two subpanes, Worksheet and Query
Builder. In the Worksheet, you can enter a SQL statement.

4. In the Worksheet, type a query (a SELECT statement).

5. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing the
query result.

6. Under the hr_conn tab, click the icon Clear.

The query disappears, and you can enter another SQL statement in the Worksheet.
When you run another SQL statement, its result appears in the Query Result pane,
replacing the result of the previously run SQL statement.

See Also:

Oracle SQL Developer User's Guide for information about using the Worksheet in
SQL Developer

Tutorial: Selecting All Columns of a Table
This tutorial shows how to select all columns of the EMPLOYEES table.

To select all columns of the EMPLOYEES Table:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

Chapter 2
Selecting Table Data

2-13

2. In the Worksheet, enter this query:

SELECT * FROM EMPLOYEES;
3. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing
all columns of the EMPLOYEES table.

Caution:

Be very careful about using SELECT * on tables with columns that store
sensitive data, such as passwords or credit card information.

See Also:

"Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL
Developer" for information about another way to view table data with SQL
Developer

Tutorial: Selecting Specific Columns of a Table
This tutorial shows how to select only the columns FIRST_NAME, LAST_NAME, and
DEPARTMENT_ID of the EMPLOYEES table.

To select only FIRST_NAME, LAST_NAME, and DEPARTMENT_ID:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. If the Worksheet pane contains a query, clear the query by clicking the icon Clear.

3. In the Worksheet, enter this query:

SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID FROM EMPLOYEES;
4. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing
the results of the query, which are similar to:

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Donald OConnell 50
Douglas Grant 50
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20
Susan Mavris 40
Hermann Baer 70
Shelley Higgins 110
William Gietz 110
Steven King 90
Neena Kochhar 90

FIRST_NAME LAST_NAME DEPARTMENT_ID

Chapter 2
Selecting Table Data

2-14

-------------------- ------------------------- -------------
Lex De Haan 90
...
Kevin Feeney 50

107 rows selected.

Displaying Selected Columns Under New Headings
In displayed query results, default column headings are column names. To display a column
under a new heading, specify the new heading (alias) immediately after the column name.
The alias renames the column for the duration of the query, but does not change its name in
the database.

The query in Example 2-5 selects the same columns as the query in "Tutorial: Selecting
Specific Columns of a Table", but it also specifies aliases for them. Because the aliases are
not enclosed in double quotation marks, they are displayed in uppercase letters.

If you enclose column aliases in double quotation marks, case is preserved, and the aliases
can include spaces, as in Example 2-6.

See Also:

Oracle Database SQL Language Reference for more information about the
SELECT statement, including the column alias (c_alias)

Example 2-5 Displaying Selected Columns Under New Headings

SELECT FIRST_NAME First, LAST_NAME last, DEPARTMENT_ID DepT
FROM EMPLOYEES;

Result is similar to:

FIRST LAST DEPT
-------------------- ------------------------- ----------
Donald OConnell 50
Douglas Grant 50
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20
Susan Mavris 40
Hermann Baer 70
Shelley Higgins 110
William Gietz 110
Steven King 90
Neena Kochhar 90

FIRST LAST DEPT
-------------------- ------------------------- ----------
Lex De Haan 90
...
Kevin Feeney 50

107 rows selected.

Chapter 2
Selecting Table Data

2-15

Example 2-6 Preserving Case and Including Spaces in Column Aliases

SELECT FIRST_NAME "Given Name", LAST_NAME "Family Name"
FROM EMPLOYEES;

Result is similar to:

Given Name Family Name
-------------------- -------------------------
Donald OConnell
Douglas Grant
Jennifer Whalen
Michael Hartstein
Pat Fay
Susan Mavris
Hermann Baer
Shelley Higgins
William Gietz
Steven King
Neena Kochhar

Given Name Family Name
-------------------- -------------------------
Lex De Haan
...
Kevin Feeney

107 rows selected.

Selecting Data that Satisfies Specified Conditions
To select only data that matches a specified condition, include the WHERE clause in
the SELECT statement.

The condition in the WHERE clause can be any SQL condition (for information about
SQL conditions, see Oracle Database SQL Language Reference).

The query in Example 2-7 selects data only for employees in department 90.

To select data only for employees in departments 100, 110, and 120, use this WHERE
clause:

WHERE DEPARTMENT_ID IN (100, 110, 120);

The query in Example 2-8 selects data only for employees whose last names start with
"Ma".

To select data only for employees whose last names include "ma", use this WHERE
clause:

WHERE LAST_NAME LIKE '%ma%';

The query in Example 2-9 tests for two conditions—whether the salary is at least
11000, and whether the commission percentage is not null.

Chapter 2
Selecting Table Data

2-16

See Also:

• Oracle Database SQL Language Reference for more information about the
SELECT statement, including the WHERE clause

• Oracle Database SQL Language Reference for more information about SQL
conditions

Example 2-7 Selecting Data from One Department

SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 90;

Result is similar to:

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Steven King 90
Neena Kochhar 90
Lex De Haan 90

3 rows selected.

Example 2-8 Selecting Data for Last Names that Start with the Same Substring

SELECT FIRST_NAME, LAST_NAME
FROM EMPLOYEES
WHERE LAST_NAME LIKE 'Ma%';

Result is similar to:

FIRST_NAME LAST_NAME
-------------------- -------------------------
Jason Mallin
Steven Markle
James Marlow
Mattea Marvins
Randall Matos
Susan Mavris

6 rows selected.

Example 2-9 Selecting Data that Satisfies Two Conditions

SELECT FIRST_NAME, LAST_NAME, SALARY, COMMISSION_PCT "%"
FROM EMPLOYEES
WHERE (SALARY >= 11000) AND (COMMISSION_PCT IS NOT NULL);

Result is similar to:

FIRST_NAME LAST_NAME SALARY %
-------------------- ------------------------- ---------- ----------
John Russell 14000 .4
Karen Partners 13500 .3
Alberto Errazuriz 12000 .3
Gerald Cambrault 11000 .3
Lisa Ozer 11500 .25

Chapter 2
Selecting Table Data

2-17

Ellen Abel 11000 .3

6 rows selected.

Sorting Selected Data
When query results are displayed, records can be in any order, unless you specify
their order with the ORDER BY clause.

The query results in Example 2-10 are sorted by LAST_NAME, in ascending order (the
default).

Alternatively, in SQL Developer, you can omit the ORDER BY clause and double-click
the name of the column to sort.

The sort criterion need not be included in the select list, as Example 2-11 shows.

See Also:

Oracle Database SQL Language Reference for more information about the
SELECT statement, including the ORDER BY clause

Example 2-10 Sorting Selected Data by LAST_NAME

SELECT FIRST_NAME, LAST_NAME, HIRE_DATE
FROM EMPLOYEES
ORDER BY LAST_NAME;

Result:

FIRST_NAME LAST_NAME HIRE_DATE
-------------------- ------------------------- ---------
Ellen Abel 11-MAY-04
Sundar Ande 24-MAR-08
Mozhe Atkinson 30-OCT-05
David Austin 25-JUN-05
Hermann Baer 07-JUN-02
Shelli Baida 24-DEC-05
Amit Banda 21-APR-08
Elizabeth Bates 24-MAR-07
...
FIRST_NAME LAST_NAME HIRE_DATE
-------------------- ------------------------- ---------
Jose Manuel Urman 07-MAR-06
Peter Vargas 09-JUL-06
Clara Vishney 11-NOV-05
Shanta Vollman 10-OCT-05
Alana Walsh 24-APR-06
Matthew Weiss 18-JUL-04
Jennifer Whalen 17-SEP-03
Eleni Zlotkey 29-JAN-08

107 rows selected

Chapter 2
Selecting Table Data

2-18

Example 2-11 Sorting Selected Data by an Unselected Column

SELECT FIRST_NAME, HIRE_DATE
FROM EMPLOYEES
ORDER BY LAST_NAME;

Result:

FIRST_NAME HIRE_DATE
-------------------- ---------
Ellen 11-MAY-04
Sundar 24-MAR-08
Mozhe 30-OCT-05
David 25-JUN-05
Hermann 07-JUN-02
Shelli 24-DEC-05
Amit 21-APR-08
Elizabeth 24-MAR-07
...
FIRST_NAME HIRE_DATE
-------------------- ---------
Jose Manuel 07-MAR-06
Peter 09-JUL-06
Clara 11-NOV-05
Shanta 10-OCT-05
Alana 24-APR-06
Matthew 18-JUL-04
Jennifer 17-SEP-03
Eleni 29-JAN-08

107 rows selected.

Selecting Data from Multiple Tables
To select data from multiple tables, you use a query that is called a join. The tables in a join
must share at least one column name.

Suppose that you want to select the FIRST_NAME, LAST_NAME, and
DEPARTMENT_NAME of every employee. FIRST_NAME and LAST_NAME are in the
EMPLOYEES table, and DEPARTMENT_NAME is in the DEPARTMENTS table. Both tables
have DEPARTMENT_ID. You can use the query in Example 2-12.

Table-name qualifiers are optional for column names that appear in only one table of a join,
but are required for column names that appear in both tables. The following query is
equivalent to the query in Example 2-12:

SELECT FIRST_NAME "First",
LAST_NAME "Last",
DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
ORDER BY DEPARTMENT_NAME, LAST_NAME;

To make queries that use qualified column names more readable, use table aliases, as in the
following example:

SELECT FIRST_NAME "First",
LAST_NAME "Last",
DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES e, DEPARTMENTS d

Chapter 2
Selecting Table Data

2-19

WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID
ORDER BY d.DEPARTMENT_NAME, e.LAST_NAME;

Although you create the aliases in the FROM clause, you can use them earlier in the
query, as in the following example:

SELECT e.FIRST_NAME "First",
e.LAST_NAME "Last",
d.DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES e, DEPARTMENTS d
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID
ORDER BY d.DEPARTMENT_NAME, e.LAST_NAME;

See Also:

Oracle Database SQL Language Reference for more information about joins

Example 2-12 Selecting Data from Two Tables (Joining Two Tables)

SELECT EMPLOYEES.FIRST_NAME "First",
EMPLOYEES.LAST_NAME "Last",
DEPARTMENTS.DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
ORDER BY DEPARTMENTS.DEPARTMENT_NAME, EMPLOYEES.LAST_NAME;

Result:

First Last Dept. Name
-------------------- ------------------------- ------------------------------
William Gietz Accounting
Shelley Higgins Accounting
Jennifer Whalen Administration
Lex De Haan Executive
Steven King Executive
Neena Kochhar Executive
John Chen Finance
...
Jose Manuel Urman Finance
Susan Mavris Human Resources
David Austin IT
...
Valli Pataballa IT
Pat Fay Marketing
Michael Hartstein Marketing
Hermann Baer Public Relations
Shelli Baida Purchasing
...
Sigal Tobias Purchasing
Ellen Abel Sales
...
Eleni Zlotkey Sales
Mozhe Atkinson Shipping
...
Matthew Weiss Shipping

106 rows selected.

Chapter 2
Selecting Table Data

2-20

Using Operators and Functions in Queries
The select_list of a query can include SQL expressions, which can include SQL operators
and SQL functions. These operators and functions can have table data as operands and
arguments. The SQL expressions are evaluated, and their values appear in the results of the
query.

See Also:

• Oracle Database SQL Language Reference for more information about SQL
operators

• Oracle Database SQL Language Reference for more information about SQL
functions

Using Arithmetic Operators in Queries
The basic arithmetic operators—+ (addition), - (subtraction), * (multiplication), and / (division)
—operate on column values.

The query in Example 2-13 displays LAST_NAME, SALARY (monthly pay), and annual pay
for each employee in department 90, in descending order of SALARY.

Example 2-13 Using an Arithmetic Expression in a Query

SELECT LAST_NAME,
SALARY "Monthly Pay",
SALARY * 12 "Annual Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 90
ORDER BY SALARY DESC;

Result:

LAST_NAME Monthly Pay Annual Pay
------------------------- ----------- ----------
King 24000 288000
De Haan 17000 204000
Kochhar 17000 204000

Using Numeric Functions in Queries
Numeric functions accept numeric input and return numeric values. Each numeric function
returns a single value for each row that is evaluated.

The numeric functions that SQL supports are listed and described in Oracle Database SQL
Language Reference.

The query in Example 2-14 uses the numeric function ROUND to display the daily pay of each
employee in department 100, rounded to the nearest cent.

The query in Example 2-15 uses the numeric function TRUNC to display the daily pay of each
employee in department 100, truncated to the nearest dollar.

Chapter 2
Selecting Table Data

2-21

See Also:

Oracle Database SQL Language Reference for more information about SQL
numeric functions

Example 2-14 Rounding Numeric Data

SELECT LAST_NAME,
ROUND (((SALARY * 12)/365), 2) "Daily Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME Daily Pay
------------------------- ----------
Chen 269.59
Faviet 295.89
Greenberg 394.52
Popp 226.85
Sciarra 253.15
Urman 256.44

6 rows selected.

Example 2-15 Truncating Numeric Data

SELECT LAST_NAME,
TRUNC ((SALARY * 12)/365) "Daily Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME Daily Pay
------------------------- ----------
Chen 269
Faviet 295
Greenberg 394
Popp 226
Sciarra 253
Urman 256

6 rows selected.

Using the Concatenation Operator in Queries
The concatenation operator (||) combines two strings into one string, by appending
the second string to the first. For example, 'a'||'b'='ab'. You can use this operator
to combine information from two columns or expressions in the same column of a
query result.

The query in Example 2-16 concatenates the first name, a space, and the last name of
each selected employee.

Chapter 2
Selecting Table Data

2-22

See Also:

Oracle Database SQL Language Reference for more information about the
concatenation operator

Example 2-16 Concatenating Character Data

SELECT FIRST_NAME || ' ' || LAST_NAME "Name"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

Name
--
John Chen
Daniel Faviet
Nancy Greenberg
Luis Popp
Ismael Sciarra
Jose Manuel Urman

6 rows selected.

Using Character Functions in Queries
Character functions accept character input. Most return character values, but some return
numeric values. Each character function returns a single value for each row that is evaluated.

The character functions that SQL supports are listed and described in Oracle Database SQL
Language Reference.

The functions UPPER, INITCAP, and LOWER display their character arguments in
uppercase, initial capital, and lowercase, respectively.

The query in Example 2-17 displays LAST_NAME in uppercase, FIRST_NAME with the first
character in uppercase and all others in lowercase, and EMAIL in lowercase.

See Also:

Oracle Database SQL Language Reference for more information about SQL
character functions

Example 2-17 Changing the Case of Character Data

SELECT UPPER(LAST_NAME) "Last",
INITCAP(FIRST_NAME) "First",
LOWER(EMAIL) "E-Mail"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY EMAIL;

Result:

Chapter 2
Selecting Table Data

2-23

Last First E-Mail
------------------------- -------------------- -------------------------
FAVIET Daniel dfaviet
SCIARRA Ismael isciarra
CHEN John jchen
URMAN Jose Manuel jmurman
POPP Luis lpopp
GREENBERG Nancy ngreenbe

6 rows selected.

Using Datetime Functions in Queries
Datetime functions operate on DATE, time stamp, and interval values. Each datetime
function returns a single value for each row that is evaluated.

The datetime functions that SQL supports are listed and described in Oracle Database
SQL Language Reference.

For each DATE and time stamp value, Oracle Database stores this information:

• Year

• Month

• Date

• Hour

• Minute

• Second

For each time stamp value, Oracle Database also stores the fractional part of the
second, whose precision you can specify. To store the time zone also, use the
data type TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME
ZONE.

For more information about the DATE data type, see Oracle Database SQL Language
Reference.

For more information about the TIMESTAMP data type, see Oracle Database SQL
Language Reference.

For information about the other time stamp data types and the interval data types, see
Oracle Database SQL Language Reference.

The query in Example 2-18 uses the EXTRACT and SYSDATE functions to show how
many years each employee in department 100 has been employed. The SYSDATE
function returns the current date of the system clock as a DATE value. For more
information about the SYSDATE function, see Oracle Database SQL Language
Reference. For information about the EXTRACT function, see Oracle Database SQL
Language Reference.

The query in Example 2-19 uses the SYSTIMESTAMP function to display the current
system date and time. The SYSTIMESTAMP function returns a TIMESTAMP value.
For information about the SYSTIMESTAMP function, see Oracle Database SQL
Language Reference.

The table in the FROM clause of the query, DUAL, is a one-row table that Oracle
Database creates automatically along with the data dictionary. Select from DUAL when
you want to compute a constant expression with the SELECT statement. Because

Chapter 2
Selecting Table Data

2-24

DUAL has only one row, the constant is returned only once. For more information about
selecting from DUAL, see Oracle Database SQL Language Reference.

See Also:

Oracle Database SQL Language Reference for more information about SQL
datetime functions

Example 2-18 Displaying the Number of Years Between Dates

SELECT LAST_NAME,
(EXTRACT(YEAR FROM SYSDATE) - EXTRACT(YEAR FROM HIRE_DATE)) "Years Employed"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY "Years Employed";

Result:

LAST_NAME Years Employed
------------------------- --------------
Popp 5
Urman 6
Chen 7
Sciarra 7
Greenberg 10
Faviet 10

6 rows selected.

Example 2-19 Displaying System Date and Time

SELECT EXTRACT(HOUR FROM SYSTIMESTAMP) || ':' ||
EXTRACT(MINUTE FROM SYSTIMESTAMP) || ':' ||
ROUND(EXTRACT(SECOND FROM SYSTIMESTAMP), 0) || ', ' ||
EXTRACT(MONTH FROM SYSTIMESTAMP) || '/' ||
EXTRACT(DAY FROM SYSTIMESTAMP) || '/' ||
EXTRACT(YEAR FROM SYSTIMESTAMP) "System Time and Date"
FROM DUAL;

Results depend on current SYSTIMESTAMP value, but have this format:

System Time and Date

18:17:53, 12/27/2012

Using Conversion Functions in Queries
Conversion functions convert one data type to another.

The conversion functions that SQL supports are listed and described in Oracle Database
SQL Language Reference.

The query in Example 2-20 uses the TO_CHAR function to convert HIRE_DATE values
(which are of type DATE) to character values that have the format FMMonth DD YYYY . FM
removes leading and trailing blanks from the month name. FMMonth DD YYYY is an example of
a datetime format model. For information about datetime format models, see Oracle
Database SQL Language Reference.

Chapter 2
Selecting Table Data

2-25

The query in Example 2-21 uses the TO_NUMBER function to convert
POSTAL_CODE values (which are of type VARCHAR2) to values of type NUMBER,
which it uses in calculations.

See Also:

• Oracle Database SQL Language Reference for more information about
SQL conversion functions

• "About the NLS_DATE_FORMAT Parameter"

Example 2-20 Converting Dates to Characters Using a Format Template

SELECT LAST_NAME,
HIRE_DATE,
TO_CHAR(HIRE_DATE, 'FMMonth DD YYYY') "Date Started"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME HIRE_DATE Date Started
------------------------- --------- -----------------
Chen 28-SEP-05 September 28 2005
Faviet 16-AUG-02 August 16 2002
Greenberg 17-AUG-02 August 17 2002
Popp 07-DEC-07 December 7 2007
Sciarra 30-SEP-05 September 30 2005
Urman 07-MAR-06 March 7 2006

6 rows selected.

Example 2-21 Converting Characters to Numbers

SELECT CITY,
POSTAL_CODE "Old Code",
TO_NUMBER(POSTAL_CODE) + 1 "New Code"
FROM LOCATIONS
WHERE COUNTRY_ID = 'US'
ORDER BY POSTAL_CODE;

Result:

CITY Old Code New Code
------------------------------ ------------ ----------
Southlake 26192 26193
South Brunswick 50090 50091
Seattle 98199 98200
South San Francisco 99236 99237

4 rows selected.

Chapter 2
Selecting Table Data

2-26

Using Aggregate Functions in Queries
An aggregate function takes a group of rows and returns a single result row. The group of
rows can be an entire table or view.

The aggregate functions that SQL supports are listed and described in Oracle Database SQL
Language Reference.

Aggregate functions are especially powerful when used with the GROUP BY clause, which
groups query results by one or more columns, with a result for each group.

The query in Example 2-22 uses the COUNT function and the GROUP BY clause to show
how many people report to each manager. The wildcard character, *, represents an entire
record.

Example 2-22 shows that one employee does not report to a manager. The following query
selects the first name, last name, and job title of that employee:

COLUMN FIRST_NAME FORMAT A10;
COLUMN LAST_NAME FORMAT A10;
COLUMN JOB_TITLE FORMAT A10;

SELECT e.FIRST_NAME,
e.LAST_NAME,
j.JOB_TITLE
FROM EMPLOYEES e, JOBS j
WHERE e.JOB_ID = j.JOB_ID
AND MANAGER_ID IS NULL;

Result:

FIRST_NAME LAST_NAME JOB_TITLE
---------- ---------- ----------
Steven King President

To have the query return only rows where aggregate values meet specified conditions, use an
aggregate function in the HAVING clause of the query.

The query in Example 2-23 shows how much each department spends annually on salaries,
but only for departments for which that amount exceeds $1,000,000.

The query in Example 2-24 uses several aggregate functions to show statistics for the
salaries of each JOB_ID.

See Also:

Oracle Database SQL Language Reference for more information about SQL
aggregate functions

Example 2-22 Counting the Number of Rows in Each Group

SELECT MANAGER_ID "Manager",
COUNT(*) "Number of Reports"
FROM EMPLOYEES
GROUP BY MANAGER_ID
ORDER BY MANAGER_ID;

Chapter 2
Selecting Table Data

2-27

Result:

 Manager Number of Reports
---------- -----------------
 100 14
 101 5
 102 1
 103 4
 108 5
 114 5
 120 8
 121 8
 122 8
 123 8
 124 8
 145 6
 146 6
 147 6
 148 6
 149 6
 201 1
 205 1
 1

19 rows selected.

Example 2-23 Limiting Aggregate Functions to Rows that Satisfy a Condition

SELECT DEPARTMENT_ID "Department",
SUM(SALARY*12) "All Salaries"
FROM EMPLOYEES
HAVING SUM(SALARY * 12) >= 1000000
GROUP BY DEPARTMENT_ID;

Result:

Department All Salaries
---------- ------------
 50 1876800
 80 3654000

Example 2-24 Using Aggregate Functions for Statistical Information

SELECT JOB_ID,
COUNT(*) "#",
MIN(SALARY) "Minimum",
ROUND(AVG(SALARY), 0) "Average",
MEDIAN(SALARY) "Median",
MAX(SALARY) "Maximum",
ROUND(STDDEV(SALARY)) "Std Dev"
FROM EMPLOYEES
GROUP BY JOB_ID
ORDER BY JOB_ID;

Result:

JOB_ID # Minimum Average Median Maximum Std Dev
---------- ---------- ---------- ---------- ---------- ---------- ----------
AC_ACCOUNT 1 8300 8300 8300 8300 0
AC_MGR 1 12008 12008 12008 12008 0
AD_ASST 1 4400 4400 4400 4400 0
AD_PRES 1 24000 24000 24000 24000 0

Chapter 2
Selecting Table Data

2-28

AD_VP 2 17000 17000 17000 17000 0
FI_ACCOUNT 5 6900 7920 7800 9000 766
FI_MGR 1 12008 12008 12008 12008 0
HR_REP 1 6500 6500 6500 6500 0
IT_PROG 5 4200 5760 4800 9000 1926
MK_MAN 1 13000 13000 13000 13000 0
MK_REP 1 6000 6000 6000 6000 0
PR_REP 1 10000 10000 10000 10000 0
PU_CLERK 5 2500 2780 2800 3100 239
PU_MAN 1 11000 11000 11000 11000 0
SA_MAN 5 10500 12200 12000 14000 1525
SA_REP 30 6100 8350 8200 11500 1524
SH_CLERK 20 2500 3215 3100 4200 548
ST_CLERK 20 2100 2785 2700 3600 453
ST_MAN 5 5800 7280 7900 8200 1066

19 rows selected.

Using NULL-Related Functions in Queries
The NULL-related functions facilitate the handling of NULL values.

The NULL-related functions that SQL supports are listed and described in Oracle Database
SQL Language Reference.

The query in Example 2-25 returns the last name and commission of the employees whose
last names begin with 'B'. If an employee receives no commission (that is, if
COMMISSION_PCT is NULL), the NVL function substitutes "Not Applicable" for NULL.

The query in Example 2-26 returns the last name, salary, and income of the employees
whose last names begin with 'B', using the NVL2 function: If COMMISSION_PCT is not
NULL, the income is the salary plus the commission; if COMMISSION_PCT is NULL, income
is only the salary.

See Also:

• Oracle Database SQL Language Reference for more information about the NVL
function

• Oracle Database SQL Language Reference for more information about the
NVL2 function

Example 2-25 Substituting a String for a NULL Value

SELECT LAST_NAME,
NVL(TO_CHAR(COMMISSION_PCT), 'Not Applicable') "COMMISSION"
FROM EMPLOYEES
WHERE LAST_NAME LIKE 'B%'
ORDER BY LAST_NAME;

Result:

LAST_NAME COMMISSION
------------------------- --
Baer Not Applicable
Baida Not Applicable
Banda .1

Chapter 2
Selecting Table Data

2-29

Bates .15
Bell Not Applicable
Bernstein .25
Bissot Not Applicable
Bloom .2
Bull Not Applicable

9 rows selected.

Example 2-26 Specifying Different Expressions for NULL and Not NULL Values

SELECT LAST_NAME, SALARY,
NVL2(COMMISSION_PCT, SALARY + (SALARY * COMMISSION_PCT), SALARY) INCOME
FROM EMPLOYEES WHERE LAST_NAME LIKE 'B%'
ORDER BY LAST_NAME;

Result:

LAST_NAME SALARY INCOME
------------------------- ---------- ----------
Baer 10000 10000
Baida 2900 2900
Banda 6200 6820
Bates 7300 8395
Bell 4000 4000
Bernstein 9500 11875
Bissot 3300 3300
Bloom 10000 12000
Bull 4100 4100

9 rows selected.

Using CASE Expressions in Queries
A CASE expression lets you use IF ... THEN ... ELSE logic in SQL statements without
invoking subprograms. There are two kinds of CASE expressions, simple and
searched.

The query in Example 2-27 uses a simple CASE expression to show the country name
for each country code.

The query in Example 2-28 uses a searched CASE expression to show proposed
salary increases (15%, 10%, 5%, or 0%), based on date ranges associated with length
of service.

See Also:

• Oracle Database SQL Language Reference for more information about
CASE expressions

• Oracle Database PL/SQL Language Reference for more information
about CASE expressions

• "Using the DECODE Function in Queries"

• "Using the CASE Statement"

Chapter 2
Selecting Table Data

2-30

Example 2-27 Using a Simple CASE Expression in a Query

SELECT UNIQUE COUNTRY_ID ID,
 CASE COUNTRY_ID
 WHEN 'AU' THEN 'Australia'
 WHEN 'BR' THEN 'Brazil'
 WHEN 'CA' THEN 'Canada'
 WHEN 'CH' THEN 'Switzerland'
 WHEN 'CN' THEN 'China'
 WHEN 'DE' THEN 'Germany'
 WHEN 'IN' THEN 'India'
 WHEN 'IT' THEN 'Italy'
 WHEN 'JP' THEN 'Japan'
 WHEN 'MX' THEN 'Mexico'
 WHEN 'NL' THEN 'Netherlands'
 WHEN 'SG' THEN 'Singapore'
 WHEN 'UK' THEN 'United Kingdom'
 WHEN 'US' THEN 'United States'
 ELSE 'Unknown'
 END COUNTRY
FROM LOCATIONS
ORDER BY COUNTRY_ID;

Result:

ID COUNTRY
-- --------------
AU Australia
BR Brazil
CA Canada
CH Switzerland
CN China
DE Germany
IN India
IT Italy
JP Japan
MX Mexico
NL Netherlands
SG Singapore
UK United Kingdom
US United States

14 rows selected.

Example 2-28 Using a Searched CASE Expression in a Query

SELECT LAST_NAME "Name",
HIRE_DATE "Started",
SALARY "Salary",
CASE
 WHEN HIRE_DATE < TO_DATE('01-Jan-03', 'dd-mon-yy')
 THEN TRUNC(SALARY*1.15, 0)
 WHEN HIRE_DATE >= TO_DATE('01-Jan-03', 'dd-mon-yy') AND
 HIRE_DATE < TO_DATE('01-Jan-06', 'dd-mon-yy')
 THEN TRUNC(SALARY*1.10, 0)
 WHEN HIRE_DATE >= TO_DATE('01-Jan-06', 'dd-mon-yy') AND
 HIRE_DATE < TO_DATE('01-Jan-07', 'dd-mon-yy')
 THEN TRUNC(SALARY*1.05, 0)
 ELSE SALARY
END "Proposed Salary"
FROM EMPLOYEES

Chapter 2
Selecting Table Data

2-31

WHERE DEPARTMENT_ID = 100
ORDER BY HIRE_DATE;

Result:

Name Started Salary Proposed Salary
------------------------- --------- ---------- ---------------
Faviet 16-AUG-02 9000 10350
Greenberg 17-AUG-02 12008 13809
Chen 28-SEP-05 8200 9020
Sciarra 30-SEP-05 7700 8470
Urman 07-MAR-06 7800 8190
Popp 07-DEC-07 6900 6900

6 rows selected.

Using the DECODE Function in Queries
The DECODE function compares an expression to several search values. Whenever
the value of the expression matches a search value, DECODE returns the result
associated with that search value. If DECODE finds no match, then it returns the
default value (if specified) or NULL (if no default value is specified).

The query in Example 2-29 uses the DECODE function to show proposed salary
increases for three different jobs. The expression is JOB_ID; the search values are
'PU_CLERK', 'SH_CLERK', and 'ST_CLERK'; and the default is SALARY.

Note:

The arguments of the DECODE function can be any of the SQL numeric or
character types. Oracle automatically converts the expression and each
search value to the data type of the first search value before comparing.
Oracle automatically converts the return value to the same data type as the
first result. If the first result has the data type CHAR or if the first result is
NULL, then Oracle converts the return value to the data type VARCHAR2.

See Also:

• Oracle Database SQL Language Reference for information about the
DECODE function

• "Using CASE Expressions in Queries"

Example 2-29 Using the DECODE Function in a Query

SELECT LAST_NAME, JOB_ID, SALARY,
DECODE(JOB_ID,
 'PU_CLERK', SALARY * 1.10,
 'SH_CLERK', SALARY * 1.15,
 'ST_CLERK', SALARY * 1.20,
 SALARY) "Proposed Salary"
FROM EMPLOYEES
WHERE JOB_ID LIKE '%_CLERK'

Chapter 2
Selecting Table Data

2-32

AND LAST_NAME < 'E'
ORDER BY LAST_NAME;

Result:

LAST_NAME JOB_ID SALARY Proposed Salary
------------------------- ---------- ---------- ---------------
Atkinson ST_CLERK 2800 3360
Baida PU_CLERK 2900 3190
Bell SH_CLERK 4000 4600
Bissot ST_CLERK 3300 3960
Bull SH_CLERK 4100 4715
Cabrio SH_CLERK 3000 3450
Chung SH_CLERK 3800 4370
Colmenares PU_CLERK 2500 2750
Davies ST_CLERK 3100 3720
Dellinger SH_CLERK 3400 3910
Dilly SH_CLERK 3600 4140

11 rows selected.

Chapter 2
Selecting Table Data

2-33

3
About DML Statements and Transactions

Data manipulation language (DML) statements add, change, and delete Oracle Database
table data. A transaction is a sequence of one or more SQL statements that Oracle
Database treats as a unit: either all of the statements are performed, or none of them are.

About Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements access and manipulate data in existing
tables.

In the SQL*Plus environment, you can enter a DML statement after the SQL> prompt.

In the SQL Developer environment, you can enter a DML statement in the Worksheet.
Alternatively, you can use the SQL Developer Connections frame and tools to access and
manipulate data.

To see the effect of a DML statement in SQL Developer, you might have to select the schema
object type of the changed object in the Connections frame and then click the Refresh icon.

The effect of a DML statement is not permanent until you commit the transaction that includes
it. A transaction is a sequence of SQL statements that Oracle Database treats as a unit (it
can be a single DML statement). Until a transaction is committed, it can be rolled back
(undone). For more information about transactions, see "About Transaction Control
Statements".

See Also:

Oracle Database SQL Language Reference for more information about DML
statements

About the INSERT Statement
The INSERT statement inserts rows into an existing table.

The simplest recommended form of the INSERT statement has this syntax:

INSERT INTO table_name (list_of_columns)
VALUES (list_of_values);

Every column in list_of_columns must have a valid value in the corresponding position in
list_of_values. Therefore, before you insert a row into a table, you must know what columns
the table has, and what their valid values are. To get this information using SQL Developer,
see "Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL Developer". To get
this information using SQL*Plus, use the DESCRIBE statement. For example:

DESCRIBE EMPLOYEES;

3-1

Result:

 Name Null? Type
 --- -------- ------------

 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

The INSERT statement in Example 3-1 inserts a row into the EMPLOYEES table for
an employee for which all column values are known.

You need not know all column values to insert a row into a table, but you must know
the values of all NOT NULL columns. If you do not know the value of a column that
can be NULL, you can omit that column from list_of_columns. Its value defaults to
NULL.

The INSERT statement in Example 3-2 inserts a row into the EMPLOYEES table for
an employee for which all column values are known except SALARY. For now,
SALARY can have the value NULL. When you know the salary, you can change it with
the UPDATE statement (see Example 3-4).

The INSERT statement in Example 3-3 tries to insert a row into the EMPLOYEES
table for an employee for which LAST_NAME is not known.

Example 3-1 Using the INSERT Statement When All Information Is Available

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID,
 SALARY,
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
VALUES (
 10, -- EMPLOYEE_ID
 'George', -- FIRST_NAME
 'Gordon', -- LAST_NAME
 'GGORDON', -- EMAIL
 '650.506.2222', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 9000, -- SALARY
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID
);

Chapter 3
About Data Manipulation Language (DML) Statements

3-2

Result:

1 row created.

Example 3-2 Using the INSERT Statement When Not All Information Is Available

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID, -- Omit SALARY; its value defaults to NULL.
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
VALUES (
 20, -- EMPLOYEE_ID
 'John', -- FIRST_NAME
 'Keats', -- LAST_NAME
 'JKEATS', -- EMAIL
 '650.506.3333', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID
);

Result:

1 row created.

Example 3-3 Using the INSERT Statement Incorrectly

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME, -- Omit LAST_NAME (error)
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID,
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
VALUES (
 20, -- EMPLOYEE_ID
 'John', -- FIRST_NAME
 'JOHN', -- EMAIL
 '650.506.3333', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID
);

Result:

Chapter 3
About Data Manipulation Language (DML) Statements

3-3

ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."LAST_NAME")

See Also:

• Oracle Database SQL Language Reference for information about the
INSERT statement

• Oracle Database SQL Language Reference for information about data
types

• "Tutorial: Adding Rows to Tables with the Insert Row Tool"

About the UPDATE Statement
The UPDATE statement updates (changes the values of) a set of existing table rows.

A simple form of the UPDATE statement has this syntax:

UPDATE table_name
SET column_name = value [, column_name = value]...
[WHERE condition];

Each value must be valid for its column_name. If you include the WHERE clause, the
statement updates column values only in rows that satisfy condition.

The UPDATE statement in Example 3-4 updates the value of the SALARY column in
the row that was inserted into the EMPLOYEES table in Example 3-2, before the
salary of the employee was known.

The UPDATE statement in Example 3-5 updates the commission percentage for every
employee in department 80.

Example 3-4 Using the UPDATE Statement to Add Data

UPDATE EMPLOYEES
SET SALARY = 8500
WHERE LAST_NAME = 'Keats';

Result:

1 row updated.

Example 3-5 Using the UPDATE Statement to Update Multiple Rows

UPDATE EMPLOYEES
SET COMMISSION_PCT = COMMISSION_PCT + 0.05
WHERE DEPARTMENT_ID = 80;

Result:

34 rows updated.

Chapter 3
About Data Manipulation Language (DML) Statements

3-4

See Also:

• Oracle Database SQL Language Reference for information about the UPDATE
statement

• Oracle Database SQL Language Reference for information about data types

• "Tutorial: Changing Data in Tables in the Data Pane"

About the DELETE Statement
The DELETE statement deletes rows from a table.

A simple form of the DELETE statement has this syntax:

DELETE FROM table_name [WHERE condition];

If you include the WHERE clause, the statement deletes only rows that satisfy condition. If
you omit the WHERE clause, the statement deletes all rows from the table, but the empty
table still exists. To delete a table, use the DROP TABLE statement.

The DELETE statement in Example 3-6 deletes the rows inserted in Example 3-1 and
Example 3-2.

Example 3-6 Using the DELETE Statement

DELETE FROM EMPLOYEES
WHERE HIRE_DATE = TO_DATE('01-JAN-07', 'dd-mon-yy');

Result:

2 rows deleted.

See Also:

• Oracle Database SQL Language Reference for information about the DELETE
statement

• Oracle Database SQL Language Reference for information about the DROP
TABLE statement

• "Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool"

About Transaction Control Statements
A transaction is a sequence of one or more SQL statements that Oracle Database treats as
a unit: either all of the statements are performed, or none of them are. You need transactions
to model business processes that require that several operations be performed as a unit.

For example, when a manager leaves the company, a row must be inserted into the
JOB_HISTORY table to show when the manager left, and for every employee who reports to
that manager, the value of MANAGER_ID must be updated in the EMPLOYEES table. To

Chapter 3
About Transaction Control Statements

3-5

model this process in an application, you must group the INSERT and UPDATE
statements into a single transaction.

The basic transaction control statements are:

• SAVEPOINT, which marks a savepoint in a transaction—a point to which you can
later roll back. Savepoints are optional, and a transaction can have multiple
savepoints.

• COMMIT, which ends the current transaction, makes its changes permanent,
erases its savepoints, and releases its locks.

• ROLLBACK, which rolls back (undoes) either the entire current transaction or only
the changes made after the specified savepoint.

In the SQL*Plus environment, you can enter a transaction control statement after the
SQL> prompt.

In the SQL Developer environment, you can enter a transaction control statement in
the Worksheet. SQL Developer also has Commit Changes and Rollback Changes
icons, which are explained in "Committing Transactions" and "Rolling Back
Transactions".

Caution:

If you do not explicitly commit a transaction, and the program terminates
abnormally, then the database automatically rolls back the last uncommitted
transaction.

Oracle recommends that you explicitly end transactions in application
programs, by either committing them or rolling them back.

See Also:

• Oracle Database Concepts for more information about transaction
management

• Oracle Database SQL Language Reference for more information about
transaction control statements

Committing Transactions
Committing a transaction makes its changes permanent, erases its savepoints, and
releases its locks.

To explicitly commit a transaction, use either the COMMIT statement or (in the SQL
Developer environment) the Commit Changes icon.

Chapter 3
Committing Transactions

3-6

Note:

Oracle Database issues an implicit COMMIT statement before and after any data
definition language (DDL) statement. For information about DDL statements, see
"About Data Definition Language (DDL) Statements".

Before you commit a transaction:

• Your changes are visible to you, but not to other users of the database instance.

• Your changes are not final—you can undo them with a ROLLBACK statement.

After you commit a transaction:

• Your changes are visible to other users, and to their statements that run after you commit
your transaction.

• Your changes are final—you cannot undo them with a ROLLBACK statement.

Example 3-7 adds one row to the REGIONS table (a very simple transaction), checks the
result, and then commits the transaction.

Example 3-7 Committing a Transaction

Before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa

4 rows selected.

Transaction (add row to table):

INSERT INTO regions (region_id, region_name) VALUES (5, 'Africa');

Result:

1 row created.

Check that row was added:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia

Chapter 3
Committing Transactions

3-7

 4 Middle East and Africa
 5 Africa

5 rows selected.

Commit transaction:

COMMIT;

Result:

Commit complete.

See Also:

Oracle Database SQL Language Reference for information about the
COMMIT statement

Rolling Back Transactions
Rolling back a transaction undoes its changes. You can roll back the entire current
transaction, or you can roll it back only to a specified savepoint.

To roll back the current transaction only to a specified savepoint, you must use the
ROLLBACK statement with the TO SAVEPOINT clause.

To roll back the entire current transaction, use either the ROLLBACK statement
without the TO SAVEPOINT clause, or (in the SQL Developer environment) the
Rollback Changes icon.

Rolling back the entire current transaction:

• Ends the transaction

• Reverses all of its changes

• Erases all of its savepoints

• Releases any transaction locks

Rolling back the current transaction only to the specified savepoint:

• Does not end the transaction

• Reverses only the changes made after the specified savepoint

• Erases only the savepoints set after the specified savepoint (excluding the
specified savepoint itself)

• Releases all table and row locks acquired after the specified savepoint

Other transactions that have requested access to rows locked after the specified
savepoint must continue to wait until the transaction is either committed or rolled
back. Other transactions that have not requested the rows can request and access
the rows immediately.

To see the effect of a rollback in SQL Developer, you might have to click the Refresh
icon.

Chapter 3
Rolling Back Transactions

3-8

As a result of Example 3-7, the REGIONS table has a region called 'Middle East and Africa' and
a region called 'Africa'. Example 3-8 corrects this problem (a very simple transaction) and
checks the change, but then rolls back the transaction and checks the rollback.

Example 3-8 Rolling Back an Entire Transaction

Before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

5 rows selected.

Transaction (change table):

UPDATE REGIONS
SET REGION_NAME = 'Middle East'
WHERE REGION_NAME = 'Middle East and Africa';

Result:

1 row updated.

Check change:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

5 rows selected.

Roll back transaction:

ROLLBACK;

Result:

Rollback complete.

Check rollback:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Chapter 3
Rolling Back Transactions

3-9

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

5 rows selected.

See Also:

Oracle Database SQL Language Reference for information about the
ROLLBACK statement

Setting Savepoints in Transactions
The SAVEPOINT statement marks a savepoint in a transaction—a point to which you
can later roll back. Savepoints are optional, and a transaction can have multiple
savepoints.

Example 3-9 does a transaction that includes several DML statements and several
savepoints, and then rolls back the transaction to one savepoint, undoing only the
changes made after that savepoint.

Example 3-9 Rolling Back a Transaction to a Savepoint

Check REGIONS table before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

5 rows selected.

Check countries in region 4 before transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------

Chapter 3
Setting Savepoints in Transactions

3-10

Egypt EG 4
Israel IL 4
Kuwait KW 4
Nigeria NG 4
Zambia ZM 4
Zimbabwe ZW 4

6 rows selected.

Check countries in region 5 before transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

no rows selected

Transaction, with several savepoints:

UPDATE REGIONS
SET REGION_NAME = 'Middle East'
WHERE REGION_NAME = 'Middle East and Africa';

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'ZM';
SAVEPOINT zambia;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'NG';
SAVEPOINT nigeria;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'ZW';
SAVEPOINT zimbabwe;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'EG';
SAVEPOINT egypt;

Check REGIONS table after transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

5 rows selected.

Chapter 3
Setting Savepoints in Transactions

3-11

Check countries in region 4 after transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Israel IL 4
Kuwait KW 4

2 rows selected.

Check countries in region 5 after transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Egypt EG 5
Nigeria NG 5
Zambia ZM 5
Zimbabwe ZW 5

4 rows selected.

ROLLBACK TO SAVEPOINT nigeria;

Check REGIONS table after rollback:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

5 rows selected.

Check countries in region 4 after rollback:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

Chapter 3
Setting Savepoints in Transactions

3-12

COUNTRY_NAME CO REGION_ID
-- -- ----------
Egypt EG 4
Israel IL 4
Kuwait KW 4
Zimbabwe ZW 4

4 rows selected.

Check countries in region 5 after rollback:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Nigeria NG 5
Zambia ZM 5

2 rows selected.

See Also:

Oracle Database SQL Language Reference for information about the SAVEPOINT
statement

Chapter 3
Setting Savepoints in Transactions

3-13

4
Creating and Managing Schema Objects

To create, change, and drop schema objects, you use data definition language (DDL)
statements.

About Data Definition Language (DDL) Statements
Data definition language (DDL) statements create, change, and drop schema objects.
Before and after a DDL statement, Oracle Database issues an implicit COMMIT statement;
therefore, you cannot roll back a DDL statement.

Note:

When creating schema objects, you must observe the schema object naming rules
in Oracle Database SQL Language Reference.

In the SQL*Plus environment, you can enter a DDL statement after the SQL> prompt.

In the SQL Developer environment, you can enter a DDL statement in the Worksheet.
Alternatively, you can use SQL Developer tools to create, change, and drop objects.

Some DDL statements that create schema objects have an optional OR REPLACE clause,
which allows a statement to replace an existing schema object with another that has the
same name and type. When SQL Developer generates code for one of these statements, it
always includes the OR REPLACE clause.

To see the effect of a DDL statement in SQL Developer, you might have to select the schema
object type of the newly created object in the Connections frame and then click the Refresh
icon.

See Also:

• Oracle Database SQL Language Reference for more information about DDL
statements

• "Committing Transactions"

Creating and Managing Tables
Tables are the basic units of data storage in Oracle Database. Tables hold all user-accessible
data. Each table contains rows that represent individual data records. Rows are composed of
columns that represent the fields of the records.

4-1

Note:

To do the tutorials in this document, the hr sample schema must be installed
and you must be connected to Oracle Database as the user HR from SQL
Developer.

See Also:

• "Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL
Developer"

• Oracle SQL Developer User's Guide for a SQL Developer tutorial that
includes creating and populating tables

• Oracle Database Concepts for general information about tables

About SQL Data Types
When you create a table, you must specify the SQL data type for each column, which
determines what values the column can contain.

For example, a column of type DATE can contain the value '01-MAY-05', but it cannot
contain the numeric value 2 or the character value 'shoe'. SQL data types fall into two
categories: built-in and user-defined. (PL/SQL has additional data types—see "About
PL/SQL Data Types".)

See Also:

• Oracle Database SQL Language Reference for a summary of built-in
SQL data types

• Oracle Database Concepts for introductions to each of the built-in SQL
data types

• Oracle Database SQL Language Reference for more information about
user-defined data types

• "About PL/SQL Data Types"

Creating Tables
To create tables, use either the SQL Developer tool Create Table or the DDL
statement CREATE TABLE.

This section shows how to use both of these ways to create these tables, which will
contain data about employee evaluations:

• PERFORMANCE_PARTS, which contains the categories of employee
performance that are evaluated and their relative weights

Chapter 4
Creating and Managing Tables

4-2

• EVALUATIONS, which contains employee information, evaluation date, job, manager,
and department

• SCORES, which contains the scores assigned to each performance category for each
evaluation

These tables appear in many tutorials and examples in this document.

Tutorial: Creating a Table with the Create Table Tool
This tutorial shows how to create the PERFORMANCE_PARTS table using the SQL Developer tool
Create Table.

To create the PERFORMANCE_PARTS table using the Create Table tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Tables.

3. In the list of choices, click New Table.

The Create Table window opens, with default values for a new table, which has only one
row.

4. For Schema, accept the default value, HR.

5. For Name, enter PERFORMANCE_PARTS.

6. In the default row:

• For PK (primary key), accept the default option, deselected.

• For Column Name, enter PERFORMANCE_ID.

• For Type, accept the default value, VARCHAR2.

• For Size, enter 2.

• For Not Null, accept the default option, deselected.

7. Click Add Column.

8. For Column Name, enter NAME.

9. For Type, accept the default value, VARCHAR2.

10. For Size, enter 80.

11. Click Add Column.

12. For Column Name, enter WEIGHT.

13. For Type, select NUMBER from the menu.

14. Click OK.

The table PERFORMANCE_PARTS is created. Its name appears under Tables in the
Connections frame.

To see the CREATE TABLE statement for creating this table, select PERFORMANCE_PARTS
and click the tab SQL.

Chapter 4
Creating and Managing Tables

4-3

See Also:

Oracle SQL Developer User's Guide for more information about using SQL
Developer to create tables

Creating Tables with the CREATE TABLE Statement
This section shows how to use the CREATE TABLE statement to create the
EVALUATIONS and SCORES tables.

The CREATE TABLE statement in Example 4-1 creates the EVALUATIONS table.

The CREATE TABLE statement in Example 4-2 creates the SCORES table.

In SQL Developer, in the Connections frame, if you expand Tables, you can see the
tables EVALUATIONS and SCORES.

Example 4-1 Creating the EVALUATIONS Table with CREATE TABLE

CREATE TABLE EVALUATIONS (
 EVALUATION_ID NUMBER(8,0),
 EMPLOYEE_ID NUMBER(6,0),
 EVALUATION_DATE DATE,
 JOB_ID VARCHAR2(10),
 MANAGER_ID NUMBER(6,0),
 DEPARTMENT_ID NUMBER(4,0),
 TOTAL_SCORE NUMBER(3,0)
);

Result:

Table created.

Example 4-2 Creating the SCORES Table with CREATE TABLE

CREATE TABLE SCORES (
 EVALUATION_ID NUMBER(8,0),
 PERFORMANCE_ID VARCHAR2(2),
 SCORE NUMBER(1,0)
);

Result:

Table created.

See Also:

Oracle Database SQL Language Reference for information about the
CREATE TABLE statement

Ensuring Data Integrity in Tables
To ensure that the data in your tables satisfies the business rules that your application
models, you can use constraints, application logic, or both.

Chapter 4
Creating and Managing Tables

4-4

Tip:

Wherever possible, use constraints instead of application logic. Oracle Database
checks that all data obeys constraints much faster than application logic can.

See Also:

• Oracle Database Concepts for additional general information about data
integrity

• Oracle Database SQL Language Reference for syntactic information about
constraints

• Oracle Database Development Guide for information about enabling and
disabling constraints

About Constraints
Constraints restrict the values that columns can have. Trying to change the data in a way
that violates a constraint causes an error and rolls back the change. Trying to add a
constraint to a populated table causes an error if existing data violates the constraint.

Constraints can be enabled and disabled. By default, they are created in the enabled state.

The constraint types are:

• Not Null, which prevents a value from being null

In the EMPLOYEES table, the column LAST_NAME has the NOT NULL constraint, which
enforces the business rule that every employee must have a last name.

• Unique, which prevents multiple rows from having the same value in the same column or
combination of columns, but allows some values to be null

In the EMPLOYEES table, the column EMAIL has the UNIQUE constraint, which
enforces the business rule that an employee can have no email address, but cannot have
the same email address as another employee.

• Primary Key, which is a combination of NOT NULL and UNIQUE

In the EMPLOYEES table, the column EMPLOYEE_ID has the PRIMARY KEY
constraint, which enforces the business rule that every employee must have a unique
employee identification number.

• Foreign Key, which requires values in one table to match values in another table

In the EMPLOYEES table, the column JOB_ID has a FOREIGN KEY constraint that
references the JOBS table, which enforces the business rule that an employee cannot
have a JOB_ID that is not in the JOBS table.

• Check, which requires that a value satisfy a specified condition

The EMPLOYEES table does not have CHECK constraints. However, suppose that
EMPLOYEES needs a new column, EMPLOYEE_AGE, and that every employee must
be at least 18. The constraint CHECK (EMPLOYEE_AGE >= 18) enforces the business rule.

Chapter 4
Creating and Managing Tables

4-5

Tip:

Use check constraints only when other constraint types cannot provide
the necessary checking.

• REF, which further describes the relationship between a REF column and the
object that it references

A REF column references an object in another object type or in a relational table.

For information about REF constraints, see Oracle Database Concepts.

See Also:

• Oracle Database SQL Language Reference for syntactic information
about constraints

Tutorial: Adding Constraints to Existing Tables
This tutorial shows how to add constraints to existing tables using both SQL Developer
tools and the ALTER TABLE statement.

To add constraints to existing tables, use either SQL Developer tools or the DDL
statement ALTER TABLE. This topic shows how to use both of these ways to add
constraints to the tables created in "Creating Tables".

This tutorial has several procedures. The first procedure uses the Edit Table tool to
add a Not Null constraint to the NAMES column of the PERFORMANCE_PARTS table. The
remaining procedures show how to use other tools to add constraints; however, you
could add the same constraints using the Edit Table tool.

Note:

After any step of the tutorial, you can view the constraints that a table has:

1. In the Connections frame, select the name of the table.

2. In the right frame, click the tab Constraints.

For more information about viewing table properties and data, see "Tutorial:
Viewing EMPLOYEES Table Properties and Data with SQL Developer".

To add a Not Null constraint using the Edit Table tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click PERFORMANCE_PARTS.

4. In the list of choices, click Edit.

5. In the Edit Table window, click the column NAME.

Chapter 4
Creating and Managing Tables

4-6

6. Select the property Not Null.

7. Click OK.

The Not Null constraint is added to the NAME column of the PERFORMANCE_PARTS table.

The following procedure uses the ALTER TABLE statement to add a Not Null constraint to the
WEIGHT column of the PERFORMANCE_PARTS table.

To add a Not Null constraint using the ALTER TABLE statement:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. In the Worksheet pane, type this statement:

ALTER TABLE PERFORMANCE_PARTS
MODIFY WEIGHT NOT NULL;

3. Click the icon Run Statement.

The statement runs, adding the Not Null constraint to the WEIGHT column of the
PERFORMANCE_PARTS table.

The following procedure uses the Add Unique tool to add a Unique constraint to the SCORES
table.

To add a Unique constraint using the Add Unique tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click SCORES.

4. In the list of choices, select Constraint.

5. In the list of choices, click Add Unique.

6. In the Add Unique window:

a. For Constraint Name, enter SCORES_EVAL_PERF_UNIQUE.

b. For Column 1, select EVALUATION_ID from the menu.

c. For Column 2, select PERFORMANCE_ID from the menu.

d. Click Apply.

7. In the Confirmation window, click OK.

A unique constraint named SCORES_EVAL_PERF_UNIQUE is added to the SCORES table.

The following procedure uses the Add Primary Key tool to add a Primary Key constraint to
the PERFORMANCE_ID column of the PERFORMANCE_PARTS table.

To add a Primary Key constraint using the Add Primary Key tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click PERFORMANCE_PARTS.

4. In the list of choices, select Constraint.

5. In the list of choices, click Add Primary Key.

Chapter 4
Creating and Managing Tables

4-7

6. In the Add Primary Key window:

a. For Primary Key Name, enter PERF_PERF_ID_PK.

b. For Column 1, select PERFORMANCE_ID from the menu.

c. Click Apply.

7. In the Confirmation window, click OK.

A primary key constraint named PERF_PERF_ID_PK is added to the PERFORMANCE_ID
column of the PERFORMANCE_PARTS table.

The following procedure uses the ALTER TABLE statement to add a Primary Key
constraint to the EVALUATION_ID column of the EVALUATIONS table.

To add a Primary Key constraint using the ALTER TABLE statement:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. In the Worksheet pane, type this statement:

ALTER TABLE EVALUATIONS
ADD CONSTRAINT EVAL_EVAL_ID_PK PRIMARY KEY (EVALUATION_ID);

3. Click the icon Run Statement.

The statement runs, adding the Primary Key constraint to the EVALUATION_ID
column of the EVALUATIONS table.

The following procedure uses the Add Foreign Key tool to add two Foreign Key
constraints to the SCORES table.

To add two Foreign Key constraints using the Add Foreign Key tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click SCORES.

4. In the list of choices, select Constraint.

5. In the list of choices, click Add Foreign Key.

6. In the Add Foreign Key window:

a. For Constraint Name, enter SCORES_EVAL_FK.

b. For Column Name, select EVALUATION_ID from the menu.

c. For References Table Name, select EVALUATIONS from the menu.

d. For Referencing Column, select EVALUATION_ID from the menu.

e. Click Apply.

7. In the Confirmation window, click OK.

A foreign key constraint named SCORES_EVAL_FK is added to the EVALUTION_ID
column of the SCORES table, referencing the EVALUTION_ID column of the
EVALUATIONS table.

The following steps add another foreign key constraint to the SCORES table.

8. In the list of tables, right-click SCORES.

Chapter 4
Creating and Managing Tables

4-8

9. In the list of tables, select Constraint.

10. In the list of choices, click Add Foreign Key.

The Add Foreign Key window opens.

11. In the Add Foreign Key window:

a. For Constraint Name, enter SCORES_PERF_FK.

b. For Column Name, select PERFORMANCE_ID from the menu.

c. For Reference Table Name, select PERFORMANCE_PARTS from the menu.

d. For Referencing Column, select PERFORMANCE_ID from the menu.

e. Click Apply.

12. In the Confirmation window, click OK.

A foreign key constraint named SCORES_PERF_FK is added to the EVALUTION_ID column of
the SCORES table, referencing the EVALUTION_ID column of the EVALUATIONS table.

The following procedure uses the ALTER TABLE statement to add a Foreign Key constraint
to the EMPLOYEE_ID column of the EVALUATIONS table, referencing the EMPLOYEE_ID column of
the EMPLOYEES table.

To add a Foreign Key constraint using the ALTER TABLE statement:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. In the Worksheet pane, type this statement:

ALTER TABLE EVALUATIONS
ADD CONSTRAINT EVAL_EMP_ID_FK FOREIGN KEY (EMPLOYEE_ID)
REFERENCES EMPLOYEES (EMPLOYEE_ID);

3. Click the icon Run Statement.

The statement runs, adding the Foreign Key constraint to the EMPLOYEE_ID column of the
EVALUATIONS table, referencing the EMPLOYEE_ID column of the EMPLOYEES table.

The following procedure uses the Add Check tool to add a Check constraint to the SCORES
table.

To add a Check constraint using the Add Check tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click SCORES.

4. In the list of choices, select Constraint.

5. In the list of choices, click Add Check.

6. In the Add Check window:

a. For Constraint Name, enter SCORE_VALID.

b. For Check Condition, enter score >= 0 and score <+ 9.

c. For Status, accept the default, ENABLE.

d. Click Apply.

Chapter 4
Creating and Managing Tables

4-9

7. In the Confirmation window, click OK.

A Check constraint named SCORE_VALID is added to the SCORES table.

See Also:

• Oracle Database SQL Language Reference for more information about
the ALTER TABLE statement

• Oracle SQL Developer User's Guide for information about adding
constraints to a table when you create it with SQL Developer

• Oracle Database SQL Language Reference for information about adding
constraints to a table when you create it with the CREATE TABLE
statement

Tutorial: Adding Rows to Tables with the Insert Row Tool
This tutorial shows how to use the Insert Row tool to add six populated rows to the
PERFORMANCE_PARTS table.

To add rows to the PERFORMANCE_PARTS table using the Insert Row tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

The Data pane appears, showing the names of the columns of the
PERFORMANCE_PARTS table and no rows.

5. In the Data pane, click the icon Insert Row.

A new row appears, with empty columns. A green border around the row number
indicates that the insertion has not been committed.

6. Click the cell under the column heading PERFORMANCE_ID.

7. Type the value of PERFORMANCE_ID: WM
8. Either press the key Tab or click the cell under the column heading NAME.

9. Type the value of NAME: Workload Management
10. Either press the key Tab or click the cell under the column heading WEIGHT.

11. Type the value of WEIGHT: 0.2
12. Press the key Enter.

13. Add and populate a second row by repeating steps 5 through 12 with these
values:

• For PERFORMANCE_ID, type BR.

• For NAME, type Building Relationships.

• For WEIGHT, type 0.2.

Chapter 4
Creating and Managing Tables

4-10

14. Add and populate a third row by repeating steps 5 through 12 with these values:

• For PERFORMANCE_ID, type CF.

• For NAME, type Customer Focus.

• For WEIGHT, type 0.2.

15. Add and populate a fourth row by repeating steps 5 through 12 with these values:

• For PERFORMANCE_ID, type CM.

• For NAME, type Communication.

• For WEIGHT, type 0.2.

16. Add and populate a fifth row by repeating steps 5 through 12 with these values:

• For PERFORMANCE_ID, type TW.

• For NAME, type Teamwork.

• For WEIGHT, type 0.2.

17. Add and populate a sixth row by repeating steps 5 through 12, using these values:

• For PERFORMANCE_ID, type RO.

• For NAME, type Results Orientation.

• For WEIGHT, type 0.2.

18. Click the icon Commit Changes.

The green borders around the row numbers disappear.

Under the Data pane is the label Messages - Log.

19. Check the Messages - Log pane for the message Commit Successful.

20. In the Data Pane, check the new rows.

See Also:

"About the INSERT Statement"

Tutorial: Changing Data in Tables in the Data Pane
This tutorial shows how to change three of the WEIGHT values in the
PERFORMANCE_PARTS table in the Data pane.

The PERFORMANCE_PARTS table was populated in "Tutorial: Adding Rows to Tables with
the Insert Row Tool".

To change data in the PERFORMANCE_PARTS table using the Data pane:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

Chapter 4
Creating and Managing Tables

4-11

5. In the Data Pane, in the row where NAME is "Workload Management":

a. Click the WEIGHT value.

b. Enter the value 0.3.

c. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

6. In the row where NAME is "Building Relationships":

a. Click the WEIGHT value.

b. Enter the value 0.15.

c. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

7. In the row where NAME is "Customer Focus" :

a. Click the WEIGHT value.

b. Enter the value 0.15.

c. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

8. Click the icon Commit Changes.

The asterisks to the left of the row numbers disappear.

9. Under the Data pane, check the Messages - Log pane for the message Commit
Successful.

10. In the Data Pane, check the new data.

See Also:

"About the UPDATE Statement"

Tutorial: Deleting Rows from Tables with the Delete Selected Row(s)
Tool

This tutorial shows how to use the Delete Selected Row(s) tool to delete a row from
the PERFORMANCE_PARTS table.

The PERFORMANCE_PARTS table was populated in "Tutorial: Adding Rows to
Tables with the Insert Row Tool").

To delete row from PERFORMANCE_PARTS using Delete Selected Row(s) tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

Chapter 4
Creating and Managing Tables

4-12

3. In the list of tables, select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

5. In the Data pane, click the row where NAME is "Results Orientation".

6. Click the icon Delete Selected Row(s).

A red border appears around the row number to indicate that the deletion has not been
committed.

7. Click the icon Commit Changes.

The row is deleted.

8. Under the Data pane, check the Messages - Log pane for the message Commit
Successful.

Note:

If you delete every row of a table, the empty table still exists. To delete a table, see
"Dropping Tables".

See Also:

"About the DELETE Statement"

Managing Indexes
You can create indexes on one or more columns of a table to speed SQL statement
execution on that table. When properly used, indexes are the primary means of reducing disk
input/output (I/O).

When you define a primary key on a table:

• If an existing index starts with the primary key columns, then Oracle Database uses that
existing index for the primary key. The existing index need not be Unique.

For example, if you define the primary key (A, B), Oracle Database uses the existing
index (A, B, C).

• If no existing index starts with the primary key columns and the constraint is immediate,
then Oracle Database creates a Unique index on the primary key.

• If no existing index starts with the primary key columns and the constraint is deferrable,
then Oracle Database creates a non-Unique index on the primary key.

For example, in "Tutorial: Adding Constraints to Existing Tables", you added a Primary Key
constraint to the EVALUATION_ID column of the EVALUATIONS table. Therefore, if you
select the EVALUATIONS table in the SQL Developer Connections frame and click the
Indexes tab, the Indexes pane shows a Unique index on the EVALUATION_ID column.

Chapter 4
Creating and Managing Tables

4-13

See Also:

For more information about indexes:

• Oracle Database Concepts

• Oracle Database Development Guide

Tutorial: Adding an Index with the Create Index Tool
This tutorial shows how to use the Create Index tool to add an index to the
EVALUATIONS table.

The EVALUATIONS table was created in Example 4-1.

To create an index, use either the SQL Developer tool Create Index or the DDL
statement CREATE INDEX. The equivalent DDL statement is:

CREATE INDEX EVAL_JOB_IX
ON EVALUATIONS (JOB_ID ASC) NOPARALLEL;

To add an index to the EVALUATIONS table using the Create Index tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click EVALUATIONS.

4. In the list of choices, select Index.

5. In the list of choices, select Create Index.

6. In the Create Index window:

a. For Schema, accept the default, HR.

b. For Name, type EVAL_JOB_IX.

c. If the Definition pane does not show, select the tab Definition.

d. In the Definition pane, for Index Type, select Unique from the menu.

e. Click the icon Add Expression.

The Expression EMPLOYEE_ID with Order <Not Specified> appears.

f. Over EMPLOYEE_ID, type JOB_ID.

g. For Order, select ASC (ascending) from the menu.

h. Click OK.

Now the EVALUATIONS table has an index named EVAL_JOB_IX on the
column JOB_ID.

See Also:

Oracle Database SQL Language Reference for information about the
CREATE INDEXstatement

Chapter 4
Creating and Managing Tables

4-14

Tutorial: Changing an Index with the Edit Index Tool
This tutorial shows how to use the Edit Index tool to reverse the sort order of the index
EVAL_JOB_IX.

To change an index, use either the SQL Developer tool Edit Index or the DDL statements
DROP INDEX and CREATE INDEX.

The equivalent DDL statements are:

DROP INDEX EVAL_JOB_ID;

CREATE INDEX EVAL_JOB_IX
ON EVALUATIONS (JOB_ID DESC) NOPARALLEL;

To reverse the sort order of the index EVAL_JOB_IX using the Edit Index tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Indexes.

3. In the list of indexes, right-click EVAL_JOB_IX.

4. In the list of choices, click Edit.

5. In the Edit Index window, change Order to DESC.

6. Click OK.

7. In the Confirm Replace window, click either Yes or No.

See Also:

Oracle Database SQL Language Reference for information about the ALTER
INDEX statement

Tutorial: Dropping an Index
This tutorial shows how to use the Connections frame and Drop tool to drop the index
EVAL_JOB_IX.

To drop an index, use either the SQL Developer Connections frame and Drop tool or the DDL
statement DROP INDEX. The equivalent DDL statement is:

DROP INDEX EVAL_JOB_ID;

To drop the index EVAL_JOB_IX:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Indexes.

3. In the list of indexes, right-click EVAL_JOB_IX.

4. In the list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

Chapter 4
Creating and Managing Tables

4-15

See Also:

Oracle Database SQL Language Reference for information about the DROP
INDEX statement

Dropping Tables
To drop a table, use either the SQL Developer Connections frame and Drop tool, or
the DDL statement DROP TABLE.

Caution:

Do not drop any tables that you created in "Creating Tables"—you need them
for later tutorials. If you want to practice dropping tables, create simple ones
and then drop them.

To drop a table using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click the name of the table to drop.

4. In the list of choices, select Table.

5. In the list of choices, click Drop.

6. In the Drop window, click Apply.

7. In the Confirmation window, click OK.

See Also:

Oracle Database SQL Language Reference for information about the
statement DROP TABLE

Creating and Managing Views
A view presents a query result as a table. In most places that you can use a table, you
can use a view. Views are useful when you need frequent access to information that is
stored in several different tables.

Chapter 4
Creating and Managing Views

4-16

See Also:

• "Selecting Table Data" for information about queries

• Oracle Database Concepts for additional general information about views

Creating Views
To create views, use either the SQL Developer tool Create View or the DDL statement
CREATE VIEW.

This topic shows how to use both of these ways to create these views:

• SALESFORCE, which contains the names and salaries of the employees in the Sales
department

• EMP_LOCATIONS, which contains the names and locations of all employees

This view is used in "Creating an INSTEAD OF Trigger".

See Also:

• Oracle SQL Developer User's Guide for more information about using SQL
Developer to create a view

• Oracle Database SQL Language Reference for more information about the
statement CREATE VIEW

Tutorial: Creating a View with the Create View Tool
This tutorial shows how to create the SALESFORCE view using the Create View tool.

To create the SALESFORCE view using the Create View tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Views.

3. In the list of choices, click New View.

The Create View window opens, with default values for a new view.

4. For Schema, accept the default value, HR.

5. For Name, enter SALESFORCE.

6. If the SQL Query pane does not show, click the tab SQL Query.

7. In the SQL Query pane, in the SQL Query field:

• After SELECT, type:

FIRST_NAME || ' ' || LAST_NAME "Name", SALARY*12 "Annual Salary"
• After FROM, type:

EMPLOYEES WHERE DEPARTMENT_ID = 80

Chapter 4
Creating and Managing Views

4-17

8. Click Check Syntax.

9. Under Syntax Results, if the message is not No errors found in SQL, then
return to step 7 and correct the syntax errors in the query.

10. Click OK.

The view SALESFORCE is created. To see it, expand Views in the Connections
frame.

To see the CREATE VIEW statement for creating this view, select its name and
click the tab SQL.

See Also:

Oracle SQL Developer User's Guide for more information about using SQL
Developer to create views

Creating Views with the CREATE VIEW Statement
This example shows how to use the CREATE VIEW statement to create the
EMP_LOCATIONS view, which joins four tables.

The CREATE VIEW statement in Example 4-3 creates the EMP_LOCATIONS view,
which joins four tables. (For information about joins, see "Selecting Data from Multiple
Tables".)

Example 4-3 Creating the EMP_LOCATIONS View with CREATE VIEW

CREATE VIEW EMP_LOCATIONS AS
SELECT e.EMPLOYEE_ID,
 e.LAST_NAME || ', ' || e.FIRST_NAME NAME,
 d.DEPARTMENT_NAME DEPARTMENT,
 l.CITY CITY,
 c.COUNTRY_NAME COUNTRY
FROM EMPLOYEES e, DEPARTMENTS d, LOCATIONS l, COUNTRIES c
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID AND
 d.LOCATION_ID = l.LOCATION_ID AND
 l.COUNTRY_ID = c.COUNTRY_ID
ORDER BY LAST_NAME;

Result:

View EMP_LOCATIONS created.

See Also:

Oracle Database SQL Language Reference for information about the
CREATE VIEW statement

Chapter 4
Creating and Managing Views

4-18

Changing Queries in Views
To change the query in a view, use the DDL statement CREATE VIEW with the OR
REPLACE clause.

The CREATE OR REPLACE VIEW statement in Example 4-4 changes the query in the
SALESFORCE view.

Example 4-4 Changing the Query in the SALESFORCE View

CREATE OR REPLACE VIEW SALESFORCE AS
 SELECT FIRST_NAME || ' ' || LAST_NAME "Name",
 SALARY*12 "Annual Salary"
 FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 80 OR DEPARTMENT_ID = 20;

Result:

View SALESFORCE created.

See Also:

Oracle Database SQL Language Reference for information about the CREATE
VIEW with the OR REPLACE clause

Tutorial: Changing View Names with the Rename Tool
This tutorial shows how to use the Rename tool to change the name of the SALESFORCE
view.

To change the name of a view, use either the SQL Developer tool Rename or the RENAME
statement. The equivalent DDL statement is:

RENAME SALESFORCE to SALES_MARKETING;

To change the SALESFORCE view using the Rename tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Views.

3. In the list of views, right-click SALESFORCE.

4. In the list of choices, select Rename.

5. In the Rename window, in the New View Name field, type SALES_MARKETING.

6. Click Apply.

7. In the Confirmation window, click OK.

Chapter 4
Creating and Managing Views

4-19

See Also:

Oracle Database SQL Language Reference for information about the
RENAME statement

Dropping a View
To drop a view, use either the SQL Developer Connections frame and Drop tool or the
DDL statement DROP VIEW.

The following ttutorial shows how to use the Connections frame and Drop tool to drop
the view SALES_MARKETING (changed in "Tutorial: Changing View Names with the
Rename Tool"). The equivalent DDL statement is:

DROP VIEW SALES_MARKETING;

To drop the view SALES_MARKETING using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the a list of schema object types, expand Views.

3. In the a list of views, right-click SALES_MARKETING.

4. In the a list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also:

Oracle Database SQL Language Reference for information about the DROP
VIEW statement

Creating and Managing Sequences
Sequences are schema objects from which you can generate unique sequential
values, which are very useful when you need unique primary keys. Sequences are
used through the pseudocolumns CURRVAL and NEXTVAL, which return the current
and next values of the sequence, respectively.

After creating a sequence, you must initialize it by using NEXTVAL to get its first value.
Only after you initialize a sequence does CURRVAL return its current value.

The HR schema has three sequences: DEPARTMENTS_SEQUENCE,
EMPLOYEES_SEQUENCE, and LOCATIONS_SEQUENCE.

Chapter 4
Creating and Managing Sequences

4-20

Tip:

When you plan to use a sequence to populate the primary key of a table, give the
sequence a name that reflects this purpose. (This topic uses the naming convention
TABLE_NAME_SEQUENCE.)

See Also:

• Oracle Database Concepts for an overview of sequences

• Oracle Database SQL Language Reference for more information about the
CURRVAL and NEXTVAL pseudocolumns

• Oracle Database Administrator's Guide for information about managing
sequences

• "Editing Installation Scripts that Create Sequences"

• "About Sequences and Concurrency"

Tutorial: Creating a Sequence
This tutorial shows how to use the Create Database Sequence tool to create a sequence to
use to generate primary keys for the EVALUATIONS table.

The EVALUATIONS table was created in Example 4-1.

To create a sequence, use either the SQL Developer tool Create Sequence or the DDL
statement CREATE SEQUENCE. The equivalent DDL statement is:

CREATE SEQUENCE evaluations_sequence
INCREMENT BY 1
START WITH 1 ORDER;

To create EVALUATIONS_SEQUENCE using the Create Database Sequence tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Sequences.

3. In the list of choices, click New Sequence.

4. In the Create Sequence window, in the Name field, type EVALUATIONS_SEQUENCE over
the default value "SEQUENCE1".

5. If the Properties pane does not show, click the tab Properties.

6. In the Properties pane:

a. In the field Increment, type 1.

b. In the field Start with, type 1.

c. For the remaining fields, accept the default values.

d. Click OK.

Chapter 4
Creating and Managing Sequences

4-21

The sequence EVALUATIONS_SEQUENCE is created. Its name appears
under Sequences in the Connections frame.

See Also:

• Oracle SQL Developer User's Guide for more information about using
SQL Developer to create a sequence

• Oracle Database SQL Language Reference for information about the
CREATE SEQUENCE statement

• "Tutorial: Creating a Trigger that Generates a Primary Key for a Row
Before It Is Inserted" to learn how to create a trigger that inserts the
primary keys created by EVALUATIONS_SEQUENCE into the
EVALUATIONS table

Dropping Sequences
To drop a sequence, use either the SQL Developer Connections frame and Drop tool,
or the DDL statement DROP SEQUENCE.

This statement drops the sequence EVALUATIONS_SEQUENCE:

DROP SEQUENCE EVALUATIONS_SEQUENCE;

Caution:

Do not drop the sequence EVALUATIONS_SEQUENCE—you need it for
Example 5-3. If you want to practice dropping sequences, create others and
then drop them.

To drop a sequence using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Sequences.

3. In the list of sequences, right-click the name of the sequence to drop.

4. In the list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also:

Oracle Database SQL Language Reference for information about the DROP
SEQUENCE statement

Chapter 4
Creating and Managing Sequences

4-22

Creating and Managing Synonyms
A synonym is an alias for another schema object. Some reasons to use synonyms are
security (for example, to hide the owner and location of an object) and convenience.

Examples of convenience are:

• Using a short synonym, such as SALES, for a long object name, such as
ACME_CO.SALES_DATA

• Using a synonym for a renamed object, instead of changing that object name throughout
the applications that use it

For example, if your application uses a table named DEPARTMENTS, and its name changes
to DIVISIONS, you can create a DEPARTMENTS synonym for that table and continue to
reference it by its original name.

See Also:

Oracle Database Concepts for additional general information about synonyms

Creating Synonyms
To create a synonym, use either the SQL Developer tool Create Database Synonym or the
DDL statement CREATE SYNONYM .

The following tutorial shows how to use the Create Database Synonym tool to create the
synonym EMP for the EMPLOYEES table. The equivalent DDL statement is:

CREATE SYNONYM EMPL FOR EMPLOYEES;

To create the synonym EMP using the Create Database Synonym tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Synonyms.

3. In the list of choices, click New Synonym.

4. In the New Synonym window:

a. In the Synonym Name field, type EMPL.

b. In the Object Owner field, select HR from the menu.

c. In the Object Name field, select EMPLOYEES from the menu.

The synonym refers to a specific schema object; in this case, the table EMPLOYEES.

d. Click Apply.

5. In the Confirmation window, click OK.

The synonym EMPL is created. To see it, expand Synonyms in the Connections frame.
You can now use EMPL instead of EMPLOYEES.

Chapter 4
Creating and Managing Synonyms

4-23

See Also:

Oracle Database SQL Language Reference for information about the
CREATE SYNONYM statement

Dropping Synonyms
To drop a synonym, use either the SQL Developer Connections frame and Drop tool,
or the DDL statement DROP SYNONYM.

This statement drops the synonym EMP:

DROP SYNONYM EMP;

To drop a synonym using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Synonyms.

3. In the list of synonyms, right-click the name of the synonym to drop.

4. In the list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also:

Oracle Database SQL Language Reference for information about the DROP
SYNONYM statement

Chapter 4
Creating and Managing Synonyms

4-24

5
Developing Stored Subprograms and
Packages

Stored subprograms and packages can be used as building blocks for many different
database applications.

About Stored Subprograms
A stored subprogram is a subprogram that is stored in the database. Because they are
stored in the database, stored programs can be used as building blocks for many different
database applications.

A subprogram is a PL/SQL unit that consists of SQL and PL/SQL statements that solve a
specific problem or perform a set of related tasks. A subprogram can have parameters,
whose values are supplied by the invoker. A subprogram can be either a procedure or a
function. Typically, you use a procedure to perform an action and a function to compute and
return a value.

Because stored subprograms are stored in the database, stored programs can be used as
building blocks for many different database applications. A subprogram that is declared within
another subprogram, or within an anonymous block, is called a nested subprogram or local
subprogram. It cannot be invoked from outside the subprogram or block in which it is
declared. An anonymous block is a block that is not stored in the database.

There are two kinds of stored subprograms:

• Standalone subprogram, which is created at schema level

• Package subprogram, which is created inside a package

Standalone subprograms are useful for testing pieces of program logic, but when you are
sure that they work as intended, Oracle recommends that you put them into packages.

See Also:

• Oracle Database Concepts for general information about stored subprograms

• Oracle Database PL/SQL Language Reference for complete information about
PL/SQL subprograms

About Packages
A package is a PL/SQL unit that consists of related subprograms and the declared cursors
and variables that they use. Oracle recommends that you put your subprograms into
packages.

Some reasons that Oracle recommends that you put your subprograms into packages are:

5-1

• Packages allow you to hide implementation details from client programs.

Hiding implementation details from client programs is a widely accepted best
practice. Many Oracle customers follow this practice strictly, allowing client
programs to access the database only by invoking PL/SQL subprograms. Some
customers allow client programs to use SELECT statements to retrieve information
from database tables, but require them to invoke PL/SQL subprograms for all
business functions that change the database.

• Package subprograms must be qualified with package names when invoked from
outside the package, which ensures that their names will always work when
invoked from outside the package.

For example, suppose that you developed a schema-level procedure named
CONTINUE before Oracle Database 11g . Oracle Database 11g introduced the
CONTINUE statement. Therefore, if you ported your code to Oracle Database
11g , it would no longer compile. However, if you had developed your procedure
inside a package, your code would refer to the procedure as
package_name.CONTINUE, so the code would still compile.

Note:

Oracle Database supplies many PL/SQL packages to extend database
functionality and provide PL/SQL access to SQL features. You can use the
supplied packages when creating your applications or for ideas in creating
your own stored procedures. For information about these packages, see
Oracle Database PL/SQL Packages and Types Reference.

See Also:

• Oracle Database Concepts for general information about packages

• Oracle Database PL/SQL Language Reference for more reasons to use
packages

• Oracle Database PL/SQL Language Reference for complete information
about PL/SQL packages

• Oracle Database PL/SQL Packages and Types Reference for complete
information about the PL/SQL packages that Oracle provides

About PL/SQL Identifiers
Every PL/SQL subprogram, package, parameter, variable, constant, exception, and
declared cursor has a name, which is a PL/SQL identifier.

The minimum length of an identifier is one character; the maximum length is 30
characters. The first character must be a letter, but each later character can be either a
letter, numeral, dollar sign ($), underscore (_), or number sign (#). For example, these
are acceptable identifiers:

X
t2

Chapter 5
About PL/SQL Identifiers

5-2

phone#
credit_limit
LastName
oracle$number
money$$$tree
SN##
try_again_

PL/SQL is not case-sensitive for identifiers. For example, PL/SQL considers these to be the
same:

lastname
LastName
LASTNAME

You cannot use a PL/SQL reserved word as an identifier. You can use a PL/SQL keyword as
an identifier, but it is not recommended. For lists of PL/SQL reserved words and keywords,
see Oracle Database PL/SQL Language Reference.

See Also:

• Oracle Database PL/SQL Language Reference for additional general
information about PL/SQL identifiers

• Oracle Database PL/SQL Language Reference for additional information about
PL/SQL naming conventions

• Oracle Database PL/SQL Language Reference for information about the scope
and visibility of PL/SQL identifiers

• Oracle Database PL/SQL Language Reference for information how to collect
data on PL/SQL identifiers

• Oracle Database PL/SQL Language Reference for information about how
PL/SQL resolves identifier names

About PL/SQL Data Types
Every PL/SQL constant, variable, subprogram parameter, and function return value has a
data type that determines its storage format, constraints, valid range of values, and
operations that can be performed on it.

A PL/SQL data type is either a SQL data type (such as VARCHAR2, NUMBER, or DATE) or a
PL/SQL-only data type. The latter include BOOLEAN, RECORD, REF CURSOR, and many
predefined subtypes. PL/SQL also lets you define your own subtypes.

A subtype is a subset of another data type, which is called its base type. A subtype has the
same valid operations as its base type, but only a subset of its valid values. Subtypes can
increase reliability, provide compatibility with ANSI/ISO types, and improve readability by
indicating the intended use of constants and variables.

The predefined numeric subtype PLS_INTEGER is especially useful, because its operations
use hardware arithmetic, rather than the library arithmetic that its base type uses.

Chapter 5
About PL/SQL Data Types

5-3

You cannot use PL/SQL-only data types at schema level (that is, in tables or
standalone subprograms). Therefore, to use these data types in a stored subprogram,
you must put them in a package.

See Also:

• Oracle Database PL/SQL Language Reference for general information
about PL/SQL data types

• Oracle Database PL/SQL Language Reference for information about the
PLS_INTEGER data type

• "About SQL Data Types"

Creating and Managing Standalone Subprograms
You can create and manage standalone PL/SQL subprograms.

Note:

To do the tutorials in this document, the hr sample schema must be installed
and you must be connected to Oracle Database as the user HR from SQL
Developer.

About Subprogram Structure

A subprogram follows PL/SQL block structure; that is, it has:

• Declarative part (optional)

The declarative part contains declarations of types, constants, variables,
exceptions, declared cursors, and nested subprograms. These items are local to
the subprogram and cease to exist when the subprogram completes execution.

• Executable part (required)

The executable part contains statements that assign values, control execution,
and manipulate data.

• Exception-handling part (optional)

The exception-handling part contains code that handles exceptions (runtime
errors).

Comments can appear anywhere in PL/SQL code. The PL/SQL compiler ignores
them. Adding comments to your program promotes readability and aids understanding.
A single-line comment starts with a double hyphen (--) and extends to the end of the
line. A multiline comment starts with a slash and asterisk (/*) and ends with an
asterisk and a slash (*/).

The structure of a procedure is:

Chapter 5
Creating and Managing Standalone Subprograms

5-4

 PROCEDURE name [(parameter_list)]
 { IS | AS }
 [declarative_part]
 BEGIN -- executable part begins
 statement; [statement;]...
 [EXCEPTION -- executable part ends, exception-handling part begins]
 exception_handler; [exception_handler;]...]
 END; /* exception-handling part ends if it exists;
 otherwise, executable part ends */

The structure of a function is like that of a procedure, except that it includes a RETURN clause
and at least one RETURN statement (and some optional clauses that are beyond the scope of
this document):

 FUNCTION name [(parameter_list)] RETURN data_type [clauses]
 { IS | AS }
 [declarative_part]
 BEGIN -- executable part begins
 -- at least one statement must be a RETURN statement
 statement; [statement;]...
 [EXCEPTION -- executable part ends, exception-handling part begins]
 exception_handler; [exception_handler;]...]
 END; /* exception-handling part ends if it exists;
 otherwise, executable part ends */

The code that begins with PROCEDURE or FUNCTION and ends before IS or AS is the
subprogram signature. The declarative, executable, and exception-handling parts comprise
the subprogram body. The syntax of exception-handler is in "About Exceptions and
Exception Handlers".

See Also:

Oracle Database PL/SQL Language Reference for more information about
subprogram parts

Tutorial: Creating a Standalone Procedure
This tutorial shows how to use the Create Procedure tool to create a standalone procedure
named ADD_EVALUATION that adds a row to the EVALUATIONS table.

The EVALUATIONS table was created in Example 4-1.

To create a standalone procedure, use either the SQL Developer tool Create Procedure or
the DDL statement CREATE PROCEDURE.

To create a standalone procedure using Create Procedure tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Procedures.

3. In the list of choices, click New Procedure.

The Create Procedure window opens.

4. For Schema, accept the default value, HR.

5. For Name, change PROCEDURE1 to ADD_EVALUATION.

Chapter 5
Creating and Managing Standalone Subprograms

5-5

6. Click the icon Add Parameter.

A row appears under the column headings. Its fields have these default values:
Name, PARAM1; Mode, IN; No Copy, deselected; Data Type, VARCHAR2; Default
Value, empty.

7. For Name, change PARAM1 to EVALUATION_ID.

8. For Mode, accept the default value, IN.

9. For Data Type, select NUMBER from the menu.

10. Leave Default Value empty.

11. Add a second parameter by repeating steps 6 through 10 with the Name
EMPLOYEE_ID and the Data Type NUMBER.

12. Add a third parameter by repeating steps 6 through 10 with the Name
EVALUATION_DATE and the Data Type DATE.

13. Add a fourth parameter by repeating steps 6 through 10 with the Name JOB_ID
and the Data Type VARCHAR2.

14. Add a fifth parameter by repeating steps 6 through 10 with the Name
MANAGER_ID and the Data Type NUMBER.

15. Add a sixth parameter by repeating steps 6 through 10 with the Name
DEPARTMENT_ID and the Data Type NUMBER.

16. Add a seventh parameter by repeating steps 6 through 10 with the Name
TOTAL_SCORE and the Data Type NUMBER.

17. Click OK.

CREATE OR REPLACE PROCEDURE ADD_EVALUATION
(
 EVALUATION_ID IN NUMBER
, EMPLOYEE_ID IN NUMBER
, EVALUATION_DATE IN DATE
, JOB_ID IN VARCHAR2
, MANAGER_ID IN NUMBER
, DEPARTMENT_ID IN NUMBER
, TOTAL_SCORE IN NUMBER
) AS
BEGIN
 NULL;
END ADD_EVALUATION;

The title of the ADD_EVALUATION pane is in italic font, indicating that the
procedure is not yet saved in the database.

Because the execution part of the procedure contains only the NULL statement,
the procedure does nothing.

18. Replace the NULL statement with this statement:

INSERT INTO EVALUATIONS (
 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)

Chapter 5
Creating and Managing Standalone Subprograms

5-6

VALUES (
 ADD_EVALUATION.evaluation_id,
 ADD_EVALUATION.employee_id,
 ADD_EVALUATION.evaluation_date,
 ADD_EVALUATION.job_id,
 ADD_EVALUATION.manager_id,
 ADD_EVALUATION.department_id,
 ADD_EVALUATION.total_score
);

(Qualifying the parameter names with the procedure name ensures that they are not
confused with the columns that have the same names.)

19. From the File menu, select Save.

Oracle Database compiles the procedure and saves it. The title of the
ADD_EVALUATION pane is no longer in italic font. The Message - Log pane has the
message Compiled.

See Also:

• Oracle SQL Developer User's Guide for another example of using SQL
Developer to create a standalone procedure

• "About Data Definition Language (DDL) Statements" for general information
that applies to the CREATE PROCEDURE statement

• Oracle Database PL/SQL Language Reference for information about the
CREATE PROCEDURE statement

Tutorial: Creating a Standalone Function
This tutorial shows how to use the Create Function tool to create a standalone function
named CALCULATE_SCORE that has three parameters and returns a value of type
NUMBER.

To create a standalone function, use either the SQL Developer tool Create Function or the
DDL statement CREATE FUNCTION.

To create a standalone function using Create Function tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Functions.

3. In the list of choices, click New Function.

The Create Function window opens.

4. For Schema, accept the default value, HR.

5. For Name, change FUNCTION1 to CALCULATE_SCORE.

6. For Return Type, select NUMBER from the menu.

7. Click the icon Add Parameter.

A row appears under the column headings. Its fields have these default values: Name,
PARAM1; Mode, IN; No Copy, deselected; Data Type, VARCHAR2; Default Value, empty.

Chapter 5
Creating and Managing Standalone Subprograms

5-7

8. For Name, change PARAM1 to cat.

9. For Mode, accept the default value, IN.

10. For Data Type, accept the default, VARCHAR2.

11. Leave Default Value empty.

12. Add a second parameter by repeating steps 7 through 11 with the Name score
and the Data Type NUMBER.

13. Add a third parameter by repeating steps 7 through 11 with the Name weight and
the Data Type NUMBER.

14. Click OK.

The CALCULATE_SCORE pane opens, showing the CREATE FUNCTION
statement that created the function:

CREATE OR REPLACE FUNCTION CALCULATE_SCORE
(
 CAT IN VARCHAR2
, SCORE IN NUMBER
, WEIGHT IN NUMBER
) RETURN NUMBER AS
BEGIN
 RETURN NULL;
END CALCULATE_SCORE;

The title of the CALCULATE_SCORE pane is in italic font, indicating that the
function is not yet saved in the database.

Because the only statement in the execution part of the function is the statement
RETURN NULL, the function does nothing.

15. Replace NULL with score * weight.

16. From the File menu, select Save.

Oracle Database compiles the function and saves it. The title of the
CALCULATE_SCORE pane is no longer in italic font. The Message - Log pane
has the message Compiled.

See Also:

• "About Data Definition Language (DDL) Statements" for general
information that applies to the CREATE FUNCTION statement

• Oracle Database PL/SQL Language Reference for information about the
CREATE FUNCTION statement

Changing Standalone Subprograms
To change a standalone subprogram, use either the SQL Developer tool Edit or the
DDL statement ALTER PROCEDURE or ALTER FUNCTION.

To change a standalone subprogram using the Edit tool:

1. In the Connections frame, expand hr_conn.

Chapter 5
Creating and Managing Standalone Subprograms

5-8

2. In the list of schema object types, expand either Functions or Procedures.

A list of functions or procedures appears.

3. Click the function or procedure to change.

To the right of the Connections frame, a frame appears. Its top tab has the name of the
subprogram to change. The Code pane shows the code that created the subprogram.

The Code pane is in write mode. (Clicking the pencil icon switches the mode from write
mode to read only, or the reverse.)

4. In the Code pane, change the code.

The title of the pane changes to italic font, indicating that the change is not yet saved in
the database.

5. From the File menu, select Save.

Oracle Database compiles the subprogram and saves it. The title of the pane is no longer
in italic font. The Message - Log pane has the message Compiled.

See Also:

• "About Data Definition Language (DDL) Statements" for general information
that applies to the ALTER PROCEDURE and ALTER FUNCTION statements

• Oracle Database PL/SQL Language Reference for information about the
ALTER PROCEDURE statement

• Oracle Database PL/SQL Language Reference for information about the
ALTER FUNCTION statement

Tutorial: Testing a Standalone Function
This tutorial shows how to use the SQL Developer tool Run to test the standalone function
CALCULATE_SCORE.

To test the CALCULATE_SCORE function using the Run tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Functions.

3. In the list of functions, right-click CALCULATE_SCORE.

4. In the list of choices, click Run.

The Run PL/SQL window opens. Its PL/SQL Block frame includes this code:

v_Return := CALCULATE_SCORE (
 CAT => CAT,
 SCORE => SCORE,
 WEIGHT => WEIGHT
);

5. Change the values of SCORE and WEIGHT to 8 and 0.2, respectively:

v_Return := CALCULATE_SCORE (
 CAT => CAT,
 SCORE => 8,

Chapter 5
Creating and Managing Standalone Subprograms

5-9

 WEIGHT => 0.2
);

6. Click OK.

Under the Code pane, the Running window opens, showing this result:

Connecting to the database hr_conn.
Process exited.
Disconnecting from the database hr_conn.

To the right of the tab Running is the tab Output Variables.

7. Click the tab Output Variables.

Two frames appear, Variable and Value, which contain the values <Return Value>
and 1.6, respectively.

See Also:

Oracle SQL Developer User's Guide for information about using SQL
Developer to run and debug procedures and functions

Dropping Standalone Subprograms
To drop a standalone subprogram, use either the SQL Developer Connections frame
and Drop tool, or the DDL statement DROP PROCEDURE or DROP FUNCTION.

Caution:

Do not drop the procedure ADD_EVALUATION or the function CALCULATE_SCORE
—you need them for later tutorials. If you want to practice dropping
subprograms, create simple ones and then drop them.

To drop a standalone subprogram using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand either Functions or Procedures.

3. In the list of functions or procedures, right-click the name of the function or
procedure to drop.

4. In the list of choices, click Drop.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

Chapter 5
Creating and Managing Standalone Subprograms

5-10

See Also:

• "About Data Definition Language (DDL) Statements" for general information
that applies to the DROP PROCEDURE and DROP FUNCTION statements

• Oracle Database SQL Language Reference for information about the DROP
PROCEDURE statement

• Oracle Database SQL Language Reference for information about the DROP
FUNCTION statement

Creating and Managing Packages
You can create and manage PL/SQL packages.

See Also:

"Tutorial: Declaring Variables and Constants in a Subprogram", which shows how to
change a package body

About Package Structure
A package always has a specification, and usually has a body. The specification defines the
package itself, and is an application program interface (API). The body defines the queries for
the declared cursors, and the code for the subprograms, that are declared in the package
specification.

The package specification defines the package, declaring the types, variables, constants,
exceptions, declared cursors, and subprograms that can be referenced from outside the
package. A package specification is an application program interface (API): It has all the
information that client programs need to invoke its subprograms, but no information about
their implementation.

The package body defines the queries for the declared cursors, and the code for the
subprograms, that are declared in the package specification (therefore, a package with
neither declared cursors nor subprograms does not need a body). The package body can
also define local subprograms, which are not declared in the specification and can be
invoked only by other subprograms in the package. Package body contents are hidden from
client programs. You can change the package body without invalidating the applications that
call the package.

See Also:

• Oracle Database PL/SQL Language Reference for more information about the
package specification

• Oracle Database PL/SQL Language Reference for more information about the
package body

Chapter 5
Creating and Managing Packages

5-11

Tutorial: Creating a Package Specification
This tutorial shows how to use the Create Package tool to create a specification for a
package named EMP_EVAL, which appears in many tutorials and examples in this
document.

To create a package specification, use either the SQL Developer tool Create Package
or the DDL statement CREATE PACKAGE.

To create a package specification using Create Package tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Packages.

3. In the list of choices, click New Package.

The Create Package window opens. The field Schema has the value HR, the field
Name has the default value PACKAGE1, and the check box Add New Source In
Lowercase is deselected.

4. For Schema, accept the default value, HR.

5. For Name, change the value PACKAGE1 to EMP_EVAL.

6. Click OK.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that
created the package:

CREATE OR REPLACE PACKAGE emp_eval AS

 /* TODO enter package declarations (types, exceptions, methods etc) here */

END emp_eval;

The title of the pane is in italic font, indicating that the package is not saved to the
database.

7. (Optional) In the CREATE PACKAGE statement, replace the comment with
declarations.

If you do not do this step now, you can do it later, as in "Tutorial: Changing a
Package Specification".

8. From the File menu, select Save.

Oracle Database compiles the package and saves it. The title of the EMP_EVAL
pane is no longer in italic font.

See Also:

Oracle Database PL/SQL Language Reference for information about the
CREATE PACKAGE statement (for the package specification)

Chapter 5
Creating and Managing Packages

5-12

Tutorial: Changing a Package Specification
This tutorial shows how to use the Edit tool to change the specification for the EMP_EVAL
package, which appears in many tutorials and examples in this document. Specifically, the
tutorial shows how to add declarations for a procedure, EVAL_DEPARTMENT, and a
function, CALCULATE_SCORE.

To change a package specification, use either the SQL Developer tool Edit or the DDL
statement CREATE PACKAGE with the OR REPLACE clause.

To change EMP_EVAL package specification using the Edit tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, right-click EMP_EVAL.

4. In the list of choices, click Edit.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created
the package:

CREATE OR REPLACE PACKAGE emp_eval AS

 /* TODO enter package declarations (types, exceptions, methods etc) here */

END emp_eval;

The title of the pane is not in italic font, indicating that the package is saved in the
database.

5. In the EMP_EVAL pane, replace the comment with this code:

PROCEDURE eval_department (dept_id IN NUMBER);

FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER;

The title of the EMP_EVAL pane changes to italic font, indicating that the changes have
not been saved to the database.

6. Click the icon Compile.

The changed package specification compiles and is saved to the database. The title of
the EMP_EVAL pane is no longer in italic font.

See Also:

Oracle Database PL/SQL Language Reference for information about the CREATE
PACKAGE statement with the OR REPLACE clause

Chapter 5
Creating and Managing Packages

5-13

Tutorial: Creating a Package Body
This tutorial shows how to use the Create Body tool to create a body for the
EMP_EVAL package, which appears in many examples and tutorials in this document.

To create a package body, use either the SQL Developer tool Create Body or the DDL
statement CREATE PACKAGE BODY.

To create a body for the package EMP_EVAL using the Create Body tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, right-click EMP_EVAL.

4. In the list of choices, click Create Body.

The EMP_EVAL Body pane appears, showing the automatically generated code
for the package body:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

 PROCEDURE eval_department(dept_id IN NUMBER) AS
 BEGIN
 -- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 BEGIN
 -- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
 RETURN NULL;
 END calculate_score;

END EMP_EVAL;

The title of the pane is in italic font, indicating that the code is not saved in the
database.

5. (Optional) In the CREATE PACKAGE BODY statement:

• Replace the comments with executable statements.

• (Optional) In the executable part of the procedure, either delete NULL or
replace it with an executable statement.

• (Optional) In the executable part of the function, either replace NULL with
another expression.

If you do not do this step now, you can do it later, as in "Tutorial: Declaring
Variables and Constants in a Subprogram".

6. Click the icon Compile.

The changed package body compiles and is saved to the database. The title of the
EMP_EVAL Body pane is no longer in italic font.

Chapter 5
Creating and Managing Packages

5-14

See Also:

Oracle Database PL/SQL Language Reference for information about the CREATE
PACKAGE BODY statement (for the package body)

Dropping a Package
To drop a package (both specification and body), use either the SQL Developer Connections
frame and Drop tool, or the DDL statement DROP PACKAGE.

Caution:

Do not drop the package EMP_EVAL—you need it for later tutorials. If you want to
practice dropping packages, create simple ones and then drop them.

To drop a package using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

A list of packages appears.

3. In the list of packages, right-click the name of the package to drop.

4. In the list of choices, click Drop Package.

5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also:

Oracle Database PL/SQL Language Reference for information about the DROP
PACKAGE statement

Declaring and Assigning Values to Variables and Constants
A variable or constant declared in a package specification is available to any program that
has access to the package. A variable or constant declared in a package body or subprogram
is local to that package or subprogram. When declaring a constant, you must assign it an
initial value.

One significant advantage that PL/SQL has over SQL is that PL/SQL lets you declare and
use variables and constants.

A variable or constant declared in a package specification is available to any program that
has access to the package. A variable or constant declared in a package body or subprogram
is local to that package or subprogram.

Chapter 5
Declaring and Assigning Values to Variables and Constants

5-15

A variable holds a value of a particular data type. Your program can change the value
at runtime. A constant holds a value that cannot be changed.

A variable or constant can have any PL/SQL data type. When declaring a variable, you
can assign it an initial value; if you do not, its initial value is NULL. When declaring a
constant, you must assign it an initial value. To assign an initial value to a variable or
constant, use the assignment operator (:=).

Tip:

Declare all values that do not change as constants. This practice optimizes
your compiled code and makes your source code easier to maintain.

See Also:

Oracle Database PL/SQL Language Reference for general information about
variables and constants

Tutorial: Declaring Variables and Constants in a Subprogram
This tutorial shows how to use the SQL Developer tool Edit to declare variables and
constants in the EMP_EVAL.CALCULATE_SCORE function. (This tutorial is also an
example of changing a package body.)

The EMP_EVAL.CALCULATE_SCORE function is specified in "Tutorial: Creating a
Package Specification").

To declare variables and constants in CALCULATE_SCORE function:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, expand EMP_EVAL.

4. In the list of choices, right-click EMP_EVAL Body.

A list of choices appears.

5. In the list of choices, click Edit.

The EMP_EVAL Body pane appears, showing the code for the package body:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

 PROCEDURE eval_department (dept_id IN NUMBER) AS

 BEGIN
 -- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)

Chapter 5
Declaring and Assigning Values to Variables and Constants

5-16

 RETURN NUMBER AS
 BEGIN
 -- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
 RETURN NULL;
 END calculate_score;

END EMP_EVAL;
6. Between RETURN NUMBER AS and BEGIN, add these variable and constant declarations:

n_score NUMBER(1,0); -- variable
n_weight NUMBER; -- variable
max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1

The title of the EMP_EVAL Bodypane changes to italic font, indicating that the code is not
saved in the database.

7. From the File menu, select Save.

Oracle Database compiles and saves the changed package body. The title of the
EMP_EVAL Body pane is no longer in italic font.

See Also:

• Oracle Database PL/SQL Language Reference for general information about
declaring variables and constants

• "Assigning Values to Variables with the Assignment Operator"

Ensuring that Variables, Constants, and Parameters Have Correct Data
Types

Ensure that variables, constants, and parameters have the correct data types by declaring
them with the %TYPE attribute.

After "Tutorial: Declaring Variables and Constants in a Subprogram", the code for the
EMP_EVAL.CALCULATE_SCORE function is:

FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 n_score NUMBER(1,0); -- variable
 n_weight NUMBER; -- variable
 max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
 max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1
 BEGIN
 -- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
 RETURN NULL;
 END calculate_score;

The variables, constants, and parameters of the function represent values from the tables
SCORES and PERFORMANCE_PARTS (created in "Creating Tables"):

• Variable n_score will hold a value from the column SCORE.SCORES and constant
max_score will be compared to such values.

Chapter 5
Declaring and Assigning Values to Variables and Constants

5-17

• Variable n_weight will hold a value from the column
PERFORMANCE_PARTS.WEIGHT and constant max_weight will be compared to
such values.

• Parameter evaluation_id will hold a value from the column
SCORE.EVALUATION_ID.

• Parameter performance_id will hold a value from the column
SCORE.PERFORMANCE_ID.

Therefore, each variable, constant, and parameter has the same data type as its
corresponding column.

If the data types of the columns change, you want the data types of the variables,
constants, and parameters to change to the same data types; otherwise, the
CALCULATE_SCORE function is invalidated.

To ensure that the data types of the variables, constants, and parameters always
match those of the columns, declare them with the %TYPE attribute. The %TYPE
attribute supplies the data type of a table column or another variable, ensuring the
correct data type assignment.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about the %TYPE attribute

• Oracle Database PL/SQL Language Reference for the syntax of the
%TYPE attribute

Tutorial: Changing Declarations to Use the %TYPE Attribute
This tutorial shows how to use the SQL Developer tool Edit to change the declarations
of the variables, constants, and formal parameters of the
EMP_EVAL.CALCULATE_SCORE function to use the %TYPE attribute.

The EMP_EVAL.CALCULATE_SCORE function is shown in "Tutorial: Declaring
Variables and Constants in a Subprogram".

To change the declarations in CALCULATE_SCORE to use %TYPE:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, expand EMP_EVAL.

4. In the list of choices, right-click EMP_EVAL Body.

5. In the list of choices, click Edit.

The EMP_EVAL Bodypane appears, showing the code for the package body:

CREATE OR REPLACE
PACKAGE BODY emp_eval AS

 PROCEDURE eval_department (dept_id IN NUMBER) AS
 BEGIN

Chapter 5
Declaring and Assigning Values to Variables and Constants

5-18

 -- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 n_score NUMBER(1,0); -- variable
 n_weight NUMBER; -- variable
 max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
 max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1
 BEGIN
 -- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
 RETURN NULL;
 END calculate_score;

END emp_eval;
6. In the code for the function, make the changes shown in bold font:

 FUNCTION calculate_score (evaluation_id IN SCORES.EVALUATION_ID%TYPE
 , performance_id IN SCORES.PERFORMANCE_ID%TYPE)
 RETURN NUMBER AS
 n_score SCORES.SCORE%TYPE;
 n_weight PERFORMANCE_PARTS.WEIGHT%TYPE;
 max_score CONSTANT SCORES.SCORE%TYPE := 9;
 max_weight CONSTANT PERFORMANCE_PARTS.WEIGHT%TYPE := 1;

7. Right-click EMP_EVAL.

8. In the list of choices, click Edit.

The EMP_EVAL paneopens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE EMP_EVAL AS

PROCEDURE eval_department(dept_id IN NUMBER);
FUNCTION calculate_score(evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER;

END EMP_EVAL;

9. In the code for the function, make the changes shown in bold font:

FUNCTION calculate_score(evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)

10. Right-click EMP_EVAL.

11. In the list of choices, click Compile.

12. Right-click EMP_EVAL Body.

13. In the list of choices, click Compile.

Assigning Values to Variables
You can assign a value to a variable in these ways:

• Use the assignment operator to assign it the value of an expression.

• Use the SELECT INTO or FETCH statement to assign it a value from a table.

Chapter 5
Declaring and Assigning Values to Variables and Constants

5-19

• Pass it to a subprogram as an OUT or IN OUT parameter, and then assign the
value inside the subprogram.

• Bind the variable to a value.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about assigning values to variables

• Oracle Database 2 Day + Java Developer's Guide for information about
binding variables

Assigning Values to Variables with the Assignment Operator
With the assignment operator (:=), you can assign the value of an expression to a
variable in either the declarative or executable part of a subprogram.

In the declarative part of a subprogram, you can assign an initial value to a variable
when you declare it. The syntax is:

variable_name data_type := expression;

In the executable part of a subprogram, you can assign a value to a variable with an
assignment statement. The syntax is:

variable_name := expression;

Example 5-1 shows, in bold font, the changes to make to the
EMP_EVAL.CALCULATE_SCORE function to add a variable, running_total, and use it
as the return value of the function. The assignment operator appears in both the
declarative and executable parts of the function. (The data type of running_total must
be NUMBER, rather than SCORES.SCORE%TYPE or
PERFORMANCE_PARTS.WEIGHT%TYPE, because it holds the product of two
NUMBER values with different precisions and scales.)

See Also:

• Oracle Database PL/SQL Language Reference for variable declaration
syntax

• Oracle Database PL/SQL Language Reference for assignment
statement syntax

Example 5-1 Assigning Values to a Variable with Assignment Operator

FUNCTION calculate_score(evaluation_id IN SCORES.EVALUATION_ID%TYPE
 , performance_id IN SCORES.PERFORMANCE_ID%TYPE)
 RETURN NUMBER AS
 n_score SCORES.SCORE%TYPE;
 n_weight PERFORMANCE_PARTS.WEIGHT%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT SCORES.SCORE%TYPE := 9;

Chapter 5
Declaring and Assigning Values to Variables and Constants

5-20

 max_weight CONSTANT PERFORMANCE_PARTS.WEIGHT%TYPE:= 1;
BEGIN
 running_total := max_score * max_weight;
 RETURN running_total;
END calculate_score;

Assigning Values to Variables with the SELECT INTO Statement
To use table values in subprograms or packages, you must assign them to variables with
SELECT INTO statements.

Example 5-2 shows, in bold font, the changes to make to the
EMP_EVAL.CALCULATE_SCORE function to have it calculate running_total from table
values.

The ADD_EVAL procedure in Example 5-3 inserts a row into the EVALUATIONS table, using
values from the corresponding row in the EMPLOYEES table. Add the ADD_EVAL procedure
to the body of the EMP_EVAL package, but not to the specification. Because it is not in the
specification, ADD_EVAL is local to the package—it can be invoked only by other
subprograms in the package, not from outside the package.

See Also:

Oracle Database PL/SQL Language Reference for more information about the
SELECT INTO statement

Example 5-2 Assigning Table Values to Variables with SELECT INTO

FUNCTION calculate_score (evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)
 RETURN NUMBER AS

 n_score scores.score%TYPE;
 n_weight performance_parts.weight%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT scores.score%TYPE := 9;
 max_weight CONSTANT performance_parts.weight%TYPE:= 1;
BEGIN
 SELECT s.score INTO n_score
 FROM SCORES s
 WHERE evaluation_id = s.evaluation_id
 AND performance_id = s.performance_id;

 SELECT p.weight INTO n_weight
 FROM PERFORMANCE_PARTS p
 WHERE performance_id = p.performance_id;

 running_total := n_score * n_weight;
 RETURN running_total;
END calculate_score;

Example 5-3 Inserting a Table Row with Values from Another Table

PROCEDURE add_eval (employee_id IN EMPLOYEES.EMPLOYEE_ID%TYPE
 , today IN DATE)
AS
 job_id EMPLOYEES.JOB_ID%TYPE;

Chapter 5
Declaring and Assigning Values to Variables and Constants

5-21

 manager_id EMPLOYEES.MANAGER_ID%TYPE;
 department_id EMPLOYEES.DEPARTMENT_ID%TYPE;
BEGIN
 INSERT INTO EVALUATIONS (
 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)
 SELECT
 evaluations_sequence.NEXTVAL, -- evaluation_id
 add_eval.employee_id, -- employee_id
 add_eval.today, -- evaluation_date
 e.job_id, -- job_id
 e.manager_id, -- manager_id
 e.department_id, -- department_id
 0 -- total_score
 FROM employees e;

 IF SQL%ROWCOUNT = 0 THEN
 RAISE NO_DATA_FOUND;
 END IF;
END add_eval;

Controlling Program Flow
Unlike SQL, which runs statements in the order in which you enter them, PL/SQL has
control statements that let you control the flow of your program.

About Control Statements
PL/SQL has three categories of control statements: conditional selection statements,
loop statements, and sequential control statements.

Conditional selection statements let you execute different statements for different
data values. The conditional selection statements are IF and CASE.

Loop statements let you repeat the same statements with a series of different data
values. The loop statements are FOR LOOP, WHILE LOOP, and basic LOOP. The EXIT
statement transfers control to the end of a loop. The CONTINUE statement exits the
current iteration of a loop and transfers control to the next iteration. Both EXIT and
CONTINUE have an optional WHEN clause, in which you can specify a condition.

Sequential control statements let you go to a specified labeled statement or to do
nothing. The sequential control statements are GOTO and NULL.

See Also:

Oracle Database PL/SQL Language Reference for an overview of PL/SQL
control statements

Chapter 5
Controlling Program Flow

5-22

Using the IF Statement
The IF statement either executes or skips a sequence of statements, depending on the value
of a Boolean expression.

The IF statement has this syntax:

IF boolean_expression THEN statement [, statement]
[ELSIF boolean_expression THEN statement [, statement]]...
[ELSE statement [, statement]]
END IF;

Suppose that your company evaluates employees twice a year in the first 10 years of
employment, but only once a year afterward. You want a function that returns the evaluation
frequency for an employee. You can use an IF statement to determine the return value of the
function, as in Example 5-4.

Add the EVAL_FREQUENCY function to the body of the EMP_EVAL package, but not to the
specification. Because it is not in the specification, EVAL_FREQUENCY is local to the
package—it can be invoked only by other subprograms in the package, not from outside the
package.

Tip:

When using a PL/SQL variable in a SQL statement, as in the second SELECT
statement in Example 5-4, qualify the variable with the subprogram name to ensure
that it is not mistaken for a table column.

See Also:

• Oracle Database PL/SQL Language Reference for the syntax of the IF
statement

• Oracle Database PL/SQL Language Reference for more information about
using the IF statement

Example 5-4 IF Statement that Determines Return Value of Function

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = eval_frequency.emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN

Chapter 5
Controlling Program Flow

5-23

 eval_freq := 1;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

Using the CASE Statement
The CASE statement chooses from a sequence of conditions, and executes the
corresponding statement.

The simple CASE statement evaluates a single expression and compares it to several
potential values. It has this syntax:

CASE expression
WHEN value THEN statement
[WHEN value THEN statement]...
[ELSE statement [, statement]...]
END CASE;

The searched CASE statement evaluates multiple Boolean expressions and chooses
the first one whose value is TRUE. For information about the searched CASE
statement, see Oracle Database PL/SQL Language Reference.

Tip:

When you can use either a CASE statement or nested IF statements, use a
CASE statement—it is both more readable and more efficient.

Suppose that, if an employee is evaluated only once a year, you want the
EVAL_FREQUENCY function to suggest a salary increase, which depends on the
JOB_ID.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-5. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE,
see Oracle Database PL/SQL Packages and Types Reference.)

Example 5-5 CASE Statement that Determines Which String to Print

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE, JOB_ID INTO h_date, j_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = eval_frequency.emp_id;

 IF ((h_date + (INTERVAL '12' MONTH)) < today) THEN

Chapter 5
Controlling Program Flow

5-24

 eval_freq := 1;

 CASE j_id
 WHEN 'PU_CLERK' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 8% salary increase for employee # ' || emp_id);
 WHEN 'SH_CLERK' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 7% salary increase for employee # ' || emp_id);
 WHEN 'ST_CLERK' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 6% salary increase for employee # ' || emp_id);
 WHEN 'HR_REP' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 5% salary increase for employee # ' || emp_id);
 WHEN 'PR_REP' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 5% salary increase for employee # ' || emp_id);
 WHEN 'MK_REP' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 4% salary increase for employee # ' || emp_id);
 ELSE DBMS_OUTPUT.PUT_LINE(
 'Nothing to do for employee #' || emp_id);
 END CASE;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

See Also:

• "Using CASE Expressions in Queries"

• Oracle Database PL/SQL Language Reference for the syntax of the CASE
statement

• Oracle Database PL/SQL Language Reference for more information about
using the CASE statement

Using the FOR LOOP Statement
The FOR LOOP statement repeats a sequence of statements once for each integer in the
range lower_bound through upper_bound.

The syntax of the FOR LOOP is:

FOR counter IN lower_bound..upper_bound LOOP
 statement [, statement]...
END LOOP;

The statements between LOOP and END LOOP can use counter, but cannot change its
value.

Suppose that, instead of only suggesting a salary increase, you want the
EVAL_FREQUENCY function to report what the salary would be if it increased by the
suggested amount every year for five years.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-6. (For
information about the procedure that prints the strings, DBMS_OUTPUT.PUT_LINE, see Oracle
Database PL/SQL Packages and Types Reference.)

Chapter 5
Controlling Program Flow

5-25

Example 5-6 FOR LOOP Statement that Computes Salary After Five Years

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;
 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE, JOB_ID, SALARY INTO h_date, j_id, sal
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = eval_frequency.emp_id;

 IF ((h_date + (INTERVAL '12' MONTH)) < today) THEN
 eval_freq := 1;

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year for 5 years, it will be:');

 FOR i IN 1..5 LOOP
 sal := sal * (1 + sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(sal, 2) || ' after ' || i || ' year(s)');
 END LOOP;
 END;
 END IF;

 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

Chapter 5
Controlling Program Flow

5-26

See Also:

• Oracle Database PL/SQL Language Reference for the syntax of the FOR
LOOP statement

• Oracle Database PL/SQL Language Reference for more information about
using the FOR LOOP statement

Using the WHILE LOOP Statement
The WHILE LOOP statement repeats a sequence of statements while a condition is TRUE.

The syntax of the WHILE LOOP statement is:

WHILE condition LOOP
 statement [, statement]...
END LOOP;

Note:

If the statements between LOOP and END LOOP never cause condition to become
FALSE, then the WHILE LOOP statement runs indefinitely.

Suppose that the EVAL_FREQUENCY function uses the WHILE LOOP statement instead of
the FOR LOOP statement and ends after the proposed salary exceeds the maximum salary
for the JOB_ID.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-7. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE, see
Oracle Database PL/SQL Packages and Types Reference.)

Example 5-7 WHILE LOOP Statement that Computes Salary to Maximum

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;
 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;
 sal_max JOBS.MAX_SALARY%TYPE;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE, j.JOB_ID, SALARY, MAX_SALARY INTO h_date, j_id, sal, sal_max
 FROM EMPLOYEES e, JOBS j
 WHERE EMPLOYEE_ID = eval_frequency.emp_id AND JOB_ID = eval_frequency.j_id;

 IF ((h_date + (INTERVAL '12' MONTH)) < today) THEN
 eval_freq := 1;

Chapter 5
Controlling Program Flow

5-27

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year, it will be:');

 WHILE sal <= sal_max LOOP
 sal := sal * (1 + sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(sal, 2));
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Maximum salary for this job is ' || sal_max);
 END;
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

See Also:

• Oracle Database PL/SQL Language Reference for the syntax of the
WHILE LOOP statement

• Oracle Database PL/SQL Language Reference for more information
about using the WHILE LOOP statement

Using the Basic LOOP and EXIT WHEN Statements
The basic LOOP statement repeats a sequence of statements.

The syntax of the basic LOOP statement is:

LOOP
 statement [, statement]...
END LOOP;

At least one statement must be an EXIT statement; otherwise, the LOOP statement
runs indefinitely.

The EXIT WHEN statement (the EXIT statement with its optional WHEN clause) exits
a loop when a condition is TRUE and transfers control to the end of the loop.

In the EVAL_FREQUENCY function, in the last iteration of the WHILE LOOP
statement, the last computed value usually exceeds the maximum salary.

Chapter 5
Controlling Program Flow

5-28

Change the WHILE LOOP statement to a basic LOOP statement that includes an EXIT
WHEN statement, as in Example 5-8.

Example 5-8 Using the EXIT WHEN Statement

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;
 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;
 sal_max JOBS.MAX_SALARY%TYPE;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE, j.JOB_ID, SALARY, MAX_SALARY INTO h_date, j_id, sal, sal_max
 FROM EMPLOYEES e, JOBS j
 WHERE EMPLOYEE_ID = eval_frequency.emp_id AND JOB_ID = eval_frequency.j_id;

 IF ((h_date + (INTERVAL '12' MONTH)) < today) THEN
 eval_freq := 1;

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year, it will be:');

 LOOP
 sal := sal * (1 + sal_raise);
 EXIT WHEN sal > sal_max;
 DBMS_OUTPUT.PUT_LINE(ROUND(sal,2));
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Maximum salary for this job is ' || sal_max);
 END;
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

Chapter 5
Controlling Program Flow

5-29

See Also:

• Oracle Database PL/SQL Language Reference for the syntax of the
LOOP statement

• Oracle Database PL/SQL Language Reference for the syntax of the
EXIT statement

• Oracle Database PL/SQL Language Reference for more information
about using the LOOP and EXIT statements

Using Records and Cursors
You can store data values in records, and use a cursor as a pointer to a result set and
related processing information.

See Also:

Oracle Database PL/SQL Language Reference for more information about
records

About Records
A record is a PL/SQL composite variable that can store data values of different types.
You can treat Internal components (fields) like scalar variables. You can pass entire
records as subprogram parameters. Records are useful for holding data from table
rows, or from certain columns of table rows.

A record is a PL/SQL composite variable that can store data values of different types,
similar to a struct type in C, C++, or Java. The internal components of a record are
called fields. To access a record field, you use dot notation:
record_name.field_name.

You can treat record fields like scalar variables. You can also pass entire records as
subprogram parameters.

Records are useful for holding data from table rows, or from certain columns of table
rows. Each record field corresponds to a table column.

There are three ways to create a record:

• Declare a RECORD type and then declare a variable of that type.

The syntax is:

TYPE record_name IS RECORD
 (field_name data_type [:= initial_value]
 [, field_name data_type [:= initial_value]]...);

variable_name record_name;
• Declare a variable of the type table_name%ROWTYPE.

Chapter 5
Using Records and Cursors

5-30

The fields of the record have the same names and data types as the columns of the
table.

• Declare a variable of the type cursor_name%ROWTYPE.

The fields of the record have the same names and data types as the columns of the table
in the FROM clause of the cursor SELECT statement.

See Also:

• Oracle Database PL/SQL Language Reference for more information about
defining RECORD types and declaring records of that type

• Oracle Database PL/SQL Language Reference for the syntax of a RECORD
type definition

• Oracle Database PL/SQL Language Reference for more information about the
%ROWTYPE attribute

• Oracle Database PL/SQL Language Reference for the syntax of the
%ROWTYPE attribute

Tutorial: Declaring a RECORD Type
This tutorial shows how to use the SQL Developer tool Edit to declare a RECORD type,
sal_info, whose fields can hold salary information for an employee—job ID, minimum and
maximum salary for that job ID, current salary, and suggested raise.

To declare RECORD type sal_info:

1. In the Connections frame, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Right-click EMP_EVAL.

A list of choices appears.

4. Click Edit.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE EMP_EVAL AS

PROCEDURE eval_department(dept_id IN NUMBER);
FUNCTION calculate_score(evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER;

END EMP_EVAL;

5. In the EMP_EVAL pane, immediately before END EMP_EVAL, add this code:

TYPE sal_info IS RECORD
 (j_id jobs.job_id%type

Chapter 5
Using Records and Cursors

5-31

 , sal_min jobs.min_salary%type
 , sal_max jobs.max_salary%type
 , sal employees.salary%type
 , sal_raise NUMBER(3,3));

The title of the pane is in italic font, indicating that the changes have not been
saved to the database.

6. Click the icon Compile.

The changed package specification compiles and is saved to the database. The
title of the EMP_EVAL pane is no longer in italic font.

Now you can declare records of the type sal_info, as in "Tutorial: Creating and
Invoking a Subprogram with a Record Parameter".

Tutorial: Creating and Invoking a Subprogram with a Record
Parameter

This tutorial shows how to use the SQL Developer tool Edit to create and invoke a
subprogram with a parameter of the record type sal_info.

The record type sal_info was created in "Tutorial: Declaring a RECORD Type".

This tutorial shows how to use the SQL Developer tool Edit to do the following:

• Create a procedure, SALARY_SCHEDULE, which has a parameter of type
sal_info.

• Change the EVAL_FREQUENCY function so that it declares a record, emp_sal, of
the type sal_info, populates its fields, and passes it to the SALARY_SCHEDULE
procedure.

Because EVAL_FREQUENCY will invoke SALARY_SCHEDULE, the declaration of
SALARY_SCHEDULE must precede the declaration of EVAL_FREQUENCY
(otherwise the package will not compile). However, the definition of
SALARY_SCHEDULE can be anywhere in the package body.

To create SALARY_SCHEDULE and change EVAL_FREQUENCY:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. In the list of packages, expand EMP_EVAL.

4. In the list of choices, right-click EMP_EVAL Body.

5. In the list of choices, click Edit.

The EMP_EVAL Bodypane appears, showing the code for the package body.

6. In the EMP_EVAL Body pane, immediately before END EMP_EVAL, add this
definition of the SALARY_SCHEDULE procedure:

PROCEDURE salary_schedule (emp IN sal_info) AS
 accumulating_sal NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || emp.sal ||
 ' increases by ' || ROUND((emp.sal_raise * 100),0) ||
 '% each year, it will be:');

Chapter 5
Using Records and Cursors

5-32

 accumulating_sal := emp.sal;

 WHILE accumulating_sal <= emp.sal_max LOOP
 accumulating_sal := accumulating_sal * (1 + emp.sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(accumulating_sal,2) ||', ');
 END LOOP;
END salary_schedule;

The title of the pane is in italic font, indicating that the changes have not been saved to
the database.

7. In the EMP_EVAL Body pane, enter the code shown in bold font, in this position:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

FUNCTION eval_frequency (emp_id EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER;
PROCEDURE salary_schedule(emp IN sal_info);
PROCEDURE add_eval(employee_id IN employees.employee_id%type, today IN DATE);

PROCEDURE eval_department (dept_id IN NUMBER) AS

8. Edit the EVAL_FREQUENCY function, making the changes shown in bold font:

FUNCTION eval_frequency (emp_id EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 emp_sal SAL_INFO; -- replaces sal, sal_raise, and sal_max

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = eval_frequency.emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;

 /* populate emp_sal */

 SELECT j.JOB_ID, j.MIN_SALARY, j.MAX_SALARY, e.SALARY
 INTO emp_sal.j_id, emp_sal.sal_min, emp_sal.sal_max, emp_sal.sal
 FROM EMPLOYEES e, JOBS j
 WHERE e.EMPLOYEE_ID = eval_frequency.emp_id
 AND j.JOB_ID = eval_frequency.emp_id;

 emp_sal.sal_raise := 0; -- default

 CASE emp_sal.j_id
 WHEN 'PU_CLERK' THEN emp_sal.sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN emp_sal.sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN emp_sal.sal_raise := 0.06;
 WHEN 'HR_REP' THEN emp_sal.sal_raise := 0.05;
 WHEN 'PR_REP' THEN emp_sal.sal_raise := 0.05;
 WHEN 'MK_REP' THEN emp_sal.sal_raise := 0.04;
 ELSE NULL;
 END CASE;

Chapter 5
Using Records and Cursors

5-33

 IF (emp_sal.sal_raise != 0) THEN
 salary_schedule(emp_sal);
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
 END eval_frequency;

9. Click Compile.

About Cursors
When Oracle Database executes a SQL statement, it stores the result set and
processing information in an unnamed private SQL area. A pointer to this unnamed
area, called a cursor, lets you retrieve the result set one row at a time. Cursor
attributes return information about the state of the cursor.

Every time you run either a SQL DML statement or a PL/SQL SELECT INTO
statement, PL/SQL opens an implicit cursor. You can get information about this
cursor from its attributes, but you cannot control it. After the statement runs, the
database closes the cursor; however, its attribute values remain available until another
DML or SELECT INTO statement runs.

PL/SQL also lets you declare cursors. A declared cursor has a name and is
associated with a query (SQL SELECT statement)—usually one that returns multiple
rows. After declaring a cursor, you must process it, either implicitly or explicitly. To
process the cursor implicitly, use a cursor FOR LOOP. The syntax is:

FOR record_name IN cursor_name LOOP
 statement
 [statement]...
END LOOP;

To process the cursor explicitly, open it (with the OPEN statement), fetch rows from the
result set either one at a time or in bulk (with the FETCH statement), and close the
cursor (with the CLOSE statement). After closing the cursor, you can neither fetch
records from the result set nor see the cursor attribute values.

The syntax for the value of an implicit cursor attribute is SQL%attribute (for example,
SQL%FOUND). SQL%attribute always refers to the most recently run DML or
SELECT INTO statement.

The syntax for the value of a declared cursor attribute is cursor_name%attribute (for
example, c1%FOUND).

Table 5-1 lists the cursor attributes and the values that they can return. (Implicit
cursors have additional attributes that are beyond the scope of this book.)

Chapter 5
Using Records and Cursors

5-34

Table 5-1 Cursor Attribute Values

Attribute Values for Declared Cursor Values for Implicit Cursor

%FOUND If cursor is open1 but no fetch was
attempted, NULL.

If the most recent fetch returned a row,
TRUE.

If the most recent fetch did not return a
row, FALSE.

If no DML or SELECT INTO statement
has run, NULL.

If the most recent DML or SELECT
INTOstatement returned a row, TRUE.

If the most recent DML or SELECT
INTOstatement did not return a row,
FALSE.

%NOTFOUND If cursor is open1 but no fetch was
attempted, NULL.

If the most recent fetch returned a row,
FALSE.

If the most recent fetch did not return a
row, TRUE.

If no DML or SELECT INTO statement
has run, NULL.

If the most recent DML or SELECT
INTOstatement returned a row, FALSE.

If the most recent DML or SELECT INTO
statement did not return a row, TRUE.

%ROWCOUNT If cursor is open1, a number greater than
or equal to zero.

NULL if no DML or SELECT INTO
statement has run; otherwise, a number
greater than or equal to zero.

%ISOPEN If cursor is open, TRUE; if not, FALSE. Always FALSE.

1 If the cursor is not open, the attribute raises the predefined exception INVALID_CURSOR.

See Also:

• "About Queries"

• "About Data Manipulation Language (DML) Statements"

• Oracle Database PL/SQL Language Reference for more information about the
SELECT INTO statement

• Oracle Database PL/SQL Language Reference for more information about
managing cursors in PL/SQL

Using a Declared Cursor to Retrieve Result Set Rows One at a Time
You can use a declared cursor to retrieve result set rows one at a time.

The following procedure uses each necessary statement in its simplest form, but provides
references to its complete syntax.

To use a declared cursor to retrieve result set rows one at a time:

1. In the declarative part:

a. Declare the cursor:

CURSOR cursor_name IS query;

For complete declared cursor declaration syntax, see Oracle Database PL/SQL
Language Reference.

Chapter 5
Using Records and Cursors

5-35

b. Declare a record to hold the row returned by the cursor:

record_name cursor_name%ROWTYPE;

For complete %ROWTYPE syntax, see Oracle Database PL/SQL Language
Reference.

2. In the executable part:

a. Open the cursor:

OPEN cursor_name;

For complete OPEN statement syntax, see Oracle Database PL/SQL
Language Reference.

b. Fetch rows from the cursor (rows from the result set) one at a time, using a
LOOP statement that has syntax similar to this:

LOOP
 FETCH cursor_name INTO record_name;
 EXIT WHEN cursor_name%NOTFOUND;
 -- Process row that is in record_name:
 statement;
 [statement;]...
END LOOP;

For complete FETCH statement syntax, see Oracle Database PL/SQL
Language Reference.

c. Close the cursor:

CLOSE cursor_name;

For complete CLOSE statement syntax, see Oracle Database PL/SQL
Language Reference.

Tutorial: Using a Declared Cursor to Retrieve Result Set Rows One at
a Time

This tutorial shows how to implement the procedure
EMP_EVAL.EVAL_DEPARTMENT, which uses a declared cursor, emp_cursor.

To implement the EMP_EVAL.EVAL_DEPARTMENT procedure:

1. In the EMP_EVAL package specification, change the declaration of the
EVAL_DEPARTMENT procedure as shown in bold font:

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE);
2. In the EMP_EVAL package body, change the definition of the

EVAL_DEPARTMENT procedure as shown in bold font:

PROCEDURE eval_department (dept_id IN employees.department_id%TYPE)
AS
 CURSOR emp_cursor IS
 SELECT * FROM EMPLOYEES
 WHERE DEPARTMENT_ID = eval_department.dept_id;

 emp_record EMPLOYEES%ROWTYPE; -- for row returned by cursor
 all_evals BOOLEAN; -- true if all employees in dept need evaluations

Chapter 5
Using Records and Cursors

5-36

 today DATE;

BEGIN
 today := SYSDATE;

 IF (EXTRACT(MONTH FROM today) < 6) THEN
 all_evals := FALSE; -- only new employees need evaluations
 ELSE
 all_evals := TRUE; -- all employees need evaluations
 END IF;

 OPEN emp_cursor;

 DBMS_OUTPUT.PUT_LINE (
 'Determining evaluations necessary in department # ' ||
 dept_id);

 LOOP
 FETCH emp_cursor INTO emp_record;
 EXIT WHEN emp_cursor%NOTFOUND;

 IF all_evals THEN
 add_eval(emp_record.employee_id, today);
 ELSIF (eval_frequency(emp_record.employee_id) = 2) THEN
 add_eval(emp_record.employee_id, today);
 END IF;
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
END eval_department;

(For a step-by-step example of changing a package body, see "Tutorial: Declaring
Variables and Constants in a Subprogram".)

3. Compile the EMP_EVAL package specification.

4. Compile the EMP_EVAL package body.

About Cursor Variables
A cursor variable is like a cursor that it is not limited to one query. You can open a cursor
variable for a query, process the result set, and then use the cursor variable for another
query. Cursor variables are useful for passing query results between subprograms.

For information about cursors, see "About Cursors".

To declare a cursor variable, you declare a REF CURSOR type, and then declare a variable
of that type (therefore, a cursor variable is often called a REF CURSOR). A REF CURSOR
type can be either strong or weak.

A strong REF CURSOR type specifies a return type, which is the RECORD type of its
cursor variables. The PL/SQL compiler does not allow you to use these strongly typed
cursor variables for queries that return rows that are not of the return type. Strong REF
CURSOR types are less error-prone than weak ones, but weak ones are more flexible.

A weak REF CURSOR type does not specify a return type. The PL/SQL compiler accepts
weakly typed cursor variables in any queries. Weak REF CURSOR types are

Chapter 5
Using Records and Cursors

5-37

interchangeable; therefore, instead of creating weak REF CURSOR types, you can
use the predefined type weak cursor type SYS_REFCURSOR.

After declaring a cursor variable, you must open it for a specific query (with the OPEN
FOR statement), fetch rows one at a time from the result set (with the FETCH
statement), and then either close the cursor (with the CLOSE statement) or open it for
another specific query (with the OPEN FOR statement). Opening the cursor variable
for another query closes it for the previous query. After closing a cursor variable for a
specific query, you can neither fetch records from the result set of that query nor see
the cursor attribute values for that query.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about using cursor variables

• Oracle Database PL/SQL Language Reference for the syntax of cursor
variable declaration

Using a Cursor Variable to Retrieve Result Set Rows One at a Time
You can use a cursor variable to retrieve result set rows one at a time.

The following procedure uses each of the necessary statements in its simplest form,
but provides references to their complete syntax.

To use a cursor variable to retrieve result set rows one at a time:

1. In the declarative part:

a. Declare the REF CURSOR type:

TYPE cursor_type IS REF CURSOR [RETURN return_type];

For complete REF CURSOR type declaration syntax, see Oracle Database
PL/SQL Language Reference.

b. Declare a cursor variable of that type:

cursor_variable cursor_type;

For complete cursor variable declaration syntax, see Oracle Database PL/SQL
Language Reference.

c. Declare a record to hold the row returned by the cursor:

record_name return_type;

For complete information about record declaration syntax, see Oracle
Database PL/SQL Language Reference.

2. In the executable part:

a. Open the cursor variable for a specific query:

OPEN cursor_variable FOR query;

Chapter 5
Using Records and Cursors

5-38

For complete information about OPEN FOR statement syntax, see Oracle Database
PL/SQL Language Reference.

b. Fetch rows from the cursor variable (rows from the result set) one at a time, using a
LOOP statement that has syntax similar to this:

LOOP
 FETCH cursor_variable INTO record_name;
 EXIT WHEN cursor_variable%NOTFOUND;
 -- Process row that is in record_name:
 statement;
 [statement;]...
END LOOP;

For complete information about FETCH statement syntax, see Oracle Database
PL/SQL Language Reference.

c. Close the cursor variable:

CLOSE cursor_variable;

Alternatively, you can open the cursor variable for another query, which closes it for
the current query.

For complete information about CLOSE statement syntax, see Oracle Database
PL/SQL Language Reference.

Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a
Time

This tutorial shows how to change the EMP_EVAL.EVAL_DEPARTMENT procedure so that it
uses a cursor variable instead of a declared cursor (which lets it process multiple
departments) and how to make EMP_EVAL.EVAL_DEPARTMENT and
EMP_EVAL.ADD_EVAL more efficient.

How this tutorial makes EMP_EVAL.EVAL_DEPARTMENT and EMP_EVAL.ADD_EVAL more
efficient: Instead of passing one field of a record to ADD_EVAL and having ADD_EVAL use
three queries to extract three other fields of the same record, EVAL_DEPARTMENT passes
the entire record to ADD_EVAL, and ADD_EVAL uses dot notation to access the values of
the other three fields.

To change the EMP_EVAL.EVAL_DEPARTMENT procedure to use a cursor variable:

1. In the EMP_EVAL package specification, add the procedure declaration and the REF
CURSOR type definition, as shown in bold font:

CREATE OR REPLACE
PACKAGE emp_eval AS

 PROCEDURE eval_department (dept_id IN employees.department_id%TYPE);

 PROCEDURE eval_everyone;

 FUNCTION calculate_score(eval_id IN scores.evaluation_id%TYPE
 , perf_id IN scores.performance_id%TYPE)
 RETURN NUMBER;
 TYPE SAL_INFO IS RECORD
 (j_id jobs.job_id%type
 , sal_min jobs.min_salary%type
 , sal_max jobs.max_salary%type

Chapter 5
Using Records and Cursors

5-39

 , salary employees.salary%type
 , sal_raise NUMBER(3,3));

 TYPE emp_refcursor_type IS REF CURSOR RETURN employees%ROWTYPE;
END emp_eval;

2. In the EMP_EVAL package body, add a forward declaration for the procedure
EVAL_LOOP_CONTROL and change the declaration of the procedure
ADD_EVAL, as shown in bold font:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

 FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER;

 PROCEDURE salary_schedule(emp IN sal_info);

 PROCEDURE add_eval(emp_record IN EMPLOYEES%ROWTYPE, today IN DATE);

 PROCEDURE eval_loop_control(emp_cursor IN emp_refcursor_type);
...

(For a step-by-step example of changing a package body, see "Tutorial: Declaring
Variables and Constants in a Subprogram".)

3. Change the EVAL_DEPARTMENT procedure to retrieve three separate result sets
based on the department, and to invoke the EVAL_LOOP_CONTROL procedure,
as shown in bold font:

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE) AS
 emp_cursor emp_refcursor_type;
 current_dept departments.department_id%TYPE;

BEGIN
 current_dept := dept_id;

 FOR loop_c IN 1..3 LOOP
 OPEN emp_cursor FOR
 SELECT *
 FROM employees
 WHERE current_dept = eval_department.dept_id;

 DBMS_OUTPUT.PUT_LINE
 ('Determining necessary evaluations in department #' ||
 current_dept);

 eval_loop_control(emp_cursor);

 DBMS_OUTPUT.PUT_LINE
 ('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
 current_dept := current_dept + 10;
 END LOOP;
END eval_department;

4. Change the ADD_EVAL procedure as shown in bold font:

PROCEDURE add_eval(emp_record IN employees%ROWTYPE, today IN DATE)
AS
-- (Delete local variables)

Chapter 5
Using Records and Cursors

5-40

BEGIN
 INSERT INTO EVALUATIONS (
 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)
 VALUES (
 evaluations_sequence.NEXTVAL, -- evaluation_id
 emp_record.employee_id, -- employee_id
 today, -- evaluation_date
 emp_record.job_id, -- job_id
 emp_record.manager_id, -- manager_id
 emp_record.department_id, -- department_id
 0 -- total_score
);
END add_eval;

5. Before END EMP_EVAL, add the following procedure, which fetches the individual records
from the result set and processes them:

PROCEDURE eval_loop_control (emp_cursor IN emp_refcursor_type) AS
 emp_record EMPLOYEES%ROWTYPE;
 all_evals BOOLEAN;
 today DATE;
BEGIN
 today := SYSDATE;

 IF (EXTRACT(MONTH FROM today) < 6) THEN
 all_evals := FALSE;
 ELSE
 all_evals := TRUE;
 END IF;

 LOOP
 FETCH emp_cursor INTO emp_record;
 EXIT WHEN emp_cursor%NOTFOUND;

 IF all_evals THEN
 add_eval(emp_record, today);
 ELSIF (eval_frequency(emp_record.employee_id) = 2) THEN
 add_eval(emp_record, today);
 END IF;
 END LOOP;
END eval_loop_control;

6. Before END EMP_EVAL, add the following procedure, which retrieves a result set that
contains all employees in the company:

PROCEDURE eval_everyone AS
 emp_cursor emp_refcursor_type;
BEGIN
 OPEN emp_cursor FOR SELECT * FROM employees;
 DBMS_OUTPUT.PUT_LINE('Determining number of necessary evaluations.');
 eval_loop_control(emp_cursor);
 DBMS_OUTPUT.PUT_LINE('Processed ' || emp_cursor%ROWCOUNT || ' records.');
 CLOSE emp_cursor;
END eval_everyone;

Chapter 5
Using Records and Cursors

5-41

7. Compile the EMP_EVAL package specification.

8. Compile the EMP_EVAL package body.

Using Associative Arrays
An associative array is a type of collection.

See Also:

For more information about collections:

• Oracle Database Concepts

• Oracle Database PL/SQL Language Reference

About Collections
A collection is a PL/SQL composite variable that stores elements of the same type in
a specified order, similar to a one-dimensional array. The internal components of a
collection are called elements. Each element has a unique subscript that identifies its
position in the collection.

To access a collection element, you use subscript notation:
collection_name(element_subscript).

You can treat collection elements like scalar variables. You can also pass entire
collections as subprogram parameters (if neither the sending nor receiving
subprogram is a standalone subprogram).

A collection method is a built-in PL/SQL subprogram that either returns information
about a collection or operates on a collection. To invoke a collection method, you use
dot notation: collection_name.method_name. For example, collection_name.COUNT
returns the number of elements in the collection.

PL/SQL has three types of collections:

• Associative arrays (formerly called "PL/SQL tables" or "index-by tables")

• Nested tables

• Variable arrays (varrays)

This document explains only associative arrays.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about PL/SQL collection types

• Oracle Database PL/SQL Language Reference for more information
about collection methods

Chapter 5
Using Associative Arrays

5-42

About Associative Arrays
An associative array is an unbounded set of key-value pairs. Each key is unique, and
serves as the subscript of the element that holds the corresponding value. Therefore, you can
access elements without knowing their positions in the array, and without traversing the array.

The data type of the key can be either PLS_INTEGER or VARCHAR2 (length).

If the data type of the key is PLS_INTEGER and the associative array is indexed by integer
and is dense (that is, has no gaps between elements), then every element between the first
and last element is defined and has a value (which can be NULL).

If the key type is VARCHAR2 (length), the associative array is indexed by string (of length
characters) and is sparse; that is, it might have gaps between elements.

When traversing a dense associative array, you need not beware of gaps between elements;
when traversing a sparse associative array, you do.

To assign a value to an associative array element, you can use an assignment operator:

array_name(key) := value

If key is not in the array, then the assignment statement adds the key-value pair to the array.
Otherwise, the statement changes the value of array_name(key) to value.

Associative arrays are useful for storing data temporarily. They do not use the disk space or
network operations that tables require. However, because associative arrays are intended for
temporary storage, you cannot manipulate them with DML statements.

If you declare an associative array in a package and assign values to the variable in the
package body, then the associative array exists for the life of the database session.
Otherwise, it exists for the life of the subprogram in which you declare it.

See Also:

Oracle Database PL/SQL Language Reference for more information about
associative arrays

Declaring Associative Arrays
To declare an associative array, you declare an associative array type and then declare a
variable of that type.

The simplest syntax is:

TYPE array_type IS TABLE OF element_type INDEX BY key_type;

array_name array_type;

An efficient way to declare an associative array is with a cursor, using the following
procedure. The procedure uses each necessary statement in its simplest form, but provides
references to its complete syntax.

Chapter 5
Using Associative Arrays

5-43

To use a cursor to declare an associative array:

1. In the declarative part:

a. Declare the cursor:

CURSOR cursor_name IS query;

For complete declared cursor declaration syntax, see Oracle Database
PL/SQL Language Reference.

b. Declare the associative array type:

TYPE array_type IS TABLE OF cursor_name%ROWTYPE
 INDEX BY { PLS_INTEGER | VARCHAR2 length }

For complete associative array type declaration syntax, see Oracle Database
PL/SQL Language Reference.

c. Declare an associative array variable of that type:

array_name array_type;

For complete variable declaration syntax, see Oracle Database PL/SQL
Language Reference.

Example 5-9 uses the preceding procedure to declare two associative arrays,
employees_jobs and jobs_, and then declares a third associative array, job_titles,
without using a cursor. The first two arrays are indexed by integer; the third is indexed
by string.

Note:

The ORDER BY clause in the declaration of employees_jobs_cursor
determines the storage order of the elements of the associative array
employee_jobs.

Example 5-9 Declaring Associative Arrays

DECLARE
 -- Declare cursor:

 CURSOR employees_jobs_cursor IS
 SELECT FIRST_NAME, LAST_NAME, JOB_ID
 FROM EMPLOYEES
 ORDER BY JOB_ID, LAST_NAME, FIRST_NAME;

 -- Declare associative array type:

 TYPE employees_jobs_type IS TABLE OF employees_jobs_cursor%ROWTYPE
 INDEX BY PLS_INTEGER;

 -- Declare associative array:

 employees_jobs employees_jobs_type;

 -- Use same procedure to declare another associative array:

Chapter 5
Using Associative Arrays

5-44

 CURSOR jobs_cursor IS
 SELECT JOB_ID, JOB_TITLE
 FROM JOBS;

 TYPE jobs_type IS TABLE OF jobs_cursor%ROWTYPE
 INDEX BY PLS_INTEGER;

 jobs_ jobs_type;

-- Declare associative array without using cursor:

 TYPE job_titles_type IS TABLE OF JOBS.JOB_TITLE%TYPE
 INDEX BY JOBS.JOB_ID%TYPE; -- jobs.job_id%type is varchar2(10)

 job_titles job_titles_type;

BEGIN
 NULL;
END;
/

See Also:

• "About Cursors"

• Oracle Database PL/SQL Language Reference for associative array declaration
syntax

Populating Associative Arrays
The most efficient way to populate a dense associative array is usually with a SELECT
statement with a BULK COLLECT INTO clause.

Note:

If a dense associative array is so large that a SELECT statement would a return a
result set too large to fit in memory, then do not use a SELECT statement. Instead,
populate the array with a cursor and the FETCH statement with the clauses BULK
COLLECT INTO and LIMIT. For information about using the FETCH statement with
BULK COLLECT INTO clause, see Oracle Database PL/SQL Language Reference.

You cannot use a SELECT statement to populate a sparse associative array (such as
job_titles in "Declaring Associative Arrays"). Instead, you must use an assignment statement
inside a loop statement. For information about loop statements, see "Controlling Program
Flow".

Example 5-10 uses SELECT statements to populate the associative arrays employees_jobs
and jobs_, which are indexed by integer. Then it uses an assignment statement inside a FOR
LOOP statement to populate the associative array job_titles, which is indexed by string.

Chapter 5
Using Associative Arrays

5-45

Example 5-10 Populating Associative Arrays

-- Declarative part from Example 5-9 goes here.

BEGIN
 -- Populate associative arrays indexed by integer:

SELECT FIRST_NAME, LAST_NAME, JOB_ID BULK COLLECT INTO employees_jobs
 FROM EMPLOYEES ORDER BY JOB_ID, LAST_NAME, FIRST_NAME;

SELECT JOB_ID, JOB_TITLE BULK COLLECT INTO jobs_ FROM JOBS;

 -- Populate associative array indexed by string:

 FOR i IN 1..jobs_.COUNT() LOOP
 job_titles(jobs_(i).job_id) := jobs_(i).job_title;
 END LOOP;
END;
/

See Also:

"About Cursors"

Traversing Dense Associative Arrays
A dense associative array (indexed by integer) has no gaps between elements—
every element between the first and last element is defined and has a value (which
can be NULL).

You can traverse a dense array with a FOR LOOP statement, as in Example 5-11.

When inserted in the executable part of Example 5-10, after the code that populates
the employees_jobs array, the FOR LOOP statement in Example 5-11 prints the
elements of the employees_jobs array in the order in which they were stored. Their
storage order was determined by the ORDER BY clause in the declaration of
employees_jobs_cursor, which was used to declare employees_jobs (see
Example 5-9).

The upper bound of the FOR LOOP statement, employees_jobs.COUNT, invokes a
collection method that returns the number of elements in the array. For more
information about COUNT, see Oracle Database PL/SQL Language Reference.

Example 5-11 Traversing a Dense Associative Array

-- Code that populates employees_jobs must precede this code:

FOR i IN 1..employees_jobs.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(
 RPAD(employees_jobs(i).first_name, 23) ||
 RPAD(employees_jobs(i).last_name, 28) || employees_jobs(i).job_id);
 END LOOP;

Result:

William Gietz AC_ACCOUNT
Shelley Higgins AC_MGR

Chapter 5
Using Associative Arrays

5-46

Jennifer Whalen AD_ASST
Steven King AD_PRES
Lex De Haan AD_VP
Neena Kochhar AD_VP
John Chen FI_ACCOUNT
...
Jose Manuel Urman FI_ACCOUNT
Nancy Greenberg FI_MGR
Susan Mavris HR_REP
David Austin IT_PROG
...
Valli Pataballa IT_PROG
Michael Hartstein MK_MAN
Pat Fay MK_REP
Hermann Baer PR_REP
Shelli Baida PU_CLERK
...
Sigal Tobias PU_CLERK
Den Raphaely PU_MAN
Gerald Cambrault SA_MAN
...
Eleni Zlotkey SA_MAN
Ellen Abel SA_REP
...
Clara Vishney SA_REP
Sarah Bell SH_CLERK
...
Peter Vargas ST_CLERK
Adam Fripp ST_MAN
...
Matthew Weiss ST_MAN

Traversing Sparse Associative Arrays
A sparse associative array (indexed by string) might have gaps between elements.

You can traverse it with a WHILE LOOP statement, as in Example 5-12.

To run the code in Example 5-12, which prints the elements of the job_titles array:

1. At the end of the declarative part of Example 5-9, insert this variable declaration:

i jobs.job_id%TYPE;
2. In the executable part of Example 5-10, after the code that populates the job_titles array,

insert the code from Example 5-12.

Example 5-12 Traversing a Sparse Associative Array

/* Declare this variable in declarative part:

 i jobs.job_id%TYPE;

 Add this code to the executable part,
 after code that populates job_titles:
*/

i := job_titles.FIRST;

WHILE i IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(i, 12) || job_titles(i));

Chapter 5
Using Associative Arrays

5-47

 i := job_titles.NEXT(i);
END LOOP;

Result:

AC_ACCOUNT Public Accountant
AC_MGR Accounting Manager
AD_ASST Administration Assistant
AD_PRES President
AD_VP Administration Vice President
FI_ACCOUNT Accountant
FI_MGR Finance Manager
HR_REP Human Resources Representative
IT_PROG Programmer
MK_MAN Marketing Manager
MK_REP Marketing Representative
PR_REP Public Relations Representative
PU_CLERK Purchasing Clerk
PU_MAN Purchasing Manager
SA_MAN Sales Manager
SA_REP Sales Representative
SH_CLERK Shipping Clerk
ST_CLERK Stock Clerk
ST_MAN Stock Manager

Example 5-12 includes two collection method invocations, job_titles.FIRST and
job_titles.NEXT(i). job_titles.FIRST returns the first element of job_titles, and
job_titles.NEXT(i) returns the subscript that succeeds i. For more information about
FIRST, see Oracle Database PL/SQL Language Reference. For more information
about NEXT, see Oracle Database PL/SQL Language Reference.

Handling Exceptions (Runtime Errors)
You can handle exceptions that occur at run time with PL/SQL code.

See Also:

Oracle Database PL/SQL Language Reference for more information about
handling PL/SQL errors

About Exceptions and Exception Handlers
When a runtime error occurs in PL/SQL code, an exception is raised. If the
subprogram (or block) in which the exception is raised has an exception-handling part,
then control transfers to it; otherwise, execution stops.

Runtime errors can arise from design faults, coding mistakes, hardware failures, and
many other sources.

Oracle Database has many predefined exceptions, which it raises automatically
when a program violates database rules or exceeds system-dependent limits. For
example, if a SELECT INTO statement returns no rows, then Oracle Database raises
the predefined exception NO_DATA_FOUND. For a summary of predefined PL/SQL
exceptions, see Oracle Database PL/SQL Language Reference.

Chapter 5
Handling Exceptions (Runtime Errors)

5-48

PL/SQL lets you define (declare) your own exceptions. An exception declaration has this
syntax:

exception_name EXCEPTION;

Unlike a predefined exception, a user-defined exception must be raised explicitly, using
either the RAISE statement or the DBMS_STANDARD.RAISE_APPLICATION_ERROR.
procedure. For example:

IF condition THEN RAISE exception_name;

For information about the DBMS_STANDARD.RAISE_APPLICATION_ERROR procedure,
see Oracle Database PL/SQL Language Reference.

The exception-handling part of a subprogram contains one or more exception handlers. An
exception handler has this syntax:

WHEN { exception_name [OR exception_name]... | OTHERS } THEN
 statement; [statement;]...

("About Subprogram Structure" shows where to put the exception-handling part of a
subprogram.)

A WHEN OTHERS exception handler handles unexpected runtime errors. If used, it must be
last. For example:

EXCEPTION
 WHEN exception_1 THEN
 statement; [statement;]...
 WHEN exception_2 OR exception_3 THEN
 statement; [statement;]...
 WHEN OTHERS THEN
 statement; [statement;]...
 RAISE; -- Reraise the exception (very important).
END;

An alternative to the WHEN OTHERS exception handler is the EXCEPTION_INIT pragma,
which associates a user-defined exception name with an Oracle Database error number.

See Also:

• Oracle Database PL/SQL Language Reference for more information about
exception declaration syntax

• Oracle Database PL/SQL Language Reference for more information about
exception handler syntax

• Oracle Database PL/SQL Language Reference for more information about the
EXCEPTION_INIT pragma

When to Use Exception Handlers
Oracle recommends using exception handlers only in these situations.

• You expect an exception and want to handle it.

Chapter 5
Handling Exceptions (Runtime Errors)

5-49

For example, you expect that eventually, a SELECT INTO statement will return no
rows, causing Oracle Database to raise the predefined exception
NO_DATA_FOUND. You want your subprogram or block to handle that exception
(which is not an error) and then continue, as in Example 5-13.

• You must relinquish or close a resource.

For example:

...
file := UTL_FILE.OPEN ...
BEGIN
 statement statement]... -- If this code fails for any reason,
EXCEPTION
 WHEN OTHERS THEN
 UTL_FILE.FCLOSE(file); -- then you want to close the file.
 RAISE; -- Reraise the exception (very important).
END;
UTL_FILE.FCLOSE(file);
...

• At the top level of the code, you want to log the error.

For example, a client process might issue this block:

BEGIN
 proc(...);
EXCEPTION
 WHEN OTHERS THEN
 log_error_using_autonomous_transaction(...);
 RAISE; -- Reraise the exception (very important).
END;
/

Alternatively, the standalone subprogram that the client invokes can include the
same exception-handling logic—but only at the top level.

Handling Predefined Exceptions
You can handle predefined exceptions.

Example 5-13 shows, in bold font, how to change the
EMP_EVAL.EVAL_DEPARTMENT procedure to handle the predefined exception
NO_DATA_FOUND. Make this change and compile the changed procedure. (For an
example of how to change a package body, see "Tutorial: Declaring Variables and
Constants in a Subprogram".)

Example 5-13 Handling Predefined Exception NO_DATA_FOUND

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE) AS
 emp_cursor emp_refcursor_type;
 current_dept departments.department_id%TYPE;

BEGIN
 current_dept := dept_id;

 FOR loop_c IN 1..3 LOOP
 OPEN emp_cursor FOR
 SELECT *
 FROM employees
 WHERE current_dept = eval_department.dept_id;

Chapter 5
Handling Exceptions (Runtime Errors)

5-50

 DBMS_OUTPUT.PUT_LINE
 ('Determining necessary evaluations in department #' ||
 current_dept);

 eval_loop_control(emp_cursor);

 DBMS_OUTPUT.PUT_LINE
 ('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
 current_dept := current_dept + 10;
 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('The query did not return a result set');
END eval_department;

See Also:

Oracle Database PL/SQL Language Reference for more information about
predefined exceptions

Declaring and Handling User-Defined Exceptions
You can declare and handle user-defined exceptions.

Example 5-14 shows, in bold font, how to change the EMP_EVAL.CALCULATE_SCORE
function to declare and handle two user-defined exceptions, wrong_weight and wrong_score.
Make this change and compile the changed function. (For an example of how to change a
package body, see "Tutorial: Declaring Variables and Constants in a Subprogram".)

Example 5-14 Handling User-Defined Exceptions

FUNCTION calculate_score (evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)
 RETURN NUMBER AS

 weight_wrong EXCEPTION;
 score_wrong EXCEPTION;
 n_score scores.score%TYPE;
 n_weight performance_parts.weight%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT scores.score%TYPE := 9;
 max_weight CONSTANT performance_parts.weight%TYPE:= 1;
BEGIN
 SELECT s.score INTO n_score
 FROM SCORES s
 WHERE evaluation_id = s.evaluation_id
 AND performance_id = s.performance_id;

 SELECT p.weight INTO n_weight
 FROM PERFORMANCE_PARTS p
 WHERE performance_id = p.performance_id;

 BEGIN
 IF (n_weight > max_weight) OR (n_weight < 0) THEN
 RAISE weight_wrong;

Chapter 5
Handling Exceptions (Runtime Errors)

5-51

 END IF;
 END;

 BEGIN
 IF (n_score > max_score) OR (n_score < 0) THEN
 RAISE score_wrong;
 END IF;
 END;

 running_total := n_score * n_weight;
 RETURN running_total;

EXCEPTION
 WHEN weight_wrong THEN
 DBMS_OUTPUT.PUT_LINE(
 'The weight of a score must be between 0 and ' || max_weight);
 RETURN -1;
 WHEN score_wrong THEN
 DBMS_OUTPUT.PUT_LINE(
 'The score must be between 0 and ' || max_score);
 RETURN -1;
END calculate_score;

See Also:

Oracle Database PL/SQL Language Reference for more information about
user-defined exceptions

Chapter 5
Handling Exceptions (Runtime Errors)

5-52

6
Using Triggers

Triggers are stored PL/SQL units that automatically execute ("fire") in response to specified
events.

About Triggers
A trigger is a PL/SQL unit that is stored in the database and (if it is in the enabled state)
automatically executes ("fires") in response to a specified event.

A trigger has this structure:

TRIGGER trigger_name
 triggering_event
 [trigger_restriction]
BEGIN
 triggered_action;
END;

The trigger_name must be unique for triggers in the schema. A trigger can have the same
name as another kind of object in the schema (for example, a table); however, Oracle
recommends using a naming convention that avoids confusion.

If the trigger is in the enabled state, the triggering_event causes the database to execute the
triggered_action if the trigger_restriction is either TRUE or omitted. The triggering_event is
associated with either a table, a view, a schema, or the database, and it is one of these:

• DML statement (described in "About Data Manipulation Language (DML) Statements")

• DDL statement (described in "About Data Definition Language (DDL) Statements")

• Database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN)

If the trigger is in the disabled state, the triggering_event does not cause the database to
execute the triggered_action, even if the trigger_restriction is TRUE or omitted.

By default, a trigger is created in the enabled state. You can disable an enabled trigger, and
enable a disabled trigger.

Unlike a subprogram, a trigger cannot be invoked directly. A trigger is invoked only by its
triggering event, which can be caused by any user or application. You might be unaware that
a trigger is executing unless it causes an error that is not handled properly.

A simple trigger can fire at exactly one of these timing points:

• Before the triggering event executes (statement-level BEFORE trigger)

• After the triggering event executes (statement-level AFTER trigger)

• Before each row that the event affects (row-level BEFORE trigger)

• After each row that the event affects (row-level AFTER trigger)

A compound trigger can fire at multiple timing points. For information about compound
triggers, see Oracle Database PL/SQL Language Reference.

6-1

An INSTEAD OF trigger is defined on a view, and its triggering event is a DML
statement. Instead of executing the DML statement, Oracle Database executes the
INSTEAD OF trigger. For more information, see "Creating an INSTEAD OF Trigger".

A system trigger is defined on a schema or the database. A trigger defined on a
schema fires for each event associated with the owner of the schema (the current
user). A trigger defined on a database fires for each event associated with all users.

One use of triggers is to enforce business rules that apply to all client applications. For
example, suppose that data added to the EMPLOYEES table must have a certain
format, and that many client applications can add data to this table. A trigger on the
table can ensure the proper format of all data added to it. Because the trigger
executes whenever any client adds data to the table, no client can circumvent the
rules, and the code that enforces the rules can be stored and maintained only in the
trigger, rather than in every client application. For other uses of triggers, see Oracle
Database PL/SQL Language Reference.

See Also:

Oracle Database PL/SQL Language Reference for complete information
about triggers

Creating Triggers
To create triggers, use either the SQL Developer graphical interface or the DDL
statement CREATE TRIGGER.

This section shows how to use both of these ways to create triggers.

By default, a trigger is created in the enabled state. To create a trigger in disabled
state, use the CREATE TRIGGER statement with the DISABLE clause.

Note:

To create triggers, you must have appropriate privileges; however, for this
discussion, you do not need this additional information.

Note:

To do the tutorials in this document, the hr sample schema must be installed
and you must be connected to Oracle Database as the user HR from SQL
Developer.

Chapter 6
Creating Triggers

6-2

See Also:

• Oracle Database PL/SQL Language Reference for more information about the
CREATE TRIGGER statement

• "Editing Installation Scripts that Create Triggers"

About OLD and NEW Pseudorecords
When a row-level trigger fires, the PL/SQL runtime system creates and populates the two
pseudorecords OLD and NEW. They are called pseudorecords because they have some, but
not all, of the properties of records.

For the row that the trigger is processing:

• For an INSERT trigger, OLD contains no values, and NEW contains the new values.

• For an UPDATE trigger, OLD contains the old values, and NEW contains the new values.

• For a DELETE trigger, OLD contains the old values, and NEW contains no values.

To reference a pseudorecord, put a colon before its name—:OLD or :NEW—as in Example 6-1.

See Also:

Oracle Database PL/SQL Language Reference for more information about OLD
and NEW pseudorecords

Tutorial: Creating a Trigger that Logs Table Changes
This tutorial shows how to use the CREATE TRIGGER statement to create a trigger,
EVAL_CHANGE_TRIGGER, which adds a row to the table EVALUATIONS_LOG whenever
an INSERT, UPDATE, or DELETE statement changes the EVALUATIONS table.

The trigger adds the row after the triggering statement executes, and uses the conditional
predicates INSERTING, UPDATING, and DELETING to determine which of the three
possible DML statements fired the trigger.

EVAL_CHANGE_TRIGGER is a statement-level trigger and an AFTER trigger.

To create EVALUATIONS_LOG and EVAL_CHANGE_TRIGGER:

1. Create the EVALUATIONS_LOG table:

CREATE TABLE EVALUATIONS_LOG (log_date DATE
 , action VARCHAR2(50));

2. Create EVAL_CHANGE_TRIGGER:

CREATE OR REPLACE TRIGGER EVAL_CHANGE_TRIGGER
 AFTER INSERT OR UPDATE OR DELETE
 ON EVALUATIONS
DECLARE
 log_action EVALUATIONS_LOG.action%TYPE;

Chapter 6
Creating Triggers

6-3

BEGIN
 IF INSERTING THEN
 log_action := 'Insert';
 ELSIF UPDATING THEN
 log_action := 'Update';
 ELSIF DELETING THEN
 log_action := 'Delete';
 ELSE
 DBMS_OUTPUT.PUT_LINE('This code is not reachable.');
 END IF;

 INSERT INTO EVALUATIONS_LOG (log_date, action)
 VALUES (SYSDATE, log_action);
END;

See Also:

Oracle Database PL/SQL Language Reference for more information about
conditional predicates

Tutorial: Creating a Trigger that Generates a Primary Key for a Row
Before It Is Inserted

This tutorial shows how to use the SQL Developer Create Trigger tool to create a
trigger that fires before a row is inserted into the EVALUATIONS table, and generates
the unique number for the primary key of that row, using EVALUATIONS_SEQUENCE.

The sequence EVALUATIONS_SEQUENCE (created in "Tutorial: Creating a
Sequence") generates primary keys for the EVALUATIONS table (created in "Creating
Tables"). However, these primary keys are not inserted into the table automatically.

This tutorial shows how to use the SQL Developer Create Trigger tool to create a
trigger named NEW_EVALUATION_TRIGGER, which fires before a row is inserted
into the EVALUATIONS table, and generates the unique number for the primary key of
that row, using EVALUATIONS_SEQUENCE. The trigger fires once for each row
affected by the triggering INSERT statement.

NEW_EVALUATION_TRIGGER is a row-level trigger and a BEFORE trigger.

To create the NEW_EVALUATION trigger:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, right-click Triggers.

3. In the list of choices, click New Trigger.

4. In the Create Trigger window:

a. In the Name field, type NEW_EVALUATION_TRIGGER over the default value
TRIGGER1.

b. For Base Object, select EVALUATIONS from the menu.

c. Move INSERT from Available Events to Selected Events.

(Select INSERT and click >.)

Chapter 6
Creating Triggers

6-4

d. Deselect the option Statement Level.

e. Click OK.

The NEW_EVALUATION_TRIGGER pane opens, showing the CREATE TRIGGER
statement that created the trigger:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN
 NULL;
END;

The title of the NEW_EVALUATION_TRIGGER pane is in italic font, indicating that
the trigger is not yet saved in the database.

5. In the CREATE TRIGGER statement, replace NULL with this:

:NEW.evaluation_id := evaluations_sequence.NEXTVAL
6. From the File menu, select Save.

Oracle Database compiles the procedure and saves it. The title of the
NEW_EVALUATION_TRIGGER pane is no longer in italic font.

Creating an INSTEAD OF Trigger
A view presents the output of a query as a table. If you want to change a view as you would
change a table, then you must create INSTEAD OF triggers. Instead of changing the view,
they change the underlying tables.

For example, consider the view EMP_LOCATIONS, whose NAME column is created from the
LAST_NAME and FIRST_NAME columns of the EMPLOYEES table:

CREATE VIEW EMP_LOCATIONS AS
SELECT e.EMPLOYEE_ID,
 e.LAST_NAME || ', ' || e.FIRST_NAME NAME,
 d.DEPARTMENT_NAME DEPARTMENT,
 l.CITY CITY,
 c.COUNTRY_NAME COUNTRY
FROM EMPLOYEES e, DEPARTMENTS d, LOCATIONS l, COUNTRIES c
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID AND
 d.LOCATION_ID = l.LOCATION_ID AND
 l.COUNTRY_ID = c.COUNTRY_ID
ORDER BY LAST_NAME;

To update the view EMP_LOCATIONS.NAME (created in "Creating Views with the CREATE
VIEW Statement"), you must update EMPLOYEES.LAST_NAME and
EMPLOYEES.FIRST_NAME. This is what the INSTEAD OF trigger in Example 6-1 does.

NEW and OLD are pseudorecords that the PL/SQL runtime engine creates and populates
whenever a row-level trigger fires. OLD and NEW store the original and new values,
respectively, of the record being processed by the trigger. They are called pseudorecords
because they do not have all properties of PL/SQL records.

Example 6-1 Creating an INSTEAD OF Trigger

CREATE OR REPLACE TRIGGER update_name_view_trigger
INSTEAD OF UPDATE ON emp_locations
BEGIN

Chapter 6
Creating Triggers

6-5

 UPDATE employees SET
 first_name = substr(:NEW.name, instr(:new.name, ',')+2),
 last_name = substr(:NEW.name, 1, instr(:new.name, ',')-1)
 WHERE employee_id = :OLD.employee_id;
END;

See Also:

• Oracle Database PL/SQL Language Reference for more information
about INSTEAD OF triggers

• Oracle Database PL/SQL Language Reference for more information
about OLD and NEW

Tutorial: Creating Triggers that Log LOGON and LOGOFF Events
This tutorial shows how to use the CREATE TRIGGER statement to create two
triggers, HR_LOGON_TRIGGER and HR_LOGOFF_TRIGGER. After someone logs
on as user HR, HR_LOGON_TRIGGER adds a row to the table HR_USERS_LOG.
Before someone logs off as user HR, HR_LOGOFF_TRIGGER adds a row to the table
HR_USERS_LOG.

HR_LOGON_TRIGGER and HR_LOGOFF_TRIGGER are system triggers.
HR_LOGON_TRIGGER is an AFTER trigger and HR_LOGOFF_TRIGGER is a
BEFORE trigger.

To create HR_USERS_LOG, HR_LOGON_TRIGGER, and HR_LOGOFF_TRIGGER:

1. Create the HR_USERS_LOG table:

CREATE TABLE hr_users_log (
 user_name VARCHAR2(30),
 activity VARCHAR2(20),
 event_date DATE
);

2. Create HR_LOGON_TRIGGER:

CREATE OR REPLACE TRIGGER hr_logon_trigger
 AFTER LOGON
 ON HR.SCHEMA
BEGIN
 INSERT INTO hr_users_log (user_name, activity, event_date)
 VALUES (USER, 'LOGON', SYSDATE);
END;

3. Create HR_LOGOFF_TRIGGER:

CREATE OR REPLACE TRIGGER hr_logoff_trigger
 BEFORE LOGOFF
 ON HR.SCHEMA
BEGIN
 INSERT INTO hr_users_log (user_name, activity, event_date)
 VALUES (USER, 'LOGOFF', SYSDATE);
END;

Chapter 6
Creating Triggers

6-6

See Also:

Oracle Database PL/SQL Language Reference for more information about system
triggers

Changing Triggers
To change a trigger, use either the SQL Developer tool Edit or the DDL statement CREATE
TRIGGER with the OR REPLACE clause.

To change a trigger using the Edit tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Triggers.

3. In the list of triggers, click the trigger to change.

4. In the frame to the right of the Connections frame, the Code pane appears, showing the
code that created the trigger.

The Code pane is in write mode. (Clicking the pencil icon switches the mode from write
mode to read only, or the reverse.)

5. In the Code pane, change the code.

The title of the pane is in italic font, indicating that the change is not yet saved in the
database.

6. From the File menu, select Save.

Oracle Database compiles the trigger and saves it. The title of the pane is no longer in
italic font.

See Also:

• "About Data Definition Language (DDL) Statements" for general information
that applies to the CREATE OR REPLACE TRIGGER statement

• Oracle Database PL/SQL Language Reference for more information about the
CREATE OR REPLACE TRIGGER statement

Disabling and Enabling Triggers
You might need to temporarily disable triggers that reference objects that are unavailable, or
to upload a large amount of data without the delay that triggers cause (as in a recovery

Chapter 6
Changing Triggers

6-7

operation). After the referenced objects become available, or you have finished
uploading the data, you can re-enable the triggers.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about the ALTER TRIGGER statement

• Oracle Database SQL Language Reference for more information about
the ALTER TABLE statement

Disabling or Enabling a Single Trigger
To disable or enable a single trigger, use either the Disable Trigger or Enable Trigger
tool or the ALTER TRIGGER statement with the DISABLE or ENABLE clause.

For example, these statements disable and enable the eval_change_trigger:

ALTER TRIGGER eval_change_trigger DISABLE;
ALTER TRIGGER eval_change_trigger ENABLE;

To use the Disable Trigger or Enable Trigger tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Triggers.

3. In the list of triggers, right-click the desired trigger.

4. In the list of choices, select Disable or Enable.

5. In the Disable or Enable window, click Apply.

6. In the Confirmation window, click OK.

Disabling or Enabling All Triggers on a Single Table
To disable or enable all triggers on a specific table, use either the Disable All Triggers
or Enable All Triggers tool or the ALTER TABLE statement with the DISABLE ALL
TRIGGERS or ENABLE ALL TRIGGERS clause.

For example, these statements disable and enable all triggers on the evaluations
table:

ALTER TABLE evaluations DISABLE ALL TRIGGERS;
ALTER TABLE evaluations ENABLE ALL TRIGGERS;

To use the Disable All Triggers or Enable All Triggers tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Tables.

3. In the list of tables, right-click the desired table.

4. In the list of choices, select Triggers.

5. In the list of choices, select Disable All or Enable All.

Chapter 6
Disabling and Enabling Triggers

6-8

6. In the Disable All or Enable All window, click Apply.

7. In the Confirmation window, click OK.

About Trigger Compilation and Dependencies
Compiled triggers depend on the schema objects on which they are defined. If an object on
which a trigger depends is dropped, or changed such that there is a mismatch between the
trigger and the object, then the trigger is invalidated.

Running a CREATE TRIGGER statement compiles the trigger being created. If this
compilation causes an error, then the CREATE TRIGGER statement fails. To see the
compilation errors, use this statement:

SELECT * FROM USER_ERRORS WHERE TYPE = 'TRIGGER';

Compiled triggers depend on the schema objects on which they are defined. For example,
NEW_EVALUATION_TRIGGER depends on the EVALUATIONS table:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN
 :NEW.evaluation_id := evaluations_seq.NEXTVAL;
END;

To see the schema objects on which triggers depend, use this statement:

SELECT * FROM ALL_DEPENDENCIES WHERE TYPE = 'TRIGGER';

If an object on which a trigger depends is dropped, or changed such that there is a mismatch
between the trigger and the object, then the trigger is invalidated. The next time the trigger is
invoked, it is recompiled. To recompile a trigger immediately, use the ALTER TRIGGER
statement with the COMPILE clause. For example:

ALTER TRIGGER NEW_EVALUATION_TRIGGER COMPILE;

See Also:

Oracle Database PL/SQL Language Reference for more information about trigger
compilation and dependencies

Dropping Triggers
You must drop a trigger before dropping the objects on which it depends.

To drop a trigger, use either the SQL Developer Connections frame and Drop tool, or the DDL
statement DROP TRIGGER.

This statement drops the trigger EVAL_CHANGE_TRIGGER:

DROP TRIGGER EVAL_CHANGE_TRIGGER;

Chapter 6
About Trigger Compilation and Dependencies

6-9

To drop a trigger using the Drop tool:

1. In the Connections frame, expand hr_conn.

2. In the list of schema object types, expand Triggers.

3. In the list of triggers, right-click the name of the trigger to drop.

4. In the list of choices, click Drop Trigger.

5. In the Drop window, click Apply.

6. In the Confirmation window, click y.

See Also:

• "About Data Definition Language (DDL) Statements" for general
information that applies to the DROP TRIGGER statement

• Oracle Database PL/SQL Language Reference for information about the
DROP TRIGGER statement

Chapter 6
Dropping Triggers

6-10

7
Working in a Global Environment

Globalization support features enable multilingual applications to run simultaneously from
anywhere in the world. Applications can render the content of the user interface, and process
data, using the native language and locale preferences of the user.

About Globalization Support Features
Globalization support features enable you to develop multilingual applications that can be run
simultaneously from anywhere in the world. An application can render the content of the user
interface, and process data, using the native language and locale preferences of the user.

Note:

In the past, Oracle called globalization support National Language Support (NLS),
but NLS is actually a subset of globalization support. NLS is the ability to choose a
national language and store data using a specific character set. NLS is
implemented with NLS parameters.

See Also:

Oracle Database Globalization Support Guide for more information about
globalization support features

About Language Support
Oracle Database enables you to store, process, and retrieve data in native languages. The
languages that can be stored in a database are all languages written in scripts that are
encoded by Oracle-supported character sets. Through the use of Unicode databases and
data types, Oracle Database supports most contemporary languages.

Additional support is available for a subset of the languages. The database can, for example,
display dates using translated month names, and can sort text data according to cultural
conventions.

In this document, the term language support refers to the additional language-dependent
functionality, and not to the ability to store text of a specific language. For example, language
support includes displaying dates or sorting text according to specific locales and cultural
conventions. Additionally, for some supported languages, Oracle Database provides
translated server messages and a translated user interface for the database utilities.

7-1

See Also:

• "About the NLS_LANGUAGE Parameter"

• Oracle Database Globalization Support Guide for a complete list of
languages that Oracle Database supports

• Oracle Database Globalization Support Guide for a list of languages into
which Oracle Database messages are translated

About Territory Support
The default local time format, date format, and numeric and monetary conventions
depend on the local territory setting.

Oracle Database supports cultural conventions that are specific to geographical
locations. The default local time format, date format, and numeric and monetary
conventions depend on the local territory setting. Setting different NLS parameters
enables the database session to use different cultural settings. For example, you can
set the euro (EUR) as the primary currency and the Japanese yen (JPY) as the
secondary currency for a given database session, even when the territory is AMERICA.

See Also:

• "About the NLS_TERRITORY Parameter"

• Oracle Database Globalization Support Guide for a complete list of
territories that Oracle Database supports

About Date and Time Formats
Different countries have different conventions for displaying the hour, day, month, and
year.

For example, this table shows the local date and time format for five countries and
gives an example of each format:

Country Date Format Example Time Format Example

China yyyy-mm-dd 2005-02-28 hh24:mi:ss 13:50:23
Estonia dd.mm.yyyy 28.02.2005 hh24:mi:ss 13:50:23
Germany dd.mm.rr 28.02.05 hh24:mi:ss 13:50:23
UK dd/mm/yyyy 28/02/2005 hh24:mi:ss 13:50:23
US mm/dd/yyyy 02/28/2005 hh:mi:ssxff am 1:50:23.555 PM

Chapter 7
About Globalization Support Features

7-2

See Also:

• "About the NLS_DATE_FORMAT Parameter"

• "About the NLS_DATE_LANGUAGE Parameter"

• "About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT
Parameters"

• Oracle Database Globalization Support Guide for information about date/time
data types and time zone support

• Oracle Database SQL Language Reference for information about date and time
formats

About Calendar Formats
Different countries use different calendars.

Oracle Database stores this calendar information for each territory:

• First day of the week

Sunday in some cultures, Monday in others. Set by the NLS_TERRITORY parameter.

• First week of the calendar year

Some countries use week numbers for scheduling, planning, and bookkeeping. In the
ISO standard, this week number can differ from the week number of the calendar year.
For example, 1st Jan 2005 is in ISO week number 53 of 2004. An ISO week starts on
Monday and ends on Sunday. To support the ISO standard, Oracle Database provides
the IW date format element, which returns the ISO week number. The first calendar week
of the year is set by the NLS_TERRITORY parameter.

• Number of days and months in a year

Oracle Database supports six calendar systems in addition to the Gregorian calendar,
which is the default. These additional calendar systems are:

– Japanese Imperial

Has the same number of months and days as the Gregorian calendar, but the year
starts with the beginning of each Imperial Era.

– ROC Official

Has the same number of months and days as the Gregorian calendar, but the year
starts with the founding of the Republic of China.

– Persian

The first six months have 31 days each, the next five months have 30 days each, and
the last month has either 29 days or (in leap year) 30 days.

– Thai Buddha uses a Buddhist calendar.

– Arabic Hijrah has 12 months and 354 or 355 days.

– English Hijrah has 12 months and 354 or 355 days.

The calendar system is specified by the NLS_CALENDAR parameter.

Chapter 7
About Globalization Support Features

7-3

• First year of era

The Islamic calendar starts from the year of the Hegira. The Japanese Imperial
calendar starts from the beginning of an Emperor's reign (for example, 1998 is the
tenth year of the Heisei era).

See Also:

• "About the NLS_TERRITORY Parameter"

• "About the NLS_CALENDAR Parameter"

• Oracle Database Globalization Support Guide for information about
calendar formats

About Numeric and Monetary Formats
Different countries have different numeric and monetary conventions.

This table shows the local numeric and monetary format for five countries and gives an
example of each format:

Country Numeric Format Monetary Format

China 1,234,567.89 ©1,234.56

Estonia 1 234 567,89 1 234,56 kr

Germany 1.234.567,89 1.234,56€

UK 1,234,567.89 £1,234.56

US 1,234,567.89 $1,234.56

See Also:

• "About the NLS_NUMERIC_CHARACTERS Parameter"

• "About the NLS_CURRENCY Parameter"

• "About the NLS_ISO_CURRENCY Parameter"

• "About the NLS_DUAL_CURRENCY Parameter"

• Oracle Database Globalization Support Guide for information about
numeric and list parameters

• Oracle Database Globalization Support Guide for information about
monetary parameters

• Oracle Database SQL Language Reference for information about
number format models

Chapter 7
About Globalization Support Features

7-4

About Linguistic Sorting and String Searching
Different languages have different sort orders (collating sequences). Also, different countries
or cultures that use the same alphabets sort words differently. For example, in Danish, Æ is
after Z, and Y and Ü are considered to be variants of the same letter.

See Also:

• "About the NLS_SORT Parameter"

• "About the NLS_COMP Parameter"

• Oracle Database Globalization Support Guide for more information about
linguistic sorting and string searching

About Length Semantics
To calculate the number of characters in a string, using byte length, you must know the
number of bytes in each character in the character set.

In single-byte character sets, the number of bytes and the number of characters in a string
are the same. In multibyte character sets, a character or code point consists of one or more
bytes. Calculating the number of characters based on byte length can be difficult in a
variable-width character set. Calculating column length in bytes is called byte semantics,
while measuring column length in characters is called character semantics.

Character semantics is useful for specifying the storage requirements for multibyte strings of
varying widths. For example, in a Unicode database (AL32UTF8), suppose that you must
have a VARCHAR2 column that can store up to five Chinese characters with five English
characters. Using byte semantics, this column requires 15 bytes for the Chinese characters,
which are 3 bytes long, and 5 bytes for the English characters, which are 1 byte long, for a
total of 20 bytes. Using character semantics, the column requires 10 characters.

See Also:

• "About the NLS_LENGTH_SEMANTICS Parameter"

• Oracle Database Globalization Support Guide for information about character
sets and length semantics

About Unicode and SQL National Character Data Types
Unicode is a character encoding system that defines every character in most of the spoken
languages in the world. In Unicode, every character has a unique code, regardless of the
platform, program, or language.

You can store Unicode characters in an Oracle Database in two ways:

• You can create a Unicode database that enables you to store UTF-8 encoded characters
as SQL character data types (CHAR, VARCHAR2, CLOB, and LONG).

Chapter 7
About Globalization Support Features

7-5

• You can declare columns and variables that have SQL national character data
types.

The SQL national character data types are NCHAR, NVARCHAR2, and NCLOB.
They are also called Unicode data types, because they are used only for storing
Unicode data.

The national character set, which is used for all SQL national character data types, is
specified when the database is created. The national character set can be either UTF8
or AL16UTF16 (default).

When you declare a column or variable of the type NCHAR or NVARCHAR2, the
length that you specify is the number of characters, not the number of bytes.

See Also:

• Oracle Database Globalization Support Guide for more information about
Unicode

• Oracle Database Globalization Support Guide for more information about
storing Unicode characters in an Oracle Database

• Oracle Database Globalization Support Guide for more information about
SQL national character data types

About Initial NLS Parameter Values
Except in SQL Developer, the initial values of NLS parameters are set by database
initialization parameters.

The DBA can set the values of initialization parameters in the initialization parameter
file, and they take effect the next time the database is started.

In SQL Developer, the initial values of NLS parameters are as shown in Table 7-1.

Table 7-1 Initial Values of NLS Parameters in SQL Developer

Parameter Initial Value

NLS_CALENDAR GREGORIAN
NLS_CHARACTERSET AL32UTF8
NLS_COMP BINARY
NLS_CURRENCY $
NLS_DATE_FORMAT DD-MON-RR
NLS_DATE_LANGUAGE AMERICAN
NLS_DUAL_CURRENCY $
NLS_ISO_CURRENCY AMERICA
NLS_LANGUAGE AMERICAN
NLS_LENGTH_SEMANTIC
S

BYTE

Chapter 7
About Initial NLS Parameter Values

7-6

Table 7-1 (Cont.) Initial Values of NLS Parameters in SQL Developer

Parameter Initial Value

NLS_NCHAR_CHARACTER
SET

AL16UTF16

NLS_NCHAR_CONV_EXCP FALSE
NLS_NUMERIC_CHARACT
ERS

.,

NLS_SORT BINARY
NLS_TERRITORY AMERICA
NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM
NLS_TIMESTAMP_TZ_FOR
MAT

DD-MON-RR HH.MI.SSXFF AM TZR

NLS_TIME_FORMAT HH.MI.SSXFF AM
NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR

See Also:

Oracle Database Administrator's Guide for information about initialization
parameters and initialization parameter files

Viewing NLS Parameter Values
To view the current values of NLS parameters, use the SQL Developer report National
Language Support Parameters.

To view the National Language Support Parameters report:

1. From the SQL Developer menu View, select Reports.

2. In the Reports pane, expand Data Dictionary Reports.

3. In the list of reports, expand About Your Database.

4. In the list of reports, select National Language Support Parameters.

5. In the Select Connection window, select hr_conn.

6. Click OK.

The Select Connection window closes and the National Language Support Parameters
pane appears, showing the names of the NLS parameters and their current values.

See Also:

Oracle SQL Developer User's Guide for more information about SQL Developer
reports

Chapter 7
Viewing NLS Parameter Values

7-7

Changing NLS Parameter Values
You can change the value of one or more NLS parameters in any of these ways.

• Change the values for all SQL Developer connections, current and future.

• On the client, change the settings of the corresponding NLS environment
variables.

Only on the client, the new values of the NLS environment variables override the
values of the corresponding NLS parameters.

You can use environment variables to specify locale-dependent behavior for the
client. For example, on a Linux system, this statement sets the value of the
NLS_SORT environment variable to FRENCH, overriding the value of the
NLS_SORT parameter:

% setenv NLS_SORT FRENCH

Note:

Environment variables might be platform-dependent.

• Change the values only for the current session, using an ALTER SESSION
statement with this syntax:

ALTER SESSION SET parameter_name=parameter_value
 [parameter_name=parameter_value]... ;

Only in the current session, the new values override those set in all of the
preceding ways.

You can use the ALTER SESSION to test your application with the settings for
different locales.

• Change the values only for the current SQL function invocation.

Only for the current SQL function invocation, the new values override those set in
all of the preceding ways.

See Also:

• Oracle Database SQL Language Reference for more information about
the ALTER SESSION statement

• Oracle Database Globalization Support Guide for more information about
setting NLS parameters

Changing NLS Parameter Values for All SQL Developer Connections
You can change the values of NLS parameters for all SQL Developer connections,
current and future.

Chapter 7
Changing NLS Parameter Values

7-8

To change National Language Support Parameter values:

1. From the SQL Developer menu Tools, select Preferences.

2. In the Preferences window, in the left frame, expand Database.

3. In the list of database preferences, click NLS.

A list of NLS parameters and their current values appears. The value fields are menus.

4. From the menu to the right of each parameter whose value you want to change, select
the desired value.

5. Click OK.

The NLS parameters now have the values that you specified. To verify these values, see
"Viewing NLS Parameter Values".

Note:

If the NLS parameter values do not reflect your changes, click the icon Run Report.

See Also:

Oracle SQL Developer User's Guide for more information about SQL Developer
preferences

Changing NLS Parameter Values for the Current SQL Function Invocation
SQL functions whose behavior depends on the values of NLS parameters are called locale-
dependent. Some locale-dependent SQL functions have optional NLS parameters.

The local-dependent functions that have optional NLS parameters are:

• TO_CHAR
• TO_DATE
• TO_NUMBER
• NLS_UPPER
• NLS_LOWER
• NLS_INITCAP
• NLSSORT
In all of the preceding functions, you can specify these NLS parameters:

• NLS_DATE_LANGUAGE
• NLS_DATE_LANGUAGE
• NLS_NUMERIC_CHARACTERS
• NLS_CURRENCY

Chapter 7
Changing NLS Parameter Values

7-9

• NLS_ISO_CURRENCY
• NLS_DUAL_CURRENCY
• NLS_CALENDAR
• NLS_SORT
In the NLSSORT function, you can also specify these NLS parameters:

• NLS_LANGUAGE
• NLS_TERRITORY
• NLS_DATE_FORMAT
To specify NLS parameters in a function, use this syntax:

'parameter=value' ['parameter=value']...

Suppose that you want NLS_DATE_LANGUAGE to be AMERICAN when this query is
evaluated:

SELECT last_name FROM employees WHERE hire_date > '01-JAN-1999';

You can set NLS_DATE_LANGUAGE to AMERICAN before running the query:

ALTER SESSION SET NLS_DATE_LANGUAGE=American;
SELECT last_name FROM employees WHERE hire_date > '01-JAN-1999';

Alternatively, you can set NLS_DATE_LANGUAGE to AMERICAN inside the query,
using the locale-dependent SQL function TO_DATE with its optional
NLS_DATE_LANGUAGE parameter:

SELECT last_name FROM employees
WHERE hire_date > TO_DATE('01-JAN-1999', 'DD-MON-YYYY',
 'NLS_DATE_LANGUAGE=AMERICAN');

Tip:

Using session default values for NLS parameters in SQL functions usually
results in better performance. Therefore, specify optional NLS parameters in
locale-dependent SQL functions only in SQL statements that must not use
the default NLS parameter values.

See Also:

Oracle Database Globalization Support Guide for more information about
locale-dependent SQL functions with optional NLS parameters

About Individual NLS Parameters
Many individual NLS parameters are available.

Chapter 7
About Individual NLS Parameters

7-10

See Also:

• Oracle Database Globalization Support Guide for more information about
setting up a globalization support environment

• "Changing NLS Parameter Values"

About Locale and the NLS_LANG Parameter
A locale is a linguistic and cultural environment in which a system or application runs. The
simplest way to specify a locale for Oracle Database software is to set the NLS_LANG
parameter.

The NLS_LANG parameter sets the default values of the parameters NLS_LANGUAGE and
NLS_TERRITORY for both the server session (for example, SQL statement processing) and
the client application (for example, display formatting in Oracle Database tools). The
NLS_LANG parameter also sets the character set that the client application uses for data
entered or displayed.

The default value of NLS_LANG is set during database installation. You can use the ALTER
SESSION statement to change the values of NLS parameters, including those set by
NLS_LANG, for your session. However, only the client can change the NLS settings in the
client environment.

See Also:

• Oracle Database Globalization Support Guide for more information about
specifying a locale with the NLS_LANG parameter

• Oracle Database Globalization Support Guide for information about languages,
territories, character sets, and other locale data supported by Oracle Database

• "About the NLS_LANGUAGE Parameter"

• "About the NLS_TERRITORY Parameter"

• "Changing NLS Parameter Values"

About the NLS_LANGUAGE Parameter
This parameter specifies the default language of the database.

Specifies: Default language of the database. Default conventions for:

• Language for server messages

• Language for names and abbreviations of days and months that are specified in the SQL
functions TO_CHAR and TO_DATE

• Symbols for default-language equivalents of AM, PM, AD, and BC

• Default sorting order for character data when the ORDER BY clause is specified

• Writing direction

Chapter 7
About Individual NLS Parameters

7-11

• Affirmative and negative response strings (for example, YES and NO)

Acceptable Values: Any language name that Oracle supports. For a list, see Oracle
Database Globalization Support Guide.

Default Value: Set by NLS_LANG, described in "About Locale and the NLS_LANG
Parameter".

Sets default values of:

• NLS_DATE_LANGUAGE, described in "About the NLS_DATE_LANGUAGE
Parameter".

• NLS_SORT, described in "About the NLS_SORT Parameter".

Example 7-1 shows how setting NLS_LANGUAGE to ITALIAN and GERMAN affects
server messages and month abbreviations.

To try this example in SQL Developer, enter the statements and queries in the
Worksheet. For information about the Worksheet, see "Running Queries in SQL
Developer". The results shown here are from SQL*Plus; their format is slightly different
in SQL Developer.

Example 7-1 NLS_LANGUAGE Affects Server Message and Month
Abbreviations

1. Note the current value of NLS_LANGUAGE.

2. If the value in step 1 is not ITALIAN, change it:

ALTER SESSION SET NLS_LANGUAGE=ITALIAN;
3. Query a nonexistent table:

SELECT * FROM nonexistent_table;

Result:

SELECT * FROM nonexistent_table
 *
ERROR at line 1:
ORA-00942: tabella o vista inesistente

4. Run this query:

SELECT LAST_NAME, HIRE_DATE
FROM EMPLOYEES
WHERE EMPLOYEE_ID IN (111, 112, 113);

Result:

LAST_NAME HIRE_DATE
------------------------- ---------
Sciarra 30-SET-97
Urman 07-MAR-98
Popp 07-DIC-99

3 rows selected.

5. Change the value of NLS_LANGUAGE to GERMAN:

ALTER SESSION SET NLS_LANGUAGE=GERMAN;
6. Repeat the query from step 3.

Result:

Chapter 7
About Individual NLS Parameters

7-12

SELECT * FROM nonexistent_table
 *
ERROR at line 1:
ORA-00942: Tabelle oder View nicht vorhanden

7. Repeat the query from step 4.

Result:

LAST_NAME HIRE_DATE
------------------------- ---------
Sciarra 30-SEP-97
Urman 07-MRZ-98
Popp 07-DEZ-99

3 rows selected.

8. Set NLS_LANGUAGE to the value that it had at step 1.

See Also:

• Oracle Database Globalization Support Guide for more information about the
NLS_LANGUAGE parameter

• "About Language Support"

• "Changing NLS Parameter Values"

About the NLS_TERRITORY Parameter
This parameter specifies default conventions for date format, time stamp format, decimal and
group separator, local currency symbol, ISO currency symbol, and dual currency symbol.

Specifies: Default conventions for:

• Date format

• Time stamp format

• Decimal character and group separator

• Local currency symbol

• ISO currency symbol

• Dual currency symbol

Acceptable Values: Any territory name that Oracle supports. For a list, see Oracle Database
Globalization Support Guide.

Default Value: Set by NLS_LANG, described in "About Locale and the NLS_LANG
Parameter".

Sets default values of:

• NLS_DATE_FORMAT, described in "About the NLS_DATE_FORMAT Parameter".

• NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT, described in "About
NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters".

Chapter 7
About Individual NLS Parameters

7-13

• NLS_NUMERIC_CHARACTERS, described in "About the
NLS_NUMERIC_CHARACTERS Parameter".

• NLS_CURRENCY, described in "About the NLS_CURRENCY Parameter".

• NLS_ISO_CURRENCY, described in "About the NLS_ISO_CURRENCY
Parameter".

• NLS_DUAL_CURRENCY, described in "About the NLS_DUAL_CURRENCY
Parameter".

Example 7-2 shows how setting NLS_TERRITORY to JAPAN and AMERICA affects the
currency symbol.

To try this example in SQL Developer, enter the statements and queries in the
Worksheet. For information about the Worksheet, see "Running Queries in SQL
Developer". The results shown here are from SQL*Plus; their format is slightly different
in SQL Developer.

Example 7-2 NLS_TERRITORY Affects Currency Symbol

1. Note the current value of NLS_TERRITORY.

2. If the value in step 1 is not JAPAN, change it:

ALTER SESSION SET NLS_TERRITORY=JAPAN;
3. Run this query:

SELECT TO_CHAR(SALARY,'L99G999D99') SALARY
FROM EMPLOYEES
WHERE EMPLOYEE_ID IN (100, 101, 102);

Result:

SALARY

 ©24,000.00
 ©17,000.00
 ©17,000.00

3 rows selected.

4. Change the value of NLS_TERRITORY to AMERICA:

ALTER SESSION SET NLS_TERRITORY=AMERICA;
5. Repeat the query from step 3.

Result:

SALARY

 $24,000.00
 $17,000.00
 $17,000.00

3 rows selected.

6. Set NLS_TERRITORY to the value that it had at step 1.

Chapter 7
About Individual NLS Parameters

7-14

See Also:

• Oracle Database Globalization Support Guide for more information about the
NLS_TERRITORY parameter

• "About Territory Support"

• "Changing NLS Parameter Values"

About the NLS_DATE_FORMAT Parameter
This parameter specifies the default date format to use with the TO_CHAR and TO_DATE
functions.

Specifies: Default date format to use with the TO_CHAR and TO_DATE functions (which are
introduced in "Using Conversion Functions in Queries").

Acceptable Values: Any any valid datetime format model. For example:

NLS_DATE_FORMAT='MM/DD/YYYY'

For information about datetime format models, see Oracle Database SQL Language
Reference.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

The default date format might not correspond to the convention used in a given territory. To
get dates in localized formats, you can use the 'DS' (short date) and 'DL' (long date) formats.

Example 7-3 shows how setting NLS_TERRITORY to AMERICA and FRANCE affects the
default, short, and long date formats.

Example 7-4 changes the value of NLS_DATE_FORMAT, overriding the default value set by
NLS_TERRITORY.

To try the examples in SQL Developer, enter the statements and queries in the Worksheet.
For information about the Worksheet, see "Running Queries in SQL Developer". The results
shown here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-3 NLS_TERRITORY Affects Date Formats

1. Note the current value of NLS_TERRITORY.

2. If the value in step 1 is not AMERICA, change it:

ALTER SESSION SET NLS_TERRITORY=AMERICA;
3. Run this query:

SELECT hire_date "Default",
 TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long"
FROM employees
WHERE employee_id IN (111, 112, 113);

Result:

Chapter 7
About Individual NLS Parameters

7-15

Default Short Long
--------- ---------- -----------------------------
30-SEP-05 9/30/2005 Friday, September 30, 2005
07-MAR-98 3/7/2006 Tuesday, March 07, 2006
07-DEC-99 12/7/2007 Friday, December 07, 2007

3 rows selected.

4. Change the value of NLS_TERRITORY to FRANCE:

ALTER SESSION SET NLS_TERRITORY=FRANCE;
5. Repeat the query from step 3.

Result:

Default Short Long
-------- ---------- ---------------------------
30/09/05 30/09/2005 friday 30 september 2005
07/03/06 07/03/2006 tuesday 7 march 2006
07/12/07 07/12/2007 friday 7 december 2007

3 rows selected.

(To get the names of the days and months in French, you must set either
NLS_LANGUAGE or NLS_DATE_LANGUAGE to FRENCH before running the
query.)

6. Set NLS_TERRITORY to the value that it had at step 1.

Example 7-4 NLS_DATE_FORMAT Overrides NLS_TERRITORY

1. Note the current values of NLS_TERRITORY and NLS_DATE_FORMAT.

2. If the value of NLS_TERRITORY in step 1 is not AMERICA, change it:

ALTER SESSION SET NLS_TERRITORY=AMERICA;
3. If the value of NLS_DATE_FORMAT in step 1 is not 'Day Month ddth', change

it:

ALTER SESSION SET NLS_DATE_FORMAT='Day Month ddth';
4. Run this query (from previous example, step 3):

SELECT hire_date "Default",
 TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long"
FROM employees
WHERE employee_id IN (111, 112, 113);

Result:

Default Short Long
------------------------ ---------- -----------------------------
Friday September 30th 9/30/2005 Tuesday, September 30, 2005
Tuesday March 07th 3/7/2006 Saturday, March 07, 2006
Friday December 07th 12/7/2007 Tuesday, December 07, 2007

3 rows selected.
5. Set NLS_TERRITORY and NLS_DATE_FORMAT to the values that they had at

step 1.

Chapter 7
About Individual NLS Parameters

7-16

See Also:

• Oracle Database Globalization Support Guide for more information about the
NLS_DATE_FORMAT parameter

• Oracle Database SQL Language Reference for more information about the
TO_CHAR function

• Oracle Database SQL Language Reference for more information about the
TO_DATE function

• "About Date and Time Formats"

• "Changing NLS Parameter Values"

About the NLS_DATE_LANGUAGE Parameter
This parameter specifies the language for names and abbreviations of days and months that
are produced by: SQL functions TO_CHAR and TO_DATE, the default date format (set by
NLS_DATE_FORMAT), and symbols for the default-language equivalents of AM, PM, AD,
and BC.

Specifies: Language for names and abbreviations of days and months that are produced by:

• SQL functions TO_CHAR and TO_DATE (which are introduced in "Using Conversion
Functions in Queries")

• Default date format (set by NLS_DATE_FORMAT, described in "About the
NLS_DATE_FORMAT Parameter")

• Symbols for default-language equivalents of AM, PM, AD, and BC

Acceptable Values: Any language name that Oracle supports. For a list, see Oracle
Database Globalization Support Guide.

Default Value: Set by NLS_LANGUAGE, described in "About the NLS_LANGUAGE
Parameter".

Example 7-5 shows how setting NLS_DATE_LANGUAGE to FRENCH and SWEDISH affects
the displayed system date.

To try this example in SQL Developer, enter the statements and queries in the Worksheet.
For information about the Worksheet, see "Running Queries in SQL Developer". The results
shown here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-5 NLS_DATE_LANGUAGE Affects Displayed SYSDATE

1. Note the current value of NLS_DATE_LANGUAGE.

2. If the value of NLS_DATE_LANGUAGE in step 1 is not FRENCH, change it:

ALTER SESSION SET NLS_DATE_LANGUAGE=FRENCH;
3. Run this query:

SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy') "System Date"
FROM DUAL;

Result:

Chapter 7
About Individual NLS Parameters

7-17

System Date

Vendredi:28 December 2012

4. Change the value of NLS_DATE_LANGUAGE to SWEDISH:

ALTER SESSION SET NLS_DATE_LANGUAGE=SWEDISH;
5. Repeat the query from step 3.

Result:

System Date

Fredag :28 December 2012

6. Set NLS_DATE_LANGUAGE to the value that it had at step 1.

See Also:

• Oracle Database Globalization Support Guide for more information about
the NLS_DATE_LANGUAGE parameter

• Oracle Database SQL Language Reference for more information about
the TO_CHAR function

• Oracle Database SQL Language Reference for more information about
the y function

• "About Date and Time Formats"

• "Changing NLS Parameter Values"

About NLS_TIMESTAMP_FORMAT and
NLS_TIMESTAMP_TZ_FORMAT Parameters

This parameter specifies the default date format for the TIMESTAMP audiotape and
TIMESTAMP WITH LOCAL TIME ZONEaudiotapeTIMESTAMP WITH LOCAL TIME
ZONEaudiotape.

Specify: Default date format for:

• TIMESTAMP audiotape

• TIMESTAMP WITH LOCAL TIME ZONEaudiotape

Acceptable Values: Any any valid datetime format model. For example:

NLS_TIMESTAMP_FORMAT='YYYY-MM-DD HH:MI:SS.FF'
NLS_TIMESTAMP_TZ_FORMAT='YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

For information about datetime format models, see Oracle Database SQL Language
Reference.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

Chapter 7
About Individual NLS Parameters

7-18

See Also:

• Oracle Database Globalization Support Guide for more information about the
NLS_TIMESTAMP_FORMAT parameter

• Oracle Database Globalization Support Guide for more information about the
NLS_TIMESTAMP_TZ_FORMAT parameter

• Oracle Database Globalization Support Guide for information about date/time
data types and time zone support

• Oracle Database SQL Language Reference for more information about the
TIMESTAMP audiotape

• Oracle Database SQL Language Reference for more information about the
TIMESTAMP WITH LOCAL TIME ZONE data type

• "About Date and Time Formats"

• "Changing NLS Parameter Values"

About the NLS_CALENDAR Parameter
This parameter specifies the calendar system for the database.

Specifies: Calendar system for the database.

Acceptable Values: Any calendar system that Oracle supports. For a list, see Oracle
Database Globalization Support Guide.

Default Value: Gregorian
Example 7-6 shows how setting NLS_CALENDAR to 'English Hijrah' and Gregorian
affects the displayed system date.

To try this example in SQL Developer, enter the statements and queries in the Worksheet.
For information about the Worksheet, see "Running Queries in SQL Developer". The results
shown here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-6 NLS_CALENDAR Affects Displayed SYSDATE

1. Note the current value of NLS_CALENDAR.

2. If the value of NLS_CALENDAR in step 1 is not 'English Hijrah', change it:

ALTER SESSION SET NLS_CALENDAR='English Hijrah';
3. Run this query:

SELECT SYSDATE FROM DUAL;

Result:

SYSDATE

17 Safar 1434

4. Change the value of NLS_CALENDAR to 'Gregorian':

ALTER SESSION SET NLS_CALENDAR='Gregorian';

Chapter 7
About Individual NLS Parameters

7-19

5. Run this query:

SELECT SYSDATE FROM DUAL;

Result:

SYSDATE

31-DEC-12

6. Set NLS_CALENDAR to the value that it had at step 1.

See Also:

• Oracle Database Globalization Support Guide for more information about
the NLS_CALENDAR parameter

• "About Calendar Formats"

• "Changing NLS Parameter Values"

About the NLS_NUMERIC_CHARACTERS Parameter
This parameter specifies the decimal character (which separates the integer and
decimal parts of a number) and group separator (which separates integer groups to
show thousands and millions, for example). The group separator is the character
returned by the numeric format element G.

Specifies: Decimal character (which separates the integer and decimal parts of a
number) and group separator (which separates integer groups to show thousands and
millions, for example). The group separator is the character returned by the numeric
format element G.

Acceptable Values: Any two different single-byte characters except:

• A numeric character

• Plus (+)

• Minus (-)

• Less than (<)

• Greater than (>)

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

In a SQL statement, you can represent a number as either:

• Numeric literal

A numeric literal is not enclosed in quotation marks, always uses a period (.) as
the decimal character, and never contains a group separator.

• Text literal

A text literal is enclosed in single quotation marks. It is implicitly or explicitly
converted to a number, if required, according to the current NLS settings.

Chapter 7
About Individual NLS Parameters

7-20

Example 7-7 shows how two different NLS_NUMERIC_CHARACTERS settings affect the
displayed result of the same query.

To try this example in SQL Developer, enter the statements and queries in the Worksheet.
For information about the Worksheet, see "Running Queries in SQL Developer". The results
shown here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-7 NLS_NUMERIC_CHARACTERS Affects Decimal Character and Group
Separator

1. Note the current value of NLS_NUMERIC_CHARACTERS.

2. If the value of NLS_NUMERIC_CHARACTERS in step 1 is not ",." (decimal character
is comma and group separator is period), change it:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=",.";
3. Run this query:

SELECT TO_CHAR(4000, '9G999D99') "Number" FROM DUAL;

Result:

Number

 4.000,00

4. Change the value of NLS_NUMERIC_CHARACTERS to ",." (decimal character is
period and group separator is comma):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=".,";
5. Run this query:

SELECT TO_CHAR(4000, '9G999D99') "Number" FROM DUAL;

Result:

Number

 4,000.00

6. Set NLS_NUMERIC_CHARACTERS to the value that it had at step 1.

See Also:

• Oracle Database Globalization Support Guide for more information about the
NLS_NUMERIC_CHARACTERS parameter

• "About Numeric and Monetary Formats"

• "Changing NLS Parameter Values"

About the NLS_CURRENCY Parameter
This parameter specifies the local currency symbol (the character string returned by the
numeric format element L).

Specifies: Local currency symbol (the character string returned by the numeric format
element L).

Chapter 7
About Individual NLS Parameters

7-21

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

Example 7-8 changes the value of NLS_CURRENCY, overriding the default value set
by NLS_TERRITORY. To try this example in SQL Developer, enter the statements and
queries in the Worksheet. For information about the Worksheet, see "Running Queries
in SQL Developer". The results shown here are from SQL*Plus; their format is slightly
different in SQL Developer.

Example 7-8 NLS_CURRENCY Overrides NLS_TERRITORY

1. Note the current values of NLS_TERRITORY and NLS_CURRENCY.

2. If the value of NLS_TERRITORY in step 1 is not AMERICA, change it:

ALTER SESSION SET NLS_TERRITORY=AMERICA;
3. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Salary"
FROM EMPLOYEES
WHERE salary > 13000;

Result:

Salary

 $024,000.00
 $017,000.00
 $017,000.00
 $014,000.00
 $013,500.00

4. Change the value of NLS_CURRENCY to '©':

ALTER SESSION SET NLS_CURRENCY='©';
5. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Salary"
FROM EMPLOYEES
WHERE salary > 13000;

Result:

Salary

 ©024,000.00
 ©017,000.00
 ©017,000.00
 ©014,000.00
 ©013,500.00

6. Set NLS_TERRITORY and NLS_CURRENCY to the values that they had at
step 1.

Chapter 7
About Individual NLS Parameters

7-22

See Also:

• Oracle Database Globalization Support Guide for more information about the
NLS_CURRENCY parameter

• "About Numeric and Monetary Formats"

• "Changing NLS Parameter Values"

About the NLS_ISO_CURRENCY Parameter
This parameter specifies the ISO currency symbol (the string returned by the numeric format
element C).

Specifies: ISO currency symbol (the character string returned by the numeric format element
C).

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

Local currency symbols can be ambiguous, but ISO currency symbols are unique.

Example 7-9 shows that the territories AUSTRALIA and AMERICA have the same local
currency symbol, but different ISO currency symbols.

To try this example in SQL Developer, enter the statements and queries in the Worksheet.
For information about the Worksheet, see "Running Queries in SQL Developer". The results
shown here are from SQL*Plus; their format is slightly different in SQL Developer.

Example 7-9 NLS_ISO_CURRENCY

1. Note the current values of NLS_TERRITORY and NLS_ISO_CURRENCY.

2. If the value of NLS_TERRITORY in step 1 is not AUSTRALIA, change it:

ALTER SESSION SET NLS_TERRITORY=AUSTRALIA;
3. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Local",
 TO_CHAR(salary, 'C099G999D99') "ISO"
FROM EMPLOYEES
WHERE salary > 15000;

Result:

Local ISO
--------------------- ------------------
 $024,000.00 AUD024,000.00
 $017,000.00 AUD017,000.00
 $017,000.00 AUD017,000.00

4. Change the value of NLS_TERRITORY to AMERICA:

ALTER SESSION SET NLS_TERRITORY=AMERICA;
5. Run this query:

Chapter 7
About Individual NLS Parameters

7-23

SELECT TO_CHAR(salary, 'L099G999D99') "Local",
 TO_CHAR(salary, 'C099G999D99') "ISO"
FROM EMPLOYEES
WHERE salary > 15000;

Result:

Local ISO
--------------------- ------------------
 $024,000.00 USD024,000.00
 $017,000.00 USD017,000.00
 $017,000.00 USD017,000.00

6. Set NLS_TERRITORY and NLS_ISO_CURRENCY to the values that they had at
step 1.

See Also:

• Oracle Database Globalization Support Guide for more information about
the NLS_ISO_CURRENCY parameter

• "About Numeric and Monetary Formats"

• "Changing NLS Parameter Values"

About the NLS_DUAL_CURRENCY Parameter
This parameter specifies the dual currency symbol (introduced to support the euro
currency symbol during the euro transition period).

Specifies: Dual currency symbol (introduced to support the euro currency symbol
during the euro transition period).

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter".

See Also:

• Oracle Database Globalization Support Guide for more information about
the NLS_DUAL_CURRENCY parameter

• "About Numeric and Monetary Formats"

• "Changing NLS Parameter Values"

About the NLS_SORT Parameter
This parameter specifies the linguistic sort order (collating sequence) for queries that
have the ORDER BY clause.

Chapter 7
About Individual NLS Parameters

7-24

Specifies: Linguistic sort order (collating sequence) for queries that have the ORDER BY
clause.

Acceptable Values:

• BINARY
Sort order is based on the binary sequence order of either the database character set or
the national character set, depending on the data type.

• Any linguistic sort name that Oracle supports

Sort order is based on the order of the specified linguistic sort name. The linguistic sort
name is usually the same as the language name, but not always. For a list of supported
linguistic sort names, see Oracle Database Globalization Support Guide.

Default Value: Set by NLS_LANGUAGE, described in "About the NLS_LANGUAGE
Parameter".

Example 7-10 shows how two different NLS_SORT settings affect the displayed result of the
same query. The settings are BINARY and Traditional Spanish (SPANISH_M). Traditional
Spanish treats ch, ll, and ñ as letters that follow c, l, and n, respectively.

To try this example in SQL Developer, enter the statements and queries in the Worksheet.
For information about the Worksheet, see "Running Queries in SQL Developer". The results
shown here are from SQL*Plus; their format is slightly different in SQL Developer.

Case-Insensitive and Accent-Insensitive Sorts

Operations inside Oracle Database are sensitive to the case and the accents of the
characters. To perform a case-insensitive sort, append _CI to the value of the NLS_SORT
parameter (for example, BINARY_CI or GERMAN_CI). To perform a sort that is both case-
insensitive and accent-insensitive, append _AI to the value of the NLS_SORT parameter (for
example, BINARY_AI or FRENCH_M_AI).

Example 7-10 NLS_SORT Affects Linguistic Sort Order

1. Create table for Spanish words:

CREATE TABLE temp (name VARCHAR2(15));
2. Populate table with some Spanish words:

INSERT INTO temp (name) VALUES ('laguna');
INSERT INTO temp (name) VALUES ('llama');
INSERT INTO temp (name) VALUES ('loco');

3. Note the current value of NLS_SORT.

4. If the value of NLS_SORT in step 3 is not BINARY, change it:

ALTER SESSION SET NLS_SORT=BINARY;
5. Run this query:

SELECT * FROM temp ORDER BY name;

Result:

NAME

laguna
llama
loco

Chapter 7
About Individual NLS Parameters

7-25

6. Change the value of NLS_SORT to SPANISH_M (Traditional Spanish):

ALTER SESSION SET NLS_SORT=SPANISH_M;
7. Repeat the query from step 5.

Result:

NAME

laguna
loco
llama

8. Drop the table:

DROP TABLE temp;
9. Set NLS_SORT to the value that it had at step 3.

See Also:

• Oracle Database Globalization Support Guide for more information about
the NLS_SORT parameter

• Oracle Database Globalization Support Guide for more information about
case-insensitive and accent-insensitive sorts

• "About Linguistic Sorting and String Searching"

• "Changing NLS Parameter Values"

About the NLS_COMP Parameter
This parameter specifies the character-comparison behavior of SQL operations.

Specifies: Character-comparison behavior of SQL operations.

Acceptable Values:

• BINARY
SQL compares the binary codes of characters. One character is greater than
another if it has a higher binary code.

• LINGUISTIC
SQL performs a linguistic comparison based on the value of the NLS_SORT
parameter, described in "About the NLS_SORT Parameter".

• ANSI
This value is provided only for backward compatibility.

Default Value: BINARY
Example 7-11 shows that the result of a query can depend on the NLS_COMP setting.

To try this example in SQL Developer, enter the statements and queries in the
Worksheet. For information about the Worksheet, see "Running Queries in SQL

Chapter 7
About Individual NLS Parameters

7-26

Developer". The results shown here are from SQL*Plus; their format is slightly different in
SQL Developer.

Example 7-11 NLS_COMP Affects SQL Character Comparison

1. Note the current values of NLS_SORT and NLS_COMP.

2. If the values of NLS_SORT and NLS_COMP in step 1 are not SPANISH_M (Traditional
Spanish) and BINARY, respectively, change them:

ALTER SESSION SET NLS_SORT=SPANISH_M NLS_COMP=BINARY;
3. *Run this query:

SELECT LAST_NAME FROM EMPLOYEES
WHERE LAST_NAME LIKE 'C%';

Result:

LAST_NAME

Cabrio
Cambrault
Cambrault
Chen
Chung
Colmenares

6 rows selected

4. Change the value of NLS_COMP to LINGUISTIC:

ALTER SESSION SET NLS_COMP=LINGUISTIC;
5. Repeat the query from step 3.

Result:

LAST_NAME

Cabrio
Cambrault
Cambrault
Colmenares

4 rows selected

This time, Chen and Chung are not returned because Traditional Spanish treats ch as a
single character that follows c.

6. Set NLS_SORT and NLS_COMP to the values that they had in step 1.

See Also:

• Oracle Database Globalization Support Guide for more information about the
NLS_COMP parameter

• "About Linguistic Sorting and String Searching"

• "Changing NLS Parameter Values"

Chapter 7
About Individual NLS Parameters

7-27

About the NLS_LENGTH_SEMANTICS Parameter
This parameter specifies the length semantics for columns of the character data types
CHAR, VARCHAR2, and LONG; that is, whether these columns are specified in bytes
or in characters. (Applies only to columns that are declared after the parameter is set.)

Specifies: Length semantics for columns of the character data types CHAR,
VARCHAR2, and LONG; that is, whether these columns are specified in bytes or in
characters. (Applies only to columns that are declared after the parameter is set.)

Acceptable Values:

• BYTE
New CHAR, VARCHAR2, and LONG columns are specified in bytes.

• CHAR
New CHAR, VARCHAR2, and LONG columns are specified in characters.

Default Value: BYTE
To try this example in SQL Developer, enter the statements and queries in the
Worksheet. For information about the Worksheet, see "Running Queries in SQL
Developer". The results shown here are from SQL*Plus; their format is slightly different
in SQL Developer.

Example 7-12 NLS_LENGTH_SEMANTICS Affects Storage of VARCHAR2
Column

1. Note the current values of NLS_LENGTH_SEMANTICS.

2. If the value of NLS_LENGTH_SEMANTICS in step 1 is not BYTE, change it:

ALTER SESSION SET NLS_LENGTH_SEMANTICS=BYTE;
3. Create a table with a VARCHAR2 column:

CREATE TABLE SEMANTICS_BYTE(SOME_DATA VARCHAR2(20));
4. Click the tab Connections.

5. In the Connections frame, expand hr_conn.

6. In the list of schema object types, expand Tables.

7. In the list of tables, select SEMANTICS_BYTE.

To the right of the Connections frame, the Columns pane shows that for Column
Name SOME_DATA, the Data Type is VARCHAR2(20 BYTE).

8. Change the value of NLS_LENGTH_SEMANTICS to CHAR:

ALTER SESSION SET NLS_LENGTH_SEMANTICS=CHAR;
9. Create another table with a VARCHAR2 column:

CREATE TABLE SEMANTICS_CHAR(SOME_DATA VARCHAR2(20));
10. In the Connections frame, click the Refresh icon.

The list of tables now includes SEMANTICS_CHAR.

11. Select SEMANTICS_CHAR.

Chapter 7
About Individual NLS Parameters

7-28

The Columns pane shows that for Column Name SOME_DATA, the Data Type is
VARCHAR2(20 CHAR).

12. Select SEMANTICS_BYTE again.

The Columns pane shows that for Column Name SOME_DATA, the Data Type is still
VARCHAR2(20 BYTE).

13. Set the value of NLS_LENGTH_SEMANTICS to the value that it had in step 1.

See Also:

• Oracle Database Globalization Support Guide for more information about the
NLS_LENGTH_SEMANTICS parameter

• "About Length Semantics"

• "Changing NLS Parameter Values"

Using Unicode in Globalized Applications
You can insert and retrieve Unicode data. Data is transparently converted among the
database and client programs, which ensures that client programs are independent of the
database character set and national character set.

See Also:

• Oracle Database Globalization Support Guide for more information about SQL
and PL/SQL programming with Unicode

• Oracle Database Globalization Support Guide for general information about
programming with Unicode

Representing Unicode String Literals in SQL and PL/SQL
There are three ways to represent a Unicode string literal in SQL or PL/SQL.

The three ways to represent a Unicode string literal in SQL or PL/SQL are:

• N'string'

Example: N'résumé'.

Limitations: See "Avoiding Data Loss During Character-Set Conversion".

• NCHR(number)

The SQL function NCHR returns the character whose binary equivalent is number in the
national character set. The character returned has data type NVARCHAR2.

Example: NCHR(36) represents $ in the default national character set, AL16UTF16.

Limitations: Portability of the value of NCHR(number) is limited to applications that use
the same national character set.

Chapter 7
Using Unicode in Globalized Applications

7-29

• UNISTR('string')

The SQL function UNISTR converts string to the national character set.

For portability and data preservation, Oracle recommends that string contain only
ASCII characters and Unicode encoding values. A Unicode encoding value has
the form \xxxx, where xxxx is the hexadecimal value of a character code value in
UCS-2 encoding format.
Example: UNISTR('G\0061ry') represents 'Gary'

ASCII characters are converted to the database character set and then to the
national character set. Unicode encoding values are converted directly to the
national character set.

See Also:

• Oracle Database Globalization Support Guide for more information about
Unicode string literals

• Oracle Database SQL Language Reference for more information about
the NCHR function

• Oracle Database SQL Language Reference for more information about
the UNISTR function

Avoiding Data Loss During Character-Set Conversion
As part of a SQL or PL/SQL statement, a literal (with or without the prefix N) is
encoded in the same character set as the rest of the statement. On the client side, the
statement is encoded in the client character set, which is determined by the
NLS_LANG parameter. On the server side, the statement is encoded in the database
character set.

When the SQL or PL/SQL statement is transferred from the client to the database, its
character set is converted accordingly. If the database character set does not contain
all characters that the client used in the text literals, then data is lost in this conversion.
NCHAR string literals are more vulnerable than CHAR text literals, because they are
designed to be independent of the database character set.

To avoid data loss in conversion to an incompatible database character set, you can
activate the NCHAR literal replacement functionality. For more information, see Oracle
Database Globalization Support Guide.

Chapter 7
Using Unicode in Globalized Applications

7-30

8
Building Effective Applications

Effective applications are scalable and use recommended programming and security
practices.

See Also:

Oracle Database Development Guide for more information about creating and
deploying applications that are optimized for Oracle Database

Building Scalable Applications
Design your applications to use the same resources, regardless of user populations and data
volumes, and not to overload system resources.

About Scalable Applications
A scalable application can process a larger workload with a proportional increase in system
resource usage.

A scalable application can process a larger workload with a proportional increase in system
resource usage. For example, if you double its workload, a scalable application uses twice as
many system resources.

An unscalable application exhausts a system resource; therefore, if you increase the
application workload, no more throughput is possible. Unscalable applications result in fixed
throughputs and poor response times.

Examples of resource exhaustion are:

• Hardware exhaustion

• Table scans in high-volume transactions causing inevitable disk input/output (I/O)
shortages

• Excessive network requests causing network and scheduling bottlenecks

• Memory allocation causing paging and swapping

• Excessive process and thread allocation causing operating system thrashing

Design your applications to use the same resources, regardless of user populations and data
volumes, and not to overload system resources.

Using Bind Variables to Improve Scalability
Bind variables, used correctly, let you develop efficient, scalable applications.

8-1

A bind variable is a placeholder in a SQL statement that must be replaced with a valid
value or value address for the statement to execute successfully. By using bind
variables, you can write a SQL statement that accepts inputs or parameters at run
time.

Just as a subprogram can have parameters, whose values are supplied by the invoker,
a SQL statement can have bind variable placeholders, whose values (called bind
variables) are supplied at runtime. Just as a subprogram is compiled once and then
run many times with different parameters, a SQL statement with bind variable
placeholders is hard parsed once and then soft parsed with different bind variables.

A hard parse, which includes optimization and row source generation, is a very CPU-
intensive operation. A soft parse, which skips optimization and row source generation
and proceeds straight to execution, is usually much faster than a hard parse of the
same statement. (For an overview of SQL processing, which includes the difference
between a hard and soft parse, see Oracle Database Concepts.)

Not only is a hard parse a CPU-intensive operation, it is an unscalable operation,
because it cannot be done concurrently with many other operations. For more
information about concurrency and scalability, see "About Concurrency and
Scalability".

Example 8-1 shows the performance difference between a query without a bind
variable and a semantically equivalent query with a bind variable. The former is slower
and uses many more latches (for information about how latches affect scalability, see
"About Latches and Concurrency"). To collect and display performance statistics, the
example uses the Runstats tool, described in "Comparing Programming Techniques
with Runstats".

Note:

• Example 8-1 shows the performance cost for a single user. As more
users are added, the cost escalates rapidly.

• The result of Example 8-1 was produced with this setting:

SET SERVEROUTPUT ON FORMAT TRUNCATED

Note:

• Using bind variables instead of string literals is the most effective way to
make your code invulnerable to SQL injection attacks. For details, see
Oracle Database PL/SQL Language Reference.

• Bind variables sometimes reduce the efficiency of data warehousing
systems. Because most queries take so long, the optimizer tries to
produce the best plan for each query rather than the best generic query.
Using bind variables sometimes forces the optimizer to produce the best
generic query. For information about improving performance in data
warehousing systems, see Oracle Database Data Warehousing Guide.

Chapter 8
Building Scalable Applications

8-2

Although soft parsing is more efficient than hard parsing, the cost of soft parsing a statement
many times is still very high. To maximize the efficiency and scalability of your application,
minimize parsing. The easiest way to minimize parsing is to use PL/SQL.

Example 8-1 Bind Variable Improves Performance

CREATE TABLE t (x VARCHAR2(5));

DECLARE
 TYPE rc IS REF CURSOR;
 l_cursor rc;
BEGIN
 runstats_pkg.rs_start; -- Collect statistics for query without bind variable

 FOR i IN 1 .. 5000 LOOP
 OPEN l_cursor FOR 'SELECT x FROM t WHERE x = ' || TO_CHAR(i);
 CLOSE l_cursor;
 END LOOP;

 runstats_pkg.rs_middle; -- Collect statistics for query with bind variable

 FOR i IN 1 .. 5000 LOOP
 OPEN l_cursor FOR 'SELECT x FROM t WHERE x = :x' USING i;
 CLOSE l_cursor;
 END LOOP;

 runstats_pkg.rs_stop(500); -- Stop collecting statistics
end;
/

Result is similar to:

Run 1 ran in 740 hsec
Run 2 ran in 30 hsec
Run 1 ran in 2466.67% of the time of run 2

Name Run 1 Run 2 Difference
STAT...recursive cpu usage 729 19 -710
STAT...CPU used by this sessio 742 30 -712
STAT...parse time elapsed 1,051 4 -1,047
STAT...parse time cpu 1,066 2 -1,064
STAT...session cursor cache hi 1 4,998 4,997
STAT...table scans (short tabl 5,000 1 -4,999
STAT...parse count (total) 10,003 5,004 -4,999
LATCH.session idle bit 5,003 3 -5,000
LATCH.session allocation 5,003 3 -5,000
STAT...execute count 10,003 5,003 -5,000
STAT...opened cursors cumulati 10,003 5,003 -5,000
STAT...parse count (hard) 10,001 5 -9,996
STAT...CCursor + sql area evic 10,000 1 -9,999
STAT...enqueue releases 10,008 7 -10,001
STAT...enqueue requests 10,009 7 -10,002
STAT...calls to get snapshot s 20,005 5,006 -14,999
STAT...calls to kcmgcs 20,028 35 -19,993
STAT...consistent gets pin (fa 20,013 17 -19,996
LATCH.call allocation 20,002 6 -19,996
STAT...consistent gets from ca 20,014 18 -19,996
STAT...consistent gets 20,014 18 -19,996
STAT...consistent gets pin 20,013 17 -19,996
LATCH.simulator hash latch 20,014 11 -20,003
STAT...session logical reads 20,080 75 -20,005

Chapter 8
Building Scalable Applications

8-3

LATCH.shared pool simulator 20,046 5 -20,041
LATCH.enqueue hash chains 20,343 15 -20,328
STAT...recursive calls 40,015 15,018 -24,997
LATCH.cache buffers chains 40,480 294 -40,186
STAT...session pga memory max 131,072 65,536 -65,536
STAT...session pga memory 131,072 65,536 -65,536
LATCH.row cache objects 165,209 139 -165,070
STAT...session uga memory max 219,000 0 -219,000
LATCH.shared pool 265,108 152 -264,956
STAT...logical read bytes from 164,495,360 614,400 -163,880,960

Run 1 latches total compared to run 2 -- difference and percentage
 Run 1 Run 2 Diff Pct
 562,092 864 -561,228 2,466.67%

PL/SQL procedure successfully completed.

Using PL/SQL to Improve Scalability
Certain PL/SQL features can help you to improve application scalability.

How PL/SQL Minimizes Parsing
PL/SQL, which is optimized for database access, silently caches statements. In PL/
SQL, when you close a cursor, the cursor closes from your perspective—that is, you
cannot use it where an open cursor is required—but PL/SQL actually keeps the cursor
open and caches its statement.

If you use the cached statement again, PL/SQL uses the same cursor, thereby
avoiding a parse. (PL/SQL closes cached statements if necessary—for example, if
your program must open another cursor but doing so would exceed the init.ora setting
of OPEN_CURSORS.)

PL/SQL can silently cache only SQL statements that cannot change at runtime.

About the EXECUTE IMMEDIATE Statement
The EXECUTE IMMEDIATE statement builds and runs a dynamic SQL statement in a
single operation.

The basic syntax of the EXECUTE IMMEDIATE statement is:

EXECUTE IMMEDIATE sql_statement

sql_statement is a string that represents a SQL statement. If sql_statement has the
same value every time the EXECUTE IMMEDIATE statement runs, then PL/SQL can
cache the EXECUTE IMMEDIATE statement. If sql_statement can be different every
time the EXECUTE IMMEDIATE statement runs, then PL/SQL cannot cache the
EXECUTE IMMEDIATE statement.

Chapter 8
Building Scalable Applications

8-4

See Also:

• Oracle Database PL/SQL Language Reference for information about
EXECUTE IMMEDIATE

• "About the DBMS_SQL Package"

About OPEN FOR Statements
The OPEN FOR statement has the following basic syntax.

The basic syntax of the OPEN FOR statement is:

OPEN cursor_variable FOR query

Your application can open cursor_variable for several different queries before closing it.
Because PL/SQL cannot determine the number of different queries until runtime, PL/SQL
cannot cache the OPEN FOR statement.

If you do not need to use a cursor variable, then use a declared cursor, for both better
performance and ease of programming. For details, see Oracle Database Development
Guide.

See Also:

• Oracle Database PL/SQL Language Reference for information about OPEN
FOR

• "About Cursor Variables"

• "About Cursors"

About the DBMS_SQL Package
The DBMS_SQL package is an API for building, running, and describing dynamic SQL
statements. You must use the DBMS_SQL package instead of the EXECUTE IMMEDIATE
statement if the PL/SQL compiler cannot determine at compile time the number or types of
output host variables (select list items) or input bind variables.

The DBMS_SQL package is an API for building, running, and describing dynamic SQL
statements. Using the DBMS_SQL package takes more effort than using the EXECUTE
IMMEDIATE statement, but you must use the DBMS_SQL package if the PL/SQL compiler
cannot determine at compile time the number or types of output host variables (select list
items) or input bind variables.

Chapter 8
Building Scalable Applications

8-5

See Also:

• Oracle Database PL/SQL Language Reference for more information
about when to use the DBMS_SQL package

• Oracle Database PL/SQL Packages and Types Reference for complete
information about the DBMS_SQL package

• "About the EXECUTE IMMEDIATE Statement"

About Bulk SQL
Bulk SQL reduces the number of "round trips" between PL/SQL and SQL, thereby
using fewer resources.

Without bulk SQL, you retrieve one row at a time from the database (SQL), process it
(PL/SQL), and return it to the database (SQL). With bulk SQL, you retrieve a set of
rows from the database, process the set of rows, and then return the whole set to the
database.

Oracle recommends using Bulk SQL when you retrieve multiple rows from the
database and return them to the database, as in Example 8-2. You do not need bulk
SQL if you retrieve multiple rows but do not return them; for example:

FOR x IN (SELECT * FROM t WHERE ...) -- Retrieve row set (implicit array fetch)
 LOOP
 DBMS_OUTPUT.PUT_LINE(t.x); -- Process rows but do not return them
 END LOOP;

Example 8-2 loops through a table t with a column object_name, retrieving sets of 100
rows, processing them, and returning them to the database. (Limiting the bulk FETCH
statement to 100 rows requires an explicit cursor.)

Example 8-3 does the same job as Example 8-2, without bulk SQL.

As these TKPROF reports for Example 8-2 and Example 8-3 show, using bulk SQL for
this job uses almost 50% less CPU time:

SELECT ROWID RID, OBJECT_NAME FROM T T_BULK

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 721 0.17 0.17 0 22582 0 71825
**
UPDATE T SET OBJECT_NAME = :B1 WHERE ROWID = :B2

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 719 12.83 13.77 0 71853 74185 71825
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 720 12.83 13.77 0 71853 74185 71825

SELECT ROWID RID, OBJECT_NAME FROM T T_SLOW_BY_SLOW

Chapter 8
Building Scalable Applications

8-6

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 721 0.17 0.17 0 22582 0 71825
**
UPDATE T SET OBJECT_NAME = :B2 WHERE ROWID = :B1

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 71824 21.25 22.25 0 71836 73950 71824
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 71825 21.25 22.25 0 71836 73950 71824

However, using bulk SQL for this job uses more CPU time—and more code—than using a
single SQL statement, as this TKPROF report shows:

UPDATE T SET OBJECT_NAME = SUBSTR(OBJECT_NAME,2) || SUBSTR(OBJECT_NAME,1,1)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 1.30 1.44 0 2166 75736 71825
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 1.30 1.44 0 2166 75736 71825

Example 8-2 Bulk SQL

CREATE OR REPLACE PROCEDURE bulk AS
 TYPE ridArray IS TABLE OF ROWID;
 TYPE onameArray IS TABLE OF t.object_name%TYPE;

 CURSOR c is SELECT ROWID rid, object_name -- explicit cursor
 FROM t t_bulk;

 l_rids ridArray;
 l_onames onameArray;
 N NUMBER := 100;
BEGIN
 OPEN c;
 LOOP
 FETCH c BULK COLLECT
 INTO l_rids, l_onames LIMIT N; -- retrieve N rows from t

 FOR i in 1 .. l_rids.COUNT
 LOOP -- process N rows
 l_onames(i) := substr(l_onames(i),2) || substr(l_onames(i),1,1);
 END LOOP;

 FORALL i in 1 .. l_rids.count -- return processed rows to t
 UPDATE t
 SET object_name = l_onames(i)
 WHERE ROWID = l_rids(i);
 EXIT WHEN c%NOTFOUND;
 END LOOP;
 CLOSE c;
END;
/

Chapter 8
Building Scalable Applications

8-7

Example 8-3 Without Bulk SQL

CREATE OR REPLACE PROCEDURE slow_by_slow AS
BEGIN
 FOR x IN (SELECT rowid rid, object_name FROM t t_slow_by_slow)
 LOOP
 x.object_name := substr(x.object_name,2) || substr(x.object_name,1,1);

 UPDATE t
 SET object_name = x.object_name
 WHERE rowid = x.rid;
 END LOOP;
END;

See Also:

• Oracle Database Development Guide for an overview of bulk SQL

• Oracle Database Development Guide for more specific information about
when to use bulk SQL

• Oracle Database PL/SQL Language Reference for more information
about bulk SQL

About Concurrency and Scalability
Concurrency is the simultaneous execution of multiple transactions. The better your
application handles concurrency, the more scalable it is. A scalable application can
process a larger workload with a proportional increase in system resource usage.

Concurrency is the simultaneous execution of multiple transactions. Statements
within concurrent transactions can update the same data. The better your application
handles concurrency, the more scalable it is. A scalable application can process a
larger workload with a proportional increase in system resource usage. For example, if
you double its workload, a scalable application uses twice as many system resources.

Concurrent transactions must produce meaningful and consistent results. Therefore, a
multiuser database must provide the following:

• Data concurrency , which ensures that users can access data at the same time.

• Data consistency, which ensures that each user sees a consistent view of the
data, including visible changes from his or her own transactions and committed
transactions of other users

Oracle Database maintains data consistency by using a multiversion consistency
model and various types of locks and transaction isolation levels. For an overview of
the Oracle Database locking mechanism, see Oracle Database Concepts. For an
overview of Oracle Database transaction isolation levels, see Oracle Database
Concepts.

To describe consistent transaction behavior when transactions run concurrently,
database researchers have defined a transaction isolation category called
serializable. A serializable transaction operates in an environment that appears to
be a single-user database. Serializable transactions are desirable in specific cases,
but for 99% of the work load, read committed isolation is perfect.

Chapter 8
Building Scalable Applications

8-8

Oracle Database has features that improve concurrency and scalability—for example,
sequences, latches, nonblocking reads and writes, and shared SQL.

See Also:

Oracle Database Concepts for more information about data concurrency and
consistency

About Sequences and Concurrency
Sequences eliminate serialization, thereby improving the concurrency and scalability of your
application.

A sequence is a schema object from which multiple users can generate unique integers,
which is very useful when you need unique primary keys.

Without sequences, unique primary key values must be produced programmatically. A user
gets a new primary key value by selecting the most recently produced value and
incrementing it. This technique requires a lock during the transaction and causes multiple
users to wait for the next primary key value—that is, the transactions serialize. Sequences
eliminate serialization, thereby improving the concurrency and scalability of your application.

See Also:

• Oracle Database Concepts for information about concurrent access to
sequences

• "Creating and Managing Sequences"

About Latches and Concurrency
An increase in latches means more concurrency-based waits, and therefore a decrease in
scalability.

A latch is a simple, low-level serialization mechanism that coordinates multiuser access to
shared data structures. Latches protect shared memory resources from corruption when
accessed by multiple processes.

An increase in latches means more concurrency-based waits, and therefore a decrease in
scalability. If you can use either an approach that runs slightly faster during development or
one that uses fewer latches, use the latter.

See Also:

• Oracle Database Concepts for information about latches

• Oracle Database Concepts for information about mutexes, which are like
latches for single objects

Chapter 8
Building Scalable Applications

8-9

About Nonblocking Reads and Writes and Concurrency
In Oracle Database, nonblocking reads and writes let queries execute concurrently
with changes to the data they are reading, without blocking or stopping. Nonblocking
reads and writes let one session read data while another session is changing that
data.

About Shared SQL and Concurrency
Oracle Database compiles a SQL statement into an executable object once, and then
other sessions can reuse the object for as long as it exists. This Oracle Database
feature, called shared SQL, lets the database do very resource-intensive operations—
compiling and optimizing SQL statements—only once, instead of every time a session
uses the same SQL statement.

See Also:

Oracle Database Concepts for more information about shared SQL

Limiting the Number of Concurrent Sessions
The more concurrent sessions you have, the more concurrency-based waits you have,
and the slower your response time is.

If your computer has n CPU cores, then at most n sessions can really be concurrently
active. Each additional "concurrent" session must wait for a CPU core to be available
before it can become active. If some waiting sessions are waiting only for I/O, then
increasing the number of concurrent sessions to slightly more than n might slightly
improve runtime performance. However, increasing the number of concurrent sessions
too much will significantly reduce runtime performance.

The SESSIONS initialization parameter determines the maximum number of
concurrent users in the system. For details, see Oracle Database Reference.

See Also:

http://www.youtube.com/watch?v=xNDnVOCdvQ0 for a video that shows the
effect of reducing the number of concurrent sessions on a computer with 12
CPU cores from thousands to 96

Comparing Programming Techniques with Runstats
The Runstats tool lets you compare the performance of two programming techniques
to see which is better.

Chapter 8
Building Scalable Applications

8-10

http://www.youtube.com/watch?v=xNDnVOCdvQ0

About Runstats
The Runstats tool lets you compare the performance of two programming techniques to see
which is better.

Runstats measures:

• Elapsed time for each technique in hundredths of seconds (hsec)

• Elapsed time for the first technique as a percentage of that of the second technique

• System statistics for the two techniques (for example, parse calls)

• Latching for the two techniques

Of the preceding measurements, the most important is latching (see "About Latches and
Concurrency").

See Also:

Example 8-1, which uses Runstats

Setting Up Runstats
The Runstats tool is implemented as a package that uses a view and a temporary table.

Note:

For step 1 of the following procedure, you need the SELECT privilege on the
dynamic performance views V$STATNAME, V$MYSTAT, and V$LATCH. If you
cannot get this privilege, then have someone who has the privilege create the view
in step 1 and grant you the SELECT privilege on it.

To set up the Runstats tool:

1. Create the view that Runstats uses:

CREATE OR REPLACE VIEW stats
AS SELECT 'STAT...' || a.name name, b.value
FROM V$STATNAME a, V$MYSTAT b
WHERE a.statistic# = b.statistic#
UNION ALL
SELECT 'LATCH.' || name, gets
FROM V$LATCH;

2. Create the temporary table that Runstats uses:

DROP TABLE run_stats;

CREATE GLOBAL TEMPORARY TABLE run_stats
(runid VARCHAR2(15),
 name VARCHAR2(80),
 value INT)
ON COMMIT PRESERVE ROWS;

Chapter 8
Building Scalable Applications

8-11

3. Create this package specification:

CREATE OR REPLACE PACKAGE runstats_pkg
AS
 PROCEDURE rs_start;
 PROCEDURE rs_middle;
 PROCEDURE rs_stop(p_difference_threshold IN NUMBER DEFAULT 0);
end;
/

The parameter p_difference_threshold controls the amount of statistics and
latching data that Runstats displays. Runstats displays data only when the
difference for the two techniques is greater than p_difference_threshold. By
default, Runstats displays all data.

4. Create this package body:

CREATE OR REPLACE PACKAGE BODY runstats_pkg
AS
 g_start NUMBER;
 g_run1 NUMBER;
 g_run2 NUMBER;

 PROCEDURE rs_start
 IS
 BEGIN
 DELETE FROM run_stats;

 INSERT INTO run_stats
 SELECT 'before', stats.* FROM stats;

 g_start := DBMS_UTILITY.GET_TIME;
 END rs_start;

 PROCEDURE rs_middle
 IS
 BEGIN
 g_run1 := (DBMS_UTILITY.GET_TIME - g_start);

 INSERT INTO run_stats
 SELECT 'after 1', stats.* FROM stats;

 g_start := DBMS_UTILITY.GET_TIME;
 END rs_middle;

 PROCEDURE rs_stop(p_difference_threshold IN NUMBER DEFAULT 0)
 IS
 BEGIN
 g_run2 := (DBMS_UTILITY.GET_TIME - g_start);

 DBMS_OUTPUT.PUT_LINE
 ('Run 1 ran in ' || g_run1 || ' hsec');

 DBMS_OUTPUT.PUT_LINE
 ('Run 2 ran in ' || g_run2 || ' hsec');

 DBMS_OUTPUT.PUT_LINE
 ('Run 1 ran in ' || round(g_run1/g_run2*100, 2) || '% of the time of
run 2');

 DBMS_OUTPUT.PUT_LINE(CHR(9));

Chapter 8
Building Scalable Applications

8-12

 INSERT INTO run_stats
 SELECT 'after 2', stats.* FROM stats;

 DBMS_OUTPUT.PUT_LINE
 (RPAD('Name', 30) ||
 LPAD('Run 1', 14) ||
 LPAD('Run 2', 14) ||
 LPAD('Difference', 14)
);

 FOR x IN
 (SELECT RPAD(a.name, 30) ||
 TO_CHAR(b.value - a.value, '9,999,999,999') ||
 TO_CHAR(c.value - b.value, '9,999,999,999') ||
 TO_CHAR(((c.value - b.value) - (b.value - a.value)),
 '9,999,999,999') data
 FROM run_stats a, run_stats b, run_stats c
 WHERE a.name = b.name
 AND b.name = c.name
 AND a.runid = 'before'
 AND b.runid = 'after 1'
 AND c.runid = 'after 2'
 AND (c.value - a.value) > 0
 AND abs((c.value - b.value) - (b.value - a.value)) >
 p_difference_threshold
 ORDER BY ABS((c.value - b.value) - (b.value - a.value))
) LOOP
 DBMS_OUTPUT.PUT_LINE(x.data);
 END LOOP;

 DBMS_OUTPUT.PUT_LINE(CHR(9));

 DBMS_OUTPUT.PUT_LINE(
 'Run 1 latches total compared to run 2 -- difference and percentage');

 DBMS_OUTPUT.PUT_LINE
 (LPAD('Run 1', 14) ||
 LPAD('Run 2', 14) ||
 LPAD('Diff', 14) ||
 LPAD('Pct', 10)
);

 FOR x IN
 (SELECT TO_CHAR(run1, '9,999,999,999') ||
 TO_CHAR(run2, '9,999,999,999') ||
 TO_CHAR(diff, '9,999,999,999') ||
 TO_CHAR(ROUND(g_run1/g_run2*100, 2), '99,999.99') || '%' data
 FROM (SELECT SUM (b.value - a.value) run1,
 SUM (c.value - b.value) run2,
 SUM ((c.value - b.value) - (b.value - a.value)) diff
 FROM run_stats a, run_stats b, run_stats c
 WHERE a.name = b.name
 AND b.name = c.name
 AND a.runid = 'before'
 AND b.runid = 'after 1'
 AND c.runid = 'after 2'
 AND a.name like 'LATCH%'
)
) LOOP
 DBMS_OUTPUT.PUT_LINE(x.data);

Chapter 8
Building Scalable Applications

8-13

 END LOOP;

 END rs_stop;

END;
/

See Also:

• "Creating Views"

• "Creating Tables"

• "Tutorial: Creating a Package Specification"

• "Tutorial: Creating a Package Body"

• Oracle Database Reference for information about dynamic performance
views

Using Runstats
This topic gives the syntax for using the Runstats tool.

To use Runstats to compare two programming techniques, invoke the runstats_pkg
procedures from an anonymous block, using this syntax:

[DECLARE local_declarations]
BEGIN
 runstats_pkg.rs_start;
 code_for_first_technique
 runstats_pkg.rs_middle;
 code_for_second_technique
 runstats_pkg.rs_stop(n);
END;
/

See Also:

Example 8-1, which uses Runstats

Real-World Performance and Data Processing Techniques
A common task in database applications in a data warehouse environment is querying
or modifying a huge data set. The problem for application developers is how to
achieve high performance when processing large data sets.

Processing techniques fall into two categories: iterative, and set-based. Over years of
testing, the Real-World Performance group has discovered that set-based
processing techniques perform orders of magnitude better for database
applications that process large data sets.

This topic includes the following major subtopics:.

Chapter 8
Building Scalable Applications

8-14

About Iterative Data Processing
In iterative processing, applications use conditional logic to loop through a set of rows.

Typically, although not necessarily, iterative processing uses a client/server model as follows:

1. Transfer a group of rows from the database server to the client application.

2. Process the group within the client application.

3. Transfer the processed group back to the database server.

You can implement iterative algorithms using three main techniques: row-by-row processing,
array processing, and manual parallelism.

Iterative Processing: Row-By-Row

In row-by-row processing, a single process loops through a data set and operates on a single
row a time. In a typical implementation, the application retrieves each row from the database,
processes it in the middle tier, and then sends the row back to the database, which executes
DML and commits.

Assume that your functional requirement is to query an external table named
ext_scan_events, and then insert its rows into a heap-organized staging table named
stage1_scan_events. The following PL/SQL block uses a row-by-row technique to meet this
requirement:

declare
 cursor c is select s.* from ext_scan_events s;
 r c%rowtype;
begin
 open c;
 loop
 fetch c into r;
 exit when c%notfound;
 insert into stage1_scan_events d values r;
 commit;
 end loop;
 close c;
end;

The row-by-row technique has the following advantages:

• It performs well on small data sets.

• The looping algorithm is familiar to all professional developers, easy to write quickly, and
easy to understand.

The row-by-row technique has the following disadvantages:

• Processing time can be unacceptably long for large data sets.

• The application executes serially, and thus cannot exploit the native parallel processing
features of Oracle Database running on modern hardware.

See Also: RWP #7 Set-Based Processing

Chapter 8
Building Scalable Applications

8-15

Iterative Processing: Arrays

Array processing is identical to row-by-row processing, except that it processes a
group of rows in each iteration rather than a single row.

Assume that your functional requirement is the same as in Example X-X: query an
external table named ext_scan_events, and then insert its rows into a heap-organized
staging table named stage1_scan_events. The following PL/SQL block uses an array
technique to meet this requirement:

declare
 cursor c is select s.* from ext_scan_events s;
 type t is table of c%rowtype index by binary_integer;
 a t;
 rows binary_integer := 0;
begin
 open c;
 loop
 fetch c bulk collect into a limit array_size;
 exit when a.count = 0;
 forall i in 1..a.count
 insert into stage1_scan_events d values a(i);
 commit;
 end loop;
 close c;
end;

The preceding code differs from the equivalent row-by-row code in using a BULK
COLLECT operator in the FETCH STATEMENT, which is limited by the array_size
value of type PLS_INTEGER. For example, if array_size is set to 100, then the
application fetches rows in groups of 100.

The array technique has the following advantages over the row-by-row technique:

• The array enables the application to process a group of rows at the same time,
which means that it reduces network round trips, COMMIT time, and the code path
in the client and server.

• The database is more efficient because the server process batches the inserts,
and commits after every group of inserts rather than after every insert.

The disadvantages of this technique are the same as for row-by-row processing.
Processing time can be unacceptable for large data sets. Also, the application must
run serially on a single CPU core, and thus cannot exploit the native parallelism of
Oracle Database.

Iterative Processing: Manual Parallelism

Manual parallelism uses the same iterative algorithm as row-by-row and array
processing, but enables multiple server processes to divide the work and run in
parallel.

Assume the functional requirement is the same as in the row-by-row and array
examples. The primary differences are as follows:

• The scan event records are stored in a mass of flat files.

Chapter 8
Building Scalable Applications

8-16

• 32 server processes must run in parallel, with each server process querying a different
external table.

• You use PL/SQL to achieve the parallelism by executing 32 threads of the same PL/SQL
program, with each thread running simultaneously as a separate job managed by Oracle
Scheduler. A job is the combination of a schedule and a program.

The following PL/SQL code uses manual parallellism:

declare
 sqlstmt varchar2(1024) := q'[
-- BEGIN embedded anonymous block
 cursor c is select s.* from ext_scan_events_${thr} s;
 type t is table of c%rowtype index by binary_integer;
 a t;
 rows binary_integer := 0;
begin
 for r in (select ext_file_name from ext_scan_events_dets where
ora_hash(file_seq_nbr,${thrs}) = ${thr})
 loop
 execute immediate
 'alter table ext_scan_events_${thr} location' || '(' ||
r.ext_file_name || ')';
 open c;
 loop
 fetch c bulk collect into a limit ${array_size};
 exit when a.count = 0;
 forall i in 1..a.count
 insert into stage1_scan_events d values a(i);
 commit;
-- demo instrumentation
 rows := rows + a.count; if rows > 1e3 then exit when not
sd_control.p_progress('loading','userdefined',rows); rows := 0; end if;
 end loop;
 close c;
 end loop;
end;
-- END embedded anonymous block
]';

begin
 sqlstmt := replace(sqlstmt, '${array_size}', to_char(array_size));
 sqlstmt := replace(sqlstmt, '${thr}', thr);
 sqlstmt := replace(sqlstmt, '${thrs}', thrs);
 execute immediate sqlstmt;
end;

The ORA_HASH function divides the ext_scan_events_dets table into 32 evenly distributed
buckets, and then the SELECT statement retrieves the file names for bucket 0. For each file
name in the bucket, the program sets the location of the external table to this file name. The
program then uses batch processing to query the external table, insert into the staging table,
and then commit.

While job 1 is executing, the other 31 Oracle Scheduler jobs execute in parallel. In this way,
each job simultaneously reads a different subset of the scan event files, and inserts the
records from its subset into the same staging table.

Chapter 8
Building Scalable Applications

8-17

The manual parallelism technique has the following advantages over the alternative
iterative techniques:

• It performs far better on large data sets because server processes are working in
parallel.

• When the application uses ORA_HASH to distribute the workload, each thread of
execution can access the same amount of data, which means that the parallel
processes can finish at the same time.

The manual parallelism technique has the following disadvantages:

• The code is relatively lengthy, complicated, and difficult to understand.

• The application must perform a certain amount of preparatory work before the
database can begin the main work, which is processing the rows in parallel.

• If multiple threads perform the same operations on a common set of database
objects, then lock and latch contention is possible.

• Parallel processing consumes significant CPU resources compared to the
competing iterative techniques.

See Also: RWP #8: Set-Based Parallel Processing

About Set-Based Processing
Set-based processing is a SQL technique that processes a data set inside the
database.

In a set-based model, the SQL statement defines the result, and allows the database
to determine the most efficient way to obtain it. In contrast, iterative algorithms use
conditional logic to pull each each row or group of rows from the database to the client
application, process the data on the client, and then send the data back to the
database. Set-based processing eliminates the network round-trip and database API
overhead because the data never leaves the database.

Assume the same functional requirement as in the previous examples. The following
SQL statements meet this requirement using a set-based algorithm:

alter session enable parallel dml;
insert /*+ APPEND */ into stage1_scan_events d
 select s.* from ext_scan_events s;
commit;

Because the INSERT statement contains a subquery of the ext_scan_events table, a
single SQL statement reads and writes all rows. Also, the application executes a single
COMMIT after the database has inserted all rows. In contrast, iterative applications
execute a COMMIT after the insert of each row or each group of rows.

The set-based technique has significant advantages over iterative techniques:

• As demonstrated in Real-World Performance demonstrations and classes, the
performance on large data sets is orders of magnitude faster. It is not unusual for
the run time of a program to drop from several hours to several seconds.

• A side-effect of the orders of magnitude increase in processing speed is that DBAs
can eliminate long-running and error-prone batch jobs, and innvoate business
processes in real time.

Chapter 8
Building Scalable Applications

8-18

• The length of the code is significantly shorter, a short as two or three lines of code,
because SQL defines the result and not the access method.

• In contrast to manual parallelism, parallel DML is optimized for performance because the
database, rather than the application, manages the processes.

• When joining data sets, the database automatically uses highly efficient hash joins
instead of relatively inefficient application-level loops.

• The APPEND hint forces a direct-path load, which means that the database creates no
redo and undo, thereby avoiding the waste of I/O and CPU.

Set-based processing does have some potential disadvantages:

• The techniques are unfamiliar to many database developers, so they may be more
difficult.

• Because a set-based model is completely different from an iterative model, changing it
requires completely rewriting the source code.

See Also: RWP #7 Set-Based Processing, RWP #8: Set-Based Parallel Processing, RWP #9:
Set-Based Processing--Data Deduplication, RWP #10: Set-Based Processing--Data
Transformations, and RWP #11: Set-Based Processing--Data Aggregation

Recommended Programming Practices
Use the following recommended programming practices.

Use Instrumentation Packages
Oracle Database supplies instrumentation packages whose subprograms let your application
generate trace information whenever necessary. Using this trace information, you can debug
your application without a debugger and identify code that performs badly.

Instrumentation provides your application with considerable functionality; therefore, it is not
overhead. Overhead is something that you can remove without losing much benefit.

Some instrumentation packages that Oracle Database supplies are:

• DBMS_APPLICATION_INFO, which enables a system administrator to track the
performance of your application by module.

For more information about DBMS_APPLICATION_INFO, see Oracle Database PL/SQL
Packages and Types Reference.

• DBMS_SESSION, which enables your application to access session information and set
preferences and security levels

For more information about DBMS_SESSION, see Oracle Database PL/SQL Packages
and Types Reference.

• UTL_FILE, which enables your application to read and write operating system text files

For more information about UTL_FILE, see Oracle Database PL/SQL Packages and
Types Reference.

Chapter 8
Recommended Programming Practices

8-19

See Also:

Oracle Database PL/SQL Packages and Types Reference for a summary of
PL/SQL packages that Oracle Database supplies

Statistics Gathering and Application Tracing
Database statistics provide information about the type of load on the database and the
internal and external resources used by the database. To accurately diagnose
performance problems with the database using ADDM, statistics must be available.

For information about statistics gathering, see Oracle Database 2 Day + Performance
Tuning Guide.

Note:

If Oracle Enterprise Manager is unavailable, then you can gather statistics
using DBMS_MONITOR subprograms, described in Oracle Database
PL/SQL Packages and Types Reference.

Oracle Database provides several tracing tools that can help you monitor and analyze
Oracle Database applications. For details, see Oracle Database SQL Tuning Guide.

Use Existing Functionality
An application that uses existing functionality is easier to develop and maintain than
one that does not, and it also runs faster.

When developing your application, use the existing functionality of your programming
language, your operating system, Oracle Database, and the PL/SQL packages and
types that Oracle Database supplies as much as possible.

Examples of existing functionality that many developers reinvent are:

• Constraints

For introductory information about constraints, see "Ensuring Data Integrity in
Tables."

• SQL functions (functions that are "built into" SQL)

For information about SQL functions, see Oracle Database SQL Language
Reference.

• Sequences (which can generate unique sequential values)

See "Creating and Managing Sequences".

• Auditing (the monitoring and recording of selected user database actions)

For introductory information about auditing, see Oracle Database Security Guide.

• Replication (the process of copying and maintaining database objects, such as
tables, in multiple databases that comprise a distributed database system)

Chapter 8
Recommended Programming Practices

8-20

For information about replication, see the Oracle GoldenGate documentation..

• Message queuing (how web-based business applications communicate with each other)

For introductory information about Oracle Database Advanced Queuing (AQ), see Oracle
Database Advanced Queuing User's Guide.

• Maintaining a history of record changes

For introductory information about Workspace Manager, see Oracle Database
Workspace Manager Developer's Guide.

In Example 8-4, two concurrent transactions dequeue messages stored in a table (that is,
each transaction finds and locks the next unprocessed row of the table). Rather than simply
invoking the DBMS_AQ.DEQUEUE procedure (described in Oracle Database PL/SQL
Packages and Types Reference), the example creates a function-based index on the table
and then uses that function in each transaction to retrieve the rows and display the
messages.

The code in Example 8-4 implements a feature similar to a DBMS_AQ.DEQUEUE invocation
but with fewer capabilities. The development time saved by using existing functionality (in this
case, function-based indexes) can be large.

Example 8-4 Concurrent Dequeuing Transactions

Create table:

DROP TABLE t;
CREATE TABLE t
 (id NUMBER PRIMARY KEY,
 processed_flag VARCHAR2(1),
 payload VARCHAR2(20)
);

Create index on table:

CREATE INDEX t_idx ON
 t(DECODE(processed_flag, 'N', 'N'));

Populate table:

INSERT INTO t
 SELECT r,
 CASE WHEN MOD(r,2) = 0 THEN 'N' ELSE 'Y' END,
 'payload ' || r
 FROM (SELECT LEVEL r FROM DUAL CONNECT BY LEVEL <= 5);

Show table:

SELECT * FROM t;

Result:

 ID P PAYLOAD
---------- - --------------------
 1 Y payload 1
 2 N payload 2
 3 Y payload 3
 4 N payload 4
 5 Y payload 5

5 rows selected.

Chapter 8
Recommended Programming Practices

8-21

First transaction:

DECLARE
 l_rec t%ROWTYPE;
 CURSOR c IS
 SELECT *
 FROM t
 WHERE DECODE(processed_flag,'N','N') = 'N'
 FOR UPDATE
 SKIP LOCKED;
BEGIN
 OPEN c;

 FETCH c INTO l_rec;

 IF (c%FOUND) THEN
 DBMS_OUTPUT.PUT_LINE('Got row ' || l_rec.id || ', ' || l_rec.payload);
 END IF;

 CLOSE c;
END;
/

Result:

Got row 2, payload 2

Concurrent transaction:

DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 l_rec t%ROWTYPE;
 CURSOR c IS
 SELECT *
 FROM t
 WHERE DECODE(processed_flag,'N','N') = 'N'
 FOR UPDATE
 SKIP LOCKED;
BEGIN
 OPEN c;

 FETCH c INTO l_rec;

 IF (c%FOUND) THEN
 DBMS_OUTPUT.PUT_LINE('Got row ' || l_rec.id || ', ' || l_rec.payload);
 END IF;

 CLOSE c;
 COMMIT;
END;
/

Result:

Got row 4, payload 4

Chapter 8
Recommended Programming Practices

8-22

See Also:

• Oracle Database New Features Guide (with each release)

• Oracle Database Concepts (with each release)

Cover Database Tables with Editioning Views
If your application uses database tables, then cover each one with an editioning view so that
you can use edition-based redefinition (EBR) to upgrade the database component of your
application while it is in use, thereby minimizing or eliminating down time.

For information about edition-based redefinition, see Oracle Database Development Guide.

Recommended Security Practices
When granting privileges on the schema objects that comprise your application, use the
principle of least privilege.

That is, users and middle tiers should be given the fewest privileges necessary to perform
their actions, to reduce the danger of inadvertent or malicious unauthorized activities.

See Also:

"Using Bind Variables to Improve Scalability" for information about using bind
variables instead of string literals, which is the most effective way to make your
code invulnerable to SQL injection attacks

Chapter 8
Recommended Security Practices

8-23

9
Developing a Simple Oracle Database
Application

By following the instructions for developing this simple application, you learn the general
procedure for developing Oracle Database applications.

About the Application
The application has the following purpose, structure, and naming conventions.

Purpose of the Application
The application is intended for two kinds of users in a company.

• Typical users (managers of employees)

• Application administrators

Typical users can do the following:

• Get the employees in a given department

• Get the job history for a given employee

• Show general information for a given employee (name, department, job, manager, salary,
and so on)

• Change the salary of a given employee

• Change the job of a given employee

Application administrators can do the following:

• Change the ID, title, or salary range of an existing job

• Add a new job

• Change the ID, name, or manager of an existing department

• Add a new department

Structure of the Application
The application uses the following schema objects and schemas.

Schema Objects of the Application
The application is composed of these schema objects:

• Four tables, which store data about:

– Jobs

– Departments

9-1

– Employees

– Job history of employees

• Four editioning views, which cover the tables, enabling you to use edition-based
redefinition (EBR) to upgrade the finished application when it is in use

• Two triggers, which enforce business rules

• Two sequences that generate unique primary keys for new departments and new
employees

• Two packages:

– employees_pkg, the application program interface (API) for typical users

– admin_pkg, the API for application administrators

The typical users and application administrators access the application only
through its APIs. Therefore, they can change the data only by invoking package
subprograms.

See Also:

• "About Oracle Database" for information about schema objects

• Oracle Database Development Guide for information about EBR

Schemas for the Application
For security, the application uses these five schemas (or users), each of which has
only the privileges that it needs:

• app_data, who owns all the schema objects except the packages and loads its
tables with data from tables in the sample schema HR

The developers who create the packages never work in this schema. Therefore,
they cannot accidently alter or drop application schema objects.

• app_code, who owns only the package employees_pkg

The developers of employees_pkg work in this schema.

• app_admin, who owns only the package admin_pkg

The developers of admin_pkg work in this schema.

• app_user, the typical application user, who owns nothing and can only execute
employees_pkg

The middle-tier application server connects to the database in the connection pool
as app_user. If this schema is compromised—by a SQL injection bug, for example
—the attacker can see and change only what employees_pkg subprograms let it
see and change. The attacker cannot drop tables, escalate privileges, create or
alter schema objects, or anything else.

• app_admin_user, an application administrator, who owns nothing and can only
execute admin_pkg and employees_pkg

Chapter 9
About the Application

9-2

The connection pool for this schema is very small, and only privileged users can access
it. If this schema is compromised, the attacker can see and change only what admin_pkg
and employees_pkg subprograms let it see and change.

Suppose that instead of app_user and app_admin_user, the application had only one schema
that owned nothing and could execute both employees_pkg and admin_pkg. The connection
pool for this schema would have to be large enough for both the typical users and the
application administrators. If there were a SQL injection bug in employees_pkg, a typical user
who exploited that bug could access admin_pkg.

Suppose that instead of app_data, app_code, and app_admin, the application had only one
schema that owned all the schema objects, including the packages. The packages would
then have all privileges on the tables, which would be both unnecessary and undesirable.

For example, suppose that you have an audit trail table, AUDIT_TRAIL. You want the
developers of employees_pkg to be able to write to AUDIT_TRAIL, but not read or change it.
You want the developers of admin_pkg to be able to read AUDIT_TRAIL and write to it, but
not change it. If AUDIT_TRAIL, employees_pkg, and admin_pkg belong to the same schema,
then the developers of the two packages have all privileges on AUDIT_TRAIL. However, if
AUDIT_TRAIL belongs to app_data, employees_pkg belongs to app_code, and admin_pkg
belongs to app_admin, then you can connect to the database as app_data and do this:

GRANT INSERT ON AUDIT_TRAIL TO app_code;
GRANT INSERT, SELECT ON AUDIT_TRAIL TO app_admin;

See Also:

• "About Oracle Database" for information about schemas

• "About Sample Schema HR" for information about sample schema HR
• "Recommended Security Practices"

Naming Conventions in the Application
The application uses these naming conventions.

Item Name

Table table#

Editioning view for table# table

Trigger on editioning view table table_{a|b}event[_fer] where:

• a identifies an AFTER trigger.
• b identifies a BEFORE trigger.
• fer identifies a FOR EACH ROW trigger.
• event identifies the event that fires the

trigger. For example: i for INSERT, iu for
INSERT or UPDATE, d for DELETE.

PRIMARY KEY constraint in table# table_pk

NOT NULL constraint on table#.column table_column_not_null1

UNIQUE constraint on table#.column table_column_unique1

CHECK constraint on table#.column table_column_check1

Chapter 9
About the Application

9-3

Item Name

REF constraint on table1#.column to table2#.column table1_to_table2_fk1

REF constraint on table1#.column1 to
table2#.column2

table1_col1_to_table2_col2_fk1 2

Sequence for table# table_sequence

Parameter name p_name

Local variable name l_name

1 table, table1, and table2 are abbreviated to emp for employees, dept for departments, and job_hist for
job_history.

2 col1 and col2 are abbreviations of column names column1 and column2. A constraint name cannot have
more than 30 characters.

Creating the Schemas for the Application
Using the procedure in this section, create the schemas for the application.

The schema names are:

• app_data

• app_code

• app_admin

• app_user

• app_admin_user

Note:

For the following procedure, you need the name and password of a user who
has the CREATE USER and DROP USER system privileges.

To create the schema (or user) schema_name:

1. Using SQL*Plus, connect to Oracle Database as a user with the CREATE USER
and DROP USER system privileges.

The SQL> prompt appears.

2. In case the schema exists, drop the schema and its objects with this SQL
statement:

DROP USER schema_name CASCADE;

If the schema existed, the system responds:

User dropped.

If the schema did not exist, the system responds:

DROP USER schema_name CASCADE
 *

Chapter 9
Creating the Schemas for the Application

9-4

ERROR at line 1:
ORA-01918: user 'schema_name' does not exist

3. If schema_name is either app_data, app_code, or app_admin, then create the schema with
this SQL statement:

CREATE USER schema_name IDENTIFIED BY password
DEFAULT TABLESPACE USERS
QUOTA UNLIMITED ON USERS
ENABLE EDITIONS;

Otherwise, create the schema with this SQL statement:

CREATE USER schema_name IDENTIFIED BY password
ENABLE EDITIONS;

Caution:

Choose a secure password. For guidelines for secure passwords, see Oracle
Database Security Guide.

The system responds:

User created.
4. (Optional) In SQL Developer, create a connection for the schema, using the instructions

in "Connecting to Oracle Database from SQL Developer".

See Also:

• "About the Application"

• "Connecting to Oracle Database from SQL*Plus"

• Oracle Database SQL Language Reference for information about the DROP USER
statement

• Oracle Database SQL Language Reference for information about the CREATE
USER statement

Granting Privileges to the Schemas
To grant privileges to schemas, use the SQL statement GRANT.

You can enter the GRANT statements either in SQL*Plus or in the Worksheet of SQL
Developer. For security, grant each schema only the privileges that it needs.

Chapter 9
Granting Privileges to the Schemas

9-5

See Also:

• "About the Application"

• Oracle Database SQL Language Reference for information about the
GRANT statement

Granting Privileges to the app_data Schema
Grant to the app_data schema only the privileges to do the following:

• Connect to Oracle Database:

GRANT CREATE SESSION TO app_data;
• Create the tables, views, triggers, and sequences for the application:

GRANT CREATE TABLE, CREATE VIEW, CREATE TRIGGER, CREATE SEQUENCE TO app_data;
• Load data from four tables in the sample schema HR into its own tables:

GRANT SELECT ON HR.DEPARTMENTS TO app_data;
GRANT SELECT ON HR.EMPLOYEES TO app_data;
GRANT SELECT ON HR.JOB_HISTORY TO app_data;
GRANT SELECT ON HR.JOBS TO app_data;

Granting Privileges to the app_code Schema
Grant to the app_code schema only the privileges to do the following:

• Connect to Oracle Database:

GRANT CREATE SESSION TO app_code;
• Create the package employees_pkg:

GRANT CREATE PROCEDURE TO app_code;
• Create a synonym (for convenience):

GRANT CREATE SYNONYM TO app_code;

Granting Privileges to the app_admin Schema
Grant to the app_admin schema only the privileges to do the following:

• Connect to Oracle Database:

GRANT CREATE SESSION TO app_admin;
• Create the package admin_pkg:

GRANT CREATE PROCEDURE TO app_admin;
• Create a synonym (for convenience):

GRANT CREATE SYNONYM TO app_admin;

Chapter 9
Granting Privileges to the Schemas

9-6

Granting Privileges to the app_user and app_admin_user Schemas
Grant to the app_user and app_admin_user schemas only the privileges to do the following:

• Connect to Oracle Database:

GRANT CREATE SESSION TO app_user;
GRANT CREATE SESSION TO app_admin_user;

• Create synonyms (for convenience):

GRANT CREATE SYNONYM TO app_user;
GRANT CREATE SYNONYM TO app_admin_user;

Creating the Schema Objects and Loading the Data
This section shows how to create the tables, editioning views, triggers, and sequences for the
application, how to load data into the tables, and how to grant privileges on these schema
objects to the users that need them.

To create the schema objects and load the data:

1. Connect to Oracle Database as user app_data.

For instructions, see either "Connecting to Oracle Database from SQL*Plus" or
"Connecting to Oracle Database from SQL Developer".

2. Create the tables, with all necessary constraints except the foreign key constraint that
you must add after you load the data.

3. Create the editioning views.

4. Create the triggers.

5. Create the sequences.

6. Load the data into the tables.

7. Add the foreign key constraint.

Creating the Tables
This section shows how to create the tables for the application, with all necessary constraints
except one, which you must add after you load the data.

Note:

You must be connected to Oracle Database as user app_data.

In the following procedure, you can enter the statements either in SQL*Plus or in the
Worksheet of SQL Developer. Alternatively, you can create the tables with the SQL
Developer tool Create Table.

Chapter 9
Creating the Schema Objects and Loading the Data

9-7

To create the tables:

1. Create jobs#, which stores information about the jobs in the company (one row for
each job):

CREATE TABLE jobs#
(job_id VARCHAR2(10)
 CONSTRAINT jobs_pk PRIMARY KEY,
 job_title VARCHAR2(35)
 CONSTRAINT jobs_job_title_not_null NOT NULL,
 min_salary NUMBER(6)
 CONSTRAINT jobs_min_salary_not_null NOT NULL,
 max_salary NUMBER(6)
 CONSTRAINT jobs_max_salary_not_null NOT NULL
)
/

2. Create departments#, which stores information about the departments in the
company (one row for each department):

CREATE TABLE departments#
(department_id NUMBER(4)
 CONSTRAINT departments_pk PRIMARY KEY,
 department_name VARCHAR2(30)
 CONSTRAINT department_name_not_null NOT NULL
 CONSTRAINT department_name_unique UNIQUE,
 manager_id NUMBER(6)
)
/

3. Create employees#, which stores information about the employees in the
company (one row for each employee):

CREATE TABLE employees#
(employee_id NUMBER(6)
 CONSTRAINT employees_pk PRIMARY KEY,
 first_name VARCHAR2(20)
 CONSTRAINT emp_first_name_not_null NOT NULL,
 last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_not_null NOT NULL,
 email_addr VARCHAR2(25)
 CONSTRAINT emp_email_addr_not_null NOT NULL,
 hire_date DATE
 DEFAULT TRUNC(SYSDATE)
 CONSTRAINT emp_hire_date_not_null NOT NULL
 CONSTRAINT emp_hire_date_check
 CHECK(TRUNC(hire_date) = hire_date),
 country_code VARCHAR2(5)
 CONSTRAINT emp_country_code_not_null NOT NULL,
 phone_number VARCHAR2(20)
 CONSTRAINT emp_phone_number_not_null NOT NULL,
 job_id CONSTRAINT emp_job_id_not_null NOT NULL
 CONSTRAINT emp_jobs_fk REFERENCES jobs#,
 job_start_date DATE
 CONSTRAINT emp_job_start_date_not_null NOT NULL,
 CONSTRAINT emp_job_start_date_check
 CHECK(TRUNC(JOB_START_DATE) = job_start_date),
 salary NUMBER(6)
 CONSTRAINT emp_salary_not_null NOT NULL,
 manager_id CONSTRAINT emp_mgr_to_empno_fk REFERENCES employees#,
 department_id CONSTRAINT emp_to_dept_fk REFERENCES departments#

Chapter 9
Creating the Schema Objects and Loading the Data

9-8

)
/

The reasons for the REF constraints are:

• An employee must have an existing job. That is, values in the column
employees#.job_id must also be values in the column jobs#.job_id.

• An employee must have a manager who is also an employee. That is, values in the
column employees#.manager_id must also be values in the column
employees#.employee_id.

• An employee must work in an existing department. That is, values in the column
employees#.department_id must also be values in the column
departments#.department_id.

Also, the manager of an employee must be the manager of the department in which the
employee works. That is, values in the column employees#.manager_id must also be
values in the column departments#.manager_id. However, you could not specify the
necessary constraint when you created departments#, because employees# did not exist
yet. Therefore, you must add a foreign key constraint to departments# later (see "Adding
the Foreign Key Constraint").

4. Create job_history#, which stores the job history of each employee in the company (one
row for each job held by the employee):

CREATE TABLE job_history#
(employee_id CONSTRAINT job_hist_to_employees_fk REFERENCES employees#,
 job_id CONSTRAINT job_hist_to_jobs_fk REFERENCES jobs#,
 start_date DATE
 CONSTRAINT job_hist_start_date_not_null NOT NULL,
 end_date DATE
 CONSTRAINT job_hist_end_date_not_null NOT NULL,
 department_id
 CONSTRAINT job_hist_to_departments_fk REFERENCES departments#
 CONSTRAINT job_hist_dept_id_not_null NOT NULL,
 CONSTRAINT job_history_pk PRIMARY KEY(employee_id,start_date),
 CONSTRAINT job_history_date_check CHECK(start_date < end_date)
)
/

The reasons for the REF constraints are that the employee, job, and department must
exist. That is:

• Values in the column job_history#.employee_id must also be values in the column
employees#.employee_id.

• Values in the column job_history#.job_id must also be values in the column
jobs#.job_id.

• Values in the column job_history#.department_id must also be values in the column
departments#.department_id.

See Also:

"Creating Tables"

Chapter 9
Creating the Schema Objects and Loading the Data

9-9

Creating the Editioning Views

Note:

You must be connected to Oracle Database as user app_data.

To create the editioning views, use the following statements (in any order). You can
enter the statements either in SQL*Plus or in the Worksheet of SQL Developer.
Alternatively, you can create the editioning views with the SQL Developer tool Create
View.

CREATE OR REPLACE EDITIONING VIEW jobs AS SELECT * FROM jobs#
/
CREATE OR REPLACE EDITIONING VIEW departments AS SELECT * FROM departments#
/
CREATE OR REPLACE EDITIONING VIEW employees AS SELECT * FROM employees#
/
CREATE OR REPLACE EDITIONING VIEW job_history AS SELECT * FROM job_history#
/

Note:

The application must always reference the base tables through the editioning
views. Otherwise, the editioning views do not cover the tables and you
cannot use EBR to upgrade the finished application when it is in use.

See Also:

• "Creating Views"

• Oracle Database Development Guide for general information about
editioning views

• Oracle Database Development Guide for information about preparing an
application to use editioning views

Creating the Triggers

Note:

You must be connected to Oracle Database as user app_data.

The triggers in the application enforce these business rules:

Chapter 9
Creating the Schema Objects and Loading the Data

9-10

• An employee with job j must have a salary between the minimum and maximum salaries
for job j.

• If an employee with job j has salary s, then you cannot change the minimum salary for j to
a value greater than s or the maximum salary for j to a value less than s. (To do so would
make existing data invalid.)

See Also:

Using Triggers, for information about triggers

Creating the Trigger to Enforce the First Business Rule
The first business rule is: An employee with job j must have a salary between the minimum
and maximum salaries for job j.

This rule could be violated either when a new row is inserted into the employees table or
when the salary or job_id column of the employees table is updated.

To enforce the rule, create the following trigger on the editioning view employees. You can
enter the CREATE TRIGGER statement either in SQL*Plus or in the Worksheet of SQL
Developer. Alternatively, you can create the trigger with the SQL Developer tool Create
Trigger.

CREATE OR REPLACE TRIGGER employees_aiufer
AFTER INSERT OR UPDATE OF salary, job_id ON employees FOR EACH ROW
DECLARE
 l_cnt NUMBER;
BEGIN
 LOCK TABLE jobs IN SHARE MODE; -- Ensure that jobs does not change
 -- during the following query.
 SELECT COUNT(*) INTO l_cnt
 FROM jobs
 WHERE job_id = :NEW.job_id
 AND :NEW.salary BETWEEN min_salary AND max_salary;

 IF (l_cnt<>1) THEN
 RAISE_APPLICATION_ERROR(-20002,
 CASE
 WHEN :new.job_id = :old.job_id
 THEN 'Salary modification invalid'
 ELSE 'Job reassignment puts salary out of range'
 END);
 END IF;
END;
/

LOCK TABLE jobs IN SHARE MODE prevents other users from changing the table jobs while
the trigger is querying it. Preventing changes to jobs during the query is necessary because
nonblocking reads prevent the trigger from "seeing" changes that other users make to jobs
while the trigger is changing employees (and prevent those users from "seeing" the changes
that the trigger makes to employees).

Another way to prevent changes to jobs during the query is to include the FOR UPDATE
clause in the SELECT statement. However, SELECT FOR UPDATE restricts concurrency
more than LOCK TABLE jobs IN SHARE MODE does.

Chapter 9
Creating the Schema Objects and Loading the Data

9-11

LOCK TABLE jobs IN SHARE MODE prevents other users from changing jobs, but not
from locking jobs in share mode themselves. Changes to jobs will probably be much
rarer than changes to employees. Therefore, locking jobs in share mode provides
more concurrency than locking a single row of jobs in exclusive mode.

See Also:

• Oracle Database Development Guide for information about locking
tables IN SHARE MODE

• Oracle Database PL/SQL Language Reference for information about
SELECT FOR UPDATE

• "Creating Triggers"

• "Tutorial: Showing How the employees_pkg Subprograms Work" to see
how the employees_aiufer trigger works

Creating the Trigger to Enforce the Second Business Rule
The second business rule is: If an employee with job j has salary s, then you cannot
change the minimum salary for j to a value greater than s or the maximum salary for j
to a value less than s. (To do so would make existing data invalid.)

This rule could be violated when the min_salary or max_salary column of the jobs
table is updated.

To enforce the rule, create the following trigger on the editioning view jobs. You can
enter the CREATE TRIGGER statement either in SQL*Plus or in the Worksheet of
SQL Developer. Alternatively, you can create the trigger with the SQL Developer tool
Create Trigger.

CREATE OR REPLACE TRIGGER jobs_aufer
AFTER UPDATE OF min_salary, max_salary ON jobs FOR EACH ROW
WHEN (NEW.min_salary > OLD.min_salary OR NEW.max_salary < OLD.max_salary)
DECLARE
 l_cnt NUMBER;
BEGIN
 LOCK TABLE employees IN SHARE MODE;

 SELECT COUNT(*) INTO l_cnt
 FROM employees
 WHERE job_id = :NEW.job_id
 AND salary NOT BETWEEN :NEW.min_salary and :NEW.max_salary;

 IF (l_cnt>0) THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Salary update would violate ' || l_cnt || ' existing employee records');
 END IF;
END;
/

LOCK TABLE employees IN SHARE MODE prevents other users from changing the table
employees while the trigger is querying it. Preventing changes to employees during
the query is necessary because nonblocking reads prevent the trigger from "seeing"

Chapter 9
Creating the Schema Objects and Loading the Data

9-12

changes that other users make to employees while the trigger is changing jobs (and prevent
those users from "seeing" the changes that the trigger makes to jobs).

For this trigger, SELECT FOR UPDATE is not an alternative to LOCK TABLE IN SHARE
MODE. While you are trying to change the salary range for this job, this trigger must prevent
other users from changing a salary to be outside the new range. Therefore, the trigger must
lock all rows in the employees table that have this job_id and lock all rows that someone
could update to have this job_id.

One alternative to LOCK TABLE employees IN SHARE MODE is to use the DBMS_LOCK
package to create a named lock with the name of the job_id and then use triggers on both the
employees and jobs tables to use this named lock to prevent concurrent updates. However,
using DBMS_LOCK and multiple triggers negatively impacts runtime performance.

Another alternative to LOCK TABLE employees IN SHARE MODE is to create a trigger on the
employees table which, for each changed row of employees, locks the corresponding job row
in jobs. However, this approach causes excessive work on updates to the employees table,
which are frequent.

LOCK TABLE employees IN SHARE MODE is simpler than the preceding alternatives, and
changes to the jobs table are rare and likely to happen at application maintenance time, when
locking the table does not inconvenience users.

See Also:

• Oracle Database Development Guide for information about locking tables with
SHARE MODE

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_LOCK package

• "Creating Triggers"

• "Tutorial: Showing How the admin_pkg Subprograms Work"

Creating the Sequences

Note:

You must be connected to Oracle Database as user app_data.

To create the sequences that generate unique primary keys for new departments and new
employees, use the following statements (in either order). You can enter the statements
either in SQL*Plus or in the Worksheet of SQL Developer. Alternatively, you can create the
sequences with the SQL Developer tool Create Sequence.

CREATE SEQUENCE employees_sequence START WITH 210;
CREATE SEQUENCE departments_sequence START WITH 275;

To avoid conflict with the data that you will load from tables in the sample schema HR, the
starting numbers for employees_sequence and departments_sequence must exceed the

Chapter 9
Creating the Schema Objects and Loading the Data

9-13

maximum values of employees.employee_id and departments.department_id,
respectively. After "Loading the Data", this query displays these maximum values:

SELECT MAX(e.employee_id), MAX(d.department_id)
FROM employees e, departments d;

Result:

MAX(E.EMPLOYEE_ID) MAX(D.DEPARTMENT_ID)
------------------ --------------------
 206 270

See Also:

"Creating and Managing Sequences"

Loading the Data

Note:

You must be connected to Oracle Database as user app_data.

Load the tables of the application with data from tables in the sample schema HR.

Note:

The following procedure references the tables of the application through their
editioning views.

In the following procedure, you can enter the statements either in SQL*Plus or in the
Worksheet of SQL Developer.

To load data into the tables:

1. Load jobs with data from the table HR.JOBS:

INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
SELECT job_id, job_title, min_salary, max_salary
 FROM HR.JOBS
/

Result:

19 rows created.
2. Load departments with data from the table HR.DEPARTMENTS:

INSERT INTO departments (department_id, department_name, manager_id)
SELECT department_id, department_name, manager_id
 FROM HR.DEPARTMENTS
/

Chapter 9
Creating the Schema Objects and Loading the Data

9-14

Result:

27 rows created.
3. Load employees with data from the tables HR.EMPLOYEES and HR.JOB_HISTORY,

using searched CASE expressions and SQL functions to get employees.country_code
and employees.phone_number from HR.phone_number and SQL functions and a scalar
subquery to get employees.job_start_date from HR.JOB_HISTORY:

INSERT INTO employees (employee_id, first_name, last_name, email_addr,
 hire_date, country_code, phone_number, job_id, job_start_date, salary,
 manager_id, department_id)
SELECT employee_id, first_name, last_name, email, hire_date,
 CASE WHEN phone_number LIKE '011.%'
 THEN '+' || SUBSTR(phone_number, INSTR(phone_number, '.')+1,
 INSTR(phone_number, '.', 1, 2) - INSTR(phone_number, '.') - 1)
 ELSE '+1'
 END country_code,
 CASE WHEN phone_number LIKE '011.%'
 THEN SUBSTR(phone_number, INSTR(phone_number, '.', 1, 2)+1)
 ELSE phone_number
 END phone_number,
 job_id,
 NVL((SELECT MAX(end_date+1)
 FROM HR.JOB_HISTORY jh
 WHERE jh.employee_id = employees.employee_id), hire_date),
 salary, manager_id, department_id
 FROM HR.EMPLOYEES
/

Result:

107 rows created.

Note:

The preceding INSERT statement fires the trigger created in "Creating the
Trigger to Enforce the First Business Rule".

4. Load job_history with data from the table HR.JOB_HISTORY:

INSERT INTO job_history (employee_id, job_id, start_date, end_date,
 department_id)
SELECT employee_id, job_id, start_date, end_date, department_id
 FROM HR.JOB_HISTORY
/

Result:

10 rows created.
5. Commit the changes:

COMMIT;

Chapter 9
Creating the Schema Objects and Loading the Data

9-15

See Also:

• "About the INSERT Statement"

• "About Sample Schema HR"

• "Using CASE Expressions in Queries"

• "Using NULL-Related Functions in Queries" for information about the NVL
function

• Oracle Database SQL Language Reference for information about the
SQL functions

Adding the Foreign Key Constraint

Note:

You must be connected to Oracle Database as user app_data.

Now that the tables departments and employees contain data, add a foreign key
constraint with the following ALTER TABLE statement. You can enter the statement
either in SQL*Plus or in the Worksheet of SQL Developer. Alternatively, you can add
the constraint with the SQL Developer tool Add Foreign Key.

ALTER TABLE departments#
ADD CONSTRAINT dept_to_emp_fk
FOREIGN KEY(manager_id) REFERENCES employees#;

If you add this foreign key constraint before departments# and employees# contain
data, then you get this error when you try to load either of them with data:

ORA-02291: integrity constraint (APP_DATA.JOB_HIST_TO_DEPT_FK) violated - parent key not found

See Also:

"Tutorial: Adding Constraints to Existing Tables"

Granting Privileges on the Schema Objects to Users

Note:

You must be connected to Oracle Database as user app_data.

To grant privileges to users, use the SQL statement GRANT. You can enter the
GRANT statements either in SQL*Plus or in the Worksheet of SQL Developer.

Chapter 9
Creating the Schema Objects and Loading the Data

9-16

Grant to app_code only the privileges that it needs to create employees_pkg:

GRANT SELECT, INSERT, UPDATE, DELETE ON employees TO app_code;
GRANT SELECT ON departments TO app_code;
GRANT SELECT ON jobs TO app_code;
GRANT SELECT, INSERT on job_history TO app_code;
GRANT SELECT ON employees_sequence TO app_code;

Grant to app_admin only the privileges that it needs to create admin_pkg:

GRANT SELECT, INSERT, UPDATE, DELETE ON jobs TO app_admin;
GRANT SELECT, INSERT, UPDATE, DELETE ON departments TO app_admin;
GRANT SELECT ON employees_sequence TO app_admin;
GRANT SELECT ON departments_sequence TO app_admin;

See Also:

Oracle Database SQL Language Reference for information about the GRANT
statement

Creating the employees_pkg Package
This section shows how to create the employees_pkg package, how its subprograms work,
how to grant the execute privilege on the package to the users who need it, and how those
users can invoke one of its subprograms.

To create the employees_pkg package:

1. Connect to Oracle Database as user app_code.

For instructions, see either "Connecting to Oracle Database from SQL*Plus" or
"Connecting to Oracle Database from SQL Developer".

2. Create these synonyms:

CREATE OR REPLACE SYNONYM employees FOR app_data.employees;
CREATE OR REPLACE SYNONYM departments FOR app_data.departments;
CREATE OR REPLACE SYNONYM jobs FOR app_data.jobs;
CREATE OR REPLACE SYNONYM job_history FOR app_data.job_history;

You can enter the CREATE SYNONYM statements either in SQL*Plus or in the
Worksheet of SQL Developer. Alternatively, you can create the synonyms with the SQL
Developer tool Create Synonym.

3. Create the package specification.

4. Create the package body.

See Also:

• "Creating Synonyms"

• "About Packages"

Chapter 9
Creating the employees_pkg Package

9-17

Creating the Package Specification for employees_pkg

Note:

You must be connected to Oracle Database as user app_code.

To create the package specification for employees_pkg, the API for managers, use the
following CREATE PACKAGE statement. You can enter the statement either in
SQL*Plus or in the Worksheet of SQL Developer. Alternatively, you can create the
package with the SQL Developer tool Create Package.

CREATE OR REPLACE PACKAGE employees_pkg
AS
 PROCEDURE get_employees_in_dept
 (p_deptno IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE get_job_history
 (p_employee_id IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE show_employee
 (p_employee_id IN employees.employee_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE update_salary
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_salary IN employees.salary%TYPE);

 PROCEDURE change_job
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_job IN employees.job_id%TYPE,
 p_new_salary IN employees.salary%TYPE := NULL,
 p_new_dept IN employees.department_id%TYPE := NULL);

END employees_pkg;
/

See Also:

• "About the Application"

• "Creating and Managing Packages"

• Oracle Database PL/SQL Language Reference for information about the
CREATE PACKAGE statement

Chapter 9
Creating the employees_pkg Package

9-18

Creating the Package Body for employees_pkg

Note:

You must be connected to Oracle Database as user app_code.

To create the package body for employees_pkg, the API for managers, use the following
CREATE PACKAGE BODY statement. You can enter the statement either in SQL*Plus or in
the Worksheet of SQL Developer. Alternatively, you can create the package with the SQL
Developer tool Create Body.

CREATE OR REPLACE PACKAGE BODY employees_pkg
AS
 PROCEDURE get_employees_in_dept
 (p_deptno IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR)
 IS
 l_cursor SYS_REFCURSOR;
 BEGIN
 OPEN p_result_set FOR
 SELECT e.employee_id,
 e.first_name || ' ' || e.last_name name,
 TO_CHAR(e.hire_date, 'Dy Mon ddth, yyyy') hire_date,
 j.job_title,
 m.first_name || ' ' || m.last_name manager,
 d.department_name
 FROM employees e INNER JOIN jobs j ON (e.job_id = j.job_id)
 LEFT OUTER JOIN employees m ON (e.manager_id = m.employee_id)
 INNER JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.department_id = p_deptno ;
 END get_employees_in_dept;

 PROCEDURE get_job_history
 (p_employee_id IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR)
 IS
 BEGIN
 OPEN p_result_set FOR
 SELECT e.First_name || ' ' || e.last_name name, j.job_title,
 e.job_start_date start_date,
 TO_DATE(NULL) end_date
 FROM employees e INNER JOIN jobs j ON (e.job_id = j.job_id)
 WHERE e.employee_id = p_employee_id
 UNION ALL
 SELECT e.First_name || ' ' || e.last_name name,
 j.job_title,
 jh.start_date,
 jh.end_date
 FROM employees e INNER JOIN job_history jh
 ON (e.employee_id = jh.employee_id)
 INNER JOIN jobs j ON (jh.job_id = j.job_id)
 WHERE e.employee_id = p_employee_id
 ORDER BY start_date DESC;
 END get_job_history;

Chapter 9
Creating the employees_pkg Package

9-19

 PROCEDURE show_employee
 (p_employee_id IN employees.employee_id%TYPE,
 p_result_set IN OUT sys_refcursor)
 IS
 BEGIN
 OPEN p_result_set FOR
 SELECT *
 FROM (SELECT TO_CHAR(e.employee_id) employee_id,
 e.first_name || ' ' || e.last_name name,
 e.email_addr,
 TO_CHAR(e.hire_date,'dd-mon-yyyy') hire_date,
 e.country_code,
 e.phone_number,
 j.job_title,
 TO_CHAR(e.job_start_date,'dd-mon-yyyy') job_start_date,
 to_char(e.salary) salary,
 m.first_name || ' ' || m.last_name manager,
 d.department_name
 FROM employees e INNER JOIN jobs j on (e.job_id = j.job_id)
 RIGHT OUTER JOIN employees m ON (m.employee_id = e.manager_id)
 INNER JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.employee_id = p_employee_id)
 UNPIVOT (VALUE FOR ATTRIBUTE IN (employee_id, name, email_addr, hire_date,
 country_code, phone_number, job_title, job_start_date, salary, manager,
 department_name));
 END show_employee;

 PROCEDURE update_salary
 (p_employee_id IN employees.employee_id%type,
 p_new_salary IN employees.salary%type)
 IS
 BEGIN
 UPDATE employees
 SET salary = p_new_salary
 WHERE employee_id = p_employee_id;
 END update_salary;

 PROCEDURE change_job
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_job IN employees.job_id%TYPE,
 p_new_salary IN employees.salary%TYPE := NULL,
 p_new_dept IN employees.department_id%TYPE := NULL)
 IS
 BEGIN
 INSERT INTO job_history (employee_id, start_date, end_date, job_id,
 department_id)
 SELECT employee_id, job_start_date, TRUNC(SYSDATE), job_id, department_id
 FROM employees
 WHERE employee_id = p_employee_id;

 UPDATE employees
 SET job_id = p_new_job,
 department_id = NVL(p_new_dept, department_id),
 salary = NVL(p_new_salary, salary),
 job_start_date = TRUNC(SYSDATE)
 WHERE employee_id = p_employee_id;
 END change_job;
END employees_pkg;
/

Chapter 9
Creating the employees_pkg Package

9-20

See Also:

• "About the Application"

• "Creating and Managing Packages"

• Oracle Database PL/SQL Language Reference for information about the
CREATE PACKAGE BODY statement

Tutorial: Showing How the employees_pkg Subprograms Work
Using SQL*Plus, this tutorial shows how the subprograms of the employees_pkg package
work. The tutorial also shows how the trigger employees_aiufer and the CHECK constraint
job_history_date_check work.

Note:

You must be connected to Oracle Database as user app_code from SQL*Plus.

To use SQL*Plus to show how the employees_pkg subprograms work:

1. Use formatting commands to improve the readability of the output. For example:

SET LINESIZE 80
SET RECSEP WRAPPED
SET RECSEPCHAR "="
COLUMN NAME FORMAT A15 WORD_WRAPPED
COLUMN HIRE_DATE FORMAT A20 WORD_WRAPPED
COLUMN DEPARTMENT_NAME FORMAT A10 WORD_WRAPPED
COLUMN JOB_TITLE FORMAT A29 WORD_WRAPPED
COLUMN MANAGER FORMAT A11 WORD_WRAPPED

2. Declare a bind variable for the value of the subprogram parameter p_result_set:

VARIABLE c REFCURSOR
3. Show the employees in department 90:

EXEC employees_pkg.get_employees_in_dept(90, :c);
PRINT c

Result:

EMPLOYEE_ID NAME HIRE_DATE JOB_TITLE
----------- --------------- -------------------- --------------------------
MANAGER DEPARTMENT
----------- ----------
 100 Steven King Tue Jun 17th, 2003 President
 Executive
===
 102 Lex De Haan Sat Jan 13th, 2001 Administration Vice President
Steven King Executive
===
 101 Neena Kochhar Wed Sep 21st, 2005 Administration Vice President

Chapter 9
Creating the employees_pkg Package

9-21

Steven King Executive
===

4. Show the job history of employee 101:

EXEC employees_pkg.get_job_history(101, :c);
PRINT c

Result:

NAME JOB_TITLE START_DAT END_DATE
--------------- ----------------------------- --------- ---------
Neena Kochhar Administration Vice President 16-MAR-05
Neena Kochhar Accounting Manager 28-OCT-01 15-MAR-05
Neena Kochhar Public Accountant 21-SEP-97 27-OCT-01

5. Show general information about employee 101:

EXEC employees_pkg.show_employee(101, :c);
PRINT c

Result:

ATTRIBUTE VALUE
--------------- --
EMPLOYEE_ID 101
NAME Neena Kochhar
EMAIL_ADDR NKOCHHAR
HIRE_DATE 21-sep-2005
COUNTRY_CODE +1
PHONE_NUMBER 515.123.4568
JOB_TITLE Administration Vice President
JOB_START_DATE 16-mar-05
SALARY 17000
MANAGER Steven King
DEPARTMENT_NAME Executive

11 rows selected.

6. Show the information about the job Administration Vice President:

SELECT * FROM jobs WHERE job_title = 'Administration Vice President';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------- ---------- ----------
AD_VP Administration Vice President 15000 30000

7. Try to give employee 101 a new salary outside the range for her job:

EXEC employees_pkg.update_salary(101, 30001);

Result:

SQL> EXEC employees_pkg.update_salary(101, 30001);
BEGIN employees_pkg.update_salary(101, 30001); END;

*
ERROR at line 1:
ORA-20002: Salary modification invalid
ORA-06512: at "APP_DATA.EMPLOYEES_AIUFER", line 13
ORA-04088: error during execution of trigger 'APP_DATA.EMPLOYEES_AIUFER'

Chapter 9
Creating the employees_pkg Package

9-22

ORA-06512: at "APP_CODE.EMPLOYEES_PKG", line 77
ORA-06512: at line 1

8. Give employee 101 a new salary inside the range for her job and show general
information about her again:

EXEC employees_pkg.update_salary(101, 18000);
EXEC employees_pkg.show_employee(101, :c);
PRINT c

Result:

ATTRIBUTE VALUE
--------------- --
EMPLOYEE_ID 101
NAME Neena Kochhar
EMAIL_ADDR NKOCHHAR
HIRE_DATE 21-sep-2005
COUNTRY_CODE +1
PHONE_NUMBER 515.123.4568
JOB_TITLE Administration Vice President
JOB_START_DATE 16-mar-05
SALARY 18000
MANAGER Steven King
DEPARTMENT_NAME Executive

11 rows selected.

9. Change the job of employee 101 to her current job with a lower salary:

EXEC employees_pkg.change_job(101, 'AD_VP', 17500, 90);

Result:

SQL> exec employees_pkg.change_job(101, 'AD_VP', 17500, 90);
BEGIN employees_pkg.change_job(101, 'AD_VP', 17500, 80); END;

*
ERROR at line 1:
ORA-02290: check constraint (APP_DATA.JOB_HISTORY_DATE_CHECK) violated
ORA-06512: at "APP_CODE.EMPLOYEES_PKG", line 101
ORA-06512: at line 1

10. Show information about the employee. (Note that the salary was not changed by the
statement in the preceding step; it is 18000, not 17500.)

exec employees_pkg.show_employee(101, :c);
print c

Result:

ATTRIBUTE VALUE
--------------- --
EMPLOYEE_ID 101
NAME Neena Kochhar
EMAIL_ADDR NKOCHHAR
HIRE_DATE 21-sep-2005
COUNTRY_CODE +1
PHONE_NUMBER 515.123.4568
JOB_TITLE Administration Vice President
JOB_START_DATE 10-mar-2015
SALARY 18000
MANAGER Steven King
DEPARTMENT_NAME Executive

Chapter 9
Creating the employees_pkg Package

9-23

11 rows selected.

See Also:

• SQL*Plus User's Guide and Reference for information about SQL*Plus
commands

• "Creating and Managing Packages"

Granting the Execute Privilege to app_user and app_admin_user

Note:

You must be connected to Oracle Database as user app_code.

To grant the execute privilege on the package employees_pkg to app_user (typically a
manager) and app_admin_user (an application administrator), use the following
GRANT statements (in either order). You can enter the statements either in SQL*Plus
or in the Worksheet of SQL Developer.

GRANT EXECUTE ON employees_pkg TO app_user;
GRANT EXECUTE ON employees_pkg TO app_admin_user;

See Also:

• "Schemas for the Application"

• Oracle Database SQL Language Reference for information about the
GRANT statement

Tutorial: Invoking get_job_history as app_user or app_admin_user
Using SQL*Plus, this tutorial shows how to invoke the subprogram
app_code.employees_pkg.get_job_history as the user app_user (typically a manager)
or app_admin_user (an application administrator).

To invoke employees_pkg.get_job_history as app_user or app_admin_user:

1. Connect to Oracle Database as user app_user or app_admin_user from
SQL*Plus.

For instructions, see "Connecting to Oracle Database from SQL*Plus".

2. Create this synonym:

CREATE SYNONYM employees_pkg FOR app_code.employees_pkg;
3. Show the job history of employee 101:

Chapter 9
Creating the employees_pkg Package

9-24

EXEC employees_pkg.get_job_history(101, :c);
PRINT c

Result:

NAME JOB_TITLE START_DAT END_DATE
--------------- ----------------------------- --------- ---------
Neena Kochhar Administration Vice President 16-MAR-05 15-MAY-12
Neena Kochhar Accounting Manager 28-OCT-01 15-MAR-05
Neena Kochhar Public Accountant 21-SEP-97 27-OCT-01

Creating the admin_pkg Package
This section shows how to create the admin_pkg package, how its subprograms work, how to
grant the execute privilege on the package to the user who needs it, and how that user can
invoke one of its subprograms.

To create the admin_pkg package:

1. Connect to Oracle Database as user app_admin.

For instructions, see either "Connecting to Oracle Database from SQL*Plus" or
"Connecting to Oracle Database from SQL Developer".

2. Create these synonyms:

CREATE SYNONYM departments FOR app_data.departments;
CREATE SYNONYM jobs FOR app_data.jobs;
CREATE SYNONYM departments_sequence FOR app_data.departments_sequence;

You can enter the CREATE SYNONYM statements either in SQL*Plus or in the
Worksheet of SQL Developer. Alternatively, you can create the tables with the SQL
Developer tool Create Synonym.

3. Create the package specification.

4. Create the package body.

See Also:

• "Creating and Managing Synonyms"

• "About Packages"

Creating the Package Specification for admin_pkg

Note:

You must be connected to Oracle Database as user app_admin.

To create the package specification for admin_pkg, the API for application administrators, use
the following CREATE PACKAGE statement. You can enter the statement either in SQL*Plus

Chapter 9
Creating the admin_pkg Package

9-25

or in the Worksheet of SQL Developer. Alternatively, you can create the package with
the SQL Developer tool Create Package.

CREATE OR REPLACE PACKAGE admin_pkg
AS
 PROCEDURE update_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE := NULL,
 p_min_salary IN jobs.min_salary%TYPE := NULL,
 p_max_salary IN jobs.max_salary%TYPE := NULL);

 PROCEDURE add_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE,
 p_min_salary IN jobs.min_salary%TYPE,
 p_max_salary IN jobs.max_salary%TYPE);

 PROCEDURE update_department
 (p_department_id IN departments.department_id%TYPE,
 p_department_name IN departments.department_name%TYPE := NULL,
 p_manager_id IN departments.manager_id%TYPE := NULL,
 p_update_manager_id IN BOOLEAN := FALSE);

 FUNCTION add_department
 (p_department_name IN departments.department_name%TYPE,
 p_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_id%TYPE;

END admin_pkg;
/

See Also:

• "About the Application"

• "Creating and Managing Packages"

• Oracle Database PL/SQL Language Reference for information about the
CREATE PACKAGE statement

Creating the Package Body for admin_pkg

Note:

You must be connected to Oracle Database as user app_admin.

To create the package body for admin_pkg, the API for application administrators, use
the following CREATE PACKAGE BODY statement. You can enter the statement
either in SQL*Plus or in the Worksheet of SQL Developer. Alternatively, you can create
the package with the SQL Developer tool Create Body.

CREATE OR REPLACE PACKAGE BODY admin_pkg
AS

Chapter 9
Creating the admin_pkg Package

9-26

 PROCEDURE update_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE := NULL,
 p_min_salary IN jobs.min_salary%TYPE := NULL,
 p_max_salary IN jobs.max_salary%TYPE := NULL)
 IS
 BEGIN
 UPDATE jobs
 SET job_title = NVL(p_job_title, job_title),
 min_salary = NVL(p_min_salary, min_salary),
 max_salary = NVL(p_max_salary, max_salary)
 WHERE job_id = p_job_id;
 END update_job;

 PROCEDURE add_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE,
 p_min_salary IN jobs.min_salary%TYPE,
 p_max_salary IN jobs.max_salary%TYPE)
 IS
 BEGIN
 INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
 VALUES (p_job_id, p_job_title, p_min_salary, p_max_salary);
 END add_job;

 PROCEDURE update_department
 (p_department_id IN departments.department_id%TYPE,
 p_department_name IN departments.department_name%TYPE := NULL,
 p_manager_id IN departments.manager_id%TYPE := NULL,
 p_update_manager_id IN BOOLEAN := FALSE)
 IS
 BEGIN
 IF (p_update_manager_id) THEN
 UPDATE departments
 SET department_name = NVL(p_department_name, department_name),
 manager_id = p_manager_id
 WHERE department_id = p_department_id;
 ELSE
 UPDATE departments
 SET department_name = NVL(p_department_name, department_name)
 WHERE department_id = p_department_id;
 END IF;
 END update_department;

 FUNCTION add_department
 (p_department_name IN departments.department_name%TYPE,
 p_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_id%TYPE
 IS
 l_department_id departments.department_id%TYPE;
 BEGIN
 INSERT INTO departments (department_id, department_name, manager_id)
 VALUES (departments_sequence.NEXTVAL, p_department_name, p_manager_id)
 RETURNING department_id INTO l_department_id;
 RETURN l_department_id;
 END add_department;

END admin_pkg;
/

Chapter 9
Creating the admin_pkg Package

9-27

See Also:

• "About the Application"

• "Creating and Managing Packages"

• Oracle Database PL/SQL Language Reference for information about the
CREATE PACKAGE BODY statement

Tutorial: Showing How the admin_pkg Subprograms Work
Using SQL*Plus, this tutorial shows how the subprograms of the admin_pkg package
work. The tutorial also shows how the trigger jobs_aufer works.

Note:

You must be connected to Oracle Database as user app_admin from
SQL*Plus.

To show how the admin_pkg subprograms work:

1. Show the information about the job whose ID is AD_VP:

SELECT * FROM jobs WHERE job_id = 'AD_VP';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_VP Administration Vice President 15000 30000

2. Increase the maximum salary for this job and show the information about it again:

EXEC admin_pkg.update_job('AD_VP', p_max_salary => 31000);
SELECT * FROM jobs WHERE job_id = 'AD_VP';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_VP Administration Vice President 15000 31000

3. Show the information about the job whose ID is IT_PROG:

SELECT * FROM jobs WHERE job_id = 'IT_PROG';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
IT_PROG Programmer 4000 10000

4. Try to increase the maximum salary for this job:

EXEC admin_pkg.update_job('IT_PROG', p_max_salary => 4001);

Result (from SQL*Plus):

Chapter 9
Creating the admin_pkg Package

9-28

SQL> EXEC admin_pkg.update_job('IT_PROG', p_max_salary => 4001);
BEGIN admin_pkg.update_job('IT_PROG', p_max_salary => 4001); END;

*
ERROR at line 1:
ORA-20001: Salary update would violate 5 existing employee records
ORA-06512: at "APP_DATA.JOBS_AUFER", line 12
ORA-04088: error during execution of trigger 'APP_DATA.JOBS_AUFER'
ORA-06512: at "APP_ADMIN.ADMIN_PKG", line 10
ORA-06512: at line 1

5. Add a new job and show the information about it:

EXEC admin_pkg.add_job('AD_CLERK', 'Administrative Clerk', 3000, 7000);
SELECT * FROM jobs WHERE job_id = 'AD_CLERK';

Result:

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_CLERK Administrative Clerk 3000 7000

6. Show the information about department 100:

SELECT * FROM departments WHERE department_id = 100;

Result:

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID
------------- ------------------------------ ----------
 100 Finance 108

7. Change the name and manager of department 100 and show the information about it:

EXEC admin_pkg.update_department(100, 'Financial Services');
EXEC admin_pkg.update_department(100, p_manager_id => 111,
 p_update_manager_id => true);
SELECT * FROM departments WHERE department_id = 100;

Result:

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID
------------- ------------------------------ ----------
 100 Financial Services 111

See Also:

"Creating and Managing Packages"

Granting the Execute Privilege to app_admin_user

Note:

You must be connected to Oracle Database as user app_admin.

Chapter 9
Creating the admin_pkg Package

9-29

To grant the execute privilege on the package admin_pkg to app_admin_user (an
application administrator), use the following GRANT statement. You can enter the
statement either in SQL*Plus or in the Worksheet of SQL Developer.

GRANT EXECUTE ON admin_pkg TO app_admin_user;

See Also:

• "Schemas for the Application"

• Oracle Database SQL Language Reference for information about the
GRANT statement

Tutorial: Invoking add_department as app_admin_user
Using SQL*Plus, this tutorial shows how to invoke the function
app_admin.admin_pkg.add_department as the user app_admin_user (an application
administrator) and then see the information about the new department.

To invoke admin_pkg.add_department as app_admin_user:

1. Connect to Oracle Database as user app_admin_user from SQL*Plus.

For instructions, see "Connecting to Oracle Database from SQL*Plus".

2. Create this synonym:

CREATE SYNONYM admin_pkg FOR app_admin.admin_pkg;
3. Declare a bind variable for the return value of the function:

VARIABLE n NUMBER
4. Add a new department without a manager:

EXEC :n := admin_pkg.add_department('New department', NULL);
5. Show the ID of the manager of the new department:

PRINT :n

Result:

 N

 275

To see the information about the new department:

1. Connect to Oracle Database as user app_admin.

2. Show the information about the new department:

SELECT * FROM departments WHERE department_name LIKE 'New department%';

Result:

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID
------------- ------------------------------ ----------
 275 New department

Chapter 9
Creating the admin_pkg Package

9-30

10
Deploying an Oracle Database Application

After you develop your application, you can install it on other databases, called deployment
environments, where other users can run it.

About Development and Deployment Environments
The database on which you develop your application is called the development
environment. After developing your application, you can install it on other databases, called
deployment environments, where other users can run it.

The first deployment environment is the test environment. In the test environment, you can
thoroughly test the functionality of the application, determine whether it is structured correctly,
and fix any problems before deploying it in the production environment.

You might also deploy your application to an education environment, either before or after
deploying it to the production environment. An education environment provides a place for
users to practice running the application without affecting other environments.

If the desired deployment environments do not exist in your organization, you can create
them.

About Installation Scripts
An installation script can either have all the SQL statements needed to create the
application or it can be a master script that runs other scripts.

A script is a series of SQL statements in a file whose name ends with .sql (for example,
create_app.sql). When you run a script in a client program such as SQL*Plus or SQL
Developer, the SQL statements run in the order in which they appear in the script. A script
whose SQL statements create an application is called an installation script.

To deploy an application, you run one or more installation scripts in the deployment
environment. For a new application, you must create the installation scripts. For an older
application, the installation scripts might exist, but if they do not, you can create them.

About DDL Statements and Schema Object Dependencies
An installation script contains DDL statements that create schema objects and, optionally,
INSERT statements that load data into tables that DDL statements create. To create
installation scripts correctly, and to run multiple installation scripts in the correct order, you
must understand the dependencies between the schema objects of your application.

If the definition of object A references object B, then A depends on B. Therefore, you must
create B before you create A. Otherwise, the statement that creates B either fails or creates B
in an invalid state, depending on the object type.

For a complex application, the order for creating the objects is rarely obvious. Usually, you
must consult the database designer or a diagram of the design.

10-1

See Also:

• Oracle Database Development Guide for more information about
schema object dependencies

• "About Data Definition Language (DDL) Statements"

About INSERT Statements and Constraints
When you run an installation script that contains INSERT statements, you must
determine whether constraints could be violated when data from source tables (in the
development environment) is inserted into new tables in the deployment environment.

For each source table in your application, you must determine whether any constraints
could be violated when their data is inserted in the new table. If so, you must first
disable those constraints, then insert the data, and then try to re-enable the
constraints. If a data item violates a constraint, then you cannot re-enable that
constraint until you correct the data item.

If you are simply inserting lookup data in correct order (as in "Loading the Data"), then
constraints are not violated. Therefore, you do not need to disable them first.

If you are inserting data from an outside source (such as a file, spreadsheet, or older
application), or from many tables that have much dependent data, disable the
constraints before inserting the data.

Some possible ways to disable and re-enable the constraints are:

• Using SQL Developer, disable and re-enable the constraints one at a time:

1. In the Connections frame, select the appropriate table.

2. In the pane labeled with table name, select the subtab Constraints.

3. In the list of all constraints on the table, change ENABLED to DISABLED (or the
reverse).

• Edit the installation script, adding SQL statements that disable and re-enable each
constraint.

• Create a SQL script with SQL statements that disable and enable each constraint.

• Find the constraints in the Oracle Database data dictionary, and create a SQL
script with the SQL statements to disable and enable each constraint.

For example, to find and enable the constraints used in the EVALUATIONS,
PERFORMANCE_PARTS, and SCORES tables from "Creating Tables", enter
these statements in the Worksheet:

SELECT 'ALTER TABLE '|| TABLE_NAME || ' DISABLE CONSTRAINT '||
 CONSTRAINT_NAME ||';'
 FROM user_constraints
 WHERE table_name IN ('EVALUATIONS','PERFORMANCE_PARTS','SCORES');

SELECT 'ALTER TABLE '|| TABLE_NAME || ' ENABLE CONSTRAINT '||
 CONSTRAINT_NAME ||';'
 FROM user_constraints
 WHERE table_name IN ('EVALUATIONS','PERFORMANCE_PARTS','SCORES');

Chapter 10
About Installation Scripts

10-2

See Also:

• "About the INSERT Statement"

• "Ensuring Data Integrity in Tables"

Creating Installation Scripts
You can create installation scripts in SQL Developer or a text editor.

If an installation script needs only DDL and INSERT statements, then you can create it with
either SQL Developer or any text editor. In SQL Developer, you can use either the Cart or the
Database Export wizard. Oracle recommends the Cart for installation scripts that you expect
to run in multiple deployment environments and the Database Export wizard for installation
scripts that you expect to run in only one deployment environment.

If an installation script needs SQL statements that are neither DDL nor INSERT statements,
then you must create it with a text editor.

This section explains how to create installation scripts with the Cart and the Database Export
wizard, when and how to edit installation scripts that create sequences and triggers, and how
create installation scripts for the application in Developing a Simple Oracle Database
Application ("the sample application").

Creating Installation Scripts with the Cart
The SQL Developer Cart is a convenient tool for deploying Oracle Database objects from one
or more database connections to a destination connection.

You drag and drop objects from the navigator frame into the Cart window, specify the desired
options, and click the Export Cart icon to display the Export Objects dialog box. After you
complete the information in that dialog box, SQL Developer creates a .zip file containing
scripts (including a master script) to create the objects in the schema of a desired destination
connection.

To create installation scripts with the Cart:

1. In the SQL Developer window, click the menu View.

2. From the View menu, select Cart.

The Cart window opens. The Export Cart icon is inactive (gray).

Tip:

In the Cart window, for information about Cart user preferences, press the key
F1.

3. In the Connections frame, select the schema objects that you want the installation script
to create and drag them into the Cart window.

In The Cart window, the Export Cart icon is now active (not gray).

Chapter 10
Creating Installation Scripts

10-3

4. For each Selected Object of type TABLE, if you want the installation script to
export data, then select the option Data.

5. Click Export Cart.

6. In the Export Objects dialog box, enter the desired values in the fields.

For information about these fields, see Oracle SQL Developer User's Guide.

7. Click Apply.

SQL Developer creates a .zip file containing scripts (including a master script) to
create the objects in the schema of a desired destination connection.

8. In the master script and the scripts that it runs, check that:

• Referenced objects are created before their dependent objects.

• Tables are created before data is inserted into them.

If the installation scripts create sequences, see "Editing Installation Scripts that
Create Sequences".

If the installation scripts create triggers, see "Editing Installation Scripts that Create
Sequences".

If necessary, edit the installation files in the Worksheet or any text editor.

See Also:

Oracle SQL Developer User's Guide for more information about the Cart

Creating an Installation Script with the Database Export Wizard
To create an installation script in SQL Developer with the Database Export wizard, you
specify the name of the installation script, the objects and data to export, and the
desired options, and the wizard generates an installation script.

Note:

In the following procedure, you might have to enlarge the SQL Developer
windows to see all fields and options.

To create an installation script with the Database Export wizard:

1. If you have not done so, create a directory for the installation script, separate from
the Oracle Database installation directory (for example, C:\my_exports).

2. In the SQL Developer window, click the menu Tools.

3. From the menu, select Database Export.

4. In the Export Wizard - Step 1 of 5 (Source/Destination) window:

a. In the Connection field, select your connection to the development
environment.

Chapter 10
Creating Installation Scripts

10-4

b. Select the desired Export DDL options (and deselect any selected undesired
options).

Note:

Do not deselect Terminator, or the installation script will fail.

c. If you do not want the installation script to export data, then deselect Export Data.

d. In the Save As field, accept the default Single File and type the full path name of
the installation script (for example, C:\my_exports\hr_export.sql).

The file name must end with .sql.

e. Click Next.

5. In the Export Wizard - Step 2 of 5 (Types to Export) window:

a. Deselect the check boxes for the types that you do not want to export.

Selecting or deselecting Toggle All selects or deselects all check boxes.

b. Click Next.

6. In the Export Wizard - Step 3 of 5 (Specify Objects) window:

a. Click More.

b. In the Schema field, select your schema from the menu.

c. In the Type field, select from the menu either ALL OBJECTS or a specific object type
(for example, TABLE).

d. Click Lookup.

A list of objects appears in the left frame. If the value of the Type field is ALL
OBJECTS, then the list contains all objects in the selected schema. If the value of the
Type field is a specific object type, then the list contains all objects of that type in the
selected schema.

e. Move the objects that you want to export from the left frame to the right frame:

To move all objects, click >>. (To move all objects back, click <<.)

To move selected objects, select them and then click >. (To move selected objects
back, select them and click <.)

f. (Optional) Repeat steps 6.c through 6.e for other object types.

g. Click Next.

If you deselected Export Data in the Source/Destination window, then the Export
Summary window appears—go to step 8.

If you did not deselect Export Data in the Source/Destination window, then the
Export Wizard - Step 4 of 5 (Specify Data) window appears. The lower frame lists the
objects that you specified in the Specify Objects window.

7. In the Specify Data window:

a. Move the objects whose data you do not want to export from the lower frame to the
upper frame:

Chapter 10
Creating Installation Scripts

10-5

To move all objects, click the double upward arrow icon. (To move all objects
back, click the double downward arrow icon.)

To move selected objects, select them and then click the single upward arrow
icon.

b. Click Next.

8. In the Export Wizard - Step 5 of 5 (Export Summary) window, click Finish.

The Exporting window opens, showing that exporting is occurring. When exporting
is complete, the Exporting window closes, and the Worksheet shows the contents
of the installation script that you specified in the Source/Destination window.

9. In the installation script, check that:

• Referenced objects are created before their dependent objects.

• Tables are created before data is inserted into them.

If necessary, edit the file in the Worksheet or any text editor.

See Also:

Oracle SQL Developer User's Guide for more information about the
Database Export wizard

Editing Installation Scripts that Create Sequences
If your application uses the sequence to generate unique keys, and you will not insert
the data from the source tables into the corresponding new tables, then you might
want to edit the START WITH value in the installation script.

For a sequence, SQL Developer generates a CREATE SEQUENCE statement whose
START WITH value is relative to the current value of the sequence in the development
environment.

If your application uses the sequence to generate unique keys, and you will not insert
the data from the source tables into the corresponding new tables, then you might
want to edit the START WITH value in the installation script.

You can edit the installation script in either the Worksheet or any text editor.

See Also:

"Tutorial: Creating a Sequence"

Editing Installation Scripts that Create Triggers
If your application has a BEFORE INSERT trigger on a source table, and you will
insert data from that source table into the corresponding new table, you must decide if

Chapter 10
Creating Installation Scripts

10-6

you want the trigger to fire before each INSERT statement in the installation script inserts
data into the new table.

For example, NEW_EVALUATION_TRIGGER (created in "Tutorial: Creating a Trigger that
Generates a Primary Key for a Row Before It Is Inserted") fires before a row is inserted into
the EVALUATIONS table. The trigger generates the unique number for the primary key of that
row, using EVALUATIONS_SEQUENCE.

The source EVALUATIONS table is populated with primary keys. If you do not want the
installation script to put new primary key values in the new EVALUATIONS table, then you
must edit the CREATE TRIGGER statement in the installation script as shown in bold font:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN
 IF :NEW.evaluation_id IS NULL THEN
 :NEW.evaluation_id := evaluations_sequence.NEXTVAL
 END IF;
END;

Also, if the current value of the sequence is not greater than the maximum value in the
primary key column, then you must make it greater.

You can edit the installation script in either the Worksheet or any text editor.

Two alternatives to editing the installation script are:

• Change the trigger definition in the source file and then re-create the installation script.

For information about changing triggers, see "Changing Triggers".

• Disable the trigger before running the data installation script, and then re-enable it
afterward.

For information about disabling and enabling triggers, see "Disabling and Enabling
Triggers".

See Also:

"Creating Triggers"

Creating Installation Scripts for the Sample Application
You can create installation scripts for the sample application.

These scripts are for the application in Developing a Simple Oracle Database Application:

• schemas.sql, which does in the deployment environment what you did in the
development environment in "Creating the Schemas for the Application" and "Granting
Privileges to the Schemas"

• objects.sql, which does in the deployment environment what you did in the development
environment in "Creating the Schema Objects and Loading the Data"

• employees.sql, which does in the deployment environment what you did in the
development environment in "Creating the employees_pkg Package"

Chapter 10
Creating Installation Scripts

10-7

• admin.sql, which does in the deployment environment what you did in the
development environment in "Creating the admin_pkg Package"

• create_app.sql, a master script that runs the preceding scripts, thereby deploying
the sample application in the deployment environment

You can create the scripts in any order. To create schemas.sql and create_app.sql,
you must use a text editor. To create the other scripts, you can use either a text editor
or SQL Developer.

Creating Installation Script schemas.sql
The installation script schemas.sql does in the deployment environment what you did
in the development environment in "Creating the Schemas for the Application" and
"Granting Privileges to the Schemas".

To create schemas.sql, enter the following text in any text editor and save the file as
schemas.sql.

Caution:

Choose secure passwords. For guidelines for secure passwords, see Oracle
Database Security Guide.

-- Create schemas

DROP USER app_data CASCADE;

CREATE USER app_data IDENTIFIED BY password
DEFAULT TABLESPACE USERS
QUOTA UNLIMITED ON USERS
ENABLE EDITIONS;

DROP USER app_code CASCADE;

CREATE USER app_code IDENTIFIED BY password
DEFAULT TABLESPACE USERS
QUOTA UNLIMITED ON USERS
ENABLE EDITIONS;

DROP USER app_admin CASCADE;

CREATE USER app_admin IDENTIFIED BY password
DEFAULT TABLESPACE USERS
QUOTA UNLIMITED ON USERS
ENABLE EDITIONS;

DROP USER app_user CASCADE;

CREATE USER app_user IDENTIFIED BY password
ENABLE EDITIONS;

DROP USER app_admin_user CASCADE;

CREATE USER app_admin_user IDENTIFIED BY password

Chapter 10
Creating Installation Scripts

10-8

ENABLE EDITIONS;

-- Grant privileges to schemas

GRANT CREATE SESSION TO app_data;
GRANT CREATE TABLE, CREATE VIEW, CREATE TRIGGER, CREATE SEQUENCE TO app_data;
GRANT SELECT ON HR.DEPARTMENTS TO app_data;
GRANT SELECT ON HR.EMPLOYEES TO app_data;
GRANT SELECT ON HR.JOB_HISTORY TO app_data;
GRANT SELECT ON HR.JOBS TO app_data;

GRANT CREATE SESSION, CREATE PROCEDURE, CREATE SYNONYM TO app_code;

GRANT CREATE SESSION, CREATE PROCEDURE, CREATE SYNONYM TO app_admin;

GRANT CREATE SESSION, CREATE SYNONYM TO app_user;

GRANT CREATE SESSION, CREATE SYNONYM TO app_admin_user;

See Also:

"Schemas for the Application" for descriptions of the schemas for the sample
application

Creating Installation Script objects.sql
The installation script objects.sql does in the deployment environment what you did in the
development environment in "Creating the Schema Objects and Loading the Data".

You can create objects.sql using either a text editor or SQL Developer.

To create objects.sql in any text editor, enter the following text and save the file as
objects.sql. For password, use the password that schema.sql specifies when it creates the
user app_data.

Note:

The INSERT statements that load the data work only if the deployment environment
has a standard HR schema. If it does not, then either use SQL Developer to create
a script that loads the new tables (in the deployment environment) with data from
the source tables (in the development environment) or modify the INSERT
statements in the following script.

-- Create schema objects

CONNECT app_data/password

CREATE TABLE jobs#
(job_id VARCHAR2(10)

Chapter 10
Creating Installation Scripts

10-9

 CONSTRAINT jobs_pk PRIMARY KEY,
 job_title VARCHAR2(35)
 CONSTRAINT jobs_job_title_not_null NOT NULL,
 min_salary NUMBER(6)
 CONSTRAINT jobs_min_salary_not_null NOT NULL,
 max_salary NUMBER(6)
 CONSTRAINT jobs_max_salary_not_null NOT NULL
)
/

CREATE TABLE departments#
(department_id NUMBER(4)
 CONSTRAINT departments_pk PRIMARY KEY,
 department_name VARCHAR2(30)
 CONSTRAINT dept_department_name_not_null NOT NULL
 CONSTRAINT dept_department_name_unique UNIQUE,
 manager_id NUMBER(6)
)
/

CREATE TABLE employees#
(employee_id NUMBER(6)
 CONSTRAINT employees_pk PRIMARY KEY,
 first_name VARCHAR2(20)
 CONSTRAINT emp_first_name_not_null NOT NULL,
 last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_not_null NOT NULL,
 email_addr VARCHAR2(25)
 CONSTRAINT emp_email_addr_not_null NOT NULL,
 hire_date DATE
 DEFAULT TRUNC(SYSDATE)
 CONSTRAINT emp_hire_date_not_null NOT NULL
 CONSTRAINT emp_hire_date_check
 CHECK(TRUNC(hire_date) = hire_date),
 country_code VARCHAR2(5)
 CONSTRAINT emp_country_code_not_null NOT NULL,
 phone_number VARCHAR2(20)
 CONSTRAINT emp_phone_number_not_null NOT NULL,
 job_id CONSTRAINT emp_job_id_not_null NOT NULL
 CONSTRAINT emp_to_jobs_fk REFERENCES jobs#,
 job_start_date DATE
 CONSTRAINT emp_job_start_date_not_null NOT NULL,
 CONSTRAINT emp_job_start_date_check
 CHECK(TRUNC(JOB_START_DATE) = job_start_date),
 salary NUMBER(6)
 CONSTRAINT emp_salary_not_null NOT NULL,
 manager_id CONSTRAINT emp_mgrid_to_emp_empid_fk REFERENCES employees#,
 department_id CONSTRAINT emp_to_dept_fk REFERENCES departments#
)
/

CREATE TABLE job_history#
(employee_id CONSTRAINT job_hist_to_emp_fk REFERENCES employees#,
 job_id CONSTRAINT job_hist_to_jobs_fk REFERENCES jobs#,
 start_date DATE
 CONSTRAINT job_hist_start_date_not_null NOT NULL,
 end_date DATE
 CONSTRAINT job_hist_end_date_not_null NOT NULL,
 department_id
 CONSTRAINT job_hist_to_dept_fk REFERENCES departments#
 CONSTRAINT job_hist_dept_id_not_null NOT NULL,

Chapter 10
Creating Installation Scripts

10-10

 CONSTRAINT job_history_pk PRIMARY KEY(employee_id,start_date),
 CONSTRAINT job_history_date_check CHECK(start_date < end_date)
)
/

CREATE EDITIONING VIEW jobs AS SELECT * FROM jobs#
/
CREATE EDITIONING VIEW departments AS SELECT * FROM departments#
/
CREATE EDITIONING VIEW employees AS SELECT * FROM employees#
/
CREATE EDITIONING VIEW job_history AS SELECT * FROM job_history#
/

CREATE OR REPLACE TRIGGER employees_aiufer
AFTER INSERT OR UPDATE OF salary, job_id ON employees FOR EACH ROW
DECLARE
 l_cnt NUMBER;
BEGIN
 LOCK TABLE jobs IN SHARE MODE; -- Ensure that jobs does not change
 -- during the following query.
 SELECT COUNT(*) INTO l_cnt
 FROM jobs
 WHERE job_id = :NEW.job_id
 AND :NEW.salary BETWEEN min_salary AND max_salary;

 IF (l_cnt<>1) THEN
 RAISE_APPLICATION_ERROR(-20002,
 CASE
 WHEN :new.job_id = :old.job_id
 THEN 'Salary modification invalid'
 ELSE 'Job reassignment puts salary out of range'
 END);
 END IF;
END;
/

CREATE OR REPLACE TRIGGER jobs_aufer
AFTER UPDATE OF min_salary, max_salary ON jobs FOR EACH ROW
WHEN (NEW.min_salary > OLD.min_salary OR NEW.max_salary < OLD.max_salary)
DECLARE
 l_cnt NUMBER;
BEGIN
 LOCK TABLE employees IN SHARE MODE;

 SELECT COUNT(*) INTO l_cnt
 FROM employees
 WHERE job_id = :NEW.job_id
 AND salary NOT BETWEEN :NEW.min_salary and :NEW.max_salary;

 IF (l_cnt>0) THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Salary update would violate ' || l_cnt || ' existing employee records');
 END IF;
END;
/

CREATE SEQUENCE employees_sequence START WITH 210;
CREATE SEQUENCE departments_sequence START WITH 275;

Chapter 10
Creating Installation Scripts

10-11

-- Load data

INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
SELECT job_id, job_title, min_salary, max_salary
 FROM HR.JOBS
/

INSERT INTO departments (department_id, department_name, manager_id)
SELECT department_id, department_name, manager_id
 FROM HR.DEPARTMENTS
/

INSERT INTO employees (employee_id, first_name, last_name, email_addr,
 hire_date, country_code, phone_number, job_id, job_start_date, salary,
 manager_id, department_id)
SELECT employee_id, first_name, last_name, email, hire_date,
 CASE WHEN phone_number LIKE '011.%'
 THEN '+' || SUBSTR(phone_number, INSTR(phone_number, '.')+1,
 INSTR(phone_number, '.', 1, 2) - INSTR(phone_number, '.') - 1)
 ELSE '+1'
 END country_code,
 CASE WHEN phone_number LIKE '011.%'
 THEN SUBSTR(phone_number, INSTR(phone_number, '.', 1, 2)+1)
 ELSE phone_number
 END phone_number,
 job_id,
 NVL((SELECT MAX(end_date+1)
 FROM HR.JOB_HISTORY jh
 WHERE jh.employee_id = employees.employee_id), hire_date),
 salary, manager_id, department_id
 FROM HR.EMPLOYEES
/

INSERT INTO job_history (employee_id, job_id, start_date, end_date,
 department_id)
SELECT employee_id, job_id, start_date, end_date, department_id
 FROM HR.JOB_HISTORY
/

COMMIT;

-- Add foreign key constraint

ALTER TABLE departments#
ADD CONSTRAINT dept_to_emp_fk
FOREIGN KEY(manager_id) REFERENCES employees#;

--
-- Grant privileges on schema objects to users
--

GRANT SELECT, INSERT, UPDATE, DELETE ON employees TO app_code;
GRANT SELECT ON departments TO app_code;
GRANT SELECT ON jobs TO app_code;
GRANT SELECT, INSERT on job_history TO app_code;
GRANT SELECT ON employees_sequence TO app_code;

GRANT SELECT, INSERT, UPDATE, DELETE ON jobs TO app_admin;

Chapter 10
Creating Installation Scripts

10-12

GRANT SELECT, INSERT, UPDATE, DELETE ON departments TO app_admin;
GRANT SELECT ON employees_sequence TO app_admin;
GRANT SELECT ON departments_sequence TO app_admin;

GRANT SELECT ON jobs TO app_admin_user;
GRANT SELECT ON departments TO app_admin_user;

See Also:

• "Schema Objects of the Application" for descriptions of the schema objects of
the sample application

• "Creating Installation Scripts with the Cart"

• "Creating an Installation Script with the Database Export Wizard"

Creating Installation Script employees.sql
The installation script employees.sql does in the deployment environment what you did in the
development environment in "Creating the employees_pkg Package".

You can create employees.sql using either a text editor or SQL Developer.

To create employees.sql in any text editor, enter the following text and save the file as
employees.sql. For password, use the password that schema.sql specifies when it creates
the user app_code.

-- Create employees_pkg

CONNECT app_code/password

CREATE SYNONYM employees FOR app_data.employees;
CREATE SYNONYM departments FOR app_data.departments;
CREATE SYNONYM jobs FOR app_data.jobs;
CREATE SYNONYM job_history FOR app_data.job_history;

CREATE OR REPLACE PACKAGE employees_pkg
AS
 PROCEDURE get_employees_in_dept
 (p_deptno IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE get_job_history
 (p_employee_id IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE show_employee
 (p_employee_id IN employees.employee_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR);

 PROCEDURE update_salary
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_salary IN employees.salary%TYPE);

 PROCEDURE change_job

Chapter 10
Creating Installation Scripts

10-13

 (p_employee_id IN employees.employee_id%TYPE,
 p_new_job IN employees.job_id%TYPE,
 p_new_salary IN employees.salary%TYPE := NULL,
 p_new_dept IN employees.department_id%TYPE := NULL);
END employees_pkg;
/

CREATE OR REPLACE PACKAGE BODY employees_pkg
AS
 PROCEDURE get_employees_in_dept
 (p_deptno IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR)
 IS
 l_cursor SYS_REFCURSOR;
 BEGIN
 OPEN p_result_set FOR
 SELECT e.employee_id,
 e.first_name || ' ' || e.last_name name,
 TO_CHAR(e.hire_date, 'Dy Mon ddth, yyyy') hire_date,
 j.job_title,
 m.first_name || ' ' || m.last_name manager,
 d.department_name
 FROM employees e INNER JOIN jobs j ON (e.job_id = j.job_id)
 LEFT OUTER JOIN employees m ON (e.manager_id = m.employee_id)
 INNER JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.department_id = p_deptno ;
 END get_employees_in_dept;

 PROCEDURE get_job_history
 (p_employee_id IN employees.department_id%TYPE,
 p_result_set IN OUT SYS_REFCURSOR)
 IS
 BEGIN
 OPEN p_result_set FOR
 SELECT e.First_name || ' ' || e.last_name name, j.job_title,
 e.job_start_date start_date,
 TO_DATE(NULL) end_date
 FROM employees e INNER JOIN jobs j ON (e.job_id = j.job_id)
 WHERE e.employee_id = p_employee_id
 UNION ALL
 SELECT e.First_name || ' ' || e.last_name name,
 j.job_title,
 jh.start_date,
 jh.end_date
 FROM employees e INNER JOIN job_history jh
 ON (e.employee_id = jh.employee_id)
 INNER JOIN jobs j ON (jh.job_id = j.job_id)
 WHERE e.employee_id = p_employee_id
 ORDER BY start_date DESC;
 END get_job_history;

 PROCEDURE show_employee
 (p_employee_id IN employees.employee_id%TYPE,
 p_result_set IN OUT sys_refcursor)
 IS
 BEGIN
 OPEN p_result_set FOR
 SELECT *
 FROM (SELECT TO_CHAR(e.employee_id) employee_id,
 e.first_name || ' ' || e.last_name name,
 e.email_addr,

Chapter 10
Creating Installation Scripts

10-14

 TO_CHAR(e.hire_date,'dd-mon-yyyy') hire_date,
 e.country_code,
 e.phone_number,
 j.job_title,
 TO_CHAR(e.job_start_date,'dd-mon-yyyy') job_start_date,
 to_char(e.salary) salary,
 m.first_name || ' ' || m.last_name manager,
 d.department_name
 FROM employees e INNER JOIN jobs j on (e.job_id = j.job_id)
 RIGHT OUTER JOIN employees m ON (m.employee_id = e.manager_id)
 INNER JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.employee_id = p_employee_id)
 UNPIVOT (VALUE FOR ATTRIBUTE IN (employee_id, name, email_addr, hire_date,
 country_code, phone_number, job_title, job_start_date, salary, manager,
 department_name));
 END show_employee;

 PROCEDURE update_salary
 (p_employee_id IN employees.employee_id%type,
 p_new_salary IN employees.salary%type)
 IS
 BEGIN
 UPDATE employees
 SET salary = p_new_salary
 WHERE employee_id = p_employee_id;
 END update_salary;

 PROCEDURE change_job
 (p_employee_id IN employees.employee_id%TYPE,
 p_new_job IN employees.job_id%TYPE,
 p_new_salary IN employees.salary%TYPE := NULL,
 p_new_dept IN employees.department_id%TYPE := NULL)
 IS
 BEGIN
 INSERT INTO job_history (employee_id, start_date, end_date, job_id,
 department_id)
 SELECT employee_id, job_start_date, TRUNC(SYSDATE), job_id, department_id
 FROM employees
 WHERE employee_id = p_employee_id;

 UPDATE employees
 SET job_id = p_new_job,
 department_id = NVL(p_new_dept, department_id),
 salary = NVL(p_new_salary, salary),
 job_start_date = TRUNC(SYSDATE)
 WHERE employee_id = p_employee_id;
 END change_job;
END employees_pkg;
/

-- Grant privileges on employees_pkg to users

GRANT EXECUTE ON employees_pkg TO app_user;
GRANT EXECUTE ON employees_pkg TO app_admin_user;

Chapter 10
Creating Installation Scripts

10-15

See Also:

• "Creating Installation Scripts with the Cart"

• "Creating an Installation Script with the Database Export Wizard"

Creating Installation Script admin.sql
The installation script admin.sql does in the deployment environment what you did in
the development environment in "Creating the admin_pkg Package".

You can create admin.sql using either a text editor or SQL Developer.

To create admin.sql in any text editor, enter the following text and save the file as
admin.sql. For password, use the password that schema.sql specifies when it creates
the user app_admin.

-- Create admin_pkg

CONNECT app_admin/password

CREATE SYNONYM departments FOR app_data.departments;
CREATE SYNONYM jobs FOR app_data.jobs;
CREATE SYNONYM departments_sequence FOR app_data.departments_sequence;

CREATE OR REPLACE PACKAGE admin_pkg
AS
 PROCEDURE update_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE := NULL,
 p_min_salary IN jobs.min_salary%TYPE := NULL,
 p_max_salary IN jobs.max_salary%TYPE := NULL);

 PROCEDURE add_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE,
 p_min_salary IN jobs.min_salary%TYPE,
 p_max_salary IN jobs.max_salary%TYPE);

 PROCEDURE update_department
 (p_department_id IN departments.department_id%TYPE,
 p_department_name IN departments.department_name%TYPE := NULL,
 p_manager_id IN departments.manager_id%TYPE := NULL,
 p_update_manager_id IN BOOLEAN := FALSE);

 FUNCTION add_department
 (p_department_name IN departments.department_name%TYPE,
 p_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_id%TYPE;

END admin_pkg;
/

CREATE OR REPLACE PACKAGE BODY admin_pkg
AS
 PROCEDURE update_job

Chapter 10
Creating Installation Scripts

10-16

 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE := NULL,
 p_min_salary IN jobs.min_salary%TYPE := NULL,
 p_max_salary IN jobs.max_salary%TYPE := NULL)
 IS
 BEGIN
 UPDATE jobs
 SET job_title = NVL(p_job_title, job_title),
 min_salary = NVL(p_min_salary, min_salary),
 max_salary = NVL(p_max_salary, max_salary)
 WHERE job_id = p_job_id;
 END update_job;

 PROCEDURE add_job
 (p_job_id IN jobs.job_id%TYPE,
 p_job_title IN jobs.job_title%TYPE,
 p_min_salary IN jobs.min_salary%TYPE,
 p_max_salary IN jobs.max_salary%TYPE)
 IS
 BEGIN
 INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
 VALUES (p_job_id, p_job_title, p_min_salary, p_max_salary);
 END add_job;

 PROCEDURE update_department
 (p_department_id IN departments.department_id%TYPE,
 p_department_name IN departments.department_name%TYPE := NULL,
 p_manager_id IN departments.manager_id%TYPE := NULL,
 p_update_manager_id IN BOOLEAN := FALSE)
 IS
 BEGIN
 IF (p_update_manager_id) THEN
 UPDATE departments
 SET department_name = NVL(p_department_name, department_name),
 manager_id = p_manager_id
 WHERE department_id = p_department_id;
 ELSE
 UPDATE departments
 SET department_name = NVL(p_department_name, department_name)
 WHERE department_id = p_department_id;
 END IF;
 END update_department;

 FUNCTION add_department
 (p_department_name IN departments.department_name%TYPE,
 p_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_id%TYPE
 IS
 l_department_id departments.department_id%TYPE;
 BEGIN
 INSERT INTO departments (department_id, department_name, manager_id)
 VALUES (departments_sequence.NEXTVAL, p_department_name, p_manager_id)
 RETURNING department_id INTO l_department_id;
 RETURN l_department_id;
 END add_department;

END admin_pkg;
/

--
-- Grant privileges on admin_pkg to user

Chapter 10
Creating Installation Scripts

10-17

--

GRANT EXECUTE ON admin_pkg TO app_admin_user;

See Also:

• "Creating Installation Scripts with the Cart"

• "Creating an Installation Script with the Database Export Wizard"

Creating Master Installation Script create_app.sql
The master installation script create_app.sql runs the other four installation scripts for
the sample application in the correct order, thereby deploying the sample application in
the deployment environment.

To create create_app.sql, enter the following text in any text editor and save the file as
create_app.sql:

@schemas.sql
@objects.sql
@employees.sql
@admin.sql

Deploying the Sample Application
You can deploy the sample application using installation scripts.

Use the installation scripts that you created in "Creating Installation Scripts for the
Sample Application".

Note:

For the following procedures, you need the name and password of a user
who has the CREATE USER and DROP USER system privileges.

To deploy the sample application using SQL*Plus:

1. Copy the installation scripts that you created in "Creating Installation Scripts for the
Sample Application" to the deployment environment.

2. In the deployment environment, connect to Oracle Database as a user with the
CREATE USER and DROP USER system privileges.

3. At the SQL> prompt, run the master installation script:

@create_app.sql

The master installation script runs the other four installation scripts for the sample
application in the correct order, thereby deploying the sample application in the
deployment environment.

Chapter 10
Deploying the Sample Application

10-18

To deploy the sample application using SQL Developer:

1. If necessary, create a connection to the deployment environment.

For Connection Name, enter a name that is not the name of the connection to the
development environment.

2. Copy the installation scripts that you created in "Creating Installation Scripts for the
Sample Application" to the deployment environment.

3. Connect to Oracle Database as a user with the CREATE USER and DROP USER
system privileges in the deployment environment.

A new pane appears. On its tab is the name of the connection to the deployment
environment. The pane has two subpanes, Worksheet and Query Builder.

4. In the Worksheet pane, type the command for running the master installation script:

@create_app.sql
5. Click the icon Run Script.

The master installation script runs the other four installation scripts for the sample
application in the correct order, thereby deploying the sample application in the
deployment environment. The output appears in the Script Output pane, under the
Worksheet pane.

In the Connections frame, if you expand the connection to the deployment environment,
and then expand the type of each object that the sample application uses, you see the
objects of the sample application.

See Also:

• SQL*Plus User's Guide and Reference for more information about using scripts
in SQL*Plus

• Oracle SQL Developer User's Guide for more information about running scripts
in SQL Developer

Checking the Validity of an Installation
After installing your application in a deployment environment, you can check its validity using
SQL Developer.

• In the Connections frame:

1. Expand the connection to the deployment environment.

2. Examine the definitions of the new objects.

• In the Reports pane:

1. Expand Data Dictionary Reports.

A list of data dictionary reports appears.

2. Expand All Objects.

A list of objects reports appears.

Chapter 10
Checking the Validity of an Installation

10-19

3. Select All Objects.

The Select Connection window appears.

4. In the Connection field, select from the menu the connection to the
deployment environment.

5. Click OK.

6. In the Enter Bind Values window, select either Owner or Object Name.

7. Click Apply.

The message Displaying Resultsshows, followed by the results.

For each object, this report lists the Owner, Object Type, Object Name, Status
(Valid or Invalid), Date Created, and Last DDL. Last DDL is the date of the last
DDL operation that affected the object.

8. In the Reports pane, select Invalid Objects.

9. In the Enter Bind Values window, click Apply.

For each object whose Status is Invalid, this report lists the Owner, Object
Type, and Object Name.

See Also:

Oracle SQL Developer User's Guide for more information about SQL
Developer reports

Archiving the Installation Scripts
After you verify that the installation of your application is valid, Oracle recommends
that you archive your installation scripts in a source code control system.

Before doing so, add comments to each file, documenting its creation date and
purpose. If you ever must deploy the same application to another environment, you
can use these archived files.

See Also:

Oracle Database Utilities for information about Oracle Data Pump, which
enables very high-speed movement of data and metadata from one
database to another

Chapter 10
Archiving the Installation Scripts

10-20

Index

Symbols
.NET assembly, 1-9
.NET stored procedure, 1-9
%FOUND cursor attribute, 5-34
%ISOPEN cursor attribute, 5-34
%NOTFOUND cursor attribute, 5-34
%ROWCOUNT cursor attribute, 5-34
%ROWTYPE attribute, 5-30
%TYPE attribute

purpose of, 5-17
tutorial for, 5-18

A
accent-insensitive sort, 7-24
accessing Oracle Database, 1-3

See also connecting to Oracle Database
Add Check tool, 4-6
Add Foreign Key tool, 4-6
Add Primary Key tool, 4-6
Add Unique tool, 4-6
AFTER trigger, 6-1

statement-level example, 6-3
system example, 6-6

aggregate conversion function in query, 2-27
alias, 4-23

for column, 2-15
for table, 2-19

See also synonym
ALTER FUNCTION statement, 5-8
ALTER PROCEDURE statement, 5-8
ALTER TABLE statement

adding constraint with
Foreign Key, 4-6
Not Null, 4-6
Primary Key, 4-6

changing trigger status with, 6-8
ALTER TRIGGER statement

changing trigger status with, 6-8
recompiling trigger with, 6-9

anonymous block, 5-1
application program interface (API), 5-11
archiving installation script, 10-20
arithmetic operator in query, 2-21

array
associative

See associative array, 5-43
variable, 5-42

ASP.NET, 1-9
assignment operator, 5-21

assigning initial value to constant with, 5-15
assigning value to associative array element

with, 5-43
assigning value to variable with, 5-20

associative array, 5-42, 5-43
declaring, 5-43
dense, 5-43
indexed by integer, 5-43
indexed by string, 5-43
populating, 5-45
sparse, 5-43
traversing

dense, 5-46
sparse, 5-47

attribute
%ROWTYPE, 5-30
%TYPE

purpose of, 5-17
tutorial for, 5-18

cursor
See cursor attribute, 5-34

B
base type, 5-3
basic LOOP statement, 5-28
BEFORE trigger, 6-1

row-level example, 6-4
system example, 6-6

bind variable, 8-1
block

anonymous, 5-1
parts of, 1-5

body of subprogram, 5-4
browsing HR sample schema, 2-10
built-in data type, 4-2
BULK COLLECT INTO clause, 5-45
bulk SQL, 8-6
byte semantics, 7-5

Index-1

C
C numeric format element, 7-23
calendar format, 7-3
Cart, 10-3
CASE expression in query, 2-30
case sensitivity

in PL/SQL identifiers, 5-2
in sort, 7-24

CASE statement, 5-24
character function in query, 2-23
character semantics, 7-5
character set

conversion and data loss, 7-30
length semantics and, 7-5

Check Constraint, 4-5
adding with Add Check tool, 4-6

checking validity of installation, 10-19
CLR (Common Language Runtime), 1-9
collapsing displayed information in SQL

Developer, 2-10
collating sequence, 7-5
collection, 5-42
collection method, 5-42

COUNT, 5-46
FIRST, 5-47
invoking, 5-42
NEXT, 5-47

column
alias for, 2-15
new heading for, 2-15
qualifying name of, 2-19
relationship to field, 1-2
selecting specific one in table, 2-14

comment in PL/SQL code, 5-4
Commit Changes icon, 3-6
COMMIT statement

explicit, 3-6
implicit, 3-6

committing transaction
explicitly, 3-6
implicitly, 3-6

Common Language Runtime (CLR), 1-9
comparing programming methods, 8-10, 8-11
composite variable

collection, 5-42
record, 5-30

compound trigger, 6-1
concatenation operator in query, 2-22
concurrency, 8-8
concurrent sessions, 8-10
conditional predicate, 6-3
conditional selection statement, 5-22

CASE, 5-24
IF, 5-23

connecting to Oracle Database, 1-3
as user HR, 2-4
from SQL Developer, 2-2
from SQL*Plus, 2-1

constant, 5-15
declaring, 5-16
ensuring correct data type of, 5-17
in package body, 5-15
in package specification, 5-15
local, 5-15

constraint, 4-5
adding to table

with ALTER TABLE statement, 4-6
with Edit Table tool, 4-6

application deployment and, 10-2
enabled or disabled, 4-5
types of, 4-5
viewing, 2-11

controlling program flow, 5-22
conversion function in query, 2-25
COUNT collection method, 5-46
Create Body tool, 5-14
Create Database Synonym tool, 4-23
CREATE FUNCTION statement, 5-7
Create Function tool, 5-7
CREATE INDEX statement

changing index with, 4-15
creating index with, 4-14

Create Index tool, 4-14
CREATE PACKAGE BODY statement, 5-14
CREATE PACKAGE statement

changing package specification with, 5-13
creating package specification with, 5-12

Create Package tool, 5-12
CREATE PROCEDURE statement, 5-5
Create Procedure tool, 5-5
CREATE SEQUENCE statement, 4-21

in installation script, 10-6
Create Sequence tool, 4-21
CREATE SYNONYM statement, 4-23
CREATE TABLE statement, 4-4
Create Table tool, 4-3
CREATE TRIGGER statement

changing trigger with, 6-7
creating trigger with, 6-2

Create Trigger tool, 6-2
CREATE VIEW statement

changing query in view with, 4-19
creating view with, 4-18

Create View tool, 4-17
creation script

See installation script
CURRVAL pseudocolumn, 4-20
cursor, 5-34

declared, 5-34

Index

Index-2

cursor (continued)
declaring associative array with, 5-43
implicit, 5-34
populating associative array with, 5-45

cursor attribute, 5-34
%FOUND, 5-34
%ISOPEN, 5-34
%NOTFOUND, 5-34
%ROWCOUNT, 5-34
possible values of, 5-34
syntax for value of, 5-34

cursor variable, 5-37
disadvantages of, 8-5
retrieving result set rows one at a time with

procedure, 5-38
tutorial, 5-39

D
data concurrency, 8-8
data consistency, 8-8
data definition language statement

See DDL statement
data integrity

See constraint
data loss during character-set conversion, 7-30
data manipulation language statement

See DML statement
Data pane, 4-11
data type

base, 5-3
built-in, 4-2
of associative array key, 5-43
of constant, 5-3
of function return value, 5-3
of subprogram parameter, 5-3
of table column, 4-2
of variable, 5-3
PL/SQL, 5-3
SQL, 4-2
SQL national character, 7-5
subtype of, 5-3
Unicode, 7-5
user-defined, 4-2

Database Export wizard, 10-4
database initialization parameter, 7-6
date format, 7-2
datetime format model, 2-25
datetime function in query, 2-24
DBMS_APPLICATION_INFO package, 8-19
DBMS_OUTPUT.PUT_LINE procedure, 5-24
DBMS_SESSION package, 8-19
DBMS_SQL package, 8-5
DBMS_STANDARD.RAISE_APPLICATION_ERR

OR procedure, 5-48

DDL statement, 4-1
as triggering event, 6-1

decimal character, 7-20
declarative language, 1-5
declarative part

of block, 1-5
of subprogram, 5-4

declared cursor, 5-34
advantages over cursor variable, 8-5
retrieving result set rows one at a time with,

5-35
DECODE function in query, 2-32
Delete Selected Row(s) tool, 4-12
DELETE statement, 3-5
DELETING conditional predicate, 6-3
deleting entire table, 4-16
deleting row from table

with Delete Selected Row(s) tool, 4-12
with DELETE statement, 3-5

dense associative array, 5-43
populating, 5-45
traversing, 5-46

dependencies between schema objects
installation and, 10-1
trigger compilation and, 6-9

deploying application, 10-1
deployment environment, 10-1
development environment, 10-1

choice of, 1-5
disabled trigger, 6-1
disabling triggers, 6-7

all triggers in table, 6-8
in installation script, 10-6

DL (long date) format, 7-15
DML statement, 3-1

as triggering event, 6-1
associative arrays and, 5-43
implicit cursor for, 5-34

dot notation
for accessing record field, 5-30
for invoking collection method, 5-42

DROP FUNCTION statement, 5-10
DROP INDEX statement, 4-15
DROP PACKAGE statement, 5-15
DROP PROCEDURE statement, 5-10
DROP SEQUENCE statement, 4-22
DROP SYNONYM statement, 4-24
DROP TABLE statement, 4-16
Drop tool

for index, 4-15
for package, 5-15
for sequence, 4-22
for synonym, 4-24, 5-10
for table, 4-16
for trigger, 6-9

Index

Index-3

Drop tool (continued)
for view, 4-20

DROP TRIGGER statement, 6-9
DROP VIEW statement, 4-20
DS (short date) format, 7-15
DUAL table, 2-24

E
Edit Index tool, 4-15
Edit Table tool, 4-6
Edit tool

changing standalone subprogram with, 5-8
changing trigger with, 6-7

editioning view, 8-23
in sample application, 9-10

education environment, 10-1
enabled trigger, 6-1
enabling triggers, 6-7

all triggers in table, 6-8
in installation script, 10-6

ending transaction
by committing, 3-6
by rolling back, 3-8

ensuring data integrity, 4-4
environment variables, 7-8
error

See exception
exception handler syntax, 5-48
exception handling, 5-48

for predefined exception, 5-50
EXCEPTION_INIT pragma, 5-48
exception-handling part

of block, 1-5
of subprogram, 5-4

executable part
of block, 1-5
of subprogram, 5-4

EXECUTE IMMEDIATE statement, 8-4
exhaustion of resources, 8-1
EXIT WHEN statement, 5-28
expanding displayed information in SQL

Developer, 2-10
exploring Oracle Database

with SQL Developer, 2-9
with SQL*Plus, 2-6

expression in query, 2-21

F
FCL (Framework Class Libraries), 1-9
FETCH statement

explicit cursor and, 5-34
populating dense associative array with, 5-45

fetching results one row at a time, 5-34

field, 5-30
relationship to column, 1-2

FIRST collection method, 5-47
FOR LOOP statement, 5-25
Foreign Key constraint, 4-5

adding
to sample application, 9-16
with Add Foreign Key tool, 4-6
with ALTER TABLE statement, 4-6

format
calendar, 7-3
date, 7-2
datetime model, 2-25
monetary, 7-4
time, 7-2

Framework Class Libraries (FCL), 1-9
function, 1-2, 5-1

in query, 2-21
locale-dependent SQL, 7-9
statistical, 2-27
structure of, 5-4

See also subprogram

G
G numeric format element, 7-20
globalization support features, 7-1

See also NLS parameters
group separator in number, 7-20
grouping query results, 2-27

H
hard parse, 8-1
HR sample schema, 1-10

browsing, 2-10
unlocking, 2-4

Hypertext Preprocessor (PHP), 1-6

I
identifier, 5-2
IF statement, 5-23
implicit COMMIT statement, 3-6
implicit cursor, 5-34
index, 1-2

adding, 4-14
changing, 4-15
dropping, 4-15
implicitly created, 4-13

index-by table
See associative array

initial value of constant or variable, 5-15
initialization parameter, 7-6
Insert Row tool, 4-10

Index

Index-4

INSERT statement, 3-1, 9-14
in sample application, 9-14

INSERTING conditional predicate, 6-3
installation script, 10-1

archiving, 10-20
creating, 10-3
disabling and re-enabling triggers in, 10-6
editing CREATE SEQUENCE statement in,

10-6
INSTEAD OF trigger, 6-1

example, 6-5
instrumentation package, 8-19
integrity constraint

See constraint
intersecting tables, 2-19
invalidated trigger, 6-9
iterative data processing, 8-15
IW date format element, 7-3

J
JDBC (Oracle Java Database Connectivity), 1-6
joining tables, 2-19

K
key-value pair

See associative array

L
L numeric format element, 7-21
language support, 7-1
latch, 8-9
length semantics, 7-5
linguistic sorting and string searching, 7-5
loading data

See INSERT statement
local constant, 5-15
local subprogram, 5-1

in anonymous block, 5-1
in another subprogram, 5-1
in package, 5-11

local variable, 5-15
locale, 7-11
locale-dependent SQL function, 7-9
logical table

See view
long date (DL) format, 7-15
loop statement, 5-22

basic LOOP, 5-28
exiting early, 5-28
FOR LOOP, 5-25
populating associative array with, 5-45
WHILE LOOP, 5-27

M
master script

See installation script
method, 5-42
Microsoft .NET Framework, 1-9
Microsoft Visual Studio, 1-9
monetary format, 7-4
multiline comment in PL/SQL code, 5-4
multilingual applications, 7-1

N
naming convention

for sequences, 4-20
in sample application, 9-3

national character set, 7-5
National Language Support (NLS), 7-1
National Language Support (NLS) parameters

See NLS parameters
native language support, 7-1
NCHAR literal replacement, 7-30
nested subprogram

See local subprogram
nested table, 5-42
NEW pseudorecord, 6-3
NEXT collection method, 5-47
NEXTVAL pseudocolumn, 4-20
NLS (National Language Support), 7-1
NLS environment variables, 7-8
NLS parameters, 7-1

of locale-dependent SQL functions, 7-9
values of

changing, 7-8
initial, 7-6
viewing, 7-7

what they are, 7-1
NLS_CALENDAR parameter, 7-19
NLS_COMP parameter, 7-26
NLS_CURRENCY parameter, 7-21
NLS_DATE_FORMAT parameter, 7-15
NLS_DATE_LANGUAGE parameter, 7-17
NLS_DUAL_CURRENCY parameter, 7-24
NLS_ISO_CURRENCY parameter, 7-23
NLS_LANG parameter, 7-11
NLS_LANGUAGE parameter, 7-11
NLS_LENGTH_SEMANTICS parameter, 7-28
NLS_NUMERIC_CHARACTERS parameter,

7-20
NLS_SORT parameter, 7-24
NLS_TERRITORY parameter, 7-13
NLS_TIMESTAMP_FORMAT parameter, 7-18
nonblocking reads and writes, 8-10
nonprocedural language, 1-5

Index

Index-5

Not Null constraint, 4-5
adding

with ALTER TABLE statement, 4-6
with Edit Table tool, 4-6

numeric format
elements

C, 7-23
G, 7-20
L, 7-21

in different countries, 7-4
numeric function in query, 2-21
NVL function, 2-29
NVL2 function, 2-29

O
objects

See schema object
OCCI (Oracle C++ Call Interface), 1-7
OCI (Oracle Call Interface), 1-7
ODBC (Open Database Connectivity), 1-7
ODP.NET, 1-9
ODT (Oracle Developer Tools for Visual Studio),

1-9
OLD pseudorecord, 6-3
Open Database Connectivity (ODBC), 1-7
OPEN FOR statement, 8-5
OR REPLACE clause in DDL statement, 4-1
Oracle Application Express, 1-6
Oracle C++ Call Interface (OCCI), 1-7
Oracle Call Interface (OCI), 1-7
Oracle Database Extensions for .NET, 1-9
Oracle Deployment Wizard for .NET, 1-9
Oracle Developer Tools for Visual Studio, 1-9
Oracle Java Database Connectivity (JDBC), 1-6
Oracle Provider for OLE DB (OraOLEDB), 1-10
Oracle Providers for ASP.NET, 1-9
OraOLEDB (Oracle Provider for OLE DB), 1-10
ORDER BY clause of SELECT statement, 2-18

P
package, 5-1

dropping, 5-15
in sample application

admin_pkg, 9-25
employees_pkg, 9-17

instrumentation, 8-19
reasons to use, 5-1
structure of, 5-11

package body, 5-11
changing, 5-16
creating, 5-14

package specification, 5-11
changing, 5-13

package specification (continued)
creating, 5-12

package subprogram, 5-1
parameter

See subprogram parameter
parse, 8-1
PHP (Hypertext Preprocessor), 1-6
PL/SQL block

anonymous, 5-1
parts of, 1-5

PL/SQL data type, 5-3
PL/SQL identifier, 5-2
PL/SQL language, 1-5

scalability and, 8-4
PL/SQL table

See associative array
PL/SQL unit, 1-5
PLS_INTEGER data type, 5-3
precompiler

Pro*C/C++, 1-8
Pro*COBOL, 1-8

predefined exception, 5-48
handling, 5-50

Primary Key constraint, 4-5
adding

with Add Primary Key tool, 4-6
with ALTER TABLE statement, 4-6

private SQL area, 5-34
privileges

for schemas of sample application, 9-5
for users of sample application

on admin_pkg, 9-25
on employees_pkg, 9-24, 9-29
on schema objects, 9-16

security and, 8-23
Pro*C/C++ precompiler, 1-8
Pro*COBOL precompiler, 1-8
Procedural Language/SQL (PL/SQL) language,

1-5
procedure, 1-2, 5-1

structure of, 5-4
See also subprogram

production environment, 10-1
program flow control, 5-22
programming practices, recommended, 8-19
pseudorecord, 6-3

Q
qualifying column names, 2-19
query

function in, 2-21
grouping results by column, 2-27
improving readability of, 2-19
operator in, 2-21

Index

Index-6

query (continued)
simple, 2-12
SQL expression in, 2-21
stored

See view, 4-16

R
RAISE statement, 5-48
RAISE_APPLICATION_ERROR procedure, 5-48
Real-World Performance, 8-14
recommended programming practices, 8-19
record, 5-30

creating, 5-30
creating type for, 5-31
relationship to row, 1-2

reducing disk input/output (I/O), 4-13
REF constraint, 4-5
REF CURSOR type, 5-37
REF CURSOR variable

See cursor variable
Refresh icon

DDL statements and, 4-1
DML statements and, 3-1
rolling back transactions and, 3-8

RENAME statement, 4-19
Rename tool, 4-19
resetting password of HR account, 2-4
resource exhaustion, 8-1
retrieving results one row at a time, 5-34
RETURN clause of function, 5-4
RETURN statement, 5-4
return type

of cursor variable, 5-37
of function, 5-3
of REF CURSOR type, 5-37

reversing transaction, 3-8
Rollback Changes icon, 3-8
ROLLBACK statement, 3-8
rolling back transaction, 3-8
row

adding
with Insert Row tool, 4-10
with INSERT statement, 3-1

relationship to record, 1-2
row-level trigger, 6-1

example, 6-4
pseudorecords and, 6-3

Run tool, 5-9
Runstats tool, 8-10, 8-11
runtime error

See exception

S
sample application

deploying, 10-18
developing, 9-1

sample schema HR
See HR sample schema

SAVEPOINT statement, 3-10
scalable application, 8-1
schema, 1-2

in sample application
creating, 9-4
description of, 9-2
privileges for, 9-5

schema object, 1-2
creating and managing, 4-1
dependent

installation and, 10-1
trigger compilation and, 6-9

in sample application
creating, 9-7
description of, 9-1

schema-level subprogram
See standalone subprogram

script
See installation script

searched CASE expression, 2-30
searched CASE statement, 5-24
security

bind variables and, 8-1
in sample application, 9-2
privileges and, 8-23

SELECT INTO statement, 5-21
assigning value to variable with, 5-21
implicit cursor for, 5-34

See also assignment operator
SELECT statement

ORDER BY clause of, 2-18
simple, 2-12
WHERE clause of, 2-16

selecting table data
and sorting it, 2-18
that matches specified conditions, 2-16

semantics
byte, 7-5
character, 7-5
length, 7-5

sequence, 4-20
creating, 4-21

for sample application, 9-13
dropping, 4-22
improving data concurrency with, 8-9
in installation script, 10-6

sequential control statement, 5-22
serializable transaction, 8-8

Index

Index-7

set-based processing, 8-18
setting savepoints in transaction, 3-10
shared SQL, 8-10
short date (DS) format, 7-15
signature of subprogram, 5-4
simple CASE expression, 2-30
simple CASE statement, 5-24
simple trigger, 6-1
single-line comment in PL/SQL code, 5-4
soft parse, 8-1
sorting

accent-insensitive, 7-24
case-insensitive, 7-24
linguistic, 7-5
selected data, 2-18

sparse associative array, 5-43
populating, 5-45
traversing, 5-47

SQL cursor (implicit cursor), 5-34
SQL data type, 4-2
SQL Developer, 1-4

collapsing displayed information in, 2-10
connecting to Oracle Database from, 2-2

as user HR, 2-6
expanding displayed information in, 2-10
exploring database with, 2-9
initial values of NLS parameters in, 7-6

SQL expression in query, 2-21
SQL injection attack, 8-1
SQL language, 1-5
SQL national data types, 7-5
SQL*Plus, 1-3

connecting to Oracle Database from, 2-1
as user HR, 2-5

exploring database with, 2-6
standalone subprogram, 1-2, 5-1

changing, 5-8
creating

function, 5-7
procedure, 5-5

dropping, 5-10
statement-level trigger, 6-1

example, 6-3
statistical function, 2-27
statistics

for comparing programming techniques,
8-10, 8-11

for database, 8-20
stored query

See view
stored subprogram, 5-1
strong REF CURSOR type, 5-37
strongly typed cursor variable, 5-37
struct type

See record

Structured Query Language (SQL), 1-5
subprogram, 1-2, 5-1

body of, 5-4
local

See local subprogram, 5-1
nested

See local subprogram, 5-1
package, 5-1
parameter of

See subprogram parameter, 5-1
parts of, 5-4
schema-level

See standalone subprogram, 1-2
signature of, 5-4
standalone

See standalone subprogram, 1-2
stored, 5-1
structure of, 5-4

subprogram parameter, 5-1
collection as, 5-42
cursor variable as, 5-37
ensuring correct data type of, 5-17
record as, 5-30

subquery, 2-12
subscript notation, 5-42
subtype, 5-3
synonym, 4-23

creating, 4-23
dropping, 4-24

See also alias
SYS_REFCURSOR predefined type, 5-37
SYSDATE function, 2-24
system trigger, 6-1

example, 6-6
SYSTIMESTAMP function, 2-24

T
table, 4-1

adding constraint to
with ALTER TABLE statement, 4-6
with Edit Table tool, 4-6

adding row to
with Insert Row tool, 4-10
with INSERT statement, 3-1

alias for, 2-19
changing data in

in Data pane, 4-11
with UPDATE statement, 3-4

creating, 4-2
for sample application, 9-7

deleting row from
with Delete Selected Row(s) tool, 4-12
with DELETE statement, 3-5

dropping, 4-16

Index

Index-8

table (continued)
ensuring data integrity in, 4-4
index on

See index, 4-13
logical

See view, 4-16
selecting data from

and sorting it, 2-18
that matches specified conditions, 2-16

selecting specific columns of, 2-14
viewing properties and data of

with SQL Developer, 2-11
with SQL*Plus, 2-8

virtual
See view, 4-16

territory support, 7-2
test environment, 10-1
time format, 7-2
timing point of trigger, 6-1
transaction, 3-5

committing
explicitly, 3-6
implicitly, 3-6

ending
by committing, 3-6
by rolling back, 3-8

rolling back, 3-8
serializable, 8-8
setting savepoints in, 3-10
visibility of, 3-6

transaction control statement, 3-5
trigger, 6-1

AFTER, 6-1
statement-level example, 6-3
system example, 6-6

BEFORE, 6-1
row-level example, 6-4
system example, 6-6

changing, 6-7
compiling, 6-9
compound, 6-1
creating, 6-2

for sample application, 9-10
disabled, 6-1
disabling, 6-7

in installation script, 10-6
dropping, 6-9
enabled, 6-1
enabling, 6-7

in installation script, 10-6
INSTEAD OF, 6-1

example, 6-5
invalidated, 6-9
on view, 6-5
recompiling, 6-9

trigger (continued)
row-level, 6-1

example, 6-4
pseudorecords and, 6-3

simple, 6-1
statement-level, 6-1

example, 6-3
system, 6-1

example, 6-6
timing point of, 6-1

U
undoing transaction, 3-8
Unicode, 7-5

data types for, 7-5
string literals in, 7-29

Unique constraint, 4-5
adding with Add Unique tool, 4-6

unlocking HR account, 2-4
unscalable application, 8-1
UPDATE statement, 3-4
UPDATING conditional predicate, 6-3
user-defined data type, 4-2
user-defined exception, 5-48
UTL_FILE package, 8-19

V
validity of installation, 10-19
variable, 5-15

assigning value to
with assignment operator, 5-20
with SELECT INTO statement, 5-21

composite
collection, 5-42
record, 5-30

cursor
See cursor variable, 5-37

declaring, 5-16
ensuring correct data type of, 5-17
in package body, 5-15
in package specification, 5-15
local, 5-15

variable array (varray), 5-42
view, 4-16

changing name of, 4-19
changing query in, 4-19
creating, 4-17

for sample application, 9-10
dropping, 4-20
trigger on, 6-5

viewing table properties and data
with SQL Developer, 2-11
with SQL*Plus, 2-8

Index

Index-9

virtual table
See view

visibility of transaction, 3-6
Visual Studio, 1-9

W
warehousing system, 8-1

weak REF CURSOR type, 5-37
WHEN OTHERS exception handler, 5-48
WHERE clause of SELECT statement, 2-16
WHILE LOOP statement, 5-27

Index

Index-10

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to 2 Day Oracle Database Development
	About This Document
	About Oracle Database
	About Schema Objects
	About Oracle Database Access
	About SQL*Plus
	About SQL Developer
	About Structured Query Language (SQL)
	About Procedural Language/SQL (PL/SQL)
	About Other Client Programs, Languages, and Development Tools
	Oracle Application Express
	Oracle Java Database Connectivity (JDBC)
	Hypertext Preprocessor (PHP)
	Oracle Call Interface (OCI)
	Oracle C++ Call Interface (OCCI)
	Open Database Connectivity (ODBC)
	Pro*C/C++ Precompiler
	Pro*COBOL Precompiler
	Microsoft .NET Framework
	Oracle Provider for OLE DB (OraOLEDB)

	About Sample Schema HR

	2 Connecting to Oracle Database and Exploring It
	Connecting to Oracle Database from SQL*Plus
	Connecting to Oracle Database from SQL Developer
	Connecting to Oracle Database as User HR
	Unlocking the HR Account
	Connecting to Oracle Database as User HR from SQL*Plus
	Connecting to Oracle Database as User HR from SQL Developer

	Exploring Oracle Database with SQL*Plus
	Viewing HR Schema Objects with SQL*Plus
	Viewing EMPLOYEES Table Properties and Data with SQL*Plus

	Exploring Oracle Database with SQL Developer
	Tutorial: Viewing HR Schema Objects with SQL Developer
	Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL Developer

	Selecting Table Data
	About Queries
	Running Queries in SQL Developer
	Tutorial: Selecting All Columns of a Table
	Tutorial: Selecting Specific Columns of a Table
	Displaying Selected Columns Under New Headings
	Selecting Data that Satisfies Specified Conditions
	Sorting Selected Data
	Selecting Data from Multiple Tables
	Using Operators and Functions in Queries
	Using Arithmetic Operators in Queries
	Using Numeric Functions in Queries
	Using the Concatenation Operator in Queries
	Using Character Functions in Queries
	Using Datetime Functions in Queries
	Using Conversion Functions in Queries
	Using Aggregate Functions in Queries
	Using NULL-Related Functions in Queries
	Using CASE Expressions in Queries
	Using the DECODE Function in Queries

	3 About DML Statements and Transactions
	About Data Manipulation Language (DML) Statements
	About the INSERT Statement
	About the UPDATE Statement
	About the DELETE Statement

	About Transaction Control Statements
	Committing Transactions
	Rolling Back Transactions
	Setting Savepoints in Transactions

	4 Creating and Managing Schema Objects
	About Data Definition Language (DDL) Statements
	Creating and Managing Tables
	About SQL Data Types
	Creating Tables
	Tutorial: Creating a Table with the Create Table Tool
	Creating Tables with the CREATE TABLE Statement

	Ensuring Data Integrity in Tables
	About Constraints
	Tutorial: Adding Constraints to Existing Tables

	Tutorial: Adding Rows to Tables with the Insert Row Tool
	Tutorial: Changing Data in Tables in the Data Pane
	Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool
	Managing Indexes
	Tutorial: Adding an Index with the Create Index Tool
	Tutorial: Changing an Index with the Edit Index Tool
	Tutorial: Dropping an Index

	Dropping Tables

	Creating and Managing Views
	Creating Views
	Tutorial: Creating a View with the Create View Tool
	Creating Views with the CREATE VIEW Statement

	Changing Queries in Views
	Tutorial: Changing View Names with the Rename Tool
	Dropping a View

	Creating and Managing Sequences
	Tutorial: Creating a Sequence
	Dropping Sequences

	Creating and Managing Synonyms
	Creating Synonyms
	Dropping Synonyms

	5 Developing Stored Subprograms and Packages
	About Stored Subprograms
	About Packages
	About PL/SQL Identifiers
	About PL/SQL Data Types
	Creating and Managing Standalone Subprograms
	About Subprogram Structure
	Tutorial: Creating a Standalone Procedure
	Tutorial: Creating a Standalone Function
	Changing Standalone Subprograms
	Tutorial: Testing a Standalone Function
	Dropping Standalone Subprograms

	Creating and Managing Packages
	About Package Structure
	Tutorial: Creating a Package Specification
	Tutorial: Changing a Package Specification
	Tutorial: Creating a Package Body
	Dropping a Package

	Declaring and Assigning Values to Variables and Constants
	Tutorial: Declaring Variables and Constants in a Subprogram
	Ensuring that Variables, Constants, and Parameters Have Correct Data Types
	Tutorial: Changing Declarations to Use the %TYPE Attribute
	Assigning Values to Variables
	Assigning Values to Variables with the Assignment Operator
	Assigning Values to Variables with the SELECT INTO Statement

	Controlling Program Flow
	About Control Statements
	Using the IF Statement
	Using the CASE Statement
	Using the FOR LOOP Statement
	Using the WHILE LOOP Statement
	Using the Basic LOOP and EXIT WHEN Statements

	Using Records and Cursors
	About Records
	Tutorial: Declaring a RECORD Type
	Tutorial: Creating and Invoking a Subprogram with a Record Parameter
	About Cursors
	Using a Declared Cursor to Retrieve Result Set Rows One at a Time
	Tutorial: Using a Declared Cursor to Retrieve Result Set Rows One at a Time
	About Cursor Variables
	Using a Cursor Variable to Retrieve Result Set Rows One at a Time
	Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time

	Using Associative Arrays
	About Collections
	About Associative Arrays
	Declaring Associative Arrays
	Populating Associative Arrays
	Traversing Dense Associative Arrays
	Traversing Sparse Associative Arrays

	Handling Exceptions (Runtime Errors)
	About Exceptions and Exception Handlers
	When to Use Exception Handlers
	Handling Predefined Exceptions
	Declaring and Handling User-Defined Exceptions

	6 Using Triggers
	About Triggers
	Creating Triggers
	About OLD and NEW Pseudorecords
	Tutorial: Creating a Trigger that Logs Table Changes
	Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is Inserted
	Creating an INSTEAD OF Trigger
	Tutorial: Creating Triggers that Log LOGON and LOGOFF Events

	Changing Triggers
	Disabling and Enabling Triggers
	Disabling or Enabling a Single Trigger
	Disabling or Enabling All Triggers on a Single Table

	About Trigger Compilation and Dependencies
	Dropping Triggers

	7 Working in a Global Environment
	About Globalization Support Features
	About Language Support
	About Territory Support
	About Date and Time Formats
	About Calendar Formats
	About Numeric and Monetary Formats
	About Linguistic Sorting and String Searching
	About Length Semantics
	About Unicode and SQL National Character Data Types

	About Initial NLS Parameter Values
	Viewing NLS Parameter Values
	Changing NLS Parameter Values
	Changing NLS Parameter Values for All SQL Developer Connections
	Changing NLS Parameter Values for the Current SQL Function Invocation

	About Individual NLS Parameters
	About Locale and the NLS_LANG Parameter
	About the NLS_LANGUAGE Parameter
	About the NLS_TERRITORY Parameter
	About the NLS_DATE_FORMAT Parameter
	About the NLS_DATE_LANGUAGE Parameter
	About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters
	About the NLS_CALENDAR Parameter
	About the NLS_NUMERIC_CHARACTERS Parameter
	About the NLS_CURRENCY Parameter
	About the NLS_ISO_CURRENCY Parameter
	About the NLS_DUAL_CURRENCY Parameter
	About the NLS_SORT Parameter
	About the NLS_COMP Parameter
	About the NLS_LENGTH_SEMANTICS Parameter

	Using Unicode in Globalized Applications
	Representing Unicode String Literals in SQL and PL/SQL
	Avoiding Data Loss During Character-Set Conversion

	8 Building Effective Applications
	Building Scalable Applications
	About Scalable Applications
	Using Bind Variables to Improve Scalability
	Using PL/SQL to Improve Scalability
	How PL/SQL Minimizes Parsing
	About the EXECUTE IMMEDIATE Statement
	About OPEN FOR Statements
	About the DBMS_SQL Package
	About Bulk SQL

	About Concurrency and Scalability
	About Sequences and Concurrency
	About Latches and Concurrency
	About Nonblocking Reads and Writes and Concurrency
	About Shared SQL and Concurrency

	Limiting the Number of Concurrent Sessions
	Comparing Programming Techniques with Runstats
	About Runstats
	Setting Up Runstats
	Using Runstats

	Real-World Performance and Data Processing Techniques
	About Iterative Data Processing
	About Set-Based Processing

	Recommended Programming Practices
	Use Instrumentation Packages
	Statistics Gathering and Application Tracing
	Use Existing Functionality
	Cover Database Tables with Editioning Views

	Recommended Security Practices

	9 Developing a Simple Oracle Database Application
	About the Application
	Purpose of the Application
	Structure of the Application
	Schema Objects of the Application
	Schemas for the Application

	Naming Conventions in the Application

	Creating the Schemas for the Application
	Granting Privileges to the Schemas
	Granting Privileges to the app_data Schema
	Granting Privileges to the app_code Schema
	Granting Privileges to the app_admin Schema
	Granting Privileges to the app_user and app_admin_user Schemas

	Creating the Schema Objects and Loading the Data
	Creating the Tables
	Creating the Editioning Views
	Creating the Triggers
	Creating the Trigger to Enforce the First Business Rule
	Creating the Trigger to Enforce the Second Business Rule

	Creating the Sequences
	Loading the Data
	Adding the Foreign Key Constraint
	Granting Privileges on the Schema Objects to Users

	Creating the employees_pkg Package
	Creating the Package Specification for employees_pkg
	Creating the Package Body for employees_pkg
	Tutorial: Showing How the employees_pkg Subprograms Work
	Granting the Execute Privilege to app_user and app_admin_user
	Tutorial: Invoking get_job_history as app_user or app_admin_user

	Creating the admin_pkg Package
	Creating the Package Specification for admin_pkg
	Creating the Package Body for admin_pkg
	Tutorial: Showing How the admin_pkg Subprograms Work
	Granting the Execute Privilege to app_admin_user
	Tutorial: Invoking add_department as app_admin_user

	10 Deploying an Oracle Database Application
	About Development and Deployment Environments
	About Installation Scripts
	About DDL Statements and Schema Object Dependencies
	About INSERT Statements and Constraints

	Creating Installation Scripts
	Creating Installation Scripts with the Cart
	Creating an Installation Script with the Database Export Wizard
	Editing Installation Scripts that Create Sequences
	Editing Installation Scripts that Create Triggers
	Creating Installation Scripts for the Sample Application
	Creating Installation Script schemas.sql
	Creating Installation Script objects.sql
	Creating Installation Script employees.sql
	Creating Installation Script admin.sql
	Creating Master Installation Script create_app.sql

	Deploying the Sample Application
	Checking the Validity of an Installation
	Archiving the Installation Scripts

	Index

